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Nature has stimulated human thought and invention before recorded time. 
Controlled fire, the wheel and stone tools were all undoubtedly "invented" 
by humans, who drew inspiration from some natural phenomena in our 
prehistory, such as a wildfire created by a lightning strike, the rolling of 
round boulders down a steep hill and perhaps wounds caused by the sharp 
rocks of a river bottom. There are examples during recorded times of other 
such ingenuity inspired by Nature. Sir Isaac Newton wrote that seeing an 
apple fall from a tree outside his window provoked his initial thoughts on 
the theory of gravitation. The Wright brothers and countless unsuccessful 
aviators before them were stimulated by the flight of birds. Similarly, we 
can look to Nature to give us inspiration for new electronic devices. 

Even a casual glance at the living world around us reveals the rich 
diversity and complexity of life on Earth. For instance, we can choose 
virtually any organism and demonstrate that it has the ability to sense and 
react to the surrounding world. Over millions of years of evolution, almost 
all types of life have developed some type of detection ability, seamlessly 
integrated into the other functions of the lifeform. More specifically, we can 
examine the basic human senses of hearing, smell, taste, touch and sight to 
inspire us to understand more about the physical world. 

Human hearing is based around the Organ of Corti, which acts to 
transduce pressure waves created within the fluids of the cochlea. The 
20,000 micron-sized hair cells not only convert these waves into electrical 
impulses and transmit them to the brain via the auditory nerve, but allow 
audio spectral differentiation depending on their position within the Organ. 
Typical human frequency response ranges from 20 kHz to 30 Hz with 
sensitivity up to 130 decibels. Drawing from this natural example, today 
microphone manufacturers produce tiny transducers with dimensions of a 
few hundred microns. 

The human sense of smell is based around approximately twelve million 
receptor cells in the nose. Each cell contains between 500 and 1000 receptor 
proteins that detect different scents and relay the information to the olfactory 
bulb and on to the brain. Today, researchers are developing "electronic 
noses" to mimic and improve upon the human olfactory system. Important 
applications include the detection of explosives as well as toxic chemicals 
and biowarfare agents. 
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Gustatory receptors on the human tongue act as detectors for specific 
chemical molecules and are the basis for the sense of taste. Between 30,000 
and 50,000 individual taste receptors make up the taste buds that cover the 
tongue and are capable of sensing bitter, sour, sweet, salty and monosodium 
glutamate (MSG) based foods. "Artificial tongues" are being developed to 
similarly classify flavors and also to perform specialized chemical analysis 
of a variety of substances. Aside from the obvious commercial applications 
(such as active sampling of foods and beverages in production), these 
devices may act in conjunction with "electronic noses" to detect various 
chemical agents for security purposes. 

The sense of touch in humans allows several detection mechanisms, 
including specific receptors for heat, cold, pain and pressure. These 
receptors are located in the dermis and epidermis layers of the skin and 
include specialized neurons that transmit electric impulses to the brain. 
Today, microswitches have been developed to detect very small forces at the 
end of their arms much like the whiskers of a cat. Thermocouples have been 
developed for sensitive temperature detection and load cells are used for 
quantitative pressure sensing. 

The sense of sight is perhaps the most notable form of human ability. 
Micron-sized rods and cones containing photosensitive pigments are located 
in the back of the eye. When light within the visible spectrum strikes these 
cells, nerves are fired and the impulses are transmitted through the optic 
nerve to the brain, with electrical signals of only lOOmV between 
intracellular membranes. With the proper time to adapt to dark conditions, 
the human eye is capable of sensing at extremely low light levels (virtually 
down to single photon sensitivity). However, our vision is limited to a 
spectral band of wavelengths between about 400 and 750 nanometers. In 
order to extend our sensing capabilities into the infrared and ultraviolet, 
much research has gone into exploring various material systems and 
methods to detect these wavelengths. 

In order to improve and stretch the limits of innate human capabilities, 
researchers have mimicked Nature with the development of quantum 
sensing techniques. Using these electronic noses, tongues, pressure sensors 
and "eyes", scientists achieve not only a better understanding of Nature and 
the world around them, but also can improve the quality of life for humans. 
People directly benefit in a number of different ways from these advances 
ranging from restoration of sight, reduction in terrorist threats and enhanced 
efficiency and speed of industrial processes. 

Beyond human sensing capabilities, we can also look to the brain as an 
example of a computing and processing system. It is responsible for the 
management of the many sensory inputs as well as the interpretation of 
these data. Today's computers do a good job of processing numbers and are 
becoming indispensable in our daily lives, but they still do not have the 



Preface xxvii 

powerful capabilities of the human brain. For example, state-of-the-art low 
power computer processors consume more power than a human brain, while 
having orders of magnitude fewer transistors than the number of brain cells 
in a human brain (Fig. A). Forecasts show that the current microelectronics 
technology is not expected to reach similar levels because of its physical 
limitations. 

Year of Introduction 

Fig. A. Evolution ofthe total number oftransistors per computer chip and their 
corresponding dimensions (in an inverted scale) as a function ofyear. For comparison, the 
number of human brain cells is shown on the left scale. In addition, the physical dimension 

limit for conventional transistors and the size ofmolecules are shown on the right scale. 

By imitating Nature, scientists have already developed a growing array 
of electronic sensors and computing systems. It is obvious that we must 
continue to take cues from the world around us to identify the proper 
methods to enhance human knowledge and capability. However, future 
advances in this direction will have to reach closer to the structure of atoms, 
by engineering nanoscale electronics. 

Thanks to nanoelectronics, it will not be unforeseeable in the near future 
to create artificial atoms, molecules, and integrated multifunctional 
nanoscale systems. For example, as illustrated in Fig. B below, the structure 
of an atom can be likened to that of a so called "quantum dot" or "Q-dot" 
where the three-dimensional potential well of the quantum dot replaces the 
nucleus of an atom. An artificial molecule can then be made from artificial 
atoms. Such artificial molecules will have the potential to revolutionize the 
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performance of optoelectronics and electronics by achieving, for example, 
orders of magnitude higher speed processors and denser memories. With 
these artificial atoms/molecules as building blocks, artificial active 
structures such as nano-sensors, nano-machines and smart materials will be 
made possible. 

Fig. B. Schematic comparisons: (a) between a real atom and an artificial atom in the form of 
a quantum dot, and (b) between a real molecule and an artificial molecule. 

At the foundation of this endeavor is Solid State Engineering, which is a 
fundamental discipline that encompasses physics, chemistry, electrical 
engineering, materials science, and mechanical engineering. Because it 
provides the means to understand matter and to design and control its 
properties, Solid State Engineering is key to comprehend Natural Science. 

The 2oth century has witnessed the phenomenal rise of Natural Science 
and Technology into all aspects of human life. Three major sciences have 
emerged and marked that century, as shown in Fig. C: Physical Science 
which has strived to understand the structure of atoms through quantum 
mechanics, Life Science which has attempted to understand the structure of 
cells and the mechanisms of life through biology and genetics, and 
Information Science which has symbiotically developed the communicative 
and computational means to advance Natural Science. 
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L i f e  Science I[-] pZ'~i-zz2-J 
Flg C Three branches of Natural Sclence and Technology have impacted all aspects of 

human life in the 20Ih century. Physical, Information, and L& Sclences 0. For each one, 
a key sclentlfic drsclpllne or technology has been developed quantum mechanics, 

electronics, and genetlcs ( y ) .  These have allowed to both better understand the buddmg 
blocks of Nature (structures of atoms, genes and cells), and develop the tools wlthout which 
these sczentzfic advances would not have been possible (computer and Internet) 

synergetic manner (CJJ-r-1) 
The scientific and technological accomplishments of earlier centuries 

represent the first stage in the development of Natural Science and 
Technology, that of understanding (Fig. D). As the 21" century rolls in, we 
are entering the creation stage where promising opportunities lie ahead for 
creative minds to enhance the quality of human life through the 
advancement of science and technology. 

Hopefully, by giving a rapid insight into the past and opening the doors 
to the future of Solid State Engineering, this course will be able to provide 
some of the basis necessary for this endeavor, inspire the creativity of the 
reader and lead them to further explorative study. 
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20h Century 21th Century 

Understanding I Future Creation 

Fig. D. The scientific and technological advances of the 2ofh century can be regarded as the 
understanding stage in the development of Natural Science and Technology. The 21" century 

will be the creation stage in which novel opportunities will be discovered and carried out. 

Since 1992 when I joined Northwestern University as a faculty member 
and started to teach, I have established the Solid State Engineering (SSE) 
research group in the Electrical Engineering and Computer Science 
Department and subsequently created a series of related undergraduate and 
graduate courses. In the creative process for these courses, I studied similar 
programs in many other institutions such as for example Stanford 
University, the Massachusetts Institute of Technology, the University of 
Illinois at Urbana-Champaign, the California Institute of Technology, and 
the University of Michigan. I reviewed numerous textbooks and reference 
texts in order to put together the teaching material students needed to learn 
nanotechnology, semiconductor science and technology from the basics up 
to modern applications. But I soon found it difficult to find a textbook which 
combined all the necessary material in the same volume, and this prompted 
me to write the first edition of a textbook on the Fundamentals of Solid State 
Engineering. 

The book was primarily aimed at the undergraduate level, while 
graduate students and researchers in the field will also h d  useful material 
in it as well. After studying it, a student will be well versed in a variety of 
fundamental scientific concepts essential to Solid State Engineering, in 
addition to the latest technological advances and modern applications in this 
area, and will be well prepared to meet more advanced courses in this field. 

In this second edition, I have taken into account feedback comments 
from students who took the courses associated with this text and from 
numerous colleagues in the field. The second edition is an updated, more 
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complete text that covers an increased number of Solid State Engineering 
concepts and goes in depth in several of them. The Chapters also include 
redesigned and larger problem sets. 

This second edition is structured in two major parts. It first addresses the 
basic physics concepts which are at the base of solid state matter in general 
and semiconductors in particular. The text starts by providing an 
understanding of the structure of matter, real and reciprocal crystal lattices 
(Chapter l), followed by a description of the structure of atoms and 
electrons (Chapter 2). An introduction to basic concepts in quantum 
mechanics (Chapter 3) and to the modeling of electrons and energy band 
structures in crystals (Chapter 4) is then given. A few crystal properties are 
then described in detail, by introducing the concept of phonons to describe 
vibrations of atoms in crystals (Chapter 5) and by interpreting the thermal 
properties of crystals (Chapter 6). The equilibrium and non-equilibrium 
electrical properties of semiconductors will then be reviewed, by developing 
the statistics (Chapter 7) as well as the transport, generation and 
recombination properties of these charge carriers in semiconductors 
(Chapter 8). These concepts will allow then to model semiconductor p-n and 
semiconductor-metal junctions (Chapter 9) which constitute the building 
blocks of modern electronics. The optical properties of semiconductors 
(Chapter 10) will then be described in detail. The first part of this book ends 
with a discussion on semiconductor heterostructures and low-dimensional 
quantum structures including quantum wells and superlattices, wires and 
dots (Chapter 11). In these Chapters, the derivation of the mathematical 
relations has been spelled out in thorough detail so that the reader can 
understand the limits of applicability of these expressions and adapt them to 
his or her particular situations. 

The second part of this book reviews the technology associated with 
modern Solid State Engineering. This includes a review of compound 
semiconductors and crystal growth techniques (Chapter 12), including that 
of epitaxial thin films, followed by a brief description of the major 
semiconductor characterization techniques (Chapter 13) and defects in 
crystals (Chapter 14). Current semiconductor device processing and nano- 
fabrication technologies will subsequently be examined (Chapters 15 and 
16). A few examples of semiconductor devices, including transistors 
(Chapter 17), semiconductor lasers (Chapter 18), and photodetectors 
(Chapter 19 and 20), will then be reviewed along with a description of their 
theory of operation. 

In each Chapter, a section "References" lists the bibliographic sources 
which have been namely referenced in the text. The interested reader is 
encouraged to read them in addition to those in given in the section "Further 
reading". 
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classes, both undergraduate and graduate, which I have taught at 
Northwestern University. I am therefore grateful to many of my students 
and group for their assistance during the preparation process of this 
manuscript: Pierre-Yves Delaunay, Allan Evans, Aaron Gin, Darin 
Hoffman, Andrew Hood, Ho-Chul Lim, Ryan McClintock, Kathryn Minder, 
Binh Minh Nguyen, Jean Nguyen, John Szafraniec, Maho Taguchi, Stanley 
Tsao, Yajun Wei, Alireza Yasan, Wei Zhang, Dr. Euzi DaSilva, Dr. Patrick 
Kung, Dr. Erick Michel, Dr. Bijan Movaghar, Dr. Alain Quivy, Dr. Steven 
Slivken, and George Mach. 

Finally, I would like to express my deepest appreciation to the 
Northwestern University Administration for their permanent support and 
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Dumas, Vice President for Research C. Bradley Moore, and Dean of the 
McCormick School of Engineering Julio Ottino. 

M.R. 



1. Crystalline Properties of Solids 

1.1. Introduction 
1.2. Crystal lattices and the seven crystal systems 
1.3. The unit cell concept 
1.4. Bravais lattices 
1.5. The Wigner-Seitz cell 
1.6. Point groups 

1.6.1. C, group (plane reflection) 
1.6.2. C, groups (rotation) 
1.6.3. Cnh and C,, groups 
1.6.4. D, groups 
1.6.5. Dnh and Dnd groups 
1.6.6. Ci group 
1.6.7. C3i and Sq groups 
1.6.8. Tgroup 
1.6.9. Td group 
1.6.10. 0 group 
1.6.11. Oh group 
1.6.12. List of crystallographic point groups 

1.7. Space groups 
1.8. Directions and planes in crystals: Miller indices 
1.9. Real crystal structures 

1.9.1. Diamond structure 
1.9.2. Zinc blende structure 
1.9.3. Sodium chloride structure 
1.9.4. Cesium chloride structure 
1.9.5. Hexagonal close-packed structure 
1.9.6. Wurtzite structure 
1.9.7. Packing factor 

1.10. Summary 



2 Fundamentals of Solid State Engineering 

1.1. Introduction 

This Chapter gives a brief introduction to crystallography, which is the 
science that studies the structure and properties of the crystalline state of 
matter. We will first discuss the arrangements of atoms in various solids, 
distinguishing between single crystals and other forms of solids. We will 
then describe the properties that result from the periodicity in crystal 
lattices. A few important crystallography terns most often found in solid 
state devices will be defined and illustrated in crystals having basic 
structures. These definitions will then allow us to refer to certain planes and 
directions within a lattice of arbitrary structure. 

Investigations of the crystalline state have a long history. Johannes 
Kepler (Strena Seu de Nive Sexangula, 161 1) speculated on the question as 
to why snowflakes always have six corners, never five or seven (Fig. 1.1). It 
was the first treatise on geometrical crystallography. He showed how the 
close-packing of spheres gave rise to a six-corner pattern. Next Robert 
Hooke (Micrographia, 1665) and Rene Just Haiiy (Essai d'une thdorie sur 
la structure des cristaux, 1784) used close-packing arguments in order to 
explain the shapes of a number of crystals. These works laid the foundation 
of the mathematical theory of crystal structure. It is only recently, thanks to 
x-ray and electron diffraction techniques, that it has been realized that most 
materials, including biological objects, are crystalline or partly so. 

Fig. 1.1. (a) Snowjake crystal, and (6) the close-packing of spheres which gives rise to a six 
corner pattern. The close-packing of spheres can he thought as the way to most efficiently 

stack identical spheres. 

All elements from the periodic table (Fig. 1.2) and their compounds, be 
they gas, liquid, or solid, are composed of atoms, ions, or molecules. Matter 
is discontinuous. However, since the sizes of the atoms, ions and molecules 
lie in the 1 A (lo-'' m or lo-' m) region, matter appears continuous to us. 
The different states of matter may be distinguished by their tendency to 
retain a characteristic volume and shape. A gas adopts both the volume and 
shape of its container, a liquid has a constant volume but adopts the shape of 
its container, while a solid retains both its shape and volume independently 
of its container. This is illustrated in Fig. 1.3. The natural forms of each 
element in the periodic table are given in Fig. A. 1 in Appendix A.3. 
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Fig. 1.3. Illustration of the physical states of water: (a) gas also known as water vapor, (b) 
liquid or common water, (c) solid also known as snow or ice. 

Gases. Molecules or atoms in a gas move rapidly through space and thus 
have a high kinetic energy. The attractive forces between molecules are 
comparatively weak and the energy of attraction is negligible in comparison 
to the kinetic energy. 

Liquids. As the temperature of a gas is lowered, the kinetic energies of 
the molecules or atoms decrease. When the boiling point (Fig. A.3 in 
Appendix A.3) is reached, the kinetic energy will be equal to the energy of 
attraction among the molecules or atoms. Further cooling thus converts the 
gas into a liquid. The attractive forces cause the molecules to "touch" one 
another. They do not, however, maintain fixed positions. The molecules 
change positions continuously. Small regions of order may indeed be found 
(local ordering), but if a large enough volume is considered, it will also be 
seen that liquids give a statistically homogeneous arrangement of molecules, 
and therefore also have isotropic physical properties, i.e. equivalent in all 
directions. Some special types of liquids that consist of long molecules may 
reveal anisotropic properties (e.g. liquid crystals). 

Solids. When the temperature falls below the freezing point, the kinetic 
energy becomes so small that the molecules become permanently attached 
to one another. A three-dimensional framework of net attractive interaction 
forms among the molecules and the array becomes solid. The movement of 
molecules or atoms in the solid now consists only of vibrations about some 
fixed positions. A result of these permanent interactions is that the 
molecules or atoms have become ordered to some extent. The distribution of 
molecules is no longer statistical, but is almost or fully periodically 
homogeneous; and periodic distribution in three dimensions may be formed. 

The distribution of molecules or atoms, when a liquid or a gas cools to 
the solid state, determines the type of solid. Depending on how the solid is 
formed, a compound can exist in any of the three forms in Fig. 1.4. The 
ordered crystalline phase is the stable state with the lowest internal energy 
(absolute thermal equilibrium). The solid in this state is called the single 
crystal form. It has an exact periodic arrangement of its building blocks 
(atoms or molecules). 
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Sometimes the external conditions at a time of solidification 
(temperature, pressure, cooling rate) are such that the resulting materials 
have a periodic arrangement of atoms which is interrupted randomly along 
two-dimensional sections that can intersect, thus dividing a given volume of 
a solid into a number of smaller single-crystalline regions or grains. The size 
of these grains can be as small as several atomic spacings. Materials in this 
state do not have the lowest possible internal energy but are stable, being in 
so-named local thermal equilibrium. These are polycrystalline materials. 

There exist, however, solid materials which never reach their 
equilibrium condition, e.g. glasses or amorphous materials. Molten glass is 
very viscous and its constituent atoms cannot come into a periodic order 
(reach equilibrium condition) rapidly enough as the mass cools. Glasses 
have a higher energy content than the corresponding crystals and can be 
considered as a frozen, viscous liquid. There is no periodicity in the 
arrangement of atoms (the periodicity is of the same size as the atomic 
spacing) in the amorphous material. Amorphous solids or glass have the 
same properties in all directions (they are isotropic), like gases and liquids. 

Therefore, the elements and their compounds in a solid state, including 
silicon, can be classified as single-crystalline, polycrystalline, or amorphous 
materials. The differences among these classes of solids are shown 
schematically for a two-dimensional arrangement of atoms in Fig. 1.4. 

Fig. 1.4. Arrangement of atoms: (a) a single-ciystalline, (b) a polyciystalline, and (c) an 
amorphous material. 

1.2. Crystal lattices and the seven crystal systems 

Now we are going to focus our discussion on crystals and their structures. A 
crystal can be defined as a solid consisting of a pattern that repeats itself 
periodically in all three dimensions. This pattern can consist of a single 
atom, group of atoms or other compounds. The periodic arrangement of 
such patterns in a crystal is represented by a lattice. A lattice is a 
mathematical object which consists of a periodic arrangement of points in 
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all directions of space. One pattern is located at each lattice point. An 
example of a two-dimensional lattice is shown in Fig. 1.5(a). With the 
pattern shown in Fig. 1.5(b), one can obtain the two-dimensional crystal in 
Fig. 1.5(c) which shows that a pattern associated with each lattice point. 

Fig. 1.5. Example of (a) two-dimensional lattice, (b) pattern, and (c) two-dimensional crystal 
illustrating a pattern associated with each lattice point. 

A lattice can be represented by a set of translation vectors as shown in 
the two-dimensional (vectors a', ) and three-dimensional lattices (vectors 

z ,  g, 2 )  in Fig. 1.5(a) and Fig. 1.6, respectively. The lattice is invariant after 

translations through any of these vectors or any sum of an integer number of 
these vectors. When an origin point is chosen at a lattice point, the position 
of all the lattice points can be determined by a vector which is the sum of 
integer numbers of translation vectors. In other words, any lattice point can 

generally be represented by a vector such that: 

+ - 
R = n,; + n,b + n,;, 

Eq. ( 1.1 ) 
n ,,,,, = 0,f l,f2 ,... 

where a,;, ct are the chosen translation vectors and the numerical 
coefficients are integers. 

All possible lattices can be grouped in the seven crystal systems shown 
in Table 1.1, depending on the orientations and lengths of the translation 
vectors. No crystal may have a structure other than one of those in the seven 
classes shown in Table 1.1. 

A few examples of cubic crystals include Al, Cu, Pb, Fe, NaC1, CsC1, C 
(diamond form), Si, GaAs; tetragonal crystals include In, Sn, TiOz; 
orthorhombic crystals include S, I, U; monoclinic crystals include Se, P; 
triclinic crystals include KCr02; trigonal crystals include As, B, Bi; and 
hexagonal crystals include Cd, Mg, Zn and C (graphite form). 
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Fig. 1.6. Example of a three-dimensional lattice, with translation vectors and the angles 
between two vectors. By taking the origin at one lattice point, theposition of any latticepoint 

can be determined by a vector which is the sum of integer numbers of translation vectors. 

Crystal systems Axial lengths and angles 

Cubic Three equal axes at right angles a=b=c, a=P=y=90° 

Tetragonal Three axes at right angles, two equal a=b#c, a=P=y 
=90° 

Orthorhombic Three unequal axes at right angles a+bzc, a=P=y=90° 

Trigonal Three equal axes, equally inclined a=b=c, a=P=y#90° 

Hexagonal Two equal coplanar axes at 120°, third axis at right 
angles a=b#c, a=P=90°, y=120° 

bf~noclinic Three unequal axes, one pair not at right angles a#b#c, 
a=y=90°zp 

Triclinic Three unequal axes, unequally inclined and none at 
right angles a#b#c, a#P+y#9O0 

Table I .  I .  The seven crystal systems. 
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1.3. The unit cell concept 

A lattice can be regarded as a periodic arrangement of identical cells offset 
by the translation vectors mentioned in the previous section. These cells fill 
the entire space with no void. Such a cell is called a unit cell. 

Since there are many different ways of choosing the translation vectors, 
the choice of a unit cell is not unique and all the unit cells do not have to 
have the same volume (area). Fig. 1.7 shows several examples of unit cells 
for a two-dimensional lattice. The same principle can be applied when 
choosing a unit cell for a three-dimensional lattice. 

Fig. 1.7. Three examples ofpossible unit cells for a two-dimensional lattice. The unit cells 
are delimited in solid lines. The same principle can be applied for the choice of a unit cell in 

three dimensions. 

The unit cell which has the smallest volume is called the primitive unit 
cell. A primitive unit cell is such that every lattice point of the lattice, 
without exception, can be represented by a vector such as the one in 
Eq. ( 1.1 ). An example of primitive unit cell in a three-dimensional lattice is 

shown in Fig. 1.8. The vectors defining the unit cell, a', g, c' , are basis lattice 
vectors of the primitive unit cell. 

The choice of a primitive unit cell is not unique either, but all possible 
primitive unit cells are identical in their properties: they have the same 
volume, and each contains only one lattice point. The volume of a primitive 
unit cell is found from vector algebra: 
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Fig. 1.8. Three-dimensional lattice and a corresponding primitive unit cell defined by the 
..+ 

three basis vectors a', b ,  c' 

The number of primitive unit cells in a crystal, N, is equal to the number 
of atoms of a particular type, with a particular position in the crystal, and is 
independent of the choice of the primitive unit cell: 

crystal volume 
primitive unit cell volume = 

N 

A primitive unit cell is in many cases characterized by non-orthogonal 
lattice vectors (as in Fig. 1.6). As one likes to visualize the geometry in 
orthogonal coordinates, a conventional unit cell (but not necessarily a 
primitive unit cell), is often used. In most semiconductor crystals, such a 
unit cell is chosen to be a cube, whereas the primitive cell is a 
parallelepiped, and is more convenient to use due to its more simple 
geometrical shape. 

A conventional unit cell may contain more than one lattice point. To 
illustrate how to count the number of lattice points in a given unit cell we 
will use Fig. 1.9 which depicts different cubic unit cells. 

In our notations ni is the number of points in the interior, nf is the 
number of points on faces (each nf is shared by two cells), and n, is the 
number of points on comers (each n, point is shared by eight comers). For 
example, the number of atoms per unit cell in the fcc lattice (Fig. 1.9(c)) 
(n,=O, n76, and n,=8) is: 

nf n, - Eq. ( 1.3 ) nu = ni + - + - -4 atomdunit cell 
2 8 
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V V 

Simple cubic Body-centered cubic Face-centered cubic 

Fig. 1.9. Three-dimensional unit cells: simple cubic (lej?), body-centered cubic (bcc)( 
middle), and face-centered cubic Cfcc) (right). 

1.4. The Wigner-Seitz cell 

The primitive unit cell that exhibits the full symmetry of the lattice is called 
Wigner-Seitz cell. As it is shown in Fig. 1.10, the Wigner-Seitz cell is 
formed by (1) drawing lines from a given Bravais lattice point to all nearby 
lattice points, (2) bisecting these lines with orthogonal planes, and (3) 
constructing the smallest polyhedron that contains the selected point. This 
construction has been conveniently shown in two dimensions, but can be 
continued in the same way in three dimensions. Because of the method of 
construction, the Wigner-Seitz cell translated by all the lattice vectors will 
exactly cover the entire lattice. 

Fig. 1.10. Two-dimensional Wigner-Seitz cell and its construction method: select a lattice 
point, draw lines from a given lattice point to all nearbypoints, bisect these lines with 

orthogonal planes, construct the smallest polyhedron that contains the$rst selected lattice. 
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1.5. Bravais lattices 

Because a three-dimensional lattice is constituted of unit cells which are 
translated from one another in all directions to fill up the entire space, there 
exist only 14 different such lattices. They are illustrated in Fig. 1.1 1 and 
each is called a Bravais lattice after the name of Bravais (1 848). 

In the same manner as no crystal may have a structure other than one of 
those in the seven classes shown in Table 1.1, no crystal can have a lattice 
other than one of those 14 Bravais lattices. 
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Simple cubic Body-centered cubic Face-centered cubic 

Simple tetragonal Body-centered tetragonal 

Simple Body-centered Base-centered Face-centered 
ortliorhonlbic orthorhon~bic orthorhombic orthorhombic 

Simple 
monoclinic 

Base-centered 
nionoclinic 

Trigonal 

a 

Hexagonal 

Fig. I .  I I .  The fourteen Bravais lattices, illustrating all the possible three-dimensional crystal 
lattices. 
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1.6. Point groups 

Because of their periodic nature, crystal structures are brought into self- 
coincidence under a number of symmetry operations. The simplest and most 
obvious symmetry operation is translation. Such an operation does not leave 
any point of the lattice invariant. There exists another type of symmetry 
operation, called point symmetry, which leaves a point in the structure 
invariant. All the point symmetry operations can be classified into 
mathematical groups called point groups, which will be reviewed in this 
section. 

The interested reader is referred to mathematics texts on group theory 
for a complete understanding of the properties of mathematical groups. For 
the scope of the discussion here, one should simply know that a 
mathematical group is a collection of elements which can be combined with 
one another and such that the result of any such combination is also an 
element of the group. A group contains a neutral element such that any 
group element combined with it remains unchanged. For each element of a 
group, there also exists an inverse element in the group such that their 
combination is the neutral element. 

1.6.1. C, group (plane reflection) 
A plane reflection acts such that each point in the crystal is mirrored on the 
other side of the plane as shown in Fig. 1.12. The plane of reflection is 
usually denoted by a . When applying the plane reflection twice, i.e. c r2 ,  

we obtain the identity which means that no symmetry operation is 
performed. The reflection and the identity form the point group which is 
denoted C, and which contains only these two symmetry operations. 

Fig. 1.12. Illustration of a plane reflection. The triangular object and its reflected image are 
mirror images of each other. 
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1.6.2. C, groups (rotation) 
A rotation about an axis and through an angle B (n is an integer) is such that 
any point and its image are located in a plane perpendicular to the rotation 
axis and the in-plane angle that they form is equal to 8 ,  as shown in 
Fig. 1.13. In crystallography, the angle of rotation cannot be arbitrary but 

2n 2n 2n 2 2n 
can only take the following fractions of 2n: B = - , - , - , - , - 

1 2 3 4 6  

Fig. 1.13. Illustration of a rotation symmetry. The triangular object and its image are 
separated by an angle equal to 0. 

2n 
It is thus common to denote as C,, a rotation through an angle - 

n 
where n is an integer equal to 1, 2, 3, 4, or 6. The identity or unit element 
corresponds to n=l, i.e. C,. For a given axis of rotation and integer n, a 
rotation operation can be repeated and this actually leads to n rotation 
operations about the same axis, corresponding to the n allowed angles of 

2 n  2 n  2 n  2 n  
rotation: 1 x - , 2 x - , . . ., (n - 1)x - , and n x - . These n rotation 

n n n n 
operations, which include the identity, form a group also denoted C, . 

One says that the C,, group consists of n-fold symmetry rotations, where 
n can be equal to 1,2, 3 ,4  or 6. Fig. 1.14 depicts the perspective view of the 
crystal bodies with symmetries C, , C, , C, , C, , C, . The rotations are done 

so that the elbow pattern coincides with itself. It is also common to represent 
these symmetry groups with the rotation axis perpendicular to the plane of 
the figure, as shown in Fig. 1.15. 
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Fig. 1.14. Crystal bodies with symmetries C,, C2, C3, C4 and C6. The elbowpatterns are 
brought into self coincidence after a rotation around the axis shown and through an angle 

equal to 2dn where n=l, 2, 3, 4, or 6. 

Fig. 1.15. Crystal bodies with symmetries C,, Ct C3, C4 and C6 with the rotation axes 
perpendicular to the plane of the figure. 

1.6.3. Cnh and Cnv groups 

When combining a rotation of the Cn group and a reflection plane a , the 

axis of rotation is usually chosen vertical. The reflection plane can either be 
perpendicular to the axis and then be denoted a, (horizontal), or pass 

through this axis and then be denoted a, (vertical). All the possible 

combinations of such symmetry operations give rise to two types of point 
groups: the Cnh and the Cn, groups. 

The C,,, groups contain an n-fold rotation axis Cn and a plane a, 
perpendicular to it. Fig. 1.16(a) shows the bodies with a symmetry Cdh. The 
number of elements in a Cn, group is 2n. 

The Cnv groups contain an n-fold axis Cn and a plane a, passing 

through the rotation axis. Fig. 1.16(b) shows the bodies with a symmetry 
C4,. The number of elements is 2n too. 
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Fig. 1.16. Crystal bodies with symmetries (a) where the reflection plane is perpendicular 
to the rotation axis; and (b) C4" where the reflection plane passes through the rotation axis. 

1.6.4. D, groups 
When combining a rotation of the C, group and a C2 rotation with an axis 
perpendicular to the first rotation axis, this gives rise to a total of n C2 
rotation axes. All the possible combinations of such symmetry operations 
give rise to the point groups denoted D,,. The number of elements in this 

point group is 2n. For example, the symmetry operations in D, are 
illustrated in Fig. 1.17. 

Fig. 1.17. Crystal bodies with symmetry D4. In addition to the C4 axis, there are 4 C2 axes of 
rotation perpendicular to the C, axis. 
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1.6.5. Dnh and Dnd groups 
When combining an element of the Cnh group and a C2 rotation which has an 
axis perpendicular to the C, axis, this gives also rise to a total of n C2 
rotation axes. All the possible combinations of such symmetry operations 
leads to the point group denoted Dnh This point group can also be viewed as 
the result of combining an element of the D, group and a oh (horizontal) 

reflection plane. This group can also be viewed as the result of combining 
an element of the D, group and n a, (vertical) reflection planes which pass 

through both the C, and the n C2 axes. 
The number of elements in the Dnh point group is 4n, as it includes the 

212 elements of the D, group, and all these 2n elements combined with a 

plane-reflection oh. For example, the symmetry operations in Dlh are 

illustrated in Fig. 1.18(a). 
Now, when combining an element of the C,, group and a C2 rotation 

which has an axis perpendicular to the C, axis and which is such that the o, 

(vertical) reflection planes bisect two adjacent C2 axes, this leads to the 
point group denoted Dnd This point group can also be viewed as the result 
of combining an element of the D, group and n o, (vertical) reflection 

planes which bisect the C2 axes. 
The number of elements in the Dnd point group is 4n as well. For 

example, the symmetry operations in Did are illustrated in Fig. 1.18(b). 

(4 

Fig. 1.18. Bodies with symmetries (a) D4,, and (b) D4,,. 
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1.6.6. Ci group 
An inversion symmetry operation involves a center of symmetry (e.g. 0) 
which is at the middle of a segment formed by any point (e.g. A) and its 
image through inversion symmetry (e.g. A'), as shown in Fig. 1.19. 

Fig. 1.19. Illustration of an inversion symmetry. Any point of the triangular object and its 
image are such that the inversion center is at the middle of these two points. 

When applying an inversion symmetry twice, we obtain the identity 
which means that no symmetry operation is performed. The inversion and 
the identity form the point group which is denoted Ci and which contains 
only these two symmetry operations. 

1.6.7. C3i and S4 groups 
When combining an element of the C, group and an inversion center located 
on the axis of rotation, the symmetry operations get more complicated. If we 
consider the C1 group (identity), we obtain the inversion symmetry group Ci. 
In the case of C2 group, we get the plane reflection group C,. And if we 
consider the C6 group, we actually obtain the Crlh point group. 

When we combine independently elements from the C4 group and the 
inversion center, we get the Cdh point group. However, there is a sub-group 
of the Cdh point group which can be constructed by considering a new 
symmetry operation, the roto-inversion, which consists of a C4 rotation 
immediately followed by an inversion through a center on the rotation axis. 
It is important to realize that the roto-inversion is a single symmetry 
operation, i.e. the rotation is not independent of the inversion. The sub- 
group is made by combining roto-inversion operation, is denoted S4 and is 
illustrated in Fig. 1.20. Its number of elements is 4. 

A similar point group is obtained when considering roto-inversions from 
the C3 group. The new point group is denoted C3i. 
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Fig. 1.20. Bodies with symmetry S4. 

1.6.8. T group 
The tetrahedron axes group T is illustrated in Fig. 1.21. It contains some of 
the symmetry operations which bring a regular tetrahedron into self 
coincidence. The tetrahedron and its orientation with respect to the cubic 
coordinate axes are also shown. 

Fig. 1.21. Axes of rotation for the Tgroup, including four C3 and three C2 axes. The 
orientation of the tetrahedron with respect to the cubic coordinate axes is shown on the right. 

The number of elements is 12, which includes: 
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2n 4n  
rotations through an angle - or -, about the four C3 axes 

3 3 
which are the body diagonals of a cube (yielding at total of 8 
elements), 
rotations through an angle n , about the three C2 axes ( 2  ,? , Z)  
passing through the centers of opposite faces (3 elements), 
and the identity (1 element). 

1.6.9. Td group 

The T, point group contains all the symmetry elements of a regular 

tetrahedron (Fig. 1.22). Basically, it includes all the symmetry operations of 
the T group in addition to an inversion center at the center of the 
tetrahedron. 

Fig. 1.22. Axes of rotation for T,group, including four C3, three C2 axespassing through the 
center of opposite faces, three Sq axes, and six C2 axespassing through the centers of 

diagonally opposite sides. 

The number of elements is 24, which includes: 
2n 4n  

rotations through an angle - or -, about the four C3 axes 
3 3 

which are the body diagonals of a cube (yielding at total of 8 
elements), 
rotations through an angle n , about the three C2 axes ( 2  , Y ,  Z)  
passing through the centers of opposite faces (3 elements), 
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n 3n 
rotations through an angle - or - ( S , ) ,  about the three axes 

2 2 
( 2  , y ,  2 )  passing through the centers of opposite faces, followed by 
an inversion through the center point 0 of a cube, (6 elements), 
rotations through an angle n ,  about the six C2 axes passing through 
the centers of diagonally opposite sides (in diagonal planes of a 
cube), followed by an inversion through the center point 0, (6 
elements), 
and finally, the identity (1 element). 

1.6.1 0. 0 group 
The cubic axes group 0 consists of rotations about all the symmetry axes of 
a cube. The number of elements is 24, which includes: 

2n 4n  677 
rotations through the angles - , - or-, about the three C4 

4 4 4 
axes passing through the centers of opposite faces (yielding a total 
of 9 elements), 

2n 4n  
rotations through the angles - or -, about the four Cg axes 

3 3 
passing through the opposite vertices (8 elements), 
rotations through an angle n ,  about the six C2 axes passing through 
the midpoints of opposite edges (6 elements), 
and finally, the identity (1 element). 

1.6.11. Oh group 

The 0, group includes the full symmetry of a cube in addition to an 

inversion symmetry. The number of elements is 48, which includes: 
all the symmetry operations of the 0 group (24 elements), 
and all the symmetry operations of the 0 group combined with an 
inversion through the body-center point of a cube (24 elements). 

1.6.12. List of crystallographic point groups 
The point groups previously reviewed are constructed by considering all the 
possible combinations basic symmetry operations (plane reflections and 
rotations) discussed in sub-sections 1.6.1 and 1.6.2. By doing so, one would 
find that there exist only 32 crystallographic point groups. Crystallographers 
normally use two kinds of notations for these point symmetry groups. 
Table 1.2 shows the correspondence between two widely used notations. 
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Crystal system Schoenflies Hermann-Mauguin 
svmbol svmbol 

Triclinic I 

m 

Orthorhombic D2 222 
c 2 v  mm2 

Tetragonal 4 

Trigonal 

Hexagonal c6 6 
- 

c3h  6 
c 6 h  6 h  
0 6  622 
c 6 v  6 ~ n  

Table 1.2. List of the 32 crystallographic point groups. 
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1.7. Space groups 

The other type of symmetry in crystal structures, translation symmetry, 
reflects the self-coincidence of the structure after the displacements through 
arbitrary lattice vectors (Eq. ( 1.1 )). 

These symmetry operations are independent of the point symmetry 
operations as they do not leave a point invariant (except for the identity). 
The combination of translation symmetry and point symmetry elements 
gives rise to new symmetry operations which also bring the crystal structure 
into self-coincidence. An example of such new operation is a glide plane by 
which the structure is reflected through a reflection plane and then translated 
by a vector parallel to the plane. 

With these new symmetry operations, a larger symmetry operation 
group is formed, called space group. There are only 230 possible three- 
dimensional crystallographic space groups which are conventionally labeled 
with a number from No. 1 to No. 230. 

1.8. Directions and planes in crystals: Miller indices 

In order to establish the proper mathematical description of a lattice we have 
to identify the directions and planes in a lattice. This is done in a crystal 
using Miller indices (hkl). We introduce Miller indices by considering the 
example shown in Fig. 1.23. 

a-axis 

Fig. 1.23. Example of aplane which passes through lattice points. Its Miller indices are 
(hkl)=(323) and are used to identify this plane in the crystal. These indices are obtained as 

follows: note where the plane intersects the coordinate axes, it is either an integer multiple or 
an irreducible fraction of the axis unit length; invert the intercept values; using the 

appropriate multiplier, convert these inverted values into integer numbers; enclose the 
integer numbers in parenthesis. 
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Fig. 1.23 shows a crystal plane which passes through lattice points and 

intersects the axes: 2a, 3b, 2c where Z, g, Z are basic lattice vectors. To 
1 1 1  obtain Miller indices we form the ratio - : -: - and put the fractions on the 
2 3 2  

smallest common denominator. The Miller indices are the corresponding 
numerators. Thus we obtain the Miller indices for the plane: (hkl) = (323). 
It also follows that a lattice plane with Miller indices (hkl) will be 

- Na Nb Nc 
intersected by the axis Z, b,  Z at distances -,-, - where N is an 

h k l  
integer. The Miller indices for a few planes in a cubic lattice are shown in 
Fig. 1.24. These Miller indices are obtained as described above, and by 

1 1  1 
using -,-,- =1:0:0=(100). 

l c o c o  
For a crystal plane that intersects the origin, one typically has to 

determine the Miller indices for an equivalent plane which is obtained by 
translating the initial plane by any lattice vector. The conventions used to 
label directions and planes in crystallographic systems are summarized in 
Table 1.3. 

The notation for the direction of a straight line passing through the 
origin is [uvw], where u, v, and w are the three smallest integers whose ratio 
u:v:w is equal to the ratio of the lengths (in units of a, b, and c) of the 
components of a vector directed along the straight line. For example, the 
symbol for the a-axis in Fig. 1.23, which coincides with vector ii , is [loo]. 

For the indices of both plane and directions, a negative value of the 
index is written with a bar sign above the index, such as (hk l )  or [ u k ] .  

Notation Designation 

(hk0 Plane 

{hkl) Equivalent plane 

[UVW] Direction 

<uvw> Equivalent direction 

(hkil) Plane in hexagonal systems 

[uvtw] Direction in hexagonal systems 

Table 1.3. Conventions used to label directions and planes in crystallography. 
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Example 
Q: Determine the direction index for the lattice vector 

shown below. 

4 4 - . - . - .  

We can decompose the vector R as: R = l a  + 2b + 2c. 
This corresponds to u=l, v=2, w=2, and the direction is 
thus [122]. 

In cubic systems, such as simple cubic, body-centered cubic and face- 
centered cubic lattices, the axes of Fig. 1.23 are chosen to be orthonormal, 
i.e. the unit vectors are chosen orthogonal and of the same length equal to 
the side of the cubic unit cell. The axes are then conventionally denoted x, y, 
and z instead of a, b, and c, as shown in Fig. 1.24. 

Fig. 1.24. Miller indices of the three principal planes in the cubic structure. I fa  plane is 
parallel to an axis, we consider that it "intersects" this axis at infinity and we get the Miller 

indices: I,qoo=> I/l:l/oo.l/oo=l:0:0 => (100). 

In addition, for cubic systems, the Miller indices for directions and 
planes have the following particular and important properties: 

The direction denoted [hkl] is perpendicular to plane denoted (hkl). 
The interplanar spacing is given by the following expression and is 
shown in the example in Fig. 1.25 : 
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Fig. 1.25. Illustration of the interplanar spacing in a cubic lattice between two adjacent (233) 
planes. 

The angle B between two directions [hlklll] and [h2k212] is given by 
the relation: 

Example 
Q: Determine the angle between the two planes shown 

below (PSR) and (PQR), in a cubic lattice. 

tz 

A: The Miller indices for the (PSR) plane are (1 1 I), while 
they are (2 12) for the (PQR) plane. The angle Bbetween 
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these two planes is given by the following cosine - 
l x 2 + 1 x l + l x 2  

function: cos(8) = - - 
543 

J 1 2 + 1 2 + 1 2 ~ 2 2 + 1 2 + 2 2 )  9 

The angle between the two planes is therefore: 15.8 deg. 

In hexagonal systems, the a- and b-axes of Fig. 1.23 are chosen in the 
plane formed by the base of the hexagonal unit cell and form a 120 degree 
angle. They are denoted a', and a', and their length is equal to the side of 
the hexagonal base. The unit vector perpendicular to the base is still denoted 
c.  In addition, it is also conventional to introduce a (redundant) fourth unit 
vector denoted a', in the base plane and equal to - (a', + a,), as shown in 
Fig. 1.26. It is then customary to use a four-index system for planes and 
directions: (hkil) and [uvtw], respectively, as shown in Table 1.3. The 
additional index that is introduced for hexagonal systems is such that: 
i=-(h+k) and t=-(u+v), which is a direct consequence of the choice of the 
fourth unit vector a', . 

Fig. 1.26. Coordinate axes used to determine Miller indices for hexagonal systems. 

In modern microelectronics, it is often important to know the in-plane 
crystallographic directions of a wafer and this can be accomplished using 
Miller indices. During the manufacturing of the circular wafer disk, it is 
common to introduce a "flat" to indicate a specific crystal direction. To 
illustrate this, let us consider the (100) oriented silicon wafer shown in 
Fig. 1.27. A primary flat is such that it is perpendicular to the [I101 

direction, while a smaller secondary flat is perpendicular to the [ ~ l i ]  
direction. 



Fundamentals of Solid State Engineering 

primary flat 
(100) Si -~[011] 0 

secondary flat 1 [O IT] 

Fig. 1.27. Illustration of the use ofprimary and secondaryjlats on a (100) oriented silicon 
crystal wafer to indicate the in-plane c rystallographic orientation of the wafer. 

1.9. Real crystal structures 

Most semiconductor solids crystallize into a few types of structures which 
are discussed in this section. They include the diamond, zinc blende, sodium 
chloride, cesium chloride, hexagonal close packed and wurtzite structures. 

1.9.1. Diamond structure 
Elements from the column IV in the periodic table, such as carbon (the 
diamond form), germanium, silicon and gray tin, crystallize in the diamond 
structure. The Bravais lattice of diamond is face-centered cubic. The basis 
has two identical atoms located at (0,0,0) and (%,%,!A) in the cubic unit cell, 
for each point of the fcc lattice. The point group of diamond is Oh. The 
lattice constants are a=3.56, 5.43, 6.65, and 6.46 for the four crystals 
mentioned previously in the same order. The conventional cubic unit cell 
thus contains eight atoms. There is no way to choose a primitive unit cell 
such that the basis of diamond contains only one atom. 

The atoms which are at least partially in the conventional cubic unit cell 
are located at the following coordinates: (0,0,0), (0,0,1), (0,1,0), (1,0,0), 
(l,l,O), (l,O,l), (O,l,l), ( l , l , l) ,  (%,%,O), (O,%,%), (%,O,%), (%,%,I), (I,%,%), 
(%,I,%), (%,%,%), (3/4,3/4,1/4), (3/4,%,3/4), (%,%,%I). 

The tetrahedral bonding characteristic of the diamond structure is shown 
in Fig. 1.28(a). Each atom has 4 nearest neighbors and 12 second nearest 
neighbors. For example, the atom located at (%,%,%) at the center of the 
cube in Fig. 1.28(b) has four nearest neighbors also shown in Fig. 1.28(b) 
which are located at (0,0,0), (%,%,0), (0,%,%) and (%,0,%). 

The number of atomslunit cell for the diamond lattice is found from 
ni=4, n ~ 6 ,  and nc=8 where ni, ne n, are the numbers of points in the interior, 
on faces and on comers of the cubic unit cell shown in Fig. 1.28(a), 
respectively. Note that each of the nf points is shared between two cells and 
each of the n, points is shared between eight cells. Therefore: 
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6 8 
nu = 4 + - + - = 8 atomslunit cell. The atomic density or the number of 

2 8 
n 

atoms per cm3, n, is given by: n = + atomslunit cell. For example, for 
a 

silicon, we have a=5.43 A, and n=8/(0.543 x 10-~)~=5 x atoms/cm3. 

n 

Fig. 1.28. (a) Diamond lattice. The Bravais lattice is face-centered cubic with a basis 
consisting of two identical atoms displaced from each other by a quarter of the cubic body 

diagonal. The atoms are connected by covalent bonds. The cube outlined by the dashed lines 
shows one tetrahedral unit. (b) Tetrahedral unit of the diamond lattice. 
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1.9.2. Zinc blende structure 
The most common crystal structure for 111-V compound semiconductors, 
including GaAs, GaSb, InAs, and InSb, is the sphalerite or zinc blende 
structure shown in Fig. 1.29. The point group of the zinc blende structure is 
T d .  

The zinc blende structure has two different atoms. Each type of atom 
forms a face-centered cubic lattice. Each atom is bounded to four atoms of 
the other type. The sphalerite structure as a whole is treated as a face- 
centered cubic Bravais lattice with a basis of two atoms displaced from each 
other by (a/4)(x+y+z), i.e. one-fourth of the length of a body diagonal of the 
cubic lattice unit cell. Some important properties of this crystal result from 
the fact that the structure does not appear the same when viewed along a 
body diagonal from one direction and then the other. Because of this, the 
sphalerite structure is said to lack inversion symmetry. The crystal is 
therefore polar in its 4 1  1> directions, i.e. the [l 1 11 and the [Ei ] directions 
are not equivalent. When both atoms are the same, the sphalerite structure 
has the diamond structure, which has an inversion symmetry and was 
discussed previously. 

In the case of GaAs for example, the solid spheres in Fig. 1.29 represent 
Ga atoms and the open spheres represent As atoms. Their positions are: 

Ga: (0,0,0); ('/2,%,0); (O,L/2,%); (%,O,%); (%,I ,%); (%,%,I); (1 ,%,%); 
As: (%,%,%); (%,%,%); (%,%,%); (%,%,%). 

Fig. 1.29. Cubic unit cell for the zinc blende structure. The Bravais lattice is face-centered 
cubic with a basis of two different atoms represented by the open and solid spheres, and 
separated by a quarter of the cubic body diagonal. The crystal does not appear the same 

when viewed along a body diagonal from one direction or the other. 
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1.9.3. Sodium chloride structure 
The structure of sodium chloride, NaCl, is shown in Fig. 1.30. The Bravais 
lattice is face-centered cubic and the basis consists of one Na atom and one 
C1 atom separated by one-half the body diagonal of the cubic unit cell. The 
point group of the sodium chloride structure is Oh. 

There are four units of NaCl in each cubic unit cell, with atoms in the 
positions: 

C1: (O,O,O); (%,%,O); (%,O, %); (0, %,%); 
Na: (%,%,%);(0,0, %); (0, %,0); (%,0,0). 

Fig. 1.30. Sodium chloride crystal. The Bravais lattice is face-centered cubic with a basis of 
two ions: one CT ion at (0,0,0) and one NU+ ion at (%,%,%), separated by one halfof the 

cubic body diagonal. T h e m r e  shows one cubic unit cell. 

1.9.4. Cesium chloride structure 
The cesium chloride structure is shown in Fig. 1.3 1. The Bravais lattice is 
simple cubic and the basis consists of two atoms located at the corner (0,0,0) 
and center positions (%,%,%) of the cubic unit cell. Each atom may be 
viewed as at the center of a cube of atoms of the opposite kind, so that the 
number of nearest neighbors or coordination number is eight. The point 
group of the cesium chloride structure is Td. 
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Fig. 1.31. The cesium chloride crystal structure. The Bravais lattice is cubic with a basis of 
two ions: one Cl- ion at (0,O.O) and one Cs' ion at (+h,%,%), separated by one halfthe cubic 

body diagonal. 

1.9.5. Hexagonal close-packed structure 
The simplest way to stack layers of spheres is to place centers of spheres 
(atoms) directly above one another. The resulting structure is called simple 
hexagonal structure. There is, in fact, no example of crystals with this 
structure because it is unstable. However, spheres can be arranged in a 
single hexagonal close-packed layer A (Fig. 1.32) by placing each sphere in 
contact with six others. A second similar layer B may be added by placing 
each sphere of B in contact with three spheres of the bottom layer, at 
positions B in Fig. 1.32. This arrangement has the lowest energy and is 
therefore stable. A third layer may be added in two different ways. We 
obtain the cubic structure if the spheres of the. third layer C are added over 
the holes in the first layer A that are not occupied by B, as in Fig. 1.32. We 
obtain the hexagonal close-packed structure (Fig. 1.33) when the spheres in 
the third layer are placed directly over the centers of the spheres in the first 
layer, thus replicating layer A. The Bravais lattice is hexagonal. The point 
group of the hexagonal close-packed structure is &,. The fraction of the 
total volume occupied by the spheres is 0.74 for both structures (see 
Problems). 
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Fig. 1.32. The closed-packed array of spheres. Note the three different possible positions, A, 
B, and C for the successive layers. The most space eflcient way to arrange identical spheres 

or atoms in a plane is to first place each sphere in contact with six others in that plane 
(positions A). The most stable way to stack a second layer of such spheres is by placing each 
one ofthem in contact with three spheres of the bottom layer (positions B). The third stable 

layer can then either be such that the spheres occupy positions above A or C. 

Fig. 1.33. The hexagonal close-packed (hcp) structure. This Bravais lattice of this structure is 
hexagonal, with a basis of two identical atoms. It is constructed by stacking layers in the 

ABABAB ... sequence. The lattice parameters a and c are indicated. 

Zinc, magnesium and low-temperature form of titanium have the hcp 
structure. The ratio c/a for ideal hexagonal close-packed structure in Fig. 
1.33 is 1.633. The number of nearest-neighbor atoms is 12 for hcp 
structures. Table 1.4 shows the c/a parameter for different hexagonal 
crystals. 
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Crystal c/a 

Table 1.4. c/a parameter for various hexagonal crystals. 

1.9.6. Wurtzite structure 
A few 111-V and several 11-VI semiconductor compounds have the wurtzite 
structure shown in Fig. 1.34. 

Fig. 1.34. The wurtzite structure consists of two interpenetrating hcp structures, each with a 
different atom, shifted along the c-direction. The bonds between atoms and the hexagonal 

symmetry are shown. 
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This structure consists of two interpenetrating hexagonal close-packed 
lattices, each with different atoms, ideally displaced from each other by 3/8c 
along the z-axis. There is no inversion symmetry in this crystal, and polarity 
effects are observed along the z-axis. The Bravais lattice is hexagonal with a 
basis of four atoms, two of each kind. The point group of the wurtzite 
structure is C6". 

1.9.7. Packing factor 
The packing factor is the maximum proportion of the available volume in a 
unit cell that can be filled with hard spheres. Let us illustrate this concept 
with a few examples. 

For a simple cubic lattice, the center-to-center distance between the 

nearest atoms is a .  So the maximum radius of the atom is . Since there % 
is only one atom point per cubic unit cell in this case, the packing factor is: 

The following two examples illustrate the determination of the packing 
factor for the other two cubic lattices. 

Example 
Q: Determine the packing factor for a body-centered cubic 

lattice. 
A: Let us consider the bcc lattice shown in the figure 

below, and an atom located at one corner of the cubic 
unit cell. Its nearest neighbor is an atom which is located 
at the center of the cubic unit cell and which is at a - 

43 distance of .a where a is the side of the cube. The 
L 

maximum radius r for the atoms is such that these two 

6 atoms touch and therefore: 2r = T a .  There are two 
L 

atoms in a bcc cubic unit cell, so the maximum volume 

filled by the spheres is 2 x 

factor is calculated by taking the ratio of the total sphere 
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volume to that of the unit cell, and yields: 

Example 
Determine the packing factor for a face-centered cubic 
lattice. 
Let us consider the fcc lattice shown in the figure below, 
and an atom located at one comer of the cubic unit cell. 
Its nearest neighbor is an atom which is located at the 
center of an adjacent face of the cubic unit cell and 

z/Z which is at a distance of l a  where a is the side of the 
,& 

cube. The maximum radius r for the atoms is such that 

JZ these two atoms touch and therefore: 2r = - a  . There 
2 

are four atoms in a fcc cubic unit cell, so the maximum 

volume filled by the spheres is 4 x 

packing factor is calculated by taking the ratio of the 
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total sphere volume to that of the unit cell, and yields: 

The diamond structure has the face-centered cubic structure with a basis 
of two identical atoms. The packing factor of diamond structure is only 46 
percent of that in the fcc structure, so diamond structure is relatively empty 
(see Problems). 

1.10. The reciprocal lattice 

When we have a periodic system, one lattice point is equivalent to another 
lattice point, so we expect a simple relation to exist between physical 
quantities at these respective lattice points. Consider for example the local 
density of charge p(3). We should expect this quantity to have the same 
periodicity as the lattice. But it is mathematically known that any periodic 
function can be expanded into a Fourier series. In a crystal lattice, all 
physical quantities have the periodicity of the lattice, in all directions. Let us 
consider the above physical quantity p(3) . From now, we will use a three- 
dimensional formalism. This function is periodic and can be expanded into a 
Fourier series: 

Eq. ( 1.6 ) p(?) = P(%) exP(i??) 
z 
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where the vector k is used to index the summation and the Fourier 
coefficients ~ ( k )  . This vector K has the dimension of an inverse distance 
and for a periodic function, can take discrete values and in a three- 
dimensional sum. Let us now express that the function p(?) is periodic by 

calculating its value after displacement by a lattice vector 2 : 

Eq. ( 1.7 ) p(?) = p(? + E) = c P(IZ) exp[ik.(? + E)] 

which becomes: 

Eq. ( 1.8 ) C P(Z) exp(iZ.i) = C P(K) exp[ik.(i + d)] 
K K 

Eq. ( 1.8 ) has to be satisfied for any given function which is periodic 
with the periodicity of the lattice. This can be satisfied if and only if: 

or: 

Eq. ( 1.9 ) exp(iI?.x) = 1 

for any lattice vector 2 . Eq. ( 1.9 ) is the major relation which allows us 
to introduce the so-called reciprocal lattice which is spanned by the vectors 

I?. What follows next is a pure mathematical consequence of Eq. ( 1.9 ) 
which is equivalent to: 

- 
where m=O, f 1, f2, .  . . is an integer. Using the expression for R from 

Eq. ( 1.1 ) of Chapter 1, we obtain: 

where n,, n2, and n3 are arbitrary integers which come from the choice of 

the vector 2. Because the sum of three terms is an integer if and only if 
each term itself is integer, Eq. ( 1.1 1 ) leads us to: 
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Here, h,,,,, is not related to Planck's constant. 
+ - . -  

Let us now define three basis vectors ( A, B,C) in order to express b in 
the same way as we did it for real lattice vectors in Eq. ( 1.1 ) of Chapter 1. 
These basis vectors define what we call the reciprocal lattice. Any reciprocal 

lattice vector 2 can thus be represented as: 

FromEq. ( 1.12) andEq. ( 1.13 )we have: 

Eq. ( 1.14 ) can be satisfied only when: 

Eq. ( 1.15 ) defines the relation between the direct ( z , ~ , Z )  and - - - 
reciprocal (A, B,C)  basis lattice vectors, and gives the means to construct - - -  - 
( A,B,C) from (Z,b,Z): 
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These relations are a natural consequence of vector algebra in three 
dimensions. The volumes that these basis vectors define in the real and 
reciprocal lattices satisfy the relation (see Problems): 

Eq. (1.16) 

Eq. ( 1.17 ) 2.(i x ?)= 8n3 

a'.(; x c') 

-.+ 

bxc '  2 = 2n 
a'.(; x c') 

c'x a' 
<2=2n 

a'.(g x c') 

We note that the vectors of reciprocal space have the same dimensions 
as the wavenumbers and momenta of electromagnetic waves for example. 
We also note the direct lattice is the reciprocal of its own reciprocal lattice. 
The concept of reciprocal or momentum space turns out to be extremely 
important for the classification of electron states in a crystal in quantum 
theory. 

1.11. The Brillouin zone 

In the reciprocal lattice we can construct unit cells as we did for the real 
lattice earlier in this Chapter. The construction of the Wigner-Seitz cell in 
the reciprocal lattice follows the same rules as in the real lattice and gives 
the smallest unit cell in k-space called the "first Brillouin zone" and shown 
in Fig. 1.10. Draw the perpendicular bisector planes of the translation 
vectors from the chosen center to the nearest equivalent sites in the 
reciprocal lattice, and you have formed the first Brillouin zone. 

1.12. Summary 

In this Chapter, the structure of crystals has been described. The concepts of 
Bravais lattice, crystal systems, unit cell, point groups, space groups, Miller 
indices and packing factor have been introduced. The symmetry properties 
of crystals have been discussed. The most common crystal structures for 
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semiconductors have been described. We have also introduced the concept 
of the reciprocal lattice. We have shown that for every periodic lattice in real 

space 2 , it is possible; to construct a periodic reciprocal lattice in I? space. 
The reciprocal lattice is the lattice in so called momentum space. The 
Wigner Seitz cell of the reciprocal lattice is called the first Brillouin zone 
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Problems 

1. Fig. 1.6 illustrates the definition of the angles and unit cell dimensions 
of the crystalline material. If a unit cell has a characteristic of a=b=c and 
e/3=y-90°, it forms a cubic crystal system, which is the case of Si and 
GaAs. 
(a) How many Bravais lattices are classified in the cubic system? 
(b) Draw simple three-dimensional unit cells for each Bravais lattice in 
the cubic system. 
(c) How many lattice points are contained in the unit cell for each 
Bravais lattice in the cubic system? 

2. Draw the four Bravais lattices in orthorhombic lattice system. 

3. Show that the C5 group is not a crystal point group. In other words, 
show that, in crystallography, a rotation about an axis and through an 

2n 
angle 8 = - cannot be a crystal symmetry operation. 

5 

4. Determine if the plane (1 11) is parallel to the following 
directions: [loo], [211], and [i TO]. 

- 4 

5. For cesium chloride, take the fundamental lattice vectors to be a = a x ,  -. - 
b = a y  , and c = a(; + ; + ;). Describe the parallelepiped unit cell and 
find the cell volume. 

6. GaAs is a typical semiconductor compound that has the zinc blende 
structure. 
(a) Draw a cubic unit cell for the zinc blende structure showing the 
positions of Ga and As atoms. 
(b) Make a drawing showing the in-plane crystallographic directions 
and the positions of the atoms for the (1 11) lattice plane. 
(c) Repeat for the (100) plane. 
(d) Calculate the surface density of atoms in (100) plane. 

7. (a) What are the interplanar spacings d for the (loo), (1 lo), and (1 11) 
planes of A1 (a=4.05 A)? 
(b) What are the Miller indices of a plane that intercepts the x-axis at a, 
the y-axis at 2a, and the z-axis at 2a? 
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8. Show that the cla ratio for an ideal hexagonal close-packed structure is 
(813)"~=1.633. If cla is significantly larger than this value, the crystal 
structure may be thought of as composed of planes of closely-packed 
atoms, the planes being loosely stacked. 

9. Show that the packing factor in a hexagonal close-packed structure is 
0.74. 

10. Show that the packing factor for the diamond structure is 46 % of that in 
the fcc structure. 

- - -  
11. Let (2,6,c' ) be a basis lattice vectors for a direct lattice and ( A ,  B,C) 

be the basis lattice vectors for the reciprocal lattice defined by 
Eq. ( 1.16 ). Prove that the volume defined by these vectors is given by: 
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2.1. Introduction 

In this Chapter the electronic structure of single atoms will be discussed. A 
few quantum concepts will be introduced, as they are necessary for the 
understanding of many aspects in solid state physics and device 
applications. 

In Chapter 1, we saw that matter was composed of atoms in the periodic 
table shown in Fig. 1.2. Until 19 1 1, atoms were considered the simplest 
constituents of matter. In 191 1, it was discovered that atoms had a structure 
of their own and Rutherford proposed the nuclear model of the atom in 
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which almost all the mass of the atom is concentrated in a positively charged 
nucleus and a number of negatively charged electrons are spread around the 
nucleus. It was later found that the nucleus is itself made up of protons 
(positively charged) and neutrons (neutrally charged). The number of 
protons is the atomic number (Z) while the total number of protons and 
neutrons is the mass number of the element. Apart from the electrostatic 
repulsion between nuclei, all of the major interactions between atoms in 
normal chemical reactions (or in the structures of elemental and compound 
substances) involve electrons. It is therefore necessary to understand the 
electronic structure of atoms. The term electronic structure, (or 
configuration) when used with respect to an atom, refers to the number and 
the distribution of electrons about the central nucleus. 

The following discussion traces the steps of the scientific community 
toward a description of the electronic structure of atoms. The reader should 
not be stopped by the new concepts that arise from this discussion, because 
they will become clearer after understanding the quantum mechanics 
presented in Chapter 3. 

Much of the experimental work on the electronic structure of atoms 
done prior to 1913 involved measuring the frequencies of electromagnetic 
radiation (e.g. light) that are absorbed or emitted by atoms. It was 
discovered that atoms absorbed or emitted only certain, sharply defined 
frequencies of electromagnetic radiation. These frequencies were also found 
to be characteristic of each particular element in the periodic table. And the 
absorption or emission spectra, i.e. the ensemble of frequencies, were more 
complex for heavier elements. Before being able to understand the 
electronic structures of atoms, it was natural to start studying the simplest 
atom of all: the hydrogen atom, which consists of one proton and one 
electron. 

2.2. Spectroscopic emission lines and atomic structure of 
hydrogen 

It was experimentally observed that the frequencies of light emission from 
atomic hydrogen could be classified into several series. Within each series, 
the frequencies become increasingly closely spaced, until they converge to a 
limiting value. Rydberg proposed a mathematical fit to the observed 
experimental frequencies, which was later confirmed theoretically: 
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with n= 1, 2, 3,4,. . . and n '=(n+ 1 ), (n+2), (n+3), . . . 
In this expression, A is the wavelength of the light (in units of distance, 

and typically cm in this expression), u is the frequency of the light emitted, c 
(=2.99792x108 rn.s-'=2.99792~10'~ cm.s-') is the velocity of light in 
vacuum, and Ry is the fit constant, called the Rydberg constant, and was 
calculated to be 109,678 cm-'. n is an integer, corresponding to each of the 
series mentioned above. n ' is also an integer, larger than or equal to (n+l), 
showing that the frequencies become more closely spaced as n ' increases. 

The energy of the electromagnetic radiation is related to its wavelength 
and frequency by the following relation: 

where h (=6.62617~10"~ J.s) is Planck's constant. The SI (Syst2me 
International or International System) unit for energy is the Joule (J). 
However, in solid state physics, it is common to use another unit: the 
electron-volt (eV) which is equal to 1.6021 8x 10-l9 J. The reason for this new 
unit will become clear later in the text and reflects the importance of the 
electron in solid state physics. 

The expression in Eq. ( 2.1 ) shows that the emission of light from the 
hydrogen atom occurs at specific discrete values of frequencies v, depending 
on the values of integers n and n'. The Lyman series of spectral lines 
corresponds to n=l for which the convergence limit is 109,678 cm-'. The 
Balmer series corresponds to n=2, and the Paschen series to n=3. These are 
illustrated in Fig. 2.1, where the energy of the light emitted from the atom of 
hydrogen is plotted as arrows. 

Although the absorption and emission lines for most of the elements 
were known before the turn of the 2oth century, a suitable explanation was 
not available, even for the simplest case of the hydrogen atom. Prior to 
1913, the explanation for this spectroscopic data was impossible because it 
contradicted the laws of nature known at the time. Indeed, very well 
established electrodynamics could not explain two basic facts: that atoms 
could exist at all, and that discrete frequencies of light were emitted and 
absorbed by atoms. For example, it was known that an accelerating charged 
particle had to emit electromagnetic radiation. Therefore, in the nuclear 
model of an atom, an electron moving around the nuclei has acceleration 
and thus has to emit light, lose energy, and fall down to the nucleus. This 
meant that the stability of elements in the periodic table, which is obvious to 
us, contradicted classical electrodynamics. A new approach had to be 
followed in order to resolve this contradiction, which resulted in a new 
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theory, known as quantum mechanics. Quantum mechanics could also 
explain the spectroscopic data mentioned above and adequately describe 
experiments in modern physics that involve electrons and atoms, and 
ultimately solid state device physics. 

Balmer 
series 

Lyman 
series 

Fig. 2.1. Energies of the light emitted from the hydrogen atom (shown by arrows). The Lyman 
series corresponds to n=I in Eq. (2 .1  ), the Balmer series corresponds to n=2 and the 

Paschen series to n=3. 

Niels Bohr first explained the atomic absorption and emission spectra in 
1913. His reasoning was based on the following assumptions, which cannot 
be justified within classical electrodynamics: 

(1) Stable orbits (states with energy E,) exist for an electron in an 

atom. While in one of these orbits, an electron does not emit any 
electromagnetic radiation. An individual electron can only exist in one of 
these orbits at a time and thus has an energy En. 
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(2)  The transition of an electron from an atomic orbit of energy state En 

to that of energy state En, corresponds to the emission ( E n  >En , )  or 

absorption ( E n  <En, )  of electromagnetic radiation with an energy 

I E ,  - E,. I or frequency u = /En 
h 

With Sommerfeld, Bohr implemented these postulates into a simple 
theory. Assumption ( 1 )  of stable orbits meant that the values of angular 
momentum L and thus the electron orbit radius r' were quantized, i.e. 
integer multiples of a constant. For the simple hydrogen atom with a circular 
electron orbit, the Bohr postulate ( 1 )  can be expressed mathematically in the 
following manner: 

h 
Eq. ( 2 . 2 )  L, =mw,  = n - ,  n=1,2 ,... 

2n  

where m is the mass of the electron, v is the linear electron velocity, 
and n an integer expressing the quantization and used to index the electron 
orbits. Since the orbit is circular, the electron experiences a centripetal 
acceleration v2 / rn . The coulombic force between the electron and nucleus 

provides this acceleration, as illustrated in Fig. 2.2. 

Fig. 2.2. Schematic diagram showing the electron orbit, the attractive coulombic force 
between thepositively charged nucleus and the orbiting negatively charged electron, and the 

velocity of the electron which is always tangential to its circular orbit. 

Therefore, according to Newton's second law, equating Coulomb force 
with the mass times the centripetal acceleration, we can write: 

9' m  v L  Eq. ( 2.3 ) - = ~ ~ c o u ~ o m ~ ~ c  1 = - 
4n.5 rn2 rn 
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where (=$.$%I 8xl0- '~  ~ .m- ' )  is the permittivity of free space and 
q (=I .602l8x C) is the elementary charge. 

Combining Eq. ( 2.2 ) and Eq. ( 2.3 ), one obtains the discrete radius of 
an electron orbit: 

&,n2h2 
Eq. ( 2.4 ) rn = - 

m q 2  

The total electron energy En in the various orbits is the sum of the 

kinetic and (coulombic) potential energies of the electron in the particular 
orbit: 

With Eq. ( 2.4 ) we finally have: 

- m q 4  
Eq. ( 2.6 ) En = - - -- in units of electron-volts (eV) 

13.6 
8 (son h)2 n2 

This theory thus provided an explanation for each series of spectroscopic 
lines in the emission spectrum from atomic hydrogen as shown in Fig. 2.1. 
An electron has the lowest (i.e. most negative) energy when it is in the orbit 
n=l. The radius of this orbit can be calculated using Eq. ( 2.4 ) and is 
ao=0.52917 A. If an electron is excited to an orbit with higher energy 
(n'  2 2 )  and returns to the ground state (n=l), electromagnetic radiation 

with the frequency c x Ry [[+I - (31 is emitted, where c is the 

velocity of light in vacuum and Ry the Rydberg constant. In this case, the 
Lyman series of spectroscopic lines in Fig. 2.1 is observed. The other series 
arise when the electron drops from higher levels to the levels with n=2 
(Balmer series) and n=3 (Paschen series), as shown in Fig. 2.1. Therefore, 
the Bohr-Sornmerfeld theory could accurately interpret the observed, 
discrete absorption/emission frequencies in the hydrogen atom. Despite its 
success for the hydrogen atom, this theory still had to be improved for a 
number of reasons. One major reason was that it could not successfully 
interpret the spectroscopic data for atoms more complex than hydrogen. 
However, the results of Bohr's model can be extended to other structures 
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similar to the hydrogen atom, called hydrogenoid systems. For example, the 
energy levels of several ionized atoms that have only a single electron (e.g. 
~ e '  or ~ i " )  can be easily predicted by substituting the nuclear charge q of 
Bohr's model with Zq where Z is the atomic number. 

The simple picture developed by Niels Bohr for electrons in atoms was 
among the first attempts to explain experimental data with assumptions 
based on the discrete (or quantum) nature of the electromagnetic field. 

A typical example of the interaction between an electromagnetic field 
and matter is a blackbody, which is an ideal radiator of electromagnetic 
radiation. Using classical arguments, Rayleigh and Jeans tried to explain the 
observed blackbody spectral irradiance, which is the power radiated per unit 
area per unit wavelength, shown in Fig. 2.3. However, as can be seen in the 
figure, their theoretical predictions could only fit the data at longer 
wavelengths. In addition, their results also indicated that the total irradiated 
energy (integral of the irradiance over all the possible wavelengths) should 
be infinite, a fact that was in clear contradiction with experiment. In 1901, 
Max Planck provided a revolutionary explanation based on the hypothesis 
that the interaction between atoms and the electromagnetic field could only 
occur in discrete packets of energy, thus showing that the classical view that 
always allows a continuum of energies was incorrect. Based on these ideas, 
a more sophisticated and self-consistent theory was created in 1920 and is 
now called quantum mechanics (see Chapter 3 for more details). 
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Fig. 2.3. Spectral irradiance of a blackbody at different temperatures. When the temperature 
is at or below room temperature, the radiation is mostly in the infrared spectral region, 

undetectable by the human eye. When the temperature is raised, the emission power 
increases and its peak shifis toward shorter wavelengths. One of the more successful 

interpretations, yet inaccurate because it was based on classical mechanics, was conducted 
by Rayleigh and Jeans, but could onlyfit the experimental data at longer wavelengths. 

2.3. Atomic orbitals 

Bohr's model solved the problem of the energy levels in the hydrogen atom 
but had several drawbacks: it could neither explain some of the other 
properties of hydrogen atoms nor correctly predict the energy levels of more 
complex atoms. In addition, a few years later, new experiments pointed out 
that particles could behave as waves, and therefore their position could not 
be determined exactly. In Bohr's model, the radius of the first Bohr orbit in 
the hydrogen atom was calculated to be exactly ao=0.52917 A ((Angstrom, 



Electronic Structure of Atoms 5 3 

abbreviated as A, is equal to lo-'' m). This distance is a constant called the 
Bohr radius and is shown in Fig. 2.4(a) as a spherical surface with radius a,. 

Fig. 2.4. (a) The precise spherical orbit o fan electron in thefirst Bohr orbit, for which the 
radius is a0=0.5291 7 A. as calculated by Bohr's model. (b) The electron probability density 
pattern for the comparable atomic orbital using a quantum mechanical model. The darker 

areas indicate a higher probability offinding the electron at that location. The center cutout 
shows the interior of the orbital. The outer sphere delineates the region where the electron 

exists 90% of the time. 

A new approach was clearly needed in order to describe matter on the 
atomic scale. This new approach was elaborated during the next decade and 
is now called quantum mechanics. In quantum mechanics an electron cannot 
be visualized as a point particle orbiting with a definite radius, but rather as 
a delocalized cloud with inhomogeneous probability density around a 
nucleus as illustrated in Fig. 2.4(b). The probability density gives the 
probability of finding the electron at a particular point in space. In this 
picture, the Bohr radius can be interpreted as the radius a. of the spherical 
surface where the maximum in the electron probability distribution occurs 
or, in other words, the spherical orbit where the electron is most likely to be 
found. This can be further illustrated by Fig. 2.5 where the electron 
probability density function P(r), which is the probability to find an electron 
at a distance r from the nuclei, is plotted as a function of r (for the lowest 
energy state of hydrogen atom n=l). This function reaches its maximum at 
the value of Bohr's first orbit ao. 
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Fig. 2.5. The electron radialprobability density function P(r/aa), which describes the 
probability offinding an electron in a spherical surface at a distance r from the nucleus in 

the hydrogen atom for n=l). This probability has a maximum value when the electron is at a 
distance equal to the Bohr radius: r=aa 

We saw earlier that there were several stable orbits for an electron in the 
hydrogen atom which are distinguished by the energy given in Eq. ( 2.6.). 
The orbit or energy is not enough to characterize the properties of an 
electron in an atom. The spatial shape and direction of the orbit are also 
important, as it is not always spherical, and so the term "orbital" is 
employed. Each orbital is assigned a unique set of quantum numbers, which 
completely specifies the orbital's properties. The orbital designation and its 
corresponding set of three quantum numbers n, I, and mr are listed in Table 
2.1 along with the electron spin quantum number m,. 

The principal quantum number n may take integral values from 1 to m, 
although values larger than 7 are spectroscopically and chemically 
unimportant. It is the value of this quantum number n that determines the 
size and energy of the principal orbitals. Orbitals with the same n are often 
called "shells". 

For a given value of n, the angular momentum quantum number 1 may 
take integer values within [0, 1, 2, 3, .. ., (n-l)]. It is this quantum number 
that determines the shape of the orbital. A letter designation is used for each 
orbital shape: s for (1=0), p for (I= I), d for (1=2), f for (1=3), etc.. . followed 
alphabetically by the letter designations g, h, and so on. 

Finally, for a given orbital shape (i.e. a given value of I), the magnetic 
quantum number ml may take integral values from -1 to +l. This quantum 
number governs the orientation of the orbital. Once an electron is placed 
into one specific orbital, its values for the three quantum numbers n, I, and 
ml are known. 
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A fourth quantum number is needed to uniquely identify an electron in a 
orbital, the spin quantum number. The spin quantum number is independent 
of the orbital quantum numbers and can only have two opposite values: 

1 h 
m, = f - (in units of -). Electrons that differ only in their spin value can 

2 2n 
only be distinguished in the presence of an external magnetic field. 

Orbital n 1 ml ms 

Table 2.1. Quantum numbers and atomic orbital designations for electrons in the four lowest 
values of n. When n increases, the scheme continues to develop with the same basic rules. 

2.4. Structures of atoms with many electrons 

In multi-electron atoms, the energy of an electron depends on the orbital 
principal quantum number n and the orbital momentum quantum number 1, 
i.e. whether the electron is in an s, p, d, or f state. The different ml quantum 
numbers for a fixed set of n and 1 are degenerate (they have the same 
energy). The electronic configurations of such atoms are built up from the 
ground state energy, filling the lowest energy orbitals first. Then, the filling 
of the orbitals occurs in a way such that no two electrons may have the same 
set of quantum numbers. This rule governing electron quantum numbers is 
called the Pauli exclusion principle. If two electrons occupy the same 
orbital, they must have opposite spins: in,=+% for one electron and m,=-% 
for the other electron. Because the spin quantum number m, can take only 
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these two values, an orbital with given (n, 1, m) can be occupied by at most 
two electrons. 

One more rule, called Hund's rule, governs the electron configuration in 
multi-electron atoms: for a given principal quantum number n, the lowest 
energy electron configuration has the greatest possible sum of spin values 
and greatest sum of orbital momentum values. 

Example 
Q: Hund's rule says that the electrons occupy orbitals in 

such a way that: first, the total spin number (x m, ) is 

maximized, then the total orbital momentum is 
maximized ( 1 ). Determine the electronic 

configuration, including the spin, of the carbon atom, 
which has 6 electrons in its ground state. 

A: Carbon has 6 electrons and has the electronic 
configuration 1 ~ ~ 2 . ~ ~ 2 ~ ~ .  The last two electrons in the p 
shell can have spins +% or -%. To maximize the total 
spin number, both electrons must have their spin up, so 
that m, = 1, as shown below. 

Incorrect Correct 

Both the Pauli exclusion principle and Hund's rule govern the electron 
configurations of atoms in the periodic table in their unexcited state, which 
is also called the ground state. Other electronic configurations are possible 
when the atom is in an excited state as a result of an external force such as 
an electric field. 

Examples of the ground state electron configurations in a number of 
elements are shown below. The sequence for Z=1 to Z=18 is built in a 
straightforward and logical manner, by filling the allowed s, p, d... orbitals 
successively (i.e. in this order). For Z=19, the first deviation to this 
procedure occurs: the 4s orbitals are filled with electrons before the 3d 
orbitals. Elements in the periodic table with partially filled 3d orbitals are 
usually transition metals and the electrons in these 3d orbitals contribute to 
the magnetic properties of these elements. For example, the electronic 
configuration of the Ga element can be read as follows: two s-electrons in 
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orbit 1, two s-electrons in orbit 2, six p-electrons in orbit 2, two s-electrons 
in orbit 3, six p-electrons in orbit 3, two s-electrons in orbit 4, ten d- 
electrons in orbit 3, and one p-electron in orbit 4. 

Example 
Q: Determine the electronic configuration for copper 

(element Cu, atomic number Z=29 in the ground state). 
A: There are 29 electrons in copper in its ground state. It 

has an inner Ar shell, which has 18 electrons: 
[Ar]=ls22s22p63s23p6. The remaining 1 1 electrons must 
be distributed inside the 3d and 4s orbitals. Suppose that 
the two possible configurations are [Ar]3d)4s2 and 
[Ar13d'~4s'. According to Hund's rule, the lowest 
energy configuration, corresponding to the ground state, 
is such that it presents the greatest possible spin value 
and greatest orbital momentum. The two configurations 
above have the same spin but the second one has greater 
orbital momentum. Since the orbital quantum number 
for the s orbital is 0 and for d is 2, we can say that Cu 
has exhibits the second electronic configuration: 
[Ar13d'~4s' or ls22s22p63s23p63d'04~1 which is 
illustrated below: 

n= 1 n=2 n=3 n=4 
,-%a/ -.A 

Quantum mechanics is able to predict the energy levels of the hydrogen 
atom, but the calculations become too complex for atoms with two or more 
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electrons. In multi-electron atoms, the electric field experienced by the outer 
shell electrons does not correspond to the electric field from the entire 
positive nuclear charge because other electrons in inner shells screen this 
electric field from the nucleus. This is why outer shell electrons do not 
experience a full nuclear charge Z (the atomic number), but rather an 
effective charge Z* which is lower than Z. Values of the effective nuclear 
charge Z* for the first ten elements are listed in Table 2.2. Therefore, the 
energy levels of these outer shell electrons can be estimated using the results 
from the hydrogen atom and substituting the full nuclear charge Zq with 
z*q. 

Element Z z* 

Table 2.2. The full nuclear charge Z and effective nuclear charge Z* for thejrs t  ten elements. 

Let us consider an example of electronic configuration in the multi- 
electron atom of Si. As shown in Fig. 2.6, ten of the fourteen Si-atom 
electrons (two in the 1s orbital, two in the 2s orbital, and six in the 2p 
orbital) occupy very low energy levels and are tightly bound to the nucleus 
of the atom. The binding is so strong that these ten electrons remain 
essentially unperturbed during most chemical reactions or atom-atom 
interactions. The combination of the ten-electron-plus-nucleus is often being 
referred to as the "core" of the atom. On the other hand, the remaining four 
Si-atom electrons are rather weakly bound and are called the valence 
electrons because of their strong participation in chemical reactions. 
Valence electrons are those in the outermost occupied atomic orbital. As 
emphasized in Fig. 2.6, the four valence electrons occupy four of the eight 
allowed states belonging to the 3s and 3p orbitals. 
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The electronic configuration in the 32-electron Ge-atom (germanium 
being the next elemental semiconductor in column IV of the periodic table) 
is essentially identical to the Si-atom configuration except that the Ge-core 
contains 28 electrons. 

(n=2, I=0) 
s orbital - 

2 electrons 

levels 

p orbital 
I / 

(n= 1, I=0) ( ~ 3 ,  I=0) 
6 electrons 

s orbital s orbital 
2 electrons 2 allowed levels 

Fig. 2.6. Electron configuration for electrons in a Si atom. The ten electrons in the core 
orbitals, Is (n=l), 2s (n=2, 1=0), and 2p (n=2, l=I) are tightly bound to the nucleus. The 

remaining four electrons in the 3s (n=3, 1=0) and 3p (n=3, l=I) orbitals are weakly bound. 

2.5. Bonds in solids 

2.5.1. General principles 
When two atoms are brought very close together, the valence electrons 
interact with each other and with the neighbor's positively charged nucleus. 
As a result, a bond between the two atoms forms, producing, for example, a 
molecule. The formation of a stable bond means that the energy of the 
system of two atoms kept together must be less than that of the system of 
two atoms kept apart, so that the formation of the pair or the molecule is 
energetically favorable. Let us view the formation of a bond in more detail. 

As the two atoms approach each other, they are under attractive and 
repulsive forces from each other as a result of mutual electrostatic 
interactions. At most distances, the attractive force dominates over the 
repulsive force. However, when the atoms are so close that the individual 
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electron shells overlap, there is very strong electron-to-electron shell 
repulsion, called core repulsion, that dominates. Fig. 2.7 shows the inter- 
atomic interaction energy as a function of the distance between atoms r. The 
system has zero energy when the atoms are infinitely far apart. A negative 
value corresponds to an attractive interaction, while a positive value stands 
for a repulsive one. The resulting interaction is the sum of the two and has a 
minimum at an equilibrium distance, which is reached when the attractive 
force balances the repulsive force. This equilibrium distance is called the 
equilibrium separation and is effectively the bond length. The energy 
required to separate the two atoms represents the cohesive energy or bond 
formation energy or simply bond energy (also shown in Fig. 2.7). 

Cohesive energy 

Fig. 2.7. Potential energy versus inter-atomic separation r. The net potential is the sum of 
repulsive and attractive components. The minimum of the net potential corresponds to the 

equilibrium distance ro between the two atoms. 

Similar arguments also apply to bonding between many more atoms, 
such as the billions of atoms found in a typical macroscopic solid. Even in 
the presence of many interacting atoms in a solid, we can still identify a 
general potential energy curve U(r) per atom similar to the one shown in 
Fig. 2.7. Although the actual details will change from material to material, 
the general concepts of bond energy Uo per atom and equilibrium 
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interatomic separation will still be valid. These characteristics determine 
many properties of solids such as the thermal expansion coefficient and 
elastic modulus. 

Example 
Q: For a face-centered cubic lattice, such as in an inert gas 

turned solid at low temperature, the potential energy can 
be expressed as: 

where r is the distance between nearest neighbors and o 
is a constant of the crystal. Determine the lattice 
constant a of the lattice in terms of o. 

A: The equilibrium distance r is given by the minimum of 
the potential energy, which can be calculated by taking 
the derivative of the function U with respect to r and 
setting it equal to zero: 

which yields r=1.09o. Since we are considering a face- 
centered cubic lattice, the nearest neighbor distance is 

JZ such that r = T a .  Therefore, the lattice constant is 

2.5.2. Iortic bonds 
When one atom completely loses a valence electron so that the outer shell of 
a neighboring atom becomes completely filled, a bond is formed which is 
called ionic bond. The coulombic attraction between the now ionized atoms 
causes the ionic bonding. NaCl salt is a classic (and familiar) example of a 
solid in which the atoms are held together by ionic bonding. Ionic bonding 
is frequently found in materials that normally have a metal and a nonmetal 
as the constituent elements. For example, Fig. 2.8 illustrates the NaCl 
structure with valence electrons shifted from Na atoms to C1 atoms forming 
negative C1- ions and positive ~ a '  ions. The physical structure of the NaCl 
crystal is shown in Fig. 2.9. 
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Ionic bonds generally have bond energies on the order of a few eV. The 
energy required to take solid NaCl apart into individual Na and C1 atoms is 
the cohesive energy, which is 3.15 eV per atom. The attractive part of 
Fig. 2.7 can be estimated from the sum of the coulombic potential energies 
between the ions (see Problem 11). 

Fig. 2.8. Schematic illustration of the formation of an ionic bond in NaCl, showing the 
electron transfer between the two elements and their final electronic configurations. 

Fig. 2.9. (a) A schematic illustration of a cross-section from solid NaCl. Solid NaCl is made 
from C1- and ~ a +  ions arranged alternatively, so that the oppositely charged ions are closest 
to each other and attract each other. There are also repulsive forces between the like-ions. In 

equilibriunz, the net force acting on any ion is zero. (b) 3 0  illustration of solid NaCl. 
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Example 
Q: Calculate the total coulombic potential energy of a Cs' 

ion in a CsCl crystal by only considering the nearest 
neighbors of CS'. 

A: In the cubic unit cell shown in Fig. 1.31, one can see 
that one Cs' ion (at the center of the cube) has 8 nearest 
C1- neighbors (at the comers of the cube). Since the 
lattice constant for CsCl is a=4.11 A, the distance 
between a CS' and one of its C1- neighbors is - 

J 3  rnn =-a =3.56 A. The coulombic potential energy is 
2 

thus: E = -8 q 2  =-32.36 eV. 
4~'o'"nn 

Many other solids consisting of metal-nonmetal elements also have ionic 
bonds. They are called ionic crystals and, by virtue of their ionic bonding 
characteristics, share many similar physical properties. For example, LiF, 
MgO (magnesia), CsC1, and ZnS are all ionic crystals; they are strong, 
brittle materials with high melting temperatures compared to metals. Most 
are soluble in polar liquids such as water. Since all the electrons are within 
the rigidly positioned ions, there are no free electrons to move around in 
contrast to metals. Therefore, ionic solids are typically electrical insulators. 
Compared to metals and covalently bonded solids, ionically bonded solids 
also have poor thermal conductivity. 

2.5.3. Covalent bonds 
Two atoms can form a bond with each other by sharing some or all of their 
valence electrons and thereby reducing the overall energy. This is in contrast 
with an ionic bond because the electrons are shared rather than completely 
transferred. This concept is purely quantum mechanical and has no simple 
classical analogue. Nevertheless, it still results in the same basic principles 
as those shown in Fig. 2.7, i.e. there is a minimum in the total potential 
energy at the equilibrium position F ro .  

Covalent bonds are very strong in solids. Fig. 2.10 shows the formation 
of a covalent bond between atoms in crystalline Si, which has the diamond 
structure with eight atoms per cubic unit cell. Each Si shares its 4 valence 
electrons with its neighbors as shown in Fig. 2.10. There is an electron cloud 
in the region between atoms equivalent to two electrons with opposite spins. 
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In the structure of diamond, a C atom also shares electrons with other C 
atoms. This leads to a three-dimensional network of a covalently bonded 
structure as shown in Fig. 2.11. The coordination number (CN) is the 
number of nearest neighbors for a given atom in the solid. As it is seen in 
Fig. 2.11, the coordination number for a carbon atom in the diamond crystal 
structure is four, as discussed in Chapter 1. 

Fig. 2.10. Schematic of covalent bonds in Si. Each Si atom contributes one of its 4 outer shell 
electrons with each neighboring Si atom. This creates a pair of shared electrons between two 

Si atoms, which constitutes the covalent bond. Because the two atoms are identical, the 
electrons have the highest probability of being located at equal distances between the two 

atoms, as illustrated here. 

Fig. 2.11. The diamond ctystal with covalent bonds. The diamond crystal is most often 
represented using a cubic unit cell, as shown here. Each atom in the structure is covalently 

bonded to four neighboring atoms. 
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In the tetrahedral systems such as C, Si or Ge for example, the covalent 
bonds undergo a very interesting process called hybridization. What 
happens is that the atom first promotes one of outer s-electrons (2s shell in C 
and 3s shell in Si for example) into the doubly occupiedp-shell. This costs 
energy, but this energy is more than recovered because now the system can 
use the 2 p x ,  2 p y  , 2 p ,  orbitals in C for example to combine with the one 

left over in "s" to form four directed bonds: 

pointing toward the 4-other atoms, where the same process has taken 
place, each atom providing, a bond partner which is pointing in the opposite 
direction and giving maximum overlap. 

Due to the strong Coulomb attraction between the shared electrons and 
the positive nuclei, the covalent bond energy is the strongest of all bond 
types, leading to very high melting temperatures and very hard solids: 
diamond is one of the hardest known materials. Covalently bonded solids 
are also insoluble in nearly all solvents. The directional nature and strength 
of the covalent bond also makes these materials nonductile (or 
nonmalleable). Under a strong force, they exhibit brittle fracture. 

2.5.4. Mixed bonds 
In many solids, the bonding between atoms is generally not just of one 
certain type but rather is a mixture of bond types. We know that bonding in 
silicon is totally covalent, because the shared electrons in the bonds are 
equally attracted by the neighboring positive ion cores and are therefore 
equally shared. However, when there is a covalent type bond between two 
different atoms, the electrons are unequally shared because the two 
neighboring ion cores are different and hence have different electron- 
attracting abilities. The bond is no longer purely covalent but has some ionic 
character, because the shared electrons are more shifted toward one of the 
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atoms. In this case a covalent bond has an ionic component and is generally 
called a polar bond. Many technologically important semiconductor 
materials, such as 111-V compounds (e.g., GaAs, InSb, and so on), have polar 
covalent bonds. In GaAs, for example, the electrons in a covalent bond are 
closer to (i.e. more probably found near) the As ion core than the Ga ion 
core. This example is shown in Fig. 2.12. 

Fig. 2.12. Polar bonds in an III- V intermetallic compound. Similar to the case of Si in 
Fig. 2.10, a covalent bond is formed by the sharing of an electron from a Ga atom and one 
from a neighboring As atom. However, because a Ga atom has only 3 electrons in its outer 

shell while an As atom has 5, one of the four covalent bond is formed by the As atom 
contributing two electrons, while the Ga atom contributes none. In addition, because the 
atoms involved are not the same, the electrons in the bonds are more attracted toward the 

atom with largest nucleus, as illustrated here. 

In ceramic materials, the type of bonding may be covalent, ionic, or a 
mixture of the two. For example, silicon nitride (Si3N4), magnesia (MgO), 
and alumina (A1203) are all ceramics but they have different types of 
bonding: Si3N4 has covalent, MgO has ionic, and A1203 has a mixture of 
ionic and covalent bondings. All three are brittle, have high melting 
temperatures, and are electrical insulators. 

2.5.5. Metallic bonds 
Atoms in a metal have only a few valence electrons, which can be readily 
removed from their shells and become collectively shared by all the 
resultant ions. The valence electrons therefore become delocalized and form 
an electron gas, permeating the space between the ions, as depicted in 
Fig. 2.13. The attraction between the negative charge of this electron gas 
and the metal ions forms the bonding in a metal. However, the presence of 
this electron cloud also adds a repulsive force to the bonding. Nevertheless, 
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overall, Fig. 2.7 is still valid except that the cohesive energy is now lower in 
absolute value compared to ionic and covalent bonds, i.e. it is easier in many 
cases to "pull apart" metal regions, which explains why metals are usually 
malleable. 

Fig. 2.13. Metallic bonding resulting from the attraction between the electron gas and the 
positive metal ions. The electrons are delocalized inside the volume between the atoms in the 

crystal. 

This metallic bond is nondirectional (isotropic). Consequently, metal 
ions try to get as close as possible, which leads to close-packed crystal 
structures with high coordination numbers, compared to covalently bonded 
solids. "Free" valence electrons in the electron gas can respond readily to an 
applied electric field and drift along the force of the field, which is the 
reason for the high electrical conductivity of metals. Furthermore, if there is 
a temperature gradient along a metal bar, the free electrons can also 
contribute to heat transfer from the hot to the cold regions. Metals therefore 
also have a good thermal conductivity. 

2.5.6. Secondary bonds 
Since the atoms of inert elements (column VIII in the periodic table) have 
full shells and therefore cannot accept any extra electrons nor share any 
electrons, one might think that no bonding is possible between them. 
However, a solid form of argon does exist at temperatures below -189 "C, 
which means that there must be some type of bonding mechanism between 
the Ar atoms. However, the bond energy cannot be high since the melting 
temperature is so low. 

A particular type of weak attraction that exists between neutral atoms 
and molecules involve the so-called dipolar and the van der Waals forces, 
which are the result of the electrostatic interaction between permanent or 
temporary electric dipoles in an atom or molecule. An electric dipole occurs 
whenever there is a separation between a negative and a positive charge of 
equal magnitude Q, as shown in Fig. 2.14(a). A dipole moment is defined as 
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+ - - 
a vector p = Qx , where x is a distance vector from the negative to the 
positive charge. 

One might wonder how a neutral atom can have an electric dipole. We 
know that electrons are constantly moving in orbitals around the nucleus. As 
a result of this motion, the distribution of negative charges is never exactly 
centered on the nucleus, thus yielding a tiny, transient electric dipole. A 
dipole moment can also be a permanent feature of a molecular structure or 
induced by an external electric field. In the latter case, the atom or molecule 
in which a dipole moment appears is said to be polarized by the external 
electric field. - 

When an electric dipole is placed in an external electric field E,  it will - 
experience both a torque z and a force F (unless the external electric field 
is uniform in space) as a result of the electrostatic forces exerted on each 
charge by the electric field, which is depicted in Fig. 2.14(b) and (c). In a 
uniform field, the torque z will simply try to rotate the dipole to line up with 
the field, because the charges +Q and -Q experience similar magnitude 
forces in opposite directions. In a non-uniform field, the net force F 
experienced by the dipole tries to move the dipole toward stronger field 
regions. This force will depend on both the orientation of the dipole and the 
gradient of the electric field. - 4 

Moreover, a dipole moment creates an electric field ~ ' ( r )  of its own 
around it as shown in Fig. 2.14(d), just as a single charge does. Therefore, a 
dipole can interact with another dipole as shown in Fig. 2.14(e). This 
interaction is also at the origin of the van der Waals force and the van der 
Waals bond. The Van der Waals bond is the result of the attraction caused 
by the instantaneous dipole of one atom inducing a dipole in another atom. 
It occurs even when the atoms have no permanent (time averaged) dipole 
moment. This bond is very weak and its magnitude drops rapidly with 
distance R, namely as 1iR6. Fig. 2.7 is nevertheless still valid, but with a 
much smaller cohesive energy. The bond energy of this type is at least an 
order of magnitude lower than that of a typical ionic, covalent, and metallic 
bonding. This is why inert elements such as Ne and Ar solidify at 
temperatures below 25 K (-248 "C) and 84 K (-189 "C), respectively. 

In some solids, a van der Waals force may dominate in one direction, 
while an ionic andlor covalent bond dominates in another. Several solids 
may therefore have dominant cleavage planes perpendicular to the van der 
Waals force directions. Moreover, many solids that we say are mostly ionic 
or covalent may still have a very small percentage of van der Waals force 
present too. Graphite is a typical example. It made up of stacks of sheets of 
carbon. In one sheet the carbon atoms are covalently bound. However, the 
sheets are held together only by van der Waals forces, and as a result the 
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sheets slide easily over each other making graphite easily cleavable and very 
soft, properties put to good use in pencil lead. 

/- - 7 

uniform E ............................. ........ * 
............................ ....................... 

Fig. 2.14. Electric dipole moment and its properties. (a) A dipole is formed when two 
electrical charges with opposite signs and equal magnitude are separated by a distance. This 
creates a dipole moment. (b), (c) A dipole can rotate and be translated in the presence of an 

electric field. (d) A dipole creates an electric field of its own, as a result of its two 
constituting electrical charges. (e) Dipoles can interact with each other because one will feel 

the electric field produced by the other. 

There is a special class of bond called the hydrogen bond, in liquids and 
solids where the attraction between atoms or molecules appears through a 
shared proton. Fig. 2.15 shows the hydrogen bond in the H20 molecule. 
Such a molecule has a permanent dipole moment. Each proton in a molecule 
can form a bond with the oxygen in two other molecules. This dipole-dipole 
interaction keeps water molecules together in liquid water or solid ice. 

The greater the energy of the bond is, the higher the melting temperature 
of the solid is. Similarly, stronger bonds lead to greater elastic moduli and 
smaller expansion coefficients. 
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f i  hydrogen 
bond 

- 

Fig. 2.15. The origin of hydrogen bonding between water molecules. A H20 molecule has a 
net permanent dipole moment as a result of its lack of central symmetry. The H20  molecules 
can therefore interact with one another. Attractions between the various dipole moments in 

water give rise to hydrogen bonding. 

2.6. Atomic property trends in the periodic table 

2.6.1. The periodic table 
As its name suggests, the periodic table of elements is organized based on 
the periodicity of the electronic structure in atoms. In the periodic table, all 
the elements in the same row make up a period (in this discussion "across a 
period" will mean from left to right), and all the elements in a column are a 
group. Elements in a group have the same valence shell configuration. The 
part of the periodic table shown in Fig. 2.16 can be divided into 3 sections 
that indicate which orbitals (s, p, or d) are the valence shell. Thef-orbital 
valence shell elements are omitted for simplicity. 

The electron configuration of an atom (especially that of its valence 
shell) is a primary determinant of the atom's properties. As a result, the 
variation of atomic properties across the table should reflect the "structure" 
of the periodic table. This can be seen in many of the basic atomic 
properties. The discussion here will focus on atomic and ionic radii, 
ionization energy, electron affinity, and electronegativity. The variation 
trends of these properties across a period (from left to right) and down a 



Electronic Structure of Atoms 7 1 

group are very good examples of the role of the interatomic electrical forces. 
The properties discussed here are determined by the interplay between 
nuclear attraction of electrons, electron-electron repulsions, and nuclear- 

screening. 

Increasing atomic radius 

Increasing ionization energy 
Increasing electron affinity 
Increasing electronegativity 

Fig. 2.16. Part of the periodic table with divisions indicating valence shells and a summary 
of atomic property trends. 

2.6.2. Atomic and ionic radii 
Since electrons in an atom are delocalized in the orbitals, not only does the 
orbital not have a well-defined boundary, but the whole atom also does not 
have a well-defined size. Typically, the atomic radius (a spherical shape is 
generally assumed) is instead defined by half the distance between the atoms 
in a chemical compound. This definition is oversimplified since different 
atoms form different types of bonds, but regardless, trends can still be 
observed. 

The atomic radius decreases going across a "period" and increases going 
down a group. Going across a period, protons and electrons are being 
incrementally added. The dominant force originates from the increased 
nuclear charge attracting the electron clouds more strongly. Going down a 
group, the atomic radius increases because electrons are occupying larger 
orbitals corresponding to higher and higher principal quantum numbers. 

Another important size is that of an element's ion compared to its 
neutral state. A positively ionized atom has lost an electron from the 
outermost (largest) shell, which reduces its size. Also, the loss of an electron 
reduces the electron-electron repulsions in the orbitals that would otherwise 
cause them to spread out over a larger space. A negative ion is larger than 
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the neutral ion because the additional electron increases electron-electron 
repulsions. The change in size for ions can be very large. For example, the 
radius of Li changes from 1.52 A to 0.76 A when it loses an electron. 

2.6.3. Ionization energy 
Ionization energy is defined as the energy required to remove an electron 
from an atom or ion, creating a more positive particle. In the ionization 
process, the highest energy, or outermost, electron is removed. The energy 
required to remove an electron from an atom in its ground state is called the 
first ionization energy. The energy required to remove a second electron is 
called the second ionization energy, and so on. As the degree of ionization 
increases so does the energy required. This is because it is increasingly more 
difficult to remove a negative charge from an increasingly positively 
charged ion. As the ion becomes more positive, it attracts any electrons 
around it more strongly because the effective nuclear charge they experience 
is larger. From the point of view of the orbital model, taking successive 
electrons from an atom requires reaching deeper into the atom to remove an 
electron from the more tightly bound lower energy levels. The ionization 
energy always jumps by a large amount once all the valence electrons have 
been removed, and ionization from the full shell starts. 

Going across a period, the first ionization energy increases due to 
increased nuclear attraction. This is like the trend for atomic radius. Going 
down a group, the first ionization energy decreases because the ionized 
electron is coming from orbitals with a higher principal quantum number. In 
these higher orbitals, the electron spends the majority of its time further 
from the nucleus and so the atom is easier to ionize. 

2.6.4. Electron afJinity 
The electron affinity is the potential energy change of the atom when an 
electron is added to a neutral, gaseous atom to form a negative ion. So the 
more negative the electron affinity, the more favorable the electron addition 
process is. Not all elements form stable negative ions, in which case the 
electron affinity is zero or even positive (energy is required to add an 
electron). 

Of the properties discussed, electron affinity is the least well behaved 
because it has the most exceptions. It is also difficult to measure. There is a 
tendency towards increased electron affinity going left to right across a 
period. The overall trend across a period occurs because of increased nuclear 
attraction. The exceptions occur because, for certain electron configurations, 
the electron-electron repulsion force (not to be confused with screening) is 
stronger than the nuclear attraction. Exceptions also occur because those 
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elements that have completely filled valence shells are particular stable. 
Going down a group, the electron affinity should decrease since the electron 
is being added increasingly further away from the atom (i.e. less tightly 
bound and therefore closer in energy to a free electron). In reality, this trend 
is a very weak one as the affinities do not change significantly down most 
groups. 

2.6.5. Electronegativity 
Electronegativity is a measure of the ability of an atom in a molecule to 
attract shared bonding electrons. This property is different from the other 
ones presented here because it is not relevant for an isolated atom since it 
deals with shared electrons. A higher electronegativity means that the atom 
will attract bonded electrons to it more strongly. Electronegativity increases 
across a period and decreases down a group. The difference in 
electronegativity between bonding atoms determines whether the bond is 
covalent, ionic, or in between (polar covalent). For atoms with similar 
electronegativity, neither atom attracts the shared electron more strongly. 
This equal sharing is characteristic of a purely covalent bond. As the 
electronegativity difference increases, the shared electron will spend more 
time near the more electronegative atom. The unequal sharing results in a 
polar covalent bond, which in the extreme case of complete electron transfer 
becomes an ionic bond. 

2.6.6. Summary of trends 
The different trends are summarized in Fig. 2.16. Appendix A.3 contains 
periodic tables that give the atomic radius, ionization energy, electron 
affinity, and electronegativity for all the elements. Understanding these 
trends allows one to understand properties not only of individual elements, 
but also solid properties like lattice constants and semiconductor bandgaps. 
It is important to keep in mind that the trends discussed here are just 
generalizations, and exceptions do occur throughout the table. A more 
detailed discussion of these properties and the exceptions can be found in 
most general chemistry texts (see Further reading section). 

2.7. Introduction to energy bands 

So far, we have considered the concepts associated with the formation of 
bonds between two atoms. Although these concepts are important issues in 
semiconductor materials, they cannot explain a number of semiconductor 
properties. It is necessary to have more detailed information on the energies 
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and the motion of electrons in a crystal, as well as understand the electron 
collision events against imperfections of different kinds. To do so, we must 
first introduce the concept of energy bands. The formation of energy bands 
will be discussed in more detail in Chapter 4 using a quantum mechanical 
formalism. However, for the moment, energy bands can be conceptually 
understood by considering a simple example. 

The electronic configuration in an isolated Si atom is such that ten of its 
fourteen electrons are tightly bound to the nucleus and play no significant 
role in the interaction of the Si atom with its environment, under all familiar 
solid state device conditions. By contrast, the remaining four valence 
electrons are rather weakly bound and occupy four of the eight allowed 
energy states immediately above the last core level. For a group of N 
isolated Si atoms, i.e. far enough apart so that they are not interacting with 
one another, the electronic energy states of their valence electrons are all 
identical. 

When these N atoms are brought into close proximity, to form 
crystalline Si for example, the energy levels for the outer electrons are 
modified as shown in Fig. 2.17(b). Exactly half of the allowed states become 
depressed in energy (bonding states) and half increase in energy (anti 
bonding states). Moreover, this perturbation does not leave the energy levels 
sharply defined but spread them into bands instead. Two bands of allowed 
electronic energy states are thus formed, as shown in Fig. 2.17(b), which are 
separated by an energy gap, i.e. an energy region forbidden for electrons 
where there is no allowed electronic energy state. 

At very low temperatures, the electrons fill the low-energy band first. 
The band below the bandgap in energy is called the valence band. The band 
above the bandgap, which is not completely filled and in most cases 
completely empty, is called the conduction band. The energy gap between 
the highest energy level in the valence band and the lowest energy level in 
the conduction band is called the bandgap. 

It should be noted that the band electrons in crystalline silicon are not 
tied to or associated with any one particular atom. On average, one will 
typically find four valence electrons being shared between any given Si 
atom and its four nearest neighbors (as in the bonding model). However, the 
identity of the shared electrons changes as a function of time, with the 
electrons moving around from point to point in the crystal. In other words, 
the allowed electronic states or bands are no longer atomic states but are 
associated with the crystal as a whole, independent of the point examined in 
a perfect crystal. An electron sees the same energy states wherever it is in 
the crystal. 

We can therefore say that, for a perfect crystal under equilibrium 
conditions, a plot of the allowed electron energies versus distance along any 
pre-selected crystalline direction (x) is as shown in Fig. 2.17(a). This plot is 
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the basic energy band model. Ec introduced in Fig. 2.17(a) is the lowest 
possible conduction band energy, Ev is the highest possible valence band 
energy, and Eg=Ec-EV is the bandgap. A more detailed consideration of the 
bands and electron states will be given in Chapter 4. 

The energy band and the bandgap concepts are at the heart of 
semiconductor physics. As the name implies, a semiconductor has an 
electrical conductivity in between that of a metal and an insulator. Also, in a 
semiconductor the electrical conductivity can be varied by changing the 
structural properties of the semiconductor, changing the temperature, or 
applying external fields. These properties are a direct consequence of the 
energy band structure. Understanding and utilizing these properties of 
semiconductors is the goal of this book. 

Conduction band 

Energy levels of 
N isolated atoms 

Interatomic 
distance 

Fig. 2.17. Illustration of the formation of energy bands in a Si crystal. A system of N isolated 
Si atoms has discrete allowed energy levels, all located at the energies of the 3s and 3p 

orbitals of an isolated Si atom. When the atoms come into close proximity, the energy levels 
are modified as shown in the figure, as a result of the interaction between the atoms. The 

allowed energy levels start to form energy bands. 

2.8. Summary 

In this Chapter, the electronic structure of atoms and its implications on the 
bonding and the formation of energy bands in solids have been presented. 
Early experiments conducted on even the simplest atom that of hydrogen, 
showed that classical mechanics was insufficient and that a new theory, 
called wave or quantum mechanics was necessary in order to understand the 
observed physical phenomena. 
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The notion of electron density function and the Bohr radius have been 
introduced. The concepts of atomic orbitals and quantum numbers to 
identify the allowed discrete energy levels for electrons in an atom have 
been discussed. The nature of the bonding between atoms in a solid, be it 
ionic, covalent, mixed, metallic or secondary, has been described by taking 
into account the interaction of electrons in the higher energy levels in the 
atoms in presence. Finally, the formation of energy bands and the concept of 
conduction and valence bands have been introduced through the interaction 
of multiple atoms. 
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Problems 

1. The size of an atom is approximately cm. To locate an electron 
within the atom, one should use electromagnetic radiation of wavelength 
not longer than cm. What is the energy of the photon with such a 
wavelength (in eV)? 

2. Using the Rydberg formula, calculate the wavelength and energy of the 
photons emitted in the Lyrnann series for electrons originally in the 
orbits n=2, 3, and 4. Express your results in cm, eV, and J. In which 
region of the electromagnetic spectrum are these emissions? 

3. What are the radii of the orbits, and the linear velocities of the electrons 
when they are in the n=l and n=2 orbits of the hydrogen atom? 

4. Using Bohr's model, deduce an analytical expression for the Rydberg 
constant as a function of universal constants. 

5. The ~ e +  ion is a one-electron system similar to hydrogen, except that it 
has 2 protons. Calculate the wavelength of the longest wavelength line 
in each of the first three spectroscopic series (n=l, 2,3). 

6. The human eye is more sensitive to the yellow-green part of the visible 
spectrum because this is where the irradiance of the sun is maximum. 
Since the sun can be considered as a blackbody with a temperature of 
approximately 5800 K, use Planck's relation for the irradiance of a 

2nhc2 1 
blackbody I(A) = -j--( ,, ) to find the wavelength of the 

maximum of the sun irradiance. You will come out with a very simple 
relation between the peak of the irradiance (j2peak) and T, which is called 
Wien's relation. In Planck's relation above, h, c, A, kb and T are 
respectively Planck's constant, the velocity of light in vacuum, the 
wavelength, Boltzman's constant and the absolute temperature. You will 
need the following solution for the equation x=5(1-e"), x=4.965. Then 
use Wien's relation to estimate hpeak for a human body. 

7. Since an electron on a circular orbit around a proton has a centripetal 
acceleration, it should radiate energy according to the Larmor relation 
dE/dt=-2/3 (q2/4m0) (a2/c3) where q, a, q, and c are respectively the 
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electron charge, its acceleration, the vacuum permittivity and the 
velocity of light in vacuum. Therefore, in classical mechanics, it should 
spiral and crash on the nucleus. How long would this decay take, 
supposing that the size of the initial orbit is lo-'' m and the nucleus is a 
point charge (i.e. radius=O)? 

What is Hund's rule? Show how it is used to specify in detail the 
electron configurations of the elements from Li to Ne. 

What is the full electronic configuration of Li? Since the ionization 
energy of Li is 5.39 eV, how much is the effective nuclear charge? What 
can you say about the screening of the other electrons? 

10. Calculate the total coulombic potential energy of a Naf in a NaCl crystal 
by considering only up to the fourth nearest neighbors of N$. The 
coulombic potential energy for two ions of opposite charges separated 
by a distance r  is given by: 

1 1. The interaction energy between Naf and C1- ions in the NaCl crystal can 
be written as: 

~ ( r  ) = - 
4.03 x 6.97 x + 

r  r8  
where the energy is given in joules per ion pair, and the interionic 
separation r  is in meters. The numerator unit of the first term is J.m and 
the second term is ~ . m ~ .  Calculate the binding energy and the 
equilibrium separation between the Naf and C1- ions. 

12. Consider the van der Waals bonding in solid argon. The potential energy 
as a function of interatomic separation can generally be modeled by the 
Lennard-Jones 6-12 potential energy curve, that is, 
E ( ~ ) = - A ~ ~ + B Y "  where A and B are constants. Given that 
~=1.037x10-" ~ . m ~  and ~ = 1 . 6 1 6 ~ 1 0 - ' ~ ~  5.m12, calculate the bond length 
and bond energy (in eV) for solid argon. 

13. Which group of the periodic table would you expect to have the largest 
electron affinities? 

14. Which atom has the higher ionization energy, zinc or gallium? Explain 
your answer. 
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15. Arrange the following groups of atoms in order of increasing size 
(without resorting to the tables in the appendices). 
a. Li, Na, K 
b. P, S, C1 
c. In, Sn, T1 
d. Sb, S, C1, F 

16. Based on the electronegativities given in Fig. A.ll in Appendix A.3, 
what groups of elements would you expect to form ionic compounds? Is 
this consistent with reality? 

17. Why do none of the noble or inert gases (elements in the right-most 
group) have electron affinity values listed in Fig. A.12 in Appendix 
A.3? 



3. Introduction to Quantum Mechanics 

3.1. The quantum concepts 
3.1.1. Blackbody radiation 
3.1.2. The photoelectric effect 
3.1.3. Wave-particle duality 
3.1.4. The Davisson-Genner experiment 

3.2. Elements of quantum mechanics 
3.2.1. Basic formalism 
3.2.2. The time independent Schrodinger equation 
3.2.3. The Heisenberg uncertainty principle 
3.2.4. First summary 
3.2.5. General properties of wavefunctions and the Schrodinger 

equation 
3.3. Simple quantum mechanical systems 

3.3.1. Free particle 
3.3.2. Particle in a 1D box 
3.3.3. Particle in a finite potential well 

3.4. Summary 

3.1. The quantum concepts 

In Chapter 2 we saw that classical mechanics was incapable of explaining 
the optical spectra emitted by atoms, or even the existence of atoms. Bohr 
developed a model for the atom of hydrogen by assuming the quantization 
of the electromagnetic field, which was an introduction to wave or quantum 
mechanics. Quantum mechanics is a more precise approach to describe 
nearly all physical phenomena which reduces to classical mechanics in the 
limit where the masses and energies of the particles are large or 
macroscopic. 

In this section, we will illustrate the success of quantum mechanics 
through the historically important examples of blackbody radiation, wave- 
particle duality, the photoelectric effect, and the Davisson and Genner 
experiment. 
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3.1.1. Blackbody radiation 
As introduced in Chapter 2, a blackbody is an ideal source of 
electromagnetic radiation and the radiated power dependence was depicted 
as a function of wavelength in Fig. 2.3 for several temperatures of the 
blackbody. 

When the temperature of the body is at or below room temperature, the 
radiation is mostly in the infrared spectral region, i.e. not detectable by the 
human eye. When the temperature is raised, the emission power increases 
and its peak shifts toward shorter wavelengths as shown in Fig. 2.3. Several 
attempts to explain this observed blackbody spectrum were made using 
classical mechanics in the latter half of the 1 9 ~ ~  century, and one of the most 
successful ones was proposed by Rayleigh and Jeans. 

In their classical model, a solid at thermal equilibrium is seen as 
consisting of vibrating atoms which are considered harmonic electric 
oscillators which generate standing waves, or modes, through reflections 
within the cavity. They have a continuous spectrum of vibrational mode 
frequencies v =  w/2n=cl/Z where c denotes the velocity of light and A the 
wavelength of the oscillations. These atomic vibrations cause the emission 
of electromagnetic radiation in a continuous frequency range too. To 
determine the power radiated, one has to first determine the energy 
distribution for each frequency. According to the classical law of 
equipartition of energy, the average energy per degree of freedom for a 
blackbody in equilibrium is equal to kbT/2, where kb is the Boltzmann 
constant (=8.614~10" ~v.K-') and T the absolute temperature in degrees K. 
The number of modes per unit volume is the number of degrees of freedom 
for an electromagnetic radiation. 

To calculate this number, a simple model can be used which involves 
propagating waves in a rectangular box. Only certain frequencies of waves 
are allowed as a result of boundary conditions at the limits of the box. In 
addition, there are two possible polarization directions for the waves, 
corresponding to what are called TE and TM propagation modes. The total 

8nv2 
number of modes per unit volume and per unit frequency interval is -. 

c3 
Therefore, the distribution of energy radiated by a blackbody per unit 

8nv2 
volume and per unit frequency interval is u(v,T) =- kbT . 

c 
Considering that this energy is radiated at the velocity of light, and by 
expressing this distribution in terms of wavelength, we get the distribution 
of power radiated per unit area and per unit wavelength interval as: 

8zc 
w(A, T) = - k,T . Both expressions u(v, T) and w(iZ,T) are called the 

/Z4 
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Rayleigh-Jeans law. This law is illustrated by a dashed line in Fig. 2.3 for 
T=2000 K. It shows that this classical theory was in reasonably good 
agreement with experimental observations at longer wavelengths. However, 
over the short-wavelength portion of the spectrum, there was significant 
divergence between experiment and theory. This is because we assumed that 
the classical theorem of equipartition of energy was valid at all wavelengths. 
This discrepancy came to be known as the "ultraviolet catastrophe" because 
the integration of the Rayleigh-Jeans law over all frequencies or 
wavelengths would theoretically lead to an infinite amount of radiated 
power. 

These experimental observations could therefore not be explained until 
190 1, when Max Planck provided a detailed theoretical explanation of the 
observed blackbody spectrum by introducing the hypothesis that the atoms 
vibrating at a frequency v in a material could only radiate or absorb energy 
in discrete or quantized packages proportional to the frequency: 

where n is an integer used to express the quantization, h is Planck's 
constant and h=h/2n is the reduced Planck's constant, obtained by matching 
theory to experiment and is called Planck's constant. This also means that 
the energy associated with each mode of the radiated electromagnetic field 
at a frequency v did not vary continuously (with an average value kbT), but 
was an integral multiple of h v  . Planck then made use of the Boltzmann 
probability distribution to calculate the average energy associated with each 
frequency mode. This Boltzmann distribution states that the probability for a 
system in equilibrium at temperature T to have an energy E is proportional 
to p k h ~  and can be expressed as: 

and is normalized because the total probability after summation over all 
possible values of E has to be unity. Taking into account the quantization 
condition in Eq. ( 3.1 ), the average energy <E> associated with each 
frequency mode v can thus be written as: 
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Therefore, after multiplying by the number of modes per unit volume 

8nu2 
and frequency - , we obtain the distribution of energy radiated by a 

c 
blackbody at frequency of u in this model: 

8nu2 h u  
Eq. ( 3.2 ) u(v,T) =, 

c ehvlkbT -1 

This expression is found to be in good agreement with experimental 
observations. Actually, there is apparently no other physical law which fits 
experiments with a higher degree of precision. In the limit of small 
frequencies, or long wavelengths, this relation simplifies into the Rayleigh- 
Jeans law because we can make the approximation: 

We can thus see that the classical equipartition law is no longer valid 
whenever the frequency is not small compared with kbT/h. Moreover, this 
expression shows that high frequency modes have very small average 
energy. 

This example of the blackbody radiation already shows that, for atomic 
dimension systems, the classical view which always allows a continuum of 
energies is incorrect. Discrete steps in energy, or energy quantization, must 
occur and is a central feature of the quantum approach to real life 
phenomena. 

3.1.2. The photoelectric effect 
In 1902, Philipp Lenard studied the emission of electrons from a metal 
under illumination. And, in particular, he studied how their energy varied 
with the intensity and the frequency of the light. 

A simplified setup of his experiment is schematically depicted in 
Fig. 3.1. It involved a chamber under vacuum, two parallel metal plates on 
which a voltage was applied. Light was shone onto a metal plate. The 
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electrons in it were then excited by this incident light and could gain enough 
energy to leave the metal surface into the vacuum. This was called the 
photoelectric effect. These electrons can then be accelerated by the electric 
field between the metal plate and reach the opposite plate, thus leading to an 
electrical current that can be measured using a sensitive ammeter. 

ammeter 

vacuum 

Fig. 3.1. Simplified experimental setup used by Lenard. A chamber in vacuum contains two 
parallel metal plates on which a voltage is applied. Light shining onto a metal plate gives 
enough energy to the electrons of the plate to make them leave the plate and be accelerated 

by the electric field. 

It was known at the time that there existed a minimum energy, called the 
metal work function and denoted by Om, which was required to have an 
electron break free from a given metal, as illustrated in Fig. 3.2. One had to 
give an energy E>Qm to an electron in order to enable it to escape the 
attraction of the metal ions. 

free electrons 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @,T,=metal work n IE>.. function E< Om 

0 e 

metal 

Fig. 3.2. The work function of a metal, denoted @, is the minimum amount of energy that an 
electron needs to acquire to leave the metal. 
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Example 
Q: In the photoelectric effect, the stopping potential Vo, 

which is the potential required to bring the emitted 
photoelectrons to rest, can be experimentally 
determined. This potential is related to the work 

hc 
function Qm through: qV, = --<Dm, where A is the 

il 
wavelength of the incident photon. For a photon with a 
wavelength of 2263 A, incident on the surface of 
lithium, we experimentally find Vo=3.00 V. Determine 
the work function of Li. 

A: Using the above formula we get: 
hc am =--qv a O 

As his light source, Lenard used a carbon arc lamp emitting a broad 
range of frequencies and was able to increase its total intensity a thousand- 
fold. With such a powerful arc lamp, it was then possible to obtain 
monochromatic light at various arbitrary frequencies and each with 
reasonable power. Lenard could then investigate the photoelectric effect 
when the frequency of the incident light was varied. To his surprise, he 
found that below a certain frequency (i.e. certain color), no current could be 
measured, suggesting that the electrons could not leave the metal any more 
even when he increased the intensity of light by several orders of magnitude. 

In 1905, Albert Einstein successfully interpreted Lenard's results by 
simply assuming that the incident light was composed of indivisible quanta 
or packets of energy, each with an energy equal to hv where h is Planck's 
constant and v is a frequency. He called each quantum a photon. The 
electrons in the metal could then receive an energy E equal to that of a 
quantum of light or a photon, i.e. E=hv. Therefore, if the frequency v was 
too low, such that E=hv was smaller than Q,, the electrons would not have 
enough energy to escape the metal plate, independently of how high the 
intensity of light was, as shown in Fig. 3.3. However, if the frequency was 
high enough, such that E=hv was higher than Q,, electrons could escape the 
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metal. Albert Einstein won the Nobel Prize in Physics in 1921 for his work 
on the photoelectric effect. 

It is interesting to know that an American experimental physicist, Robert 
Millikan, who did not accept Einstein's theory, worked for ten years to show 
its failure. In spite of all his efforts, he found a rather disappointing result as 
he ironically confirmed Einstein's theory by measuring Planck's constant to 
within 0.5 %. One consolation was that he did get awarded the Nobel Prize 
in Physics in 1923 for his experiments! 

Metal work 
function 

hu ... 

Fig. 3.3. Schematic diagram of the escape mechanism of an electron in the metal plate 
receiving a photon with energy hu. Ifthe photon energy is lower than the work function, the 
electron does not escape. Ifthe photon energy is higher than the work function, the electron 

receives enough energy to reach the vacuum level and leave the metal. 

3.1.3. Wave-particle duality 
The previous discussions on the Bohr atom in Chapter 2, the blackbody 
radiation and the photoelectric effect led to the conclusion that the 
electromagnetic radiation has a quantum nature because it exhibits particle- 
like properties. 

In 1925, Louis de Broglie conjectured that, since the electromagnetic 
radiation had particle-like properties, particles (e.g. electrons) should have 
wave-like properties as well. This was called the wave-particle duality. He 
postulated that a particle with a momentum p can be viewed as a wave 
with a wavelength given by: 

This postulate establishes the relationship between a particle and a wave 
in nature. This concept as well as other ones introduced in the previous 
examples clearly prove that classical mechanics was limited, and that a new 
theory was required which would take into account the quantum structure of 
matter, electromagnetic fields and the wave-particle duality. In 1927 such a 
theory was created and called wave or quantum mechanics. 
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3.1.4. The Davisson-Germer experiment 
The first complete and convincing evidence of de Broglie's hypothesis came 
from an experiment that Clinton Davisson and Lester Germer did at the Bell 
Laboratories in 1926. Using an electron gun, they directed beams of 
electrons onto a nickel crystal plate from where they were then reflected, as 
schematically depicted in Fig. 3.4. A sensitive screen, such as a 
photographic film, was put above the nickel target to get information on the 
directions in which the electrons reflected most. On it, they observed 
concentric circular rings, showing that the electrons were more likely to 
appear at certain angles than others. This was similar to a diffraction pattern 
and confirmed that these electrons had a wave-like behavior. 

Fig. 3.4. Schematic of the experimental setup in the Davisson-Germer experiment. A beam of 
electrons is directed on a nickel plate from which the electrons are reflected. They then hit a 

sensitive screen and create a ring pattern. 

Analyzing the resulting pattern and the geometry of the experiment, in 
particular the angles of incidence and reflection, they found that the 
positions of the rings corresponded to angles such that two waves reflected 
from different atomic layers in the crystal were in phase, i.e. had their 
phases different by an integer multiple of 360°, as shown in Fig. 3.5(a). The 
darkest areas corresponded to the situations in which the reflected waves 
were out of phase, i.e. their phases were different by an odd integer multiple 
of 180°, thus canceling each other, as shown in Fig. 3.5(b). By quantifying 
the positions of the rings, Davisson and Germer were able to confirm the de 
Broglie relation given in Eq. ( 3.3 ). 
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Fig. 3.5. (a) Constructive dlffraction and (b) destructive dlffraction condition for the waves 
reflected from a crystal surface. In the constructive dlffvaction situation, 2d sin(@ = nA 
where d is the distance between twoplanes, A, Q are wavelength and angle to the normal 

respectively, n is an integer, the waves are in phase whereas in the destructive diffraction 
configuration, the waves have opposite phases. 

3.2. Elements of quantum mechanics 

In this section, the essential quantum mechanics formalism and postulates, 
and their mathematical treatment will be introduced. Their purpose will be 
to provide a general understanding of the behavior of electrons and energy 
band structures in solids and semiconductors, as discussed in subsequent 
sections. 

3.2.1. Basic formalism 
The contradictions encountered when applying classical mechanics and 
electrodynamics to atomic processes, e.g. processes involving particles of 
small masses and at small separation from other particles, could only be 
resolved through a fundamental modification of basic physical concepts. 
The formalism which enabled the combining of the particle-like and wave- 
like properties of matter was created in 1920's by Heisenberg and 
Schrodinger and was called quantum mechanics, whose basic formalism and 
postulates we will now review. 

(1) The state of a system can be described by a definite (in general 
complex) mathematical function Y(x, y, z, t) , called the 
wavefunction of the system, which depends on the set of 
coordinates (x, y, z )  of the quantum system and time t. 

(2) The wavefunction is a solution of the time dependent Schrodinger 
equation (SE). 
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where the operator H is called the Hamiltonian of the system and 
represents the total energy of the system in the form of 
mathematical operators. The sum of the kinetic and potential 
energy operator which make up the Hamiltonian are given by: 

Note that the first term represents the kinetic energy of the particle 
and is a differential operator which acts on the wavefunction. The 
second term, the potential energy, keeps its classical form. The 
Hamiltonian H describes the temporal and spatial evolution of the 
system (wave function). 

The next principle of Quantum Mechanics is that one cannot know more 
about the system then the totality of all its wavefunction solutions of the 
Schrodinger equation. Having solved the SE and found the wavefunctions, 
we have the following properties: 

(3) The probability that a physical measurement will result in values of 
the system coordinates in a volume dxdydz around (x, y, z) at a 

time t is given by IY(x, y, z, t)I2 dxdydz . 

(4) The sum of the probabilities of all possible values of the spatial 
coordinates of the system must be, by definition, equal to unity: 

Eq. ( 3.6 ) SIY(X, y,r,t)12dxdydz = 1 

This equation is the normalization condition for the wavefunction. 

(5) If Y, (x, y,  z, t) and Y2 (x, y,  z, t) are two wavefunctions of the 
system, solutions of the SE, then the linear combination 
c ,Y,(x,  y , z , t )  + c2Y2(x ,  y , z , t )  is also a wavefunction of the 
same system. This statement constitutes the so-called principle of 
superposition of states, the main principle of quantum mechanics. 
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(6) For any physical quantity, one can associate an operator f which 
"acts" on a wavefunction, i.e. differentiates, integrates or simply 
multiplies it with another function. It represents a physical 
observable. An operator has a set or spectrum of eigenvalues which 
correspond to the possible values that the associated physical 
quantity can take. Thus the operator f acting upon the allowed 

wavefunction produces a number ff or eigenvalue. The 

eigenvalue corresponds to a possible value of the observable, when 
the wavefunction on which it operates is an eigenstate or also 
called eigenfunction of this operator, in other words if it satisfies: 

Eq. ( 3.7 ) 

then Yf is an eigenfunction o f f  and ff , its corresponding 

eigenvalue. 
Every physical observable has a set of eigenfunctions and 
corresponding eigenvalues. However it is possible for different 
physical observables to share the same eigenfunctions. 
Eigenfunctions belonging to different eigenvalues are orthogonal, 
thus their inner product is equal to 1 when the wavefunctions 
belong to the same eigenvalue, and 0 otherwise, or mathematically: 

where is called the Kronecker Sfunction, and is defined as: 

Eigenfunctions of physical observables form a complete set. This 
means that they can be regarded as an infinite set of vectors which 
span the so called Hilbert space such that any function x can be 
represented as a linear combination of these eigenfunctions. 
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(7) In classical mechanics, all physical quantities can have a 
continuous range of values. By contrast, in quantum mechanics, 
there exist quantities both with a continuous spectrum (for instance 
the coordinates) and others with a discrete spectrum of eigenvalues 
(for instance energy). 

(8) A system need not be in a pure state, or eigenstate of an 
observable, it can be in a superposition of such states. In which 
case if one undertook a measurement, one would find it in any one 
of the combination of such states. This leads us to the next 
definition. 

(9) The mean value or expectation value of a physical quantity 
represented by an operator f is what is measured experimentally, is 
denoted < f > and is given by: 

Eq. ( 3.1 1 ) < f >= ~~(x,~,z,t)*fl(x,~,z,t)dxd~dz 

where Y(x, y, z, t) is the wavefunction of the system considered 
and (. . .)* stands for complex conjugate. Thus if: 

the expectation value < f > is given by: 

Eq. ( 3.13 ) 

which signifies that the expectation value is the sum of the 
eigenvalues multiplied by the probability of being in that particular 
eigenstate. 
Examples of physical quantities, their associated operators and 
expectation values are given in Table 3.1. 
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Physical quantity Operator Expectation value 

x, y, z (coordinates) x, y, z < >= j ~ ' ~ ~ d x d y d ~  

h a  h a  h a  * A a~ 
px, pv, pz (momentum) - - 3 -- , -- < P , ~  >= {Y Tzdxdydr i ax i ay i az 

E (energy) 

Table 3.1. Examples of common physical quantities and their associated operators. 

(10) Operators which are related to physical observables must have the 
property that the expectation value of the operator is a real number. 
Such operators are called Hermitian operators. For Hermitian 
operators it follows that the "so called matrix element" of an 
operator f taken between two different eigenstates: 

satisfies the relation = ( f j i )  * 

(1 1) Let us now take a closer look at the SE and the Hamiltonian of the 
system. The kinetic energy term is written in terms of the operator 
v2 which is called the Laplacian and is defined in orthonormal 
coordinates in three dimensions by: 

Eq. ( 3.14 ) V*Y(X, Y , ~ ) =  a2y(x,y,z) + a2y(x,y,z)+ a 2 y ( x , y J )  
dx 9' dz2 

U(x,y,z,t) is the potential energy of the system considered, A is the 
reduced Planck's constant, and i is the complex number such that 
i2 = -1. Solving this equation fully determines the wavefunctions, 
and eigenstates of energy, of the physical system under 
consideration. 

3.2.2. The time independent Schrodinger equation 
A particular and important case for the Schrodinger equation, is that for a 
closed system in a time-independent external field. Then, the right hand side 
of Eq. ( 3.4 ) does not contain time explicitly. In this case, the states of the 
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system which are described by the wavefunction Y(x,y,z,t) are called 
stationary states, and the total energy of the system is conserved (in time). 
This means that (E) = E is constant. From 

Eq. ( 3.1 1 ) using the operator in Table 3.1, we get: 

By identification, we find that the following relation must be satisfied: 

Eq. ( 3.15 ) ih ay(x' y'z't) = EY(x, y,z,t) 
dt 

This means that the wavefunction Y(x, y, z, t) is the product of a 
function q(x, y, z) which solely depends on coordinates and an exponential 
function which depends only on time, such that: 

I 
Eq. ( 3.16 ) ~ ( x ,  y,z,t) = p(x, y,z).exp(--Et) 

A 

Inserting this expression into the Schrodinger equation in Eq. ( 3.4 ) and 
eliminating the exponential term on both sides of the equation, we obtain: 

which can be rewritten as: 

This last expression is called the time-independent Schrodinger 
equation. From now, and in the rest of the Chapter, we will limit our 
discussion only to such types of situation. However, we will continue to use 
the symbol Y to denote the wavefunction of the system considered. 

A system in a stationary state will always have well defined 
eigenfunctions Yn and eigenvalues of energy E, , but these need not be 
simultaneous eigenstates of momentum or angular momentum for example. 
For example, a system will only have well defined energy and momentum, 
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if the Hamiltonian or total energy operator is time independent 
(conservation of energy), and also translationally invariant over any distance 
in space (conservation of momentum). Thus for example in a random or 
disordered medium, the Hamiltonian varies in space and one can have 
conservation of energy, and therefore well defined energy levels, but not 
well defined momentum or angular momentum eigenstates and eigenvalues. 

3.2.3. The Heisenberg uncertainty principle 
This very important principle says that one of the consequences of quantum 
mechanics is that one cannot have absolute knowledge of time and energy 
simultaneously, and that this is not a theoretical abstraction, but an 
experimental fact which is verified every day. One of the Heisenberg 
uncertainty principles is therefore that: 

In other words if one knows the energy E to within an accuracy AE, 
then one cannot know the time to an accuracy better than At as given by 
Eq. ( 3.19 ). The same is true the other way around. If one knows the time to 
within an accuracy of At then one cannot know the energy to a greater 
accuracy than AE as given by the above relation. Let us apply this concept 
to a stationary state of the system in energy, where we know the energy 
level of the particle with absolute accuracy. The meaning of Eq. ( 3.19 ) is 
that in this case, we can say nothing about the time. Indeed the time 
dependence of the wavefunction as shown by Eq. ( 3.16 ) only occurs in the 
phase of the complex exponential, which has no consequence on the 
probability distribution for example. Indeed, when in an eigenstate of 
energy, the particle does not evolve in time. It stays in that same energy 
level until it is disturbed by some perturbation. The perturbation makes the 
Hamiltonian change in time, and this allows the particle to admix with other 
eigenstates of different energy, which is the same thing as saying that the 
system can now evolve in time. The Heisenberg uncertainty principle also 
applies to momentum and space. If one knows the absolute position of a 
particle in space, then one cannot say anything about its momentum and vice 
versa, so we also have: 

Eq. ( 3.20 ) Ap,Ar, - A 

where p, are x, y, z components of momentum and r, of space 

respectively. We shall see later in more detail that one of the consequences 
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of this rule is that a particle which is confined to a finite size box, cannot 
have zero average momentum or kinetic energy. 

3.2.4. First summary 
As a first summary we note that whereas in classical mechanics one can in 
principle know energy, position, momentum, and time of a system 
simultaneously and with absolute accuracy, the same is not true in quantum 
mechanics. In quantum mechanics one can only at best know the 
wavefunctions which are the solutions of the SE. Everything that can be 
known about the system must be deduced from the wavefunctions. This 
includes the probability distribution in space, and the expectation value of 
the physical observables. Thus in quantum mechanics the totality of 
solutions of the SE as we have seen form a complete set, in other words, the 
system can under all circumstances be found in a linear superposition of this 
complete set of eigenfunctions, each one belonging to an eigenvalue of 
energy. Similarly the thermal average of a physical observable A is given by 
the generalized form of the Boltzmann distribution: 

C e-E1l'kbT Ann 

which involves the expectation values A,, of the operator A over all the 

eigenstates of energy labeled by n. Unlike in classical mechanics where 
physical variables are defined irrespective of the fact that they can be 
measured or not, in quantum mechanics only measurable parameters are 
meaningful. These are the observables, and each one has its own operator 
representation. Measuring the value of a physical observable means 
calculating the expectation value of the operator, given that one has the 
wavefunction of the system. If the system is in a pure state or eigenstate, 
then the outcome of this operation or act of measurement, is the 
corresponding eigenvalue. In general however the system is in superposition 
of eigenstates, and the outcome of the measurement is the weighted 
superposition as given by Eq. ( 3.13 ). This superposition, or thermal 
average, involves the expectation value of the operator A, given by An, in all 

eigenstates labeled by n. 
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3.2.5. General properties of wavefunctions and the Schrodinger 
equation 
The wavefunctions solution of the Schrodinger equation must satisfy a few 
properties, most of which are direct consequences of the mathematical 
formalism from which such functions are constructed. The interested reader 
is referred to more advanced quantum mechanics textbooks for further 
information. 

The main property which will be used in the rest of the text is that the 
wavefunction and its first derivative must be finite, continuous and single- 
valued in all space even if the system under consideration contains a surface 
or interface where the potential U(x, y,  z )  has a finite discontinuity. But, in 
the case when the potential becomes infinite beyond this surface, the 
continuity of the derivative of the wavefunction does not hold anymore. 
This means that a particle cannot penetrate into a region where an infinite 
potential exists and therefore that its wavefunction becomes zero there. 

3.3. Simple quantum mechanical systems 

3.3.1. Free particle 
The simplest example of solution of the Schrodinger equation is for a free 
particle of mass rn and energy E, without external field and thus with a 
constant potential energy which can then be chosen to be zero 
U(x,y,z) = 0 .  For further simplicity, we can restrict the mathematical 
treatment to the one-dimensional time-independent Schrodinger equation. 
Eq. ( 3.18 ) can then be simplified to: 

h2 d 2 y ( x )  
Eq. (3.21 ) 2, dx2 + EY(x) = 0 

The solution of Eq. ( 3.21 ) which is an eigenstate of both energy and 
momentum is: 

Eq. ( 3.22 ) ~ ( x )  = ~ e "  

2x where A is a constant, and k = - is the wavenumber. By applying the 
il 

x-momentum operator on the RHS of Eq. ( 3.22 ), one can see that this state 
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corresponds to a free particle state moving in the positive x-direction with 
momentum h k .  Replacing the expression of the wavefunctions into 
Eq. ( 3.21 ), one obtains: 

h2k2 -- Y (x) + H(X) = o 
2m 

which has a non zero solution for Y ( ~ )  only if: 

or conversely: 

2mE Eq. ( 3 .2, ) k = ,/T 
and is plotted in Fig. 3.6. The expectation of particle momentum, as 

defined by Eq. ( 3.1 1 ), can be expressed in quantum mechanics as: 

Eq. ( 3.25 ) ( p )  = hk 

The energy of the fiee particle depends therefore on its momentum as 

E = -  (P)' , which is analogous to the case in classical mechanics. Rather 
2m 

than dealing with an infinite system which is not normalizable, we can think 
of the system as being very large but of finite size [OJ], as L becomes - 
infinite, so that the normalization constant A is given by A = k 
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Fig. 3.6. The energy-momentum relationship for a free particle has a parabolic shape. 

3.3.2. Particle in a ID box 
Another simple and important illustration of quantum mechanics concepts 
can be obtained by considering a particle whose motion is confined in space. 
For simplicity, the analysis will be conducted in one dimension. It involves 
a particle of mass rn and an energy E which evolves in a potential U(x), 
shown in Fig. 3.7. 

Fig. 3.7. Potential energy corresponding to the ID box. 

This potential can be mathematically expressed such that: 

U(x )=m f o r x < O a n d x > a  
Eq. ( 3.26 ) 

U(x) = 0 f o r O < x < a  

In such a potential, the properties of the wavefunctions and Schrodinger 
equation lead us to: 
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[Y (x )  = 0  forx<Oandx>a 

Inside the box ~ ( x )  can be written as the sum of sin and cos functions 
so that: 

Eq. ( 3.28 ) ~ ( x )  = ~ s i n ( k x ) +  ~ c o s ( k x )  

but with the boundary conditions: 

Expressing these conditions using Eq. ( 3.28 ), we get: 

Eq. ( 3.30 ) { z  in:ka) = 0  

Since the wavefunction cannot be identically zero in the entire space, the 
following condition must be satisfied: 

n 
sin(ka) = 0  or k  = k,, = n  - where n is an integer equal to f l ,  f2 ,  . . . 

a  

Consequently, in contrast to the free particle case, not all values of the 
wavenumber k are allowed, but only discrete values are allowed. n can also 
be viewed as a quantum number of the system. Using Eq. ( 3.27 ), we can 
see that the energy of a particle in a 1D box is also quantized: 

One can see that when a+w, the spacing between the quantized energy 
levels tends toward zero and a quasi-continuous energy spectrum is 
achieved, as for a free particle. Nevertheless, the energy levels remain 
strictly discrete (this is why we talk about a "quasi"-continuous energy 
spectrum). Combining Eq. ( 3.28 ) and Eq. ( 3.30 ), we can write the 
wavefunction as: 
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The value of A can be computed by substituting this expression into the 
normalization condition expressed by Eq. ( 3.6 ). One easily finds that: 

so that the complete analytical expression of the wavefunction solution 
of the infinite potential well problem is: 

Eq. ( 3.33 ) Y,, (x) = -sin - t (3 
These functions consist of standing waves as depicted in Fig. 3.8(b). 

One can think of the particle in a 1D box as bouncing off the walls of the 
box and the probability of finding a particle at x in the box is shown in 
Fig. 3.8(c). 

Example 
Q: Find the energy levels of an infinite quantum well that 

has a width of a=25 A. 
A: The energy levels are given by the expression: 

h2x2 E =n2- , , where mo is the free electron rest mass. 
2m,a 

This gives numerically: 
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Fig. 3.8. (a) Energy levels, (b) wavefunctions Y(x), and (c) / !ffx)12 which isproportional to 
the probability offinding a particle at a position x in a ID quantum box, for the first four 

allowed levels. 

3.3.3. Particle in a finite potential well 
The infinite potential analysis conducted previously corresponds to an 
unrealistic situation and a finite potential well is more appropriate. Under 
these conditions, the potential in the Schrodinger equation is shown in 
Fig. 3.9 and mathematically expressed as: 

U(x) = U ,  > 0 fovx < Oand x > a 
Eq. ( 3.34 ) 

U(x) = 0 forO<x<a 
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Fig. 3.9. Potential energy in afinitepotential well. 

In such a potential, the properties of the wavefunctions and Schrodinger 
equation lead us to: 

Eq. ( 3.35 ) 

We see that two distinct cases must be considered when solving this 
system of equations. The first one is when O<E<Uo and the other is when 
Uo<E. 

In the case of O<E<Uo, Eq. ( 3.35 ) can be rewritten as: 

by defining: 

Eq. ( 3.37 ) 
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The general solution to Eq. ( 3.36 ) is then: 

Eq. ( 3.38 ) 

'Y- ( x )  = A-em + B-e-" forx  < 0 

yo ( x )  = A,, sin(h)+ B, cos (h )  f o r O < x < a  

Y+ (x)  = A+em + B+em forx  > a 

The boundary conditions include the finite nature of Y (x) for x+w and 

x-t-w, the continuity of ~ ( x )  and its first derivative * at points x=O 
dx 

and x=a, which can all be mathematically summarized as: 

Eq. ( 3.39 ) 

fl- f l o  
- (0) = - (0)  dx 

f l o  
dx 

fl+ 
- (a)  = -- (a)  dx dx 

Utilizing Eq. ( 3.3 8 ), we obtain: 

Eq. ( 3.40 ) 
A+ = B- = 0 

A- = Bo A,, sin(ka) + Bo cos(ka) = B+e-" 

aA_ =kA, k 4  cos(ka) - kBo sin(ka) = -nB+e-" 

From these equations, we see that Bo can be easily expressed in terms of 
A. and we thus obtain two equations involving only B+: 

A non zero solution for A. and B+, and thus a non zero wavefunction, is 
possible only if: 
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Eq. ( 3.41 ) (k2 - a2)sin(ka)  - 2ak cos(ka) = 0 

This condition can be rewritten into: 

Eq. ( 3.42 ) tan(ka) = 
2ak 

k 2  --a2 

By introducing the constants: 

Eq. ( 3.43 ) 

we can first rewrite Eq. ( 3.37 ) as: 

{ 
a = a o f i  

Eq. ( 3.44 ) 
k = a o Z  

and therefore Eq. ( 3.42 ): 

The only variable in Eq. ( 3.45 ) is 6 ,  and any value that satisfies it 

leads to a value of E, k, a and thus a wavefunction ~ ( x )  solution of the 
Schrodinger equation for the finite potential well problem in the case 
O<E<Uo. 

Eq. ( 3.45 ) is easiest solved graphically. For example, Fig. 3.10 shows a 
plot of the two functions on either side of Eq. ( 3.45 ) The intersection points 
correspond to values of < which satisfy Eq. ( 3.45 ) and the number of 
intersection points is the number of bound states (i.e. wavefunction and 
energy level) in the finite potential well. In the example depicted in 
Fig. 3.10, there are two solutions. 
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Fig. 3.10. Graphical representations of the functions on the left hand side (LHS) and right 
hand side (RHS) of Eq. ( 3 . 4 5 ) ,  shown in dashed and solid lines. The intersections between 

these curve yield the solutions of the finite potential well problem. 

As the well potential Uo increases, a. increases as defined by 
Eq. ( 3.44 ) and thus a higher number of tangent function branches can be 
fitted for < between 0 and 1 (left hand side of Eq. ( 3.45 )). Consequently, 

the number of intersections-solutions for < increases too, which means that 
there are more bound states in the well. This is schematically shown in Fig. 
3.11. This can be understood intuitively because one can "fit" more bound 
states as the depth of the well increases. 

Because there is only a discrete number of values for <, there is also a 
discrete number of energy values E, i.e. the energy levels are quantized 
similar to the infinite well potential case. In addition, the quantized values of 
energy here are found to be lower than those in the infinite well potential 
case, as shown with the dashed lines in Fig. 3.1 1. 



Introduction to Quantum Mechanics 

Fig. 3.1 I .  Quantized energy levels in ~f in i t e  potential well (solid lines) as a function of 
potential well depth. For comparison, the energy levels of the infinite well case are shown in 

dashed lines for the quantum well on the left. 

In addition to the quantization of energy levels, there is another 
important quantum concept illustrated by the finite potential well: the 
phenomenon of tunneling. Indeed, a non-zero wavefunction exists in the 
regions x<O and x>a, which means that the probability of finding a particle 
there is non zero. In other words, even if a particle has an energy E lower 
than the potential barrier Uo, it has a non zero probability of being found 
beyond the barrier. This is schematically shown in Fig. 3.12. 

In the case of E> Uo, the solution of Eq. ( 3.36 ) can again, as before, be 
written as a sum of a cosine and a sine term (see Eq. ( 3.28 )), for each of the 
regions defined by Eq. ( 3.34 ). Another, more elegant way, is to represent 
the solution as a sum of a plane waves, one going to the left and one going 
to the right. The two plane waves have different wavenumbers k. The 
boundary conditions include the continuity of the wavefunction Y (x) and 

its first derivative * at points x=O and x=a. Along with the 
dx 

normalization condition expressed in Eq. ( 3.6 ), one can analytically 
determine the wavefunction. This analysis would lead to result similar for a 
free particle, and in particular that there is a continuum of energy states 
E> Uo allowed. 
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Fig. 3.12. Illustration of the tunneling effect in afinite potential well. The wavefunction is 
non zero outside the potential well. This means that there exists a non zero probability of 
finding an electron outside the potential well even when its energy E is lower than the 

potential barrier height Uo. 

3.4. Summary 

In this Chapter, we have shown the limitations of classical mechanics and 
the success of quantum mechanics. The basic concepts and formalism of 
quantum mechanics have been exposed, including the quantized nature of 
the electromagnetic field, the wave-particle duality, the probability of 
presence of a particle, the wavefunction, and the Schrodinger equation. 
Simple quantum mechanical systems have been analyzed to understand 
these novel concepts, including an infinite and a finite potential well. 
Through these, some aspects of quantum mechanics have been discussed, 
including the quantization of energy levels and momenta, and tunneling 
effects. 
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Problems 

Fundamentals of Solid State Engineering 

According to quantum mechanics, electromagnetic radiation of 
frequency v can be regarded as consisting of photons of energy hv 
where h=6.626~ loa4 J.s is the Planck's constant. 
(a) What is the frequency range of visible photons (400 nm to 700 nm)? 
What is the energy range of visible photons (both in J and in eV)? 
(b) How many photons per second does a low power (1 mW) He-Ne 
laser ( k 3 3 6  nm) emit? A cell phone that emits 0.4 W of 850 MHz 
radiation? A microwave oven operating at 2 GHz generating a 
microwave power of 1000 W? How many photons of the latter 
frequency have to be absorbed to heat up a glass of water (0.2 L, heat 
capacity of water 4.18 k ~ . k ~ ' l . ~ - ' )  by 20 "C? 
At a given power of an electromagnetic wave, do you expect a classical 
wave description to work better for radio frequencies, or x-rays? Why? 
At what He-Ne laser power do you expect quantum effects to become 
important 

An adapted human eye (person that has spent 30 min in the dark) can 
see 1 ms flashes of power 4x 10'14 W at 5 10 nm with 60 % reliability. 
Assuming that 20 % of the incident power reaches the retina, how many 
photons at the receptors generate the signal that the test person 
recognizes as a flash of light? 

(a) The thermal energy scale is kbT,  where kb=1.38x1~'23 J/K is 

Boltzmann's constant, and T is the absolute temperature. What energy 
does room temperature correspond to? What would be the frequency 
and wavelength of the corresponding photons? Is it reasonable that a hot 
body starts to glow around 1000 "C? 
(b) What is the photon flux (rate of arriving photons per unit area) at 1 
m distance from a 60 W light bulb, if you assume that the bulb 
conversion efficiency (electrical power to light bulb) is 20% and take 
the photon wavelength as 600 nm? 
(c) A photodiode measures light power by converting incident photons 
into electron-hole pairs, such that the electron current is proportional to 
the incident light power. The quantum efpciency is defined as the 
probability that an incident photon generates an electron. If a typical 
photodiode has a responsivity of 0.5 A/W for infrared light at 850 nm, 
what is the quantum efficiency of the device? If the quantum efficiency 
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is independent of frequency, what responsivity do you expect for blue 
light at 400 nm? 
A simulation of black body radiation and related topics (Planck7s law, 
Wien's law) can be found at: 
http://csep 1 O.phys.utk.edu/guidry/j ava/plancklplanck.html 

From the expression of the distribution of energy radiated by a 
blackbody Eq. ( 3.2 ), show that the product AMT is a constant, where AM 
is the wavelength of the peak of distribution at the temperature T (see 
Fig. 2.3). Do so by first rewriting the expression in Eq. ( 3.2 ) for 
u(v,T), the distribution per unit energy, as a distribution per unit 
wavelength, i.e. w(A, T) . 

Ultraviolet light of wavelength 350 nm falls on a potassium surface. The 
maximum energy of the photoelectrons is 1.6 eV. What is the work 
function of potassium? Above what wavelength will no photoemission 
be observed? 

What is the de Broglie wavelength of an automobile (2000 kg) traveling 
at 35 miles per hour? A dust particle of radius 1 pm and density 
300 kg.m-3 being jostled by air molecules at room temperature 
(T=300 K)? An 1 4 ~  atom that has been laser cooled to a temperature of 
T=77 K? An electron and a proton accelerated to 100 eV? 
Assume that the kinetic energy of the particle is given by (3/2)kbT. 

Prove that the normalization constant A in Eq. ( 3.28 ) is equal to 
~ = ( 2 / a ) ' / ~  as given in Eq. ( 3.32 ). 

A particle with mass 6.10xl0"~ kg is confined to an infinite square well 
of width L. The energy of the third level is 3x lo-'' J. Calculate the value 
of L. 

A particle of mass m is prepared in the ground state of an infinite- 
potential box of size a extending from x=O to x=a. Suddenly, the wall at 
x=a is moved to x=2a within a time At doubling the box size. Assume 
that the wavefunction is the same immediately after the change, if the 
change happens fast enough. 
(a) What is the physical meaning of "fast enough" in quantum 
mechanics? 
(b) Determine the probability of finding the particle in the second (n=2) 
state of the new well, immediately after the change. Note that the 
wavelength within the well, and hence the energy, for this state is the 
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same as for the initial state in the well before its expansion. Do not 
forget to properly normalize the wave-functions for your calculations. 
(c) What is the probability that the particle is found in the ground state 
after the sudden expansion? 
(d) Calculate the expectation value of the energy of the particle before 
and after the sudden expansion? 

10. An electron is confined to a 1 micron layer of GaAs. Assuming that the 
semiconductor can be adequately described by a one-dimensional 
quantum well with infinite walls, calculate the lowest possible energy 
within the material in units of electron volt. If the energy is interpreted 
as the kinetic energy of the electron, what is the corresponding electron 
velocity? The effective mass of electrons in GaAs is 0.067mo, where 
mo=9.10x 10"' kg is the free electron rest mass). 

11. In this exercise, we will develop the material of section 3.3.3 to 
calculate the factor of confinement of a particle in a finite well. 
Making the system symmetric for convenience, we translate the Ox axis 
so that the potential equals to 0 in the region: -a I 2  < x < a / 2 .  
(a) Rewrite Eq. ( 3.38 ) in this new coordinate. Use the appropriate 
boundary conditions to eliminate some trivial constants. 
(b) By symmetry, we search for solutions in 2 families of functions: 
even and odd functions. Show that the even solutions satisfy 2 
equations: 

while the odd solutions satisfy 

How can you resolve these equations graphically? 
(c) The particle is in the ground state, which is even, and has energy E. 
Find the relative density of the particle inside the well. This quantity is 
defined as the confinement factor (or coefficient of confinement). 
A simulation of this Problem can be found at: 
http://www.sgi.com/fun/java/john/wave-sim.htm1 
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12. Consider a particle of mass rn moving in the potential: 

(a) Show that this potential has a bound eigenstate described by the 

wave function 
A 

Yo(X) = cosh(ax) 
and find the corresponding 

eigenenergy. Normalize Yo and sketch it. This turns out to be the only 
bound state for this potential. 

(b) Show that the wavefunction is Y, (x) = B 
i k + a  

where Ak = J 2 m ~  . Solve the Schriidinger equation for any positive 
energy E. Verify that for x -+ f oo the asymptotic behavior of tyAx) has 
the plane wave form. Determine the transmission coefficient if it's 
defined as the square of the ratio between the amplitude of the coming 
wave (at - a )  and that of the going out wave (at + a ) .  What physical 
situation does ty,represents? 
A simulation of this Problem can be found at: 
http://www.kfunigraz.ac .at/imawww/thaller/visualization/vis.html 

13. Consider a particle of energy E traveling from the left hits a barrier of 
height U > E and thickness L. Calculate the transmission coefficient. 

reflected wave I1 

incident wave - transmitted wave 

b 

u 

A simulation of this Problem can be found at: 
http://www.kfunigraz.ac.at/imawww/thaller/visualization/vis.html 
http://www.sgi.corn/fun/java/j ohnlwave-sim.htm1 
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4.1. Introduction 

In Chapter 3, we introduced quantum mechanics as the proper alternative to 
classical mechanics to describe physical phenomena, especially when the 
dimensions of the systems considered approach the atomic scale. The 
concepts we learned will now be applied to describe the physical properties 
of electrons in a crystal. During this process, we will make use of the simple 
quantum mechanical systems which were mathematically treated in the 
previous Chapter. This will lead us to the description of a very important 
concept in solid state physics namely that of the "energy band structures". 
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4.2. Electrons in a crystal 

So far, we have discussed the energy spectrum of an electron in an atom, 
and more generally in a one-dimensional potential well. Modeling an 
electron in a solid is much more complicated because it experiences the 
combined electrostatic potential of all lattice ions and all other electrons. 
Nevertheless, the total potential acting on the electrons in a solid shares the 
symmetry of the lattice, and thus reflects the periodicity of the lattice in the 
case of a crystal. This simplifies the mathematical treatment of the problem 
and allows us to understand how the energy spectrum, wavefunctions and 
other dynamic characteristics (e.g. mass) of electrons in a solid are modified 
from the free particle case. 

4.2.1. Bloch theorem 
The Bloch theorem provides a powerful mathematical simplification for the 
wavefunctions of particles evolving in a periodic potential. The solutions of 
the Schrodinger equation in such a potential are not pure plane waves as 
they were in the case of a free particle (Eq. ( 3.22 )), but are waves which 
are modulated by a function having the periodicity of the potential or lattice. 
Such functions are then called Bloch wavefunctions and can be expressed 
as: 

Eq. (4.1 ) 

4 

where k is the wavenumber vector (in three dimensions) or wavevector 

of the particle, 7 its position, and u(&;) a space-dependent amplitude 
function which reflects the periodicity of the lattice: 

Eq. ( 4.2 ) u ( i ,  7 + 2) = u ( i ,  7) 

The expression in Eq. ( 4.1 ) means that the Bloch wavefunction is a 
plane wave, given by the exponential term in Eq. ( 4.1 ), which is modulated 
by a function which has the periodicity of the crystal lattice. An illustration 
of this is shown in Fig. 4.1 in the one-dimensional case. 
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~ ( k ,  x) 

= exp(ikx)u (k, x) 

Fig. 4.1. One-dimensional illustration of a Bloch wavefunction (bottom) as a plane wave 
(top) modulated by a periodic function which has the period of the lattice (middle). 

Combining Eq. ( 4.1 ) and Eq. ( 4.2 ) leads us to the form: 

for any lattice vector . In a one-dimensional case, d being the period 
of the potential or lattice, this can be written as: 

Eq. ( 4.4 ) ~ ( k , x  + d) = exp(ikd)y(k,x) 

This shows that the wavefunction is the same for two values of k which 
2n 

differ by integral multiples of -. We can therefore restrict the range of 
d 

n n 
allowed values of k to the interval - - < k I - . 

d d 
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Another important limit of the Bloch theorem is for non-infinite crystals. 
In this case, it is common to use the periodic boundary conditions for the 
Bloch wavefunction, i.e. the wavefunction is the same at opposite 
extremities of the crystal. Assuming a linear periodic chain of N atoms 
(period d), the periodic boundary condition can be written as: 

Eq. ( 4.5 ) Y(k,x) = ~ ( k , x  + Nd) = exp(ikNd)Y(k, x) 

which means that: 

or: 

2m 
Eq. (4.7 ) k = - 

Nd 

7L 
where n is an integer. Since we restricted the range of k between - - 

d 
7T N N 

and -, n can only take integer values between - - and - . There are 
d 2 2 

thus only N distinct values for n and thus k. 

4.2.2. One-dimensional Kronig-Penney model 
In addition to the Bloch theorem, which simplified the wavefunction of a 
particle, there is a further simplification of the periodic potential which is 
often used and is referred to as the Kronig-Penney model. We will continue 
with the one-dimensional formalism started in the previous section. In the 
Kronig-Penney model, the crystal is assumed to be infinite. In this model, 
the real crystal potential experienced by an electron is shown in Fig. 4.2(a) 
and is approximated by the one depicted in Fig. 4.2(b). 

The solution of the Kronig-Penney model partially utilizes the results 
from the finite potential well problem discussed in sub-section 3.3.3 and the 
same notations has therefore been used in Fig. 4.2(b). The mathematical 
analysis will first be conducted locally, in the region -b<x<a, where the 
potential can be approximated by Eq. ( 3.35 ) except that there is a new limit 
for the variable x. 
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Fig. 4.2. (a) Real crystal potential experienced by electrons in a crystal and (b) simplified 
crystal potential used in the Kronig-Penney model. 

The wavefunction solution of the Schrodinger equation thus has two 
distinct components, Yl (x )  and Y2 (x) ,  in different regions of space which 
must satisfy: 

d 2 y l ( x )  + a2y,(x) = 0 for-b<x<O 
Eq. ( 4.8 ) dx2 

d2Y2(x)+P2Y2(x)=0 forO<x<a 
dx 

by defining: 

ia-  , with a- = ,/y whmO<E<Uo 

Eq. ( 4.9 ) 2m E -U, 
a+, with a+ = , /  when ll, < E 

The general solution to Eq. ( 4.8 ) can be expressed as: 
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Y, (x) = A, sin(m) + B, cos(m) 

= A2 sin@x)+ B2 cos(@) 

with the understanding that sin(m) and cos(m) become -isinh(ax) and 
cosh(a_x), respectively, when a=ia- is imaginary. 

The boundary conditions imply the continuity of ~ ( x )  and its first 

derivative !!?@ at point x=O, and include the periodicity condition of the 
dx 

wavefunction expressed through the Bloch theorem in Eq. ( 4.4 ) between 
points x=a and x=-b: 

dx 
Eq. (4.11 ) 

(e"("+"y - b = y a 
1 ( ) 2 0  

Utilizing Eq. ( 4.10 ), we obtain: 

Eq. (4.12) 
B, = B2 

4 = PA2 

eik(fl+b)[- A, sin(ab) + Bl cos(ab)] = A, sin(@)+ B2 cos(@) 

eik('+') [dl cos(ab) + aB, sin(&)] = ,&f2 cos(@) - PB2 sin(@) 

which can be simplified by expressing A2 and B2 in terms of A, and BI: 

Eq. (4.13 ) 
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This system of two equations with two unknowns has a non-zero 
solution (i.e. A, and BI not both zero) if the determinant of the system is 
zero (for more details on the mathematics, the reader is referred to any 
introductory book on linear algebra). This means that the product of the first 
bracket in the top equation by the second bracket in the bottom equation, 
minus the product of the second bracket in the top equation by the first 
bracket in the bottom equation is zero: 

Eq. (.4.14 ) 
r 7 

or after simplification: 

Eq. (4.15) cosk(a+b)=- 
a2 + p 2  

sin(ab)sin(@) + cos(ab)cos(@) 
2aP 

Using the same constants as in Eq. ( 3.44 ), we can rewrite Eq. ( 4.9 ) as: 

i a - , w i t h a - = a 0 m  whenO<E<Uo 

Eq. (4.16) a+, with a+ = a, when Uo < E 

Therefore, Eq. ( 4.15 ) can be simplified into: 

Eq. (4.17) 
1 - 2< 

cos k(a + b )  = sin(n,a&)sinh ( a , b m ) +  c o s ( a , a ~ f ) c o s h ( a ~ b ~ )  
2 J r n  
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In these equations, the only variable in the right hand side functions is 
the energy E, while the only variable in the left hand side is the wavenumber 
k. Similar to the finite potential well case, a solution in 6 of Eq. ( 4.17 ) 
allows us to determine the values of the energy as well as the wavefunctions 
(after normalization). 

4.2.3. Energy bands 
In the Kronig-Penney model, the crystal is assumed to be infinite. Therefore, 
the periodic boundary condition of the Bloch wavefunction is unnecessary 
and the wavenumber k can take a continuous range of values and is real (i.e. 
not complex). Eq. ( 4.17 ) is most easily solved graphically. The shape of 
the right hand side function of Eq. ( 4.17 ), which we will call f k ) ,  can be 
visualized in Fig. 4.3. 

Fig. 4.3. Plot of the right hand side of Eq. (4 .1  7 ) ,  showing the graphical determination of 
the E-k relationship. There exist a solution to Eq. ( 4 . 1 7 )  only when the right hand side of  the 

equation is between -I and +I ,  which correspond to the shaded areas. 

Because of the cosine on the LHS of Eq. ( 4.17 ), only values of f (6)  
that are between -1 and +1 lead to allowed (real) values for k. The areas 
where this occurs are shaded in Fig. 4.3. Because k is determined through a 
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cosine function, two opposite values of k are possible for the same value for 
f (d .  In these shaded areas, there is a continuous range of values for 6 (or 

E), corresponding to allowed energy bands. Some values of 6 ,  however, 
occur in non-shaded areas in Fig. 4.3, and are thus "forbidden", meaning 
that there is no possible state corresponding to these values of energy. Such 
regions are called regions of forbidden energy, or energy gaps. An 
illustration of these energy bands is given in Fig. 4.4. 

E 
U(-) 
4 

band 4 

band 3 

band 2 

Fig. 4.4. Illustration of the concept of energy bands in the crystal. 

Furthermore, as we can see from Fig. 4.3, for every given value of k 
?l ?l 

between -a+b and n+b, several values of 6 (thus E) are possible. An 

actual plot of the E-k relationship is given in Fig. 4.5 and is called the 
energy spectrum, the band diagram or band structure. This type of diagram 
is very important in determining the properties of an electron in a crystal. A 
noteworthy feature, which is true for real crystals and which can easily be 

dE . 
seen in this diagram, is that the slope of the energy band, i.e. -, is equal 

dk 
7t 

to zero at the center (k=O) and extremities (k=*a+b ). This diagram, in 
7 t  ?l 

which the value of k is restricted in the interval between -a+b and a, is 

often referred to as the reduced-zone representation of the energy versus k 
dispersion relation, as opposed to the extended-zone representation which 
we will now briefly discuss. 



Fundamentals of Solid State Engineering 

Band 4 

Band 3 

Band 2 

Band 1 

Fig. 4.5. One-dimensional E-k relationship in the reduced-zone representation in the Kronig- 
Penney model. 

Because the energy is a periodic function of k ,  the reduced zone 
scheme is the right way to think about the band structure of the system. All 
the information about the allowed energy bands is contained in the first 
Brillouin zone. Going outside the Brillouin zone simply repeats the same 
information, it does not add anything new to our knowledge. In the 
extended-zone representation, one can lift the previous restriction on the k- 

7I 
values and instead of being restricted to the values in the interval -a and 

z 
a + b '  
--- k is allowed to have any (larger) values. This however does not 

change the wavefunction because of the Bloch theorem: the k -values 
outside the first Brillouin zone can be reduced to ones inside the first 

Brillouin zone by "subtracting" a reciprocal; lattice vector K . One can if 
one wishes unfold the band diagram into the diagram shown in Fig. 4.6., but 
the larger values of k can be reduced to equivalent values of k inside the 
first zone. Unlike for free particles, in a crystal subject to Bloch's theorem 
the higher values of k do not signify a higher value of momentum. Indeed, 
values of momentum differing from each other exactly by a reciprocal 
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lattice vector are indistinguishable. This does not mean that has nothing 
to do with momentum, it is related to the particle momentum, but it is 
defined and conserved only up to a reciprocal lattice vector: If one adds a - 
reciprocal lattice vector to k , the energy in the same band remains the 
same. The expression Rk , which corresponded to the particle momentum in 

the free particle case ( ( p )  = Rk ), is now referred to as the quasi-momentum 

of the electron or the crystal momentum because it includes the interaction 
of the electro with the crystal. This explains why one can add integral a 
multiples of a+b to the wavenumber without changing the band structure of 

the crystal, while this would be meaningless if it was a particle momentum. 
The reason why this quasi-momentum is not absolutely conserved in a 
lattice, and only conserved up to a reciprocal lattice vector, is ultimately 
connected to the fact that the Hamiltonian in a lattice is not translationally 
invariant over any arbitrary displacement as it would be in a space with no 
external forces, but it is only invariant when displaced by a lattice vector. 

Fig. 4.6. One-dimensional E-k relationship in the extended-zone representation in the 
Kronig-Penney model. The parabolic relation for the free particle is shown in dotted lines for 

comparison. The deviation from a parabolic shape occurs mainly at the Brillouin zone 
boundaries. 
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4.2.4. Nearly free electron approximation 
The Kronig-Penney model discussed previously is not the only method to 
determine the band structure in crystals, but it is the simplest and leads to a 
complete analytic solution. Many other methods have been developed which 
can be methodologically divided into two groups: one that uses the nearly 
free electron method, and the other the tight-binding method (to be 
discussed below). Nevertheless, they all lead to similar results as they are 
merely different descriptions of the same phenomena. Here we have 
approximately described the band structure using the Kronig-Penney model. 
In this sub-section, we will briefly discuss the principle of the nearly free 
approximation (see Appendix A.7 for the pseudopotential approach). 

This method is based on the assumption that the periodic potential 
introduces a small perturbation to the free-electron state, i.e. a perturbation 
term is added to the potential energy in the Schrodinger equation, 
wavefunctions and energy of the free particle to reflect this effect. Although 
these perturbations are small, the mathematical computation results in 
significant changes in the energy spectrum of a free electron. The reason is 
that the periodic potential scatters the electrons, and only the constructive 
interference of the waves survives and can propagate in the lattice as a 
Bloch function. The resulting band diagram in the extended-zone 
representation is depicted in Fig. 4.7 (solid line) and compared with that of a 
free electron (dashed lines). 

Fig. 4.7. Electron energy in a lattice (solid curve) and energy spectrum of free electrons 
(dashed curve). The deviation from the parabolic shape occurs at the Brillouin zone 

boundaries. 
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The discontinuous curve results from the "reflections" that the electron 
waves with momenta of + FzK / 2 experience at atomic lattice planes, where 
K  is a reciprocal lattice vector (see Chapter 1 for reciprocal lattice). In the 

2 n  
simple cubic lattice, I K I  = - where d is the lattice constant. These 

d 
locations correspond to the boundaries of the Brillouin zones defined in the 
previous sub-section. 

The energy difference between branches at points A, and Bl (A2 and B2) 
is the energy gap that appears as a result of the periodic potential in the 
lattice. The value of the energy gap depends on the amplitude of the periodic 
potential. When the periodic potential reduces to be zero, the energy gaps 
close and the spectrum becomes that of a free particle as shown in Fig. 3.6. 

The band diagram can also be plotted in the reduced-zone representation 
where the energy spectrum is reduced to the smallest first Brillouin zone of 

K K 
range [- ,+ as shown in Fig. 4.8. 

Fig. 4.8. Electron energy in the reduced zone scheme. 

4.2.5. Tight binding approximation 
The other method commonly used to determine the band structure in a 
crystal, the tight-binding approximation, employs atomic wavefunctions as 
the basis set for the construction of the real wavefunction of an electron. 
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When initially isolated atoms with discrete electron energy levels are 
brought together and arranged in a lattice with small interatomic distances 
(typically = 3-6 A), the potential of each atom will be distorted due to the 
influence of other atoms. At the same time, the wavefunctions of electrons 
from different atoms will overlap, i.e. the probability of presence of 
electrons from different atoms will be non-zero in the same position in 
space. These result in a non-zero probability for an electron to escape from 
one atom to the nearest neighbor. This causes a broadening of the initially 
discrete energy spectrum and creates energy bands of finite width instead. In 
other words, an electron does not live at a certain atomic energy level for an 
infinite time, but travels from site to site which is equivalent to the 
movement of electrons in an energy band. Expressed mathematically, the 
Bloch superposition of localized orbitals gives us the tight binding 
wavefunction 

Eq. ( 4.18 ) Y~ (7) = zpjCDj (T - j , )exp( i~ .zn)  

where pj are the admixture coefficients of the jth orbital, and 
- 

Oi(7 - R,,) is the jth orbital itself on the atom located at Z,, respectively. 

Substituting Eq. ( 4.18 ) into the time independent Schrodinger equation 
allows us to calculate the energy bands. One does this to a good 
approximation by noting that the atomic problem (kinetic energy plus the 
potential of a given atom) is solved by the given orbital function, and the 
energy is known i.e. using: 

where E, is the energy of the atomic level and then multiplying both 

sides of the Schrodinger equation with a complex conjugate orbital state and 
then assuming the orthogonality of the orbitals centered on different sites. 
Normally it is sufficient to keep only the nearest neighbor overlap terms 

t +  = d  * (7 - + ) (  - ) (  - ) This quantity is the so- 

called two center integral, and this simplification makes the tight binding 
method a good starting point for an approximate band structure calculation. 

For the outer valence electrons which are usually of interest to us, the 
overlapping of wavefunctions is large, so the width of the energy band 
reaches several eV, i.e. is of the order of and even exceeds the spacing 
between the successive energy levels of an isolated atom. For electrons of 
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the inner atomic shell the level broadening is smaller, so the energy levels 
remain essentially sharp. The level broadening, which can be estimated to be 
zt where z is the number of nearest neighbors, and we take tg - t ,  is 

illustrated in Fig. 4.9 and Fig. 4.10. 

Energy states Two energy levels 
in N tightly-bound atoms of N isolated atoms 

distance 

Fig. 4.9. Broadening of the atomic energy levels in a solid. When the atoms are isolated, they 
all have the same allowed discrete energy levels (e.g. El and Ed. When the interatomic 

distance decreases, the atoms interact with one another and the allowed energy levels split: 
some increase while some others decrease. 

Bringing atoms together and modifying their energy levels is the 
methodology of the "tight binding approximation" because we start from 
tightly bound electrons in the atoms. This is in contrast with the previous 
nearly free electron approximation approach where we began with the free- 
electron model and progressed by adding a periodic potential as a 
perturbation. With the tight binding model one arrives to a qualitatively 
similar band picture as that obtained from the nearly free electron model. 
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* E  

isolated atoms 

r 

Fig. 4.10. Change in energy spectrum from single atoms to a solid. Each of the discrete 
energy levels in two isolated atoms split into two separate energy levels when the atoms are 

bound in a solid. 

4.2.6. Dynamics of electrons in a crystal 
The dynamics of electrons in a crystal can now be analyzed by considering 
an electron as a wavepacket. We will continue with the one-dimensional 
formalism of previous sub-sections. 

Assuming that a wavepacket is centered on a frequency w and a 
wavenumber k, the electron can be considered to be moving at a velocity 
v,, called group velocity, which characterizes the speed of propagation of 

the energy that it transports. This velocity is defined by classical wave 
theory to be: 

In quantum mechanics, this would correspond to the velocity of the 
electron. From the wave-particle duality, the frequency of the wave is 
related to the energy of the particle by E = Aw and Eq. ( 4.19 ) thus 
becomes: 

1 dE 
Eq. ( 4.20 ) v = -- 

Adk 
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When an external force F acts on the wavepacket or electron so that a 
mechanical work is induced, it changes the energy E by the amount: 

Eq. ( 4.21 ) dE = Fdx = Fv,dt 

where dx is the distance over which the force is exerted during the 
interval of time dt. The force F can then be successively expressed as: 

1 dE 1 dE dk 
Eq. (4.22) F =--=--- 

v,  dt v, dk dt 

or: 

after using Eq. ( 4.20 ). On the other hand, differentiating Eq. ( 4.20 ) 
with respect to time leads to: 

or: 

dv - 1 d 2 ~ d ( h k )  
Eq. ( 4.24 ) 3 - 

dt A 2 d k 2  dt 

d(hk) . 
Eliminating - in Eq. ( 4.23 ) and Eq. ( 4.24 ), we find: 

dt 

Eq. ( 4.25 ) F = 

This expression resembles Newton's law of motion when rewritten as: 

Eq. ( 4.26 ) 
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where we have defined m * as: 

m *  is called the electron effective mass and has a very significant 
meaning in solid state physics. Eq. ( 4.26 ) shows that, in quantum 
mechanics, when external forces are exerted on the electron, the classical 
laws of dynamics can still be used if the mass is changed in the 
mathematical expressions for the effective mass of the electron. 

Unlike the classical definition of mass, the effective mass is not a 
constant but depends on the band structure of the electron. The effective 
mass expresses a relationship between the band structure found in previous 
sub-sections and the dynamics of an electron in a solid. This shows us how 
important it is to determine the band structure in the first place, and that an 
electron in a solid is very unlike an electron in vacuum. 

For example, in the case of a free electron, the energy spectrum is 
parabolic (Eq. ( 3.23 )): 

where m is the mass of the electron. Using Eq. ( 4.27 ), the effective 
mass can be found to be m* = m , which means that the effective mass of a 
free electron is equal to its classically defined mass. 

However, when the energy spectrum is not parabolic with respect to the 
wavenumber k anymore, as for example depicted in Fig. 4.7, the effective 
mass differs from the classical mass. We thus see that the presence of a 
periodic potential results in a value of effective mass different from the 
classical mass. The effective mass reflects the inverse of the curvature of the 

d 2 ~  
energy bands in k-space (i.e. - ). Where the bands have a high curvature, 

dk2 
m* is small, while for bands with a small curvature (i.e. almost flat bands) 
m * is large. 

d 2 ~  
It is also worth noticing that since - can be negative, m * can also be 

dk2 
negative, although it is not interpreted so, as we will see later by considering 
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holes (sub-section 4.3.3). A negative effective mass means that the 
acceleration of the electron is in the direction opposite to the external force 
exerted on it, as shown in Eq. ( 4.26 ). This phenomenon is possible because 
of the wave-particle duality: an electron has wave-like properties and can 
therefore be reflected from the lattice planes when its wavevector satisfies 
the Bragg condition. Experimentally, if the momentum given to an electron 
from an external force is less than the momentum in the opposite direction 
given from the lattice (reflection), a negative electron effective mass will be 
observed. 

Finally, it should also be noted that experiments conducted to measure 
the mass of an electron only lead to an estimate of its effective mass, or at 
least "components" of it. 

Example 
Q: Assuming that the energy dispersion of a band in a 

semiconductor can be expressed as: E = ~ k ~ ,  where 
A=84.67 A2.ev, calculate the electron effective mass in 
this band, in units of free electron rest mass mo. 

A: We make use of the formula: 

m* = 
1 1 A 

1 d ' ~  =Txp)=z . In units of free 
-- - 

A 2  dk2 A 2  dk2 
electron mass, we get: 
m* - h2 - -  - 
mo 2Am, 

4.2.7. Fermi energy 
We have seen so far that the electron energy spectrum in a solid consists of 
bands. These bands correspond to the allowed electron energy states. Since 
there are many electrons in a solid, it is not enough to know the energy 
spectrum for a single electron but the distribution of electrons in these bands 
must also be known to understand the physical properties of a solid. Similar 
to the way the electrons fill the atomic orbitals with lower energies first 
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(Chapter 2), the electrons in a crystal fill the lower energy bands first, while 
satisfying the Pauli exclusion principle. 

Let us consider a solid where there are rn energy levels and n electrons, 
at equilibrium. Usually these numbers are extremely large and the number m 
of allowed energy levels (taking into account the spin degeneracy) in a solid 
is much larger than the number n of electrons (rn>>n): for instance, an iron 
metal with a volume of 1 cm3 will have approximately 10'' atoms and loz4 
electrons. At equilibrium, when no electron is in an excited state (e.g. at the 
absolute zero temperature, 0 K), the lowest n energy levels will be occupied 
by electrons and the next remaining m-n energy levels remain empty. 

If the highest occupied state is inside a band, the energy of this state is 
called the Fermi level and is denoted by EF. That band is therefore only 
partially filled. This situation usually occurs for metals and is depicted in 
Fig. 4.1 1(b). In the case of semiconductors, at T=O K, all bands are either 
full or empty. The Fermi level thus lies between the highest energy fully 
filled band (called valence band) and the lowest energy empty band (called 
conduction band), as shown in Fig. 4.11(a). The energy gap between the 
valence band and the conduction band is called the bandgap and is denoted 

Conduction band 
I A  

Empty levels 

Fig. 4.1 1.  Bands in (a) semiconductors and (b) metals. In most semiconductors EF is in the 
bandgap. In semiconductors, there is an energy region that does not contain allowed energy 
levels and the Fermi energy is located in it. In metals, the Fermi energy is located inside an 

allowed energy band. 

The location of the Fermi level relative to the allowed energy bands is 
crucial in determining the electrical properties of a solid. Metals have a 
partially filled free electron band, since the Ferrni level lies inside this band, 
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which makes metals good electrical conductors because an applied electric 
field can push electrons easily into empty closely lying higher energy levels 
and in this way make them move in space and contribute to electrical 
conduction. By contrast, at 0 K, most semiconductors have completely filled 
or completely empty electron bands, which means that the Fermi energy lies 
inside a forbidden energy gap, and consequently the electric field cannot 
displace them from where they are in energy and therefore also not in space. 
Intrinsic semiconductors are poor electrical conductors at low temperatures. 
They only conduct when carriers are thermally excited across the bandgap. 
The same can be said about insulators. Insulators differ from 
semiconductors in that their energy gap is much larger than kbT, where 

kb (=1.38066~10-~~ J.K-'=0.08625 mev.K1) is the Boltzmann constant and 

T is the temperature in degrees K. 

4.2.8. Electron distribution function 
When the temperature is above the absolute zero, at thermal equilibrium, the 
electrons do not simply fill the lowest energy states first. We need to 
consider what is called the Fermi-Dirac statistics which gives the 
distribution of probability of an electron to have an energy E at temperature 
T :  

where EF is the Fermi energy and kb is the Boltzmann constant. This 
distribution is called the Fermi-Dirac distribution and is plotted in Fig. 4.12 
for various values of temperatures. This distribution function is obtained 
from statistical physics. In this description, the interaction between electrons 
is neglected, which is why we often talk of an electron gas. 

In fact, a more general formulation of the Fermi-Dirac statistics involves 
a chemical potential p instead of the Fermi energy EF. This chemical 
potential depends on the temperature and any applied electrical potential. 
But in most cases of semiconductors, the difference between p and EF is 
very small at the temperatures usually considered. 

At T=O K, the Fermi-Dirac distribution in Eq. ( 4.28 ) is equal to unity 
for E<EF and zero for E>EF. This means that all the electrons in the crystal 
have their energy below EF. At a temperature T>O K, the transition from 
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unity to zero is less sharp. Nevertheless, for all temperatures,f,(E)=% when 
E=EF. 

To determine the Fermi energy, we must first introduce the concept of 
density of states. So far, we have somewhat indexed energy states 
individually, each having a certain energy. It is often more convenient to 
index these states according to their energy and determine the number of 
states which have the same energy. 

Fig. 4.12. Fermi-Dirac distribution function at different temperatures: 
T3>T2>Tl,To=0 K. At the absolute zero temperature, the probability of an electron to have an 

energy below the Fermi energy EF is equal to I ,  whereas its probability to have a higher 
energy is zero. 

4.3. Density of states (3D) 

The concept of density of electronic states, or simply density of states 
corresponds to the number of allowed electron energy states (taking into 
account spin degeneracy) per unit energy interval around an energy E. Most 
properties of crystals and especially semiconductors, including their optical, 
thermodynamic and transport properties, are determined by their density of 
states. In addition, one of the main motivation for considering low- 
dimensional quantum structures is the ability to engineer their density of 
states. In this section, we will present the calculation of the density of states 
in a bulk three-dimensional crystal, which will serve as the basis for that of 
low-dimensional quantum structures. 

An ideal crystal has a periodic structure, which means that it has to be 
infinite since a surface would violate its periodicity. However, real crystals 
have a finite volume. We saw in section 4.2 that one way to reconcile these 
two apparently paradoxical features in crystals was to exclude surfaces from 
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consideration by using periodic boundary conditions (Born-von Karman). 
This allows us to just consider a sample of finite volume which is 
periodically repeated in all three orthogonal directions. A very important 
consequence of this was the quantization of the wavenumber k of the 
electron states in a crystal, as expressed through Eq. ( 4.7 ). 

The analysis in section 4.2 was primarily conducted in one spatial 
dimension (x) for the sake of simplicity. Here, it will be more appropriate to 

+ 

consider all three dimensions, i.e. to use r = (x, y, I). 

4.3.1. Direct calculation 
Let us assume that the shape of the crystal is a rectangular parallelepiped of 
linear dimensions L, , L, , L, and volume V = L,L,L, . The periodic 

boundary conditions, similar to Eq. ( 4.5 ), require the electron quantum 
states to be the same at opposite surfaces of the sample: 

Using the Bloch theorem, these conditions mean that: 

Eq. ( 4.30 ) exp(ikXLx) = exp(iky L,) = exp(ik, L,) = 1 

or: 

where n,, n,, n, = 0,tl ... are integers, while k,, k, and k, are the 

wavenumbers in the three orthogonal directions. These are in fact the 
coordinates of the electron wavenumber vector or wavevector 

= (k, , k, , k, ) . Therefore, the main result of the periodic boundary 

conditions is that the wavevector of an electron in a crystal is not a 
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continuous variable but is discrete. Eq. ( 4.3 1 ) actually defines a lattice for 

the wavevector i ,  and the space in which this lattice exists is in fact the k- 
space or reciprocal space. 

The volume of the smallest unit cell in this lattice is then 

-- (2n)3 - (2n)3 . From Chapter 1, we know that there is exactly one 
Lx L, Lz v 
lattice point in each such volume, which means that the density of allowed 

V 
is uniform and equal to - in k-space. Moreover, from Chapter 4, we 

( W 3  - 
understood that the wavevector k was used to index electron wavefunctions 
and therefore allowed electron states. The density of electron states per unit 
k-space volume is therefore equal to: 

-. V 
Eq. ( 4.32 ) g(k) = 2- 

( W 3  

where the extra factor 2 arises from the spin degeneracy of electrons. 

Example 
calculate the density of states in k-space for a cubic 
crystal with a side of only 1 mm. Is the density of state 
in k-space too low? 
The density of states in k-space is given by: 

v lmm3 
g ( ~ ) =  2- =2x- = 8 . 0 6 3 ~ 1 0 - ~  mm3. This w3 8z3 
number may look small, but if we compare with the 
volume of the first Brillouin zone, we will find that this 
density of states is actually very high. For example, for a 
face-centered cubic lattice with a lattice constant of 
a=5.65325 A (e.g. GaAs), the volume of its first 
Brillouin zone in k-space is given by: 

V, = 32 - = 5.492 HL". Therefore, the total number (3 
of possible states in this first Brillouin zone is: 

N = v,&)= (5.492~ 1 0 2 1 r n r n ~ 3 ~ . 0 6 3 x 1 0 ~ 3 m m 3 )  

rz 4.43 x 1 0 ' ~  



Electrons and Energy Band Structures in Crystals 139 

The density of states g(E) as defined earlier is therefore related to its 
+ 

counterpart in k-space, g ( k )  , by: 

+ 

where dE and d k  are unit interval of energy and the unit volume in k- 

space, respectively. In order to obtain g(E), one must first know the E(X) 
relationship, which is equivalent to the E-k relationship in one dimension, 

and which gives the number of wavevectors associated with a given 
energy E. This is a critical step because the differences in the density of 
states of a bulk semiconductor crystal, a quantum well, a quantum wire and 
a quantum dot arise from it. 

For a bulk semiconductor crystal, the electron density of states is 
calculated near the bottom of the conduction band because this is where the 
electrons which give rise to the most important physical properties are 
located. Furthermore, we choose the origin of the energy at the bottom of 
this band, i.e. Ec=O. Extrapolating from the results of section 4.2, the shape 

of the E(Z) relationship near the bottom of the conduction band can 
generally be considered parabolic: 

h2k2 
Eq. ( 4.34 ) E(Z) = - 

2m * 

where k is the norm or length of the wavevector g ,  and rn* is the 
electron effective mass as defined in sub-section 4.2.6. Using this 
expression, we can express successively: 

When considering orthogonal coordinates, the unit volume in k-space is 
defined given by: 

which is equal, when using spherical coordinates, to: 
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Eq. ( 4.37 ) dZ = d 

Therefore, by replacing into Eq. ( 4.35 ), we get: 

Using Eq. ( 4.34 ) to express k in terms of E, and replacing into 
Eq. ( 4.38 ): 

Eq. ( 4.39 ) 

Now, by replacing into Eq. ( 4.33 ), we obtain successively: 

Finally, using Eq. ( 4.32 ), we get: 

where a "3D" subscript has been added to indicate that this density of 
states corresponding to the conduction band of a bulk three-dimensional 
semiconductor crystal. This density of states is shown in Fig. 4.13. 
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Fig. 4.13. Energy dependence of density of states for a three-dimensional semiconductor 
conduction band. The density of states follows a parabolic relationship. 

Note that, if the origin of the energies has not been chosen to be the 

bottom of the band (i.e E, t 0), then f i  would be replaced by 

Example 
Q: Calculate the number of states from the bottom of the 

conduction band to 1 eV above it, for a 1 mm3 GaAs 
crystal. Assume the electron effective mass is 
m *=0.067mo in GaAs. 

A: The number of states from 0 to 1 eV above the bottom 
of the conduction band is obtained by integrating the 
three-dimensional density of states g3D(E): 

N = 6 eV g3D ( E ) ~ E  . Since the expression for gjD(E) is 

v 2mY % 
given by: g,, (E )  = & , we obtain: 

2 x 2  
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4.3.2. Other approach 
A more elegant approach, but more mathematically challenging way, to 
calculate the density of states is presented here. This method will prove 
easier when calculating the density of states of low-dimensional quantum 
structures. The density of states g(E) as defined earlier can be conceptually 
written as the sum: 

g(E)=2x(number of states which have an energy ~ ( i )  equal to E) 

which can be mathematically expressed as: 

- 
where the summation is performed over all values of wavevector k , since it 
is used to index the allowed electron states. 6(x) is a special even function, 
called the Dirac delta function, and is defined as: 

p(x) = O for x + O 

Some of the most important properties of the Dirac delta function 
include: 
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+a 

~ G ( x ) Y ( x ) ~ x  = Y (0) 

Eq. ( 4.43 ) 
-a 

+a 

j 4 x  - xo )y(x& = y(x0 
-m 

In addition, in crystals of macroscopic sizes the differences between 
* 1 1  1 

nearest values of k are small, as they are proportional to - , - , or - . 
- Lx L, Lz 

Therefore, in practice, the discrete variable k can be considered as quasi- 

continuous. For this reason the summation of a function Y(Z)  over all -. 
allowed states represented by a wavevector k in k-space can be replaced by - 
an integration over a continuously variable k such that: 

Eq. ( 4.44 ) 

v .  
The factor - is the volume occupied by a reciprocal lattice point in 

(W3 
k-space. Eq. ( 4.41) can therefore be rewritten into: 

Now, we need to use the expression of ~ [ E Q ) ]  as a function of dz 
found in Eq. ( 4.39 ): 

Eq. ( 4.45 ) therefore becomes: 
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and after the change of variable E(Z) + x : 

Eq. ( 4.48 ) g ( ~ )  = 2z2 0 

Using Eq. ( 4.43 ), and because DO:  

Eq. ( 4.49 ) g(E) = - 2;2 (2;*)% - 

which is the same expression as Eq. ( 4.40 ) for g3D(E). 

Therefore, the knowledge of the Fermi-Dirac distribution, which gives 
us the probability of the presence of an electron with energy E, and the 
density of states, which tells how many electrons are allowed with an energy 
E, together permit the determination of the distribution of electrons in the 
energy bands. The total number of electrons in the solid, ntotal, is therefore 
obtained by summing the product of the Fermi-Dirac distribution and the 
density of states over all values of energy: 

Eq. ( 4.50 ) 

Because EF is embedded into the functionf,(E), this equation shows us 
how the Fermi energy can be calculated. 

One important parameter for semiconductor devices is the concentration 
or density of electrons n in the conduction band. The following discussion 
provides a simplified overview of the formalism commonly used for this 
parameter, and illustrates well the use of the Fermi-Dirac distribution. A 
more detailed analysis will be provided in Chapter 7 in which we will 
discuss the equilibrium electronic properties of semiconductors. Here, the 
density of electrons n, with effective mass me, in the conduction band is 
given by: 
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1 
Eq. ( 4.51 ) n = - 9 g ( ~ )  f , ( ~ ) d ~  v c 

where the integration starts from Ec which is the energy at the bottom of 
the conduction band. In a bulk semiconductor, the density of states g(E) in 
the conduction band is, as derived above, given by: 

Eq. ( 4.52 ) g ( ~ )  = 2n2 

Combining this expression with Eq. ( 4.28 ), the density of electrons 
becomes: 

or: 

Eq. ( 4.54 ) n = N,  F,  

where: 

is the effective density of states in the conduction band, and: 

Eq. ( 4.56 ) F,  (x) = - 
2 

is the Fermi-Dirac integral. A more detailed discussion on the effective 
density of states and the Fermi-Dirac integral will be given in Chapter 7. 
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4.3.3. Electrons and holes 
We have seen that when the curvature of the E-k energy spectrum is 
positive, such as near point 0 in the bottom band in Fig. 4.8, the electron 
effective mass is positive. 

However, when the curvature is negative, such as near point A,  in this 
same band, the effective mass of the electron as calculated in sub-section 
4.2.6 would be negative. In this case, it is more convenient to introduce the 
concept of holes. A hole can be viewed as an allowed energy state that is 
non-occupied by an electron in an almost filled band. Fig. 4.14(a) and (b) 
are equivalent descriptions of the same physical phenomenon. 
In Fig. 4.14(a), we are showing the energy states occupied by electrons. In 
Fig. 4.14(b), we are showing the energy states in the valence band which are 
occupied by holes, i.e. vacated by electrons. 

Fig. 4.14. Electron energy states in the reduced zone scheme. In (a), the solid circles show 
the states occupied by electrons. In (b), the closed circles show the states in the conduction 
band which are occupied by electrons, and the open circles the states in the valence band 

occupied by holes. 

Electrons can move in such a band only through an electron filling this 
non-occupied state and thus leaving a new non-occupied state behind. By 
doing so, it is as if the vacated space or hole had also moved, but in the 
opposite direction, which means that the effective mass of the hole is 
therefore opposite that of the electron that would be at that same position, in 
other words, the effective mass of the hole is positive near point A, in 
Fig. 4.8 and is computed as: 
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A hole can be viewed as a positively charged particle (energy state 
vacated by an electron). Holes participate in the electrical charge transfer 
(electrical current) and energy transfer (thermal conductivity). 

Let us consider the concept of holes in more details. The probability of 
the state k to be occupied by an electron is f e ( k ) .  The probability of the 
state not to be occupied is the probability to find hole in the state k and can 
be written as: 

The electrical current fi-om the electrons in the band is: 

where v, is the electron velocity at state k, q is the electron charge 
(q>O) and the summation is performed over all states with wavenumber k in 
the first Brillouin zone. This can be rewritten as: 

Eq. ( 4.60 ) k k 

= -2qCvk + 2 9 C f h  (k )v ,  
k k 

We can now use the fact that the electron energy spectrum is always 
symmetrical, i.e. E ( k )  = E(-k) , hence v, = -v-, from Eq. ( 4.20 ), and the 
sum of velocities over the entire first Brillouin zone is zero. The first sum in 
Eq. ( 4.60 ) is thus equal to zero and we obtain: 

Therefore, the electrical current in a band incompletely filled with 
electrons moving at speed v, is equivalent to the current of positively 

charged holes moving at speed v, . We thus see that in a band incompletely 
filled with electrons, the electrical current can be represented by flow of 
positively charged particles-holes. 
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4.4. Band structures in real semiconductors 

In three-dimensional crystals with three-dimensional reciprocal lattices, the 
use of a reduced zone representation is no longer merely a convenience. It is 
essential, otherwise the representation of the electronic states becomes too 
complex. How then can we display the band structure information from a 
three-dimensional crystal, which needs of course four dimensions (E, kk kk, 
and k,) to describe it? The answer is to make representations of certain 
important symmetry directions in the three-dimensional Brillouin zone as 
one-dimensional E versus k plots. Only by doing so can we get all the 
important information onto a two-dimensional page. Therefore when 
looking at an E-k diagram, one is looking at different sections cut out of the 
k-space. In addition, to simplify the diagram, we consider that k varies 

2 n  
continuously. Indeed, the difference between two values of k is Ak = -, 

Na 
where the lattice parameter a is around several angstroms and the order of 
magnitude of N is lo8. And the length of the side of the Brillouin zone is 
2 n  2 z  
- = 6.28 * 101Om-l >> - = 6.28 * 10'' m-' . As a result, at the scale of 
a Na 

the reciprocal lattice, the wavenumber can be considered to vary 
continuously. 

4.4.1. First Brillouin zone of an fcc lattice 
The first Brillouin zone of an fcc lattice is shown in Fig. 4.15. Certain 
symmetry points of the Brillouin zone are marked. Roman letters are mostly 
used for symmetry points and Greek letters for symmetry directions, 
specifically the T , X, W, K and L points and the directions A , A and C . 
The following is a summary of the standard symbols and their locations in k- 
space, with a the side of the conventional cubic unit cell: 
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Fig. 4.15. First Brillouin zone of an fcc lattice. 

Note that there may be several equivalent positions for each of these 
points. For example, there are six equivalent X symmetry points, located at 

2.n 2.n 2.n 
coordinates - (0,0+1), - (0, *1,0) and - (*1,0,0). 

a a a 
Using Miller indices, the symmetry directions can be denoted as: 

A : r +X (parallel to <loo>) 
A : r +L (parallel to 4 1  1>) 
C : r +K (parallel to 4 lo>). 

These notations come from the crystal group theory where they are used 
to label the symmetry operation groups at those particular high-symmetry 
points and directions. For example, r is the symmetry group at the zone 

+ 

center ( k  =(0,0,0)) and is isomorphic to the lattice point group. 

Example 
Q: Determine the coordinates of the L point in the first 

Brillouin zone of a face-centered cubic lattice. 
A: The first Brillouin zone of a face-centered cubic lattice 

with side a is body-centered cubic with a side equal to 
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4n . 
-- in the k,, k, and k, directions, as shown in the figure 
a 

below. Let us take the r p o i n t  at the center of the first 
Brillouin zone. The L point is exactly at the bisection 

2n 2n 2n 
point of r and the lattice point at (-, -, -). Its 

a a a 
n n n 

coordinates are thus: (- , - , - ) 
a a a  
\ 

4.4.2. First Brillouin zone of a bcc lattice 
Similarly, the first Brillouin zone of a bcc lattice can be described in terms 
of its principal symmetry directions as it is shown in Fig. 4.16. 

The symmetry points are conventionally represented as I-, H, P and N 
and the symmetry directions as A ,  A , D, C and G. The various symmetry 
points are: 

r 271 
- (O,O,O) 
a 

a 
Using Miller indices for the directions: 

A : -+H (parallel to <loo>) 
A : P (parallel to < I l l > )  
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D: N+P (parallel to <loo>) 
C : r +N (parallel to < 1 lo>) 
G: N+H (parallel to < 1 i o>). 

Fig. 4.16. First Brillouin zone of a bcc lattice 

4.4.3. First Brillouin zones of a few semiconductors 
As discussed in Chapter 1, many semiconductors have the diamond or zinc 
blende lattice structures. In these cases, the extrema in the E-k relations 
occur at the zone center or lie for example along the high symmetry A (or 
<loo>) and A (or <I l l>)  directions. The important physical properties 
involving electrons in a crystal can thus be derived from plots of the allowed 
energy E versus the magnitude of k along these high symmetry directions. 

Fig. 4.17 depicts the E-k diagrams characterizing the band structures in 
Ge (Fig. 4.17(a)), Si (Fig. 4.17(b)), and GaAs (Fig. 4.17(c)). The lines 
shown here represent bands in the semiconductor. The three lower sets of 
lines correspond to the valence band, while the upper bands correspond to 
the conduction bands. Note that the energy scale in these diagrams is 
referenced to the energy at the top of the valence band, Ev is the maximum 
valence-band energy, Ec the minimum conduction-band energy, and 
Eg=Ec-EV the bandgap. This is only a conventional choice and the origin of 
energy can be chosen elsewhere. 
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The plots in Fig. 4.17 are two-direction composite diagrams. The <1 11> 
direction is toward point L, the <loo> direction is toward point X. Because 

+ 

of crystal symmetry, the - k portions of the diagrams are just the mirror 
.+ 

images of the corresponding + k portions. It is therefore standard practice to 
delete the negative portions of the diagrams. The left-hand portions 
(I- + L) of the diagrams are shorter than the right-hand portions (r  -+ X) 
as expected from the geometry of Brillouin zone. 

WAVE VECTOR 7 

WAVE VECTOR ?; 

Fig. 4.17. E-k diagram of a few semiconductor crystals: (a) Ge, (b) Si, and (c) GaAs. The 
structures of the conduction and valence bands are plotted. The origin of the energy is 

chosen to be at the top of the valence band. [Reprintedfigure with permission from 
Chelikowsky, J.R. and Cohen, M.L., Physical Review B Vol. 14, pp. 559 & 566, 1976. 

Copyright 1976 by the American Physical Society.] 
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Valence band 
In all cases the valence-band maximum occurs at the zone center, at k=O. 

The valence band in each of the materials is actually composed of three sub- 
bands. Two of the bands are degenerate (have the same energy) at k=O, 
while the third band is split from the other two. In Si the upper two bands 
are almost indistinguishable in Fig. 4.17(b) and the maximum of the third 
band is only 0.044 eV below E y  at k=O. 

The degenerate band with the smaller curvature about k=O is called the 
heavy-hole band, and the other with larger curvature is called the light-hole 
band. The band maximizing at a slightly reduced energy is called the spin- 
orbit split-off band (see the Kane effective mass method in Appendix A.8). 

Conduction band 
There are a number of sub-bands in each of the conduction bands shown 

in Fig. 4.17. These sub-bands exhibit several local minima at various 
positions in the Brillouin zone. However-and this is very significant-the 
position of the conduction band absolute minimum in k-space, which is the 
lowest minimum among all these sub-bands and which is where the 
electrons tend to accumulate, varies from material to material. 

In Ge the conduction band (absolute) minimum occurs right at point L, 
the zone boundary along the A or <1 11> direction in Fig. 4.17(a). Actually, 
there are eight equivalent conduction band minima since there are eight 
equivalent < I l l >  directions. However, each minimum is equally shared 
with the neighboring zone, and there is therefore only a four-fold 
degeneracy or a multiplicity of 4. The other local minima in the conduction 
band occurring at higher energies are less populated and are therefore less 
important. 

The Si conduction band absolute minimum occurs at k = 0.8(2 n la )  from 
the zone center along the A or <loo> direction. The six-fold symmetry of 
the <loo> directions gives rise to six equivalent conduction band minima 
within the Brillouin zone. The other local minima in the Si conduction band 
occur at considerably higher energies and are typically not important as they 
would only have a negligible electron population unless some very strong 
force could activate carriers to these higher extrema or if the temperature is 
much higher. 

Among the materials considered in Fig. 4.17, GaAs is unique in that the 
conduction band minimum occurs at the zone center directly over the 
valence band maximum. Moreover, the L-valley minimum at the zone 
boundary along the < I l l >  directions lies only 0.29 eV above the absolute 
conduction band minimum at T. Even in thermal equilibrium at room 
temperature, the L-valley contains a non-negligible electron population. The 
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transfer of electrons fi-om the T -valley to the L-valley can for example 
happen at high electric fields when electrons are heated up to high velocity. 
The transfer keeps the high energy but gives them a high effective mass 
which slows them down in space. When they slow down, they force the new 
electrons coming in to slow down too, until they, the transferred valley 
charge has exited. This results in a self-oscillating current state and is an 
essential feature for some device operations such as in charge-transferred 
electron devices (e.g. Gunn diodes, etc.. .). 

Having discussed the properties of the conduction and valence bands 
separately, we must point out that the relative positions of the band extreme 
points in k-space is in itself an important material property. When the 
conduction band minimum and the valence band maximum occur at the 
same value of k, the material is said to be direct-gap type. Conversely, when 
the conduction band minimum and the valence band maximum occur at 
different values of k, the material is called indirect-gap type. 

Of the three semiconductors considered, GaAs is an example of a direct- 
gap material, while Ge and Si are indirect-gap materials. The direct or 
indirect nature of a semiconductor has a very significant effect on the 
properties exhibited by the material, particularly its optical properties. The 
direct nature of GaAs, for example, makes it ideally suited for use in 
semiconductor lasers and infrared light-emitting diodes. 

4.5. Band structures in metals 

Although this Chapter was primarily devoted to the band structures of 
semiconductors, which is of great importance in solid state devices, it would 
not be complete without a few words on the band structures of metals. 
Fig. 4.18 and Fig. 4.19 are examples of electron band structures of two such 
metals, aluminum and copper. 

As mentioned earlier in this Chapter, very different behaviors can be 
seen between the band structures of metals and semiconductors. First of all, 
there is no forbidden energy region (bandgap) in metals. All the energy 
range drawn in these diagrams is allowed in metals, which is the most 
critical difference between metals and semiconductors. Even at a 
temperature of zero K, a metal has a band which is partially filled with 
electrons and its Fermi level thus lies within this band. There is no such 
distinction as valence and conduction bands as encountered in a 
semiconductor. 

The band structures in the T +X, T +K and T +L directions are 
nearly parabolic, and are therefore similar to the free electron case. 
Electrons in aluminum thus behave almost like free electrons. 
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Fig. 4.18. Electron band structure diagram of aluminum. The energy is expressed in units of 
Rydberg. The dashed lines show the energy bands for a free electron. [Reprintedfigure with 
permission from Segall, B., The Physical Review Vol. 124, p. 1801, 1961. Copyright 1961 by 

the American Physical Society.] 

The dashed lines in Fig. 4.18 and Fig. 4.19 are the E-k relation for a free 
electron. One can see that the band structure in aluminum is very close to 
that of free electrons. The energy spectrum of copper has less resemblance 
to the fiee-electron E-k parabolic relation. The major difference between 
copper and aluminum is the presence of a number of narrow bands below EF 
in copper. These narrow bands are attributed to the 4d-orbitals of copper 
atoms. The presence of these d-orbital-originated bands are a common 
feature of most transition metals (such as iron, and nickel) and noble metals 
(such as copper, gold and silver). These provide a degree of screening effect 
for electrons. The absence or presence of these d-band electrons is also at 
the origin of the gray and red color appearance of aluminum and copper, 
respectively. Indeed, when there is a d-band, as in copper, not all the 
photons reaching the metal surface are reflected, but those photons with 
sufficient energy can be absorbed by the d-electrons (see Chapter 10). As a 
result of this "deficiency" of photons with certain energies, the copper 
appears red. A similar explanation is valid for the yellow color of gold. 
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COPPER 

Fig. 4.19. Electron band structure diagram of copper. The energy is expressed in units of 
Rydberg. There are a few narrow bands locatedjust below the Fermi energy, corresponding 
to the 4d-orbitals in copper. [Reprintedfigure with permission from Segall, B., The Physical 

Review Vol. 125, p. 113, 1962. Copyright 1962 by the American Physical Society.] 

There are always many nearly free electrons in metals that contribute to 
the electrical and thermal conduction. On the contrary, semiconductors do 
not have many free electrons when they are intrinsic (i.e. without 
impurities), and carriers must be provided by a process called doping. The 
controllability of the doping level in semiconductors is one of the most 
important reasons why semiconductors are useful in making electronic and 
optoelectronic devices and will be discussed later in this textbook. 

4.6. Summary 

In this Chapter, using simple quantum mechanical concepts and methods, 
we have described the energy states of electrons in a periodic potential. We 
have modeled the crystal using the Kronig-Penney model. Nearly free 
electron and the tight binding approximations were briefly introduced. We 
familiarized the reader with the notion of band structure, bandgap, Bloch 
wavefunction, effective mass, Fermi energy, Fermi-Dirac distribution and 
holes. The band structures for the common semiconductors, including Si, Ge 
and GaAs, have been illustrated after first describing the conventionally 
used high symmetry points and orientations. The main features in these band 
structures have been outlined. The band structures of a few metals, including 



Electrons and Energy Band Structures in Crystals 157 

aluminum and copper, has also been presented, and the main features were 
described and compared to those of semiconductors. 
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Problems 

1. Equations of motion of an electron in the presence of an electric field. 

C 
h2 Assuming a dispersion relation: 8 = 8 +-[I - cos(ka)] 

ma 2 

(a) Calculate the velocity of the electron at kn la .  
(b) If the electric field E is applied in the -x direction, derive the time 
dependence of k for an electron initially at k=-nla and position x=O. 
(c) Derive the time dependence of the electron velocity, v(t), and the 
time dependence of the electron position, x(t). 
(d) For a=5 nm, E=104 v.cm-', and m=0.2mo, what are the maximum 
and minimum values of x that the electron will reach? 
(e) What is the period of the oscillation? 
(f) For the parameter of part (e), derive an expression for the effective 
mass as a function of k. Sketch the function. 

2. The period of the Bloch oscillations. 
Consider an electron that is subjected to an electric field. The electric 
field exerts a force F=-qE on the electron. Assume that the electron is 
initially not in motion, i.e., k=O. Upon application of the electric field, 
the k value of the electron increases from 0 to z la. At this value of k, 
Bragg reflection occurs, and the electron assumes a k value of -n la. 
Then, the electron is again accelerated to k z l a .  At this point, the 
electron again undergoes Bragg reflection, and the cycle starts from the 
beginning. The process described above is called the Bloch oscillation 
of the electron in an energy band of the solid state crystal. 

2 A  
(a) Show that the period of the Bloch oscillation is given by z = - , 

@a 
where a is the periodicity of a one-dimensional atomic chain. 
(b) Calculate the period of the Bloch oscillations for a=4 A and 
E=1250 v.cm-'. Compare the period of the Bloch oscillations with a 
typical inelastic scattering times. What conclusions do you draw from 
the comparison? Are the Bragg reflections important scattering events 
for the movement of electrons in a crystal? Typical inelastic scattering 
times are lo-'' s for low fields and 10-l3 s for high fields. 
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3.  Idealized electron dynamics. 
A single electron is placed at k=O in an otherwise empty band of a bcc 
solid. The energy versus k relation of the band is given by 
-. k  a 

~ ( k )  = -a - 8 y cos("-) . 
2 

At t=O a uniform electric field E is applied in the x-axis direction. 
Describe the motion of the electron in k-space. Use a reduced zone 
picture. Discuss the motion of the electron in real space assuming that 
the particle starts its journey at the origin at t=O. Using the reduced zone 
picture, describe the movement of the electron in k-space. Discuss the 
motion of the electron in real space assuming that the particle starts its 
movement at the origin at t=O. 

4.  Effectivemass. 
For some materials, the band structure of the conduction band around 

k=O can be represented by 
2m 

What is the effective mass of a free electron under these conditions? 
On the figure, name the different bands, and point out which one of the 
two in the lower band has the higher effective mass. 

5. Calculate the coordinates of the high-symmetry point U in Fig. 4.15. 

6 .  Origin of electronic bands in materials. 
Explain how electronic energy bands arise in materials. 
The periodic potential in a one-dimensional lattice of spacing a can be 
approximated by a square wave which has the value Uo=-2 eV at each 
atom and which changes to zero at a distance of O.la on either side of 
each atom. Describe how you would estimate the width of the first 
energy gap in the electron energy spectrum. 
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Position of the Fermi level in intrinsic semiconductors. 
Assume that the density of states is the same in the conduction band 
(CB) and in the valence band (VB). Then, the probability that a state is 
filled at the conduction band edge (Ec) is equal to the probability that a 
state is empty in the valence band edge (E"). Where is the Fermi level 
located? 

Plot of the Fermi distribution function at two different temperatures. 
Calculate the Fermi function at 6.5 eV if EF=6.25 eV and T=300 K. 
Repeat for T=950 K assuming that the Fermi energy does not change. 
Plot the energy dependence of the electron distribution function at 
T=300 K and at T=950 K assuming EF=6.25 eV. 

Numerical evaluation of the effective densities of states of Ge, Si and 
GaAs. 
Calculate the effective densities of states in the conduction and valence 
bands of germanium, silicon and gallium arsenide at 300 K. 

10. Density of states of a piece of Si. 
Calculate the number of states per unit energy in a 100 by 100 by 10 nm 
piece of silicon (rn*=l .08mo) 100 meV above the conduction band edge. 
Write the results in units of e ~ - ' .  

1 1 .  Number of conduction electrons in a Fermi sphere of known radius. 
In a simple cubic quasi-free electron metal, the spherical Fermi surface 
just touches the first Brillouin zone. Calculate the number of conduction 
electrons per atom in this metal as a function of the Fermi-Dirac 
integral. Consider the energy at the bottom of the conduction band to be 
Ec=O eV. 



5. Phonons 

Introduction 
Interaction of atoms in crystals: origin and formalism 
One-dimensional monoatomic harmonic crystal 
5.3.1. Traveling wave formalism 
5.3.2. Boundary conditions 
5.3.3. Phonon dispersion relation 
One-dimensional diatomic harmonic crystal 
5.4.1. Formalism 
5.4.2. Phonon dispersion relation 
Extension to three-dimensional harmonic crystal 
5.5.1. Formalism 
5.5.2. Silicon 
5.5.3. Gallium arsenide 
Phonons 
Sound velocity 
Summary 

5.1. Introduction 

In previous Chapters, we have considered the electrons in a crystal that 
consisted of a rigid lattice of atoms. This represented a good approximation 
because the mass of an atom is more than 2000 the mass of an electron. 
However, such assumptions founder when considering specific heat, thermal 
expansion, the temperature dependence of electron relaxation time, and 
thermal conductivity. In order to interpret these phenomena involving 
electrons and atoms, a more refined model needs to be considered, in which 
the atoms are allowed to move and vibrate around their equilibrium 
positions in the lattice. In this Chapter, we will present a simple, yet 
relatively accurate mathematical model to describe the mechanical 
vibrations of atoms in a crystal. We will first cover one-dimensional 
monatomic and diatomic crystals followed by three-dimensional crystals. 
We will then consider the collective movement or excitations of the atoms 
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in a crystal, the so called phonons, and conclude with a section on the 
velocity of sound in a medium. 

5.2. Interaction of atoms in crystals: origin and formalism 

We saw in section 2.5, when discussing the formation of bonds in solids, 
that these equilibrium positions were achieved by balancing attractive and 
repulsive forces between individual atoms. We assumed that the attractive 
and repulsive forces always canceled each other and that the masses were 
infinite. The resulting potential U(R) curve for an atom as a function of its 
distance R from a neighboring atom is shown in Fig. 5.1. This figure shows 
a minimum energy for a specific atomic separation, which we understood 
was true at all time. 

The origin of these forces lies in the electrostatic interaction between the 
electrical charges (nuclei and electron clouds) in the two neighboring atoms. 
Classically, the electrons are constantly moving in an atom, in a non- 
deterministic manner (thus the name "cloud"). One can easily understand 
that the attractive and repulsive forces do not balance each other at all times, 
but rather the attractive force would be stronger than the repulsive force at a 
certain time and then weaker shortly afterwards. On average, a balance of 
forces is still achieved. We therefore realize that the positions of atoms in a 
lattice are not fixed in time, but that small deviations do occur around the 
equilibrium positions. Such vibrations are also more intense at higher 
temperatures. Note that this is a fully classical analysis of why these lattice 
vibrations exist. The quantum mechanical description is quite different. In 
quantum mechanics, the electrons do not move about the lattice in a cloud, 
but occupy energy levels inside allowed energy bands. The lattice atoms 
have kinetic and potential energy, and the wavefunction for lattice vibrations 
must also obey Schrodinger equation, The solutions to Schrodinger equation 
give one the eigenfunctions and allowed energy levels of the lattice 
vibrations. These allowed energy levels of lattice vibrations are called 
phonons. In the quantum mechanical description, the lattice is never at rest, 
even at 0 K. The atoms always move, or oscillate, because the Heisenberg 
uncertainty principle does not allow the atoms to have a definite position in 
space. If the atoms were stationary, then their momentum would be 
indeterminate. The quantum compromise for this scenario is called the zero 
point energy which naturally derives from Schrijdinger equation and gives 
the lattice vibrational modes a minimum amount of spatial uncertainty 
called the zero point motion.To this zero point motion there is a zero point 
energy. This observation is already true for the simple diatomic molecule, 
for which the vibrational modes are the solutions of the harmonic oscillator 
problem in quantum mechanics. Instead of solving Schrodinger equation for 
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lattice vibrations, it is much easier and more convenient to first study the 
allowed classical modes of vibration. It turns out that the classical treatment 
survives the quantum treatment. The classical bands change into the true 
quantum lattice energy bands through a simple transformation. We will 
therefore continue with the more intuitive classical description knowing that 
the classical results can be taken over in the quantum limit. 

R=R, R=co 

Fig. 5. I .  Potential energy of two neighboring atoms in a crystal as a function of the 
interatomic spacing. When the two atoms are very far away from each other, they do not 

interact and the interaction potential energy nears zero. When they get closer to one another, 
they are attracted to each other to form a bond, which leads to a lowering of the potential 
energy. However, when they are very close, the electrostatic repulsion from the nuclear 

charge of each atom leads to a repulsive interaction and an increase in the potential energy. 

Let us now develop a simple mathematical model for such atomic 
vibrations and introduce the formalism that will be used in the rest of the 
text. We start by considering two neighboring atoms, one at the origin (R=O) 
and the other at a distance R, while its equilibrium position is at R=Ro. A 
one-dimensional analysis will be considered at this time. The potential 
energy U(R) in Fig. 5.1 of the second atom can be conveniently expressed 
with respect to the equilibrium values at Ro through what is called the Taylor 
expansion (see Appendix AS): 

Eq. ( 5.1 ) 

(R-R , )+-  - (R-R,) '  +-  [ d 3 u )  - ( R -  R , ) ~  +... 
' 
("') dR R,, dR3 R,, 

where (g ) Ro [g)R,, ($1 are the first, second and third 
Rli 

derivatives of U(r), respectively, evaluated at r=Ro. (R-Ro) is called the 
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dU 
displacement. The first derivative (dR) is in fact equal to zero, because it 

41 

is calculated at the equilibrium position r=Ro, which is where the potential 
U(r) reaches a minimum. Therefore, only the displacement terms (R-Ro)" 
with an exponent n larger than or equal to 2 are left. The usefulness of the 
Taylor expansion resides in the fact that at small deviations from 
equilibrium, i.e. (R-Ro)<<Ro, it is reasonable to approximate U(R) with only 
the first few terms of the expansion in Eq. ( 5.1 ). 

By denoting Uo = -U(Ro) and x = R - Ro the displacement, 

Eq. ( 5.1 ) can be rewritten: 

1 
Eq. ( 5.2 ) U(x)  + Uo = -C,x2 + C2x3 + ... 

2 

d 2 U  
where C, =(=) and C, = - ' (d3u)  - are constants of the model, 

4, 
6 n ' ~ '  

determined by the nature of the atoms considered. The first term in the right 
1 hand side of Eq. ( 5.2 ), -c ,u2,  is in fact the potential energy associated 
2 

with an elastic force equal to F = - = -cIX,  where C, is the 

elastic force constant. The negative sign means that F acts as a restoring 
force, i.e. in the direction opposite to the displacement u of the atom. 

In the following sections, we will limit the analysis to the first term in 
the expansion in Eq. ( 5.2 ) and denote C=Cl: 

1 2  Eq. (5.3 ) U(x)+Uo  =-Cx 
2 

Because the atomic vibrations described by this potential only involve 
second order displacements, such a solid is generally referred as a harmonic 
crystal in which the interactions between atoms can be modeled by a spring. 
This formalism is valid in solids up to all reasonable temperatures. We will 
apply this formalism to two cases of one-dimensional lattice, extend it to a 
three-dimensional lattice, and derive a few macroscopic physical properties 
of crystals. 
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5.3. One-dimensional monoatomic harmonic crystal 

In this simple model, we consider a one-dimensional (linear) lattice with a 
period a and with identical atoms of mass M, vibrating around each lattice 
point, as depicted in Fig. 5.2. Each atom is indexed by an integer n, and its 
displacement from its equilibrium position is denoted u, . The atoms are 

taken to oscillate in the same direction as the lattice (i.e. longitudinal 
vibration). All the results obtained for this artificial one-dimensional model 
prove to be true for three-dimensional lattices as well. 

(n-2)a (n-l)a na (n +l)a (n +2)a 
equilibrium positions 

Fig. 5.2. Model for the interaction of identical atoms in a harmonic crystal. The relative 
movement of the atoms is modeled by a spring such that atoms displaced from their 

equilibrium positions are forced back by neighboring atoms. The displacement can travel like 
a wave throughout the lattice. 

5.3.1. Traveling wave formalism 

In this one-dimensional case we will take into account only the interaction 
between nearest neighbors, an assumption that has little effect on the final 
results. When considering two neighboring atoms, the forces that are exerted 
on each one can be modeled as resulting from a spring which links the 
interacting atoms, as the one shown in Fig. 5.2. In other words, the force 
acted on the nt" atom: 

- by the (n-I)'" atom is F,,,, = C ( u ,  - u,,) 

- and by the ( n + ~ ) ' ~  atom is F,,,,, = -C(u, - u,,,) 

where C is the quasi-elastic force constant, a characteristic of the spring. 
Although this spring formalism is obviously crude, it nevertheless describes 
the interaction between atoms rather well. This is because the elastic force 
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constant C arises from Eq. ( 5.3 ) and corresponds to the first level of 
approximation for the interactions between atoms. The resultant force acting 
on the nt" atom is therefore: 

The equation of motion for the nth atom is then expressed using classical 
mechanics Newton's mass action law: 

Eq. ( 5.5 ) M h  = F, = -C(2un - u,, - u,+,) 
dt2 

d 'u, 
where M is the mass and - the acceleration of the nth atom. We thus 

dt2 
obtain a large number of coupled differential equations, where the unknown 
functions are the displacements u,(t). We seek solutions to the Eq. ( 5.5 ) in 
the form of traveling waves such as: 

~ q .  ( 5.6 ) u, ( t )  = Aexp[i(km - mt)] 

where A is the amplitude of the displacement, k is the wavenumber of 
the wave and w its angular frequency. This expression is typical of a 
traveling wave because it satisfies the relation: 

( t )  = Aexp[i(ka(n + 1) - o t ) ]  

Eq. ( 5.7 ) 

which shows that the value of the displacement u,+,(t) at the ( n + ~ ) ' ~  
atom at a time t is the same as the displacement urn($) at the nth atom at an 

earlier time t - - . This means that the magnitude of the displacement is [ 3 
ka 

like a wave that is traveling a distance a in space during a time - . The 
W 

velocity at which the wave is traveling is therefore equal to: 
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a o 
Eq. ( 5 . 8 )  

k g -  k  

The wavelength 2 and frequency u of the traveling wave are related to 
the wavenumber or angular frequency through the definition relations: 

Eq. ( 5.9 ) 

5.3.2. Boundary conditions 
Before solving the equation of motion in Eq. ( 5.5 ), we must introduce the 
boundary condition that the linear array of atoms is finite and consists of N 
atoms with the first and last atoms being equivalent, i.e. u,,, ( t )  = u,  ( t )  . 
This is the periodic or Born-von Karman boundary conditions which we 
have already encountered in section 4.3. This is a reasonable assumption 
because macroscopic crystal specimens consist of a very large number of 
atoms. And since the interaction forces are significant only between 
neighboring atoms, the motion of boundary atoms on the "surface" of the 
specimen do not affect the motion of all the other atoms inside the sample. 

Because of the general exponential expression of u,(O (Eq. ( 5.6 )), these 
conditions lead to the discretization of the wavenumber k, similar to what 
was obtained in Chapter 4: 

where m = 0,+1 ... is an integer. 
wavenumber k are necessary. Indeed, 

In fact, only N different values of 
if two wavenumbers k and k' differ 
2n 2n 

from each other by an integer times - (e.g. kt= k  + -), which is 
a a 

equivalent to say that their corresponding integers m and m' differ by an 
integer times N (e.g. m '=m+N), then they lead to the same function u,,(t) as 
seen through the simple calculation: 
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Eq. (5.11 ) 
u,,' (t) = A exp[i(kT an - wt)] 

= Aexp[i2m + i(kan - d)] = u, (t) 

which is valid for any point (nu) and any time (t) .  This means that k and 
k' are physically indistinguishable. In other words, the basic interval of 
variation of k can be chosen as: 

And all the physical properties of our one-dimensional crystal that 
2n 

depend on the wavenumber k must be periodic with a period - . Again we 
a 

arrive at the concept of the first Brillouin zone introduced in Chapter 1 and 4 
2 n  

for electronic states. And the quantity - is a reciprocal lattice period. Of 
a 

course, we can (and must) always choose the number of atoms N so large 
that the variation of k could be considered as quasi-continuous. 

5.3.3. Phonon dispersion relation 
Now we can solve the equation of motion in Eq. ( 5.5 ), by substituting 
Eq. ( 5.6 ) into it: 

which successively becomes, after simplification of the exponential and 
the constant A: 

or: 
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where we have made use of the trigonometric relation: 

2 x 1 - cos x = 2 sin ; . This last expression can also be rewritten as: 

where wmaX - . This relation is called the phonon dispersion 
M 

relation and is plotted in Fig. 5.3. 

cla 

Fig. 5.3. Phonon dispersion relation in a one-dimensional monoatomic harmonic crystal, 
expressed through the dependence of the angular frequency as a function 

of the wavenumber k. 

We see that the solutions of Eq. ( 5.5 ) of the traveling-wave type exist 
only if the relation in Eq. ( 5.14 ) is satisfied by the wavenumber k and the 
angular frequency o of the traveling wave. The frequency and wavenumber 
of the traveling wave characterizing the lattice vibrations are not specific to 
one particular atom, but are rather a property of the entire lattice. As such, 
the term phonon is used to designate lattice vibrations, and a frequency and 
a wavenumber are associated with each phonon. A more detailed discussion 
on ghonons can be found in section 5.6. 

For a small wavenumber ( k a ) ,  i.e. in the long wave limit, Eq. ( 5.14 ) 
becomes: 
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where we have used the approximation for the sine function: sin(x) - x 
for x 4 ,  which is in fact the Taylor expansion of the sine function near zero 
(see Eq. ( 5.1 )). Eq. ( 5.15 ) means that the angular frequency w is 
proportional to the wavenumber k in the long wave limit. Neighboring 
atoms have similar displacements in this region. 

In the short wavelength limit, as k increases, the slope of w decreases 
and becomes flat at the zone boundaries &fnla. At this point, the atoms in 
adjacent cells are vibrating with opposite phase. In other words, alternate 
springs are compressed and stretched, giving rise to maximum atomic 
displacement and frequencies of vibration. 

5.4.One-dimensional diatomic harmonic crystal 

5.4.1. Formalism 
In the previous sections we have discussed the motion of atoms in a one- 
dimensional monoatomic crystal where all the atoms are identical, with a 
mass M, and their equilibrium positions are equally spaced (spacing a). In 
crystallography terms, we considered a basis of one atom per unit cell. A 
more general description of atomic motion in a crystal involves a basis with 
more than one atom. 

In this section we will consider a one-dimensional diatomic harmonic 
crystal. Ionic crystals such as NaCI, CsCI, atomic crystals such as Si and Ge 
and binaries such as GaAs and InP are examples of lattices whose unit cells 
contain two atoms each. The following parameters need to be introduced for 
a complete diatomic model. The masses of the two different atoms (labeled 
1 and 2) in a unit cell will be denoted MI and M2, respectively, with M1>M2. 
The equilibrium distance between the two atoms in a unit cell is generally 
arbitrary, but we will choose it to be half the primitive unit cell length for 
simplicity, i.e. a12. In addition, the elastic force constant C, as defined in 
Eq. ( 5.2 ), should be different depending on if an atom interacts with its 
fi-ont or its back neighbor. But for simplicity, we will consider only one 
force constant C. In spite of these simplifications, the discussion and the 
results will not lose their generality, even if the mathematical steps will be 
significantly simpler. 

Each diatomic basis will be indexed by an integer n. The displacement 
of atom 1 from its equilibrium position will be denoted u,(t), while the 
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displacement of atom 2 will be denoted vn(t). The atoms are taken to 
oscillate in the same direction as the lattice (i.e. longitudinal vibration). All 
these parameters and their simplifications are summarized in Fig. 5.4. 

Two coupled sets of equations of motion, similar to Eq. ( 5.5 ), need to 
be considered; one for the displacement of the nt" atom 1 and one for the 
displacement of the nt" atom 2: 

M ,  = -C(2un - v,,-, - V ,  ) 
Eq. ( 5.16 ) dt2 

2v, = -C(2v,, - u,, - u,,, ) 4 dt' 

Fig. 5.4. One-dimensional model for the interaction of atoms in a diatomic harmonic crystal 
structure with atom masses M, and M2. It is assumed here that all the springs have the same 

constant. 

I 

Here again, we seek solutions to the set of Eq. ( 5.16 ) in the form of 
traveling waves with the same wavenumber k and angular frequency ctx 

u, ( t )  = ~ e x p [ i ( k a n  - ut)]  
Eq. (5 .17)  

( t )  = B exp[i(ka(n + %)- wt)] 

I 

where A and B are the amplitude of the displacements. 

n I 

Atom 1: (n-l)a 

Atom 2: (n-1/2)a (n +l/2)a 

equilibrium positions 

na 

b 

(n+l)a 
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5.4.2. Phonon dispersion relation 
Substituting these traveling wave expressions into Eq. ( 5.16 ), we obtain: 

Simplifying by exp[i(kan - at)] the first expression and 

exp[i(ka(n + %)- wt )] the second, we get: 

After re-arranging the terms with A and those with B: 

Expressing the sum of exponentials with trigonometric functions, we 
get: 

A - M,U2]- B[2Ccos($)] = 0 

Eq. (5.18) 

+B[~c-M,u']=o 

This system of equation has a non-zero solution, i.e. A and B not both 
equal to zero, if and only if the determinant of the system is zero: 
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Eq. ( 5.19 ) 

which becomes after developing the products: 

M I M 2 m 4  - ~ c ( M ,  + M,)m2 + 4 C 2  - 4 C 2  cos f $ ) = o  

or: 

Eq. ( 5.20 ) M 1 M 2 u 4  - ~ c ( M ,  + M2)m2 + 4C2 sin2 ($1 = 0 

This equation is of the form am4 - 2/3m2 + y = 0 ,  with a, ,8, and PO, 
and has two solutions for m 2 ,  denoted ml and wf  such that: 

Therefore, the solutions of Eq. ( 5.20 ) are: 

which can be simplified into: 

m: ( k )  = c ( M ,  MlM2 + M 2 1 k c / p  MlM2 
M442 

Using the trigonometric identity cos(2x) = 1 - 2sin2 ( x )  , this equation 
becomes: 
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Eq. (5.22) d ( k ) = ~  (%z][l i-] 
which constitutes the phonon dispersion relation in the model 

considered, similar to that obtained in Eq. ( 5.14 ). This expression always 
has a meaning since the argument of the square root is always positive 
because we have, for any value of masses MI and M2, and value of 
wavenumber k: 

and therefore: 

There are thus two possible dispersion relations, denoted q ( k )  and 

w-(k), relating the angular frequency to the wavenumber. Both are plotted 
in the first Brillouin zone in Fig. 5.5. These plots represent the so-called 
phonon spectrum of a one-dimensional diatomic harmonic crystal. 

optical branch, o+ PQMJ" 1 

nla 

Fig. 5.5. Optical and acoustic branches in the dispersion relation. 
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7T 
The values for w+ (k) and w _  (k) at k = 0 and k = f - can be easily 

a 
calculated from Eq. ( 5.22 ) (note that we have chosen M,>M2). The top 
curve in 
Fig. 5.5 corresponds to w+(k) and is called the optical phonon branch or 

simply optical phonon, while the bottom branch corresponds to w- (k) and 
is called the acoustic phonon branch or simply acoustic phonon. 

Now, for small values of wavenumber ( k 4 ) ,  an approximate 
expression can be derived from Eq. ( 5.22 ). To do so, we use start by using 
an approximate expression for the cosine function in the Eq. ( 5.22 ): 

1 
cos(ka) = 1 - - (ka)" 

2 

This approximation is in fact the Taylor expansion of the cosine function 
near zero (see Eq. ( 5.1 )). We therefore obtain successively: 

1 
by using the approximation - 1 - -x for x 4  (again this comes 

2 
from the Taylor expansion of 6 for small values of x). Eq. ( 5.22 ) can 
then be approximated by the following expression: 

Consequently, in the long wave limit, the angular frequency 
acoustic phonon branch can be written as: 

of the 
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which means that the angular frequency ~ ( k )  in the acoustic phonon 
branch is proportional to the wavenumber k, similar the result obtained in 
Eq. ( 5.15 ). The shape of the acoustic branch is similar, but the increased 
mass lowers the frequency. For the acoustic branch in the long wave limit, 
the traveling wave is equivalent to the elastic wave of a one-dimensional 
atomic chain regarded as a continuous media. The nature of the vibrations in 
this region is just like sound waves. The two atoms in the unit cell move in 
the same direction and over a small region it seems as if the entire crystal 
has been compresses or stretched. This is why the ~ ( k )  branch is called 
the acoustic branch. 

In the same limit ( k - 4 ,  the angular frequency of the optical phonon 
branch can be expressed from Eq. ( 5.24 ): 

Eq. ( 5-25 ) w: ( k )  = C(M1 + M2)[l + I] = 2C[M1 + M2) 

MlM2 MlM2 

which shows that the angular frequency w + ( k )  in the optical phonon 
branch is a constant in the long wave limit. The nature of the vibrations in 
this region is that the two atoms in the unit cell move in opposite directions. 
This is similar to the top of the band in the monatomic case, where there is 
maximum distortion and frequency of vibration. The angular frequency in 
the limit (k-m/a) for the optical and acoustic branches is left as an exercise 
at the end of the Chapter. 

Furthermore, the ratio of the displacement amplitudes A and B defined in 
Eq. ( 5.17 ) can be taken for two different values, depending on the branch 
chosen, calculated from either one of Eq. ( 5.18 ): 

Eq. ( 5.26 ) (5) = 2C - M,w: 

* 2ccos($) 
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Again, in the long wave limit ( k 4 )  and for the acoustic phonon branch, 

we have w (k) 4 as seen from Eq. ( 5.24 ) and cos - +I, so that: (3 

which demonstrates that, in this case, the vibrations of the two atoms in 
one primitive unit cell have exactly the same amplitude and phase (i.e. 
direction), as shown in Fig. 5.6. 

Fig. 5.6. Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding 
to the acoustic phonon branch. In this configuration, the two atoms forming the unit cell 

move in the same direction at the same time. 

In the long wave limit ( k 4 )  for the optical phonon branch, we have 

-+ + 1: ;';; from Eq. ( 5.25 ) and therefore, by substituting into 

M ,  + M2 

Eq. ( 5.26 ): 

which shows that, in the long wave limit of the optical branch, the 
vibrations of the two atoms in one primitive unit cell have a specific 
amplitude ratio and opposite phases (i.e. directions), as shown in Fig. 5.7. 
Thus, optic phonons are described by the oscillations of two atoms about a 
center of mass, while acoustic phonons are described by the movement of 
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the two atoms center of mass. The amplitude ratio in the limit (k-Ma) is 
left as an exercise at the end of the Chapter. 

Fig. 5.7. Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding 
to the opticalphonon branch. In this configuration, the two atoms forming the unit cell move 

in opposite directions at the same time. 

Actually, the ratio of the amplitudes is such that the vibrations of the two 
atoms in a primitive unit cell leave the position of their center of gravity 
unchanged. Therefore, if the two atoms are ions of opposite charges, such as 
in the case of GaAs or NaCl, these oscillations result in a periodic 
oscillation of the amplitude of the dipole moment formed by these two 
charged ions, as discussed in sub-section 2.5.6. Such oscillations of the 
dipole moment are frequently optically active, i.e. are involved in the 
absorption or emission of electromagnetic (infrared mostly) radiation. This 
explains the use of the term "optical" for the w+(k) branch of lattice 
vibrations. 

One can use the dispersion relation for phonons and photons to examine 
the conservation of energy and momentum that applies to the interaction of 
phonons and photons. Fig. 5.8 shows the crossing of the dispersion relation 
for both acoustic and optic phonons with a photon. Because the photon and 
optic phonon curves cross, energy and momentum can be exchanged. An 
optic phonon can be created or annihilated with a photon. Since the acoustic 
mode never crosses the photon dispersion, they cannot interact. For 
example, in NaC1, its optical mode is excited by light because an electric 
field can displace the two oppositely charged ions in different directions. In 
a Ge crystal, the two atoms in the unit cell have similar charges and cannot 
be excited by an electric field. 
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photon dispersion 

optical branch, a+ 

acoustic branch, o 

Fig. 5.8. The dispersion curves for aphoton and an acoustic and opticphonon. The optic 
branch crosses with the photon branch, allowing for energy and momentum conservation. 

5.5. Extension to three-dimensional case 

5.5.1. Formalism 
So far, we have only considered a one-dimensional atomic crystal. A real 
crystal expands in all three dimensions of space and lattice vibrations are 
more complicated. For example, the vibrations can occur in all three 
directions, regardless of the equilibrium position alignment of the atoms, - 
and need to be expressed using a displacement vector ui (t) .  Moreover, a 

+ 

wavevector k must be used, similarly to the way it was done in Chapter 4 
+ 

for three-dimensional electronic band structures. This wavevector k also 
indicates the direction of propagation of the traveling wave. The expression 
of the displacement, given for the one-dimensional case in Eq. ( 5.6 ), 
becomes in the three-dimensional case now: 

Eq. ( 5.29 ) <(t) = 2 exp[i(l.z - cot)] 



180 Fundamentals of Solid State Engineering 

- -- 
where A is the amplitude vector of the displacement, and k.R is the - 

dot product between the wavevector and the equilibrium position R of the 
atom considered. 

In spite of this increased complexity, all the features obtained in the 
present simplified study remain valid. In particular, there still exist two 
types of phonons, as shown in the example of dispersion spectrum in 
Fig. 5.9: acoustic phonons, for which the vibration frequency goes to zero in 

the long wave limit ( k 4)) and optical phonons, for which the frequency 1-1 
goes to a non-zero finite value in the long wave limit. Each type of phonon 
is further divided into two main categories: transversal and longitudinal 
phonons. The terms "transversal" and "longitudinal" refer to the direction of 

* - 
atomic displacements u(t)  with respect to direction of propagation k : 
perpendicular for transversal and parallel for longitudinal. There are 
generally two transverse and one longitudinal branch for each optical and 
acoustic phonons. Furthermore, the dispersion relations are not always 
isotropic, meaning that the phonon dispersion relations are different for 
different symmetry directions within the crystal . 

Fig. 5.9. Typical phonon dispersion spectrum for a three-dimensional diatomic lattice (s=2). 

For example, in Fig. 5.9, the transversal acoustic (TA), longitudinal 
acoustic (LA), transversal optical (TO) and longitudinal optical (LO) 
phonon branches are shown. Notice that the longitudinal branches are higher 
in energy than the transverse branches. In general, for a three-dimensional 
crystal with s atoms per unit cell, there are always three acoustic branches, 
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two transversal and one longitudinal. There are also 3s-3 optical branches. 
Fig. 5.9 shows a typical example for s=2. A monoatomic Bravais lattice 
(s=l) can only have acoustic phonon branches. 

Fig. 5.10 shows the movement of (a) transverse optic (TO), (b) 
longitudinal optic (LO), (c) transverse acoustic (TA), and (d) longitudinal 
acoustic (LA) phonons in a lattice. The black circles represent the atoms 
with smaller mass, such as the gallium atoms in Gallium Arsenide. The 
white circles represent the heavier atoms, such as the arsenic atoms in 
Gallium ~rsen idk .  

8 . :  8 e 0  8  
8  o 8  0 . 8  

8 . O  8 . O  8  
8  0 . 8  0 . 8  

8 . O  8 . O  8  
8  0 . 8  0 . 8  

8 . '  8 . '  8  
8  0 . 8  0 . 8  

(a) 

Fig. 5.10. The propagation of the four different phonon modes through a lattice: (a) 
transverse optic, (b) longitudinal optic, (c) transverse acoustic, and (d) longitudinal acoustic. 

TO phonons propagate by the lighter atoms (black) being displaced 
perpendicular to the direction of the wave traveling. The heavier atoms 
(white) remain somewhat stationary within the lattice. For LO phonons, the 
heavier atoms remain somewhat stationary within the lattice, while the 
lighter atoms move parallel to the propagation of the traveling wave. As you 
can see, both optic modes produce a change in dipole movement, or the 
movement of the atoms about their center of mass. The heavier atoms 
remain fixed in the lattice, while the lighter atoms move and carry the wave 
through the medium. TA modes propagate similar to a pulse moving along a 
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string after it has been jerked. The wave propagates through the movement 
of both the heavier and lighter atoms. Lastly, LA phonons propagate through 
the movement of a pair of atoms towards and away from another pair of 
atoms. Both acoustic modes correspond to the movement of the center of 
mass of two atoms. The distance between a heavier and lighter atoms remain 
fixed, while the pair as a whole is displaced relative to other atoms pairs. 

For all the modes, the frequency of vibration is directly proportional to 
the mass of each atom, the bond length of the atomic pairs, and the 
electronegativity of each atom. 

5.5.2. Silicon 
Silicon crystals only have 2 identical atoms in their unit cell and bonds 

in the diamond structure. This results in the LO and TO energies being 
degenerate at the zone center. Since both atoms are identical, the bonds do 
not carry any electronegativity and there is not a restoring force like that in 
GaAs. 

REDUCED WAVE VECTOR COORDINATE 5 
Fig. 5. I I .  Phonon dispersion relation for Silicon in three crystal directions. Solid lines are 

calculated. Data points: open circles represent transverse (0 modes, open triangles 
longitudinal (L) modes, and solid points undeterminedpolarization modes. [Reprinted with 
permission from Inelastic Scattering of Neutrons in Liquids and Solids Vol. 2, Dolling, G., 

"Lattice Vibrations in Crystals with the Diamond Structure, " p. 41. Copyright 1963, 
International Atomic Energy Association.] 

5.5.3. Gallium avsenide 
In GaAs, the LO phonons have higher energy than the TO phonons near 

the zone center. This results from the ionic nature of the bonding in zinc- 
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blende crystals. In GaAs, the arsenic atoms contribute 5 electrons to the 
bonds compared to gallium atoms, which contribute 3. Consequently, the 
electrons spend on average more time near the arsenic atoms resulting in the 
arsenic atoms being slightly more negative while the gallium atoms are 
slightly positive. This difference in electronegativity produces a restoring 
force for a propagating LO mode but not a TO mode. This increase in 
energy gives the LO modes a higher frequency. 

0 0.2 0.4 (X6 0.8 LO 1.0 0.8 0.6 (X4 0.2 0 0 (XI 0.2 0.3 0.4 a5 
[< 001 - --Lo 5 11 -[C 5 C] 

REDUCED WAVE VECTOR COORDINATE, 5 

Fig. 5.12. Phonon dis~ersion relation for Gallium Arsenide in three crvstal directions. - 
Dotted and solid lines denote calculated values. Solid points denote undetermined 

polarization modes. [Reprintedfigure with permission from Waugh, J.L.T. and Dolling, G., 
The Physical Review Vol. 132, p. 241 1,  1963. Copyright 1963 by the American Physical 

Society.] 

5.6. Phonons 

In Chapter 4, the treatment of the electrons in a crystal led to energy levels 
and momenta that do not correspond to those of individual atoms but are 
properties of the lattice as a whole. Earlier in this Chapter, we have hinted 
that the characteristics of the traveling waves arising from lattice vibrations 
are not specific to one particular atom but are rather a property of the entire 
lattice too. We thus have to consider the collective excitation of the crystal 
as a whole, and talk about a lattice wave. Each type of vibration is called a 
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vibrational mode and is characterized by a wavevector k , and a frequency 

0 (i) . 
The previous sections of this Chapter dealt with a classical analysis of 

lattice vibrations. In a quantum mechanical treatment, especially when 
lattice waves interact with other objects (e.g. electrons, electromagnetic 
waves or photons), it is convenient to regard a lattice wave as a quasi- 
particle or phonon with a momentum and a (quantized) energy such that: 

This is analogous to the quantization of the electromagnetic field 
discussed in sub-section 3.1.1. The energy in Eq. ( 5.30 ) is the quantum unit 
of vibrational energy at that frequency. Because phonons involve vibrational 
energy stored in the crystal, phonons can interact with other waves or 
particles such as for example electrons, photons, and phonons. These types 
of interactions lead to the experimentally observable physical properties of 
crystals. 

The velocity of a phonon is given by the group velocity of the 
corresponding traveling wave, defined as the gradient of the frequency with 
respect to the wavevector: 

In Cartesian coordinates with unit vectors (;, ;, i), this relation can be 
written as: 

- a 4 k x  k,, k, ) - dw(kx, k,, k,) - a&, , ky , k,) -. 
Eq. ( 5.32 ) v, = x +  Y + z 

dkx 8kY dk, 

In this quantum picture, the propagation of harmonic lattice waves, i.e. 
up to the second order term in Eq. ( 5.2 ), is equivalent to the free movement 
of non-interacting phonon quasi-particles, also called "phonon gas", and 
their description is similar to that of photons. 

In particular, any number of identical phonons may be present 
simultaneously in the lattice, in any of the phonon mode characterized by a -. 
wavevector k for a given temperature. A phonon gas thus obeys the Bose- 



Phonons 185 

Einstein statistics which says that the average number of phonons in a given 

mode ( i  ) is then determined by: 

where kb is the Boltzmann constant, and T is the absolute temperature. 

At high temperatures, i.e. k,T >> hw(l;), the exponential in Eq. ( 5.33 ) can 

be approximated by: 

hw( i )  
Eq.(5.34) exp- =I+- ["?) kbT 

where we have used the approximation exp(x) = 1 + x for x 4  (again 

this comes from the Taylor expansion of exp(x) for small values of x). 

Therefore: Ni = - kbT , which expresses that the average number of 
hw( i )  

phonons in a given mode is proportional to the temperature, at high 
temperatures. 

As mentioned earlier, phonons can interact with other phonons. Such 
interaction would correspond to anharmonic vibrations in the classical wave 
picture, which arise from cubic and higher order terms in Eq. ( 5.1 ) and 
Eq. ( 5.2 ). 

Example 
Q: Estimate the average number of phonons in a given 

mode at low temperatures. 
A: The average number of phonons N(E) with an energy E 

is given by: N(E)=  
1 . At low 

temperatures, we have exp [ I  - and the 
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expression for N(E) can be simplified into: 

5.7. Sound velocity 

It is known that a solid can transmit sound. This is in fact accomplished 
through the vibrations of atoms similar to the ones discussed in earlier 
sections. The sound velocity is the speed at which sound propagates and is 
related to velocity of a traveling wave as discussed below. 

In section 5.3, we have already hinted that the velocity of the traveling 
wave was given by the ratio of the angular frequency to the wavenumber in 
Eq. ( 5.8 ): 

Using Eq. ( 5.13 ) and Eq. ( 5.14 ), we obtain: 

where: 

Eq. ( 5.37 ) v, = M 

Therefore: 

This quantity is called the phase velocity because it represents the 
velocity of the phase of the wave or, in other words, the speed at which the 
peak of the wave travels in space. The phase velocity is plotted in Fig. 5.13, 
and we see that it never reaches zero. 
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There is another quantity of interest which is the group velocity of a 
traveling wave which represents the velocity of a wave packet and therefore 
of the wave energy, and is defined as: 

Using Eq. ( 5.13 ) and Eq. ( 5.14 ), we obtain: 

and therefore: 

Eq. ( 5.41 ) v ,  = v, cos ak I ( X I  
The group velocity is also plotted in Fig. 5.13. We see that this quantity 

7L 
drops to zero when k+- , i.e. at boundary of the first Brillouin zone. 

nla 

Fig. 5.13. Phase and group velocities versus wavenumber k. 
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Example 
Estimate the order of magnitude for the elastic constant 
C of silicon, given that the sound velocity in silicon is 
2 . 2 ~  lo5 cm.sm'. 
Starting form the expression for the sound velocity: 

v, = a  - , where a=5.43 A and M=28MP are the 
I t  

lattice constant and mass of a silicon atom respectively. 
We thus have: 

From Eq. ( 5.37 ), we see that the speed of sound in a medium is 
proportional to the inverse square root of M, the atomic mass, and the square 
root of C, the elastic constant of the material. A generalized form for the 
speed of sound in a medium is: 

where B is the bulk modulus of the material and p is the density, given 
by its mass divided by its volume. 

The bulk modulus is the property that determines the extent to which a 
medium changes its volume in response to an applied pressure. A 
generalized expression for the bulk modulus of a material is given by 

AP g=-- 
Eq. ( 5.43 ) - A v 

v 

where p is an applied pressure and V is the medium's volume. AVIV is 
the percent change in volume produced by a change in pressure Ap. The 
minus sign is included because whenever we increase the pressure, the 
volume decreases and vice versa. The minus sign allows what is under the 
radical in Eq. ( 5.42 ) to be positive. 
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Just as phonon modes can be anisotropic in a crystal, the bulk modulus 
is also directional within a crystal and the velocity of sound is dependent 
upon what direction the sound is traveling in a material. A medium's bulk 
modulus generally takes on a tensor form and can be significantly different 
in the r, X, and L directions. This results from the crystal structure (e.g. 
cubic, tetragonal, orthorhombic, etc.) having different bonding lengths on 
different sides of each atom. 

5.8. Summary 

In this Chapter, we have described the basic formalism for treating the 
interaction between atoms in a crystal, through the simple examples of one- 
dimensional monoatomic and diatomic harmonic lattices. Several important 
concepts have been introduced such as the lattice vibration modes, traveling 
waves, dispersion relations, acoustic and optical branches, longitudinal and 
transversal branches, and sound velocity. We realized that these lattice 
vibrations could be quantized in the same manner as the electromagnetic 
field and can thus be considered as quasi-particles, or phonons, with a 
momentum and energy and which obey Bose-Einstein statistics. 
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Problems 

Explain why there is no optical phonon in the dispersion curve for the 
one-dimensional monatomic chain of atoms. 

Explain why there is a forbidden range of vibration energies between 
the optic and acoustic phonon branches. Solve Eq. ( 5.22 ) for the case 
when k=nla. 

The one-dimensional monatomic harmonic crystal (section 5.3) is in fact 
a particular case of the diatomic model described in section 5.4, for 
which the two atoms are identical. To prove this, show that the 
expression for the diatomic harmonic crystal can be transformed into an 
expression similar to the monatomic crystal. Solve Eq. ( 5.22 ) in the 
limit M,=M2=M. What considerations do you have to take into account 
to do this? 

In the Chapter, the phonon frequencies at the center of the zone k=O was 
determined for the diatomic molecule. Calculate the phonon frequencies 
at the zone boundary k=da. 

Plot the shapes of the optical and acoustic branches in the dispersion 
M 

relation for four different ratios of masses: 2 =lo, 5, 2 and 1. Show 
M2 

that, in the case of two identical atoms, there is actually only one 
acoustic branch and no optical branch for the dispersion relation. 

In section 5.4, we calculated the ratio of the displacement amplitudes A 
and B for the long wave limit (k+O) for both the optic and acoustic 
phonon branches and then determined the displacement of the atoms 
with respect to each other. Calculate Eq. ( 5.26 ), the ratio of the 
displacement amplitudes, in the short wave limit (k+da) and draw the 
displacement of the atoms with respect to each other. 

Suppose that a light wave of wavelength 3 pm is absorbed by a one- 
dimensional diatomic harmonic chain with atoms of mass 4 ~ 1 0 - ~ ~  kg 
and 5 x 1 0-26 kg and atomic spacing of 4.5 A. What is the force constant 
in MKS units? 
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8. From the figures for the phonon dispersion curves for Si and GaAs plus 
the equations for optic and acoustic phonons, explain why the energy for 
the Si curves is higher in energy than the curves for GaAs? Assume that 
the elastic constant is about the same for both materials. Also, why do 
the optical and acoustic phonon branches cross at the zone boundary for 
Si but not for GaAs? 

five values of T to show its evolution with increasing temperatures. For 

each one, plot the function ~ ( w )  = k,T and show that it is a good 
hw 

approximation for ~ ( w )  for high temperatures, i.e. k,T >> hw 

10. Let us model a rigid bar as a linear monatomic chain of atoms, as in 
section 5.3 with the same notations. We further assume that the 
equilibrium interatomic separation is a and that its cross-section is a2. Its 
Young's modulus Ey is defined as the ratio of the stress applied in one 
direction divided by the relative elongation in this same direction. The 
stress is the ratio of the interatomic force (F,,,-,) divided by the cross- 
section area (a2) on which this force is applied. The relative elongation 
is the interatomic displacement divided by the equilibrium separation. 
The Young's modulus has the dimension of a pressure and is expressed 
in Pa (Pascal). The solid density M y  is the ratio of the mass of the solid 
to its volume. Here, we assume that the mass of an atom is M and that 
there is only one atom in a volume of a3. 
Show that the sound velocity, defined in section 5.7, is equal to the 

ratio: - /: 
'h 

11. From the speed of sound equation, w(B/p)  , calculate the speed of 
sound in Silicon and compare with the speed of sound in Gallium 
Arsenide. Assuming that the largest effect on the velocity comes from 
the density, why is this result expected? 
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6.1. Introduction 

In Chapter 5, we built simple mathematical models to describe the 
vibrations of atoms, first in a one-dimensional system and then extended to a 
three-dimensional harmonic crystal. These models, in the quantum 
description, led us to introduce a quasi-particle called the phonon, with an 
associated momentum and energy spectrum. Many of the phenomena 
measured in crystals can be traced back to phonons. 

In this Chapter, we will employ the results of the phonon formalism 
used in Chapter 5 to interpret the thermal properties of crystals, in particular 
their heat capacity, thermal expansion and thermal conductivity. 

6.2. Phonon density of states (Debye model) 

6.2.1. Debye model 
The Debye model was developed in the early stages of the quantum theory 
of lattice vibration in an effort to describe the observed heat capacity of 
solids (section 6.3). The model relies on a simplification of the phonon 
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dispersion relation (see for example Eq. ( 5.22 ), Fig. 5.5 or Fig. 5.9). In the 
Debye model, all the phonon branches are replaced with three acoustic 
branches, one longitudinal ( I )  and two transversal ( t ) ,  with corresponding 
phonon spectra: 

where n (=I or t )  is an index; k is the norm or length of the wavevector - 
k , v, and v, are the longitudinal and transversal sound velocities, 

respectively. This model corresponds to a linearization of the phonon 
spectrum as shown in Fig. 6.1. But this linearization implies that the phonon 
frequencies depend solely on the norm of the wavevector. Some boundary 
conditions therefore need to be changed in this model. 

Debye approximation 

Fig. 6.1. Illustration of the Debye model in thephonon dispersion curve. In the Debye model, 
all thephonon branches are replaced with three acoustic branches. This corresponds to a 
simplification of the phonon dispersion spectrum, through a linearization of the phonon 

branches. In order for this model to be accurate, a Debye wavenumber needs to be 
introduced. 

Indeed, we remember that the range for the wavevector was restricted to 
the first Brillouin zone in the real phonon dispersion relation. The Born-von 
Karman boundary conditions of section 4.3 limited the total number of 

+ 

allowed values for k to the number N of atoms in the crystal of volume V 
considered. We saw in section 4.3 that the volume occupied by each 
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wavevector was - (2x)3 . The volume of the first Brillouin zone is then v 
( 2 ~ ) ~  N 4~ 

and must be equal to - k i  where kD is the Debye wavenumber v 3 
such that the relation (7.1) is valid in the range 0 5 k I k, . We thus obtain: 

6x2N 
Eq. ( 6.2 ) k, = - 

V 

This wavenumber corresponds to a Debye frequency OD defined by: 

Eq. ( 6.3 ) hw, = h v,k, 

where v, is the sound velocity in the material. The Debye frequency is 

characteristic of a particular solid material and is approximately equal to the 
maximum frequency of lattice vibrations. It is also useful to define the 
Debye temperature OD such that: 

Eq. ( 6.4 ) k,O, = hw, = h vokD 

The significance of OD will become clear in the following discussion. 
However it follows that every solid will have its own characteristic phonon 
spectrum and therefore its own Debye temperature. The Debye temperatures 
for a few solids are listed in Table 6.1. 

Material Material 

Pb 

Au 

Ag 

NaCl 

GaAs 

Cu 

Ge 

105 W 3 83 

162 A1 43 3 

227 Fe 477 

275 Si 650 

345 BN 1900 

347 C (diamond) 2250 

373 

Table 6.1. Debye temperatures of a few solids. [Grigoriev and Meilikhov 1997.1 
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Example 
Q: Calculate the Debye wavelength for GaAs, given that 

the density of GaAs is d=5.32x 1 o3 kg.m". 
A: We make use of the expression giving the Debye 

6 n 2 N  
wavenumber k, = - , which is related to the Debye v 

2n (6n;N)-I', where wavelength through A, = - = 2 n  - 
k D  

N is the number of atoms in the volume V. By definition 
1 N  

of the density, we have: d = - - ( M ,  + M A , ) ,  where v 2  
MGa and MAS are the masses of a Ga and an As atom, 
respectively. The factor 2  arises from the fact that half 
the atoms in the volume are Ga atoms, and the other half 
are As atoms. 

Therefore, we can write: 

6.2.2. Phonon density of states - 
The phonon density of states g(w) is the number of phonon modes k per 

* 

unit frequency interval which have a frequency w(k)  equal to a given value 

co. It can be calculated in a way similar to that used for the electron density 
of states in section 4.3. 
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+ 

where the summation is performed over all phonon modes k and 
phonon branches labeled n. Because the crystal has macroscopic sizes, the -. 
strictly discrete wavevector k can be considered quasi-continuous, as was 
done in Chapter 4 and the discrete summation can be replaced by an integral 
((Eq. ( 4.44 )I. 

Eq. ( 6.6 ) 

where V is the volume of the crystal considered. The summation here is 
4 

actually performed over all values of k in the first Brillouin zone. 
Eq. ( 6.5 ) then becomes: 

V 
Eq. ( 6.7 ) g(w)  = - 

We now make use of Eq. ( 4.37 ): 

where k is the norm or length of the wavevector g. Therefore, 
Eq. ( 6.7 ) becomes: 

4 n v  
Eq. ( 6.8 ) g(w)  = - c (i)  - @k2dk 

(W3 n 0 

where the integration is now from 0 to the Debye wavenumber kD, in 
agreement with the Debye model described earlier. Substituting Eq. ( 6.1 ), 
we get successively: 

V kD 
Eq. ( 6.9 ) g(w)  =, C j8[vnk - w]k2dk 

2~ n 0 
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after the change of variable x = vnk (and thus dx = v n d k ) .  There is a 

non zero solution only if there is a wavenumber k between 0 and kD such 
that x = vnk = w  , and: 

v w2 
g ( ~ ) = ~ z ?  f o r 0 < w < w D  

Eq. (6.11 ) n V n  

Remembering that the Debye model takes into account one longitudinal 
( I )  and two transversal ( t )  modes, we obtain: 

f o r O I o I o D  
Eq. ( 6.12 ) 

which can also be rewritten as: 

3vw2 
f o r O I w I w D  

Eq. ( 6.13 ) 

where: 

is the inverse average sound velocity. This phonon density of states is 
illustrated in Fig. 6.2 where we have a parabolic relation. Although the 
Debye model is a simple approximation, the choice of kD ensures that the 
area under the curve of g(4 is the same as for the real curve for the density 
of states. Moreover, this expression is precise enough to determine the 
lattice contribution to the heat capacity both at high and low temperatures. 
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Fig. 6.2. (a) Illustration of thephonon density of states in the Debye model, where the 
relationship is parabolic until the Debye frequency is reached, after which the density of 
states is equal to zero. (b) Illustration of a typicalphonon spectrum of a real crystal with 

discontinuities due to singularities in the spectrum. The singularities are due to zeroes in the 
group velocity. 

6.3. Heat capacity 

6.3.1. Lattice contribution to the heat capacity (Debye model) 
When heat is transferred to a solid, its temperature increases. Heat has a 
mechanical equivalent which is an energy and is generally expressed in units 
of calorie with 1 calorie corresponding to 4.184 Joule. Different substances 
need different amounts of heat energy to raise their temperature by a set 
amount. For example, it takes 1 calorie to raise 1 g of water by 1 degree K. 
The same amount of energy, however, raises 1 g of copper by about 11 K. 

The heat capacity, C, of a material is a measure of the ability with which 
a substance can store this heat energy and is described by the ratio of the 
energy dE transferred to a substance to raise its temperature by an amount 
dT. The greater a given material's heat capacity, the more energy must be 
added to change its temperature. The heat capacity is characteristic of a 
given substance, and its units are cal.IC1 or J.K-'. The heat capacity is 
defined as: 
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subscripts denoting which variable (Volume or Pressure) is held 
constant. 

The specific heat capacity, often known simply as the specific heat and 
denoted by a lowercase c, of a material is the heat capacity per unit the 
mass. The specific heat of a given substance has units or c~ I .~ - 'K- '  or 
J . ~ ~ - ' K - ' ,  and is thus specific to a particular material and independent of the 
quantity of material. A few values of specific heat for elements in the 
periodic table are given in Fig. A.7 in Appendix A.3. 

Both heat capacity and specific heat phenomena are closely related to 
phonons because, when a solid is heated, the atomic vibrations become more 
intense and more phonons or vibration modes are accessible. A measure of 
the heat energy received by a solid is therefore the change in the total energy 
carried by the lattice vibrations. This total energy E can be easily expressed 
using the following integral, knowing the average number of phonons N(o)) 
(Eq. ( 5.33 )), the phonon density of states g(o) and that a phonon with 
frequency o has an energy A w (Eq. ( 5.30 )): 

m 

Eq. ( 6.16 ) E = f ~ ( w ) ~ ( w ) h u d w  
0 

In the Debye model, we can use Eq. ( 6.13 ) for g(o) and rewrite 
Eq. ( 6.15 ) as: 

@I> 

E =  f 1 3vw2 
Audw 

or: 

Eq. ( 6.17 ) 

Note that the previous integral is performed only up to the Debye 
frequency, as the phonon density of states is equal to zero beyond that point. 

hw 
Using the change of variable x = - 

A 
(and thus dx = -do ), this 

kbT kbT 
equation becomes: 
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Let us now make use of the Debye temperature OD defined in Eq. ( 6.4 ) 
and the Debye wavenumber k D  in Eq. ( 6.2 ) to express: 

Using Eq. ( 6.4 ) for the boundary of the integral, Eq. ( 6.18 ) can then 
be rewritten as: 

For high temperatures, where k,T >> Aw, or simply T >> 0, , the 

0 * integral in Eq. ( 6.19 ) is evaluated close to zero, i.e. 0 < x < - << 1 . The 
T 

function in the integral can thus be approximated as follows: 

where we have used the approximation exp(x) o 1 + x for x 4 .  As a 
result, Eq. ( 6.19 ) becomes successively: 
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and finally: 

Eq. ( 6.20 ) E = 3NkbT 

The heat capacity is thus obtained after differentiating this expression 
with respect to the temperature as in Eq. ( 6.15 ): 

This relation shows that, for high temperatures, i.e. T >> O D ,  the heat 
capacity is independent of temperature. In fact, this could have been easily 
calculated using classical theory. Indeed, in classical statistical 
thermodynamics, each mode of vibration is associated with a thermal energy 
equal to k, T . Therefore, for a solid with N atoms, each having 3 
vibrational degrees of freedom, we get 3N modes, the total thermal energy is 
then 3Nkb T , as derived in Eq. ( 6.20 ), and the heat capacity is found to be 
equal to 
Eq. ( 6.21 ). This is known as the law of Dulong and Petit, which is based on 
classical theory. The molar heat capacity, that is the value of the heat 
capacity for one mole of atoms, is calculated for N equal to the Avogadro 
number ~ = 6 . 0 2 2 0 4 ~ 1 0 ~ ~  mol-' and is: C, =3N,k, =24.95 ~.mol-'.K" 
=5.96 cal.mol-'.K1. 

This shows that, at high temperatures T >> 0, , the Debye model fits 
the classical model. 

For low temperatures however, where kbT <<lie, or simply 

T << 0, , the heat capacity is not constant with temperature anymore. This 
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is where the quantum theory of phonons is needed and where the accuracy 
of the Debye model is best appreciated. In this case, the integral in 
Eq. ( 6.19 ) can be extended up to infinity without much error. Moreover, 
the exponential fraction in the integral can be expressed as: 

because x>O and e-" < 1. Therefore, the integral in Eq. ( 6.19 ) 
becomes: 

Eq. ( 6.23 ) 

where the integral I,, can be simplified after the following successive 
integration by parts: 
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m 

I,, = jx3e-"dx 
0 

Thus, Eq. ( 6.23 ) can be rewritten as: 

The sum in this expression corresponds to ~ ( 4 ) ,  which is called the 
Riemann zeta function evaluated at 4, and is equal to: 

" 1 n4 
Eq. ( 6.25 ) ~ ( 4 )  = z--j = - .=, n 90 

And Eq. ( 6.19 ) becomes: 

or: 
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3x4 T 
Eq. ( 6.26 ) E = - Nk, - 

5 (@,I Y 

To determine the heat capacity, we must differentiate this expression 
with respect to the temperature as in Eq. ( 6.15 ): 

or: 

3 
12x4 

Eq. ( 6.27 ) C, = - 
5 

where N is the number of atoms in the crystal. This relation shows that, 
for low temperatures, i.e. T << @, , the heat capacity is proportional to T 3 .  
The experimentally measured molar heat capacity is shown in Fig. 6.3 for a 
few solids as a function of temperature. 

Fig. 6.3. Temperature dependence of the molar heat capacity C, of some materials. At low 
temperatures, the heat capacity follows a T' relation. [Electronic Properties of Materials, 

1993, p. 335, Hummel, R.E., Fig. 19.1. O 1985, 1993 by Springer- Verlag Berlin Heidelberg. 
With kind permission of Springer Science and Business Media.] 



206 Fundamentals of Solid State Engineering 

The figure shows that the Debye model is in good agreement with 
experimental observations, both in the high temperature and the low 
temperature regions. 

Example 
Q: Calculate the Debye temperature for InP, given that the 

vl=4.594x lo3 m.s-', vt=3.085x lo3 m.s-', and the mass 
density of InP is d=4.8 1 x 1 o3 kg.m-3. 

A: We make use of the expression giving the Debye 

temperature: 0, = - h " ~  , where the Debye frequency 
kb 

u, = v,k, is calculated knowing 

and k i  = - - 
2d 

*l - 6n2 ( ) similarly to the v M ,  + M P  

previous example. Numerically, we successively obtain: 

v, = 3.37 x lo3 m.s-' 
In addition, we have: 

k ,  = 1.33 x 10'' m-' 
which leads to: 
w ,  = 4.47 x loi3 Hz and 
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Throughout this discussion, we realized that the Debye temperature OD 
played a significant role in the heat capacity of a material. It indicates the 
separation between the high temperature region where classical theory is 
valid and the low temperature region where quantum theory is needed. The 
Debye temperature can be measured by fitting the experimental data of 
Fig. 6.3 to Eq. ( 6.27 ). 

6.3.2. Electronic contribution to the heat capacity 
The previous discussion has considered the contribution of lattice vibrations 
or phonons to the heat capacity. This is valid for dielectric, i.e. insulating, 
materials. But, unlike dielectric materials, metals have a large number of 
free electrons, Nf, which can also absorb thermal energy, thus increase the 
overall heat capacity of the metal. The contribution of electrons to the total 

heat capacity, denoted c,"' , can be found as: 

where Nf is the total number of free electrons in the crystal, EF is the 
Fermi energy, kb the Boltzmann constant and T the absolute temperature. 

The mathematical steps involved in the calculation of c,," are quite 

challenging and are beyond the scope of this textbook. Only a few defining 

equations will be listed here. The heat capacity c,,"' is defined by: 

Eq. ( 6.29 ) c,"' = 

N~ 

where E is the energy of all the electrons in the crystal and is given by: 

where f,($ is the Fermi-Dirac distribution defined in Eq. ( 4.28 ) and 
g3D($ is the three-dimensional electronic density of states of free electrons 
given by: 
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Eq. ( 6.3 1 ) g,,, ( E )  = 2n2 

with m * being the electron effective mass. The temperature dependence 
of E is included in the Fermi-Dirac distribution function. 

We can see from Eq. ( 6.28 ) that the electronic contribution c,"' to the 

heat capacity depends linearly on temperature and thus can be discriminated 

from the T 3  dependence of the lattice or phonon contribution denoted c,ph 
(Eq. ( 6.27 )) at low temperatures. It is interesting to consider the ratio of 
c;' to c,ph : 

n2 Nfkb2 
-- 

ce' - 2 E, - 5 N f  kb o;, Eq. ( 6.32 ) -'-- - 
24n2 N EF T 2  

5 

where OD is the Debye temperature. By introducing the Fermi 
temperature TF such that: 

Eq. ( 6.33 ) EF = kbTF 

Eq. ( 6.32 ) becomes: 

N f  The ratio - expresses the average number of free electrons that each 
N 

atom contributes to the crystal. Eq. ( 6.34 ) shows that, as the temperature is 
increased, the contribution of the lattice to the heat capacity exceeds that of 
electrons. This occurs at a temperature To such that c,"'= c,ph or: 
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Numerically, one can find that this temperature is only a few percent of 
the Debye temperature, i.e. a few degrees K (Table 6.1). This means that the 
contribution of electrons to the heat capacity can only be observed at very 
low temperatures. 

Example 

Q: Calculate the ratio of cX;, at 4.2, 30, 77, and 296 K 

for Cu (assume OD = 340 K and EF=7 eV). 
A: We start from the expression for the above ratio: 

c,"' - 5 N, k, @A . Since Cu has two free c,ph 24n2 N EF T~ 

f electrons per atom, we can write - = 2 . This leads to: 
N 

c,"' 
which gives: - - 

fl ph 
- 1.16 (4.2K), 0.023 (30K), 0.034 

6.4. Thermal expansion 

Beside a few notable exceptions, it is commonly known that the volume of a 
heated solid increases. This phenomenon is called thermal expansion. 

If a material of length L is heated through a small temperature change 
AT, the change in length AL is proportional to the original length and to the 
change in temperature. The coefficient of linear expansion aL is called the 
thermal expansion coefficient and is defined by the following relationship: 

The linear expansion coefficients of a few solids are shown in Table 6.2: 
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Solid a~ (X 104 K“) 

NaCl 

Pb 

A1 

Ag 

Cu 

Au 

Fe 

C (Diamond) 

Ordinary glass 

Ge 

GaAs 

InSb 

Si 

A1 As 

Si3N4 

Pyrex glass 

Invar 

Quartz glass 

Table 6.2. Thermal expansion coeflcients of a few solids. [Chemical Rubber Company 19971 
[Grigoriev and Meilikhov 19971. 

As Eq. ( 6.36 ) describes, an isotropic material exhibits equal thermal 
expansion in all directions. Some cases in the real world, however, can be 
more complex than implied by Eq. ( 6.36 ). The coefficient aL can vary with 
temperature, so that the amount of expansion not only depends upon the 
temperature change but also upon the absolute temperature of the material. 

Some materials are not isotropic and have a different value for the 
coefficient of linear expansion dependent upon the axis along which the 
expansion is measured. For instance, with increasing temperature, calcite 
(CaC03) crystals expand along one crystal axis and contract (aL< 0) along 
another axis. 
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Engineers in the semiconductor field are often extremely concerned 
about the thermal expansion rate of a material when designing a device or 
system that must operate over a range of temperatures. Improperly 
packaging a semiconductor device without giving careful consideration to 
the thermal expansion properties of the materials can result in reliability 
problems and reduced lifetime of the device. As a result, most companies 
perform thermal cycling tests of their devices to determine whether or not 
thermal expansion is a possible failure mechanism. 

The problems associated with thermal expansion are most severe when 
two materials of different thermal expansion coefficients are permanently 
bonded together, such as in integrated circuits. For example, if the thermal 
expansion properties of a metal heat sink are not properly matched to the 
thermal expansion properties of the semiconductor material, the brittle 
semiconductor can crack as the device is heated and cooled. In fact copper 
and other metals exhibit thermal expansion properties that are an order of 
magnitude greater than that of semiconductors such as Si and GaAs, making 
it very problematic to attach these materials directly. In order to address this 
issue, many semiconductor devices are packaged using intermediate die 
attachment materials as well as advanced solder alloys and optimized 
package materials as illustrated in Fig. 6.4. Some examples of advanced 
packaging processes that rely on optimizing the coefficient of thermal 
expansion can be found in Chapter 16. 

Glass Epoxy/ 
Polyimide Layers 

IAu) Bondina Wire 

Internal Plating (Au) 

LeacT Frame 

3( Mold Resin 

/ 

Plating 
lr 

Die Attachment Material [solder) 

Fig. 6.4. Cut away illustration of an advanced semiconductor device package. To avoid 
cracking, stresses, and for devices where alignment is critical packaging materials must be 

chosen with compatible thermal expansion coefficients. 
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Example 
Q: A semiconductor laser is affixed to a copper heat sink 

and sealed into a package inside of a factory clean room 
environment where the ambient temperature is 20 "C. 
The lasers are then installed in scientific equipment 
monitoring gas emissions from a volcano in Hawaii. 

laser die 

I 
fixed lens 

The package also contains a collimating lens that is 
fixed in place and aligned with the central axis of the 
laser beam. If the ambient temperature in Hawaii is 
48 "C, how far off axis will the laser be when the device 
is in operation? (Assume that thermal expansion has a 
negligible effect on the in-plane expansion of the heat 
sink. Also assume that the heat sink is 3 mrn long on 
each side and 1 mm tall). 

A: Equation Eq. ( 6.36 ) describes the linear expansion of a 
AL 

material: - = a,AT . Cu has a coefficient of linear 
L 

expansion, a, , equal to 1.6% K-', The heat sink is 
originally lmm tall (L  ), and the temperature difference, 
AT, is equal to 48 "C-20 "C = 28 "C = 28 K. 
Thus, the change in length of the heat sink is equal to: 

AL = ( l . 67x l0 -~  K 1 ) ( 2 8 ~ ) ( l  mm) = 4.68 x mm 
or 0.468 pm. 

Thermal expansion means that the average distance between atoms 
increases when the temperature goes up, and is therefore related to atomic 
vibrations or phonons in a solid. It can be easily understood that at a higher 
temperature, the atomic vibrations will be more intense, the distances 
between atoms higher and therefore the overall solid volume will be larger. 
The mathematical treatment of this relationship is beyond the scope of the 
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discussion. We will merely give a brief and simple description of the 
phenomenon. 

We saw in section 5.2 that the equilibrium interatomic distance r=Ro is 
determined by the minimum of the atomic interaction potential energy U(r). 
In thermodynamics, for such a system at thermal equilibrium at a 
temperature T, the average interatomic distance is denoted <R> and is given 
by the Maxwell-Boltzmann distribution: 

Eq. ( 6.37 ) (R) = " u(Rl 
m -- 

J'e khT d~ 
-m 

By introducing the displacement x = R - R, and expressing U(R) as a 

function of x as was done in section 5.2 (Eq. ( 5.2 )), we can rewrite this 
equation as: 

or: 

For low temperatures and thus small vibrational amplitudes (x<<Ro), 
one can approximate the potential energy U(x) with terms up to the second 
order in x (i.e. x2) as was done in Eq. ( 5.3 )). This is the harmonic 

u h )  ~ , ,  -- 
approximation. In this case, the exponential k b ~  is an even function of x, 

~ ( x )  -- m -cl(x) 
xe *" is an odd function of x, and therefore: Ix e khT dx = 0 and 
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(R) = R, . This means that, in the harmonic case, the average interatomic 

distance <R> is exactly Ro, the distance corresponding to the potential 
energy minimum. 

At higher temperatures, the atomic displacement x is large enough so 
that higher order terms in Eq. ( 5.2 ) need to be included (e.g. x3), causing 

U(X) -- 
anharrnonicity effects. In this case, the exponential e kbT is not an even or 
odd function of x anymore, and the integral fraction in Eq. ( 6.38 ) is strictly 
positive. As a result, (R) > R, which means that the average interatomic 

distance becomes larger than Ro, i.e. there is thermal expansion. We see that 
thermal expansion is a direct result of anharmonicity effects in the atomic 
interaction potential. 

6.5. Thermal conductivity 

In the previous few sections, we saw that a lattice could receive and store 
thermal energy, heat through lattice vibrations i.e. by creating more 
phonons, or through free electrons in a metal by gaining more kinetic 
energy. The lattice vibrations generate waves that can propagate, while free 
electrons can move in a metal. The thermal energy can thus be transported 
from one end of the solid to another. This characteristic is called thermal 
conductivity and is also an important parameter when designing a device or 
system. 

Depending on the thermal conductivity of the materials used, heat may 
build up from the operation of the device and lead to failure of the device or 
system. Removal of excess heat has become a very critical issue in 
semiconductor design in recent years, especially in the design of modem 
high density computer chips and high power optoelectronic semiconductors. 
In the semiconductor industry, Moore's law has predicted that the number of 
transistors on a chip doubles every 18 months. This has led to both a 
reduction of the size of transistors as well as an increase in the packing 
density. The increase in transistor density has also lead to a significant 
increase in the power density (heat) in the same area that needs to be 
removed from the chip. 

The thermal conductivity of a solid is quantified through a positive 
parameter called the thermal conductivity coefficient K (read "kappa") 
which is defined as: 
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where JT is the thermal current density, i.e. the thermal energy 
transported across an unit area per unit time. This is expressed in units of 

~ . c m - ~ . i '  or ~ . c m - ~ .  .is the temperature gradient, which is the rate at 
dx 

which the temperature changes from one region of the solid to another. The 
thermal conductivity coefficient thus has the units of W.cm-'.K-' (or 
W.m".K1). Values of the thermal conductivity of a few materials are given 
below in Table 6.3 and Fig. A S  in Appendix A.3. 

Solid K (W .m-' .K-') 

Pyrex glass 1.1 

NaCl 6.4 

GaAs 5 6 

AlN 82 

InP 68 

C (Diamond) 1000 

Table 6.3. Thermal conductivities of a few solids. [Chemical Rubber Company 19971 [Adachi 
20041. 

Eq. ( 6.39 ) expresses that there is a flux of thermal energy within the 
solid as a result of a difference of temperature between two regions. The 
minus sign means that the thermal energy flows from the higher temperature 
region to the lower temperature region. This relation is analogous to the 
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electrical current which originates from a difference in electrical potential. 
In Eq. ( 6.39 ), we assumed that the thermal current and the temperature 
gradient occurred along one direction. In a three-dimensional case, the 
current and the gradient would be simply replaced by vectors. The 
simplification here does not reduce the generality of the physical concepts 
which will be derived. Moreover, in this section, we will only be interested 
in the qualitative properties of the thermal conductivity. An exhaustive 
mathematical treatment can therefore be avoided. 

Copper has become the material of choice for most heat-spreading 
applications in microelectronics because it is a material with one of the 
highest thermal conductivities and affordable costs. In some cutting edge 
devices, however, even copper is falling short of adequately removing heat 
from semiconductor devices and the engineers and materials scientists have 
had to think of alternative approaches. One such approach has been to use 
diamond because it has a thermal conductivity several times larger than that 
of copper. Commercial manufacturing of diamond heat spreading materials 
through the use of chemical vapor deposition (CVD) has reduced the 
material's cost and improved availability and made diamond heat spreaders 
a viable solution for high heat load applications, such as power laser diodes. 

Thermal conductivity can be viewed as the result of phonons (quasi- 
particle) moving from a hotter to a colder region and undergoing collisions 
with one another or against material imperfections (defects, boundaries) so 
that their energy can be transferred in space. These collisions are also often 
referred to by using the more general term scattering. The mathematical 
model commonly followed makes use of the kinetic theory of gases, in 
which: (i) each quasi-particle is modeled as a free moving particle in space 
with a momentum and an energy, (ii) which is subject to instantaneous 
collision events with other particles, (iii) the probability for a collision to 
occur during an interval of time dt is proportional to dt, (iv) and the particles 
reach thermal equilibrium only through these collisions. 

Similar to the heat capacity, there are two contributions to the thermal 
conductivity: a lattice contribution (phonons) denoted K,, and an electronic 

contribution (electrons) denoted K ,  . 
The lattice contribution K , ~  can be regarded as the thermal conductivity 

of a phonon gas. Using the kinetic theory of gases, the following expression 
can be derived for the lattice contribution: 
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where $1 is the heat capacity per unit volume of the solid 

considered and vo is the average phonon velocity. The parameter A is the 
mean free path of a phonon between two consecutive collisions and is 
central to the thermal conductivity process. 

There are two types of phonon-phonon interactions in crystals. The first 
one involves what is called normal processes which conserve the overall 

- d d  

phonon momentum: k,  + k,  + k,  = 0 ,  but not phonon number (phonons are 
+ d 

bosons and are not subject to particle number conservation) where k, , k,  
d 

and k,  are the momenta of three interacting phonons. The second type is - - -  - 
called umltlapp processes and is such that: k, + k,  + k,  = nK , where n=l ,  2, 

d 

3. .. is an integer, and K is a reciprocal lattice vector. We recall from 
Chapter 4 and Chapter 5 that electron and lattice momentum in a crystal is 
only conserved give or take a reciprocal lattice vector. Eq. ( 6.40 ) was first 
applied by Debye to describe thermal conductivity in dielectric (insulating) 
solids. 

At very low temperatures, i.e. T << a,, the average number of 
phonons given in Eq. ( 5.33 ) tends toward zero. The phonon-phonon 
scattering becomes negligible and the mean free path A is determined by the 
scattering of phonons against the solid imperfections or even the solid 
boundaries. A thus increases until it is equal to the geometrical size of the 

sample. Then, the thermal conductivity behaves as the heat capacity cfh 
and has a T' dependence (Eq. ( 6.27 )). In particular, K,, -t 0 when 

T+ 0 .  These are shown in Fig. 6.5(a) for A and Fig. 6.5(b) for K,, . 
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Temperature (Logarithmic) Temperature (Logarithmic) 

Fig. 6.5. Variation of (a) phonon mean free path and (b) lattice thermal conductivity as a 
function of temperature. At low temperatures, as the phonon-phonon interaction and 

scattering decrease, the phonon mean free path is determined by crystal imperfections which 
are independent of temperature, and the thermal conductivity follows a T' dependence. At 

high temperatures, phonon-phonon scattering increases and both the phonon mean free path 
and the thermal conductivity decrease as T-' . 

For higher temperatures, i.e. T >> O D ,  we saw in section 5.6 that the 
average number of phonons is proportional to T. Thus, phonon-phonon 
interactions become increasingly dominant as the temperature increases. 
Since the collision frequency should be proportional to the number of 
phonons with which a phonon can collide, A ends up being proportional to 
l/T at higher temperatures, as shown in Fig. 6.5(a). At the same time, we 

saw that in the heat capacity C,ph saturates at high temperatures 

(Eq. ( 6.21 )). The thermal conductivity K,, therefore has a I/T dependence 

in this regime, as shown in Fig. 6.5(b). 
The other contribution to the thermal conductivity arises from electrons 

and mainly concern metals which have a large concentration of free 
electrons. Here again, the kinetic theory of gases leads to an expression of 
the electronic contribution K,, similar to Eq. ( 6.40 ): 

Eq. ( 6.41 ) K,, = 
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where ($1 is the electronic contribution to the heat capacity per unit 

volume of the solid considered and v, is the average electron velocity. The 
parameter A, is the mean free path of an electron between two consecutive 
collisions. We will not in this Chapter discuss the various scattering 
mechanisms for an electron because of their large number and complexity. 
Electronic transport and relaxation times will be discussed in more detail in 
Chapter 8. Nevertheless, we will conclude by providing a numerical 
estimate of this contribution and compare it to the lattice contribution. 

At room temperature, on the one hand, a typical phonon has a mean free 
path of 3x cm, a velocity of 10' cm.s-', and a heat capacity of 25 
J.K-'.mol-', yielding a thermal conductivity of K,, a2.5 W.crn-'.K". On the 

other hand, for a pure (perfect) metal, an electron has a mean free path of 
lo-' cm, a velocity of 10' cm.s-', and a heat capacity of 0.5 J.K-'.mol", 
yielding a thermal conductivity of K,, a250 W.cm-'.K". This clearly shows 

that the electrons in a pure metal are responsible for almost all the heat 
transfer. However, if the metal has many defects, the phonon contribution 
may be comparable with the electron contribution. 

6.6. Summary 

In this Chapter, we have shown that phonons in solids are responsible for 
important contributions to the thermal properties of crystals. This includes 
heat capacity, thermal expansion and thermal conductivity. The Debye 
model of phonons was presented, and it was shown, that despite the 
considerable simplifications made to the spectrum, the model still accurately 
describes the temperature dependence of the heat capacity, and the thermal 
conductivity coefficients as measured experimentally in crystals. 
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Problems 

In your own words, describe the meaning of the phonon density of 
states. 

In your own words, describe the meaning of the Debye frequency and 
the Debye temperature. Develop a simple equation relating the Debye 
frequency, Debye temperature, and Debye wavelength. 

Determine the Debye temperature OD, Debye wavelength, and the 
Debye frequency COD for diamond given the lattice constant for this 
material is 3.56 A, the density of diamond is 3 . 5 2 ~ 1 0 ~  kg.m4, and that 
the speed of sound in diamond is 12,000 m.s-I. 

In your own words, describe the meaning of heat capacity. How is heat 
capacity related to specific heat? 

Starting from the expression of the total energy carried 

vibrations in Eq. ( 6.19 ), show that the heat capacity Cv 

by the lattice 

= (3. can 

be written as: 
0" 

It takes 450 cal to raise the temperature of a metallic sample from 20 "C 
to 35 "C. What is the heat capacity of the metal sample? If the sample 
has a mass of 78 g, what is the specific heat of the sample? 

The specific heat of metals is dominated by the electronic contribution 
at low temperatures, and by phonons at high temperatures. At what 
temperature are the two contributions equal in rubidium? Note that 
~ 2 . 4 1  mJ/(mole K ~ )  for rubidium. Briefly describe your thinking. 

The figure below illustrates measurements of the specific heat (plotted 
as CIT versus p) for a crystalline element. Use what you know about 
the origins and temperature dependence of the specific heat capacity to 
determine whether the element is Na or Si. Discuss both possibilities. 
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(Temperature (K)T 

Experimental data of the specific heat of an unknown element. 

9. In your own words, describe the meaning of thermal expansion in solid 
state engineering. 

10. Look up in tables or reference books the room temperature lattice 
constants for the following crystals: aluminum, copper, iron, silicon, 
germanium, and diamond. Using the coefficients of linear expansion, 
plot the values of the lattice constants up to a temperature of 1000 O C .  

11. In your own words, briefly describe the meaning of thermal 
conductivity and the physical processes that influence the thermal 
conductivity. 

12. Diamond is an electrical nonconductor, however the thermal 
conductivity of diamond is greater than the thermal conductivity of 
copper for T > 40 K. How can this be explained? 
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7.1. Introduction 

In Chapter 4, we discussed the quantum mechanical states of electrons in a 
periodic crystal potential and the resulting formation of energy bands. We 
also introduced the concept of effective mass, that of holes, and the Fermi 
energy which provides an easy way to differentiate a semiconductor from a 
metal. 

In semiconductor devices, most of the properties of interest have their 
origins in the electrons in the conduction band and the holes in the valence 
band. Two major functions are important in understanding the behavior of 
these electrons and holes: the density of states and the Fermi-Dirac 
distribution function, both of which have been discussed in Chapter 3 and 
Chapter 4. In this Chapter, we will establish the basic relations and 
formalism for the distribution of electrons in the conduction band and holes 
in the valence band at thermal equilibrium. We will also introduce the 
notion of doping and extrinsic semiconductors, in contrast to pure or 
intrinsic semiconductors. 
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7.2. Density of states 

In Chapter 4, we calculated the density of states of electrons of the 
conduction band in a three-dimensional semiconductor to be: 

where me is the electron effective mass in the conduction band, Ec is the 
bottom of the conduction band and V is the volume of the crystal 
considered. The subscript "c" in g, indicates that we are considering the 
conduction band. This expression was calculated for a single band minimum 
and is valid for direct-gap semiconductors, such as GaAs, where the 
conduction band minimum occurs at the zone center. However, in the case 
of many others semiconductors, one has to take into account the degeneracy 
or number gd of equivalent conduction-band minima in the first Brillouin 
zone. 

For example, we saw in Fig. 4.17(a), that the conduction band minimum 
in Ge occurred along the <1 11> direction. As there are eight equivalent 
< I l l >  directions, there are eight equivalent conduction band minima in Ge. 
However, because the minima occur exactly at the boundary of the first 
Brillouin zone, each minimum is shared with two neighboring zones and 
therefore only contributes one half to the density of states. Thus gd,,=4, i.e. 
the expression in Eq. ( 7.1 ) needs to be multiplied by a factor 4. In addition, 
we also saw in Fig. 4.17(b) that the conduction band minimum in Si occurs 
at k FZ 0.8(2 n / a )  in the first Brillouin zone along the <loo> direction. Since 
the <loo> direction has a six-fold symmetry, this gives rise to six equivalent 
conduction band minima within the first Brillouin zone, and g ~ 6  because 
the minimum is strictly inside the first Brillouin zone. The expression in 
Eq. ( 7.1 ) then needs to be multiplied by 6. Finally, for GaAs, as shown in 
Fig. 4.17(c), the conduction band minimum occurs at the zone center and the 
expression in Eq. ( 7.1 ) remains unchanged, i.e. g ~ l .  

In other words, the full density of states of electrons in the conduction 
band is (E>Ec): 
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Example 
Q: GaN has the wurtzite crystal structure. The first 

Brillouin zone is shown in the figure below. From the 
calculation of the band structure of GaN, it can be seen 
that there is a shallow conduction band minimum at the 
symmetry point K in the reciprocal lattice. To calculate 
the density of states given by the expression 

($)'(i- E,)%, what is the g,  (4 = , g,  
2n 

degeneracy factor gd which should be used? 

A: The point K is equally shared by three adjacent Brillouin 
zones. Because the first Brillouin zone has six-fold 
symmetry, there are six equivalent points K in the zone. 

1 
This leads to a total degeneracy of: 6 x - = 2 . 

3 

The value of the electron effective mass me was determined in 
Eq. ( 4.27 ), in the simple case of a one-dimensional crystal, as the curvature 
of the conduction band or, in other words, the second derivative of the 
energy spectrum E(k) such that E(k) can be approximated as: 

A 
Eq. ( 7.3 ) ~ ( k )  = - k 2  

2% 
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In the more general case of a three-dimensional crystal, the effective 
mass is a 3x3 matrix and each element is function of the direction in which - 
the two derivatives of the energy spectrum ~ ( k )  are performed, k,, k, or k,. 

If the energy spectrum can be approximated as: 

where m,, my, and m, correspond to the values of the second partial 
derivatives in the k,, k, and kz-directions, respectively; then the electron 
effective mass me that is considered in Eq. ( 7.2 ) is the average of these 
three masses and is given by: 

In the particular case when the energy spectrum can be approximated as: 

where m, and m, are customarily called the transverse electron effective 
mass and the longitudinal electron effective mass, respectively; then the 
electron effective mass me that is considered in Eq. ( 7.2 ) is the average of 
these three masses and is given by: 

A similar relation can be obtained for the electronic density of states in 
the valence band (EV<E): 

where mh is the hole effective mass which accounts for the curvature of 
the valence band, and Ev is the top of the valence band. In this expression, 
there is no degeneracy factor from crystal symmetry because the top of the 
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valence band is unique and always occurs at the center of the first Brillouin 
zone. 

We saw in section 4.4 that the valence band of a semiconductor is 
composed of two main sub-bands, the heavy-hole and light-hole bands, each 
with a different curvature and thus with their own hole effective masses: mhh 
and mlh, for the heavy-hole effective mass and light-hole effective mass, 
respectively. As a result, the hole effective mass mh that is considered in Eq. 
( 7.8 ) is the following average of these two masses: 

( % 7)" Eq. ( 7.9 ) m, = m,, + m,h 

7.3. Effective density of states (conduction band) 

As discussed in sub-section 4.2.8, the density of states merely provides 
information about the allowed energy states. To obtain the concentration of 
electrons in the conduction band, we must multiply this density of states 
with the Fermi-Dirac distribution (Eq. ( 4.28 )) which gives the probability 
of occupation of an energy state: 

Expanding this expression using Eq. ( 7.2 ) and Eq. ( 4.28 ), we get: 

E - E ,  
Making the change of variable y = 

1 
, and thus dy = -dE, 

kbT kbT 
the previous integral becomes: 

Eq. ( 7.12 ) 



Fundamentals of Solid State Engineering 

We can define the Fermi-Dirac integral as in Eq. ( 4.56 ): 

using: 

Eq. ( 7.12 ) can be rewritten as: 

and therefore Eq. ( 7.1 1 ) becomes: 

h 
Remembering that f t  = - , this can be simplified as: 

2n 

or: 

Eq. (7.18 ) n = N,F, 

with: 
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N, is called the effective conduction band density of states. The Fermi- 
Dirac integral defined in Eq. ( 7.13 ) is often approximated with simpler 
expressions. One commonly encountered situation is when 
E,  - E,  >> kbT . A semiconductor in this situation is called a non- 

degenerate semiconductor. Let us give a numerical example. At room 
temperature (T=300 K), we have kbT=25.9 meV. Therefore, we can consider 
that we are in the presence of a non-degenerate semiconductor when the 
Fermi energy EF is away from the bottom of the conduction band Ec by a 
few times 25.9 meV. This is illustrated in Fig. 7.l(a). For most of the 
practical calculations, a distance of 3kbT or more, i.e. E, - E, 2 3kbT,  is 

sufficient. 

Fig. 7.1. Illustration of the position of the Fermi level with respect to the conduction band (a) 
in a non-degenerate n-type semiconductor: the Fermi energy is far from the edge of the 

conduction band. (b) In a degenerate semiconductor n-type semiconductor, the Fermi energy 
is close to the edge of the conduction band. 

This approximation means that the Fermi energy is rather far from the 
bottom of the conduction band and inside the bandgap, and that x<<-1 in 
Eq. ( 7.13 ). Therefore, the exponential function dominates in the 
denominator for all positive values of y>O, i.e.: 
1 + exp(y - x) = exp(y - x) .  ~ h u s :  
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The integral on the right hand side can be transformed by integrating by 
parts: 

Making now the change of variable Y = y1l2, and thus 

1 -112 dY = - y dy , we get the well known integral: 
2 

Substituting in Eq. ( 7.18 ), we obtain for a non-degenerate 
semiconductor: 

F, (x) = ex 

and from Eq. ( 7.1 8 ) and Eq. ( 7.14 

This expression is much simpler than Eq. ( 7.18 ) and is more amenable 
for calculations. However, when the Fermi energy is close to or even higher 
than the bottom of the conduction band, we have a so called degenerate 
semiconductor, we cannot make this approximation anymore and the Fermi- 
Dirac integral has to be used. 

An extreme case is when E, - E, >> k,T, corresponding to highly 

degenerate semiconductors, in which the Fermi level lies deeply inside the 
conduction band. Electrical properties of such semiconductors are similar to 
those of metals. At this condition, the Eermi-Dirac integral can be 
approximated as: 
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F, - (x) xy2 

Fig. 7.2 shows the plots of the Fermi integral and the two 
approximations mentioned above. The exponential approximation or the 312 
power approximation agrees very well with the Fermi integral when x<<-1 
or x>>-1. However, when x-0, the Fermi-Dirac integral has to be used. 

Fig. 7.2.  The Fermi integral of order % and its approximations. 

Fortunately, we are almost exclusively concerned with non-degenerate 
semiconductors. For example, InSb has a bandgap of 0.17 eV at 300 K, 
which is one of the smallest bandgaps among all the semiconductors. 
Assume InSb is pure and perfect (or so called "intrinsic", see section 7.6), 
the Fermi energy is about in the middle of the bandgap, Ec - EF = E, 1 2 ,  

which is about 85 meV at 300K. Note that kbT=25.9 meV, the condition 
Ec - EF 2 3kbT is satisfied. Thus the exponential form can be used. Most 

of the semiconductors have a larger bandgap, which means the 3kbT 
condition is valid at room temperature. 
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7.4. Effective density of states (valence band) 

A similar derivation can be performed for the concentration or density of 
holes p in the valence band: 

which we obtained from Eq. ( 7.10 ) after replacing the density of states 
with that in the valence band and the limit of integration for an energy 
below the top of the valence band EV. Moreover, the Ferrni-Dirac 
distributionf,(E) has been replaced with (see Eq. ( 4.58 )): 

which gives the probability of the state at energy E not to be occupied by 
an electron, and thus to be occupied by a hole. 

Expanding Eq. ( 7.22 ) using Eq. ( 7.8 ) and Eq. ( 7.23 ), we get: 

Ev -E 
Using the change of variable y = 

1 
, thus dy = --dE, and: 

kbT kbT 

Eq. ( 7.25 ) x = Ev - EF 

kbT 

in the previous integral and identifying it with the Fermi-Dirac integral, 
we obtain a relation similar to Eq. ( 7.17 ) forp: 
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or: 

Eq. ( 7.27 ) p = N,F, -(Evk,?) 
2 

where: 

Eq. ( 7.28 ) N,, = 2  [2d~rmh r2 
is called the effective valence band density of states. 

Example 
Q: Find the ratio of the heavy-hole concentration to the 

light-hole concentration for GaAs. 
A: We know that the hole concentration is related to the 

hole effective mass through: 

The Fermi-Dirac integral is the same for the heavy-hole 
and light-hole bands, and the only difference comes 
from the effective masses. Therefore, we can write: 

X 
= [ . In GaAs, this ratio is: 
P lh 

Similar to what we saw in section 7.3, the general expression in 
Eq. ( 7.18 ) can be simplified in the case of a non-degenerate semiconductor 
for which E, - Ev >> kbT . This situation is of most interest and is 

illustrated in Fig. 7.3(a). It corresponds to the one where the Ferrni energy is 
rather far from the valence band and inside the bandgap. 

In this situation, the concentration of holes has a simplified expression 
similar to Eq. ( 7.21 ): 
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Eq. ( 7.29 ) p = NN, exp [ E v ~ : ~  1 

Fig. 7.3. Illustration of theposition of the Fermi level with respect to the valence band (a) in 
a non-degenerate p-type semiconductor: the Fermi energy is far from the edge of the valence 
band. (b) In a degetzevate p-type setniconductor., the Fermi energy is close to the edge of the 

valence band. 

7.5. Mass action law 

We saw that a non-degenerate semiconductor has its Fermi energy far away 
from both the bottom of the conduction band and the top of the valence 
band, by about a few times kbT (25.9 meV at room temperature). This 
situation is more often encountered in practice that one may believe, and 
most of the discussion from now will therefore be in this approximation 
unless stated otherwise. 

An important parameter is the product of n and p given in Eq. ( 7.21 ) 
and Eq. ( 7.29 ) given by: 

or: 

Eq. ( 7.30 ) np = N,N, exp - - I: k 3  
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where Eg=EcEV is the bandgap energy of the semiconductor. This 
relation is very important, as it is valid for any value of n or p. This relation 
is usually called the mass action law. However, it does not hold in the 
degenerate semiconductor case. It is common practice to introduce the 
intrinsic carrier concentration, ni, which is defined as: 

Eq. ( 7.3 1 ) n12 = np = N,N, exp - -- [ k 3  

This parameter is a function of the semiconductor effective masses and 
the temperature. This concentration is qualified as "intrinsic" because for an 
intrinsic semiconductor, the number of electrons and holes are equal, i.e. 
n=p, and we thus have from the previous relation: 

Example 
calculate the intrinsic electron concentration for 
undoped GaAs at room temperature (300 K). 
For a homogeneous non-degenerate semiconductor, like 
undoped GaAs, the mass action law gives the intrinsic 
electron concentration as: 

where E, is the bandgap of GaAs (1.424 eV). For GaAs, 
the degeneracy factor g d  is equal to 1 because the 
conduction band minimum is at the center of the 
Brillouin zone. In addition, the hole effective mass mh is 
calculated from the heavy-hole and light-hole effective 

v x r  masses: m, = m,, + m,: . We therefore get: 



Fundamentals of Solid State Engineering 

x exp - i 1.424~ 1.60218~ lo-'' 

2 x (1.38066 x l ~ - ' ~ ) x  300 

= 2.06 x 10" m-3 

7.6. Doping: intrinsic vs. extrinsic semiconductor 

The energy band structures of the semiconductors that have been discussed 
so far corresponded to those of an intrinsic semiconductor, which is a pure 
and perfect semiconductor crystal. At a temperature equal to the absolute 
zero (0 K), the valence band of such a crystal is completely filled with 
electrons and there is no electron in the conduction band. Indeed, we saw 
that the Fermi energy of a semiconductor lies within a forbidden energy gap 
(sub-section 4.2.7). Since the Fermi-Dirac distribution function has an exact 
step shape at T=O K (Fig. 4.12), there is no electron with an energy E>EF, 
including the conduction band, and all the electrons are located at an energy 
E<EF. 

This phenomenon directly results from the fact that the outer shell of 
each constituent atom of a semiconductor is fully filled with four electrons. 
Counting the number in the four shared bonds then gives a total of eight 
electrons. For example, in the case of a silicon crystal, illustrated in Fig. 7.4, 
each Si atom is bonded to four neighboring Si atoms. A Si atom originally 
has four electrons in its outer shell (it is in the column IV of the periodic 
table), each of which is shared with one different neighboring atom. Every 
Si atom has therefore a total of eight electrons: its original four electrons and 
one electron from each of the four neighboring Si atoms. 

We thus see that all the outer shell electrons are shared into bonds and 
thus there is no extra free electron which can move. Moreover, all the outer 
shell "spots" are filled with electrons, therefore there is no room for an 
electron to move to if displaced by a field. As a result, the electrical 
conductivity of a pure semiconductor is "low" (only excited states can 
conduct). This is why a pure semiconductor is an insulator at the absolute 
zero temperature. 
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Fig. 7.4. Schematic of a Si semiconductor crystal showing the distribution of electrons in the 
outer shell of each Si atom. Each Si atom has eight electrons in this shell: four from its own 

outer shell and one from each of the four nearest Si atoms to which it is covalently bonded to. 

In order to either increase the number of free electrons or increase the 
number of "spots" (empty energy levels) where a potential electron can 
move into, we need to replace some of the Si atoms with other elements, 
called dopants, which are not isoelectronic to it, i.e. not with the same 
number of outer shell electrons. This process is called doping, which results 
in an extrinsic semiconductor. A dopant is thus an impurity added to the 
semiconductor crystal. Because the dopant replaces or substitutes a Si atom, 
it is called a substitutional dopant. The concentration of such dopants 
typically introduced in a semiconductor is in the range of 1015 to 1019 ~ m ' ~ ,  
which is low in comparison with the concentration of atoms in a crystal 
(typically ~ m - ~ ) .  There are two types of doping: n-type doping andp- 
type doping, depending on the nature of the dopant introduced. Such a 
dopant can be introduced intentionally or unintentionally during the 
synthesis of the semiconductor crystal. 

The n-type doping is achieved by replacing a Si atom with an atom with 
more electrons in the outer shell. This can be achieved for example by using 
phosphorus (P), an element from the column V of the periodic table, which 
has five electrons in its outer shell. The result is shown in Fig. 7.5. 

As we can see, four of the electrons in the outer shell of the P atom are 
involved in covalent bonds with its four neighboring Si atoms. The fifth 
electron is therefore free to move in space. The P atom is therefore called a 
donor in silicon because it can give away an electron which can in turn 
participate in electrical conductivity phenomena. Once an electron is given 
away, the phosphor atom becomes a positively charged ion and is then 
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called an ionized donor. This ionization process is generally achieved 
through thermal excitation of an electron from the outer shell of the donor 
atom. 

Fig. 7.5. Schematic of a Si semiconductor crystal with one Si atom replaced by a P atom to 
achieve n-type doping. The dotted circle symbolizes the outer shell of the P atom which 

contains 5 electrons. Because the fifth electron does not contribute to the bonding, it can be 
free (ionized) to move inside the crystal. P is thus called a donor. 

Because the dopant creates a perturbation to the periodicity of the crystal 
lattice, it gives rise to additional energy levels in the bandgap. When the 
dopant concentration is low in comparison with the density of crystal atoms, 
the dopant energy level can be considered as isolated, i.e. there is no energy 
band associated with it. We can then talk about a donor energy level Ed, as 
shown in Fig. 7.6(a). Moreover, because the extra electron around the P 
atom is easily ionized, i.e. it has a small binding energy, with respect to the 
conduction band. The energy of the donor electron Ed is closer to the 
conduction band than the valence band. The ionization energy of the dopant 
is the difference EcEd. 
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Fig. 7.6. Schematic of the energy levels introduced by: (a) a donor or a (b) an acceptor 
dopant in a semiconductor c ystal. The energy level of a donor is closer to the edge of the 

conduction band, whereas that of an acceptor is closer to the edge of the valence band. 

The other type of doping, p-type doping, is achieved by replacing a Si 
atom with an atom with fewer electrons in the outer shell. This can be 
achieved for example by using gallium (Ga), an element from the column I11 
of the periodic table, which has three electrons in its outer shell. The result 
is shown in Fig. 7.7. 

Fig. 7.7. Schematic of a Si semiconductor cystal with one Si atom replaced by a Ga atom to 
achieve p-type doping. The dotted circle symbolizes the outer shell of the Ga atom which 

contains 3 electrons. The Ga atom can accept one more electron from a neighboring bond. 
Ga is thus called an acceptor. 
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As we can see, all three electrons in the outer shell of the Ga atom are 
involved in covalent bonds with three of its four neighboring Si atoms. 
There thus remains an open location that can be filled with an electron. The 
Ga atom is therefore called an acceptor in silicon because it can "accept" or 
"capture" an extra electron from a neighboring covalent bond, thus leaving a 
new available location for electron capture. Once an electron is captured, the 
gallium atom becomes a negatively charged ion and is then called an ionized 
acceptor. This movement of electrons is involved in electrical conductivity 
phenomena. Remembering the concept of holes discussed in sub-section 
4.3.3, we can see that this electron movement is equivalent to the movement 
of a hole in the opposite direction, as illustrated in Fig. 7.8. The Ga atom, an 
acceptor (of electrons) in silicon, can then be also considered as a donor of 
holes. 

Here again, the p-type dopant is a perturbation of the periodicity of the 
crystal lattice and leads to additional localized energy levels (i.e. not bands) 
in the bandgap at Ea, which is called acceptor energy level, as shown Fig. 
7.6(b). Because the Ga atom easily captures an electron, E, is closer to the 
valence band than the conduction band. The ionization energy of the p-type 
dopant is the difference E,-Ev. 

Fig. 7.8. Schematic showing the movement of a hole in a Si semiconductor crystal dopedp- 
type using a Ga atom. The hole is represented by an open circle. When the Ga atom accepts 
an electron, the process can be equivalently viewed as the Ga atom releasing a hole inside 

the ciystal. 

A semiconductor may contain donors (with a concentration ND) and 
acceptors (with a concentration NA) at the same time. We then talk about 
compensation and say that the semiconductor is compensated. The overall 
behavior of this semiconductor depends on the relative difference between 
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ND and NA. In either case of n-type and/or p-type doping, the mass action 
law expressed in Eq. ( 7.30 ) remains valid as long as we have a non- 
degenerate semiconductor. 

Table 7.1 lists the most common dopants with their ionization energies 
for the following semiconductors: Si, Ge, GaAs and InP. Additional data on 
other impurities and their ionization energies will be given in Table 14.2. 

Impurity Type Ionization energy (meV) 

P Donor 45.31 

As Donor 53.5 1 

Sb Donor 42.5 1 

B Acceptor 45 

A1 Acceptor 57 

Ga Acceptor 65 

(b) Ge 

Impurity Type Ionization energy (meV) 

P Donor 12.76 

As Donor 14.04 

Sb Donor 10.19 

B Acceptor 10.47 

(c) GaAs 

Impurity Type Ionization energy (meV) 

Si Donor 5.854 

Ge Donor 5.908 

S Donor 5.89 

Be Acceptor 3 0 

Mg Acceptor 3 0 

Zn Acceptor 3 1.4 

C Acceptor 26.7 
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(d) InP 

Impurity Type Ionization energy (meV) 

Si Donor 5.7 

S Donor 5.7 

Sn Donor 5.7 

Be Acceptor 3 0 

Mg Acceptor 3 0 

Zn Acceptor 35 

Table 7.1. Dopants and ionization energies for: (a) Si (b) Ge (c) GaAs [Sze 19811 [Wolfe et 
al. 19891; and (d) InP. [http://www.ioffe.rru/SVA/NSM/Semicond/InP/index.html.] 

7.7. Charge neutrality 

A semiconductor crystal, be it intrinsic or extrinsic, must be electrically 
neutral at a macroscopic scale. Indeed, even if dopants are introduced, they 
are electrically neutral, and therefore the semiconductor crystal remains 
globally neutral too. As the dopants get ionized, they create mobile electrons 
and holes in the crystal. But, there is no persistent accumulation of electrical 
charges. Even in a compensated semiconductor, overall charge neutrality 
remains. 

Before mathematically expressing the electrical neutrality condition, we 
must first count all the electrical charges present in the crystal. The negative 
charges include the electrons in the conduction band, with a concentration n, 
and the ionized acceptors with a concentration NA'. The positive charges 
include the holes in the valence band, with a concentration p,  and the 
ionized donors with a concentration N ~ + .  The charge neutrality relation can 
then be written as: 

For a given semiconductor crystal, the concentrations n and p solely 
depend on the Fermi energy EF through Eq. ( 7.21 ) and Eq. ( 7.29 ) in the 
non-degenerate case, or Eq. ( 7.18 ) and Eq. ( 7.27 ) in the general case. The 
concentrations of ionized donors N ~ '  and acceptors NA' depend also on the 
Fermi energy for a given dopant nature, the temperature T, and total 
concentration as follows: 
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where EF is the Fermi energy, Ed and E, are the donor and acceptor 
energy levels in the bandgap respectively, ND and NA are the total donor and 
acceptor concentrations respectively. The factor 2 in Eq. ( 7.34 ) arises 
because the donor atom can in practice only be singly occupied by an 
electron (electron-electron repulsion will prevent double occupation), and 
the factor 4 in Eq. ( 7.35 ) arises for the same reason and the fact that there 
are two degenerate sub-bands in the valence band at the center of the 
Brillouin zone: the heavy-hole band and the light-hole band (sub-section 
4.4.3). Similar to the Fermi-Dirac distribution, the Eq. ( 7.34 ) and 
Eq. ( 7.35 ) are derived from statistical physics. 

The charge neutrality equation is a very important property because it 
gives an implicit equation which can be used to determine the Fermi energy. 
Once the Fermi energy is determined, the concentration of electrons in the 
conduction band and that of holes in the valence band can be readily 
calculated through Eq. ( 7.21 ) and Eq. ( 7.29 ) in the non-degenerate case, 
or Eq. ( 7.18 ) and Eq. ( 7.27 ) in the general case. 

7.8. Fermi energy as a function of temperature 

An example of such calculation is given here, first for an intrinsic and then 
for an n-type extrinsic and non-degenerate semiconductor. 

In the intrinsic case, we assume there is no dopant, i.e. the total 
concentration of dopant is NrNA=O. Substituting in Eq. ( 7.33 ), we 
therefore obtain Eq. ( 7.32 ) again. Now, by identifying n in Eq. ( 7.21 ) and 
Eq. ( 7.32 ), we can write an expression for the Fermi energy: 
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which becomes, knowing that Eg=EcEV: 

After taking the logarithm of this relation: 

or: 

E,:+E, 1 
Eq. ( 7.37 ) EF = 

2 2 

This equation shows that the Fermi energy in an intrinsic semiconductor 
lies near the middle of the bandgap, and is offset by an amount that varies 
with temperature. At the absolute zero temperature, the Fermi energy is 
exactly at the middle of the bandgap. 

Example 
Q: Determine how far the Fermi energy is from the middle 

of the bandgap of GaAs at 296 K. 
A: The Fermi energy is given the expression: 

Ec + E v  1 
E, = . The energy difference 

2 2 

between the Fermi energy and the middle of the 
bandgap is therefore given by the logarithm function: 

Ec + Ev 1 
EF - , which is given by the 

2 2 

. In GaAs, the degeneracy 
2 

factor gd is equal to 1 because, the conduction band 
minimum is at the center of the Brillouin zone. In 
addition, the hole effective mass mh is calculated from 
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the heavy-hole and light-hole effective masses: 

Y X X  mh2  = mhh + mlh . This leads to: 

For an extrinsic semiconductor, an expression similar to Eq. ( 7.37 ) 
cannot be easily obtained, because one needs to estimate the concentrations 
of ionized donors (NDf) or acceptors (NJ as a function of the total 
concentrations, which is beyond the scope of this textbook. Nevertheless, 
the following discussion will enable us to qualitatively understand the 
variation of the Fermi energy as a function of temperature. 

We know that, at the absolute zero temperature (T=O K), the Fermi 
energy EF is such that all the electrons have an energy below EF and no 
electron has an energy higher than EF. 

Therefore, in an n-type doped semiconductor at T=O K, the Fermi energy 
is located between Ec and Ed, as illustrated in Fig. 7.9(a), which means that 
the Fermi energy is much closer to the bottom of the conduction band than 
in the case of an intrinsic semiconductor. This proximity has the very 
important consequence that the concentration of electrons in the conduction 
band is much larger than for an intrinsic semiconductor, as a result of the 
shape of the Fermi-Dirac distribution shown in Fig. 4.12, when the 
temperature is raised. These electrons can easily participate in electrical 
conduction phenomena. 

By contrast, in a p-type doped semiconductor at T=O K, the Fermi 
energy EF is located between EV and E,, as illustrated in Fig. 7.9(b), which 
means that the Fermi energy is much closer to the top of the valence band 
than in the case of an intrinsic semiconductor. This proximity also has the 
very important consequence that the concentration of holes in the valence 
band is much larger than for an intrinsic semiconductor, as a result of the 
shape of the Fermi-Dirac distribution shown in Fig. 4.12, at room 
temperature. And these holes can easily participate in electrical conduction 
phenomena. 
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Fig. 7.9. Position of the Fernzi energy at T=O K in (a) an n-type semiconductor: it is located 
between the donor energy level and the bottom ofthe conduction band; and (b) in a p-type 
semiconductor: it is located between the acceptor energy level and the top of the valence 

band. 

For very high temperatures, all the donors or acceptors are ionized and 
we have: ND'=ND or N ~ + = N ~ .  Thus, the contribution from dopants to the 
charged carriers is limited, which is typically to a maximum of 1019 ~ m - ~ .  At 
the same time, the intrinsic contribution to the concentrations of electrons 
and holes, given by Eq. ( 7.32 ), is such that (take T+ a): 

Moreover, from Eq. ( 7.19 ) and Eq. ( 7.28 ), we saw that the effective 

density of states N, and N, both increase as T' . Therefore, the intrinsic 

contribution to n and p also increases as T' , i.e. is not limited when the 
temperature increases, unlike the contribution from dopants. The charge 
neutrality relation in Eq. ( 7.33 ) then becomes: 

Eq. ( 7.39 ) n = p 

This means that at very high temperatures, the charge carriers in an 
extrinsic semiconductor behave as in an intrinsic semiconductor. This also 
means that the Fermi energy tends to the expression given in Eq. ( 7.37 ). 
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From these qualitative arguments, we can schematically illustrate the 
evolution of the Fermi energy as a function of temperature in Fig. 7.10 for 
an n-type and ap-type semiconductor. 

Conduction band Conduction band 
Ec Ec 
Ed 

Fig. 7.10. Evolution of the Fermi energy as a function of temperature in a: (a) n-type or (b) 
p-type semiconductor crystal. As the temperature is raised, the position of the Fermi energy 

shlftsfrom its position in Fig. 7.9 to the position for an intrinsic semiconductor. 

7.9. Carrier concentration in an n-type semiconductor 

Before concluding this section on the electrical charge distribution at 
equilibrium, let us consider the example of a non-degenerate, n-type doped 
semiconductor. Here again, we will not go in a detailed numerical analysis, 
but will provide the main qualitative results. The total dopant concentration 
will be denoted ND. Assuming there is no acceptor (NA=O), the charge 
neutrality relation in Eq. ( 7.33 ) is now: 

Eq. ( 7.40 ) n = p + Ni 

Several levels of approximations, corresponding to several temperature 
regimes, can be considered to further simplify this expression. But before 
continuing the discussion, we should point out that holes in this 
semiconductor can only originate from the intrinsic contribution, not an 
extrinsic source such as a dopant (we chose NA=O). 

The first regime corresponds to high temperatures. As discussed in the 

previous sub-section, all the donors are ionized ( N i  = N, ). However, the 
concentrations of electrons n and holes p are much higher than the total 
concentration of donors ( n , p  >> N,), and they therefore obey the 
expressions derived for the intrinsic case, i.e.: 
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Eq. (7.41 ) n  = p a n i  = J m e x p  - [ &) 
As the temperature is lowered, while the donors remain ionized 

( N i  = N D  ), the intrinsic contribution to the concentrations of electrons and 
holes diminishes. Below a certain temperature, these contributions become 
negligible in comparison to N i  or ND. In this second temperature regime, p 

can be neglected ( p  << N i )  because the only contribution to p is the 
intrinsic contribution. Therefore, Eq. ( 7.40 ) becomes: 

Eq. ( 7.42 ) n  = N D  

This is the most interesting characteristic of an extrinsic semiconductor. 
Indeed, if the concentration of donors can be intentionally controlled in the 
crystal during the synthesis, the concentration of electrons in the conduction 
band is precisely determined. 

Specifically, the temperature at which the carrier concentration from 
thermal generation becomes equal to the background carrier concentration is 
called the intrinsic temperature &. Below T,- the carrier concentration is 
relatively temperature independent. Above it increases exponentially with 
temperature. 

As the temperature is further lowered, we reach a third regime where all 

the donors are not ionized anymore ( N i  < N,). At the same time, we still 

have p << N i  . In this case, Eq. ( 7.40 ) becomes: 

Eq. ( 7.43 ) n  = N i  

At low temperatures, the Fermi energy EF lies between the bottom of the 
conduction band Ec and the donor level Ed. Therefore, EFEd>O and the 
expression for N i  in Eq. ( 7.34 ) can be simplified to become: 

or: 
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Let us now calculate the product nNA . On the one hand, it is equal to n2 
from Eq. ( 7.43 ). On the other hand, it is equal to: 

after using Eq. ( 7.21 ) and Eq. ( 7.44 ). We then obtain: 

which yields: 

The three expressions of n in Eq. ( 7.41 ), Eq. ( 7.42 ) and Eq. ( 7.47 ) 
provide good approximations of the concentration of electrons in the 
conduction band as a function of temperature. It is customary to plot this 
concentration in a logarithmic scale for n and as a function of inverse 

1 
temperature (i.e. -), so that the slopes of the curve can be directly 

kbT 
correlated to the bandgap energy E, in Eq. ( 7.41 ) and the ionization energy 
Ec-Ed in Eq. ( 7.47 ). This is very simply shown in the schematic diagram in 
Fig. 7.1 1. Here, the temperature dependence of N, (T 3 1 2  ) from Eq. ( 7.19 )) 
has been neglected in comparison to the temperature dependence of the 
exponential terms. 
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4 

high 
temperature 

low 
temperature 

Fig. 7.11. Simple schematic diagram of the dependence of the electron concentration in the 
conduction band as a function of temperature in a typical n-type semiconductor crystal. At 

low temperatures, the carrier concentration follows a relation dependent on the donor energy 
inside the bandgap. At moderate temperatures, the electron concentration is nearly constant 

equal to the donor concentration. At high temperatures, the carrier concentration 
approaches that of an intrinsic semiconductor. 

In the case of a p-type semiconductor, with an acceptor concentration 
NA, the following hole concentrations for the various regimes discussed 
previously can be determined. 

In the first regime, at high temperatures, the concentrations of holes p 
and electrons n are much higher than the total concentration of acceptors 
( n , p  >> NA),and thus follow their expressions for the intrinsic case, as in 
Eq. ( 7.41 ): 

In the second regime, Eq. ( 7.42 ) can be transformed for a p-type 
semiconductor into: 

In the third regime, as the temperature is further lowered, Eq. ( 7.43 ) 
can also be transformed for ap-type semiconductor into: 
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Eq. ( 7.50 ) p z N j  

From Eq. ( 7.35 ), using the same derivation as between Eq. ( 7.44 ) and 
Eq. ( 7.47 ), we get: 

7.10. Summary 

In this Chapter, we have first described the equilibrium properties of charge 
carriers in a semiconductor. We introduced the concepts of effective density 
of states, mass action law, and intrinsic and extrinsic semiconductor. The n- 
type and p-type doping of semiconductors has been discussed, taking into 
account the charge neutrality of the solid. We also discussed the importance 
of the Ferrni energy. 

References 

Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 
1981. 

Wolfe, C.M., Holonyak, Jr., N., and Stillman, G.E., Physical Properties of 
Semiconductors, Prentice-Hall, Englewood Cliffs, NJ, 1989. 

Further reading 

Anselm, A., Introduction to Semiconductor Theory, Prentice-Hall, Englewood 
Cliffs, NJ, 198 1. 

Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Holt, Rinehart and Winston, 
New York, 1976. 

Cohen, M.M., Introduction to the Quantum Theory of Semiconductors, Gordon and 
Breach, New York, 1972. 

Ferry, D.K., Semiconductors, Macmillan, New York, 1991. 
Hummel, R.E., Electronic Properties of Materials, Springer-Verlag, New York, 

1986. 
Pierret, R.F., Advanced Semiconductor Fundamentals, Addison-Wesley, Reading, 

MA, 1989. 
Sapoval, B. and Hermann, C., Physics of Semiconductors, Springer-Verlag, New 

York, 1995. 



252 Fundamentals of Solid State Engineering 

Streetman, B.G., Solid State Electronic Devices, Prentice-Hall, Englewood Cliffs, 
NJ, 1990. 

Wang, S., Fundamentals of Semiconductor Theory and Device Physics, Prentice- 
Hall, Englewood Cliffs, NJ, 1989. 



Equilibrium Charge Carrier Statistics in Semiconductors 

Problems 

Calculate the conduction band effective density of states for Si, Ge, and 
GaAs at 300 K. Plot it in logarithmic scale as a function of the logarithm 
of the temperature. 

Calculate the valence band effective density of states for Si, Ge, and 
GaAs at 300 K. Plot it as a function of temperature, in logarithmic scale. 
We know that the valence band is degenerate at the center of the 
Brillouin zone as there is a heavy-hole band (with effective mass mhh) 
and a light-hole band (with effective mass mhh). The effective mass to be 

( % 9:" used in Eq. ( 7.28 ) is then: m, = m,, + m,, . 

Find the energies at which the distribution of electrons in the conduction 
band and the distribution of holes in the valence band have maxima, if 
distributions are governed by Maxwell-Boltzmann statistics. 

Estimate relative errors in the calculation of free carriers concentration 
when the Maxwell-Boltzmann statistics is applied for semiconductors 
with Fermi energy within the energy gap, if the Fermi level is 3kbT, 
2kbT, kbT away from the bandgap edge or if it coincides with the edge. 
Use the given table of the exact value of the Fermi integral (F112) for the 
comparison. 

Calculate the intrinsic carrier concentrations for Si, Ge, GaAs, and GaN 
at 300 K, in the non-degenerate case. Plot their evolution as a function 
of temperature, in logarithmic scale. 

From the periodic table, give examples of n-type and p-type dopants for 
Ge and GaAs. Is silicon an n-type or ap-type dopant in GaAs? Interpret. 

As we know P is an n-type dopant for Si and Ge. Nitrogen is in the same 
column as P in the periodic table. Will N be a good dopant? Why? 

Give an expression for the charge neutrality relation when double 
acceptors are present with a concentration NAA. Double acceptors accept 
one or two electrons. Use the same notations as those in section 7.3. 
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9. Plot the evolution of the Fermi energy as a function of temperature in 
intrinsic GaAs. 

10. Consider a p-type doped GaAs semiconductor at 300 K with an 
experimentally measured hole concentration of 1 . 5 ~ 1 0 ' ~  ~ m - ~ .  The p- 
type dopant has an energy level such that AE, = E, - E,  = 125 meV . 
Assuming there is no donor, determine the proportion of ionized 
acceptors. Determine the total concentration of acceptors. 

11. Consider an n-type doped GaAs semiconductor at 300 K with an 
experimentally measured electron concentration of 3x10" ~ m - ~ .  The n- 
type dopant has an energy level such that AE, = E,  - E d  = 25 meV . 
Assuming there is no acceptor, determine the proportion of ionized 
donors. Determine the total concentration of donors. 

12. Derive expressions for concentrations of free carriers in a semiconductor 
doped with both, donor and acceptor impurities. Determine the 
conductivity type and calculate the concentrations of carriers in silicon 
at T=300 K, if it is doped with: 
(a) N A = ~  016 c ~ - ~ > > N D ,  
(b) ND=l 016 c ~ ' ~ > > N ~ ,  
(c) ND=NA= 1 0 ' ~ m - ~ .  
Assume that all impurities are ionized and n,=1.38.10'~cm" at 300 K. 

13. Calculate the concentration of acceptor impurities in silicon and 
determine the type of semiconductor, if at T=300 K the concentration of 
electrons is 5x10" cm", and the concentration of donor impurities is 
1 015 ~ m - ~ .  Assume ni=l . 3 8 - l 0 ' ~  cm" at 300 K. 

14. Calculate concentrations of carriers in silicon doped by acceptors 
NA=l 0 l4  cm-3 at: 
(a) 27 "C, and 
(b) 175 "C. 



8. Non-Equilibrium Electrical Properties of 
Semiconductors 

Introduction 
Electrical conductivity-Ohm's law 
8.2.1. Ohm's law in solids 
8.2.2. Case of semiconductors 
Carrier mobilities in solids 
Hall effect 
8.4.1. p-type semiconductor 
8.4.2. n-type semiconductor 
8.4.3. Compensated semiconductor 
8.4.4. Hall effect with both types of carriers 
Charge carrier diffusion 
8.5.1. Diffusion currents 
8.5.2. Einstein relations 
8.5.3. Diffusion lengths 
Carrier generation and recombination mechanisms 
8.6.1. Carrier generation 
8.6.2. Direct band-to-band recombination 
8.6.3. Shockley-Read-Hall recombination 
8.6.4. Auger band-to-band recombination 
8.6.5. Surface recombination 
Quasi-Fermi energy 
Summary 

8.1. Introduction 

In the previous Chapter, we established the basic relations and formalism for 
the distribution of electrons in the conduction band and holes in the valence 
band at thermal equilibrium. 

Although the equilibrium state for electrons and holes in a 
semiconductor is the result of interactions between carriers or between 
carriers and phonons, it does not depend on the way this state is reached. 
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The knowledge of the equilibrium properties is therefore not sufficient and 
this is all the more true since semiconductor devices usually work under 
non-equilibrium conditions. In this Chapter, we will thus discuss the 
dynamics of electrons and holes, including electrical conductivity, Hall 
effect, diffusion, as well as recombination mechanisms. 

8.2. Electrical conductivity 

8.2.1. Ohm's law in solids 
Because electrons and holes are charged particles, they can move in an 
orderly manner in a semiconductor under the influence of an electric field 
for example. This motion generates an electrical current, called drift current, 
which is at the origin of the electrical conductivity phenomenon of certain 
solids. The magnitude of this current determines whether a solid is a "good" 
or a "bad" conductor, and is directly related to the density of mobile 
electrical charge carriers in the solid. In this section, we will try to model the 
electrical conductivity in solids starting from the Drude model, which is a 
general model and is valid for any solid which contains mobile charge 
carriers. This model is based on the kinetic theory of gases which was 
briefly mentioned in section 6.5. 

In this model, an electron from the gas of electrons is considered as (i) a 
free moving particle in space with a momentum and an energy, (ii) which is 
subject to instantaneous collision events (e.g. with other particles such as 
electrons, or atom cores or with irregularities in the crystal), (iii) the 
probability for a collision to occur during an interval of time dt is 
proportional to dt, (iv) and the particles reach their thermal equilibrium only 
through these collisions (see the Monte-Carlo method in Appendix A.9). 

Let us start by conceptually considering an electron with an electrical - 
charge -q in an uniform electric field strength E . The force exerted on this 

4 

electron is constant and equal to - qE (q>O). Newton's action mass law is 
such that: 

... 
where v is the velocity of the electron and m is its mass (in a 

semiconductor m=m,, the effective mass). This relation means that the 
acceleration of the electron is constant and therefore that its velocity 
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increases linearly with time. In practice the velocity does not increase 
indefinitely, because collisions, which change the energy and or scatter the 
momentum, prevent the electron velocity from reaching extremely high 
values. 

+ 

The current density vector J is a vector which is parallel to the flow of 
charge and whose magnitude is equal to the amount of electrical charge (in 
Coulomb) that passes per unit time through a unit area surface perpendicular 
to the flow of charges, as shown in Fig. 8.l(a). The current density is 
expressed in units of ~ . c m - ~ .  

Fig. 8. I .  Schematic diagrams showing: (a) the flow of electrons and current density vector in 
a unifornl electric$eld, (b) the displacement of the surface area A after a time dt at a velocity 

equal to that of the flowing electrons. 

The current density can be determined by calculating the number of 
electrons which will traverse the surface S, during a time interval dt. Such 
electrons are in fact located in the volume defined between the surfaces 

denoted by S and S' in Fig. 8.l(b). This volume is equal to A v dt , where A 1-1 
is the area of the surface S. 

Assuming that there is a concentration n of electrons in this region of 
+ 

space, and that all of them have a velocity v , the total amount of electrical 
charge traversing the surface S with area A, during a time interval dt is: 

Eq. ( 8.2 ) nq~lvldt 

The magnitude of the current density is thus the expression in Eq. ( 8.2 ) 
divided by the area and the time interval. Because the current density vector 
is parallel and in opposite direction to the flow of electrons, we obtain: 

- + 

Eq. ( 8.3 ) J = -nqv 
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In reality, the electrons are subject to collisions and do not all have the 
+ 

same velocity v individually, but they can be considered to have the same 
averaged velocity and the expression in Eq. ( 8.3 ) remains valid by ... 
considering that v is the average velocity of the electron gas as a whole. 
Indeed, if there were no electric field, because collisions are a statistical 
process, the electrons are as likely to move in one direction in space as in 
another after a collision. The average velocity vector of the electron gas is 
thus zero and there would be no electrical current, as expected (see the 
Monte-Carlo method in Appendix A.9). 

In order to calculate the average velocity of the electron gas that results 
from the electric field, we have to introduce, as was done in earlier in 
Chapter 6, a characteristic time called electron relaxation time z , which is 
the average duration between two consecutive collisions or scattering 
events. Such durations typically range on the order of 10-'~-10-'~ s for 
electrons in metals. The probability of a collision to occur is in fact 

1 
proportional to - . The average velocity is then called drift velocity and is 

Z 

denoted vdr@ . This quantity can be estimated by integrating Eq. ( 8.1 ) over 
timefrom t = O  and t = z :  

We see that the drift velocity is proportional to the electric field strength 
and this proportionality factor is called the mobility of electrons in the solid: 

Eq. ( 8.5 ) 

This quantity is expressed in units of cm2.v-'.dl, and it represents the 
velocity that an electron gains per unit electric field strength (velocity 
(cm.s-') divided by electric field strength (~.cm-I)). This parameter is not 
used often in metals but will be most useful to characterize semiconductors. 
The drift current density, which results from the drift of electrons in the 
electric field, can then be written using Eq. ( 8.3 ): 
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- 4 

drift nq2z - Eq. ( 8.6 ) J~~~ = -nqv = nqpE = - E 
m 

A "drift" superscript has been added to emphasize that this is the drift 
current density. Here again, we see that the current density is proportional to 
the electric field strength. This proportionality factor is called the 
conductivity, is denoted a ,  and is expressed in units of ~ .cm- '  (Siemens per 
cm) or inverse (Q.cm): 

Eq. ( 8.7 ) nq2z 
a = n q p = -  

m 

It is also common practice to consider the inverse of the conductivity 
which is called the resistivity of the material: 

The linear relation in Eq. ( 8.7 ) is called Ohm's law. In strong electric 
fields, deviations from this linear dependence may occur, but one can keep 
the general expression for the current density in Eq. ( 8.7 ) by considering a 
field-dependent conductivity a .  In this case, the relation is called the 
generalized Ohm's law. 

Example 
Q: Estimate the electron mobility in Cu. 
A: The charge carriers in Cu are electrons, and their 

mobility p is related to the resistivity p of Cu through: 
1 

p=-, where n is the electron concentration 
n9p 

participating in the conduction. Since there are two 
electrons in valence shell of copper, this concentration 
can be determined by the concentration of Cu atoms or 

d 
the density of Cu (d=8.92 g.cm-3): n = 2 x - , where 

mcu 
ma, is the mass of a Cu atom. Assuming the resistivity 
of Cu is about ~ 1 . 7 ~  Q.cm, we get the mobility: 
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For many, Ohm's law is more commonly recognized through the 
v 

relation "I = - ", where I is the current, V the voltage and R the resistance 
R 

of an electrical component. Indeed, let us consider a parallelepiped shaped 
solid, as depicted in Fig. 8.2. We assume the electric field in the solid is 
uniform and that the electrical current flows perpendicularly to a side of the 
parallelepiped with surface area WH, as shown in Fig. 8.2. 

Fig. 8.2. Schematic diagram illustrating the geometry used to illustrate Ohm's law. A voltage 
is applied across two opposite faces of a rectangular solid and separated by a distance L. 

This results in an electricfield and a current density perpendicular to these two faces. 

In this configuration, the electrical current I is equal to the magnitude of 
the current density multiplied by the area WH, i.e. I = WHJhfl.  The 

voltage V is equal to the magnitude of the electric field strength E I-/ 
multiplied by the length L of solid considered, i.e. V = L E . We therefore - I  
get successively: 
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8 3 

Eq. ( 8.9 ) 

L 

We thus recognize the relation: 

v 
Eq. (8.10) I =- 

R 

where: 

and A= WH is the area of the surface perpendicular to and traversed by 
the electrical current flow. The quantity R is called the resistance of slab of 
solid considered. This expression relates a macroscopic quantity (resistance) 
to an internal property of the solid (resistivity). 

8.2.2. Case of semiconductors 
So far, the discussion has been general and valid for any solid that contains 
mobile charge carriers. In the case of semiconductors, a few modifications 
to the previous results need to be made. 

A semiconductor has two types of charge carriers which can contribute 
to the electrical conduction: electrons in the conduction band and holes in 
the valence band. There are thus two separate contributions to the drift 
current: 

- 
where each of the JFf' and is expressed through Eq. ( 8.7 ) using 

the carrier concentrations n andp, mobilities ,ue and ,uh, and effective masses 
me and mh of the electron and the hole, respectively, in the semiconductor 
considered. Note that, unlike electrons, the holes flow in the same direction 
as the electric field, because of their positive charge. We thus obtain: 
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The total drift current density can then be written as: 

The typical room temperature conductivity in metals is 
(0.1-3)x104 ~ . c m - ' ,  while the conductivity in semiconductors depends on 
the carrier concentrations and therefore the doping level, as discussed in 
Chapter 7. 

The conductivity in semiconductors depends much more strongly on the 
temperature than that in metals. This is because in semiconductors, at a 
temperature of 0 K, the Fermi energy lies within the forbidden gap 
(Fig. 4.1 1) and there is no electron in the conduction band (and thus no hole 
in the valence band) as the Fermi-Dirac distribution is strictly equal to zero 
there (Fig. 4.12). Remember that a full band does not carry current. By 
increasing the temperature, it is therefore possible to increase the 
concentrations of electrons in the conduction band, holes in the valence 
band, and enhance electrical conductivity as the Fermi-Dirac distribution is 
not strictly equal to zero any more. By contrast, in metals, the Fermi energy 
lies within the conduction band which is thus partially filled (Fig. 4.1 I), and 
an increase in temperature will not significantly affect the concentration of 
electrons in it. 

8.3. Carrier mobility in solids 

The mobility of electrons is controlled by two physical parameters, one is 
the effective mass, and the other is the relaxation time. In Chapter 4, we 
have seen what determines the effective mass of a charge. Let us now 
consider the momentum lifetime. The scattering processes which determine 
the momentum lifetime of solids can be classified into two categories: (a) 
elastic scattering processes and (b) inelastic scattering processes. In category 
(a), the carrier changes its momentum but not its energy. Any break in the 
translational symmetry of the solid will give rise to elastic scattering, and in 
particular this includes the presence of impurity potentials, defects 
interfaces, and dislocations, but there are also the deviations from periodic 
order caused by lattice vibrations: the electron-phonon interactions. The 
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former contribute to category (a), the latter involve energy exchange with 
the lattice and are in category (b). In category (b) the carrier changes both 
momentum and energy. An inelastic phonon induced scattering process is 
allowed if it satisfies both the momentum and energy conservation 
conditions which are respectively: 

where ~ ( k ' )  is the energy of the particle after the scattering process 

and A@(;) is the energy of the phonon absorbed or emitted. 
We have seen in Chapter 5 that a solid will in general have two types of 

phonons, so there are also two types of electron-phonon scattering 
processes. These are the electron-acoustic and electron-optic phonon 
scattering processes. The acoustic scattering occurs in all solids, but optic 
phonon scattering can only take place when there are optic modes in the 
system. The strength of the electron-acoustic and electron-optic coupling 
determines the efficiency, or the rate at which a carrier with a given 
momentum k is scattered into a momentum state k' via a phonon. In 111-V 
semiconductors with polar modes, the electron optic coupling is an efficient 
process and is the most important mechanism by which hot carriers relax 
their excess energy when they have enough energy to emit an optic phonon. 
An electron can also absorb an optic phonon, but this is only possible if a 
sufficient number is thermally excited. The rate of optic phonon absorption 
increases therefore with temperature, following essentially the Bose- 
Einstein distribution law of phonon occupation. When more than one 
scattering process is contributing, the sum must be taken. This is done by 
summing the lifetimes in parallel so that the shortest time dominates. The 

1 1  1 1  
total lifetime z is thus given by the sum - = - + - + -where the ' ' ,I ' o p  ' a c  

terms denote the inverse of the elastic, optic, an acoustic scattering lifetimes 
respectively. The temperature dependence of the mobility in different 
materials is not simple to summarize and the reader is referred to the 
specialized textbooks by Ridley and Sze. The physics of the situation 
however is as follows: at very low temperatures, the phonon modes freeze 
out and thermal velocities are low, the inelastic lifetimes therefore increase 
as we go down in temperature and eventually elastic processes dominate. 
Elastic scattering processes can however be weakly dependent on 
temperature and will remain finite even at zero temperature creating a finite 
resistance unless the material becomes a superconductor at some stage. 
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Elastic scattering can take place from neutral defects, and most effectively 
also from charged ionized defects and impurities. The state of ionization of 
an impurity will in general be a function of temperature, as we saw when we 
discussed doped semiconductors (see section 7.6). This means that elastic 
scattering processes in doped semiconductors will in general have both 
strong temperature dependent and weak temperature dependent components. 
Here are a few typical measured bulk values (see also Appendix A.4) of the 
room temperature (T=300 K) mobilities of some important semiconductors: 
Si electrons, 1500 cm2/vs; Si holes, 450 cm2/vs; GaAs electrons, 
8500 cm2/vs; GaAs holes, 400 cm2/vs; InAs electrons, 33,000 cm2/vs; InAs 
holes, 460 cm2/vs. From the example in the text we calculated the mobility 
of Cu, which is a good metal, to be -20cm2/vs. This is typical for good 
metals and interestingly lower than for many semiconductors. 

8.4. Hall effect 

At the end of the 1 9 ' ~  century, physicists knew that if a metal wire carrying 
an electrical current was placed in a magnetic field, it experienced a force. 
The origin of this force was not known. In 1879, E.H. Hall tried to prove 
that this force was exerted only on the mobile charges (electrons) in the 
wire. By doing so, he conducted an experiment where an electrical current 
was run through a fixed conductor perpendicularly to a magnetic field. 

Let us consider the Hall effect experiment geometry illustrated in 
4 

Fig. 8.3. An electrical current, with current density J in the x-direction, is 
run through a parallelepiped shaped solid. A magnetic induction or flux - 
density B is directed perpendicularly to the current, in the z-direction. The 
movement of holes and electrons is shown in Fig. 8.3 as well. 
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Fig. 8.3. Geometry usedfor a Hall effect experiment. A uniform electric field strength is 
applied inside a solid in the x-direction (by applying a voltage across the solid, for example), 

which results in an electric current in the same direction. The movement of holes and 
electrons in the solid are shown. The solid is immersed in a magnetic induction which is 

directed in the z-direction, perpendicularly to this electric field. 

8.4.1. p-type semiconductov 
Let us now assume that the solid only contains one type of charge carriers, 
and that they are holes. With the electrical current in the (+x)-direction, a 

d 

hole moves also in the x-direction with a velocity v, , as shown in Fig. 8.3. 

At the same time, it is subject to the Lorentz force equal to: 

which is in the y-direction. If the sample was without limits, the hole - 
would exhibit a cyclotron (circular) motion around an axis parallel to B . In 
the case of a finite size solid as the one shown in Fig. 8.4, holes would 
accumulate on one of its sides to create a surplus of positive charges. At the 
same time, negative charges would appear on the opposite side from the 
deficiency of holes there. This separation of charges results in an electric 

field strength E,,, , called Hall electric field and shown in Fig. 8.4, which 

drives holes in the y-direction, and is opposite to the Lorentz force. 
At equilibrium, the Lorentz force and the force due to the Hall electric 

field must balance each other. This can be expressed mathematically as: 
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The Hall electric field strength is thus: 

- - + 

Eq. ( 8.16 ) E,,, = -v, x B 

Fig. 8.4. Motion of a hole in the Hall eSfect experiment. Under the influence of the Lorentz 
force, the motion of holes is deviated in the y-direction toward one side of the solid which 

then becomes positively charged through the accumulation of holes. The opposite side of the 
solid therefore becomes negatively charged. This gives rise to an additional electric field 

which is directed in the y-direction. 

The component of the Hall electric field strength in the y-direction (i.e. - 
EHafl = ( E ~ ~ ~ ~  )). ; ), in the geometry shown in Fig. 8.4 is: 

From Eq. ( 8.12 ), we get: 

where p is the hole concentration in the solid and we can rewrite 
Eq. ( 8.17 ) as: 

This expression contains macroscopic quantities which are characteristic 
of the material (p), parameters of the experiments (J and B) and quantities 
which are experimentally measured (EHall). Through this relation, we can 
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easily extract properties characteristic of the materials from experiments. It 
is common practice to introduce the Hall constant given by: 

The Hall constant therefore yields a direct measure of the hole 
concentration in the solid. We can define a hole Hall mobility as: 

Eq. ( 8.20 ) pH, = OR, 

This Hall mobility has the same units as the drift mobility encountered 
in Eq. ( 8.12 ) in section 8.2, i.e. cm2.v-'.s-'. However, it differs from the 
drift mobility by a factor, called the Hall factor, which is determined by the 
temperature and the types of scattering involving the charge carriers. 
Experimentally, this factor is taken to be equal to unity and only one 
mobility is considered. This can be illustrated by the fact that one can arrive 
at Eq. ( 8.20 ) from Eq. ( 8.19 ) by using the expression in Eq. ( 8.13 ) 
applied to holes only. 

8.4.2. n-type semiconductor 
In the case of a solid which contains only electrons as the mobile charge 
carriers, a similar analysis can be conducted. The motion of an electron in 
the Hall effect experiment is shown in Fig. 8.5. We can see that the electrons 
are deflected in the same direction as the holes in Fig. 8.4. 

However, because electrons have a negative charge, the Hall electric 
field is in the opposite direction in comparison to the one from holes: 

The Hall electric field strength is thus: 
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Fig. 8.5. Motion of an electron in the Hall effect experiment. Under the influence of the 
Lorentz force, the motion of electrons is deviated in the y-direction toward one side of the 
solid which then becomes negatively charged through the accumulation of electrons. The 

opposite side of the solid therefore becomes positively charged. This gives rise to an 
additional electric field which is directed in the y-direction. 

The component of the Hall electric field strength in the y-direction (i.e. 

E,; = ( E ~ ~ ~ ~ ) ~  ), in the geometry shown in Fig. 8.5 is: 

because ( v , ) ~  < 0 . From Eq. ( 8.12 ), we have: 

and we can rewrite Eq. ( 8.23 ) as: 

J 
Eq. ( 8.24 ) ( E , ~ , ~ ) ~  = -LBz  

n4 

This expression is similar to Eq. ( 8.18 ) and the Hall constant defined in 
Eq. ( 8.19 ) becomes: 

Eq. ( 8.25 ) R, = 
('h'dl )y - - -- I < o  

J x  Bz nq 
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Here again, we see that the Hall constant yields the electron 
concentration in the solid. Moreover, it is negative, whereas it was positive 
when holes were the only charge carrier. The Hall constant is therefore a 
good method to determine if a semiconductor is p-type or n-type. The 
electron Hall mobility given by Eq. ( 8.20 ) is now transformed into: 

Similar to the previous case, the electron Hall mobility is usually taken 
equal to the electron drift mobility. 

8.4.3. Compensated semiconductor 
In a compensated semiconductor, both types of dopants are simultaneously 
present in the material. Since the electrons and holes released by the doping 
can recombine, a decrease of the free carriers concentration can be observed. 
Adding p-type impurities to an n-doped system will therefore reduce the 
electron concentration and vice versa. The charged impurities are still there, 
having transferred the charge to each other (donor to acceptor) rather than to 
the bands. It is possible in this way to increase the resistance of doped 
systems by adding the opposite type of dopant. This can be very useful 
when ion implantation is used to dope a material, because with ions, one can 
in principle achieve a high degree of spatial resolution and select the depth 
of implantation. The ion beam can be focused to compensate the local 
doping, and thus produce submicron devices (see also Chapter 13). 

8.4.4. Hall effect with both types of charge carriers 
When both electrons and holes are contributing to the transport process, the 
calculation of the Hall coefficient is somewhat more complicated. Both 
types of carriers will contribute to the Hall effect in an intrinsic material for 
example, or when light is photoexciting pairs, or when electrons and holes 
are injected using different types of source drain electrode materials. The 
derivation of RH is however straightforward, and can be done by using the 
Newton law with the Lorentz force for both carriers: 



270 Fundamentals of Solid State Engineering 

in the presence of electric fields, E x ,  E, , and a magnetic field B. Similar 

equation can be written down for holes, except that q + -q . The steady 
state velocities are obtained by assuming that the velocity no longer changes 
with time, i.e. by putting the acceleration term equal to zero. Then, we can 
write Eq. ( 8.27 ) as: 

The above equations can be related to the total current J, giving: 

Under equilibrium condition, i.e. when the current J ,  = 0,  the ratio of 

the components of the electric field is such that: 

2 

Eq. ( 8.30 ) 
E y  P P ~ '  - nPe )B - = {  
Ex nPe + PPh 

and the Hall constant is now given by: 

where p and n are the hole and electron concentrations, ,uh and pe are the 
hole and electron mobilities, all of which are positive parameters. The Hall 
mobility is the combination of the mobilities of the electrons and holes and 
given by: 

Eq. ( 8.32 ) PH = O I R H  I = 

8.5. Charge carrier diffusion 

In an inhomogeneous solid, certain regions may exhibit more electrons or 
holes than other regions. These will then migrate from the high 
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concentration areas to the low concentration areas. This is a universal and 
natural phenomenon, called diffusion. This process is due to an imbalance in 
the thermodynamic chemical potential. One may picture the diffusion 
process as a drop of ink in a glass of clear water which slowly spreads in the 
entire volume of water. Because electrons and holes are charge carriers, 
their diffusion generates an electrical current, which is very important in 
many semiconductor devices. 

8.5.1. Diffusion currents 
In this section, we will describe a simple one-dimensional model for the 
diffusion of electrons and holes in a semiconductor. Let us assume the 
electron concentration n(x) is not uniform in the x-direction, as 
schematically illustrated in Fig. 8.6. 

flux of  articles 

Fig. 8.6. L)@.usion ofparticles (e.g. electrons) in a one-dimensional model. An imaginary 
surface with a unit area is considered, such that the concentration ofparticles on one side is 
larger than on the other side. The diffusion process is characterized by the flu ofparticles 

spontaneously passing through the imaginary surface per unit time. 

The diffusion process is mathematically described by Fick's first law of 
diffusion which says that the flux, i.e. the number of electrons passing per 
unit time a unit area surface perpendicular to the x-direction is given by: 

dn 
Eq. ( 8.33 ) @fy = -D, - 

dx 
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where D,, is called the diffusion coefficient or diffusivity and has the 
units of cm2.s-'. We use the subscript "n" to identify that this is the 
diffusivity for electrons. The negative sign in this expression means that the 
flux of electrons is in the direction opposite to the gradient (or slope) of 
concentration, as illustrated in Fig. 8.6. 

Using a similar approach as for the electrical drift process in section 8.2 
to count the number of electrons that pass the unit area surface in Fig. 8.6 
per unit time, we can extract the electron diffusion velocity vfY : 

dfl Eq. ( 8.34 ) @ f Y  = nv, 

which leads to the relation: 

1 dn 
Eq. ( 8.35 ) v,dY = -Dn -- 

n dx 

The movement of these electrons creates an electrical current. The 
diffusion current density of electrons is then determined from Eq. ( 8.12 ): 

dn 
Eq. ( 8.36) J , " ~  = -nqvfY = +qDt - 

dx 

Similar relations to Eq. ( 8.35 ) and Eq. ( 8.36 ) can be obtained for the 
diffusion of holes: 

1 dp Eq. ( 8.37 ) vFff = -D, -- 
P dx 

Eq. ( 8.38 ) 

where p is the concentration of holes. Note that there is a sign change 
from Eq. ( 8.36 ) to Eq. ( 8.38 ) which is due to the positive charge of the 
hole. There is no such sign change from Eq. ( 8.35 ) to Eq. ( 8.37 ), because 
the origin of the diffusion process is not dependent on the electrical charge. 



Non-Equilibrium Electrical Properties of Semiconductors 273 

8.5.2. Einstein relations 
The drift and the diffusion of electrons and holes are intimately related 
processes, because both contribute to the observed electrical current in a 
semiconductor. 

Let us continue on our simple one-dimensional model and consider a 
finite size solid onto which an uniform external electric field of strength - - 
E = E x  is applied. As a result, the electrons will be drifting to one side of 
the solid and a concentration gradient will be achieved. These electrons will 
then start to diffuse in the direction opposite to this electrical drift until a 
balance is reached. 

The drift current density is given by Eq. ( 8.12 ): J,"'~ = nqp,E ; while 

the electrical diffusion current density is given by Eq. ( 8.36 ): 
dn 

J,"iff = +qDa -. At the thermal equilibrium of this system, the sum of 
dx 

these two current densities: 

must be equal to zero, i.e.: 

Eq. ( 8.40 ) 

This first order differential equation can be rewritten as: 

which leads to the solution: 

Eq. ( 8.42 ) n(x)  = n(0)exp - [ y] 
where n(0) is the electron concentration at x=O. We see that we obtain an 

exponential-like distribution for this concentration. However, at thermal 
equilibrium, this quantity also obeys Boltzmann statistics, which is 
analogous to the Boltzmann probability distribution we encountered in 
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Chapter 3. For a non-degenerate semiconductor, the electron concentration 
according to Boltzmann statistics should be given by: 

Eq. ( 8.43 ) n(x) = n(0)exp - [ E] 
because qEx is the potential energy of the electron in an electric field 

strength of magnitude E .  Comparing Eq. ( 8.42 ) and Eq. ( 8.43 ), we 
obtain the relation: 

or: 

A similar relation can be obtained for holes: 

Eq. ( 8.44 ) and Eq. ( 8.45 ) are called the Einstein relations and are valid 
only for non-degenerate semiconductors. For degenerate semiconductors, 
we first need to specify the amount of charge in the bands, and a factor 
involving the Fermi-Dirac integral (Eq. ( 7.13 )) needs to be included in the 
above expressions. These relations are important because they provide a 
mathematical link between the drift and diffusion processes. They are 
however not always valid. They apply only when there is a small amount of 
charge in the band edges, which is the most interesting situation in 
semiconductor technology. 

8.5.3. Diffusion lengths 
In the diffusion model considered so far, an electron or a hole can diffuse 
indefinitely in space. However, in most real case situations, the diffusion 
range is much more limited. 
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Let us consider the diffusion of electrons in a one-dimensional 
semiconductor model, where excess carriers are continuously generated at 
x=O and are then allowed to diffuse toward x  + o~ . By the term "excess 
carriers", we mean that an amount of electrons in addition to the thermal 
equilibrium concentration no is injected into the semiconductor. The 
mechanisms by which this is achieved will be discussed later in the text. We 
will denote: 

Eq. ( 8.46 ) ~ n ( x )  = n(x)  - no 

the excess electron concentration which is a function of position. A 
possible shape for ~ n ( x )  is shown in Fig. 8.7. 

Fig. 8.7. Excess electron concentration in a one-dimensional model. The excess 
concentration decreases, as it gets deeper into the material as a result of recombination. The 

decrease has an exponential dependence. 

During the diffusion process, an electron will experience recombination, 
i.e. they will not travel in space indefinitely but will be stopped, for example 
when it encounters a hole (remember that a hole is an allowed state vacated 
by an electron), or when it gets trapped by a defect in the semiconductor 
crystal (e.g. an ionized donor which is positively charged). 

The recombination mechanisms are numerous and diverse. However, it 
is possible to mathematically express their effects in a simple manner. For 
this, we introduce a characteristic time, z,, called the electron 
recombination lifetime such that the recombination rate of an electron at a 
location where there is an excess ~ n ( x )  of electrons is given by: 
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Eq. ( 8.47 ) ~ ( x )  = - 
r, 

This quantity has the units of ~ m - ~ . s - '  and expresses the change in the 
excess carrier concentration per unit time. 

Let us now consider an infinitesimal region of space, located between 
x, and x, + dx, as illustrated in Fig. 8.8. This region experiences an in- 

flux and an out-flux of electrons, denoted respectively ( )  and 

(0:" )llu, and shown in Fig. 8.8. 

Fig. 8.8. Schematic ofthe in-flux and out-flux of electrons in a region of space, in a one- 
dimensiorzul model. In this experiment, the region between the two surfaces located at xo and 

xo+dx is considered. This experiment is aimed at determining the net change in carrier 
concentrution in it U S  a result ofthe diffusion ofparticles and their recombination. 

If ( ) > 0 '  ) , there is a net in-flux or accumulation of 

electrons, but if (Offf )(,, > (0:" there is a net out-flux or depletion of 

electrons in this region. Under steady-state conditions, there must not be a 
never-ending accumulation or depletion of electrons. The in-flux of 
electrons must therefore be equal to the sum of the out-flux of electrons and 
the number of electrons recombining within this region. The later quantity is 
equal to R(xo) multiplied by the width of the region dx, because we can 
assume that the function R(x) does not vary too much over a narrow width 
dx around the point xo. Numerically, this translates into: 
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From Eq. ( 8.33 ), we can write: 

dn d(An) 
But, from Eq. ( 8.46 ), we easily see that - = - and therefore: 

dx dx 

x=x0 
Eq. ( 8.49 ) 

x=xo+dx 

Eq. ( 8.48 ) becomes then: 

which can be rewritten as: 

At the limit of dx + 0, i.e. an infinitesimal region, the left hand side 

expression becomes the derivative of a evaluated at x=xo, i.e.: 
dx 

This relation is valid for any arbitrarily chosen position xo, which means 
that the following equation must be satisfied: 

d (An) 
- ~ ( 4  on,,- 
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Equating to Eq. ( 8.47 ), we get the differential equation that governs the 
shape of the excess electron concentration An(x) : 

This equation can be rewritten as: 

From this expression, we can easily see that the quantity Dnrn has the 

same dimension as the square of a distance. We can then define a distance 
Ln, called diffusion length for electrons, given by: 

Eq. ( 8.53 ) Ln = JD,~ , ,  

The solution to Eq. ( 8.52 ) then has the general form: 

Here A and B are constants and are determined from boundary 
conditions. For example, let us assume the sample is delimited by x=O and 
x + oo , and that is thick enough so that all the excess electrons have been 
recombined before they reach its limit: An + 0 when x + oo as shown in 
Fig. 8.7. We thus have: 

X -- 

Eq. ( 8.5 5 ) An(x) = An(0)e ' I :  

From this expression, we see the significance of the diffusion length in 
determining the spatial distribution of the electrons in the diffusion process 
as the characteristic length of path that a particle travels before recombining. 

A similar diffusion length can be determined for holes and is given by: 

Eq. ( 8.56 ) L, = J D , ~ ,  



Non-Equilibrium Electrical Properties of Semiconductors 

where z, is the hole recombination lifetime. 

Example 
Q: Assuming that in n-type silicon the characteristic time 

for the minority carriers (holes) is zp=2x lo-'' s. estimate 
the diffusion length of these minority carriers at 300 K. 

A: The diffusion length is given by L, = d G .  From 

the Einstein's relations, we can determine the diffusion 

kbTph . The hole mobility in silicon coefficient: D, = - 
4 

being about ph=450 cm2/vs, we get: 

8.6. Carrier generation and recombination mechanisms 

In the previous section, we briefly talked about excess carriers and their 
recombination. We also introduced a single recombination lifetime z in 
order to avoid a detailed description of all the recombination processes. 

Excess of carriers can exist when the semiconductor is not in its 
equilibrium state, as a result of additional energy that it received from 
phonons (heat), photons (light) or an electric field for example. In a 
recombination process, the amount of excess carriers is reduced and the 
excess energy is transferred or released. 

In this section, we will discuss the four most important recombination 
mechanisms encountered in semiconductors, including direct band-to-band, 
Shockley-Read-Hall, Auger, and surface recombination. We will also 
attempt to express the recombination lifetime in each case in terms of 
known semiconductor parameters. 

We will denote by: 
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~ n ( t )  = n(t)  - no 
Eq. ( 8.57 ) 

the excess electron and hole concentrations, respectively, where no and 
po are the equilibrium electron and hole concentrations. 

It is important, at this time, to clearly distinguish equilibrium state from 
steady state. A system is said to be under equilibrium if it is not subject to 
external fields or forces. A system under the influence of external fields or 
forces is under steady state if the parameters that describe it (e.g. carrier 
concentrations) do not vary with time. 

8.6.1. Carrier generation 
Before discussing the various recombination mechanisms, we must first 
review how carriers are generated in the first place. There are essentially 
two major types of generation. 

The first one corresponds to the thermal generation of carriers and exists 
under all conditions, whether in equilibrium or non-equilibrium. The 
thermal generation rate will be denoted G,(T) and is expressed in units of 
cm-3 .s-' . 

The other type is the generation resulting from external factors, such as 
optical absorption, electrical injection etc.. . This process occurs only in 
non-equilibrium situations and the associated generation rate, denoted G, is 
called the excess generation rate. 

For each generation mechanism, there exists a recombination 
mechanism which is its counterpart. The generation and recombination of 
carriers are inverse processes to each other. 

8.6.2. Direct band-to-band recombination 
In this type of recombination, an electron from the conduction band 
recombines with a hole in the valence band. This process is best pictured in 
the E-k diagram shown in Fig. 8.9. 
This recombination can be equivalently viewed as an electron which goes 
from a state in the conduction band to an allowed state in the valence band. 
This seems natural if we remember that a hole in the valence band is in fact 
an allowed electronic state that has been vacated by an electron. The energy 
that the electron thus loses is most often released in the form of a photon or 
light as shown in Fig. 8.9. We say that this is a radiative recombination. 

This process is most likely to occur between the minimum of the 
conduction band and the maximum of the valence band, and at the center of 
the first Brillouin zone where the momenta of the recombining electron and 
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hole are both zero. Direct band-to-band radiative recombination is therefore 
most likely to occur in direct bandgap semiconductors, such as GaAs. 

Fig. 8.9. Schematic E-k diagram of a direct band-to-band recombination process. The 
reconzbinirzg electron and hole have the same wavevector. 

Let us look at this recombination mechanism in more detail. In the 
present case, the recombination rate, first introduced in Eq. ( 8.47 ), is 
proportional to both the concentration of electrons in the conduction band n 
and that of holes in the valence band p because these are the particles that 
are recombining. We can then write: 

Eq. ( 8.58 ) R = r ( ~ ) n ( t ) ~ ( t )  

where r (T )  is the recombination coefficient, which is expressed in units 
of cm3.s, and T is the temperature. 

In a non-equilibrium situation when the excess generation rate is non 
zero, the net change in the electron and hole densities is given by: 

where we used the fact that the equilibrium concentration no does not 
vary with time. At equilibrium, the excess generation rate G is equal to zero, 
thus the recombination rate must balance the thermal generation rate: R=G,. 
Since at equilibrium we have n=no andp=p,, we can write from Eq. ( 8.58.): 
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Eq. ( 8.60 ) G, = v(T)nopo or simply G, = r ( ~ ) n f  

where ni is the intrinsic carrier concentration given in Eq. ( 7.3 1 ). From 
now, we will also omit the temperature dependence of r(T) to simplify the 
equations. 

Let us now consider the relaxation process, which occurs after the 
external source of generation is removed (G = 0). Taking into account 
Eq. ( 8.58 ) and Eq. ( 8.60 ), Eq. ( 8.59 ) becomes: 

Using Eq. ( 8.57 ), we can expand this expression into: 

One obvious simplification can be immediately made in the previous 
expression as nopo = nf from Eq. ( 7.31 ). For further simplicity, we can 

assume the An = Ap , i.e. the concentration of excess electrons is equal to 
the concentration of excess holes, which seems natural in order to ensure 
charge neutrality locally in the semiconductor at all times. Eq. ( 8.62 ) then 
becomes: 

We can successively transform Eq. ( 8.63 ) into: 



Non-Equilibrium Electrical Properties of Semiconductors 

Each of the terms in the left hand side is a logarithmic derivative. By 
integrating with respect to time from 0 to t ,  we get successively: 

1 
[ln((no + p0)  + An) - ln(An)]; = rt 

(no + P O )  

Taking the exponential on both sides of this last equation, we obtain: 

And solving for ~ n ( t ) ,  we get: 

This shows the general form for the change in the excess electron 
concentration as a function of time. The only parameters of the variation are 
the equilibrium concentrations no and po, the initial excess electron 
concentration A ~ ( o ) ,  and the recombination coefficient r(T). This 
complicated expression can be drastically simplified in some cases. 

For weak excitation levels, i.e. An(0) << (no + p,), Eq. ( 8.64 ) 
becomes: 
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or simply: 

Eq. ( 8.65 ) ~ n ( t )  = An(0)exp[- r(no + po)t] 

and similarly for ap(t) : 

By defining a direct band-to-band recombination lifetime for electrons 
and holes as: 

Eq. ( 8.67 ) z, = z, = 
1 

rho + Po) 

we obtain: 

Eq. ( 8.68 ) 

This is the same lifetime introduced in Eq. ( 8.47 ). Indeed, in the current 
conditions, we have by using Eq. ( 8.59 )and Eq. ( 8.68 ): 

or: 
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which is analogous to Eq. ( 8.47 ) 

8.6.3. Shockley-Read-Hall recombination 

The previous band-to-band recombination most often occurs in pure 
semiconductor. When defects or impurities are present in the crystal, which 
is nearly always the case to some extent, energy levels appear in the 
bandgap and may participate in the recombination mechanisms. These are 
called Shockley-Kead-Hall recombinations (SRH) and the energy is not 
released in the form of a photon but is rather given to the crystal lattice in 
the form of phonons. Such processes are also sometimes called band-to- 
impurity recombinations. This is therefore normally a non-radiative 
recombination step. 

In the present model, we consider the steady-state generation and 
recombination of electrons and holes involving an impurity level, also called 
recombination center, with an energy El. in the bandgap, as shown in 
Fig. 8.10. Let us assume that electrons and holes are generated at a rate 
equal to G, which is the excess generation rate of sub-section 8.6.1. 

There are four possible electron transitions which can involve this level: 
(a) the capture of an electron from the conduction band by the center, (b) the 
emission of an electron from the center into the conduction band, (c) the 
emission of an electron from the center into a vacant state in the valence 
band, and (d) the capture of an electron from the valence band by the center. 
The transition (c) can be equivalently viewed as the capture of a hole by the 
center, and (d) as the emission of a hole from the center into the valence 
band. Each of these transitions is illustrated in Fig. 8.10. 

Fig. 8.10. The four possible transitions for an electron and involving a recombination center 
in the bandgap: (a) capture of an electron fronz the conduction band by the center, (b) 

emission of an electron fronz the center into the conduction band, (c) emission of an electron 
from the center into a vacant state in the valence band, and (d) capture of an electron from 

the valence band by the center. 
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The recombination of electrons or holes is enhanced by the presence of 
the impurity level if the probability of transitions (a) and (c) is higher than 
that of (b) and (d). 

If the probability of (a) and (b) is higher than (c) and (d), the impurity 
level plays more the role of an electron recombination center. If the 
probability of (c) and (d) is higher than (a) and (b), the impurity level plays 
more the role of a hole recombination center. 

Before analyzing each transition in more detail, let us first assume there 
is a density NT of impurity related states at an energy ET. At thermal 
equilibrium, the density of the recombination center states which are 
occupied by electrons is then given by: 

wheref, is the Fermi-Dirac distribution given by Eq. ( 4.28). The density 
of the recombination center states which are empty of electrons at 
equilibrium is given by: 

However, when carriers are transiting through the recombination centers 
in Fig. 8.10, the density of occupied and empty center states is different 
from their equilibrium values. We thus introduce a non-equilibrium 
distribution function f such that the densities of occupied and empty center 
states are N ,  f  and NT (1 - f )  , respectively. Knowledge of the exact value 
of this function is not important in analyzing each of the transitions 
illustrated in Fig. 8.10. 

( I )  Transition rates 
Let us first discuss the transition (a), i.e. the capture of an electron from 

the conduction band by the center. The capture rate, or concentration of 
electrons captured by the center per unit time, is denoted R, and is expressed 
in units of C ~ ' ~ . S - ' .  It must be proportional to the density of electrons in the 
conduction band n and the density of empty centers NT (1 - f )  . 

In addition, R, should also depend on a parameter which describes "how 
often an electron encounters the recombination center". This parameter is 
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the product v,o, of two quantities: the electron thermal velocity v, (in 

units of cm.s-') and the capture cross-section a, of electrons for this 

particular recombination center (in units of cm2). These two parameters can 
be better understood by considering the illustration in Fig. 8.1 1. It shows 
that the electrons which have a velocity v, and which will reach a surface 

of area o,, are located in a volume equal to the product v,o, during a unit 

time. 

Fig. 8.11. Schematic illustration of the concepts of electron thermal velocity and capture 
cross-section. Using ballistic terminology, the electrons moving with the thermal velocity 
which would collide with an object having a cross-section equal to q, are located in the 

volume delimited by the two shaded surfaces in thisfigure. 

The electron thermal velocity in a non-degenerate semiconductor is 
given by: 

Eq. ( 8.72 ) V ,  = - J3Y 
where rn is the mass of the electron. The thermal velocity is on the order 

of 10' cmX1 at room temperature. 
The capture cross-section of electrons for a recombination center 

characterizes the interaction between an electron and this center. It 
corresponds to the effective area around the center that an electron 
experiences when it is approaching the center. The cross-section depends on 
the type of interaction involved between the electron and the center: the 
stronger the interaction is, the larger the influence of the capture cross- 
section is. on is usually determined empirically and is on the order of lo-'' 

2 cm . 
The capture rate R, in the transition (a) is therefore equal to: 
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Eq. (8.73) R, = v,,,a,n~,.(l- f) 

The emission of an electron from the center into the conduction band, 
corresponding to transition (b) in Fig. 8.10, is characterized by an emission 
rate G, which has the same units as R,. This quantity is equal to the density 

of occupied center states N, f multiplied by the electron emission 
probability en which is a parameter characteristic of the recombination 
center in the semiconductor: 

Eq. ( 8.74 ) G, = ell N, f 

Because the transitions (c) and (d) are analogous to (a) and (b) but 
involve holes instead of electrons, we can easily determine the hole capture 
rate R, and the hole emission rate G, fi-om those for electrons Eq. ( 8.73 ) 
and Eq. ( 8.74 ). 

Indeed, R, must be proportional to the density of holes in the valence 
bandp, the density of centers which are occupied (by electrons) N ,  f , the 
thermal velocity of holes which is the same as that of electrons given in 
Eq. ( 8.72 ) and the capture cross-section of holes a, for the center 

considered: 

Eq. ( 8.75 ) R, = v,,,a,pN, f 

G, must be equal to the density of center states which are empty (of 
electrons) N,. (1 - f )  multiplied by the hole emission probability e,,: 

All these expressions for the recombination and emission rates are not 
independent, but must satisfy a number of equations arising from the 
conservation of electrons and holes. The total number of electrons (or holes) 
recombined must be equal to the number of electrons (or holes) generated, 
thus we can write: 

R, = G, + G 
Eq. ( 8.77 ) 

R, = G, + G 
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(2) Emission probabilities en and ep 
At equilibrium, the excess generation rate G is equal to zero. Moreover, 

the electron and hole densities are equal no and po respectively, and the 
distribution function f is equal tofe=fe(ET). All the other parameters remain 
unchanged. Therefore, by expressing Eq. ( 8.77 ) at equilibrium using 
Eq. ( 8.73 ) to Eq. ( 8.76 ) we get: 

which allow us to extract the electron and hole emission probabilities: 

Eq. ( 8.78) { J e 

E 

This last set of equations can be simplified by using the expression for 
the Fermi-Dirac distribution in Eq. ( 4.28 ) to obtain: 

and by using the expressions of no and po given in Eq. ( 7.21 ) and 
Eq. ( 7.29 ) for a non-degenerate semiconductor: 

This last quantity can be denoted n ~ ,  and would correspond to the 
electron density in the conduction band if the Fermi energy was equal to the 
recombination center energy level (EF=ET): 
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A similar expression can be derived for: 

Therefore, Eq. ( 8.78 ) is simplified into: 

Eq. ( 8.82 ) 
en = vthann, 

ep = V t h o p  PT 

(3) The non-equilibrium distribution function f 
The non-equilibrium distribution function, included in the expressions of 

the transition rates in Eq. ( 8.73 ) to Eq. ( 8.76 ), can be determined by 
eliminating the excess generation rate G in Eq. ( 8.77 ). For this, we first 
calculate the difference between the two expressions in Eq. ( 8.77 ): 

which becomes: 

Using Eq. ( 8.82 ), we obtain: 

and, after simplifying by v ,  and NT: 

Thus finally we have: 

Eq. ( 8.83 ) f = 
onn + ~ , P T  

o , , ( n  + n,J+  o,(P + p i )  
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(4) Recombination lifetimes 
The net recombination rate of electrons from the conduction band is 

given by the difference between the recombination rate R, and the 
generation rate G,, i.e.: 

This quantity is also equal to the net recombination rate of holes from 
the valence band in view  of^^. ( 8.77 ): 

Eq. ( 8.85 ) -- 
dt 

Using the non-equilibrium distribution function (Eq. ( 8.83 ))and the 
expressions for R,, G, and en in Eq. ( 8.73 ), Eq. ( 8.74 ) and Eq. ( 8.82), we 
can calculate successively: 

From the definitions of n~ and p~ in Eq. ( 8.80 ) and Eq. ( 8.81 ), we 
have n,p ,  = n12 where ni is the intrinsic carrier concentration. The previous 

equation can then be simplified into: 

(nP - n:)  
Eq. ( 8.86 ) R, - G, = v , o n o p N , .  

o n ( n + n T ) + o p ( ~ + ~ T )  

Introducing the excess carriers An and Ap as in Eq. ( 8.57 ), and still 

assuming An = Ap , we get: 
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Eq. ( 8.87 ) 

Here we have also used the relation nopo = nJ2. This expression can be 

further simplified by first considering two particular cases. 
(i) For low excess carrier concentrations, i.e. weak excitation levels 

where An << no, p,; and for an n-type semiconductor, where we can 

assume that no is much higher thanpo, nT andpT, Eq. ( 8.87 ) becomes: 

which can be rewritten, by taking into account Eq. ( 8.84 ): 

From this last expression, we can introduce a recombination lifetime 
zpo such that: 

Note that the subscript "p" has been used for this lifetime, because it 
depends on the capture cross-section of holes. This corresponds to a lifetime 
of holes. Therefore, in an n-type semiconductor, the excess carrier lifetime 
approaches that of holes. 
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(ii) In the second case, still An << n o , p o ;  but for a p-type 

semiconductor this time, where we can assume that po is much higher than 
no, nT andpT, Eq. ( 8.87 ) becomes: 

Here again, we can rewrite this as: 

with: 

Eq. ( 8.90 ) rnO = 
1 

' th  on NT 

Here, the suffix "n" has been used, because the lifetime depends on the 
capture cross-section of electrons. This corresponds to a lifetime of 
electrons. Therefore, in a p-type semiconductor, the excess carrier lifetime 
approaches that of electrons. Using the expressions in Eq. ( 8.89 ) and 
Eq. ( 8.90 ), we can simplify Eq. ( 8.87 ): 

(no + po + An)An 
Eq. (8.91 ) R, -G, = 

rpll (no + ' T  + ~ n )  + Trill ( P O  + PT + ~ n )  

From Eq. ( 8.84 ) and Eq. ( 8.85 ), we can write: 

We can now introduce the Shockley-Read-Hall recombination lifetime 
rn = rp such that: 



294 Fundamentals of Solid State Engineering 

Eq.(8.93) zn( t )=rp( t )= zPIl (no + nr + A") + rh ( P o  + PT + An) 

(no + Po + An) 

which becomes independent of time for weak excitation levels 
An << no, po : 

Eq.(8.94) z, = z ,  = 
7 ,  ("0 + n, ) + T," ( P o  + PT ) 

("0 +Po) 

From this relation, we can easily find the two previous particular cases, 
i.e. that for an n-type semiconductor: z, = zp = zPo ; and for a p-type 

semiconductor: z, = z, = zno . 

8.6.4. Auger band-to-band recombination 
Unlike the direct band-to-band or the SRH processes, in the Auger band-to- 
band, or simply Auger recombination, the energy that is released when an 
electron recombines with a hole is transferred to a third particle, an electron 
in the conduction band or a hole in the valence band. This carrier particle is 
called an Auger electron or Auger hole. The energy that this third particle 
acquires is subsequently released in the form of heat or phonons into the 
lattice. Auger recombination is an intrinsic non-radiative mechanism which 
is more effective at higher temperatures and for smaller bandgap 
semiconductors. This recombination mechanism occurs most often in doped 
direct bandgap semiconductors. 

There are three possible Auger recombination mechanisms, depending 
on what type of Auger carrier is excited, and where it is excited. These are 
illustrated in Fig. 8.12. 

The first process, shown in Fig. 8.12(a), is called a CHCC process to 
indicate that an electron from the conduction band (C) recombines with a 
hole in the valence band (H) to lead to the excitation of another electron 
which remains in the conduction band (CC). In the case of an Auger hole, 
the valence band structure is more complex than the conduction band, as we 
saw in sub-section 4.4.3. We must then distinguish whether this hole is 
excited into the light-hole band (CHLH process, Fig. 8.12(b) or the spin- 
orbit split-off band (CHSH process, Fig. 8.12(c)). 
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t conduction 

k k 

(b) CHLH (c) CHSH 

Fig. 8.12. Auger recombination processes semiconductors. The energy released through the 
recombination of an electron in the conduction band and a hole in the valence band is 

yielded to: (a) another electron in the conduction band which is then excited to a higher state 
in the band, (b) an electron in the LH band which is excited to a vacant electronic state in the 
HH band, (c) an electron in the split-off band which is excited to a vacant electronic state in 

the HH band. 

In all three cases, the total energy and the total momentum (i.e. Fik) of 
the system constituted by the three particles must be conserved. 

Similar to the direct band-to-band recombination, the Auger 
recombination rates are expressed in units of ~m-~.s' '  and are proportional, in 
all three processes, to the density of electrons in the conduction band n and 
that of holes in the valence bandp, because these are the particles which are 
recombining. 

In the CHCC case, this rate is also proportional to the density of 
electrons which are susceptible to be excited, i.e. n again. The 
recombination rate in the CHCC process is therefore given by: 

Eq. ( 8.95 ) RcHc, = 

where rl is the Auger recombination coefficient for this case and is 
expressed in units of cm-'. 

For the CHLH and CHSH processes, the same argument leads to a 
compounded recombination rate equal to: 

where r2 is the Auger recombination coefficient when Auger holes are 
excited. 

The total Auger recombination rate is therefore: 
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We can now follow the same analysis as the one conducted for the direct 
band-to-band recombination in order to determine the Auger recombination 

dn 
lifetime. We start from the rate Eq. ( 8.59 ). At equilibrium, - = 0 and 

dt 
G=O, and the thermal generation rate is thus equal to: 

2 
Eq. ( 8.98 ) G, = R = r,no2p0 + r2nopo 

Let us now consider the relaxation process, which occurs after the 
external source of generation is removed (G = 0). Taking into account 
Eq. ( 8.97 ) and Eq. ( 8.98 ), Eq. ( 8.59 ) becomes: 

where An = Ap is the excess electron and hole concentrations defined 
in Eq. ( 8.61 ). This expression can be expanded using Eq. ( 8.61 ) and we 
obtain: 

-- d(An)  = -rl [no2po - (no + An)r (PO + An)]- r, [nopt  - (no + + Ann)'] dt 

= r, [(n: + 2nop0)An + (212, + p0)(Ann)' + (Any]  

+ r2 [(P: + 2 n o p 0 ) ~ n  + (2p0 + n 0 ) W  + b y ]  

We can now introduce the Auger recombination lifetime z, = z, such 

that: 

Eq. ( 8.100 ) 

Tn (t)  = T, ( t )  = 
- 1 

r, l(n: + 2nopO)+ (2no + p o ) ~ n  + (Ann)'] 
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which becomes independent of time for weak excitation levels 
An < < n o , p o :  

8.6.5. Surface recombination 
The surface of a semiconductor is a violation of the crystal periodicity, and 
therefore gives rise to energy levels near the surface which lie within the 
bandgap. These correspond to surface traps. However, unlike the previously 
discussed carrier recombination mechanisms which occur in the bulk solid, 
surface recombination occurs at the surface of the solid. Moreover, the 
surface recombination takes place even in pure materials. Such processes 
play an important role in semiconductor device technology. 

The energy levels introduced by the surface traps can be considered as a 
special case of recombination centers in Shockley-Read-Hall recombination 
mechanism. The same analysis as in sub-section 8.6.4 can be conducted here 
for surface recombination, provided a surface density of recombination 
centers (Nds is used instead of the bulk density of centers NT. All the other 
parameters would keep the same meaning. 

The excess surface recombination rate is the number of electrons or 
holes which are recombined per unit area of the surface and per unit time. It 
is thus expressed in units of ~ m - ~ . s - '  and can be obtained by analogy with the 
SRH recombination in Eq. ( 8.87 ): 

Eq. ( 8.102 ) 

Here, An is the excess electron concentration near the surface 
considered. We can rewrite this relation as: 

where: 
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Eq.(8.104) S, =V,D,O,(N,.)~ (no + PO + An) 
on (no + nr + An) + 0, + p,  + An) 

This quantity is expressed in units of cm.s-', and has thus the same 
dimension as a velocity. It is called the surface recombination velocity. 

8.7. Quasi-Fermi energy 

In section 7.5, we calculated the equilibrium electron concentration in the 
conduction band no and the hole concentration in the valence band po using 
the Fermi-Dirac distribution and arrived at Eq. ( 7.18 ) and Eq. ( 7.27 ) in 
the general case, and Eq. ( 7.21 ) and Eq. ( 7.29 ) in the non-degenerate. For 
a given semiconductor material, these concentrations depended solely on a 
single parameter, the Fermi energy EF. 

Under non-equilibrium conditions, where the electron and hole 
concentrations in their respective bands are given by: 

n = no +An 
Eq. ( 8.105 ) 

P =Po + *P 

the Fermi-Dirac distribution is not valid any more. However, it is 
convenient to maintain the mathematical formalism of the equations 
mentioned previously, and this is most often done for a non-degenerate 
semiconductor only. 

Therefore, by analogy with Eq. ( 7.21 ), the non-equilibrium electron 
concentration in the conduction band is given by: 

Eq. (8.106) n = N ,  exp E4kP I 
where the quantity Ec, is used instead of the Fermi energy EF. This 

quantity is called the electron quasi-Fermi energy. Using this expression, 
Eq. ( 7.21 ) and Eq. ( 8.105 ), we can write: 
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Therefore, under non-equilibrium conditions, the difference between the 
quasi-Fermi level and the Fermi level determines the relative excess electron 
concentration with respect to the equilibrium concentrations. 

Using this quasi-Fermi energy, it is possible to define a quasi-Fermi- 
Dirac distribution for electrons, which is analogous to Eq. ( 4.28 ) with EF 
replaced by EFt : 

A similar concept can be introduced for holes in the valence band. The 
hole quasi-Fermi energy EF is defined such that: 

P 

A quasi-Fermi-Dirac distribution for holes can also be defined by 
analogy with Eq. ( 7.23 ): 

The quasi-Ferrni-Dirac distributions allow separate mathematical 
computations for electrons and holes in an easier manner. At equilibrium, 
the electron and hole quasi-Fermi energies are both equal to the Fermi 
energy, i.e. Ec, = E,,, = E,  . 

Example 
Q: Estimate the difference between the quasi-Fermi 

energies EF,, and EFp and the Fermi energy EF in an 
intrinsic semiconductor, given that the excess carrier 
concentration An=Ap is 1 % of no. 

A: The quasi-Fermi energies EF, and EFp is related to the 
excess carrier concentration through the expression: 
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E,  - E, = k,T In and E, - E,, = k,T In 

where no and po are the equilibrium electron and hole 
concentrations and are both equal to the intrinsic carrier 
concentration ni since the semiconductor is assumed 

An Ap 
intrinsic at equilibrium. Therefore - = - = 0.01 and 

no Po 
we obtain: E, - E,  = E,  - EFp = 0.0095kbT. 

8.8. Summary 

In this Chapter, we have covered a few important non-equilibrium transport 
phenomena involving charge carriers. First we discussed the electrical 
conductivity (Ohm's law) in the presence of an external electric field. There, 
we introduced the concepts of conductivity, resistivity, as well as carrier 
collision or scattering. Then, secondly we described the Hall effect for an n- 
type and then a p-type semiconductor in the presence of perpendicular 
electric and magnetic fields. There, we introduced the notion of carrier 
mobility. Thirdly, we discussed the diffusion of charge carriers in an 
inhomogeneous semiconductor, leading to the concepts of diffusion length 
and the Einstein relations. 

The recombination mechanisms of charge carriers in a semiconductor 
have been described, including the direct band-to-band, Shockley-Read- 
Hall, Auger and surface recombination processes. The concepts of 
recombination lifetime and capture cross-section were introduced. 

Finally, we introduced the notion of quasi-Fermi energy to describe the 
electron and hole distribution under non-equilibrium conditions, while at the 
same time maintaining the same mathematical formalism as under 
equilibrium conditions. 
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Problems 

1. Consider the semiconductor slab shown in the figure below with 
dimensions L=l cm, W=0.2 cm and H=0.25 cm, and with a resistivity of 
0.01 R.cm. What would be the resistance one would measure across 
opposite faces in all three directions (x, y, and z)? Knowing there is a 
uniform concentration n=lOIG of electrons in this semiconductor 
(and no holes), calculate the mobility of these electrons. 

2. Consider the semiconductor block with a resistivity of 0.01 R.cm and 
shown in the figure below. The width of this block is constant but 
follows the relation: W=1+2(L-x) cm when x is varied from 0 to L. The 
other dimensions are L=l cm and H=0.25 cm. Calculate the resistance in 
the x-direction. For this, you may consider the semiconductor block as a 
series of parallelepiped slabs next to one another. 

3. Do the same as in Problem 2, but in the y-direction. 

4. Consider the Hall effect measurement experiment depicted in the figure 
below. The dimensions of the semiconductor slab are L=2 rnm, W=l 
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mm and H=2 p m  Assume the current Ix=10 mA, the voltages Vx=10 V 
and V,,=-4 V, and a magnetic induction B,=0.05 T. 
Determine if the semiconductor is n-type or p-type, the Hall constant, 
the carrier concentration, the Hall mobility, the conductivity, the 
resistivity of the semiconductor (assumed uniform). 

5. Consider an experiment where excess electrons are generated in a 
"burst" at t=O at x=xo in a semiconductor, resulting in the concentration 
profile n(x) shown in the figure below. 

X o  

Draw the shape of the concentration profile n(x) as a result of the one- 
dimensional diffusion in the x-direction. No other external forces are 
present. Draw several shapes corresponding to several times after the 
initial "burst". 

6. Do the same as in Problem 5 but consider, in addition, that there is an 
3 

electric field strength E in the direction as shown in the figure below. 
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7. The electron mobility in a Ge crystal is experimentally found to be 
proportional to T - ' . ~ ~  (i.e. the mobility decreases with increasing 
temperature). Knowing that this mobility is 4000 cm2/vs at 300 K, 
determine the electron diffusion coefficient at 300 K and 77 K. 
Compare. 

8. Consider an n-type Si semiconductor at room temperature with an 
excess electron concentration which decreases from 4 x 1 0 ' ~  cm" to 
1 cm" (practically zero) over an distance of 1 mm. Determine the 
diffusion length of these electrons. 

9. Assume a one-dimensional model in which holes are generated at a rate 
of G(x,g. Let z, be the recombination lifetime for holes, and . po . be the 

equilibrium hole concentration. Give an expression for - ap(X't) , i.e. the 
dt 

rate of change for the hole concentration at position x, as a function of 
the diffusion current J;' (x, t) and the parameters defined previously. 

This relation is called a continuity equation and states that the total 
number of holes must be accounted for. Using Eq. ( 8.42 ), rewrite this 
relation such that it involves the hole concentration p(x,tj as the only 
unknown. 
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Ideal p-n junction at equilibrium 
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Summary 

9.1. Introduction 

Until now, our discussion was based solely on homogeneous 
semiconductors whose properties are uniform in space. Although a few 
devices can be made from such semiconductors, the majority of devices and 
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the most important ones utilize non-homogeneous semiconductor structures. 
Most of them involve semiconductor p-n junctions, in which ap-type doped 
region and an n-type doped region are brought into contact. Such a junction 
actually forms an electrical diode. This is why it is usual to talk about a p-n 
junction as a diode. Another important structure involves a semiconductor in 
intimate contact with a metal, leading to what is called a metal- 
semiconductor junction. Under certain circumstances, this configuration can 
also lead to an electrical diode. 

The objective of this Chapter will first be to establish an accurate model 
for the p-n junction which can be at the same time mathematically 
described. This model will be the ideal p-n junction diode. The basic 
properties of this ideal p-n junction at equilibrium will be described in 
detail. The non-equilibrium properties of this p-n junction will then be 
discussed by deriving the diode equation which relates the current and 
voltage across the diode. Deviations from the ideal diode case will also be 
described. Finally, this Chapter will also discuss the properties of metal- 
semiconductor junctions and compare them with those of p-n junctions. 

9.2. Ideal p-n junction at equilibrium 

9.2.1. Ideal p-n junction 
The ideal p-n junction model is also called the abrupt junction or step 
junction model. This is an idealized model for which we assume that the 
material is uniformly doped p-type with a total acceptor concentration NA on 
one side of the junction (e.g. x<O), and the material is uniformly doped n- 
type with a total donor concentration ND on the other side (e.g. x>O). For 
further simplicity, we will consider a homojunction, i.e. both doped regions 
are of the same semiconductor material. We will restrict our analysis to the 
one-dimensional case, as illustrated in Fig. 9.1. 

Fig. 9.1. Ideal p-n junction model, in which one side,of the junction is a purely p-type 
semiconductor and the other a purely n-type semiconductor. Both materials are uniformly 

doped. 
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In the p-type doped region far from the junction area, the equilibrium hole 
and electron concentrations are denoted pp and np, respectively. In the n-type 
doped region far from the junction area, the hole and electron concentrations 
are denoted p, and n,, respectively. These carrier concentrations satisfy the 
mass action law in Eq. ( 7.3 1 ). 

where ni is the intrinsic carrier concentration in the semiconductor 
material considered. We further assume that all the dopants are ionized, 
which leads to the following carrier concentrations for the p- and n-type 
regions, respectively: 

pp = N, (10"cm") n ,  = N O  (10'~cm") 

Eq. ( 9.2 ) 
and 1 P n = L ( l ~ 4 m - 3 )  2 

N D  

A few typical values for these concentrations are given in parenthesis. It 
is important to remember that both a p-type, and an n-type, isolated 
semiconductors are electrically neutral. 

9.2.2. Depletion approximation 
However, when bringing a p-type semiconductor into contact with an n-type 
semiconductor, the material is not electrically neutral everywhere anymore. 
Indeed, on one side of the junction area, for x<O, there is a high 
concentration of holes whereas on the other side there is a low concentration 
of holes. This asymmetry in carrier density results in the diffusion of holes 
across the junction as shown in Fig. 9.2. By doing so, the holes leave behind 
uncompensated acceptors (x<O) which are negatively charged. A similar 
analysis can be carried out for electrons as there is also a asymmetry in the 
density of electrons on either side of the p-n junction. This leads to their 
diffusion and makes the material positively charged for x>O as the electrons 
leave behind uncompensated donors, as shown in Fig. 9.2. 
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electvical charge: 1q:PI 
Fig. 9.2. Hok and electron diffision across a p-n junction. The holes diffuse from the left to 

the right, which leads to a diffision electrical current from the left to the right as well. By 
contrast, the electrons diffuse from the right to the left, but this leads to a diffusion electrical 
current from the left to the right because of the negative charge of electrons. The diffusion 

process leaves uncompensated acceptors in the p-type region and donors in the n-type 
regions, i.e. a net negative charge in the p-type region and a net positive charge in the n-type 

region. The presence of these charges result in a built-in electric field. 

This redistribution of electrical charge does not endure indefinitely. 
Indeed, as positive and negative charges appear on the x>O and x<O sides of 
the junction respectively, an electric field strength E(x), called the built-in 
electric field, will result and is shown in Fig. 9.3. As discussed in Chapter 8, 
this electric field will generate the drift of the positively charged holes and 
the negatively charged electrons. By comparing Fig. 9.2 and Fig. 9.3, we 
can see that the drift of these charge carriers counteracts the previous 
diffusion process. An equilibrium state is reached when the diffusion 
currentS ~ d ' f f u s i o n  and drift currents J~~~ are exactly balanced for each type 

of carrier, i.e. holes and electrons taken independently: 

';? + J"" = " 
Eq. ( 9.3 ) h 

d V  + J,d"f = O  
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hole drift: 
hole drift current: 

electron drift: 
electron drift current: 

electrical charge: 

electric field: 

Fig. 9. 3. Hole and electron drift across a p-n junction. Under the influence of the built-in 
electric field, the holes drift from the right to the left, which leads to a drift electrical current 
from the right to the left as well. By contrast, the electrons drift from the left to the right, but 
this leads to a drift electrical current from the right to the left because of the negative charge 

of electrons. The drift process counterbalances the diffusion of charge carriers in order to 
bring the system into equilibrium. 

There is a transition region around the p-n junction area with a width Wo 
in which the electrical charges are present. This region is called the space 
charge region and is schematically shown in Fig. 9.4(a). The charge 
distribution within this region is modeled as follows: we consider that there 
is a uniform concentration of negative charges for -xpo<x<O equal to 
Q(x)=-qNA (where NA is the total concentration of acceptors in the p-type 
region), and a uniform concentration of positive charges for O<x<xno and 
equal to Q(x)=+qND (where ND is the total concentration of donors in the n- 
type region). The quantities xpo and xno are positive and express how much 
the space charge region extends on each side of the junction, as illustrated in 
Fig. 9.4(b). The width of the space charge region, also called depletion 
width, is then given by: 

Eq. ( 9.4 ) W, =xn,+xp, 
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Fig. 9.4. (a) Space charge region in a p-n junction. Near the junction area, the p-type region 
is negatively charged as a result of the d@usion of charge carriers. (b) Electrical charge 

density in a p-n junction. To keep the overall charge neutrality, the total number of negative 
charges in thep-type region is equal to the total number ofpositive charges in the n-type 
region. In the depletion approximation, the charges are assumed uniformly distributed in 

space, within the depletion region delimited by -xpo and xn0. 

Outside of this space charge region, we assume that the semiconductor is 
at thermal equilibrium, i.e. is electrically neutral without any charge 
depletion and that the hole and electron concentrations are given by 
Eq. ( 9.2 ). These regions will be called the bulkp-type and bulk n-type 
region. The carrier concentrations must therefore somehow go from a high 
value on one side of the junction to a low value on the other side, and this 
occurs within the space charge region, as illustrated in Fig. 9.5. In particular, 
we have: 

P(- xp0 ) = P y  and &no = P. 
Eq. ( 9.5 ) {.(- xpo = n ,  and n (xno)  = n. 
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Fig. 9.5. (a) Hole and (b) electron concentrations in a p-n junction. In the depletion 
approximation, the hole and electron concentrations are assumed to be constant and equal to 

their equilibrium values outside of the depletion region. 

This model is called the depletion approximation. In this model, there 
are no free holes or electrons in the space charge region: the depletion of 
carriers is complete. The electric field exists only within this space charge 
region. 

Because the entire p-n structure must globally remain electrically 
neutral, and therefore the space charge region must be neutral as a whole, 
we must equate the total number of negative charges on one side of the 
junction to the total number of positive charges on the other side, i.e.: 

where A is the cross-section area of the junction, and after 
simplification: 

Eq. ( 9.6 ) N,xpo= N,xno 

Combining Eq. ( 9.4 ) and Eq. ( 9.6 ), we can express the quantities xpo 
and xno as a function of the depletion width Wo: 
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xpo= ND Wo 
Eq. ( 9.7 ) NA +ND 

Xno= NA w0 
NA +ND 

These show that the space charge region extends more in the p-type 
region than in the n-type region when ND>NA and reciprocally. 

Example 
Estimate the thickness ratio of the depletion region in 
the p-type side ( ~ ~ = 1 0 "  ~ m - ~ )  and the n-type side 

17 (ND=10 ~ m - ~ )  for an abrupt p-n junction in the 
depletion approximation. 
The thicknesses of the depletion region in the p-type 
side and the n-type side are denoted xpo and xno, 
respectively. Their ratio is such that: 

9.2.3. Built-in electric Jield 
The built-in electric field strength can be calculated using Gauss's law 
which can be written in our one-dimensional model as: 

where E is the permittivity of the semiconductor material. This relation 
can be rewritten for either sides of the junction: 

- dE(x) - - -- A for - x,, c x < o 
Eq. ( 9.9 ) E I;-- dE(x)  - qNo E for 0 < x < xno 

From these relations we see that the electric field strength varies linearly 
on either side of the junction. By integrating Eq. ( 9.9 ) using the boundary 
conditions assumed in the depletion approximation: 
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Eq. ( 9.10 ) E(-xpo)= E(xno)= 0 

that the electric field strength is equal to zero at the limits of the space 
charge region (x=-xp0 and x=xno), we obtain successively: 

4NA j -4 for - x,, < x < o 
-x,,o 

E 

for O < x < x n o  

for -xp0 < x < O  
Eq. (9.11 ) 

for 0 < x < xno 
E 

For x=O, we obtain two expressions for the electric field strength from 
the two previous expressions for E(x): 

~ N A  
~ ( 0 )  = --GPO 

Eq. ( 9.12 ) E 

~ ( 0 )  = &(- xno) 
E 

And these expressions are equal, according to Eq. ( 9.6 ). Therefore, the 
global electrical neutrality of the p-n structure ensures the continuity of the 
built-in electric field strength. A plot of E(x) is shown in Fig. 9.6. 

P-type n-type 

Fig. 9.6. Built-in electric field strength profile across a p-n junction. In the depletion 
approximation, the electric field strength is zero outside the depletion region because there is 
no net electrical charge. Within the depletion region, the electric field strength varies linearly 

with distance. 
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9.2.4. Built-in potential 
As a result of the presence of an electric field, an electrical potential V(x) 
also exists and is related to the electric field strength through: 

The potential is constant outside the space charge region because the 
electric field strength is equal to zero there. An analytical expression for the 
electrical potential can be obtained by integrating Eq. ( 9.1 1 ): 

where we chose the origin of the potential at x=O and applied the 
continuity condition of the potential at x=O. This potential is plotted in 
Fig. 9.7. 

Fig. 9.7. Built-in potential profile across a p-n junction. In the depletion approximation, 
there is no variation of the potential outside the depletion region. 

The total potential difference across the p-n junction is called the built-in 
potential and is conventionally denoted Vbi or VO. It can be obtained by 
evaluating the potential difference between x=-xpo and x=xno: 

This can be rewritten as: 
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~ N L ,  xi0 ~ N A  4 0  Eq. (9.16) Vo =--+-- 
E 2  E 2  

Expressing -xpo and xno as a function of the depletion width given in 
Eq. ( 9.7 ), we obtain: 

Another independent expression of the built-in potential can be obtained 
by expressing the balancing of the diffusion and drift currents. In Chapter 8 
we determined analytical expressions for these currents in Eq. ( 8.12 ) and 
Eq. ( 8.38 ) for holes, and Eq. ( 8.12 ) and Eq. ( 8.36 ) for electrons. The 
total current from the motion of holes and that from the motion of electrons 
are given by: 

diff ~ d r ' f t  = - 
J h  + h qDD, F + q / l h ~ ( ~ ) ~ ( ~ )  

Eq. (9.18) 
J : ~  + J? = qD, a +  qp,n(x)E(x) 

cEx 

In these expressions, p(x) and n(x) represent the hole and electron 
concentrations at a position x. Taking into account the condition of 
Eq. ( 9.3 ) stating the exact balancing of the diffusion and drift currents for 
holes and electrons, we can write: 

which can be rewritten using Eq. ( 9.13 ) as: 

By integrating these equations, we get successively: 
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Using Eq. ( 9.5 ) and Eq. ( 9.15 ), and by taking into account the 

D p  - Dn - kbT Einstein relations - - - -- obtained from Eq. ( 8.44 ) and 
ph 

Eq. ( 8.45 ), we get: 

which integrates easily into: 

This can be rewritten into the form: 

Using the expressions in Eq. ( 9.2 ), we can write the built-in potential as 
a function of the doping concentrations: 
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This potential exists at equilibrium and is a direct consequence of the 
junction between dissimilarly doped materials. However, it cannot be 
directly measured using a voltmeter because, as soon as the probes are in 
contact with the material, contact potentials are created at the probes which 
cancel the built-in potential in the measurement. 

9.2.5. Depletion width 
It is now possible to relate the width Wo of the space charge region, as well 
as its extent on either side of the p-n junction, with the built-in potential. 
From the expression of the built-in potential in Eq. ( 9.17 ), we can express 
the depletion width as: 

which becomes, after considering Eq. ( 9.22 ): 

The extent of the depletion width into each side of the p-n junction can 
then be determined by replacing Wo from Eq. ( 9.23 ) into Eq. ( 9.7 ): 

Eq. ( 9.25 ) 

These last two expressions show that the space charge region extends 
more into the region of lower doping, in accordance with sub-section 9.2.2. 
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where E is the dielectric constant of GaAs ( ~ 1 3 . 1 6 )  
and Vo is the built-in potential. The latter is calculated 
from: 

Example 
Q: Consider a GaAs abrupt p-n junction with a doping level 

on the p-type side of NA=2x 10" cm-3 and a doping level 
on the n-type side of ND=lx1017 ~ m - ~ .  Estimate the 
depletion region widths on the p-type side and the n- 
type side at 300 K. 

A: The depletion region widths sought are given by the 

= 1.297 V 
because the intrinsic carrier concentration in GaAs at 
300 K is n,=1.79x106 ~ m - ~ .  The widths can then be 
calculated as: 

following expressions: . 

xp0= 5.6 x cm 

xpO= 56nm 

and 

X p o  = 

i 
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9.2.6. Energy band profile and Fevmi energy 
Because of the presence of a built-in potential, the allowed energy bands in 
the semiconductor, e.g. the conduction and the valence bands in particular, 
are shifted too. The resulting energy band profile is obtained by multiplying 
the potential by the charge of an electron (-9). This is shown in Fig. 9.8, 
where it is conventional to plot the bottom of the conduction band (Ec) and 
the top of the valence band (EV) across the p-n structure. 

The reason why we must multiply by the negative charge of an electron 
is because the resulting band diagram corresponds to the allowed energy 
states for electrons. This is intuitively understandable because the electrons 
are more likely to be where there is a higher positive electrical potential, 
thus the energy band for electrons will be lower there. 

P-type n-type 

q vo 

Fig. 9.8. Energy band profile across a p-n junction. This profile is obtained by multiplying 
the potential in Fig. 9.7 by -q, the electrical charge of electrons. 



320 Fundamentals of Solid State Engineering 

We therefore see that the conduction and valence bands are "bent" from 
the p-type to the n-type regions. Moreover, the amount of band bending is 
directly related to the built-in potential: 

Example 
Q: Estimate the energy band bending from the p-type side 

to the n-type side in a GaAs abrupt p-n junction with a 
doping level on the p-type side of NA=2x 1017 and a 
doping level on the n-type side of ND=l x loi7 cm" at 
300 K. 

A: From the previous example, we know that the built-in 
potential is Vo=1.297 V. The band bending is therefore 
equal to q Vo=l .297 eV. 

Away from the space charge region, the Fenni energy in the p-type and 
n-type regions are denoted EFP and EFn respectively, as shown in Fig. 9.8. At 
equilibrium, these quantities must be equal. Indeed, the hole density in the 
p-type and n-type regions is given by Eq. ( 7.29 ) in the non-degenerate 
case: 

Eq. ( 9.27 ) 

Utilizing Eq. ( 9.21 ), we get: 

(;ib?) (Ev;-TEvn ) exp(E~;-TE~p ) Eq. ( 9.28 ) exp - = exp 
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In addition, by using Eq. ( 9.26 ) in this expression, we get: 

which means that EFn=EFp, i.e. the Fermi energy in thep-type and n-type 
regions are equal and this has already been anticipated in Fig. 9.8. In fact, 
this is a general and important property that: at thermal equilibrium, the 
Fermi energies of dissimilar materials must be equal. This physically means 
that there must not be a net transfer of holes or electrons across the structure 
at equilibrium. 

9.3. Non-equilibrium properties of p-n junctions 

The most interesting and practical properties of a p-n junction are observed 
under non-equilibrium conditions, such as when a voltage is applied across 
it and/or when it is illuminated. Because of its non-symmetrical nature, a p-n 
junction will exhibit different properties depending on the polarity of the 
external voltage or bias applied. The sign convention used for the external 
voltage and the current in a p-n junction is shown in Fig. 9.9: the voltage 
will be positive if the applied potential on the p-type side is higher than that 
applied on the n-type. Note that the built-in voltage Vo has been taken to be 
positive. 

Fig. 9.9. Convention for the polarity of the external voltage and current. 

When an external bias is applied, the diffusion and drift currents do not 
balance each other any more. This imbalance results in a net flow of 
electrical current in one or the other direction. In addition, the internal 
electric field and voltage across the p-n junction, the depletion width and the 
energy band profile will all be changed. In this section, we will review how 
these parameters are modified. 
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9.3.1. Forward bias: a qualitative description 
When an external bias V is applied to the p-n structure depicted in Fig. 9.9, 
there is usually some voltage drop across both the neutral bulkp-type and 
the n-type regions (i.e. outside the space charge region) due to Ohm's law 
(section 8.2)). In other words, the entire external bias is not applied across 
the transition region because part of it would be "lost" across the neutral 
regions due to their electrical resistance. 

However, in most semiconductor devices which use p-n junctions, the 
length of these neutral regions which the electrical current would have to 
flow through is small, and any voltage drop would thus be negligible 
compared to the voltage change across the transition region. In our 
discussion, for now we will assume that the external bias is applied directly 
to the limits of the space charge region. 

According to the sign convention in Fig. 9.9, the total voltage across the 
transition region is now given by Vo-V. There are typically two regimes 
which need to be considered for the non-equilibrium conditions of a p-n 
junction: forward bias and reverse bias. 

In the forward bias regime, corresponding to V>O, the total voltage or 
potential barrier across the transition region is actually reduced from Vo to 
Vo- V, which has a number of consequences. First, the strength of the internal 
electric field associated with the lower potential barrier is reduced as well, 
as shown in Fig. 9.10(c). This in turn means that the width of the space 
charge region is reduced because fewer electrical charges are needed to 
maintain this electric field, as shown in Fig. 9.10(b). In other words, Wo is 
reduced and is now denoted W, xno becomes x,, and xpo becomes x,, as 
illustrated in Fig. 9.10(a). As the internal voltage is reduced from its 
equilibrium value by an amount equal to V, the energy band profile is 
changed and the amount of band bending is reduced by qV, as depicted in 
Fig. 9.10(e). This means that: 

instead of Eq. ( 9.26 ). Furthermore, we can still consider that the Fermi 
energy levels outside the space charge region, i.e. in the neutral bulkp-type 
(EFp) and n-type (EFn) regions, are located at their equilibrium positions 
because we assumed no voltage drop in these regions. Therefore, because 
the band bending has been reduced by qV, according to Fig. 9.10(e), we 
must have: 
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This means that the Fermi energy is not constant throughout the p-n 
junction structure, but the Ferrni energy levels in the neutral p-type and the 
n-type regions are separated by qV, where V is the applied external bias. 
This is a direct consequence of a non-equilibrium condition. 
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n-type 

Fig. 9.10. (a) Space charge region width, (b) electrical charge density, (c) electric field 
strength, (d) potential profile, and (e) energy band profile of a p-n junction under forward 

bias (DO). The thick dashed curves represent the equilibrium case for comparison. 

Let us now qualitatively examine the effects of a forward bias on the 
diffusion and drift currents across the space charge region of a p-n junction. 
As we saw in the previous section, the diffusion current arises from the 
difference between the density of charge carriers on either side of the 
junction area. It corresponds to the motion of electrons from the n-type 
region toward the p-type region, and conversely for holes. This means that, 
at its origin, the diffusion current is related to the motion of majority carriers 
(e.g. electrons in the n-type region). However, as soon as these carriers 
reach the other side of the junction, they become minority carriers. 
Therefore, the diffusion current acts as if it injects minority carriers into one 
side of the junction by pulling them from the other side of the junction 
where they are majority carriers. 

At equilibrium, the diffusion process is stabilized when the built-in 
electric field exerts a force that exactly counterbalances the diffusion of 
these charge carriers. Under a forward bias, as we just saw in Fig. 9.10(c), 
this electric field strength is reduced. Therefore, each type of charge carriers 
can diffuse more easily, which means that the diffusion currents for both 
types of carrier increase under a forward bias. 

This can also be understood by examining the energy band profile. For 
example: when the electrons in the n-type region, on the right hand side of 
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Fig. 9.10(e) where they are more concentrated, diffuse towards the p-type 
region where they are less concentrated, the allowed energy states are 
located at higher energies. This means that the diffusion electrons have to 
cross a high-energy barrier. Under a forward bias, this energy barrier is 
reduced, as shown in Fig. 9.10(e), and more electrons can thus participate in 
the diffusion towards the p-type region. A similar argument is valid for 
holes. As a result, the diffusion currents for both types of carrier increase 
under a forward bias. 

By contrast, the drift current does not change with an external bias, 
although this may seem contradictory with the fact that the internal electric 
field is weaker. This can be understood by examining the drift current in 
more detail. We saw in section 10.2 that the drift current counterbalanced 
the diffusion of charge carriers and thus consisted of electrons moving 
toward the n-type region and holes moving toward the p-type region. This 
means that, at its origin, the drift current is related to the motion of minority 
carriers, such as electrons in the p-type region which drift toward the n-type 
region under the influence of the electric field. The drift current thus plays 
the converse role of the diffusion current. The drift current acts as if it 
extracts minority carriers from one side of the junction to send them to the 
other side of the junction where they are majority carriers. Because the 
concentrations of minority carriers are very small (see Eq. ( 9.2 )), the drift 
currents are mostly limited by the number of minority carriers available for 
drift (i.e. electrons on the p-type region and holes on the n-type region) 
rather than by the speed at which they would drift (i.e'. the strength of the 
electric field). We then understand why the drift current does not change 
significantly when an external bias is applied, in comparison to the diffusion 
current. 

9.3.2. Reverse bias: a qualitative description 
By contrast, in the reverse bias regime, corresponding to V<O, the total 
voltage or potential barrier across the transition region is actually increased 
from Vo to Vo-V, which also has the opposite effects of a forward bias. The 
strength of the internal electric field is increased, as shown in Fig. 9.1 l(c). 
This enlarges the width of the space charge region from Wo to W (with xwo 
becoming x,, and xpo becoming xp, as illustrated in Fig. 9.1 l(a)) because 
more electrical charges are needed to maintain this electric field, as shown 
in Fig. 9.1 1(b). As the internal voltage is increased from its equilibrium 
value by an amount equal to -V, the energy band profile is changed and the 
amount of band bending is increased by -qV, as depicted in Fig. 9.1 l(e). The 
total amount of band bending is still given by the expression in 
Eq. ( 9.29 ). The difference between the Fermi energy levels outside the 
space charge region is also still given by Eq. ( 9.30 ). 
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Fig. 9.11. (a) Space charge region width, (b) electrical charge density, (c) electric field 
strength, (d) potential profile, and (e) energy band profile of a p-n junction under reverse 

bias (VCO). The thick dashed curves represent the equilibrium case for comparison. 

In addition, by contrast with the forward bias case, the diffusion currents 
for both types of carrier decrease under a reverse bias. However the drift 
current still does not change signzjicantly in comparison to the diffusion 
current when a reverse bias is applied, for the same reason as discussed 
previously. 

9.3.3. A quantitative description 
In the previous sub-sections, we have expressed quantitatively the amount of 
band bending and the difference between the Fermi energy levels of the 
neutral p-type and n-type regions as a function of the applied external bias 
(Eq. ( 9.29 ) and Eq. ( 9.30 ) respectively). 

In fact, most of the relations that were derived in section 9.2 for the 
equilibrium case are valid when an external bias voltage V is applied, 
provided we make the following transformations: 

Eq. ( 9.3 1 ) I xpo - x p  

xno - xn 

This statement is justified by the fact that most of the expressions in 
section 9.2 have been obtained without invoking the equilibrium condition 
of Eq. ( 9.3 ), but by using the electrical charge neutrality principle and 
Gauss's law instead which are valid at all times. 
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The following few relations will be important for future discussions. The 
depletion width can be obtained from Eq. ( 9.23 ) by using Eq. ( 9.3 1 ): 

Eq. ( 9.32 ) W = I) 
for V<Vo. We clearly see that the depletion width shrinks when a 

forward bias is applied (PO)  whereas it expands when a reverse bias is 
applied (KO). This confirms the qualitative discussion of the previous sub- 
section. 

Example 
Q: Calculate the ratio of the depletion region width W 

under a forward bias of 0.3 V to the equilibrium width 
Wo, for a GaAs abrupt p-n junction with a doping level 
on the p-type side of ~ , = 2 x  1017 cm-3 and a doping level 
on the n-type side of ND=~ x 10" cm-' at 300 K. 

A: The depletion width W under a bias V is given by the 

2& N +ND 
expression: W = /-( A ) (  - V )  , where the 

4 NAND 
built-in potential is Vo=l .297 V, as determined in earlier 
examples. The ratio sought is therefore: 

The depletion width is then: 
W = 0.877W0 = 0.877(xpO + xno) 

The extent of the space charge region inside the p-type and n-type 
regions, as shown in Fig. 9.10(a) and Fig. 9.11(a), can be obtained from 
Eq. ( 9.25 ): 
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N D  

Eq. ( 9.33 ) 

Similarly, the non-equilibrium hole and electron concentrations at the 
edges of the space charge region, denoted p(-x,), p(x,J, n(-x,) and n(x,J, can 
be obtained by considering Eq. ( 9.21 ): 

In addition, following our previous discussion, we realize that the 
majority carrier concentrations is little changed under a moderate forward or 
a reverse bias, i.e. p(-xp)=pp and n(-x,J=n,, which after replacing in 
Eq. ( 9.34 ) to: 

and by using Eq. ( 9.21 ) to eliminatep, and n, from this latest equation: 

These expressions are important as they show that, when an external 
bias voltage is applied, the minority carrier concentrations at the boundary 
of the space charge region, p(xJ and n(x,), are directly and simply related to 
the equilibrium minority carrier concentrations p, and n,, and the applied 
bias voltage V. All these relations will prove important in the derivation of 
the diode equation for an ideal p-n junction which will be the topic of the 
next sub-section. 

Example 
Q: Calculate the minority carrier concentrations at x, and 

-xP for the GaAs p-n junction described in the previous 
example. 
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A: The minority carrier concentrations at x,, and -xp are 

P(X" ) - - 4- x, ) given by - - = exp[f!-) , where p,, and 
P n  n~ 

np are the minority carrier concentrations in the neutral 
n-type side and p-type side, respectively, at equilibrium. 
These are given by the action mass law: 

and 

In addition, the exponential is numerically equal to: 

Thus, we get: 
p(xn)=(3.20x10-5~l.lx 105) 

x 3 . 5 ~ r n - ~  
and 

( X~ )=(1.60~10"~1.1 x105) 

9.3.4. Depletion layer capacitance 
The depletion layer is relatively devoid of mobile carriers, and can therefore 
be thought of as somewhat similar to the dielectric in a capacitor. Positive 
and negative charges are separated by this depletion layer, and this leads to a 
capacitance associated with the p-n junction. This capacitance can be 
thought of as like that of a parallel plate capacitor, and expressed as: 

However rather than being constant, the capacitance of a p-n junction 
varies with the reverse bias via the voltage dependence of the depletion 
width as shown in Fig. 9.12. 
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I 

External Bias O "0 

Fig. 9.12. Depletion layer capacitance as a function of bias voltage, showing the increase in 
capacitance with forward bias and the decrease with reverse bias. 

More formally, the capacitance of the p-n junction can be derived 
starting from the definition of capacitance: 

Eq. ( 9.37 ) Cdq = 
dQ =I 

where dQ is the incremental change in charge stored on either side of the 
junction for an incremental increase in voltage of dV. For the abrupt 
junction, the charge stored on either side of the junction can be expressed as 

where x, and x, are given by Eq. ( 9.33 ). Substituting in Eq. ( 9.38 ) for 
either term gives the equation: 

Qd, = A  298 N A N D  (v, - V )  
( N A + N . )  

which can then be differentiated with respect to V to yield: 

Eq. ( 9.39 ) 

which we can see reduces to Eq. ( 9.36 ) above when V=O. 
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The voltage dependence of the p-n junction capacitance is used in 
varactor diodes or varicaps, in tuning circuits where the diode is reverse 
biased to prevent forward conduction, and a small DC tuning voltage is 
applied to vary the capacitance. Additionally, measuring the capacitance of 
a diode as a function of bias can be used to extract information about the 
built-in voltage and the doping profile. This can be done by plotting l/Ch 
vs. applied voltage: 

In the case of an abrupt one sided junction (such as a p+n- or a metal- 
semiconductor Schottky diode (see section 9.5)), this equation reduces 
further, and the carrier concentrations can be extracted more directly: 

9.3.5. Ideal p-n junction diode equation 

The diode equation refers to the mathematical expression which relates the 
total electrical current I through an ideal p-n junction to the applied external 
bias voltage V. It is also referred as the current-voltage or I -V characteristic 
of the diode. To determine it, we must focus our analysis on the minority 
carriers, i.e. holes in the n-type region and electrons in thep-type region. 

In addition to the depletion approximation model considered so far, a 
few more assumptions need to be considered. (i) First, we assume that there 
are no external sources of carrier generation. (ii) No recombination of 
charge carriers occurs within the space charge region. (iii) We assume that 
the applied biases are moderate enough to ensure that the minority carriers 
remain much less numerous than the majority carriers in the neutral regions. 
(iv) Finally, we assume that the change in minority carrier concentrations in 
the neutral regions does not result in a non-negligible electric field. 

In virtue of assumptions (i) and (ii), any hole or electron that has 
diffused across the space charge region must be present at its boundaries, i.e. 
at -xp and x,, respectively. When a bias V is applied, the concentrations of 
these holes and electrons, which are in excess of their equilibrium 
concentrations, are given by: 
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This becomes after using Eq. ( 9.35 ): 

Eq. ( 9.42 ) 

Here, and in the rest of the text, we will use the extended meaning of the 
term "excess carrier". For example, if Ap, and An, are positive, i.e. D O  or 
forward bias, then there are net real excesses of holes and electrons at the 
space charge boundaries and we talk about minority carrier injection. This is 
shown in Fig. 9.13 

0 0 X1 

Net minority carrier Net minority carrier 
(electron) diffusion (hole) diffusion 

Fig. 9.13. (a) Excess hole concentration profile in the n-type region, and (b) excess electron 
concentration profile in the p-type region, under a forward bias. The excess carrier 

concentrations decrease, following an exponential decay, as they go further from the edges of 
the depletion region. 
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But if Ap, and An, are negative, i.e. V - 0  or reverse bias, then there are 
net real deficiencies of holes and electrons and we talk about minority 
carrier extraction. In this case, the minority carriers at the boundaries of the 
space charge region are less numerous than in the bulk neutral material, 
therefore there is a diffusion of minority carriers from the bulk neutral 
region towards the edges of the space charge region. This is illustrated in 
Fig. 9.14. 

The excess holes, present at x=xn with a concentration Ap,, will be 
diffusing deeper into the neutral n-type region where their equilibrium 
concentration is onlyp,. As they diffuse, they will experience recombination 
as discussed in Chapter 8, with a characteristic diffusion length L, in the 
steady-state regime. The excess hole concentration is therefore reduced as 
we advance deeper in the material. This situation has already been 
encountered in Chapter 8 and the analytical expression for @,(xl), the 
excess hole concentration at a position XI, is obtained from Eq. ( 8.55 ): 

XI -- 

Eq. ( 9.43 ) Sp, (x, ) = Apne Lp 

where L, is the hole diffusion length in the n-type region. In this 
expression, we chose another axis, denoted xl, oriented in the same direction 
as the original axis x and with its origin at x=x,. It is important to remember 
that the excess concentration of holes at x=xn remains constant at Ap, given 
by Eq. ( 9.42 ) because holes are continuously injected or extracted through 
the space charge region into or from the n-type region due to the application 
of the external bias voltage. We can make use of Fig. 8.7 to plot the spatial 
profile of the excess hole concentration in Fig. 9.13(a) for the forward bias 
case and Fig. 9.14(a) for the reverse bias case. 
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Net minority carrier 
(electron) diffusion 

Net rnhorit- carrier 
(hole) diffusion 

Fig. 9.14. (a) "Excess" hole concentration profile in the n-type region, and (b) "excess" 
electron concentration projile in the p-type region, under a reverse bias. These carrier 

concentrations change following an exponential dependence as they go further away from the 
edges of depletion region. 

Conversely, the excess electrons present at x=-xp with a concentration 
An, will diffuse deeper into the neutralp-type region, with a diffusion length 
L,. This leads to the spatial profile Snp(xz) shown in Fig. 9.13(b) for the 
forward bias case and Fig. 9.14(b) for the reverse bias case, and it is 
analytically given by: 

x2 -- 
Eq. ( 9.44 ) dnP (x2) = Anpe Lpr 

where L, is the electron diffusion length in the p-type region. It is 
important to note that, here, we chose the sign convention for the axis xz in 
the opposite direction of the original axis x because the electrons diffuse in 
this opposite direction. 

There are essentially two methods to compute the diode equation. The 
first one consists of analyzing the diffusion currents in the p-n junction. 
From our discussion in sub-section 9.3.1 we understand that, when an 
external bias is applied, the drift currents across the space charge region do 
not vary whereas the diffusion currents change. The sum of the increments 
in the hole and the electron diffusion currents across the space charge region 
is thus a direct measure of the net electrical current through the p-n junction 
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since no net current is originally present at equilibrium, because we have 
assumed there are no external sources of carrier generation and because the 
total electrical current is constant throughout a two-terminal device, such as 
the p-n junction earlier shown in Fig. 9.9. 

The incremental diffusion currents are the diffusion currents which 
result from the excess carriers in the material. The diffusion current 
densities for electrons and holes can be obtained from Eq. ( 8.36 ) and 
Eq. ( 8.38 ), and are given by: 

Jhdi" ) = -qD 
d(6pn (x,  1) 

dx, 
Eq. ( 9.45 ) 

J f f f  ( x 2 )  = qD, d(6np ( ~ 2  
4 

Using the expressions of the excess carrier concentrations in 
Eq. ( 9.43 ) and Eq. ( 9.44), we get: 

XI -- 
DP J ~ ~ ~ ( x ~ ) =  +q-Apne Lp 

Eq. ( 9.46 ) L~ 
x2 -- 

dl ff Dn J ,  ( x 2 ) = - q - ~ n p e  Lu 

Ln 

In order to obtain the total current through the p-n junction, we must 
evaluate the diffusion current densities for holes and electrons at the limits 
of the space charge region at x=xn and x=-xp respectively, or equivalently at 
x,=x2=O: 

I DP J,""'(o) = +q-Apn 

Eq. ( 9.47 ) L P  

J y  (0)  = -q D, An 
Ln 

P 

Example 
Q: Estimate the ratio of the diffusion current densities of 

holes and electrons for the GaAs p-n junction described 
in the previous example. 
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A: The ratio of the diffusion currents is given by 

, where Ap, and An, are the 

excess minority carrier concentrations at the limits of 
the depletion region. These quantities are given by: 

Apn - pn - YND - N A  . In ratio is then: 

the diffusion lengths can be expressed as a function of 
the minority carrier lifetime on the n-type and thep-type 
sides. These lead to the ratio: 

minority carrier lifetimes are the same for holes and 

electrons, we get: 

the diffusion coefficients can be calculated using the 
majority carrier mobilities through the Einstein relations 

In all these expressions of current densities, it is important to remember 
that the sign convention for the current density J ~ ~ ( x , )  is the same as the 

axis x, whereas for ~ , d ' ~ "  (x,) it is opposite that of axis x. The total current 
density is the sum of the hole and electron diffusion currents, with however 
a sign difference: 
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diff 0 - 4ff (0) Eq. ( 9-48 ) Jtotal = J , .  ( ) e 

The minus sign for J $ ~ ~ ( o )  accounts for the sign convention chosen for 
axis x2. Inserting Eq. ( 9.47 ) into this relation, we get: 

D Dn 
Eq. ( 9.49 ) Jtotal = 4 [ ~ A p n  + - Anp 

= P  L, 

and using Eq. ( 9.42 ), we finally obtain: 

Eq. ( 9.50 ) J o t  = p  + , ) [  - I] 

The total current is given by the total current density multiplied by the 
area of the p-n junction. If we assume a uniform area A, we get: 

By introducing a new term Io, this can be rewritten as: 

[ E-l] Eq. ( 9.52 ) I,tol = I ,  ekhT 

with: 

Eq. ( 9.53 ) I ,  = qA - p n  + - n ,  [;: ;: 1 
Eq. ( 9.52 ) and Eq. ( 9.53 ) represent the diode equation for an ideal p-n 

junction. This function is plotted in Fig. 9.15. 
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Fig. 9.15. Current-voltage characteristic for an idealp-n junction diode. The dependence of 
the current on the voltage follows an exponential expression. The current is zero when the 

voltage is zero, without external excitation. 

We see that under a forward bias, the current increases exponentially as 
a function of applied voltage. By contrast, under reverse bias, the current 
rapidly tends toward -lo. The value of the current lo is therefore called the 
saturation current. The physical meaning of this current can be understood 
as follows. When a strong reverse bias is applied (V-0) ,  the density of 
minority carriers at the boundary of the space charge region quickly falls to 
zero according to Eq. ( 9.35 ). This means that, inside the depletion region, 
there is no diffusion of carriers but only drift currents are present. Outside 
the depletion region however, the only charge motion is the diffusion of 
minority carriers from the neutral regions toward the depletion region, as 
illustrated by the block arrows in Fig. 9.14. We can therefore say that the 
saturation current in Eq. ( 9.53 ) corresponds to the total drift, across the 
space charge region, of minority carriers which have been extracted or able 
to reach the limits of the space charge region through diffusion from the 
neutral regions. 

The p-n junction diode acts like a one-way device: when it is forward 
biased, current can flow from the p-type to the n-type region without much 
resistance whereas when it is reverse-biased, a very large resistance prevents 
the current from flowing in the opposite direction from the n-type to the p- 
type region. 

The second method which can be used to determine the diode equation 
consists of calculating the total charge accumulated on each side of the 
junction area. This second method is called the charge control 
approximation. Let Q,, be the steady-state excess positive charge in the n- 
type region which is given by integrating Eq. ( 9.43 ): 
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Eq. ( 9.54 ) Q, = qALp Ap, 

where A is the area of the p-n junction. This excess charge is illustrated 
in Fig. 9.16(a), in the forward bias case. The hole diffusion current must 
then be able to maintain this excess positive charge, even though the holes 
are recombining. As the average lifetime of holes in the n-type region is the 
recombination lifetime z, defined in sub-section 8.5.3, the hole diffusion 
current must be able to supply Q, positive charges during a time equal to z,. 

QP This current must therefore be I, = - 
Z~ 

Fig. 9.16. (a) Excess positive charge in the n-type region and (b) excess negative charge in 
the p-type region, under a forward bias. The total excess charges are calculated by 

integrating the excess carrier concentrations over the volume of the regions outside the 
depletion region. 

Similarly, the excess negative charge in the p-type region is given by: 
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and is shown in Fig. 9.16(b). The electron diffusion current into the p- 
en type region is - I ,  = -- . In this last expression, we made use of the same 
r n  

sign convention as for axis x2. The total current is therefore given by: 

or: 

Eq. ( 9.56 ) I,,1 = qA 

Using the definition of the diffusion lengths given in Eq. ( 8.53 ) and 
Eq. ( 8.56 ), and using Eq. ( 9.42 ), we can transform this last expression 
into: 

and thus get the diode equation obtained in Eq. ( 9.5 1 ). 

9.3.6. Minority and majority carrier currents in neutral regions 
In the previous discussion, we saw that the total electrical current through a 
p-n junction device was determined by the diffusion currents across the 
space charge region which result in minority carriers being injected into or 
extracted from the neutral regions under the influence of an applied external 
bias. 

For the sake of clarity, let us consider the example of a forward biased 
p-n junction, as the one shown in Fig. 9.13. We saw that the excess minority 
carriers diffuse into the neutral regions following an exponential decay 
given in Eq. ( 9.43 ) and Eq. ( 9.44 ). This leads to diffusion currents which 
also follow an exponential decay, as obtained in 
Eq. ( 9.46 ). However, we know that the total electrical current throughout a 
two-terminal device is constant. Therefore, the decrease in diffusion current, 
for example that of holes in the right hand side of the figure, as we move 
away from the space charge region has to be compensated by another 
current. This is achieved through the drift of majority carriers, for example 
electrons in the neutral n-type region. Indeed, through their diffusion and 
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recombination, the minority carriers "consume" majority carriers (e.g. 
electrons). There thus must be a flow of majority carriers (e.g. electrons) in 
the opposite direction to re-supply those lost in the recombination process. 
This flow of majority carriers generates a drift current. 

Therefore, in the neutral regions, there are two components which make 
up the total electrical current: the diffusion current of minority carriers and 
the drift current of majority carriers. These are shown in Fig. 9.17. This 
means, in particular, that there must be an electric field present in the neutral 
regions, otherwise there would not be any drift current. This apparently 
contradicts our assumption at the beginning of sub-section 9.3.1 that there 
was no potential drop within the neutral regions. In fact, the potential drop is 
very small in comparison with any applied external bias voltage and 
therefore can be neglected in our model. 

Fig. 9.17. Diffusion current cf minority carriers and drift current of majority carriers in the 
(a) n-type region and (b) p-type region, under a forward bias. As the minority carriers diffuse 
further away from the edges of the depletion region, they recombine with majority carriers. 
The diffusion current of minority carriers is therefore reduced. But, this process also results 
in the flow of majority carriers in the opposite direction, which compensates the decrease in 

diffusion current with a drift current in the same proportion. 

An analytical expression for the drift current can be easily determined, 
on each side of the p-n junction. Indeed, the total hole and electron current 
densities must be constant at the values given by the diode equation in 
Eq. ( 9.47 ). As we know the expression for the diffusion current densities 
J ? ~ ( X , )  and J t T ( x , )  from Eq. ( 9.46 ), the drift current densities will be 

the difference: 
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JPft (x2 ) = J,"ff (0)  - JZ f f  (x2 ) 
Eq. ( 9.57 ) 

J f ) = j P f ( 0 )  - jh"ff' ) 

Recalling Eq. ( 9.46 ) and Eq. ( 9.49 ), we get successively: 

Eq. ( 9.58 ) 

It is important to remember that the sign convention chosen for 
J Y f i  ( x 2 )  is opposite that of axis x. 

9.4. Deviations from the ideal p-n diode case 

Before deriving the ideal diode equation in the previous section, it was 
necessary to make several assumptions. In reality, these assumptions are not 
necessarily valid, and the ideal diode equation gives only qualitative 
agreement with actual measurements of the I -V  characteristics of real p-n 
junction diodes. This deviation from the ideal case is mainly due to: (a) 
generation of carriers in the depletion region, (b) surface leakage effects at 
the periphery of a real junction, (c) recombination of carriers in the 
depletion region, (d) the high-injection condition (when the injection of 
minority carriers exceeds the doping density), and finally (e) all the applied 
bias not being dropped across the depletion region due to series resistance 
effects. The above deviations are illustrated in the figure below. The special 
case of reverse breakdown will be discussed in sub-section 9.4.3. 
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Ideal Forward 

Generation 

I - Reverse Bias Forward Bias 

Fig. 9.18. The current-voltage characteristic for a real Sip-n junction diode (solid) do not 
exactly match the behavior of a Si junction diode predicted by the ideal diode model (dotted), 
both shown above in semi-log scale. A real Si diode shows the following deviations from the 
ideal (diffusion limited) case: reverse leakage current due to thermal generation and surface 
leakage effects, recombination in the depletion region, high-injection deviation, and series 

resistance effects. 

9.4.1. Reverse bias deviations from the ideal case 
Part of the deviation of the leakage current from the ideal reverse saturation 
current arises from the thermal generation of electron-hole pairs within the 
space charge region. The built-in electric field separates these carriers and 
they drift towards the neutral regions of the diode. This drift results in an 
excess current that is in addition to the diffusion of minority carriers, 
discussed in the ideal case. Section 8.6 introduced the concept of thermal 
generation of carriers, and along with it a thermal generation rate per unit 
volume Gt(T), expressed in c ~ ' ~ . s - ' .  Since the volume of the depletion 
region is equal to WA, assuming no recombination occurs, the current due to 
generation in the depletion region can be expressed as: 

Eq. ( 9.59 ) I,,, = q WAG, ( T )  

Under reverse bias the current can then be expressed as the sum of the 
diffusion and generation components: 
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Eq. (9.60) I,,, = qA - p ,  +".n, +qWAG,(T). [z zn I 
Since the depletion layer width (W) depends upon the applied bias, the 

reverse current of the diode now shows a bias dependence: as the reverse 
bias is increased, the depletion width (W) widens, and hence this increases 
the generation current leading to a corresponding increase in the reverse 
leakage current as a function of applied bias. In addition to excess carriers 
arising from thermal generation, it is possible for external photoexcitation to 
create carriers in the depletion region. This is the case of a photodiode, and 
will be discussed in more detail in Chapter 20. 

This leakage current is further compounded by the surface leakage. 
Surface leakage effects are due to the finite extent of the p-n junction area, 
and the characteristics of the junctions that occur at the periphery of the 
diode. This is due primarily to ionic charges on or outside the semiconductor 
that induce corresponding image charges within the semiconductor. These 
charges create their own surface depletion region that acts as a parallel 
conduction channel that bypasses the p-n junction and allows current to flow 
along the surface of the diode. Typically this leakage current increases with 
reverse bias. 

9.4.2. Forward bias deviations from the ideal case 
Under forward bias recombination dominates over the generation processes. 
In order to supply the carriers lost to recombination, the net external current 
flowing though the diode is increased. This current is called the 
recombination current (I,,,). The recombination rate is at its maximum near 
the center of the depletion region, where nearly equal number of electrons 
and holes are available to contribute to recombination. Assuming a linear 
variation of the potential across the depletion region, the potential at the 

vo -v  
center can be taken as - . In this case the carrier concentration at the 

2 

center of the depletion region depends upon exp ( - ";>V)] rather than 

q(VO - ') . The rate at which electrons and holes are recombining is 
exp( 27 1 
then proportional to exp (;rT). - By introducing a material constant (1,) 
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dependent upon the minority carrier recombination lifetimes in the 
respective halves of the depletion layer, and the overall depletion layer 
width, it becomes possible to arrive at an expression for the recombination 
current (IR): 

Combining this new equation for the recombination current together 
with the existing minority carrier diffusion current yields a new expression 
for the total current though the diode: 

Eq. ( 9.62 ) I  = I ,  exp - [ :: ) + e x p [ g )  

In working with real diodes this equation is generally represented in an 
empirical form by introducing a new factor n called the ideality factor: 

Eq. ( 9.63 ) I = I ,  exp -- [&] 
In this combined equation, the ideality factor n tends towards 2 when 

recombination current dominates, and tends towards 1 when diffusion 
current dominates, and varies from 1 to 2 when both currents are 
comparable. In the case of silicon diodes operating at room temperature, 
both processes can be seen to operate as the current injection is increased 
fiom low to moderate levels. 

Under higher levels of current injection (under forward bias), the diode 
enters the high injection regime where the injected minority carrier density 
becomes comparable or greater than the majority carrier density. In this case 

the current becomes proportional to exp - , as is shown in Fig. 9.18. 

Under higher reverse bias, the contact potentials and the potential drop 
across the bulk regions of the semiconductor ceases to be negligible, and the 
series resistance of the p-n diode no longer dominates. At this point the 
exponential increase in current begins to subside in favor of a more linear 
increase, limited by the series resistance of the diode. The empirical diode 
equation introduced above can be modified to take this behavior into 



Semiconductor p-n and Metal-Semiconductor Junctions 347 

account, by introducing a term (Rs) for the series resistance. Thus the 
equation becomes: 

9.4.3. Reverse breakdown 
In the ideal p-n junction diode model, we saw that the current through a p-n 
junction diode was limited by the saturation current -Io when a reverse bias 
was applied. Even in the non-ideal case the reverse current was seen to 
increase slowly. In reality, this model holds only up to a certain value of 
reverse bias -Vbr, called the breakdown voltage. At that point, the current 
suddenly increases dramatically a shown in Fig. 9.19. This phenomenon is 
called reverse breakdown. The peak value for the internal electric field 
strength (i.e. at x=O) corresponding to this applied reverse bias is called the 
critical electric field. 

This situation is not necessarily a damaging one for the p-n junction and 
is reversible, as long as the current can be limited to prevent too much 
power from being dissipated inside the device. Otherwise, parts of the 
device can be physically destroyed (e.g. melted). 

Fig. 9.19. Current-voltage characteristic for an ideal p-n junction diode showing a reverse 
breakdown. When the voltage across thep-n junction is equal to the reverse breakdown 

voltage, the current increases dramatically. If it is not limited, this current can damage the 
diode through heating. 

There are two major mechanisms for the reverse breakdown: avalanche 
breakdown which occurs at higher reverse biases as a result of impact 
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ionization and Zener breakdown which occurs at lower reverse biases as a 
result of tunneling across the junction. 

9.4.4. Avalanche breakdown 
As a stronger reverse bias is applied, the electric field strength across the 
space charge region increases. The charge carrier particles, holes and 
electrons which drift across the depletion region can therefore achieve 
higher velocities. 

When the reverse bias is strong enough, typically higher than 6EJq and 
can even go up to 1000 V, the electric field strength can become so large 
that a hole or an electron can gain sufficient kinetic energy to impact on a 
semiconductor lattice atom and ionize it, or even break a chemical bond. 
This phenomenon is called impact ionization. It may seem conceptually 
difficult to envision a hole impacting on the crystal lattice, but this can be 
better understood when we realize that when a hole moves in one direction, 
it in fact corresponds to the motion of an electron in the opposite direction 
with the same velocity. An accelerated particle must typically acquire 
energy at least equal to the bandgap energy E, in order to break a chemical 
bond, because this corresponds to the energy required to excite an electron 
from the valence band to the conduction band. Therefore, for wider bandgap 
semiconductors, higher electric field strength is necessary to ensure impact 
ionization. 

As a result of impact ionization, an electron-hole pair (EHP) is created 
within the space charge region in addition to the impacting particle. The 
electron and the hole from the pair will then be spatially separated by the 
electric field present at that location: the electron drifting toward the n-type 
side and the hole toward thep-type side, as illustrated in Fig. 9.20. 

The electrons and holes thus generated can themselves be further 
accelerated by the electric field. If they reach a sufficient high kinetic energy 
within the space charge region, they can in turn contribute to create 
additional EHPs through ionizing collisions. This results in a cascade or 
avalanche effect. One initial charge carrier thus has the potential to create 
many additional carriers and a dramatic increase in current is achieved as 
the one shown in Fig. 9.19. 

It is possible to characterize the avalanche breakdown quantitatively by 
introducing a multiplication factor M such that the reverse current near 
breakdown is given by MIo where I. is the saturation current. This factor 
actually means that an incident electron results in a total of M electron-hole 
pairs. This factor is empirically given by: 
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where V,. is the reverse bias, Vbr is the breakdown voltage, and n is an 
exponent in the range 3-6. From this expression, we clearly see that the 
reverse current, MIo, increases sharply when V,. nears Vbr as depicted in 
Fig. 9.19. 

fig. 9.20. Impact ionization process: under strong reverse bias, electrons and holes are 
injected into the depletion region; when they gain enough kinetic energy they impact on the 
semiconductor lattice to create electron-hole pairs. These newly created carriers can then 

lead to the same impact ionization process $they can gain enough kinetic energy within the 
space charge region. 

The avalanche process is more likely to occur when a wide enough 
space charge region can be sustained to ensure sufficient acceleration. This 
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can be more easily achieved by using lightly doped p-n junctions because, if 
heavily doped junctions are used, another phenomenon can more easily 
occur: the tunneling of charge carriers from one side of the junction to the 
other. 

Example 
A voltage-stabilizing diode takes advantage of the steep 
slope in the breakdown regime to clamp the voltage. For 
such a kind of diode with Vb,=-14 V, estimate how many 
times the current will increase when the reverse bias 
goes from -13.990 to -13.995 V. Assume n=6. 

The multiplication factor if given by: M = 
1 

For the two reverse biases mentioned, we get the ratio of 
the multiplication factor: 

= 2  
The current will thus increase by a factor 2 when the 
voltage is reduced by 0.005 V. 

9.4.5. Zener breakdown 
Under a more moderate reverse bias, typically less than 6E49, the top of the 
valence band in the p-type side Eyp is already higher than the bottom of the 
conduction band in the n-type side EVc. This situation is illustrated in 
Fig. 9.2 1. This means that the electrons at the top of the valence band in the 
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p-type side have the same or higher energy than the empty states available at 
the bottom of the conduction band in the n-type side. 

This staggering of the energy bands also results in a reduced spatial 
separation between the conduction and valence bands, as shown by d in 
Fig. 9.2 1. Moreover, in heavily doped p-n junctions, the space charge region 
is already narrow (with a width W) and does not expand much under a 
moderate reverse bias. 

The staggered alignment of the energy bands and their spatial proximity 
favor the tunneling of electrons from the valence band in thep-type side into 
the conduction band in the n-type side, as shown in Fig. 9.21. This leads to a 
negative current. This process is called the Zener effect. As there are many 
electrons in the valence band and many empty available states in the 
conduction band, the tunneling current can be substantial. 

The Zener tunneling probability TZ is strongly field dependent on the 
applied bias V and the bandgap E,. It can be written as: 

Eq. (9.66) T, =exp{- 
4 4 5 2  

E ~ I * }  
3q vtt 

Fig. 9.21. Zener breakdown mechanism involving electrons tunneling from the valence band 
of the p-type side to the conduction band of the n-type side. 
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9.5. Metal-semiconductor junctions 

As we have already mentioned in sub-section 9.2.6 and illustrated in the 
case of a p-n junction, two dissimilar materials in contact with each other 
and under thermal equilibrium must have the same value of Fermi energy. 

When a metal is brought into contact with a semiconductor, a certain 
amount of band bending occurs to compensate the difference between the 
Fermi energies of the metal and that of the semiconductor. In fact, this 
difference in Fermi energy means that electrons in one material have a 
higher energy than in the other. These will therefore tend to flow from the 
former to the later material. There is thus a transfer of electrons across the 
metal-semiconductor junction in a similar way as the charge transfer in the 
case of a p-n junction. Such a junction is also often called a metallurgic 
junction or a metal contact because metals are commonly used in 
semiconductor industry to connect or "contact" a semiconductor material to 
an external electrical circuit. 

The charge transfer can be readily achieved because, as we saw in Fig. 
4.1 1 in sub-section 4.2.7, the Fermi energy in a metal lies within an energy 
band, which makes it easy for electrons to be emitted from or received by a 
metal. This charge redistribution gives rise to a local built-in electric field 
which counterbalances this redistribution. When sufficiently large electric 
field strength is established around the metallurgic junction, the 
redistribution stops. 

Since the overall charge neutrality must be maintained, the excess 
electrical charges inside the semiconductor and that inside the metal must be 
of an equal amount but with opposite signs. However, because a metal has a 
much higher charge density than a semiconductor, the width over which 
these excess charges spread inside the metal is negligibly thin in comparison 
to the width inside the semiconductor. This is somewhat similar to the case 
of a p-n junction with one side heavily doped. As a result, the built-in 
electric field and the band bending are primarily present inside the 
semiconductor as well. The following section aims at giving a quantitative 
description of the physical properties of a metal-semiconductor junction. 

9.5.1. Formalism 
The physical parameters which need to be considered in this description are 
depicted in Fig. 9.22. For the metal, these include its Fermi energy EF, and 
work function Qm>O. As we saw when discussing the photoelectric effect in 
Chapter 3, the work function of a metal is the energy required to extract one 
electron from the metal surface and pull it !into the vacuum. In a more 
quantitative manner, the work function is the energy difference between the 
Fermi energy and the vacuum level as shown in Fig. 9.22. For the 
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semiconductor, the parameters of interest also include its Fermi energy EFs, 
its work function @>0, and also its electron affinity ~ ' 0 .  The latter is the 
energy required to extract one electron from the conduction band of the 
semiconductor into the vacuum, and is given by the energy difference 
between the bottom of the conduction band and the vacuum level. A few 
values of electron affinity for elements in the periodic table are given in 
Fig. A. 12 in Appendix A.3. 

Vacuum 

Metal Semiconductor 

Fig. 9.22. Fernri energies, workjiunctions in a metal and a senziconductor, when considered 
isolated frorn each other. The vacuurn level is the sanze for both materials, but the Fermi 

energies are generally different. 

The amount of band bending and the direction of electron transfer 
depend on the difference between the work functions of the metal and the 
semiconductor. When these materials are isolated, their vacuum levels are 
the same, as illustrated in Fig. 9.22. But, when these materials come into 
contact, the Fermi energy must be equal on both sides of the junction. The 
vacuum level is at an energy cDm above the top of the metal Fermi energy, 
while it is @ above the semiconductor Fermi energy. This means that the 
energy bands in the semiconductor must shift upward by an amount equal to 
Or,,- cDs in order to align the Fermi energy on both sides of the junction. 

On the one hand, if Om>@s, the energy bands of the semiconductor 
actually shift downward with respect to those of the metal and electrons are 
transferred from the semiconductor into the metal, as shown in Fig. 9.23. 
The signs of the charge carriers which appear on either side of the junction 
and the direction of the built-in electric field, also shown in Fig. 9.23, are 
determined from the analysis conducted for a p-n junction. On the other 
hand, if cD,,,<Os, the energy bands in the semiconductor shift upward with 
respect to those of the metal and the electrons are transferred from the metal 
into the semiconductor. 
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Vacuum level M..MMMMMy............t 

E,, .... 

Metal - Semiconductor 
W" 

Fig. 9.23. E~zergy levels, accuniulated charge carriers and built-in electric field in a nzetal- 
senziconductorjunction. When the nzetal and the semiconductor are brought into contact, at 
equilibrium, the energy band profile of the sen~iconductor near the junction is rnod~fied so 

that the Fermi energies become equal in both materials. 

9.5.2. Schottky and ohmic contacts 
The electrical properties of a metal-semiconductor junction depend on 
whether a depletion region is created as a result of the charge redistribution. 
This phenomenon in turn depends on the difference in work function (D,- Ox, 
and on the type of the semiconductor (n-type orp-type). 

Indeed, we know that when @,>Os, electrons are extracted from the 
semiconductor into the metal. 

If the semiconductor is n-type, then this process depletes the 
semiconductor of its electrons or majority charge carriers. A depletion 
region thus appears near the junction and we obtain a diode-like behavior 
similar to a p-n junction when an external bias is applied. This is shown in 
Fig. 9.24(a). This situation is often called a rectifying contact or Schottky 
contact. 

However, if the semiconductor is p-type, the electrons which are 
extracted from the semiconductor are taken from the p-type dopants which 
then become ionized. This process thus creates more holes or majority 
charge carriers. In this case, there is no depletion region, but rather majority 
carriers are accumulated near the junction area and we do not observe a 
diode-like behavior. Majority carriers are free to flow in either direction 
under the influence of an external bias. This is shown in Fig. 9.25(a). This 
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situation is often called an ohmic contact and the current-voltage 
characteristics are linear. 

If we now consider Dm<Ds, electrons are extracted from the metal into 
the semiconductor. The previous analysis needs to be reversed. In other 
words, for an n-type semiconductor the junction will be an ohmic contact, 
while for ap-type semiconductor the junction will be a Schottky contact. 

These four configurations are shown in Fig. 9.24 and Fig. 9.25, and 
summarized in Table 9.1. 

I 
Schottky contacts 

Fig. 9.24. These two of the four possible metal-semiconductorjunction configurations lead to 
a Schottky contact: (a) Om> Os and n-type, (b) Om< Os and p-type. A Schottky contact is 
obtained in each case because the majority carriers in the semiconductor experience a 
potential barrier which prevents their free movement across the metal-semiconductor 

junction and therefore as shown at the bottom of the figure, the I-V characteristic shows 
rectfying behavior. 
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Metd 1 
@m>@!y Semiconductor 

e """1 
@m<@!Y Semiconductor 

Ohmic contacts 

Fig. 9.25. These two of the four possible metal-semiconductorjunction conjgurations lead to 
an ohmic contact: (a) 45,> Qs andp-type, (6) Qm< Qs and n-type. Unlike the configurations 
shown in Fig. 9.24, the energy bandprojles here are such that the majority carriers in the 
semiconductor can move across the metal-semiconductor junction without experiencing a 
potential barrier and therefore as shown at the bottom of the figure, the I-V characteristic 

shows ohmic behavior. 

Semiconductor Junction 

@ 2 @ s  n-type Schottky 

@m< @s P-tYPe Schottky 

@m>@s P-type ohmic 

om< a n-t~Pe ohmic 

Table 9.1. Four possible metal-semiconductor junction configurations and the resulting 
contact types. 
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In the case of a Schottky contact, the existence of the depletion region 
means that there is a potential barrier across the junction which can be 
shifted by an amount equal to -qV when an external voltage V is applied 
between the metal and the semiconductor. This in turn influences the current 
flow in a similar way as for a p-n junction. This is shown in Fig. 9.26 for the 
case of an n-type semiconductor. It is however important to understand that 
majority carriers are responsible for the current transport in a metal- 
semiconductor junction, whereas in a p-n junction it is due to the minority 
carriers. 

Fig. 9.26. Band alignnient in a Schottky metal-(n-type) senliconductor contact under (a) 
forward bias where the potential barrier is reduced, and under (b) reverse bias where the 

potential barrier is increased, thus reducing the tunneling of carriers. 

The sign convention for a metal-semiconductor junction is the same as 
for a p-n junction by considering the type of the semiconductor. Although 
the current transport mechanism in a Schottky contact is somewhat different 
from that in a p-n junction, the current-voltage relation for an ideal Schottky 
contact has a similar expression as for an ideal p-n junction: 

Eq. ( 9.67 ) 

where I. is the reverse saturation current and is exponentially 
proportional to the difference between the metal work function Om and the 
semiconductor electron affinity X: 
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Be is the effective Richardson constant, and for most metal- 
semiconductor Schottky junctions it varies from 10 to 100 ~ - ~ c m - ~  The 
quantity (Om-X) is often denoted goB, where OB is called the Schottky 
potential barrier height. For a real Schottky contact, one needs to take into 
account therrnionic emission (Appendix A.10), as well as impurity and 
interface states. In this case, the current-voltage relation is given by: 

where n is the ideality factor as mentioned before and is typically 
between 1 and 2. 

9.6. Summary 

In this Chapter, we have presented a complete mathematical model for an 
ideal p-n junction, based on an abrupt homojunction model and the 
depletion approximation. We introduced the concepts of a space charge 
region, built-in electric field, built-potential, and depletion width at 
equilibrium. We have discussed the balance of electrical charges, as well as 
that of the diffusion and drift currents within the space charge region. 

The non-equilibrium properties of p-n junctions have also been 
discussed. The forward bias and reverse bias conditions were examined. We 
emphasized the importance of minority carrier injection and extraction. We 
derived the diode equation and understood the nature of the currents outside 
the space charge region. We have discussed the avalanche and Zener 
breakdown mechanisms as deviations from the ideal p-n junction diode 
behavior under strong reverse bias conditions. 

Finally, we presented the electrical properties of metal-semiconductor 
junctions and introduced the concepts of Schottky and ohmic contacts. 
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Problems 

Fundamentals of Solid State Engineering 

A p-n junction diode has a concentration of N ~ = ~ o ' ~  acceptor atoms per 
cm3 on the p-type side and a concentration of ND donor atoms per cm3 
on the n-type side. Determine the built-in potential Vo at room 
temperature for a germanium diode for values of ND ranging from 1014 
to 1019 ~ m - ~ .  Also determine the peak value of the electric field strength 
for this same range, and plot both of these values as a function of ND on 
a semilog scale. 

Consider a GaAs step junction with NA=10I7 ~ m - ~  and ND=5x1~'5  cm". 
Calculate the Fermi energy in the p-type and n-type regions at 300 K. 
Draw the energy band diagram for this junction. Determine the built-in 
potential from the diagram and from Eq. ( 9.22 ). Compare the results. 

Consider an asymmetric p'-n junction, which has a heavily dopedp-type 
side relative to the n-type side, i.e. NA>>ND. Determine a simplified 
expression for the width of the space charge region given in 
Eq. ( 9.23 ). 
Calculate the depletion width for a Si p-n junction that has been doped 
with 1018 acceptor atoms per cm3 on the p-type side and 1016 donor 
atoms per cm3 on the n-type side. Compare this depletion width to the 
width of the depletion region on the n-side (from Eq. ( 9.33 )). What 
percentage of the width lies within the n-type semiconductor. 

A silicon p-n diode with NA=10I8 ~ m - ~  has a built-in voltage of 0.814 eV 
and capacitance of ~ . c m - ~  at an applied voltage of 0.5 V. Determine 
the donor density. 

Plot the diode equation for an ideal Si p-n junction diode with an area 
50 pm2, an acceptor concentration NA=10I8 ~ m - ~ ,  a donor concentration 
ND= 1 018 cmW3, recombination lifetimes equal to zn= zp= 1 ps, and 
diffusion coefficients equal to Dn=35 cm2.s-' and Dp=l 2.5 cm2.s-' . 

16 Consider a Si p-n step junction with NA=10I7 cm3 and ND=10 cm", 
with recombination lifetimes zp=O.l ps and zn=O.O1 ps, and carrier 
mobilities ph=450 cm2/vs and pe=800 c m 2 / ~ s  at 300 K. 
Determine the total reverse saturation current density, the reverse 
saturation current density due to holes and that due to electrons. 
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Assume a forward bias equal to Vo/2 is applied, where Vo, the built-in 
potential, is equal to 0.7546 V. Calculate the injected minority carrier 
currents at the edges of the space charge region. 
Assume a reverse bias equal to -Vo/2 is applied. Calculate the minority 
carrier currents at the edges of the space charge region. 

A Si p-n junction is doped with an acceptor concentration 
NA=5 x 1 018 ~ m - ~ ,  a donor concentration ND=5 x 10" ~ m - ~ .  The critical 
electric field strength for breakdown is equal to 10' ~ . c m - I .  Determine 
the breakdown voltage and the corresponding depletion width. Do the 
same for a donor concentration N ~ = ~ x  1017 ~ m - ~ .  

Consider an ideal metal-semiconductor junction between p-type silicon 
and polycrystalline aluminum. The Si is doped with ~ ~ = 5 x 1 0 ' ~  cm". 
The metal work function is 4.28 eV and the Si electron affinity is 
4.01 eV. Draw the equilibrium band diagram and determine the barriers 
height $B. 

Consider the same silicon-aluminum metal-semiconductor junction. The 
cross-sectional area of the junction is 10 pm2. Assume that B, is 
30 and the ideality factor n is 1. Calculate the reverse 
saturation current and plot the I- V curve as a function of applied bias. 
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10.1. Introduction 

In previous Chapters, we introduced the reader to the fundamental concepts 
of quantum mechanics, band structure and semiconductor physics. In this 
Chapter we have the opportunity to apply this acquired knowledge of the 
electronic structure of solids to understand the optical properties. We do this 
by modeling the optical response properties, in particular the permittivity of 
the solid. We present the formalism which allows one to calculate the 
permittivity, and then study how this permittivity affects the light 
penetrating the solid. We shall demonstrate how band structure and free 
electrons determine the permittivity, and therefore the way light propagates 
in a solid, and how much of this light gets absorbed. We shall investigate 
under what circumstances the lattice can couple to photons, and how this 
coupling can affect the velocity of light in a medium. But we shall see in the 
next Chapter that band structure depends on the dimensionality of the 
system, and we have already seen in Chapters 7 and 8 that carriers can be 
added or neutralized in semiconductors. So it turns out that just in the same 
way that the energy bands can be engineered, so can the optical properties. 
Atom by atom growth and miniaturization are modern key engineering 
tools, but so is the application of external electric and magnetic fields. In the 
last sections of this Chapter we therefore investigate how an electric or a 
magnetic field modifies the band structure, and how this reflects on the 
optical properties. The fundamental concepts developed in this Chapter are a 
necessary prerequisite to understand the way optical methods can be used to 
characterize the electronic structure of semiconductors as is described in 
Chapter 1 1. 

Maxwell showed many year ago that light is an electromagnetic wave 
which travels in space and in media, and interacts with the medium because 
the electric field vector of the light can polarize the medium and move the 
free charges about and produce a time dependent current. The field changes 
the medium which acts back on the wave, becomes the wave, and affects its 
speed and amplitude. 

Quantum theorists, as we have seen in Chapter 3, have shown that 
electromagnetic waves can also be viewed as moving vibrations which 
consist of bundles of energy, as particles called photons, which each carry a 
specific quantum of energy proportional to the frequency of the vibration v , 
the energy is h v = Aw where o is the angular frequency. As for phonons, 
the quantum of lattice vibrations, it turns out in practice that for most 
purposes the classical description of light is quite adequate, and we shall 
therefore continue our study of optical properties in terms of Maxwell's 
equations. When necessary we will change to quantum mechanics, but 
throughout we shall also freely use the term photons to describe the particles 
which constitute a beam of light. 
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We now study how a given medium modifies the electromagnetic wave 
and in effect determines the way this wave propagates. Later in Chapters 19 
and 20 we shall see how the frequency and power of electromagnetic waves 
can be measured to great accuracy using photodetectors. 

10.2. The complex refractive index of a solid 

10.2.1. Maxwell's equations 
In order to understand how light interacts with a semiconductor, we need to 
say a few words about light propagation in a given medium. Consider a 
medium which has both bound electrons and free electrons. The propagation 
of light in this medium is described by Maxwell's equations. The Maxwell's 
equations can be written in a form which from the very beginning 
distinguishes a conducting medium from a non conducting medium, by 
writing: 

where a(@) is the complex frequency dependent conductivity of the 

medium with a density of p mobile charges, .,!?, 5, and H ,  and are the 
electric field, displacement, magnetic field and magnetic flux respectively. 

We are mainly interested in neutral media, so we shall put p = 0 and 

assume that the relative permittivity E, of a medium with bound charges in 

5 = E ~ E , E  is time independent and d = E,,!? + I? where P is the bound 

polarization vector which gives the electric dipole moment per unit volume 
and E~ is the permittivity of free space. We also assume that the medium is - - 
not magnetic so that B = poH , p = po , the permeability of free space. 
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Using the fact that the velocity of light in free space is c2 = one 
can combine Eq. ( 10.1 ) and Eq. ( 10.2 ) by taking the "curl" (or "rot" ) of 
Eq. ( 10.1 ) to give the wave equation for an EM wave as: 

As we will see, this equation describes a traveling wave that can be 
solved by assuming that the electric field of the light is of the form: 

The substitution of Eq. ( 10.6 ) into Eq. ( 10.5 ) then gives rise to the 

requirement that to be a solution, the length of the vector (the 
wavevector) must satisfy the complex equation: 

w ia 
Eq. ( 10.7 ) k = - (E ,  + - ) ' I2  

C &OW 

W 
since the wavevector k = k, = - in free space, we can interpret the 

C 

square root factor in Eq. ( 10.7 ) as the complex refractive index of the 
material N : 

We recall that in this representation, E, refers to the (relative) bound 

electron permittivity, and is itself normally a complex quantity. This is why 
some authors prefer to work with a total relative complex permittivity 

i a 
( E ~  (w) = E, + -) and define 6 = E , E ~ ~ ,  which includes both the 

&OW 

complex free and the complex bound electron permittivities. In the notation 
that we have chosen, the conductivity of the medium is made explicit, and 
o(w) is the complex frequency dependent conductivity of the system, the 
real part of which is the AC conductivity or, with geometry factor (area 
/length), the "conductance" of the system. The imaginary part then 
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corresponds to wC where C is the capacitance. Indeed if we separate the 
bound electron permittivity into real E, and imaginary parts ci we have: 

a 
Eq. ( 10.9 ) N 2  = E~ + i(si + -) 

&om 

The free electron permittivity is now by definition: 

We can now rewrite the complex refractive index and complex 
wavevector as: 

The imaginary part of Eq. ( 10.1 1 ) acquires physical significance as 
soon as we substitute Eq. ( 10.12 ) back into the wave solution Eq. ( 10.6 ) 
and for simplicity assume propagation in the z-direction only, then we have: 

- - - nz mm 
Eq. ( 10.13 ) E = Eo exp{im(--t))exp(--) 

C C 

For J!?, = E,"? the corresponding H{ is given by H{ = N AEX d: O 

where we also have from Eq. ( 10.9 ) and a = a,. + ia, 

The medium has modified the electromagnetic wave or photon, in two 
ways. It has changed the velocity of propagation from c to c l  Z ,  and it has 
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given rise to damping. The damping is due to the imaginary part of k and is 
caused by the absorption of electromagnetic energy in the medium. From 
Eq. ( 10.14 ) it follows that one principal source of absorption is the 
conductivity term. But loss of amplitude can also be caused by the bound 
electrons absorbing light energy and getting excited into higher energy 
levels in the solid. Bound electron absorption happens at relatively high 
frequencies, so that in practice, as we shall see later, the low frequency 
damping is mainly due to free charges, and the high frequency damping 
mainly due to band to band absorption. Noting that the energy density is 
proportional to the square of the electric field amplitude, we recover the 
Beer Lambert law: 

IEI2 = IE,,le-" 
Eq. ( 10.15 ) W 

a = 2 ~ -  

where a  is the absorption coefficient and measured in units of m-' in 
the MKS units as used here. 

A word of caution as to the definition of the absorption coefficient. In 
the transmission of light through a material, the electric field amplitude can 
decay not just because of absorption. The decay may be due to disorder i.e. 
scattering, and this is why some authors prefer to compute the power 
dissipated per unit length. The optical power density of the electromagnetic 
wave in units of w/m2 is given by the time averaged Poynting vector: 

and is discussed in more detail in Chapter 18. 

10.2.2. Reflectivity 
Before getting on with the evaluation of the complex permittivities and 
conductivity, it is convenient to investigate what happens when photons, or 
in other words the light beam, are incident onto a medium with complex 
refractive index coming from free space. Consider for simplicity normal 
incidence as shown in Fig. 10.1 
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Fig. 10. I .  The reflection and transmission process expressed in t e r m  of a diagram. 

The wavevector k = k,, has a z-component only, and is traveling in the 

z-direction. We assume that the wave is polarized with its Ex vector lying in 
the x-y plane and pointing in the x-direction. The boundary of the two media 
is at z=0, so in the region z>0, i.e. in the medium, the EM wave is traveling 
in one direction only, and given by: 

We are assuming that the medium is thick, so that there is no back 
reflected wave from a second interface. In the z<0 region, free space, we 
have both the incoming wave Ei and the reflected wave E,: 

Eq. ( 10.17) Ex( t ,z)  = E, exp iw - - t  + E, exp -iw -+t [ ( f  11 [ (: 11 
The continuity requirement of the electric field at the boundary z=0 

gives us: 

Knowing the electric field allows us to deduce the magnetic field using 
Maxwell's equation so that, for z>0: 
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and then use the continuity condition for Ha t  the boundary, which gives 

Note the magnetic field at z=0 depends on the direction of propagation. 
From this pair of equations we can deduce the relation: 

The ratio of reflected to incident power is the reflectivity R = 

the medium, and the squared of the absolute value of Eq. ( 10.21 ) giving: 

1 - N  (n-i)2 + K ~  
Eq. ( 10.22 ) R = lli_12 = + K~ 

Thus knowing the complex refractive index as a function of frequency, 
allows us to immediately calculate the reflectivity of a medium. One should 
note that there is, at this stage, no simple intuitive way of seeing from 
Eq. ( 10.22 ) when a medium is highly reflective or not. One has to calculate 
the equation. In order to develop this intuition, we need to go one step 
forward and actually derive explicit expressions for the refractive index in 
limiting situations of interest. Before that, it is useful and instructive to also 
consider the optical transmission and reflection through a slab of finite 
thickness d. 

10.2.3. Transmission through a thin slab 
If R is the reflectivity, A the absorbance, and T the transmissivity, for a slab 
of finite thickness d, we must, by energy conservation, have R + T + A = 1 . 
In the region z<0, we have two waves as before, the incoming and reflected 
waves Ei and ErI. In region z>0, inside the medium, the EM wave now also 
consists of 2 components, one moving forward as before Ell, and one back 
reflected from the second interface Erz. The second interface is at z=d. The 
waves EtI and Er2 are traveling inside the medium and are therefore simply 
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related via Eq. ( 10.6 ) to the corresponding waves at z=d, E and E jr2 by a 
f idk, N phase factore . Outside, we have the outgoing transmitted wave into 

fiee space Et2. The boundary condition for the electric and magnetic field 
must be taken at z=0 and at z=d and give 4 equations for 4 unknowns (ErI, 
Etl, Er2, Etz) and allow an explicit solution of this problem as before. The 

transmissivity T defined as 

CL) 2 
where a = 2- K is the absorption coefficient in the medium and irol 1 

C 

can be recognized to be from Eq. ( 10.22 ) the reflectivity of the slab if it 
2 

were very thick. The reflectivity of the slab R is given by the ratio 

and correspondingly: 

~rol~2(l-e-d)2 
Eq. ( 10.24 ) R = 

( l -~ro l~2e-d)2  

From Eq. ( 10.23 ) and Eq. ( 10.24 ) one can now deduce the 
absorbance A = 1 - R - T . In the limit of a very thick slab, e-& + 0 and R 
reduces to the previous expression. 
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10.3. The free carrier contribution to the complex refractive 
index 

10.3.1. The Drude theory of conductivity 
In Chapter 8 we calculated the conductivity of a nearly free electron gas in a 
dc field using a very simple relaxation time model also called the Drude 
model. We now consider the same model but allow the electric field to be 
time dependent. In particular, this can be the electric field vector of an 
impinging light (EM) wave as considered above. 

The Newton's law for carriers of effective mass m* in a time dependent 
field E0e-'& and subject to the frictional force (Chapter 8) can be written 

as : 

The displacement x(t) of the particle is also expected to oscillate in 
time and follow the field, so that a solution to this equation could be 
x(t)  =xoe-la. Substitute this trial function into Eq. ( 10.25 ) and 

differentiate in time. The condition that this be a solution to Eq. ( 10.25 ) is 
that: 

i o  
Eq. ( 10.26 ) - m * w2xo - m *-xo = -qEo 

2 

which immediately allows us to extract the amplitude xo as: 

When negative charges move against a positive background they 
produce a dipole. The polarization density produced by the time varying 
field is the next quantity of interest. Thus the polarization density produced 
by a density n, of displaced electronic charges is given by: 

n q22 1 
Eq. ( 10.28 ) P = -n,qx(t) = --+(-- ) ~ ~ e - ' "  

m*iw 1-iwz 
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from which we can now also deduce the polarizability or optical 
susceptibility as the ratio: 

PC ( t )  Eq. ( 10.29) a,(w) =------ 
E0e-'Ot 

and write: 

Eq. ( 10.30 ) a, (w)  = 

And for the complex conductivity we have, from the current: 

From the polarizability, we can deduce the 
produced by nearly free electrons, in the usual 

relative permittivity 
electrodynamic way 

It is convenient and useful to rewrite the relative permittivity in a form 
which involves the plasma frequency wp and rewrite it as: 

wz (wz - i )  
Eq.(10.33) 

The plasma frequency is the frequency at which the electron gas would 
oscillate as a whole if the electrons were collectively displaced and released 
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from their equilibrium position. This can happen as follows: the electrons 
(n, per unit volume) are all displaced by a field by a distance x. This 
displacement causes a polarization P = ncqx , which produces an electric 

field and restoring force=-nCq2xl~, . The restoring force acting on each 
electron is proportional to the displacement, and we thus have simple 

harmonic motion with frequency w, = ---- . /;so 
Now that we have the permittivity, we can apply it to find out a bit more 

about the optical properties of systems with free charge: metallic systems. 
Assume that the solid in question is a pure nearly free electron gas 
embedded in a jellium. A real metal will have both free and bound electron 
contributions, but the free electron responds strongly, and this term is often 
dominant. We will consider the bound electrons in the next section. There 
are two interesting limits for the refractive index. 

First, when wz < < l ,  the second complex term on the RHS of 
Eq. ( 10.33 ) dominates and cf (w) reduces to: 

Eq. ( 10.35 ) ~ ~ ( 0 )  - i n,q2r 
~ , m * w  

the permittivity is purely imaginary, and the square root of i has an equal 
real and imaginary part of cos(n 14) and sin(n 14) , giving: 

Eq. ( 10.36 ) n(w) = { 

and which via Eq. ( 10.22 ) gives rise to a high reflection coefficient for 
small frequencies. 

Secondly, in the limit that wz >> 1, the relative permittivity is 
dominated by the real part and reduces to the form: 

In this limit the permittivity is purely real. which means that there is no 
absorption. It is also negative when the frequency is smaller than the plasma 
frequency. This implies that in this region, the refractive index is purely 
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imaginary and according to Eq. ( 10.22 ) we have perfect reflectance. 
Perfect reflectance means that the wave is not allowed to travel inside the 
medium. It can just tunnel in a little and go back out again. The fact that the 
permittivity can become less than 1, and even negative, turns out to be one 
of the most significant properties of metallic systems. It gives rise to the 
phenomenon of surface plasmon excitations at metal dielectric interfaces 
and in metal particles. These are collective charge oscillations which can be 
excited by light, are mobile, and absorb the light very efficiently when the 
energy momentum conservation laws for their production are satisfied. 
Indeed when ~ ( w )  = 0,  a transverse wave can excite a longitudinal wave. 
The topic of surface plasmons is outside the scope of this textbook, but the 
reader can consult the textbook by Peyghambarian et al. [1993]. 

When the frequency is above the plasma frequency, the permittivity is 
real and E < 1, it vanishes at the plasma frequency. The refractive index in 
this limit becomes: 

and gives rise to an unattenuated wave which is part reflected and part 
transmitted. The bulk reflectivity of a metal can be evaluated numerically 
and is given by substituting Eq. ( 10.32 ) into Eq. ( 10.22 ). The result is 
shown in Fig. 10.2. 

Fig. 10.2. The reflectivity and transmissivity of an electron gas (thin film). [Introduction to 
Semiconductor Optics, 1993, p. 62, Peyghambarian, N., Koch, S. W. ,  and Mysyrowicz, A., 

Fig. 3.1. Reprinted with permission.] 

10.3.2. The classical and quantum conductivity 
One question the reader may ask at this stage is, how come it is possible to 
describe the optical properties of an electron gas with classical methods and 
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get the right answers? The answer to this question is that if one carries 
through the fully quantum mechanical derivations of the above results, one 
arrives in the limit of weak scattering, to essentially the same answers. The 
quantum mechanical derivation does however tell us two new important 
things: (1) that the lifetime z entering the Drude theory is not classical 
friction, but the quantum mechanical coherence time of electrons. It is the 
average time a particle stays in an eigenstate before it is scattered out of it 
by a phonon or an impurity potential, defect, etc ... (2) That true quantum 
effects become important when the electron gas is not treatable in the nearly 
free electron approximation anymore. If the metallic system is an alloy, or a 
liquid metal, or an amorphous medium for example, then the quantum 
description matters very much. Indeed in this limit, the improved quantum 
mechanical theory tells us that there is a serious modification which has to 
be made to the Drude result. The necessary change is to replace the carrier 
density n, with the expression: 

The above new equation for the conductivity signifies that the carrier 
density in the Drude formula is in reality the density of states at the Fermi 
level times the Fermi energy (Ferrni velocity squared times % effective 
mass). In the nearly free electron gas, the two are identical and the RHS of 
Eq. ( 10.39 ) is exactly n,. But in a more complex metal, the density of states 
at the Fermi energy can be very different from the free electron form both in 
it's energy dependence and it's value. Indeed if the density of states at the 
Fermi level is zero, or below a "minimum number", then the electron gas 
has no mobile carriers which can respond to a field, and the system does not 
conduct at all! In classical physics, electrons do not obey Fermi statistics 
and all carriers can participate in conduction. Not so in quantum physics, 
Eq. ( 10.39 ) says that only the ones near the Fermi level can respond to a 
small electric field. Changing the density of states at the Fermi level 
therefore strongly affects the transport properties, and consequently also the 
optical properties. This observation is particularly important for low- 
dimensional systems, where it is possible to engineer, and externally 
manipulate the band structure and therefore the density of states at Ef . 

The reader is referred to Madelung's El9781 and Ziman's [1964, 19691 
books in the Further reading section for a more detailed discussion of 
quantum transport. 
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10.4. The bound and valence electron contributions to the 
permittivity 

10.4.1. Time dependent perturbation theory 
Consider now the influence of bound electrons on the optical properties. 
When bound charges are subject to an electric field, they will also be 
displaced, but not freely, and not to "infinity", as the frequency tends to 
zero. For bound electrons, the external field is only a small perturbation, 
which gives rise to polarization of the bonds and orbits, and we can apply 
methods of quantum mechanical perturbation theory. We consider therefore 
the effect of the time dependent external field as a an additional new term in 
the total energy or Hamiltonian of the system: 

Eq. ( 10.40 ) V(t) = - q E . ~  

The next step is to solve the time dependent Schrodinger equation 
Chapter 3 in the presence of this new term. Previously the Hamiltonian was 
time independent and we could therefore write the unperturbed solutions in 
the usual way as shown in Chapter 3 namely as the set: 

Eq. ( 10.41 ) Yn (T,t) = a, ( ~ ) e - ' ~ ~ ~ ' "  

with energy eigenvalues E n .  In the presence of the perturbation, the 
electrons are no longer in their stationary sates, but can now admix with 
other, higher lying excited states, and change their orbital configurations, 
and in principle also undergo transitions into these excited states. The 
change of spatial configuration is just what polarization is in the classical 
sense, and the transition into excited states is what we call absorption of 
energy from the light beam. We shall now see how polarization and 
absorption can be computed in quantum mechanics. We do this by assuming 
without loss of generality that the system was in its ground state g for KO, 
then the effect of the perturbation applied at t=O, is to generate a new 
electronic configuration which is a superposition of the ground state and all 
the other excited states of the system. The new wavefunction is a solution of 
the time dependent Schrodinger equation in the presence of the coupling 
term described in Eq. ( 10.40 ). We emphasize that the principle of 
superposition is rigorously true, and part of the principles of quantum 
mechanics we discussed in Chapter 3. So we can write for PO: 
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Eq. ( 10.42 ) Y(r',t) = @ge-iEgtih + C c ,  (t)@ne-iE1l"" 
n+g 

where g denotes the ground state and n the excited states. The next step 
is to determine the new admixture coefficients cn(t). We do this by 
substituting Eq. ( 10.42 ) into the time dependent Schrodinger equation (see 
Eq. ( 3.4 )). On one side we take the derivative with respect to time to 
obtain: 

Eq. ( 10.43 ) 
~Y -iEgtl\ + c ~  ( t ) @ n e - i ~ , , t ~ h +  +Cih%-e-i~,Et/fi 

ih- = Eg@,e 
at n n 

n+g n+g at 

on the other side of the Schrodinger equation we have 

Eq. ( 10.44 ) 
{H,  + V(t))Y(?, t )  = E , ~ D , ~ - ~ K ' "  + Z E , ~ ,  (t)cD,e-'E"'l" qqr' .E,(eid + e-'&)~(qr',t) 

n t g  

We now equate Eq. ( 10.43 ) and Eq. ( 10.44 ), and cancel the common 
terms. This leaves the last terms of the RHS of Eq. ( 10.43 ) and 
Eq. ( 10.44 ) as equal to each other. Now we multiply the new equation on 

iE,tlh 
both sides with @;.e and integrate over space. This operation 

eliminates all orthogonal terms, because we are using the fact that states 
belonging to different eigenvalues are orthogonal to each other (see 
Eq. ( 3.8 )). We also drop all terms which involve the product of the 
perturbation V(t) and a coefficient q(t)  because such terms are necessarily of 
second order or above in the strength of the perturbation. The orthogonality 
rule, and the first order perturbation approximation only leaves one term in 
the sum of the last term on the RHS of Eq. ( 10.44 ) which now gives: 

Eq. ( 10.45 ) 
ac . 

ih 2 = - fd?@ * (?)q?go (ei' + e-'")e i ( E j - E g ) t l h )  

at 
@, (3 

this can be integrated to give: 

Eq. ( 10.46 ) 
- ei(ho+Ej-Eg)t/h i(-hw+Ej-Eg)tlh - 

- 1-e 
cj  ( t )  = -qEo . Cg 

hw+(Ej - E g )  Aw-(E, - E g )  1 
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where the position matrix element is: 

Eq. (10.47) cg = 1 d ~ O * ~  (?)TOg(?) 

For simplicity we assume that the wave is polarized in the x-direction so 
the first factor reduces to qEtxjg . Eq. ( 10.47 ) is, apart from a factor q, the 

matrix element of the dipole moment of the electron, it is a measure of how 
much the excited state j has ground state g character mixed into it when 
acted on by the position coordinate. The matrix element of an operator 
Eq. ( 10.47 ), in this case the displacement, Tap is sometimes also written in 

the Dirac notation (a l?l a) . 
The above results now allow us to compute how the applied field 

polarizes the bound electron system. By definition the induced time 
dependent dipole momentP,(t)is given by the charge q times the 

expectation value of the position operator: 

Eq. ( 10.48 ) P, ( I )  = -q 1 d ~  * ( T , t ) x ~ ( ~ , f )  

Substitute the solution from the wave function and keep only the linear 
terms in the coefficients immediately gives us: 

Eq. ( 10.49 ) P,(t) = - C q ( x , ~ ~ ( t ) e - ~ ~ ~ " (  + xigc, *(t)eimjt) 
.i 

~ q .  ( 10.50 ) ~ , ( t )  = Cq21x,l E; ( e i ~ t  + e - i ~ t )  

.i Ej0 - A 0  Ej ,  +hw 

From the dipole moment induced by the field we can now deduce the 
polarizability in the usual way: 

and by introducing the oscillator strength Fj: 
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2m 
Eq. ( 10.52 ) Fj =+ E , ix , l2 

A 

We can rewrite the ground state polarizability in an elegant form: 

q2 Eq. ( 10.53 ) a,(w) = -C 5 2 
" ' f~ , j  @jg - @ 

with ojg = (E - E, ) / A . The significance of this expression becomes 

clear when we note that the oscillator strengths obey a simple sum rule: 

Eq. ( 10.54 ) CF, = I 
j 

This sum rule is important. It is a check of consistency and follows from 
two quantum mechanical identities. The momentum position commutation 
relation: 

~ q .  ( 10.55 ) xp, -p,x = ift 

and taking the expectation value of this equation and expanding over a 
complete set of intermediate states: 

and using an identity fi-om Heisenberg's equation motion which reads: 

Eq. ( 10.57 ) p i j ,  = xij(Ej  - Ei)mo lift 

Substituting Eq. ( 10.57 ) into Eq. ( 10.56 ) gives the sum rule. Now we 
know the bound electron polarizability, we can compute the relative 
permittivity by considering the polarizability of Nb such atoms or molecules 
per unit volume. 



Optical Properties of Semiconductors 381 

The sum now runs over the eigenstates of one such elementary unit, i.e. 
an atom or a molecule. In the zero frequency limit we have 

F,@; 
Eq. ( 10.59 ) ~ ( 0 )  = 1 + x- 

j 4 
and in the high frequency limit when the light energy exceeds all bound 

to bound transitions, we recover the corresponding Drude result: 

Eq. ( 10.60 ) 

which also implies that close to the plasma frequency, the permittivity 
can be negative, and the refractive index purely imaginary implying from 
Eq. ( 10.22 ) perfect reflection. 

10.4.2. Real transitions and absorption of light 
So far we have not considered what happens when the energy of the photon 
matches the energy difference between two bound levels. From 
Eq. ( 10.58 ), we should expect an infinite response. But what does this 
mean? When we have matching of energies we should expect the electron to 
reach the excited state and the photon to be absorbed. In order to track such 
a transition mathematically we go back to Eq. ( 10.46 ) and evaluate the 
probability that the particle is in the excited state j at time t having started at 
t=O in the ground state. From Eq. ( 10.46 ) we note that in the expression for 
cj(t), there are two terms, one corresponding to the possibility of absorption, 
namely a resonance when Aw = hwj and one corresponding to emission. 

For simplicity we keep the absorption term only so we have: 

The right hand term or sine function is strongly peaked at wj = w and 

decays strongly with frequency, it is a well known function of mathematical 
physics, and is best analyzed if instead of the probability, we consider the 
probability per unit time of finding the particle in the excited state j ,  that is 

divide by time t to study W, =lci(t)12/t. Dividing the RHS of 
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Eq. ( 10.61 ) by t, and letting time go to infinity gives us a function which 
we recognize to be the well known Dirac delta function: 

Eq. ( 10.62 ) 

the Dirac delta function 6 ( x )  has the property that: 

And also as the imaginary part of the fraction: 

Eq. ( 10.64 ) Im [ x : i v ]  ---- = x@) 

with infinitesimal v .  So basically Eq. ( 10.61 ) contains the statement 
that the particle can end up in an excited state if energy is conserved in the 
long time limit. Although the Heisenberg uncertainty relation allows energy 
not to be conserved at short times, to complete the transition, to make a 
temporary admixture real, energy conservation must be satisfied in the long 
time limit. 

We can summarize this result in the form known as the Fenni golden 
rule which states that if a particle is subject to perturbation of the form 
2V(v) cos o t  then the probability per unit time of finding it in an eigenstate 

j given that it started in g at t=O is given by the formula: 

Now we can understand the meaning of the resonances in the 
permittivity expression Eq. ( 10.58 ). They do indeed indicate absorption 
processes, and the way to take care of the singularity is to introduce the 
notion of a lifetime. Clearly when excited, the electron can recombine back 
down again so it has a finite lifetime in the excited state, and by Heisenberg 
uncertainty principle, because of this time uncertainty, it has a finite energy 
uncertainty or energy broadening. There is a broadening associated with 

2z 
Eq. ( 10.65 ) W, = - 

A 
ld?@; * V(?)@, 

2 

G(ho - Ej + E,) 
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each level j and the lifetime is measured in Hz. The broadening introduces a 
complex number in the denominators of Eq. ( 10.46 ) so that the relative 
permittivity becomes the complex function (T=O K): 

This function has a real and an imaginary part. The imaginary part, we 
know, is related to the absorption coefficient, and this time it is not the joule 
heating of free electrons as in Drude theory, but the absorption of photons 
by bound electrons in the solid. We are now in the position to write down an 
expression for the relative permittivity of the solid including both bound Nb 
and free electrons n,: 

At this stage it is also useful to generalize the bound relative permittivity 
to finite temperatures, allowing the light to admix bound levels up and 
admix thermally excited levels down in energy, to find (TU largest of the 

two widths and f, is the Fermi -Dirac function): 

10.4.3. The permittivity of a semiconductor 
We can apply these results to a semiconductor. Consider a direct bandgap 
semiconductor with no free carriers for the sake of simplicity. In this case 
the bound electrons are in the valence band and the quantum label j becomes - 
a Bloch k -state and the number of orbital Nblvolume falls under the Bloch - 
integral k .  The transitions that the light can induce are from valence to 
conduction band and involve a negligible momentum of the light wave. For 
band edge absorption, this is only possible with direct bandgap materials see 
Fig. 4.17. The indirect bandgap systems will be discussed later on in this 
Chapter. In direct bandgap materials, or for sufficiently high photon energy, 
Eq. ( 10.66 ) means that the permittivity involves to a good approximation 
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4 4 

only the vertical k -valence to same k -conduction band admixtures. We 
also assume that the valence band is full and the conduction band empty so 
that we have (T=O K): 

4 Eq. ( 10.69 ) E, ( w )  - 1 + -x F~ 
1 

2 2 
&om0 i (O& - wi,v) - W 

where the Bloch sum over the occupied states is normalized by the 
volume and defined as: 

Eq. ( 10.70) x = Nb 
k" 

with Nb denoting the effective number of bound eigenstates per unit 
volume. At w = 0 ,  the largest contributions in this sum are from the band 
edge states, so the denominator can be replaced by the bandgap E, l h  and 

the oscillator strength for the vertical band to band transition F' is to a good 

approximation reducible under the sum to give the total valence band 
electron density and therefore the expression: 

4 Nbq2 Eq. ( 10.71 ) -x Fi -- = (4)' 
m ~ E ~  k &orno 

Where w: is the effective bound electron plasma frequency and can be 

E, obtained by comparison with experiment. It should be roughly a factor - 
EB,v 

(EBrv is the valence band width) smaller than the absolute valence band 
plasma frequency. This expression is valid for the low frequency 
permittivity of a semiconductor of energy gap E,. Given that a bandgap can 
typically be - 3x 1 0 ' ~  Hz, we see that the low frequency limit can go a long 
way. So in the range 0-10" Hz for example, the zero frequency form is 
quite adequate, and for a doped semiconductor, the bound valence band 
contribution can be combined with the free electron contribution. At finite 
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temperature, the above expression is still a good approximation in a wider 
gap semiconductor, but the full generalization for finite temperature, 
substituting for the oscillator strength, and including the broadening is in 
fact: 

Eq. ( 10.73 ) 

+ 

where the sum is now over the k index normalized per unit volume. 
The x-position matrix element has to be evaluated using the valence and 
conduction band Bloch functions. Fortunately and to a good approximation, 
this matrix element can be calculated using Kane theory to give us the 
result [Rosencher and Vinter 20021: 

2 - - 2  
Eq. ( 10.74 ) Ix,,, = I fd?£'*, ( k ) x ~ , ( k ) l  = 

3 E: m, 

where E, is the Kane parameter and a number which varies only 
slightly between 20 and 25 eV in most semiconductors (see also Appendix 
A.8). This powerful last equation now allows us to compute the permittivity 
for most situations of interest in semiconductor physics. All we need for 
Eq. ( 10.73 ) is the density of band states which as we know is usually well 
described in the nearly free electron approximation. 

10.4.4. The effect of bound electrons on the low frequency optical 
properties 
We have seen that bound electrons usually contribute frequency dependence 
to the permittivity only at high frequencies. When we consider both free and 
bound carriers we must go back and see how one affects the other. One of 
the important consequences of E, on the free carrier response is in the 

regime wz >> 1 discussed previously for free carriers only. The combined 
permittivity in this regime is approximately real, but the bound electron 
contribution is significant, so that the refractive index now becomes 
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or as is the notation of some other authors one can also replace: 

Eq. ( 10.76 ) E ( @ )  = 1 + E, 

One can think of Eq. ( 10.76 ) as a renormalization of the plasma 
frequency of the electrons to wi + w: /( l+ E , ) .  This is a real effect 

because the electrons are now oscillating in a medium in which the electric 
field of the restoring force, is screened by the permittivity of the bound 
carriers. The low frequency permittivities of some important semiconductors 
are given in Appendix A.4. For example GaAs: E, = 13.1, Si: E, = 1 1.9, 

C: E, = 5.7 . From Eq. ( 10.72 ), it follows that the large bandgap materials 
are expected to have the lower permittivity, and this is in general observed. 

10.5. The optical absorption in semiconductors 

1 0.5.1. Absorption coefficient 
The optical absorption of a direct bandgap semiconductor is given by the 
imaginary part of the permittivity Eq. ( 10.73 ). 

Fig. 10.3. Electronic transition, (a) from the valence band to the conduction band resulting 
from the absorption of a photon, (b) from the conduction band to the valence band resulting 

into the emission of a photon. 

This is a sum of energy conserving transitions described by matrix 
elements which take an electron from the valence band vertically up (i.e. 
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+ 

same k value) to the conduction band. The number of such terms is 
therefore directly proportional to the number of available band states. Thus 
the optical absorption properties of semiconductors are intimately related to 
the density of allowed states in the conduction and valence bands. 

The absorption process is characterized by the absorption coefficient, 
a(@), which is usually expressed in units of cm-' or m-' in MKS as used in 

this book. This quantity depends on the incident photon energy Aw and 
expresses the ratio of the number of photons actually absorbed by the crystal 
per unit volume per second, to the number of incident photons per unit area 
per second. The calculation of the absorption coefficient for a direct 
bandgap material resembles that of the density of states, but takes into 

+ 

account the E - k relationships in both the conduction band for electrons 
(with effective mass me) and the valence band for holes (with effective mass 
mh). This consideration results from two important conservation laws that 
rule the optical absorption process: (i) the total energy 
(electron+hole+photon) must be conserved, (ii) the total momentum or 
wavevector must also be conserved. Assuming that in Eq. ( 10.69 ), the 

+ 

oscillator strength i;;; is only a weak function of k allows us to take the 

imaginary part of the permittivity as the delta function sum to obtain for 
absorption, with: 

Eq. ( 10.77 ) 

1 ) = n~+@ - E~ (i)+ E~ (i)] 
l m [ i ~ - i , i i j + a , i i j - i ~  

and therefore having split up the expression Eq. ( 10.69 ) we have: 

The delta function sum is called the joint density of states per volume 
and can be evaluated as the ordinary density of states by introducing the 
reduced mass via (remember the valence band energy is defined negative): 
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The absorption coefficient can then be found to be proportional to the 
density of states, with the effective mass m *  replaced by the reduced 
effective mass defined as: 

* memh 
Eq. ( 10.80 ) m, = 

me + mh 

For example, in a three-dimensional bulk semiconductor structure with 
direct bandgap: 

W -  
where by definition, the absorption coefficient is a = _2n K and 

nc 
where Aw is the incident photon energy, E, is the energy gap of the 
semiconductor, and F,, can be evaluated using Kane theory Eq. ( 10.74 ) 

(see also Appendix A.8). 
A word of caution. When using approximation methods such as Kane 

theory, it can happen that the oscillator strength defined using the bare mass 
as in Eq. ( 10.52 ) exceeds 1, which is inconsistent with the sum rule. This is 
because the sum rule should really be evaluated within the same scheme so 
that mo in Eq. ( 10.52 ) should be replaced by the Kane m *  (see Appendix 
A.8). The expression in the curly bracket on the RHS of Eq. ( 10.81 ) is 
called the electron-hole or joint density of states because it takes into 
account the density of states in both the conduction and valence bands. 
In reality, the absorption spectra do not reproduce exactly the joint density 
of states because there are other processes which contribute to absorption as 
well. These are due to photons coupling to lattice vibrations i.e. electron- 
phonon interactions and also excitonic effects. Let us first consider the 
excitonic contribution. 

10.5.2. Excitonic effects 
Let us now consider excitonic effects. An electron excited into the 
conduction band is a negatively charged particle in a neutral medium which 
will interact with the resulting hole created in the valence band (positively 
charged particle). In other words when light creates an e-h pair, it is not yet 
a fiee pair. This pair of charged particles is created locally, and they attract 



Optical Properties of Semiconductors 389 

each other by the Coulomb force. They form a unit called the exciton. In an 
exciton, the electron and the hole attract each other and move together as a 
single particle consisting of a coupled (i.e. not free) electron-hole pair. This 
pair resembles a hydrogen atom where the role of the nucleus is played by 
the hole. 

An exciton has two degrees of freedom: the relative motion of the 
electron and the hole, and the motion of the exciton as a single unit. As in 
the case of the hydrogen atom, the relative motion is quantized and the 
energy spectrum of an exciton consists of discrete energy levels in the 
bandgap corresponding to the ground state and the excited states of an 
exciton. But unlike in hydrogen the pair is moving in a medium which has a 
finite polarizability as we have just seen above. So the Coulomb potential is 
screened by the medium. Using the results of section 2.2 for the hydrogen 
atom, we obtain the energy associated with the relative motion of an 
exciton: 

Eq. ( 10.82 ) 

where n=1,2,. .. is an integer, and ERy is the exciton Rydberg energy. 
This shows that, similarly to the hydrogen atom, the energy spectrum of the 
relative motion of an exciton consists of discrete levels. Each level is 
indexed by a main quantum number n and the wavefunctions are 
characterized by orbital quantum numbers I = 0,l, ..., n-1 and magnetic 

quantum numbers m = -1,-I+ I,.. ., 1 . The Rydberg energy is given by: 

Eq. ( 10.83 ) E, = 
m:q4 

8(&FOhY 

with E, is the real part of the zero frequency relative permittivity or the 

dielectric constant of the material, 6, is the permittivity of free space and h 

is Plank's constant. Furthermore, by defining an exciton Bohr radius, a,, 
derived from Eq. ( 2.4 ) such that: 

Eq. ( 10.84 ) a, = 7 
m r  9 

we can rewrite the Rydberg energy as: 
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Eq. ( 10.85 ) E,  = q 2  - - 
A2 
* 2 

~ Z E , E , ~ ,  2mraB 

The first fraction is similar to Eq. ( 2.5 ) and expresses the hydrogen 
atom analogy for the exciton. The energy spacing between the ground state 
exciton level and the bottom of the conduction band is called the exciton 
binding energy, and physically represents the energy needed to separate the 
electron and the hole into two free particles. We note that because of the 
permittivity of the host E, = E, (0) > 1, the binding energy is considerably 

reduced compared to the hydrogen atom. Given that for a semiconductor 
like silicon, E, - 10 and this is true for most semiconductors of interest 

(E, - 10 - 15), we have a reduction of energy of -100-300 from 13 eV to 
-0.13 eV and less. 

Excitons can be efficient absorbers of light. When excitons are involved 
in the optical absorption process, the absorption spectrum exhibits additional 
sharp peaks within the energy gap, near the bandgap energy (E,), 
corresponding to the excitonic energy levels. This is illustrated in Fig. 10.4 
for a bulk semiconductor (3D). In addition, even at higher energies, deep 
inside the conduction band where excitons are typically not encountered, the 
absorption coefficient is still influenced by the Coulomb interaction between 
electrons and holes. 

with Coulomb interaction 

Fig. 10.4. Excitonic absorption peaks (n=1,2,3) in the optical absorption spectra of a bulk 
semiconductor (30).  These peaks are located inside the energy gap. In addition, the effect of 

coulombic interaction between electrons and holes on the absorption coefficient is shown. 
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It should be noted that in bulk semiconductors, the presence of excitons 
has been verified only at cryogenic temperatures. This is because an exciton 
has a small binding energy, and electron-phonon interactions, can, at higher 
temperatures easily break up the exciton into free electrons and holes, i.e. 
the lifetime of an exciton is very short at high temperatures. 

However, in low-dimensional structures one can observe excitonic 
effects at much higher temperatures because the spatial confinement reduces 
the screening efficiency and enhances the binding of the pair, they have a 
smaller chance to escape and thus a larger exciton binding energy. We shall 
see this in Chapter 1 1. 

10.5.3. Direct and indirect bandgap absorption 
The formalism for the optical permittivity of semiconductors above applies 
mainly for the direct bandgap materials because it assumes transitions with 
zero momentum exchange. This includes the important class of materials 
such as GaAs and InAs. Now let us consider the indirect bandgap systems. 
In the Chapter where we discussed the band structure of semiconductors, 
recall Fig. 4.17 in Chapter 4 we encountered two distinct classes of 
materials. The direct and indirect bandgap materials. Semiconductors like Si 
and Ge have indirect bandgaps. That means that the lowest photon energy 
that can be absorbed necessarily involves a change of momentum and this 
process is not included in the formalism of Eq. ( 10.73 ). 

From Fig. 4.17 for Ge, we see that the lowest energy absorption is one 
where an electron is taken out of the top of the valence band at the r point 
and put into the lowest energy in the conduction band at the X point. The 
momentum change is substantial and cannot be supplied by the photon, it 
must come from another sources. The most obvious one is the phonon bath. 
Phonons can couple to the photons and make the transition happen. They 
can do this in absorption or in emission of a phonon. Energy and momentum 
can be satisfied in particular with optical phonons where the energy 
dispersion with momentum is weak and can be neglected for most purposes. 
Energy conservation gives: 

the required momentum Q is fixed by the band structure. The process 
can be one of emission in which case the photon needs more energy than the 
indirect bandgap. The emission process is weakly dependent on temperature 

hRlk T and involves the factor l / (e  - 1) + 1 = N( W )  + 1 . Phonon absorption on 
the other hand, can happen with photon energies less than the indirect 
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bandgap, but only if such phonons are excited, so here we have a Bose 
factor N ( w )  which is temperature dependent. In summary after doing the 
integrations in the corresponding Fermi golden rule formulae, one arrives at 
the two indirect absorption coefficients which have the form (assisted with 
the emission and absorption of an optical phonon respectively): 

(Aw - Ei ,  - AQ2 
aep = Ae I - e-hC21kbT ~ ' ( A u -  EL, - h R )  

Eq. ( 10.87 ) 
(Aw - Ei ,  + A R ) ~  

= A, - 1 + ,"IkbT 
B(Aw - ELd + AR) 

The A's are constants, the theta function B is zero when the argument 
is less than zero and one otherwise [Peyghambarian et al. 19931. Note the 
different (squared) behavior of the band edge absorption Eq. ( 10.87 ) with 
photon energy when compared with the direct bandgap case Eq. ( 10.81 ) 
(square root). 

Fig. 10.5 and Fig. 10.6 illustrate the absorption edges of GaAs and Ge. 
The GaAs data is plotted on a linear scale, and the Ge data logarithmically 
so that one can see the crossover from indirect to direct absorption at the 
inflection point of the curve. 

Fig. 10.5. Band edge absorption of GaAs showing also the evolution of the exciton 
absorption for different temperatures left to right: 294 K;186 K; 90 K; 21 K. [Reprinted 

Jigure with permission from Sturge M.D., Physical Review Vol. 127, p. 768, 1962. Copyright 
1962 by the American Physical Society.] 

When a phonon is needed, the transition is more complex, involves 3 
bodies, and is therefore also less efficient. When an electron is excited in the 
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- + 

conduction band with high energy, so that the direct k = 0 transition is 
possible, it will in general thermalize down very quickly to the indirect band 
edge, and light emission will only take place at the final recombination step 
at the lowest bandgap. In an indirect bandgap system, a phonon is needed 
and therefore materials such as Ge and Si will be poor light emitting 
systems. 

PHOTON ENERSY fax)  

Fig. 10.6. The band edge absorption of Ge on a logarithmic scale. Note the change of 
behavior at 102 cm-'from indirect to direct band to band transitions. [Reprintedfrom Solid 
State Physics Vol. 8, Newman, R. and Tyler, W. W ,  "Photoconductivity in Germanium, " p .  

58, Copyright (1959), with permission from Elsevier.] 

10.6. The effect of phonons on the permittivity 

10.6.1. Photon polar mode coupling 
We have so far included free and bound electrons contributions in the 
permittivity. We have discussed the effect of excitons, so now we must ask 
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what other processes can affect the optical response of a solid? Clearly at 
finite temperatures the lattice atoms are thermally excited and vibrate. We 
have seen that the atomic bonds can be polar, and the lattice dipoles can 
vibrate and be stimulated to vibrate by light waves. This means that in 
particular, it is also possible for such polar lattice vibrations to absorb 
energy from the light passing through the medium. The effect of light 
coupling to atomic motion is not negligible in semiconductors with polar 
modes and needs special treatment. The general treatment of photon-phonon 
coupling, i.e. including acoustic coupling and may phonons effects is 
beyond the scope of this textbook. But the application of photon-phonon 
coupling as a characterization tool in semiconductors, is developed in 
Chapter 13. In this Chapter, we will develop the methodology for the 
strongest interaction, namely for the polar lattice. 

To investigate the influence of atomic vibrations on the permittivity we 
consider the two atom model of lattice vibrations in Chapter 5. If the bond is 
polar then the atoms in the bond carry a net charge and couple to the light 
wave. Furthermore the vibrating atoms or charge can reemit light and also 
give up its extra energy to other phonon modes. So we also introduce a 
damping term y to take care of this effect. The equation of motion 
Eq. ( 5.5 ) now becomes: 

Eq. ( 10.88 ) 

where we have assumed that the MI mass is negatively charged and M2 

positive. The damping term is here, as before, proportional to the velocity. 
We are not interested in the complete solution of this problem, so we 

focus only on those modes which could result in absorption or strong 
scattering of light, and we know that this only possible when momentum is 
conserved. Since the photon only has negligible momentum to exchange, 
light can only excite or absorb phonons with a small momentum. It can 
absorb or emit acoustic and optical modes with small momentum exchange. 
With optical modes it is possible to excite relatively high energy phonons 
with almost zero momentum. Indeed energy exchange can take place with 
optical modes near k=O. So we focus only on those solutions to Eq. ( 10.88 ), 
namely the ones at or near k=O. The k=O optical phonon modes are the ones 
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where the two sublattices move in phase relative to each other. We try a k=O 
mode: 

u, ( t )  = Ale-jut 
Eq. ( 10.89 ) 

U, ( t )  = ~ ~ e - ~ ~ ~  

and find from Eq. ( 10.88 ): 

[2C - M ,  (w2 + i yw)]A, - 2CA2 = -qEo 
Eq. ( 10.90 ) 

[2C - M2 (w2 + iyw)]A2 - 2CA2 = qEo 

the solution is 

- -1 M ,  [R: - (w2 + iyw)] 
Eq. ( 10.91 ) 

A, = qEo 
M 2  [R: - (w2 + iyw)] 

Eq. ( 10.92 ) R:(k = 0) = 2C(Ml+ M2 

MlM2 

Using this result we can now go back and compute the polarization 
induced by the light wave. Given Nl ion pairs per unit volume we have the 
volume dipole moment: 

Eq. ( 10.93 ) P, = -qN,(u, -v,) 

or: 

Eq. ( 10.94) P, =qNl(A2 - ~ , ) e - j ~ ~  

which then using Eq. ( 10.91 ) reduces in the limit of the pure ionic 
permittivity to: 
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Eq. ( 10.97 ) M ,  = M1"2 

MI +M2 

The optical phonon contribution to the permittivity has a real and 
imaginary part, from which one can evaluate the effect of optical phonons 
on light dispersion and absorption. We are now at last in a position to write 
down all the important contributions to the relative permittivity of a doped 
polar semiconductor as: 

Eq. ( 10.98) E(U) =I+(&/(@)-~)+(E,(u)-~)+(E,(u)-1) 

where the polarizability contributions are added as given by 
Eq. ( 10.96 ), Eq. ( 10.66 ) and Eq. ( 10.33 ), and where it is understood that 
in a semiconductor, the bound contribution is the same as the formula 
Eq. ( 10.68 ). With this theory we now can handle most situations of interest 
in semiconductor physics. 

10.6.2. Application to ionic insulators 
In this limit we neglect the free electrons, and it is again convenient to lump 
together all other than the lattice contributions into an ~ ( m )  term, and write 
the ion permittivity as being due to the transverse optical active mode 
denoted with frequency R, 

Fig. 10.7 shows the reflectivity R of an ionic insulator. The effect of the 
resonance on the reflectivity is to produce a sharp cross over from high to 
low reflectance as the photon-energy is changed. 
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Fig. 10.7. Lattice reflection spectrum of AlSb. Points are experimental data, line is fit using 
the single oscillator model. [Reprintedfigure with permission from Turner, W.J. and Reese, 

W.E., Physical Review Vol. 127, p. 126, 1962. Copyright 1962 by the American Physical 
Society.] 

10.6.3. The phonon-polariton 
The real part of the refractive index due to the coupling with ions has a 
strong frequency dependence as can be seen in the previous figure and 
strongly modulates photons with frequencies in the neighborhood of the 
optical modes. Indeed the photon dispersion relation relating photon 
frequency and momentum k is: 

where E(w) is given by the pair of Eq. ( 10.99 ). One can see that the 
refractive index changes with frequency so that the allowed frequencies of 
propagation of photons in the medium are solution of this equation, which 
can have several branches. Let us assume the damping is weak so that 
K ( W )  = 0 in Eq. ( 10.99 ) and one has E(w) only so Eq. ( 10.100 ) 
becomes: 

Eq. ( 10.101 ) w2(k )  
1 

= C2k2  
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which is a quadratic equation in w2 with two branches. 
The frequency versus momentum of the physical roots are shown in 

Fig. 10.8 where Q, = Q,. '(O) turns out to be the longitudinal phonon 

frequency and the zero frequency limit ~ ( 0 )  includes the zero frequency 
limit of the lattice term. 

Fig. 10.8. The dispersion curve for a phonon-polariton. [Introduction to Semiconductor 
Optics, 1993, p. 98, Peyghambarian, N., Koch, S. W., and Mysyrowicz, A, ,  Fig. 4.11. Modified 

with permission.] 

The excitation can be understood to be part photon and part phonon in 
its structure. Near k=O and at low frequency, it is mainly photon like and 
basically follows the photon dispersion curve slowed down by the mainly 

bound electron refractive index ,/&(a) of course. Then, when the light 

energy reaches the optical mode energy of the phonon, a strong mixture of 
the two excitations takes place. Here, the photon becomes a mixed state, part 
phonon and part photon, it gets slowed down in the process because the 
phonon is slow almost localized. The group velocity of this combined 
particle can be much slower than light as one can see from the dispersion 
curve. At higher frequencies the two states demit because their energies no 
longer match, and the excitation acquires its photonic character again. This 
happens as we go up the k-axis and up in frequency. This photon which is 
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crossing into a phonon like mode is called a phonon polariton. It is of great 
conceptual importance, as it allows regions of energy where photons can 
propagate at a much lower speed. 

Photon-phonon coupling has many other very subtle aspects which we 
have not covered in this Chapter. The reader is referred to the book by 
Seeger [I9971 for a more specialized treatment. For example whereas in 111- 
V compounds, one does have polar bonds, the same is not true of other 
important classes of semiconductors such as Silicon and Germanium. Here 
phonon-photon coupling and absorption is more subtle and involves higher 
order processes. Whereas single phonon excitations are forbidden by 
symmetry, higher order processed involving two and more phonons are 
allowed and give rise to rich absorption spectra. 

10.7. Free electrons in static electric fields: the Franz- 
Keldysh effect 

So far we have assumed that the system in question is itself not subject to a 
strong electric or magnetic field. In this and the next sections, we consider 
the effect of an electric and magnetic field on the optical properties. Much 
of modem technology is devoted to making optical systems for 
communication, displays, wavelength transformation and computing. Opto- 
electronics is a very lively and exciting field and has acquired even more 
importance with the advent of nanotechnology. The basic element of all 
optical technology is the optical switch or optical transistor. How can one 
make a medium change its transparency or absorption properties by a simple 
low power electronic or magnetic switch? In order to understand how to 
design such a system using the right material, engineers need to understand 
what external fields do to the electronic structure of materials, and in 
particular they need to know how the optical properties of semiconductors 
behave when subjected to external fields. 

Consider therefore a band of nearly free electrons in an electric field. 
We assume that we can use the effective mass approximation. When we 
previously considered the action of the electric field, it was in the context of 
electrical conduction, and it was good enough to treat the problem using a 
semi-classical approach. This is because the electric fields were small, and 
the dipoles generated were calculated to first order in field. Now we are 
looking at the effect of light on systems subject to strong electric fields, and 
we ask: what is new and important about strong electric fields? To answer 
this question we first note that the external field is no longer a small 
perturbation on the wave functions. So we cannot use Drude type theories 
but need to go back and solve the time independent Schrodinger equation in 
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the presence of an external electric field E," applied in the z-direction for 

example. It is understood that the motion in the x- and y- directions are 
nearly free electron like, so that the total wavefunction and energy of the 
charge is separable: 

ik ,x  ikyy  qZ) Eq. ( 10.102) Y E ( x , y , z )  = e . e 

A 
Eq. (10.103) E =,(k: +k:)+E2 

2m 

The Schrodinger equation in the field direction becomes: 

Note that in the current formalism, the electric field is denoted E," while 

the energy associated with the wavefunction is denoted E,. The 
wavefunctions which are solutions to this equations are called the Airy 
functions Ai, ( z )  with energy E, and given by an integral representation: 

1 1 3  
2rn*qE," 

Eq. ( 10.106) zv = ( ] ( z  -2) 
The normalized eigenstates of Eq. ( 10.104 ) labeled with their energies 

are: 

Eq. ( 10.107 ) 
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The eigenfunctions can be thought of as starting at each lattice site, one 
for each site, at a distance a along the z-axis, so that E, l qE," = a v where 

v is an integer in the range { a,-oo ), and a v defines the origin of the v, 
3 1 2  

Airy state. The Airy function decay asymptotically as e-"' for z>0 against 
the potential of the field, where the particle encounters a triangular barrier 
starting from the origin. In the direction (z<O), moving with the potential of 
the field, the wavefunction is that of an accelerating particle and oscillates 
with increasing frequency as it moves: 

1 
Eq. ( 10.108 ) Ai(z) = - 

+ 

In a semiconductor, both valence band k -states and conduction band 
4 

k -states will turn into Airy functions when a strong field is applied. So the 
optical admixtures and optical transitions, will now be between these new 
Airy functions labeled c and v rather than the Bloch states considered 
earlier. In particular it is now possible for a photon to excite any valence 
band Airy electron state into any conduction band Airy state. Momentum 
conservation no longer applies because the electrons in a field are not in a 
well defined momentum state anymore. Indeed they are constantly 
accelerated and this is why the oscillations in shape Eq. ( 10.108 ) are 
getting faster and faster as the electrons move in the direction of decreasing 
potential energy. The rate at which a charge will be excited from the valence 
Airy set to the conduction Airy state by the action of a light field is given by 
the Fermi golden rule: 

Eq. ( 10.109) 
2n 2 

W,,. = -1 * (Z)~E, 'ZQ,: ,  (z)dzl 6(E,:, - E , ,  - hw) 
A "'" 

Here the momentum rule reappears as a reduction in the overlap integral 
Eq. ( 10.109 ) between levels which are not vertically above each other, i.e. 
differ by the v index of the valence to the v' index of the conduction band 
Airy states. So we see that non-diagonal transitions v # v' are possible, but 
less likely. Thus a useful quantity for characterizing optical absorption is the 
local density of states, which, for vertical transitions, is apart from a 
constant, also the joint density of states discussed before. Remember that the 
sum of vertical transitions is directly proportional to the joint density of 
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states. The density of states is conveniently expressed using the local density 
of states which in one dimension is: 

where here, a, are the energy eigenstates Eq. ( 10.107 ) and the En are 

the eigenvalues. The local density of states say at z=0 gives us a measure of 
how many eigenstates exist in an energy interval in a given locality. The 
total density of states g(E) is obtained by integrating the local density of 
states over all space: 

Eq. ( 10.111 ) 

The local density of states, assuming for convenience that the hole 
electron masses are the same, is a measure of the optical absorption, and can 
be calculated in this case by substituting in the Airy functions Eq. ( 10.107 ) 
and eigenvalues into Eq. ( 10.110 ) and doing the sum at z=0. The 
integrations are straightforward but lengthy. The reader is referred to the 
details in the books by Chuang [I9951 and Davies [I9981 for more details. 
The Franz-Keldysh oscillations in the density of states of free electrons are 
shown in Fig. 10.9 for a one dimensional band, and also for the two- and 
three-dimensional systems. Fig. 10.10 shows the predicted Franz-Keldysh 
oscillations in the joint density of states, at the band edge of a 
semiconductor when an electric field is applied. 

When excitons are present in the absorption spectrum, we would expect 
the electric field to help ionize the excitons and change the absorption 
spectrum toward the free electron system again. This is indeed observed 
experimentally at very low temperatures in bulk and at higher temperatures 
in semiconductor quantum wells as we shall see in Chapter 1 1. 
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Fig. 10.9. The density of states from le$ to right for a one-, two- and three-dimensional free 
electron system in the presence of an electric field. [Davies, J.H., The Physics of Low 

Dimensional Semiconductors: an Introduction, p. 211, Fig. 6.2. O Cambridge University 
Press 1998. Reprinted with the permission of Cambridge University Press.] 

Fig. 10.10. Franz-Keldysh oscillations in the absorption of bulk semiconductors. The dashed 
line is the spectrum without afield. [Physics of Optoelectronic Devices, Chuang, S.L. 

Copyright O 1995 by John Wiley & Sons, Inc. Reprinted with permission of Wiley-Liss Inc., a 
subsidiary ofJohn Wiley & Sons, Inc.] 

10.8. Nearly free electrons in a magnetic field 

We now consider the effect of a DC magnetic field on the nearly free 
electron states of a solid. In order to do this we write down the Hamiltonian 

in a field applied in the z-direction. To do this we need to introduce the 

vector potential 2 and note that in quantum mechanics, the effect of the - 
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field is to replace the electron momentum operator jj with the new operator 

( 5  + q j )  in the Schrodinger equation. In the so-called Landau gauge, the 

vector potential is given by 2 = (0, Bx,O) and B becomes: 

Eq. (10.112) i = ? x j  

and consequently the time independent Schrodinger becomes: 

Eq. ( 10.113 ) 

From Eq. ( 10.1 13 ) it follows that in the z-direction, the Hamiltonian is 
that of the free particle, in the y-direction the interaction is an x-y product 
term so we try the solution: 

ik,.~ ik.z Eq. (10.114) Y(x,y,z)=u(x)e  e - 

with 

Including the spin degree of freedom s = +1/2 we also have the 
Zeeman splitting in a magnetic field: 

h2k,2 
Eq. ( 10.116) En,, =En,, +-- 

2m * SWBB 

where g is the Lande factor and pB = - qh is the Bohr magneton. 
2mo 

Substituting the trial function given in Eq. ( 10.1 13 ) into Eq. ( 10.1 12 ) we 
find that the function u(x) must satisfy: 

Eq. ( 10.117) x+- u (x) = m(x) 
2m* dx2 2 
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This equation is similar to the one of the harmonic oscillator where: 

hky is a length which we shall denote is the cyclotron frequency and - 
9B 

with {-x, ) . The equation Eq. ( 10.1 17 ) is a standard differential equation 

of mathematical physics which has the Hermite polynomials H ,  as 

solutions. We can therefore now write the complete wave function as: 

where n are integers, A is the normalization constant, and I ,  = ,/$ is 

called the cyclotron radius that is typically -25 nm for B=l T. The first few 
normalized Hermite polynomials are tabulated and given by: 

H,(s) = 1 

Eq. ( 10.120) H,(s )  = 2s 

~ , ( s ) = 4 s ~  - 2  

The corresponding x-y energy levels are independent of the index k, , 
and given by (n is an integer including 0): 

Eq. ( 10.121 ) E,, = E ,  =(n+1/2)A01~ 

These levels are called the Landau levels. Each Landau level is highly 
degenerate because there are many k, levels in each Landau level. In fact 

there are exactly 
L,L, 9B k, states in each Landau level, apart from spin 

h 
which is another factor 2. Thus the degeneracy grows with B because the 
separation of the levels also grows with B. When we include spin, the 
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Landau spin up and spin down bands are shifted relative to each other by the 
Zeeman energy g,u,B. The collapse of the x-y spectrum into discrete 
Landau levels is a novel phenomenon with strong consequences for the 
transport and optical properties of systems with free carriers. The condition 
for observing subtle effects in transport and optical spectra which are caused 
by the magnetic field is that the energy levels should have long relaxation 
times, so that the broadening of the levels should satisfies the condition that 
h 
- < t2q . This condition is difficult to satisfy in practice because in a metal 
z 
z - 1 0-13 - 1 0-14 s, which gives a much larger uncertainty AE - h / z than 

the typical Landau level separation which is hw, - 1 o - ~  e~ at B=l T. To 

observe the effect of Landau levels experimentally, one has to work with 
very high quality and low effective mass semiconducting materials, and 
preferably quantum wells that are systems composed of a thin lower 
bandgap semiconductor layer sandwiched between two higher bandgap 
materials (see Chapter 1 1 for details). 

Normally, one also has to work at very low temperatures. Good 
materials for large Landau level separations are for example GaAs and InAs 
and InSb which would enhance the B=l T splitting by a factor 40 

(InAs: m,* / m, =0.023) to 4x 10" eV or 70 (InSb: mi / m, =O.Ol45) to 7x 10" 

eV which is -70K. We will come back to this topic when we discuss the 
low-dimensional semiconducting systems in Chapter 11. As before, the 
easiest way to study the effect of Landau levels on optical absorption 
theoretically, is to evaluate the local density of states by substituting the 
wave functions and energies into Eq. ( 10.1 10 ) and carry out the sum. 

In a two-dimensional system for example, which one can engineer with 
a quantum well structure, the free electron density of states can be computed 
in the same way as we did for the three-dimensional case (Chapter 4 replace 

4 d 2 d k  + 2 d d k  in Eq. ( 4.37 )). It is constant for the two-dimensional 
Sm * 

case and given by g2 (E) = - where S is the area of the system. When 
7Zh2 

subject to a B field, we see from the above solution that we now only have 
the Landau spectrum, and the Landau level density of states now consists of 
sharp delta function peaks for each Landau level. The sharp delta function 
peaks are of course unrealistic, and one has to evaluate the sum by including 
a finite level broadening before plotting the function. 
Fig. 10.1 1 illustrates how the two-dimensional constant density of states 
collapses into Landau levels which are not ultra-sharp delta functions, but 
broadened by disorder or phonon scattering processes. Thus in a two 
dimensional system, the electrons would fill the Landau levels up the Fenni 
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energy which can the be in the Landau band or in the gap according to the 
electron concentration for a given field. Such quasi two-dimensional 
systems can be made using multilayers and quantum wells as we shall see in 
detail in Chapter 1 1. By changing the magnetic field, it is therefore possible 
to move the Fermi energy inside the Landau bands, and from inside the band 
to the gap between adjacent bands, when the bands are full. In 
Eq. ( 10.39 ) we made the observation that when the density of states at the 
Fermi level is zero there is no conduction. By changing the magnetic field, it 
is therefore possible to make the two-dimensional system undergo a 
transition from a conducting to a non conducting state. This happens 
because by changing the level density in each Landau subband, one can 
move the Fermi level from inside a Landau band to a gap. Thus the 
resistance of a two-dimensional gas is expected to oscillate with magnetic 
field, a phenomenon known as Shubnikov de-Haas effect and this is indeed 
observed in high quality semiconducting quantum wells. This is discussed in 
more detail in Chapter 1 1. 

A 

I"' + + 

Fig. 10.11. The density of states of a two-dimensional electron gas in a magnetic field for two 
different values of broadening. As the broadening is reduced, the Landau levels become delta 
function like peaks. With increased broadening, the trend is to a constant density of states as 

in the B=O limit. [Davies, J.H., The Physics of Low Dimensional Semiconductors: an 
Introduction, p. 225, Fig. 6.7b and 6 . 7 ~ .  O Cambridge University Press 1998. Reprinted with 

the permission of Cambridge University Press.] 

In a three-dimensional system, the k,  degree of freedom broadens the 
Landau bands and we have (spinless case): 

Eq. ( 10.122 ) g ( E )  = 
qBL,L, tt2k,2 CS(E - E, --) 

n,k, 2m * 
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Eq. ( 10.123 ) g(E)  = 
q ~ ~ J 2 r n  * nnvdx C [E  -(n +1/2)~w,]-"' 

(27w2 n=O 

where n,,, is the highest allowed subband index below the given energy 

E. 
The conductivity is included in the total permittivity, so the magnetic 

field can in principle strongly change the refractive index of the system. The 
key factor in magneto-optics is however the broadening, which, as we have 
seen, in most systems, larger than the Landau level separation. In practice 
one cannot go to fields much higher than about 17 T, and this therefore 
severely limits possible technical applications of orbital magnetism to opto- 
electronics. 

The permittivity of free electrons in a magnetic field can be computed 
using the wavefunctions we obtained Eq. ( 10.1 19 ) and substituting them 
into Eq. ( 10.68 ), however it is often adequate to compute the optical 
spectra of materials within a semi-classical treatment. This can be done by 

dr' 
adding the Lorentz force F, = -q-x to the RHS of Eq. ( 10.25 ), the 

dt 
Newton equation of motion, and evaluating the magneto-Drude polarization 
response just as we did before. With the B field in z-direction, the Lorentz 
force makes the problem necessarily two-dimensional in the x-y plane, 
because it introduces a transverse Hall velocity, so that now we have two 
equations for the two velocities v, and v, in response to the x-electric 

field. Assuming that the light vector is polarized in the x-direction as in 
Eq. ( 10.17 ), we can solve for the permittivity as we did before, but now 
including the Lorentz force and neglecting the phonon contribution, we find 
from Eq. ( 10.25 ): 

These equations are solved by making the same assumption as before for 

the displacements x(t) = x0e-'@' and y(t)  = yoe-i"l . We find the new B 

field dependent free carrier relative permittivity contribution and add it to 
the bound relative permittivity to obtain: 
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I 
Eq. ( 10.125 ) &(@) = E, (w)  + - o(B,  w)  

@&o 

where the complex conductivity now is dependent on the B field via the 
cyclotron frequency: 

n ( 1 I 2 - iw 
Eq. ( 10.126) o(B,w)=' - 

( i o - 1 1 2 ) ~  + w: I 
Eq. ( 10.126 ) reduces to the usual result Eq. ( 10.29 ) when the 

magnetic field B goes to 0. 
Since absorption is related to the imaginary part of the permittivity, and 

the bound term can be treated as real for frequencies below l o t 3  Hz, the 
absorption coefficient is proportional to the real part of the conductivity. 
Indeed we have from Eq. ( 10.126 ) and Eq. ( 10.15 ): 

( ( 1 1 2 ) ~  + w,2 + w 2 )  
Eq. ( 10.127) a(@) =- 

[ ( 1 1 2 ) ~ + w , 2 - ~ ~ ] ~ + 4 ~ ~ / 2  

The absorption exhibits resonance absorption at light frequencies which 
match the cyclotron frequency wc shifted by the relaxation broadening. 

This resonance is called the cyclotron resonance and is most important for 
measuring the cyclotron frequency, or what in other words is the effective 
mass of the electrons. The resonance can be understood immediately in the 
quantum mechanical picture as the absorption of a photon when an electron 
goes from one Landau level to the next. The semi-classical result suggests 
that most of the oscillator strength is indeed associated with a transition 
from one to the next adjacent Landau level, as is the case in the harmonic 
oscillator problem. 

The full quantum mechanical treatment of magneto-optic is very rich in 
information. The formalism gives rise to complex expressions which are 
sometimes difficult to handle analytically. The full treatment is normally not 
necessary unless one is truly in the limit of long coherence lengths, or small 
broadening, i.e. broadening smaller than the Landau level spacing. This is 
achievable with very high quality semiconductors at low temperatures, but 
almost never in a metal. Fig. 10.12 shows the change in the optical 
absorption edge of InSb caused by a magnetic field. The reader should also 
refer to the discussion presented in Chapter 1 1. 
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PHOTON ENERGY ( E V )  

Fig. 10.12. the band edge absorption of InSb with magnetic field at room temperature. 
[Reprintedjgure with permission from Burstein, E., Picus, G.S., Gebbie, H.A., and Blatt, F., 
Physical Review Vol. 103, p. 827, 1956. Copyright 1956 by the American Physical Society.] 

10.9. Nonlinear optical susceptibility 

We have seen how a medium affects light, and how this can be described by 
the concept of permittivity and complex refractive index. Throughout 
however, we assumed that the light wave constituted only a weak 
perturbation on the electronic and lattice coordinates. It was therefore 
sufficient to allow the light vector to couple with these modes and consider 
the response of these modes to first order in the light electric field. The 
dipole moment that the light induced was evaluated in linear response only. 
Even though we did allow other external electric and magnetic fields of 
arbitrary magnitude to act on the system, this was not the electric field of the 
photon. One may therefore ask what happens when the photonic field is so 
strong that higher order processes in the optical permittivity or susceptibility 
become important? The first thing we note is that in this case we need to 

.-+ - 
compute the polarization P to higher orders in the electric light field E , so 
we write in the usual tensor notation: 

or equivalently: 
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~ q .  ( 10.129 ) = ~ X f ' ~ i  +  XI$^^^^ + X X % E ~ E ~ E ,  + . a .  

1 1,k Iks 

where x(") are the susceptibility tensors. 
When the field is time dependent, the susceptibilities can be evaluated 

by the same method as used in (Eq. ( 10.49 )) for the first order term, i.e. by 
using time dependent perturbation theory and going to higher orders. When 

the electric field frequency is not monochromatic, i.e. if E(t )  = E , ~ ~ @ A " ,  
@P 

the susceptibilities will depend on two frequencies for the second order 
term, on three frequencies for the third order term, etc.. ., and the sums in 
Eq. ( 10.128 ) will run over frequencies as well. 

The physical significance of the higher order terms will now be 
explained. The first order term contains the one photon absorption or 
emission processes which is what we have discussed until now, having 
specialized the analysis to a polarized electric field and the term 
X ,  (0) = a, (0) only. Similarly, the second order term describes processes 

which allow two photons to be absorbed or emitted simultaneously. It 
includes also the process in which a photon is converted into a lower or 
higher energy one (with phonon absorption or emission). The second order 
term only exists in crystals which have no center of inversion symmetry. 
When they do, then this term vanishes by symmetry. The third order term is 
always there, but the second order term can sometimes be induced by 
applying a strong additional static external field which breaks the symmetry 
of the crystal. The third order term involves 3-photon processes. For 
example, two absorbed and one emitted or vice versa. It is clearly highly 
desirable to be able to do that kind of photon to photon energy conversion 
with high efficiency, and reproducibly many times over. Unfortunately, the 
higher order susceptibilities get progressively weaker with order, and such 
conversions are normally inefficient and require high laser power. The high 
laser power then damages the material with time and this constitutes a 
serious problem. The field of nonlinear optics is therefore very well 
developed. Many materials including organic and inorganic ones have been 
studied, and the reader is referred to the specialized literature on the subject 
[Peyghambarian et al. 19931. 

Let us return to the first order term in the above expansion and now 
allow an external say static field to modify the permittivity. This is a most 
important scenario and gives rise to the so called electro-optic and magneto- 
optic" effect. It allows us to change the complex permittivity of a medium 
by applying an external field. The basic theory for evaluating the electro and 
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magneto-optical effects was developed above. The "ease" with which a 
medium changes its permittivity under the action of such a field is measured 
by the so-called electro-optic coefficients. These can be obtained as the 
coefficients of the expansion of the permittivity with the external applied 
fields. The refractive index of materials such as LiNb03 (one of the best ), 
KH2P04 and even GaAs respond relatively strongly to an applied electric 
field. In the material which we are familiar with, namely GaAs, the applied 
electric field will for example change the band structure and bandgap by 
replacing the Bloch states with Airy functions, and in this way give rise to a 
new refractive index. This refractive index can be calculated by first 
evaluating the field dependent polarization using the above formalism. For 
more details and a more quantitative analysis, the reader is referred to the 
book by Chuang [I 9951. 

10.10. Summary 

In this Chapter we have presented a detailed and reasonably complete 
treatment of the optical permittivity of a solid. We have shown how one can 
relate absorption, refraction, reflection, and transmission of light to the real 
and imaginary parts of the complex refractive index. Then we showed how 
the refractive index has to be computed in different types of solids. We 
started with the free electron contribution, then added the bound electrons, 
and finally included the photon-phonon coupling. Only polar optical phonon 
modes were included, which of course covers only a very small part of the 
field. It was shown how photon-phonon coupling can lead to the formation 
of a new type of particle called the polariton. The polariton is "part photon 
part phonon" and a very beautiful effect. We also mentioned, but did not 
develop, the science of the surface plasmon. We showed how absorption 
could be related to quantum transitions. For this we had to derive the 
important rule called the Fermi golden rule which gives us the rate of 
transfer from one eigenstate to another under the action of a time dependent 
perturbation. We specialized the permittivity calculation to the case of 
semiconductors, and introduced a very elegant way of computing the Bloch 
matrix elements known a the Kane parameter method derived from the Kane 
effective mass method. We introduced the reader to the quantum mechanics 
of nearly free electrons subjected to the effect of strong electric and 
magnetic fields. The corresponding Franz Keldysh and Landau 
wavefunctions and energy levels were derived, and we showed how electric 
and magnetic fields changed the density of states of electrons. The new 
quantum energy spectra affect both transport properties and optics, but these 
are highly specialized themes which need detailed focused treatment. We 
introduced the reader to the fundamental new science, the new concepts and 
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the methodology needed to compute the optical permittivities with some 
simple examples. Magnetic and electric fields can be very effective tools for 
the modulation of optical properties, with strong impact on technology. This 
is specially true in low-dimensional systems, so we defer the discussion on 
some of the applications to the Chapter on low-dimensional solids. One 
problem is that magnetic and electric fields, however weak, can never be 
treated mathematically in perturbation theory using the unperturbed 
Schrodinger equation, when we have an infinite unbounded system. The 

magnetic perturbation involves a term -- x2 which binds electrons in one 

direction, and the electric field a term -- qE,"z which is unbounded as 

z -+ co . The quantum treatment can be technically tedious because it forces 
us to use the exact wavefunctions derived above, however weak the 
perturbation. These exact wavefunctions are, as one can verify, not at all 
simply related to the free electron like waves. In this context it is therefore 
noteworthy that the semi-classical methods, when applicable, can be very 
useful. This was shown here in the magneto-optical example. In finite 
quantum confined systems on the other hand, the wave-functions are 
bounded and normalized in a finite volume. Here one can treat electric and 
magnetic fields using second order perturbation theory and get good results. 
This then also allows one to evaluate the electro-optic coefficients using 
perturbation theory. We shall look at this in more detail in Chapter 1 1. 
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Problems 

Calculate the real and imaginary part of the frequency dependent 
admittance of a wire as a function of frequency, if the area is 1 cm2, the 
length 0.1 cm, the charge density lo2' cm", and the relaxation time 
z =lo-13s and effective mass O.lm0. Write down the results as a 
function of frequency. What are the conductance and the capacitance? 

Calculate the oscillator strength F12 linking the ground state n=l and 
first excited state n=2 of box eigenstates with box size L=lnm, effective 
mass m*=0.023mo. 

Calculate the reflectivity of a metal as a function of frequency using the 
Drude permittivity formula with free carrier concentration n ,=10~~ cm", 
relaxation time z =lo-l2 s and m*=0.045mo. Plot the result and 
compare with Fig. 10.2. 

Explain the difference between direct and indirect bandgap materials. 
Sketch the two situations. If phonons were not allowed to provide the 
necessary momentum in an indirect bandgap excitation, what other 
mechanisms can you think of which could make the absorption process 
happen in another way? 

Calculate the density of states per unit volume of a three-dimensional 
nearly free electron gas with effective mass m* in a magnetic field B, 
perpendicular to the x-y plane including spin. Remember that the 
number of allowed k, states per Landau level is given by L,L,qB / h for 

an area of size L,L, and that there is another (free electron) z-degree of 

freedom in the z-direction. 

What is meant by the permittivity of a solid? How is it calculated? How 
is it related to the refractive index? What does the real and imaginary 
part of the refractive index signify? How would you design a material 
which is a perfect reflector? 

Using the definition of the complex refractive index given by 
Eq. ( 10.9 ), derive the pair of equations given by Eq. ( 10.14 ). Shows 
that this leads to a quadratic equation from which the real and imaginary 
part of the complex refractive index Z and K can be computed. 
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8. What is a phonon-polariton? Write down the explicit algebraic solutions 
which give the two branches of the dispersion relation 02 (k) for the 
photon polariton equation using Eq. ( 10.101 ). Explain how and why 
the group velocity of this new particle changes with wavenumber. 

9. What is an exciton? In GaAs the effective mass of an electron is 
me = 0.067m0 and the effective mass of the hole is m, = 0.0.82m0. 

The relative static permittivity 6,. is 13.1. Using Eq. ( 10.84 ) and 
Eq. ( 10.85 ), calculate the exciton radius and binding energy. At what 
temperatures would you expect the excitons to be detectable by 
experiment? 

10. With the help of Eq. ( 10.124 ), derive the magnetic field dependent 
complex conductivity of an electron gas as given by Eq. ( 10.126 ): ( l l T - i o  
a (B ,o)=-  - . Discuss the behavior of the 

( i w - 1 1 ~ ) ~  +of 
real part as a function of the magnetic field. What happens when the 
magnetic field becomes very large ? Give a physical interpretation. How 
does a magnetic field affect the reflectivity of a free electron gas? 
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11.11. Summary 

11.1. Introduction 

In Chapter 3, we have introduced the basic concepts and formalism of 
quantum mechanics. In Chapter 4, we have determined the energy spectrum, 
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or energy-momentum or E-k relations, for electrons in a crystal which 
governs their interaction with external forces and fields. Moreover, we saw 
that the quantum behavior of particles is best observed in small, typically 
nanometer scale (one billionth of a meter or m) dimension structures, as 
illustrated in the example of a particle in a 1D box. 

In nanometer scale structures in a crystal, the motion of an electron can 
be confined in one or more directions in space. When only one dimension is 
restricted while the other two remain free, we talk about a quantum well); 
when two dimensions are restricted, we talk about a quantum wire; and 
when the motion in all three dimensions is confined, we talk about a 
quantum dot. In solid state engineering, these are commonly called low- 
dimensional quantum structures. 

In the past few decades, progress in semiconductor crystal growth 
technology, such as liquid phase epitaxy (LPE), molecular beam epitaxy 
(MBE), metalorganic chemical vapor deposition (MOCVD), has made it 
possible to control with atomic scale precision the dimensions of 
semiconductor structures and thus to realize such low-dimensional quantum 
structures through the formation of heterojunctions or heterostructures. A 
semiconductor heterojunction is formed when two different semiconducting 
materials are brought into direct contact with each other, while 
heterostructures can be defined as materials that incorporate one or more 
heterojunctions and can describe more complicated device architectures 
such as multiple quantum wells, superlattices and other low-dimensional 
quantum structures. 

First proposed by Shockley in 195 1 in a heterojunction bipolar transistor 
(HBT) [Shockley 195 I], heterojunctions have been used heavily in a variety 
of applications. Many conventional devices take advantage of the special 
properties of heterostructures including semiconductor lasers, light-emitting 
diodes and photodetectors, etc. 

There exist several inherent design advantages to using heterojunctions 
as opposed to standard homojunctions in semiconductor devices. Due to 
pairing small and wide bandgap materials or by tailoring their lineup energy 
position, charge carriers can be confined or redistributed. This offers the 
chance to control, to considerable extent, the physical location of free 
electrons and holes within the device as well as the wavefunction overlap 
between the carrier types. Furthermore, by choosing the semiconducting 
materials and the doping level, important properties of the heterostructure 
device can be designed. This includes the bandgap, the effective mass and 
carrier transport. Finally, depending on the lattice mismatch between the 
heterojunction materials, built-in strain fields can be engineered and used to 
obtain enhanced electrical or optical properties. 

This Chapter will first review the concepts associated with 
semiconductor heterostructures, including energy band offsets, types of 
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alignment, and a few models for heterojunction energy band alignment. 
Then, the properties of low-dimensional quantum structures will be 
discussed in detail. 

11.2. Energy band offsets 

When a heterojunction is formed, the conduction and valence band 
alignment is dependent upon the properties of the constituent materials such 
as their bandgap, the doping and the electron affinity. Heterostructures can 
be classified depending on the band alignment formation between the two 
semiconductor materials. The possible band alignment combinations include 
"type I", "type I1 staggered" and "type I1 broken gap" and are described 
below. 

11.2.1. Type I alignment 
When the valence and conduction band of one material "straddles" the 
bands of the narrow gap material, the heterojunction band alignment is 
termed type I. The heavily investigated AlGaAsIGaAs heterojunction 
exhibits this band lineup with the aluminum containing material having its 
conduction band above and valence band below the corresponding GaAs 
band energies. An example of type I band alignment is shown in 
Fig. I 1 . l(a). The schematic figure shows materials in electrical isolation 
from one another. As we will see later in this Chapter, direct interaction 
between semiconductor materials results in space charge redistribution, 
which leads to band-bending near the junction position. 

Fig. l I .  I .  lleterojunction band line ups for isolated, but adjacent, semiconductors: (a) type I, 
(b) type I1 staggered, and (c) type I1 broken gap alignments. 
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11.2.2. Type N alignments 
Semiconductor heterojunctions may also form where the conduction and 
valence bands in one material are both slightly below the corresponding 
band energies in the adjacent semiconductor. This band alignment is termed 
type I1 staggered , and is shown in Fig. ll.l(b). One example of a 
heterojunction material system that can be generally classified as type I1 
staggered is InAsIAlSb. 

The InAsIGaSb heterojunction is an example of a type I1 broken gap 
alignment. This occurs when the conduction of one material is at a lower 
energy than the valence band of the adjacent semiconductor. An example of 
broken gap band alignment is shown in Fig. 1 l.l(c). 

11.3. Application of model solid theory 

In the previous sections we have introduced different types of band lineups. 
In order to better understand the heterojunction properties, it is important to 
determine the actual band lineups between two different materials. We 
introduce the application of model solid theory for this type of calculation. 
For simplicity, we consider unstrained junctions only. This is true for the 
GaAs/A1xGal-xAs (0<x<0.4) junction system. 

We assume A and B represent two III-V semiconductors that have the 
same lattice constant. The valence band position can be calculated as: 

in which EK,, is the average valence band position which is obtained 
from theory and is referred to as the absolute energy level, Ev is the valence 
band position, and A is the spin-orbit splitting energy. The values for 
different semiconductors are usually tabulated in the literature. 

The valence band offset between semiconductor A and B thus can be 
calculated as: 

The conduction band edge is obtained by adding the bandgap value to 
the valence band position: 
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Therefore the conduction band offset can be calculated as: 

All these quantities are summarized in Fig. 1 1.2. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Vacuum level 
Energy = 0 

Fig. 11.2. Band alignment diagram for calculation of band offset. 

Example 
Q: Determine the band offset of a GaAs/Alo,2Gao,8As 

heterojunction. The material parameters for GaAs and 
AlAs are listed in Table 1 1.1. 

AlAs 1 -7.49 / 0.28 1 3.13 

GaAs 

Table 11.1. Material parameters for GaAs and AlAs. 

A: For GaAs, we have: 

E v , ( I Y  (eV) 

-6.92 

A (ev) 

0.34 

E, (eV) 

1 .52 
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For Alo,zGao.sAs we use the arithmetic average of 20 % 
AlAs and 80 % of GaAs: 

11.4. Anderson model for heterojunctions 

= -6.925eV 

E ~ C 2 G a 0 8 A s  = 0.2 x E,""' + 0.8 x E,D""' = 1.842eV 
Therefore, we obtain the band offset as following, 

When we bring two different semiconductors in contact with each other, due 
to their difference of the Fermi level with respect to the vacuum level, there 
will be net charge transfer from one material to the other. At equilibrium, 
the Fermi level lines up on both sides of the junction. This will change the 
band diagram of the heterojunction from straight lines to partially rounded 
curves. In this section, we use the basic Anderson model to calculate the 
zero bias band diagram for a p-n junction made from a Type I 
heterojunction, with NA representing the p-type doping level of the narrower 
gap material and ND the n-type doping level of the wider gap material. The 
other cases of p-n heterojunctions can be derived in a same manner and will 
not be covered. 

To simplify the calculations and emphasize the methodology that will be 
introduced, we assume that both NA and ND are much larger than the 
intrinsic carrier concentration and that all the dopants are ionized. Before 
contact, the Fenni level on each side is represented as EFA and EF,, . We 

< 

use Vo to represent the potential difference due to the energy difference 
between EFA and EFB , as shown in Fig. 1 1.2(a). According to Fig. 1 1.2(a) 

= EY~ - A1~~2G1ronAs  - Ev - (- 6.807)- (- 6.925) 

= 0.1 l8eV 
m C - - ( E ~ l ~ ~ ~ % , n ~ ~  AIo&onA~$)-  (E? 

+ E ,  + E y )  
= (- 5.287)- (- 5.555) 

= 0.268eV 
k 

we have: 
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For non-degenerate semiconductors, we have: 

where N! and N: are the valence band and conduction band density of 
states for semiconductor A and B respectively. Substituting Eq. ( 11.6 ) into 
Eq. ( 11.5 ) we obtain the expression for Vo: 

After we bring semiconductor A and B together into contact, there will 
be a net electron transfer from B to A (see Fig. 11.3(c)) until the Femi  
levels on both sides reach the same value, as shown in Fig. 11.3(b). 

Fig. 11.3. Illustrations for (a) band diagram for the heterojunction before charge transfer, 
(b) band diagram after charge transfer, (c) depletion approximation, (d) electricfield 

distribution, and (e) electric potential distribution. 

The number of excess negative charges (ionized acceptors) on the p-side 
will be exactly the same as that of the excess positive charges (ionized 



424 Fundamentals of Solid State Engineering 

donors) on the n-side. N, and Nd equal the charge densities on the p and n- 
sides of the junction within the depletion region. Thus we have the charge 
conservation equation: 

Eq. ( 1 1.8 ) NAxp = NDxn 

We assume that the charge density is uniformly distributed on either side 
of the junction over a certain distance. This is called the depletion 
approximation. Under this approximation, we can calculate the electric field 
distribution, and thus the electric potential profile. 

Assume that EA and EB represent the relative permittivity for 
semiconductor A and B. Using Gauss' law, we can obtain the electric field 
within the depletion region as: 

Outside the depletion region, the net charge density is zero, and there is 
no electric field. We take the zero potential to be at the neutral region in the 
semiconductor A. We integrate the electric field from the point of 
calculation towards the potential zero point to obtain the electric potential 
profile: 

Substituting Eq. ( 1 1.9 ) into Eq. ( I I .  10 ) we have: 



Senziconductor Heterostructures and Low-Dimensional Quantum Structures 425 

We recall that the total potential drop is Vo as calculated before, i.e.: 

2 

~ q .  ( 11.12) ~ N A x ~  + qN,1xn2 = v0 
2&A&o ~ E ~ E ~  

Combining Eq. ( 1 1.8 ) and Eq. ( 11.12 ), we obtain the values of x, and 
x,, in terms of Vo: 

Eq. ( 11.13 ) 

We define the junction depletion width as xw=x,+xp. Taking into account 
Eq. ( 11.13 ) we can obtain: 

Eq. ( 11.14) x, = &A&, /q::2A PA&, + NDrs '(ND +NA)  

Substituting Eq. ( 11.13 ) into Eq. ( 1 1.1 1 ), we will obtain the values for 
the electrical potential qx. In order to update the electron energy band 
diagram, we need to take into account that the electron charge is negative 
and the electron energy profile will be inverted. Adding this energy profile 
to the flat band profile as shown in Fig. 11.3(a) we will obtain a calculated 
electron energy profile for the heterojunction under equilibrium as 
illustrated in Fig. 1 1.3(b). 

11.5. Multiple quantum wells and superlattices 

By "sandwiching" a low bandgap material between two layers of wider 
bandgap material, a device designer can fabricate a single quantum well, as 
discussed later in this Chapter. A layer of GaAs between two AlXGal-,As 
barriers acts as a potential well for electrons and holes. By adjusting the well 
width and composition of the barriers, one can engineer specific properties 
into the quantum well structure such as the energy bandgap. 
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In a similar fashion, multiple quantum wells (MQWs) may be formed by 
epitaxy of successive, periodic heterojunctions. Typically within MQWs, the 
carriers within a quantum well do not interact with carriers in a neighboring 
well. In other words, the electron and hole wavefunctions between adjacent 
wells do not overlap. Depending on the band alignment type of the 
heterojunctions involved, electrons and holes can be confined in similar or 
different spatial locations in the multiple quantum well structure. Multiple 
quantum wells are used in devices like quantum well intersubband 
photodetectors (QWIP) for enhanced absorption over a thicker active region. 

Superlattices are structures that also have periodic heterojunctions 
similar to multiple quantum wells. However, the confined charge carriers 
within the individual quantum wells actively interact with carriers in other 
wells. This can be achieved by decreasing the quantum well barrier 
thickness in a multiple quantum well structure. The electron is now 
delocalized and can move from well to well just as in a Kronig Penney 
lattice. Over an extended length span (many superlattice periods), electrons 
in superlattices can therefore exhibit miniband behavior, similar to bulk 
crystals. By controlling the layer structure, the superlattice band structure 
can be engineered. One can enhance desired effects such as optical 
emissionlabsorption, or reduce unwanted effects such as Auger 
recombination: In addition, properties such as tunneling transport canbe 
modified. An example of an epitaxially grown InAsIGaSb superlattice is 
shown in Fig. 1 1.4. 

Fig. 11.4. Transmission electron microscope images of type I1 hAs/GaSb superlattice. The 
dark regions correspond to the InSb interface between lnAs and GaSb layers. 



Semiconductor Heterostructures and Low-Dimensional Quantum Structures 

11.6. Two-dimensional structures: quantum wells 

11.6.1. Erzergy spectrunz 
As briefly mentioned previously, a quantum well is formed when the motion 
of electrons is confined in one direction (e.g. x), while it remains free to 
move in the other two directions O/,z). This situation is most easily achieved 
by sandwiching a thin and flat film semiconductor crystal between two 
crystals of another other semiconductor material in such a way that a 
potential step is produced, as shown in Fig. 11.5. The electrons are confined 
in the region O<x<a. In the following discussion, we chose Uo, the potential 
step, to be finite. 

This energy profile is in fact a potential that an electron experiences 
when moving through the structure. This is in addition to the crystal periodic 
potential of Chapter 4, which will not be brought into the discussion as it is 
already taken into account by considering an effective mass for the electron. 

The potential in the x-direction is analogous to the case of a particle in a 
finite potential well as discussed in sub-section 3.3.3. The height of the 
potential barrier is now the difference between the conduction band energies 
in the different semiconductors, which is called the conduction band offset 
and denoted AE, . The contribution to potential in the y and z directions is 

constant and is chosen to be zero, similar to the case of a free particle, as 
discussed in sub-section 3.3.1. The total potential can therefore be expressed 
as: 

f o r O < x < a  
Eq. ( 11.15 ) ~ ( x ,  y , z ) =  

U ,  > O  f o r x < O a n d x > a  (" 
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Fig. 11.5. Potential energy projle of a quantum well. This profile can be obtained by 
sandwiching a thin andflat senziconductor film of material 2 between two semiconductor 

crystals of another material I .  

and the time independent Schrodinger equation becomes: 

where m* is the electron effective mass. The shape of the potential in 
Eq. ( 11.15 ) implies that the motion in the x-direction and that in the (y,z)- 
plane are independent. It is common practice to use the subscripts "I " and 
"11" to denote the motion and energies for the x-direction and (y,z)-plane 
respectively. For example, < is used to denote the position vector in the x 

direction and 6, the position vector in the (y,z)-plane. The total three- 

dimensional wavefunction can therefore be represented by the product of 
two functions, one dependent on x alone and the other on (y,z) only, 
Yl,,l,i ( x ,  y ,  Z )  = Yii ( 5 ) ~ ~  (<) , and the total energy spectrum consists of 

the sum of two independent contributions: ~ ( 7 )  = Eii (zl1)+ E, (z~) .  Now 

let us consider the wavefunctions and energy spectrum in more detail. 
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(I) In-plane motion 
In the (y,z)-plane, the motion of the electron is similar to that of a free 

particle discussed in sub-section 3.3.1. The wavefunction Yll(cl) can 

therefore be considered to be a plane wave similar to Eq. ( 3.22 ) and can be 
expressed as: 

where A is a normalization constant. The energy spectrum in the (y,z) 
plane is given by: 

Note that these expressions are correct only for small values of the 

momentum such that k << K , where I? is a reciprocal lattice vector. 
1-111 1 - 1  

This restriction arises from the fact that we are not considering a completely 
free particle, but rather an electron in a crystal. For a more precise 
discussion on what happens near a reciprocal lattice vector, the reader may 
be referred to the Kronig-Penney model in Chapter 4. 

(2) Motion perpendicular to well plane 
In the x-direction, the discussion is the same as that of a particle in a 

finite potential well conducted in sub-section 3.3.3 Although no analytical 
solution was derived, the main results can be summarized as follows. 

The set of equations from Eq. ( 3.43 ) to Eq. ( 3.45 ) yields the quantized 
allowed energy levels EL,,, momenta k,,, and decay coefficients a,, for an 

electron in this potential well, indexed by an integer n=0,1, ... and these 
quantities must satisfy Eq. ( 3.37 ): 
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Note that we are now using the effective mass of the electron, m*. The 

A2?T2 
spacing between consecutive energy levels is on the order of - from 

m * a  
Eq. ( 3.3 1 ). For E,,<U,, the wavefunction Y,(<) = Y; (x) consists of an 
oscillatory function inside the well (O-<a) and a decaying exponential 
outside the well. If needed, this wavefunction can be calculated using 
Eq. ( 3.38 ), Eq. ( 3.40 ) and the values of E,,, , k,,, and a,, as illustrated in 

Fig. 11.6 
For an electron in a perfect crystal, the quantization of the energy levels 

and momenta is significant only when the dimensions of the confining 
structure (e.g. a) become on the order of or less than the electron de Broglie 
wavelength (Eq. ( 3.3 )). 

Fig. 11.6. Shapes of the wavefunctions y1(x)  for the allowed energy levels of a quantum 

well. In this example, there are only two allowed confined states. The wavefunctions of these 
have an oscillatory behavior inside the well (O<x<a) but vanish rapidly when outside the 

quantum well. A third allowed state is shown which has an energy above the barrier of the 
well and therefore corresponds to a non-confined state. Its wavefunction has an oscillatory 

behavior in the entire space. 

In a real crystal, however, there are defects which introduce 
perturbations of the potential periodicity. This results in the broadening of 
the initially discrete energy levels, and the magnitude of this broadening can 

A 
be estimated to be - where z is a characteristic time between electron 

z 
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collisions, or electron lifetime, which can be understood as the average 
duration between two consecutive encounters with defects. A detailed 
discussion on electron collisions is beyond the scope of this textbook, and 
the reader is referred to the Further reading section. 

In such a situation, the quantization of the energy levels can be resolved 

h2x2  
only if the energy spacing between consecutive levels (7) is larger 

m*a 
A h2x2  

than the broadening (-). In other words, the inequality - 
A >> - 

z m * a 2  z 
ensures that the quantized behavior can be observed. 

11.6.2. Density of states 
The total energy spectrum for an electron in a quantum well is given by 
considering Eq. ( 11.18) andEq. ( 11.19): 

- 
where the values of k,, are continuous, while kLn is quantized and 

indexed by an integer n. Similar to Eq. ( 4.41 ) in sub-section 4.3.2, the 
density of states for quasi-two-dimensional electrons in quantum well is the 
number of allowed electron energy states (taking into account spin 
degeneracy) per unit energy interval around an energy E and is given by: 

where the factor 2 arises from the spin degeneracy. In this case, because 
one dimension is quantized while the other two remain continuous, the 
summation in Eq. ( 4.44 ) is performed on two coordinates only: 

Eq. ( 11.22 ) 

where S is the cross-section area of the crystal, in the O/,z)-plane. 
Eq. ( 11.21 ) then becomes: 
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Now, we must determine the relation between d[E, (ill)] as a function 

of d G  in order to perform the integration in Eq. ( 11.23 ). For this, we 

follow the same analysis conducted in Eq. ( 4.35) to Eq. ( 4.39 ). 
Eq. ( 1 1.18 ) yields: 

- 
where k,, is the norm or length of the vector k,, . On the other hand, in 

two dimensions, Eq. ( 4.37 ) becomes: 

Eq. ( 11.25) dzll =d(nk,,')=2nkI,dk,, 

Thus: 

and Eq. ( 1 1.23 ) becomes: 

Eq. ( 11.27) 

Sm* " 
Is2&)= xx n o P I X + E .  - ~ k  

The integral will be zero if the argument of the Dirac function, i.e. 
[x + El, - E], never reaches zero when the variable x is varied from 0 to 

+ oo . In other words: 
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Eq. ( 1 1.28 ) 

16[x+ELn - ~ p x = 1  i f [ELn - E ] < o  1. 
This can be best expressed by considering the step function which is 

defined as: 

@(x)=o forx<O 
Eq. ( 11.29) 

@(X)=1 forx>O 

Therefore, we can write: 

m 

Eq. ( 11.30 ) /6[x + ELn - E ~ X  = O[E - El,,] 
0 

and Eq. ( 1 1.27 ) becomes: 

This relation expresses that, in a quantum well, the density of states of 
quasi-two-dimensional electrons is a discontinuous function of energy and is 

Sm * 
incremented by an amount of - each time the energy E crosses an 

xh2 
allowed value of ELn , as shown in Fig. 11.7. At each consecutive value of 

ELn a new two-dimensional energy subband begins. The density of states of 

each new subband is constant so that we obtain the staircase structure shown 
in Fig. 1 1.7. 

The modification of the density of states in a quantum well (2D) from 
that in the bulk case (3D), shown in Fig. 11.7, reflects the change in the 
motion of an electron. The in-plane motion is two-dimensional, which 
makes the density of states independent of energy in a subband. For the 
motion perpendicular to the well plane, we have a new quantum number n, - 
introduced in Eq. ( 11.19 ), which replaces one direction of k of the three- 
dimensional case. The excitation of an electron in this direction results in an 
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increase of the quantum number n and thus a transition to the next subband 
as illustrated by the staircase in Fig. 11.7. 

It can be mathematically demonstrated that the density of states for two- 
dimensional and three-dimensional electrons do coincide at values of 
E= EL,, , as illustrated in Fig. 11.7, although this is beyond the scope of this 

discussion. 
This considerable dependence of the density of states on the 

dimensionality of the structure is a key property of low-dimensional 
structures which opens new possibilities in device applications. 

Fig. 11.7. Density of states in the conduction band in a quantum well (20). The density of 
states is constant for values of energy between two consecutive quantized energy levels. For 

comparison, the density of states of a bulk material (30) is shown in dashed lines. 

Example 
Q: Calculate the number of states between the first and the 

second energy levels in a quantum well of thickness 25 
A and area of 1 mm2. Assume that the energy difference 
between the first two energy levels is 0.3 eV, that the 
electron effective mass in the quantum well is 
m*=0.067mo where mo is the free electron rest mass. 

A: Similar to the three-dimensional case, the number of 

states is equal to: N = k g 2 , , ( ~ ) d ~ ,  where El and E2 
El 

are the first and second energy levels in the quantum 
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well, respectively. Since the expression for g,,(E) is - - 
given by (we assume k,, = 0 ): 

Sm * 
g,,) ( E )  = B[E - E,  1, we obtain: 

I1 

11.6.3. The influence of an efective mass 
In the previous discussion, we have only considered one value for the 
electron mass m* for the sake of simplicity. In reality, two effective masses 
must be considered for the electron in each of the crystals depicted in Fig. 
11.5. The effective mass of the electron traveling across the structure thus 
depends on position, m*(x). Two Schrodinger equations must then be 
considered: 

The other important change concerns the boundary conditions outlined 
in Eq. ( 3.39 ). The continuity of the first derivative of the wavefunction 

ay(xy " Z) is no longer valid, but must be replaced by the continuity of the 
ax 

1 ay(x,y,z)  product - , which takes into account the spatial 
m * (x) ax 



436 Fundanzentals o f  Solid State Engineering 

dependence of the electron effective mass. As a result, the boundary 
conditions in Eq. ( 3.39 ) must be replaced by: 

Eq.(11.33) { and 

1 dY+ 
(a) = - - (a)  

ml dx 

1 1.7. One-dimensional structures: quantum wires 

11.7.1. Density of states 
A quantum wire is formed when the motion of electrons in the conduction 
band is confined in two directions (e.g. x and y), while it remains free to 
move in the remaining direction (2).  This can be physically achieved by 
surrounding a small cross-section, rectangular semiconductor crystal with 
two crystals which have higher bandgap energies. 

One way to mathematically treat this situation is to start from the results 
of a quantum well where the confinement in the x direction has already been 
considered, and to introduce the confinement in one of the remaining 
directions (e.g. y). This is not the only way to model quantum wires, and it 
does not lead to generalized expressions of wavefunctions and energies, but 
it gives an idea of what is happening. The results can be readily transposed 
from those of a quantum well and are as follows. 

The total wavefunction can be considered as the product of three 
components: 

Only the wavefunction in the z-direction can be easily expressed as a 
plane wave: 

Eq. ( 1 1.35 ) ( z )  = ~ e x ~ ( i k , . z )  

where A is a normalization constant. The total energy is the sum of three 
components: 
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E(kZ 9 m) = Ez (kz ) + (Ex )n + (E, )m 

Eq. ( 11.36 ) 

where n and m are integers (1,2,. . .) used to index the quantized energy 
levels, and ( E , ) ~ ,  and quantized wavenumbers, (kx)n and (k,)m, 

which result from the confinement of the electron motion in the x- and y- 

directions, respectively. The values for and (E,)~ can be 

determined, for example, by solving the finite potential well problem in sub- 
section 3.3.3. 

The most important characteristic of a quantum wire is its electron 
density of states in the conduction band which is given by: 

In this one-dimensional case, we can make use of the quasi-continuous 
nature of k, to write the identity: 

which allows us to simplify Eq. ( 11.37 ) into: 

where L is the length of the quantum wire. Moreover, in the one- 
dimensional case, we have: 

h2 
Eq. ( 1 1.40 ) d[EZ (k,)] = ; k,dk, = 7 Z m m 

Therefore, Eq. ( 1 1.39 ) becomes: 
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Eq. (11.41) 
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Using Eq. ( 4.43 ) and the same argument as Eq. ( 1 1.3 1 ), we obtain: 

This expression means that, in a quantum wire, the density of states 
1 

depends on the energy like - 
.JE 

in each of the subband defined by two 

consecutive energy levels (Ex).  + ( E , ) ~  , as shown in Fig. 11.8. 

Fig. 11.8. Density of states in the conduction band for a quantum wire (ID). For comparison, 
the density of states of a quantum well (2D) is shown in dashed lines. 

Eq. ( 11.42 ) also reveals infinite divergences at points where the energy 
E coincides with the bottoms of quasi-one-dimensional subbands at 
( E , ) ~  + (E,)., . These discontinuities take place in an idealized model. In 
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real structures, they are smeared out by the electron collisions mentione d
earlier, in sub-section 11 .6 .1 . The maximum values of g,o in Fig. 11 .8 are
not infinite, but correspond to the value of Eq . ( 11 .42 ) when the

denominator is equal to E - [(Es ),, + (Ey ) n ]

		

, where z is the electron
z

lifetime discussed earlier.

11.7.2. Infinitely deep rectangular wires
The simplest quantum wire geometry would have a rectangular cross-section
surrounded by infinite barriers . This is illustrated schematically in Fig. 11 . 9
and can be considered to be the two-dimensional analogy to the one-
dimensional confinement potential of the standard infinitely deep quantu m
well .

V = o0

Fig. 11 .9 . The infinitely deep rectangular cross-section quantum wire .

Within the quantum wires, the potential is zero, while outside the wire i t
is infinite. Thus the wavefunction outside the quantum wire should be zero .
The form of the potential is V (y, z) = V (y) + V (z) and it is separable .
Hence the Schrodinger equation within the wires for the motion along th e
two directions of confinement (y and z) is :

Eq. (11 .43) -	 h2
a 2	 (Y, z) + a2'Y(y,z)

= Ey,zW(y,z )
2m

	

ay

	

2

	

az
2

The separation of the coordinates in the Schrodinger equation allows the
motion to be decoupled further, and leads to :

0

	

Lz
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Eq. ( 11.44 ) Y (y ,  z) = Y (y)Y (z)  

and then the Schrodinger equation can be written as: 

Eq. ( 11.45 ) 

Here the energy components can also be separated into E,,, = E, + E, . 
The decoupling is completed with the following equations: 

The above equations are exactly the same as the infinite quantum well 
problems (see sub-section 3.3.2). The wavefunction solutions are: 

and 

which give the components of the energy as: 
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Thus, the total energy of the particle due to the confinement is given by 
the sum of the two discrete components: 

The confined states of a quantum wire are described by the two principal 
quantum numbers n, and n, , and this is in contrast to the single number 

required for the one-dimensional case discussed in Chapter 3. 

11.8. Zero-dimensional structures: quantum dots 

11.8.1. Density of states 
An ideal quantum dot, also known as a quantum box, is a structure capable 
of confining electrons in all three dimensions, thus allowing zero dimension 
(OD) in their degrees of freedom. In quantum dots, there is thus no 
possibility for free particle-like motion. The energy spectrum is completely 
discrete, similar to that in an atom, as will be briefly derived below. 

In a quantum dot of rectangular shape, the wavefunction of an electron 
does not involve any plane wave component, in contrast to other low- 
dimensional quantum structures. The total energy is the sum of three 
discrete components: 

Eq. ( 11.53 ) 

where n, rn and 1 are integers (1,2,. . .) used to index the quantized energy 
levels, (Ex),, , (E,)~ , (E;), , and quantized wavenumbers, (k,),, , (k,) rn , 

and (k,), which result from the confinement of the electron motion in the x, 

y, and z-directions, respectively. The values for (E,)~ , (E,)~ , and (E,), , 

can be determined, for example, by solving the finite potential well problem 
in sub-section 3.3.3 in all three directions. 

As for the quantum wire, the most important characteristic of a quantum 
dot is its electron density of states in the conduction band which is given by: 
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Eq. ( 1 1.54 ) 

There is no further simplification of this expression. The density of 
states of zero-dimensional electrons consists of Dirac functions, occurring at 
the discrete energy levels ~ ( n ,  m, 1), as shown in Fig. 11.10. 

Again, the divergences in the density of states shown in Fig. 1 1.10 are 
for ideal electrons in a quantum dot and are smeared out in reality by a finite 
electron lifetime z . 

Since quantum dots have a discrete, atom-like energy spectrum, they can 
be visualized and described as "artificial atoms". This discreteness is 
expected to render the carrier dynamics very different from that in higher- 
dimensional structures where the density of states is continuous over a range 
of values of energy. For example, since all energy states are not allowed, 
changes in the electron configurations are more restricted. 

Fig. 11.10. Density of states in the conduction band for a quantum dot (OD). For comparison, 
the density of states of a bulk crystal (30) is shown. 

11.8.2. Infinite spherical quantum dot 

The similarity between quantum dots and isolated atoms is close when 
considering the case of spherical quantum dots, i.e. when the confining 
potential has a spherical symmetry. For example, nanocrystals in 
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semiconductor-doped glasses and colloidal solutions often have a spherical 
shape. When the passivation of the surface is made in such a way that 
carriers are strongly confined in the nanocrystal, the system is usually 
correctly described by an infinitely deep spherical well, where the confining 
potential is zero inside and infinite outside a spherical quantum dot with the 
radius R. The potential can therefore be expressed as: 

V ( T ) = O  i f r < R  
Eq.(11.55) 

V(T )  = co otherwise 

Due to the spherical symmetry of the potential, the Schrodinger-like 
equation for the envelope function Y ( T )  in spherical coordinates is given 
as: 

Eq. ( 11.56) [ - & [ A ~ ( ~ ~ $ ) - ~ ] + V ( T ) ] Y ( T )  2m r dr = l W ( ? )  

where i2 is the orbital momentum operator which commutes with the 
Hamiltonian. The solution to Eq. ( 11.56 ) is the extension of the one- 
dimensional problem to the three-dimensional one. The eigenstates are 
products of the spherical harmonics Y, and of radial parts given below. 

The energies and wavefunctions of an infinite spherical quantum dot are: 

where A is a constant and jl is a spherical Bessel function, n is the 
positive integer and 1 is the angular momentum quantum number. The 
coefficients a,, are the zeros of the spherical Bessel functions labeled by an 

integer in order of increasing energy. Some values of a,, are given in 

Table 11.2 for the lowest levels defined by n and 1. The levels can be labeled 
with the usual atomic notation, e.g. 1s corresponds to 1=0 and n=l. Their 
degeneracy is however not the same as in real atoms, and there is no 
restriction on the values of 1 for a given n like in free atoms where K n .  This 
is due to the different nature of the potential which in this case encapsulates 
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the particle and its orbit. The degeneracy is only in terms of the allowed "m" 
values which range from + I to - I .  

Table 11.2. Values of an, for the lowest states in a spherical well. 

11.9. Optical properties of low-dimensional structures 

Fig. 1 1.1 1 illustrates the band diagram in a GaAs-AlGaAs quantum well 
with several electron and hole subbands and the notations used in this 
section. 

Fig. 1 1 . 1 1 .  Schematic of band diagram of GaAs-AlGaAs Q W with electron and hole 
subbands. 
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11.9.1. Interband absorption coefficients of quantum wells 
The absorption coefficient for a transition from a valence band state of 
energy El to a conduction band state of energy El has been given earlier in 
Chapter 10 and can be written as: 

where: 

- 
~ q .  ( 11.59 ) p,, = (llexp(-ik, .F)Za . p 

-12) 

and E is refractive index of the medium and V is the volume. f, and 

f ,  are the Fermi occupational probabilities for electrons in the respective - 
states. We assume the incoming photon with the wavevector k,, and the 

polarization vector ZA . In the present situation, an electron in the mth heavy 

hole subband with 2D wavevector 6 absorbs a photon and enters a state 

with wavevector in the nth subband of the conduction band. In terms of 

the 2D vector 5 and the coordinate z normal to the QW layer plane, the 
wavefunctions are then written as: 

11) = lh,m,ih) = U ,  (b,z)exp(ii , ,  5)4,,, ( z ) ,  
Eq. ( 11.60) 

12) = 1 c ,  n, 6) = uC (5, z )  exp(ik-, . ~ ) 4 ~ ~  ( z ) ,  

where Uh and U, are the cell-periodic parts of the Bloch function and the 
4's  are envelope functions. We decompose the photon wavevector as 

4 = (i,,,, k,) and write Eq. ( 11.59 ) as: 

- 
~ q .  ( 11.61 ) p,, = exp(ik,,, .b+ik,z)Z, 

The matrix element can be evaluated by using Eq. ( 11.60 ) for the 
wavefunctions and integrating over p and z. The photon wavevector is 
considered negligible in comparison to the carrier wavevectors. Thus 
electron momentum is conserved for the in-plane motion only. However, 
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since the motion is quantized along z-direction, there is no such selection 
rule for this direction. Using the k-conservation rule and the relation - - -  - 
k, = k, + k,,, = k, , the squared matrix element can be written as: 

with 

In the present case, (lPcV 12),, is the polarization dependent momentum 

matrix element for transitions between conduction and valence subbands in 
a QW. It is different from the momentum matrix element in bulk 

semiconductors. The factor (h lq3cn)denotes the overlap between the 

electron and the hole envelope wavefunctions. For infinite potential barriers 
with parabolic band model, both 4h, and $c, are sinusoidal functions and 

the overlap integral becomes zero unless n is equal to m. Thus in this ideal 
situation the optical selection rule is expressed as C,, = 6,, . However, in 

real situation the finiteness of the barriers AE, and AE, and also the 

change in the effective masses of the barriers cause a deviation from the 
above perfect selection rule. 

We can write for the absorption coefficient: 

Eq. ( 11.64) 

Using the parabolic ~ ( i )  relation, the energies are expressed as: 
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The Fermi occupational probability can be written as: 

- 
where EJ is the quasi-Fermi level. Using k -conservation, the double - 

summation in Eq. ( 11.64 ) is reduced to a single summation over kh . The 

argument of the energy-conserving S -function then becomes: 

where m, is the reduced mass (Eq. ( 10.80 )). The remaining sum in 
Eq. ( 1 1.64 ) becomes: 

Eq. ( 11.68) 

where S is the area of the QW and the factor 2 is from spin degeneracy. 
The integration in Eq. ( 11.68 ) is performed easily due to the presence of 
the 8-function, so that we obtain: 

Eq. ( 11.69) 

where L is the thickness of QW and H(x) is the Heaviside step function. 
Eq. ( 11.69 ) may be compared with the expression for bulk. Remember 

2 
from Chapter 10 that i p , , l  can be expressed and estimated in terms of the 

Kane-matrix elements (Eq. ( 10.74 ) and Appendix A.8). In both cases, the 
absorption coefficients are proportional to the respective joint density of 
states function. The expected variation of absorption coefficients are shown 
in Fig. 11.7. The experimental measurement of absorption coefficient in 
GaAsIAlGaAs quantum wells and thick GaAs layer are compared in 
Fig. 11.12. 
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When considering intersubband absorption, we immediately have the 
selection rule that normal incident light with (x,y) polarization cannot be 
absorbed because the z-confined wavefunctions are orthogonal. In order for 
light to be absorbed in an intersubband transition, it is essential that there 
should also be a z-polarized component giving an qzE, coupling term. 

1.515 1.550 1.600 1.630 1700 

ENERGY (eV) 

Fig. 11.12. Absorption coeficient in GaAdAlGaAs quantum wells and thick GaAs layers 
(upper curve). The peaks correspond to quantum conjned subbands n. [Reprintedjgure with 
permission from Dingle, R., Wiegmann, W., and Henry, C.H., Physical Review Letters Vol. 

33, p. 829, 1974. Copyright 1974 by the American Physical Society.] 

11.9.2. Absorption coeficient of quantum wires 
The calculation of the absorption coefficient may be performed as usual by - 
assuming the k -conservation condition to be valid along the direction of the 
free motion. The absorption coefficient is written as: 
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where BI is a constant, E, denotes the effective gap which is bulk 
bandgap plus the electron and hole subband energies. The summation over 

E may be converted into an integral, and assuming f,  - f ,  = 1 the 

integration may be performed to yield: 

where the coefficient CID is the overlap integral of a quantum wire and 

is the momentum matrix element for transitions between 

conduction and valence subbands in a quantum wire. S is the cross-sectional 
area of the wire. 

Eq. ( 11.7 1 ) leads to the conclusion as noted before, that the absorption 
coefficient is proportional to the joint density of states function. Therefore 
the absorption coefficient should show a singularity at Aw = E, and fall 

with increasing photon energy as shown in Fig. 11.8. 

11.9.3. Absorption coefficient of quantum dots 
The absorption coefficient of a cubic QD system of side length a may be 
written as: 

2nq2 P C "  

Eq. ( 11-72) a ( h w )  = (' 1 2 )  zg(m2)6(ho - E, - rr2 h2m2/2mr a') 
m,2i i~,cwa~ ,,, 

where g (m2)  is the degeneracy of the energy level determined by m2. 

Only Am = 0 transitions are allowed. Eq. ( 11.72 ) indicates that the 
interband absorption in a QD will be a series of discrete lines, representing 
the reduced density of states function of a OD system. The discrete lines will 
occur at photon energies: 

Eq. ( 11.73 ) h w = E ,  +rr2 h2m2/2mr a 2  

In practice the absorption spectra are not discrete lines but are broadened 
because of the size distribution of quantum dots. We consider that the family 
of dots has a fluctuation in side length described by the following Gaussian 
distribution: 
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where no is the average value and D ( ( a  - a 2 )  is the standard 

deviation. 
Using Eq. ( 11.72 ) and Eq. ( 11.74 ) the absorption coefficient for a 

non-uniform quantum dot system can be calculated as: 

The line broadening also occurs due to phonon scattering processes in 
addition to the size distribution of QDs. 

11.10. Examples of low-dimensional structures 

The optical properties of low-dimensional quantum structures, arising from 
their peculiar density of states, are often put to use in semiconductor 
optoelectronic devices, such as semiconductor laser diodes which will be 
described in more detail in Chapter 18. Such low-dimensional structures are 
fabricated in practice using a succession of processes involving epitaxy, 
lithography, and etching, which will all be discussed in Chapters 13 and 16. 
An illustration of the principle of quantum wells, wires, and dots is shown in 
Fig. 11.13. 

Fig. 11.13. Illu.stration of a: (a) 2D structure (quatztutn well), (b) ID  structure (quantum 
wires), and (c) OD structure (quantum dots), showing the various levels ofspatial 

confinetnent. 

Low-dimensional quantum structures have for example been most 
beneficial for semiconductor laser diodes, leading to low threshold current 
(minimum necessary current for lasing), high power, and weak temperature 
dependence devices (see Chapter 18 for a detailed discussion of these 
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concepts). These properties, in conjunction with their small size, have made 
laser diodes attractive for applications involving densely packed laser 
arrays. This applies also to the monolithic integration of lasers with low 
power electronics such as computer optical interconnects, optoelectronic 
signal processing, and optical computing. 

An illustration of the effect of low-dimensional quantum structures on 
the properties of optoelectronic devices is shown in Fig. 11.14 which 
illustrates the theoretical predictions for threshold currents in semiconductor 
lasers based on active regions with different low-dimensional structures. By 
using quantum dots instead of a bulk layer, the threshold current may be 
reduced by more than 20 times. This is due to the abrupt energy dependence 
of the density of states in low-dimensional quantum structures which can 
enhance the light amplification mechanisms and thus allows lasing to occur 
at lower currents. 

Current Density J (Alcmz ) 

Fig. 11.14. Coeficient of light amplification (gain) for different structures. The dashed lines 
show the threshold current density above which laser emission starts. [Reprinted with 

permission from IEEE Journal of Quantum Electronics Vol. 22, Asada, M., Miyamoto, Y., 
and Suematsu, Y., "Gain and the threshold of 3-dimensional quantum-box lasers, " p. 1918. 

Copyright 1986, IEEE.] 
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11.10.1. Quantum wires 
Fig. 11.15 shows an example of a quantum wire, which has been etched in a 
thin film of doped GaAs deposited on an undoped GaAs substrate. Inside the 
rectangular stripe, there is a highly conductive channel where the electrons 
are confined and which forms a quantum wire and whose width is narrower 
than that of the stripe. In GaAs wires, the minimum diameter of the channels 
can be about 80 nm. 

Conducting 100 nm 
channel 

Undoped Quantum 
Ga As wire 

Fig. 11.15. Quantum wire formed by etching away all but a thin strip of doped semiconductor 
on an undoped substrate: (a) schematic diagram; (b) practical example. ["Figure I I. I ", 

from LO W-DIMENSIONAL SEMICONDUCTORS: MATERIALS, PHYSICS, 
TECHNOLOGY, DEVICES by M.J. Kelly; taken ajier Physica Scripta Vol. T45, Beaumont, 

S.P., "Quantum wires and dots: defect related effects, " p. 196. Copyright 1992, Physica 
Scripta. Reprinted with permission of Oxford University Press, Inc. and The Royal Swedish 

Academy of Sciences.] 
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Another example of quantum wire is shown in Fig. 1 1.16. The structure 
was made by using etching a doped thin GaAs film, in such a way that it 
undercuts the crystal from the surface, i.e. GaAs material is removed below 
the remaining stripe. 

f 0.4 prn 

GaAs [Si doped 10"cm3) 

-17.5 pm- GaAs [semi-insulating) 

Depletion edge 

Conducting channel 

Fig. 11.16. Schematic diagram and image of quantum wires of doped GaAs on an insulating 
substrate. ["Figure 11.2': from LOW-DIMENSIONAL SEMICONDUCTORS: MATERIALS, 
PHYSICS, TECHNOLOGY, DEVICES by M.J. Kelly; taken after Journal of Vacuum Science 
and Technology B Vol. 6, Hasko, D.G.. Potfs, A., Cleaver, J.R.A., Smith, C.G., and Ahmed, 
H., "Fabrication of submicrometer freestanding single-crystal gallium arsenide and silicon 
structures for quantum transport studies, " p. 185 I .  Copyright 1988, American Institute of 

Physics. Reprinted with permission of Oxford University Press, Inc. and American Institute of 
Physics.] 
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The resulting structure thus has a triangular cross-section, and a highly 
conductive channel is present inside it which is where the electrons are 
confined and a quantum wire is formed. 

Quantum wires have novel optical absorption spectra which depend on 
the polarization of the light. The optical properties can be computed with the 
methods we discussed in Chapter 10. Again the key quantity and novelty 
will be mainly due to the joint density of states. But more recently, scientists 
have discussed another reason why the quantum wire may be of interest, and 
this is in the context of electron-electron interactions having a stronger 
effect on carrier mobility. The dense many electron quantum wire is also 
called the Luttinger liquid [Bockrath 19991, and exhibits exciting new 
science which has been studied only very recently. When moving along a 
"line", carriers are more likely to be affected by each others' Coulomb 
interaction. A carrier will find it difficult or even impossible in some cases 
to pass another charge or to avoid the other charge, if for some reason this 
charge is blocked on the way. One trapped carrier in the wire can stop the 
entire flow of current, which is an example of the Coulomb blockade. The 
controlled blockage and removal of the blockage is one of the targets of 
present day nanotechnology research. In this way, the presence or absence 
of a single charge in a trap can give rise to a measurable quantity of 
electrical current. The quantum wire is especially interesting if all the 
electron spins are pointing in one direction. This can be done either because 
they have been aligned by a magnetic field, or because they have been 
injected into the wire by a magnet. Quantum wires can therefore be used as 
"spin wires" which transport spin information from one area of a device to 
the other. 

The fabrication of quantum pillars or vertical quantum wires, as shown 
in Fig. 11.17, in doped (multilayer) semiconductors is more complicated. 
The processing steps are shown in Fig. 11.17(c) and (d) which result in the 
structure shown in Fig. 11.17(b). A sub-micrometer diameter metal dot is 
laid down onto the film (step 2 in Fig. 11.17(c)), and the pillar structures are 
formed by an etching process (step 3), through which parts of the material 
are selectively removed. The electrons are thus confined laterally inside the 
pillars (4). This structure is then filled with polyimide, a polymeric material, 
and etched back to expose the top of the metal dot (steps 1 & 2 in 
Fig. 11.17(d)). The whole surface can then be coated with metal (steps 3 & 
4), making contact to the metal dots and thus the vertical quantum wire. The 
fabrication methods can be refined so that any single pillar can be contacted. 
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Fig. I I .  17. A quantum pillar formed from resonant tunneling semiconductor multilayers 
showing (a) a schematic diagram of the pillar, (b) the partially processed structure after the 

first etch, and (c) and (d) the full processing route. 

1 I .  10.2. Quantum dots 
The structure shown in Fig. 11.17 can also be used as a quantum dot if the 
carriers can be confined vertically at the top and bottom of the pillars, in 
addition to being confined laterally by the side walls of the pillars. This can 
be achieved by choosing the two barrier layers (AlGaAs in Fig. 11.17(a)) 
sufficiently thick. 

Another method of realizing semiconductor quantum dots consists of 
making use of a strain induced transformation that occurs naturally in the 
initial stages of growth of lattice mismatched materials. This type of growth 
usually starts atomic layer by atomic layer, and after a certain critical 
thickness is reached, nanometer size islands spontaneously forms. This is 
known as the Stranski-Krastanow growth mode. These islands show good 
size uniformity and large surface densities. In this method, the growth has to 
be interrupted immediately after the island formation, and before the islands 
reach a size for which strain relaxation and defects occur. This spontaneous 
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island formation during growth precludes the interface quality problems 
often associated with low-dimensional quantum structures achieved through 
etching. This breakthrough has created some excitement in the physics 
community by providing the opportunity for experimental verification of the 
effects of three-dimensional quantum confinement in semiconductor 
structures. 

Several reports worldwide show remarkable agreement on the optical 
properties of these structures, finding that the delta function density of states 
expected from OD quantum structures manifested itself in ultra sharp light 
emission peaks. Compound semiconductors that have been used until now 
for quantum dots include InAs and InGaAs on GaAs, InAlAs on AlGaAs, 
InAs on InP, and InP on InGaP and Gap. 

1 I .  10.3. Effect of electric and magnetic fields 
In the confined direction of the quantum well or in nanopillars and quantum 
dots, the electrons subjected to an electric field, cannot wonder away to 
infinity, so the electric field constitutes a relatively small perturbation and 
can be handled by methods of quantum mechanical perturbation theory. The 
same is true for nanopillars and quantum dots in a magnetic field. The 
expansion of energy levels and wavefunctions can be usually stopped in 
second order, giving us a powerful way of estimating field induced changes 
in energies and optical permittivities. In Chapter 10, we showed how 
permittivity can be related to the wavefunctions and energy spectrum 
(Eq. ( 10.53 )). In static fields, we can work with the time independent 
Schrodinger equation and perturbation theory. We write for the new ground 
state, i.e. for the wavefunction and energy of the perturbed system the 
perturbation expansions: 

0, =q +@j +a:' 
Eq. ( 11.76) 

E, = E ;  + E ~ ) + E : )  

The admixtures are as discussed before in section 3.2.1, i.e. linear 
combinations of excited states so that 

and where the time independent Schrodinger equation with perturbation 
V is given by: 
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Eq. ( 11.78 ) ( H ,  + V ) @ ,  = E g o g  

Substituting Eq. ( 11.76 ) in Eq. ( 11.78 ), and comparing the 
coefficients of the same order then gives to zeroth order in the potential: 

Eq. ( 11.79 ) H,@: = E;@: 

First order in the perturbing potential: 

Eq. ( 11.80 ) H,@: + YO: = E;@: + E:@: 

Second order in the perturbing potential: 

In order to obtain the zeroth order solution we substitute the expansion 
Eq. ( 11.77 ) into the first order equation Eq. ( 11 .SO ), multiply the left hand 

on both side by (a:) *, integrate over all space, and use the orthogonality 

condition: 

Eq. ( 11.82) fdr'@*, 0, = 6,, 

to obtain the first order term of the energy expansion of the perturbed 
system (see Eq. ( 1 1.76 )): 

Eq. ( 11.83) E: = fdr ' (@:)*~(r ' )@: 

We carry on the procedure to calculate the first order change in the 
wavefunction by multiplying Eq. ( 11.80 ) this time on both sides with 

(a:) * and integrating while using the orthogonality again and the relation: 

Eq. ( 11.84 ) H,@: = E:@: 

to find the first coefficient of the wavefunction expansion: 
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After multiplying and integrating again with ( m i )  * on the second 

order equation given by Eq. ( 1 1.8 1 ) and after doing some algebra, we find 
the second order energy term: 

Eq. ( 11.86) E$ = 
Vg[ Y ,  

I t g  Eg - El 

The wavefunction is given to first order by: 

where as before the matrix element of the potential is defined by: 

Eq. ( 11.88 ) V, = 10 *,D v(F)@;d? 

Knowing the unperturbed wavefunctions and energy levels, allows us to 
compute the perturbed ones. This also gives a straightforward rule to obtain 
the new permittivities of the perturbed system. We do this by substituting 
the new wavefunctions and energies into Eq. ( 10.53 ). Thus if the 
perturbation is due to an applied field in the z-direction, i.e. in the quantum 
well growth direction, then V = -qzE," , and we can compute the result to a 

good approximation with the box wavefunctions of Chapter 3. In this case, 
by symmetry it follows that Vgg = 0 ,  and we have only the second order 

term which can be related to a sum of terms involving the oscillator strength 
(Chapter 10) and which is proportional to the squared of the applied field. 
The usual representation of the second order energy term is in the form: 

Eq. ( 11.89 ) E:' = x(qE,,) '  1% I 
I Eg - El 

In a confined system, the electric field induced shift of the energy of the 
free subband eigenstates is called the Stark shift and is a lowering of energy 
when we start with box eigenstates. Fig. 11.1 8 shows the absorption spectra 
of a quantum well in an electric field applied perpendicular to the layers, 
and also shows the Stark energy shift of the exciton peak. The action of an 
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electric field on an exciton can however in some cases be more complex 
than just a Stark shift, specially when the exciton is broken up by the field, 
and then the simple method might not suffice. 

PHOTON EhERGY ( t V )  

Fig. 11.18. Electroabsorption spectra of GaAs quantum well waveguide device as a function 
of electric field appliedfield perpendicular to the plane of the layers. (i)=l.6 x 10~~ .cm- ' ;  
( i i ) = l ~ ~ ~ . c m - ' ;  (iii)= 1.4 x 1 O ~ V . C ~ - ' ;  (iv)=l.8 x l ~ ' ~ . c m ~ ' ;  (v)=2.2 x l ~ ~ ~ . c r n - ' .  [Reprinted 
with permission from Applied Physics Letters Vol. 47, Weiner J.S., Miller D.A.B., Chemla 

D. J., Damen T. C., Burrus C.A., Wood T. H., Gossard A. C., Wiegmann W., "Strong 
polarization sensitive electroabsorption in GaAs/AlGaAs quantum well waveguides, " p. 

11 49. Copyright 1985, American Institute of Physics.] 

Fig. 11.19 shows the effect of a magnetic field on the energy levels of a 
large quantum dot in which electrons are confined by a three-dimensional 
parabolic potential, with energy levels at -2 meV interval. 
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Fig. 11.19. The energy levels of a parabolically confined quantum dot with intrinsic energy 
level splitting ho,, = 2meV in a magnetic field. [Davies, J.H., The Physics of Low 

Dimensional Semiconductors: an Introduction, p. 237, Fig. 6.16. O Cambridge University 
Press 1998. Reprinted with the permission of Cambridge University Press.] 

In this example the magnetic energy levels and the intrinsic confinement 
level splittings are comparable at B=l T, so the effect of the B field is 
obviously large. In smaller dots, one needs a correspondingly larger B field 
to see the same relative shifts or a smaller effective mass. When the 
magnetic coupling is treated in perturbation, both the first order and the 
second order terms contribute to the energy. In the notation of Chapter 10, 
and from Eq. ( 10.1 13 ) the perturbation is of the form (m * is the effective 
mass): 

d 1 
Eq. ( 1 1.90 ) V = [ ( q ~ x )  - 2qBx(iA -)I - 

i3y 2m* 

The first order perturbation shift in energy is positive, and the second 
order term is necessarily negative. The B field will in general raise the 
energy of the electron when it is in the ground state. 

Finally Fig. 11.20 shows the drastic effect a magnetic field has on the 
longitudinal and Hall resistance of a high quality high mobility quantum 
well. The magnetic field is applied perpendicular to the plane in which 
conduction takes place. We explained in Chapter 10 how the magnetic field 
produces Landau levels, and how the degeneracy of the levels changed with 
B, and that the Fermi energy in Landau levels moves with B field for a given 
electron concentration. Increasing the magnetic field increases the Landau 
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level splitting and the degeneracy of each band. This then implies that the 
density of states at the Fermi level changes too. The Fermi level can move 
from a region of finite to a region of zero density of states i.e. sit in the gap 
between two adjacent Landau levels. But this then according to Eq. ( 10.39 ) 
drastically changes the longitudinal resistance with B field exactly as shown 
in Fig. 11.20. In contrast to the longitudinal resistance, we see that the Hall 
resistance does not vanish when the Fermi level is in the Landau gaps, but 
forms plateaus until the Fermi level again crosses into the middle of the next 
Landau band, at which point the resistance suddenly goes up again with B 
field. This fascinating phenomenon is known as the Quantum Hall effect or 
QHE. The plateau signifies that in this interval of level filling (B  decreasing) 
or emptying (B increasing ), the number of Hall carriers is not changing. We 
see a plateau in the gap and not zero conductance because the Hall voltage is 
not a Fermi level property. When the Fermi level crosses a region of small 
density of states, i.e. from the maxima through the gaps, then it is passing 
through energy levels which are spatially localized, the orbital radii of the 
localized states are smaller than the cyclotron radius, and their energies are 
not sensitive to the B field. The energy levels which are affected by the B 
field are the delocalized ones which sit in a narrow region in the maxima 
and obey 6, = (n + 11 2)Aw,. Remember that in the semi classical 

description, the Hall voltage exists because the Lorentz force creates an 
asymmetric charge redistribution for drifting carriers. 

0 2 4 6 8 
MAGNETIC FIELD [T] 

Fig. 11.20. Shubnikov de-Haas trace (pd and quantum Hall effect (p,) as a function of 
magnetic field normal to the plane at T= 0.045 Kin Gao,471no.53As-InP heterostructures. 

[Reprinted with permission from Applied Physics Letters Vol. 48, Razeghi, M., Duchemin, 
J.P., Portal, J.C., Dmowski, L., Remeni, G., Nicolas, R.J., and Briggs, A, ,  "First observation 

of the Quantum Hall effect in a Gao,471no,53As-lnP heterostructure with three electric 
subbands, " p. 713. Copyright 1986, American Institute of Physics.] 
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11.11. Summary 

In this Chapter, we have first reviewed topics associated with semiconductor 
heterostructures. In particular, the concepts of type I and type I1 band 
alignments were outlined. Furthermore, model solid theory and Anderson's 
model for heterojunction energy band alignment and diagram were 
described. 

Subsequently, we showed that the motion of electrons in a crystal can be 
spatially confined in one, two or even three directions, by designing and 
fabricating an adequate semiconductor structure: a quantum well, wire or 
dot. When the amount of confinement is sufficient, quantum mechanical 
effects become important and lead to the discretization of the energy 
spectrum, i.e. the quantization of allowed energy levels becomes an 
important feature of the system. A rough criterion is as always 
A,!?,,,,, - k,T,  i.e. the splitting has to be bigger or comparable to the 

thermal energy. 
The important new characteristic of a low-dimensional quantum 

structure is the new density of states. This quantity shows a different 
dependence on energy, especially for lower (wire and dot) dimensionality 
systems. The magnitude and energy dependence of the density of states 
strongly correlates with many properties of the solid and in particular with 
the optical properties of a semiconductor. This has been shown here and in 
Chapter 10. We have shown how electric and magnetic fields affect 
confined eigenstates and eigenenergies. Ironically it is often easier to 
estimate the effect of external fields in confined systems than in infinite 
ones because energy levels are discrete and wavefunctions normalized in a 
small volume. This means that one can use standard second order 
perturbation theory. Confinement can be exploited in the design of the 
characteristics of optoelectronic devices. Having evaluated changes to 
energies and wavefunctions, it is possible to compute the electro-optic 
coefficients using the methods of Chapter 10 combined with the 
perturbation expansion given here. 
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Problems 

1. In this Chapter, we used the effective mass of the electron in the 
Schrodinger equation. Explain why it was necessary to do so, whereas it 
was not necessary in the infinite and finite potential well in Chapter 3. 

2. Give an expression (an integral) for the total number of electrons in the 
conduction band of a bulk three-dimensional semiconductor, and then in 
the first subband of a quantum well of width L in terms of the density of 
states and the Fermi function (assume box eigenstates in the confined 
direction). If at T=O K we dope the first subband in the conduction band 
and we fill all the states in the first subband, how many electrons do we 
need per unit area? 

3. Consider a 50 A GaAs and 300 A Alo,6Gao.4As layers forming a 
quantum well structure. 

The electrons are all located at the first energy state (e) and holes are at 
(h). The general expression of the first energy state is determined as 

E, = 
A 2 z 2  

, where a is the width of the quantum well and m* is the 
2 m * a 2  

effective mass of the particle considered (for holes, consider the heavy- 
hole effective mass). 
What is the photon energy of the light emitted when the electron and the 
hole recombine as shown in the above figure? 

4. Let us assume a quantum dot which is spherical. The electrons or holes 
are confined at energy states with the following expression: 

2 

En, = [ I  , where m * is the effective mass of the electron or 
2m 
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hole, and the value of a,,, is given by a1Fn,  aIl=4.49, a12=5.76, 
a20=6.28, a2,=7 .72, ar2=9.09. Now consider very small GaAs quantum 
dots of radius 10nm. If the electron drops from the second state (all)  to 
the first state (a,,), what is the photon energy of the light emitted from 
this transition? 
Draw the energy diagram for GaAs quantum dots with radius 5 nm, 10 
nm, and 15 nm. How does the first energy state change as a function of 
radius? 

Density of states of an ideal two-dimensional electron gas. 
Using the infinite barrier approximation, derive an expression for the 
density of states for electrons in a quantum well in terms of the well 
width L and electron effective mass m *. 

Fermi energy of an ideal two-dimensional electron gas. 
Consider a structure consisting of two GaAs quantum wells that have 
been grown far apart in A1,Gal.,As with the same A1 composition x 
(~10.3). In well A the GaAs thickness is L, while in well B it is 2L. 
Now, approximate the conduction bands in wells A and B by ideal 
quantum wells between infinitely high potential barriers. Suppose that 
the quantum wells contain electrons and that both wells have the same 
Fermi energy, E,  = 3E; where E; is the lowest quantized energy 
level in well A. 
(a) How many subbands in each well contain electrons at zero 
temperature? 
(b) What is the two-dimensional charge density NA and NB in each well? 
Give the answer in terms of known physical quantities such as A and L. 

The graphic of the two-dimensional density of states. 
Fig. 11.7 shows the density of states of a quantum well. The 
confinement energy of the lowest level (El) is 17 meV and the first 
excited state (E2) has a confinement energy of 30 meV. The Fermi level 
is located 50 meV above the bottom of the conduction band. Determine 
the number of electrons contained in the well. 

The Moss-Burstein shift in absorption spectra. 
The "band filling" or Moss-Burstein shift effect occurs in all heavily 
doped three-dimensional semiconductors. It is a consequence of the fact 
that electrons are fermions and therefore it is impossible (by the Pauli 
exclusion principle) to optically excite an electron into a same spin k- 
state, which is already occupied. In the case of strongly degenerate n'- 
doped sample this has the effect of prohibiting any interband transition 
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into electron states below the Fenni energy leading to an upward shift in 
the effective absorption edge, El  (see figure below). The Moss- 

Burstein shift ( A E )  is defined as the difference between the effective 
absorption edge and the energy gap (E,) of the material, i.e., 
AE = El,-E,. 

(a) Calculate the Buvstein shift in the absorption edge of a direct 
semiconductor with parabolic bands due to the heavy doping (n-type) at 
very low temperature (T= 0 K). The carrier concentration is n,. Neglect 
excitons. Note that the shift is not simply the Fermi energy of the 
electrons and involves the mass of both conduction and valence bands. 
(b) Calculate the Moss-Burstein shift for the GaAs material doped with 
1 x 1 0 ' ~  electrons/cm3. What should happen to the shape of the 

absorption edge? Assume mi = 0.067m, and mi = 0 . 4 5 ~ ~ ~  where 

rn, is the electron rest mass. 

Allowed optical transitions in direct-gap senziconductors: (a) undoped material, absorption 
threshold of Eg; (6) n+-doped material, absorpfion threshold blue shifted to E',  by the Moss- 

Hurstein shift. 

9. The two dimensional potential which confines the electrons in a 
quantum wire made of GaAs is assumed to be parabolic and the subband 
separation is given as hw, =12 meV. If the Fermi energy is E ~ 3 7  meV 

as measured from the bottom of the lowest subband, calculate the 
number of electron per unit length at 0 K including spin degeneracy. 
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10. Critical radius of a spherical quantum dot withjnite barrier height. 
Assume that a quantum dot has a spherical shape with radius R and is 
surrounded by a medium of higher bandgap such as AlGaAs. The 
potential barrier at the conduction band is AE, at all points in the 

surface of the sphere. The potential well is a square well of height AE, , 
for r>R and is 0 for r<R. Let us consider the simplest case of zero 
angular momentum (1=0), then it follows that the wavefunctions Y(T) 

depends only on the radial part. When 1=0 and Y(T) = R ( r )  = # ( r ) / r  , 
Eq. ( 11 S6 ) reduces to: 

The solution of the above equation is the same as the one with a one- 
dimensional finite potential well. Find the critical radius below which 
there is no bound state of one electron in the quantum dot. 
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12.1. Introduction 

A key component in semiconductor microtechnology is the production and 
quality control of the basic semiconductor materials from which devices and 
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integrated circuits are made. These semiconductor materials are usually 
composed of single crystals of high perfection and high purity. 

Today, silicon technology has reached the stage where complex 
integrated circuits containing millions of transistors can be manufactured 
reproducibly and reliably. This is not only a result of the development of 
device technology, but also the improvement of base material quality. For 
example, the silicon material that is now used for devices has an impurity 
concentration less than one part in ten billion. Unlike silicon, compound 
semiconductors consist of at least two different types of atoms. Compound 
semiconductors are emerging as important materials suitable for 
optoelectronic applications, which involve the optical and electrical 
properties of the semiconductors. Gallium Arsenide is an example of a 
compound semiconductor material. Although its technology is not yet as 
mature as the one of silicon, there is currently much effort being done in 
order to achieve a very high circuit operational speed as a consequence of 
the high electron mobility in this material. 

When improving the technology for a particular semiconductor material, 
a specific range of issues must be resolved before high performance devices 
can be fabricated with a high degree of reproducibility and reliability. Only 
then can large-scale production be contemplated. An important 
consideration in this process, which will decide whether a material or 
technology will be commercially used, is the costs of implementation and 
production. To establish a new material technology or fabrication technique, 
it is essential to demonstrate that a significantly improved performance, 
lower costs and/or new device functionalities will result. 

In this Chapter, we will first review the properties of major 111-V 
compound semiconductors. We will then describe the current techniques 
used in the synthesis of semiconductor crystals. These are divided into two 
categories: single crystal growth techniques and epitaxial growth techniques. 
The former is used to fabricate semiconductor crystals of macroscopic size 
that will be processed into substrates, while the latter is used to deposit thin 
films of a few micrometers (or less) onto one of these substrates. 

12.2.111-V semiconductor alloys 

12.2.1.III- V binary compounds 
111-V binary semiconductors are compounds which involve one element 
from the group I11 and one from the group V columns of the periodic table. 
Table 12.1 lists some of the fundamental physical parameters of common 
binary 111-V compounds. 
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These binary compounds are the simplest 111-V compounds, and 
constitute the basis for more complex ternary or quaternary compounds. 

12.2.2. III- V ternary compounds 
When one additional element from the group I11 or group V is present and is 
distributed randomly in the crystal lattice, 111,-111,-,-V or 111-Vy-VI, ternary 
alloys can be achieved, where x and y are indices with values between 0 and 
1. This allows to modify the alloy bandgap energy and lattice parameter. 

The bandgap energy Eg(x) of a ternary compound varies with the 
composition x as follows: 

where Eg(0) is the bandgap energy of the binary compound 
corresponding to x=O and c is called the bowing parameter. The 
compositional dependence of the bandgap energy of various 111-V ternary 
alloys at 300 K is given in Table 12.2 [Casey and Panish 19781. 

Ternary Direct bandgap energy E, (eV) 

E, ( x )  = 1 A24 + 1.247~ 

E, ( x )  = 0.360 + 2 .012~  + 0.698x2 

E,(x)= 0.726+l.139x+0.368x2 

E,(x)=0.172 +1.621x+0.43x2 

E, (x )= 1.351 + 0 . 6 4 3 ~  + 0.786x2 

E, ( x )  = 0.360 + 1 .O64x 

~,(x)=0.172+0.139x+0.145x~ 

~,(x)=1.424+1.15x+0.176x~ 

E, (x)= 0.726 - 0 .502~  + 1.2x2 

~ , ( x ) = 0 . 3 6 + 0 . 8 9 1 ~  +0.101x2 

~,(x)=0.18-0.41x+0.58x~ 

Table 12.2. Compositional dependence of the bandgap energy in some III-V ternary 
compound semiconductors at 300 K. [Casey and Panish 1978.1 
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The bowing parameter c can be theoretically determined [Van Vechten 
et al. 19701. It is especially helpful to estimate c when experimental data are 
unavailable. 

The lattice constant a of ternary compounds can be calculated using 
Vegard's law. According to Vegard's law the lattice constant of the ternary 
alloy AxBI-,C can be expressed as follows: 

where a,, and a,, are the lattice constants of the binary alloys AC and 
BC. Vegard's law is obeyed quite well in most of the III-V ternary alloys. 

12.2.3. III- V quaternary compounds 
Similarly, quaternary compounds can be obtained when there is a total of 
four different elements from the group I11 or group V columns distributed 
uniformly in the crystal lattice. The interest in these quaternary compounds 
has centered on their use in conjunction with binary and ternary alloys to 
form lattice-matched heterojunction structures with different bandgaps. 
Indeed, by controlling the composition of a quaternary alloy, it is possible to 
change both its bandgap energy and its lattice parameter. For example, the 
reduction of stress in A1,Gal-,As layers grown on GaAs substrates can be 
done by introducing small amounts of P to realize the quaternary 
A1,Gal.,PYAsl.,. The InP/A1,Gal~,P,Asl, heterojunction serves as a 
successful example of a binary-quaternary lattice-matched system. 

Ilegems et al. [I9741 calculated quaternary phase diagrams with the 
solid decomposed into ternary alloys: ABC, ACD, ABD and BCD (where A 
and B are group I11 elements, and C and D are group V elements). Jordan et 
al. [I9741 obtained equivalent formulations considering the solid as a 
mixture of binary alloys: AC, AD, BC and BD. Assuming a linear 
dependence on composition of lattice parameter for the binary AC, and 
similarly for the other lattice parameters, the lattice parameter of the alloy 
AxBI~xCyDI.y is: 

The quaternary III-V alloys which can be used for multilayer 
heterostructures are listed in Table 12.3 along with the binary compounds to 
which they are lattice-matched. 
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The determination of the bandgap energy is more complicated. 
However, if the bowing parameter c is neglected, the bandgap energy may 
be approximated from that of the binaries, assuming a linear dependence: 

Quaternary Lattice-matched binary Wavelength, il (pm) 

AlxGal.xPyAsl, GaAs 0.8-0.9 

A1xGal-xAsySbl.y InP I 

A1xGal~xAsySbl.y InAs 3 

A1xGal.xAsySbl, GaSb 1.7 

GaXInl -,PYAs I, GaAs, InP 1-1.7 

GaxInl-xPySbl.y InP, GaSb, AlSb 2 

In(PxAsl.x)ySbl, AlSb, GaSb, InAs 2-4 

(AlxGalx)yInlyP GaAs, AlXGal-,As 0.57 

(A1xGal-x)yInl,As InP 0.8-1.5 

Table 12.3. Binary to quaternary Ill- V lattice-matched systems of multilayer 
heterostructures. [Casey and Punish 1978.1 

By using advanced epitaxial growth techniques, such as the ones 
discussed in section 12.5, multilayer structures of compounds with different 
bandgap associated wavelengths can be synthesized. 

Fig. 12.1 is an illustration of the phase diagram for the GaInPAs-AlAs- 
Alp system, providing the bandgap energy and lattice parameters of the 
common ternary and quaternary 111-V alloys. Each of the four corners of the 
central square corresponds to a binary 111-V semiconductor. Each side of the 
square represents a 111-111-V ternary alloy such as GaXInl.,P (bottom) and 
GaxInl-,As (top), or a 111-V-V ternary such as GaPI,Asy (left) and InP1.yAsy 
(right). By selecting the composition of the different materials, it is possible 
to change their bandgap and therefore vary the optical properties of the 
semiconductor materials. 

The inner part of the diagram corresponds to the quaternary 
GaxInl~xPI,Asy compound. The curved lines indicate compounds with equal 
bandgap energy and the solid lines represent those with equal lattice 
constants. By continuously varying the concentration of gallium, indium, 
phosphorus and arsenic, one can vary the characteristics of GaxInl-xP1,Asy 
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in the range between those of indium arsenide (InAs), indium phosphide 
(InP), gallium arsenide (GaAs), and gallium phosphide (Gap) as shown in 
Fig. 12.1. Such formation of ternary and quaternary compounds enables the 
development of heterostructures, which have become essential for the 
design of high performance electronic and optoelectronic devices, especially 
in semiconductor lasers. 

Al As 



F
ig

. 
12

.2
. B

an
dg

ap
 e

ne
rg

y 
vs

. l
at

tic
e 

co
ns

ta
nt

 d
ia

gr
am

 o
f c

om
m

on
 se

m
ic

on
du

ct
or

s.
 A

 d
as

he
d 

lin
e 

in
di

ca
te

s 
an

 in
di

re
ct

 b
an

dg
ap

 m
at

er
ia

l. 
*(

T
he

 b
an

dg
ap

 e
ne

rg
y 

of
pu

re
 In

N
 h

as
 b

ee
n 

fo
un

d 
to

 b
e 

0.
7 

eV
 w

hi
ch

 is
 m

uc
h 

sm
al

le
r 

th
an

 th
e p

re
vi

ou
sl

y 
re

po
rt

ed
 v

al
ue

 o
f 

1.
9 

eV
).

 



Compound Semiconductors and Crystal Growth Techniques 477 

For optoelectronic applications, two possible systems are of interest. 
One consists of compounds which are lattice-matched to GaAs substrate, 
and their bandgap energy from 1.42 eV to 1.92 eV. These compounds are 
located on the thick solid line that begins from the upper left hand comer 
and extends to the bottom of the Ga,In,.,P ternary edge. The second system 
consists of compounds lattice-matched to InP substrate, and their bandgap 
energy between 0.75 eV to 1.35 eV. 

The bandgap energy and lattice parameter of common 11-VI, 111-V and 
IV-IV semiconductors can be easily represented in the diagram shown in 
Fig. 12.2. The lines connecting two compounds in the diagram correspond 
to the bandgap energy and lattice constant positions of ternary compounds 
involving the two binary semiconductor endpoints. 

12.3.11-VI compound semiconductors 

Right after the limitations of the elemental group IV semiconductors were 
exposed several decades ago, researchers started to study 111-V and 11-VI 
semiconductors more vigorously. Although not as popular as 111-V 
compounds, 11-VI semiconductors have been the focus of many intensive 
studies in the past few decades. One of the interesting properties of 11-VI 
compounds is their direct energy gaps (with the exception of semi-metals: 
HgTe and HgSe), which is suitable for optoelectronic device applications. 
Perhaps the most celebrated 11-VI optoelectronic devices are HgCdTe based 
infrared photodetectors and focal plane arrays. Albeit facing recent 
challenges from 111-V based structures, these photodetectors are still the best 
choice especially in the near-infrared and mid-infrared range. In addition to 
photodetectors, visible light-emitting devices based on ZnSSeIZnCdSe 
semiconductors have also been demonstrated in the 11-VI material system. 

As mentioned before, the 11-VI family not only involves 
semiconductors, but also a couple of semi-metallic compounds. For 
instance, HgTe is a semi-metal while CdTe is a semiconductor with a 
bandgap energy of 1.6 eV. For the ternary HgCdTe compound, the bandgap 
energy ranges from 0 to 1.6 eV, depending on the Hg (or Cd) molar fraction. 
lists some of the 11-VI compound semiconductors and their respective 
bandgap energies, crystalline structures, and the rate of change of their 
bandgap energy as a function of temperature [Ray 19691. 
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Compound E, (eV) /Structure dEJdT (1 0-4 eV/K) 

ZnO 

ZnS 

CdS 

HgS 

ZnSe 

CdSe 

HgSe 

ZnTe 

CdTe 

HgTe 

-9.5 

-8.5, -4.6 

-5.2 

-9.0 * 

-8.0 (ZB) 

-4.6 

Table 12.4. Bandgap energy, crystal structure (W= Wurtzite, ZB=Zinc blende), and 
temperature coefficient (rate of change of bandgap energy as a function of temperature) for a 

few II- VI compounds. [Ray 19691 [Roberts and Zallen 19711 

12.4. Bulk single crystal growth techniques 

The starting point for virtually all semiconductor devices is in the form of 
flat template, known as the substrate which is made entirely of a single 
material. Its crucial features are that it is one single crystal across its entirety 
with no grain boundaries. The process of creating single crystal wafers is 
simpler if they are made purely from a single element, such as silicon. 
Elemental silicon is obtained by chemical decomposition of compounds 
such as SiC14 and SiH4. Then the initial purification processes are performed 
and the material is melted and cast into ingots. Upon cooling, careful control 
of the boundary between the molten material and solid is required, otherwise 
the material will be polycrystalline. Today, three methods have been 
developed to produce bulk single crystals for the epitaxial growth of most 
semiconductors: the Czochralski, Bridgman, and float-zone methods. A 
fourth technique, the Lely growth method, was also developed in order to 
produce substrates when a melt was not available. All of these methods will 
be discussed in the following sub-sections. 
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12.4.1. Czochralski growth method 
The Czochralski (CZ) crystal growth method uses a quartz (SiOJ crucible 
of high purity in which pieces of polycrystalline material, termed "charge", 
are heated above their melting point (e.g. 1415 "C for silicon). The crucible, 
shown in Fig. 12.3 is heated by either induction using radio-frequency (RF) 
energy or thermal resistance methods. A "seed" crystal, which is about 
0.5 cm in diameter and 10 cm long, with the desired orientation is lowered 
into molten crystal, termed "melt", and then drawn up at a carefully 
controlled rate. 

When the procedure is properly done, the material in the melt will make 
a transition into a solid-phase crystal at the solid-liquid interface, so the 
newly created material accurately replicates the crystal structure of the seed 
crystal (Fig. 12.3). The resulting single crystal is called the boule. Modern 
boules of silicon can reach diameters over 300 mm and lengths up to two 
meters. The Czochralski method is by far the most popular method, 
accounting for between 80 and 90 % of all silicon crystals grown for the 
semiconductor industry. 

seed crystal 

growing crystal 

melt 

Fig. 12.3. Cross-section of a furnace used for the growth of single-crystal semiconductor 
boules by the Czochralski process, in which a tiny single crystal is suspended in a pool of hot 

molten material, and is slowly drawn upward as the crystal growsfrom the melt. The 
resulting b o d e  can have a diameter over 30 cm and a length up to 2 m. 

Since both the molten semiconductor and the solid are at the same 
pressure and have approximately the same composition, crystallization 
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results due a reduction in temperature. As the melt is drawn up, it loses heat 
via radiation and convection to the inert gas. This heat loss results in a 
substantial thermal gradient across the liquid and solid interface. At this 
interface, additional energy must be lost to accommodate the latent heat of 
fusion of the solid. A control volume one-dimensional (in the x-axis) energy 
balance for the interface yields the following relation: 

where kl and ks are the thermal conductivity of the liquid and solid silicon at 
the melting point, respectively, A is the cross-sectional area of the boule, T 
the temperature, L the latent heat of fusion (-340 callg for silicon), and m is 
the mass of the growing solid silicon. Under normal conditions used for CZ 
growth, the heat diffusion from the liquid is small compared to the heat 
diffusion from the solid. This allows the equation above to be simplified and 
yields the following expression for the maximum velocity at which the solid 
can be pulled: 

where M y  is the solid density of the growing crystal. If the crystal is 
pulled with a velocity v>v,,, then the solid cannot conduct enough heat 
away and the material will not solidify in a single crystal. In practice, the 
pull rate of the seed crystal varies during the growth cycle. It is faster when 
growing the relatively narrow neck (5-12 inches per hour) so the generation 
of defects known as dislocations is minimized. Once the neck has been 
formed, the pull rate is reduced to form the shoulder of the crystal, finally 
approaching 2-4 inches per hour during the growth of the crystal body. 

During the entire growth, the crucible rotates in one direction at 12-14 
rotations per minute (rpm) while the seed holder rotates in the opposite 
direction at 6-8 rpm. This constant stirring prevents the formation of local 
hot or cold regions. The crystal diameter is monitored by an optical 
pyrometer which is focused at the interface between the edge of the crystal 
and the melt. An automatic diameter control system maintains the correct 
crystal diameter through a feedback loop control. Argon is often used as the 
ambient gas during this crystal-pulling process. By carefully controlling the 
pull rate, the temperature of the crucible, the rotation speed of both the 
crucible and the rod holding the seed, a precise control of the diameter of the 
crystal is obtained. 
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During the Czochralski growth process, several impurities will 
incorporate into the crystal. Since the crucibles are made of fused silica 
(SiOz) and the growth process takes place at temperatures around 1500 OC, 
small amounts of oxygen will be incorporated into the boule. In order to 
reduce the concentration of oxygen impurities, the boule is usually grown 
under magnetic confinement. In this situation, a large magnetic field is 
directed perpendicularly to the pull direction, generating a Lorentz force. 
This force changes the motion of the ionized impurities in the melt so as to 
keep them away from the liquidlsolid interface and therefore decrease the 
impurity concentration. Using this arrangement, the oxygen impurity 
concentration can be reduced from about 20 parts per million (ppm) to as 
low as 2 ppm. 

It is also common to introduce dopant atoms into the melt in order to 
tailor the electrical properties of the final crystal, i.e. carrier type and 
concentration. Simply weighing the melt and introducing a proportional 
amount of impurity atoms is all that is theoretically required to control the 
carrier concentration. However, impurities tend to segregate at the 
liquidlsolid interface, rather than being uniformly distributed inside the melt. 
This will in turn affect the amount of dopant incorporated into the growing 
solid. This behavior can be quantitatively characterized by a dimensionless 
parameter called the segregation constant k defined by: 

L 
Eq. ( 12.7 ) k = - 

r' 

where C, and C, are the impurity concentrations in the liquid and solid 
sides of the liquidlsolid interface, respectively. Table 12.5 lists the values of 
the segregation constant for some common impurities in silicon. 

Impurity k 

Table 12.5. Segregation constants for a few common impurities in silicon 
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Let us consider for example the case where k>l.  By definition, the 
concentration of impurity in the solid is greater than that in the melt. 
Therefore the impurity concentration in the melt decreases as the boule is 
pulled. The resulting crystal impurity concentration, C,, can be expressed 
mathematically as: 

Eq. ( 12.8 ) C, = ~c , ( I  - x)~-' 

where Co is the original impurity concentration and X is the fraction of 
the melt that has solidified. 

The growth of GaAs with the Czochralski method is far more difficult 
than for silicon because of the vast difference between the vapor pressures 
of the constituents at the growth temperature of -1250 OC: 0.0001 atm for 
gallium and 10000 atm for arsenic. Liquid Encapsulated Czochralski (LEC) 
utilizes a tightly fitting disk and sealant around the melt chamber to prevent 
the out-diffusion of arsenic from the melt. The most commonly used sealant 
is boric oxide (B2O3). Additionally, pyrolytic boron nitride (pBN) crucibles 
are used instead of quartz (silicon oxide) in order to avoid silicon doping of 
the GaAs boule. Once the charge is molten, the seed crystal can be lowered 
through the boric oxide until it contacts the charge at which point it may be 
pulled. 

Since the thermal conductivity of GaAs is about one-third that of silicon, 
the GaAs boule is not able to dissipate the latent heat of fusion as readily as 
silicon. Furthermore, the shear stress required to generate a dislocation in 
GaAs at the melting point is about one-fourth that in silicon. Consequently, 
the poorer thermal and mechanical properties allow GaAs boules to be only 
about 8 inches in diameter and they contain many orders of magnitude 
larger defect densities than realized in silicon. 

12.4.2. Bridgman growth method 
The Bridgman crystal growth method is similar to the CZ method except for 
the fact that the material is completely kept inside the crucible during the 
entire heating and cooling processes, as shown in Fig. 12.4. 

A quartz crucible filled with material is pulled horizontally through a 
furnace tube. As the crucible is drawn slowly from the heated region into a 
colder region, the seed crystal induces single crystal growth. The shape of 
the resulting crystal is determined by that of the crucible. In a variation of 
this procedure, the heater may move instead of the crucible. 

There are a couple of disadvantages associated with the Bridgman 
growth method which result from the fact that the material is constantly in 
contact with the crucible. First, the crucible wall introduces stresses in the 
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solidifying semiconductor. These stresses will result in deviations from the 
perfect crystal structure. Also, at the high temperatures required for bulk 
crystal growth, silicon tends to adhere to the crucible. 

Furnace Tube Crystal Molten semiconductor 

I Seed I 
Pul 

Crucible 

Crystal Molten area Polycrystal 

Pull I 

 eater Coils 

(b) 

Fig. 12.4. Bridgnzan growth method in a crucible (a) so l id~~ca t ion  from one end of the nzelt 
(b) melting and solidification in a nzoving heated zone. 

In the case of compound semiconductors, the process is slightly different 
from that for silicon. The basic process is shown in Fig. 12.5 for gallium 
arsenide. The solid gallium and arsenic components are loaded into a fused 
silica ampoule which is then sealed. The arsenic in the chamber provides the 
overpressure necessary to maintain stoichiometry. A tube furnace is then 
slowly pulled past the charge. The temperature of the furnace is set to melt 
the charge when it is completely inside. As the furnace is pulled past the 
ampoule the molten GaAs charge in the bottom of the ampoule 
recrystallizes. A seed crystal may be mounted so as to contact the melt. 

GaAs seed 

Solid As (Tz620 "C) GaAs melt 
I I I 

Convection barrier ~ u i t i  zone furnace 

Fig. 12.5. Schematic diagrani of the Bricignian growth method for a compound 
semicorlductor such as gallium arsenide. 
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Typical compound semiconductor boules grown by the Bridgman 
method have diameters of 2 inches. The growth of larger crystals requires 
very accurate control of the stoichiometry and the radial and axial 
temperature gradients. Dislocation densities of lower than lo3 ~ m - ~ ,  
compared to lo4 cm-2 for boules grown by CZ, are routinely achieved by 
using the Bridgman method. Roughly 75 % of the compound semiconductor 
boules are grown by the Bridgman growth method. 

12.4.3. Float-zone ciystal growth method 
The float-zone (FZ) crystal growth proceeds directly from a rod of 
polycrystalline material obtained from the purification process. A rod of an 
appropriate diameter is held at the top and placed in the crystal-growing 
chamber. A single crystal seed is clamped in contact at the other end of the 
rod. The rod and the seed are enclosed in a vacuum chamber or inert 
atmosphere, and an induction-heating coil is placed around the rod. The coil 
melts a small length of the rod, starting with part of the single seed crystal. 
A "float-zone" of melt is formed between the seed crystal and the 
polysilicon rod. The molten zone is slowly moved up along the length of the 
rotating rod by moving the coil upward. It should be noted that no crucible 
is used in this method, as shown in Fig. 12.6. For this reason, extremely high 
purity silicon boules, with carrier concentrations lower than 10" ~ m - ~ ,  have 
been grown by the float-zone method. In general, this method is not used for 
compound semiconductor growth. 

The molten region that solidifies first remains in contact with the seed 
crystal and assumes the same crystal structure as the seed. As the molten 
region is moved along the length of the rod, the polycrystalline rod melts 
and then solidifies along its entire length, becoming a single crystal rod of 
silicon in the process. The motion of the heating coil controls the diameter 
of the crystal. Because of the difficulties in preventing the collapse of the 
molten region, this method has been limited to small-diameter crystals (less 
than 76 mm). However, since there is no crucible involved in the FZ 
method, oxygen contamination that might arise from the quartz (Si02) 
crucible is eliminated. Wafers manufactured by this method find their use in 
applications requiring low-oxygen content, high resistivity starting material 
for devices such as power diodes and power transistors. 

One disadvantage of the float-zone crystal growth is the difficulty in 
introducing a uniform concentration of dopants. Currently, four techniques 
are used: core doping, pill doping, gas doping, and finally neutron doping. 
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Fig. 12.6. Cross-section of a furnace used for the growth of single-crystal semiconductor 
boules by thejloat-zone process. 

Core doping uses a doped polysilicon boule as the starting material and 
then undoped material can be deposited on top of the doped boules until the 
desired overall doping concentration is obtained. This process can be 
repeated several times to increase the uniformity or the dopant distribution 
and, neglecting the first few melt lengths, the dopant distribution is very 
good. The final dopant concentration of the rod is given by: 

Eq . (12 .9 )  c(z)=c, - l -  l - k  e 1;) ( 

where C, is the dopant concentration in the core rod, rd is the radius of 
the core rod, rf is the radius of the final boule, 1 is the length of the floating 
zone, k is the effective distribution coefficient for the dopant, and z is the 
distance from the start of the boule. Several common distribution 
coefficients for float-zone growth are shown in Table 12.6. 

Gas doping simply uses the injection of gases, such as AsC13, pH3, or 
BC13, into the polycrystalline rod as it is being deposited or into the molten 
ring during float-zone refining. 

Pill doping is accomplished by inserting a small pill of dopant into a 
hole that is bored at the top of the rod. If the dopant has a relatively low 
segregation coefficient, most of it will diffuse into the rod as the melt passes 
over the rod. Gallium and indium are commonly used as pill dopants. 
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Finally, light n-type doping of silicon can be achieved with neutron 
bombardment. This is possible because approximately 3.1 % of silicon mass 
is the mass 30 isotope. 

Impurity 

Table 12.6. Distribution coeflcients forfloat-zone growth. 

12.4.4. Lely growth method 
Although they account for nearly all bulk semiconductor boules grown 
commercially, the previously described techniques all make use of the 
crystallization process from a melt. This is not possible for a number of 
semiconductor materials, such as silicon carbide (Sic) and the gallium 
nitride family (GaN and AlN), because they do not have a stable liquid 
phase under reasonable thermodynamic conditions. Sic  melts can only exist 
under pressures higher than 105 atmospheres and temperatures higher than 
3200 "C. Furthermore, under these conditions, the stoichiometry and the 
stability of the melt could no longer be ensured. At this time, two techniques 
are being used for the growth of bulk Sic  semiconductor boules: the Lely 
method and the Modified Lely method. GaN and AlN substrates are usually 
grown via a hydride vapor phase epitaxy (HVPE) process. 

The Lely growth method is carried out in a cylindrical crucible, 
schematically depicted in Fig. 12.7. The growth process is basically driven 
by a temperature gradient which is maintained between the outer and the 
inner areas of the crucible, with a lower temperature at the center. At the 
same time, the system is kept under near chemical equilibrium, with lower 
partial pressures of Sic  precursors in the inner colder region. The two areas 
are separated by porous graphite, which also provides nucleation centers. 

The chemical gradient results in a mass transport originating from the 
outer area toward the inner region. Because the inner region is also colder, 
Sic  will nucleate on the graphite and crystals will start to grow under their 
most energetically stable form. Although of the highest quality in terms of 
possessing low defect densities, the size of the resulting crystals are 
somewhat limited and not particularly controllable (typically smaller than 
1 cm2). These crystals are nevertheless used as seed crystals for the 
Modified Lely method. 
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crucible 

Sic source 

SIC crystals 

, , 
Porous graphite 

Fig. 12.7. Schematic cross-section diagram of a cylindrical crucible used for the Lely growth 
of SiC 

The Modified Lely method is the historical name for the Seeded 
Sublimation Growth or Physical Vapor Transport technique. Its principle is 
similar to the Lely method with the exception that a S ic  seed crystal is used 
to obtain a controlled nucleation. This method is currently used for the 
growth of all commercial S ic  single crystal boules. A modem crucible for 
the Modified Lely technique is schematically depicted in Fig. 12.8. The 
cooler seed is placed on the top to avoid falling contaminants. A 
polycrystalline S ic  source is heated up (up to 2600 "C) at the bottom of the 
crucible and sublimes at low pressure. Mass transport occurs spontaneously 
and S i c  recrystallizes naturally through supersaturation at the seed. 

S ic  seed 

crucible 

Fig. 12.8. Schenlatic cross-section diagranl o f a  cylindrical crucible usedf i~r  the Lely growth 
of sic. 

Although the Modified Lely method is more than twenty years old and 
has been able to advance the growth of bulk S i c  semiconductor crystals, 
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there remain major issues in its process. For instance, the polytype 
formation and the growth shape are poorly controlled, the doping is non- 
uniform, and the resulting crystals still have high density of defects, such as 
micropipes and dislocations. 

12.4.5. Crystal wafer fabrication 
After the boule is grown, wafers must be made. Each boule is first 
characterized for its crystal orientation, dislocation density, and resistivity. 
Then the seed and the tail of the boule are removed and the boule is trimmed 
to the proper diameter. Flats are ground along the entire length of the boule 
to denote crystal orientation so that the device array can be aligned with 
respect to the scribe and break directions of the wafer. By convention, the 
largest or primary flat is ground perpendicular to the (110) direction. 
Fig. 12.9 shows some flat orientations for various types of semiconductor 
wafers. After grinding the flats, the boule is dipped into an etchant to 
remove the damage caused by the grinding process. In the last stage, the 
semiconductor boule is sliced into wafers using specialized steel or diamond 
saws. The wafers are then polished to a flat mirror-like surface, chemically 
etched and cleaned to an atomic cleanliness. All these steps are performed in 
a clean room with high purity products in order to avoid any contamination 
of the surface. Finally, each wafer is individually packaged and sealed in a 
plastic bag under an inert atmosphere. It is upon such an "epi-ready" (i.e. 
ready for epitaxy) single crystal that the series of layers needed for a laser or 
other electronic devices will be deposited. 

n-type 

V 
(1 00) Si 

\ option 1 option 2 , 
v 

(100) GaAs 

Fig. 12.9. Standardflat orientations for various types of semiconductor wafers. The longer 
flat is called the primary flat, whereas the shorter one is referred to as the secondary flat. 
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12.5. Epitaxial growth techniques 

An overwhelming majority of semiconductor devices, including transistors 
or diode lasers, require the deposition of a series of thin layers on top of one 
of the polished wafer substrates previously described. This process of 
extending the crystal structure of the underlying substrate material into the 
grown layer is called epitaxy. The term "epitaxy" is a combination of two 
Greek words, "epi" (placed or resting on) and "taxis" (arrangement or 
order), and refers to the formation of a single crystal film on top a crystalline 
substrate. Epitaxy can be further qualified as a function of the nature of the 
film and the substrate: homoepitaxy is employed when the film and the 
substrate are made of the same material, and heteroepitaxy is used when the 
film and the substrate are made of different materials. Homoepitaxy results 
in a film which is totally lattice matched to the substrate, while 
heteroepitaxy generally results in a strained or relaxed film depending on the 
difference of lattice parameters and thermal expansion coefficients between 
the film and the substrate. An example of homoepitaxy is the growth of a 
thick GaAs layer (called a buffer layer) on a GaAs substrate in order to 
improve the quality and purity of the surface prior to the growth of the 
structure of interest. Examples of heteroepitaxy are the deposition of 
Ino.47Gao.ssAs on top of InP substrates (lattice matched growth) and the 
growth of GaN on sapphire substrates (lattice mismatched growth) . 

The discovery of quantum wells and superlattices has revolutionized the 
area of semiconductor technology in terms of new devices. These devices 
require precise control and uniformity of thickness, excellent homogeneity, 
high purity, very sharp interfaces between the substrate and epitaxial layers, 
and low misfit dislocations in the epilayers. In the past few decades, 
epitaxial techniques have advanced to a level where such requirements can 
be met by a variety of growth methods. These growth techniques include 
liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), metalorganic 
chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE), 
which will be reviewed in the following sub-sections. 

12.5.1. Liquid phase epitaxy 
The LPE growth technique uses a system shown in Fig. 12.10 and involves 
the precipitation of material from a supercooled solution onto an underlying 
substrate. The LPE reactor includes a horizontal furnace system and a 
sliding graphite boat. The apparatus is quite simple and excellent quality 
layers with high purity levels can be achieved. 

Liquid phase epitaxy is a thermodynamic equilibrium growth process. 
The composition of the layers that are grown on the substrate depends 
mainly on the equilibrium phase diagram and to a lesser extent on the 
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orientation of the substrate. The three parameters that can effect the growth 
are the melt composition, the growth temperature, and the growth time. 

The advantages of LPE are the simplicity of the equipment used, high 
deposition rates, and the high purity that can be obtained. Background 
elemental impurities are eliminated by using high purity metals and the 
inherent purification process that occurs during the liquid-to-solid phase 
transition. The disadvantages of the LPE includes a poor thickness 
uniformity, high surface roughness, melt back effects, and the high growth 
rates which prevent the growth of multilayer structures with abrupt 
interfaces. Growing films as thin as a few atomic layers is therefore out of 
the question using liquid phase epitaxy, and is usually done using other 
techniques such as molecular beam epitaxy. 

Fig. 12.10. Cross-section of a liquid phase epitaxy system, Inside the horizontal furnace, 
there is a slidinggraphite boat upon which a substrate is held. [Copyright O 1989 From The 

MOCVD Challenge Volume I :  A Survey of GalnAsP-lnP for Photonic and Electronic 
Applications. Reproduced by permission of Routledge/Taylor & Francis Group, LLC.] 

12.5.2. Vapor phase epitaxy 
Like LPE, vapor phase epitaxy is also a thermodynamic equilibrium growth 
process. However, unlike LPE, the VPE growth technique involves reactive 
compounds in their gaseous form. A VPE reactor typically consists of a 
quartz chamber composed of several zones set at different temperatures 
using a multi-element furnace, as illustrated in Fig. 12.1 1. 
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Fig. 12.11. Cross-section schematics of a typical VPE reactor, showing the group III species 
synthesis, group V species pyrolysis, and the growth zones with their respective temperature 

profiles for the growth of a few selected semiconductors. 

The group I11 source materials consist of pure metal elements, such as 
gallium (Ga) and indium (In), contained in a small vessel. In the first zone, 
called the group I11 species synthesis zone, which is maintained at a 
temperature Ts (-750-850 OC for GaAs or InP growth), the metal is in the 
liquid phase and reacts with the incoming flow of hydrogen chloride gas 
(HCI) in the following manner to form group III-chloride vapor compounds 
which can be transported to the growth region: 

The group V source materials are provided in the form of hydride gases, 
for example arsine (AsH3) and phosphine (pH3). In the second zone, also 
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called the group. V species pyrolysis zone, which is maintained at a 
temperature T>Ts, these hydrides are decomposed into their elemental group 
V constituents, yielding reactions like: 

v  1-v  3 
PH, +-P4 +-P2 +-H, 

4 2 2 

where u and v represent the mole fraction of AsH3 or pH3 which is 
decomposed into As4 or P4, respectively. 

Finally, in the growth region, which is maintained at a temperature TG 
(-680-750 "C for GaAs or InP growth), the group 111-chloride and the 
elemental group V compounds react to form the semiconductor crystal, such 
as GaAs or InP, onto a substrate. 

There are two types of chemical reactions taking place in vapor phase 
epitaxy, as illustrated in Fig. 12.12: heterogeneous reactions occur between 
a solid, liquid and/or vapor, while homogeneous reactions only occur in the 
gas phase. 

During the growth of a semiconductor film in steady-state conditions, 
the overall growth process is limited by the heterogeneous reactions. During 
changes in the composition of the growing semiconductor, for example 
when switching the growth from InP to GaInAs, the process is limited by 
the mass transport in the gas phase. 

mass transport in gas phase rr liquid metal source 

heterogeneous homogeneous heterogeneous I reactions J [ reactions J reactions J 
Fig. 12.12. Location of heterogeneous and homogeneous chemical reactions taking place 

during the vapor phase epitaxy growth process. 

VPE growth model. A simple diffusion model can be developed to gain 
an understanding of the heterogeneous reactions occurring at the surface of 
the substrate. Near that surface, there exists a thin stagnant layer, called the 
boundary layer, which has a thickness Sand within which there is no flow 
but rather a diffusion of reactants, as shown in Fig. 12.13. The 
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concentrations of reactants in the bulk gas phase is denoted CG, while that at 
the surface of the substrate is Cs. Two fluxes are considered. 

Fig. 12.13. Schenzatic diagrarn of the boundary layer near the epilayer/substrate surface in 
vapor phase epitaxy. A plot of the concentratior~ ofreactants in the bulk gas phase and at the 

surface as a function ofthe distance to the substrate is shown on the right. 

The first one is the flux of molecules from the bulk gas phase onto the 
sample surface, called FG. This flux is proportional to the difference 
between the concentration of reactants CG and Cs: 

where D is the effective diffusion coefficient of reactants through the 
boundary layer, and 6 i s  the distance over which the diffusion is taking place 
(thickness of the boundary layer). We have also defined a coefficient hG 
which is called the vapor phase mass transfer coefficient. 

The second flux, called Fs, corresponds to the incorporation of reactants 
into the growing crystal. This flux is proportional to the concentration Cs of 
reactants at the epilayer surface and is given by: 

Eq. ( 12.11 ) Fs =ksCs  

where ks is the surface chemical reaction rate constant. Under steady- 
state conditions, these fluxes must be equal, i.e. Fc;=Fs. This translates into 
the relation between Cs and CG: 

Eq. ( 12.12 ) C, = 
h G 

C G  
h, + ks 
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The growth rate can be calculated as: 

where we have denoted C the total number of reactants that can be 
incorporated in a unit volume to form the semiconductor crystal. From this 
simple expression of the growth rate, we can outline two important growth 
regimes. 

If hc>>ks, the growth rate can be approximated by: 

which means that the surface chemical reaction rate is the limiting step 
as the growth rate is determined by the surface chemical reaction rate 
constant ks. 

If hc<<ks, the growth rate can be approximated by: 

which means that the mass transfer is the limiting step as the growth rate 
is determined by the mass transfer coefficient hG. 

The advantages of VPE include a high degree of flexibility in 
introducing dopants into the material as well as the control of the 
composition gradients by accurate control of the gas flows. Localized 
epitaxy can also be achieved using VPE. One of its main disadvantages is 
the difficulty to achieve multi-quantum wells or superlattices (periodic 
heterostructures with a large number of layers having a thickness of the 
order of a few tens of Angstrom). Other disadvantages include the formation 
of hillocks and haze, as well as interfacial decomposition during the preheat 
stage. 

12.5.3. Metalorganic chemical vapor deposition 
Metalorganic chemical vapor deposition (MOCVD) is a deposition method 
for the growth of semiconductor thin films. The MOCVD technology has 
established its ability to produce high quality epitaxial layers and sharp 
interfaces, and to grow multilayer structures with thicknesses as thin as a 
few atomic layers. 



Compound Semiconductors and Crystal Growth Techniques 495 

MOCVD growth systems. The growth of epitaxial layers from 111-V 
semiconductor compounds is conducted by introducing controlled amounts 
of volatile compounds of alkyls of group I11 elements, and either alkyls or 
hydrides of group V elements into a reaction chamber in which a 
semiconductor substrate is placed on a heated graphite susceptor as depicted 
in Fig. 12.14. The heated susceptor has a catalytic effect on the 
decomposition of the gaseous products, such that the semiconductor crystal 
growth takes place in this hot region. 

Fig. 12.14. Schematic diagram of a typical low-pressure MOCVD reactor. [Copyright O 
1989 From The MOCVD Challenge Volume I: A Survey of GaInAsP-InP for Photonic and 
Electronic Applications. Reproduced by permission of Routledge/Taylor & Francis Group, 

LLC.] 

A typical MOCVD system consists of four major parts: the gas handling 
system, the reactor chamber, the heating system, and the exhaust and safety 
apparatus. 

The gas handling system includes the alkyl and hydride sources, the 
valves, pumps and other instruments necessary to control the gas flows and 
mixtures. Hydrogen (Hz), nitrogen (N2), argon (Ar), and helium (He) are the 
most common inert carrier gases used in the MOCVD growth process. In 
order to minimize contamination, the gas handling system has to be clean 
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and leak tight. In addition, the material it is made out of must be resistant to 
the potentially corrosive nature of the sources. 

The purity of the sources is one of the most important issues in modem 
semiconductor technology. Much effort is constantly devoted to purify 
every source material used in order to avoid any kind of contamination. Gas 
purifiers are often used to further purify hydride sources and carrier gases. 

Alkyls sources are metalorganic or organometallic compounds, and they 
are liquids or finely crushed solids usually contained in a stainless steel 
cylinder called bubbler. The partial pressure of the source is regulated by 
precisely controlling the temperature and the total pressure inside the 
bubbler. Electronic mass flow controllers are used to accurately and reliably 
measure and/or control the mass flow rate of hydride and carrier gases 
through the gas handling system. Thus, by sending a controlled flow of 
carrier gas through the bubbler, a controlled mass flow in the form of dilute 
vapors of the metalorganic compounds can be achieved. 

The mixing of volatile compounds in the gas handling system is done in 
a manifold which first stabilizes the flows, then mixes them and directs them 
either to the reaction chamber or into the vent (waste). This manifold is 
designed to uniformly mix metalorganic and hydride source materials prior 
to reaching the growth zone. 

Inside the reaction chamber, the susceptor can be heated using any of the 
following three methods: radio frequency (RF) induction heating, radiative 
(lamp) heating, and resistance heating. The temperature of the substrate is 
measured using a thermocouple (chromel-alumel) and/or a pyrometer. 

The exhaust system may include scrubbing systems, particulate filters 
and bumboxes, and is aimed at physically or chemically treating the 
unreacted gases and byproducts from the reaction chamber which may still 
be toxic, pyrophoric or flammable. 

The safety apparatus associated with semiconductor growth systems 
generally consists of toxic gas monitors used to quantitatively detect the 
presence of toxic gases such as arsine and phosphine, or flammable gases 
such as hydrogen. 

MOCVD source materials. A list of suitable metalorganic source 
materials commonly used in MOCVD, along with their acronyms, some of 
their physical properties and their associated safety precautions are listed in 
Appendix A. 1 1. Examples of suitable hydride precursors for group V, IV 
and VI elements, used either to grow the 111-V host lattices or to dope the 
crystals n- orp-type, are listed in Table 12.7. 

For a thorough discussion of these source materials, the interested reader 
is referred to other books [Razeghi 19891. 
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Name of compound Acronym Purpose 

Ammonia 

Arsine 

Phosphine 

Silane 

Disilane 

Hydrogen selenide 

Hydrogen sulphide 

NH3 V element 

AsH3 V element 

pH3 V element 

SiH4 IV element 

Si2H6 IV element 

H2Se VI element 

H2S VI element 

Table 12.7. Hydride source materials for the MOCVD growth and doping of lll- V 
semiconductors. Group IV and VIprecursors are generally used for the n-type doping of Ill- 

V semiconductors. 

MOCVD growth process. There exist two types of fundamental 
processes occurring during crystal growth: thermodynamic and kinetic. 
Thermodynamics determines the driving force for the overall growth 
process, and kinetics defines the rates at which the various processes occur. 
Hydrodynamics and mass transport, which take into account the gas 
velocities and temperature gradients in the vicinity of the hot susceptor, 
control the rate of transport of material to the growing solid/vapor interface. 
The rates of the chemical reactions occurring during growth, either 
homogeneously in the gas phase, or heterogeneously at the growing 
interface, also play a role. Each of these factors will dominate some aspect 
of the overall growth process. A study of the dependence of a macroscopic 
quantity, such as growth rate, on external parameters, such as substrate 
temperature and input precursor (source) flow rates, gives insight into the 
overall growth mechanism. 

Thermodynamic calculations are useful in obtaining information about 
the solid composition of a multi-component system when vapor phase 
compositions are known. They are also useful in obtaining the phase 
diagram of a multi-component system by calculating the compositions of the 
crystal for different temperatures and pressures. However, the MOCVD 
process is by definition not an equilibrium process. Thermodynamics can 
thus only define certain limits for the MOCVD growth process, and is 
unable to provide any information about the time required to attain 
equilibrium, the actual steps involved in the pursuit of the lowest-energy 
state or the rates of the various processes occurring during the transition 
from the initial input gases to the final semiconductor solid. These problems 
can only be approached in terms of kinetics [Stringfellow 19891. 
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Fig. 12.15. A simplified schentatic illustration of the GaAs growth process involving different 
steps. 

A much-simplified description of the MOCVD growth process for III-V 
compounds, such as the growth of GaAs by TMGa and AsH3, occurring near 
and at the substrate surface is illustrated in Fig. 12.15. In the first step, both 
AsH3 and Ga(CH3)3 are carried by diffusion through the boundary layer to 
reach the substrate. The second step involves the surface reactions. The third 
step is the formation of GaAs and the final step is the removal of the 
reaction products. 

The growth rate is an important parameter that can be determined from 
thermodynamic calculations. But, in the MOCVD growth process, the actual 
growth rate is much lower than that determined from thermodynamics 
because kinetics and hydrodynamic transport also play a role in determining 
the growth rate. This is illustrated in Fig. 12.16 which shows the typical 
growth rate profile as a function of temperature. 

For a given flow of source materials, three regimes can be observed for 
the growth rate. At low temperatures (Fig. 12.16(a)), chemical reactions at 
the solid/vapor interface limit the growth rate as they follow an Arrhenius 

relation of the form exp where EA is an activation energy which 

characterizes the chemical reactions and is of the order of a few eV. For 
intermediate temperatures (Fig. 12.16(b)), the growth rate is nearly constant 
over a wide temperature range. This corresponds to a regime where the 
diffusion or mass transfer across the boundary layer limits the growth rate. 
The growth rate is then directly proportional to the flow or partial pressure 
of incoming source materials and to their diffusion coefficients. In order to 
achieve a good growth rate control and minimize the sensitivity to 
temperature, it is preferred to be in conditions which yield a diffusion 
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limited regime. When the partial pressure of the source materials is 
increased, the temperature window over which the growth rate is constant is 
reduced. At high temperatures (Fig. 12.16(c)), the growth rate becomes 
independent of temperature and flow of source materials. In this regime, the 
rate is limited by the decomposition of the growing crystal. 

(c) crystal decomposition 
limited I (b) diffusion or mass (a) surface 

transfer limited reaction limited 

increasing flow of 
source materials 

Fig. 12.16. Typical growth rate profile as a function of temperature. 

In-situ characterization techniques. Although the MOCVD growth 
technique cannot accommodate as many in-situ characterization techniques 
as molecular beam epitaxy (sub-section 12.5.4), recent advances in the 
design and manufacture of MOCVD growth equipment have led to a few 
viable techniques. Nearly all of them use a laser beam to probe the surface 
of the growing wafer. One of the pioneering works in this area was done in 
the late 1980s and consisted of conducting reflectance difference 
spectroscopy measurements during epitaxial growth [Razeghi 19951. 
Nowadays, by using a laser with a photon energy lower than the bandgap 
energy of the growing semiconductor and measuring the intensity of the 
laser beam reflection, it is possible to qualitatively assess the surface 
condition, as well as determine the instantaneous thickness of the growing 
layer. 

The MOCVD growth technique has proved to be advantageous in 
producing some of the highest quality compound semiconductor materials to 
date, and providing a very high degree of control over the process. MOCVD 
is also one of the major techniques used in industry, since its process can be 
fully automated and is capable of yielding the high industrial throughput 
needed. This has in turn led to the realization of an increasingly large 
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number of high performance devices, both in electronics and 
optoelectronics. However, MOCVD still suffers from the large quantity and 
high toxicity of some of the source materials used, such as arsine and 
phosphine. 

12.5.4. Molecular beam epitaxy 
Molecular Beam Epitaxy (MBE) [Cho 19851 is an advanced technique for 
the growth of thin epitaxial layers of semiconductors, metals, or insulators. 
A photograph of such a system is shown in Fig. 12.17. 

Fig. 12.1 7. Photograph of a molecular beam epitaxy reactor. 

In this technique, the precursor sources are either solids which are 
sublimated or heated above their melting points in effusion cells, or gases 
which are connected through an injector and cracker. The sources are 
evaporated in the form of beams of atoms or molecules at a controlled rate 
onto a crystalline substrate surface held at a suitable temperature under ultra 
high vacuum conditions, as illustrated in Fig. 12.18. The epitaxial layers 
crystallize through a reaction between the beams originating from the 
sources and the heated substrate surface. The thickness, composition and 
doping level of the epilayer can be very precisely controlled via an accurate 
control of the beam fluxes. The substrate is mounted on a block and rotated 
continuously to promote uniform crystal growth on its surface. The beam 
flux of the source materials is a function of their vapor pressure which can 
be precisely controlled by their temperature. 
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shutter 

beams 

Fig. 12.18. Schematic diagram of an MBE growth system showing a few solid effusion cells, 
a gas itqector/cracker, shutters controlling which sources are used at one time, the path of 

the beams, and a substrate mounted on a heated block that can be rotated. 

The thickness, composition and other properties of the epitaxial layers 
and heterostructures are directly controlled by the interruption of the 
unwanted atomic beams with specially designed shutters. An ultra high 
vacuum (UHV) level will ensure the beam nature of the mass flow toward 
the substrate. This means that the atoms will not interact with each other 
before reaching the substrate because they have a mean free path longer than 
the distance between the cells and the substrate. The mean free path A of an 
atom or molecule is expressed as: 

Eq. ( 12.16) A = 
1 

Amd 

in which d is the diameter of the atom or molecule, and n is its 
concentration in the growth chamber given by: 

where kb is the Boltzmann constant, P and T are the pressure and 
absolute temperature in the MBE growth chamber. The usual distance 
between the orifice of the cells and the substrate in MBE reactors is about 
0.2 m which is two orders of magnitude shorter than the mean free path of 
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atoms or molecules (several tens of meters) at the usual operating pressures 
in MBE (1 o - ~  Pa). 

The major difference between MBE and other epitaxial growth 
techniques stem from the fact that the growth is carried out in an ultra high 
vacuum environment. Therefore, the growth is expected to occur far from 
thermodynamic equilibrium and is mainly governed by the kinetics of the 
surface processes. This is in contrast to the other growth techniques, such as 
liquid phase epitaxy, where the growth conditions are near the 
thermodynamic equilibrium and are mostly controlled by diffusion 
processes near the surface of the substrate. The most important processes in 
MBE growth occur at the atomic level in the crystallization zone and can be 
summarized into four fundamental steps illustrated in Fig. 12.19. 
(1) Adsorption of the constituent atoms or molecules impinging on the 
substrate surface. (2) Surface migration and dissociation of the absorbed 
species. (3) Incorporation of the constituent atoms into the crystal lattice of 
the substrate or the epilayer, at a site where sufficiently strong bonding 
exists. That site is usually at the edge of a spreading atomic layer of the 
growing epitaxial crystal. (4) And thermal desorption of the species that 
were not incorporated into the crystal lattice. 

Fig. 12.19. Schematic illustration ofthe surface processes during MBE epitaxial growth, 
including: ( I )  the adsorption of the constituent atoms or molecules impinging on the 

substrate surface, (2) the surface migration and dissociation of the absorbed species, (3) the 
incorporation of the constituent atoms into the crystal lattice ofthe substrate or the epilayer, 

and (4) the thermal desorption of the species not incorporated into the crystal lattice. 

The atoms and molecules impinging on the substrate are bonded to the 
surface by weak van der Waals forces and can thus have a high surface 
mobility when the substrate is adequately heated. However, the growth rate 
cannot be very high (around one micrometer per hour) because the atoms 
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must be allowed sufficient time to reach their proper position at the step 
edge before an entire new layer comes down and buries them. Otherwise, 
we would get a very rough surface with mountain-like and valley-like 
features on it. Worse yet, the crystal could actually end up with defects, such 
as missing atoms at sites in the crystal structure that would result in 
undesirable electrical properties. 

Originally, molecular beam epitaxy was a UHV growth technique 
developed exclusively for solid materials where the cells consisted of a 
resistively heated crucible in which a piece of solid element was loaded. 
However, due to the long down time periods necessary to reload the cells 
and recover the UHV conditions of the system as well as the low growth 
rates of MBE, some attempts were made to substitute some (if not all) of the 
solid sources by gas sources that could be changed externally without 
venting the growth chamber. Nowadays, when all the sources consist of 
conventional effusion cells containing solid charges of material, the 
technique is called solid-source MBE (SSMBE). On the other hand, when 
hydrides are used instead of solid sources (for group elements, for instance), 
the name gas-source MBE (GSMBE) is used. When organometallics 
substitute the solid materials (for group I11 elements, for instance), the term 
metalorganic MBE (MOMBE) is employed. But when all the sources are in 
the gaseous form, the technique is called chemical beam epitaxy (CBE). The 
main differences between this last technique and MOCVD are the UHV 
growth conditions and the much smaller quantity of toxic gas which is used 
during growth, leading to a better acceptance of the technique. 

The UHV conditions present in all the MBE techniques also allow the 
use of in-situ diagnostic techniques in order to monitor the growth and 
substrate surface, such as reflection high-energy electron diffraction 
(RHEED), Auger electron spectroscopy (AES), x-ray photoelectron 
spectroscopy (XPS), low-energy electron diffraction (LEED), secondary-ion 
mass spectroscopy (SIMS), and ellipsometry. 

In a RHEED system, a beam of electrons with energies in the range 
5-50 keV is directed on the substrate at a grazing angle $ (1-2") as shown in 
Fig. 12.20. Part of the electrons is directly reflected by the surface, whereas 
the rest of them are diffracted by the crystalline structure of the epitaxial 
film. A diffraction pattern, called RHEED pattern, is then formed on a 
fluorescent screen located on the opposite side of the growth chamber and 
consists of a bright spot (reflected beam) superposed with intensity- 
modulated streaks. Since $ is very small, the electrons only penetrate into 
the first atomic layers of the crystal and therefore can only probe a two- 
dimensional lattice. Therefore, a streaky diffraction pattern is formed instead 
of the usual spotty pattern which is typical of electron diffraction through a 
three-dimensional lattice. Since the electrons only penetrate into the first 
atomic layers of the sample, the RHEED technique is very sensitive to any 
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surface phenomena and can provide useful information about adsorption and 
desorption of species, roughness, surface reconstruction, substrate miscut 
and lattice parameter, in addition to the general growth parameters such as 
growth rate and alloy composition. There are two types of RHEED 
characterization: static and dynamic. 

In the first type, the miscut of the substrate, the lattice parameter and the 
reconstruction of the surface can be determined from the RHEED diffraction 
pattern when no growth is occurring. Such information is of particular 
interest since these parameters directly influence the quality of the growth 
and also provides useful information about the sample temperature and 
strain of the epilayer. 

Fig. 12.20. Geometry of RHEED technique. A beam of electrons with an energy in the range 
5-50 keV is directed on the substrate surface at an angle 4. The electrons are then partially 
reflected and diffracted by the wafer surface, which leads to the appearance of a bright spot 
and intensity-modulated streaks on a fluorescent screen, as is schematically shown in (a). An 

actual RHEEDpattern is shown in (b). 

Dynamic RHEED is based on the change of the intensity of the specular 
beam as a function of the wafer surface roughness, as illustrated in 
Fig. 12.21. Indeed, during the epitaxial growth process, starting from an 
atomically flat surface (i.e. coverage: &0), the roughness increases as a new 
crystal layer nucleates, thus decreasing the intensity of the reflected beam 
which is scattered by the increasing number of small islands nucleated on 
the surface. Once the coverage reaches 50 % (&0.5), the roughness is 
maximal (the intensity of the reflected beam is minimum) after which it will 
start to decrease as the growing layer is filled, leading to an increase of the 
intensity of the reflected beam. Once the new layer is completed (el), the 
roughness is minimal. The intensity of the specular beam follows this 
periodic behavior during the growth, with the maximal intensity 



Compound Semiconductors and Crystal Growth Techniques 505 

corresponding to the minimal roughness. The time separation between two 
adjacent peaks yields the time required for the growth of a single monolayer 
of the crystal. This is a powerful method which provides an accurate 
thickness calibration technique that is sensitive to within one single atomic 
layer. 

9 = number of monolayers 
depos~ted 

Fig. 12.21. Schematic diagram illustrating the dynamic RHEED process. The sketches 
on the left show the various stages of the surface morphology during epitaxial growth, 
while the right plots show the intensity of the RHEED signal from the specular beam as 
a function of time. [Reprinted from Surface Science Vol. 168, Joyce, B.A., Dobson, P.J., 
Neave, J.H., Woodbridge, K., Zhang, J., Larsen, P.K., and BGlger, B., "RHEED studies 

of heterojunction and quantum well formation during MBE growth-from multiple 
scattering to band offsets, " p .  426, Copyright 1986, with permission from Elsevier.] 
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In spite of its technological advantages over other epitaxial growth 
techniques, MBE suffers from the high cost to maintain the ultra high 
vacuum environment. In addition, there remain technological challenges, 
such as increasing the growth rate which remains rather slow, and 
alleviating the difficulty to grow alloys containing phosphorus, such as InP 
and InGaAsP. 

12.5.5. Other epitaxial growth techniques 
In general, epitaxial growth is referred to a process in which atoms are 
randomly deposited on the surface of a substrate and are then properly 
arranged according to the equilibrium atomic configuration on the surface. 
Defects are formed when there is a departure from this perfect atomic 
arrangement. Thus, lateral migration of atoms on the surface aimed at re- 
arranging the surface properly is important in obtaining high quality 
epilayers, which is the principle of a special growth technique called 
Migration Enhanced Epitaxy (MEE) [Horikoshi 19931. 

In the conventional MBE and MOCVD growth of GaAs for instance, Ga 
and As precursors are introduced onto the substrate surface simultaneously. 
This leads to the formation of small GaAs islands. In this case, there is an 
equilibrium density of Ga atoms on the surface. These Ga atoms are very 
mobile and can migrate on the surface to find more stable sites, before they 
react with re-evaporated As atoms. However, this process requires high 
substrate temperatures to guarantee re-evaporation of As atoms. In the 
absence of As, Ga atoms are even more mobile and they can migrate even at 
reduced substrate temperatures. Therefore, high quality GaAs can be grown 
after the succeeding As4 deposition, even at very low substrate temperatures. 

Atomic layer epitaxy (ALE) is another peculiar growth technique and is 
mostly implemented during the MOCVD process [Razeghi 19891. Its main 
advantage is that it allows for the digital control of the growth rate at a 
monolayer scale. During an ALE process, the precursors are alternatively 
injected onto the substrate in the chamber. As a result, gas phase mixing and 
homogeneous chemical reactions of source materials, commonly found in 
MOCVD, are suppressed as the growth reaction occurs only on the substrate 
surface. Therefore, the film thickness can be controlled with a single atomic 
layer accuracy. Furthermore, the ALE process exhibits self-limitation, that is 
the layer thickness per cycle is independent of subtle variations of growth 
parameters. The growth rate is only dependent on the number of growth 
cycles and the lattice constant of the deposited material. 

Atomic layer epitaxy is a particular case of self-limiting processes that 
take place in the gas phase. There exist other types of self-limiting growth 
processes but using ionic species reactants in solution, in which case the 
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methods are known as Successive Ionic Layer Adsorption and Reaction 
(SILAR) or Electrochemical ALE (ECALE). 

12.5.6. Ex-situ characterization of epitaxial thin films 
Following the epitaxial growth, the semiconductor thin films and structures 
are removed from the growth system and their properties are assessed using 
various ex-situ characterization techniques. This is an important quality 
control step in the development of semiconductor devices, as the quality of 
the semiconductor material will directly determine the performance of the 
devices fabricated from it. 

Several techniques are commonly employed, such as: x-ray diffraction 
(XRD), scanning and transmission electron microscopy (SEM, TEM), 
atomic force microscopy (AFM), scanning tunneling microscopy (STM), 
deep-level transient spectroscopy (DLTS), electrochemical capacitance- 
voltage measurements (CV), resistivity and Hall measurement, Auger 
electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), 
photoluminescence (PL) and photoluminescence excitation (PLE). The use 
of some of them for semiconductor epitaxial thin films has been discussed in 
detail in Chapter 13. 

12.6. Thermodynamics and kinetics of growth 

In section 12.5.3, thermodynamics and kinetics of MOCVD were briefly 
introduced. In this section, these two very important topics will be discussed 
further. Recalling from the MOCVD section, thermodynamics deals with 
equilibrium conditions and tells us whether or not a chemical reaction is 
possible. Kinetics, on the other hand, tells us about the rate at which 
reactions occur. In the following sub-sections, we will touch upon some of 
the essential topics involved in the growth of compound semiconductors. 
These topics include thermodynamics, feasibility of chemical reactions, 
phase diagrams, and kinetics. 

12.6.1. Thermodynamics 
In this sub-section a brief overview of the thermodynamics of materials will 
be given. Thermodynamics tells us whether or not a reaction is possible. It 
can also determine, to some extent, the feasibility of a chemical reaction. In 
order to get such information, the Gibbs free-energy function, G, is often 
used: 
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where H is the enthalpy, S is the entropy, and T is the absolute 
temperature. H can be written in terms of the internal energy (E), the volume 
(V), and the pressure (P) as: 

Now suppose that the initial state of the system (i) changes to a final 
state V) due to a chemical reaction, while the temperature is kept constant. 
The free-energy change can be written as: 

Eq. ( 12.20) AG = Gf -Gi = AH-TAS 

The Second Law of thermodynamics states: "In all energy exchanges, if 
no energy enters or leaves the system, the potential energy of the final state 
will always be less than that of the initial state (AGCO)." This implies that 
systems tend to minimize the free energy to a lower value than the initial 
value. After the system has achieved the equilibrium, AG equals 0. For a 
process that cannot occur, AG>O. Therefore, the possibility of occurrence of 
a particular reaction can be determined via the sign of AG. 

12.6.2. Feasibility of Chemical Reactions 
For a typical chemical reaction involving materials X, Y, and Z in 
equilibrium with x ,  y, and z as the stoichiometric coefficients: 

Eq. ( 12.21 ) xX + yY + zZ 

The free-energy change of the reaction is given by: 

Eq. ( 12.22 ) AG = zG, - xG, - yG, 

The free energy of individual reactants is often written as: 

Eq. ( 12.23 ) Gi = G: + RT lna, 

where G,O is the free energy of the species in their standard state and a, 
is a term called activity which reflects the change in the free energy when 
the material is not in its standard state. The standard state is typically 1 
atmosphere partial pressure for a gas at 25 "C. A pure liquid or solid is the 
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standard state of the relevant substance. Table 12.8 lists the standard values 
of the change of enthalpy and entropy for the formation of various 
substances. Substitution of Eq. ( 12.23 ) into Eq. ( 12.22 ) and letting AG =O 
yields: 

Eq. ( 12.24 ) - AGO = RT In K 

where: 

Species State AI+(kJ.mol-') S (~.mol-'.K-I) 

H20 

H20 

co2 
0 2  

HCl 

HC1 

H 

Cl2 

NaCl 

Table 12.8. Standard values of the change of enthalpy and entropy for the formation of some 
select species at 25 ('C and 100 kPa (s=solid, g=gas, l=liquid, aq=aqueous, i.e. dissolved in 

water). 

Let us see how thermodynamics can help us find out about feasibility of 
a chemical reaction. Table 12.9 includes several CVD reactions with 
different values for the free-energy change term (AG). This table shows that 
oxidation and nitridation of silane are favorable reactions and cannot be 
reversed, since AG is a strongly negative value. Decomposition of silane, 
however, can be reversible as the reaction has a small value of free-energy 
change and, in fact, by adding small amounts of chlorine, the reaction will 
go the other way. Deposition of TiN is not thermodynamically favorable at 
room temperature. However, the reaction can take place at slightly higher 
temperatures (AG is a small positive value). As for the deposition of Ti 
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metal, the value of free-energy change is very high. Therefore, much higher 
temperatures (in excess of 1000 "C) are required for the deposition of Ti. 

Reactants Products AG Classification 
(kJ.mo1-') 

SiH4+202 Si02+2H20 
Highly favorable, highly 

307 irreversible 

2SiH4+4NH3 Si3N4+ 1 2H2 -742 Favorable, irreversible 

Moderately favorable, can be 
-57 reversible 

Not favorable, possible at 
TiC14+2NH, TiN+4HCl+H2 +92 elevated temperatures 

Not favorable, possible only at 
+287 very high temperatures 

Table 12.9. Free-energy change and classijkation of some select reactions. 

12.6.3. Phase Diagrams 
Phase diagrams allow us to predict and interpret the changes of composition 
of a material from phase to phase by visual means, i.e. graphs. As a result, 
phase diagrams have been proven to provide an immense understanding of 
how a material forms microstructures within itself, leading to an 
understanding of its chemical and physical properties. Using phase diagrams 
will allow one to determine which phase or phases are present in a particular 
system at a given temperature and pressure. 

There are a few simple rules associated with phase diagrams with the 
most important of them being the Gibbs Phase Rule. The Gibbs Phase Rule 
describes the possible number of degrees of freedom in a (closed) system at 
equilibrium in terms of the number of separate phases and the number of 
chemical constituents in the system, and can simply be written as: 
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where C is the number of components, P is the number of phases, and f 
is the number of degrees of freedom in the system. The number of degrees 
of freedom V) is the number of independent intensive variables (i.e. those 
that are independent of the quantity of material present) that need to be 
specified in value to fully determine the state of the system. Typical such 
variables might be temperature, pressure, or concentration. This rule states 
that, for a one-component one-phase system, there are two degrees of 
freedom. For example, on a P-T diagram, pressure and temperature can be 
chosen independently. On the other hand, for a two-phase system, there is 
only one degree of freedom and there is only one pressure possible for each 
temperature. Finally, for a three-phase system, there exists only one point 
with fixed pressure and temperature (Fig. 12.22). 

Liquid 
(kl,k2) 

Solid Liquid+Solid 
(kl,k2) (k2,kl) + 

Gas+Solid 

(P=Z,kl) 

(pll,k2) 

Temperature 

Fig. 12.22. P-T diagram of a one-component system showing degrees offreedom for different 
number ofphases. 

12.6.4. Kinetics 
As mentioned earlier, thermodynamics deals with the equilibrium processes. 
It is only concerned with the free energy of the system at its initial and final 
stages. Only certain limits of the growth process can be defined using 
thermodynamics: the driving force, maximum growth rate, and the number 
and compositions of the equilibrium phases. In order to obtain other useful 
information such as the real growth rate, the actual steps in search of the 
lowest energy state, or the rate at which various processes occur during the 
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transition from the initial atomic or molecular species to the final solid form, 
kinetics needs to be considered. 

The rate of chemical reactions is usually treated using the theory of 
absolute reaction rates [Eyring et al. 19411. This theory suggests that, in any 
chemical reaction, the reactants proceed to products through the formation 
of an activated complex. For exothermic reactions, the products will have a 
lower energy than the reactants (Fig. 12.23). The rates of the forward and 
reverse reactions can be described as: 

Eq. ( 12.27 ) Rate = nk 

where n is the concentration of reactants/products and k is the rate 
constant usually expressed in terms of the Arrhenius equation: 

Eq. ( 12.28 ) k = Ae- E ' I R T  

In this equation, A is a pre-exponential factor and E* is the activation 
energy of the process. R is the gas constant. 

I 

Reaction Coordinate 

Fig. 12.23. Schematic diagram of energy vs. reaction coordinate. E,* and E:, are the 

activation energies of the forward and reverse reactions, respectively. 

From Fig. 12.23, we find the thermodynamic enthalpy difference from 
the initial to the final state, AH, to be: 
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Eq. ( 12.29 ) AH = E,* - E*, 

At equilibrium, the rates of the forward and reverse reactions are equal: 

Eq. ( 12.30 ) nik, = nfk-,  

where subscripts "i" and "f" denote the initial and the final state, 
respectively. The ratio of the concentrations in the final and initial states can 
be expressed as: 

n k  - AG; 
Eq. ( 12.3 I ) = = K, = crp[i/) 

ni k-, 

In Eq. ( 12.3 1 ), K, is the equilibrium constant and AGP is the standard 
Gibbs free-energy change for the chemical reaction. The standard free- 
energy change is basically the free energy term (AG) under standard 
conditions, which includes: a pressure of 1 atmosphere, a temperature of 
25 "C (298 K), reactants and products at concentration of 1 mole. 

12.7. Growth modes 

Usually growth modes are classified into three categories: the layer-by-layer 
or Frank-van der Merwe growth mode, the island or Volmer-Weber growth 
mode, and the layer-plus-island or Stranski-Krastanow growth mode. In 
lattice-matched systems, the growth mode is determined by the relation 
between the energies of two surfaces and the interface energy. If the sum of 
the surface energy (yf) of the epitaxial layer and the energy of the interface 
(yi) is lower than the substrate surface energy (y,), i.e. yf + yi < y,, upon 
deposition the top material will wet the substrate, leading to the Frank-van 
der Merwe growth mode (Fig. 12.24(a)). In other words, in a layer-by-layer 
growth mode, the deposited atoms are more strongly attracted to the 
substrate than they are to one another. Most epitaxial techniques take 
advantage of the Frank-van der Merwe growth mode. Changing the value of 
yf + yi may result in a transition from this growth mode to the Volmer- 
Weber growth mode where 3D islands are formed (Fig. 12.24(b)). In this 
growth mode, the deposited atoms are more strongly bound to each other 
than they are to the substrate. A typical example is when a metal is 
deposited on top of a semiconductor. 
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In a lattice-mismatched material system, such as GaAsIInAs 
heterostructures with 7 O/o lattice mismatch, only the first few deposited 
monolayers form strained epitaxial layers with the lateral lattice constant 
equal to that of the substrate. When a critical thickness is exceeded, the 
significant strain occurring in the top layers leads to the spontaneous 
formation of randomly distributed islands which contribute to relax the 
elastic energy stored in the system. The phase transition from the two- 
dimensional epitaxial structure to the random arrangement of three- 
dimensional islands is called the Stranski-Krastanow transition 
(Fig. 12.24(c)). This growth mode is a combination of the other two growth 
modes and is widely used nowadays to obtain self-assembled quantum dots 
in lattice-mismatched systems that provide a three-dimensional confinement 
potential for the carriers. 

substrate 

(a) 

substrate substrate I- 
fig. 12.24. Schematic presentation of the (a) Frank-van der Merwe, (b) Volmer- Weber, and 

(c) Stranski-Krastanow growth modes. 

12.8. Summary 

In this Chapter, we first reviewed the properties of modem major 111-V and 
11-VI compound semiconductors. By uniformly mixing the various group-I11 
and group-V elements in the crystal lattice, the lattice parameter and the 
bandgap energy of the resulting ternary and quaternary alloys can be 
controlled over a wide range. This is a fundamental property when 
designing heterostructure compound semiconductor devices. Bulk crystal 
growth techniques used to synthesize single crystals for today's 
semiconductor industry were then described. These included the 
Czochralski, the Bridgman, the float-zone, and the Lely growth methods. 
We then briefly reviewed the major modern epitaxial growth techniques, 
such as liquid phase epitaxy, vapor phase epitaxy, metalorganic chemical 
vapor deposition, and molecular beam epitaxy. The advantages and 
disadvantages of each one have been discussed. These techniques are 
employed to synthesize semiconductor thin film structures for use in 
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electronic devices. A short overview of thermodynamics and kinetics was 
given in section 12.6. Finally, the various growth modes were discussed, 
covering both lattice-matched and lattice-mismatched systems. 
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Problems 

From the expressions of the bandgap energy of ternary alloys given in 
Table 12.2 and using Vegard's law to calculate their lattice parameters, 
plot the energy bandgap of the following ternary alloys as a function of 
their lattice parameter: 
A1,Gal-,As, A1,Inl -,As, GaxInl -,P, GaxInl -,As, GaxPl -,As, and InxP1-,As. 

Derive the relation given in Eq. ( 12.3 ): 

a, r B 1-r .,Dl- ) ,, = xYa,c + 4 1  - Y ) ~ A D  + (1 - ~ ) Y ~ B C  + (1 - x)(l-  Y ~ B D  

(a) What is the relationship between the A1 mole fraction (x) and the In 
mole fraction (y) of quaternary A1xInyGal.x.yN if it is to be lattice- 
matched to GaN? The lattice parameter of A1xInyGal.x.yN is given as: 

a(AlxInyGal-x-yN) = ( 1  - x - y)a,, + xa, ,  + ya,, . 
The lattice parameters of GaN, AlN, and InN are 3.189, 3.1 12, and 
3.545 A, respectively. 
(b) Using a similar expression as above to calculate the bandgap energy 
of the quaternary A1xInyGal.x~yN in terms of its constituent binary 
compounds, find the chemical formula of the quaternary material of part 
(a) if the wavelength of the emitted light is to be 300 nm. The bandgap 
energies of the binary compounds are given as: E,(GaN)= 3.4 eV, 
E,(AlN)= 6.0 eV, and Eg(InN)= 0.7 eV 

E, (AlxIny Gal-,-, N )  = (1 - x - y)Eg (GaN) + xEg (AIN) + yEg (InN) 

Using the diagram in Fig. 12.1, graphically determine the compositions 
x and y of the quaternary alloy Gax1nl~,PI,Asy which would yield a 
bandgap energy corresponding to the following wavelengths while 
being lattice matched to either InP or GaAs: 808 nm, 980 nm, 1.3 pm, 
1.55 pm. 

Compare the MBE and MOCVD growth techniques, using a table that 
shows some of the advantages and disadvantages of each method. 

Derive Eq. ( 12.8 ): C, = kC,(l- x)~- ' ,  where: 
C, = impurity concentration in the solid, 
Co = original impurity concentration in the melt, 
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k = segregation coefficient, 
X = fraction of the melt that has solidified. 

Plot the dopant concentration profile of a 20" long silicon rod grown by 
the float-zone technique using P as a dopant in a core doping scheme for 
various lengths of the floating zone. Assume the dopant concentration in 
the core to be lo i9  cm" and the radius of the core to be 4 times smaller 
than that of the final rod. Which one results in a more uniform doping 
profile: a long float-zone or a short one? 

Determine the growth rate of a layer grown by MOCVD using the 
following parameters: 
diffusion coefficient (D)= 5 x  1 0-6 cm2.s-I, 
thickness of the boundary layer (d)= 5 mm, 
surface reaction chemical rate constant (k,)= 10'~ cm.s-', 
concentration of reactants in gas phase (CG)= lo1* ~ m - ~ ,  
maximum number of reactants incorporating into the crystal (C) = 1 020 
~ m - ~ .  

The figure represents the RHEED oscillation during homoepitaxy of 
GaAs in a MBE system. 
(a) At what moment did the growth start and stop? 
(b) What is the total thickness of GaAs material deposited? 
(c) Give an estimation of the growth rate, in monolayer per second, and 
in micrometer per hour. 

I I 
0 5 10 15 20 25 

Time (s) 

10. (a) Why does the amplitude of the oscillation slowly decrease with time 
in the figure of last Problem? 
(b) Why does the RHEED intensity increase at the end of the curve? 
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11. In MBE, the deposition of A1,Gal.,As is performed by opening 
simultaneously the Ga, A1 and As shutters. 
(a) Since, in normal growth conditions, the incorporation of A1 and Ga 
atoms is unity, find an expression for the A1 composition as a function 
of the growth rate of GaAs, AlAs, and AlGaAs. 
(b) How would you determine the A1 fraction with the RHEED system? 
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13.5. Summary 

13.1. Introduction 

Semiconductor characterization techniques are used in order to gain 
knowledge on the physical properties of a semiconductor crystal. The 
process is similar to decoding the DNA sequence of a living organism as it 
involves understanding the nanoscale structure of the crystal, i.e. its atoms, 
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electrons, their structures and their interactions with the surrounding 
environment. The knowledge gained from the characterization process is 
essential in determining whether the semiconductor crystal probed is 
suitable for a particular device component with certain functionalities. 

Semiconductor characterization is generally initiated immediately after 
the synthesis of a crystal. We can distinguish three types of characterization 
techniques: structural, optical and electrical. In this Chapter, we will briefly 
review the most common of these semiconductor characterization 
techniques. The discussion and examples will be primarily directed toward 
semiconductor thin films, although most of the same techniques can be 
readily used for bulk crystals as well. 

13.2. Structural characterization techniques 

13.2.1. X-ray diffvaction 
X-ray diffraction employs electromagnetic waves with a wavelength on the 
order of one angstrom. Since wave diffraction occurs when the dimensions 
of the diffracting object are of the same order of magnitude as the 
wavelength of the incident wave, x-rays are ideally suited to probe crystal 
lattice structures. 

X-ray diffraction of semiconductor thin films is generally carried out in 
a diffractometer. The source of the x-rays is called an x-ray tube (Fig. 13.1) 
and consists of a water-cooled copper target onto which an accelerated 
electron beam (up to a few 10's of keV) is impinging inside a vacuum tube. 
Because of the Bremsstrahlung effect, x-rays are emitted with wavelengths 
that are characteristic of the copper element. Bremsstrahlung is the original 
German name for the effect of generation of x-rays via electron deceleration 
through its interaction with the Coulomb field of the nucleus (of copper, in 
this case). Through these inelastic interactions, x-rays are emitted which can 
have energies as high as the beam energy. These x-rays are then filtered and 
collimated into a beam through the use of a monochromator consisting of 
nearly perfect silicon crystals placed at specifically chosen angles to permit 
reflection of the x-rays. 

Diffracted waves from different atoms can interfere with each other and 
the resultant intensity distribution is strongly modulated by this interaction. 
If the atoms are arranged in a periodic fashion, as in crystals, the diffracted 
waves will consist of sharp interference maxima (peaks) with the same 
symmetry as in the distribution of atoms. Measuring the diffraction pattern 
therefore allows us to deduce the distribution of atoms in a material. 
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The peaks in an x-ray diffraction pattern are directly related to the 
atomic distances. For a given set of lattice planes with an inter-plane 
distance d, the condition for a diffraction (peak) to occur can be found using 
Rragg's law: 

Eq. ( 13.1 ) 2d sine = nil 

where 0 is the incident angle, il is the wavelength of the x-ray, and n is 
an integer representing the order of the diffraction peak. This process is 
shown schematically in Fig. 13.2. 

Diffracted rays 
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I t 

Fig. 13.2. Schematic of diffraction ofx-rays by a crystal 
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Fig. 13.3 shows an x-ray diffraction curve of an Alo.2Gao,8N/GaN 
superlattice structure grown on a GaN template layer. X-ray diffraction 
measurements on semiconductors can yield useful information such as: 

Lattice constants: The mismatch between the epilayer and the 
substrate perpendicular to the growth plane can be determined, 
which is also indicative of strain and stress. 
Rocking curve: The width of the x-ray rocking curve, also called 
Full Width at Half Maximum (FWHM) in units of arcsec or arcmin, 
is inversely related to the number of dislocations in the epilayer. 
Therefore this measurement can be used as a measure of the film 
quality. 
Thickness and quality of superlattices: Thickness of the various 
layers in multi-layer structures like superlattices can be determined 
by the distance between the satellite peaks appearing on the sides of 
the main peak. Also the intensity and number of satellite peaks is a 
measure of the film quality. 

Fig. 13.3. X-ray curve of an Alo,2Gao.8N/GaN superlattice grown on GaN/AlN buffer layer. 
The individual Alo,2Gao,8N, GUN, and AlNpeaks as well as the superlattice satellite peaks are 

clearly discernible on the graph. 

13.2.2. Electrorl microscopy 
Scanning electron microscopy 
A scanning electron microscope (SEM) is probably the most widely used 
semiconductor characterization instrument. A schematic of a typical SEM 
system is shown in Fig. 13.4. Electrons are emitted from a tungsten cathode 
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either thermionically or via field emission and are focused by two 
successive condenser lenses into a very narrow beam. Two pairs of coils 
deflect the beam over a rectangular area of the specimen surface. Upon 
impinging on the specimen, the primary electrons transfer their energy 
inelastically to other atomic electrons and to the lattice. Through many 
random scattering processes, some electrons manage to leave the surface to 
be collected by a detector facing the specimen. Usually these are the 
secondary electrons, originated from a depth of no larger than several 
angstroms, that are collected by the detector. A photomultiplier tube (PMT) 
amplifier is used to amplify the signal and the output serves to modulate the 
intensity of a cathode ray tube (CRT). Research quality SEMs are generally 
able to produce images with a resolution of -50 A. 

Luy Electron Gun 

Second 
Condenser 
Lens a:; I 

Deflection 

Double Deflection Coil 111 

Specimen 

Electron 
Detector 

Fig. 13.4. Schematic of a scanning electron microscope. 

SEM not only can provide images of the surface but also by rotating the 
sample, one can obtain information about the thickness of various layers in 
the structure (cross-sectional SEM). Fig. 13.5(a) illustrates a bird's eye view 
image of a surface of a "nanopillar" sample while Fig. 13.5(b) displays the 
cross-section of a multi-layer semiconductor structure. 
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Fig. 13.5. (a) Bird's eye view of the surface of a nanopillar sample and (b) Cross-sectional 
SEM image of a multi-layer semiconductor structure. 

Transmission electron microscopy 
Transn~ission electron microscopy (TEM) is a complex characterization 
technique that takes advantage of electron diffraction to give the user 
valuable information regarding the crystallography of the films and, in the 
image mode, provide high-resolution images of both plain-view and cross- 
sectional view of the films. A variety of useful information, such as defect 
structures, structure of grain boundaries, phase identification, 
crystallographic orientation, quality of the interfaces, etc.. . can be obtained 
using this technique. 

Fig. 13.6 shows the two basic modes of operation of TEM, image mode 
and diffraction mode. Electrons are thermionically emitted from the gun and 
are accelerated to high voltages (in excess of 100 keV). A condenser lens 
section projects the electron beam onto the specimen. Two types of 
scattering can occur when electrons hit the specimen: Elastic scattering 
results in no loss of energy while inelastic scattering involves some energy 
loss. Diffraction patterns can be obtained from elastically scattered electrons 
while inelastically scattered electrons give rise to a spatial variation in the 
intensity of the transmitted beam. Inelastic interactions between the electron 
beam and the specimen at grain boundaries, dislocations, defect sites, 
density variations, etc. are the cause of inelastic scattering. Fig. 13.7 shows a 
high-resolution lattice image of the A1N/Al2O3 interface. Dislocations can be 
identified when any of the atomic planes terminates. 
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Fig. 13.6. Schematic of the TEM in imaging and diffraction modes. [Thomas, G. and 
Goringe, M.J., Transmission Electron Microscopy of Materials. Copyright O 1979 by John 

Wiley and Sons. Reprinted with permission of CBLS.] 

Fig. 13.7. High resolution TEM image of the interface ofAlN and sapphire (A1203). One 
misfit dislocation generates when an atomic plane ends. 
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TEM is capable of producing high magnifications, due to the small 
effective wavelengths that are used. Recalling de Broglie's relation from Eq. 
( 3.3 )): 

As mentioned above, electrons are accelerated to very high energies. If 
we let this potential energy, eV, equal the kinetic energy of the electrons: 

m,vL 
Eq. ( 13.3 ) eV = - 

2 

the momentum of an electron can be written as: 

Therefore, the wavelength of the electrons, from the above three 
equations, can be expressed as: 

For instance, if the acceleration energy of 100 keV is applied, the 
wavelength will be as small as 0.0386 A. It should be noted that at such high 
energies, the velocity of the electrons becomes comparable with the velocity 
of light. Therefore, in order to have a more accurate evaluation of the 
wavelength, relativistic effects have to be considered. The modified 
expression is: 

For example, with an acceleration voltage of 1 MV, the non relativistic 
wavelength is 0.0122 A while the relativistic value is only 0.0087 A 
[Williams and Carter 19961. 
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13.2.3. Energy dispersive analysis using x-rays (EDX) 
In EDX an electron from an outer shell of an atom (e.g. the 2s shell) lowers 
its energy to fill the hole in a lower shell (e.g. the 1s shell) which results in 
the emission of an x-ray. These emitted x-ray are characteristic of the 
particular atom undergoing emission. Therefore, by looking at the x-ray 
spectral lines of an atom one could identify that specific atom. 

Majority of EDX systems are interfaced to SEM, where they use the 
same electron beam source to excite x-rays from the specimen under study. 
A cooled Si(Li) detector (lithium drifted silicon detector) is used to detect x- 
rays. An emitted x-ray from a specimen generates a photoelectron upon 
interception by the detector. This photoelectron in turn generates an 
electron-hole pair. The number of electron-hole pairs, or equivalently the 
amplitude of the generated voltage pulse, is proportional to the incident 
photon energy. After amplifying, sorting, counting, and storing the pulses 
within a range of voltages (energies) the final spectrum will be plotted. 
Fig. 13.8 shows an example of an EDX plot. 

Fig. 13.8. An example of an EDX measurement. Multiple lines of Ge emission correspond to 
the various electron energy transitions. [Transmission Electron Microscopy, 1996, p. 557, 

Williams, D.B. and Carter, C.B., Fig. 32.2. O 1996 Plenum Press, New York. With kind 
permission of Springer Science and Business ~ e d i a . ]  

13.2.4. Auger electron spectroscopy (AES) 
The AES technique takes advantage of the Auger transitions that were 
introduced in Chapter 8. In an Auger process, three electron levels are 
involved: an electron from an outer level lowers its energy to fill a hole. 
Instead of generating a photon, this process can result in the ejection of an 
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electron from a third level. The electron that leaves the atom is called the 
Auger electron. Similar to EDX, the particular atom under test can be 
identified by looking at the Auger spectral lines. 

A typical Auger spectrometer is kept under ultra-high vacuum 
(lo-'' Torr level) to avoid contaminations. A focused electron beam source 
of -2 keV in energy is scanned over the sample area under test. The emitted 
Auger electrons are then analyzed by an analyzer. The Auger peaks are 
barely distinguishable above the background signal; therefore in order to 
accentuate the energy and magnitude of these peaks, the differentiated signal 
is generally plotted, as shown-in Fig. 13.9. 

0 100 200 300 400 500 600 700 900 1000 1100 

Kinetic Energy (eV) 

Fig. 13.9. Auger electron spectra of various elements. 

13.2.5. X-ruy photoelectron spectroscopy (XPS) 
In the XPS technique, low-energy x-rays are used as a source rather than 
electrons in the case of EDX and AES. Electrons are ejected when the 
photon is absorbed via the photoelectric effect. In this case the energy of the 
ejected electron can be written as: 

where EKE is the energy of the ejected electron, hu is the energy of the 
incident photon, and EBE is the energy of the involved bound electron state. 
By measuring the photoelectron energy, it will be possible to identify the 
particular atom, since the values of binding energy are element specific. An 
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example of an XPS spectrum (for Ag) is shown in Fig. 13.10. It should be 
noted that for multi-component samples the intensities of the peaks are 
proportional to the concentration of the element within the sampled region. 

Fig. 13.10. An XPS spectrum from a silver sample. [Practical Suvface Analysis: by Auger 
and X-ray Photoelectron Spectroscopy, Briggs, D, and Seah, M.P. Copyright 1983. O John 

Wiley & Sons Limited. Reproduced with permission.] 

13.2.6. Secondary ion muss spectroscopy (SIMS) 
SIMS is a technique used to identify and quantify various types of atoms on 
the surface or inside a solid sample. In SIMS the material is bombarded by a 
beam of high-energy ions (1-30 keV) resulting in the ejection or sputtering 
of atoms from the material. A small percentage of these ejected atoms leave 
as either positively or negatively charged ions, which are referred to as 
"secondary ions". 

These sputtered secondary ions are then collected and analyzed by a 
mass-to-charge spectrometer. Elements are identified through their atomic 
mass values, while their concentration is determined by counting the number 
of corresponding secondary ions. 

The sensitivity of a SIMS measurement is dependent upon the yield of 
secondary ion sputtering, which in turn depends on the material under study, 
the specimen's crystallographic orientation, and the nature, energy, and 
incidence angle of the primary beam of ions. The proper choice of primary 
ion beam is therefore important in enhancing the sensitivity of SIMS. 0; 
atoms are usually used for sputtering electropositive elements or those with 
low ionization potentials such as Na, B, and Al. On the other hand, Cs' 
atoms are better at sputtering negative ions from electronegative elements 
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such as C, 0, and As. The detection limit of SIMS is severely reduced with 
improper selection of the ion beam. Liquid metal ion sources are used for 
high-resolution measurements, since they can provide smaller beam 
diameters. 

Two types of SIMS are usually considered: "Static" SIMS works with 
low energy ion sources (0.5-3 keV) which result in low sputter rates (in 
units of monolayers per second). This mode of operation is suitable for 
surface analysis, since it will take a long time for the surface to be modified 
by ion bombardment. "Dynamic" SIMS, on the other hand, uses high-energy 
ion beams (higher than 3 keV) which results in high sputter rates. This mode 
of operation is suited for depth profile analysis of the sample under test. 
Fig. 13.11 shows a SIMS depth profile of a GaN sample showing its 

concentration of 
bombardment. 

impurities (oxygen, carbon, silicon) using Cs' 

(Cs+ bombardment, negative ion detection) 

- C 
- - 0  - Si - *Ga (au) 

Fig. 13.11. A SIMS depth profile showing the concentration ofirr~purities in a GUN sanzple. 
The impact energy was 15.5 keV at oblique incidence and the detected area was 33 p n  in 

dianzeter. 
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13.2.7. Rutherford backscattering (RBS) 
In the RBS technique, very high-energy beams (in the MeV range) of low 
mass ions (He, C, N, etc.) are accelerated, collimated, and focused upon the 
sample under test. These high energy beams have the ability to penetrate 
deep into the sample (several microns). Such beams cause little sputtering of 
the surface atoms. Sometimes they penetrate the atomic electron cloud 
shield and collide with the nuclei of the target atoms. The result is an elastic 
scattering from the Coulomb repulsion between ion and nucleus, known as 
Rutherford scattering. 

From energy and momentum conservation laws we know that if an 
incident ion of mass Mo and energy Eo hits a surface atom of mass M, the 
elastic collision will cause the ion to have an energy El afterwards given by 
Ohring [I9921 : 

(M' - ~ ~ s i n ~ 6 ) ~ + M , c o s 6  
Eq. ( 13.8 ) E, = M ,  + M  

where 8 i s  the scattering angle. At a fixed value of Mo and 8, El depends 
only on the atomic weight of the target atom. Therefore, El will be different 
for different targets and by detecting this energy one can distinguish 
between different atoms. This technique can be applied to multi-layer 
samples as well. In this case not only the energy of the scattered beam, but 
its intensity will also be affected by numerous scatterings inside the sample. 
In this case, top layers will have higher intensity scattered beams than the 
underlying layers. 

13.2.8. Scanning probe microscopy (SPM) 
Scanning probe microscopy (SPM) is a useful method for the study of the 
surface morphology. This method employs the concept of scanning an 
extremely sharp tip (3-50 nm radius of curvature) across the object surface. 
The tip is mounted on a flexible cantilever, allowing the tip to follow the 
surface profile (Fig. 13.12). When the tip moves in the proximity of the 
object under investigation, forces of interaction between the tip and the 
surface influence the movement of the cantilever. These movements are 
detected by selective sensors. 

There are three major types of SPM: 
Atomic Force Microscopy (AFM) measures the interaction force 
between the tip and the surface. The tip may be dragged across the 
surface, or may vibrate as it moves. The interaction force will 
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depend on the nature of the sample, the probe tip and the distance 
between them. 
Scanning Tunneling Microscopy (STM) measures a weak electrical 
current flowing between tip and sample as they are held a very short 
distance apart. 
Near-Field Scanning Optical Microscopy (NSOM) scans a very 
small light source very close to the sample. Detection of this light 
energy forms the image. NSOM can provide resolution below that 
of the conventional light microscope. 

cantilever 

Fig. 13.12. Scherrratic of an AFM tip scanning over the surface o f a  sample 

Essential to the system is a piezoelectric tube (Fig. 13.13). It consists of 
a piezo material inserted inside a hollow tube. Pairs of electrodes on the 
inner and outer walls are placed on either side of the tube. When suitable 
voltage differences are applied to these electrodes, one side of the tube 
expands and the other side contracts. This results in a bending of the tube, 
hence if one end is fixed the other end moves, resulting in the scanning 
motion. Two sets of electrodes, 90 degrees apart, allow motion in the x-y 
plane. A further pair of electrodes extending around the entire circumference 
of the tube cause an entire section of the tube to expand or contract, 
resulting in the free end of the tube moving parallel to the tube axis (the z- 
axis). The combination of all three sets of electrodes allows movement of 
the free end of the tube to be controlled very precisely in all three axes. For 
surface mapping applications, the feedback provided by the probe and 
detector is used to keep the probe at a constant distance from the surface 
(z-direction) while it is free to move across the surface (x- and y-directions). 
This is accomplished by applying a voltage to the piezoelectric tube. This 
voltage is proportional to the probe's movement in z-direction which is then 
used to generate the surface topology. 
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Fig. 13.13. Reaction of a piezo material to applied bias. 

The AFM is capable of reconstructing the surface morphology of the 
materials with atomic scale precision. An example of a three-dimensional 
image of the surface of InAs quantum dots grown on GaAsIInP is shown in 
Fig. 13.14. 

Fig. 13.14. A 3 0  AFM image of the suvface of a sample consisting of InAs quantum dots 
grown on top of a GaAs/InP substrate. 

13.3. Optical characterization techniques 

13.3.1. Photoluminescence spectroscopy 
Photoluminescence (PL) spectroscopy is a non-destructive method of 
probing the electrical properties of materials. Light is focused onto the 
sample where it is absorbed in a process called "photo-excitation". As a 
result of the excess energy caused by photo-excitation, electrons jump to 
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permissible excited states. When these electrons move back to their 
equilibrium states the excess energy is released through emission of light 
with energy equal to the energy difference between the equilibrium and 
excited states. This emitted light is then focused and collected by a photon 
detector through a spectrometer. A PL spectrum for an AlGaN sample is 
shown in Fig. 13.15. Many useful information can be extracted out of PL 
spectra: 

Bandgap determination: The most common radiative transition in 
semiconductors is between the states in the conduction and valence 
bands, which equals to the energy gap of the semiconductor. 
Impurity levels and defect detection: Radiative transitions in 
semiconductors involve localized defect levels. The 
photoluminescence energy associated with these levels can be used 
to identify specific defects. 
Recombination mechanisms: When the electrons return to their 
equilibrium states, also known as "recombination", both radiative 
and non-radiative processes can occur. The intensity of the PL peak 
and its dependence on the level of photo-excitation and temperature 
is directly related to the dominant recombination process. 
Material quality: The intensity and the line width (FWHM) of a PL 
spectrum are representative of the quality of the material. 
Additionally, presence of defect-related peaks is indicative of 
imperfections in the epitaxial layer. 

Near-band-edge emission 

Mid-gap defect-related emission 

250 275 300 325 350 375 400 425 450 4 
Wavelength (nm) 

Fig. 13.15. Photoluminescence spectrum of an AlGaN sample. Shown on the graph are the 
near-band-edge emission peak and a defect-related emission peak. 
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13.3.2. Cuthodolumirzescence spectroscopy 
Cathodoluminescence (CL) spectroscopy is similar to PL in almost every 
aspect, except for the radiation source. In CL, electrons are used to excite 
the sample instead of photons in the PL case. The electron source can be the 
focused beam used in SEMs. Similar to PL spectra, CL spectra contain 
many useful information such as the ones listed in the previous sub-section. 

13.3.3. Reflectance measurement 
Any light incident upon any medium undergoes partial transmission, 
absorption, and reflection. The reflected part of the light can be collected 
and measured against a reference sample, typically a near-ideal mirror, to 
obtain the reflectivity. Reflectance is defined as the ratio of the reflected to 
incident light, given by Fresnel equations (Eq. ( 10.22 )) as: 

where E,. and Ei are the energy of the reflected and incident light, 
respectively and F i  is the refractive index of the medium. 

13.3.4. Absorbance measurement 
A visibleiUV light beam is incident upon the sample under study and a 
reference sample simultaneously. The transmitted light out of the other face 
of the sample is collected by a photodetector through a spectrometer and its 
intensity relative to the reference sample is plotted as a function of 
wavelength. This way one can determine the transmittance or absorbance of 
the sample under study as a function of wavelength. This method is 
especially useful for obtaining the absorption edge (cutoff wavelength) 
associated with the material. The band-to-band absorption in a 
semiconductor (see Chapter 10) gives the following relationship between the 
absorption coefficient a (see Eq. ( 10.81 )), the light energy E, and the 
bandgap energy E, : 
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Ellipsometry measures the change in the polarization state of light reflected 
from the surface of a sample. The measured parameters are the amplitude 
ratio (tan Y )  and the phase difference ( A )  of the two components of reflected 
light. These values are related to the ratio of Fresnel reflection coefficients, 
R, and R, for p and s-polarized light, respectively: 

Eq. ( 13.11 ) 

This simple fundamental equation of ellipsometry relates refractive 
indices of the film and the substrate, film thickness, and phase changes 
during reflection at the film interfaces. 

In Fig. 13.16, a linearly polarized input beam is converted to an 
elliptically polarized reflected beam. For any angle of incidence greater than 
O0 and less than 90°, p-polarized and s-polarized lights will be reflected 
differently. 

Fig. 13.16. Schematic of the geonletry of an ellipsometry nzeasurement. The coordinate 
system used to describe the ellipse ofpolarization is the p-s coordinate system The s- 

direction is taken to be perpendicular to the direction ofpropagation and parallel to the 
sample surface. The p-direction is taken to be perpendicular to the direction ofpropagation 

and contained in the plane of incidence. 

The ellipsometry apparatus can also be used to measure transmission 
and reflection of samples. In this mode, the transmission (7) and reflection 
(R)  values are determined via: 



Semiconductor Characterization Techniques 

I I 
Eq.(13.12) T=' and R=' 

Ii Ii 

where Ii, I,, and I, are the intensities of the incident, transmitted, and 
reflected lights, respectively. 

13.3.6. Raman spectroscopy 
When photons are incident upon a medium, they get scattered either 
elastically (Rayleigh scattering) or inelastically (Raman scattering). In 
Rayleigh scattering, the energy of the emitted photon is the same as the 
incident photon. On the other hand, in Raman scattering, the energies of the 
scattered and incident photons are different. The energy change is depicted 
in Fig. 13.17, where an incoming photon either creates a phonon and is 
remitted at a lower energy (anti-Stokes scattering) or annihilates a phonon 
and is remitted at a higher energy (Stokes scattering). The inelastically 
scattered light can be collected, and information about the energy levels 
within the medium can be deduced from the energy change in the light. 

Rayleig h anti-Stokes Stokes 
scattering scattering scattering 

Fig. 13.17. Schematic depiction of various scattering processes within a medium. The 
incident photon energies are marked by the right-hand-side arrows. 

A monochromatic light source, usually an argon ion laser, is used to 
excite the sample and a spectrometer1PMT set is used to detect the scattered 
light. An example of a Raman spectrum is schematically shown in 
Fig. 13.18. 
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anti-Stokes Rarnan Rayleigh Stokes Rarnan 

Wavenurnber (crn-l) "0 

Fig. 13.18. All example of a Ramarl spectrum representing Kayleigh, Stokes, and anti-Stokes 
Ranzan peaks. 

13.3.7. Fourier truizsforrn spectroscopy 
A Fourier transform spectrometer is a Michelson interferometer with a 
movable mirror. By scanning the movable mirror over some distance, an 
interference pattern is produced that encodes the spectrum of the source (in 
fact, it turns out to be its Fourier transform). The Michelson interferometer 
consists of a beam splitter, a fixed mirror, and a mirror that moves back and 
forth as shown in Fig. 13.19. The input signal is split into two different 
optical paths, after which they add into the output signal. When the two 
mirrors are equidistant from the beam splitter, there is constructive 
interference for a given wavelength and the output signal is very high. 
However, when the translating mirror is moving, its separation from the 
beam splitter varies and the difference in distance that the two split beams of 
light have to flow through is called the optical path difference (OPD). 

fixed mirror 

I - * I' I I  
I I  

input I I  
I I  
I 
I I  
I I  
I I  

Beam I t  L I 

splitter 
output translating mirror 

Fig. 13.19. Schematic cross-section of a Michelson interferometer. 
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For incident light with a single wavelength, A, on the input to the beam 
splitter, the output will have sinusoidal behavior with minima occurring 
when the OPD is an odd multiple of 1 2  (destructive interference). For a 
broadband incident light source, such as the luminescence from a 
semiconductor, the output intensity is more complicated as shown in 
Fig. 13.20. When the OPD is equal to zero, all spectral components interfere 
constructively; therefore the absolute maximum of the interferogram, also 
called the center burst, is generated at that position. As the OPD increases, 
two different wavelengths will not reach a maximum output at the same 
time, giving us a complex looking oscillatory signal with decreasing 
amplitude, called the interferogram. It should be noted that when the 
wavelength of incident light is in the infrared region this technique is called 
Fourier Transform Infrared (FTIR) spectroscopy. 

SF0 I000 1 500 

Sampling inclcs 

Fig. 13.20. A typical interferogram. 

The analog signal of the detector is digitized during the scan using AID 
conversion running typically at frequencies up to 120 KHz with a numerical 
depth of 16 bits. In order to enhance the signal-to-noise ratio, some hundred 
scans are added coherently to build up the final interferogram. Once an 
interferogram is collected, it needs to be translated into an emission 
spectrum. The process of conversion is through the Fast Fourier Transform 
algorithm, which converts the time domain back into the frequency (or 
wavelength) domain. A typical example of an FTIR spectrum is shown in 
Fig. 13.2 1 illustrating the absorption of a semiconductor photodetector 
structure as a function of energy. 

Normally, interferometric spectra are in units of wavenumber. The 
relationship between wavenumber and wavelength is: 
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10000 
Eq. ( 13.13 ) v(cm7' )  = - 

w4 

Therefore, it would be easy to convert wavenumber to other useful units 
such as wavelength or energy, as is the case in Fig. 13.21. 

Energy (ev) 

Fig. 13.21. Absorption spectrum for a semiconductor photodetector structure taken by a 
Fourier transform infrared (FTIR) system. 

13.4. Electrical characterization techniques 

13.4.1. Resistivity 
Using sheet resistivity measurement techniques (i.e. the four-point probe 
technique or the van der Pauw) method one can determine the sheet 
resistivity, p, (and if the layer thickness is known, the resistivity, p) of a 
semiconductor layer. The concentration of dopants can also be obtained 
from sheet resistivity measurements if the value of mobility is known 
(Eq. ( 8.8 )). Usually the carrier mobilities of some of the more established 
semiconductors, such as silicon, are known and one can use those values to 
determine the carrier concentration from resistivity values. However, the 
type of doping (n-type or p-type) cannot be deduced from resistivity 
measurements. This technique is also useful when the carrier concentration 
varies as a function of depth. In this case, the resistivity will be: 
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Eq. ( 13.14) p(z)  =[N(z)eP(N)]-' 

where N(z) is the carrier concentration as a function of depth and p(N) is 
the carrier mobility as a function of carrier concentration. The measured 
sheet resistivity will be the weighted average given by: 

where t is the thickness of the layer. 

13.4.2. Hall effect 
With Hall effect measurements, one can determine the concentration as well 
as the type of the dopants. In addition, the Hall mobility can be deduced 
from these measurements. Generally Hall effect measurement systems are 
capable of measuring low carrier concentrations, as low as l0I4 cm". The 
problems with Hall effect measurements are the rather difficult sample 
preparation (including contact preparation) and the errors that occur when 
the substrate is conductive. The reader is referred to Chapter 8 for a 
complete discussion on the Hall effect. 

13.4.3. Capacitance techniques 
In capacitance techniques the charge storage capacity, or capacitance, is 
measured across a rectifying junction. 

Capacitance-voltage (GV) measurements use a time-varying voltage of 
variable frequency to determine the majority carrier concentration in the 
bulk of the device, and/or energy levels of interface states that often exist 
between the surfaces of dissimilar materials. In order to determine the 
carrier concentration, usually a Schottky diode is built. The diode is then 
reverse biased and the value of capacitance is measured at each bias point. 
The carrier concentration can then be calculated as (refer to Chapter 9 for 
more discussion on junction capacitance): 

Eq. ( 13.16) N 

where N is the carrier concentration (NA for p-type, ND for n-type), E is 
the dielectric constant, A is the area of the diode, C is the capacitance, and Vr 
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1 
is the reverse bias. Fig. 13.22 shows the plot of ,.as a function of reverse 

C 
bias for a p-type GaN sample. From the slope of the curve and the values of 
the dielectric constant and the diode area, the majority carrier concentration 
can be calculated. 

1 . I I I I l I I I I I  

0.0 0.2 0.4 0.6 0.8 1.0 

Reverse Bias (V) 

Fig. 13.22. Plot of C' vs. reverse bias for up-type GUN sample. The measurements were 
taken at a frequency of 10 kHz. 

Deep-level transient spectroscopy (DLTS) is another capacitance 
technique that examines the time-dependent flow of charge into and out of 
localized energy states associated with defects in the semiconductor. DLTS 
can thus determine many important defect-related properties, such as the 
nature of defects and their activation energies. 

13.4.4. Electrocher~zical capacitance-voltage profiling 
Electrochemical capacitance voltage (ECV) profiling is a measurement 
technique that allows one to determine doping level at various depths within 
a semiconductor structure. 

Originally this technique was simply an extension of the CV 
measurement technique that calculates the average carrier concentration by 
measuring the capacitance across a Schottky barrier depletion region. In the 
modified approach, the sample is located inside an electrolyte that produces 
a well-defined electrochemical dissolution with the semiconductor material. 
This approach has led to the development of automated ECV profiling 
systems with nanometer etch depth resolution. 
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With the ECV profiling it is not only possible to determine the type of 
doping (n-type, p-type) but also the concentration of the dopants in the range 
of l0'~-10*' ~ m - ~ .  An example of an ECV profile is shown in Fig. 13.23. 

Fig. 13.23. A representative ECVprofile showing the concentration of n-type andp-type 
dopants as a function of depth for a 980 nm laser diode structure. 

13.5. Summary 

In this Chapter we discussed several important semiconductor 
characterization techniques, covering structural, optical, and electrical 
properties of semiconductors. X-ray diffraction, electron microscopy (SEM 
and TEM), energy dispersive analysis using x-rays (EDX), Auger electron 
spectroscopy (AES), secondary ion mass spectroscopy (SIMS), Rutherford 
backscattering (RBS), and scanning probe microscopy (SPM) were covered 
under structural characterization techniques. Optical characterization 
techniques included photoluminescence spectroscopy (PL), 
cathodoluminescence spectroscopy (CL), reflectance and absorbance 
measurements, ellipsometry, Raman spectroscopy, and Fourier transform 
spectroscopy. Finally, we briefly discussed some of the electrical 
characterization techniques such as resistivity measurement, Hall effect 
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measurement, capacitance techniques, and electrochemical capacitance- 
voltage (ECV) profiling. These characterization techniques are instrumental 
in understanding the most important properties of various semiconductors as 
building blocks of many useful electronic and optoelectronic devices. 
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Problems 

The incident ion in an RBS measurement setup is 4 ~ e '  at Eo=3 MeV. 
The angular position of the ion detector, 0, is chosen to be 170". The 
backscattered beam from the surface of the sample under test has an 
energy of 2.5886 MeV. Determine which element of the periodic table 
the sample under test is made of. 

In an RBS measurement setup, 4 ~ e '  at Eo=2 MeV is used as incident 
ions. The scattering angle, 8, is 170 ". The incident ions impinge on a 
100 nm thick silicon sample (atomic mass of Si equals 28.08). The 
majority of He ions penetrate below the surface where they lose their 
energy at a linear rate of 2 keV/nm. Determine the range of the 
backscattered energies from the sample ( AE = E, - El ). 

Estimate the acceptor concentration of the p-type GaN of Fig. 13.22 
assuming a diode area of 400 pm x 150 pm and a dielectric constant of 
&=lo &@ 

Based on the SIMS spectrum of Fig. 13.1 1 : 
(a) Estimate the thickness of the oxide layer that has formed on the 
surface. 
(b) Si is an n-type dopant in the GaN material system. What is the 
doping concentration away from the surface? 

Based on the photoluminescence spectrum of Fig. 13.15 : 
(a) Estimate the A1 mole fraction (x) in the A1,Gal-,N layer. Assume that 
Vegard's law holds for the calculation of the bandgap energy of the 
ternary AlxGal-,N from the binary compounds GaN (Eg=3.4 eV) and 
AIN (Eg=6 eV). 
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(b) Assuming that the defect-related emission peak arises from the 
transitions from the valence band to a deep level, estimate how deep 
into the bandgap this deep level rests with respect to the conduction 
band edge (dE=EcE~). 

6. In this Chapter we introduced four measurement techniques that yield 
the impurity concentration in semiconductor layers, namely: SIMS, 
sheet resisitivity (SR) measurements, Hall effect measurements, and 
ECV profiling. Complete the following table to compare these four 
techniques with respect to the stated application requirements. 

Conduction 

Band 
edge 
emission 

Determination of doping type (n-type 
or P-type) 

Determination of the concentration of 
electric all^ activated dopants 

V V Valence 
band (E") 

- - - - - - - - - - - - - - - -  

ECV Application requirement 

Determination of doping concentration 14 

Easy sample preparation I I I I 

level (ED) 
Defect- 
related 
emission 

Determination of dopant concentration 
as a function of depth 1 1 1 1  

SIMS 

4 1 4  

Non-destructive measurement 

Thickness of the layer may be 
unknown 

4  

7. Do you think SEM and AFM are competing techniques or 
complementary techniques? Explain why. 

SR 

8. From the discussion of Rayleigh scattering, we recall that Rayleigh 
scattering is the elastic scattering of light off molecules that are smaller 

Hall 
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than the wavelength of that light. The intensity of the scattered light as a 
function of wavelength is given by: 

Based on this formula justify why the sky appears blue. 

9. Based on the TEM image provided in Fig. 13.7 estimate the lattice 
mismatch between AIN and sapphire. 

10. When an x-ray beam impinges upon a sample it gets partially 
transmitted, partially absorbed, and partially scattered (diffracted). The 
ratio of the intensity of the transmitted beam to that of the incident beam 

IT = e-m where a is a constant and x is the can be expressed as: - 
I0 

thickness of the sample. We know that if the thickness of a sample is 
doubled it means that the number of crystallographic planes that cause 
diffraction from a transmitted beam has been doubled. Based on this, 
propose a formula that describes the intensity of the diffracted beam 
versus the incident beam. At what thickness is this intensity maximum? 
What percentage of light will be transmitted at this optimum thickness? 
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14.1. Introduction 

An ideal crystalline solid has a periodic structure that is based on the 
chemical properties of its constituent atoms (see Chapter I). However, real 
crystals are not perfect. They always have imperfections such as 
extra/missing atoms or impurities, which are called defects. 

The periodicity characterizes the crystals as we learned in previous 
Chapters. For example, the periodic potential of the lattice modulates the 
wavefunction, and we can establish relationships between the energy and 
wavevector using the Bloch theorem as shown by the Kronig-Penney model 
(Chapter 4). The existence of defects perturbs the potential of the lattice and 
this modifies the band diagram in the crystals. 

While many properties of crystalline systems depend upon the periodic 
lattice arrangement, many additional properties can be manipulated by 
adding defects or dopants to the crystal. These properties enable us to 
fabricate various devices in the modern world of semiconductor technology. 
On the other hand, unintentionally introduced defects can also have a 
profound impact on the properties of materials or on the performance of 
these devices. Therefore it is a challenging goal to have precise control of 
defects in crystals. 



552 Fundamentals of Solid State Engineering 

The defects can determine the color of the crystal, its electric 
conductivity, and they can also introduce modifications in the lattice 
vibrations. For example, Silicon becomes p-type with Boron doping. A1203 
has red color as a ruby when a small amount of cr3' substitutes ~ 1 ~ '  but 
A1203 has blue color as a sapphire when a small amount of ~ i "  is 
substituted for ~ 1 ~ ' .  

In this Chapter we will discuss how defects are introduced in crystals 
and the possible reasons or sources of such imperfections, which may be 
roughly summarized as follows: 

(i) Defects from fundamental physical laws 
There are defects that must exist due to fundamental physical laws. One 

example is a vacancy. At any finite temperature, the atoms undergo a degree 
of vibrational displacements. As the temperature is raised, the displacements 
may become so large that atoms are permanently moved from their normal 
sites. These atoms leave their sites and vacancies are formed. 

(ii) Defects from natural minerals 
Materials are never 100% pure. Therefore all crystals have certain 

foreign atoms; impurities as defects. Silicon wafers used in modem 
semiconductor technology are purified to a very high degree (better than 
99.999999 %). 

(iii) Defects from crystal growth (see Chapter 12 for details) 
Intrinsic defects can be introduced during crystal growth. For example, 

typical concentrations of intrinsic defects in Si is on the order of 
10 '~-10 '~ ~ m - ~ .  Extrinsic defects (impurities) can also be introduced in the 
crystallization process. The species of the impurities depends on the growth 
method and on the constituent materials of the growth system. 

(iv) Defects from strain 
Deformation of metals or any strain added to crystals generates defects 

(mainly dislocations). Especially in semiconductor technology, the defects 
caused by strain are of great interest for heteroepitaxial thin film growth. For 
example, semiconductor lasers and integrated-optics devices are usually 
designed from multilayer structures which have similar lattice constant 
because the mismatch of lattice parameters accumulates strain and results in 
the creation of undesirable defects. The defects caused by lattice mismatch 
are efficient non-radiative recombination channels and therefore should be 
avoided since they degrade the performance of optical devices. However, 
the recent increasing demand for wide bandgap materials such as GaN has 
confronted the growers with exactly this difficulty. Since GaN has no 
readily available native lattice matched substrate, and the lattice mismatch 
depends on the substrate, these materials cannot be obtained without lattice 
mismatch. In addition, there also exist devices which positively make use of 
the effect of strain, such as high electron mobility transistors (HEMT) and 
self-organized strain relaxed islands (quantum dots) made in the Stranski- 
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Krastanow growth mode (Chapter 12). For these applications, the defects 
caused by strain constitute the active layer. 

There are several categorizations of defects. One of the common 
classifications is based on the dimension of the defect structure. Defects 
may be classified into four groups; point defects (OD), line defects (ID), 
planar defects (2D), and volume defects (3D). Table 14.1 displays examples 
of these four types of defects. 

Dimension Examples 

OD: point defects Vacancies, self interstitials, impurities 

ID: line defects 
Edge dislocations, screw dislocations, 

mixed dislocations 

2D: planar defects boundaries, Interphase boundaries, 
external surfaces 

3D: volume defects Precipitates, voids 

Table 14.1. Table of dislocation dimension classifications. 

14.2. Point defects 

Point defects, or 0-dimensional defects, refer to missing, additional, or 
misplaced atoms within the crystalline lattice. Fig. 14.1 shows examples of 
substitutional, interstitial and vacancy point defects, each of which will be 
discussed in more detail in the following sections. 

Fig. 14.1. Examples ofpoint defects. 
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14.2.1. Intrinsic point defects 
The presence of intrinsic point defects is related to the nature of the atom. 
Atoms in a solid are subject to thermal vibrations at any temperature. The 
average amplitude of the atomic displacements increases with increasing 
temperature. Therefore, it is easy to imagine a localized area within the 
crystal where the vibrations are intense enough to cause a single atom to 
jump to a different location, either to the surface of the crystal or to an 
intermediate or interstitial position within the crystal. If the atom moves to 
the surface of the crystal, a Schottky defect is said to have formed, leaving a 
vacancy as the defect. However if the atom jumps to an interstitial position 
within the crystal lattice, it is said to have formed a Frenkel defect, creating 
both a vacancy and a self-interstitial. A vacancy is a missing atom within the 
crystal lattice. A self-interstitial is an atom of the same type as the bulk 
material that is located at a non-lattice site. A Schottky defect is shown 
schematically in Fig. 14.2(a), while a Frenkel defect is shown schematically 
in Fig. 14.2(b). 

00 
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Fig. 14.2 
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Schematic diagrams of a: (a) Schottky defect and (b) Frenkel defect. 

It has been shown experimentally that at thermal equilibrium, all crystals 
contain intrinsic point defects. This leads to the conclusion that the 
imperfect crystal has a lower free energy than a perfect crystal. From 
thermodynamics, we know that the change in the free energy of a system, 
AG, is related to the changes in enthalpy, AH, and entropy, AS, as shown 
in Eq. (14.1 ), where T is absolute temperature: 

Eq. (14.1 ) AG = AH - TAS 

The energy to form a defect, ED, is a positive contribution to the 
enthalpy term, thus increasing the free energy of the system. However, the 



Defects 555 

creation of the defect increases the disorder of the crystal, thus increasing 
the entropy of the system and causing a decrease in the free energy of the 
system. The balance of these two factors leads to an equilibrium number of 
defects naturally occurring within the crystalline lattice. Through calculating 
the minimum free energy condition as a function of temperature, Boltzmann 
determined that the equilibrium number of defects, n,, can be written 
according to Eq. ( 14.2 ), where N is the number of atoms in the crystal, A 
is a constant often taken as unity, T is the absolute temperature, and k b  is 
Boltzmann's constant. By dividing n, by N ,  the equilibrium concentration 

of defects, n, , may be found. 

Eq. ( 14.2 ) n, = NAexp - (;:;I 
One key process that affects both semiconductor device performance 

and some fabrication techniques is chemical diffusion. Chemical diffusion 
occurs when atoms of the same type or a different type are able to move 
through the crystalline lattice over time. The presence of vacancies in a solid 
enhances the rate at which chemical diffusion takes place. It is easy to 
imagine, for example, oxygen atoms diffusing from the surface of silicon 
into the silicon crystalline lattice through vacancies, as shown in Fig. 14.3. 

Fig. 14.3. Schematic of chemical diffusion showing how a foreign atom may diffuse into a 
crystal with time assisted by the presence of voids (increasing time from (a) to (d)). 
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Furthermore, it is also expected that at higher temperatures, when there 
are more vacancies in the network, the diffusion through the vacancy sites of 
the lattice takes place at a higher rate. The oxygen atom reaches a deeper 
site within the crystal more rapidly. For more details on chemical diffusion, 
see Chapter 15. 

Another type of intrinsic point defect is an anti-site defect, shown 
Fig. 14.4. An anti-site defect can occur when the crystalline lattice contains 
at least two kinds of atoms. Given enough energy, it is possible for two 
atoms to trade positions in the lattice. This is another diffusion mechanism, 
termed rotation about a midpoint. 

Fig. 14.4. Schematic diagram of an anti-site defect. 

14.2.2. Extrinsic point defects 
Extrinsic point defects, shown schematically in Fig. 14.5, are caused by an 
outside source, such as growth conditions or processing factors. They are 
created when a foreign atom embeds itself within the crystal. If the atom is 
located on a lattice site, i.e. replacing the native atom, then it is called a 
substitutional impurity. The foreign atom may also be located at an 
interstitial site, and is thus termed an interstitial impurity. 

It is virtually impossible to control all environmental factors in order to 
have a 100 % pure material, although for some applications this is highly 
desirable. The type of the impurity depends on each growth method, and the 
materials used in the system. For example, one of the major contaminations 
in MOCVD growth is carbon from group I11 sources. With respect to silicon 
technology, from the many possible impurities, it is the incorporation of 
metallic impurities that must be reduced to extremely low levels. This is 
because most metals have low solubility in silicon and this results in metal 
silicides forming near the surface during device processing. Furthermore, 
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many metals form deep traps in the energy bandgap of semiconductor 
materials and this shortens the minority carrier lifetime considerably. 

Fig. 14.5. Diagram of extrinsic point defects of substitutional impurities and an interstitial 
impurity. 

There are also cases where impurities are desirable. In those cases, the 
challenge is the control of the type of impurity to be incorporated at well 
defined lattice sites or specific regions within the crystal with precise 
concentration. 

The most important application of extrinsic defects, especially with 
respect to semiconductors, is doping. While in many cases it is undesirable 
to have foreign atoms located within a crystal, doping purposely creates 
substitutional impurities in order to give the crystal certain properties. For 
example, GaN is doped with magnesium ions in order to create p-type GaN. 
Without achieving controlled doping, semiconductor devices would not 
exist. For more detailed information on doping, see Chapter 7. 

For doping to add carrier concentration or change the carrier type, 
impurities with shallow activation or ionization energies are used. For p- 
type silicon, boron is usually the preferred dopant, while phosphorus, 
arsenic and antimony are used for n-type. Some of the activation energies 
are listed below in Table 14.2 (note: data about the most common dopants in 
Si, Ge, and GaAs was already listed in Table 7.1). 
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Table 14.2. Impurity ionization energy (in meV) for several semiconductors. [Wove et al. 
19891 

14.3. Line defects 

Line defects, or one-dimensional defects, refer exclusively to dislocations. 
Although there are two main types of dislocations, edge or screw, these two 
types typically combine to form several complicated mixed dislocations. 

Edge dislocations may be described as an extra plane of atoms inserted 
into the crystalline lattice, causing a localized strain to be introduced into the 
lattice, as shown in Fig. 14.6. 
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Fig. 14.6. Illustration of an edge dislocation. 

Screw dislocations are formed when one side of the crystal undergoes a 
shear stress and is displaced at least one lattice plane, while the other side is 
held fixed. A schematic diagram of a screw dislocation is shown in Fig. 
14.7. 

Fig. 14.7. Illustration of a screw dislocation. [Materials Science and Engineering: An 
Introduction, Callister, W.D. Copyright O 2000 by John Wiley & Sons, Inc. Reprinted with 

permission of Wiley-Liss Inc., a subsidiary of John Wiley & Sons, Inc.] 
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Mixed dislocations are any combination of edge and screw dislocations, 
and are the most typical ones that one finds in bulk crystals. An example of 
a simple mixed dislocation is shown in Fig. 14.8. 

Fig. 14.8. Illustration o f a  mixed dislocation comprised of one edge dislocation and one 
screw dislocation. [Materials Science and Engineering: An Introduction, Callister, W D. 

Copyright O 2000 by John Wiley & Sons, Inc. Reprinted with permission of Wiley-Liss Inc., a 
subsidiary ofJohn Wiley & Sons, Iric.] 

Burger's vectors are used to classify and describe dislocations. In order 
to construct a Burger's vector, a closed loop should be drawn around the 
dislocation by traveling the same amount of lattice points in all directions. If 
the loop does not close, it is surrounding a dislocation, and the vector that 
would close the circuit is the Burger's vector. The starting point, the circuit 
direction, and the size of the loop are arbitrary. Independent of these factors, 
the Burger's vector will always be perpendicular to the line of an edge 
dislocation and parallel to the line of a screw dislocation. It is often very 
complicated to find the Burger's vector for a mixed dislocation. 
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Example 
Q: Draw the Burger's circuit to show that the Burger's 

vector for an edge dislocation is perpendicular to the 
line of the dislocation. 

A: Choose a starting point, a direction, and a side length 
that will be sure to enclose the edge dislocation. In the 
figure below a clockwise direction and a side length of 
three were chosen. Then draw a vector from the end 
point of your circuit to the starting point of your circuit. 
This is the Burger's vector. 

Burger's 
vector Dislocation Lhe 
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14.4. Planar defects 

Planar defects, or two-dimensional defects, refer to irregularities in the 
crystalline lattice that occur across a planar surface of the crystal. These may 
be due to an internal error in the crystal structure, or interfaces between two 
different materials, including interfaces with different phases of matter. 
Internal planar defects include stacking faults, twin boundaries, grain 
boundaries, and interphase boundaries, while external planar defects refer to 
surface defects caused by an interaction of the crystal with a gas or liquid 
environment. 

Stacking faults occur when a single plane of atoms within the crystalline 
lattice is misoriented or out of order. For example, the cubic close packed 
structure follows an ABCABC stacking order, however an error in this order 
such as a stacking of ABCABABC produces a stacking fault. Fig. 14.9 
shows an example of a stacking fault. 

Fig. 14.9. Schematic diagram of a stacking fault. 

Twin boundaries occur when a stacking fault reorients the rest of the 
crystal, forming a mirror plane within the crystal. For example, in the 
ABCABC stacking order of the cubic close packed structure, a new stacking 
order of ABCABACBA would cause a twin boundary, where the center "B" 
plane would be a mirror plane. A schematic of a twin boundary is shown in 
Fig. 14.10. 
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Fig. 14.10. Schematic diagram of a twin bou~ida y. 

When two or more single crystals of different orientation meet, grain 
boundaries are formed. Two types of grain boundaries are pure tilt 
boundaries and pure twist boundaries. Pure tilt boundaries occur when the 
axis of rotation is parallel to the plane of the grain boundary, as shown in 
Fig. 14.11. 

x Rotation Axis 

Fig. 14.11. Schematic diagram of a tilt boundary. 
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Pure twist boundaries, on the other hand, occur when the axis of rotation is 
perpendicular to the plane of the grain boundary, as shown in Fig. 14.12. 

Rotatio 
Axis 

Boundary 
plane 

Fig. 14.12. Schematic diagram of a twist boundary. 

If the angle of rotation is small enough for these two cases, usually less 
than 10"-15", the grain boundary is referred to as small angle. A small angle 
pure tilt boundary can be viewed as a series of parallel edge dislocations, 
while a small angle pure twist boundary may be viewed as an array of screw 
dislocations. The spacing between the dislocations, D, of low angle grain 
boundaries is given in Eq. ( 14.3 ), where b is the magnitude of the burgers 
vector, which measures the degree of the misalignment introduced into the 
lattice due to one dislocation, and Bis the rotation angle. 

Large angle grain boundaries and combinations of twist and tilt 
boundaries lead to much more complicated structures for grain boundaries. 
Polycrystalline materials generally contain many grains of single crystalline 
material of random orientations with their neighbors. The size of the grains 
and the orientation between neighboring grains has an effect on properties of 
the polycrystalline material. For instance, a material with large grains and 
only a small misorientation between grains would have properties closer to a 
single crystalline material than a material with small, highly disordered 
grains. 
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Interphase boundaries occur when one crystalline material shares an 
interface with another crystalline material. Depending on the properties of 
each material, the interface will be either coherent, semi-coherent, or 
incoherent. 

Coherent interphase boundaries will form when the two materials have 
similar geometries and a layer thickness less than the critical thickness for 
that material interface. The critical thickness, d,,, is approximated by 
Eq. ( 14.4 ) where b is the magnitude of the Burger's vector for a 
dislocation and f is the lattice mismatch between the two materials. Since 
the critical thickness is indirectly proportional to the lattice mismatch of the 
two materials, in order to have a coherent interface it is necessary to have a 
small enough lattice mismatch in order to have a reasonable critical 
thickness (thicker than a few monolayers): 

b 
Eq. ( 14.4 ) dcrit = - 10. f 

While a small amount of strain may be introduced at a coherent 
boundary, no defects will be introduced due to the material change. A 
coherent boundary is shown in Fig. 14.13. 

Fig. 14.13. Schematic of a coherent interphase boundary. 

Semi-coherent interphase boundaries will form when the two materials 
have similar geometries but a larger lattice mismatch, or the layer thickness 
exceeds the critical thickness. In this case, edge dislocations tend to form 
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due to increased strain within the material. A semi-coherent boundary is 
shown in Fig. 14.14. 

Fig. 14.14. Schematic of a semi-coherent interphase boundary. 

Incoherent interphase boundaries have a highly disordered structure that 
lack orientation relationships and have high energies. Little is known about 
the detailed structure of this type of interface. 

External planar defects occur when the crystal periodicity is interrupted 
and bonds are broken, leading to dangling bonds. This occurs at the surface 
of the crystal and affects the outermost atomic layers, or surface region. 
When this occurs, the atoms on the surface have a smaller coordination 
number, or number of nearest neighbors, than the atoms in the bulk crystal, 
and therefore have significantly different properties than the bulk crystal. 
The dangling bonds cause the surface to be more chemically and electrically 
active. 

Since it takes energy to break the bonds, creating a surface takes energy, 
referred to as surface energy, which is always a positive amount. The 
surface wants to minimize its energy by reducing the number of dangling 
bonds, which it may do through surface relaxation or surface reconstruction. 
Surface relaxation is achieved by a change in the distance between the first 
and second layers of atoms at the surface. Typically the distance is reduced 
but there are a few cases where it is increased. Surface reconstruction occurs 
when the surface forms a different structure than the bulk structure. The 
silicon (00 1) surface relies on surface reconstruction in order to minimize its 
surface energy. 
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14.5. Volume defects 

Volume defects, also known as bulk defects, are clusters of point defects. 
Clusters of defects are produced when the crystal become supersaturated. 

Each point defect introduced into a crystal has a certain level of 
solubility, which defines the maximum concentration of the impurity in the 
host crystal. In general, solubility is temperature dependent and decreases as 
the crystal is cooled down. When the concentrations of defects exceed their 
solubility limit or the crystal is cooled down after it gets saturated, it 
becomes supersaturated with that defect. The crystal under a supersaturated 
condition tries to achieve an equilibrium condition by condensing the excess 
defects into clusters with different phase regions. 

Clusters of vacancies forming small regions where there are no atoms 
are called voids. High concentration of point defects in semiconductors 
results in formation of microvoids. The aggregation of vacancies is 
increasingly harmful to device performance as the size shrinking of devices 
continues in Si wafers. Fig. 14.15 shows an SEM image of voids in AlGaN. 

Fig. 14.15. SEM image of voids in AlGaN 

Clusters of foreign atoms forming small regions of different phase are 
often called precipitates. For example, Zn in InP at a doping level exceeding 
1x 1018 cm-3 forms precipitates. Another example is precipitates in silicon 
which occurs during the processing of wafers into integrated circuits. There 
are two foreign particle formation mechanisms; precipitates and inclusion 
incorporation. Precipitates are formed due to the retrograde solubility of 
native point defects. When the grown crystal is cooling down, the solidus 
line is crossed and nucleation of the second phase takes place. In contrast to 
precipitates, inclusions are formed by capturing melt solution droplet from 
the diffusion boundary layer adjacent to the growing interface and enriched 
by the rejected excess component. 
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14.6. Defect characterization 

Characterization and analysis of defects is one of the biggest experimental 
challenges. There are conventional characterization methods to examine the 
over all quality or electrical features of the material such as Hall 
measurement and x-ray measurement (see Chapter 13). However, observing 
and identifying the type of each defect and the status in the material or 
devices is not easy because the defects are usually of atomic size unless they 
aggregate and form clusters. 

When the defects are revealed by special etching techniques, they can be 
observed by optical microscopy. This method is called preferential etching. 
The basic idea of the method is to make defects visible in a microscope by 
marking the surface with small pits or grooves. This happens due to the 
differing physical and chemical properties near the defects. The surface is 
polished and etched with proper etching solutions that dissolve the material 
much more quickly around defects than in perfect regions. 

Scanning electron microscope (SEM) has been used for observing large 
defects in devices in research and industry. For smaller features, 
transmission electron microscope (TEM) is now a better choice. Scanning 
probe microscope (SPM) and atomic force microscope (AFM) are capable 
of imaging single atoms. There are also several analytical methods for 
detecting impurities such as Atomic absorption spectroscopy (AAS), spark 
source mass spectrometry (SSMS), secondary ion mass spectrometry, and 
local mode infrared absorption. 

14.7. Defects generated during semiconductor crystal growth 

As previously mentioned, intrinsic defects will always exist at temperatures 
above the absolute zero. In reality however, the actual defect concentrations 
in crystals are much higher than the equilibrium values at room temperature. 
This is because the finite defect diffusion rate leads to the freezing-in of a 
large fraction of the high temperature defects produced as the crystal cools 
down. Therefore, pulling rate and cooling rate from the melting point are 
important parameters for crystal growth. 

The development of crystal growth technology has been motivated by 
two major goals: achieve higher quality of bulk crystals and larger wafer 
diameters. Higher quality is necessary because as device sizes continue to 
shrink, the presence of defects in crystals become more significant. In 
particular, the aggregation of vacancies which results in the formation of 
microvoids are increasingly harmful to device performance. Large diameter 
wafer development is driven by the demand of cost reduction in the device 
industry, since larger wafer diameter leads to higher throughput. 



Defects 569 

The growth of compound semiconductor single crystals is more 
complicated and less studied compared to Si, for instance. In 111-V and 11-VI 
semiconductors, the intrinsic point defect concentration is even greater than 
the intrinsic carrier concentration, and can therefore influence the position of 
the Fermi level. The details of crystal growth were discussed in Chapter 12. 

14.8. Summary 

In this Chapter we discussed defects as imperfections that disturb the 
periodic structure of the crystal. The defects were classified into 4 groups 
according to their structural dimension. Point defects (OD), line defects 
(ID), planar defects (2D), and volume defects (3D) were explained. Several 
characterization techniques were introduced and some issues regarding 
semiconductor single crystal growth were also discussed. 
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Problems 

Give some examples of physical properties that defects can change. 

Identify the types of point defects shown in Fig. 14.1. Please re-sketch 
the figure. 

Calculate the number of vacancies per cubic meter in iron at 750 "C. 
The energy for vacancy formation is 1.08 eV/atom. Also, the density 
and atomic weight for Fe are 7.65 g.cm-3 and 55.85 g.mol-', 
respectively. Assume A is unity. 

Find the equilibrium concentration of defects for T=O, 200, 400, 600, 
800, 1000, and 1200 K if the energy to form a defect is 1 eV/atom. 
Assume A is unity. Graph your results. For T=1200 K, how many atoms 
per single vacancy are present? 

The formation energies of vacancy clusters in Si are listed below. 
Calculate the formation energy of (i) System A (30 single vacancies), 
(ii) System B (five 6-vacancy clusters), and (iii) System C (three 10- 
vacancy clusters). Which system has the lowest formation energy? 
Why? 

System A System B System C 

Single vacancy x 30 6 vacancy cluster x 5 10 vacancy cluster x 3 

[Cluster shapes reprinted with permission from Europhysics Letters Vol. 43, Bongiorno, A., 
Colombo, I>., and Diaz de la Kubia, T, "Structural and binding properties of vacancy clusters 

in silicon, " p. 697. Copyright 1998, EPD Sciences.] 

Size 1 6 10 

Energy (eV) 3.4 11.4 15.6 
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6. Briefly describe the difference between an edge dislocation and a screw 
dislocation. 

7. Show how to find the Burger's vector for a screw dislocation. 

8. GaAsIInAs have a 7.2 % lattice mismatch. How many monolayers of 
InAs may be grown on GaAs before a semi-coherent boundary is 

U I ~ A ~  formed? ( aGAs=0.565 nm uhA,=0.606 nm, assume b = -). 4 
9. What is preferential etching? 

10. What have been the goals of the semiconductor industry in silicon 
crystal growth technology? Why? 



15. Semiconductor Device Technology 

15.1. Introduction 
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15.2.4. Oxide thickness characterization 

15.3. Diffusion of dopants 
15.3.1. Diffusion process 
15.3.2. Constant-source diffusion: predeposition 
15.3.3. Limited-source diffusion: drive-in 
15.3.4. Junction formation 

15.4. Ion implantation of dopants 
15.4.1. Ion generation 
15.4.2. Parameters of ion implantation 
15.4.3. Ion range distribution 

15.5. Characterization of diffused and implanted layers 
15.5.1. Sheet resistivity 
15.5.2. Junction depth 
15.5.3. Impurity concentration 

15.6. Summary 

15.1. Introduction 

In the previous Chapters, we have reviewed the various techniques used to 
synthesize semiconductor crystals and thin films. This represented only the 
first step in the fabrication of semiconductor devices. Several additional 
steps are necessary before a final product can be obtained, which will be 
described in this and the following Chapter. 

In this Chapter, the discussion will be inspired from the silicon device 
technology because of its technological predominance and maturity in 
modern semiconductor industry. We will first describe and model the 
oxidation process used to realize a silicon oxide film. We will then discuss 
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the diffusion and ion implantation of dopant impurities in silicon to achieve 
controlled doping, and review the methods used to characterize their 
electrical properties. Although this Chapter discusses silicon, the methods 
can be equally applied to all types of semiconducting materials. 

15.2. Oxidation 

The ability to form a chemically stable protective layer of silicon dioxide 
(Si02) at the surface of silicon is one of the main reasons that makes silicon 
the most widely used semiconductor material. This silicon oxide layer is a 
high quality electrically insulating layer on the silicon surface, serving as a 
dielectric in numerous devices, that can also be a preferential masking layer 
in many steps during device fabrication. In this section, we will first review 
the experimental process of the formation of a silicon oxide. Then we will 
develop a mathematical model for it and determine the factors influencing 
the oxidation. We will then end this section by providing details on how to 
characterize the thickness of the formed oxide. 

15.2.1. Oxidation process 
A silicon dioxide layer is often thermally formed in the presence of oxygen 
compounds at a temperature in the range of 900 to 1300 "C. There exists 
two basic means of supplying the necessary oxygen into the reaction 
chamber. The first is in gaseous pure oxygen form (dry oxidation) through 
the reaction: Si + O2 -+ Si02. The second is in the form of water vapor (wet 
oxidation) through the reaction: Si + 2H20 + Si02 + 2H2. For both means 
of oxidation, the high temperature allows the oxygen to diffuse easily 
through the silicon dioxide. The silicon is consumed as the oxide grows, and 
with a total oxide thickness of X, about 0.45Xlies below the original surface 
of the Si wafer and 0.55X lies above it, as shown in Fig. 15.1. A typical 
oxidation growth cycle consists of dry-wet-dry oxidations, where most of 
the oxide is grown in the wet oxidation phase. Dry oxidation is slower and 
results in more dense, higher quality oxides. This type of oxidation method 
is used mostly for metal-oxide-semiconductor (MOS) gate oxides. Wet 
oxidation results in much more rapid growth and is used mostly for thicker 
masking layers. 

Before thermal oxidation, the silicon is usually preceded by a cleaning 
sequence designed to remove all contaminants. Special care must be taken 
during this step to guarantee that the wafers do not contact any source of 
contamination, particularly inadvertent contact with a human person. 
Humans are a potential source of sodium, the element most often 
responsible for the failure of devices due to surface leakage. Sodium 
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contamination can be reduced by incorporating a small percentage of 
chlorine into the oxidizing gas. Next, the cleaned wafers are dried and 
loaded into a quartz wafer holder called a boat. 

The thermal oxidation process is performed with the wafers sitting in the 
boat loaded into a furnace where the temperature is carefully controlled. 
Generally, three or four separate furnaces are used in a stack manner, each 
with its own set of controls and quartzware. The quartz tube inside each 
furnace is enclosed around heating coils which are controlled by the amount 
of electrical current running through. A cross-section of a typical oxidation 
furnace is shown in Fig. 15.1. 

after . - - 
oxidation 

quartz tube 

dry oxIdation - 
0, 

I er cods 1 

Fig. 15.1. Cross-section of an oxidation furnace: a quartz tube, heated by coils surrounding 
it, contains the silicon wafers in which either dry oxygen gas or water vapor can be 

introduced to provide the oxidizing gas. On the top left, the cross-section at the surface of a 
silicon wafer before and after oxidation is shown. 

The furnace is suitable for either dry or wet oxidation film growth by 
turning a control valve. In the dry oxidation method, oxygen gas is sent into 
the quartz tube. High-purity gas is used to ensure that no unwanted 
impurities are incorporated in the layer of oxide as it forms. The oxygen gas 
can also be mixed with pure nitrogen gas in order to decrease the total cost 
of running the oxidation process, as nitrogen gas is less expensive than 
oxygen. In the wet oxidation method, the water vapor introduced into the 
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furnace system is created by flowing a carrier gas into a container or bubbler 
filled with ultra pure water and maintained at a constant temperature below 
its boiling point (100 OC). The carrier gas can be either nitrogen or oxygen, 
and both result in equivalent oxide thickness growth rates. As the gas 
bubbles through the water, it becomes saturated with the water vapor. The 
distance to the quartz oxidation tube must be short enough to prevent 
condensation of the water vapor. The bubblers used in the wet oxidation 
process are simple and quite reproducible, but they have two disadvantages 
associated with the fact that they must be refilled when the water level falls 
too low: an improper handling of the container can result in the 
contamination of the water prior or during filling, and the bubbler cannot be 
filled during an oxidation cycle. 

15.2.2. Modeling of oxidation 
Using radioactive tracer experiments, the oxygen or water molecules in a 
dry oxidation process were found to move through the oxide film and react 
with the silicon atoms at the interface between the oxide film and silicon. As 
the oxide grows, the growth rate of the oxide layer decreases because the 
oxygen must pass through more oxide to reach and combine with the silicon. 
This is schematically illustrated in Fig. 15.2. The movement of these 
molecules through the forming oxide layer can be mathematically modeled 
using the same Fick's first law of diffusion as introduced in section 8.5. 

layer 

, 
Si wafer of SiO, 

at interface 

Fig. 15.2. Formation of SiOI in a dry oxidation process. The oxygen molecules diffuse 
through the existing oxide film until they reach the oxide-silicon interface where they react 

with silicon atoms to continue to form an oxide. 

The objective of the following mathematical model is to determine the 
growth rate of the oxide layer? that is how fast the oxide layer forms. We 
will follow a similar approach to the one taken for vapor phase epitaxy in 
sub-section 12.5.2. In this model, we consider that there is a flow of a gas 
containing oxygen, called the oxidant, onto the sample surface, which we 
assume diffuses through the existing oxide layer and reacts with the 
underlying silicon. We will consider three different fluxes (units of particles 
per cm2.s-') of oxidant, each governed by a different physical mechanism. 
These fluxes are shown in Fig. 15.3. 
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The first one is the flux of oxidant from the bulk gas phase onto the 
sample surface, denoted F,. This flux is proportional to the difference in 
concentration of oxidant between the bulk gas phase and at the surface of 
the forming oxide: 

where hG is the vapor phase mass transfer coefficient, CG denotes the 
oxidant concentration in the bulk gas phase, and Cs denotes that at the 
surface of the forming oxide. These concentrations are generally different 
because some oxidant is consumed in the oxidation process. These 
concentrations are directly related to the partial pressures of the oxidant gas 
in the bulk gas phase, PG, and at the oxide surface, Ps, through the ideal gas 
law: 

where kb is the Boltzmann constant and T is the absolute temperature. 

Si wafer u 
Fig. 15.3. Model for the thermal oxidation of silicon. F, represents the flux of oxidant from 

the bulkgas phase onto the sample surface, F2 represents the flux of oxidant diffusing 
through the existing oxide, and Fj  represents t h e w  of oxidant which reaches the oxide- 

silicon interface and is consumed through chemical reaction with the silicon. 

We can relate the oxidant concentration in the gas with the oxidant 
concentration in the solid phase, i.e. the oxide layer, near the surface 
through Henry's law: 
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where Co is the oxidant concentration inside the oxide layer just below 
its surface, KH is Henry's law constant and Ps is the partial pressure of the 
oxidant in the gas phase at the oxide surface. 

It will be convenient to introduce the equilibrium value of Co, which will 
be denoted C*. This concentration is related to the partial pressure in the 
bulk of the gas PG through: 

Combining Eq. ( 15.2 ), Eq. ( 15.3 ) and Eq. ( 15.4 ), Eq. ( 15.1 ) can 
then be successively written as: 

where we have defined: 

The second flux, denoted F2, to consider is that of the oxidant diffusing 
through the oxide layer already present which can be expressed as: 

where D is the diffusion coefficient of the oxidant through the oxide, Ci 
is the oxidant concentration at the oxide-silicon interface, and Xo is the 
thickness of the oxide. 

The third flux, denoted F3, corresponds to the incorporation of oxidant 
molecules which reach the oxide-silicon interface and react chemically to 
expand the oxide. This can be expressed as: 

where ks is the chemical reaction constant for the formation of oxide. 

Under steady-state conditions, these three fluxes must be equal: 



Semiconductor Device Technology 579 

This gives us three equations, for the three unknowns: Co, C* and Ci. 
Using Eq. ( 15.7 ) and Eq. ( 15.8 ) to equate F2 and F3, we get: 

Eq. ( 15.10) Co = [l + F ] c i  

Now, using Eq. ( 15.5 ) and Eq. ( 15.8 ) to equate F, and F3, we get: 

which, after considering Eq. ( 15.10 ), becomes: 

It is convenient to rearrange these relations to express Co and Ci as a 
function of C*: 

Eq. ( 15.12) Ci = 
1 

C *  

Eq. ( 15.13 ) C, = 

We can now consider a particular case. If we assume that h>>k,, i.e. the 
oxidation reaction at the oxide-silicon interface is much slower than the 
arrival of oxidant at the oxide surface, the oxidation process is then said to 
be interfacial reaction controlled. The Eq. ( 15.12 ) and Eq. ( 15.13 ) can 
then be simplified into: 
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Combining Eq. ( 15.8 ) and Eq. ( 15.14 ) to eliminate Ci, we can express 
the flux F as a function of Co: 

Eq. ( 15.15 ) F = 

The rate at which the oxide layer grows is then given by the flux divided 
by the number N of oxidant molecules that can be incorporated into a unit 
volume of oxide: 

For dry oxidation, ~ = 2 . 2 ~ 1 0 ' ~  molecules per cm3, while for wet 
oxidation N=4.4x loz2 molecules per cm3. Integrating Eq. ( 15.16 ) and using 
the boundary condition Xo(t=O)=& yields the following equation for Xo: 

where zis an integration constant and where we have denoted: 
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where Xi is the initial thickness of the oxide. For dry oxidation, an initial 
oxide thickness of 250 A must be accounted for by letting x=25 nm, in 
order to make Eq. ( 15.17 ) universal to both oxidation methods. 

Solving for the oxide thickness in Eq. ( 15.17 ) as a function of oxidation 
time t, one obtains the following positive expression for Xo: 

The growth time t is given directly by Eq. ( 15.17 ): 

For the limiting case of "short oxidation time", where (t+ $<<A'/~B, we 
can simplify the expression in Eq. ( 15.19 ): 

which is obtained after considering the Taylor expansion of the square 
root. We then obtain the so-called linear oxidation law: 

B 
Eq. ( 15.21 ) X - -(t + z) 

O - A  

where B/A is the linear growth rate constant, and can be calculated using 
Eq. ( 15.18 ) and Table 15.1. 

For the other limiting case of "long oxidation time", when t>>A2/4~, one 
obtains the parabolic oxidation law: 

where B is the parabolic growth rate constant, and can be calculated 
using Eq. ( 15.18 ) and Table 15.1. 
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15.2.3. Factors influencing oxidation rate 
Numerous factors can influence the oxidation rate by governing each of the 
mechanisms discussed in the previous model. For example, one of them is 
the diffusion coefficient in Eq. ( 15.7 ). This parameter generally follows an 
Arrhenius relationship as given by: 

where kb is the Boltzmann constant, EA is the activation energy, and T is 
the temperature. Values for activation energy and Do coefficient can be 
found in Table 15.1. This relation indicates the strong dependence of oxide 
growth rate on temperature as the diffusion rate of the oxidant increases 
exponentially with temperature. 

There exist four other factors which are commonly known to affect the 
oxidation rate of silicon: type of oxidation, orientation of the silicon wafer, 
pressure and impurity effects. For the type of oxidation, wet oxidation has a 
higher growth rate due to the higher solubility of the water vapor. The 
orientation dependence of the oxidation rate can be easily understood 
because the oxidation process depends on the total number of available Si 
atoms per unit area for oxidation at the oxide-silicon interface. Only the 
linear oxidation rate is expected to significantly change as a function of 
orientation, i.e. for short oxidation durations. For example, the oxidation rate 
for (1 11) oriented Si is faster than that for (100) oriented Si initially, in the 
linear region, as shown in Fig. 15.4(a) and (b). As the oxidation kinetics 
change from the linear rate to the parabolic rate, i.e. for longer oxidation 
durations, the difference between the two orientations diminishes. The 
pressure is proportional to the number of oxidants, and is directly 
proportional to both linear and parabolic growth rate constants. As can be 
seen in Eq. ( 15.17 ), an increase in pressure results in a slower growth rate. 
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Fig. 15.4. Oxide thickness as a function of oxidation time under various conditions: (a) wet 
and dry oxidation of (100) silicon at several temperatures, (b) wet and diy oxidation of (1 11) 

silicon at various temperatures. [JAEGER, RICHARD C., INTRODUCTION TO 
MICROELECTRONICS FABRICATION: VOLUME 5 OF MODULAR SERIES ON SOLID 

STATE DEVICES, 2"" Edition, O 2002. Reprinted by permission of Pearson Education, Inc., 
Upper Saddle River, NJ.] 
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Wet O2 (Xi=O nm) Dry O2 (z,=25 nm) 

<loo' Si 9 . 7 ~  lo7 pm.hil 2.05 
Linear 3.71 x lo6 prn.hi1 2.00 

<loo> Si 
Parabolic 
< I l l >  Si 

Linear 
< I l l >  Si 
Parabolic 386 pm2.hi' 0.78 772 pm2.hr-' 1.23 

Table 15.1. Do coefficient values and activation energy EA for wet and dry oxygen for 
different types of silicon. [Jaeger 1988.1 

15.2.4. Oxide thickness characterization 
The accurate measurement of the thickness of a dielectric film such as 
silicon dioxide is very important in the fabrication of optoelectronic devices. 
Various techniques are available for measuring this oxide thickness, 
including optical interference, ellipsometry, capacitance, and the use of a 
color chart. 

The optical interference method is a simple and nondestructive 
technique, which can be used to routinely measure thermal oxide thickness 
from less than 100 to more than 1 pm. The method is based on 
characterizing the interference pattern created by light reflected from the 
air/Si02 interface and that from the Si/Si02 interface, as illustrated in 
Fig. 15.5. 

The equation governing this interference is: 

where Xo is the thickness of the oxide, A is the wavelength of the 
incident radiation, g the order of the interference, and Aq is the net phase 
shift and is equal to qs-qo where qo is the phase shift at the air/Si02 interface 
and qs is the phase shift at the Si/Si02 interface. The parameter n *  is given 
by: 

Eq. ( 15.25 ) n* = 4;' n. -sin2 8 
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where iii is the refractive index of the oxide film and 8 is the angle of 

incidence of the light relative to the wafer. All these parameters are 
illustrated in Fig. 15.5. 

+phase shift p, 

/ ;phase shift 

I Si wafer 

Fig. 15.5. Optical interference method for the measuretnent of oxide film thickness. Two rays 
of light with the same wavelength are shown incident on the wafer. One of them is reflected 

from the oxide-air interface. The other enters the oxide layer which has a drfferent refractive 
index than air and is reflected at the oxide-silicon interface. A drfference in optical path 

occurs between these two rays of light and a phase shlft drfference results. I f the phase shift 
dfference is an integer multiple of 27r, these two reflected rays of light interfere 

constructively, whereas i f the phase shift dflerence is a half integer multiple of 2iq these rays 
interfere destructively. 

The second method for the measurement of the oxide film thickness is 
ellipsometry. Ellipsometry is the most popular technique used to assess the 
properties of silicon dioxide films. Ellipsometry provides a non-destructive 
technique for accurately determining the oxide thickness, as well as the 
refractive index at the measuring wavelength. An illustration of an 
ellipsometry system is shown in Fig. 15.6. It is the most widely used tool to 
measure the refractive index of a wide variety of materials on any substrate, 
in particular SiOz, Si3N4, photoresist, and aluminum oxide (A1203) on silicon 
substrates. Such systems can measure film thickness in the range of 20 A to 
60,000 A with an accuracy of *2 %. An ellipsometer operates by shining 
polarized monochromatic light onto the wafer surface at an angle. The light 
is then reflected from both the oxide and the silicon surface. A phase 
modulation unit, numerical data acquisition and processing system work 
together to measure the difference in polarization. The result is then used to 
calculate the oxide thickness. 
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Fig. 15.6. A typical ellipsometer system, including a light source and its power supply, a 
sample stage, a detector and the analyzing circuits. 

The third oxide film thickness measurement technique is the capacitance 
method, which requires the fabrication of a metal-oxide-semiconductor 
(MOS) capacitor. The oxide thickness is given by the following equation: 

X o  = 
A, &ox &o 

C o x  

where Cox is the experimentally measured oxide capacitance, A, is the 
area of the capacitor, is the dielectric constant of the oxide film, and E, 

the permittivity in vacuum. 
Finally, the fourth and simplest method used to measure an oxide film 

thickness is by comparing the film color with a calibrated chart as shown in 
Table 15.2 for SiOz. Each oxide thickness has a specific color when it is 
viewed under white light perpendicular to its surface. The colors are 
cyclically repeated for different orders of reflection. 
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Film 
thickness Color 

(elm) 
Tan 
Brown 
Dark violet to red violet 
Royal blue 
Light blue to metallic blue 
Metallic to very light yellow green 
Light gold to yellow, metallic 
Gold with slight yellow orange 
Orange to melon 
Red violet 
Blue to violet blue 
Blue 
Blue to blue green 
Light green 
Green to yellow green 
Yellow green 
Green yellow 
Yellow 
Light orange 
Carnation pink 
Violet red 
Red violet 
Violet 
Blue violet 
Blue 
Blue green 
Green (borad) 
Yellow green 
Green yellow 
Yellow to "yellowish" 
Light orange or yellow to pink 
borderline 
Carnation pink 
Violet red 

Film 
thickness Color 

(elm) 
0.68 Bluish 
0.72 Blue green to green 
0.77 "Yellowish" 
0.80 Orange 
0.82 Salmon 
0.85 Dull, light red violet 
0.86 Violet 
0.87 Blue violet 
0.89 Blue 
0.92 Blue green 
0.95 Dull yellow green 
0.97 Yellow to "yellowish" 
0.99 Orange 
1.00 Carnation pink 
1.02 Violet red 
1 .O5 Red violet 
1.06 Violet 
1 .O7 Blue violet 
1.10 Green 
1.1 1 Yellow green 
1.12 Green 
1.18 Violet 
1.19 Red violet 
1.2 1 Violet red 
1.24 Carnation pink to salmon 
1.25 Orange 
1.28 "Yellowish" 
1.32 Sky blue to green blue 
1.40 Orange 
1.45 Violet 
1.46 Blue violet 

1.50 Blue 
1.54 Dull vellow green 

-- 

Table 15.2. SiOI oxide film color chart. 
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Example 
Q: Using the Deal-Grove oxidation model, calculate the 

time needed to grow a 150 nm thick oxide on top of 
(100) silicon by wet oxidation at a temperature of 
1000 "C. 

A: T=1000 "C=1273 K 
From Table 15.1 we obtain the value of the pre- 
exponential factor ~ o = 3 . 7  1 x 1 o6 prn.hi1 (linear 
oxidation) and EA=2.00 eV. Using Eq. ( 15.23 ) we 
determine the diffusion coefficient D and then the ratio: 
B I A = 3.71 x lo6 exp[-2.001(8.617 x 10-~)(1273)] 

From Table 15.1 we obtain Do=772 pm2.hi' (parabolic 
oxidation) and EA=1.23 eV. Using Eq. ( 15.23 ) we 
calculate D and then the value for B: 

B = 772exp[-l.Bl(8.617 x 10-5)(1273)] 

We can find the necessary oxidation time by using 
Eq. ( 15.17 ), which when rearranged becomes: 

xo2 xo t = -  +--Z 
B B I A  

Since we are using wet oxidation, x=O so z=0, 

Therefore, 5.5 hours is needed to grow a 150 nm thick 
oxide layer on (100) silicon using wet oxidation at 
1000 "C. 

15.3. Diffusion of dopants 

In section 7.6, we discussed doping as a means to control the electrical 
properties in semiconductors. Doping is achieved by replacing the 
constituting atoms of the semiconductor with atoms which contain fewer or 
more electrons. Through doping, the crystal composition is thus slightly 
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altered so that it contains either a higher concentration of electrons or holes, 
which makes the semiconductor n-type orp-type, respectively. 

The doping of semiconductors can be performed during the bulk crystal 
or epitaxial film growth (Chapter 12) by introducing the dopant along with 
the precursor chemicals. This way, the entire crystal or film is uniformly 
doped with the same concentration of dopants. Another method consists of 
carrying out the doping after the film deposition by performing the diffusion 
or the implantation of dopants. These have the advantage that the doping can 
be localized to certain regions only, by using an adequate mask to prevent 
the doping in undesired areas. In this section, we will focus on the diffusion 
of dopants and we will illustrate our discussion with the doping of silicon. 

The diffusion of dopants in compound semiconductor epitaxial films 
generally follows a similar model. However, the effects of diffusion doping 
in compound semiconductor heterostructures are subtler and have been 
discussed in detail in specialized texts [Razeghi 19891. 

15.3.1. Diffusion process 
The concept of diffusion has been briefly introduced in section 8.5. 
Diffusion is the process whereby a particle moves from regions of higher 
concentrations to regions of lower concentrations. The process could be 
visualized by thinking of a drop of black ink dropped into a glass of clean 
water. Initially, the ink stays in a localized area, appearing as a dark region 
in the clean water. Gradually, some of the ink moves away from the region 
of high concentration, and instead of there being a dark region and a clean 
region, there is a graduation of colors. As time passes, the ink spreads out 
until it is possible to see through it. Finally, after a very long time, a steady 
state is reached and the ink is uniformly distributed in the water. The 
movement of the ink from the region of high concentration (ink drop) to the 
region of low concentration (the rest of the glass of water) is an illustration 
of the process of diffusion. 

In the doping of silicon by diffusion, the silicon wafer is placed in an 
atmosphere containing the impurity or dopant to incorporate. Because the 
silicon does not initially contain the dopant in its lattice, we are in the 
presence of two regions with different concentrations of impurities. At high 
temperatures (900 to 1200 "C), the impurity atoms can move into the crystal 
and diffusion can therefore occur, as schematically illustrated in Fig. 15.7. 

The wafers are loaded vertically into a quartz boat and put into a furnace 
similar to the furnace used for oxidation. There are three types of sources to 
be used for the dopant atoms: solid, liquid, and gas, as shown in Fig. 15.8. 
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topant atoms 
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diffusion 

X 

Fig. 15.7 Diffusion of dopants in a silicon wafer. The wafer is placed in an atmosphere 
containing the dopant. The gradient of dopant concentration between the atmosphere and the 

silicon crystal leads to their dtffusion into the silicon. 

Quartz tube 

4 

source 

Exhaust 
Quartz tube 

1 

Liquid dopant source 

Exhaust 
Quartz tube 

4 

Fig. 15.8. Diffusion furnaces. (a) solid source diffusion with the source in a platinunz source 
boat, (b) liquid source diffusion with the carrier gaspassing through the bath, and (c) gas 

source d~ffusion with gaseous impurity sources. 
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There exist several types of diffusion mechanisms. An impurity can 
diffuse into an interstitial site in the lattice and can move from there to 
another interstitial site, as shown in Fig. 15.9(a). We then talk about 
interstitial diffusion Sometimes a silicon atom can be knocked into an 
interstitial site, leaving a vacancy in the lattice where a diffusing dopant 
atom can fit, as shown in Fig. 15.9(b). A third possible mechanism consists 
of a dopant directly diffusing into a lattice vacancy (Fig. 15.9 (c)). We then 
talk about substitutional diffusion. It is only in the cases that an impurity 
occupies a vacated lattice site that n-type or p-type doping can occur. The 
presence of such vacancies in the lattice can be due to defects or to heat 
which increases atomic vibrations (Chapter 5), thus giving enough energy to 
the silicon atoms to move out of their equilibrium positions into interstitial 
sites. 

Fig. 15.9. Three possible diffusion mechanisms in a silicon wafer: (a) an impurity moves 
from one interstitial site to another, (b) a silicon atom is knocked into an interstitial site, thus 

leaving a vacancy which can be occupied by a diffusing impurity, (c) an impurity diffuses 
directly into a vacancy. 

There are many different types of impurities that can be used for 
diffusion, the most common being boron, phosphorus, arsenic, and 
antimony. Table 15.3 lists the reactions for the materials for the three 
different types of diffusion sources. 

The rate at which the diffusion of impurities takes place depends on how 
fast they are moving through the lattice. This phenomenon is quantitatively 
characterized by the diffusion coefficient of the impurity in silicon. 
Table 15.4 lists diffusion coefficient values for common impurities in 
silicon. We can then model the diffusion process by combining Fick's first 
and second law of diffusion: 
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Impurity Type Reaction 

Solid 2(CH303)B + 902 .) B203 + 6C02 + 9H20 

Boron Liquid 4BBr3 + 302 I) 2B2O3 + 6Br2 

Gas 2B203 + 3Si .) 4B + 3Sio2 

Solid 2P205 + 5Si .) 4P + 5Sio2 

Phosphorus Liquid 4POC13 + 302 .) 2P205 + 6C12 

Gas 2PH3 + 402 3 P2O5 + 3H20 

Arsenic Solid 2As203 + 3Si * 3Si02 +  AS 

Antimony Solid 2Sb203 + 3Si + 3SiO2 + 4Sb 

Table 15.3. Diffusion reactions for common impurity types. 

Element DO (cm2.s") EA (eV) 

Table 15.4. Diffusion coeflcient and activation energy values for common impurities in 
silicon. 

The technology of diffusion in semiconductor processing consists of 
introducing a controlled amount of chosen impurities into selected regions 
of the semiconductor crystal. To prevent the diffusion of dopants in 
undesired areas, it is common to use a dielectric mask such as Si02 to 
selectively block the diffusion as show in Fig. 15.10. Fig. 15.1 1 shows a plot 
of the minimum mask thickness needed for a given diffusion time for boron 
and phosphorus diffusion. 
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Si wafer 

Fig. 15.10. Schematic illustration of the selective diffusion in a silicon wafer. The SiOz layer 
acts as a blocking layer for the diffusion of dopant atoms. Some dopant atoms can diffuse 

laterally under the blocking layer to some extent. 

- 
- Roron - . - 

. -- Phosphorus 4 0  - 
,100 0  , 

',:c 0 

0  OQ ' 
0  y 0& ' 0 -- 

0 
/ / ,005 ' 0 

/ 0  
' ' u C ~  

' 0  
- 

/ 
0 @, ' - - 

/ ' 0  ' 0  
/ / 

- 

/ / 0 
0  

- 
0  0 0 

/ 0 E 0 ' 
+3 - 0 0  0 
. - ,- ' 0 
5 - 0 0 

0 / 

- - - - 

Fig. 15.11. Minimum S i O  mask thickness needed for successful diffusion of boron and 
phosphorus in silicon for a given temperature and time. [JAEGER, RICHARD C., 

INTRODUCTION TO MICROELECTRONICS FABRICATION: VOLUME 5 OF MODULAR 
SERIES ON SOLID STATE DEVICES, 2"" Edition, O 2002, p.53. Reprinted by permission of 

Pearson Education, Inc., Upper Saddle River, NJJ  

There are two major techniques for conducting diffusion, depending on 
the state of the dopant on the surface of the wafer: (1) constant-source 
diffusion, also called predeposition or thermal predeposition, in which the 
concentration of the desired impurity at the surface of the semiconductor is 
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kept constant; and (2) limited-source diffusion, or drive-in, in which a fixed 
total quantity of impurity is diffused and redistributed into the 
semiconductor to obtain the final profile. 

15.3.2. Constant-source diffusion: predeposition 
During predeposition, the silicon wafer is heated to a specific temperature, 
and an excess of the desired dopant is maintained above the wafer. The 
dopants diffuse into the crystal until their concentration near the surface is in 
equilibrium with the concentration in the surrounding ambient above it. At a 
given temperature, the maximum concentration that can be diffused into a 
solid is called the solid solubility. Having more dopants available outside 
the solid than can enter the solid guarantees that solid solubility will be 
maintained during the predeposition. For example, the solid solubility of 
phosphorus in silicon at 1000 "C is 9 x 1 0 ~ ~  atoms/cm3, while for boron in 
silicon at the same temperature it is only 2x loz0 atoms/cm3. These values 
only depend on the temperature, for a given dopant in a given 
semiconductor. As a result, the substrate temperature also determines the 
concentration of the dopant at the surface of the crystal wafer during 
diffusion. 

Under predeposition conditions, let us denote No the dopant 
concentration in the wafer near the surface. No would be equal to the solid 
solubility of the dopant at the predeposition temperature if the excess dopant 
in the ambient above the wafer is sufficient. The concentration of dopant in 
the crystal at a depth x below the surface and after a diffusion time t can be 
known and is equal to: 

where D is the diffusion coefficient of the dopant at the predeposition 
temperature and erfc refers to the complementary error function. The 
complementary error function is found by complementing the integral of the 
normalized Gaussian function, and is shown in Fig. 15.12: 

The shape of the dopant concentration function is shown in Fig. 15.13 
for several values of the product Dt. We see that, as the diffusion coefficient 
increases or, equivalently, as the diffusion time increases, the dopant reaches 
deeper into the crystal. The surface concentration remains the same at No. 
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The concentration NB represents the background carrier concentration and 
refers to the concentration of majority carriers in the semiconductor before 
diffusion. The value of x for which N(x,,t) is equal to NB is conventionally 
termed the junction depth. 

Normalized distance from surface,? 

Fig. 15.12. Complementary error function, used in the calculation of the dopant 
concentration. [JAEGER, RICHARD C., INTRODUCTION TO MICROELECTRONICS 
FABRICATION: VOLUME 5 OF MODULAR SERIES ON SOLID STATE DEVICES, 2nd 

Edition, O 2002, p. 71. Reprinted by permission of Pearson Education, Inc., Upper Saddle 
River, NJ.] 
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The total amount of impurities Q introduced per unit area, also called the 
dose, after a diffusion duration t in a predeposition process is found by 
integrating the function in Eq. ( 15.26 ) for values ofx>O, which leads to the 
following expression: 

Fig. 15.13. Graph of the complementary error function, representing the dopant 
concentration in the crystal during predeposition, where the surface concentration is kept 
constant, for several values of Dt: Djtj>D2tz>Dltl AS the diffusion coeflcient and/or the 

diffision time is increased, the dopant reaches deeper into the crystal. 

15.3.3. Limited-source diffusion: drive-in 
Unlike predeposition, the drive-in diffusion process is carried out with a 
fixed total amount of impurity. This method allows us to better control the 
resulting doping profile and depth, which are important parameters in the 
fabrication of semiconductor devices. 

During drive-in, the parameters which can be controlled include the 
duration of diffusion, the temperature, and the ambient gases. The dopant 
concentration profile of the drive-in has the shape of a Gaussian function, as 
shown in Fig. 15.14. In this type of diffusion, the dose remains constant 
causing the surface concentration to decrease. This relationship explains the 
shape of the curve, which can be expressed by solving Eq. ( 15.28 ) and 
using the boundary condition that the impurity concentration at the surface 
is equal to the dose: 
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which is expressed in units of atoms per unit volume. D is the diffusion 
coefficient of the impurity at the drive-in temperature and t is the drive-in 
time. The drive-in can be performed after a predeposition step, in a high 
temperature diffusion furnace once the excess dopant remaining on the 
surface of the wafer from the predeposition step has been removed. In this 
case, Q is the total dose introduced into the crystal during a predeposition 
step. 

The limited-source diffusion process is ideally suited when a relatively 
low value of surface concentration is needed in conjunction with a high 
diffusion depth. Typically, a short period of constant-source diffusion is 
followed by a period of limited-source diffusion. Predeposition is used to 
establish the dose into a shallow layer of the surface creating a diffusion 
front. Then the drive-in step moves this diffusion front to the desired depth. 

Fig. 15.14. Dopant concentration in the crystal during drive-in for several values of Dt: 
D3t3>D2t2>Dltl. AS the diffision coeflcient and/or the diffusion time is increased, the dopant 
reaches deeper into the crystal. At the same time, the concentration at the surface is reduced 

because the drive-in is a limited-source diffision process. 

15.3.4. Junction formation 
When diffusing p-type impurity dopants in an originally n-type doped 
semiconductor, a p-n junction can be formed, as shown in Fig. 15.15. In 
fact, the purpose of most diffusion processes is to form a p-n junction by 
changing a region of an n-type semiconductor into a p-type or vice versa. 

Let us consider the example of an n-type doped silicon wafer which 
exhibits a background concentration NB, and a p-type diffusing impurity 
with surface concentration No. Where the diffusing impurity profile 
concentration intersects the background concentration NB, a metallurgical 
junction depth, xj, is formed as shown in Fig. 15.15. 
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Fig. 15. Illustration of the formation of a p-n junction through diffusion. A p-type dopant 
is diSfused into an n-type semiconductor which has a background concentration of Ng Thep- 
type dopant concentration profile after diffusion is shown in the top graph. The p-n junction 

will occur where the p-type dopant concentration is equal to the n-type background 
concentration as shown on the bottom graph. 

At the metallurgical junction depth, the background concentration is 
equal to the surface concentration, so the net impurity concentration is zero. 
In the predeposition process with a complementary diffusion profile, the 
junction depth is found by solving Eq. ( 15.26 ) and using the boundary 
condition that N(xj,t)=NB: 

Eq. ( 15.29 ) xj = 2 Dt rfc-' - (J-le [:) 
where erfc-' refers to the reciprocal function of the complementary error 

function. In the drive-in process with a Gaussian diffusion profile, the 
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junction depth is found by solving Eq. ( 15.28 ) and using the boundary 
condition that N(xj,t)=NB: 

Eq. ( 15.30) xj = 2  Dtln - 173 
By successively diffusing two impurities of different types into an 

originally doped wafer, more complex structures can be achieved, such as 
for example an n-p-n transistor structure as illustrated in Fig. 15.16. The 
starting wafer would be an n-type (with a background concentration Nc in 
this example), the first diffusion process would introduce p-type dopants (NB 
in this example) and the second diffusion would introduce n-type impurities 
(NE) such that NE> >NB>>NC. 

Example 
Q: Calculate the dose for a boron diffusion process at 

1000 OC for 30 minutes using an n-type silicon substrate 
with a concentration of 1019 cm". 

A: T=1000 OC=1273 K 
t=30 min=1800 s 
From Table 15.4, boron has diffusion coefficient value 
Do=10.5 cm2.s-' and activation energy EA=3 .69 eV. 
Using Eq. ( 15.23 ), the diffusion coefficient becomes 

D = 10.5exp[-3.69/(8.617 x 1 0 - ~ e ~ ) ( 1 2 7 3 ~ ) ]  

= 2.5822 x 10-'~crn~.s-~ 
From Eq. ( 15.27 ), 

Q = (1019),/(4x 2 . 5 8 2 2 ~  lo-" x 1 8 0 0 ) l ~  
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Fig. 15.16. Illustration of the formation of an n-p-n transistor through dffusion. P-type 
dopants are first diffused into an n-type senliconductor to form the first junction. N-type 

dopants are subsequently dffused to form the secondjunction. 

15.4. Ion implantation of dopants 

Another technique to introduce dopants into a semiconductor wafer is 
through ion implantation. This technique is actually a direct alternative to 
the thermal predeposition described previously, and can be followed by a 
drive-in diffusion step. 

The ion implantation process selects ions of a desired dopant, 
accelerates them using an electric field to form a beam of ions, and scans 
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them across a wafer to obtain a uniform predeposition dopant profile inside 
the crystal. The energy imparted to the dopant ion determines the ion 
implantation depth. Using this technique, a controlled dose of dopant 
impurities can be introduced deep inside the semiconductor. This is in 
contrast to diffusion, where the dose of dopant is introduced only at the 
wafer surface. In addition, like diffusion, it is possible to conduct the ion 
implantation in only certain well-defined areas of the wafer by using an 
appropriate mask. This method yields reproducible and controlled dopant 
concentration for semiconductor devices. 

We can choose to perform selective implantation, in which regions are 
selectively implanted with accelerated ions by using a patterned layer of 
material such as silicon dioxide or photoresist, as shown in Fig. 15.17. 

dopant ions 

T T T T T T T T T T T T T T Y  
S I O ,  or photores~st 

block~ng layer . . . . . . . . 
Si wafer 

non non 
~mplanted implanted reglon ~mplanted 

reglon reglon 

Fig. 15.17. Method of masking during ion implantation. The SiO, or photoresist layer acts as 
a blocking layer for the implantation of dopant atoms. In this process, no dopant atom can be 

found under the blocking layer f i t  is thick enough. 

15.4.1. Ion generation 
The first requirement of an ion implantation system is to generate ions of the 
desired species, accelerate them and direct them onto the wafer. A schematic 
of a typical ion implantation system is shown in Fig. 15.18. The dopant 
often comes in a gaseous form, and their ions are generated by heating them 
with a hot filament. These ions are then accelerated through an electric field. 
A magnetic field then curves the beams of ions and separates the ions, 
according to their atomic masses and charges, through a preset angle and 
output aperture. The selected ions are then further accelerated using an 
electric field. The beam is collimated and focused before striking the target 
wafer and penetrating the crystal lattice. An x-y rastering mechanism 
ensures that a large area of the sample is scanned by the ion implantation 
beam. 
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Fig. 15.18. Schematic of a typical ion implantation equipment, including an ion source ( I ) ,  a 
primary acceleration and an analyzing magnet (2), an acceleration tube (3), a collimating 

and rastering magnets (4). and the sample to be implanted. [JAEGER, RICHARD C., 
INTRODUCTION TO MICROELECTRONICS FABRICATION: VOLUME 5 OF MODULAR 

SERIES ON SOLID STATE DEVICES, 2"" Edition, O 2002. Reprinted by permission of 
Pearson Education, Inc., Upper Saddle River, NJ.] 

15.4.2. Parameters of ion implantation 
There are four major parameters to be controlled during ion implantation: 
the energy of the ions that reach the wafer, the dose Q of the dopant (the 
total number of ions that reach the wafer per unit of area), and the depth and 
width of the resulting implanted dopant profile. 

The energy of the ions is directly controlled by the voltage used to 
accelerate them. It is easily understood that more energetic ions will 
penetrate deeper into the crystal, and potentially cause more physical 
damage than less energetic ones. 

Because the selected ions all carry the same electrical charge, by 
measuring the electrical current carried by the ion beam (amount of 
electrical charge flowing per unit time), we can directly determine the dose. 
Mathematically, the latter is related to the ion beam current I through: 

where q is the elementary charge, A is the implanted area and t is the 
duration of the ion implantation. For example, a 100 pA beam current of 
single ionized ions swept across a 200 cm2 area for 60 seconds yields a dose 
equal to: 
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= 1.875 1014 dopants per cm 2 

By controlling the beam current and the implantation time, values of Q 
between 5 x 1 o9 and 5 x 10" can typically be achieved. This range of 
available doses is wider than that obtainable with thermal predeposition. It is 
therefore possible to reach doping profiles unobtainable by any other means. 
If the dopants were distributed uniformly over a depth of 50 nm, the dopant 
concentration could be controlled between values of 10" and lo2' dopants 
per cm3. 

The depth and width of the resulting implanted doping profile can be 
represented by the projected range and straggle, as will be discussed in the 
next sub-section. 

15.4.3. Ion range distribution 
The dopant concentration profile after implantation follows a Gaussian 
distribution as illustrated in Fig. 15.19. As seen in the figure, the peak 
concentration N, is found at a certain depth called the projected range R,. 
The projected range measures the average penetration depth of the ions. 

Fig. 15.19. Gaussian distribution for the concentration profile of implanted ions. The 
distribution is determined by its projected range, denoted R,, corresponding to the peak 

concentration, and its straggle denoted by AR,. 

The depth at which the ions are implanted is mainly determined by the 
energy and the atomic number of the ions, as well as the atomic number of 
the substrate material. This can be easily understood because, as an 
impinging ion penetrates the semiconductor, it undergoes collisions with 
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atoms and electrical repulsion with the surrounding electrons. The distance 
traveled between collisions and the amount of energy lost per collision are 
determined by a random process. Hence, even though all the ions are of the 
same type and have the same incident energy, they do not necessarily yield 
the same implantation depth. Instead, there is a distribution of depths 
represented by a standard deviation, called the straggle ARp. Using 
Fig. 15.20, the impurity concentration at a given depth x can be found if the 
acceleration energy EA is known: 

Eq. ( 15.32 ) ~ ( x )  = Np exp [ - " l - ' ]  

For a Gaussian distribution shown in Fig. 15.19, the full width at half- 
maximum, denoted 4, is given by: 

The implanted dose can be determined by integrating Eq. ( 15.32 ) over 
all the possible depths inside the crystal: 

Example 
Q: Find the full width at half-maximum for the ion- 

implantation using boron with an acceleration energy of 
100 keV. 

A: From Fig. 15.20, we obtain the normal straggle 
ARp=0.07 pm. Using Eq. ( 15.33 ), 

M P = (24=(0.07) = 0.1648 pm 
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Fig. 15.20. (a) Projected range and (b) normal and transverse straggle for the ion- 
implantation of boron, phosphorus, arsenic, and antimony impurities for a given acceleration 

energy. [JAEGER, RICHARD C., INTRODUCTION TO MICROELECTRONICS 
FABRICATION: VOLUME 5 OF MODULAR SERIES ON SOLID STATE DEVICES, 2"" 

Edition, O 2002, p. 113. Reprinted by permission of Pearson Education, Inc., Upper Saddle 
River, NJ.] 
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15.5. Characterization of diffused and implanted layers 

Two parameters are of interest in assessing the properties of diffused or 
implanted layers and junctions: their electrical resistivity, junction depth, 
and impurity concentration. A number of techniques are available for 
evaluating each of these parameters. 

15.5.1. Sheet resistivity 
In sub-section 8.2.1, we introduced the resistivity of a crystal as being a 
local property which is related to the concentration and mobility of the 
majority carriers. In diffused or implanted layers, we are not interested in 
the values of the resistivity, because the carrier concentration is not uniform 
in space as shown in the profiles in Fig. 15.13 and Fig. 15.14. Rather, we are 
interested in the sheet resistivity, a quantity which can be directly measured. 
In order to visualize the physical meaning of this parameter, let us consider 
a parallelepiped semiconductor bar with a length L, a width W and a 
thickness H as shown in Fig. 15.21. 

Fig. 15.21. Geometry used in determining the resistance of a block of material having 
ungorrn resistivity. When the current is flowing in the direction shown, the resistance in this 
direction is proportional to the length I, and inversely proportional to the cross-section area 

WH. 

We know from Eq. ( 8.11 ) that the resistance of this block for a current 
flowing in the direction of the shown arrow is given by: 

where p is the resistivity of the material, assumed to be uniform in this 
case. The sheet resistivity is a quantity which does not take into account the 
thickness of the layer, and is defined as the resistivity divided by the 
thickness: 
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P Eq. ( 15.36 ) R, = - 
H 

and expressed in units of "ohm per square" or R /  . In practice, because 
the thickness of the conducting layer is not always known during 
experiments, the sheet resistivity is the quantity that is actually measured, 
and the bulk resistivity is calculated subsequently. 

One of the measurement methods for the sheet resistivity is the linear 
four-point probe method as shown in Fig. 15.22. It consists of placing four 
equally spaced probes on the surface of the wafer in a linear manner. The 
probe spacing s is typically on the order of either 1000 or 1250 pm. By 
sending a fixed current I through the two outer probes and measuring the 
voltage V across the two inner probes, we can determine the resistivity, in 
units of R.m, given by the following expression: 

Sheet resistivity can then be determined from Eq. ( 15.37 ) as: 

Fig. 15.22. An in-line four-point probe. Four equally spaced probes are placed on the 
surface ofthe wafer in a linear manner. A fixed current is sent through two of the outer 

probes and the voltage measured between the two inner probes gives a value for the sheet 
resistivity of the material. 

Another method to measure the sheet resistivity of doped layers is van 
der Pauw method which can be used for any arbitrarily shaped sample of 
material by placing four contacts on its periphery as shown in Fig. 15.23(a). 
Square shaped test areas with contact regions at the four corners are usually 
preferred and are prepared by lithographic techniques as shown in 
Fig. 15.23(b). 
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Fig. 15.23. A simple van der Pauw test structure. (a) Four contacts are placed at the 
periphery of any arbitrarily shaped sample and can be used to determine the resistivity of the 
material. (b) It is generally preferred to use a square shaped sample, which can be obtained 

by etching away undesired areas offthe original sample. 

In this configuration, a current is injected through one pair of the 
contacts and the voltage is measured across the remaining pair of contacts. 
Repeating these measurements for another pair, we are then able to define 
two resistances such as for example: 

These resistances are related by the following equation relation: 

where R, is the sheet resistivity of the semiconductor layer. This 
expression allows us to implicitly determine the sheet resistivity of the 
sample, and thus the bulk resistivity if the layer thickness is known. For a 
symmetrical measurement geometry, the two resistances in Eq. ( 15.39 ) are 
equal and Eq. ( 15.40 ) yields a simple expression: 
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15.5.2. Junction depth 
The junction depth xi is defined as the distance from the top surface within 
the diffused or implanted layer at which the dopant concentration equals the 
background concentration. There exist two methods to measure the junction 
depth: the groove and stain method and the angle-lap method. 

In the groove and stain method, a cylindrical groove is mechanically 
ground into the surface of the wafer as shown in the cross-section schematic 
in Fig. 15.24. A chemical stain creates a color contrast between the 
differently doped layers, thus revealing the junction. 

P-type 

n-type 

Fig. 15.24. Cross-section illustration of the junction depth measurement by the groove and 
stain technique. A cylindrical groove is mechanically ground into the surface ofthe wafer. A 
chemical stain creates a color contrast between the d~yerently doped layers, thus revealing 

the junction. 

Through purely geometrical arguments, the junction depth can be found 
to be equal to: 

For R>>a and b, this expression can be simplified into: 

Eq. (15.43)  xi = (a2 - b2)  

2R 

In the angle-lap method, a piece of the wafer is mounted on a special 
fixture which permits the edge of the wafer to be lapped at an angle between 
1 and 5" as shown in Fig. 15.25. The sample is then stained with, for 
example, a 100 ml hydrofluoric acidlnitric acid solution. Once stained, the 
sample is observed under a collimated monochromatic light at normal 
incidence. 

An interference pattern can be observed through a cover glass, and the 
junction depth may be calculated by counting the interference fringes and 
then applying the equation: 
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Nil 
Eq. ( 15.44) x , ~  = d t a n B = -  

2 

where 6' is the angle of the etched lap, il is the wavelength of the 
monochromatic light and N is the number of fringes. 

monochromatic light (A) 

n-type 

Fig. 15.25. Junction depth measured by the angle-lap method. A piece of the wafer is 
mounted on u specialfixture which permits the edge of the wafer to be lapped at an angle. 
The sample is then stained and then observed under a collimated monochromatic light at 
normal incidence. An interference pattern can be observed through a cover glass and the 

junction depth can be calculated by counting the number of interference fringes. 

15.5.3. Impurity concentration 
There are many ways to measure the impurity concentration of a sample, but 
one of the most common techniques is Secondary Ion Mass Spectroscopy 
(SIMS). A schematic representation of the experimental setup is shown in 
Fig. 15.26. SIMS is a destructive characterization technique that operates 
with a highly energetic beam of ions hitting the sample, causing the 
sputtering or ejection of atoms from the sample material. Some of these 
ejected atoms are charged ions, or secondary ions. A mass spectrometer then 
separates and collects the secondary ions. The number of collected 
secondary ions then allows a detector to determine the material composition. 
An example plot of the impurity concentration information obtained from 
SIMS is shown in Fig. 15.27. 

SIMS is an excellent technique for identifying all types of elements, 
unlike other measurement resources. One disadvantage to the SIMS 
measurement is the sensitivity of the technique. The sensitivity can be 
affected by the built-up charge from the sputtering process, type of ion 
beam. Another disadvantage to SIMS is the limitation of the beam area that 
hits the sample. 
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Fig. 15.26. Secondary Ion Mass Spectrometer. Low energy ion-beam hits the sample surface 
and atoms sputter offof it. The atoms are then ionized and sent through a mass spectrometer, 
where secondary ions are collected. The mass spectrometer identifies the atomic species and 
then the detector uses these secondary ions to determine the profile as a function of depth. 

Fig. 15.27. Secondary Ion Mass Spectroscopy plot measuring the impurity concentration as a 
function of depth for ion implantation ofphosphorus into silicon. [From 

http://www.me.ust.hW-mejswu/MECH343/343SIMS.pdJ] 

15.6. Summary 

In this Chapter, we have reviewed a few of the steps involved in the 
fabrication of semiconductor devices, including oxidation, diffusion and ion 
implantation. Although the discussion was primarily based on silicon, the 
concepts introduced are applicable for the entire semiconductor industry. 

We described the oxidation experimental process, mathematically 
modeled the formation of a silicon oxide film, discussed the factors 
influencing the oxidation and reviewed the methods used to characterize the 
oxide film. The diffusion and ion implantation of impurity dopants in silicon 
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to achieve controlled doping in selected areas of a wafer was described, 
along with the resulting dopant concentration profiles inside the 
semiconductor. The predeposition and drive-in conditions of diffusion were 
discussed. Methods used to assess the electrical properties of the diffused or 
implanted layers were reviewed. 
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Problems 

A (100) Si wafer undergoes the following sequence of oxidation steps: 
one-hour dry oxidation at 1100 "C, two-hour wet oxidation at 1000 "C, 
and one-hour dry oxidation at 1100 "C. Calculate the thickness after 
each oxidation step. 

Compare the thickness of silicon dioxide film grown on (100) Si for wet 
and dry oxidation at 1100 "C. Compare the two different orientations 
(100) and (1 11) Si using the same conditions for wet oxidation. 

Calculate the time required to grow 2 pm silicon dioxide on (1 11) 
silicon wafer for wet oxidation at 1050 "C. How long would it take to 
grow an additional 5 pm? 

A silicon oxide layer is grown for 65 minutes at 1100 "C on (1 11) 
silicon by passing oxygen through a 95 "C water bath. How thick an 
oxide layer is grown on the silicon surface? 

A (100) oriented silicon wafer is already covered with a 0.5 pm thick 
oxide film. How long would it take to grow an additional 0.1 pm oxide 
using wet oxidation at 1373 K? Compare the result with the linear 
oxidation law using a rate of B/A=3 pm.hr-I. 

An npn transistor is formed by boron diffusion on an n-type silicon 
wafer with impurity concentration of lo2' ~ m - ~  and doping concentration 
1016 cm". Constant source diffusion is performed for 30 minutes 
followed by limited-source diffusion for 2 hours, both at 1000 "C. Find 
the junction depth after each step. 

What is the required thickness for a Si02 mask used for selective 
phosphorus diffusion. The diffusion was performed at 1000 "C for 3 
hours. 

An impurity is diffused into silicon in the constant-source diffusion case 
with a surface concentration N ~ = I O ' ~  ~ m - ~ .  The diffusion coefficient is 
known to be equal to 2x10-l2 cm2.s-' at 1100 "C with an activation 
energy of 4 eV. A diffusion length of 1 pm is aimed at. (a) After 
diffusion at 1000 "C, what is the total dose diffused in the layer? (b) 
How long must the diffusion last? 
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9. An impurity is diffused into silicon at 1100 OC during 20 minutes. A 
diffusion length of 1 pm is measured and the dose diffused in the 
sample is 2x10'~ atom~.cm'~. Determine the diffusion coefficient. 
Determine the surface concentration, assuming constant-source 
diffusion. 

10. Find the dose in silicon for phosphorus that is implanted with an energy 
of 100 keV with a 0.1 pm Si02 layer and peak concentration of 
1017 ~ m ' ~ .  Find the time required for this implantation onto a 2" wafer 
using 2 pA of current. 

11. Implantation using phosphorus is done such that the implantation peak 
is located at the Si-Si02 interface with an energy of 40 keV. The dose is 
5 . 2 4 ~ 1 0 ' ~  ~ m - ~ ,  and background concentration is 3x10'~ cm". Find the 
minimum oxide thickness required for a masking layer. 

12. Compare the time required for implantation of phosphorus and boron 
with an energy of 75 keV, with a desired peak concentration of 
1018 cm", into a 140 rnrn silicon wafer with 1 pA. 

13. A constant voltage of 5 V is applied to each of the five contact pads on a 
given sample. The location of the pads are at xl=l, x2=5, x3=10, x4=16, 
and x5= 23 pm. The width is the same for each contact and is given as 
1 pm. The thickness is given as 200 pm. Find the contact resistance 
using transmission line measurement if the current is measured as 
II2=20 mA, 123=1 7 mA, 131=10 mA, and Id5=3 mA. 

14. Calculate the resistivity using the van der Pauw method with measured 
current IAB=l mA and Vm=2V. The length L=l mm and width 
W=2 mm. 

15. Assume that an As implant leads to a uniform electron concentration of 
1019 cm" down to a depth of 0.1 pm and a mobility of 100 cm2.v-Is-'. 
Determine the resistivity and the sheet resistivity of the implanted layer. 
If a square van der Pauw pattern with 1 cm side length is used with a 
10 V applied at two adjacent contacts, what current would be measured 
through the other two contacts? 
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16.1. Introduction 

In Chapter 13, we reviewed a few important steps in the process of 
fabricating semiconductor devices, such as oxidation, diffusion and ion 
implantation of dopants. The resulting semiconductor wafer then undergoes 
a series of additional steps before the final device is obtained, which are 
shown in the flowchart in Fig. 16.1. The major ones include lithography, 
etching, metallization and packaging, each of which will be discussed in the 
present Chapter. 

Fig. 16.1. Basic fabrication process flowchart, including the important steps: lithography, 
etching, nretallization, passivation and packaging, which transform a semiconductor wafer 

into a device that can be used in electronic systems. 

r Etching - 

16.2. Photolithography 

- 

Lithography consists of preparing the surface of a semiconductor wafer in 
order to allow the subsequent transfer of a specific pattern. To do so, the 
surface of the semiconductor must be carefully prepared and a film called 
resist is conformally applied onto it. Parts of this resist film will be 
selectively "activated" through a number of processes, while others will be 
left untouched in order to transfer the desired pattern. This is generally 
achieved through what is called mask alignment and exposure. A mask is a 
template which contains the desired pattern to be transferred. Finally, the 
resist is developed to reveal the desired pattern before proceeding to the 
subsequent processing steps. 

There are several types of lithography techniques depending on the 
method used to activate the resist film. The most common form of 
lithography uses ultraviolet light and is called photolithography. This is 
currently the most widely used technique in microelectronics industry and is 
routinely employed to achieve features as small as 0.18 pm. In this section, 
we will describe in detail the photolithography method. 

16.2.1. Wafer preparation 
In the previous Chapters, thin film epitaxy and mechanisms of wafer 
generation were discussed in great detail; as was the process of growing a 

Passivat~on - Packagmg Dev~ce  
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barrier layer, i.e. an oxide layer. Once these difficult steps are completed the 
process of creating a pattern on the surface of the semiconductor wafer can 
now be started. 

The most important step in the lithographic process is the minimization 
of defects caused by particles either falling on the surface prior to epitaxy or 
during the steps of lithography. This is because even the smallest dust 
particulate on a chip would destroy dozens if not hundreds of transistors on 
a state of the art microprocessor. This is the chief reason why semiconductor 
processing is performed in ultra clean facilities, know as a cleanrooms. A 
cleanroom uses sophisticated filtration to remove airborne particulates and 
are rated by the maximum number of particles per volume of air. 

Fig. 16.2. This enlarged image of a grain of salt on a piece of a microprocessor should give 
you an idea of how small and complex a microprocessor really is. [From 

http://www.intel.com/education/inzages/manufacturing/saltpg Reprinted with permission 
from Intel Corporation.] 

Cleanrooms having dust is only half the problem, the other major cause 
of contamination are the workers themselves. The workers in the cleanroom 
must wear special uniforms to minimize the introduction of additional 
contaminants, such as hair, skin flakes, or worse outside world dirt. This 
protective clothing is made from a non-linting, anti-static fabric and is worn 
over street clothes. The final step in minimizing particulate based fabrication 
problems, wafers are chemically cleaned to remove any particles that may 
have adhered to the surface. This is to promote adhesion of the photoresist 
to the surface. 

16.2.2. Positive and negative photoresists 
In photolithography, the resist is called photoresist and it can be of either of 
the two types: positive or negative photoresist, depending on its chemistry 
which determines its property when exposed to light. The photoresist is a 
photosensitive material used to transfer the image from the mask to the 
wafer surface. The quality of the resist plays an important role in the image 
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transfer to a semiconductor wafer. Resists are generally required to maintain 
a usable adhesion, uniformity, etch resistance, thermal stability, and long 
shelf life. Both positive and negative resists are made of complex organic 
molecules containing carbon, oxygen, nitrogen, and hydrogen. They can be 
more or less easily dissolved using a developing solution, depending on the 
amount of light they have been exposed to. 

Let us illustrate the difference between positive and negative 
photoresists by considering the example of a silicon wafer with a thin silicon 
oxide layer and coated with a layer of photoresist, as shown in Fig. 16.3. 

UV light 

mask -. 
-pos~t~ve photoresist 

s ~ l ~ c o n  oxldc laycr 

Silicon wafer I positive resist lithography] 

Slllcon wafer 

Fig. 16.3. Positive resist photolithography process sequence. When using positive resist, the 
exposed regions are dissolved in the developing solution, while the unexposed areas remain 
intact. (a) The positive photoresist is exposed using a source of intense ultraviolet light. (b) 

The wafer is removed from the alignment station and areas exposed are dissolved in a 
solution. In the steps illustrated in (c) through (d), the etch-resistant property of the resist is 
used in the etching of silicon dioxide in the regions which are not protected by the remaining 

photoresist. 

In Fig. 16.3(a), the positive photoresist is exposed using a source of 
intense ultraviolet light such as a mercury arc lamp which alters its chemical 
bonding to make it more soluble where it has been exposed. The wafer is 
removed from the alignment station and developed (Fig. 16.3(b)). The 
exposed regions of the positive photoresist layer are dissolved in the 
developing solution, leaving the unexposed areas intact. In other words, for 
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a positive photoresist, the light from the exposure step increases the 
solubility of the resist in the developing solution by depolymerizing the 
resist material. Following this image-transfer step to the photoresist, the 
image needs to be transferred to the underlying layers. In the steps 
illustrated in Fig. 16.3(c) through (d), the etch-resistant property of the resist 
is used in the etching of silicon dioxide in regions which are not protected 
by the remaining photoresist. If properly selected, the etchant will remove 
the layer of silicon dioxide but will not etch the underlying silicon or the 
layer of photoresist, as shown in the figure. The result of the 
photolithographic process is shown in Fig. 16.3(d) where after the layer of 
resist has been removed, only the patterned layer of silicon dioxide is left. 

By contrast, when using a negative photoresist, it is the unexposed 
regions which are dissolved in the developing solution, leaving the exposed 
areas intact. In other words, in this case, the light from the exposure step 
causes polymerization to occur in the resist, reducing its solubility in the 
developing solution. This is illustrated in Fig. 16.4(a) and (b). The 
remaining sequence of steps is similar to the previous one and is illustrated 
in Fig. 16.4(c) through (d). 

UV hght 

:a,~ktgapp %negative photoresist 
(a> S~hcon wafer Z 

\ . .  
s ~ l ~ c o n  oxide layer 1 

1 negative resist lithography / 

6 final wafer -b 
Silicon wafer 

Fig. 16.4. Negative resist photolithography process sequence. When using negative 
photoresist, the unexposed regions are dissolved in the developing solution, while the 

exposed areas remain intact. The sequence of steps is sindar to that of Fig. 16.3. 
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The choice of a positive or negative photoresist is determined by the 
subsequent sequence of processing steps which need to be performed. 

For either type of photoresist, the following requirements must be met: it 
must adhere well to the wafer surface, its thickness must be uniform across 
the wafer and must be predictable from wafer to wafer, it must be sensitive 
to light so that it can be patterned, and it must not be attacked by the etchant 
for removing the substrate material. The photoresist film is first applied to 
the wafer surface in a yellow light cleanroom environment. In spinning the 
photoresist, a small puddle of resist is first dispensed onto the center of the 
substrate, which is attached to a spindle using a vacuum chuck as shown in 
Fig. 16.5. 

Fig. 16.5. An example ofphotoresist spinner system. The spinner and its control equipment 
are shown in (b). The top diagram (a) illustrates the spinningprocess where a wafer is firmly 
maintained onto a wafer chuck by pulling a vacuum between them. The wafer/chuck block is 

then spun and a drop ofphotoresist is dispensed at the center of the wafer from where it 
coats the wafer with a thin resist film. [Reprinted with permission from Headway Research, 

1nc.1 

The spindle is then spun rapidly, rotating the substrate at several 
thousand revolutions per minute for a certain period of time. The formula 
commonly relating spin speed to final thickness is: 
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K,P Eq. ( 16.1 ) z = 7 

where z is the final resist thickness, P the percentage of solids in the 
resist, w the angular velocity of the spinner, and K, is a constant that is 
different for each resist. 

For example, for a given spinner and photoresist formulation, we know 
that a rotation speed of 4000 rpm gives a resist thickness of 0.7 pm. In order 
to increase the thickness to 0.8 pm, the proper rotation speed w must satisfy 

the relation: iz = g, so that 0.~3062 rpm. 

Once the photoresist is applied a prebake, or a softbake, step is 
performed. Softbaking is used to remove the solvents present in the resist 
and to improve adhesion. Solvents left in the resist film from poor 
softbaking will cause a degraded image to be transferred to the wafer 
surface, because such solvents will be attacked by the developer and cause 
portions of the resist that are to remain to be removed. Properly baked 
wafers will have resist that has the proper amount of resins and 
photosensitizers (positive resist) or inhibitors (negative resist) as determined 
by the manufacturer. Once the prebake is completed the photoresist-covered 
wafer is then ready for mask alignment and exposure. 

16.2.3. Mask alignment and fabrication 
The word photolithography may be loosely defined as "printing with light", 
which is an accurate description of the heart of this processing step. The 
manufacture of semiconductor devices and integrated circuits consists of 
multiple passes through photolithography steps. Each time, it defines the 
region where the subsequent processing step, e.g. doping introduction, 
oxidation, metallization, will have its effect. These multiple passes must be 
aligned using simple marks to help either a computerized aligner or 
fabricator align the new mask with previous mask step. If masks are not 
aligned the whole wafer will be dead because the layers of the multiple 
processes will not be aligned and contacts will not work. 

In photolithography, it is first necessary to produce a mask or 
transparency of the pattern required. Mask making begins with a large-scale 
layout or artwork which is then photographed by large camera to reduce it 
down typically more than a thousand times to the exact size on a master 
plate. Fig. 16.6 shows the sequential steps necessary to create an integrated 
mask. The master plate is used in a precision step-and-repeat printer to 
produce multiple sequential images of the layout on a high-resolution 
photosensitized emulsion glass plate which is later used as the mask in the 
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photolithography process to transfer the layout pattern onto the wafer 
surface. 

\ 
[directed energy beam 

Glass 

(1) Generate pattern 

(2) Develop resist 

pellicle 
I chrome emulsion 

(6) Apply pellicle 

, , width 

(3) Etch chrome emulsion (4) Remove resist ( 5 )  Measure critical dimensions 
& feature placement 

Fig. 16.6. Flow diagram illustrating the realization of a mask which would be later used for 
photolithography. It begins with a large-scale layout or artwork which is then photographed 
by large canlera to reduce it down typically nzore than a thousand times to the exact size on a 

nzaster plate. The master plate is used in a precision step-and-repeat printer to produce 
nzultiple sequential images of the layout on a high-resolution glass plate covered with an 

enzulsion and a resist layer. A pellicle barrier layer is provided in order to ensure the 
integrity of the pattern from particulate. 

The emulsion used on the glass plate is susceptible to scratches, wear 
and tear damage during usage. Alternative materials which withstand wear 
better than emulsion but are also considerably more expensive, such as 
chrome and iron oxide, are sometimes substituted for emulsion. Iron oxide 
masks have the additional advantage of being transparent to the yellow light 
used to visually align the masks, while being opaque to the intense 
ultraviolet light used for the exposure of the resist. Visually, each type of 
mask is a plate of glass with alternate clear and relatively opaque regions as 
shown in Fig. 16.7. 
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Fig. 16.7. Example of an integrated mask. Visually, a mask is a plate of glass with alternate 
clear and relatively opaque regions. ["Figure 7.3", from THE SCIENCE AND 

ENGINEERING OF MICROELECTRONIC FABRICA TION, 2ND EDITION by Stephen A. 
Campbell, copyright O 2001 by Oxford University Press, Inc. Used by permission of Oxford 

University Press, Inc.] 

16.2.4. Exposure 
As mentioned earlier, the exposure to ultraviolet light determines the 
property of the photoresist. It is important to know the sensitivity of the 
resist used and control the amount of light that it receives. In addition it is 
important to know how the light is passing the mask to hit the surface of the 
wafer and the photoresist. This affects not only the size of the image made 
on the wafer but also how long the mask will actually last; an important fact 
to know due to the length of time and expenses required to make the masks. 

There are three main types of printing that are generally used in 
lithography: contact, proximity, and projection; a schematic diagram of 
these methods is shown in Fig. 16.8. 

In contact printing (Fig. 16.8(a)), the mask is placed in direct contact 
with the photoresist. This limits diffraction and is the simplest of the 
techniques to use, but the mask gets worn, the photoresist can be more easily 
contaminated by residue of the mask, and the mask limits the size of the 
images produced. Contact printing has been largely replaced by proximity 
printing (Fig. 16.8(b)); here the mask is held slightly above the wafer. This 
increases the lifetime of the mask and reduces the potential for 
contamination but the air gap increases diffraction as well, the image is still 
determined by the mask dimension size. The third option for optical 
lithography, projection printing (Fig. 16.8(c)) is now the standard used in 
fabrication. This is because in this way one can make images smaller than 
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that which appears on the mask. It is made possible because of the use of 
focus lenses that can shrink the image. This system also allows for larger 
wafers to have multiple projected images placed upon the wafer by scanning 
over the entire wafer. This is done using a method known as step-scan 
processing. While projecting printing allows for reduced contamination like 
proximity printing, it also able to make smaller images than the mask, and is 
only limited by the light's diffraction. 

Contact Proximitv Proiection 
Light , 
Source Source Source 

>+  ens +Lens 

Fig. 16.8. Conceptual hawing  of the three main lithographic printing techniques: cot~tact, 
proximity, and projection. 

16.2.5. Development 
Indeed, if a photoresist film is underexposed, there is a tendency for the 
pattern formation to be incomplete and, in the extreme case, to cause a total 
loss of pattern. For a positive resist which is underexposed, the resist film 
remains intact after development as shown in Fig. 16.9, whereas for a 
negative resist it is completely removed. If the film is overexposed, and a 
positive photoresist is used, then the window openings in the resist are 
slightly larger than the mask dimension as shown below in Fig. 16.9. 

The effects of overexposure also strongly depend on the nature of the 
photoresist used. For a positive resist, the openings are slightly larger than 
the mask dimensions as shown below in Fig. 16.10(a). This is due to 
scattered light penetrating under the mask edges and exposing a small region 
of film not directly irradiated by the light source. Subsequent etching of the 
underlying silicon oxide film accentuates this enlargement, as is shown in 
Fig. 16.10(a). With a negative resist, the window tends to be smaller than 
the mask dimensions (Fig. 16.10(b)). This can be partially compensated later 
by the undercut during the etching of the oxide film. 
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Fig. 16.9. Effect of overexposure and unclerexposure on the profile of a positive photoresist 
layer after development. 
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Fig. 16.10. (a) Effect of overexposure on the dimensions of a positive photoresist layer: the 
opening in the resist layer is larger than the size specified by the mask. When using (b) a 

negative resist, the opening in the resist is smaller than the size specified by the mask. In this 
latter case, this esfect can be balanced by the undercutting which occurs when conducting the 

wet etching of the silicon oxide layer. 

l l l l l 
+ mask 

16.2.6. Direct patterning and I@-ofltechniques 

v v v v v  
overexoosed 

So far, we have described the process of transferring the pattern from the 
photoresist film to the underlying (oxide) layer through etching, i.e. the 
areas which were uncovered were etched away. This method is called direct 
patterning. 

In addition to this traditional method, one can use the lift-off technique 
for depositing and forming patterned metal or dielectric films onto a wafer 
surface. In this method, the photoresist is patterned first, before an 
additional (metal or dielectric) film is applied. Subsequently, by removing 
or "lifting-off' the photoresist, a pattern is achieved in the later deposited 
film. 
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To use lift-off process, the order of photolithography is changed in 
comparison with direct patterning as shown in Fig. 16.1 1 and the sequence 
of steps is summarized as follows: 

direct patterning sequence lijt-ojfsequence 
- Deposit photoresist - Deposit photoresist 
- Softbake - Softbake 
- Alignment/exposure - Alignment/exposure 
- Develop - Postbake 
- Hardbake - Flood exposure 
- Develop 

UV light UV light 

/ +-- mask - photoresist 

metal or 
dielectric laver Wafer 

I- . . I  
3 I Wafer 

I Wafer I 

. I 

Wafer Wafer 7 
Fig. 16.1 I .  Illustration ofthe (a) direct pattern vs. (b) llft-ofltechniques using a positive 

photoresist. In the direct pattern method, the photoresist is applied after the metal or 
dielectric layer and is exposed (I) ,  developed (2), and the pattern in the photoresist is 

transferred to the underlying layer through etching (3), before removing the photoresist (4). 
In the llft-offtechnique, the photoresist layer is applied, exposed (I ') and developed (27 
before the metal or dielectric layer is deposited (3 7 .  The photoresist is then llfted offthe 

wafer, taking away with it parts of the metal or dielectric layer (4 '). 

Fig. 16.12(a) and (b) represent cross-section images showing the 
photoresist profile used in direct pattern and lift-off technique, respectively, 
following development. The shape of the resist in Fig. 16.12(b) makes it 
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easier to lift-off the subsequently deposited metal or dielectric layer, without 
peeling it off completely from the surface. 

direct patterning resist shadow lift-off resist 

Fig. 16.12. Cross-section views of a (a) direct patterning resist profile following 
development, and (b) a lift-off resist profile following development. The bottom diagrams 
show a schematic diagram illustrating the dissimilar cross-sectional shapes of the direct 

patterning and the lift-offresists. 

16.2.7. Alternative lithographic techniques 
As microelectronic devices shrink in size, alternative approaches have been 
investigated due to the fact that optical lithography is fundamentally limited 
by the phenomenon of diffraction. Work is ongoing to develop alternative 
lithograghic techniques that can support Moore's law past this diffraction 
limit. These next generation lithographies (NGLs) include electron-beam 
lithography where an electron beam is used as the radiation source. This 
technique is currently growing in importance. It is currently used for the 
fabrication of the mask, as well as to define nanoscale features, as small as 
30 nm. This technique will be the object of a section of the next section. 

Other existing NGLs methods include x-ray lithography which is 
capable of achieving a few tens of nanometer size features thanks to the use 
of radiation with a wavelength on the order of 4 up to 50 A. However, this 
method requires a complex absorber mask or a thin film support structure. 
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Ion-bean1 lithography offers patterned doping capability and a very high 
resolution (-10 nm). All these techniques are schematically illustrated in 
Fig. 16.13. 

Photolithography 

mask 

x-ray photons 

Wafer ... .*: . *. ." 

.';i. 
k electrons 
d 
a .. vacuum 

Electron-beam lithography 

ions 

vacuum 

Resist 

X-ray lithography Ion-beam lithography 

Fig. 15.13. Illustration of different types of lithography. From left to right, and top to bottonz: 
photo-, electron-beam, x-ray and ion-beam lithography. The difference between these 

techniques resides in the nature ofthe source used to activate the resist. 

While these techniques may seem different from one another, they are 
fundamentally similar in the fact that they use a photoresist that is activated 
by a specific energy source. So just like photolithography (Fig. 16.13), they 
use similar steps as described in this section. The major differences in these 
types of lithography arise in how they actually interact with the resist. In 
both photo- and x-ray lithography, the source energy goes through a mask, 
and the image is projected onto the wafer; this type of lithography is known 
as an indirect-write pattern. As for ion-beam, or electron beam lithography, 
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the source energy is focused into a fine tip so that the image is directly 
written onto the surface of the wafer; this known as a direct write pattern. 

Two extreme examples of this form of lithography are known as nano- 
imprint lithography in which a nano-sized stamp is used to impress an image 
onto the surface or proximal probe lithography (also called Dip-Pen 
Lithography) where an atomic force microscope tip is used to move material 
at the atomic scale on the wafer surface. Schematic images of both these 
techniques are shown below (Fig. 16.14 and Fig. 16.15). 

Fig. 16.14. In nanoimprint lithography, a mold imprints its image directly onto the wafer 
surface that is covered by the resist. The resist is developed and the image is then fully 

transposed. Here, an imprint mask used to make nanopillars is shown with the SEM images 
of the pillars they produce. [SEM images on the right are reprinted with permissionfvom 

Journal of Vacuum Science and Technology B Vol. 16, Wu, W., Cui, B., Sun, X.Y., Zhang, W., 
Zhuang, L., Kong, L., and Chou, S. Y., "Large area high density quantized magnetic disks 

fabricated using nanoimprint lithography," p. 3826. Copyright 1998, American Institute of 
Physics.] 

Fig. 16.15. Schematic diagram of dip-pen lithography: either a photoresist is placed down in 
controlled manner by pacing the AFM tip where it is desired or a molecule is directly placed. 

[Reprinted with permission from Piner, R. D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A., 
"Dip-pen nanolithography, " Science Vol. 283, p. 661, Fig. I. Copyright 1999, AAAS.] 
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16.3. Electron-beam lithography 

The resolution of the photolithography process described in the previous 
section is limited by the diffraction limit of the ultraviolet light source used 
during the photoresist exposure. As microelectronic devices shrink in sizes 
to reach the nanometer scale, novel techniques such as electron-beam 
lithography have been developed and will be the object of this section. 

Electron-beam lithography, or EBL, is a special technique for creating 
extremely fine features of approximately 20 nm in linewidth. This technique 
was developed in the 1960's and was inspired by the same technology used 
in scanning electron microscopy where electrons, rather than light, are used 
to generate an image. In EBL, the electrons strike a thin layer of resist which 
has been previously applied on the semiconductor wafer. The properties of 
the resist material are changed by the presence of the electrons that it 
encounters. Therefore, instead of using a mask to prevent light from passing, 
a fine electron beam is scanned across the sample in order to form the 
desired pattern on the resist. 

16.3.1. Electron-beam lithography system 
The major component in an electron-beam lithography system is the 
column, a cross-section of which is illustrated in Fig. 16.16. It contains an 
electron source, two or more lenses, a blanker that can switch the beam 
entrance on and off, a beam deflector, a stigmator for correcting any 
astigmatism in the beam, an aperture for helping to define the beam, 
alignment systems for centering the beam in the column, and an electron 
detector for assisting with focusing and locating marks on the sample. 

The electron source consists of a heated filament which generates a 
beam of electrons through therrnionic emission. The size of the virtual 
source, its brightness, and energy spread are the three most important 
characteristics of the electron beam. The source size dictates the amount of 
demagnification that the beam must undergo in order to affect the target in a 
small area. The brightness, measured in amperes per square centimeter 
through the column, must be high enough to sufficiently affect the resist. 
The energy spread determines the tendency of the electrons to move 
outward from the direction of the main beam. There is always some energy 
spread due to the electric field interaction between the electrons in the beam 
but this effect can be corrected using apertures. A change in the electron 
energy will cause the virtual emitter source to change its position slightly 
too. Provided vacuum is maintained at the specified levels, the electron 
source may have a lifetime of more than 2000 hours. 

The lenses in the column help aim the beam toward the appropriate area 
of the target. They do not, however, scan the beam across the sample in 



Semiconductor Device Processing 63 1 

order to etch patterns on the resist; as that task is left to the deflectors. There 
are two types of lenses that are commonly used. Electrostatic lenses employ 
electric fields in order to have an effect on the beam. However, they suffer 
from both spherical and chromatic aberrations. Spherical aberrations occur 
when the outside edges of the lens cause the beam to focus more strongly 
than the inside areas do. Chromatic aberrations are observed when the lens 
affects differently electrons that have different energies. Both of these 
effects can be reduced by drastically reducing the size of the beam so that it 
only passes through the center area of the lens, but this technique reduces 
the beam current. Magnetic lenses are more commonly used because they 
cause less aberration. 

Fig. 16.16. (a) Schematic diagram of a low-voltage column, containing the condenser and 
objective lens systems, as well as the beam blanker, the alignment and deflector systems, and 

an electron detector. (b) Photograph of the low-voltage column inside an actual electron 
beam lithography system. [Reprinted with permission from Leica Microsystems 

LithographyGmbH.] 

Apertures are small holes through which the beam passes as it travels 
down the column. There are three types of apertures, depending on their 
diameters. Let us assume that the diameter of the main portion of the beam 
(excluding stray electrons) is DB. A spray aperture, which stops stray 
electrons but does not affect most of the beam, would have a diameter 
DA>DB. A blanking aperture, which is used to turn the beam on and off, has 
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a diameter of DA=O. A beam limiting aperture, which is reduces the beam 
diameter in order to improve the resolution, would have a diameter DA<DB. 

The method of appropriately scanning the electron beam in a precise 
pattern is known as deflection. Similar to lenses, deflectors generate electric 
or magnetic fields that are used to affect the direction of the electron beam. 
Electrostatic lenses are more commonly used than magnetic lenses for this 
purpose because they react faster to the system's demands to scan the beam 
across the target surface. This difference in speed arises from the existence 
of inductive magnetic coils necessary to create a magnetic field. Difficulties 
are encountered when the electron beam interacts with its solid target. 
Although the beam may be extremely small when it first hits the resist 
material, the interaction of the beam's electrons with the material causes 
what is known as forward scattering. For example, an electron that 
penetrates 1 pm deep into the resist layer when impinging at a 90" angle 
would travel not only 1 pm down, but also 1 pm laterally when deflected at 
a 45" angle. This phenomenon results in an error in the actual area of the 
material which is hit by electron. Using the thinnest possible resist layers 
can reduce forward scattering. These errors can also be minimized with a 
technique called dose modulation in which small, isolated areas receive a 
less intense electron beam current dose than large areas. 

Underneath the column, a chamber contains a stage used to load and 
unload the sample. In addition, a vacuum system is used to maintain an 
appropriate vacuum level throughout the machine and during the load and 
unload cycles. A computer controls the EBL system and handles such 
diverse functions as setting up an exposure job, loading and unloading the 
sample, aligning and focusing the electron beam, and sending pattern data to 
the pattern generator. 

Electron-beam lithography is becoming an increasingly common 
alternative to photolithography because of its near-atomic resolution 
(-20 nm) capability, its flexibility in that it works well for a variety of 
semiconductor materials and an almost unlimited number of patterns. 
However, electron-beam lithography is more than ten times slower than 
photolithography. EBL systems are also expensive and are complex pieces 
of equipment which require frequent maintenance and adjustment. These 
limitations keep EBL from becoming the semiconductor industry's 
lithography standard. 

16.3.2. Electron-beam lithography process 
Electron-beam lithography uses resists known as polymethyl methacrylate 
or PMMA which are some of the highest resolution resists available. The 
PMMA is purchased in two high molecular weights forms (496K or 950K) 
in a casting solvent such as chlorobenzene or anisole. 
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Fig. 16.17 briefly illustrates the electron-beam lithography process, 
which is similar to that of conventional photolithography, including the 
steps such as resist spinning, exposure, development, and pattern transfer. 

To avoid charging effects during electron-beam exposure, the wafer is 
often first coated with a thin (3-30 nm) indium-tin-oxide (ITO) or chrome 
layer. The PMMA resist is spun onto the wafer and baked at 170-200 "C for 
30 minutes. The electron-beam exposure breaks the resist polymer into 
fragments that can then be dissolved by a developer solution. There are 
several types of developer solutions with different strengths, such as MIBK 
which is a 1:2 solution of (4-methyl-2-pentanone):(2-propanol) or IPA 
which is simply 2-propanol. MIBK alone is a strong developer and dissolves 
some of the unexposed resist too, while IPA is a weaker developer. 
Therefore, mixing them with the appropriate proportions results in a higher 
contrast or a higher sensitivity for the resist. These two parameters will be 
defined shortly below. For example, a mixture of 1 part MIBK to 2 parts 
IPA produces very high contrast but low sensitivity whereas, for a mixture 
of 1 part MIBK to 1 part IPA, the sensitivity is improved significantly with a 
small loss of contrast. 

I 
PMM A 

ectron beam res~st) 
rotatmg speed 3000 rpm 

Spin-coat~ng bakmg 30 mlns, 180 OC 

I 
dot dose 35 nC/cm 

Exposure 
wafer 

Fig. 16.17. Outline of a typical electron-beam lithography procedure: a PMMA resistfilm is 
spun onto a wafer, the resist is exposed to the electron beam following the specified design, 
the exposed resist is then developed and areas which have been exposed are dissolved, The 

pattern is transferred on the wafer through plasma etching. The resulting features can be as 
small as a few nanometers in width. 
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16.3.3. Parameters of electron-beam lithography 
Several parameters need to be understood and determined for electron-beam 
lithography. For a given set of resist conditions, including the nature of the 
resist, its thickness, the nominal dose D,,, corresponding to a given electron 
energy level can be defined as the minimum dose required to ensure full 
dissolution (when using positive resist) or total non-solubility (when 
working with negative resist) of the resist in all places that were exposed to 
that electron beam. 

If we chose to expose a uniform positive resist to a range of doses, 
develop the pattern and then plot the remaining average resist thickness 
(expressed in terms of film retention as a percentage) versus dose, we would 
obtain the graph shown in Fig. 16.18(a). 1 

C 
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Fig. 16.18. (a) Graphical plots of the resist film thickness as a function of the electron 
exposure dose for a positive and for a negative resist. For a positive resist, Dl is the largest 
dose at which the film remains intact while D, is the smallest dose at which the entirefilm is 

dissolved. For a negative resist, the meaning of these parameters is reversed. These 
quantities are used to determine the sensitivity and the contrast of the resist. (b) Illustration 

of the penetration of the electron beam into the resist film. 

In the case of a positive resist, Dl is the largest dose at which the film 
remains intact while D2 is the smallest dose at which the entire film is 
dissolved. The sensitivity of the resist is defined as the point at which the 
entire resist is removed. We can also define the contrast y of the resist as: 
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The same expression is valid for the contrast of a negative resist, but the 
meaning of Dl and D2 are swapped as shown Fig. 16.18(a). To obtain such 
graphs, it is essential that the electron beam penetrates the resist completely, 
as shown in Fig. 16.18(b). To ensure this, the resist must be thinner than the 
penetration depth of the electrons into the resist material, which is 
determined by the electron beam energy. 

To determine the nominal dose for a given set of resist conditions, 
especially a given resist thickness, it is recommended to use the "Taxi 
checker" pattern as illustrated in Fig. 16.19. The inner part of the pattern 
contains two lines having twenty square sections with an edge length of 
5.0 pm. Each square receives a set dose. The applied dose is raised 
incrementally toward the right, as shown in Fig. 16.19. The dose variation is 
achieved by varying the exposures time or dwell time, and begins with an 
initial dose D, hopefully close to the desired nominal dose. This selected 
dose corresponds to a time tdwell calculated according to: 

Eq. ( 16.3 ) D = 
'probe t d w e ~  

(ssz )' 

where D is the applied dose expressed in ~ . c m - ~ ,  Iprobe is the probe 
current at the target level (PA), tdweIl is the exposure time per image spot (s) 
and SSZ is the step size in nm. 

The first square in the upper lines is exposed for one tenth of the 
nominal time, which corresponds to ten percent of the nominal dose. 
Proceeding toward the right, every further square is given a 10 % higher 
dose. This is accomplished by incrementing the exposure time by 10 % of 
tdwel[. Exposure of the lower line begins with the first square being subjected 
to a dose of 110 % of the initially selected dose. The two checker lines thus 
cover a range between 10 and 200 % of the originally selected dose. 

The following sequence of steps is conducted to determine the nominal 
dose: (i) coat the wafer with PMMA resist with the desired appropriate 
thickness; (ii) prepare for exposure by optimizing the probe current, 
calibrating the main deflector unit and the beam tracking unit; (iii) expose 
the taxi checker patterns, if there is absolutely no initial information about 
the sensitivity of the resist system to be investigated, then several taxi 
checkers patterns should be exposed; and this should be done with doses 
selected such that the largest possible dose area is covered; repeat the same 
exposure procedure on several other wafers if necessary; (iv) develop the 
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resist by selecting a development time slightly shorter than would be needed 
for complete development; (v) inspect the resist image under an optical 
microscope and determine the dose value; (vi) develop the same resist again 
if possible, for example for 20 additional seconds; (vii) inspect resist image 
under an optical microscope and determine appropriate nominal dose; 
(viii) repeat the development and dose determination until the completely 
developed square no longer shifts toward higher doses, i.e. toward the right, 
and an additional development and determination step only yield a general 
change in contrast. 

Fig. 16.19. Taxi checker pattern, commonly used to determine the nominal dose for a given 
set of resist conditions. The inner part of the pattern contains two lines having twenty square 
sections with an edge length of 5.0 p n .  Each square receives a set dose. The applied dose is 

raised incrementally toward the right. 

16.3.4. Multilayer resist systems 
In electron-beam lithography, it is often necessary to employ simultaneously 
two or more different types of resists to achieve a specific lithographic 
objective when an enhanced undercut is needed for lifting off a metal layer, 
when a rough surface structure requires planarization, and when a thin 
imaging top layer is needed for high resolution. A few examples will be 
given in this sub-section to illustrate this process. 
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The first example consists of utilizing both a low and a high molecular 
weight PMMA resist, in a simple bilayer technique as shown in Fig. 16.20. 
This technique was patented in 1976 by Moreau and Ting and was later 
improved by Macki and Beaumont by the use of a weak solvent (xylene) for 
the top layer of PMMA. The low weight resist is more sensitive than the 
high weight one, so that it develops more easily and results in an enhanced 
undercut. This feature is useful when lift-off is required from densely 
packed layers. 

The second example uses PMMA with a copolymer resist and was 
developed by Hatzakis. This method is often employed when it is necessary 
to deposit a very thick layer of metal (>1 pm in thickness). A high 
sensitivity copolymer of methyl methacrylate and methacrylic acid (PMMA- 
MAA) is spun on top of a PMMA resist layer. The exposed copolymer is 
soluble in solvents such as alcohol and ethers but insoluble in nonpolar 
solvents such as chlorobenzene. A developer such as 
ethoxyethanol/isopropanol is used for the top layer, stopping at the PMMA. 
Next, a strong solvent such as chlorobenzene or toluene is used for the 
bottom layer. Through this technique, a larger undercut resist profile is 
achieved which helps the lift-off for the thick metal layer and has been 
successfully used in the fabrication of memory arrays. 

High PMMA -+ 

Low PMMA - 
I Wafer I 

PMMA -+ 
copolymer -+ 

I) 
Wafer 

(4 

Fig. 16.20. Bilayer electron-beam resist structure: (a) a high molecular weight PMMA is 
spun on top of a low molecular weight PMMA. The resist is then developed in M1BK:IPA 

giving a slight undercut. (b) PMMA is spun on top of the copolymer. The resist is developed 
in M/BK:II'A / ; I  giving a larger undercut. (c) Metal is deposited on top of the resist and (d) 

is then renzoved through /$-off: 

The third example consists of a trilayer system in which an interlayer is 
inserted between the two films of the previous bilayer system. Almost any 
two polymers can be combined in a multilayer system if they are separated 
by a barrier such as Ti, Si02, Al, or Ge. Once the top layer is exposed and 
developed, the pattern is transferred to the interlayer through dry etching 
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methods (section 16.4) to achieve highly vertical etch profiles. This 
interlayer would then serve as an excellent mask for the subsequent 
fabrication of density packed, high aspect ratio resist profiles. 

16.3.5. Examples of structures 
Electron-beam lithography is by far the most widespread lithography tool 
for the realization of nanoscale structures. Fig. 16.21 illustrates the 
resolution and the uniqueness of structures that can be done using this 
technology. The patterns have linewidths smaller than 100 nm. 

The uniqueness of most EBL systems resides in their ability to produce 
different types of patterns ranging from circular to linear gratings on any 
type of semiconductor material. This capability is currently used 
considerably in University research for the development of distributed 
feedback lasers operating at various wavelengths ranging from 300 nm up to 
10 pm. 

Fig. 16.21. (a) Ti/Al gate structure for a SET device generated by electron-beam lithography 
and lift-ox and (b) a Bragg-Fresnel lens for x-rays exposed in continuous path control mode 

and etched into Si. 

Fig. 16.22 shows an example of linear grating fabricated on top of a 
ridge quantum cascade laser emitting at 9.0 pm. The grating consists of a 
first order Bragg grating with a pitch of A=1.42 pm exposed by electron- 
beam lithography and etched 0.5 pm into the surface of the 1 pm-thick top 
cladding layer by reactive ion etching. 



Senticonductor Device Processing 

Longitudinal cross section 

n 

Angle View I 
Top View 

Fig. 16.22. Scanning electron microscopy images of the first order distributed feedback 
grating for a 9.0 p n  quantum cascade laser. The grating is fabricated on the top of the ridge 

structure using electron-beam lithography. 

16.4. Etching 

In the previous sections, we have illustrated our discussion with the etching 
of a layer which had first been covered with a patterned photoresist film, 
leaving certain selected areas open and others protected. The layer to be 
etched is generally a dielectric material such as silicon oxide, or a metal 
used in providing metal contact to the semiconductor. The etching step itself 
is a complex process which is a function of numerous parameters. For 
example, the etch can be isotropic, such that the material is etched in equal 
proportions in all directions, or anisotropic such that one direction is etched 
more rapidly than any other, or a mixture of both. Several etching 
techniques can be used and will be described in this section, including wet 
chemical etching, and dry etching techniques such as plasma etching, 
reactive ion etching, sputter etching and ion milling. 
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16.4.1. Wet chemical etching 
Wet chemical etching is a mostly isotropic process that etches away in all 
directions. The process is accomplished by immersing the wafers in an 
etching solution at a predetermined temperature. An example of solution can 
be a mixture of hydrofluoric acid and ammonium fluoride. A great variety of 
wet etch chemistries are available. 

One can usually find a solution which is highly selective for the etching 
of a particular layer while leaving essentially unaffected the adjacent or 
underlying materials. This material selectivity is an important issue when 
etching a semiconductor device as it usually contains numerous layers, or 
when etching a metal contact layer without affecting the underlying 
semiconductor material. 

For most wet etch processes, the material to be etched is not directly 
soluble in the etching solution, but rather undergoes a reaction with the 
chemicals present in the solution. The products of this chemical reaction can 
then be soluble in the solution or can be gaseous. In the later case, the gas 
can form bubbles which can then prevent the arrival of fresh etching 
chemical species from reaching the wafer surface to sustain the chemical 
reaction. This can be a serious problem since the occurrence of these 
bubbles cannot be predicted. The problem is most pronounced near the 
edges of the pattern. Mechanical agitation of the wet etching solution can 
reduce the ability of the bubbles to adhere to the wafer, as well as help 
sustain the supply of fresh etching reactant. 

The advantages of wet etching include its lower cost and the greater 
versatility of the etching equipment available. Several factors however may 
affect the quality of wet chemical including: the fact that the photoresist 
often loses its adhesion to the underlying material when exposed to hot 
acids, the etching proceeds downward and laterally, thus producing 
undercutting and broadening lines, and it is difficult to control the etching 
for submicron geometries. Table 16.1 and Table 16.2 list a few 
semiconductors, dielectric materials, and metals which are commonly 
etched in modern microelectronic device fabrication, together with a few 
wet chemical etching solutions typically used. 
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Material Wet etching solution 

BHF (H20+HF+NH4F) ................................................................................................................................................................................................................. 

Ga As H2SO4 + Hz02 + H20 
NH40H + H202 (pH=7) ............................................................................
H2SO4 + H202 + H 2 0  

In As Br2 + Methanol 

Br2 + Methanol 
GaSb HF + HN03 + CH3COOH 

Table 16.1. A few semiconductors and dielectric materials commonly encountered in 
microelectronic device fabrication and the common wet etching solutions used. 

Metal Wet etching solution 

AU (gold) KI + I2 + H20 

AuZn KI + I, + H20 

Ni (nickel) HC1 

Table 16.2. A few metals and their wet etching solutions. 

Wet etching is also dependent on the crystallographic orientations of the 
semiconductor crystal, which determines the atomic packing density of the 
different planes exposed to the etching chemicals. Fig. 16.23 shows the etch 
planes and profiles when the protective resist is oriented along various 
directions on a (001) GaAs wafer. 
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Resist mask Resist mask 

(b) 
Resist mask 

Fig. 16.23. Etch profiles of a (001) oriented GaAs crystal, obtained with most GaAs etchants 
as a function of the in-plane crystal orientation. When the side of the protective resist mask is 

oriented in the (a) < 7 10 > , (b) <I lo>, and (c) <loo> directions. 

16.4.2. Plasma etching 
By contrast to wet etching, dry etching is not performed in a solution but 
rather in a gaseous environment. It either consists of plasma driven chemical 
reactions and/or energetic ion beams aimed at removing the material. Dry 
etching is commonly used to obtain highly anisotropic etch profiles as the 
one shown in Fig. 16.24. Some of the advantages of dry etching over wet 
etching are its greater control at a reduced cost, its substantial directionality 
i.e. high anisotropy, its effectiveness to reduce the undercutting of masking 
patterns, and the possibility to precisely etch smaller geometry features. 
There exist a variety of dry etching techniques including: plasma etching, 
reactive ion etching, sputtering etching, and ion milling. In this sub-section, 
we will describe the plasma etching method. 

Fig. 16.24. Scanning electron iniage of a highly anisotropic etch profile obtained using dry 
etching techniques. 
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Plasma etching refers to any process in which a plasma, or a gas of 
charged particles, generates reactive enough species that they serve to 
chemically etch or physically remove material in the immediate proximity 
of the plasma. The wafers masked with a photoresist are placed in a vacuum 
chamber system. A small amount of reactive gas plasma, for example of 
oxygen, chlorine, or fluorine, is allowed into the chamber. An 
electromagnetic field is then applied to obtain a directional beam of excited 
ions and the material that is not protected by the photoresist is etched away 
by the excited ions. The key to plasma etching is the ability to couple the 
electromagnetic energy into the reactive species while not heating the rest of 
the gases in the chamber. Fig. 16.25 and Fig. 16.26 show two popular types 
of plasma etching reactors: a barrel reactor or a planar reactor. 

Gas outlet 

Substrate 

Discharge 

- Gas inlet 

Fig. 16.25. A typical barrel reactor. The plasma is excited using inductive or capacitive 
electrodes outside of the quartz chamber. The substrates are held in the vertical position by a 

slice holder and are imnzersed in the plasma with no electrical bias applied. 

In barrel systems, the plasma is excited using inductive or capacitive 
electrodes outside of the quartz or glass cylindrical chamber. The substrates 
are held in the vertical position by a slice holder and are immersed in the 
plasma with no electrical bias applied. 

The planar system consists of two flat and parallel electrodes of the 
same size. The substrates are placed flat on the lower electrode which is also 
used as a heating stage. Electrons are created in the plasma by the 
dissociation of atoms into ions. Since they have a greater mobility than the 
positive ions, they move from the plasma onto the electrode surfaces, thus 
giving them a negative charge with respect to the plasma. This results in an 
electric field across the plasma sheath, between the plasma and the 
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electrodes. This field then causes the ions at the edge of the plasma sheath to 
be accelerated toward the electrodes. 

Plasma 

Wafers 

Fig. 16.26. A typical planar reactor, consisting of two flat and parallel electrodes of the same 
size. The substrates are placedflat on the lower electrode which is also used us a heating 

stage. The electric field which appears betweet? the plasnla sheath and the electrodes causes 
the ions at the edge of theplasnm sheath to be uccelerated toward the electrodes, thus 

in~pinglng on the wafers. 

Because of the geometry of the planar reactor, the ions are accelerated 
perpendicularly to the electrodes except near the outer radius where 
deviations can lead to corresponding distortions in the etch profile. This 
perpendicular impingement of energetic ions makes the anisotropic etching 
possible. 

Fig. 16.27 illustrates an anisotropic plasma etch. This process can also 
lead to the formation of a passivating film on the vertical sidewalls. For 
example, when a fluoride compound is used in the etching chemistry, e.g. 
carbon tetrafluoride or CF,, a fluorocarbon film deposits on all surfaces. 
Since the ions mostly follow a vertical path, there is little ion bombardment 
on the sidewalls and the fluorocarbon film can accumulate there, as the 
etching proceeds. The nature of such a film depends on the plasma 
conditions. 
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- inert species 
forming passivating film 

I photoresist 1 

I Wafer I 
Fig. 16.27. Schematic diagram o fan  anisotropicplasnza etch, showing the formation o f a  
passivatingfilrn on the sidewallfrom the products of the chemical reactions which occur 

during the etch. 

Table 16.3 lists the advantages and disadvantages that are commonly 
associated with in plasma etch using either type of reactors. It is important 
to be aware that the plasma etch rate for a process is measured for a given 
set of process conditions, from which the duration needed to etch a layer 
with a particular thickness can subsequently be determined. 

Advantages Disadvantages 

- poor uniformity due to 
gas flow RF fields 

Barrel reactor - good to remove resist - etch rates tend to increase 
from the center of wafer 
to the edges 

- ionic bombardment can - good uniformity 
damage wafer surface 

planar reactor - suitable for selective layers 
etching through - can lead to significant 
masking patterns 

undercutting 

Table 16.3. Advantages and disudvantages in plasma etch using barrel or planar reactors. 

Plasma etching provides a poor reproducibility because subtle changes 
in the etch process or in the film properties can result in poor uniformity or 
rough surfaces. Fig. 16.28 is an example of a planar reactor plasma etch 
where the surface of the sample has been damaged due to an increase in the 
energy of the bombarding ions. 
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Fig. 16.28. Scanning electron microscope image of a damaged semiconductor surface 
obtained when excessive ion bombardment is used. The damage can be seen from the 

roughness of the surface. 

16.4.3. Reactive ion etching 
Reactive ion etching (RIE) is very similar to plasma etching and a clear 
distinction is difficult to make. In the RIE process, the emphasis is primarily 
put on the directionality of the etch. The etch parameters such as the 
pressure and the configuration of the etching equipment are modified to 
ensure a directional ion bombardment. A typical RIE system is illustrated in 
Fig. 16.29. 

Wafers Large electrode (grounded) 

Plasma electrode 

Fig. 16.29. A typical RIE etching system which is similar to plasma etching. It includes a 
chamber under vacuum, the wafers are placed on a small electrode and the inside walls of 

the chamber constitute the ground electrode. 

By contrast to plasma etching, RIE systems operate at much lower 
pressures: 0.01 to 0.1 Torr. The advantages of RIE are its highly 
anisotropicity and directionality, but its disadvantages are that the stage 
needs to be cooled in order to resist the temperature rise. 
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16.4.4. Sputter etching 
Sputter etching is a purely mechanical process in which energetic ions from 
the plasma of inert gases, such as argon, strike the wafers and physically 
blast atoms away from the surface. The sputtering technique and the reactive 
ion etching are both carried out with the wafer placed directly on an 
electrically powered electrode in contact with the plasma, as shown in Fig. 
16.30. In this configuration, the ions impinge on the sample at near normal 
incidence. In sputter etching, the chamber is maintained at a low vacuum 
(10.~ Torr) and, as it contains the plasma discharge, it is exposed to 
ultraviolet radiation, x-rays, and electrons as part of the plasma 
environment. 

The advantages of sputter etching include its high anisotropy, whereas 
one of its disadvantages is its poor chemical selectivity: all materials are 
nearly etched at the same rate in this process. 

Argon ions 

I 
/ 

Target 

- Wafers 

I 

Fig. 16.30. Schematic diagram of a sputter etching system kergetic ions from the plasma of 
inert gases are accelerated between two electrodes in a chamber under vacuum and strike 

the wufers to be etched which are placed directly on one of the electrodes in contact with the 
plasma. 

16.4.5. Ion milling 
Ion milling is also a purely mechanical process in which the incoming ions 
are energetic enough to sputter material from the surface of the wafer. Inert 
gases are also generally used here as well. One key parameter in this process 
is the sputtering yield which is defined as the number of sputtered atoms per 
incident ion. This quantity depends on the material being etched, the nature 



648 Fundamenta1.s of Solid State Engineering 

of the impinging ions, their energy, angle of incidence, and the composition 
of the background atmosphere 

In ion milling, the positive ions are generated in a confined plasma 
discharge and accelerated in the form of a beam towards the sample to be 
etched, as shown in Fig. 16.3 1. Inert gases, such as argon, are usually used 
in these systems because they exhibit a higher sputtering yield than other 
atoms and also because they do not participate in chemical reactions. A 
neutralizer, usually a hot filament, emits a flux of electrons to cancel the 
positively charge of the ions while keeping their kinetic energy for etching. 
The sample can thus be kept neutral, so that no deleterious charging effects 
occur. The sample resides in a moderate vacuum (10-~-10-~ Torr) 
environment and can be attached to a cooled substrate holder to maintain its 
surface at low temperatures during etching. The sample can also be 
positioned at any angle with respect to the incoming ion beam. 

Extraction 
grids 

A 
I I 
I I 
I I Ion source I I 

I I 
I I 
I I 

Wafer 

!tom beam 
h 
t, 
t, 
t, 
t, 
t, 

Neutralizer Rotating stage 
filament 

Fig. 16.31. Schetnatic diagram of an ion-beam tnilling system. The entire system is under 
moderate vacuum. The positive ions of inert gas are generated in a confined plasma 

discharge, awayfrom the wafer, and accelerated in the form of a beam towards the sample to 
be etched. A neutralizer, usually a hotfilament, emits a f lux  of electrons to cancel the 

positively charge of the ions. The wafer can be attached to a cooled substrate holder and be 
positioned at any angle with respect to the incoming ion beam. 

Although there are similarities between ion milling and sputter etching, 
the ion milling process offers more flexibility, can be carried out at a lower 

- - 

temperature, in a less harsh etch environment, and results in a reduced 
redeposition of contaminants. 

The main advantage of ion milling over other methods is the absence of 
undercutting in this process. However, this technique suffers from a number 
of disadvantages: it is a slow process, it generates a good amount of heat 
which makes the subsequent removal of the resist difficult, the sputtered 
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material can redeposit anywhere on the wafer surface, scattering effects 
make the etching of vertical edges much faster, and trenching effects can 
occur as a result of the sample tilting. 

16.5. Metallization 

16.5. I .  Metal intevconnections 
In addition to lithography and etching, a third important step in the 
fabrication process of a semiconductor device is the deposition of metals in 
certain areas of the wafer, through a process called metallization. This is 
done in order to allow the surface wiring of individual semiconductor layers 
and metal interconnection between contacts in a microcircuit as shown in 
Fig. 16.32. 

passivation 

Metal interconnection layer (e.g. SO,) 

t 
Device # I  

t 
Device #2 

Fig. 16.32. Single layer metal interconnection between two devices. A passivation layer, such 
as silicon dioxide, is generally first deposited and patterned to isolate areas of the devices 

which must be electrically connected. Then a metal layer is deposited and patterned to 
connect electrically one part o f a  device to another part of a second device. 

The metal interconnection is first deposited in the form of thin films of 
various materials on the surface of the semiconductor wafer. The 
thicknesses of these films are typically on the order of 1500 to 15000 A. 
There exist several deposition techniques which will be discussed below. 
However, in order to be useful, the metal must not cover the entire wafer 
uniformly, but only certain areas. Lithography is then used to define the 
areas where the metal will remain. The direct patterning and the lift-off 
techniques are equally used in this process. A few examples of wet chemical 
etching solutions for various metals were given in Table 16.2. In order to 
isolate metal interconnects from one another, to prevent current leakage and 
short circuits, a protective or passivation layer of dielectric material (e.g. 
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silicon dioxide) is often used, as shown in Fig. 16.32. In most cases, 
following the formation of the metal interconnects, a heat treatment step 
called alloying is performed typically between 200 and 400 "C in order to 
ensure good mechanical and electrical contact between the metal and the 
semiconductor wafer surface. 

The metal materials used must ideally satisfy a number of properties, 
such as: have a good electrical current-carrying capability, a good adhesion 
to the top surface of the wafer, a good electrical contact with the wafer 
material, be easy to pattern (etch or lift-off), be of high purity, be corrosion 
resistive, and have long-term stability. 

Most of these characteristics are met by either gold or aluminum. In 
microelectronic circuit technology, aluminum is the most commonly used 
metal interconnect because it adheres well to both silicon and silicon 
dioxide, although it is less conductive than copper or gold. Aluminum also 
has a good current-carrying capability and is easy to pattern with 
conventional lithography process. 

However, one metal material is often not sufficient to satisfy all the 
properties mentioned previously. This is why most circuit designs require 
the use of multilayer metal films, such as platinum and gold or a 
combination of titanium, platinum and gold. A multilayer metal stack makes 
it possible to avoid the use of gold as a direct electrical contact with silicon 
because gold adheres badly to the semiconductor surface and is at the origin 
of significant current leakage which can impair the device performance. 

16.5.2. Vacuum evaporation 
The deposition of metal thin films on a semiconductor wafer is commonly 
accomplished through vacuum deposition. Fig. 16.33(a) shows a typical 
vacuum deposition system. It consists of a vacuum chamber, maintained at a 
reduced pressure by a pumping system. The shape of the chamber is 
generally a bell jar that is made of quartz or stainless steel, inside which 
many components are located, including: the metal sources, a wafer holder, 
a shutter, a thickness rate monitor, heaters, and an ion gauge to monitor the 
chamber pressure. 
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Fig. 16.33. (a) Examples of evaporation sources which can be used in vacuum evaporation 
systems; (b) cross-section of a typical vacuum evaporation system which includes a glass bell 
jar under vacuum, a sample holder, a metalfilament (evaporation source), and a thickness 
monitor. [An Introduction to Semiconductor Microtechnology, Morgan, D. V. and Board, K. 

Copyright 1990. O John Wiley & Sons Limited. Reproduced with permission.] 

It is important to operate at a reduced pressure for a number of reasons. 
First is a chemical consideration. If any air or oxygen molecule is found in 
the vacuum chamber during the evaporation of aluminum, the metal would 
readily oxidize and aluminum oxide would form in the depositing film. 
Reducing the pressure ensures that the concentration of residual oxygen 
molecules is small enough to minimize the oxidation reaction. Secondly, the 
coating uniformity is enhanced at a higher vacuum. Indeed, at low pressures, 
the mean free path of the evaporated metal atoms is increased, that is the 
distance traveled by the atoms before collision with another atom. When the 
mean free path exceeds the dimensions of the chamber, this ensures that the 
metal atoms will strike the wafers before hitting another atom which would 
have caused non-uniform depositions. 

Two ranges of vacuum conditions are typically used for vacuum 
evaporation: the low and medium vacuum range (10~-10-' Pa) and the high 
vacuum range (10-'-10-~ Pa). For the low-medium vacuum range, a 
mechanical roughing pump is sufficient. To attain the high vacuum range, a 
roughing pump is first used to evacuate the chamber to the medium vacuum 
range, then a high capacity pump takes over. The most common high 
capacity vacuum pumps include diffusion pumps, cryo pumps, and 
turbomolecular pumps. 

The physical laws governing the evaporation of metal are those of the 
kinetic theory of gases in which each particle, e.g. metal atom or gas 
molecule, is modeled as moving freely in space with a momentum and 
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energy, which is subject to instantaneous collision events with other 
particles, the probability for a collision to occur is proportional to the 
interval of time since the previous collision, and the particles reach thermal 
equilibrium only through such collisions. In this model, the mean free path 
of a particle is given by: 

where kb is the Boltzmann constant, T the absolute temperature, d is the 
diameter of the particle, and P is its partial pressure in the chamber which is 
related to the concentration of the particles n in the chamber through the 
ideal gas law: 

where V is the volume of the chamber. A high quality film can only be 
obtained with a clean environment, e.g. a clean chamber, pure source 
material and clean wafer surface. 

There are three different types of evaporation techniques, depending on 
the method used to physically evaporate the metal from its solid state: 
filament evaporation, electron-beam evaporation, and flash hot plate. 

The filament evaporation is the simplest of these methods. The metal 
can be in the form of a wire wrapped around a coiled tungsten that can 
sustain high temperatures and current as shown Fig. 16.33(b). The metal can 
also be stored in tungsten boats if large quantities of material are required. 
An electrical current is passed through the tungsten boat, thus heating and 
melting the metal into a liquid which can then evaporate into the chamber at 
low pressure. Filament evaporation is not very controllable due to 
temperature variations along the filament. Another drawback when using 
filaments is that the source material can easily be contaminated and the 
contaminants can subsequently be evaporated onto the wafers. Moreover, 
mixtures of metal alloys containing for example titanium, platinum, nickel, 
and gold are difficult to achieve using the filament evaporation method 
because each metal has a different evaporation rate at a given temperature. 

To avoid such problems, the electron-beam evaporation technique was 
developed. Fig. 16.34 is an illustration of the principle of an electron-beam 
source, which consists of a copper holder or crucible with a center cavity 
which contains the metal material. A beam of electrons is generated and 
bent by a magnet flux so that it strikes the center of the charge cavity as 
shown in Fig. 16.34. In addition, the solid metal within the crucible is heated 
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to its melting point such that it presents a smooth and uniform surface where 
the electron beam hits, thus ensuring that the deposition on the wafer is 
uniform. The crucible is cooled with water to maintain the edges of the 
metal in a solid state. Electron-beam evaporation is relatively controlled for 
a variety of metals such as aluminum and gold. This method had its own 
limitations: it can only evaporate one alloy at a time. But, over the years 
electron-beam systems have incorporated multiple guns so that each 
material will have its own electron beam. 

electron beam 

Fig. 16.34. Schematic diagram of an electron-beam evaporation source in which electrons 
are generated by a high temperature filament and accelerated into an electron beam. A 
magneticfield bends the electron beam so that it hits a metal charge in a water-cooled 

crucible. The impact melts the metal and allows it to evaporate in the vacuum of the 
deposition chamber. 

Theflash hot plate method uses a fine wire as the source material. This 
fine wire which contains an alloy material is fed automatically onto a hot 
plate surface. Upon contact the tip of the wire melts and the material 
"flashes" into a vapor and coats the wafers in the chamber. Since all of the 
elements are flashed simultaneously, the composition of the metal film 
deposited on the wafer is close to the alloy composition of the wire. 

16.5.3. Sputtering deposition 
Sputtering deposition is also called physical vapor deposition and is a 
physical process. A typical sputtering deposition system is shown in 
Fig. 16.35. It contains a slab or target of the desired metal which is 
electrically grounded and serves as the cathode. Under vacuum conditions, 
argon gas is introduced into the chamber and is ionized into a positively 
charged ion. These are accelerated toward the cathode target. By impacting 
the target, enough metal atoms are dispersed such that they deposit onto the 
wafer surface. The main feature of the sputtering method is that the target 
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material is deposited on the wafer without chemical or compositional 
change. 

Varuurn 
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Fig. 16.35. Cross-section schematic diagram of a typical sputtering system, which is enclosed 
in a vacuum chamber and includes the wafers which are placed on a heater, and a set of 
electrodes, one of which is made from the target material to be sputtered. Argon gas is 

supplied and ionized so that ions can impact on the target to release atoms of the material to 
be deposited. [JAEGER, RICHARD C., INTRODUCTION TO MICROELECTRONICS 

FABRICATION: VOLUME 5 OF MODULAR SERIES ON SOLID STATE DEVICES, z2"" 
Edition, O 2002. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, 

NJ.] 

Sputtering has several advantages over other traditional evaporation 
techniques. For example, the composition of the deposited film is precisely 
determined by that of the target material, step coverage is improved, and 
sputtered films have a higher adhesion. 

As with the evaporation technique, a high quality film can only be 
obtained with a clean environment, e.g. clean chamber, pure source material 
and clean wafer surface. 

16.6. Packaging of devices 

The final step in the fabrication of a semiconductor device consists of 
separating the individual components on a same wafer and packaging them. 

1 6.6.1. Dicing 
At the industrial scale, mass produced wafers contain a large number of 
equivalent integrated circuits which need to be separated from one another. 
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Each resulting circuit is called a die chip. This can be accomplished for 
example by using a diamond saw as shown in Fig. 16.36 (a). As the demand 
for accuracy becomes important and tolerances get tighter, other forms of 
separation have been developed including for example a laser beam as 
shown in Fig. 16.36(c). 
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Fig. 16.36. Illustration of the various methods that can be used to separate individual devices 
from a semiconductor wafer by using: (a) a diamond saw, (b) a scriber, or (c) a laser beam. 
[An Introduction to Semiconductor Microtechnology, Morgan, D. V. and Board, K. Copyright 

1990. O John Wiley & Sons Limited. Reproduced with permission.] 

Fig. 16.37(a) is a photograph of a modern commercial scribing tool, 
while Fig. 16.37(b) is a close up look at the scriber tip. 

Fig. 16.37. (a) Photograph of a modern commercial scribing tool showing the scriber tip, 
with its positioning wheels, and a camera. (b) Close up photograph of the scriber tip. 

[Reprinted with permissionJi-om Loomis Industries, Inc.] 

Fig. 16.38 is a photograph illustrating a wafer after scribing on which 
one can see delimitated chip-scale die components. Following the dicing of 



656 Fundamentals of Solid State Engineering 

the wafer, each individual die chip is sorted and inspected under a 
microscope before wire bonding and packaging. 

Fig. 16.38. Photograph of chip-scale die components delimitated on a wafer after scribing. 
[Reprinted with permission from Kulicke & Soffa Industries.] 

16.6.2. Wire bonding 
It is necessary to link the metal interconnects which have microscopic sizes 
to a macroscopic electrical connector. The method used is called wire 
bonding. The wire used consists of gold or aluminum with a diameter of 
about 10 to 50 micrometers. Gold wire is generally used in industry as it 
welds readily to both aluminum and gold contact pads by heat and pressure. 
This process is known also as thermocompression bonding. 

A fine wire of gold is fed through a resistance-heated tungsten carbide 
capillary tube as shown in Fig. 16.39(a). Applying an electric spark melts 
the exposed end of the wire which is brought down with pressure upon the 
area of the metal contact where it is then welded. Under manual or 
automated control, the capillary is moved to another contact pad where the 
second bond will be made. The capillary is then raised and the wire is 
broken near the edge of the bond by an electric spark which forms a ball. 

A variation of this technique is the pulse-heated thermocompression 
bonding method, as shown in Fig. 16.39(b), in which the tungsten carbide 
bonding tool is heated by a pulse of current rather than an electric resistance. 
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Fig. 16.39. Schematic diagrams of (a) a resistance-heated thermocorrrpression wire bonder, 
and (6) a pulse-heated thermocompression wire bonding tool. Applying an electric spark 

melts the exposed end of the wire which is brought down with pressure upon the area of the  
metal contact where it is then welded. Under manual or automated control, the capillary is 

moved to another contact pad where the second bond will be made. [Fogiel, M., 
Microelectronics-Principle, Design Techniques, and Fabrication Processes. Copyright O 
1968 by Research & Education, Inc. Reprinted by permission of Research and Education 

Association, New York.] 

The sequence of steps during these thermocompression processes is 
schematically illustrated in Fig. 16.40. An example of wire-bonded die 
viewed at high magnification under electron microscopy is shown in 
Fig. 16.41. 

\ Illi I Move to Bond - post / Cut 

A I Post I 

Fig. 16.40. Schematic diagrams showing the sequence in the thermocompression wire 
bonding process. [An Introduction to Semiconductor Microtechnology, Morgan, D. V. and 
Board, K. Copyright 1990. O John Wiley & Sons Limited. Reproduced with permission.] 
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Fig. 16.41. An example of wire-bonded die viewed under electron microscopy. [Reprinted 
with permission from Kulicke & Soffa Industries.] 

While heating of the wire works quite well for gold, when aluminum 
wire is used the high temperatures that are required cause oxidation which 
makes it difficult to form a good ball at the end of the wire. Thus an 
alternative process is needed, it is known as ultrasonic bonding. In this 
technique the bond is formed by pressure and mechanical vibration. In this 
case as the wire leaves the spool, the tip is pushed against the surface and 
the vibration removes any existing oxide and allows the metal to deform and 
flow under pressure at room temperature to create a strong bond. The result 
is a good bond with little to now oxide formation. 

16.6.3. Packaging 
Once the die chip is fully wire bonded, it is ready to be encapsulated in a 
package. Integrated circuit devices can be mounted in a wide variety of 
packages which have a specialized shape and nature. In this sub-section, we 
will briefly review three examples of packages shown in Fig. 16.42. 

Fig. 16.42(a) shows a round TO-style package which is commonly used 
for low power transistors. The package utilizes a pie shape header where the 
silicon chip or die is mounted to the center of the gold plated header. Wires 
are connected from the die pad to the Kovar lead posts that protrude through 
the header. A glass-to-metal cap is sealed over the die chip to protect the 
device. 

Another form of packages is the dual line package (DIP) as illustrated in 
Fig. 16.42(b). The dual line package is considered the least expensive 
package and the most popular one in industry. The design of the DIP 
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package is such that it eliminates the waste of volume of the TO can, and 
brings the die closer to the metal leads. One advantage of the dual line 
package over TO packages is the amount of leads that can pass through the 
walls. Typically, dual line packages contain four to eighty leads. Leads 
projecting from the walls of the package rather than at the base can bring out 
more leads from a package of a given size, and still maintain reasonable 
space between the leads. 

Semiconductor die 

Header 

Glass seal 

Leads 

Molding compound 
/ 

/A Bond wires 

1 11 Spot plate 
Lead frame ' w 

support paddle 

Fig. 16.42. Schematic diagram of (a) a TO-style package and (b) a dual linepackage. 
[Reprinted with permission from 19'~ IEEE International Reliability Physics Symposium 
Proceedings, Howell, J.R., "Reliability study ofplastic encapsulated copper lead frame 

epoxy die attach packaging system, " pp. 104-1 10. O 1981 IEEE. ] 
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Both "TOn-style packages and dual-in-line packages are packages 
designed for surface mounting; that is they are both designed to be mounted 
into prepatterned holes on printed circuit boards (PCBs). While these types 
of mounts are used for making most systems, they require PCBs to be made 
before any testing can be performed; this is quite expensive. A method that 
was developed to permit processing of batch fabricated controls electronics 
with the desired circuit is known as flip-chip bonding. In this method the 
control electronics and active system are fabricated separately then 
sandwiched together to form both the package and interconnection. A 
schematic diagram of a hybridized focal plane array is shown in Fig. 16.43. 

Si Substrate 
\ 

Indium Bumps / 

CaSb Substrate/ --. 

Fig. 16.43. I n  this system the Si-based control electronics and the p-i-n photodetectors are 
formed separately. They both have indium solder ball formed on their contacts. They are then 
aligned, the temperature of the device is then heated, to allow the solder to reflow and create 

both the electrical contact and the die connection to occur simultaneously. 

16.7. Summary 

In this Chapter, we have reviewed the important steps involved in the 
fabrication of a semiconductor device. We described the photolithography 
and the electron-beam lithography processes. We showed the difference 
between positive and negative resists, and between the direct patterning and 
lift-off techniques. We have discussed the various etching process which are 
commonly used, including wet chemical etching, plasma etching, reactive 
ion etching, sputter etching and ion milling. We described the metallization 
process, including the deposition of metal thin films and the formation of 
metal interconnections. Finally, we presented in broad lines the packaging 
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of semiconductor devices, which involves the dicing of the wafer into chip 
dies, their wire bonding and packaging into standard packages. 
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Problems 

Draw a layout, in top view and perspective, where the mask would be 
opaque to realize an "+" shaped metal line using a positive resist and the 
lift-off technique. 

Do the same as Problem 1, but using a negative resist. 

Design a photolithography and metallization sequence of steps to obtain 
a Au square and a Ti circle on the surface of a semiconductor wafer. 
Draw the shape of the mask to be used. At each appropriate step, 
indicate whether you use the direct patterning or the lift-off technique, 
you use positive or negative resist. 

Indicate the advantages and disadvantages of using gold or aluminum 
for wire bonding. Which metal has a higher electrical conductivity? 

For a particular positive resist, the normalized remaining thickness after 
development versus photoexposure energy density is plotted below. 
Calculate the contrast (y) of this resist (y=lllog(EdE,)). 

Posit ive R e s i s t  

C, 
1.1 

g 1.0 
0 .9  .- 

c 2 0.8 .- 
$ 0 .7  

2 0 .6  
5 0 .5  

.g 5 0.4 - 
m a 0.3 

0 .2  
2 g 0.1 

g 0.0 
-0.1 I I I 

1 0  1 0 0  1 0 0 0  

E x p o s u r e  e n e r g y  d o s e  (m ~ l c r n ' )  

Draw a layout, in side view of a set of laser bars (i.e. a comb structure) 
if you were using a isotropic etch and if you were using an anisotropic 
etchant. Which etchant gives a higher aspect ratio? 
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7. Discuss the major advantages and disadvantages of electron beam 
lithography. 

. Poly-Si of the following structure is to be etched using a completely 
anisotropic dry-etch process, to remove poly-Si at a rate of 0.1 pm Jmin. 
However, this etch process has poor selectivities: selectivity to SiOz is 5, 
selectivity to photoresist is 2. 
(a) Sketch the cross-section after 5 minutes of etching. 
(b) Calculate the angle of the Si02 sidewalls after 5 minutes of etching. 

Poly Silicon 

9. In this Chapter we have discussed several different forms of lithography 
(i.e. photo, electron beam, x-ray, high energy ion beam). Why do 
companies like Intel keep developing new lithographic techniques? 

10. What is the wavelength regime of each of the lithographic techniques 
listed in Problem 9? (red-visible light, green-visible light, blue light, UV 
(E=SeV), e-beam (acceleration voltage of 10 keV), and x-ray). 

11. Compare wet and dry etching in terms of its directionality, selectivity, 
cleanliness, feature size, and controllability. 
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17.7. Summary 

17.1. Introduction 

Modem semiconductor electronics was revolutionized by the invention of 
the bipolar transistor at the Bell Telephone Laboratories in 1948. The impact 
of transistors can be best understood when one realizes that, without them, 
there would have been no progress in such diverse areas of everyday life as 
computers, television, telecommunications, the Internet, air travel, space 
exploration, as well as the tools necessary to study and understand the 
biological process. 

Transistors can be classified in two major categories: they can be either 
bipolar transistors or field effect transistors. Each is fundamentally different 
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from the other in its operation mechanisms. A bipolar transistor operates 
through the injection and collection of minority carriers utilizing p-n 
junctions. By contrast, a field effect transistor is a majority carrier device 
and is thus a unipolar device. 

In this Chapter, we will first review the general motivation and 
principles for electrical amplification and switching. We will then describe 
qualitative and quantitatively the direct-current (DC) operation mechanisms 
of bipolar junction transistors (BJT), their modes of operation, second order 
effects, as well as practical applications of BJTs in amplifier configurations. 
A variation of the bipolar transistor, utilizing a heterojunction, will 
subsequently be discussed. Next, the DC operating principles of field effect 
transistors (FET) will be presented along with corresponding second order 
behaviors of FET-based devices. Once again, practical circuit configurations 
and applications will be introduced. Finally, application specific transistors 
will be presented, including single electron as well as high electron mobility 
transistors. 

17.2. Overview of amplification and switching 

Transistors are capable of serving as switches and amplifiers, depending 
upon their configuration. The term "transistor" comes from "transfer 
resistor" and alludes to a transistor's behavior as a resistor that amplifies 
signals as they are transferred from the input to the output terminal of the 
device. 

Before trying to understand the amplification and switching mechanisms 
in a transistor, it is important to comprehend the idea of operating current 
and voltage of a given device. Let us consider the simple electrical circuit in 
Fig. 17.l(a), which includes a voltage source (e.g. a battery) Vo, a resistance 
R and the electrical device under consideration. 

The current-voltage characteristic of the device under consideration is 
shown as the solid line in Fig. 17.l(b), which is the illustration of the 
mathematical function: 
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Fig. 17. I .  (a) Exan~ple of electrical circuit. (6) Illustration of the current-voltage 
characteristic of the device (solid line) and the load line (dashed line). 

In addition, the voltage-loop equation around the circuit shown in 
Fig. 17.l(a) yields: 

This equation is shown as the dashed line in Fig. 17.l(b). The steady 
state current IT and voltage VT are determined by solving the system formed 
by these two equations. The solution can be easily visualized graphically 
and corresponds to the intersection point of the two curves in Fig. 17.l(b). 

Let us now consider an electrical device with three terminals or 
electrical connections, as shown in Fig. 17.2(a). Let us further assume that 
the current IT through two of the terminals can be controlled by changes in 
the current or the voltage Vco,,,,,I applied at the third terminal as 
illustrated in Fig. 17.2(b) by the collection of current-voltage characteristic. 
Eq. ( 17.2 ) is still valid and is still represented by the dashed line along 
which the steady state values of the current IT and voltage VT are located. 
This line is called the circuit load line. 

As we can see graphically in Fig. 17.2(b), the significant changes in the 
current IT (e.g. -50 mA) can be achieved by only small changes in the 
control current (e.g. -0.3 mA). This feature is called amplification, 
through which a small signal variation, such as that of can be 
amplified into a large signal change such as that of IT. 

Another important feature of this type of electrical circuit is the 
possibility to turn on and off the device through changes in This is 
achieved by switching the current IT between the two extremes on the load 
lines, from ITO to I F V ~ R .  This feature is called switching. 

A transistor is an example of a three terminal device that exhibits 
amplification and switching capabilities. These are the basis of all electronic 
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device functions, which makes transistors the basic elements in modern 
electronics. 

Fig. 17.2. (a) Example of electrical circuit utilizing a three terminal device. (b) Illustration of 
the load line (dashed line) and the current-voltage characteristic of the device (solid lines) as 

a function of the control current. The intersection of the solid and dashed lines gives the 
steady state values of current and voltage across the device. 

17.3. Bipolar junction transistors 

Bipolar junction transistors consist of two back-to-back p-n junctions which 
share a common terminal. Such a transistor can be a p-n-p or an n-p-n 
transistor. In this section, we shall use the p-n-p configuration for most 
illustrations and analysis. The main advantage of the p-n-p for discussing 
transistor action is that hole flow and current are in the same direction. This 
makes the various mechanisms of charge transport somewhat easier to 
visualize in a preliminary explanation. Once these basic ideas are 
established for the p-n-p device, it is simple to relate them to the more 
widely used n-p-n transistors. The corresponding current and bias polarities 
need only to be switched for the n-p-n case. The common schematic 
diagrams for n-p-n and p-n-p bipolar junction transistors are shown in 
Fig. 17.3. The direction of the arrow on the emitter leg indicates the 
direction of current flow, during the forward active mode of operation, and 
the p-n transition; thus, it can be used to easily identify the transistor type in 
circuit diagrams. We will start by discussing the BJT from a qualitative 
viewpoint and gain physical understanding on how the device operates. 
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Fig. 17.3. Schematic diagranls for (a) p-n-p and (b) n-p-n bipolar junction transistors. 

1 7.3.1. Principles of operation for bipolar junction transistors 
We will now qualitatively describe how the current control can be achieved 
using a BJT. Let us consider the p-n-p transistor shown in Fig. 17.4 with the 
left p-n junction under forward bias and the right one under reverse bias, 
otherwise known as the forward active mode of operation. 

According to the analysis of carrier transport in a p-n junction done in 
Chapter 9 (section 9.3.1), the left p-n junction is biased such that holes are 
injected from its heavily doped p-type region into its n-type region (current 
iE) where they become minority carriers and will diffuse to reach the other 
side of the n-type region. The left p-type region electrode is therefore called 
the emitter. The width, W, of the base region is typically thinner than the 
minority carrier diffusion length, to maximize the number of minority 
carriers that diffuse across it and to minimize base recombination. 

As the n-p junction on the right is under reverse bias, the electrical 
current flowing through it (Ic) is mostly determined by the drift current 
across the depletion region and its magnitude is determined by the 
concentration of minority carriers present at the boundaries, x= W and x=x,, 
of this depletion region. 

Therefore, the holes which were injected by the p-n junction (left) and 
which succeeded to reach the edge of the base depletion, x= W, region for 
the n-p junction (right) via diffusion will determine the magnitude of the 
electrical current through the n-p junction. These holes are, in a way, 
collected by the right p-type region electrode, which is therefore called the 
collector. The Ic current corresponds to the saturation current given in 
Eq. ( 9.53 ) and is independent of the applied reverse bias voltage, 
neglecting any leakage. 

The exact amount of holes that diffuse through the n-type region is 
affected by a few parameters which are intrinsic to the n-type region (e.g. 
diffusion lengths), as well as by other parameters which are extrinsic to it 
such as the current flowing through the base (IB) which acts as the control 
current of Fig. 17.2. The mechanisms of this current control will now be 
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illustrated in further details in the case of amplification in a bipolar junction 
transistor. 

emitter base collector 

'Bfl base (n) 

emitter (p) collector (p) 

Fig. 17.4. A p-n-p bipolar jut~ction transistor with its emitter-base junction under forward 
bias and the base-collector under reverse bias. The conventions for the signs of the electrical 
currents IE, IB and lc are shown: the electrical current will be positive l f i t  actuallyflows in 

the direction of the arrow. 

17.3.2. AmpliJication process using BJTs 
In order to understand how the amplification process is carried out, we will 
first develop a qualitative picture of the current mechanisms in a BJT 
transistor. Then, we will take a more analytical approach to expressing the 
current mechanisms, as well as the amplification and transport factors 
relevant to BJT devices. 

Let us begin by considering a p-n-p transistor with a heavily doped pi  
region for the emitter. The p-type emitter is taken to be highly doped in 
order to be a more efficient hole emitter. A schematic diagram of such a 
structure is shown in Fig. 17.5. 

For the holes that are injected from the emitter electrode into the base, a 
portion will undergo recombination with the electrons present in the base 
region (1 in Fig. 17.5). The probability of recombination is proportional to 
the density of electrons available and the density of holes that are injected. 

When no external electrons are injected into the base region, the 
recombining holes will lead to the apparition of fixed positive ions. The 
density of electrons will then decrease, thus causing less and less electron- 



hole recombination, and the fixed positive ions will build up. The resulting 
electric field will reduce the injection of the holes into the base region, and 
hence, the portion of the holes injected from the emitter and reaching the 
collector will decrease as well. 

However, when electrons are injected into the base region through the 
base current IB (4 in Fig. 17.5), they will recombine with the holes and 
reduce the build up of positive charges. The base barrier will therefore 
decrease and a larger amount of holes will reach the collector (2 in 
Fig. 17.5). 

Fig. 17.5 Schenratic diagranz showing the flows of holes and electrons within a pt-n-p 
bipolarjunction transistor. The conventions for the signs of the electrical currents iE, iB and 
ic are shown: the electrical current will be positive Efit actuallyflows in the direction of the 

arrow. 

This phenomenon provides us with a method to control the current flow 
from the emitter to the collector via the amount of electrons injected into the 
base. Since only a small portion of holes will be recombined with the 
injected electrons, we can use a small injection current (IB) to control a 
much bigger current (Ic). And the current gain can be very high if the 
recombination rate is low, which can be done by engineering the base region 
adequately. 

17.3.3. Electrical charge distribution and transport in BJTs 
We will now try to quantitatively examine the operation of bipolar junction 
transistors. We will consider a p-n-p transistor shown Fig. 17.6. The case of 
forward active operation will be considered. The objective will be to 
determine the minority carrier distributions and the terminal currents. In 
order to simplify the calculations, a few assumptions are made: 

(1) Holes diffuse from the emitter to the collector and drift is negligible 
in the base region. 
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(2 )  The emitter current is contributed entirely by holes, i.e. the emitter 
injection efficiency y is 1 and I,,=O. 

(3) The collector saturation current is negligible, i.e. component 3 in 
Fig. 17.5. 

(4 )  The active part of the base and the two junctions are of uniform 
cross-sectional area A and the current flow in the base is essentially 
one-dimensional from the emitter to the collector. 

(5 )  All currents and voltages are considered at steady state. 

I depletion r e x  1 depletion region 
f-----, I 

emitter ( p )  base (n) collector ( p )  

Fig. 17.6. Schenzatic diagrani of a p-n-p bipolar junction transistor showing the voltages and 
convention for the position variable x,,. 

The excess hole concentration on the collector side of the base ApC and 
that on the emitter side of the base ApE are given by Eq. ( 9.42 ): 

I Ap, = p , ( e  khr  - 1 )  
Eq.  ( 17.3 ) 

where p, is the equilibrium hole concentration in the n-type base region. 
If the emitter junction is strongly forward biased (VER>>kbT/q) and the 
collector junction is strongly reverse biased (VcB<<O), these expressions can 
be simplified and become: 



Transistors 

The diffusion equation is given by: 

Eq. ( 17.5 ) d26p(x, ) - - 6p(x, ) 
dxt Li 

where Sp(x,J is the concentration of excess holes at x,, and L,, is the hole 
diffusion length in the n-type base region. The general solution of this 
equation is: 

4, -- 41 

Eq. ( 17.6 ) &(x,) = c 1 e L p  + C2e L p  

where C1 and C2 are integration constants. Expressing the boundary 
conditions, we get: 

r SP(X, = 0) = Cl + C2 = ApE 

Eq. ( 17.7 ) 

where Wb is the width of the base region. Solving for CI and C2 we get: 

If we assume that the collector junction is strongly reverse biased and 
the equilibrium hole concentration p, is negligible compared with the 
injected concentration APE, the concentration of excess holes at x, within the 
base region becomes: 
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Having solved for the excess hole distribution in the base region, we can 
now evaluate the emitter and collector currents from the gradient of the hole 
concentration at each depletion region edge: 

This expression evaluated at xn=O gives the hole component of the 
emitter current (i.e. IEp), and evaluated at xn= Wh gives the collector current 
(1.e. 1,): 

Eq. ( 17.11 ) < 

I, =lP(xn  = 

Then IB is obtained by current summation: 

Eq. ( 17.12) I ,  = I, - I ,  = (Ap, + Ap,) tanh- 
2LP " J 
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1 7.3.4. Current gain 
We can now define a few parameters which characterize the amplification 
mechanism. For simplicity, we will neglect the saturation current at the 
collector (3 in Fig. 17.5) and recombination in the depletion regions. 

We first start by expressing the collector current Ic as a function of the 
emitter current IE. The total emitter current IE has two separate components: 
a net hole and a net electron diffusion currents (5 in Fig. 17.5), or iEp and iEn 
respectively: 

An emitter injection efficiency ycan thus be defined as: 

The emitter injection efficiency can be considered as the portion of total 
emitter current that is due solely to minority carriers being injected into the 
base (see Fig. 17.7). ycan be closer to unity when thep-type emitter region 
is highly doped (p'). It can be shown that the emitter injection efficiency of 
a p-n-p transistor can also be written in terms of the emitter (L" , p p  ) and 

base material properties (Lf: , nn ): 

In this equation we use superscripts to indicate which side of the emitter- 
base junction is referred to. 

The ratio of the collector hole current Icp to the hole component of the 
emitter current IEp, called the base transport factor, is denoted a, and is 
given by: 

Wh csch - 
I ,  L Eq. ( 17.16) a, = - = P - Wb - sech - 

Wh IEP ctnh7 L~ 
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This factor reflects the amount of recombination occurring in the base 
region. Finally, the ratio of the collector current to the total emitter current is 
called the current transfer ratio and is denoted q,: 

- 1 

Eq. ( 17.17 ) a, = a T y  = 

or expressed otherwise as: 

I 
Eq. ( 17.18 ) -C = ~ T I E P  - 

- aTy =ao 
I E  I E n  + I E p  

An efficient transistor is one such that ar =1 and p 1 ,  and therefore the 
current transfer ratio, q, is close to unity too. 

Now, let us consider the relationship between the collector current Ic 
and the base current I,. By taking into account all the currents going into 
and out of the base region, we can express the base current as: 

Using the above relation and the fact that Ic=adEp, we successively get: 

- - CIEp  l ( I E n  + I E p  )I 
Eq. ( 17.20 ) - ai" L IEp  '('En + ' E p  )I 

where p is called the base-to-collector current amplification factor. This 
factor is also commonly seen as hFE in datasheets and the literature. For an 
efficient transistor, as a,, is close to unity, the factor /3 can be large. This 
means that the collector current is large compared to the base current. 
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We mentioned earlier that the amplification can be large if the base 
region is engineered correctly. This can be illustrated by expressing the 
amplification factor P in terms of two characteristic times: zp and q, which 
are the average hole lifetime in the base and the average transit time of holes 
from emitter to collector, respectively. To do so, we will also assume a unity 
emitter injection efficiency ( ~ 1 )  and a negligible collector saturation 
current. 

Under these conditions, the average hole recombination lifetime z, is 
also the average time that an electron injected from the base contact spends 
within the base region. Furthermore, the average time that a hole stays 
within the base region, Wb, is the transit time q given by: 

This transit time can be made much shorter in comparison to the 
recombination lifetime zp by reducing the dimension of the base region, the 
origin of the Early effect, discussed later. This means in particular that an 
injected electron can "outlive" an injected hole in the base region. Thus, in 
order to ensure the overall charge neutrality of the base region, more holes 
need to be injected from the emitter into the base. In other words, for each 
injected electron, there will be zp/q holes which can traverse the base region 
before recombination occurs. This in particular means that: 

We can therefore qualitatively understand how the amplification process 
takes place. Since IE,-IB=Ic when ~ 1 ,  we get: 

Eq. ( 17.22 ) I B  (% - 1 )  = I c  
"- 

Using Eq. ( 17.20 ), we get: 
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Since usually 2 is generally large, we get: 
r, 

Therefore, as the base current IB can be controlled independently as 
shown in Fig. 17.2 and is mainly determined by the external circuit 
parameters, the collector current Ic will be the base current IB multiplied by 
the current amplification factor P, which represents current gain. 
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Fig. 17.7. Energy band edges in a p-n-p type transistor at thermal equilibrium. 
[Semiconductor Physics: An Introduction, 1997, p. 144, Seeger, K., Fig. 5.12. OSpringer- 
Verlag Berlin Heidelberg 1973, 1982, 1985, 1989, 1991 and 1997. With kind permission of 

Springer Science and Business Media.] 

17.3.5. Typical BJT conJigurations 
Four possible modes of operation exist for BJT biasing. The forward active 
mode is the most commonly used operational mode when using a BJT for 
amplification purposes (see Fig. 17.7 for the equilibrium state). The three 
remaining modes are saturation, cutoff, and reverse active modes. The 
junction biasing is configured as shown in Table 17.1. 
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Mode of operation Base-emitter bias Base-collector bias 

Active Forward Reverse 

Cutoff Reverse Reverse 

Saturation Forward Forward 

Reverse Active Reverse Forward 

Table 17.1. The four modes of operation for a BJT and the corresponding junction biasing 
for each mode. 

The active, cutoff, and saturation modes will be explained in the 
following sections but for now we will shortly discuss the reverse active 
mode. The reverse active mode is analogous to forward active in terms the 
equations applicable to it, except the emitter is replaced with the collector 
and vice-versa. This mode is not often used due to its poor efficiency arising 
from the doping configuration and the corresponding depletion widths 
dimensions. 

Fig. 17.8 shows the three common BJT amplifier configurations known 
as common base, common emitter, and common collector. These 
configurations can be easily identified by determining which terminal is 
connected to ground or circuit "common." 

Fig. 17.8. Typical BJT anzplifier configurations: (a) common base, (b) common emitter, and 
(c) common collector 



680 Fundamentals of Solid State Engineering 

Consider the case of a common base (CB) configuration. In forward 
active mode the emitter-base junction is forward biased and the 
collector-base junction is reverse bias. A typical family of curves for such a 
configuration is shown in Fig. 17.9. 

I Cutoff 

Fig. 17.9. A family of curves demonstrating the dependence of collector current, I=, on the 
collector-base voltage, Vcs Curves are shown for a range of emitter currents, IE. The modes 
of operation are labeled and the dashed lines indicate the consequence of the Early effect. 

In Fig. 17.9 the Early effect is shown with dashed lines. This effect 
originates from the increasing base-collector depletion width with increasing 
reverse bias of Vcs This reduces the width of the base region resulting in an 
increased charge gradient across the base as well as decrease in the 
recombination probability in the base. The result of the former is increased 
injection of minority carriers from the emitter and the latter enhances the 
base transport factor, a ~ .  If one extrapolates in the positive VCB direction the 
dashed output curves of Fig. 17.9 they will converge at the Early voltage, 
VA. If the base width is much larger than the depletion region extending into 
the base the Early voltage can be expressed as: 

where Nb is the base doping. 
In the active region of operation the collector-base junction is reverse 

biased and the emitter-base junction is forward biased. If an emitter current, 
IE is allowed to flow then -dE flows from the collector. In this region the 
Early effect should be considered but its overall effect is not very 
significant. If IE goes to 0 then the collector current is equal to the reverse 
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bias saturation current, Ice, a few nano- to micro-amperes depending upon 
the material comprising the BJT. 

The saturation region refers to the case where both junctions are forward 
biased. The forward bias behavior of the collector junction dictates the 
strong dependence of Ic on small changes in VcB. 

In the cutoff region of operation both junctions are reverse biased and 
the collector current is negligible. 

The common emitter (CE) configuration is encountered much more 
often in electronic circuits than the common base configuration and will be 
considered next. One advantage of the CE configuration, compared to the 
CB, is that the input current IB can be much smaller than the output current 
I ,  by nearly P. In the active region it can be shown that: 

Eq. ( 17.26 ) I ,  = PI,  

when the collector leakage current is taken to be negligible and the Early 
effect is not considered. The active region is the normal region of operation 
for a CE amplifier. The Early effect has much more dramatic consequences 
in the case of the CE configuration. A very small change of a fraction of one 
percent in a due to a decrease in Wb can increase p by tens of percents or 
more. Proof of this concept is left for the exercises. 

The cutoff region is defined as the case when the collector current is 
equal to the saturation current and the reverse-biased emitter junction's 
current is zero. If VCE drops below VBE then the collector junction is forward 
biased and the device is considered to be saturated. 

17.3.6. Deviations from the ideal BJT case 
As with just about any electrical device, the practical behavior of BJTs 
deviates, to some respect, from the ideal models presented in the previous 
sub-section. In this sub-section we will discuss some divergences of BJT 
behavior from the ideal case. We have already discussed the Early effect so 
that will not be addressed here but some explanation of base spreading, 
current crowding, depletion region recombination, and breakdown 
mechanisms will be offered. 

In a p-n diode, the occurrence of high injection conditions increases the 
carrier density of injected carriers to levels similar to that of the collector 
doping concentration. When a BJT is placed into high injection conditions, 
by forward biasing the emitter-base junction a reduction in the current gain 
is realized according to the following relationship with VBE: 
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Punchthrough is the case when the low-doped base width is reduced to 
zero and a short circuit between the p-type (or n-type) collector and emitter 
is created upon sufficient Vcs This condition can also arise from very 
narrow base widths. The result of punchthrough is a large current through 
the current and emitter. 

Breakdown in BJT devices usually originates from avalanche 
multiplication. Collector doping levels are typically not high enough to 
cause direct tunneling, or Zener breakdown. The avalanche process in BJTs 
is nearly identical to that in a p-n junction. In the CE configuration 
avalanche breakdown is caused by impact ionization. The ionized carriers 
appear as an increase in the base current which causes even more collector 
current to flow in a positive feedback fashion. One can show that the 
breakdown voltage in the CE configuration is: 

where n is a constant and VBScB is the common-base breakdown voltage. 
The common-base breakdown voltage is commonly determined by the open- 
emitter reverse breakdown voltage of the base-collector p-n junction. This 
breakdown voltage is similar to that for a typical p-n junction and, again, is 
generally due to avalanche breakdown. 

17.4. Heterojunction bipolar transistors 

In a homojunction BJT, the emitter injection efficiency is limited by the fact 
that carriers can flow from the base into the emitter region, over the emitter 
junction barrier, which is reduced by the forward bias. It is necessary to use 
lightly doped base and heavily doped p' emitter for the optimum injection of 
holes. But this will result in higher base resistance. Degenerate doping can 
lead to a slight decrease of E, in the emitter, which will decrease the emitter 
injection efficiency. For high frequency applications, a heavily doped base 
and a lightly doped emitter are desirable. There are better ways to 
accomplish the design instead of doping only, i.e. to use heterojunctions 
instead of homoj unctions. We then talk about a heterojunction bipolar 
transistor or I-IBT. 

For example, if we use a wider bandgap material for the emitter than the 
base, then it is possible that for an n-p-n transistor, the barrier for electron 
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injection is smaller than the hole barrier. Since carrier injection rate varies 
exponentially with the barrier height, even a small difference in these two 
barriers can make a very large difference in the transport of electrons and 
holes across the emitter junction. Neglecting differences in carrier mobilities 
and other effects, we can approximate the dependence of carrier injection 
across the emitter as: 

A relatively small value of AE, will have significant effects to the 
current ratio. This allows us to choose the doping terms for lower base 
resistance and emitter junction capacitance. In particular, we can choose a 
heavily doped base to reduce the base resistance and a lightly doped emitter 
to reduce junction capacitance. However there will usually be spike and 
notch at heterojunction interface. This can be eliminated by graded 
interface. 

In the following sub-sections, we will describe two of the most widely 
used heterojunction bipolar transistors: AlGaAsIGaAs and GaInPIGaAs 
HBTs. 

1 7.4.1. AIGaAs/GaAs HBT 
Thanks to the excellent lattice-match between AlXGal-,As and GaAs over the 
entire compositional range, the AlGaAsIGaAs system has been the most 
widely used system for heterojunction bipolar transistors. Fig. 17.10 shows 
the cross-section structure of a typical AlGaAsIGaAs HBT. 

Eminer 
MeuUizarion 

T - m?4 1 n- - GaAs 

n+- GaAs 

S.I. GaAs 

Fig. 17.10. Cross-section structure of at] AlCaAs/CaAs heterojunction bipolar transistor. 
[Copyright O 1995 From The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for 
photonic and electronic device applications. Reproduced by permission of Routledge/Taylor 

& Francis Croup, LLC.] 
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In order to avoid DX (unknown defect) center problems, the A1 mole 
fraction x in A1,Gal-,As is usually kept around 0.25 which results in a 
conduction-band discontinuity of 0.2 eV and a valence-band discontinuity of 
0.1 eV. Due to the large conduction-band discontinuity, the emitter-base 
junction is usually computationally graded. 

Device isolation is performed through deep ion implantation to make the 
layers outside the device semi-insulating or by using a mesa structure. By 
means of composition-selective etches, vias are etched to the base and 
collector layers to make the corresponding contacts. 

In order to obtain good device performance, the contact resistance of the 
ohmic contacts should be minimized. One of the ways that has been used to 
reduce the emitter contact resistance is to use lattice-mismatched InGaAs 
cap layers grown on the emitter. Due to the small metal-semiconductor 
barrier height good ohmic contacts can be achieved. Commonly used 
contacts are AuGeINi and GeIAulCr. Minimization of the parasitic 
resistance is also very important in obtaining a good device performance. 
The base-emitter separation should be a few tenths of a micron. This can be 
accomplished by using self- aligned techniques ([Nagata et al. 19871 
[Hayama et al. 19871 [Chang et al. 19871). By using a shallow proton 
implant into the collector region under the base contacts, extrinsic collector 
doping and therefore the base-collector capacitance can be reduced [Ginoudi 
et al. 19921. 

It is important that the base-emitter p-n junction coincides with the 
heterojunction between AlGaAs and GaAs. Therefore good doping profile 
and material composition control is required in the growth of the epilayers. 
Most of the AlGaAsIGaAs HBT research has been done on MBE-grown 
devices. Since the early 1980s the performance of MOCVD-grown 
AlGaAsIGaAs HBTs has increased significantly. A f,, of 94 GHz and anJ; 
of 45 GHz have been obtained by Enquist and Hutchby [I9891 using a self- 
aligned structure. One of the difficulties in HBT fabrication is the diffusion 
of impurities from the heavily doped GaAs base into the AlGaAs emitter at 
high temperatures during or subsequent to growth. This causes the p-n 
junction to move into the AlGaAs layer and the current gain of the device is 
reduced due to the reduction in the barrier to hole injection. This problem 
can be avoided by introducing a thin undated GaAs spacer layer between the 
base and emitter or by reduction of the growth temperature before the 
AlGaAs layer is grown. Common p-type dopants in MOCVD are 
magnesium, zinc and carbon. Mg doping shows abnormal memory effects. 
which requires growth interruptions in order to obtain an abrupt doping 
profile ([Kuech et al. 19881 [Landgren et al. 19881). Zn has a large diffusion 
coefficient and carbon doping needs a low growth temperature both of 
which are incompatible with the growth of high-quality AlGaAs which 
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requires high temperatures. However, very high base doping levels are 
possible with carbon doping due to the very low diffusion coefficient of 
carbon [Ashizawa et al. 199 11. Using carbon doping in the base 07=4~ 1019 
~ m ' ~ ) ,  Twynam et al. [I9911 have reported MOCVD-grown AlGaAsIGaAs 
microwave HBTs with an of 42 GHz, f,, of 11 7 GHz and a current gain 
of 50. 

1 7.4.2. GaInP/GaAs HBT 
The Gao.511no,49P/GaAs system has some major advantages over 
AlGaAsIGaAs. For n-p-n heterojunction bipolar transistors, the GaInPIGaAs 
system has an additional advantage when compared with the widely used 
AlGaAsIGaAs structure. The valence-band discontinuity in the 
Gao,sllno,49P/GaAs system is about 0.28 eV and conduction-band 
discontinuity is 0.2 eV [Biswas et al. 19901. A large valence-band 
discontinuity is an exciting property for n-p-n HBTs. In the AlGaAsIGaAs 
system, the same amount of valence-band discontinuity requires that the A1 
mole fraction be about 0.6, in which case there would be a very large 
conduction-band spike at the emitter-base junction together with an indirect- 
gap emitter, neither being acceptable. In the AlGaAsIGaAs system, about 60 
per cent of the energy gap difference occurs in the conduction band and the 
emitter-base junction of the device is usually graded to eliminate the 
conduction-band spike which decreases the emitter injection efficiency and 
increases the emitter switch-on voltage. However, theoretical investigations 
[Das and Lundstrom 19881 have shown that grading of the emitter-base 
junction increases the recombination in the emitter-base junction and 
therefore the current gain may not be increased considerably by junction 
grading. Because of the relatively small conduction-band discontinuity and 
large valence-band discontinuity of Gao.511no.49P/GaAs, it can be estimated 
that the current gain of n-p-n HBTs based on this material system will be 
significantly higher than that of AlGaAsIGaAs HBTs. Modry and Kroemer 
[I9851 have reported a GaInPIGaAs HBT grown by MBE. The current gain 
was low at small current densities suggesting a high recombination rate at 
the emitter-base junction due to a large number of defects at the 
heterojunction interface. A maximum current gain of 30 was obtained at 
3000 ~ . c m - ~ .  Later, MOCVD and chemical beam epitaxy grown 
GaInPIGaAs HBTs with better performances were reported ([Kobayashi et 
al. 19891 [Razeghi et al. 19901 [Alexandre et al. 19901 [Bachem et al. 
19921). In addition, Razeghi et al. [I9901 reported a current gain of 400 for a 
low-pressure MOCVD-grown GaInPIGaAs HBT. Three different HBT 
structures were grown: (i) conventional, (ii) double heterojunction, (iii) 
pseudo-graded base. The details of collector, base and emitter thicknesses, 
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carrier concentrations and a typical x-ray diffraction pattern for the 
structures around the (400) reflection peak are shown in Fig. 17.1 1. 

(GaAs - Gao ,91no,,, P) HBT (004) REFLECTION 

Fig. 17.11. X-ray diffraction spectrum of a GaInP/GaAs heterojunction bipolar transistor. 
(A) conventional HBT, (B) double heterojunction HBT, and (C) pseudo-graded base HBT, 

with the layer thicknesses and carrier concentrations of the collector, base and emitter. 
[Copyright O 1995 From The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for 
photonic and electronic device applications. Reproduced by permission of Routledge/Taylor 

& Francis Group, LLC.] 

The diffraction peak is very intense and has a full width at half 
maximum of 20 seconds, demonstrating that GaInP is perfectly lattice- 
matched to GaAs and the pseudo-graded base has excellent crystallographic 
properties, which is necessary to allow optimal transport properties of the 
injected minority carriers. Fig. 17.12 shows the doping profile 
demonstrating an abrupt and perfectly controlled transition from emitter to 
base and from base to the collector. 

The device structure was a conventional mesa type. NH4:H202:H20 
(10:4:500) and HCI:H3P04 (1:I) were used to etch GaAs and GaInP 
respectively. The emitter and collector contacts were defined by depositing 
and annealing GeIAuNilAu. The base contact was defined by the deposition 
and annealing of ZnIAu. Fig. 17.13 shows the emitter-grounded current- 
voltage characteristic of the device which exhibited a current gain of 400 at 
20 mA. 
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Fig. 17.12. Example of doping profile of a GaInP/GaAs heterojunction bipolar transistor. 
[Copyright O 1995 From The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for 
photonic and electronic device applications. Reproduced by permission of Routledge/Taylor 

& Francis Group, LLC.] 
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Fig. 17.13. Emitter-grounded current-voltage characteristic of the conventional GaInP/GaAs 
heterojunction bipolar transistor shown in (A) of Fig. 17.1 1. [Copyright O 1995 From The 

MOCVD Challenge Volume 2: A Survey of GalnAsP-GaAs for photonic and electronic 
device applications. Reproduced by permission of Routledge/Taylor & Francis Group, LLC.] 
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17.5. Field effect transistors 

A field effect transistor or FET is a three terminal device in which the 
current flow between two terminals can be controlled by the third terminal. 
However, unlike a bipolar junction transistor, the control is through the 
voltage, not current, of the third terminal. There are several types of FETs 
depending on the junction of the controlling terminal or "gate". The first 
type is a junction FET or JFET, where the gate junction is a simple p-n 
junction. If this junction is replaced with a metal-semiconductor Schottky 
contact, the device is called a metal-semiconductor FET or MESFET. Also, 
if an insulator is placed between the metal and the semiconductor, the device 
is a metal-insulator-semiconductor FET or MISFET. Oxides are the 
common insulator, and the devices based on oxide insulators are metal- 
oxide-semiconductor FET or MOSFET. 

17.5.1. JFETs 
The operation of FET is based on the change of the thickness of a 
conducting layer or channel, and hence the current flow through it. 
Fig. 17.14(a) shows the schematic diagram of a JFET. 

The device is made from an n-type channel sandwiched between two p- 
type "gate" layers. The two ends of the channel are attached to metal 
contacts and are named drain and source. There are two depleted layers that 
are naturally formed between the n-type channel and the p-type gates. Under 
a zero bias, the thicknesses of the depleted layers are constant. However, if 
current I passes through the channel, the resistance of the channel results in 
a voltage gradient across it (Fig. 17.14(b)). This means that the voltage 
between the gate and the channel is higher at the drain compared to the 
source, and hence the thickness of the depleted layer is higher at the drain 
accordingly. The thickness of the depleted layer increases for higher gate 
biases, and thus higher channel currents, and at some point the depleted 
layers from both sides of the channel reach together. This situation is called 
pinch-off (Fig. 17.14(c)) and it prevents a further increase of the channel 
current even if a higher voltage is applied between the drain and the source. 

After the initial pinch-off and upon further gate bias, the pinch-off point 
near the drain moves towards the source. The n-type channel from the 
source to the pinch-off point dominates the resistance of the electron flow 
through the n-type channel until the electrons are quickly swept across the 
highly resistive depletion region by the large electric field. 
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Fig. 17.14. Schematic diagrams of a junction field effect transistor under different operation 
conditions. (a) With a low bias between the drain and the source, the thicknesses of the 

depleted layers are nearly constant. (6) When a larger bias is applied and a higher current 
results across the channel, the depleted layers get thicker near the drain. (c) At some point, 
the depleted layersfrom both sides of the channel reach, resulting in the pinch-of condition 
when no further increase in the channel current is possible even i f a  higher bias is applied. 

17.5.2. JFET gate control 
A negative bias of the gate can simply increase the thickness of the depleted 
layer, and change the effective thickness of the channel. This means that the 
conductance of the channel can be reduced with a negative bias on the gate. 
More importantly, the pinch-off effect happens at a lower drain-source 
current. Fig. 17.15 shows the current-voltage relationship of the drain- 
source with different gate voltages. 

Note that if the drain-source voltage is higher than the pinch-off 
condition, the drain-source current only depends on the gate voltage. 
Therefore, the device behaves as a current source that is controlled by the 
gate voltage. Such a characteristic is very useful in the design of AC 
amplifiers. 
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Fig. 17.15. Current-voltage relationship between the drain and the source of afield effect 
transistor as a function of gate voltage. The dotted curve shows the characteristic points 

where the pinch-off occurs. 

The pinch-off voltage of the device can be calculated using our 
knowledge about the gate-channel p-n junctions. Assuming that the gates are 
heavily doped (p') and the built-in voltage of the junction Vo, is negligible 
compared to the gate-drain voltage VGD, the depletion layer thickness is: 

112 

Eq. ( 17.28 ) W = 

where E is the permittivity of the semiconductor and ND is the donor 
concentration in the channel. Now at the gate-drain voltage that pinch-off 
happens or -Vp the depletion thickness is equal to the channel width a, we 
have: 

1 7.5.3. JFET current-voltage characteristics 
Now we are in a position to calculate the current-voltage characteristic of a 
JFET. Fig. 17.16 shows a simplified diagram of the device. 

Considering the symmetry of the device, the half of the channel width is 
called a, and the depletion layer from one side is W(x) where the origin of 
the coordinate x is placed at the drain. The conducting part of the channel is 
a- W(x)=h(x). Now if the width of the channel is 2, the total area of the 
channel at position x is: 



Transistors 

Eq. ( 17.30 ) A = 2h(x)Z 

and assuming that the resistivity of the channel is p, the resistance of the 
channel over a differential thickness dx is: 

and the drain-source current I, is simply the voltage drop dV, over the 
differential distance dx divided by the resistance R(x): 

Fig. 17. 1 6. Schematic diagram o f a  junction field eflect transistor, showing the depletion 
layer width W(x) as a function of the distance from the drain x. 

Now h(x) can be replaced with: 

Eq. ( 17.33 ) 

Inserting Eq. ( 17.33 ) into Eq. ( 17.32 ), we have: 
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and now we can separate I and dV ,  as: 

Integrating from both sides yield: 

1 7.5.4. MOSFETs 
We will now take a look at the metal oxide semiconductor (M0S)-based 
FETs. The operation of MOSFETs is based on the effect of an electric field 
penetrating into the conductive channel between two highly-doped contact 
regions for the source and drain. The basic structure of an n-type MOSFET 
is shown in Fig. 17.17 along with a typical circuit schematic representation 
of a MOSFET. 

Gate Source 

_T--L 
Dram Source 

Fig. 17.17. (a) A schenlatic depiction of an NMOS FET. (b) The corresponding typical circuit 
schematic sytnbol. 

The highly-doped n' regions are typically diffused into the p-type substrate 
and act as contact regions for the source and drain metal electrodes. The 
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gate is electrically insulated from the substrate by an insulator, an oxide in 
the case MOSFETs. 

By applying a positive bias to the gate electrode an electric field will 
extend into the substrate and deplete holes from the region directly under the 
gate electrode. As the gate bias is increased past some threshold value, V,,,, 
an n-channel inversion layer forms under the gate and a conductive n-type 
current path between the n' source and drain is created. 

Based on the biasing configuration there are two basic modes of 
operation for MOSFET devices; linear and saturation. The situation 
explained in the previous paragraph describes the linear mode of operation 
where an increase of the drain-source voltage, VDs, will result in a linear 
increase in the drain current, ID, depending upon the resistance of the 
channel. Similar to the case of the JFET, if VDs is increased further the 
channel begins to pinch-off and the drain current saturates. This mode of 
operation is called the saturation region. These two modes of operation are 
depicted in Fig. l7.l8(a) and (b). 

Fig. 17.18. (a) In the linear mode ofoperation of a MOSFET, where VDs< VGSIVrh, the drain 
current increases linearly with the drain voltage, VD. (b) In the saturation mode of operation, 

where VDs> VGS Vrh, pinch-off occur.^ and the drain current saturates. (c) Upon further 
increase o fV& the channel length is shortened and drain current increases even above that 

for the saturation case . 
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The relationship between 
operation can be shown to be: 
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drain current and VDs for both modes of 

when VDs<(VGs-V,h) and the MOSFET is operating in the linear region 
and: 

when VDs>(VGs-Vfh) and the MOSFET is in its saturation mode of 
operation, p is the channel mobility, C,, is the gate oxide capacitance, W is 
the channel width (into the page), L is the channel length, VGS is the gate- 
source voltage, and Vth is the threshold voltage (-0.5-1 V for silicon-based 
devices). 

17.5.5. Deviations from the ideal MOSFET case 
Similar to BJT devices, the simplified MOSFET principles of operation and 
corresponding relationships do not fully explain the practical behavior of 
actual MOSFET devices. In this sub-section we will discuss velocity 
saturation, channel-length modulation, and insulator breakdown. 

In an effort to keep pace with Moore's law, MOSFET transistor sizes 
have continuously followed a trend of decreasing minimum feature size. 
This scaling reduces parameters such as oxide thickness, gate length, transit 
time, current, power consumption, voltage, etc. Such scaling has strong 
benefits in terms of economics and performance but can cause a variety of 
short channel effects that complicate transistor and highly-integrated circuit 
design. 

One of the most significant effects encountered with decreasing channel 
lengths is velocity saturation. At low electric fields, a linear relationship 
between carrier velocity and electric field strength is observed, even for 
short channels. But at higher field strengths, the carrier velocities begin to 
saturate and are on the order of the thermal velocity. The velocity of carriers 
under a high electric field saturates due to increased optical phonon 
emission. An approximation of this effect is given by the following 
analytical expression: 
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Eq. ( 17.39 ) v, = 
P, E  

l + E I E c  

where vd is the carrier velocity, p, is the low-field mobility, E  is the 
electric field, and Ec is the critical field value. 

As discussed in the previous sub-section, there is a drain-source voltage, 
V,, above which the conduction channel begins to pinch off. Increasing VDs 
to a value greater than V,, moves the pinch-off point towards the source, as 
shown in Fig. 17.18(c). This effectively reduces the channel length and 
increases the drain current, ID. This effect can be mitigated by increasing the 
substrate carrier concentration. If VDs is increased even furthei-, punch- 
through can occur and the drain and source are effectively short circuited, 
similarly to the punch-through case of bipolar transistors. 

An additional limitation on applied terminal voltages pertains to the gate 
voltage. Excessive gate voltages can cause the gate dielectric to 
catastrophically breakdown. This voltage is dependent upon the dielectric 
type and thickness, but is typically around 25-50V. 

17.6. Application specific transistors 

A brief summary of a few application specific transistor types will now be 
given. We will discuss single electron transistors, power transistors, and 
high electron mobility transistors. 

Single electron transistors (SET) are metal-insulator-metal (M1M)-based 
devices that operate on the concept of electron tunneling. By placing two 
such MIM junctions in series with a gate capacitor connected to a third 
electrode between the two MIM junctions the SET device structure is 
realized. By increasing the voltage on the gate capacitor, electrons tunnel 
more quickly and the current through the device is increased. This makes an 
SET similar to a MOSFET but on a much smaller scale. If the gate capacitor 
is made even smaller, fewer electrons are involved in the tunneling current 
and quantization effects become more prominent. 

Power transistors exist for both bipolar and MOSFET transistor types. 
Bipolar transistors are more traditionally used due to their robust ability to 
withstand high currents. This is generally due to the larger active area of 
these devices which allow for low current densities but high, up to 1000 A, 
currents. Silicon BJTs are most commonly encountered due to their 
relatively low cost of manufacturing but silicon carbide (Sic) is 
fundamentally capable of higher breakdown voltages and better thermal 
conductivity than silicon, but at a higher cost. Other bipolar power 
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transistors include darlington transistors, thyristors, insulated gate bipolar 
transistors, and triacs. 

High electron mobility transistors (HEMTs) are used in very low noise 
amplifiers and very high frequency applications such as microwave radio 
frequency, space communications, radio-based telescopes, and digital 
broadcasting systems. They are constructed of 111-V compound 
semiconductor materials such as GaAsIAlGaAs, for example. In HEMTs, 
the heterojunction formed creates a two-dimensional electron gas (2DEG) 
which confines electrons to a very thin, high-mobility conduction layer 
resulting in a very low channel resistivity. By applying a gate voltage the 
conductivity of this channel is changed, effecting the current flow through 
the device, giving it its transistor-like behavior. 

17.7. Summary 

In this Chapter, we have described the general principles for electrical 
amplification and switching. We then modeled the amplification 
mechanisms, the charge distribution and transport in bipolar junction 
transistors. The advantages of heterojunction bipolar transistors have been 
discussed and illustrated with transistors based on AlGaAsIGaAs or 
GaInPIGaAs. Finally, the principles and electrical properties of field effect 
transistors were presented. 
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Problems 

1. Explain why BJTs are considered minority carrier devices and FETs are 
majority carrier devices? 

2. Why is an n-p-n BJT used for high speed applications rather than a 
p-n-p BJT? 

3. What is the typical difference in doping between the emitter and 
collector in a BJT and why? 

4. What is the origin of the Early voltage in a BJT? 

5. Thoroughly explain why a BJT performs so poorly in reverse active 
mode. 

6. Summarize the four different modes of operation for a BJT 

7. Consider the electrical circuit shown below, which is designed to deliver 
a constant current through the collector. Estimate the range of values for 
the resistance Rc in order to keep this constant current source working 
properly. Assume that the collector to emitter voltage should be greater 
than 2 V and that V s O . 7  V. 

Vr,=5 v 

Rc 

C 
R,= 46 kR 

p.100 

v,=3 v 
E 

8. Taking into account carrier recombination in the depletion region the 
current transfer ratio can be expanded to: 

a. = a,@ 
where 6 is the depletion region recombination factor. 
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(a) Calculate the collector current, base current, DC current gain, and 
the current transfer ration of a BJT with an IE of 2.5 rnA and the 
following performance parameters: 

a ~ 0 . 9 9 8  (base transport factor) 
~ 0 . 9 9 9  (emitter efficiency) 
S.0.997 (depletion recombination factor) 

(b) Due to the Early effect the value of cq, in part a is reduced by 0.004. 
By what percent does this affect the DC current gain of the BJT? 

9. Consider a symmetrical pf-n-p' Si bipolar junction transistor with the 
following properties: ~ = 1  o - ~  cm2, Wb=0.8 pm, NA=3 x 1 017 ~ m - ~ ,  and 
ND=3 x 1 o ' ~  ~ m - ~ .  
The characteristics of the emitter material are: 

zn=0.15 ps 
pp=300 cm2/vs 
pn=800 cm2/vs. 

The iharacteristics of the base material are: 
zp=8 ps 
pn=l 500 cm2/vs 
pp=500 cm21Vs 

Calculate the saturation current on the collector side. 

10. Calculate the pinch-off voltage for a silicon nMOSFET with a channel 
half width of 1.5 pm, and a donor concentration of 2 . 0 ~  1015 ~ m - ~ ,  ~,=12. 

1 1 .  Calculate ID for an enhancement-mode nMOSFET with a length of 
L=1.3 pm, width of W=15 pm, an oxide thickness of t,,=25 nm, and a 
threshold voltage VT=0.75 V. The drain-source voltage VDs=5 V and the 
gate voltage VGs=3.5 V. Assume zero substrate bias and a mobility of 
350 cm21Vs. 
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18.6. Summary 

18.1. Introduction 

The word "laser" is an acronym for "light amplification by stimulated 
emission of radiation". The principles of lasers were understood at the end 
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of 1950's [Schawlow et al. 19581. The first working laser was built by 
Maiman in 1960, and used a ruby crystal optically pumped by a flash lamp. 
The Nobel Prize for fundamental work in the field of quantum electronics, 
which has led to the construction of oscillators and amplifiers based on the 
laser principle was awarded in 1964 to N.G. Basov, A.M. Prokhorov, and 
C.H. Tomes. 

The use of carrier injection across a p-n junction for stimulated emission 
from semiconductors was suggested as early as 1961. The stimulation 
emission itself was observed in a GaAs p-n junction one year later [e.g. 
Holonyak et al. 19621, and then the first semiconductor lasers were 
fabricated. The light emitted from a laser can be a continuous beam of low 
or medium power, or it can consist of short bursts of intense light delivering 
millions of watts. 

This Chapter will first review the fundamental mechanisms of a laser. It 
will then describe the first laser, which was realized using a ruby crystal and 
subsequently focus on more sophisticated semiconductor lasers. 

18.2. Types of lasers 

Over the past forty years, scientists have investigated and developed many 
types of lasers. These lasers fall into several broad categories, as categorized 
inFig. 18.1. 

Solid Laser 

Nd:YAG 
Ti: Sapphire 

Gas Laser 

Argon-Ion 

Liquid (Dye) Laser 
Polyphenyl 
Rhodamine 

Oxazine 

Semiconductor Laser 
111-v 
11-VI 
IV-VI 

Fig. 18.1. Different types of lasers with several examples for each type. 

Solid lasers are typically crystals that are doped with specific impurities, 
which introduce energy levels in the band structure of the crystal. These 
energy levels determine the energy (or wavelength) of the light emitted by 
the laser. Solid lasers need to be optically pumped in order to emit light, i.e. 
the energy needed to make the laser emit light is provided by illuminating 
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the crystal with intense light. This is done typically with an incoherent white 
flash lamp, though many commercial lasers are now incorporating 
semiconductor lasers tuned to the optimum absorption frequency for higher 
efficiency. The power conversion efficiency of a laser is the ratio of the 
output power it emits to the total power used. Typical power conversion 
efficiency for a solid laser ranges from 0.1-5 %. 

Gas lasers are very similar to solid lasers. However, instead of 
impurities, the energy of the light emitted depends on the gas mixture used. 
The gas mixture is excited by an electrical discharge. Due to a low 
absorption efficiency, high voltage discharge (typically 2-4 kV) is used to 
transfer energy to the gas mixture. The mixture normally consists of an inert 
gas that absorbs the discharge energy and transfers it to an active gas atom, 
whose allowed energy levels (as discussed in Chapter 2) determine the 
emission energy. Due to a large variety of gas mixtures, the power 
conversion efficiency of these lasers ranges from 0.01-15 %. 

Liquid lasers are typically based on organic dyes dissolved in a solvent. 
These liquids exhibit groups of many closely spaced energy levels, which 
can provide a significant amount of emission wavelength tuning (around 90 
nm in the visible range). Dye lasers are optically pumped, either with a flash 
lamp or another laser. The power conversion efficiency of this type of laser 
can be as high as 20 %. 

The last type of laser relevant to this discussion is the semiconductor 
lasers. The band nature of semiconductor energy levels has already been 
explained in Chapter 4. When electrons in a direct bandgap material relax 
from the conduction band to the valence band, a photon i.e. light can be 
emitted. The wavelength of the emitted light can be changed widely through 
the use of various semiconductor materials with different bandgaps. 
Semiconductor lasers can be based on 111-V, 11-VI, and IV-VI compound 
semiconductors. This Chapter will deal primarily with 111-V semiconductor 
lasers. 

Although semiconductor lasers can emit light when optically pumped, 
they provide a significant advantage of the other types of lasers in that they 
can also be pumped electrically. Further, unlike gas lasers, the voltage 
requirements are minimal (1-2 V), which enables semiconductor lasers to 
be operated with the aid of only a simple battery. Semiconductor lasers are 
very efficient (up to 80 % power efficiency) and come in very small 
packages, similar to electrical transistors. 

18.3. General laser theory 

All the lasers discussed above have several common characteristics. 
Originally, in order to qualify as a laser, stimulated emission had to be 
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demonstrated. The convention is now that a laser must demonstrate both 
stimulated emission and positive optical feedback. These concepts will be 
addressed in this section. 

18.3.1. Stimulated emission 
Most materials exhibit some kind of optical absorption. Absorption is the 
process by which incident light is converted to electrical potential energy. 
For example, an electron can be excited from the valence band to the 
conduction band by absorbing the energy of a photon. Logically, most 
materials also exhibit some form of light emission. For example, in an 
ordinary light source such as a light bulb, the emission of radiation occurs 
through a process called spontaneous emission. In this process, an electron 
which had been excited into a higher energy state for "some time" falls 
down to a lower state by emitting a photon. This "time" is called the 
radiative recombination lifetime. 

However, in the presence of photons, an excited electron can be forced 
or stimulated to fall down to a lower state much faster than in a spontaneous 
event. The stimulus is provided by a photon with the proper wavelength. 
This process is called stimulated emission and produces an additional 
photon of exactly the same direction of propagation, frequency, and 
polarization (direction of the electric field in a wave) as the stimulating 
photon. 

T~~ F:~~ h v 1 2 ~ E 2  hv12 h  ~1~ fl fl @ h v ,  

El 
(b) 

El 
( 4  (c> 

El 

absorption spontaneous emission stimulated emission 

Fig. 18.2. Interaction ofphotons and electrons in a two energy level system: (a) optical 
absorption, an electron is excited from the lower level into the upper level by absorbing the 

energy of a photon of the correct energy; (b) spontaneous emission, the relaxation of the 
excited electron from the upper level to the lower level by release of energy in the form of a 
photon; (c) stimulated emission, the relaxation process is triggered by an incident photon 

and results in an additional photon with the same energy as the incident photon. 

Spontaneous and stimulated processes are illustrated in Fig. 18.2. An 
electron in state E2 drops spontaneously to El emitting a photon with energy 
hvI2=E2-El. Assuming that the system is immersed in an intense field of 
photons, each having energy hvI2=E2-El, the electron is induced to transit 
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from E2 to El, contributing a photon whose wave is in phase with the 
radiation field. If this process continues and other electrons are stimulated to 
emit photons in the same fashion, a large radiation field due to stimulated 
emission can build up. This radiation is monochromatic since each photon 
has an energy hv12=EZ-El and is coherent because all the photons are 
released in the same phase. 

Let us consider the general conditions necessary for stimulated emission 
to occur. We assume the populations of energy levels El and E2 (E1<E2) to 
be nl and n2, respectively. At thermal equilibrium the relative population 
will be: 

At equilibrium most electrons are in the lower energy level, i.e. n2<<nl. 
If the atoms exist in a radiation field of photons with energy hv12 such that 
the energy density of the radiation field is p(uI2),  i.e. the photon density of 
states, then stimulated emission can occur along with absorption and 
spontaneous emission. The rate of stimulated emission is proportional to the 
number of electrons in the upper level n2 and to the energy density of the 
radiation field p(uI2) .  It can then be written as ~ ~ , n ~ p ( u , , )  where B2, is 
the proportionality coefficient. 

The rate at which the electrons make upward transitions from El to E2 
(photon absorption) should also be proportional to p (uI2)  and to the 

electron population in El. This rate is given by ~ , ~ n , ~ ( u , ~ ) ,  where B12 is a 
proportionality factor for upward transitions. 

Finally, the rate of spontaneous emission is proportional only to the 
population of the upper level, A2,n2 . 

The coefficients B2,, BI2, and AZ1 are called the Einstein coefficients. The 
ratio of the stimulated to spontaneous emission rates is: 

Stimulated emission rate B2,n2p(u,,) - B2, Eq. ( 18.2 ) - - 
Spontaneous emission rate 

- - ~ 0 - 4 2  ) 
A21n2 A2 I 

which is generally very small, so the contribution of stimulated emission 
is negligible. From Eq. ( 18.2 ) it follows that in order to enhance the 
stimulated emission over spontaneous emission one has to provide large 
photon field energy density p(uI2).  In a laser, this is encouraged by 
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providing a resonant optical cavity in which the photon density can build up 
to a large value through multiple internal reflections. 

Under thermal equilibrium the total rates of upward and downward 
transitions are equal: 

Eq. ( 18.3 ) means that in equilibrium the ratio of the stimulated 
emission and upward transition rates is given by: 

Stimulated emission rate - B,, n, 
Eq. ( 18.4 ) - < 1 

Absorption rate 4 2  a1 

So, stimulated emission may dominate over absorption only when, (if 
BI2 = B 2 , )  n2>nl, i.e. in a non-equilibrium state. This state is called 
population inversion. In summary, Eq. ( 18.2 ) and Eq. ( 18.3 ) indicate that 
stimulated emission can dominate if two requirements are met: (i) there is an 
optical resonant cavity to encourage the photon field to build up, (ii) there is 
population inversion. 

The first requirement implies multiple passes of the light through the 
amplifying medium and the second requirement is a necessary condition for 
the medium to amplify the input light (Fig. 18.2(c)). Fig. 18.3 illustrates 
these two conditions for the generation of high intensity, coherent light. 

I \ ignition (spontaneous emission) 

amplification (stimulated emission) 

Resonant cavity 

Fig. 18.3. The elements necessary to a laser system: a resonant cavity which ensures the 
build up o f a  photon field, an amplifying medium in which the population inversion has been 

established, and an external pump which supplies the energy necessary to the systenz for 
amplification. 
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18.3.2. Resonant cavity 
As shown in Fig. 18.4, light propagating inside the amplifying medium and 
perpendicularly to the mirrors (on-axis) with a particular frequency can be 
reflected back and forth within the resonant cavity in a reinforcing or 
coherent manner if an integral number of half-wavelengths fit between the 
end mirrors. Thus the length of the cavity for stimulated emission must be: 

mi2 
Eq. ( 18.5 ) L = 7 

where m is an integer. In this equation, A is the photon wavelength 
within the laser material. It should be noted that this wavelength is related to 
the vacuum wavelength & through the relation: 

Eq. ( 18.6 ) A, = I; 

where i i  is the refractive index of the resonant cavity material. The 
allowed wavelengths within the optical cavity are referred to as longitudinal 
optical modes. 

mirror mirror 

Fig. 18.4. Longitudinal optical modes in an optical resonant cavity delimited by two parallel 
mirrors. The length of the cavity is equal to an integral number of half-wavelengths of the 

light being ampl$ed. This configuration leads to the constructive interference or reinforcing 
reflection of the light by the cavity, and thus amplification. 

The amplifying medium is characterized by a definite wavelength region 
in which stimulated emission can occur. This is referred to as the material 
gain curve and is shown in Fig. 18.5(a). In a given resonant cavity including 
this amplifying medium, only the longitudinal modes will experience 
amplification, which leads to a characteristic laser output as shown in 
Fig. 18.5(c). 
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Frequency 

Fig. 18.5. Illustration of the effect of the cavity longitudinal modes on the laser output 
spectrum: (a) gain curve of the amplijjing medium, (b) the wavelengths of the allowed 

longitudinal modes inside a given resonant cavity, and (c) the laser output modes. 

Light output from a laser is also characterized by off-axis transverse 
modes. The transverse modes refer to the spatial intensity distribution at the 
exit mirrors. The origin of these modes is similar to the longitudinal modes, 
but is related to the spatial interference of light in the cavity. Fundamental 
modes are typically most intense on the axis of the cavity. Higher order 
modes exhibit multiple intensity peaks of increasing spatial frequency. 
Semiconductor lasers in particular demonstrate very specific transverse 
modes. 

18.3.3. Waveguides 
In order to achieve low power consumption and high efficiency, modern 
semiconductor lasers include thin layers (<I pm) deposited by epitaxial 
techniques (Chapter 12) such that the electrons and holes are confined into a 
narrow region. In addition, when different types of materials with different 
refractive indices are used, these layers can also confine light, i.e. constitute 
a waveguide which is a medium in which a wave can propagate in one 
direction and is confined in others. 

Light is an electromagnetic wave, composed of oscillatory electric and 
magnetic fields perpendicular to each other and the direction of propagation. 
The propagation of light in a medium can be described by Maxwell's 
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equations which give the relation between the electric and magnetic fields in 
the wave. In this part, the propagation of the light inside a dielectric 
waveguide will be discussed. 

Maxwell's equations introduced in Chapter 10 can be simplified in a 
dielectric since there is a negligible electrical current inside such a material. 
In the single frequency mode approximation and source free region, they 
are: 

V x H  =-iwD 

where 2 is the electric field, g is the magnetic induction or flux 

density, g is the magnetic field strength, Tj is the electric displacement, 
and w is the angular frequency of the electromagnetic wave (i.e. light). In an 

isotropic material, the displacement 5 and electric field strength E are 
related through the absolute permittivity E of the material (in this Chapter 
the permeability is always the absolute permeability): 

Eq. ( 18.8 ) Zj = &E 

Similarly, the magnetic field strength g and the magnetic flux density 

s are related through the permeability ,u of the material: 

Using Eq. ( 18.9 ) in the first relation in Eq. ( 18.7 ), we have: 

- - 
Eq.(18.10) ~ x ~ = i o ( p ~ )  

After applying ? x  to both sides of Eq. ( 18.10 ), we get: 

~ q .  ( 18.11 ) ?x(?x2)=iwP(?x7j) 

On the other hand, we have the mathematical relation: 
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Eq. ( 18.12) ? x ( ? x ~ ) = ? x ( ? . ~ ) - V ' E  

where V 2  represents the Laplacian operator and is such that: 

In addition, using Eq. ( 18.8 ) in the last relation in Eq. ( 18.7 ), we get: 

- - 
Eq. ( 18.14) T . E = T . ( E E ) = E V . E = O  

which means, because the permittivity E cannot be zero, that: 

4 4 

Eq. (18.15) V . E = O  

Combining Eq. ( 18.1 1 ), Eq. ( 18.12 ) and Eq. ( 18.15 ) we find that: 

Now, by inserting the second relation of Eq. ( 18.7 ) into this last 
equation, we get: 

Using Eq. ( 18.8 ), this becomes: 

This equation is sometimes called the wave equation and governs the 

behavior of the electric field strength component 2 of an electromagnetic - 
wave (i.e. light) in a medium. Knowing E , one can use the first relation in 

Eq. ( 18.7 ) to calculate B ,  the magnetic component of the propagating 
wave. 

Solving the wave equation in any such non-isotropic structure also 
requires the knowledge of the boundary conditions. These are in part 
determined by the geometry of the waveguide. The wave equation is of the 

4 

second order in E and, for a symmetric waveguide, yields even and odd 
parity solutions, which are called even and odd modes. 
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The simplest waveguide is a slab waveguide and consists of a high index 
core layer sandwiched by two other parallel layers, called cladding layers, 
with different refractive indices, as shown in Fig. 18.6. As a result, the 
propagation of the electromagnetic wave depends on whether the electric 
field is parallel to the layers or perpendicular to them. The former case is 
called TE polarization while the latter is called TM polarization. 

mirror i mirror 
1 

/ / / / / /  - 
layer 3 Y13 

d/2 
- 

o +  I layer 2 
- 

layer 1 IZ I 
/ 1 1 1 1 1  

Fig. 18.6. (a) Representation of a three-layer dielectric waveguide, with three different 
refractive indices. (b) Ray trajectories of the guided wave, when the refractive index of the 
center layer is larger than those of the surrounding layers. The ray of light can experience 
total internal reflection at the interfaces between the dielectric materials, confining light to 

the core material. 

To model the wave propagation in such a structure, one needs to 
consider two general solutions to the wave equation Eq. ( 18.18 ). The 
fundamental mode of most semiconductor lasers is TE. A TE mode must 
satisfy the wave equation and takes on the general form in the waveguide 
core: 

where A is a normalization constant, and: 
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2 Eq. ( 18.20) k x 2  + k Z 2  = w 

where k, is the propagation wavevector in the waveguide, E is the 
permittivity and p the permeability of the waveguide. In the slab waveguide, 
some values of kz cause k, to become imaginary. This leads to a decay of the 
mode in the waveguide cladding, and is called the evanescent solution: 

Eq. ( 18.2 1 ) E, (x, z) = exp(ik,z)[~ exp(- m) + c e x p ( d ]  

where B and C are normalization constants, and: 

Eq. ( 18.22 ) - a2  + k i  = w2,u& 

and: 

Eq. ( 18.23 ) a = ik, 

Let us assume that the waveguide is limited in the x-direction to within 
the region (-d/2<x<d/2), that it extends to infinity in the y-direction and that 
the waves propagate in the z-direction, as shown in Fig. 18.6. By solving the 
wave equation, one can find that the electric field in the even 
TE-polarization mode is along the y-direction and is given by: 

Eq. ( 18.24) 

where (a,, k2x, ~ l j )  are the components of the wavevector in the 
x-direction defined by: 

E, ( x ,  z) = eikzz< 

d 
<Al e x P [  a [ X  - +)) for > 5 

A, cos(k2,x + () 
d d 

2 - T X < -  
d 

A3 exp[a3 ( x  + 4)) for x  < -- 
< 2 
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and k, is the propagation wavevector for the confined mode. 
The magnetic field strength can be determined from the electric field - - 

strength using Eq. ( 18.10 ), given that E = E,  y : 

where ,u, is the permeability of the material in layer 1. The boundary 
conditions for the electric and magnetic field strengths in a waveguide rely 
on the continuity of their tangential components, i.e. E, and Hz. Applying 
these boundary conditions at ~ = ~ / 2  yields a transcendental equation, 
similar to finding the bound states for an electron in a finite potential well 
(sub-section 3.3.3). By further assuming the permeabilities are such that 
,u,=,u2=,u3, which is the case for most 111-V semiconductors, this 
transcendental equation has the form: 

(a, + a, )k2, Eq. ( 18.27 ) tan(k,,d) = 
k2x -%a3 

Using Eq. ( 18.25 ), this can be solved graphically as a function of kz,, as 
shown in Fig. 18.7. 

LHS 
RHS 

Fig. 18.7. Plot of the left-hand side (LHS) and right-hand side (RHS) of Eq. ( 18.27). The 
intersection points represent allowed optical modes referenced as TEo through TE?. 
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The complete expression of the electric field strength can be obtained 
after applying the normalization condition: 

where H,* is the complex conjugate of the quantity H,. This gives: 

Eq. ( 18.29 ) 

d 
1cos(k2x 4 + () 

a, (.x - $)I for x > 

where: 

Eq. ( 18.30 ) A = 

and: 

d 
Eq. (18.31) (=cot- '  

Each of these TE modes solutions of the above equations will be 
indexed with an integer p and has its own wavenumber k, , varying from 

on, 
that in the cladding layer k, = - at low frequency to that in the core 

C 

@ti2 
k, =- at high frequency. 

C 

When E, = $ = ti,,a, and =KO,, the slab waveguide is said to be 
symmetric. In this case, the allowed modes take on an even or odd parity 
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and look similar to Fig. 18.8. All the TE, modes, for p>O, exhibit a cutoff 
frequency, w,,, such that a wave with a lower frequency cannot propagate 
through the waveguide in that mode. For the symmetric waveguide, the 
predictable cutoff condition is: 

w d  - 
Eq. ( 18.32) ---,/==pE p=0,1,2 ,... 

c 2 2 

which indicates that the TEo mode always has a solution, while higher 
order modes may not. 

The equations for TM modes are derived in a similar fashion to the TE. 

This is done by using the duality principle, which consists of replacing 

and with and - 2 , respectively, and swapping p with E in all the 
formulas. It should be realized that, in this case, Ex will be discontinuous 
due the change of permittivity at material interfaces. 

(a) Even modes (b) Odd modes 

Fig. 18.8. Electric field profiles in TE modes in a symmetric waveguide: (a) even modes, (b) 
odd modes. 

In practice, the waveguide in a semiconductor laser is formed by an 
active layer or active region surrounded by two cladding layers of different 
material. These layers typically have a smaller refractive index than the 
active layer, which confines the light within the active layer and guides it. 

The extent of the confinement is mathematically described by the optical 
confinement factor, T , which in turn influences the threshold current and 
other laser characteristics. In terms of the above solution, the confinement 
factor can be expressed as: 
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L. 

Eq. ( 18.33 ) r = -d l  2 

1 
00 

--Re ~ ( E ~ H , * ) X  
2 

-00 

where Ey and H, are the components of the electric and magnetic field 
strengths in the y- and x-directions, respectively. The confinement factor is 
always less than or equal to unity. It represents the percentage of the optical 
mode that is confined within the waveguide core. 

A waveguide with a high confinement factor makes efficient use of 
emitted light and tends to have a low threshold gainlcurrent. For a 
symmetric waveguide, a thick core and/or high refractive index difference 
between layers leads to a high confinement factor. This effect is shown 
graphically in Fig. 1 8.9. 

(a) Small r . . 
. . . . . . Ey (x) 

X 

Large 

Fig. 18.9. TEo mode and confinement factor dependence on the refractive index dgerence 
An and core thickness d. (a) small d, small A n ,  small T: (6) large d, small A n ,  large C 

(c) small d, large A n ,  large 1 
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18.3.4. Laser propagation and beam divergence 
Regardless of the optical confinement, laser light exiting a semiconductor 
laser ( E  ~53.4) into air ( E  =1) diverges in the x-direction due to diffraction. 
This happens for all lasers, but due to their small emitting aperture, the 
effect is much more pronounced in semiconductor lasers. 

Let us consider the laser geometry shown in Fig. 18.10. At some distant 
observation point from the mirror (z=O), such that r>>r', the far-field 
approximation holds, and is given as: 

x observation 

fL- mirror 

Fig. 18.10. Coordinates for calculating the far-field pattern at a distance r. 

Following a derivation from Chuang [I9951 based on the propagating 

radiation field, and the definition of the radiated power I = 

the angular dependence of the power distribution for a TE mode is given by 
the following transform: 

Eq. ( 18.35 ) I(B),  a cos2 B = O)dxl 

This intensity distribution is called the far-field pattern. The integral in 
Eq. ( 18.35 ) is effectively a spatial Fourier transform, as a small aperture 
translates to a large divergence. 
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In a symmetric slab waveguide characterized by a core thickness of d, a 
Gaussian function can be used to approximate the TEo transverse mode. This 
leads to an effective spot size, se, given by: 

Eq. ( 18.36 ) se = 

This function is easier to transform, and leads to a simpler solution for 
the divergence angle, 8', given by: 

In other words, the divergence angle is inversely proportional to the spot 
size. This is very important with regard to application. In general, the higher 
the divergence, the harder it is to collect all the light. 

Unlike the y-direction of a slab waveguide, the transverse dimension of a 
real laser diode is not truly uniform. Various gain- and index-guided designs 
are used to control the transverse mode output in this direction as well, 
which makes 

As a consequence, even in the transverse direction of the waveguide, 
there is divergence, as shown in Fig. 18.11. The resulting power intensity 
pattern in the two directions can be given as: 
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ensity 

beam Y 
Fig. 18.11. Divergence characteristic o f a  non-irlfinite semiconductor laser waveguide. 

18.3.5. Waveguide design considerations 
It should be noted that higher order transverse modes will all have different 
divergence characteristics. When multiple modes exist, interference effects 
can produce non-Gaussian, poor quality, far-field patterns. This condition 
makes it extremely difficult to focus the laser output to a tight spot, which 
decreases the usable output. 

The waveguide needs to be designed for a high confinement factor, low 
divergence, and good beam quality. Care must be taken to suppress higher 
order transverse modes, which appear more readily when there is a large 
index difference or a thick waveguide core. For the most usable output, a 
laser of given frequency 0, needs a waveguide such that &wl, where OI, is 
the cutoff frequency for the TE, mode. 

For semiconductor lasers in general, even when higher modes do exist, it 
is the ellipticity of the semiconductor laser output, as shown in Fig. 18.1 1 
that makes collection and focusing of light difficult. This is especially true 
for laser arrays in which there may be a very large aspect ratio to overcome. 
Cylindrical lenses are needed to first circularize the beam before the output 
can be utilized. A laser designed with a circular output can take advantage 
of simpler, and in general, high quality optics. 
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18.4. Ruby laser 

The first working laser was built in 1960 by Maiman, using a ruby crystal as 
the amplifying or active medium. Ruby belongs to the family of gems 
consisting of sapphire or alumina (A1203) with various types of impurities. 
For example, pink ruby contains about 0.05 % Cr atoms. Similarly, Al2O3 
doped with Ti, Fe, or Mn results in variously colored sapphire. Most of 
these materials can be grown as single crystals. 

Ruby crystals are available in rods several inches long, convenient for 
forming an optical cavity (Fig. 18.12). The crystal is cut and polished so that 
the ends are flat and parallel, with the end planes perpendicular to the axis of 
the rod. These ends are coated with a highly reflective material, such as A1 
or Ag, producing a resonant cavity in which light intensity can build up 
through multiple reflections. One of the end mirrors is constructed to be 
partially transparent so that a fraction of the light will "leak out" of the 
resonant system. This transmitted light is the output of the laser. Of course, 
in designing such a laser one must choose the amount of transmission to be 
a small perturbation on the resonant system. The gain in photons per pass 
between the end plates must be larger than the transmission at the ends, as 
well as any other losses due to light scattering and absorption. The 
arrangement of parallel plates providing multiple internal reflections is 
similar to that used in the Fabry-Perot interferometer; thus the silvered ends 
of the laser cavity are often referred to as Fabry-Perot faces. 

flash lamp 

Fig. 18.12. Schenzatic diagram of a ruby laser. A ruby crystal rod is cut and polished so that 
its ends form mirrors to create the resonant cavity. AJash lamp supplies the necessary 

energy in the form ofphotons to pump the rod. 

In the case of ruby, chromium (Cr) atoms in the crystal have their energy 
levels as shown in Fig. 18.13, where only the energy levels that are 
important for stimulated emission are depicted. 
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E, (metastable state) 

Pump 
input 

laser 
-hv12 output 

v 
E, (ground state) 

Fig. 18.13. Energy levels for chromium ions in ruby. The three level system includes a 
ground level at El, an excited level at E3, and a metastable state at E2 where the excited 

electrons relax rapidly to. The mean lfetime of the metastable state is long enough to ensure 
that population inversion can be achieved between the levels El and Ej. 

This is basically a three-level system. Absorption occurs in the green 
part of the spectrum, exciting electrons from the ground state El to the band 
of levels designated E3 in the figure. Then electrons decay rapidly to the 
level E2. This transition is non-radiative. The level E2 is very important for 
the stimulated emission process since electrons in this level have a mean 
lifetime of about 5 ns before they fall to the ground state. Because this 
lifetime is relatively long, E2 is called a metastable state. If electrons are 
excited from El to E3 at a rate faster than the radiative rate from E2 back to 
El,  the population of the metastable state E2 becomes larger than that of the 
ground state El  (we assume that electrons fall from E3 to E2 in a negligibly 
short time). 

In the experiment done by Maiman in 1960, population inversion is 
obtained by optical pumping of the ruby rod with a flash lamp such as the 
one shown in Fig. 18.12. A common type of flash lamp is a glass tube 
wrapped around the ruby rod and filled with xenon gas. A capacitor can be 
discharged through the xenon-filled tube, creating a pulse of very intense 
light over a broad spectral range. If the light pulse from the flash tube is 
several milliseconds in duration, we might expect an output from the ruby 
laser over a large fraction of that time. However, the laser does not operate 
continuously during the light pulse but instead emits a series of very short 
spikes (Fig. 18.14). 
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Threshold 
pumping level 

Fig. 18.14. Laser spikes in the output of a ruby laser: (a) typical variation of the intensity of 
the flash lamp with time: the intensity is above the threshold pumping level only during a 
certain period of time, not during the entire duration when the lamp is powered. (b) Laser 
spikes occurring while the flash intensity is above the threshold pumping level. As soon as 

population inversion is achieved between the levels El and E2, the laser emits a pulse of light. 
This process results in the series of laser intensity spikes. 

When the flash lamp intensity becomes large enough to create 
population inversion (the threshold pumping level), stimulated emission 
from the metastable level to the ground level occurs, with a resulting laser 
emission. Once the stimulated emission begins, the metastable level is 
depopulated very quickly. Thus the laser output consists of an intense spike 
lasting from a few nanoseconds to microseconds. After the stimulated 
emission spike, population inversion builds up again and a second spike 
results. This process continues as long as the flash lamp intensity is above 
the threshold pumping level. 

In this situation, one can easily understand that the metastable level 
never receives a highly inverted population of electrons. Whenever the 
population of E2 reaches the minimum required for stimulated emission, 
these electrons are depleted quickly in one of the laser emission spikes. 

To prevent this, we must somehow keep the coherent photon field in the 
ruby rod from building up (and thus prevent stimulated emission) until after 
a larger population inversion is obtained. This can be accomplished if we 
temporarily interrupt the resonant character of the optical cavity. 

This process is called Q-switching, where Q is the quality factor of the 
resonant structure. A straightforward method for doing this is illustrated in 
Fig. 18.15. The front face of the ruby rod is silvered to be partially 
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reflecting, but the back face is left un-silvered. The back reflector of the 
optical cavity is provided by an external mirror, which can be rotated at high 
speeds. When the mirror plane is aligned exactly perpendicular to the laser 
axis, a resonant structure exists; but as the mirror rotates away from this 
position, there is no buildup of photons through multiple reflections, and no 
laser action can occur. Thus during a flash from the xenon lamp, a very 
large inverted population builds up while the mirror rotates off-axis. When 
the mirror finally returns to the position at which light reflects back into the 
rod, stimulated emission can occur, and the large population of the 
metastable level is given up in one intense laser pulse. This structure is 
called a giant pulse laser or a Q-switched laser. By saving the electron 
population for a single pulse, a large amount of energy can be given up in a 
very short time. For example, if the total energy in the pulse is 1 Joule and 
the pulse width is 100 ns s), the peak pulse power is lo7 J . s - ' = ~ o  MW. 

\ 
flash lamp 

rotating mirror 

Fig. 18.15. Schematic diagratn o f a  Q-switched ruby laser in which one face of the resonant 
cavity is an external rotating mirror. The purpose of the rotating mirror is to prevent 

stimulated emission by interrupting the resonant nature of the laser cavity, thus preventing 
the photon field from building up. This allows a larger population inversion to be achieved, 

and consequently, a higher intensity laser light emission. 

18.5. Semiconductor lasers 

In a semiconductor laser, population inversion mechanism is realized 
through a very unique method: by injecting electrical current directly into a 
p-n junction. This method of achieving population inversion is very efficient 
when compared to the process in ruby lasers or gas lasers. The 
semiconductor laser itself is also very compact (a typical size of the active 
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laser part is only 100 pm x 1000 pm x 100 pm = one part in a hundred 
thousand cubic centimeters!). 

Moreover, semiconductor lasers can be easily integrated with other types 
of semiconductor devices such as transistors or even large-scale integrated 
circuits, and the laser output can be easily modulated by controlling the 
junction current. It is no surprise that semiconductor lasers are now widely 
used for high speed optical processing and optical communication. 

Another great advantage for these lasers is an inherent optical cavity. 
Most popular semiconductors (111-V, 11-VI) have natural cleavage planes, 
which are the crystallographic planes along which the atomic bonds are 
weakest and therefore most easily broken. For zinc-blende crystals, cleavage 
parallel to (1 10) and (I TO) planes can produce atomically flat mirrors for 
use in a Fabry-Perot optical cavity. The reflectivity of the mirrors is limited 
by the refractive index of the semiconductor, and is given by: 

where n is the refractive index of the semiconductor. A typical 
semiconductor has a refractive index of 3.4 in the mid-infrared region, 
which gives a natural mirror reflectivity of 29.8 %. 

18.5.1. Population inversion 
If a p-n junction is formed between degenerate materials, the bands under 
forward bias appear as shown in Fig. 18.16. If the injected current is large 
enough, electrons and holes are injected into and travel across the transition 
region in considerable concentrations. A large concentration of electrons is 
then present in the conduction band, while a large concentration of holes is 
present in the valence band, which satisfies the condition for population 
inversion. 

Unlike the case of the three-level system discussed earlier (the ruby laser 
is essentially a three-level system), the condition for population inversion in 
semiconductors is more complicated. Both electrons and holes experience 
strong intraband scattering. The rapid intraband scattering and separate 
injection of electrons and holes allows for thermal equilibrium in each band 
separately. This situation is often called quasi-equilibrium and the particle 
distributions are described by Fermi distribution functions using quasi- 
Fermi energies for electrons and holes Ec, and EFp (Chapter 8). 
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electron n-type 

hole 
barrier 

Fig. 18.16. Band diagram of a p-n junction laser under forward bias. The electrons and holes 
injected into the space charge region recombine radiatively to emit photons with an energy 
close to the bandgap of the semiconductor in the inversion region. When enough electrons 

and holes are injected, population inversion can be achieved, making laser emission possible. 

Let us consider the population inversion in a semiconductor in more 
detail. We saw in Chapter 9 that, when an external bias was applied, 
minority carriers are injected on either side of the p-n junction and the quasi- 
Fermi levels go deep into each band apart from their equilibrium position 
somewhere in the bandgap. The absorption coefficient depends on the quasi- 
Fermi energies Ec, and EF,, . It changes sign when Ec, - E = h u ,  for a 

F,J 

given photon energy h u . 
As the quasi-Fermi levels move apart from each other, this leads to a 

negative absorption coefficient which means the medium amplifies the light 
of frequency u . The condition EF,, - E,,, = h u is known as the Hernard- 

Durafforg condition, or transparency point, because at this point the 
absorption coefficient is zero. Reaching the transparency point, or 
population inversion, is a necessary condition for lasing. When 
Ec, - E ,  > h u ,  light of frequency u is subject to amplification and is f , ~  
characterized by a gain, which is the opposite of the absorption coefficient. 

As a result of this condition, the frequency of the light emitted by 

semiconductor lasers is larger than 

occur in semiconductor lasers, 

E ,  - E F ~  
V =  at least higher than 

4 

E, 
-- . This in turn means that for lasing to 
h 
it is necessary to apply a voltage 

E, 
4 
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18.5.2. Threshold condition and output power 
The photon wavelengths which participate in stimulated emission are 
determined by the length of the resonant cavity as described in Eq. ( 18.5 ). 
Fig. 18.17 illustrates a typical plot of the light emission intensity versus 
photon energy for a semiconductor laser. 

At low current levels, a spontaneous emission spectrum is observed, as 
shown in Fig. 18.17(a). As the current is increased to the threshold value, 
stimulated emission occurs at light frequencies corresponding to the cavity 
modes as shown in Fig. 18.17(b). Finally, at a higher current level, a most 
preferred mode or set of modes will dominate the spectral output, as shown 
in Fig. 18.17(c). 

This very intense emission represents the main laser output of the 
device, where the output light will be composed of almost monochromatic 
radiation superimposed on a relatively weak radiation background, due 
primarily to spontaneous emission. 

(a) below threshold t (b) at threshold 
t ( c )  above threshold 

Fig. 18.17. Emission spectrum plotted as light intensity versus the energy ofphotons for a 
semiconductor laser: (a) below the threshold, an incoherent emission occurs with many 

photons emitted at several values of energy; (b) at threshold, laser modes appear which are 
determined by the dimensions of the resonant cavity; (c) above threshold, one dominant laser 

mode remains. 

When the transparency condition is satisfied, the region becomes active, 
which means it can amplify light. The peak value g of the gain as function 
of frequency plays a major role in laser action. Typically, the peak gain is a 
linear function of carrier density: 

Eq. ( 18.41 ) g(n)  = a(n -no)  

where no is the transparency density and a is called the differential gain. 

Although gain leads to light amplification, the optical losses, such as 
absorption outside the active region, ai , and mirror loss, a,, prevent the 
domination of the stimulated emission. So, in real lasers, the threshold 
current I ,  has to provide not only the transparency condition but also has 
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to compensate the optical losses in the laser cavity. This means that the real 
threshold current is larger than that which simply maintains the population 
inversion. In other words, the threshold gain g, must compensate losses: 

Eq. ( 18.42 ) Tg, = a, + a ,  

where r is the confinement factor which is the fraction of stimulated 
output mode power guided by the active region. 

For a current density J ,  the carrier density rate equation is: 

where n denotes the carrier density, d is the thickness of the active 
region, and z is the lifetime of the non-equilibrium carriers. The first term 
of the above equation accounts for carrier diffusion with a diffusion 
coefficient D. The second term governs the rate at which the carriers are 
injected into the active layer. Since the active region dimensions are usually 
much smaller than the diffusion length, we assume the carrier density does 
not vary significantly over the active region so that the diffusion term can be 

dn 
neglected. Therefore, from - = 0 at steady-state, we get: a 

When the threshold condition is reached, the carrier density is pinned at 
threshold value n, , and the threshold current density can be expressed as: 

An important factor which determines laser output power is the internal 
quantum efficiency qi which is the percentage of the injected carriers that 

contribute to radiative transitions. So, in the cavity, the photon density can 
be written as: 
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where zp is the photon lifetime which is defined by 
-1 zp = v, (a, + a , )  . v, = c / ii is the group velocity of the light. Since 

photons escape out of the cavity at a rate of v,a,, the output power is 

related to the photon density by the relation: 

where V is the volume of the active region. If we neglect current 
leakage, i.e. we assume that all the injected current passes through the active 
region, then the current can be written as I = J S ,  where S is the area of the 
active region. Considering V = d x S ,  the output power depending on 
driven current I > I, is rewritten as: 

Typical electrical and laser output power characteristics are shown in 
Fig. 18.18, in which V, is the turn-on voltage for the diode, Rs is the series 
resistance above diode turn-on, and rl, is the slope efficiency. 

Power 
L 

Fig. 18.18. Typical electrical and laser output power characteristic of a semiconductor laser, 
visualized as the current-voltage and output power-current characteristic. The linear part of 
the current-voltage curve gives the diode series resistance (RJ, while the linear part of the 

output power-current curve yields the slope eflciency (vJ. 
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In real lasers, the linear current dependence in Eq. ( 18.48 ) saturates due 
to such factors as leakage of carriers from the active region, heating, and 
current induced increases in the internal loss ai . 

The external differential quantum efficiency is defined as: 

dP 1 d l  
Eq. ( 18.49 ) 7, = - 

a, 
= 7; 

Awlq a i + a ,  

Since the optical field should reproduce itself after each round trip under 
steady-state, the mirror loss a, can be determined by: 

Eq. ( 18.50) RlR2 .exp(-a, .2L)=1 

where R, , R, are the facet reflectivities at the two ends and L is the 
cavity length. From the above equation we obtain: 

When L + 0 ,  we have a, + oo and qd -+ qi . Therefore, by plotting 

11 qd versus L and extrapolating to L=O, the internal quantum efficiency can 
be determined. Further the slope of the curve is proportional to the internal 
loss, a i .  In 111-V double-heterostructure lasers 7; is close to unity and ai 
ranges from 1-100 cm-I. 

18.5.3. Linewidth of semiconductor laser diodes 
The linewidth in laser diodes depends on the instantaneous changes of phase 
and intensity in the lasing field [Henry 19821. These instantaneous changes 
of phase and intensity have two components: (1) The components directly 
related to the spontaneous emission and (2) The components directly related 
to the coupled relationship between the phase and intensity of the field. 
These changes in field induce a perturbation in the carrier distribution 
(affecting the real and imaginary parts of the refractive index) which is 
incorporated into equation by a linewidth enhancement factor denoted as a. 
The mathematical derivation is rather lengthy and the reader is referred to 
the book by Chuang [1995]. The linewidth Af of a typical laser in terms of 
frequency is then given as: 



730 Fundamentals of Solid State Engineering 

v~hugn,a , ( l+a2)  
Eq. ( 18.52 ) Af = 

87zP 

where n, is the spontaneous emission factor which is related to the 
spontaneous emission rate R, via R, = v,gn,. 

18.5.4. Homojunction lasers 
The first semiconductor laser was realized using a simple p-n junction as 
shown in Fig. 18.16. This is referred to as a homojunction, i.e. using the 
same semiconductor material for the active and surrounding layers. In this 
case, the difference in refractive index between the active layer and the 
adjacent layers is only 0.1-1 %. The result of this is that a lot of the emitted 
light escapes without undergoing feedback and amplification. 

The primary benefits of the homojunction laser rely on simplicity of 
design and compactness compared to gas and traditional solid state lasers. 
The low confinement factor and high absorption loss lead to a very high 
threshold current density at room temperature (>I00 kA.cm-') and low 
power conversion efficiency. These problems are solved in part by making 
use of a more elegant design, the heterojunction laser. 

18.5.5. Heterojunction lasers 

To obtain more efficient lasers, it is necessary to use multiple layers with 
different optical properties in the laser structure. When dissimilar materials 
are combined, a heterojunction laser can be formed. 

An example of a single heterojunction laser is shown in Fig. 18.19. 
Carrier confinement is obtained in this single-heterojunction laser by using 
an AlGaAs layer grown epitaxially on GaAs. In this structure the injected 
carriers are confined to a narrow region so that population inversion can be 
built up at lower current levels. Further, because there is a noticeable 
refractive index change at the GaAsIAlGaAs interface, some waveguiding 
inside the epilayer and substrate is possible. These two effects help to reduce 
the average threshold current density at room temperature to -10 kA.cm-'. 
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Fig. 18.19. Illustration of the use o f a  single heterojunction for carrier confinement in laser 
diodes: (a) cross-section schematic o fan  AlGaAs heterojunction grown on a thin p-type 

GaAs layer and on an n-type GaAs substrate; (b) energy band diagrams for this structure at 
equilibrium and under high forward bias, showing the confinement ofelectrons into the thin 

p-type region under forward bias. 

p-AIGaAs 

A further improvement can be obtained by sandwiching the active GaAs 
layer between two AlGaAs layers. This double-heterojunction (DH) 
structure further confines injected carriers to the active region, and refractive 
index steps at the GaAs-AlGaAs boundaries form the waveguide that 
confines the generated light waves. A double-heterojunction laser, also 
called double-heterostructure laser, is shown in Fig. 18.20. 

To date, the most extensively used heterostructure lasers are in the 
GaAs-AlGaAs and GaAs-InGaAsP systems. The ternary alloy Al,Ga,.,As 
has a direct bandgap for x up to x-0.45, then becomes an indirect bandgap 
semiconductor. For heterostructure lasers, the composition region 0<x<0.35 
is of most interest and the direct energy gap of the ternary compound can be 
expressed as: 

The compositional dependence of the refractive index can be 
represented by: 
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For example, for x=0.3 the bandgap of Alo,3Gao.7As is 1.798 eV which is 
0.374 eV larger than GaAs; its refractive index 3.385 is about 6 % smaller 
than the GaAs. 

A 

A 

p-AIGaAs 

GaAs 

n-AIGaAs 

n-GaAs 
substrate 

Fig. 18.20. Illustration of a double-heterojunction laser structure used to confine injected 
carriers and provide waveguiding for the light: (a) an n-type doped AlCaAs layer has been 
added between the n-type GaAs substrate and the GaAs active layer in the structure o f r i g .  

18.19 to form the double-heterostructure; (b) band structure and optical waveguide 
properties of the resulting laser structure at forward bias (V). The Solid lines in the band 

structure represent band edges, while the dashed lines represent quasi-Ferzi levels. 

Because a DH laser requires several different materials and a controlled 
doping profile, more sophisticated epitaxial techniques had to be developed, 
as described in see Chapter 12. The deposition can be based on liquid, 
vapor, or atomic beam processes. All processes allow some degree of 
multilayer growth with accurate n- andp-type doping done in-situ. Lastly, in 
order to avoid threading dislocations, the various crystal layers should be 
lattice-matched to the substrate. 

The optical and electrical confinement of the double heterostructure give 
it a significant advantage over the homojunction and single-heterojuction 
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laser. Indeed, the threshold current density is reduced by an order of 
magnitude for most structures. However, in order to maintain a high 
confinement factor and minimize loss in the cladding regions, the active 
region thickness must be quite large (0.1-0.5 pm). The thick layer, 
combined with a large density of states in the active region, requires a large 
number of carriers to maintain a sufficient population inversion. Modern DH 
lasers have thresholds current densities -1 k~.cm-*. 

18.5.6. Device fabrication 
After the laser structure is designed and epitaxially grown, a laser device 
must be fabricated using the photolithographic and metallization processes 
discussed in Chapter 16. Metal contacts are used to inject electrons and 
holes into the active region, therefore allowing the creation of a population 
inversion. In order to realize a low contact resistance between the metal and 
the semiconductor film, most laser structures employ a highly doped cap 
layer directly on top of the waveguide cladding layers. This will tend to 
form an ohmic rather than Schottky contact when metal is evaporated onto 
the surface. 

The other feature a laser must exhibit is optical feedback. After the 
contact region is formed, the laser must be diced into separate cavities for 
testing. As discussed earlier, this is often accomplished by taking advantage 
of the natural cleavage planes in the crystal material. Cleaving is most easily 
achieved when the substrate is thinned down. 

Subsequently, for testing and excess heat removal, the laser chip must be 
mounted on some type of heat sink. The heat sink also supplies mechanical 
stability, while allowing electrical connection to an outside circuit. 

Example I .  Broad area laser fabrication 
The simplest semiconductor laser to fabricate is a broad area laser. The 

typical fabrication steps for such a laser are shown in Fig. 18.21. No 
lithography is needed and the fabrication is just enough to satisfy the above 
requirements. A thin layer of metal is evaporated or electrochemically 
deposited on the top surface. The type of metal used depends on the material 
and doping type of the semiconductor, and is chosen to yield a low 
resistance, ohmic metal-semiconductor contact. The metal is typically 
annealed to both increase the metal adhesion and establish the ohmic 
contact. 

In order to decrease electrical and thermal resistance, as well as make 
the wafer more conducive to cleaving of Fabry-Perot cavities, the back side 
of the wafer is thinned. Lapping and polishing brings the wafer thickness 
down to -100 pm. The polished surface is then cleaned and the bottom 
metal contact is deposited and annealed, as shown in Fig. 18.21(c) and (d). 
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After both contacts are formed, the wafer is cleaved into individual laser 
cavities with a well-defined length and width, as shown in Fig. 18.21(e). 

After cavity formation, the laser is then die bonded to a submount, or 
directly onto a heat sink (Fig. 18.21(f)). Besides removing waste heat, the 
heat sink provides mechanical stability and allows macroscopic external 
electrical contact. 

top nietal contact 
,' - 

L b o t t o i n  metal contact 

separate die by 
cutting or cleaving 1,engtli 

-A- 

insulated contact pad 
laser d ~ c  

metal contact 

Fig. 18.21. Broad area laser fabrication steps: (a) bare semiconductor laser structure, (b) 
top contact metallization, (c) substrate lapping and polishing to thin down the substrate, (d) 
bottom contact metallization, (e) cleaving of laser cavities, (jj bonding of laser die to heat 

sink and external contact formation. 

Broad area lasers use one of the fastest fabrication methods. The device 
features confinement of light and carriers within the large slab formed by 
the cleaving process. Unfortunately, mechanical cleaving can only reliably 
produce lengths and widths >200 p m  Further, the cleaving produces minor 
damage where the surface was scribed along the lateral edges. The net effect 
is a large current requirement and an increased chance of failure. 
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Example 2. Stripe-geometry laser fabrication 
Stripe-geometry lasers are lasers in which the current is restricted along 

the junction plane. In this technique, metal contact stripes are defined which 
are typically 5-200 pm wide. This technique, while more difficult to 
fabricate, does allow for a lower operating current and reduced failure rate 
by keeping the injected area small and far from the (lateral) edges of the 
chip. 

Stripe-geometry lasers can be fabricated in a variety of ways. One of the 
simplest techniques is shown in Fig. 18.22. The cavity width is defined by a 
patterned insulator, such as Si02. The insulator is typically deposited using 
chemical vapor deposition, rf sputtering, or e-beam evaporation. Patterning 
is done using standard optical photolithography and etching, as described in 
Chapter 16. 

The etching of the insulator can typically be done with chemicals or 
plasma. For Si02, a buffered hydrofluoric acid (HF) solution is generally a 
good selective chemical etchant. The plasma process varies, but typically 
uses CF4 or a similar fluorocarbon species. 

After the stripe definition, the process followed is similar to the broad 
area laser. The top contact metallization is followed by substrate thinning 
and bottom contact metallization. As shown in Fig. 18.22(d), the current 
injection can be well confined to the area under the insulator opening. Laser 
die bonding is straightforward, and device operation is relatively insensitive 
to the lateral edges of the chip. 

One of the disadvantages of the stripe-geometry laser is lateral current 
leakage. Even though the width of the cavity is defined at the surface, the 
injected current spreads out as it travels toward the substrate. The relative 
amount of spreading at a given current depends on the stripe width as well 
as the lateral conductivity and carrier diffusion length of the layers. 

Because the gain of the laser varies along the junction plane due to this 
current spreading, the effective complex refractive index is also non- 
uniform. The complex refractive index is highest at the center of the stripe 
and decreases in a quadratic manner with distance, until it reaches its 
equilibrium value. A weak waveguiding effect is anticipated, as derived in 
Casey and Panish [1978]. This is referred to as a gain-guided laser. 

While helpful in reducing the threshold current requirements, gain- 
guiding typically shows multiple transverse mode output in the junction 
plane. 
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top metal contact 
/- 

h o t t o m  metal contact 

Fig. 18.22. Stripe-geometry laser fabrication steps and schematic: (a) photolithography on 
S i O  insulation, (b) patterned SiOz, (c) top contact metallization, (d) schematic offinal device 

showing localized current injection paths. 

Example 3. Buried-heterostructure laser 
The last structure that will be discussed is referred to as a buried- 

heterostructure laser. This device goes one step further in complexity in 
order to completely confines both current and the optical mode around a 
small emitting core. 

The fabrication of the buried-heterostructure lasers, as shown in Fig. 
18.23, starts with the growth of the n-type waveguide cladding and active 
layer(s). Using photolithography, the core is patterned with 
photolithography and etching into very narrow stripes (Fig. 18.23(b)). The 
width is small in order to confine only a single transverse optical mode, and 
depends on the laser emission wavelength as well as the index difference 
between the core and cladding regions. 

After the core is defined, epitaxial regrowth is used to cover the core 
with a low index, high-bandgap, p-type cladding (Fig. 18.23(c)). Following 
this step, standard thinning, metallization, and die bonding is performed to 
complete the device. 

While epitaxial regrowth is technologically very challenging, this 
fabrication procedure has the potential of producing the most efficient lasers 
with a single transverse mode. The current is confined thanks to the 
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cladding-core material band offset, and the light is confined thanks to the 
refractive index change. The output beam quality is generally very high, 
which makes these lasers attractive for fiber coupling and 
telecommunications. The only drawback is a low output power, which 
scales as the core volume. 

photoresist active layer 1-3 pm 

"" . ""  - " 

I 

pcladding &cap layers top metal contact 
r 

? 
(d) \bottom metal contact 

Fig. 18.23. Fabrication steps and schematic of buried-heterostructure laser: (a) 
photolithography to define waveguide core, (6) patterning of core, (c) semiconductor 

regrowth of waveguide cladding, (d) schematic offinal device showing the confined current 
and optical confinement to achieve single transverse mode output. 

18.5.7. Separate confinement and quantum well lasers 
A further advancement on the double heterostructure laser uses several 
different kinds of materials to separate the optical and electrical confinement 
into separate regions. The separate confinement heterostructure (SCH) 
typically uses a thin or quantum well-based active region surrounded by an 
intermediate waveguide layer, all of which are embedded in the standard 
high-bandgap cladding region. A schematic of the heterostructure and the 
optical waveguide properties under forward bias are shown in Fig. 18.24. 



Fundamentals of Solid State Engineering 

n-GaAs 
substrate 

Fig. 18.24. Illustration of a separate confinement heterostructure laser: (a) cross-section of 
the device structure; (b) band structure, index and optical mode profiles o f the  resulting laser 

structure at forward bias (V). The Solid lines in the band structure represent band edges, 
while the dashed lines represent quasi-Fermi levels. 

For quantum well (QW) or multi-quantum well (MQW) active regions, 
the density of states is reduced. This fact, combined with a narrow width for 
the well (<30 nm) leads to a population inversion at very low current 
densities. The gain also takes on another general form as a function of 
carrier density and is given by: 

where go and Jo are the transparency gain and current density 
respectively. Furthermore, because the carrier injection is more uniform, the 
internal quantum efficiency can be higher. The inserted waveguide layer 
helps distribute the optical mode in order to reduce the divergence of the 
laser beam. In addition, as the waveguide layer is nominally undoped, free- 
carrier absorption is reduced. 
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Unfortunately, the confinement factor is rather small for the active 
region (1-5 %). Despite this apparent disadvantage, for a low modal 
threshold gain, defined as: 

Eq. ( 18.54) Gth=rgth, 

the SCH can still be designed to reach threshold significantly earlier 
than a double heterostructure, as shown schematically in Fig. 18.25. 

Bulk active region 
........................ QW active region 

w 

U) 
25 

Current Density, J 

Fig. 18.25. Schematic comparison of QW and DH gain behavior as a function of current 
density. For a low threshold modal gain, the SCH can have a significantly lower threshold 

current density, thanks partially to the reduced density of states in the active region. 

Another benefit of using thin and/or QW active regions is the possibility 
to realize strained layers. Indeed, unlike the DH laser where all materials 
needed to be lattice-matched, the SCH can incorporate strained materials 
(such as In,Ga,+As on GaAs) as long as the layer is thinner than the critical 
thickness above which threading dislocations start to form. Strained layers 
can have two important benefits. The first improvement has to do with the 
band structure of a strained semiconductor. For compressively strained 
material, the heavy-hole mass becomes lighter than bulk, which leads to a 
reduced hole density of states, and further reduction of the transparency 
current density. 

Finally, the accessible wavelength range for a given substrate is 
increased. For example, a DH laser based on GaAs has a maximum 
emission wavelength of 870 nm. Using strained quantum wells, a SCH laser 
can extend the emission wavelength well past 1 pm. 
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18.5.8. Laser packaging 
Regardless of the fabrication procedure, the packaging of the laser diode 
depends on the final application. 

The simplest package consists of an open heat sink, similar to the type 
used in the broad area laser fabrication (Fig. 18.21(f)). These come in many 
different designs, depending on the size restrictions in the final product. One 
example of an open package is shown in Fig. 18.26(a). Another popular 
product, which also protects the laser, is a transistor-type can with an output 
window, as shown in Fig. 18.26(b). These typically are sold in 5 and 9 mm 
diameter sizes as well as a larger TO-3 package. For high power lasers or 
laser bar packaging, heat management is very important. In this case, a 
larger mass submodule is used, which frequently incorporates a 
thermoelectric cooler (TEC) and controller to keep the temperature stable. A 
representative high heat load package, is shown in Fig. 18.26(c). Other 
applications benefit from having the laser coupled directly to a fiber optic 
cable. In this case, the fiber is carefully aligned and welded into place inside 
a hermetically sealed package, as shown in Fig. 18.26(d). 

Fig. 18.26. Examples of commercial laser package designs. (a) open "c-mount " type heat 
sinks; (b) 9 mm transistor can package; (c) high heat load package incorporating laser and 

cooler; (d) fiber-coupled "butterfly" package. 
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18.5.9. Distributed feedback lasers 
Semiconductor lasers typically exhibit multiple wavelength emission at high 
current because of the presence of a Fabry-Perot cavity, as illustrated in 
Fig. 18.27(b). This occurs when multiple longitudinal modes reach the laser 
threshold gain. When only one wavelength is desired, a common technique 
is to realize a secondary feedback within the cavity. A corrugated grating 
positioned inside the waveguide is one means to this end, as shown in 
Fig. 18.27(a). This type of laser is referred to as a distributed feedback 
(DFB) laser, because the feedback effect is distributed over most, if not all, 
of the laser cavity. 

Cladding /DFB grating 

(b) Wavelength Wavelength 

Fig. 18.27. (a) Schematic of the cross-section of a L)FB laser. Periodic variations in the 
effective refractive index leads to distributed optical feedback; (b) proper grating design can 

change the output spectrunz of a laser structure from multi- to single-wavelength. 

The grating geometrical parameters are chosen to satisfy Rragg's law of 
diffraction: 

where rn is the grating order, /Zo is the free space wavelength, %ff is the 

effective refractive index in the waveguide, A is the grating period, and B is 
the diffraction angle. The minimum requirement for optical feedback is 
diffraction at 180" relative to the propagation of the waveguide mode, i t .  
the diffraction angle is 8.90". For a first order grating (rn=l), Bragg's law is 
fulfilled only when: 
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The diffraction of light by the grating serves to enhance the cavity 
reflectivity at the designed wavelength. The threshold gain is then reduced 
for this wavelength, allowing favored laser oscillation of a specific 
longitudinal mode, in some cases (Fig. 18.27(b)). 

Unfortunately, for many near-infrared lasers, the period of a first order 
grating is in the 100-300 nm range, a resolution which requires a high-end 
lithography setup. To make fabrication easier, second, third, and fourth 
order gratings have also been explored for this application, though their 
efficiency is somewhat lower due to lower order diffraction loss. 

Despite this technological difficulty, DFB lasers are frequently 
incorporated into buried-heterostructure designs in order to demonstrate true 
single mode (longitudinal and transverse) behavior. This is especially useful 
in telecommunications and chemical spectroscopy, where a stable, 
monochromatic laser (single longitudinal mode wavelength) is preferred. 

18.5.10. Material choices for common interband lasers 
Table 18.1 summarizes some of the most common 111-V material systems 
used in various parts of a laser structure in order to achieve a specific range 
of laser emission. The parts of the laser considered include the substrate, 
cladding and active region materials. 



Semiconductor Lasers 743 

Substrate Cladding material Active Material Wavelength 
Range 

strained 
InxGal-,N QWs 400-600 nm 

GaAs AI,GayInl-,,P 660 nm 

GaAs 

GaAs A1,Gal-,As or strained 
In,Gal.,As QWs 0.87-1.1 pm 

Ga0.5 1 In0.48 

InP InP 920 nm 

InP InP GaXInl~,AsyP1., 1-1.7 pm 

InP InP 

InP InP strained 
InXGal.,As QWs 1.5-2 pm 

A1,Ga,lnl.,.,As,Sbl., or 
In As InAs QW 2-3 pm 

InAsxSbyP1 -,, 
A1,Gaylnl~,.,As,Sb~., or 

In As 
strained 

InAsySbl, QWs 3-5 pm 
InAs,Sb,PI .,., 

Table 18.1. Materials for substrates, cladding and active regions in semiconductor lasers for 
various emission wavelength ranges. (*) Not a mature substrate technology. Lasers are often 

grown on sapphire or S i c  substrates. 

18.5.11. Interband lasers 
GaAs-based lasers in general have found many applications from simple 
laser pointers to CDIDVD players. In addition, significant development has 
also been invested in achieving very high power efficiency and output 
powers from these devices for applications such as weldinglcutting, 
frequency doubling, and solid-state laser pumping. 

The last application especially has drawn a lot of interest, as diode- 
pumped laser systems show significantly higher efficiency and lifetime 
compared to conventional flashlamp-pumped systems. The primary reason 
for this is that the diode laser emission wavelength can be closely matched 
to the narrow absorption peak of the solid-state laser medium. This allows 
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most of the emitted radiation from the laser diode to be directly absorbed. 
Flashlamps, on the other hand, are broadband sources, and a large fraction 
of the light goes directly to waste heat. Further, flashlamps have a limited 
lifetime, on the order of five hundred to several thousand hours. On the 
other hand, the durability of aluminum-free diode lasers was challenged by 
operating them under continuous wave at 1 W, 60 OC for an extended period 
of time. They exhibited no degradation over 30,000 hours [Diaz et al. 19961 
[Diaz et al. 19971. Under normal operating conditions (20 'C) the projected 
lifetimes are on the order of several million hours. 

The aluminum-free GaInAsP technology was used to achieve high 
performance semiconductor lasers emitting at 980 nm [Mobarhan et al. 
19921 through the use of strained InGaAs quantum wells inside a separate 
confinement heterostructure (SCH). These lasers exhibited a low 
Jth-70 Ncm2, high differential efficiency -1.0 WIA, and low internal loss of 
1.5 cm-'. They also yielded high output power and a very high characteristic 
temperature To, over 350 K in the range of 20-40 'C. These 980 nm lasers 
could operate under continuous wave at high power (1.4 W) at 100 OC. 

Optimized 808 nm laser diodes based on GaAsIGaInAsP with uncoated 
facets emitted high output powers of 10 W and 7 W in pulse and continuous 
wave operation, respectively. Laser bars yielded output powers of 70 W in 
quasi-continuous wave operation [Razeghi 19941 [Yi et al. 19951. A 
properly designed GaInAsP laser structure provides a narrow transverse 
beam with a divergence of only 26", which is convenient for efficient laser 
light coupling into the optical fiber or the pumped Nd:YAG crystal. For 
comparison, 32-48' are typical values of beam divergence for commercial 
AlGaAs lasers. 

InP based laser have also received a lot of attention thanks to the 
accessible wavelength range of lattice-matched quaternaries 
(0.92-1.65 pm). This range makes the system ideal for fiber optic 
communications, which relies on lasers designed for low-loss and low- 
dispersion fiber propagation. 

Before these lasers could be considered for use in any application, 
however, several demonstrations had to be made. These initial 
demonstrations include: 

Double heterostructure A=1.3 pm and 1.55 pm lasers with threshold 
current densities of 430 and 500 Ncm2 respectively [Razeghi et al. 
1983al [Razeghi et al. 1983bl. 
Buried ridge 1.3 and 1.55 pm lasers with threshold currents as low 
as 6 rnA [Razeghi 1985al. 
Buried ridge lasers with distributed feedback for single wavelength 
emission (Fig. 18.28) [Razeghi et al. 1985bl [Razeghi et al. 1985~1. 
High power phase-locked arrays of 1.3 pm lasers with 600 mW 
output [Razeghi 19871. 
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Separate confinement heterostructure GaInAsP/GaInAs/InP 
waveguide for improved performance [Razeghi et al. 1985~1. 

Many other groups took advantage of this technology to produce 
advanced lasers for telecommunications. [Kuznetsov et al. 19891 With the 
groundwork laid by these achievements, GaInAsPIInP lasers are now in 
mass production for the telecommunication industry. There is still active 
research to extend the wavelength to 2 pm and beyond using strained layer 
epitaxy. 

DFB Laser 
LP -MOCVD 

Fig. 18.28. Scanning electron microscope cross-sections of the corrugated structures after 
and before LP-MOCVD regrowth.. 

In general, the quest for longer wavelength (b-2 pm) diode lasers has 
been fought with difficulty. There are many applications for longer 
wavelength lasers, including infrared spectroscopy, infrared 
countermeasures, free-space communication, and low-loss fiber 
communication. The only commercially available semiconductor 
alternative, up until a few years ago, were actually based on IV-VI 
materials, commonly referred to as lead-salt lasers. This technology has 
several liabilities, not the least of which are low operating temperature 
(80 K) and low output power (-1 mW). 

Clearly, for most applications it is advantageous to overcome one or 
both of these liabilities. Unfortunately, increased losses and reduced 
radiative efficiency are a fact of life for low bandgap zinc-blende 
semiconductors as well. Despite this challenge, extensive work has been 
done on InAs-based laser diodes at cryogenic temperatures. This technology 
has the potential for significantly higher output power powers and is based 
on an intrinsically more robust material system. 

Double heterostructure (DH) lasers based on the InAs/InAsSb/InAsSbP 
material system were grown by low-pressure Metal-Organic Chemical 
Vapor Deposition (LP-MOCVD) for high power lasers emitting with 
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3.1 SAS3.4 pm. A novel, asymmetric, heterostructure was employed, as 
shown in Fig. 18.29, which allowed for reduced electron leakage and 
improved performance. Laser bars consisting of four 100 pm stripes 
exhibited a maximum peak output power of 6.7 W [Wu et al. 19991. This 
registers the highest output power in this wavelength range. Furthermore, 
optimizing the efficiency of these lasers allowed over 450 mW to be 
obtained under continuous operation [Razeghi 19981 [Razeghi et al. 19991. 

The first mid-infrared superlattice injection lasers have been designed 
with InAsIInAsSb, InAsPIInAsSb, and InAsSbIInAsSb superlattices. 
Although complex, SLS lasers benefit from better optical confinement and 
more emission wavelength flexibility than a DH laser and a larger gain 
region than a MQW laser. Another advantage that these superlattice lasers 
have is the reduction of non-radiative recombination (Auger) mechanisms. 
The first lasers based on the superlattice active region were designed and 
fabricated for emission from 4-4.8 pm [Lane et al. 19991 [Lane et al. 20001. 
This is the longest reported emission from electrically injected lasers based 
on InAsSb interband ;ransitions. 
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Fig. 18.29. (a) InAsSbP/InA.sSb/AIAsLYb double heterostructure. (b) P-I curve of 
InAsSbP/InAsSb/AlAsSb laser bar at T> 80 K. 
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18.5.12. Quantum cascade lasers 
In conventional (interband) semiconductor lasers, light is generated from the 
recombination of electrons and holes separated by the energy gap. The 
energy of the photons, or the wavelength of laser light is therefore 
essentially determined by the energy gap of the semiconductors used. This 
means, however, that only a certain range of wavelengths can be obtained, 
which correspond to the energy gap of semiconductors that exist. It turns out 
that it is quite difficult to have low energy gap semiconductors (Eg<0.3 eV) 
with high enough quality suitable for semiconductor lasers, and thus it is 
difficult to make lasers with low photon energy which corresponds to 
infrared wavelengths ( b 3  pm). Because of this limitation, totally different 
types of semiconductor lasers have been recently fabricated. The first one is 
the quantum cascade laser, and the other is the type I1 superlattice laser 
which will be discussed in the next sub-section. Here, we will briefly 
describe the operating principle and underlying basic physics of these lasers. 

Unlike the interband lasers which have bipolar device characteristics, 
relying on electron-hole recombination to generate light, the quantum 
cascade laser (QCL) is a unipolar device which uses only conduction-band 
electrons. This means that the electron is the dominant carrier and that 
emitted light is solely due to electron transitions from upper to lower 
subbands in the conduction band (semiconductor quantum wells have the 
property of splitting a bulk band structure into a series of subbands). The 
benefit of this design is that, using the same material, the emission energy 
can be varied over a wide range (limited by the conduction band offset 
between the barrier and well) simply by varying the quantum well widths. 

The idea of generating light from intersubband transitions within 
semiconductor quantum wells was first proposed in 197 1 by Kazarinov and 
Suris [197 11. Since then, many groups have tried to produce devices based 
on similar models. The first electrically pumped intersubband laser at 
A =4.2 pm was demonstrated in 1994 by Faist et al. [1994]. 

In order to have stimulated emission, there has to be a population 
inversion. This means that there must be a steady injection of high-energy 
electrons and steady collection of low energy electrons from the same 
quantum well region. The principle of operation is based on a multi- 
quantum well structure in an electric field and is illustrated in Fig. 18.30. 

Electrons come to the active region from the injector (left) and go out to 
a subsequent region (right) which acts as the injector of another active 
region. All these regions are made from multi-quantum wells. The 
combination of active+injector regions forms a period of the structure which 
repeats many times (typically 25-30) forming a cascade structure. This 
allows a single injected electron to emit multiple photons, which leads to 
differential efficiencies much greater than unity. 
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The active region of a typical QCL is a triple AIInAs/GaInAs quantum 
well structure that supports three subbands as illustrated above. The injector 
region is made up of the same material and has many wells depending on 
the emission wavelength. The QCL emission wavelength is controlled solely 
by the layer thicknesses in the active region, and thus has the potential for a 
large variety of emission wavelengths in a given material system. 

Fig. 18.30. Example of quantum well-based active region for an electrically injected quantum 
cascade laser. Electrons are injected into the higher energy level in the quantum wel1,from 

where they can be stimulated to relax down to the lower energy level and emit a photon. The 
relaxed electrons can then be transmitted to the next quantum well on the right. This process 

can be continued by serially stacking active regions for higher power output. 

A real example of QCL designed for A=8..5 pm is shown in Fig. 18.31. 
Due to quantum mechanical selection rules, the light emitted from a QCL is 
of TM polarization, i.e. the electric field strength in the wave is 
perpendicular to quantum well plane. 

The most important advantage of the quantum cascade laser is its 
insensitivity to temperature changes. Laser operation is not limited by Auger 
recombination due to the unipolar nature of the device, which gives a much 
higher theoretical operating temperature. This high temperature operation 
will potentially reduce package size and cost due to the absence of elaborate 
cooling systems. Another significant advantage of QCL is that, as the 
operation is not directly related to the bandgap of the constituent materials, 
relatively mature InP or GaAs technology can be used. This ensures that the 
growth and the physical characteristics of the materials are relatively well 
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understood for QCLs. It also allows for excellent uniformity across 2" 
wafers, which has already been demonstrated in laboratory situations. 

1 Injector Active region 
-1.0 1 I I I I 

0 20 40 60 80 

Distance (nm) 

Fig. 18.31. Conduction band profiles for quantum cascade active region surrounded by two 
injectors. Wavy lines are electron wavefunctions corresponding to levels 1, 2, 3. 

Many important milestones have been made in quantum cascade laser 
technology. The total demonstrated wavelength range of operation spans 
from 3.4-160 pm at cryogenic temperatures. At room temperature, this range 
is still impressive at 3.6-16 pm. No interband laser technology has come 
close to this range at room temperature. High power, thanks to the cascade 
nature of the device, is also a hallmark of this technology. At 2=9 pm, over 
3.5 W of power per facet has been demonstrated at room temperature in 
pulsed mode [Slivken et al. 20021. 

Still, due to relative inefficiency of the intersubband process compared 
to near-infrared interband lasers, it has been very difficult to achieve 
continuous operation at room temperature. With a room temperature 
threshold current density of >1 kNcm2 and an operating voltage on the 
order of 10 V, it is difficult to efficiently remove all the heat from the 
waveguide core. 

Many design and laser geometry improvements were necessary, but 
quantum cascade lasers have been demonstrated with >I00 mW of 
continuous power at room temperature at many wavelengths. [Evans et al. 
20041 [Razeghi et al. 20051 Even single-mode, DFB quantum cascade lasers 
have been demonstrated with similar power output and 30 dB side mode 
suppression [Yu et al. 20051. 

Lastly, another nice property of intersubband lasers is the ability to emit 
multiple wavelengths from the same laser core. Unlike interband lasers, 
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there is no intrinsic absorption around the laser emission energy. Besides 
developing high power, room temperature laser sources, future development 
of this technology is likely to include demonstration of broadband, tunable 
laser sources, which can eventually replace thermal sources for infrared 
spectroscopy. 

18.5.13. Type II lasers 
Type I1 band alignment and some of its interesting physical behavior were 
originally suggested by Sai-Halasz et al. [1977]. Soon after that they 
reported the optical absorption of type I1 superlattices [Sai-Halasz et al. 
1978al and later the semimetal behavior of the superlattice [Sai-Halasz et al. 
1978bl. The applications of such a superlattice was proposed only after 
several years [Smith et al. 19871. The flexibility of the material used to 
cover a huge infrared range (2 to >50pm) and the reduced Auger 
recombination rate [Youngdale et al. 19941 caught the attention of many 
research groups. Type I1 heterojunctions have found many applications in 
electronic devices such as resonant tunneling diodes and hot electron 
transistors. However, perhaps the most important of these applications has 
been in the optoelectronics and recently many significant results have been 
achieved in type I1 modulator [Xie et al. 19941, detectors [Johnson et al. 
19961 [Fuchs et al. 19971, and laser diodes [Yang et al. 19981 [Felix et al. 
19971. 

Type I1 lasers are based on active layers which exhibit a type I1 band 
alignment. In general, the band alignment of any semiconductor 
heterojunction can be categorized as type I, type I1 staggered or type TI 
misaligned, as illustrated in Fig. 18.32. The main difference between type I 
and type I1 staggered band alignments resides in the fact that, in the former 
case, one (same) side of the heterojunction presents a lower energy for both 
electrons and holes. The electrons and the holes will thus be preferentially 
found on the same side of the junction. If the bottom of the conduction band 
of one material is located at a lower energy than the top of the valence band 
of the other one, we obtain a type I1 misaligned heterojunction, as shown in 
Fig. 18.32. 

The type of heterojunction depends on the nature of the semiconductors 
brought in contact. Most semiconductor junctions are of the type I. The 
special band alignment of the type I1 heterojunctions provides three 
important physical phenomena or features which are illustrated in 
Fig. 18.33: (a)a lower effective bandgap, (b) the separation of electrons and 
holes and (c) tunneling. These properties are used in many devices to 
improve their overall performance. 
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Fig. 18.32. Possible band alignment configurations of a semiconductor heterojunction. The 
most common band alignment is the type I alignment shown on the left in which one same 
side of a heterojunction presents a lower energy for both electrons and holes. The type II 

band alignment is shown in the middle and the right, in which the electrons and holes have a 
lower energy on different sides of a heterojunction. 

T \ 

Lower effective 
bandgap E,, 

Spatial separation 
of electrons and 

holes 

Tunneling 

Fig. 18.33. Unique features of type II heterojunctions and superlattices: (a) they have an 
effective bandgap energy which is lower than those of the constituting semiconductors, (6) 
electrons and holes are spatially separated, (c) an electron can tunnel from the conduction 

band on one side of the heterojunction into the valence band on the other side of the 
heterojunction. 

The first feature involves a superlattice with type I1 band structure. A 
superlattice is a structure consisting of closely spaced quantum wells, such 
that the localized discrete energy levels in the quantum wells become 
delocalized minibands across the entire structure, in both the conduction and 
the valence bands. These minibands thus form an effective bandgap E,, for 
the superlattice considered as a whole. Because of the type I1 band 
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alignment, these minibands can exhibit a lower effective bandgap than the 
bandgap of either constituting layer, as shown in Fig. 18.33(a), which is a 
most interesting property. In addition, this effective bandgap is tunable to 
some extent by changing the thickness of the layers. This is very important 
for the applications in the mid- and long infrared wavelength range since 
one can generate an artificial material (the superlattice) with a fixed lattice 
parameter but with a different bandgap. For example, recently, very 
successful detectors [Mohseni et al. 19971 and lasers [Felix et al. 19971 have 
been implemented in the 2 to 15 pm wavelength range with InAsIInGaSb 
superlattices. 

The second feature is the spatial separation of the electrons and holes in 
a type I1 heterojunction, as shown in Fig. l8.33(b). This phenomenon is a 
unique feature of this type of band alignment and is due to the separation of 
the electron and hole potential wells. As a result, a huge internal electrical 
field exists in the junction without any doping or hydrostatic pressure. High 
performance optical modulators have been implemented based on this 
feature [Johnson et al. 19961. 

The third feature is the Zener type tunneling of a type I1 misaligned 
heterojunction, as shown in Fig. 18.33(c). Electrons can easily tunnel from 
the conduction band of one layer to the valence band of the other layer, 
since the energy of the conduction band of the former layer is less than the 
energy of the valence band of the later layer. However, unlike Zener 
tunneling, no doping is necessary for such a junction. Therefore, even a 
semi-metal layer can be implemented with very high electron and hole 
mobility since the impurity and ion scattering are very low. This feature of 
type I1 heterojunctions has been successfully used for resonant tunneling 
diodes and, recently, for type I1 unipolar lasers [Lin et al. 19971. 

Type I1 lasers can generally be categorized as bipolar and unipolar 
lasers. In the bipolar type I1 lasers, the structure of a conventional III-V 
heterostructure laser diode is used except that the active layer is a type I1 
superlattice, as shown in Fig. 18.34. The electron-hole recombination occurs 
between the first conduction miniband and the first heavy-hole miniband. 
Since the active layer is a type I1 superlattice, the energy difference between 
the minibands can be adjusted by changing the thickness of the layers. This 
is an important advantage since the laser can potentially cover a wide range 
of wavelengths (from -2 pm to beyond 50 pm) without changing the 
chemical composition of the materials in different layers. 

In a unipolar type I1 laser, electrons are injected into the active layer 
through an injection layer, similar to a quantum cascade laser. They then 
radiatively recombine with a hole, unlike a quantum cascade laser. The 
electrons can also tunnel through a type I1 tunneling junction, and go to the 
next injection layer and repeat a similar transition in a cascade fashion. The 
interband transition in these lasers leads to an important advantage 
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compared to the quantum cascade lasers. This type of transition is much 
more immune to the phonon scattering than the intersubband transition, and 
hence the efficiency of unipolar type I1 lasers is much higher than that of 
quantum cascade lasers. 

It should be noted that type I1 lasers are interband lasers, meaning that it 
involves the radiative recombination of an electron from the conduction 
band with a hole in the valence band. In such types of lasers, Auger 
recombination (sub-section 8.6.4) can generally play an important role and 
limit the high temperature operation of such infrared lasers. Fortunately in 
the case of a bipolar type I1 laser, the spatial separation of electrons and 
holes and the band structure of the superlattices lead to a much lower Auger 
recombination rate than in conventional semiconductor infrared lasers. 
Recently, bipolar type I1 lasers yielded the highest operating temperature for 
light emission at 3.2 pm. 

[ Type 1: Lasers ] 

Bipolar Type I1 Lasers 

Electron Injection - 7 
I 

\ Hole Injection / 

/ 
Unipolar Type I1 Lasers \ 

Electron Iniection 

Fig. 18.34. Bipolar and unipolar type I1 lasers. In a bipolar laser, the electrons and holes are 
injected and recombine radiatively in the quantum well or superlattice type I1 structures. In 
the unipolar type I1 laser, electrons are injected and emit photons by relaxing into a lower 

energy state in the heterostructure. 

18.5.14. Vertical cavity surface emitting lasers 
In all the lasers discussed so far the light is emitted from the edges of active 
region. There has always been a desire for surface-emitting lasers which 
would allow free-space communication from chip to chip between specific 
locations and 2D arrays of high-power light sources. Earlier attempts have 
introduced mirrors or gratings to turn the edge-emitted light by 90°, but 
recently major advances have been made by using GaAs-A1GaAs or GaAs- 
AlAs multilayers (grown at the same time as the laser structure) as integral 
mirrors. 
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The multilayer mirrors, known as Bragg reflectors, reflect light at certain 
wavelengths, in particular that of the laser. The GaAs and AlGaAs (or AlAs) 
layers forming the mirrors are each typically a quarter-wavelength thick 
(Fig. 18.35). 

The structure is shown in Fig. 18.35, together with a photograph of an 
array of such devices. It is straightforward to place ohmic contacts on the 
top and the bottom, and there is no need for cleaving and polishing end 
facets. The three main features that determine their operation are (i) the high 
reflectivity of the mirrors, (ii) the means of lateral confinement of the active 
region, and (iii) the limitations imposed by laser heating from carrier 
injection through the resistive mirrors. 

Fig. 18.35. Example of a multilayer structure for a surface-emitting laser: GalnAs quantum 
wells are sandwiched between two GaAs-AlAs multilayer mirrors, one n-type doped and the 

other p-type doped. ["Figure 18.1O",fronl LO W-DIMENSIONAL SEMICONDUCTORS: 
MATERIALS, PIIYSICS, TECIINOLOGY, DEVICES by M.J. Kelly; taken after Applied 

Physics Letters Vol. 55, Scherer, A,, Jewell, J.L., Lee, Y.H., Harbison, J.P., and Florez, L. T., 
"Fabrication of microlasers and nzicroresonator optical switches," p. 2724-2726. Copyright 
1989, American Institute of Physics. Reprinted with permission of Oxford University Press, 

Inc. and Anzerican Institute of Physics.] 

Surface-emitting lasers have comparable losses and gains to edge- 
emitting lasers but are much more compact. The need to confine the current 
to achieve a narrow beam presents problems too. Lateral p-n junctions may 
be used to confine the current. Moreover, the current flowing to the cavity 
can heat up the mirrors through which it passes, which can lead to severe 
heating during continuous-wave operation. At present the devices are about 
10 % efficient in electrical to optical power conversion. 
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The surface-emitting geometry has many attractions for future systems, 
including a smaller, circular beam divergence making it easier to couple 
with optical fibers and integrate with other optoelectronic components. 

18.5.1.5. Low-dimensional lasers 
Further improvement in the performance of semiconductor lasers is 
expected by using higher degrees of quantum confinement, such as the 
quantum wires and quantum dots discussed in Chapter 11. One of the 
driving forces toward such structures is to achieve a "threshold-less" 
semiconductor laser, i.e. which can reach lasing threshold with minimal 
electrical current. 

Fig. 18.36. Density of states versus dimensionality: in a bulk (30) semiconductor crystal, a 
quantum well (2D), a quantum wire (ID) and a quantum dot (OD). 

Fig. 18.36 compares the density of states in bulk crystals (3D), quantum 
wells (2D), quantum wires (ID), and quantum dots (OD). The very narrow 
density of states distribution in lower dimensional structures achieves a 
narrower energy distribution for carriers than in bulk crystals, which results 
in narrower luminescence spectra, higher differential gain, lower threshold 
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current density and wider modulation bandwidth in lasers using such 
structures. 

Another important feature in quantum dots is the dispersion-less 
behavior of its electronic states. In other words, the allowed energy levels 
are independent of the momentum and have a constant energy, which makes 
it possible to avoid Auger recombination, as long as the positions of the 
energy levels are positioned adequately. This is illustrated in Fig. 18.37 
which compares the Auger recombination process in a bulk semiconductor 
with that in a quantum dot. If we pretend that the discrete energy levels of 
the quantum dot lie on a pseudo momentum curve as shown (of course in 
reality there is no momentum in a quantum dot), we see that, in a quantum 
dot, the energy and "momentum" conservation cannot be achieved 
simultaneously during an Auger process. In other words it is difficult for the 
band to band transition to exactly match an intersubband transition. This 
ensures that Auger processes in a quantum dots are less likely, which is an 
important property because a high Auger recombination rate is the major 
obstacle for the high operating temperature of infrared interband lasers. 

Bulk or superlattice 

( 4  

Quantum dot 

('J) 

Fig. 18.3 7. Illustration of the Auger process in a (a) bulk semiconductor or (6) superlattice in 
comparison with a quantum dot. In the former case, there is a continuum of available states 

where an Auger electron can be excited into. This makes the conservation of the total 
"momentum" and energy possible to be achieved in an Auger process. In a quantum dot, 

there are only discrete energy levels allowed, as a result of the shape of the density of states. 
Many transitions are therefore forbidden since the" momentum" and energy conservation 

laws can be satisfied simultaneously only for a few states. 

The use of lower dimensional structures has advantages for QCLs. 
Indeed, in quantum wires and dots, the LO phonon scattering rates can be 
considerably lower than in quantum wells. The main reason behind this 
property is the fact that the scattering rate between two energy bands is 
proportional to the overlap of the density of states of these bands. Fig. 18.38 
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shows that such overlap is smaller in a quantum wire and can even be non- 
existent in a quantum dot. A quantum dot based QCL can therefore have an 
excellent efficiency through the reduction of phonon scattering rates. 

Fabrication of lower dimensional structures is in general extremely 
difficult. Currently, one of the main targets of atomic engineering research is 
indeed the fabrication of quantum structures and surfaces with quantum 
features. The average quantum dot is only 10-50 nm in diameter. 
Sophisticated growth and/or fabrication techniques are required to produce 
uniform features in this size regime. 

Fig. 18.38. Illustration of the overlap in the density of states for a quantum well (20). 
quantum wire (ID), and quantum dot (OD). 

18.5.16. Raman lasers 
The Raman effect occurs when incident monochromatic light hits the 
material and a photon is generated with an energy that is different from the 
incident photon by the energy of a phonon. Specifically, the interaction of 
an incident photon with the material leads to inelastic scattering where the 
photon-phonon interactions cause the generation of a photon, which has an 
energy that is exactly one phonon energy higher or lower than the incident 
photon. In fact, once there is significant net Raman gain, or photon 
generation, achieved in a material it is possible to observe lasing action from 
that material. This effect can be exploited to make lasers from indirect 
bandgap materials such as silicon, where lasing can be achieved by optically 
pumping a silicon waveguide. This kind of Raman lasing was first 
demonstrated in silicon using pulsed lasers in 2004 [Boyraz et al. 20041 and 
with continuous-wave lasers in 2005 [Rong et al. 20051. The development 
of Raman lasing in silicon is considered to be an important milestone in the 
development of silicon based optoelectronic devices, since silicon is already 
the most widely used semiconductor in electronic circuits. 
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Fig. 18.39. The Raman effect and observed lasing in an optically-pumped silicon waveguide. 

The separation between the central peak and Raman scattered peaks is the frequency of 
optical phonons in silicon. 

18.6. Summary 

In this Chapter, we reviewed the fundamental physical concepts relevant to 
lasers, including stimulated emission, resonant cavity, waveguide, 
propagation of an electromagnetic wave in a waveguide and the laser beam 
divergence, and waveguide design. We introduced the notion of absorption, 
spontaneous and stimulated emission, the Einstein coefficients, resonant 
cavity, population inversion and threshold. The example of the ruby laser 
was used to illustrate these concepts. 

The discussion was then focused on semiconductor lasers, which are 
becoming dominant for numerous modern applications. The concepts of 
gain, threshold current density, transparency current density, linewidth, 
external differential quantum efficiency, mirror loss and internal loss were 
introduced. The different types of semiconductor lasers were then described, 
including homojunction, single and double heterojunction, and separate 
confinement and quantum well lasers. The fabrication and packaging 
technology of semiconductor lasers were then briefly described. Finally, a 
few specific examples of lasers were presented, including quantum cascade, 
type 11, vertical cavity surface emitting lasers, low-dimensional lasers, and 
Raman lasers. 
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Semiconductor Lasers 

Problems 

In a space mission to Mars, it is needed to equip the research robot with 
a single mode laser to make sample absorbance/transmittance analysis 
to identify the unknown gases. Assume that all types of lasers (e.g. gas, 
solid state, liquid, semiconductor lasers) specified in the Chapter are 
offering wavelength ranges and power levels adequate for this 
application. Which one would you choose for this application? Specify 
which properties of this type of laser make it more suitable? 

Using the definition of the coefficients BIZ and BZ1 given in sub-section 
18.3.1, show that BI2=B2,.Take the photon field p(Ezl) as N(E2,).nPh 
where N(E2,) is the density of energy states for the photon field and nph 

1 
is the average number of photons defined as n,, = eE,,, x,r - . 

A laser diode has a gain peak between 4.45-4.65 pm, and we want to 
have only a single mode at 4.5 pm as output of this laser diode. What 
should be the length of the laser so that only a single mode is allowed 
within the laser? Take the refractive index within the active region as 
3.2. (This type of laser is called short cavity laser). 

Find the spacing (free spectral width) of wavelengths between adjacent 
modes in a Fabry Perot cavity. Compare this with the mode spacing in 
terms of frequency. Which one would you prefer to use if you are 
comparing free spectral widths of two cavities designed for different 
wavelength regimes? 

Consider Eq. ( 18.18 ) and Eq. ( 3.36 ). It is interesting to note that 
confining light in a cavity via the use of total internal reflection is 
analogous to confining electrons in a finite quantum well. Observe that 
Eq. ( 18.18 ) and Eq. ( 3.36 ) have similar structures and identify the 
variables in Eq. ( 18.1 8 ) which are analogous to potential, mass and 
wave function in Eq. ( 3.36 ). 

Duality principle. 
Once the solutions for E field are known, solutions for the H field can 
be found easily by using duality principle. Change the source free 
Maxwell's equations (Eq. ( 18.17 )) by using the following 
substitutions: E+H, H+-E, ~ + p ,  p+~.  Does anything change? 
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Consider an edge-emitting laser with identical facets. Find the mirror 
loss and threshold gain if ti,,,,=3.2, a,=5 cm" and L=l mm. Now 

consider that one of the facets is coated with a dielectric/metal layer 
such that the reflection coefficient is R=0.98, find threshold gain and 
mirror loss for this case and compare with the previous result. Which 
one do you think will have a smaller threshold current and higher power 
when the output from the facet with the same R is measured? Why? 

Plot the external quantum efficiency VS. L when L is varying from 0 
to 3 mrn, given the values -5 cm-I and Kc,, =3.2 and c1(~)=2.0327, 

2.8 154 and 3.5981 for L=l, 2 and 3 mm respectively. Find the internal 
quantum efficiency q-'. 

For a semiconductor laser diode, it is possible to make an edge-emitting 
laser be surface emitting at the same time by using second order 
corrugations on the waveguide and laterally inducing current so the 
surface of the ridge is not coated with metal. Consider the far field 
characteristics of the edge emission given the aperture sizes around 
2 pm by 40 pm for the edge. Compare to a surface emission aperture 
with the same width, but a length of 35 pm. Which one do you expect to 
have less divergence and what is the beam shape in each case? 

10. Quantum cascade lasers do not suffer Auger processes due to the fact 
that intersubband interactions involve electrons only, and in the cladding 
layers the majority carriers are electrons. What is the dominant loss 
mechanism in this type of laser? 
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19.1. Introduction 

A detector can be defined as a device that converts one type of signal into 
another as illustrated in Fig. 19.1. Various forms of input signal can be 
entered into the detector, which then generates the measurable output signal, 
such as an electrical current or voltage. There exist many different types of 
detectors depending on the objects or physical properties that they sense. 
The input signal can be mechanical vibrations, electromagnetic radiation, 
small particles, and other physical phenomena. Smoke detectors can sense 
the soot particulates caused by fire and seismometers sense the mechanical 
vibrations caused by the earth. The human body has various types of 
detectors: the eyes can sense electromagnetic radiation in the visible range, 
the ears detect sound from pressure variations through a medium such as 
atmospheric air or water, the tongue senses various types of chemicals, and 
the skin can detect temperature and pressure. Our natural sensory skills have 
been augmented through the development of advanced instruments such as 
the microscope and the thermometer, that were made possible thanks to the 
development of technology. Furthermore technology has made it possible 
for humans to detect things that could not be naturally sensed by the human 
body. For example, we can observe the infrared (IR) light emitted from 
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warm objects and the ultraviolet (UV) light from hot objects with the help of 
photodetectors which will be the focus of the this and the next Chapters. 

Input Output 
signal signal 

Fig. 19.1. Concept of a detector. The input signal usually has the form of electromagnetic 
radiation and the output signal is often an electrical signal. The detector is a device which 

converts one type of signal into another which can then be processed. 

Human eyes respond only to visible light, from violet to red. However, 
the light spectrum is much broader and includes radiation beyond violet (e.g. 
ultraviolet, gamma rays) and red (e.g. infrared, microwaves). If the 
temperature of the object is larger than 6,000 K, it will emit predominantly 
in the ultraviolet. However, colder objects (<2,000 K) emit predominantly in 
the infrared. Most of the objects on earth emit IR light, and by choosing the 
correct materials and growth and fabrication techniques, photodetectors can 
be designed to sense light in this wavelength range. Using infrared 
photodetectors, we can obtain information on the objects emitting this 
radiation to determine their geometry, temperature, surface quality, and 
chemical content. We can also get information on the atmosphere through 
which the IR light is propagated. 

Due to the fact that some wavelengths of infrared light are transmitted 
with little loss within the Earth's atmosphere, the IR spectrum offers some 
attractive advantages for photodetection purposes. Because of this and other 
advantages, IR photodetectors have been in active development over the last 
several decades and found numerous applications, such as night vision, 
missile guidance, and range finders. As the cost of these IR photodetectors 
has decreased, they have become more available for civilian and industrial 
applications where they are used in hazardous gas sensing, security systems, 
thermal imaging for medical purposes, hot spot monitoring and optical 
communications. Specialized infrared imagers have recently been used to 
detect malignant cancers and have acted as collision and ranging sensors in 
automobiles. Due to their prominence in commercial and military 
applications, in this and the next Chapters we will focus on photodetectors 
designed for the infrared regime. 

Regardless of sensing wavelength, photodetectors are usually integrated 
into a system that generates a signal which can be easily recognized and 
interpreted by humans. A few elements of such a system are shown in a 
block diagram form in Fig. 19.2. The system may be designed to detect the 
target, to track it as it moves, or to measure its temperature. If the radiation 
from the target passes through any portion of the earth's atmosphere, it will 
be attenuated because the atmosphere is not perfectly transparent. The 
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optical receiver collects some of the radiation from the target and delivers it 
to a detector which converts it into an electrical signal. Before reaching the 
detector, the radiation may pass through an optical modulator where it is 
coded with information concerning the direction to the target or information 
destined to assist in the discrimination of the target from unwanted details in 
the background. Since some detectors must be cooled, one of the system 
elements may be a cooler. The electrical signal from the detector then passes 
through aprocessor where it is amplified and the coded target information is 
extracted. The final step is the use of this information to automatically 
control some process or to display the information for interpretation by a 
human observer. 

Receiver 

Detector I 
I 1 
I cooler 
I 

I 
I 

I I 
I I 

Photodetection _: I 

I 

I 
system I I 

Fig. 19.2. The major elements constituting a photodetection system 

In this Chapter, we will first review the fundamental concepts of 
electromagnetic radiation emitted by a body, which will allow us to better 
understand the principles of photodetection. Next, we will describe the 
theory of operation of photodetectors and introduce the important 
parameters that characterize and compare their performance. Most 
photodetectors can be divided in two types: thermal detectors and photon 
detectors, and the difference lies in the detection mechanism. We will 
explore thermal detectors here and discuss the operation and some specific 
examples of photon detectors in the following Chapter. 

19.2. Electromagnetic radiation 

The schematic in Fig. 19.3 shows various types of electromagnetic 
radiations along with their associated wavelength and frequency ranges. The 



768 Fundamentals of Solid State Engineering 

borders between visible, infrared, far-infrared, and millimeter waves are not 
absolute, and have been introduced primarily for convenience. For example, 
visible light is that portion of the spectrum to which the human eye is 
sensitive, and a statement such as "infrared extends from 0.7 ym to 
1000 pm" is only a convention. Typically, IR radiation does not penetrate 
metals unless these are very thin, but passes through many crystalline, 
plastic, and gaseous materials-including the earth's atmosphere. There does 
not exist a detector that can detect all types of radiation with the same 
sensitivity. Thus, a photodetector has to be designed to operate within a 
specific spectral bandwidth. 

+ Frequency (Hz) 

1021 10'8 10'5 1o12 lo9 

. . ---- ---- Radio 

I 1 1 I I L I 
I 1 1 I 

1 0 - ~  1 lo3 A 

Wavelength - 
Fig. 19.3. The electromagnetic spectrum. The major spectral regions of interest here are 

shown with their limits in terms of frequency and wavelength, including the ultraviolet (UV), 
visible and infrared (IR). 

A source of electromagnetic radiation generally emits over a broad range 
of wavelengths, and some wavelengths are emitted with more power than 
others. For example, different bodies emit radiation differently depending on 
their surface properties, due to varying emissivities. To have an absolute 
scale for proper comparison, we typically use a blackbody which is a perfect 
absorber of all radiant energy and which is also a perfect emitter of 
electromagnetic radiation. The intensity of the blackbody radiation depends 
on the wavelength of emitted light. This dependence is called the spectral 
distribution of intensity and is a function of the blackbody's absolute 
temperature. 
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An analytical expression of this spectral intensity distribution is shown 
in Fig. 2.3 and was determined by Max Planck in 1901. His theory assumed 
that the energy carried by an electromagnetic radiation is composed of 
discrete or quantized energy packages proportional to the frequency 
considered. The idea answered so many unsolved physics problems that 
Planck's hypothesis quickly became the basis for modern quantum theory. 
Planck's law, for which he received the Nobel Prize, quantifies the spectral 
radiation M from a blackbody as 

2nhc2 
Eq. ( 19.1 ) M(A) = - 

1 
( ~ m - ~ p r n - ' )  

AS 
m) - l 

where ;1 is the wavelength in microns, c is the velocity of light in 
vacuum in m.s-', T is the absolute temperature in K, h is Planck's constant 
and kb is Boltzmann's constant. This relation expresses thermal radiation as 
a function of wavelength and temperature for all wavelengths. The peak 
wavelength of the ideal blackbody emission is described by Wien's law: 

When considering the entire spectral power R of an ideal blackbody 
(integrating Planck's Law over all wavelengths), the result is the Stephan- 
Boltzmann law for total blackbody emittance: 

m 

Eq. ( 19.3 ) ~M(A,T)IA = R(A,T) = 0T4 
0 

where a is the Stephan-Boltzmann constant 5.67 x w ~ - ~ K - ~ .  Further 
details can be found in sub-section 3.1.1. 

19.3. Photodetector parameters 

As mentioned earlier, photodetectors are devices which sense light (as an 
input signal) and generate a measurable output signal in the form of an 
electrical current or voltage. The performance of these photodetectors can be 
quantified and compared using several parameters, which will be discussed 
in this section. 
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19.3.1. Responsivity 
The responsivity of a photodetector is the ratio of its output electrical signal, 
either a current IOU, or a voltage V,,,, to the input optical signal expressed in 
terms of the incident optical power Pin. One can define a current 
responsivity and a voltage responsivity using respectively: 

rou t  Vout Eq. ( 19.4) Ri =- and R, =- 
4 n  4.n 

The current responsivity Ri is expressed in terms of AIW, while the 
voltage responsivity R, is expressed in units of VIW. The output signals IOU, 
and V,,, in Eq. ( 19.4 ) can be expressed in detail for the case of specific 
light detection mechanisms of the detector in question. The output current 
and voltage are often called photocurrent (Iph) and photovoltage (Vph) as they 
arise in the presence of light. The incident input power Pin on the 
photodetector can be expressed as: 

where A is the area of the detector, Qph is the incident photon flux 
density expressed in units of photons.m-2.s-', h is Planck's constant, c is the 
velocity of light in vacuum, and A is the wavelength of the incident light. 

19.3.2. Noise in photodetectors 
As the output signal of a photodetector is an electrical signal, it is not a 
strictly stable quantity over time, but fluctuates due to electrical noise. 
Electrical noise is a random variable that results from stochastic or random 
processes associated with various particles, i.e. discrete, nature of electrons, 
phonons, and photons and their interactions. For example, the instantaneous 
voltage signal V(t) is shown schematically in Fig. 19.4. A quantitative 
measure of the noise in the voltage signal is then its root-mean-square and is 
given by: 

This relation expresses the average value of the square of the fluctuation 
of the variable I(t) around its average <I> over a long period of time T. 
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Fig. 19.4. Illustration of the instantaneous current signal I(t) exhibiting electrical noise about 
its average value <I>. 

It is also useful to define a power signal-to-noise ratio as: 

where (...) denotes the statistical average of a random variable, Iph is the 

instantaneous photocurrent and InOi,, is the instantaneous noise current. We 
talk about a power ratio because the expression in Eq. ( 19.7 ) involves the 
squares of the electrical current. The effect of the signal-to-noise ratio is 
illustrated in Fig. 19.5. 

The noise current InOi,, is usually a function of the frequency considered, 
2 and the noise power I,,,, depends on the frequency bandwidth Af over 

which the statistical average is measured. For example, if the output signal 
is centered at a frequency of 200 Hz, eliminating all electrical signal outputs 
with significant components above 250 Hz and below 150 Hz would 
decrease the noise power in the output because the remaining 100 Hz 
electrical bandwidth contains less noise than the entire frequency band in the 
case of white noise. This is why, in order to compare different noise 
mechanisms in different photodetectors, with different frequency 
bandwidths, it is convenient to use the concept of noise spectral density, 
expressed in terms of A.HZ-", which consists of normalizing the noise power 
to the frequency bandwidth considered: 

Eq. ( 19.8 ) noise spectral density= rn 
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A similar expression can be obtained using the voltage noise Vnoi,,. 

Time 

H a 
6 .- 
v3 

Fig. 19.5. Detector output with varying signal-to-noise ratios. When the S/N ratio is high, the 
signal is clear but when the S/N ratio is low, the random modulation signal (noise) is 

superimposed which reduces the accuracy of the actual signal. 

lower S/N ratio 

A useful concept in the evaluation of the electrical noise is to consider a 
noise equivalent circuit that consists of a small signal electrical circuit 
model of the device including the noise source. This equivalent circuit 
makes use of the differential resistance RdW of the device when a bias 
voltage V=Vb is applied: 

Eq. ( 19.9 ) RW = 

where V and I are the voltage and current of the device, respectively. 
The noise equivalent circuits are shown in Fig. 19.6. 

These noise equivalent circuits can only be used when the noise in the 
devices is a white noise, i.e. does not depend on the frequency. These noise 
equivalent circuits can be used like any small signal circuits when several 
contributions to the total noise are considered, with the exception that the 
noise powers need to be added instead of summing or subtracting noise 
voltages and noise currents, e.g.: 
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current voltage 
equivalent circuit equivalent circuit 

Fig. 19.6. Current and voltage equivalent circuits o f a  photodetector, including the sources of 
noise I,,,,,, and V,,,,,,. 

19.3.3. Noise mechanisms 
There exist several contributions to the noise in photodetectors that will be 
briefly described in this sub-section. 

Johnson noise. 
Thermal or Johnson noise occurs in all electrically conductive materials 

regardless of the conduction mechanism and results from the random motion 
of thermally-activated charge carriers through the conductor. The total noise 
current is proportional to the sum of the carrier movement occurring within 
a short time frame. Johnson noise is named after the scientist who 
experimentally investigated it [Johnson 19281. The mean-square voltage of 
such noise can be calculated from: 

E q  ( 19.11 ) ( v )  =4kbTRAf 
Johnson 

where kb is the Boltzmann constant, T is the temperature of the 
conductor, R is its electrical resistance, and Af is the frequency bandwidth of 
the noise which is the frequency range in which the noise exists or is 
considered. This equation shows that the value of the noise in a given 
bandwidth is independent of the value of frequency, therefore the Johnson 
noise is a white noise. As a result, there is a constant maximum noise power 
Pnois, from any resistor R at a given temperature T 
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and the value of this power at room temperature is about 4x lo-" W. 

Shot noise. 
In 1918, Schottky showed that the random arrival of electrons on the 

collecting electrode of a vacuum tube was responsible for a so-called shot 
noise. At the origin of shot noise is the process of charge carriers being 
thermally or optically excited over a junction barrier. The current shot noise 
in a simple temperature limited vacuum diode is given by the following 
expression: 

9 3  ( I )  shot = 2 q r D c ~ f  

where q is the elementary charge and IDc is the DC current bias of the 
vacuum diode. This equation shows that shot noise is also independent of 
the frequency and is a white noise. However, this is only valid if the inverse 
of the frequency of operation, 1% is much larger than the traveling time of 
the electron in the device. 

The shot noise in a p-n junction diode can be estimated by the following 
equation for the low frequency region: 

q .  ( 9 . 1  ( I ~ ~ , )  shot = %(ID + rO) i f  

This relation is equivalent to Eq. ( 19.1 1 ) when no bias is applied (Vb=O), 
and to Eq. ( 19.13 ) for a high enough current bias. 

Iflnoise. 
There also exists an important type of noise which has a power spectrum 

inversely proportional to the frequency of operation$ This noise mechanism 
often dominates other mechanisms at low frequencies. This is a process 
dependent noise in the sense that it can be affected by the contact type and 
preparation, as well as the surface preparation and passivation. For example, 
carrier trapping and re-emission to and from defects at surfaces and contacts 
may contribute to this llfnoise. It should be noted that a variety of names 
have been used for this type of noise in the literature such as excess noise, 
modulation noise, contact noise, and flicker noise. The power spectrum of 
this noise is given by: 



Photodetectors - General Concepts 

Eq. ( 19.15 ) P,,,(f)= y"X 
fP 

where y is a constant, IDc is the DC current bias of the device, f is the 
frequency of operation, a and Pare exponents characteristic of the particular 
device considered. The value of a is usually near 2, while the value of P 
ranges from 0.8 to 1.5. 

Generation-recombinutiol~ noise. 
The generation and recombination of charge carriers in semiconductors 

are random processes as they are associated with the creation and 
annihilation of electron-hole pairs in the material. The number of free 
carriers during a given period of time is therefore not constant but fluctuates 
in a random manner too. This results in a random change of the voltage of 
the device which is called the generation-recombination or G-R noise. For a 
near intrinsic semiconductor with a moderate bias, this noise can be 
expressed as [Long 19671 : 

where Vb is the voltage bias, 1 is the length, w is the width, and t is the 

thickness of the device, b is the ratio of mobilities pe , n and p are the Lh 
electron and hole concentrations respectively, z is the carrier lifetime in the 
semiconductor, w is the angular frequency of operation, and Af is the 
frequency bandwidth within which the noise is measured. 

Te~nperat~ire noise. 
If the conductivity of the device strongly depends on the temperature, 

any random temperature fluctuation would result in a so called temperature 
noise in the device. This is an important source of noise for all infrared 
thermal detectors as well as low noise preamplifiers. This is the reason why 
even uncooled infrared thermal detectors, i.e. which can operate without 
cooling, usually have a thermoelectric cooler to stabilize their temperature. 

Photon noise. 
This noise mechanism arises from the random arrival of background 

photons onto the surface of the photodetector and is included in the incident 
photon flux. Unlike the previously described noise mechanisms, photon 
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noise is a source of noise which is extrinsic to the device. The equivalent 
power of this noise or noise-equivalent-power for a given detector with an 
area A and a quantum efficiency 7 is: 

where (Dbkg is the total background photon flux density reaching the 
detector, and u is the frequency of the photon. 

19.3.4. Detectivity 
Although the responsivity of a photodetector gives a measure of the output 
signal of the detector for a given optical input signal, it does not give any 
information about the sensitivity of the device. The sensitivity of the 
detector can be defined as the minimum detectable optical input power that 
can be sensed with a signal-to-noise ratio of unity. This power is called the 
noise-equivalent-power (PNEP) of the detector and is given by: 

Eq. ( 19.18 ) PNEp =I"", or PNEp - - - 'noise 

R i  R v  

Jones suggested to define the detectivity of a detector as the inverse of 
this noise-equivalent-power [Jones 19531: 

which is expressed in units of W-'. This quantity is very useful when 
measuring the sensitivity of photodetectors. However, it is not a fair means 
of comparing the overall performance of different detectors because it 
neglects the effects of the detector area and frequency bandwidth. For 
example, photodetectors with different sizes and thus detection areas will 
have different noise-equivalent-powers. In addition, a detector with low 
electrical bandwidth can have higher detectivity than an otherwise identical 
detector with wider electrical bandwidth. This is despite the fact that higher 
bandwidth is desired for faster devices. To address these issues, Jones 
introduced the concept of specific detectivity, which is denoted D* and is 
the detectivity of a photodetector with an area of 1 cm2 and an electrical 
bandwidth of 1 Hz: 
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where A is the area of the detector in cm2. D* is expressed in units of 
C~.HZ".W-' .  Since it is independent of the device dimensions and the 
electrical configuration used for the measurement, D* is widely used to 
compare photodetectors with very different physical and operational 
characteristics and is often simply called detectivity. One can easily express 
D* in terms of the detector responsivity: 

where Af is the frequency bandwidth of the measurement setup, Inois, and 
VnOise are the total root-mean-square current and voltage noises of the 
detector in the given frequency bandwidth of AJ: 

19.3.5. Detectivity limits and BLIP 
In order to ascertain the maximum performance of a photodetector, it is 
important to understand the role of the background noise current, I,. This 

current can arise from blackbody radiation absorbed by the detector from the 
environment with temperature T, . Additionally background noise can be 
produced by the detector device itself in the form of dark currents, that is, 
noise contributions from conduction or leakage currents under no 
illumination. These two components define the upper detectivity limit 
photodetectors as shown in Fig. 19.7. 

Fig. 19.7. Detectivity limit with respect to temperature for a photodetector. 
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As the detector temperature increases, the dark current increases 
-E ,  / 2k ,T  

exponentially as e . Conversely, it is logical that the background 
noise stays constant with temperature and is proportional to the quantum 
efficiency of the device and the photon flux incident on the detector. The 
temperature at which the background noise begins to limit the device 
performance is known as the background limited infrared performance 
(BLIP) temperature. The BLIP threshold can be found from solving an 
equality between the constant background blackbody noise current and the 
device dark current: 

where y is the detector quantum efficiency (essentially the ratio between 
the absorbed and total incident photons) with respect to wavelength and 

is the photon flux over the wavelength range from I ,  to 12. Using this 
dil 

formalism, one can also calculate the absolute detectivity limit for ideal 
photodiodes, for example: 

Eq. ( 19.23 ) 
1 1 

D ~ L I P , t n m  ('0 3 TB = - 
h v 2"'[@, (il0)J1' 

It should be noted that this limit should be modified by I/sin(q) when 
considering a real detection system with cryostat, and an acceptance angle 
of q. A complete explanation of detectivity limits and BLIP can be found in 
[Rosencher and Vinter 20021. 

19.3.6. Frequency response 
When the optical input signal is periodic with a fixed amplitude and a 
frequency J; the amplitude of the detector electrical output signal is not 
necessarily a constant but may vary with the frequency as shown in 
Fig. 19.8. This phenomenon is usually due to the electrical resistive- 
capacitance or RC delay of the device in the case of the photon detectors, 
and the thermal RC delay of the thermal detectors. The frequency dependent 
responsivity can be approximated by: 
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where RioSVo is the responsivity of the photodetector at very low 
frequencies, and: 

1 
Eq. ( 19.25 ) f, = - 

2zRC 

where R is the electrical (or thermal) resistance and C is the electrical (or 
thermal) capacitance of the photon (or thermal) detector. 

Fig. 19.8. Illustration of the frequency dependence of detector responsivity 

19.4. Thermal detectors 

In thermal detectors, the absorption of IR light leads to a change in the 
temperature of the detector, thus resulting in a change in resistance 
(bolometer) or electrical polarization (pyroelectric detectors). This change is 
then recorded by an electrical circuit. Because they can operate at room 
temperature, thermal detectors are mostly used whenever cooling systems 
are not possible and to minimize cost. It is however often necessary to use 
thermoelectric coolers in order to stabilize the temperature of the detectors, 
in an effort to minimize the Johnson noise. In general, thermal detectors 
have a large spectral bandwidth compared to their photon detector 
counterparts. This is because thermal-type devices typically absorb photons 
like a blackbody, or with a wide, flat response function with respect to 
wavelength. There exist several types of thermal detectors that will be 
briefly discussed here: bolometers, thermopiles, thermocouples, and 
pyroelectric detectors. 
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A bolometer is a thermal detector whose resistance depends on its 
temperature. Since the resistance of most semiconductors is a strong 
function of temperature, the resistance of a semiconductor chip can tell us 
how much radiant energy is falling on it. The Golay cell uses the expansion 
of a gas when heated to sense radiated power: the gas is contained in a 
chamber that is closed with a reflecting membrane. When the gas is 
warmed, the membrane distorts and deflects a beam of light that has been 
focused on it. 

A thermopile typically consists of several thermocouple stacks in series. 
The principle of a thermocouple resides in the thermoelectric effect which 
yields an voltage proportional to the temperature difference between two 
dissimilar metal junctions. Therefore, an increase in the incident infrared 
radiation power causes an increase in the thermopile voltage. 

When ferroelectric polar crystals are exposed to a change in 
temperature, their internal electric polarization changes, electrical charges 
accumulate and can be measured on opposite sides of the crystal. The 
capacitance of the detector material also changes and can be electrically 
measured. Pyroelectric detectors use this material property to detect IR 
radiation. 

Among all these thermal detectors, bolometers are the most widely used 
because of their advantages such as easy fabrication, stability, light-weight, 
ruggedness, and an easy array capability. To illustrate some principles of 
thermal detectors, consider the carbon bolometer shown in Fig. 19.9. Such 
devices are very sensitive and detect radiation over a very wide spectral 
range. 

The resistance of an ordinary carbon resistor is a strong function of 
temperature, which makes a carbon resistor an inexpensive temperature 
sensor. To make a bolometer, we would mount the resistor in such a way 
that it is cooled to a low temperature but also isolated. As radiation strikes it, 
it warms up and the resistance decreases. An external electrical circuit 
detects the resistance change. To make the bolometer more sensitive, we 
would want to make its heat capacity smaller so that a small amount of 
energy could heat it faster. 

When a modulated optical signal with power amplitude Pin and angular 
frequency whits a pixel with a heat capacity C, a temperature change AT 
can be recorded. The heat dissipation inside a solid is characterized by its 
thermal conductance K. If we define the quantum efficiency as the 
fraction of the incident optical power that is absorbed by the solid, the 
temperature change is given by: 

Eq. ( 19.26 ) AT = K n  

~ ( l +  w2ri  ) I2  
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where Q, is the thermal response time defined as the heat capacity of the 
material divided by its thermal conductance: 

L 
Eq. (19.27)  T ,  =z 

Carbon Wafer 
0.002 in. thick 
0.2x0.2 in. square 

Copper leads 
0.003 in. diameter 
1 in. long 

Electrical isolators, but good 
thermal conductors held at 5K 

I I b 
5 K Tcmpcrature 

Voltage t 
I b 

Current 

Fig. 19.9. Bolometer and its operating principle. A bolometer is a thermal detector whose 
resistance depends on its temperature. By precisely measuring the change in the resistance, 

one can determine how much radiant energy has reached the device. 
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A few key points can be understood from Eq. ( 19.26 ) which can 
optimize the thermal detector performance. First, it is very important to 
minimize the thermal conductance K, by maximizing thermal isolation, in 
order to sense low power infrared radiation. Improved temperature isolation 
is often accomplished by lengthening or thinning the support legs in 
bolometer bridge structures. However, minimizing K also leads to a low 
frequency response, which is proportional to the heat dissipation rate. 
Secondly, the quality of the detector material is important in maximizing 7, 
which is the ratio of incident to absorbed radiation. And lastly, the heat 
capacity C, of the element must be low enough in order to meet the response 
time requirement. 

Recent research on bolometric arrays has demonstrated good room 
temperature performance. Wang et al. [2005] have deposited vanadium 
oxide on silicon substrates using ion beam sputtering. After 
micromachining, a bolometer array of 128 elements showed a detectivity of 
2x 10' C~.HZ".W-'  with a responsivity of 5 kV/W in the 8-12 ym regime. 
An SEM image of an array pixel is shown in Fig. 19.10. 

Fig. 19.10. Example of a bolometer array pixel. The active material is vanadium oxide. 
[Reprinted from Sensors and Actuators A Vol. 11 7, Wang, S. B., Xiong, B.F., Huang, G., 

Chen, S.H., and Yi, X.J., "Preparation of 128 element of IR detector array based on 
vanadium oxide thinjlms obtained by ion beam sputtering, " p. 113, Copyright 2005, with 

permission from Elsevier.] 

19.5. Summary 

In this Chapter, the photodetector was established as a device that converts 
photon energy into electrical energy. The electromagnetic spectrum and 
blackbody concepts were initially revisited to provide a good background 
for the reader. The parameters used to describe the performance and limits 
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of photodetectors were outlined, including responsivity, noise and 
detectivity. Finally, one specific type of photodetector, the thermal detector, 
and a carbon bolometer example were presented. 

References 

Johnson, J.B., "Thermal agitation of electricity in conductors," Physical Review 32, 
pp. 97-109,1928, 

Jones, R.C., Advances in Electronics, Vol. V, Academic Press, New York, 1953. 
Long, D., "On generation-recombination noise in infrared detector materials," 

Infrared Physics 7, pp. 169-170, 1967. 
Rosencher, E. and Vinter B., Optoelectronics, Cambridge University Press, 

Cambridge, 2002. 
Wang, S.B., Xiong, B.F., Zhou, S.B., Huang, G., Chen, S.H., Yi, X.J., "Preparation 

of 128 element of IR detector array based on vanadium oxide thin films 
obtained by ion beam sputtering," sensors and Actuators A 1 17, pp. 1 10-1 14, 
2005. 

Further reading 

Boyd, R.W., Radiometry and the Detection of Optical Radiation, John Wiley & 
Sons, New York, 1983. 

Hudson Jr., R.D., Infrared System Engineering, John Wiley & Sons, New York, 
1969. 

Kingston, R.H., Detection of Optical and Infrared Radiation, Springer-Verlag, 
Berlin. 1978. 



784 

Problems 

Fundamentals of Solid State Engineering 

Sort the following types of electromagnetic radiation by order of 
increasing wavelength: radio, infrared, near-infrared, red, gamma rays, 
blue, ultraviolet, x-rays. 

What is the total radiative emission of a surface (like a classroom wall) 
with area of 10 m2, emissivity of 0.5 and temperature of 300 K? The 
emissivity is simply a non-ideality factor for an object that does not emit 
and absorb perfectly. If this emission power seems high to you, 
remember that this surface is usually in thermal equilibrium and is also 
absorbing approximately the same amount of power from its 
surroundings. 

Using Wien's law, calculate the peak wavelength of emission from 
these sources: The Sun (6000 K), tungsten filament (3000 K), red hot 
source (1000 K), 300 K ambient. 

Name the following detector parameters: 
(a) Electrical output for a given light input. 
(b) The signal-to-noise ratio that would result if the performance of your 
detector were scaled to a detector of a standard size, under standardized 
test conditions. 
(c) The "clutter" or unwanted electrical variation that tends to hide the 
true signal. 
(d) The minimum infrared power that a detector can accurately "see". 
(e) A measure of the "cleanliness" of a signal pattern. 
( f )  The condition when a detector's performance is not limited by 
intrinsic device noise, but rather the incident photon noise. 

Assume you have a photodetector with a current responsivity of 5 AIW. 
A continuous wave HeNe laser with wavelength of 632.8 nm and spot 
size of 0.5 mm2 is incident on the active area of the detector. Assume 
that 6 . 3 7 ~ 1 0 ~ ~  photons per m2 arrive on the detector each second. 
Calculate the expected photocurrent under these conditions. 

A coaxial cable is used to transmit data with a bandwidth of 100 MHz. 
Calculate the maximum peak Johnson noise power for 300 K and 80 K. 

A certain HgCdTe detector has a specific detectivity of 
1x10" c m . ~ z " . ~ '  and is designed to operate at 10 pm. It is 
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incorporated into a focal plane array that needs to operate with a 
bandwidth of 1 kHz. This particular detector has a pixel size of 
30 pmx30 pm. Calculate the minimum power that can be sensed by this 
detector pixel. 

8. You are tasked with designing a night vision infrared imaging system 
that should be able to detect a incident signal power level of 
1x lo-' ~ . c m - ~ .  Assume that you need to use a focal plane array with 
pixels of 30pmx30pm operating at 60 Hz. What minimum specific 
detectivity does your system need to have? 

9. Describe briefly how thermal detectors work. 

10. What specific property changes with temperature in the following 
thermal detectors? 
(a) mercury-in-glass thermometer 
(b) carbon bolometer 
(c) thermopile 
(d) Golay cell 
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20.1. Introduction 

In the previous Chapter, the basic concepts of photodetectors were outlined. 
Furthermore, thermal detectors and the bolometer, specifically, were 
described in detail. In photon detectors, incident photons interact with the 
electrons in the material and change the electronic charge distribution. This 
perturbation of the charge distribution generates a current or a voltage that 
can be measured by an electrical circuit. Because the photon-electron 
interaction is "instantaneous", the response speed of photon detectors is 
much higher than that of thermal detectors. Indeed, by contrast to thermal 
detectors, quantum or photon detectors respond to incident radiation through 
the excitation of electrons into a non-equilibrium state.The mechanisms of 
electron excitation are shown in Fig. 20.1. 

Semiconductor photon detectors may rely on interband electron 
excitation (Fig. 20.l(a)) (intrinsic detectors), on impurity-band transition 
(Fig. 20.l(b)) (extrinsic detectors) or intersubband transitions in a quantum 
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well (Fig. 20.l(c)) (quantum well intersubband photodetectors). In intrinsic 
semiconductors, an electron in the valence band absorbs the energy of an 
incident photon and is excited into the conduction band. Extrinsic 
semiconductor detection occurs when an electron from a trap level inside the 
bandgap absorbs the energy of an incident photon and is excited into the 
conduction band. Intersubband detectors feature an electron in a quantum- 
confined state that can be excited into a higher energy state or continuum 
level. In the following sub-sections, the two main types of photodetectors, 
photoconductive and photovoltaic detectors, will be discussed in more 
detail. 

The output signal of a photon detector due to incident light is called the 
photoresponse. It is strongly dependent on the frequency or wavelength of 
the incident light. When the wavelength of the incident light becomes longer 
than a critical wavelength, the photoresponse decreases abruptly. This 
particular wavelength generally corresponds to the bandgap of the 
semiconductor material in intrinsic detectors or to the activation energy of 
defect states in extrinsic detectors. For those wavelengths longer than this 
critical point, the energy of the incident photons is no longer sufficient to 
excite an electron-hole pair across the bandgap or to overcome the activation 
energy. The wavelength at which this abrupt decrease in responsivity occurs 
is called the cut-off wavelength. 

Fig. 20. I .  Different mechanisms of excitation of an electron: (a) intrinsic semiconductor; (6) 
extrinsic semiconductor; and (c) intersubband transitions in a quantum well. 

For example, InSb has a bandgap of 0.22 eV, which corresponds to a 
wavelength of 5.6 pm. Photons with longer wavelengths will pass through 
InSb undetected, i.e. InSb is transparent in spectral region beyond 5.6 pm, 
while photons of wavelengths shorter than 5.6 pm are effectively absorbed 
by InSb and contribute to the responsivity. Thus we expect to see a cut-off 
wavelength of 5.6 pm. This property is true for both photoconductors and 
photovoltaic detectors. 

Examples of photoconductive detectors include doped germanium 
(Ge:X) and silicon (Si:X), and lead salts (PbS, PbSe). The ternary 
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compounds HgCdTe and PbSnTe can be used as photoconductors and also 
as photovoltaic detectors. 

20.2. Types of photon detectors 

20.2.1. Photoconductive detectors 
A photoconductive detector (also called a photoconductor) is essentially a 
radiation-sensitive resistor. The operation of a photoconductor is shown in 
Fig. 20.2. A photon of energy hv greater than the bandgap energy E, is 
absorbed to produce an electron-hole pair, thereby changing the electrical 
conductivity of the semiconductor. In almost all cases, electrodes attached to 
the sample measure the change in conductivity. Photoconductors are usually 
biased using a battery and a load resistor. An increase in the detector 
conductance both increases the current and decreases the voltage across the 
detector. For low resistance material, the photoconductor is usually operated 
in a constant current circuit as shown in Fig. 20.2. The series load resistance 
is large compared to the sample resistance, and the signal is detected as a 
change in the voltage developed across the sample. For high resistance 
photoconductors, a constant voltage circuit is preferred, and the signal is 
detected as a change in current. 

incident radiation 
(h 4 

bias, V load resistance 

Fig. 20.2. Photoconductor and its biasing circuit. 

The photoconductivity A o  is the difference between the electrical 
conductivity when a photoconductive material is illuminated and non- 
illuminated: 
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Eq. ( 20.1 ) Ao = q(p,An + p,Ap) 

where An and Ap are the excess electron and hole concentrations 

resulting from the incident light, pn and ,up are the electron and hole 
mobility, respectively. In this case, the photoresponse takes the form of a 
change in the electrical current flowing through the sample, as a result of the 
change in electrical conductivity. The additional current component is called 
photocurrent. In a sample with contacts area A and length I ,  the photocurrent 
under the bias V is given by: 

The excess carrier concentrations generated under a steady-state 
illumination are: 

Eq. ( 20.3 ) An = Ap = Gz,  

where zn is the recombination lifetime of the excess carriers, as defined 
in section 8.6, and G is the excess carrier generation rate. This quantity is 
further related to the incident optical power Pin through: 

where the quantum efficiency 77 represents the fraction of the incident 
optical power that contributes to electron-hole pair generation, and v is the 
frequency of the incident light. Eq. ( 20.2 ), Eq. ( 20.3 ) and Eq. ( 20.4 ) can 
be combined and give: 

For p, >> ph , this expression becomes: 

(" )" Eq. ( 20.6 ) AI = q 2 
hv z, 

where we have defined the quantity: 
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which physically represents the electron transit time across the 
electrodes, i.e. the time taken by an electron to travel or transit from one end 
of the semiconductor to the other, separated by a distance I ,  when a bias V is 

applied. The ratio in Eq. ( 20.6 ) characterizes how fast the electrons can 
Tt 

transit from one electrode to another electrode and contribute to the 
photocurrent before recombination occurs. It is called the photoconductive 
gain. 

The current responsivity Ri of a photoconductor is defined as the ratio of 
the output signal, i.e. the photocurrent AZ , to the input signal, i.e. the 
incident optical power Pi,: 

The units of the current responsivity are A.W-I. It is also common to 
express the responsivity as a function of the wavelength A of the incident 
light: 

When the incident optical power is modulated by a sinusoidal signal of 
frequency w ,  the photoresponse can be considered in terms of the root- 
mean-square (rms) of the photocurrent, i.e.: 

e, where P,.,,,, = - is the rms of the incident optical power. 
f i  

Depending on the electrical circuit considered, the photoresponse can 
sometimes be expressed as the ratio of the output voltage to incident optical 
power. The choice of the output signals for a photoconductor, either current 
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or voltage, generally depends on the application in which the photodetector 
will be used. As shown in Eq. ( 20.9 ), the responsivity is a linear function 
of the wavelength of the incident light, up until the cut-off wavelength is 
reached. Beyond that wavelength, the responsivity abruptly decreases as 
discussed previously. 

20.2.2. Photovoltaic detectors 
Photoconductors are passive devices that need an external electrical bias in 
order to operate and do not generate a voltage by themselves. They can 
consist of a simple block of semiconductor material. By contrast, a 
photovoltaic detector needs a more complex structure that uses a p-n 
junction. Such a detector is also called a photodiode. This allows the 
detector to exhibit a voltage when photons are absorbed as we will now 
briefly discuss. As a result, photovoltaic detectors are usually operated with 
a low or zero external bias. 

feedback resistance 

R 

output 
b 

amplifier 

detector I I 
Fig. 20.3. Photovoltaic detector circuit using an operational amplifier in the feedback mode. 

When incident radiation is absorbed by the photovoltaic detector, a voltage is generated 
which is then collected through the shown circuit. 

In such a detector, as a result of the built-in electric field in the depletion 
region, the photogenerated carriers drift to opposite sides of the depletion 
region: holes toward the p-type side and electrons toward the n-type side. 
There, they increase the majority carrier densities on both sides of a 
junction. An open-circuit voltage generated by this build-up of charge can 
then be measured. Fig. 20.3 depicts an example of the electrical circuit 
commonly used with photovoltaic detectors. No specific bias circuit is 
necessarily used in the photovoltaic detector operation. 
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The simple calculation conducted in the case of a photoconductor can be 
easily applied in the case of a photovoltaic detector to obtain an expression 
for the current responsivity: 

where the parameters have the same meaning as defined earlier. 
A more precise calculation can be conducted as follows. Since we are 

considering a p-n junction, we can make use of the diode equation, which 
relates the current to the applied external voltage as obtained in Eq. ( 9.52 ) 
in Chapter 9. The current-voltage characteristic of a photovoltaic detector is 
illustrated in Fig. 20.4. The current given by this equation is termed the dark 
current, i.e. the current which would be flowing through the device without 
illumination. To obtain the total current across the detector, we must add to 
the dark current the photocurrent which is the component directly resulting 
from the photogenerated electron-hole pairs. The total current is then given 
by: 

where V is applied external voltage, I. is the saturation current, and I,, is 
the photocurrent, which is also called the short-circuit current and has the 
following expression: 

Eq. ( 20.13 ) I,, = qAG(L, + L, ) 

where A is the cross-sectional area of the p-n junction diode. G is the 
excess carrier generation rate. The gain of the device is usually considered 
to be unity for photodiodes, L, and L, are the diffusion lengths of electrons 
and holes, respectively. The current-voltage characteristic of a photodiode 
under varying degrees of illumination is depicted in Fig. 20.4. 
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reverse bia forward bias 

increasing 
illumination 

Fig. 20.4. Current-voltage characteristic of a photovoltaic detector with and without 
illurnination. 

The voltage that could be measured across the photodetector in an open- 
circuit situation can be found from Eq. ( 20.12 ) by setting I=0: 

Eq.  ( 2 0 . 1 4 )  V,, 

Since a photovoltaic detector can operate without external voltage, one 
important characteristic of the detector is its differential resistance Ro at zero 
bias, defined by: 

By differentiating Eq. ( 20.12 ) with respect to the voltage V, and 
calculating it at V=O, we can express the saturation current as a function of 
the differential resistance Ro: 

Using Eq. ( 20.13 ), we can express the ratio of the photocurrent to the 
saturation current which appears in Eq. ( 20.14 ): 
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We therefore observe that this ratio is proportional to the product R d ,  
which is a useful figure of merit for photovoltaic detectors. 

A more simple analytical expression for the detectivity than the one 
given in Eq. ( 19.21 ) can be obtained in the case of a p-n junction 
photovoltaic detector when the thermal noise is dominant over all other 
noise sources: 

in which all the terms have been defined previously. This equation 
directly relates the R d  product to the thermally-limited detectivity. 

Si, InSb, and HgCdTe are examples of materials commonly used for 
photovoltaic infrared photodetectors. Some of the advantages of 
photovoltaic detectors over photoconductive ones include a better 
theoretical signal-to-noise ratio, simpler biasing, and a more predictable 
responsivity. However, photovoltaic detectors are generally more fragile 
than photoconductors. Indeed, they are susceptible to electrostatic discharge 
and to physical damage during handling. In addition, because they are thin 
(10 pm for a backside illuminated InSb p-n junction), the insulating layers 
are susceptible to electrical breakdown. Surface effects may also lead to 
leakage between the p-type and the n-type regions, which can then degrade 
detector performance. 

20.3. Examples of photon detectors 

In addition to the simple photoconductive and p-n junction photovoltaic 
detectors discussed previously, there are other types of photon detectors 
which will be briefly described in this section, including the p-i-n 
photodiode, avalanche photodiode (APD), Schottky photodiode, 
photoelectromagnetic (PEM) detectors, and quantum well and dot detectors. 
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20.3.1. P-i-n photodiodes 

A p-i-n photodiode consists of a p-n junction diode within which an 
undoped intrinsic or i-region is inserted between the doped regions. Because 
of the very low density of free carriers in the i-region and its high resistivity, 
any applied bias is dropped almost entirely across this i-layer, which is then 
fully depleted at low reverse bias. The p-i-n diode has a "controlled" 
depletion layer width, which can be tailored to meet the requirements of 
photoresponse and frequency bandwidth. The absorption and carrier 
generation processes in a p-i-n photodiode are shown in Fig. 20.5. 

diffusion 

t Carrier generation rate 

Fig. 20.5. (a) Schematic structure of a reverse-biasedp-i-n diode, with the incident light 
arriving on the p-type side; (b) the absorption ofphotons creates electron-hole pairs in thep- 
type, n-type and the i-region where they then become spatially separated through the electric 

field across the space charge region; and (c) graph of the carrier generation. 
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For practical applications, photoexcitation is provided either through an 
etched opening in the top contact, or an etched hole in the substrate, as 
schematically shown in Fig. 20.6. The latter reduces the active area of the 
diode to the size of the incident light beam. 

By careful choice of the material parameters and device design, large 
bandwidths can be attained using p-i-n photodetectors. The response speed 
and bandwidth are ultimately limited either by the transit time or by circuit 
parameters. The transit time of carriers across the depletion or i-layer 
depends on its width and the carrier velocity and can be reduced by making 
the i-layer more thin, at the possible expense of reducing the overall 
photosignal. 

The key elements in achieving high-performance with a p-i-n diode 
(high quantum efficiency and large bandwidth) is to illuminate the diode 
through the substrate, also called back-side illumination, ensure the total 
depletion of the i-layer, and use the device at a low reverse bias. The latter is 
important for digital operation and for low-noise performance. 

, 1 n+ layer 1 ,) 1' ;;; 
contacts 

n+ substrate 
n+ substrate 

Fig. 20.6. Examples of mesa-etched p-i-n photodiodes for (a) top illumination and (b) back 
illumination. Top and back illuminations refer to the direction of the incident radiation to be 

detected with respect to the substrate on which the photodiode is fabricated. 

20.3.2. Avalanche photodiodes 
An avalanche photodiode (APD) operates by converting each absorbed 
photon into a cascade of electron-hole pairs. The device is a strongly 
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reverse-biased photodiode in which the junction electric field is large. The 
charge carriers therefore accelerate in the space charge region, acquiring 
enough energy to generate additional electron-hole pair through impact 
ionization. This phenomenon has been somewhat discussed in the context of 
avalanche breakdown in a p-n junction in sub-section 9.4.4. 

The avalanche multiplication process is illustrated in Fig. 20.7. A photon 
absorbed at point 1 creates one electron-hole pair. The electron accelerates 
in the strong electric field. The acceleration process is constantly interrupted 
by random collisions with the lattice in which the electron loses some of its 
acquired energy. These competing processes cause the electron to reach an 
average saturation velocity. When the electron can gain enough kinetic 
energy to ionize an atom, it creates a second electron-hole pair. This is 
called impact ionization (at point 2). The newly created electron and hole 
both acquire kinetic energy from the electric field and create additional 
electron-hole pairs (e.g. at point 3). These in turn fuel the process, creating 
other electron-hole pairs. This 
multiplication. 

impact 

process is therefore called avalanche 

Fig. 20.7. Schematic representation of the nzultiplication process in an avalanche 
photodiode. 

The abilities of electrons and holes to ionize atoms are characterized by 
their ionization coefficients cx, and ah.  These represent the ionization 
probabilities for electrons and holes per unit length. The ionization 
coefficients increase with the electric field in the depletion layer and 
decrease as the device temperature is raised. An important parameter which 
characterizes the performance of an APD is the ionization ratio k=ah/cr,. If 
holes do not ionize effectively (k<<l), most of the ionization events are 
caused by electrons. The avalanching process then proceeds principally 
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from left to right, i.e. from the p-type side to n-type side, in Fig. 20.7. If 
electrons and holes both ionize appreciably (kzl), the gain of the device, i.e. 
the total charge generated in the circuit per photogenerated carrier pair, 
increases. However, this situation is undesirable for several reasons: it is 
time consuming and therefore reduces the device bandwidth, it is a random 
process and therefore increases the device noise, and it may cause avalanche 
breakdown. It is therefore generally desirable to fabricate APDs from 
materials that permit only one type of carrier (either electrons or holes) to 
ionize effectively. The ideal case of single-carrier multiplication is achieved 
when k is 0 or oo. 

In an optimally designed photodiode, the geometry of the APD should 
maximize photon absorption and the multiplication region should be thin to 
minimize the possibility of localized uncontrolled avalanches. 

Due to their speed and extreme sensitivity (they can easily count 
individual photons), avalanche photodiodes have been used extensively for 
commercial and military applications. Recently, APD devices have been 
used heavily in laser range finding or Light Detection And Ranging 
(LIDAR), which is a technique that allows measurements of distance, speed, 
rotation and even chemical composition and concentration. An aerial image 
from the LIDAR intensity data is shown in Fig. 20.8. 

Fig. 20.8. LIDAR light intensity data. [From http://www.sbgmaps.com/lidar.htm. Reprinted 
with permission from Spencer B. Gross, Inc.] 

20.3.3. Schottky barrier photodiodes 
Schottky barrier photodiodes have been studied extensively and have found 
various applications. These devices have some advantages over p-n junction 
photodiodes such as their simplicity in fabrication, absence of high- 
temperature diffusion processes, and their high speed of response. The 
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rectifying property of the metal-semiconductor junction, which is called a 
Schottky contact, has been reviewed in detail in sub-section 9.5.2. Briefly, 
the rectification arises from the presence of an electrostatic barrier between 
the metal and the semiconductor, which is due to the difference in work 
functions @,,, and QJ of the metal and semiconductor, respectively, as shown 
in Fig. 20.9 for an n-type and ap-type semiconductor. 

As also discussed in Chapter 9, the current transport across metal- 
semiconductor junctions is mainly due to the majority carriers, in contrast to 
p-n junctions where current transport is mainly due to minority carriers. It is 
now widely accepted that therrnionic emission is the main process of carrier 
transport across Schottky barriers, and the current density is given by 
Eq. (A.36) in Appendix A.lO. Knowing the current-voltage relationship, it is 
possible to calculate the RoA product, as it was done in sub-section 20.2.2: 

where A is the area of the Schottky junction. Using Eq. (A.36), we get: 

where Jsr is the therrnionic emission saturation current, kb is the 
Boltzmann constant, A* is the effective Richardson constant, and OB is the 
Schottky potential barrier height for electron injection and is defined as: 

on, - x Eq. ( 20.21 ) @, = --- 
4 

This quantity is illustrated in Fig. 20.9(a). 
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Fig. 20.Y. Equilibriunz energy band diagram of Schottky contacts: (a) metal-(n-type) 
senziconductor (@p DJ; (b) metal-(p-type) semiconductor (OrH< @J. A Schottky contact is 

obtained in each case because the nzajority carriers in the semiconductor experience a 
potential barrier which prevents their free movenzent across the metal-semiconductor 

junction. 

20.3.4. Metal-semiconductov-metal photodiodes 
A metal-semiconductor-metal (MSM) photodiode consists of two Schottky 
contacts on an undoped semiconductor layer. Unlike a p-n junction diode, it 
uses a planar structure. It can be designed such that the region between the 
metal fingers is almost completely depleted. When the semiconductor 
absorbs an incident photon, an electron-hole pair is created. The electron 
and the hole are spatially separated and accelerated under the influence of 
the applied electric field until they reach the metal contacts where they enter 
the biasing electrical circuit. When a hole exits the semiconductor on one 
side of the device, another hole is injected from the opposite contact in order 
to maintain the overall electrical charge neutrality in the semiconductor. An 
illustration of the energy band diagram for a MSM photodiode with an 
applied bias V is shown in Fig. 20.10. 

The frequency response and bandwidth of a MSM photodiode are 
determined primarily by the transit time of the photogenerated carriers and 
the charge-up time of the diode. The MSM photodiode exhibits gain, has a 
low dark current, a large bandwidth, and is amenable to simple and planar 
integration schemes. 
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Fig. 20.10. Energy band diagram of an MSMphotodiode under bias 

20.3.5. Type II superlattice photodetectors 
The active layers of type I1 superlattice photodetectors are based on the type 
I1 band alignment in semiconductor heterojunctions as discussed in sub- 
section 11.2.2. The basic physical properties behind such heterojunctions 
have already been discussed in sub-section 18.5.13 and have been illustrated 
in the case of semiconductor lasers. 

Fig. 20.11 shows a photoconductive InAsJGaSb type I1 superlattice 
detector and schematic diagram of the detection mechanisms inside the 
active region. Although the electrons and the holes are mostly confined in 
different layers, their wavefunctions can extend into the thin superlattice 
barriers. As a result, the overlap of the electron and hole wavefunctions is 
not strictly zero. The optical matrix element will have a high enough value 
to yield a considerable optical absorption only in the regions near the layer 
interfaces. Although this means a lower absorption than in type I quantum 
wells, the spatial separation of electrons and holes is advantageous in 
reducing the Auger recombination rate, which results in a longer lifetime of 
the photogenerated electron-hole pairs. This longer carrier lifetime, 
especially near room temperature, is the main advantage of this type of 
detector and has been experimentally demonstrated by Youngdale et al. 
[1994]. 
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Fig. 20. I I .  Example of an InAs/GaSb type IIplzotoconductive detector and the schen~atic 
diagram of the optical generation of electrons atzd holes in the active layer of the device. 

Using type I1 superlattices as the narrow bandgap, active layer of a p-i-n 
photodiode, a detectivity of better than 1013 c r n . ~ z " ~ . ~ - '  has been recently 
achieved at 77 K with material designed for 5.4 pm cutoff wavelength 
[Walther et al. 20051. Fig. 20.12 shows part of a focal plane array consisting 
of these devices. Other researchers at the Center for Quantum Devices have 
demonstrated good control of the cutoff wavelength of type I1 materials out 
to 32 pm [Wei et al. 20021. At a wavelength of 8 pm, although the 
detectivity of HgCdTe is more than an order of magnitude higher than the 
type I1 photodetector, the latter still benefits from an easier growth process 
and a higher uniformity than HgCdTe, which can lead to less expensive 
focal plane arrays with comparable noise equivalent temperature difference 
(NEAT) performance. 

Fig. 20.12. Scanning electron microscope image of type I1 focal plane array pixels with 
indiun~ bumps deposited on each pixel. 
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Currently, the only commercially available and fast room temperature 
photodetectors operating in the long wavelength infrared spectral region are 
based on HgCdTe and HgCdZnTe. In spite of their high detectivity, 
microbolometers have a time response which is at least three orders of 
magnitude slower than that of intrinsic detectors based on type I1 or 
HgCdTe. The new generation of HgCdZnTe detectors are now available 
with a special design to suppress the Auger recombination. Nevertheless, it 
has been shown that a type I1 superlattice with only 50 periods can have a 
higher detectivity at room temperature thanks to an lower Auger 
recombination rate (see Table 20.1 [Mohseni et al. 19981). 

Material Type of detector Wavelength Detectivity 
(W> ( c m . ~ z " . ~ - ' )  

HgCdZnTe Photovoltaic 10.6 1 x lo7 

HgCdTe Photoelectromagnetic 10.6 5x10~  

HgCdZnTe Photoconductive 10.6 6x lo6 

Microbolometer Thermal 8-14 5x10~  

Type I1 superlattice Photoconductive 11 1x10~ 

Table 20.1. Values of detectivity from typical infrared photon detectors at selected 
wavelengths at room temperature. 

20.3.6. Photoelectromagnetic detectors 
The origin of the photoelectromagnetic (PEM) effect is the diffusion of 
photogenerated carriers resulting from the carrier concentration gradient and 
their deflection in opposite directions due to a magnetic field, as shown in 
Fig. 20.13. If the sample ends are open circuited in the x-direction, a space 
charge builds up, giving rise to an electric field directed along the x-axis 
(open-circuit voltage). If the sample ends are short circuited in the x- 
direction, current flows through the circuit (short-circuit current). 

The measured voltage or current can be directly related to the incident 
radiation which generated the carriers. 
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Fig. 20.13. Schenzatic ofphotoelectvonzagnetic effect 

20.3.7. Quantum well intersubband photodetectors 
A quantum well intersubband photodetector or (QWIP) is a device whose 
operation is based on the absorption of photons through the intersubband 
transition of carriers which are confined in multiple quantum wells. The 
process is the reverse of that described in a quantum cascade laser in sub- 
section 18.5.1 1. 

QWIPs have a narrow absorption spectrum that can be tailored to match 
optical transitions in the 3-20 ym wavelength range by adjusting the 
quantum well width and barrier height or barrier layer composition. More 
importantly, it can be made using mature 111-V semiconductors based on 
gallium arsenide (GaAs) or indium phosphide (InP) substrates. 

The study of intersubband optical transitions in doped multiple quantum 
wells was motivated by the possibility of realizing high-speed infrared 
photodetectors. Both conduction band (n-type) and valence band (p-type) 
based quantum wells have been studied, although the larger hole effective 
mass results in poorer responsivity for the p-type devices. 

The schematic for designing QWIPs is shown in Fig. 20.14(a). The 
absorption of photons having energy equal to the intersubband separation 
leads to transition of carriers between these subbands. For example, for III- 
V quantum wells of width L=100 A, the intersubband energy separation is in 
the range of 100-200 meV. The quantum mechanics selection rules allow 
absorption of electromagnetic radiation when the incident light polarization 
is parallel to the growth direction, i.e. TM polarization. This causes 
difficulties in detecting a two-dimensional image, since there is no effective 
absorption of light directed perpendicular to quantum well plane. However, 
illumination geometries using 45" facets as well as the use of surface 
gratings can circumvent the problem. For photoconductive devices utilizing 
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intersubband absorption, the photogenerated carriers travel out of the 
quantum wells and contribute to the photocurrent. 

Fig. 20.14. Absorption of long-wavelength light in a quantutn well due to (a) intersubband 
transitions in a wide well and (b) transition from a quasi-bound state to the continuum in a 

narrow well. 

20.3.8. Quantum dot infrared photodetectors 
Although quantum well intersubband photodetectors have been applied 
extensively in commercial and military applications, they suffer from low 
operating temperatures and non-normal incidence light absorption. 
Researchers have been developing quantum-dot infrared photodetectors 
(QDIP) in order to overcome these disadvantages. In practice, several layers 
of 111-V quantum dots are grown on lattice-mismatched matrix spacers and 
intersubband photon absorption takes place within the dots themselves. Due 
to the three-dimensional confinement of carriers, QDIP devices offer several 
potential advantages including the absorption of normally incident light. 
Furthermore, the quantum dots greatly reduce the rate of electron-phonon 
relaxation transitions, which leads to a longer average lifetime of 
photoexcited carriers and better overall device responsivity. Finally, lower 
dark currents may eventually allow high temperature operation. 

One of the challenges of the QDIP architecture is in controlling the 
quantum dot size and shape. Most conventional fabrication techniques 
involve Stranski-Krastanow random growth in molecular beam epitaxy 
(MBE) or metalorganic chemical vapor deposition (MOCVD) and the dot 
geometry depends strongly on such parameters as growth temperature, V-I11 
ratio, growth rate, etc. To add another set of variables, researchers can adjust 
the doping of quantum dot and/or surrounding epitaxial layers in order to 
control the carrier population of the device, for example. 
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Recent efforts in this detector architecture have resulted in room 
temperature operation with photoresponse out to 17 pm with a specific 
detectivity of 1 . 5 ~  10' c m . ~ z " . ~ - '  and 1 V bias voltage at room temperature 
[Bhattacharya et a1 20051. Future work in this field will probably involve 
improving the geometrical control of the nanometer-scale quantum dots as 
well as the periodicity and density of the dots. 

20.4. Focal Plane Arrays 

Solid state imaging systems consist of several different elements including 
the detector, optics, interconnects, and readout and clock circuitry. One type 
of detector architecture is the focal plane array (FPA). An FPA is an array of 
photodetectors placed at the focal plane of the imaging system's optics, 
which enables it to capture a two dimensional image. There are many 
application areas in which focal plane arrays are useful. These imagers find 
many uses in broadcast television, commercial photo and video devices 
(camcorders, for instance), machine vision, military and scientific 
applications. Arrays used for astronomy can boast pixel (individual image 
elements) numbers as large as a gigapixel, or one billion individual sensing 
elements! 

Today, FPAs are available in monochromatic or multicolor systems, 
depending on the material type and wavelength range of interest. The most 
common types of imaging read-out architectures (essentially the manner in 
which the photosignal is handled within the device) include charge-coupled 
device (CCD) and complementary-metal-oxide-semiconductor (CMOS) 
arrays. One potential advantage to the CMOS design is the possibility of 
"per-pixel" signal processing, amplification and image correction. 

Although focal plane array imagers are very common in our lives with 
products such as digital still and video cameras, they are quite complex to 
fabricate. Depending on the array architecture, the process can include over 
150 individual fabrication steps. Contemporary visible imagers consist of 
silicon photodiodes integrated to an on-chip read-out integrated circuit 
(ROIC). When a detector substrate material different from the read-out 
circuit's silicon substrate is needed for different spectral regimes, the active 
sensing devices are often "hybridized" to the silicon-based read-out circuit. 
This hybridization process involves flip-chip indium bonding between the 
"top" surfaces of the ROIC and detector array. The indium bond must be 
uniform between each sensing pixel and its corresponding read-out element 
in order to insure high-quality imaging. After hybridization, a backside 
thinning process is usually performed to reduce the amount of substrate 
absorption. Some advanced FPA fabrication processes involve complete 
removal of the substrate material. 
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Fig. 20.15 shows two images taken using two different infrared FPAs. 
The left image was taken using a 256x256 hybridized infrared focal plane 
array with GaInAsIInP QWIP pixels operating at 8pm [Jiang et a1 20031. 
The right image was taken using a 256x256 hybridized FPA with 
InAsIGaSb type I1 superlattice pixels operating with a cutoff wavelength of 
8pm [kazeghi et a1 20051. Both arrays were operated at liquid nitrogen 
temperature. 

Fig. 20.15. Images from a: (a) GaInAs/InP Q WIP and (b) InAs/GaSb type II superlattice 
(right) focal plane array camera operating in the 8-12 jm wavelength regime. 

20.5. Summary 

In this Chapter, we hAve explored the topic of photon detectors. In 
particular, photoconductive and photovoltaic detector types were discussed 
in detail. Specific photodetector examples were also described, including p- 
i-n, avalanche, Schottky barrier, metal-semiconductor-metal, type I1 
superlattice, and photoelectromagnetic detectors, as well as quantum well 
and quantum dot photodetectors. Finally, the topic of focal plane arrays was 
investigated, including a brief overview of the complex fabrication process. 
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Problems 

Fundamentals of Solid State Engineering 

What are the fundamental differences between a thermal and a photon 
(quantum) detector? 

Assuming an interband absorption mechanism, what is the cutoff 
wavelength for a semiconductor with a bandgap of 0.2 eV? What is it if 
the bandgap is 0.02eV? 

Calculate the electron transit time and device gain for a photoconductor 
under these conditions: distance between contacts=50 pm, applied 
voltage=lO V, minority carrier lifetime=2x lo" s, p,, = 10000cm2 / Vs , 

and p, = 1000cm2 lVs . 

Describe briefly the spectral characteristics of the following detectors 
and explain the reasons for their particular spectral response shape. 
(a) InSb photovoltaic detector 
(b) Bolometer 
(c) Quantum well intersubband photodetector 

Consider a hypothetical HgCdTe photodiode with an active area of 
500 pmx500 pm, Ro=500 MQ, quantum efficiency=0.6 operating at 
80 K. Calculate the device specific detectivity at 8 pm wavelength. 

List a few advantages and disadvantages of photovoltaic and 
photoconductive detectors. 

Explain the possible advantages of a p-i-n photodiode over an abrupt pn 
design. 

Describe the quantum selection rule as it pertains to n-type QWIP 
devices. How do conventional QWIP devices overcome this limitation? 
Can you list some more novel solutions to avoid this specific selection 
rule? 

List the advantages and drawbacks of quantum well and quantum dot 
intersubband photodetectors. 
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10. Using knowledge gained from Chapter 16, describe the various 
processing steps that must be added to the conventional detector 
fabrication steps in order to generate a focal plane array. Assume pitch 
of 28 ym, InSb FPA with 640x320 pixels and Si ROIC. What are some 
of the complications added in the FPA hybridization process? 
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A.1. Physical constants 
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A.2. International System of units 

Base units 
Quantity Unit name 

Length meter 
Mass kilogram 
Time second 
Electric current ampere 
Temperature kelvin 
Amount of substance mole 
Luminous intensity candela 

Prefixes 
Factor Prefix Symbol 

yotta 
zetta 
exa 
peta 
tera 
gigs 
mega 
kilo 
hecto 
deka 

Unit symbol 

m 
kg 
S 

A 
K 
mol 
cd 

Factor Prefix Symbol 

deci 
centi 
milli 
micro 
nano 
pic0 
femto 
atto 
zepto 
yocto 
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Derived units 
Quantity Special name 

Angle radian 
Solid angle steradian 
Speed, velocity - 
Acceleration 
Angular velocity, frequency 
Angular acceleration - 
Frequency hertz 
Force newton 
Pressure, stress pascal 
Work, energy, heat joule 
Power watt 
Electric charge coulomb 
Electric potential volt 
Resistance ohm 
Conductance siemens 
Magnetic flux weber 
Inductance henry 
Capacitance farad 
Electric field strength - 
Magnetic induction tesla 
Electric displacement - 
Magnetic field strength - 
Celsius temperature degrees Celsius 
Luminous flux lumen 
Illuminance lux 
Radioactivity becquerel 

Unit Symbol Dimension 

rad 
sr 
m.s-' 
m . ~ - ~  
rads-' 

r a d . ~ - ~  
s-I 
kg.m.s-2 
~ . m - ~  
N.m, kg.m2.s-2 
J.s 
A s  
J.C-', W.A-' 
V.A-' 
A.V-I, S;Z-' 

v . s  
~b .A-' 
c.v- '  
V.m-', N.C-' 
~ b . m - ~ ,  N.A-'.rn-' 
~ . m - ~  
A.m" 
K 
cdsr 
lm.m-2 
s-I 

Catalytic activity katal kat mo1.s-I 
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A.3. Physical properties of elements in the 
periodic table 

The following figures summarize the general physical properties of most 
elements in the periodic table. These include their natural forms (Fig. A.l) 
with the structure in which they crystallize, their density of mass (Fig. A.2), 
boiling point (Fig. A.3), melting point (Fig. A.4), thermal conductivity 
(Fig. AS), molar volume (Fig. A.6), specific heat (Fig. A.7), atomic radius 
(Fig. A.8), oxidation states (Fig. A.9), ionic radius (Fig. A.10), 
electronegativity (Fig. A. 1 I), and electron affinity (Fig. A. 12). 
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Appendix 

Highest atomic shell occupied 
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Appendix 

A.4. Physical properties of important 
semiconductors 

Semiconductor 

Element C 
Si 
Ge 
Sn 

IV-IV a-Sic 
111-V BN 

GaN 
Gap 
BP 
AlSb 
GaAs 
InP 
GaSb 
In As 
InSb 

11-VI ZnS 
ZnO 
CdS 
CdSe 
CdTe 

IV-VI PbS 
PbTe 

Bandgap energy (eV) 
300 K OK 

Band 

indirect 
indirect 
indirect 
direct 

indirect 
indirect 
direct 

indirect 

indirect 
direct 
direct 
direct 
direct 
direct 
direct 
direct 
direct 
direct 
direct 

indirect 
indirect 
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Intrinsic carrier concentration 
Semiconductor at 300 K ( ~ m - ~ )  

1 . 4 5 ~ 1 0 ' ~  
GaAs 2 . 1 5 ~ 1 0 ~  



Appendix 

Semiconductor 

Element C 
Si 

IV-IV a-Sic 
111-V BN 

GaN 
Gap 
BP 
AlSb 
GaAs 

InP 
GaSb 

InAs 
InSb 

11-VI ZnS 
ZnO 
CdS 
CdSe 
CdTe 

IV-VI PbS 
PbTe 

Mobility at 300 K 
(cm2/Vs) 

electrons holes 

Effective masses 
(in units of mo) 

electrons holes 

me mh 
0.2 0.25 

0.98" 0.16" 
0.19~ 0 .49~ 
1.64" 0.04' 

0.082~ 0 .28~ 

a Longitudinal effective mass. Transverse effective mass. 
' Light-hole effective mass. d Heavy-hole effective mass. 



Appendix 

A.5. The Taylor expansion 

The Taylor expansion is a powerful mathematical method which yields a 
simple polynomial approximation for any mathematical function near a 
given point. 

Let us consider a function f which can be differentiated at least (n+ l )  
times at x=xo. The Taylor expansion is such that the value off at any point x 
can be determined from its value and that of its n consecutive derivatives at 
xo through: 

Eq. (A.l) 

... 

where R, is called the remainder and is equal to: 

Eq. (A.2) R, = f '"+" (5) (x - x0)"+' 
( n  + I)! 

for an appropriate value 6 such that 15 - x, I 5 Ix - x, 1 . 
As a result of this expansion, an approximate value of the function f near 

the point x=xo is obtained by neglecting the remainder R, in Eq. (A.1). In 
principle, the more terms one chooses to keep in the expansion, the more 
accurate result one will get. R, is used to evaluate the magnitude of the 
calculation error. It is often useful to carry the Taylor expansion near an 
extremum of the function f because some of its derivatives are then equal to 
zero and a simplified expression is obtained. 

A few examples of Taylor expansion for commonly used functions are 
given below: 

x 2  x3  x 
Eq. (A.3) ex = 1 + x +  -+-+...+-+... 

2! 3! n ! 
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x3 x5 x7 
sinx = X--+--.--+ -... 

Eq. (A.4) 3! 5! 7! 

There exist convergence ranges in evaluating the infinite sums in 
Eq. (A.3) to Eq. (A.6). This means that the Taylor expansion will no longer 
be valid when trying to evaluate the sums for a value of x outside the 
convergence range. For example: the convergence range for ex, sin(x) and 
cos(x) is (-oo,+oo) , whereas the convergence range for Ln(1-x) is (-ql] . 



Appendix 

A.6. Fourier series and the Fourier transform 

Fourier series 
A function f(t) is periodic with a period T when it satisfies f(t+T)=f(t) for 
any value oft .  If such a periodic function is also piecewise continuous, then 
it can be written as the sum of trigonometric functions such that: 

m 

Eq. (A.7) f (t) =%+ x ( a n  cos(nwt)+ b, sin(nwt)) 
2 n=1 

27T 
where we have denoted w = l_ ,  and: 

Eq. (A.8) 

Eq. (A.9) 

Eq. (A. 10) 
2 

b, = - 1 f (t) sin(nwt)dt 
T T  -- 

2 

Such a sum of trigonometric functions is called the Fourier series of f(t), 
and the coefficients a, and b, are called its Fourier coefficients. The 
usefulness of such a mathematical expansion lies in its physical 
interpretation. Indeed, one can see that a periodic function of time can be 
decomposed into individual sine-like and cosine-like components, each 
periodic with a frequency nw where n is an integer. The magnitude of each 
component is given by the Fourier coefficients a, and b,. One can therefore 
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obtain a "spectrum of frequencies" for the original function, which finds a 
number of applications in physics phenomena. 

For example, the Fourier expansion of the function shown in Fig. A.13, 
is: 

Eq. (A. 1 1) 
z " 1  

f ( t )  = - + x-[sinnwrcosnwt + (1 - cosnwr)sinnwt] 
T ,=, n x  

Fig. A. 13. Example ofperiodic function, used to illustrate the concept of Fourier series. 

Fourier transformation 
The Fourier transformation is a mathematical operation which consists of 
associating to a given function f a second function, called its Fourier 
transform F. The functions f and F do not operate on the same variables. 
The Fourier transform is similar to a Fourier series but can be applied to a 

m 

general function f(q a s  long as it is pulse like and f l  f (t)ldt < m. Its 
-m 

Fourier transform F is then defined by: 

1 " 
Eq. (A. 12) F(w) = - f (t)e-'*dl 

J2rr -, 
Note that the Fourier transform F operates on frequencies w, whereas 

the original function f operates on time t. The Fourier transform plays the 
same role as the Fourier coefficients in Eq. (A.7), except that the 
summations on frequencies are now continuous rather than discrete. The 
original function f can be expressed in terms of its Fourier transform F 
through: 



Eq. (A.13) 

For example, the Fourier transform of the function shown in Fig. A.14 
is: 

1 - e-iwT 

Eq. (A.14) F(w)  = 
iw& 

Fig. A. 14. Example of an arbitrarily chosen function used to illustrate the concept of Fourier 
transform. 
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A.7. The pseudopotential approach 

When we want to calculate the band structure of a solid from first principles 
and write down the exact Hamiltonian of the system, we are confronted with 
a very difficult problem because not only do we have the Coulomb potential 
of the nuclear charges, but we also have the electron-electron interaction of 
the other electrons in the system to deal with. The way to avoid it is to make 
some simplifications, which keep the essence of the problem and make the 
solution tractable. We use the insight that we have and argue that, surely, it 
is possible to assume that the strongly bound full shells around the atom are 
not participating in the banding of the solid and they can be separated out, 
i.e. excluded from the banding electrons. The valence electrons can be 
treated separately and do not see the full potential of the nucleus. We know 
already from Chapter 3 that the outer shell electrons see a screened potential 
because the core electrons screen out the full nuclear attraction. But this is 
not all, we do not want to just take into account the screening, which is a 
many body effect, but go further and not allow the valence states to be 
mixed in the core states at all. So there are two effects to be considered. One 
is the screening, which can be considered to give rise to an effective nuclear 
charge and can be treated using the self consistent "Hartree-Fock method". 
The other is projecting out the core eigenstates out of the solutions 
altogether. The latter is the pseudopotential method. In the pseudopotential 
method, one first decides which core states must be projected out. One does 
this by making the sought after Bloch wavefunctions orthogonal to these 
core states. Then one derives the effective potential for which these new 
Bloch states are the eigenfunctions solution of the Schrijdinger equation. 

This procedure then makes the envelope wavefunction of the Bloch 
wave ui in: 

a much more smooth function than it would be if it were subject to the 
full or even screened Coulomb potential of the lattice ions. How do we find 
an approximation for this effective potential? In a naYve way we have done 
this already in the Kronig-Penney model in Chapter 4. The Kronig-Penney 
model is indeed a truncated pseudopotential approximation to the true 
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potential, but it is constructed in an ad-hoc manner, without a well defined 
prescription. The pseudopotentials used to calculate the band structure of 
solids are however derived using well defined prescriptions. 

One of the assumptions is that the basis states of all the electrons in the 
solid are constituted by core electrons wavefunctions $j and valence 

electron wavefunctions z k ,  and that these can be made orthogonal to each 

other. One then constructs the eigenstates of interest, namely for the higher 
valence energy level states. These are built to avoid the core regions 
occupied by the core electrons. An example is as follows. Assuming 

b nk - = ~ e i i ~ ' b n ( ?  -?) is a core function solution of the Schrodinger 
S 

equation with energy En, we construct a more extended valence state which 
is made orthogonal to the core states and is of the form 

Eq. (A.16) Yi = ai-iXi-, 
g 

Eq. (A.17) xi = eik' - x a  .b  - 
J j k  

.i 

The aj are selected to make the valence wavefunctions orthogonal to the 
core states. This new wavefunction has the core states projected out of it, 
and is forced to also satisfy the Schrodinger equation. The projected states 
however introduce a new term in the SE which plays the role of a potential. 
The new term due to the core states, when combined with the old, give us 
now an effective potential, which repels the valence electrons out of the core 
region, making the effective potential much more smooth than the original 
one. The pseudopotential method is a way of projecting out the core 
functions, out of what would normally be the total wavefunction, so that the 
more loosely bound valence functions avoid the region, which is normally 
filled by the core states. They do not see the strong Coulomb field anymore 
because they are forced to adopt a higher orbital or what is in effect a more 
loosely bound character near the core. 

The two methods, Hartree-Fock self consistent field or "HFT" method, 
which takes care of the potential of the other electrons and the Pauli 
principle, and the pseudopotential method, which forces the higher levels to 
avoid being core like, can be in principle be combined to produce an 
accurate band structure calculation. The HFT method assumes that the 
Coulomb potential of the other electrons can be treated as an average 
potential, which can be evaluated self consistently. It also assumes that the 
many particle wavefunctions are Slater determinants of Bloch functions so 
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that they automatically satisfy the Pauli principle. The details of the 
"Pseudopotential and HFT" are beyond the scope of this book and the reader 
is referred to the specialized works in the books by Ziman [1998], Callaway 
[I9641 and Harrison [1966]. 

Further reading 

Callaway, J., Energy Band Theory, Academic Press, New York, 1964. 
Chuang, S.L., Physics of Optoelectronic Devices, John Wiley & Sons, New York, 

1995. 
Harrison, W.A., Pseudopotentials in the Theory of Metals, W.A. Benjamin, New 

York, 1966. 
Ziman, J.M., Principles of the Theory of Solids, Cambridge University Press, 

Cambridge, 1998. 
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A.8. The Kane effective mass method 

In the Chapter 3 on energy band structures, we made the observation (and 
indeed used this later also throughout the book) that the band dispersion in 

most semiconductors near l= 6 could be approximated as a parabola in k 
but with an effective mass which is determined by rigorous band structure 
calculation. One finds in practice that the scheme works very well, and that 
true effective masses can be very different from the free electron masses. 
From the "exact results" shown in Chapter 4, one cannot easily understand 
why the effective mass behaves in the way it does, and one cannot see how 
it would correlate with the other features of the material such as its bandgap 
for example. Also it would be nice to have a scheme, which could predict 
the effective mass, which was versatile, and which could be applied to 
confined, and multilayer structures as well. Some years ago Kane 
discovered that it was possible with rather simple mathematical methods to 
shed light on this question. He worked out a scheme with which it is 
possible to obtain a good approximation of the effective mass near the 
l = 6 points in semiconductors, and a correlation between the effective 
mass and the bandgap. 

Kane's method is a brilliant example on how one "piece of information", 
normally obtained and obtainable by experiment, can be used to derive 
another piece of information using the logical structure of the theory. The 
Kane argument goes as follows. 

Consider the full Hamiltonian and Schrodinger equation of the electron 
in the periodic potential V(T)  of the lattice. Now assume that the 
wavefunction is a Bloch wave: 

with energy E,, (k) .We know that this must be true, so we substitute it 

in the Schrodinger equation: 

Eq. (A. 19) [L+ V(T)]Yni ( r ' )  = E,-Yni ( T )  
2% 
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Then, we differentiate, collect the terms and find: 

P 2  A - A 
Eq. (A.20) [- + - k .5 + V (7)]uni (7) = [Eni - - k  ]uni (7) 

2mo mo 2mo 

This is now an equation for the unknown modulating part of the 
wavefunction uni (7) . The known part has been incorporated and has given 

an energy shift (second term in the right-hand side of Eq. (A.20)) and a new 
term in the Hamiltonian (second term in the left-hand side of equation 
Eq. (A.20)). We can rewrite Eq. (A.20) as: 

A - A 
Eq. (A.21) [ H o  + - k.@]uni (7) = [Eni - - k 2  ]uni (7) 

mo 2mo 

and taking the limit i = 6 we have the eigenvalue equation: 

for the = 6 envelope function. So, now, one can ask what is the gain 
in all this, since we are back at the usual Schrodinger equation for the band. 
There are two observations to be made: 

The wavefunctions u, (7) only have band indices n. 

The number of basis eigenstates is equal to the number of energy 
bands in the semiconductors. In particular there is a valence band 
function and a conduction band function. The energy difference 
between each band is finite. We could use these functions, even 
though we do not know them, as basis functions and expand the i 
dependent term of the Hamiltonian (Eq. (A.20)) as a perturbation 
near i = 6 .  In this way we derive the additional i -dependence of 

the energy and the Z -dependence of the core wavefunction uni (7) .  
In this way, we also automatically get an expression for the effective 
mass in terms of the matrix elements of these basis functions and 
the energy difference. Thus applying second order perturbation 
theory (see Chapter 11) to the -dependent term in Eq. (A.20), we 
have for the energy and wavefunction: 
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Eq. (A.23) 

- 
A 5 ,  ]Unq0 ( 7 )  Eq. (A.24) u,- (7 )  = u,, (7 )  + x[- 

n q t n  mo En (0)  - En# (0 )  

where jj,, '= Ju,, (7)@,., (7)d37 and u,, (?) are the eigenfunctions at 
... - 
k = O .  

The second term in the right-hand side of Eq. (A.24) comes from the 
energy shift term in Eq. (A.23), and the two others are deduced from the 
perturbation theory. 

Remember we need to multiply this function uni(7) by 8.' to get the 

real wavefunction. Now we see that progress has been made. We notice that - 
jjn,a ~ u , , ~ u , , a [ u ~ , ] ~ ~  = 0 by symmetry. We deduce from Eq. (A.23) 

that the effective mass near kt = 6 is given by (see section 4.2.6): 

The inverse of the effective mass is a sum of the free electron mass and 

a term, which depends on the momentum matrix elements of the kt = 6 
envelope. But it also depends on the energy difference between the bands. 
To simplify the problem, we now consider just two bands: the conduction 
and valence bands. Then to a good approximation, we see that the inverse 
effective mass scales as the inverse of the energy gap of the semiconductor. 

In other words, we have the result that semiconductors with smaller 
bandgaps should have the lower effective mass. If this statement turns out to 
be generally true, then it helps to establish an important principle and 
correlation between bandgap and effective mass. At this stage the most 
important unknown is the momentum matrix element. The next step is 
therefore to establish empirically that the momentum matrix elements are 
not strongly dependent on the bandgap and to include the other bands when 
necessary. Here one also uses the fact that the exact wavefunctions are s-like 
near the bottom of the conduction band and p-like near the top of the 
valence band. This interplay between theory and experiment gives us useful 
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and simple empirical rules and numbers for the above matrix element in 

2mo p2 Eq. (A.25). For example one finds that the Kane parameter E, = - 
A 

A 
where P = -p:,, , is roughly 20-25 eV for most semiconductors of 

" n o  
interest. Note that we have used this parameter to calculate the optical 

absorption in Chapter 10. The Kane method of expanding around the = 6 
envelope states can be extended to treat also the spin-orbit interaction. The 
spin orbit coupling is of the form: 

where 6 is the electron spin operator, and V(?)  is the total potential 
experienced by the electrons. The spin-orbit interaction is a small but non- 
negligible effect in semiconductors. It is ideally treated using the Kane 
model because the energy shifts up to second order in perturbation theory, 
involve the same type of matrix elements of the momentum as before. 
Indeed one can say that the Kane method provides a very natural way to 
treat the spin-orbit interaction. The method can be extended to also treat 
confined systems. The results can at the end be expressed as functions of E, 
and P. The first of which is known and the second of which can be 
estimated to good accuracy. 

Kane theory tells us that the effective mass is related to the structure of 
the envelope momentum matrix elements. These, as it happens, do not 
change all that much from one system to another. The bandgap which also 
enters the formula however, changes quite a lot. If therefore for some 
reason, such as strain or confinement, the bandgap changes, even locally, 
then we can expect the effective mass also to change locally. The changes in 
P or wavefunction shapes are of lower order than the bandgap changes, and 
this is why the Kane method is so useful. The Kane method is therefore a 
very practical way of handling strain effects in semiconductor interfaces. 
This happens when there is lattice mismatch forcing the top grown lattice to 
adopt the lattice parameters of the substrate. The mismatch can force the top 
layer bonds to be stretched or compressed. Compression or dilation affects 
both Kane parameters E, and P locally. But the gap is more sensitive than P 
to first order. In quantum dots strain, strain can vary locally and give rise to 
local effective mass. The reader is referred to the book by Chuang [I9951 
for a detailed treatment of the Kane model and its applications. 



Appendix 85 1 

Further reading 

Chuang, S.L., Physics of Optoelectronic Devices, John Wiley & Sons, New York, 
1995. 



Appendix 

A.9. The Monte-Carlo method 

Scattering in a crystal 

Electrons in a crystal with a given band structure can be considered as a 
collection of free particles. In the six-dimensional phase space of - 
momentum k and space T , we can represent each electron by a point of 

coordinates (T, k ). As we have seen in sub-section 4.2.6, the motion of the 
electron is described by: 

d i  
Eq. (A.27) A- = q(,!? + < x 2) 

dt 

where i is the wavevector of the electron, q the electric charge, ,!? the 

electric field, < the velocity and 2 the magnetic field. In this appendix, we 
are going to study only the action of an electric field on the electron, so we 

put 2 = 6 .  Under these conditions, the electrons start their journey by 
following a ballistic trajectory (they are freely accelerated). However, this 
motion is interrupted by collisions with atoms, impurities, etc.. ., which we 
will consider as scattering events. As a result, the movement of the particles 
is far more complex, and it is useful to describe the motion of the electrons 

by a distribution function f (i, 7, t )  , which is the average occupancy of a 
point in the above phase space. 

The time evolution of this function is described by the Boltzmann 
equation: 
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where, together with Eq. (A.27), the LHS describes all the ways the 
function evolves in phase space when subject to an electric and magnetic 
field. 

If [%I dt describes the variation of the distribution during dt due to 

the collisions, the global variation can be written: 

to first order: 

Eq. (A.30) 

af - 
f (? ,k , t )+-d t+a ,  f .d?+a ,  f . d i  = f (? ,k , t )+  

at 

af - dr' - 
Eq. (A.31) -+V, f --+V,- f 

at  dt  dt  

- d i  - - 
Using F =A-=q(E+CxB) ,weget :  

dt  

This equation states that the changes of the distribution function with 
time (represented by the first term on the LHS of this equation) is 
determined by the flow of electrons in real space (the second term in the 

LHS of the equation), by the flow of electrons in -space (the last term in 
the LHS of the equation) and the collisions (RHS of the equation). The RHS 
describes the effects of the many different types of scattering mechanisms, 
which are active, including optical phonon scattering, acoustic scattering, 
impurity scattering ... etc, so that it is often very difficult to solve for - 
f (k,?,t) analytically. However, given the scattering rates, a numerical 
solution or simulation of this equation, which is called the Monte-Carlo 
simulation, is always possible. This so called Monte-Carlo method is a 
powerful tool and is becoming more and more popular. 
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Monte-Carlo simulation 

The idea of this method, introduced in the 1960's (see Shur [1990]), is to 

simulate the motion of the particle in k -space, while keeping track of it in 
real space. In this model, we consider that the motion of the electron is well 
described by Eq. (A.27) between two scattering events. But this free flight is 
interrupted by scattering processes that occur with a rate ,Ii (i stands for the 
scattering process that we are considering). These processes are 
instantaneous events and change only the wavevector of the electron. They 
can be visualized as the particle disappearing and reappearing 
instantaneously at a different point of phase space (see Fig. A.15). If we 
observe a single electron for a sufficiently long time, the distribution of the - 
times that the electron spends in the vicinity of different points in k -space 

will reproduce the shape of f (k, 7, t )  

Fig. A. 15. On the left, sketch of the scattering of an electron by an impurity. On the right, 
illustration of the disappearance and the appearance of the electron in the phase space. 

The Monte-Carlo simulation can be divided into three different parts. 
First, we generate randomly with a computer the time remaining before the 
next scattering event. Then, between the two scattering events, we determine 
the motion of the electron using Eq. (A.27). Finally, we generate randomly 
the new direction of the wavevector. 

For the purpose of this simulation, we introduce a scattering rate 
n 

= A i ( ) +  where we have introduced an artificial 
i=l 

scattering mechanism, with a rate ,Io, so that T is a constant (finite). 
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This self-scattering process interrupts the motion but, does not 
change the momentum in any way. It can be described by the 

probability W, ( i ,  h ' )  = 1. (h )6 ( i  - i ' )  . This rate is simply a 

mathematical tool used to make the global rate of the scattering 
events constant. In order not to change the rate too much, we choose 
lo as small as possible. Thus, the probability of a scattering event 

between t and t+dt can be described by: P(t)dt = e-r'dt. We use 
this distribution of probabilities to generate random times t, between 

1 
one collision and the following one (t, = --ln(1- r ) ,  with r a r 
random number between 0 and 1, follows this distribution). 
During these times t,, the motion of the electron is well described by 

- - 4E 
equation Eq. (A.27) with 2 = 6 so that: k(t) = k, + - t  where 

ti - 
ko is the wavevector just after the previous collision. And 

' 1  
?(t) - F0 = 1 Cg(tf)dt'= S - v i ~ d t f ,  where Yo is the position of 

0 
' 0  

ti 

the particle in real space after the previous collision. 
The next step is to generate randomly the wavevector after each 
scattering event. But, before that, we need to determine which 
mechanism is responsible for the scattering. In order to find out 
which law we have to apply to generate the new wavevector, we 
assume that the probability of occurrence of one given process is 
proportional to its rate. To choose a mechanism, we generate 
randomly a number A, distributed with equal probability between 0 

m 

and i. and we test the inequality A, (h) > A . The first value of m 
i=O 

satisfying this inequality is the scattering process we are going to 
use. We use the distribution function of probabilities of this 
mechanism to generate randomly the wavevector after the scattering 
event. 

We repeat these three steps as long as we need to get a good 

approximation of f (k, ?, t) . A criterion to stop our stimulation is to repeat 
the scenario until the differences in the drift velocity for example, converge 
to a small enough number. 

Thanks to this procedure, we are able to simulate the movement of the 
electron in the crystal. Then, we represent in a histogram the time that the 
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electron spent in each cell of the phase space. It has been demonstrated that 

this histogram is proportional to the distribution function f (i, 7, t )  when t 
tends to infinity. 

r 

Fig. A. 16. Measured and calculated drift velocity. [Reprinted from Solid State Electronics 
Vol. 23, Pozhela, J. and Reklaitis, A,, "Electron transport properties in GaAs at high electric 

fields, " p. 93 1, Copyright 1980, with permission from Elsevier.] 

Applications 

The Monte-Carlo simulation is a useful tool to calculate quantities like the 
time spent in the valleys of a semiconductor or the diffusion coefficients of a 
material. It shows a good agreement with experiment as you can see in 
Fig. A.16. It can also be used to investigate the electron transport in small 
semiconductor devices. But this method only allows us to study a relatively 
small number of free electrons in the semiconductor: typically one million 
electrons. The idea is that, for example, 1 million is enough to reproduce the 
behavior of all the particles. An example of a real space trajectory is shown 
in Fig. A.17. 
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Fig. A .  17. Simulation of the motion of an electron under an electric field E in the x-direction 
(10 collisions are simulated). The motion of the electron starts at the origin and evolves 

randomly. This figure represents the trajectory of the electron in real space. 

References 

Pozhela, J. and Reklaitis, A., "Electron transport properties in GaAs at high electric 
fields," Solid States Electronics 23, pp.927-933, 1980. 

Further reading 

Shur, M., Physics of Semiconductor Devices, Prentice-Hall, Englewoods Cliff, NJ, 
1990. 
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A.10. The thermionic emission 

The thermionic emission theory is a semi-classical approach developed by 
Bethe [1942], which accurately describes the transport of electrons through 
a semiconductor-metal junction. The parameters taken into account are the 
temperature T, the energy barrier height qaB and the bias voltage V between 
the far-ends of the semiconductor and the metal. These quantities are 
illustrated in Fig. A. 18. 

Vacuum level "" .......f... "" .......... 
f .......... Vacuum level ..'? 

1 

Metal 
n-type 

Metal 
n-type 

Semiconductor Sernico~iductor 

(a) (b) 

Fig. A.18. Energy band diagram of a Schottky metal-(n-type) semiconductorjunction.. (a) at 
equilibriunz and (b) under forward bias (V>O), showing the transport of electrons over the 

potential barrier as the main transport process under forward bias. 

The theory is based on the following three assumptions: (i) the energy 
barrier height qQn at the interface is much higher than kbT, (ii) the junction 
plane is at thermal equilibrium, (iii) this equilibrium is not affected by the 
presence of an electrical current. By assuming these, the thermionic 
emission current only depends on the energy barrier height and not its 
spatial profile. Furthermore, the total current is therefore the sum of the 
current from the semiconductor into the metal, denoted J,,, , and that of 

the metal into the semiconductor, denoted J,,, 

To calculate the first current, J,,,,, , the theory assumes that the energy 

of the electrons in the conduction band is purely kinetic, and that their 
velocity is distributed isotropically. The current density from the 
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semiconductor into the metal can be calculated by summing the current 
contribution from all the electrons that have an energy higher than the 
barrier qmB and that have a velocity component from the semiconductor 
toward the metal. This results in the following expression: 

Eq. (A.33) 

or: 

Eq. (A.34) 

where kb is the Boltzmann constant, V is the bias voltage, mB is the 
barrier height, T is the temperature in degrees Kelvin, h is Plank's constant 
and m* is the electron effective mass in the direction perpendicular to the 

* 4nqm*k: 
junction plane, and A = is called the effective Richardson 

h3 
constant for thermionic emission. This quantity can be related to the 
Richardson constant for free electrons, A=120 A . c ~ - ~ . K - ~ ,  as discussed 
below. 

For n-type semiconductors with an isotropic electron effective mass m * 
A* m* 

in the minimum of the conduction band, we have - = -, where mo is 

the electron rest mass. 
For n-type semiconductors with a multiple-valley conduction band, the 

effective Richardson constant A* associated with each local energy 
I 

A* (12 * * 2 * * 2 * *): 
xmymz+lymzmx+lzmxm,  minimum is given by - = , where I,, I, 

A m 0 

and I, are the direction cosines corresponding to this energy minimum in the 
First Brillouin zone. 

In the case of a p-type semiconductor, we need to consider the heavy- 
hole and the light-hole bands in the valence band, both of which have their 
maximum at the center of the Brillouin zone. The effective Richardson 
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A* ( m i  + m q  
constant is then given by the following expression - = 

A 
3 

m 
0 

* 
where mrh and m ,  are the heavy-hole and light-hole effective masses, 

A* 
respectively. A few examples of values for - are given in Table A. 1. 

A 

Semiconductor Si Ge GaAs 

0.068 (low field) 
n-type <loo> 2.1 1.19 

1.2 (high field) 

A* 
Table A.I. Examples of values for - in a few semiconductors. [Sze 19811 

A 

The second current contribution to the thermionic emission current is the 
current flowing from the metal into the semiconductor, J,,, . As the barrier 

height for the transport of electrons in this direction is independent of the 
applied bias voltage V (Fig. A. 18(b)), J,,, is also independent of the bias 

voltage. J,,, is therefore equal to the opposite of J,,, when V=O, 
because no net current exists at equilibrium. Using Eq. (A.34), we obtain: 

* -- @I3 

Eq. (A.35) J,,, = -A T 2  e k$ 

The total current density is therefore: 
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This expression shows that the thermionic emission current resembles 
the diode equation obtained in Eq. ( 9.52 ). The difference lies in the 
saturation current density which is now given by: 

'1°8 -- 
Eq. (A.37) J,, = A*T' , k , , ~  

References 

Bethe, H.A., "Theory of the boundary layer of crystal rectifiers," MIT Radiation 
Laboratory Report 43-12, 1942. 

Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 
1981. 



Appendix 

A.l l .  Physical properties and safety information 
of metalorganics 

Table A.2 and Table A.3 summarize some of the basic thermodynamic 
properties of metalorganic sources commonly used in MOCVD, including 
their chemical formula and abbreviation, boiling point, melting point, and 
the expression of their vapor pressure as a function of temperature. 

Additional information on their other important physical properties is 
also provided for a number of important metalorganic sources, including 
diethylzinc (Table A.4), trimethylindium (Table AS), triethylindium 
(Table A.6), trimethylgallium (Table A.7), and triethylgallium (Table A.8). 

In the rest of this Appendix, general information about the safety of 
metalorganic compounds will be given. This will be helpful in developing 
safety and health procedures during their handling. 

Chemical reactivity 

Metalorganics catch fire if exposed to air, react violently with water and any 
compound containing active hydrogen, and may react vigorously with 
compounds containing oxygen or organic halide. 

Stability 

Metalorganics are stable when stored under a dry, inert atmosphere and 
away from heat. 

Fire hazard 

Metalorganics are spontaneously flammable in air and the products of 
combustion may be toxic. Metalorganics are pyrophoric by the paper char 
test used to gauge pyrophoricity for transportation classification purposes 
[Mudry 19751. 
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Firefighting technique 

Protect against fire by strict adherence to safe operating procedures and 
proper equipment design. In case of fire, immediate action should be taken 
to confine it. All lines and equipment which could contribute to the fire 
should be shut off. As in any fire, prevent human exposure to fire, smoke or 
products of combustion. Evacuate non-essential personnel from the fire area. 

The most effective fire extinguishing agent is dry chemical powder 
pressurized with nitrogen. Sand, vermiculite or carbon dioxide may be used. 
CAUTION: re-ignition may occur. DO NOT USE WATER, FOAM, 
CARBON TETRACHLORIDE OR CHLOROBROMOMETHANE 
extinguishing agents, as these materials react violently and/or liberate toxic 
fumes on contact with metalorganics. 

When there is a potential for exposure to smoke, fumes or products of 
combustion, firefighters should wear full-face positive-pressure self- 
contained breathing apparatus or a positive-pressure supplied-air respirator 
with escape pack and impervious clothing including gloves, hoods, 
aluminized suits and rubber boots. 

Human health 

Metalorganics cause severe burns. Do not get in eyes, on skin or clothing. 
Ingestion and inhalation. Because of the highly reactive nature of 

metalorganics with air and moisture, ingestion is unlikely. 
Skin and eye contact. Metalorganics react immediately with moisture on 

the skin or in the eye to produce severe thermal and chemical burns. 

First aid 

If contact with metalorganics occurs, immediately initiate the 
recommended procedures below. Simultaneously contact a poison center, a 
physician, or the nearest hospital. Inform the person contacted of the type 
and extent of exposure, describe the victim's symptoms, and follow the 
advice given. 

Ingestion. Should metalorganics be swallowed, immediately give several 
glasses of water but do not induce vomiting. If vomiting does occur, give 
fluids again. Have a physician determine if condition of patient will permit 
induction of vomiting or evacuation of stomach. Do not give anything by 
mouth to an unconscious or convulsing person. 
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Skin contact. Under a safety shower, immediately flush all affected areas 
with large amounts of running water for at least 15 minutes. Remove 
contaminated clothing and shoes. Do not attempt to neutralize with chemical 
agents. Get medical attention immediately. Wash clothing before reuse. 

Eye contact. Immediately flush the eyes with large quantities of running 
water for a minimum of 15 minutes. Hold the eyelids apart during the 
flushing to ensure rinsing of the entire surface of the eyes and lids with 
water. Do not attempt to neutralize with chemical agents. Obtain medical 
attention as soon as possible. Oils or ointments should not be used at this 
time. Continue the flushing for an additional 15 minutes if a physician is not 
immediately available. 

Inhalation. Exposure to combustion products of this material may cause 
respiratory irritation or difficulty with breathing. If inhaled, remove to fresh 
air. If not breathing, clear the victim's airway and start mouth-to-mouth 
artificial respiration which may be supplemented by the use of a bag-mask 
respirator or manually triggered oxygen supply capable of delivering one 
liter per second or more. If the victim is breathing, oxygen may be delivered 
from a demand-type or continuous-flow inhaler, preferably with a 
physician's advice. Get medical attention immediately. 

Industrial hygiene 

Ingestion. As a matter of good industrial hygiene practice, food should be 
kept in a separate area away from the storageluse location. Smoking should 
be avoided in storageluse locations. Before eating, hands and face should be 
washed. 

Skin contact. Skin contact must be prevented through the use of fire- 
retardant protective clothing during sampling or when disconnecting lines or 
opening connections. Recommended protection includes a full-face shield, 
impervious gloves, aluminized polyamide coat, hood and rubber boots. 
Safety showers -with quick-opening valves which that stay open- should be 
readily available in all areas where the material is handled or stored. Water 
should be supplied through insulated and heat-traced lines to prevent freeze- 
ups in cold weather. 

Eye contact. Eye contact with liquid or aerosol must be prevented 
through the use of a full-face shield selected with regard for use-condition 
exposure potential. Eyewash fountains, or other means of washing the eyes 
with a gentle flow of tap water, should be readily available in all areas 
where this material is handled or stored. Water should be supplied through 
insulated and heat-traced lines to prevent freeze-ups in cold weather. 

Inhalation. Metalorganics should be used in a tightly closed system. Use 
in an open (e.g. outdoor) or well ventilated area to minimize exposure to the 
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products of combustion if a leak should occur. In the event of a leak, 
inhalation of fumes or reaction products must be prevented through the use 
of an approved organic vapor respirator with dust, mist and fume filter. 
Where exposure potential necessitates a higher level of protection, use a 
positive-pressure, supplied-air respirator. 

Spill handling 

Make sure all personnel involved in spill handling follow proper firefighting 
techniques and good industrial hygiene practices. Any person entering an 
area with either a significant spill or an unknown concentration of fumes or 
combustion products should wear a positive-pressure, supplied-air respirator 
with escape pack. Block off the source of spill, extinguish fire with 
extinguishing agent. Re-ignition may occur. If the fire cannot be controlled 
with the extinguishing agent, keep a safe distance, protect adjacent property 
and allow product to burn until consumed. 

Corrosivity to materials of construction 

This material is not corrosive to steel, aluminum, brass, nickel or other 
common metals when blanketed with a dry inert gas. Some plastics and 
elastomers may be attacked. 

Storage requirements 

Containers should be stored in a cool, dry, well ventilated area. Store away 
from flammable materials and sources of heat and flame. Exercise due 
caution to prevent damage to or leakage from the container 
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Appendix 

Acronym 

Formula 

Formula weight 

Metallic purity 

Appearance 

Density 

Melting point 

Vapor pressure 

Behavior towards organic solvents 

Stability in air 

Stability in water 

Storage stability 

DEZn 

99.9999 wt% (min) zinc 

Clear, colorless liquid 

3.6 mmHg at 0 OC 
16 mmHg at 25 OC 
760 mmHg at 117.6 "C 

Completely miscible, without 
reaction, with aromatic and 
saturated aliphatic and alicyclic 
hydrocarbons. Forms relatively 
unstable complexes with simple 
ethers, thioethers, phosphines and 
arsines, but more stable complexes 
with tertiary amines and cyclic 
ethers. 

Ignites on exposure (pyrophoric). 

Reacts violently, evolving gaseous 
hydrocarbons, carbon dioxide and 
water. 

Stable indefinitely at ambient 
temperatures when stored in an 
inert atmosphere. 

Table A.4. Chemical properties of diethylzinc. [Razeghi 19891 
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Acronym 

Formula 

Formula weight 

Metallic purity 

Appearance 

Density 

Melting point 

Boiling point 

Vapor pressure 

Stability in air 

Solubility 

Storage stability 

TMIn 

(CH3)3In 

159.85 

99.999 wt% (min) indium 

White, crystalline solid 

1 S86 g.ml-' at 19 "C 

89 "C 

135.8 "C at 760 rnmHg 
67 "C at 12 mmHg 

15 mmHg at 41.7 "C 

Pyrophoric, ignites spontaneously 
in air. 

Completely miscible with most 
common solvents. 

Stable indefinitely when stored in 
an inert atmosphere. 

- -  

Table A.5.  Chemical properties of trimethylindium. [Razeghi 19891 



Acronym 

Formula 

Formula weight 

Metallic purity 

Appearance 

Density 

Melting point 

Vapor pressure 

Behavior towards organic solvents 

Stability in air 

Stability in water 

Storage stability 

99.9999 wt% (min) indium 

Clear, colorless liquid 

1.18 mmHg at 40 OC 
4.05 mmHg at 60 OC 
12.0 mmHg at 80 OC 

Completely miscible, without 
reaction, with aromatic and 
saturated aliphatic and alicyclic 
hydrocarbons. Forms complexes 
with ethers, thioethers, tertiary 
amines, phosphines, arsines and 
other Lewis bases. 

Ignites on exposure (pyrophoric). 

Partially hydrolyzed; loses one 
ethyl group with cold water. 

Stable indefinitely at ambient 
temperatures when stored in an 
inert atmosphere. 

Table A.6. Chemical properties of triethylindium. [Razeghi 19891 
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Acronym 

Formula 

Formula weight 

Metallic purity 

Appearance 

Density 

Melting point 

Vapor pressure 

Behavior towards organic solvents 

Stability in air 

Stability in water 

Storage stability 

TMGa 

99.9999 wt% (min) gallium 

Clear, colorless liquid 

Completely miscible, without 
reaction, with aromatic and 
saturated aliphatic and alicyclic 
hydrocarbons. Forms complexes 
with ethers, thioethers, tertiary 
amines, tertiary phosphines, 
tertiary arsines, and other Lewis 
bases. 

Ignites on exposure (pyrophoric). 

Reacts violently, forming methane 
and Me2GaOH or [(Me2Ga)20],. 

Stable indefinitely at ambient 
temperatures when stored in an 
inert atmosphere. 

Table A. 7. Chemical properties of trimethylgallium. [Razeghi 19891 
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Acronym 

Formula 

Formula weight 

Metallic purity 

Appearance 

Density 

Melting point 

Vapor pressure 

Behavior towards organic solvents 

Stability in air 

Stability in water 

Storage stability 

TEGa 

99.9999 wt% (min) gallium 

Clear, colorless liquid 

Completely miscible, without 
reaction, with aromatic and 
saturated aliphatic and alicyclic 
hydrocarbons. Forms complexes 
with ethers, thioethers, tertiary 
amines, tertiary phosphines, 
tertiary arsines and other Lewis 
bases. 

Ignites on exposure (pyrophoric). 

Reacts vigorously, forming ethane 
and Et2GaOH or [(Et,Ga),O],. 

Stable indefinitely at room 
temperatures in an inert 
atmosphere. 

Table A.8. Chemical properties of triethylgallium. [Razeghi 19891 
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