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Foreword

Within one academic lifetime, the electric drive has progressed from the three-
machine DC drive called the Ward-Leonard system to today’s sophisticated AC
drives utilizing PWM inverter power electronics and field orientation or direct
torque control. Roughly around the same period, machine theory progressed from
the classical “one machine at a time” approach to the generalized or unified
approach emphasizing similarities between machine types. This unified theory also
utilized much more sophisticated mathematical tools to obtain models applicable
to transients as well as steady state. This enabled theoretical modeling a host of
important machine problems, but almost always required computer solutions as
opposed to more general analytic solutions. This often left one with a feeling of
detachment from the physical reality of inrush currents, the whine of spinning rotors,
and the smell of over-warm electrical insulation.

Partway through my academic lifetime, I was introduced to the next phase of
unified theory; the use of complex notation to model the effective spatial orientation
of quantities within a machine. This concept, often called space vector theory,
provides a much clearer mathematical picture of what is happening in a machine,
but at the expense of another level of abstraction in the model. However, the insights
provided to one initiated in the method are so significant that today essentially all
work in drive control is presented in this format. And therein lies a problem. To the
uninitiated these presentations appear quite unintelligible, and a route to becoming
initiated is generally hard to find and often harder to follow once found.

This purpose of this book is to show the theory and notation used, in modern
electric drive analysis and design at an introductory level. The authors, bring an
exceptional breadth of knowledge to this book making it stand out from other books
that only providing mathematical foundation for advanced work. This strong effort
is made to present the physical basis for all of the major steps in development, and to
give the space vector physical and mathematical meaning. Readers using the book
for self-study will find the sets of simulation tutorials at the end of each chapter of
special value in mastering the implications and fine points of the material covered
in the chapter.
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viii Foreword

Electric machine theory with its interacting temporal, spatial variations and
multi-winding topologies can appear to be a very complicated and difficult subject.
The approach followed in this book is, I believe, one that will help eliminate this
perception by providing a fundamental, coherent, and user-friendly introduction to
electric machines for those beginning a serious study of electric drive systems.

Madison, WI, USA Donald W. Novotny



Preface

Our motivation and purpose for writing this book stems from our belief that there
is a practical need for a learning platform which will allow the motivated reader to
gain a basic understanding of the modern multidisciplinary principles which govern
electrical drives. The book in question should appeal to those readers who have
an elementary understanding of electrical circuits and magnetics and who have an
interest or need to comprehend advanced textbooks in the field of electrical drives.
Consideration has also been given to those interested in using this book as a basis
for teaching this subject matter. In this context, a Springer website Extra Materials
has been set up which contains the simulation examples and tutorials discussed in
this book. Furthermore, all the figures in this book are available on the Springer
website, in order to assist lecturers with the preparation of electronic “power point”
type lectures.

Electrical drives consist of a number of components: the electrical machine,
converter, and controller, all of which are discussed at various levels. A brief résumé
of magnetic and electrical circuit principles is given in Chap. 1 together with a
set of generic building modules which are used throughout this book to represent
dynamic models. Chapter 2 is designed to familiarize the reader with the process of
building a dynamic model of a coil with the aid of generic modules. This part of the
text contains an introduction on phasors as required for steady-state analysis. The
approach taken in this and the following chapters is to present a physical model,
which is then represented by a symbolic model with the relevant equation set. A
generic model is then presented which forms the basis for a set of build and play
simulations set out in various steps in the tutorial at the end of the chapter.

Chapter 3 introduces a single-phase ideal transformer (ITF) which forms the
basis of a generic transformer model with leakage and magnetizing inductance. A
phasor analysis is given to familiarize the reader with the steady-state model. The
build and play tutorials at the end of the chapter give the reader the opportunity to
build and analyze the transformer model under varying conditions. It is emphasized
that the use of these build and play sets are essential components of the learning
process throughout this book.
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Chapter 4 deals with star and delta connected three-phase systems and introduces
the generic modules required to model such systems. The space vector-type
representation is also introduced in this part of the text. A set of build and play
tutorials are given which reinforce the concepts introduced in this chapter.

Chapter 5 deals with the concepts of real and reactive power in single-as well as
three-phase systems. Additional generic modules are introduced in this part of the
text, and tutorial examples are given to familiarize the reader with this material.

Chapter 6 extends the ITF concept introduced earlier to a space vector-type
model which is represented in a symbolic and generic form. In addition, a phasor-
based model is also given in this part of the text. The build and play tutorials are
self-contained step-by-step simulation exercises which are designed to show the
reader the operating principles of the transformer under steady-state and dynamic
conditions. At this stage of the text, the reader should be familiar with building and
using simulation tools for space vector-type generic models which form the basis
for a transition to rotating electrical machines.

Chapter 7 introduces a unique concept, namely, the ideal rotating transformer
(IRTF), which is the fundamental building block that forms the basis of the dynamic
electrical machine models discussed in this book. A generic space vector-based
IRTF model is given in this part of the text which is instrumental in the process
of familiarizing the reader with the torque production mechanism in electrical
machines. This chapter also explores the conditions under which the IRTF module
is able to produce a constant torque output. It is emphasized that the versatility of
the IRTF module extends well beyond the electrical machine models discussed in
this book. These advanced IRTF-based machine concepts are used in our second
book Advanced Electrical Drives [2] and also in our third book Applied Control
of Electrical Drives [10]. The latter-mentioned book has been recently introduced
to facilitate the transition to experimental drives by the reader. The build and play
tutorials at the end of this chapter serve to reinforce the IRTF concept and allow
the reader to “play” with the conditions needed to produce a constant torque output
from this module.

Chapters 8–9 deal with the implementation of the IRTF module for synchronous
and asynchronous machines. In both cases, a simplified IRTF-based symbolic and
generic model is given of the machine in question to demonstrate the operating
principles. This model is then extended to a “full” dynamic model as required for
modeling standard electrical machines. A steady-state analysis of the machines is
also given in each chapter. In the sequel of each chapter, a series of build and play
tutorials are introduced which take the reader through a set of simulation examples
which steps up from a very basic model designed to show the operating principles,
to a full dynamic model which can be used to represent the majority of modern AC
electrical machines in use today.

Chapter 10 dealt with the DC machine, for which a dynamic model is introduced.
In addition, the steady-state torque/speed characteristics of this machine with either
PM or field excitation are discussed.

Chapter 11 deals with the converter, modulation, and control aspects of the
electrical drive at a basic level. Both half- and full-bridge converter concepts are
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discussed together with the pulse width modulation (PWM) strategies that are in
use in modern drives. A model-based current control algorithm is presented in
combination with a DC machine. The build and play tutorials in the sequel of
this chapter clearly show the operating principles of PWM-based current-controlled
electrical drives.

The purpose, content, and approach of our book have been presented above. On
the basis of this material, the following set of unique points are presented below in
response to the question as to why prospective readers should purchase this book:

• The introduction of an ideal rotating transformer (IRTF) module concept is a
basic didactic tool for introducing the elementary principles of torque production
in electrical machines to the uninitiated reader. The apparent simplicity of this
module provides the reader with a powerful tool which can be used for the
understanding and modeling of a very wide range of electrical machines well
beyond those considered in this book.

• The application of the IRTF module to AC machines provides a unique insight
into their operation principles. The book shows the transitional steps needed to
move from a very basic IRTF model to a full IRTF-based dynamic model usable
for representing the dynamic and steady-state behavior of most machines in use
today. In addition the IRTF based module can be readily extended to include
more specific machine effects such as “skin effect” in asynchronous machines.
Furthermore, the IRTF module can be extended to machine models outside the
scope of this book. Examples which appear in the book Advanced Electrical
Drives by the authors of this text are the salient pole PM machine and the single-
phase IRTF-based induction machine.

• This text is designed to bridge the gap between advanced textbooks covering
electrical drives and textbooks at either a fundamental electrical circuit level
or more generalized mechatronic books. Our text is accompanied by a set of
tutorials which are located in the Extra Materials section at the Springer website.
This book should fit well into the undergraduate curriculum for students who
have completed first or second year and who have an interest in seeking a career
in the area of electrical drives. The book should also appeal to engineers with
a non-drive background who have a need to acquire a better understanding of
modern electrical drive principles.

• The use of build and play-type tutorials is of fundamental importance to
understanding the theory presented in the text. The didactic role of modern
simulation tools in engineering cannot be overestimated, and it is for this
reason that extensive use is made of generic modules which are in turn used
to build complete models of the drive. Such an approach allows the reader
to visualize the complex equation set which is at the basis of these models.
The simulation tool used in these tutorials is “PLECS R�” which can be used
with MATLAB/SIMULINK or (as is the case in this book) as “stand-alone”
software. The said tutorials are linked directly to the generic modules discussed
in the corresponding chapter and are included in the Extra Material, Springer
website:extras.springer.com linked to this book.

• A series of “demonstration” laboratories are introduced which are used to
experimentally verify key theoretical concepts/models introduced in this book.
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Hence, it is hoped that the critical reader will be convinced that the material
presented in this book is applicable to actual electrical drives.

The second edition of this book has been tailored to the text Advanced Electrical
Drives by the same authors. Notably some changes have been made to ease the
readers’ transition to our textbooks Advanced Electrical Drives as well as Applied
Control of Electrical Drives. Notably the new edition makes use of so-called
“amplitude invariant” space vectors, which is in line with the approach used in
Applied Control of Electrical Drives. Specifically, Chap. 3 has been extensively
revised to introduce the so-called “universal-oriented model approach” at an early
stage. Furthermore, Chap. 10 on DC machines has been simplified. Finally, in
Chap. 11 the term “incremental flux” has been omitted and replaced by the variable
average voltage per sample given its use in our other books. The said chapter has
also been extended to cover “H-bridge” operation.

Culemborg, The Netherlands André Veltman
Sydney, NSW, Australia Duco W.J. Pulle
Aachen, Germany R.W. De Doncker
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Chapter 1
Introduction

1.1 Why Use Electro-Mechanical Energy Conversion?

Electric motors are around us everywhere. Generators in power plants are connected
to a three-phase power grid of alternating current (AC), pumps in your heating
system, refrigerator, and vacuum cleaner are connected to a single phase AC grid
and switched on or off by means of a simple contactor. In cars a direct current
(DC) battery is used to provide power to the starter motor, windshield wiper motors,
and other utilities. These motors run on direct current and in most cases they are
activated by a relay switch without any control.

Many applications driven by electric motors require more or less advanced
control. Lowering the speed of a fan or pump can be considered relatively simple.
Perhaps one of the most difficult ones is the dynamic positioning of a tug in a
wafer-stepper with nanometer accuracy while accelerating at several g’s. Another
challenging controlled drive is an electric crane in a harbor that needs to be able to
move an empty hook at high speed, navigate heavy loads up and down at moderate
velocities, and make a soft touchdown as close as possible to its intended final
position. Other applications such as assembly robots, electric elevators, electric
motor control in hybrid vehicles, trains, streetcars, or CD-players can, with regard
to complexity, be situated somewhere in between.

Design and analysis of all electric drive systems requires not only knowledge of
dynamic properties of different motor types, but also a good understanding of the
way these motors interact with power electronic converters and their loads. These
power converters are used to control motor currents or voltages in various manners.

Compared to other drive systems such as steam engines (still used for aircraft
launch assist), hydraulic engines (famous for their extreme power per volume),
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pneumatic drives (famous for their simplicity, softness, and hissing sound), combus-
tion engines in vehicles, or turbo-jet drives in helicopters or aircrafts, electric drive
systems have a very wide field of applications thanks to some strong points:

• Large power range available: actuators and drives are used in a very wide range
of applications from wrist watch micro-watt level to machines at the multi-
megawatt level, e.g., as used in coal mines, steel industry, and ship propulsion
systems.

• Electrical drives are capable of full torque at standstill, hence no clutches are
required.

• Electrical drives can provide a very large speed range, usually gearboxes can be
omitted.

• Clean operation, no oil-spills to be expected.
• Safe operation is possible in environments with explosive fumes (pumps in oil-

refineries).
• Immediate use: electric drives can be switched on immediately.
• Low service requirement: electrical drives do not require regular service as there

are very few components subject to wear, except the bearings. This means that
electrical drives can have a long life expectancy, typically in excess of 20 years.

• Low no-load losses: when a drive is running idle, little power is dissipated since
no oil needs to be pumped around to keep it lubricated. Typical efficiency levels
for a drive are in the order of 85 %. In some cases this may be as high as 98 %.
The higher the efficiency the more costly the drive technology, in terms of initial
costs.

• Electric drives produce very little acoustic noise compared to combustion
engines.

• Excellent control ability: electrical drives can be made to conform to precise user
requirements. This may, for example, be in relation to realizing a certain shaft
speed or torque level.

• “Four-quadrant operation”: Motor and braking mode are both possible in for-
ward or reverse direction, yielding four different quadrants: forward motoring,
forward braking, reverse motoring, and reverse braking. Positive speed is called
forward, reverse indicates negative speed. A machine is in motor mode when
energy is transferred from the power source to the shaft, i.e., when both torque
and speed have the same sign.

1.1.1 Modes of Operation

When a machine is in motoring mode, most of the energy is transferred from
the electrical power source to the mechanical load. Motoring mode takes place
in quadrants 1 and 3 (see Fig. 1.1b). If the shaft torque and shaft speed are in
opposition, then the flow of energy is reversed, in which case the drive is in the
so-called braking mode.

Braking comes in three “flavors.” The first is referred to as “regenerative” braking
operation, where most of the mechanical energy from the load is returned to
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a b

Fig. 1.1 Motoring and braking operation. (a) Motor with power supply. (b) Operating modes

the power source. Most drives which contain a converter (see Sect. 1.2) between
motor and supply use a diode rectifier as a front end, hence power can only
flow from the AC power grid to the DC-link in the drive and not the other way
around. In such converters regenerative operation is only possible when the internal
DC-link of the drive is shared with other drives that are able to use the regenerated
power immediately. Sharing a common rectifier with many drives is economic and
becoming standard practice. Furthermore, attention is drawn to the fact that some
power sources are not able to accept any (or only a limited amount) of regenerated
energy.

The second option is referred to as “dissipative” braking operation. Typically,
this method is used to dissipate irreversibly the kinetic energy of the mechanical
load system in an external brake-chopper-resistor. A brake-chopper can burn away
a substantial part of the rated power for several seconds, designed to be sufficient to
stop the mechanical system in a fast and safe fashion. One can regard such a brake-
chopper as a big Zener-diode that prevents the DC-link voltage in the converter
from rising too high. Brake-choppers come in all sizes, in off-shore cranes and
locomotives power levels of several megawatts are common practice.

The third braking mode is the one where mechanical power is completely
returned to the motor, while at the same time some electrical power may still be
delivered, i.e., both mechanical and electrical input power are dissipated in the
motor. Think of a permanent magnet motor being shorted, or an induction motor
that carries a DC current in its stator, acting as an eddy-current-brake.

Of course there are also disadvantages when using electrical drive technology, a
few of these are briefly outlined below.

• Low torque/force density compared to combustion engines or hydraulic systems.
This is why aircraft control systems are still mostly hydraulic. However, there
is an emerging trend in this industry to use electrical drives instead of hydraulic
systems.
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• High complexity: A modern electrical drive encompasses a range of technologies
as will become apparent in this book. This means that it requires highly skilled
personnel to repair or modify such systems.

1.2 Key Components of an Electrical Drive System

The “drive” shown in Fig. 1.1a is in fact only an electrical machine connected
directly to a power supply. This configuration is widely in use but one cannot exert
very much control in terms of controlling torque and/or speed. Such drives are either
on or off with rather wild starting dynamics. The drive concept of primary interest
in this book is capable of what is referred to as “adjustable speed” operation [8]
which means that the machine can be made to operate over a wide speed range.
A simplified structure of an adjustable speed drive is shown in Fig. 1.2. A brief
description of the components is given below:

• Load: This component is central to the drive in that the purpose of the drive is to
meet specific mechanical load requirements. It is emphasized that it is important
to fully understand the nature of the load and the user requirements which must
be satisfied by the drive. The load component may or may not have sensors to
measure either speed, torque, or shaft angle. The sensors which can be used are
largely determined by the application. The nature of the load may be translational
or rotational and the drive designer must make a prudent choice whether to
use a direct-drive with a large motor or geared drive with a smaller but faster
one. Furthermore, the nature of the load in terms of the need for continuous or
intermittent operation must be determined.

• Motor: A limited range of motor types is presently in use. Among these are
the so-called classical machines, which have their origins at the turn of the
nineteenth century. This classical machine set has displaced a large assortment

Fig. 1.2 Typical drive setup
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of “specialized” machines used prior to the introduction of power electronic
converters for speed control. This classical machine set contains the DC (Direct
Current) machine, asynchronous (induction) machine, synchronous machine, and
“variable reluctance” machine. Of these the “variable reluctance” machine will
not be discussed in this book. A detailed discussion of this machine appears in
the textbook Advanced electrical drives written by the authors of this book.

The term “motor” refers to a machine which operates as a motor, i.e., energy
flows from the motor to the load. When the energy flows in the opposite direction
a machine is said to operate as a generator.

• Converter: This unit contains a set of power electronic (semiconductor) switches
which are used to manipulate the energy transfer between power supply and
motor. The use of switches is important given that no power is dissipated (in
the ideal case) when the switches are either open or closed. Hence, theoretically,
the efficiency of such a converter is 100 %, which is important particularly for
large converters given the fact that semiconductor devices cannot operate at high
temperatures. Hence, it is not possible to absorb high losses which inevitably
appear in the form of heat. A large range of power electronic switches is available
to the designer to meet a wide range of applications.

• Modulator: The switches within the converter are controlled by the modulator
which determines which switches should be on, and for what time interval,
normally on a micro-second timescale. An example is the pulse width modulator
that realizes a required pulse width at a given carrier-frequency of a few kHz.

• Controller: The controller, typically a digital signal processor (DSP), or micro-
controller (MCU) in combination with programmable logic devices, contains a
number of software based control loops which control and protect, for example,
the currents in the converter and machine. In addition, torque, speed, and shaft
angle control loops may be present within this module. Shown in the diagram are
the various sensor signals which form the key inputs to the controller together
with a number of user set-points (not shown in the diagram). The output of the
controller is a set of control parameters which are used by the modulator.

• Digital link: This unit serves as the interface between the controller and an
external computer. With the aid of this link drive set-points and diagnostic
information can be exchanged with a remote user.

• Power supply: In most cases the converter requires a DC voltage source
(DC voltage link). The power can be obtained directly from a DC power source,
in case one is available, for example, batteries in electric vehicles. However, in
most cases the DC power requirements are met via a rectification process, which
makes use of the single or three-phase AC (referred to as the “grid”) power supply
as provided by the utility grid.
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1.3 What Characterizes High Performance Drives?

Prior to moving to a detailed discussion of the various drive components it
is important to understand the reasons behind the ongoing development of drives.
Firstly, an observation of the drive structure (see Fig. 1.2) shows that the drive has
components which cover a very wide field of knowledge. For example, moving from
load to controller one needs to appreciate the nature of the load, have a thorough
understanding of the motor, and comprehend the functioning of the converter and
modulator. Finally, one needs to understand the control principles involved and how
to implement (in software) the control algorithms into a micro-processor or DSP.
Hence, there is a need to have a detailed understanding of a very wide range of
topics which is perhaps one of the most challenging aspects of working in this field.
The development of electrical machines occurred, as was mentioned earlier, more
than a century ago. However, the step to a high performance adjustable speed drive
took considerably longer and is in fact still ongoing. The main reasons as to why
drive technology has improved over the last decades are briefly outlined below:

• Availability of fast and reliable power semiconductor switches for the converter:
A range of switches is available to the user today to design and build a wide range
of converter topologies. The most commonly used switching devices for motor
drives are MOSFETs for low-voltage applications and IGBTs for medium (kW)
and higher (MW) powers. In addition GCTs are available for medium-voltage
and high-voltage applications.

• Availability of fast computers for (real time) embedded control: the controller
needs to provide the control input to the modulator at a sampling rate which
is typically in the order of 100�s. Within that time frame the computer needs
to acquire the input data from sensors and user set-points and apply the control
algorithm in order to calculate the control outputs for the next cycle. The presence
of low cost fast micro-processors or DSPs since the mid-eighties has been of key
importance for drive development.

• Better sensors: A range of reliable and low cost sensors is available to the user
which provides accurate inputs for the controller such as LEMs, incremental
encoders, and Hall-effect sensors.

• Better simulation packages: The availability of sophisticated so-called finite-
element computer aided design (CAD) packages for motor design has been
instrumental in gaining a better understanding of machines. Furthermore, they
have been and continue to be used for designing machines and for optimization
purposes. In terms of simulating the entire drive structure there are simulators
with graphical user interfaces, such as, among others, MATLAB/Simulink R� and
PLECS R� which allow the user to analyze a detailed dynamic model of the entire
system. This means that one can analyze the behavior of such a system under
a range of conditions and explore new control techniques without the need of
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actually building the entire system. This does not mean that implementing real
life systems is no longer required. The proof of the pudding is in the eating,
and only experimental validation can prove that the supposedly exact models are
indeed valid for a real drive system, which was our motivation for writing our
latest book Applied Control of Electrical Drives [10].

Simulation and experiment are never exactly the same. When the models
are not able to describe the drive system under certain conditions, it might
be useful to enhance the simulation model to incorporate some of the found
differences. As engineers, we should be aware of the fact that drive systems are
often closed-loop systems that are able to tolerate (to some extent) deviations
in parameters and unknown load torques without any problem. To paraphrase
Einstein, “A simulation model should be as simple as possible, but no simpler”
is the key to a successful simulation. This means that essential dynamics or non-
linearities, found in the real world system, need to be implemented in the (physics
based) simulation model in order to study extreme situations with acceptable
accuracy.

The simulation model used depends on what needs to be studied. Simulating
pulse width modulated outputs requires a very short simulation time-step, in
the order of sub-�s or so, while the overall mechanical system and the motor’s
response can be calculated at a hundred times larger time-step with negligible
loss of accuracy, as long as the power converter is regarded as a non-switching
controlled voltage source. Another extreme example is the study of thermal
effects on the motor. In that case only the average power dissipation in terms
of seconds or even minutes is of interest.

• Better materials: The availability of improved magnetic, electrical, and insulation
materials has provided the basis for efficient machines capable of withstanding
higher temperatures, thereby offering long application life and low life-cycle
costs.

1.4 Notational Conventions

1.4.1 Voltage and Current Conventions

The conventions used in this book for the voltage and current variables are shown
with the aid of Fig. 1.3. The diagram shows the variables: voltage u and current
i, which are specifically given in “lower case” notation, because they represent
instantaneous values, i.e., a function of time. The voltage and current “arrows”
shown in Fig. 1.3 point to the negative terminal of the respective circuit, i.e.,
motoring arrow system, in which positive power p D ui means power absorbed
by the electrical circuit (load).



8 1 Introduction
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u
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u

Fig. 1.3 Notation conventions used for electrical quantities

Fig. 1.4 Notation
conventions used for
mechanical quantities

1.4.2 Mechanical Conventions

The mechanical conventions used in this book are shown with the aid of Fig. 1.4.
The electro-magnetic torque Te produced by the machine corresponds with a power
output pe D Te!m, where !m represents the rotational speed, otherwise known as
the angular frequency. The load torque Tl is linked to the power delivered to the
load pl D Tl !m. Ignoring bearing and windage losses in the machine, the torque
difference Te � Tl results in an acceleration Jd!m=dt of the total rotating mass, which
is characterized by its inertia J. This rotating structure is represented as a lumped
mass formed by the rotor of the motor, motor shaft, and load. The corresponding
mechanical equation which governs this system is of the form

J
d!m

dt
D Te � Tl (1.1)

The angular frequency may also be written as !m D d�=dt where � represents the
rotor angle.

Figure 1.4 shows the machine operating as a motor, i.e., Te > 0 and !m > 0.
These motor conventions are used throughout this book.
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1.5 Use of Building Blocks to Represent Equations

Throughout this book the so-called generic models of drive components will be
applied to build a useful simulation model of an electrical drive system [7]. Models
of this type are directly derived from the so-called symbolic representation of a
given drive component. The generic models are dynamic models which can be
implemented as “control blocks” in a practical simulation environment such as
PLECS [9]. Models in this form can then be analyzed by the reader in terms of the
expected transient or steady-state response. Furthermore, changes can be made to a
model to observe their effect. This interactive type of learning process is particularly
useful to become familiar with the material.

An example of moving from symbolic to generic representation is given in
Fig. 1.5. The symbolic model shown in Fig. 1.5 represents a resistance. As such,
the resistance represents a relation between voltage and current as defined by Ohm’s
law: you can calculate current from voltage, voltage from current, or resistance from
both voltage and current. The generic diagram assumes in this case that the voltage
u is an input and the current i represents the output variable for this building block
known as a gain module. The gain for this module must in this case be set to 1=R.
Also shown in this figure is the corresponding PLECS representation, as needed to
implement this transfer function. Throughout this book additional building blocks
will be introduced as they are required. At this point, a basic set will be given which
will form the basis for the first set of generic models to be discussed in this book.

1.5.1 Basic Generic Building Block Set

The first set of building blocks given in Fig. 1.6 are linked to “example” transfer
functions. Added to these building blocks are the equivalent PLECS “control
blocks” which can be used to implement the transfer function under consideration.
For example, the GAIN module has as input the current i and as output u, the gain
is set to R. The INTEGRATOR example module has as input the variable �T and
output !m. The gain of the integrator is 1=J. Note that the module shows the gain as
J and not 1=J. The equivalent PLECS implementation requires two control blocks

iu 10

voltage: u

0.1

1/R

1.0000

current: i

Fig. 1.5 Symbolic, generic, and PLECS representations
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Fig. 1.6 Basic building block set

with gain 1/J and an integrator. When multiplying two variables in the time
domain, a MULTIPLIER module is used. This module differs from the given GAIN
module in that the latter is used to multiply a variable with a constant. Finally, an
example of a SUMMATION module is given. In this case the output is a variable
�T and subtracts the input variable Tl from input variable Te. Note that in the case
of adding two variables no “plus” symbol is placed. A “minus” sign is used when
subtracting two variables. In PLECS either an Add or Subtract control block is
used, respectively, for adding or subtracting two variables.

An example of combining some of these modules is readily given by considering
the following equation

u D iR C L
di

dt
(1.2)

which represents the voltage across a series network in the form of an inductance L
and resistance R. To build a generic representation with the voltage as input variable
and current as output variable, it is helpful to rewrite the expression in its differential
equation form

di

dt
D 1

L
.u � iR/ (1.3)
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Fig. 1.7 Example of using basic building blocks

In this case the output of the integrator is the variable i and the input of the integrator
is given as .u � iR/, hence

i D 1

L

Z
.u � iR/ dt (1.4)

The initial current is assumed to be zero, i.e., i .0/ D 0. An observation of Eq. (1.4)
shows that the integrator input is formed by the input variable u from which the term
iR must be subtracted where use is made of a summation unit, as shown in the
generic model presented in Fig. 1.7. The gain “1=L” present in Eq. (1.4) appears in the
generic integrator module as “L” as discussed previously. The complete generic and
symbolic diagrams for this example are given in Fig. 1.7. Also added to this figure
is the PLECS implementation where use is made of “control blocks.” Note that
“symbolic” models can be implemented directly in PLECS as “electrical models”
without further notable changes to appearance as will be shown in the tutorial
section.

1.6 Magnetic Principles

Prior to looking at the various components of a drive it is important to revise the
basic magnetic principles. On the basis of these principles we will examine the so-
called ideal transformer (ITF) and the ideal rotating transformer (IRTF). The book
by Hughes [5] is highly recommended as it provides an excellent primer in the area
of magnetic principles and drives. We will follow a similar line of thinking for the
magnetic principles section in this book.

1.6.1 Force Production

The production of electro-magnetic torque Te in rotating electrical machines, such
as those considered in this book, is directly linked to the question how forces are
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Fig. 1.8 Relationship between current, magnetic field, and force

produced. It is noted that other types of machines exist where torque production
is based on either reluctance, electro-static, piezo-electric, or magneto-restrictive
principles. Machines which abide with those principles are not considered in this
book. The basic relationship between force, current in a conductor, and magnetic
field has been discovered by Lorentz. The directions of the three variables are at
right angles with respect to each other and under these circumstances the force
magnitude acting on a conductor (exposed over a length l to a flux density B and
carrying a current i) is given as

Fe D B i l (1.5)

where l is the length (in meters) of the conductor section which is exposed to the
field. Force is expressed in newtons (N) (see Fig.1.8).

1.6.2 Magnetic Flux and Flux Density

Prior to discussing the concept of flux density it is helpful to understand the meaning
of flux lines. Consider a bar magnet as given in Fig. 1.9a, which also shows a set
of so-called magnetic field lines. Between each pair of adjacent lines there is a
fixed quantity of magnetic flux. This amount is represented as a “flux tube” and
an example is given in Fig. 1.9a. The meaning of flux density B within such a tube
is defined as the flux in the tube divided by the tube cross-section. For simplicity
we will assume a unity length tube in the dimension perpendicular to the plane
shown in Fig. 1.9a, hence the cross-section (of the tube) is directly proportional to
the width of the tube shown in Fig. 1.9a. This means that the flux density in the
tube increases as the tube becomes narrower. Within the magnet, the flux density
is considerably higher than outside. A flux density plot of the same magnet is
shown in Fig. 1.9b. The use of field line and flux density plots as presented in
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a b

Fig. 1.9 Bar magnet flux and flux density plot. (a) Flux plot. (b) Flux density plot

Fig. 1.9a (and subsequent similar figures in this chapter) were obtained with the
two-dimensional magnetic analysis package FEMM [3]. Such magnetic plots are
extremely valuable to designers as they enable one to look at “hot spots,” i.e., places
where the flux density is very high. Colors indicate different flux density values,
which ’red’ being the highest. Clearly the bar magnet in its present form cannot be
considered as a source with a uniform flux density.

1.6.3 Magnetic Circuits

It is interesting to see what can be achieved when magnetic steel is used to “shape”
the field pattern. Furthermore, the permanent magnet will be replaced with an n
turns circular coil, which carries a current i. The use of a coil has advantages
in terms of being able to better control the flux. However, machines generally
become more compact when permanent magnets are used. Furthermore, magnets
provide flux without the use of an external power supply. An example of the field
distribution produced by a coil without any magnetic material is shown in Fig. 1.10a.
The coil is shown in cross-sectional form where the right section has the current
“into” the diagram and the left side has the current coming towards the reader. The
flux direction which corresponds to the current flowing “into” the winding half is
clockwise. Hence, following the “right hand” rule, the “north” pole is on the top
of the diagram which corresponds to the pole alignment shown for the bar magnet.
Note that the field distribution is almost identical to that produced by the magnet.
As with the bar magnet the flux density is highest in the coil, as may be observed
from the flux density plot of the coil shown in Fig. 1.10b. The observant reader will
note that there is also a “C” and “I” shaped outline shown in red in both figures.
These are in fact the outlines of an iron core structure which in the case of Fig. 1.10
has been constructed of “air,” i.e., the coil does not see this structure at this point of
our discussion.
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ba

Fig. 1.10 Coil flux and flux density plot. (a) Flux plot. (b) Flux density plot

ba

Fig. 1.11 Coil with “C” core and “I” shaped armature: (a) flux and (b) flux density plot

If we now introduce an iron “C” core and “I” section (known as the armature)
with our coil, then we see a remarkable change to the field distribution, as may
be observed from Fig. 1.11a. The flux lines are now mostly confined to the core.
However, when the flux lines cross from the “C” core to the armature they tend to
spread out, an effect referred to as fringing. If one looks to the “green” flux tube
we see that it is very narrow in the coil and steel regions. The flux tube in question
widens out when it crosses the airgaps located between the “C” core and armature.
The airgap is large, to demonstrate clearly how the flux lines are affected when
moving through air. However, in real induction machines the airgap is in the order
of 0.3–0.7 mm which means that most of the flux tube area, when it passes through
air, is not much wider than in the steel. In permanent magnet synchronous motors
however, airgaps can be as high as several cms. The flux density in the structure
of Fig. 1.11a is still relatively uneven, which means that the flux density is high
within the core that has the coil wrapped around it. The flux density plot shown in
Fig. 1.11b clearly shows this. The color red represents the highest flux density.
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1.6.4 Electrical Circuit Analogy and Reluctance

The flux and flux density plots given in the previous section were derived with a
two-dimensional magnetic analysis package [3], which enables the user to quickly
observe flux patterns for a particular application. However, there is a need to make
some “sanity checks” in every type of simulation. Hence, some way must be found
to make a simple analytical calculation which will give us confidence in the results
produced by a particular simulation. We can do this check by making use of
Hopkinson’s law, which for a magnetic circuit allows us to create, for example,
an electric circuit of the structure given in Fig. 1.11. Hopkinson’s law is in fact
equivalent to Ohm’s law for electrical circuits. Electrically Ohm’s law tells us that
the electric voltage u across a resistance is equal to the product of the current i and
resistance R, i.e., u D iR. Hopkinson’s law defines a ‘magnetic potential uM, which
is the product of the flux � in the magnetic circuit times the so-called magnetic
reluctance Rm, i.e., uM D �Rm. The method presented here is confined to the so-
called linear magnetic circuits, which implies that the reluctance is neither a function
of � nor of uM. In the equivalent circuit, the flux � is in electrical terms equivalent
to the current i. An approximate magnetic equivalent circuit of the structure given
in Fig. 1.11 is of the form shown in Fig. 1.12. The approximation used is that all
the flux lines cross the airgaps between the “C” core and the armature “I”. Clearly,
this is not the case here (see Fig. 1.11a) because the airgap is unrealistically large.
The reluctance Rm is generally proportional to the length of the path and inversely
proportional to the product of the cross-sectional area and the so-called permeability
� of the medium in which the flux travels. In the example given above two
reluctances are given, namely, Rairgap and Rairgap. The “iron” reluctance represents
the total reluctance of the steel sections (“C” core and armature). The term “iron”
is commonly used to describe the magnetic steel sections. The “airgap” reluctance
represents the total reluctance of both airgaps. Mathematically the reluctance may
be written as

Fig. 1.12 Equivalent
magnetic circuit
representation
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Riron D liron

Airon �iron
(1.6a)

Rairgap D lairgap

Aairgap �airgap
(1.6b)

where liron and lairgap, respectively, represent the total length the flux travels through
iron and airgaps between “C” core and armature. Furthermore, Airon and Aairgap,
respectively, represent the cross-sectional areas of the steel sections and airgaps.
The latter is not easily defined due to fringing effects. Hence, we will assume for
this example that the airgap cross-section is equal to that in the iron sections. This
means that we assume that the flux density in air and steel (iron) are equal, which
they are not in this case. The permeability of the steel �iron and air �airgap differs
considerably. Typically the permeability in steel (iron) is a factor 1000 higher than
that of air. Consequently, the reluctance of the steel sections is considerably lower
than that in air.

The magnetic potential across each reluctance is shown as um;iron and um;airgap,
respectively. Together they form the total magnetic potential of the circuit, which is
equal to the magneto-motive force (MMF). The MMF is equal to the product of the
number of coil turns n and current i as shown below

MMF D n i (1.7)

The MMF can also be expressed in terms of the circuit magnetic potentials,
namely,

MMF D um;iron C um;airgap (1.8)

The magnetic field H (A/m) is directly linked to the MMF in the circuit by the
expression:

MMF D Hiron liron„ ƒ‚ …
um;iron

C Hairgap lairgap„ ƒ‚ …
um;airgap

(1.9)

where H D B=�, with � as the permeability. Consequently, a material with a high
permeability will, for a given flux density (and geometry), yield a low magnetic field
value and corresponding low magnetic potential.
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The circuit flux � in the circuit is of the form

� D MMF

Riron C Rairgap
(1.10)

An interesting observation of Eqs. (1.8) and (1.10) is that in most cases the
reluctance in iron can be ignored given that Riron � Rairgap, which implies that under
these circumstances MMF � um;airgap. Note that the airgap reluctance will become
zero when the armature is placed against the “C” core. In that case the um;airgap also
goes to zero, and this also applies to the MMF. This in turn means that the current
becomes zero. Flux remains, as its value (actually its derivative) is determined by
the applied electrical voltage as will become apparent shortly. An alternative view
of this problem is to consider the case where a current is forced into the coil, under
these conditions a finite MMF would be present with zero reluctance, in which case
the flux would theoretically become infinite.

Note that the flux � is the same in each part of the circuit (see Fig. 1.12).
Consequently, the product of flux density times cross-sectional area remains the
same. Hence in a narrow part of the circuit the flux density will be higher than in
a wider part. In the airgaps the effective cross-sectional area is increased due to
fringing, hence the flux density in the airgap will be lower than in the adjacent iron
circuit.

The magnetic example to be compared with the magnetic structure shown in
Fig. 1.11 has a set of parameters as given in Table 1.1.

A convenient approach to simulate the structure according to Fig. 1.12 is possible
by making use of the PLECS magnetic library which in this case leads to the
model given in Fig. 1.13. Readily observable in this figure is the (different colored)
magnetic circuit components which represent the reluctances of the magnetic model.
Parameters for these are specified in Table 1.1. The electric part of this model is
arbitrarily represented by a coil resistance of 1� in series with a DC supply source

Table 1.1 Parameters for
magnetic “C” core example

Parameters Value

Total path length in iron lc 150 mm

Total path length in air la 20 mm

Core cross-section Ac 100 mm2

Airgap cross-section Aa 100 mm2

Copper cross-section Acu 1600 mm2

Permeability in iron �c 0.008 H/m

Permeability in air �0 4�10�7 H/m

Number of turns coil n 1000 turns

Coil current I 5 A
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Fig. 1.13 PLECS magnetic circuit representation

chosen to generate the required 5A current excitation. After running this simulation
the steady-state value shown on the display appears. In PLECS the circuit flux is
found by using an incremental flux sensor of which the output must be integrated as
shown.

Some interesting observations can be made from the results shown in Fig. 1.13,
namely

• The magnetic potential across the airgaps is an order of magnitude higher than in
the iron. This confirms earlier comments with regard to this topic. Note that the
sum of the magnetic potential in air and iron is equal to the MMF [n�I D 5000At
(ampère-turns)], which is the MMF provided by the winding.

• The corresponding flux density in, for example, the airgap is equal to Ba D �a=Aa

which in this case gives Bc D 0:31T, than the values found in Fig. 1.11b.
According to the linear model the flux density in the core would also be B D
0:31T given that the same cross-sectional area is assumed. The core flux density
value is however considerably lower than the value found in Fig. 1.11b. The flux
density values, as indicated by the color, in the core and airgap were found to
be 1:8T and 0:3T, respectively. The main reason for this is that the equivalent
circuit model is a linear model which does not exhibit so-called saturation effects
(which implies that the reluctance of the core is much higher than assumed
here). This topic will be discussed shortly. Secondly, the airgap reluctance is not
modeled well, i.e., the assumption that all the flux crosses from the “C” core to
the armature is not valid.

• In this PLECS model use is made of an electrical equivalent circuit to provide
the winding MMF.
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1.6.5 Flux-Linkage and Self-Inductance

The term flux-linkage is often required when dealing with the electrical equations
which link to the magnetic circuit. The flux-linkage refers to the amount of flux
linked to the coil. Each winding turn of the coil “sees” the circuit flux � as can be
observed from Fig. 1.11a and this means that the coil as a whole “sees” the product
of the circuit flux and the number of turns. This quantity is referred to as the flux-
linkage D n�. Note that this is in fact a simplification and only holds for relatively
simple examples as treated in this chapter. For example, if one observes Fig. 1.10a,
it is hopefully clear that not all the turns are linked with the same circuit flux. Some
flux lines stray in between the windings, forming the so-called stray or leakage
flux. Leakage inductance and the effects of leakage flux will be considered in later
chapters. However, the calculation of the flux-linkage and leakage inductance based
on the geometry of magnetic circuits is beyond the scope of this book.

The relationship between flux-linkage and current is readily found by using
Hopkinson’s law, which states that the circuit flux is equal to the coil MMF divided
by the total reluctance of the magnetic circuit. For the linear example treated above
the flux-linkage can be written as

 D n
MMF

Riron C Rairgap
(1.11)

which can be further simplified using MMF D n i to

 D
�

n2

Riron C Rairgap

�
i (1.12)

where the term
�

n2

RironCRairgap

�
is known as the coil inductance L (H). Hence the

relationship between flux-linkage and current for a linear magnetic circuit is given
by Eq. (1.13).

 D L i (1.13)

Expression (1.13) is also represented in graphical form, see Fig. 1.14. Note that
the inductance is determined by the geometry, material properties of the magnetic
circuit, and the coil number of turns. Figure 1.14 shows a linear relationship between
flux-linkage and current. Furthermore, the gradient of the slope is equal to the
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Fig. 1.14 Flux-linkage
versus current: linear circuit

inductance. This means that the gradient of the function will increase in case
the inductance increases, which in turn will take place when the total magnetic
reluctance Rm of a magnetic circuit reduces. Zero magnetic reluctance (i.e., infinite
inductance) corresponds to a flux-linkage current curve which is aligned with the
vertical axis of this figure. This tells us that for a given flux there is no magnetizing
current required.

1.6.6 Magnetic Saturation

The magnetic reluctance of steel (iron) is not constant when the flux density
increases. When the flux density rises to levels typically approaching 2T (Tesla
or Vs/m2), a marked increase in the magnetic reluctance of the steel occurs. This
change in reluctance refers to a phenomenon called saturation, which in effect
constrains the flux density in magnetic circuits using, for example, Si-steel to values
below 2T as may be observed from Fig. 1.15. The exact saturation level depends
very much on the magnetic steel used. Cheaper steel or ferrites tend to have a lower
saturation level. Note that the reluctance in air does not exhibit saturation.

The change in reluctance directly influences the flux-linkage current curve as an
increasing Rm will reduce the slope of the  .i/ curve as the flux density B increases.
Note that the latter is proportional to the circuit flux � and flux-linkage  value.
An example of a flux-linkage current curve for the linear and general case is given
in Fig. 1.16.

Note that the notion of inductance is for the general case not really applicable
as the gradient of the function is no longer constant. Hence, the term inductance
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Fig. 1.15 Reluctance change
due to saturation

Fig. 1.16 Flux-linkage
versus current: with
saturation effects

is relevant when considering magnetically linear circuits. The so-called non-linear
circuit analysis will require the use of the general flux-linkage current curve, which
must be given or measured for the circuit to be analyzed. At a later stage an example
of the use of this curve will be given.

1.7 Machine Sizing Principles

It is instructive at the end of this chapter to give the reader some insight into the
concept of electrical machine sizing. This issue becomes important when faced with,
for example, the task of choosing a certain machine size to accommodate a given
load application.



22 1 Introduction

In Fig. 1.8, we have introduced a single wire which was able to produce a force
Fe when it was placed in a magnetic field and attached to a current source. This
concept can be extended to electrical machines if we consider the latter in the form
of a rotor and stator. The rotor, being the rotating component, is assumed to hold a
set of n wires of thickness d at its circumference. For convenience of this calculation
we will assume that the cross-section of these wires is square rather than round.
A magnetic field with flux density B is assumed to be present in the airgap between
the rotor and stator. Consequently, a resultant force F will be created on the surface
of the rotor in case the rotor windings are made to carry a current i. If the rotor
radius is set to r and its length to l, then the torque Te produced by the machine will
be equal to

Te D rF (1.14)

where F D nBil. It is instructive to introduce the concept of current density j D i=A

where A represents the cross-sectional area of a wire. If we consider the entire
circumference of the rotor packed with n wires placed next to each other, then we
can approximate the total coil area Aw D nA � d2�r. Use of this approximation
together with the expression for Fe allows us to approximate expression (1.14) as

Te � kBj �r2l„ƒ‚…
Vr

(1.15)

where k is a machine constant (k D 2d in this case). Vr represents the rotor volume.
Equation (1.15) is significant in that it tells us that the torque is proportional to the
product of flux density B, current density j, and rotor volume Vr.

In this chapter, we have already shown that magnetic saturation places a
constraint on the flux density value we can practically use. Furthermore, current
density values are typically constrained to values less than 10A/mm2 given thermal
considerations. Hence, it follows that the rotor size and consequently the total size
of a machine will need to be chosen to meet a certain torque requirement. The ratio
between torque and rotor volume, known as TRV [8], is therefore an important figure
for machine sizing. For industrial machines this value is typically in the order of
15–30 kNm/m3. In linear-motors as well as rotating machines the same number can
be interpreted as the maximum shear-stress of 15–30 kN/m2 (thrust per unit area).

The overall size of the machine is determined by the stator volume, which is
determined among other factors by the rotor volume Vr. A rough estimate of the
stator volume Vs as given by Miller [8] is of the form
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Vs � Vr

srs2
(1.16)

where srs is a constant in the order of 0.6.
It is helpful to give a numerical example of such a sizing calculation. Consider a

machine that must produce a torque of 70Nm. If we assume that the rotor diameter
is equal to its length, then the rotor diameter (and length) would be equal to 164mm
in case we assume a TRV of 20 kNm/m3. The corresponding stator diameter would
according to Eq. (1.16) be 259mm which is a realistic expectation for such a
machine. In reality, the machine length would be longer than the estimated value
of 164mm given the need to accommodate the stator winding at both ends of the
machine as well as the rotor bearings and cooling fan-blades.

1.8 Tutorials

1.8.1 Tutorial 1: Magnetic Analysis of a Rotational
Symmetric Structure

The model shown in Fig. 1.17 (cross-section shown) is rotational symmetric.
A single n D 1000 turn coil is shown which carries a current of icoil D 5A. The steel
used has a permeability of 106�0, where �0 represents the permeability in vacuum
(air). The key dimensions (in millimeters) are shown in Fig. 1.17.

The model in question was analyzed with a finite element package and gave the
results as given in Table 1.2.

Fig. 1.17 Magnetic model
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Table 1.2 Output finite
element program

Output variable Value

Flux density in airgap Ba 0.62 T

Flux linked with coil  10.90 Wb

Self-inductance L 2.19 H

Fig. 1.18 PLECS magnetic model

Perform a “sanity check” on the results obtained from your magnetic (finite
element) analysis by using an alternative method. An example solution to this
type of problem is given below: Firstly, we know that the steel used has a high
permeability which is very much larger than that of air. Consequently we can assume
that the magnetic potential across the steel will be very much lower than that across
the airgap. Hence, the first assumption to make is that the magnetic potential ua

across the airgap is approximately equal to the applied MMF, i.e., ua ' nicoil. The
second critical issue here is to make a sensible judgment with respect to the cross-
sectional area which the flux “sees” when crossing the airgap g. If there was no
“fringing,” then the airgap cross-section would be equal to Ac D 2�� � .r C g=2/h,
where we have chosen a cylinder with height h and radius r C g=2. Observation of
Fig. 1.17 shows that the flux crossing the airgap has in reality a larger cross-sectional
area. The difficulty lies in finding a good estimate for this airgap area, which takes
fringing into account. The so-called Carter factor is often used to allow for fringing
effects. In our calculation, we will assume that this factor is equal to C D 2, this is
based on the fact that we observe a significant number of flux lines at twice the “h”
value. The magnetic reluctance is then found using Eq. (1.6b) with lairgap D g and
Aairgap D C Ac. This in turn leads to the circuit flux � D MMFa=Rairgap, flux-linkage
 D n�, and self-inductance L D  =icoil (see Fig. 1.18).

The results from the PLECS model agree very well with those obtained from the
finite element program. The reason for this is that we have chosen a good estimate
for the effective airgap cross-sectional area. In reality, estimating the effect of flux
fringing without using magnetic analysis software is difficult.
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Fig. 1.19 Magnetic “E” core
example

1.8.2 Tutorial 2: Magnetic Analysis of an “E” Core
Type Structure

This tutorial considers an “E” core type structure as shown in Fig. 1.19. The distance
between the “I” segment, which is also part of the total magnetic circuit and “E”
core, is 10 mm. A 500 turn coil is wound around the center leg of the “E” core and
carries a current of 20 A. The depth of both magnetic components is taken to be
20 mm. Furthermore, the magnetic material is taken to be magnetically ideal. Key
dimensions (in mm) are shown in Fig. 1.19, which relate to the airgaps between the
two magnetic components. The permeability of air is given in the previous tutorial.

The aim of the tutorial is to demonstrate the importance of finite element
modeling and to emphasize that the results obtained with linear models should be
used with care.

Perform a linear analysis of this problem and estimate with the aid of an
equivalent magnetic circuit the flux density in the airgaps at locations “A” and “B,”
respectively. In addition, estimate the total flux  A linked with the coil. A possible
solution to this problem is as follows.

The equivalent magnetic circuit with the conditions specified, i.e., ideal magnetic
material, is shown in Fig. 1.20.

The “MMF,” which is equal to MMF D ncoil icoil, must be equal to the sum of
the magnetic potentials uA and uB. The reluctances RA and RB of the center and
side legs of the “E” core require an estimation of the area of the flux which crosses
between the two magnetic circuit components. A relatively large airgap is used in
this example, which leads to considerable magnetic fringing. If we ignore fringing
for the linear calculation, we are able to determine the reluctances with the aid of the
dimensions given in Fig. 1.20. A possible PLECS implementation of this example
is shown in Fig. 1.21. After running this model the following results appear: BA D
0:628T, BB D 0:628T, and  A D 0:28Wb (as shown on the display modules).
The amplitudes are equal because the circuit flux in the side legs is half that of the
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Fig. 1.20 Magnetic “E” core equivalent circuit

Fig. 1.21 PLECS model magnetic “E” core

center legs. Furthermore, the airgap areas of the side legs are half that of the center
leg if flux fringing is ignored. In Fig. 1.21 use is made of integrators to calculate the
circuit flux �A; �B from the incremental flux sensors present in the PLECS model.
The flux-linkage of the winding is then found using  A D n A where n D 500

is the number of turns of the winding. Two gain modules are used to compute the
flux density values BA and BB based on evaluation of expressions BA D �A=AA and
BB D �B=AB, where AA; AB are the respective cross-sectional areas of the airgaps.

An example of the absolute flux density plot as function of the position along an
imaginary line (the length of which corresponds to the width of the “E” core), which
passes through points “A” and “B” in the airgap, is shown in Fig. 1.22. The flux
density plot according to Fig. 1.22 was obtained with the aid of a two-dimensional
finite element package which was also used to calculate the flux distribution shown
in Fig. 1.19. Observation of Fig. 1.22 shows that the flux density values at points “A”
and “B” are markedly different when compared to the linear case. Furthermore, the
coil flux-linkage was calculated with the same finite element program and the value
was found to be 0:63Wb, which is considerably higher than the value obtained via
the linear analysis (as given above). The reasons for the differences between the two
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Fig. 1.22 Flux density plot along airgap in the “E” core

computation methods can, to a large extend, be attributed to the effects of fringing,
i.e., the difficulty of determining an accurate analytical estimate of the flux area
required to calculate the reluctances RA and RB. Furthermore, the assumption of an
ideal magnetic material may also severely affect the result, in particular if saturation
effects come into play. Finally, it is noted that even a two-dimensional finite element
may not always be suitable, in which case a three-dimensional analysis may need to
be undertaken.



Chapter 2
Simple Electro-Magnetic Circuits

2.1 Introduction

The simplest component which utilizes electro-magnetic interaction is the coil.
A coil is an energy storage component, which stores energy in magnetic form.
Air-cored coils are frequently used (for example, in loudspeaker filters), but coils
with a core of (possibly gapped-) magnetic material are more common, because of
their increased inductance (or reduced size), which may come at the cost of reduced
maximum field strength and increased non-linearity. In this chapter we will develop
a generic model of a coil with linear and non-linear self-inductance. Furthermore,
the effect of coil resistance is considered. The use of phasors is introduced in
this chapter as a means to verify simulation of such circuits when connected to a
sinusoidal source.

2.2 Linear Inductance

The physical representation of the coil considered here is given in Fig. 2.1.
The figure shows a coil with n turns which is wrapped around a toroidally shaped
non-gapped magnetic core with cross-sectional area Am. The permeability of the
material is given as � and the average flux path length is equal to lm. Analog to
Eq. (1.6), the magnetic reluctance of the circuit is: Rm D lm=Am� and the inductance
is L D n2�Am=lm D n2=Rm.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-
319-29409-4_2) contains supplementary material, which is available to authorized users.
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Fig. 2.1 Toroidal inductance

The relation between the magnetic flux and the current in the coil is described by
the expression

 D L i (2.1)

With Faraday’s law

u D d 

dt
(2.2)

Equation (2.1) can be rewritten to the more familiar differential form of the coil’s
voltage terminal equation

u D L
di

dt
(2.3)

Equation (2.3) can be integrated on both sides and rewritten as the general equation

i.t/ D 1

L

Z t

�1
u.t/dt (2.4)

The whole integrated history of the inductor voltage is reflected by the inductor
current, so Eq. (2.4) can be expressed in a more practical form, starting at t D 0

with initial condition i.0/, according to

i.t/ D 1

L

Z t

0

u.t/dt C i.0/ (2.5)
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Fig. 2.2 Symbolic and generic model of a linear inductance

This integral form can be developed further

�i D � 

L
(2.6)

 .t/ �  .0/„ ƒ‚ …
� 

D
Z t0

0

u.t/dt (2.7)

introducing the concept of “incremental flux linkage” � D  .t/ �  .0/. The
equation basically states that a flux-linkage variation corresponds with a voltage-
time integral (the so-called volt-second) when the resistance is zero.

A symbolic and generic model of the ideal coil is given in Fig. 2.2. With the
model of Fig. 2.2, we will now simulate the time-response of a coil in reaction to
a voltage pulse of magnitude Ou and duration T, starting at t D t0, as displayed in
Fig. 2.3. Integrating the supply voltage u over time gives the flux-linkage  in the
coil, which linearly increases from 0 at t D t0 to OuT at t D T. The current is obtained
by dividing the flux  by L.

2.3 Coil Resistance

In practical situations, the resistance of the coil wire can usually not be neglected.
Wire resistance can simply be modeled as a resistor in series with the ideal coil. The
modified symbolic model is shown in Fig. 2.4.

Figure 2.4 shows that the coil flux is no longer equal to the integrated supply
voltage u. Instead, the variable uL is introduced, which refers to the voltage across
the “ideal” (zero resistance) inductance uL D d =dt. The terminal equation for this
circuit is now given by expression (2.8).

u D iR C d 

dt
(2.8)
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Fig. 2.3 Transient response
of inductance

Fig. 2.4 Symbolic model of
linear inductance with coil
resistance

where R represents the coil resistance. The corresponding generic model of the
lumped parameter “L, R” circuit is shown in Fig. 2.5. The generic model clearly
shows how the inductor voltage uL is decreased by the resistor voltage caused by
the current through the coil.
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Fig. 2.5 Generic model of linear inductance with coil resistance

Fig. 2.6 Non-linear generic
building block

2.4 Magnetic Saturation

As discussed in Chap. 1, the maximum magnetic flux density in magnetic materials
is limited. Above the saturation flux density, the magnetic permeability � drops
and the material will increasingly behave like air, i.e., � ! �0 when flux density
is increased further. Since motors usually work at high flux density levels, with
noticeable saturation, it is essential to incorporate saturation in our coil model.

The relationship between flux-linkage and current is in the magnetically linear
case determined by the inductance, as shown in Fig. 1.14. In reality, the  .i/
relationship is only relatively linear over a limited region (in case the magnetic
circuit contains “iron” (steel) core), as shown in Fig. 1.16. The generic model
according to Fig. 2.5 needs to be revised in order to cope with the general case.

The generic building block for non-linear functions [7] is shown in Fig. 2.6. The
double edged box indicates a non-linear module with input variable x and output
variable y. The relationship between output and input is shown as y.x/ (y as a
function of the input x). In some cases, a symbolic graph of the function that is
implemented may also be shown on this building block.

The non-linear module has the coil flux  as input and the current i as output.
Hence, the non-linear function of the module is described as i . /, which expresses
the current of the coil as a function of the coil flux. The terminal equation (2.8)
remains unaffected by the introduction of saturation, only the gain module 1=L shown
in Fig. 2.5 must be replaced by the non-linear module described above. The revised
generic model of the coil is shown in Fig. 2.7.

2.5 Use of Phasors for Analyzing Linear Circuits

The implementation of generic circuits (such as those discussed in this chapter) in
PLECS allows us to study models for a range of conditions. The use of a sinusoidal
excitation waveform is of most interest given their use in electrical machines and
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Fig. 2.7 Generic model of general inductance model with coil resistance

actuators. However, there must be a way to perform “sanity checks” on the results
given by simulations. Analysis by way of phasors provides us with a tool to
look at the ac steady-state results of linear circuits. The underlying principle of
this approach lies with the fact that a sinusoidal excitation function, for example,
the applied voltage, will cause a sinusoidal output function of the same frequency,
be it that the amplitude and phase (with respect to the excitation function) will
be different. For example, in the symbolic circuit shown in Fig. 2.4, the excitation
function will be defined as u.t/ D Ou sin.!t/, where Ou and ! represent the peak
amplitude and angular frequency (rad/s), respectively. Note that the latter is equal
to ! D 2�f , where f represents the frequency in Hz. The output variables are the
flux-linkage  .t/ and current i.t/ waveforms. Both of these will also be sinusoidal,
be it that their amplitude and phase differ from the input signal u.t/. In general, a
sinusoidal function can be described by

x .t/ D Ox sin .!t C 	/ (2.9)

This function can also be written in complex notation as

x .t/ D =
n
Oxej.!tC	/

o
(2.10)

Equation (2.10) makes use of “Euler’s rule” ejy D cos yC j sin y. The imaginary part
of this expression is defined as = ˚

ejy
� D sin y. =fg is the imaginary operator, which

takes the imaginary part from a complex number. Note that the analysis would be
identical with x .t/ in the form of a cosine function. In the latter case it would be
more convenient to use the real component of Oxej.!tC	/, using the real operator <fg.
Equation (2.10) can be rewritten to separate the time dependent component ej!t

namely:

x .t/ D =
8<
: Oxej	„ƒ‚…

x

ej!t

9=
; (2.11)
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The time independent component in Eq. (2.11) is known as a “phasor” and is
generally identified by the notation x. In general the phasor will have a real and
imaginary component and can therefore be represented in a complex plane.

In many cases it is also convenient to use the time differential of x.t/ namely dx=dt.
The time differential of the function x .t/ D = ˚

x ej!t
�

is

dx

dt
D = ˚

j!x ej!t
�

(2.12)

which implies that the differential of the phasor x is calculated by simply multiplying
x with j!.

2.5.1 Application of Phasors to a Linear Inductance
with Resistance Network

As a first example of the use of phasors, we will analyze a coil with linear inductance
and non-zero wire resistance, as shown in Fig. 2.4. We need to calculate the steady-
state flux-linkage and current waveforms of the circuit. The differential equation set
for this system is

u D iR C d 

dt
(2.13a)

 D Li (2.13b)

The flux-linkage differential equation is found by substitution of Eq. (2.13b)
into (2.13a) which gives

u D R

L
 C d 

dt
(2.14)

The applied voltage will be u D Ou sin!t, hence the phasor representation of the
input signal according to (2.11) is: u D Ou.

The flux-linkage will also be a sinusoidal function, albeit with different ampli-
tude and phase:  D O sin

�
!t C 	 

�
. The parameters O and 	 are the unknowns

at this stage. In phasor representation, the flux time function can be written as

 D =
n
 ej!t

o
where  D O ej	 .

Rewriting Eq. (2.14) using these phasors, we obtain

u D R

L
 C j! (2.15)
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Fig. 2.8 Complex plane with
phasors: u,  , i

from which we can calculate the flux phasor by reordering, namely

 D u�
R
L C j!

� (2.16)

The amplitude and phase angle of the flux phasor are now

O D Ouq�
R
L

�2 C !2
(2.17a)

	 D � arctan

�
!L

R

�
(2.17b)

and the corresponding current phasor is according to Eq. (2.13b): i D  =L.
The transformation of phasors back to corresponding time variable functions is

carried out with the aid of Eq. (2.11). A graphical representation of the input and
output phasors is given in the complex plane shown in Fig. 2.8.

2.6 Tutorials

2.6.1 Tutorial 1: Analysis of a Linear Inductance Model

In this chapter we analyzed a linear inductance and defined the symbolic and generic
models as shown in Fig. 2.2. The aim of this tutorial is to build a PLECS model from
this generic diagram. An example as to how this can be done is given in Fig. 2.9.
Indicated in Fig. 2.9 is the inductance model in the form of an integrator and gain
module. Also given are two “step” modules which, together with a “Sum” unit,
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Fig. 2.9 PLECS model of linear inductance with excitation function
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Fig. 2.10 PLECS results: ideal inductance simulation

generate a voltage pulse of magnitude 1 V. This pulse should start at t D 0 and
end at t D 0:5 s. Build this circuit and also add a “Scope” module which allows
you to display your data. In this exercise we look at the input voltage waveform,
the flux-linkage, and current versus time functions. Once you have built the circuit
you need to run this simulation. For this purpose you need to set the “stop time”
(under Simulations/simulation parameters dialog window) to 1 s. The inductance
value used in this case is L D 0:87H, which should be set in the “Integrator” module
dialog box. The results which should appear from your simulation after running this
PLECS file are given in Fig. 2.10.



38 2 Simple Electro-Magnetic Circuits

StepA

StepB

+
− 1/s K

1/L

Scope

+
−

2

R

u

psi

i

Fig. 2.11 PLECS model of linear inductance with resistance and excitation function
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Fig. 2.12 PLECS results: inductance simulation, with coil resistance

The dynamic model as discussed above is to be extended to the generic model
shown in Fig. 2.5. Add a coil resistance of R D 2� to the PLECS model given in
Fig. 2.9. The new model should be of the form given in Fig. 2.11.

Run the simulation again, in which case the results should be of the form given
in Fig. 2.12.
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Fig. 2.13 PLECS “symbolic” model: linear inductance with coil resistance

2.6.2 Tutorial 2: Symbolic Model Analysis of a Linear
Inductance Model

In this tutorial we will consider an alternative implementation of tutorial 1, based
on the use of symbolic models (where possible) instead of “control” blocks as
used in the previous case. Build a PLECS model of the symbolic model shown
in Fig. 2.4 with the excitation and circuit parameters as discussed in tutorial 1. Note
that “symbolic” modules in PLECS are known as “Electrical” blocks.

An example of a PLECS implementation is given in Fig. 2.13 on page 39.
The “scope” module given in Fig. 2.13 displays the results of the simulation.
The simulation results obtained with this simulation should match those given in
Fig. 2.12 where it is noted that the flux plot is not shown in this case, given that it is
not directly generated by a symbolic model. Furthermore, a “Voltmeter” (Vm1) and
“Ammeter” (Am1) are used to measure the voltage and current, respectively.

2.6.3 Tutorial 3: Analysis of a Non-linear Inductance Model

In Sect. 2.4 we have discussed the implications of saturation effects on the flux-
linkage/current characteristic. In this tutorial we aim to modify the simulation model
discussed in the previous tutorial (see Fig. 2.11) by replacing the linear inductance
component with a non-linear function module as shown in the generic model (see
Fig. 2.7). In this case, the flux-linkage/current  .i/ relationship is taken to be of
the form  D tanh .i/ as shown in Fig. 2.14. Note that in this example the gradient
of the flux-linkage/current curve becomes zero for currents in excess of ˙3A. In
reality, the gradient will be non-zero when saturation occurs.

The coil resistance of the coil is increased to R D 100�. An example of a
Simulink implementation is given in Fig. 2.15. The block diagram clearly shows
the presence of the non-linear module used to implement the function i . /. The
non-linear module has the form of a “look-up” table which requires two vectors
to be entered. Upon opening the dialog box for this module, provide the following
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Fig. 2.15 PLECS model of non-linear inductance with sinusoidal excitation function

entries under: “vector of input values”: set to tanh([-5:0.1:5]) and “vector
of output values”: set to [-5:0.1:5]. Also given in Fig. 2.15 is a “sine wave”
module, which in this case must generate the function u D Ou cos!t, where ! D
100 � (rad/s) and Ou is initially set to Ou D 140

p
2V. Note that a cosine function is

used. This means that in the “Sine Wave” dialog box (under “Phase”) a phase angle
entry is required, which must be set to �=2 (PLECS knows the meaning of “�”
hence you can write this as “pi”).

Once the new PLECS model has been completed, run this simulation for a time
interval of 40ms. For this purpose set the “stop time” (under Simulations/simulation
parameters dialog window) to 40ms. Save the results from the “Scope” module
in the form of a “xxx.csv” file. An example of the results obtained with this
simulation under the present conditions is given in Fig. 2.16. The results as given in
Fig. 2.16 also include two “M-file” functions, which represent the results obtained
via a phasor analysis to be discussed below.
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Fig. 2.16 PLECS/M-file results: inductance simulation, with coil resistance and non-linear i . /
function

To obtain some idea as to whether or not the simulation results discussed in
this tutorial are correct, we calculate the steady-state flux-linkage and current
versus time functions by way of a phasor analysis. An observation of the current
amplitude shows that, according to Fig. 2.14, operation is within the linear part of the
current/flux-linkage curve. Assume a linear approximation of this function as shown
in Fig. 2.14. This approximation corresponds to an inductance value of L D 0:87H.

The input function u D Ou cos!t may also be written as

u .t/ D <
8<
: Ou„ƒ‚…

u

ej.!t/

9=
; (2.18)

where in this case the phasor u D Ou D 140
p
2V.

The actual phasor analysis must be done in MATLAB which also allows you to
use complex numbers directly. For example, you can specify a phasor xp=3+j*5
(in MATLAB form) and a reactance X=100*pi*L, where L D 0:87H.

Write an M-file which will calculate the current and flux phasors. In addition
calculate and plot the instantaneous current and flux versus time waveforms and add
the results from the PLECS simulation (generated in the form of a “xxx.csv” file).
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An example of such an M-file is given at the end of this tutorial, which also shows
the code required to plot the results from the PLECS model.

The results obtained after running this M-file are shown in Fig. 2.16 (in “black”),
together with the earlier PLECS results. A comparison between the results obtained
via the PLECS model and phasor analysis (see Fig. 2.16) shows that the waveforms
merge towards the end of the simulation time. In the first part of the simulation the
transient effects dominate, hence the discrepancy between the simulation results and
those calculated via a (steady-state ac) phasor analysis.

2.6.3.1 M-File Code

%Tutorial 3, chapter 2
close all
L=0.87; %inductance value (H)
R=100;%resistance
dat = csvread(’tut3ch2data.csv’,1,0) % read in data from

PLECS
close all
L=0.87; %inductance value (H)
R=100; %resistance
subplot(3,1,1)
plot(dat(:,1),dat(:,2)); % voltage input
xlabel(’ (a) time (s)’)
ylabel(’voltage (V)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(3,1,2)
plot(dat(:,1),dat(:,3),’r’); % flux-linkage
xlabel(’ (b) time (s)’)
ylabel(’\psi (Wb)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(3,1,3)
plot(dat(:,1),dat(:,4),’g’); % current
xlabel(’ (c) time (s)’)
ylabel(’ current (A)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%complex analysis
u_ph=140*sqrt(2); %voltage phasor
w=2*pi*50; %excitation frequency

(rad/)
X=w*L;%reactance
i_ph=u_ph/(R+j*X); %current phasor
i_pk=abs(i_ph); %peak current value
i_rho=angle(i_ph); % angle current phasor
psi_ph=i_ph*L;%flux phasor
psi_pk=abs(psi_ph); %peak value flux
psi_rho=angle(psi_ph); %angle current phasor
%%%%%%%%%%%plot results
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time=[0:40e-3/100:40e-3];
i_t=i_pk*cos(w*time+i_rho); %current/time function
psi_t=psi_pk*cos(w*time+psi_rho); %flux/time function
subplot(3,1,3)
hold on
plot(time,i_t,’k’); %add result to plot 3
legend(’PLECS’,’m-file’)
subplot(3,1,2)
hold on
plot(time,psi_t,’k’); %add result to plot 2
legend(’PLECS’,’m-file’)

2.6.4 Tutorial 4: PLECS Based Analysis of a Non-linear
Inductance Model with Revised Excitation Condition

It is instructive to repeat the analysis given in tutorial 3 by changing the peak supply
voltage to Ou D 240

p
2V in the PLECS model and M-file. An example of the results,

which should appear after running your files, is given in Fig. 2.17.
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Fig. 2.17 PLECS/M-file results: induction simulation, with coil resistance, non-linear i . /, and
higher peak voltage
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A comparison between the results obtained via the phasor analysis and PLECS
simulation shows that the two are now decidedly different. The reason for the
discrepancy is that the increased supply voltage level has increased the flux levels,
which forces operation of the inductance into the non-linear regions of the flux-
linkage/current curve. Note that the phasor analysis uses the same L D 0:87H
inductance value. To prevent invalid conclusions, we must be aware that this ac
phasor analysis tool is only usable for linear models.

2.6.5 Tutorial 5: PLECS Based Electro-magnetic Circuit
Example

This tutorial makes use of the magnetic model introduced previously (see
Sect. 1.8.1) which is to be connected to a 100V, 50Hz sinusoidal voltage source.
The coil resistance R of the coil is assumed to be 500�. Build a PLECS based
model, which shown the magnetic structure and symbolic (electrical) circuit.
Add a scope module to show: applied voltage, current, flux linked with the
coil, and the coil MMF. Use the geometry parameters as defined in Sect. 1.8.1.
The PLECS model according to Fig. 2.18 is an implementation of said problem.
Readily observable are the “electrical” (“black” connections) and magnetic (“red”
connections) components together with the meters used to measure voltage, current,
and MMF. Furthermore, a meter dPhi is present, which measures the circuit flux
differential d�=dt, hence a integrator must used to generate the circuit flux �. The
flux-linkage  D n � is found by adding a gain module after the integrator with
gain 1000, which is the number of turns of the coil. the simulation results by way
of three “SCOPE” submodules. The results displays on the Scope module show the
required variables for a time interval of 40ms (Fig. 2.19).

R1

V_ac
MagInt

P_air

FMMF

Φ

dPhi

VVm1

A

Am1

Scope

1/s K

Fig. 2.18 PLECS simulation: electro-magnetic circuit example
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Fig. 2.19 Simulation results for electro-magnetic circuit example

It is instructive to briefly consider the results shown on the scope module:

• Current: this waveform lags the voltage waveform as expected because the coil
has inductance and resistance.

• Flux linkage: this waveform is identical to the current waveform, but the
magnitude is different. This is to be expected as the flux linkage is equal to
 D L i, where L is the inductance which according to Sect. 1.8.1 was found
to be 2:19H.

• Coil MMF: this waveform is identical to the current waveform, but the magnitude
is different. This is to be expected as the coil MMF is equal to MMF D n i, where
n is the number of coil turns, set to 1000.



Chapter 3
The Transformer

3.1 Introduction

The aim of this chapter is to introduce the ideal transformer (ITF) concept. Initially,
a single phase version is discussed, which forms the basis for a transformer model.
This model will then be extended to accommodate the so-called magnetizing
inductance and leakage inductance. Furthermore, coil resistances will be added to
complete the model. Finally, a universal model will be shown which is fundamental
to machine models. As in the previous chapters, symbolic and generic models
will be used to support the learning process and to assist the readers with the
development of PLECS models in the tutorial session at the end of this chapter.

Phasor analysis remains important as to be able to check the steady-state solution
of the models when connected to a sinusoidal source.

3.2 Ideal Transformer Concept

The physical model of the transformer, shown in Fig. 3.1, replaces the toroidal
shaped magnetic circuit used earlier. The transformer consists of an inner cylindrical
rod and outer tube made of ideal magnetic material, i.e., infinite permeability.
The inner bar and outer tube are each provided with windings n2 and n1 turns,
respectively. The outer n1 winding is referred to as the “primary” and carries a
primary current i1. The inner n2 winding is known as the secondary winding and
it carries a current i2. The cross-sectional view shows the layout of the windings
in the unity length inner rod and outer tube together with the assumed current
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319-29409-4_3) contains supplementary material, which is available to authorized users.
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Fig. 3.1 Example real ITF model

polarity. Furthermore, a flux �m is shown in Fig. 3.1 which is linked with both coils.
It is assumed at this stage that the total flux in the transformer is fully linked with
both windings. In addition, the airgap between the inner rod and outer tube of the
transformer is taken to be infinitely small at this stage.

The magnetic material of the transformer is, as mentioned above, assumed to
have infinite permeability at this stage, which means that the reluctance Rm of the
magnetic circuit is in fact zero. Consequently, the magnetic potential ucore across the
iron core must be zero given that ucore D �m Rm, where �m represents the circuit flux
in the core, which is assumed to have a finite value. The fact that the total magnetic
potential in the core must be zero shows us the basic mechanism of the transformer
in terms of the interaction between primary and secondary current.

Let us assume a primary and secondary current as indicated in Fig. 3.1. Note
carefully the direction of current flow in each coil. Positive current direction is “out
of the page,” negative “into the page.” The MMF of the two coils can be written as

MMFcoil 1 D Cn1 i1 (3.1a)

MMFcoil 2 D �n2 i2 (3.1b)

The MMFs of the two coils are purposely chosen to be in opposition, given that it
is the “natural” current direction as will become apparent shortly. The resultant coil
MMF “seen” by the magnetic circuit must be zero, because the magnetic potential
uiron D 0. This means that the following MMF condition holds:

n1i1 � n2i2 D 0 (3.2)
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Equation (3.2) is known as the basic ITF current relationship. This expression
basically tells us that a secondary current i2 must correspond with a primary current,
according to i1 D n2=n1 � i2 [see Eq. (3.2)].

The second basic equation which exists for the ITF relates to the primary and
secondary flux-linkage values. If we assume, for example, that a voltage source is
connected to the primary, then a primary flux-linkage 1 value will be present. This
in turn means that the circuit flux �m will be equal to �m D  1=n1. The corresponding
flux linked with the secondary is of the form  2 D n2 �m. The relationship between
primary and secondary flux-linkage values can therefore be written as

 2 D n2
n1
 1 (3.3)

The corresponding terminal voltage equations for the primary and secondary are
of the form

u1 D d 1
dt

(3.4a)

u2 D d 2
dt

(3.4b)

These equations are similar to Eq. (2.2) which was developed for a single coil with
zero resistance. A symbolic representation of the ITF is shown in Fig. 3.2.

The complete equation set of the ITF is given in Eq. (3.5).

u1 D d 1
dt

(3.5a)

u2 D d 2
dt

(3.5b)

 2 D n2
n1
 1 (3.5c)

i1 D n2
n1

i2 (3.5d)

Fig. 3.2 Symbolic model
of ITF
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where n2=n1 represents the so-called winding or turns ratio of the ITF. Note that the
current directions shown in Fig. 3.2 for primary and secondary are the same, i.e.,
pointing to the right. In some applications it is more convenient to reverse one or
both current directions. The ITF model (Fig. 3.1) is directly linked to the symbolic
model of Fig. 3.2 in terms of current polarities. If we choose the primary current
“into” the ITF model then the secondary direction follows “naturally” (because of
the reality that the total MMF must be zero), i.e., must come “out” of the secondary
side of the model.

The generic diagram of the basic ITF module is linked to the flux-linkage and
current relations given by Eqs. (3.5c) and (3.5d), respectively. The generic diagram
that corresponds with Fig. 3.2 is given by Fig. 3.3a.

It is sometimes beneficial to replace the primary flux-linkage input  1 with
the primary current input i1. This means that i2 becomes an output. Under these
circumstances we must also choose flux  1 as an output and  2 input (we cannot
have both the flux and current on one side of an ITF as inputs or outputs). This
version of the ITF module, named “ITF-Current” is given in Fig. 3.3b.

The instantaneous power is given as the product of voltage times current, i.e.,
u1i1 and u2i2. For the ITF model, power into the primary side corresponds to positive
power (pin D u1i1). Positive output power for the ITF is defined as (pout D u2i2) out
of the secondary as shown in Fig. 3.4.

a b

Fig. 3.3 Generic models of ITF. (a) ITF-Flux. (b) ITF-Current

Fig. 3.4 Power
convention ITF
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3.3 Basic Transformer

The ITF module forms the corner stone in this book for transformer modeling and
is also the stepping stone to the so-called IRTF module used for machine analysis.
An example of the transformer connected to a resistive load is shown in Fig. 3.5.

In this example, an excitation voltage u1 is assumed, which in turn corresponds
to a secondary voltage u2 across the load resistance. The ITF equation set is given
in Eq. (3.6).

u1 D d 1
dt

(3.6a)

u2 D d 2
dt

(3.6b)

 2 D n2
n1
 1 (3.6c)

i02 D n2
n1

i2 (3.6d)

The ITF current on the primary side is renamed i02 and is known as the primary
referred secondary current. It is the current which is “seen” on the primary side, due
to a current i2 on the secondary side. In this case i1 equals i02, as may be observed
in Fig. 3.5. The equation set of this transformer must be extended with the equation
u2 D i2 RL. A generic representation of the symbolic diagram according to Fig. 3.5
is given in Fig. 3.6.

Fig. 3.5 Symbolic model of
transformer with resistive
load

Fig. 3.6 Generic model of transformer with load
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The ITF module is shown as a “sub-module,” which in fact represents the generic
model according to Fig. 3.3a with the change that the current i1 is renamed i02.

It is important to understand how the transformer functions. Basically, the
integrated applied primary voltage gives a primary flux-linkage value, which in turn
leads to a core flux �m. The core flux results in  2, which is the flux linked with
the secondary winding. The secondary flux-linkage time differential represents the
secondary voltage which will cause a current i2 in the load. The secondary current
leads to an MMF equal to n2i2 on the secondary side which must be countered
by an MMF of n1i1 on the primary side given that the magnetic reluctance of
the transformer is considered to be zero in the ITF. Note that an open-circuited
secondary winding (RL D 1) would correspond to a zero secondary and a zero
primary current value. The fluxes are not affected as these are determined by
the primary voltage, time, and winding ratio in this case (we have assumed that
the primary coil is connected to a voltage source and the secondary to a load
impedance).

Note that a differentiator module is used in the generic model shown in Fig. 3.6.
Differentiators should be avoided where possible in actual simulations, given that
simulations tend to operate poorly with such modules. In most cases, the use of a
differentiator module in actual simulations is not required, because we can either
implement the differentiator by alternative means or build models that avoid the use
of such modules.

3.4 Transformer with Magnetizing Inductance

In electrical machines, airgaps are introduced in the magnetic circuit which, as
was made apparent in Chap. 2, will significantly increase the total magnetic circuit
reluctance Rm. Furthermore, in reality the magnetic material will have a finite
permeability, which will further increase the overall magnetic circuit reluctance. The
transformer according to Fig. 3.7 has an airgap between the primary and secondary
windings. The core flux �m now needs to cross this airgap twice. Consequently,
a given core flux will, according to Hopkinson’s law, correspond to a non-zero
magnetic circuit potential “uM” in case Rm > 0. The required magnetic potential
must be provided by the coil MMF which is connected to the voltage source.
We have chosen the primary side to be excited with a voltage source, while the
secondary side is connected to, for example, a resistive load. The implication of
the above is that an MMF equal to n1im must be provided via the primary winding.
The current im is known as the magnetizing current, which is directly linked with
the primary flux-linkage value 1 and the so-called magnetizing inductance Lm. The
relationship between these variables is of the form
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Fig. 3.7 Transformer model with finite airgap

im D  1

Lm
(3.7)

Note that the magnetizing inductance is directly linked with the magnetic
reluctance Rm namely Lm D n21=Rm, as was discussed in Chap. 2. Zero magnetic
reluctance corresponds to an infinite magnetizing inductance and, according to
Eq. (3.7), zero magnetizing current im.

The presence of a core MMF requires us to modify Eq. (3.2) because the sum
of the coil MMF’s no longer equals zero. The revised MMF equation is now of the
form

n1i1 � n2i2 D n1im (3.8)

which may also be rewritten as:

i1 D im C n2
n1

i2
„ƒ‚…

i02

(3.9)
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Fig. 3.8 Symbolic model of
transformer with load and
finite Lm

In expression (3.9) the variable i02 is shown, which is the primary referred secondary
current, as introduced in the previous section. Note that in the magnetically ideal
case (where im D 0/ the primary current is given as i1 D i02. The ITF equation set
according to Eq. (3.6) remains directly applicable to the revised transformer model.

The symbolic transformer diagram according to Fig. 3.5 must also be revised to
accommodate the presence of the magnetizing inductance on either the primary or
secondary side of the ITF. The revised symbolic diagram is given in Fig. 3.8.

The complete equation set, which is tied to the symbolic transformer model
according to Fig. 3.8, is given as

u1 D d 1
dt

(3.10a)

u2 D d 2
dt

(3.10b)

i1 D im C i02 (3.10c)

im D  1

Lm
(3.10d)

u2 D i2RL (3.10e)

For modeling a system of this type, it is important to be able to build a generic
model which is directly based on Fig. 3.8 and the corresponding equation set (3.10).
The generic module of the transformer as given in Fig. 3.9 is directly based on the
earlier model given in Fig. 3.6. Shown in Fig. 3.9 is an ITF sub-module which is in
fact of the form given in Fig. 3.3a, with the provision that the current output i1 (of the
ITF module) is now renamed i02, which is known as the primary referred secondary
current.

3.5 Steady-State Analysis

The model representations discussed so far are dynamic, which means that they
can be used to analyze a range of excitation conditions, which includes transient as
well as steady-state. Of particular interest is to determine how such systems behave
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Fig. 3.9 Generic model of transformer with load and finite Lm

when connected to a sinusoidal voltage source. Systems, such as a transformer with
resistive loads, will (after being connected to the excitation source) initially display
some transient behavior but will then quickly settle down to their steady-state.

As discussed earlier, the steady-state analysis of linear systems connected to
sinusoidal excitation sources is of great importance. Firstly, it allows us to gain
a better understanding of such systems by making use of phasor analysis tools.
Secondly, we can use the outcome of the phasor analysis as a way to check the
functioning of our dynamic models once they have reached their steady-state.

3.5.1 Steady-State Analysis Under Load
with Magnetizing Inductance

In steady-state, the primary excitation voltage is of the form u1 D Ou1 cos!t, which
corresponds to a voltage phasor u1 D Ou1. The supply frequency is equal to ! D 2�f
where f represents the frequency in Hz.

The aim is to use complex number theory together with Eqs. (3.10) and (3.6) to
analytically calculate the phasors:  

1
,  

2
, i2, i02, i1, and u2. The flux-linkage phasor

is directly found using Eq. (3.10a), which in phasor form is given by u1 D j! 
1
.

The corresponding flux-linkage phasor on the secondary side of the ITF module
is found using (3.6d), which leads to  

2
D n2=n1 �  

1
. The secondary voltage

equation (3.10b) gives us the secondary voltage (in phasor form) u2 D j! 
2
, which

in turn allows us to calculate the secondary current phasor according to i2 D 1=RL �u2.
This phasor may also be written in terms of the primary voltage phasor u1 D Ou1 as

i2 D
�

n2
n1

�
u1
RL

(3.11)

The corresponding primary referred secondary current phasor is found using
Eqs. (3.6d), (3.11) which gives i02 D .n2=n1/

2 u1=RL. The primary current phasor is
found using (3.10c), where the magnetizing current phasor im is found using (3.10d)
namely im D 1=Lm �  

1
. The resultant primary current phasor may also be written as
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Fig. 3.10 Primary referred
phasor model of transformer
with load and finite Lm

Fig. 3.11 Phasor diagram of
transformer with load and
finite Lm

i1 D u1
j!Lm

C
�

n2
n1

�2 u1
RL

(3.12)

It is instructive to consider Eq. (3.12) in terms of an equivalent circuit model as
shown in Fig. 3.10.

The diagram shows the load resistance in its so-called transformer primary side
“referred” form R0

L D .n1=n2/
2 RL. Hence, we are able to determine the currents

(in phasor form) directly from this diagram. A phasor diagram of the transformer
with a resistive load RL and magnetizing inductance Lm, which corresponds with the
given phasor analysis and equivalent circuit (Fig. 3.10), is shown in Fig. 3.11.

Some interesting observations can be made from this diagram. Firstly, the
primary and secondary voltages are in phase. Secondly, the magnetizing current
phasor lags the primary voltage phasor by �=2. The primary referred secondary
current phasor i02 is in phase with u2 because we have a resistive load. Furthermore,
the primary current is found by adding (in vector form) the phasors i02 and im. Note
that the primary current equals the magnetizing current when the load resistance is
removed, i.e., RL D 1.

The corresponding steady-state time function of, for example, the current i1 can
be found by using
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i1 .t/ D < ˚
i1 ej!t

�
(3.13)

where i1 is found using (3.12).

3.6 Three Inductance Model

The model according to Fig. 3.7 assumes that all the flux is linked with both coils.
In reality this is not the case as may be observed from Fig. 3.12. This diagram shows
two flux contributions: �
1 and �
2, which are known as the primary and secondary
leakage flux components, respectively. The leakage fluxes physically arise from the
fact that not all flux of each coil is “seen” by both.

Consequently, these components are not linked with both coils and they are
represented by primary and secondary leakage inductances

Fig. 3.12 Transformer model with finite airgap and leakage
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L
1 D  
1

i1
(3.14a)

L
2 D  
2

i2
(3.14b)

where the primary and secondary leakage flux-linkage values are given by  
1 D
n1�
1 and  
2 D n2�
2, respectively. The total flux-linkage seen by the primary
and secondary is thus equal to

 1 D  m C  
1 (3.15a)

 2 D  0
m �  
2 (3.15b)

The core flux �m which is linked with the primary coil is now renamed m D n1�m.
Similarly, the core flux �m which is linked with the secondary coil gives us the flux-
linkage  0

m D n2�m. The terminal equations for the transformer in its current form
are given as

u1 D d m

dt
C L
1

di1
dt

(3.16a)

u2 D d 0
m

dt
� L
2

di2
dt

(3.16b)

where

u1 D d 1
dt

(3.17a)

u2 D d 2
dt

(3.17b)

The symbolic representation of the transformer according to Fig. 3.8 must be
extended to include the leakage inductance. The revised symbolic model as given in
Fig. 3.13 clearly shows the leakage inductances. A generic model of the transformer

Fig. 3.13 Symbolic representation, transformer with magnetizing and leakage inductance
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Fig. 3.14 Symbolic
representation, transformer
with magnetizing inductance,
primary leakage inductance,
and referred secondary
leakage inductance

with leakage inductances can be developed by firstly moving the secondary leakage
inductance L
2 to the primary side of the ITF. In this case the referred value L0


2

equals .n1=n2/
2 L
2, as may be observed from Fig. 3.14. The relationship between the

flux-linkages  1;  0
2 and currents i1; i02 can be written in matrix format as

	
 1

 0
2



D

	
L1 �Lm

Lm �L0
2


 	
i1
i02



(3.18)

where L0
2 D Lm C L0


2. For the development of an ITF based model it is helpful to
invert Eq. (3.18) which gives

	
i1
i02



D 1

L1L0
2 � L2m

	
L0
2 �Lm

Lm �L1




„ ƒ‚ …
ŒL�1�

	
 1
 0
2



(3.19)

which, together with Eq. (3.17), leads to the generic model given in Fig. 3.15
that corresponds to the symbolic model given in Fig. 3.14. Clearly observable in
Fig. 3.15 is a module L�1, which represents the inverse matrix equation (3.19)
required to calculate the currents i1; i02 from the flux-linkage variables  1 and  0

2.
It is further noted that the model is not suited to simulate the no-load situation (with
a passive load), i.e., open-circuited secondary winding, since current i2 is an output
and thus cannot be forced to zero by any load.

3.7 Universal ITF Based Transformer Model

The problem with the three-inductance model as discussed in Sect. 3.6 lies within
the fact that it is extremely difficult to determine individual values for the two
leakage inductances in case access to the secondary side of the model is not possible.
For transformers this is not an issue (when the winding ratio is known) but, for
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Fig. 3.15 Generic representation, transformer with magnetizing and leakage inductances

Fig. 3.16 Symbolic representation, universal transformer model

example, for squirrel cage asynchronous machines, to be discussed later, this is
certainly the case. A triple inductance model of the transformer is in fact not needed
given that its behavior can be perfectly modeled by a two-inductance based model
as will become apparent shortly. For the purpose of the analysis it is helpful to
introduce a new set of inductance parameters LM; Lpr

¢ , and Lse
¢ and a second ITF

module with winding ratio aW1, as shown in Fig. 3.16 to replace the three element
inductance network of the model (shown previously in Fig. 3.14). The new set
of inductance parameters is a function of the so-called transformation factor a,
which can (as will be shown by the ensuing analysis) be judicially chosen to zero
either one of the leakage inductances Lpr

¢ or Lse
¢ , thus creating a two-inductance

model. Furthermore, the impedance as viewed from either side of the revised
inductance network must correspond to the values found in the original inductance
network and should not be affected by changes in the transformation factor “a”. The
transformation process is initiated by considering the equation matrix (3.18) which
is linked to the model given in Fig. 3.14. In particular, it is helpful to consider the
relationship between the primary flux-linkage 1 and currents i1; i02, which can also
be written as

 1 D L1i1 � Lmi02 � aLmi1 C aLmi1 (3.20)
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This expression may also be written as

 1 D .L1 � aLm/„ ƒ‚ …
L

pr
¢

i1 C aLm„ƒ‚…
LM

�
i1 � ii2

�
(3.21)

where the new parameters Lpr
¢ and LM represent a generalized leakage inductance

and magnetizing inductance, respectively. Furthermore, a scaled secondary current
ii2 is introduced in Eq. (3.21) according to

ii2 D i02
a

(3.22a)

 i
2 D a 0

2 (3.22b)

Also shown in Eq. (3.22) is a secondary flux-linkage variable  i
2, which rep-

resents the scaled (by the transformation factor a) flux-linkage variable  0
2. The

choice of scaling these two variables  i
2; ii2 is such that the product of the current

and flux variables, as well as the impedances remain unaffected by the scaling. In
the “universal” model (see Fig. 3.16), Eq. (3.22) is represented by the ITF module
with winding ratio aW1. Equation (3.22b) and the relationship between the secondary
flux-linkage  0

2 and currents i1; i02, as defined in Eq. (3.18) form the basis for the
second part of the transformed model. Using these two equations to compute the
scaled secondary flux-linkage variable  i

2 gives

 i
2 D aLmi1 � a2L0

2i
i
2 � aLmii2 C aLmii2 (3.23)

This expression may also be rewritten as

 i
2 D aLm„ƒ‚…

LM

�
i1 � ii2

� � �
a2L0

2 � aLm
�

„ ƒ‚ …
Lse
¢

ii2 (3.24)

where a second leakage inductance parameter Lse
¢ is introduced. The resultant flux-

linkage based equation set as given by Eqs. (3.21), (3.24) can also be written as

 1 D Lpr
¢ i1 C LMiM (3.25a)

 i
2 D LMiM � Lse

¢ ii2 (3.25b)

where iM D i1 � ii2 represents the scaled magnetizing current. The flux equation
set contains a set of leakage inductances and magnetizing inductance as shown in
Fig. 3.16, which are function of the transformation variable “a” as mentioned earlier.
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Some simplification of the model shown in Fig. 3.16 may be achieved by combining
the two ITF modules to a single unit with winding ratio

k D a
n1
n2

(3.26)

The new set on inductances shown in Fig. 3.16 is conveniently summarized in
Eq. (3.27)

Lpr
¢ D Lm

�
L1
Lm

� a

�
(3.27a)

Lse
¢ D aL0

2

�
a � Lm

L0
2

�
(3.27b)

LM D aLm (3.27c)

Observation of Eq. (3.27) shows that the transformation variable “a” is bound by
the condition

Lm

L0
2

� a � L1
Lm

(3.28)

on the grounds that the leakage inductances Lpr
¢ ; Lse

¢ must be greater or equal to zero.
The model according to Fig. 3.16 is reduced to a two-inductance model in case

the value of the transformation factor is set to either a D Lm=L0

2 (which gives Lse
¢ D 0)

or a D L1=Lm (which gives Lpr
¢ D 0). Both “two inductance” model configurations

will be discussed in the next two subsections. Note that theoretically a model with a
variable transformation factor a could be used, in which case a “universal” generic
model similar to Fig. 3.15 can be found. Such a universal model would require a
transformation factor a dependent inverse matrix module and an ITF module with
winding ratio k. Note that a value of a D 1 corresponds to the case where the
universal model is exactly equal to the model discussed in Sect. 3.6.

3.7.1 Primary Leakage Inductance Based Model

A two-inductance model with a leakage inductance Lpr
¢ located on the primary

side of the transformer can be obtained by considering the universal model shown
in Fig. 3.16, with a transformation factor a D Lm=L0

2. Under these conditions, the
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Fig. 3.17 Primary leakage
inductance based symbolic
transformer model

leakage inductance Lse
¢ will be zero as may be observed from Eq. (3.27b). The

symbolic model given in Fig. 3.17 corresponds to the symbolic model given in
Fig. 3.16 with a D Lm=L0

2. A single ITF transformer with winding ratio k according
to Eq. (3.26) is introduced instead of the two ITF modules shown in Fig. 3.16. The
inductance values and winding ratio for the so-called primary leakage inductance
based model or secondary flux-linkage based model may be found with the aid of
Eqs. (3.27), (3.26) and substitution of a D Lm=L0

2 which gives

k D Lm

L0
2

n1
n2

(3.29a)

LM D �2L1 (3.29b)

Lpr
¢ D L1

�
1 � �2

�
(3.29c)

in which the so-called coupling factor � is introduced, according to

� D
s

L2m
L1L0

2

(3.30)

The equation set which corresponds to the two-inductance symbolic model of
Fig. 3.17 is given in Eq. (3.31).

u1 D d 1
dt

(3.31a)

u2 D d 2
dt

(3.31b)

 1 D i1L
pr
¢ C  i

2 (3.31c)
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 i
2 D iMLM (3.31d)

iM D i1 � ii2 (3.31e)

 i
2 D k 2 (3.31f)

i2 D k ii2 (3.31g)

Equations (3.31f) and (3.31g) represent those implemented by the ITF module.

3.7.2 Secondary Leakage Inductance Based Model

The two-inductance model described in the previous subsection is particularly
useful when the excitation is provided (by means of a current source, as is often
the case for electrical drives) from the primary side of the ITF. Similarly the model
described in the previous section is useful when a voltage source is connected to the
secondary side, because this simplifies the task of computing primary currents.

In some cases, where, for example, a voltage source is connected to the primary
side it is convenient to consider an alternative two-inductance model, which is also
useful in case excitation (by means of a current source) is provided by the secondary
side. A two-inductance model with a leakage inductance Lse

¢ may be realized by
considering the universal model shown in Fig. 3.16 with a transformation factor of
a D L1=Lm. Under these conditions, the leakage inductance Lpr

¢ will be zero as may
be observed from Eq. (3.27b). The symbolic model given in Fig. 3.18 corresponds
to the symbolic model given in Fig. 3.16 with a D L1=Lm. A single ITF transformer
with winding ratio k as defined by Eq. (3.26) is introduced instead of the two ITF
modules shown in Fig. 3.16. The inductance values and winding ratio for the so-
called secondary leakage inductance based model or primary flux based model may
be found with the aid of Eqs. (3.27), (3.26) and substitution of a D L1=Lm, which
gives

Fig. 3.18 Secondary leakage
inductance based symbolic
transformer model
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k D L1
Lm

n1
n2

(3.32a)

LM D L1 (3.32b)

Lse
¢ D L1

�
1

�2
� 1

�
(3.32c)

where � is defined in Eq. (3.30). It is emphasized that this “alternative” two-
parameter model is referred to as a primary flux based model because the primary
flux linkage equals the (transformed) magnetizing flux in this model. In this
model the leakage inductance is oriented towards the secondary terminals of the
transformer. In this book the primary flux based ITF model is not used. Henceforth,
whenever reference is made to a “two-inductance model,” we will assume by default
the configuration given by Fig. 3.17.

3.8 Mutual and Self-inductance Based Model

A model often used in the field of communication systems is of the form given in
Fig. 3.19. The positive current directions for this type of model are inwards as is
customary for this configuration. The aim of this section is to establish the link, in
terms of the parameters which exist between this model and the model in Fig. 3.17.

Mutual and self-inductance based transformer models are defined in terms of the
parameters L1 and L2, respectively. In addition, the magnetic coupling between the
primary and secondary coils is defined in terms of the so-called mutual inductance
parameter M, as indicated in Fig. 3.19. The mutual inductance can be defined from
either the primary or secondary side.

From the primary side the mutual inductance is defined as the ratio of the flux
linked with the secondary winding and current in the primary side, i.e., M D  2=i1,
with the condition i2 D 0. Vice versa, the mutual coupling can also be defined as
the ratio between the primary flux linkage and secondary current, i.e., M D  1=i2,

Fig. 3.19 Mutual coupling
type model of transformer
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with the condition i1 D 0. The actual mutual inductance value remains unchanged
whether viewed from the primary or secondary side as will become apparent shortly.
As such, the mutual inductance is also (like L1; L2) an “independent” parameter.

The basic equation set which applies to Fig. 3.19 can be written as

u1 D L1
di1
dt

C M
di2
dt

(3.33a)

u2 D M
di1
dt

C L2
di2
dt

(3.33b)

The revised model states that the flux-linkage time differential, on for example,
the primary side consists of a term due to primary self-inductance to which we must
now add a mutual inductance term.

By determining the equivalent (to Eq. (3.33)) primary based ITF transformer
model (see Fig. 3.17) equation set, we will be able to show how the parameters of
the mutual coupling based model are linked to the ITF based model. A suitable
starting point for this analysis is expression (3.31a), which remains unaffected by
the model in use. From Eq. (3.31c) we can deduce that the term d 1=dt may also be
written as

d 1
dt

D Lpr
¢

di1
dt

C d i
2

dt
(3.34)

The primary referred flux-linkage i
2 can according to Eq. (3.31d) also be written as

 i
2 D LMiM, in which the magnetizing current can also be expressed as iM D i1� ii2.

Given the above, we can with the aid of Eqs. (3.31f) and (3.31g) rewrite Eq. (3.34)
in the following form:

d 1
dt

D �
Lpr
¢ C LM

�
„ ƒ‚ …

L1

di1
dt

�
�

LM

k

�
„ ƒ‚ …

M

di2
dt

(3.35)

A comparison between Eqs. (3.35) and (3.33a) (right-hand side) shows that they
differ only in terms of the minus sign between the two terms. The reason for this is
that the secondary current sign convention between the two models is in opposition.
If we consider the parameters present in both equations (in front of the current
differential terms), then it is hopefully apparent that the primary self-inductance
and mutual inductance terms may be expressed, using k from Eq. (3.29) as

L1 D L¢ C LM (3.36a)

M D LM

k
(3.36b)
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Note that the mutual inductance may also be expressed in terms of the coupling
factor [(Eq. (3.30)] which gives

M D �
p

L1L2 (3.37)

A similar type of analysis, as shown above, may also be carried out with respect
to expressing the flux differential term d 2=dt in terms of ITF parameters and current
differential terms. An analysis of this type, an exercise left to the reader, shows that
this flux differential can be written as

d 2
dt

D
�

LM

k

�
„ ƒ‚ …

M

di1
dt

�
�

LM

k2

�
„ ƒ‚ …

L2

di2
dt

(3.38)

A comparison between Eqs. (3.38) and (3.33b) (right-hand side) and taking into
account the secondary current direction in both models show that the secondary
self-inductance may be expressed as

L2 D LM

k2
(3.39)

Note from Eq. (3.38) that a mutual inductance term is also present and indeed of
the form given by expression (3.36b).

3.9 Two-Inductance Model with Coil Resistance

The remaining extension which has to be made with respect to the model shown
in Sect.,3.7.1 is concerned with the introduction of the primary and secondary coil
resistances R1 and R2, respectively. Use of these parameters requires a change to
Eqs. (3.31a) and (3.31b) which are now of the form

u1 � R1i1 D d 1
dt

(3.40a)

u2 C R2i2 D d 2
dt

(3.40b)
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Fig. 3.20 Symbolic representation of a four parameter transformer model

Fig. 3.21 Generic representation of a four parameter transformer model

Note that the variables  i
2 and ii2 used in Fig. 3.17 will in future be shown as  0

2

and i02, respectively. The notation of a variable x0 implies, in general, a primary or
secondary “referred” value. Furthermore, for the sake of readability, the inductance
Lpr
¢ will, in the following be simply referred to as L¢ , when referring to this “two-

inductance” model.
The symbolic representation of the transformer with resistances is given in

Fig. 3.20. A generic form of the four parameter single phase transformer, as given in
Fig. 3.21, can be directly converted to a Simulink or PLECS type model without the
need for a differentiator module. Note that the ITF module according to Fig. 3.3b is
now used in Fig. 3.21. The flux and current relations for the ITF are now of the form
given in Eqs. (3.31f) and (3.31g), where the modified winding ratio k is defined in
Eq. (3.29a). Hence, the ITF outputs are the primary referred secondary flux-linkage
value 0

2 and the secondary current i2. It is by virtue of the fact that we have reversed
the signal flow in the ITF (by using the ITF current model, see Fig. 3.3b) that we
are able to avoid the use of a differentiator on the secondary side.

3.9.1 Phasor Analysis of Revised Model, with Resistive Load

The steady-state analysis of the model according to Fig. 3.20 is carried out along
the lines of the previous model given in Sect. 3.5.1. As with the previous case, a
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primary supply voltage u1 D Ou1 cos!t is assumed, which corresponds with a phasor
u1 D Ou1. Prior to undertaking this analysis it is helpful to summarize in phasor form
the complete equation set (including the ITF) for this system.

u1 D i1R1 C j! 
1

(3.41a)

i1 D 1

L¢

�
 
1

�  0
2

�
(3.41b)

u2 D j! 
2

� i2R2 (3.41c)

u2 D i2RL (3.41d)

i02 D i1 � iM (3.41e)

iM D  0
2

LM
(3.41f)

 0
2

D k  
2

(3.41g)

i2 D k i02 (3.41h)

The analysis of this type of circuit is aimed at finding the primary current phasor i1
as a function of the circuit parameters and the input (known) voltage phasor u1.
The required expression can be obtained by use of Eq. (3.41). An alternative
approach is possible in this case by realizing that the ITF module in fact acts as
an impedance converter. For example, if we consider the impedance Z2 D e2=i2

(where we have ignored the sign convention), then the equivalent impedance on the
primary side, known as the primary referred secondary impedance, will be equal to
Z0
2 D e0

2=i02 where e0
2 D j! 0

2
.

The relationship between the two impedances is found by using Eqs. (3.41g)
and (3.41h) which gives Z0

2 D k2Z2. In this case, we can simply move the secondary
elements (coil resistance and load resistance) to the primary side, provided we
multiply the value by a factor k2. This process is known as building a primary
referred model of the transformer, which greatly simplifies the steady-state analysis.
The result of moving the secondary circuit elements to the primary side of the ITF
is shown in Fig. 3.22. Note that the inductances are represented in a phasor circuit
as j!L.

The primary current phasor is then found by determining the equivalent
impedance at the primary terminals, which according to Fig. 3.22 is of the form

Fig. 3.22 Equivalent primary
referred model of transformer
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Zprim D R1 C j!L¢ C j!LM k2 .R2 C RL/

j!LM C k2 .R2 C RL/
(3.42)

The current phasor is then calculated using i1 D Ou1=Zprim. Once this phasor is defined
we can determine, with the aid of Eq. (3.41), the remaining phasors of this circuit.
For example, the secondary current phasor is directly found using Eq. (3.41h). The
corresponding voltage phasor u2 can with the aid of Eq. (3.41g) be written as u2 D
u0

2=k. Note in this context that the product u2 i2 is equal to u0
2 i02, i.e., the transformation

is power invariant.

3.10 Tutorials

3.10.1 Tutorial 1: PLECS Model of a Single Phase Zero
Leakage Current Transformer

The single phase transformer shown in Fig. 3.23 is to be used for current measure-
ment. The secondary winding is connected to a resistance RL, hence the voltage
across u2 will be a function of the primary current i1, which is given or has to
be measured. The primary and secondary coil resistance, as well as the leakage
inductance of the transformer, are ignored. The transformer has a magnetizing
inductance Lm and a winding ratio of n1=n2 D 1.

Goal of this tutorial is to build a PLECS model diagram of the ITF based
transformer circuit with the primary current i1 as input variable. Differentiator
modules may not be used in this example. Use a “Scope” module to show
the variables i1andu2 as function of time. The current function is of the form
i1 D 10 sin.!t/, with ! D 100� rad/s. The magnetizing inductance Lm and load
resistance RL are equal to 100 mH and 5�, respectively. Set your simulation “run
time” to 60 ms.

An example of an implementation of this problem is given in Fig. 3.24. The
results of the simulation in the form of the input current and output voltage are given
in Fig. 3.25. The M-file given below is used to process the results obtained from the
simulation scope module (via an export of data to a file tut1ch3data.csv).

Fig. 3.23 Current
transformer with
resistance RL
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Fig. 3.24 Simulation of current transformer
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Fig. 3.25 PLECS results: current transformer tutorial

It is instructive to check the results from the simulation by a steady-state phasor
analysis. The same M-file also shows the phasor analysis for this problem and
the corresponding output voltage waveform is also added to the results shown
in Fig. 3.25.

M-file Code

%Tutorial 1, chapter 3
close all
datout = csvread(’tut1ch3data.csv’,1,0) % read in data from
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PLECS
subplot(2,1,1)
plot(datout(:,1),datout(:,2));% i1
hold on
plot(datout(:,1),datout(:,3),’r’) %im
grid
legend(’current i_1’,’current i_m’)
ylabel(’(A)’)
subplot(2,1,2)
plot(datout(:,1),datout(:,4)) % u_2
grid
hold on
%%%%%%calculation phasors
i1_ph=10; %current phasor i1
RL=5; Lm=100e-3; w=100*pi;
%%%%%%%%%%%%%%
XL=j*w*Lm;
u2_ph=i1_ph*RL/(1+RL/XL);
u2_hat=abs(u2_ph); % amplitude
u2_rho=angle(u2_ph); %angle between u2_ph and

i2_ph
%%%%%%%plot time wave form u2(t)
t=[0:0.1e-3:60e-3];
u2_t=u2_hat*sin(w*t+u2_rho);
plot(t,u2_t,’g’); %plot u2(t)
legend(’voltage u_2’,’voltage u_2 phasor’)
xlabel(’time (s)’)
ylabel(’(V)’)
ylim([-60 60])

An observation of Fig. 3.25 shows that the output voltage waveform from the
simulation is aligned with the output obtained from the phasor analysis after a
time interval of approximately 30 ms. Therefore, a “transient” effect is present
which cannot be “seen” with the phasor analysis. A further observation of Fig. 3.25
shows that, under steady-state conditions, a phase angle difference exists between
input and output waveforms, which is caused by the presence of the magnetizing
inductance Lm and corresponding magnetizing current im. The latter is also shown
in Fig. 3.25 (top subplot), where it is noted that the output voltage is determined
by the expression u2 D .i1 � im/ n1=n2 RL. Consequently, the presence of a non-zero
magnetizing current will cause an output error given that the ideal voltage output
should be uideal

2 D i1n1=n2 RL. It can be shown that the output phasor u2 may be
expressed in terms of the input current phasor i1 and parameters RL and Lm.

u2 D RL i1�
1C RL

j!Lm

� (3.43)

The denominator of Eq. (3.43) shows that the phase angle is equal to:
arctan .RL=!Lm/. Hence, during the design/manufacture of transformers for this
purpose it is prudent to maximize the Lm value and limit the size of RL.
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Fig. 3.26 High leakage transformer

3.10.2 Tutorial 2: PLECS Model of a Single Phase
High Leakage Transformer

An interesting and educative transformer configuration, as shown in Fig. 3.26, is
considered here. Unique to this transformer concept are two magnetic “fingers”
separated by an airgap, which adds an inductance component in series with the
leakage inductance. The transformer has a primary and secondary winding with
n1 D 10 and n2 D 20 turns, respectively. Coil resistance of both coils may be
ignored. The primary winding is connected to an AC voltage source defined as
u1 D 10 cos .2�ft/, with f D 10 kHz, while the secondary coil is attached to a load
resistance of R D 50�. The transformer magnetic material is assumed to be ideal
(infinite permeability) and an airgap of g D 0:05mm. The core cross-sectional area
on either side of the airgap g is assumed to be Ag D 50mm2. Build a PLECS model
of the transformer using “electrical/magnetic” blocks and a sinusoidal excitation
source as defined above. Add a scope module which shows: primary/secondary
voltages, primary/secondary currents, circuit flux in both coils, MMF across the
airgap, and corresponding airgap flux.

The PLECS model given in Fig. 3.27 shows the two electrical circuits linked with
the primary and secondary coil. In addition, a set of magnetic blocks is shown which
are used to represent the airgap P_air and the electrical/magnetic interface coil
modules. A set of meters is used to measure the flux in the two coils and airgap as
well as the MMF due to the coils. The results obtained with the PLECS model shown
in Fig. 3.28 are briefly discussed below. The excitation voltage (“blue” coil voltage
plot) causes the coil circuit flux (“blue” plot) which lags the latter by �=2 rad/s. Due
to the presence of the airgap part of the flux due to primary coil crosses the airgap
(“red” circuit flux plot). The difference between the primary coil flux and airgap coil
flux is the secondary coil circuit flux (“green” circuit flux plot). This in turn causes
the coil voltage u2 (“red” coil voltage plot) which leads the latter by �=2 rad/s. A load
resistance R is connected to the secondary coil hence a current i2 is generated (“red”
current plot) that corresponds to an airgap MMF (airgap MMF plot). Both MMF and
secondary current waveforms are in phase with the secondary voltage plot. Because
an ideal magnetic material is used the MMF generated by the secondary coil must
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Fig. 3.27 PLECS model: high leakage transformer

be compensated by an equal but opposite MMF in the primary coil which causes
the primary current i1 (“blue” current plot). The amplitude of both currents (which
must be in in phase) differ because the turns ratio between primary and secondary
differs by a factor 2 in this case.

In the sequel to this tutorial a phasor analysis is to be performed which generates
the steady-state secondary voltage for the model according to Fig. 3.26. Plot this
result together with the PLECS generated secondary coil voltage waveform shown
in Fig. 3.28.

The results of this analysis given in Fig. 3.29 shown that the calculated voltage
(“green” plot) merges with the PLECS generated waveform u2 after approximately
30�s. At the conclusion of this tutorial the M-file is given which shows the phasor
analysis and mathematical handling required to arrive at Fig. 3.29. Central to the
analysis is a series network which consists of an inductance due to the airgap and the
primary referred resistance R. Attached to this network is the phase representation
of the excitation voltage u1 D 10, while the voltage across the resistor is the primary
referred secondary coil phasor. The inductance is calculated using n21=Rm, where Rm
is the magnetic reluctance due to the airgap. After computation of the output phasor
u2_phr a transformation to the time domain is undertaken. Furthermore, scaling
by a factor n2=n1 is required to generate the coil voltage u2 function from the referred
value.

%Tutorial 2, chapter 3
close all
datout = csvread(’tut2ch3data.csv’,1,0) % read in
data from PLECS
plot(datout(:,1),datout(:,3),’r’) % u_2

grid
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Fig. 3.28 PLECS model: high leakage transformer
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Fig. 3.29 Calculated and PLECS derived secondary coil voltage u2.t/

hold on
%%%%%%calculation phasors
u1_ph=10 %voltage phasor u_1
f=10e3; % excitation frequency
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R=50;; w=2*pi*f;
%%%%%%%%%% magnetic
uo=4*pi*1e-7; %permeability in air
n1=10; %number of turns primary
n2=20; %number of turns secondary
g=0.05e-3; % airgap
Ag=50e-6; % airgap crossection, same as core
Rm=g/(uo*Ag) % reluctance airgap
Lsig=n1^2/Rm % leakage inductance
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% build primary referred model
Xsig=j*w*Lsig; %primary reactance
Rr=(n1/n2)^2*R; %referred load resistance
%%%%%%%%%%%%% phase analysis
u2_phr=u1_ph/(1+Xsig/Rr);
u2_hatr=abs(u2_phr); % amplitude
u2_rho=angle(u2_phr); %angle between u2_phr and u1_ph
u2_hat=(n2/n1)*u2_hatr; % actual secondary voltage
%%%%%%%plot time wave form u2(t)
t=[0:1e-6:400e-6];
u2_t=u2_hat*cos(w*t+u2_rho);
plot(t,u2_t,’g’); %plot u2(t)
legend(’voltage u_2’,’voltage u_2 phasor’)
xlabel(’time (s)’)
ylabel(’(V)’)

3.10.3 Tutorial 3: PLECS Model of a Single Phase
Transformer with Leakage Inductance

A 50 Hz, 660V=240V supply transformer is considered in this tutorial. The object
is to determine the parameters of the transformer in question using data obtained
from a no-load and short-circuit test. In the second part of this tutorial, a PLECS
based dynamic model is to be built. This model will then be used to examine
the behavior of the transformer under load conditions. A phasor analysis is also
performed so that the steady-state results obtained with the PLECS model can be
verified. The symbolic model of the transformer, as given in Fig. 3.30, is based
on the symbolic model discussed in this chapter (see Fig. 3.20). The model used
in this tutorial is extended by the addition of a resistance RM placed across the
terminals of the primary. The power dissipated in this resistance represents the
so-called iron losses(due to eddy currents and hysteresis) in the transformer. In
three-inductance models, shown in Fig. 3.13, this resistance is usually connected
in parallel with the inductance Lm. Positioning this resistance across the primary
terminals (or the terminals which corresponds to the supply side) simplifies the
generic model at the price of a marginal reduction in accuracy. Under steady-state
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Fig. 3.30 Transformer model with iron losses

conditions the power (in Watts) dissipated in a resistance is given by PR D I2R D
U2=R, where UandI represent the RMS voltage and current seen by the resistance.
The transformer turns ratio was identified prior to this tutorial by the voltage ratio
660=240, which represents the rated primary and secondary RMS voltage values of
this unit. To determine the parameters of this transformer, a “no-load” test can be
carried out where the primary (terminal 1 side) was connected to a 660 V, 50 Hz
sinusoidal supply source and the secondary side open circuited. The measured
current and power under these conditions were found to be 0.2 A (RMS) and 20 W,
respectively. Furthermore, the voltage across the secondary winding was found to
be 240 V (RMS). A “short-circuit” test was also carried out, where the secondary
winding was connected to a 8 V (RMS), 50 Hz voltage source, which gives a rated
secondary current of 20 A (RMS) with the primary winding short-circuited. Note
that in this example the short-circuit test is carried out from the secondary side
(voltage source connected to the secondary winding), which is often done in case
the primary voltage is relatively high, as is the case here. The secondary power was
also measured under these circumstances and found to be 20 W. On the basis of
these experimental tests the parameters of the model according to Fig. 3.30 can be
identified with reasonable accuracy.

The solution to this problem requires a phasor analysis, given that the exper-
imental data was obtained under “steady-state AC conditions.” Under “no-load”
conditions we can simplify the model according to Fig. 3.30 by assuming that
the voltage drop across the primary resistance and leakage inductance is small in
relation to the applied primary voltage. The primary current in phasor representation
(under no-load only) is of the form i1 D iRM C iLM, where

�
iRM; iLM

�
represent the

current through components RM and LM, respectively. The RMS current through the
resistance RM is found using IRM D P1=U1 D 20=660, where P1 and U1 represent
the measured no-load power and RMS voltage, respectively. The winding ratio
k is found using k ' U1=U2. The current through LM is found using ILM Dq
.I1/

2 � .IRM/
2, where I1 represents the measured (RMS) no-load primary current.

Note that IRM has already been calculated. On the basis of these calculations and
no-load data, the following parameters are obtained:

k ' U1

U2

(3.44a)
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RM ' .U1/
2

P1
(3.44b)

LM ' U1

!

r
.I1/

2 �
�

P1
U1

�2 (3.44c)

where U1; U2; I1, and P1, shown in Eq. (3.44), represent the no-load experimental
data.

Under short-circuit test conditions the model according to Fig. 3.30 can be
simplified by ignoring the magnetizing current and iron losses. The reason for
this is that the secondary voltage is very low compared to normal operation.
Hence, the current which flows in RM and LM is negligible in comparison to the
rated primary current. Consequently, the currents which flow in these components
can be ignored when the transformer is exposed to a short-circuit test. For the
calculation linked to this test, we will refer to the applied secondary voltage and
measured secondary current to the primary side. This means that we can consider
(for calculation purposes) the short-circuit problem from the primary side. The
total resistance Rp as seen from the primary side consists of the primary resistance
R1 to which we must add the primary referred secondary resistance R0

2 D k2R2.
The leakage reactance !L¢ completes this series network, which is excited by a
primary referred secondary voltage U0

2 D kU2. The primary referred secondary
current is equal to I0

2 D I2=k. The short-circuit impedance Zp, as seen from the

primary side, is equal to Zp D U0

2=I0

2 D
q

R2p C .!L¢ /
2. The impedance Zp can

therefore be found on the basis of the applied secondary voltage U2, calculated
winding ratio k and measured current I2. In addition, the short-circuit power P2
was measured which may be written as P2 D �

I0
2

�2
Rp. From this equation the total

resistance as “seen” from the primary side can be obtained. The individual resistance
values cannot be found (unless they are measured directly with the aid of an Ohm
meter) from these measurements. Typically, the assumption made in this case is that
R0
2 D R1. The parameters, which are obtained from the short-circuit measurements,

are calculated as follows:

Rp ' k2
P2
I22

(3.45a)

R1 ' Rp

2
(3.45b)

R2 ' Rp

2 k2
(3.45c)

L¢ ' 1

!

s�
k2

U2

I2

�2
� R2p (3.45d)
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where U2; I2, and P2 shown in Eq. (3.45) represent the short-circuit experimental
data. The winding factor k was calculated using Eq. (3.44a). The first part of the M-
file shown below calculates the parameters for this transformer based on the no-load
and short-circuit test data.

M-file Code

%Tutorial 3, part 1, chapter 3
%no-load data
U1_n=660; % RMS primary voltage
I1_n=0.2; % RMS primary current
U2_n=240; % RMS secondary voltage
P1_n=20; % noload measured power
%%%%%%%%%%%%%%
w=2*pi*50;%frequency rad/s
%%%%parameters from noload data
k=U1_n/U2_n; %winding ratio
RM=U1_n^2/P1_n; % resistance
LM=1/w*U1_n/sqrt(I1_n^2-(P1_n/U1_n)^2); %inductance LM
%%%%%%%%%%%%%%%%%%%%
%%short circuit data
U2_s=8; % secondary RMS

% short circuit voltage
I2_s=20; % secondary RMS rated current
P2_s=20; % secondary power
%%%%%parameters from this data
Rp=k^2*P2_s/I2_s^2; %total primary resistance
R1=Rp/2; % primary resistance
R2=Rp/(2*k^2); %secondary resistance
Lsigma=1/w*sqrt((k^2*U2_s/I2_s)^2-Rp^2); %leakage inductance

The following parameters were obtained after running this M-file (Table 3.1).
The second part of this tutorial is concerned with the development of a dynamic

model of the transformer in question. A load resistance RL is connected to the
secondary winding and its value will be set to: RL D 2000�; 0�, and 10�,
respectively. In the first case (a), a high load resistance is chosen to approximate
the (secondary) open-circuit case. The second case (b), RL D 0 corresponds to
the case where the secondary winding is short-circuited. The primary RMS voltage
for this example is set to 8 k D 22V, which represents the voltage which would
need to be applied to the primary side in case the short-circuit test was carried

Table 3.1 Parameters for
single phase transformer

Parameters Value

Winding ratio k 2.75

Loss resistance RM 21.78 k�

Magnetizing inductance LM 10.62 H

Primary resistance R1 0.189�

Secondary resistance R2 0.025�

Leakage inductance L¢ 9.6 mH
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Fig. 3.31 PLECS model: transformer with iron losses

Table 3.2 Simulation data Simulation setup U1 (RMS) V RL (�) File name

No-load 660 2000 D1

Short-circuit 22 0 D2

Load 660 10 D3

out from that winding rather than from the secondary side. By considering these
two cases we are able to check the simulation model in steady state AC conditions
against the experimental data from the no-load and short-circuit test. The third load
resistance value RL D 10� has been chosen arbitrarily to demonstrate the operation
of the transformer under load conditions.

Implementation of the PLECS model, as shown in Fig. 3.31, is directly based
on the generic model of Fig. 3.21. However, a resistance 1=RM is present on the
primary side of the ITF module. On the secondary side, a two-resistance network
is present which consists of the two series connected resistances: R2 and RL. The
input to the secondary integrator is the flux differential d 2=dt which must, according
to Fig. 3.21, be equal to d 2=dt D u2 C i2 R2, with u2 D i2 RL, given that a load
resistance is connected to the secondary winding of the transformer. The simulation
run time is set to 100 ms and needs to be executed three times with different RL,U1

values as indicated in Table 3.2. This implies that, prior to each simulation run, the
appropriate RL and U1 values must be set in the PLECS model. After running the
simulation rename the output file in the MATLAB workspace to the file name given
in Table 3.2. For example, “D1=datout” (for the no-load simulation). The results
from the three simulations, as represented by the files D1, D2, and D3, need to
processed to show the results in the form of the input voltage u1 D U1

p
2 cos.!t/,

current i1, and secondary voltage u2. An example of an M-file, which can process
this data, is as follows:



3.10 Tutorials 81

M-file Code

%Tutorial 3, part 2, chapter 3
close all
D1 = csvread(’tut3D1.csv’,1,0) % read in data from PLECS
D2 = csvread(’tut3D2.csv’,1,0) % read in data from PLECS
D3 = csvread(’tut3D3.csv’,1,0) % read in data from PLECS
subplot(3,1,1)
%%%% primary voltage
plot(D1(:,1),D1(:,4)); % u1 open loop U1=660
grid; hold on
plot(D2(:,1),D2(:,4),’r’); % u1 shortcircuit U1=22
plot(D3(:,1),D3(:,4),’g’); % u_1 load RL=10, U1=660
legend(’voltage u_1 OC’,’voltage u_1 SC’,’voltage u_1 Load’,...

’Location’, ’NorthEastOutside’)
xlabel(’ (a) time (s)’)
ylabel(’(V)’)
subplot(3,1,2)
%%%% primary current
plot(D1(:,1),D1(:,3)); % open loop U1=660
grid; hold on
plot(D2(:,1),D2(:,3),’r’); % shortcircuit U1=22
plot(D3(:,1),D3(:,3),’g’); % load RL=10, U1=660
legend(’current i_1 OC’,’current i_1 SC’,’current i_1 Load’,...

’Location’, ’NorthEastOutside’)
xlabel(’ (b) time (s)’)
ylabel(’(A)’)
%%%%%%%%%% load RL 10 Ohm
subplot(3,1,3)
plot(D1(:,1),D1(:,2)); % open loop U1=660
grid; hold on
plot(D2(:,1),D2(:,2),’r’); % shortcircuit U1=22
plot(D3(:,1),D3(:,2),’g’); % load RL=10, U1=660
legend(’voltage u_2 OC’,’voltage u_2 SC’,’voltage u_2 Load’,...

’Location’, ’NorthEastOutside’)
xlabel(’ (c) time (s)’)
ylabel(’(V)’)

The results obtained from these simulations are given in Fig. 3.32. It is left to the
reader to run these PLECS/MATLAB files and analyze the results in detail. Some
indication with respect to the correct functioning of the PLECS model can be made
by observation of Fig. 3.32 and a comparison of the results according to Table 3.3.
The results show that there is good agreement between the data for the no-load and
short-circuit tests. However, a phasor analysis could be carried out to verify the
steady-state results. This exercise is left to the reader.
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Fig. 3.32 PLECS results: transformer with iron losses

Table 3.3 Comparison simulation and experimental results

– I1(RMS) A U2(RMS) V

Simulation (no-load, U1 D 660V) 0.210 239.8

Experimental (no-load, U1 D 660V) 0.2 240

Simulation (short-circuit, U1 D 22V) 7.24 0

Experimental (short-circuit, U2 D 8V) 7.27 0

Simulation (RL D 10�, U1 D 660V) 8.70 238.4

Experimental (RL D 10�, U1 D 660V) – –



Chapter 4
Three-Phase Circuits

4.1 Introduction

The majority of electrical drive systems in use are powered by a so-called
three-phase (three-wire) supply. The main reason for this is that a more efficient
(moving from a two- to a three-wire system increases the transmitted power by
73%) energy transfer from supply to the load, such as a three-phase AC machine,
is possible in comparison with a single (two-wire) AC circuit. The load, being the
machine acting as a motor, is formed by three phases. Each phase winding has two
terminals, yielding a total of six terminal-bolts, usually configured as sketched in
Fig. 4.1. The phase impedances are assumed to be equal. The terminal layout as
shown in Fig. 4.1 has been purposely chosen to allow the user to readily connect
the machine’s phase windings in two distinct configurations. The star and delta
configurations are depicted in Figs. 4.3 and 4.9, respectively. Voltages and currents
in the different configurations are identified by the subscripts S1, S2, and S2 when
the machine is in star, also called Wye or Y-configuration. Subscripts D1, D2, and
D3 apply to the delta or � configuration.

The voltages/currents, identified by the subscripts R; S, and T, are linked to
the supply source, which is usually a power electronic converter or the three-phase
grid. Figure 4.2 shows an example of a three-phase voltage supply which generates
three voltages (of arbitrary shape) uR, uS, and uT that are defined with respect to
the 0 V (neutral) of this system. In this chapter, we will look into modeling three-
phase circuits, and in this context introduce a new set of building blocks as required
to move (in both directions) from machine phase variables to supply variables for
either star or delta connected machines.
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319-29409-4_4) contains supplementary material, which is available to authorized users.
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Fig. 4.1 Connector on a
three-phase machine, with a
total of six terminals

Fig. 4.2 Supply convention
(voltage sources shown)

The so-called space vectors are introduced as an important tool to simplify the
dynamic analysis of three-phase circuits. In the sequel to this chapter, the link
between phasors and space vectors is made in order to examine three-phase circuits
under steady-state conditions in case the supply is deemed to be sinusoidal in nature.
Finally, a set of tutorials will be provided which serve to reinforce the concepts
outlined in this chapter.

4.2 Star/Wye Connected Circuit

The term “star” or “wye” connected circuit refers to the configuration shown in
Fig. 4.4, where the machine phases are connected in such a manner that a common
“star” or “neutral” point is established. In inverter fed three-phase systems, this star
point is usually not connected to the neutral or 0 V ground reference point of the
supply. For the “star” connected configuration the lower three terminals v2;w2, and
u2 are interconnected as shown by the red lines in Fig. 4.3. This figure also shows
how the R, S, and T supply is connected to the machine terminals.
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Fig. 4.3 Three-phase
machine, star (Y) connected

Fig. 4.4 Star/Wye connected
according to Fig. 4.3

The supply voltages uR, uS, and uT and uS0 are defined with respect to the
0 V of the supply source (see Fig. 4.2). Note (again) that the supply voltages are
instantaneous functions of time and need not be sinusoidal. Furthermore, the sum
of the three voltages does not and indeed will not usually be zero when a power
electronic converter is used as a supply source. On the basis of Kirchhoff’s voltage
and current laws and observation of Fig. 4.4, we will determine the relationships that
exist between supply and phase variables.

With respect to the phase variables, the following expressions are valid

iS1 C iS2 C iS3 D 0 (4.1a)

uS1 C uS2 C uS3 D 0 (4.1b)
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a b

Fig. 4.5 Current conversions: star connected. (a) Supply to phase. (b) Phase to supply

Note that Eq. (4.1b) states that the sum of the phase voltages is zero. This
is indeed the case here because the phase impedances are deemed to be equal
(symmetric load). The supply currents iR, iS, and iT are in this case equal to the
phase currents iS1, iS2, and iS3, respectively. Hence, the building block as shown in
Fig. 4.5a has a transfer matrix as given by Eq. (4.2).

2
4 iS1

iS2
iS3

3
5 D

2
4 1 0 00 1 0

0 0 1

3
5

2
4 iR

iS
iT

3
5 (4.2)

In the following analysis we will also discuss the inverse, i.e., the transfer
function and building block(s) needed to return from phase to supply variables. This
approach is instructive because cascading the two modules must give the original
supply waveforms. In this case, the inverse is the unity matrix as represented by
Eq. (4.3) and building block as represented by Fig. 4.5b.

2
4 iR

iS
iT

3
5 D

2
4 1 0 00 1 0

0 0 1

3
5

2
4 iS1

iS2
iS3

3
5 (4.3)

The conversion of supply to phase voltages is according to Fig. 4.4 of the form given
by Eq. (4.4).

2
4 uS1

uS2

uS3

3
5 D

2
4 1 0 00 1 0

0 0 1

3
5

2
4 uR

uS

uT

3
5 � uS0

2
4 11
1

3
5 (4.4)

in which the voltage uS0 given in Eq. (4.4) is the potential of the star point with
respect to the 0 V reference of the supply. The voltage uS0 is the so-called zero
sequence component and can be found with the aid of Eqs. (4.1b) and (4.4) which
leads to

uS0 D uR C uS C uT

3
(4.5)
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a b

Fig. 4.6 Voltage conversions: star connected. (a) Supply to phase. (b) Phase to supply

The conversion module which represents Eq. (4.4) is given by Fig. 4.6a. An
important observation from Fig. 4.6a is that this module has a fourth output,
the voltage uS0, which is obtained from uR, uS, and uT and the assumption of
symmetrical machine impedances. The inversion follows directly from Fig. 4.4 and
is of the form

2
4 uR

uS

uT

3
5 D

2
4 1 0 00 1 0

0 0 1

3
5

2
4 uS1

uS2

uS3

3
5 C uS0

2
4 11
1

3
5 (4.6)

In Eq. (4.6), the value of uS0 can be chosen freely, hence the supply voltages uR,
uS, and uT are not unique for a given set of phase voltages uS1, uS2, and uS3. The
conversion module is given in Fig. 4.6b.

4.2.1 Modeling Star Connected Circuit

The single phase R-L circuit model has been discussed earlier and the generic
implementation given in Fig. 2.5 on page 33 needs to be duplicated three times,
as shown in Fig. 4.7. Note that the three-phase R-L model shown in Fig. 4.7 is a
simplified representation of an AC machine. In reality, mutual coupling terms exist
between the phases which severely complicates the three-phase circuit model. At a
later stage in this chapter, an alternative approach to modeling three-phase circuits
will be given, which is able to handle more complex circuits than the R-L concept
considered here. The combined conversion process with all the building blocks
needed to arrive at the supply currents, on the basis of a given set of supply voltages,
is given in Fig. 4.8.

4.3 Delta Connected Circuit

The term “delta” connected circuit refers to the configuration shown in Fig. 4.10. In
the terminal box on the machine, the terminals pairs (u1, v2), (v1, w2), and (w1, u2)
are interconnected, as shown by three red lines in Fig. 4.9. The delta connection is
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Fig. 4.7 Generic three-phase R-L model

Fig. 4.8 Star connected circuit model

often used in applications with relatively low supply voltages. Furthermore, delta
connected machines are commonly used in high power applications (typically from
about 0.5 MW upwards). In both cases the use of a delta connected machine is
beneficial in terms of maximizing the power output for a given voltage level.

The supply voltages uR, uS, and uT are defined with respect to the 0 V of the
supply source in the same manner as discussed in Sect. 4.2. It is re-emphasized that
the supply voltages are instantaneous functions of time and need not be sinusoidal.
Furthermore, the sum of the three supply voltages does not need to be zero. On the
basis of Kirchhoff’s voltage and current laws and observation of Fig. 4.10 we can
again determine the relationships that exist between supply and phase variables.

With respect to the phase variables the following expressions are introduced.
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Fig. 4.9 Three-phase
machine, delta (�) connected

Fig. 4.10 Delta connected
according to Fig. 4.9

uD1 C uD2 C uD3 D 0 (4.7a)

iD1 C iD2 C iD3 D 3 iD0 (4.7b)

where iD0 represents a so-called zero sequence current. The phase voltage expres-
sion follows directly from Kirchhoff’s voltage law, whereas the phase current
expression (4.7b) is based on the presence of a non-zero loop current iD0. In the
circuit model given in Fig. 4.10, no such current will exist. However, if, for example,
a voltage source is introduced in each phase leg, which has a third harmonic
component, then a non-zero loop current iD0 will be generated, hence iD1 D iD0,
iD2 D iD0, and iD3 D iD0. Under these conditions the sum of these phase currents
is equal to 3iD0 as shown by Eq. (4.7b). Measurements from a practical system with
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substantial loop current are shown on page 107, where the current iD0 is found using
Eq. (4.7b), which may also be written as

iD0 D iD1 C iD2 C iD3
3

(4.8)

The relationship between supply currents iR, iS, and iT and phase currents iD1,
iD2, and iD3 is in this case found using Kirchhoff’s current law and observation of
Fig. 4.10. For example, the current iR may be expressed as iR D iD1 � iD2. If we
extend this analysis to all three phases, the transfer matrix according to Eq. (4.9)
appears.

2
4 iR

iS
iT

3
5 D

2
4 1 �1 0

0 1 �1
�1 0 1

3
5

2
4 iD1

iD2
iD3

3
5 (4.9)

The conversion module which represents Eqs. (4.8) and (4.9) is given by Fig. 4.11a.
Observation of Fig. 4.11a shows that this module has a fourth output, namely
the current iD0 [see Eq. (4.8)], which is required to facilitate the conversion from
supply currents to phase currents. This conversion follows from Fig. 4.10 and it is
instructive to initially consider the process by which an expression for the branch
current iD1 is formed. From Fig. 4.10 the following expressions can be found

iD1 D iR C iD2 (4.10a)

iD1 D �iT C iD3 (4.10b)

Adding Eqs. (4.10a) and (4.10b) gives

2iD1 D iR � iT C .iD2 C iD3/„ ƒ‚ …
�iD1C3iD0

(4.11)

a b

Fig. 4.11 Current conversions: delta connected. (a) Phase to supply. (b) Supply to phase
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where the term .iD2 C iD3/ can, according to Eq. (4.7b), also be written as
.�iD1 C 3iD0/, which leads to iD1 D 1=3 .iR � iT/ C iD0. It is noted that this
expression is in fact not an explicit function for iD1 given that iD0 is also a function
of the currents iD1, iD2, and iD3. This means that the conversion from supply to phase
current can only be made if the current iD0 is known, i.e., obtained from the “delta”
phase to supply current conversion module mentioned earlier (see Fig. 4.11a). The
exception to this rule is the case where the sum of the phase currents will be zero,
as is the case when the latter are sinusoidal, of equal amplitude, and displaced by
an angle of 2�=3 with respect to each other. If we extend this single phase analysis
for iD1 to all three phases, the conversion matrix, as given by expression (4.12) and
module (Fig. 4.11b), appears.

2
6664
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iD2

iD3

3
7775 D

2
6664

1
3

0 � 1
3

� 1
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3

0

0 � 1
3

1
3
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7775

2
6664

iR

iS

iT

3
7775 C iD0

2
6664
1

1

1

3
7775 (4.12)

The conversion of supply voltages to phase voltage is according to Fig. 4.10 of
the form given by Eq. (4.13).
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3
5 D
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4 1 0 �1

�1 1 0

0 �1 1

3
5

2
4 uR

uS

uT

3
5 (4.13)

The conversion module which represents Eq. (4.13) is given by Fig. 4.12a.
Figure 4.12a has a fourth output, the voltage uS0, as found using Eq. (4.5),
which is again required to facilitate the conversion from phase voltage to supply
voltages. The inversion follows directly from Fig. 4.10 and can be made more
translucent by initially considering a single phase conversion first. An observation
of Fig. 4.10 shows that the following two expressions may be found which contain
the voltage uR.

uR D uD1 C uT (4.14a)

uR D �uD2 C uS (4.14b)

a b

Fig. 4.12 Voltage conversions: delta connected. (a) Supply to phase. (b) Phase to supply
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Adding Eqs. (4.14a) and (4.14b) gives

2uR D uD1 � uD2 C .uT C uS/„ ƒ‚ …
�uRC3uS0

(4.15)

where the term .uT C uS/ can according to Eq. (4.5) also be written as
.�uR C 3uS0/, which leads to uR D 1=3 .uD1 � uD2/ C uS0. It is noted (as was
the case for the “current” conversion) that this expression is in fact not an explicit
expression for uR given that uS0 is also a function of the voltages uR, uS, and uT.
This means that the conversion from phase to supply voltages can only be made if
the voltage uS0 is known. In the case where the sum of the supply voltages is zero,
as is the case when the latter are sinusoidal, of equal magnitude, and displaced by
an angle of 2�=3 with respect to each other the voltage uS0 will be zero. If we extend
our single phase analysis shown above for uR to the remaining two phases, the
conversion matrix as given by expression (4.16) and building module (Fig. 4.12b)
appears.

2
6664

uR

uS

uT

3
7775 D

2
6664

1
3

� 1
3

0

0 1
3

� 1
3

� 1
3

0 1
3

3
7775

2
6664

uD1

uD2

uD3

3
7775 C uS0

2
6664
1

1

1

3
7775 (4.16)

4.3.1 Modeling Delta Connected Circuit

The three-phase R-L generic circuit model shown in Fig. 4.7 for the star connected
phase configuration is directly applicable here with the important difference that
the current/voltage phase variables uS1, uS2, uS3, iS1, iS2, and iS3 must be replaced
by the variables uD1, uD2, uD3, iD1, iD2, and iD3 given that we are dealing with a
delta connected load. The inputs to this module will be the phase voltages from the
delta connected circuit and the outputs are the three-phase currents. The conversion
process needed to arrive at the supply currents given a set of supply voltages is
shown in Fig. 4.13.

Fig. 4.13 Delta connected circuit model
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4.4 Space Vectors

The question as to why we need “space vectors” comes down to the difficulty of
handling complex three-phase systems as was mentioned earlier. It will be shown
that the introduction of a space vector type representation for a three-phase system
leads to considerable simplification.

The space vector formulation is in its general form given by Eq. (4.17).

Ex D C
˚
xR C xS ej C xT ej2

�
(4.17)

with  D 2�=3. The variables xR, xS, and xT represent three instantaneous time
dependent supply variables. These may, for example, be the three supply voltages
uR, uS, and uT; or in fact any other variable. Furthermore, these variables are real
functions of time and do not need to be sinusoidal. The constant C is a scalar and its
value will be defined later.

The space vector Ex itself is both complex and time dependent. The space vector
is represented in a complex plane which at present is assumed to be stationary. The
space vector can, according to Eq. (4.18), also be written in terms of a real x’ and
imaginary x“ component with j D p�1.

Ex D x’ C jx“ (4.18)

Figure 4.14 shows the space vector in the complex plane. Note that x’ is equal to
< ˚Ex�

, while x“ may be written as = ˚Ex�
. An observation of Eqs. (4.17) and (4.18)

shows that the space vector deals with a transformation process, in which a linear
combination of the three supply variables xR; xS, and xT is converted to a two-
phase x’, and x“ form. It is noted that this three-dimensional to two-dimensional
representation is possible because the former is in fact over dimensioned, when

Fig. 4.14 Space vector
representation in a complex
plane
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dealing with symmetrical systems, as is the case in this book. In other words, one
variable is superfluous, namely the zero sequence component.

It is important to realize that the space vector amplitude
�jExj� and argument

.arctan x“=x’/ can be a function of time. We may therefore see non-continuous
changes of both argument and amplitude in many cases such as three-phase PWM.

It is instructive at this stage to give an example based on Eq. (4.17) with C D 1.
In this case we will plot the space vector for three cases. Each case corresponds to
one of the three supply variables of Eq. (4.17) being non-zero.

Case 1: xR > 0, xS D 0, and xT D 0, the space vector is then of the form Ex D xR.
This corresponds to x’ D xR and x“ D 0.

Case 2: xS > 0, xR D 0, and xT D 0, the space vector is then of the form Ex D
xS ej . This corresponds to x’ D xS cos  and x“ D xS sin  which may also be
written as x’ D �1=2 xS and x“ D p

3=2 xS.
Case 3: xT > 0, xR D 0, and xS D 0, the space vector is then of the form Ex D

xT ej2 . This corresponds to x’ D xT cos 2 and x“ D xT sin 2 , which may be
written as x’ D �1=2 xT and x“ D �p

3=2 xT.

Figure 4.15 shows the three cases considered above where it is assumed that
xT > xS > xR. It is left as an exercise to the reader to consider the case where one
of the supply variables (in the example above) is, for example, a sinusoidal function
of time.

4.5 Amplitude Versus Power Invariant Space Vectors

In this section we will consider the prudent choices we can make with respect to
the value of the constant C [see Eq. (4.17)]. In support of this discussion we will
consider three supply voltages, which are assumed sinusoidal and of the form given

Fig. 4.15 Space vector
example, for three case
studies
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by Eq. (4.19). Note that this assumption does not undermine the generality of using
space vectors for waveforms which are not sinusoidal nor for that matter does the
sum of the three waveforms need to be zero as will become apparent shortly.

uR D Ou cos .!t/ (4.19a)

uS D Ou cos .!t � / (4.19b)

uT D Ou cos .!t � 2/ (4.19c)

The phase shift of the waveforms in Eq. (4.19) is represented by the variable
 D 2�=3. The process of finding a space vector form for the three voltages uR, uS,
and uT; as defined by Eq. (4.19), is readily realized by substituting said equation
into (4.17) which gives

Eu D C Ou �
cos .!t/C cos .!t � / ej C cos .!t � 2/ ej2� (4.20)

Expression (4.20) may be developed further by making use of the expression
cos y D ejyCe�jy

2
which, after some manipulation (which the reader should look at

carefully), gives

Eu D C Ou

0
BB@32 ej!t C 1

2

n
e�j!t C e�j.!t�2/ C e�j.!t�4/

o
„ ƒ‚ …

vector sum is zero

1
CCA (4.21)

The second term in the right-hand side of Eq. (4.21) is zero, given that this term is
formed by three vectors of the same amplitude which are phase shifted with respect
to each other by an angle  . This means that the vector sum of these three vectors
equals zero. Consequently, the voltage space vector is reduced to

Eu D 3

2
C Ou ej!t (4.22)

The voltage space vector is thus a function of time (argument !t) and its amplitude
is equal to 3

2
C Ou. Presented in a complex plane, the voltage vector end point will

move on a circle, as shown in Fig. 4.16.
The analysis, to determine the voltage space vector from the three-phase voltages,

can also be given for the currents. It is left to the reader to undertake this exercise
in detail. In summary, you must consider the three current variables according to
Eq. (4.23)

iR D Oi cos .!t C 	/ (4.23a)

iS D Oi cos .!t C 	 � / (4.23b)

iT D Oi cos .!t C 	 � 2/ (4.23c)
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Fig. 4.16 Voltage space
vector as function of time

and use Eq. (4.17), which then leads to Eq. (4.24).

Ei D 3

2
C Oi ej.!tC	/ (4.24)

The issue of choosing a suitable value for the constant C, as defined by Eq. (4.17), is
considered here. In the example discussed in Sect. 4.4 this constant was conveniently
set to unity but this is not a suitable value as will become apparent shortly.

There are in fact two prudent values which may be assigned to the constant C.
The first option we have, and the one used in this book, is to set this constant
to a value C D 2=3. Space vectors which abide with this C value are given in
the so-called amplitude invariant form. The reason for this can be made clear by
considering again Eqs. (4.22) and (4.24), with C D 2=3. With this value of C the
equations are given as

Eu D Ou ej!t (4.25a)

Ei D Oi ej.!tC	/ (4.25b)

An observation of Eq. (4.25) shows that the amplitude of the space vectors is now
equal to the peak variable value, which is why this notation form is referred to as
amplitude invariant.

The second notation form refers to a so-called power invariant notation form.

For this notational form, the constant is chosen to be C D
q

2
3
. The voltage and

current space vectors given by Eqs. (4.22) and (4.24) will then be of the form

Eu D
r
3

2
Ou ej!t (4.26a)

Ei D
r
3

2
Oi ej.!tC	/ (4.26b)
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This means that the space vector amplitude of, for example, the voltage is of the
form jEuj D p

3=2 Ou. Hence the space vector amplitude is a factor
p
3=2 larger than

the amplitude of the corresponding phase variables. The power invariant notation
form can be made more plausible by considering the total instantaneous power in the
two-phase system represented by the variables u’; u“ and i’; i“ which is of the form

p2� D u’i’ C u“i“ (4.27)

Equation (4.27) may be written in its space vector notation form, namely,

p2� D <
n
Eu

�Ei
��o

(4.28)

where Eu andEi represent the voltage and current space vectors. It is shown in Sect. 4.6
that the variables u’, u“ and i’, i“ given in Eq. (4.27) may also be expressed in terms
of the three phase variables uR, uS, and uT and iR, iS, and iT which allows Eq. (4.27)
to be written as

p2� D 3

2
C2p3� (4.29)

where p3� D uRiR C uSiS C uTiT represents the total instantaneous power of a three-
phase system. Note that it can be shown that Eq. (4.29) is valid if the sum of the
supply currents iR, iS, and iT and/or the sum of the supply voltages uR, uS, and uT is
equal to zero. In this book, the sum of the supply currents is always taken to be zero,
which implies that only three wires are present between the supply and the machine
(load).

Equation (4.29) is significant as it conveys the meaning of the term “power
invariant.” Namely, that the instantaneous power of a two-phase system is equal
to that of a three-phase system in case the constant C is chosen to be equal to
C D p

2=3. Note that the use of an amplitude invariant space vector notation where
the constant C is chosen as

C D 2

3
(4.30)

causes the instantaneous power of a three-phase system to be scaled by a factor 3=2.
When calculating the output power of a three-phase electrical machine using
amplitude invariant space vectors, this constant must be factored in to “correct” the
power calculation. A more detailed discussion on the concept of “power” in single
and three-phase systems is given in Chap. 5.
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4.6 Application of Space Vectors for Three-Phase
Circuit Analysis

In this section, the aim is to introduce the space vector concept in the star and delta
connected three-phase circuits, as discussed in Sects. 4.2 and 4.3.

Two common transfer modules, namely, from three phase to space vector and
vice versa need to be discussed. The first case concerns the conversion of phase xS1,
xS2, and xS3 (star connected), xD1, xD2, and xD3 (delta connected) or supply xR, xS,
and xT; variables, given in a general form as xa, xb, and xc; to a space vector form
Exabc D x’Cjx“. The sum of the three scalar variables is of the form xaCxbCxc D 3x0
where x0 represents a zero sequence component which may have a non-zero value.

According to Eq. (4.17) the relationship between vector and scalar variables may
be written as

Exabc D C
˚
xa C xb ej C xc ej2

�
(4.31)

When we equate the real and imaginary components of Eq. (4.31), the conversion
matrix according to Eq. (4.32) and Fig. 4.17a is found.

2
4 x’

x“

3
5 D

2
4 C � C

2
� C
2

0 C
p
3

2
� C

p
3

2

3
5

2
6664

xa

xb

xc

3
7775 (4.32)

In this expression the value of C D 2=3 should be used for amplitude invariant
space vector representations. The building block according to Fig. 4.17a has a fourth
output which is the zero sequence variable x0 introduced earlier as

x0 D xa C xb C xc

3
(4.33)

The process of finding the inverse conversion process, which allows us to move from
space vector variables to scalar variables, is considered next. A suitable starting
point for this conversion is Eq. (4.32), which gives an expression for x’, namely,

a b

Fig. 4.17 Conversion from and to space vector format: general case. (a) Scalar to space vector.
(b) Space vector to scalar
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x’ D Cxa � C

2
.xb C xc/ (4.34)

The sum of the three-phase variables is according to Eq. (4.33) equal to 3x0 and this
expression can also be written as xbCxc D �xaC3x0. Substitution of this expression
into (4.34) leads to

xa D 2

3C
x’ C x0 (4.35)

The variable xb is also directly obtained from Eq. (4.32) in which we consider the
second row, namely,

x“ D C

p
3

2
.xb � xc/ (4.36)

Substitution of xc D � .xb C xa/ C 3x0 and use of (4.35) give, after some
manipulation,

xb D � 1

3C
x’ C 1

C
p
3

x“ C x0 (4.37)

The remaining variable xc is found by use of xc D � .xa C xb/C 3x0 together with
Eqs. (4.35) and (4.36). The resultant complete conversion in matrix form as given
by Eq. (4.38) corresponds to the building block shown in Fig. 4.17b.

2
6664

xa

xb

xc

3
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2
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2
3C 0

� 1
3C

1

C
p
3

� 1
3C � 1

C
p
3

3
7775

2
4 x’

x“

3
5 C x0

2
6664
1

1

1

3
7775 (4.38)

4.6.1 Use of Space Vectors in Star Connected Circuits

The conversion process from phase voltages and currents to a space vector form
(in stationary coordinates) is identical for both, hence the phase variables xS1, xS2,
and xS3 are introduced which need to be converted to a form ExS123 D xS’ C jxS“.
Note that the space vector variables are identified by subscripts “S’” and “S“,”
respectively. The conversion modules as shown in Fig. 4.18 are identical to those
shown in Fig. 4.17. The zero sequence “output” and “input” lines are not shown in
Fig. 4.18, given that the sum of the voltage and current phase variables is zero for
this circuit configuration [see Eq. (4.1)].
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a b

Fig. 4.18 Voltage/current conversion to space vector
�ExRST D ExS123

�
format: star connected.

(a) Phase to space vector. (b) Space vector to phase

In some cases, a conversion is required where phase variables xS1, xS2, and xS3

or space vector variables xS’ and xS“ need to be converted to supply (RST) based
variables of the form ExRST D x’ C jx“.

The starting point for this analysis is Eq. (4.17). The relationship between phase
and supply variables for the star connected case can, according to Eqs. (4.3) and
(4.6), be written as

xR D xS1 C xS0 (4.39a)

xS D xS2 C xS0 (4.39b)

xT D xS3 C xS0 (4.39c)

where xS0 will be zero in case the variable x represents the current i. Substitution of
Eq. (4.39) into Eq. (4.17) leads to

ExRST D C
�
xS1 C xS2ej C xS3ej2

�
„ ƒ‚ …

ExS123

C CxS0
�
1C ej C ej2

�
„ ƒ‚ …

0

(4.40)

An important observation of Eq. (4.40) is that the presence of a zero sequence
component in the supply variables will not have any impact on the conversion
process. The reason for this is that the constant CxS0 is multiplied by zero (the
vector sum of the three terms is zero). A direct consequence of this conversion is
that the inverse transformation, i.e., from space vector to supply variables, is only
possible in case the zero sequence component xS0 is known, e.g., zero, or can be
calculated from circuit analysis. A non-zero value xS0 is “lost” in the conversion
xR, xS, xT ! ExRST. A further observation of Eq. (4.40) shows that the space vector
representation in supply and phase format is same, hence

ExRST D ExS123: (4.41)

Note that according to Eq. (4.41) the real and imaginary components of these vectors
will be equal for the star connected circuit, hence, x’ D xS’ and x“ D xS“. This is
not the case for a “delta” connected circuit, as will become apparent shortly.



4.6 Application of Space Vectors for Three-Phase Circuit Analysis 101

4.6.2 Circuit Modeling Using Space Vectors: Star Connected

In this section we will demonstrate how we can use the space vector approach to
build a dynamic generic module of this system according to Fig. 4.7. It is at this
stage helpful to recall the differential equation set of the circuit in question, which
is of the form

uS1 D iS1R C L
diS1
dt

(4.42a)

uS2 D iS2R C L
diS2
dt

(4.42b)

uS3 D iS3R C L
diS3
dt

(4.42c)

We can rewrite Eq. (4.42) in a space vector form by making use of, for example,
Eq. (4.31). This equation tells us that we can build the space vector equation of this
circuit by taking the following steps:

• multiply Eq. (4.42a) by a factor C.
• multiply Eq. (4.42b) by a factor Cej .
• multiply Eq. (4.42c) by a factor Cej2 .
• Add the three previous terms together which in effect gives us the space vector

form of the current and voltage space variables.

The resultant circuit equation in space vector form is then given as

EuS123 D d E S123

dt
CEiS123R (4.43)

where E S123 D LEiS123. The development of the generic model proceeds along the
lines discussed for the single phase R-L example. A possible generic implementa-
tion of the three-phase system is given in Fig. 4.19. The model according to Fig. 4.19
has as inputs the three-phase voltage variables which are then used as inputs to a
“three- to two-phase” module, which produces the real and imaginary components
of the voltage space vector EuS123 D uS’ C juS“. A multiplexer function is used to

Fig. 4.19 Generic, space vector based, model of three-phase R-L circuit (star connected)
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convert to a so-called vector line format, which simplifies the modeling process.
The vector line format is represented as a “wide” line which in this case represents
the variables

�
uS’; uS“

�
in array format. The integrator shown has as input the space

vector flux-linkage differential which is formed by the terms EuS123 minus REiS123.
The output of the integrator (with unity gain) is the flux-linkage space vector E S123,
which is then multiplied by a gain 1=L to arrive at the current space vectorEiS123. Next,
a de-multiplexer is used to convert from a vector line format in the form of the array
variables (iS’; iS“) to two scalar lines variables (iS’; iS“), which are the inputs to
the “two- to three-phase” conversion module. The outputs of this module represent
the three phase currents iS1, iS2, and iS3 of this system. In conclusion, the use
of space vectors allows us to model three-phase symmetrical circuits in the same
way as single phase circuits, thus simplifying the process. The space vector based
circuit model as discussed here (see Fig. 4.19) replaces the earlier circuit model (see
Fig. 4.7 on page 88). This new approach allows us to model more complex circuits
such as electrical machines and three-phase transformers.

4.6.3 Use of Space Vectors in Delta Connected Circuit

The conversion process from phase voltages and currents to a space vector form
is identical for both, hence the phase variables xD1, xD2, and xD3 are introduced,
which need to be converted to a form ExD123 D xD’ C jxD“. Note that the space
vector variables are identified by subscripts “D’” and “D“” (“D” for “delta”),
respectively. The conversion modules as shown in Fig. 4.17 are directly applicable
to the delta connected circuit as defined on page 89. The input and output variables
are however tied to the “delta” configuration as is apparent from Fig. 4.20. The zero
sequence “output” and “input” lines are not shown in Fig. 4.20. When considering
this conversion for phase currents, the zero sequence connection between the two
modules must be shown, given that the sum current can be non-zero.

In some cases a conversion is required where phase variables xD1, xD2, and xD3

or space vector variables xD’ and xD“ must be converted to supply (RST) based
variables of the form ExRST D x’ C jx“. In this case, the voltage and current phase
conversions need to be examined separately.

a b

Fig. 4.20 Voltage/current conversion to space vector format
�ExD123

�
: delta connected. (a) Phase to

space vector. (b) Space vector to phase
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A suitable starting point is again Eq. (4.17) which upon substitution of Eq. (4.16)
may be written as

EuRST D C

3

�
.uD1 � uD2/C .uD2 � uD3/ ej C .uD3 � uD1/ ej2�

CCuS0
�
1C ej C ej2

�
„ ƒ‚ …

0

(4.44)

Equation (4.44) may be rearranged by grouping the phase variables as shown in
Eq. (4.45)

EuRST D C

3

0
BBB@uD1

�
1 � ej2�

„ ƒ‚ …
p
3 ej


4

CuD2
��1C ej�
„ ƒ‚ …
p
3 ej. 4 C/

CuD3
��ej C ej2�
„ ƒ‚ …

p
3 ej. 4 C2/

1
CCCA (4.45)

The braced terms contain a common term
p
3 ej 4 , which allows Eq. (4.45) to be

written as

EuRST D 1p
3

ej 4 C
�
uD1uD1 C uD2ej C uD3ej2

�
„ ƒ‚ …

EuD123

(4.46)

Equation (4.46) is significant in that it tells us that the voltage space vector
EuRST D u’ C ju“ can be found by converting the three-phase voltages to the vector
EuD123 D uD’C juD“, which needs to be rotated by an angle =4 (30ı) and scaled by a
factor 1=

p
3. The three- to two-phase conversion is carried out with the conversion

matrix according to Eq. (4.32). In the generic representation as given by Fig. 4.21a,
the conversion as defined by Eq. (4.46) is clearly visible.

The second module shown with a “delta” and “star” symbol symbolizes the
conversion EuD123 ! EuRST, which takes place when a delta connected circuit is used.
The transfer matrix linked to this conversion is given by equation

Fig. 4.21 Phase voltage to
space vector

�EuRST

�
conversions: delta connected.
(a) Phase to space vector.
(b) Space vector to phase

a

b
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a b

Fig. 4.22 Alternative phase voltage to space vector
�EuRST

�
conversions: delta connected. (a) Phase

to space vector. (b) Space vector to phase

2
4 u’

u“

3
5 D 1p

3

2
4 cos 

4
� sin 

4

sin 

4
cos 

4

3
5

2
4 uD’

uD“

3
5 (4.47)

The conversion module which converts the phase voltages to space vector format
uD1;D2;D3 ! EuRST is shown in Fig. 4.22a. Its contents can either be according to
the set of generic modules shown in Fig. 4.21a or the conversion matrix given by
Eq. (4.48).
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3
5 D

2
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2
� C
2

0

C
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3
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3
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3
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uD1

uD2

uD3

3
7775 (4.48)

This matrix is found by combining the matrices according to Eqs. (4.32) and
(4.47). The inverse operation, namely, the conversion process from supply space
vector variables to phase voltage variables, follows directly from Eq. (4.46). This
expression may also be written as

EuD123 D p
3 e�j 4 EuRST (4.49)

Equation (4.49) states that the space vector EuRST must be rotated by an angle �=4

(�30ı) and scaled by a factor
p
3 in order to arrive at the vector EuD123, which can be

converted to phase voltage variables using Eq. (4.38). The generic modules required
for this conversion are shown in Fig. 4.21b. Included in this figure is a conversion
module symbolized by the symbols “star” and “delta” and its transfer matrix is of
the form given by Eq. (4.50).

2
4 uD’

uD“

3
5 D p

3

2
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4
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4

� sin 

4
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4

3
5

2
4 u’

u“

3
5 (4.50)

The conversion module which converts the supply space vector format to phase
variables EuRST ! uD1;D2;D3 is shown in Fig. 4.22b. Its contents can either be
according to the set of generic modules shown in Fig. 4.21b or the conversion matrix
given by Eq. (4.51).
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2
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2
4 u’

u“

3
5 (4.51)

This matrix is found by combining the matrices according to Eqs. (4.38) and (4.50),
with cos =4 D p

3=2 and sin =4 D 1=2.
The starting point for determining the conversion modules for the phase currents

is Eq. (4.17), which upon substitution of Eq. (4.9) may be written as

EiRST D C
�
.iD1 � iD2/C .iD2 � iD3/ ej C .iD3 � iD1/ ej2

�
(4.52)

Equation (4.52) can be rearranged by grouping the phase variables as shown in
Eq. (4.53)

EiRST D C

0
BBB@iD1

�
1 � ej2�

„ ƒ‚ …
p
3 ej


4

CiD2
��1C ej�
„ ƒ‚ …
p
3 ej. 4 C/

CiD3
��ej C ej2�
„ ƒ‚ …

p
3 ej. 4 C2/

1
CCCA (4.53)

The braced terms contain a common term
p
3 ej 4 , which allows Eq. (4.53) to be

written as

EiRST D p
3 ej 4 C

�
iD1 C iD2 ej C iD3 ej2

�
„ ƒ‚ …

EiD123

(4.54)

Equation (4.54) is significant because it tells us that the current space vector EiRST D
i’Cji“ can be found by converting the three-phase currents to a phase vectorEiD123 D
iD’ C jiD“, which needs to be rotated by an angle =4 and scaled by a factor

p
3. The

required three- to two-phase conversion is carried out with the conversion matrix
according to Eq. (4.32). In the generic representation, as given by Fig. 4.23a, the
conversion steps as defined by Eq. (4.54) are clearly visible.

The second module, shown with a “delta” and “star” symbol, symbolizes the
conversion EiD123 ! EiRST which takes place when a delta connected circuit (page 89)
is used. The transfer matrix for this conversion is given by Eq. (4.55). Note that any
zero sequence current component will not appear in these transformations.
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Fig. 4.23 Phase to space
vector EiRST conversions: delta
connected. (a) Phase to space
vector. (b) Space vector to
phase

a

b

a b

Fig. 4.24 Alternative conversions phase current to space vector EiRST: delta connected. (a) Phase
to space vector. (b) Space vector to phase

An alternative conversion from phasor to space vector format can be made by
combining the transfer matrices of the modules shown in Fig. 4.23a. The resultant
transfer matrix found using Eqs. (4.32) and (4.55) is given by Eq. (4.56).
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The corresponding generic diagram for this module is shown in Fig. 4.24a.
An example of the practical use of conversion modules is given in Fig. 4.25. This

figure shows three measured currents iD1, iD2, and iD3, respectively. An amplitude
invariant (C D 2=3) conversion to space vector format (see Fig. 4.26) was made for
the phase currents in this delta connected circuit. Hence, the model according to
Fig. 4.24a was used. A zero sequence current iD0 is also shown, calculated using
Eq. (4.8), also with C D 2=3.

The inverse operation, namely, the conversion process from phase space vector
variables to supply current variables follows directly from Eq. (4.54). This expres-
sion may also be written as

EiD123 D 1p
3

e�j 4 EiRST (4.57)
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Fig. 4.25 Measured data from a linear synchronous machine (LSM) rated 2:4MW in a roller-
coaster launch application: conversion from phase currents to space vector format Ei’;“;0 showing
substantial third harmonic loop current (Courtesy of Electroproject, the Netherlands)

Equation (4.57) states that the space vector EiRST must be rotated by an angle �=4

and scaled by a factor 1=
p
3 in order to arrive at the phase vector EiD123, which can be

converted to phase current variables using Eq. (4.38). The generic modules required
for this conversion are shown in Fig. 4.23b. Included in this figure is a conversion
module identified by the symbols delta and star which has a transfer matrix of the
form given by Eq. (4.58).
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The two conversion modules shown in Fig. 4.23b can also be replaced by a single
generic module as given in Fig. 4.24b. The corresponding transfer matrix as given by
Eq. (4.59) is found by combining the matrices represented by Eqs. (4.38) and (4.58).
It is emphasized that this conversion will not contain any zero sequence component,
as it was not included.
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Fig. 4.26 Measured data: current vector locus diagram .i’.t/; i“.t//, the same data as in Fig. 4.25
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4.6.4 Circuit Modeling Using Space Vectors: Delta Connection

The space vector based circuit model, as given in Fig. 4.19, for the star connected
three-phase system is directly applicable for the delta connected circuit. The only
change lies with the use of delta input and output variables as shown in Fig. 4.27.
The input variables of the three- to two-phase conversion unit are the phase voltages
uD1, uD2, and uD3. The output of the two- to three-phase conversion unit are the phase
currents iD1, iD2, and iD3. The model according to Fig. 4.27 replaces the component
module shown in Fig. 4.13 which has as input the phase voltages uD1, uD2, and uD3

and as output the phase currents iD1, iD2, and iD3.



4.7 Relationship Between Space Vectors and Phasors 109

Fig. 4.27 Generic, space vector based, model of three-phase R-L circuit (delta connected)

4.7 Relationship Between Space Vectors and Phasors

The phasor in the form of a complex time independent variable has in an earlier
chapter been introduced in the form x. Basically, the phasor type analysis was
and is used to study linear electrical circuits under steady-state AC conditions, i.e.,
carrying sinusoidally varying waveforms. Up till now, we have considered phasors
for single phase applications. In this section, we will extend the use of phasors for
three-phase systems.

In this context it is helpful to recall the three-phase example given in Sect. 4.5
where a three-phase sinusoidal supply voltage was assumed [see Eq. (4.19)],
together with a set of sinusoidal supply currents. The three-phase variables were
then transformed to a space vector form as given by Eq. (4.25). This equation set
forms an excellent platform for establishing the link to phasors. In this context, it is
helpful to rewrite Eq. (4.25) in the following form

EuRST D Ou„ƒ‚…
uRST

ej!t (4.60a)

EiRST D Oi ej	„ƒ‚…
iRST

ej!t (4.60b)

An observation of Eq. (4.60) shows that the time dependent component of
the space vectors has been written separately from the remaining term, which is
precisely the phasor component of the space vector. Hence, for the example shown
in Eq. (4.60) the voltage/current phasors are given as uRST D Ou and iRST D Oi ej	,
respectively. Note that we introduced the subscript “RST” for these vectors and
phasors to reinforce the fact that these are linked to the three-phase supply variables.
The reader is reminded of the fact that the phasor concept was introduced in Chap. 2.
Equation (2.11), as given in that chapter, was used to show the relationship that
exists between phasors and sinusoidal time dependent waveforms. An observation
of Eq. (2.11) shows the use of an amplitude invariant space vector representation.
When dealing with phasors in single phase AC circuits, the real (for cosine
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Fig. 4.28 Example showing “supply” space vector and corresponding phasor diagram

functions) or imaginary (for sine functions) space vector component is used in the
transformation from time variables to phasors and vice versa.

An example of using space vectors in the form shown by Eq. (4.60) is given
in Fig. 4.28 for !t D �=3 and 	 D ��=6, together with the corresponding phasor
diagram.

4.7.1 Use of Phasors in Three-Phase Circuits

It is instructive to consider the transformation of a space vector differential equation
to phasor format for the R-L type circuit considered in Sects. 4.6.2 and 4.6.4 for the
star and delta connected configuration. The analysis is shown for variables of the star
connected systems. However, the analysis for the delta case is identical. The only
change lies with the change of subscripts from S123 to D123. The space vector load
differential equation for the star connected case is given by Eq. (4.43). Substitution
of E S123 D LEiS123 gives

EuS123 D L
dEiS123

dt
C REiS123 (4.61)

where EuS123 and EiS123 represent the voltage/current space vector linked to phase
variables of the star configured circuit. The transformation of Eq. (4.61) to its phasor
equivalent form is made using

EuS123 D uS123 ej!t (4.62a)

EiS123 D iS123 ej!t (4.62b)

dEiS123
dt

D j! iS123 ej!t (4.62c)
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Equation (4.62) shows the conversion required as well as the current space vector
differential, which in phasor terms leads to the addition of component j!. The
resultant phasor equation is found by eliminating the time dependent term ej!t,
which leads to

uS123 D j!L iS123 C R iS123 (4.63)

If, for example, the voltage phasor is known, then the current phasor is calculated
using

iS123 D uS123

R C j!L
(4.64)

The peak phase current amplitude is then found using Oi D jij. The phase angle with
respect to the phase voltage is equal to 	 D � arctan !L=R.

It is instructive to examine the process of calculating the supply phasor iRST on
the basis of a given supply phasor according to (4.60a) for the star/delta connected
circuit. In both cases, the voltage phasor uS123=uD123 must first be derived from the
given supply phasor uRST. Next, the current phasor iS123=iD123 needs to be calculated
using Eq. (4.64). Finally, the conversion from iS123=iD123 to supply current phasor
iRST needs to be made.

For the star connected case the relationship between phase and supply vectors
(for currents and voltages) is given by Eq. (4.41). Consequently, the relationship
between the phasors in a star connected circuit is of the form

uS123 D uRST (4.65a)

iS123 D iRST (4.65b)

This means that the calculation of the current phasor from a given voltage phasor
is as discussed above, see Eq. (4.64). A phasor diagram example with 	 D ��=3 is
given in Fig. 4.29.

For the delta connected case the relationship between phase and supply vectors
is given by Eqs. (4.46) and (4.57). The corresponding phasor relationships between
the phase and supply based phasors are of the form

uD123 D p
3 e�j 4 uRST (4.66a)

iD123 D 1p
3

e�j 4 iRST (4.66b)

For the calculation of the current phasor iD123 we make use of Eq. (4.64) (with
subscript D123), in which uD123 is calculated using Eq. (4.66a). Once the phasor
iD123 is found, Eq. (4.66b) can be used to find the supply current phasor. The phasor
diagram as given by Fig. 4.29 shows the conversion process with the same circuit
model as used for the star connected example.
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Fig. 4.29 Phasor diagram for star and delta R-L circuit

An important conclusion to make is that the supply current level, which will
appear for the delta connected case, is three times larger than that which will appear
in the star connected configuration (provided that the impedances remain the same).
This is clearly apparent from Fig. 4.29, where the currents and voltage for the delta
connected configuration are scaled as required in comparison to the star diagram.
It is for this reason that grid connected three-phase induction machines are often
star configured during the initial start-up sequence. Once past the start up phase, the
machine phase configuration is changed to delta. This approach reduces the initial
peak starting currents in the supply lines. However, significant transient peaks can
still occur just after the Y-� reconfiguration. As explained earlier, delta connected
machines are commonplace in applications with high phase currents (low supply
voltage, high power). Inverter connected machines are usually star configured to
avoid circulating phase currents.

It is noted that the process of modeling a delta connected circuit can be avoided
if we simply take the delta circuit parameter values, divide these by a factor of
three, and virtually re-configure the circuit in “star.” However, we loose access
to the “delta phase variables” under these circumstances. In applications where
the delta connected voltages/currents are to be measured for control purposes, the
conversion process as described above would need to be implemented. In any event,
it is considered important to realize that there is a substantial difference between the
modeling processes linked to the “star” and “delta” connected circuit.
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4.8 Tutorials

4.8.1 Tutorial 1: PLECS Based Model of Conversion Modules
for Star Connected Circuits

In this tutorial the conversion process (supply!phase and phase!supply) for a
star connected circuit will be considered. The PLECS model according to Fig. 4.30
forms the basis for this tutorial. Shown in this figure is a 3ph_pulsemodule which
provides the supply voltages uR, uS, and uT for this simulation. The “run time” for
this simulation is set to 20:01ms, which is slightly higher than the 20ms of the
generated pulse waveforms in order to include the voltage transition at t D 20ms.
Details of the waveform versus time functions to be implemented are given in
Fig. 4.31. It is noted that the set of waveforms used in this tutorial are in fact
those which are typically generated by a power electronic converter when operating
in a so-called block or six-step mode. As a second step in this tutorial, provide
an implementation of the conversion module “RST!(star)123” according to the
matrix defined by Eq. (4.4). An example of the output of this conversion is shown
in Fig. 4.32, where the supply voltage waveform uR is also added for reference
purposes. Clearly observable from Fig. 4.32 is the presence of a non-zero sequence
voltage component uS0 as calculated with the aid of Eq. (4.5). The second module to
be implemented is the “three to two” phase conversion module identified in Fig. 4.30
as “123!vector.” The matrix according to Eq. (4.32) must be implemented in this
case with C D 2=3, given that an amplitude invariant notation is assumed. In PLECS
a “standard abc ! ’“” is already available which implements said matrix. The only
difference is that in PLECS the phase notation abc is used instead of 123 as used
in this book. The real and imaginary components of the space vector EuS123 which
should appear as output variables of this module are shown in Fig. 4.33. A further
cross check on the output of this module is given in Fig. 4.34, which shows the
locus of the space vector end point EuS123 versus time for the 20:01ms duration of
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3ph-pulse

RST

vector->123

αβ
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123_0->(star)RST
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XY Plot

u_s0
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Scope1

Fig. 4.30 PLECS model: conversion modules for star connected circuits
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this simulation generated by the “XY plot” module. Note that the shape is that of a
hexagon where the vector end point moves from corner to corner which is why this
mode of operation is referred to as “six step.” It is instructive to carefully consider
how the vector end point moves in Fig. 4.34 in relation to the simulation time. From
such an analysis it may be observed that the vector end point changes from hexagon
corner to corner whenever a waveform voltage transition in either uS’ .t/ or uS“ .t/
occurs. Finally, implement the two remaining conversion modules “vector!123”
and “123!(star)RST” according to Eqs. (4.38) and (4.6), respectively. The output
waveforms from these modules can be directly checked against those obtained
from the output of the “RST!(star)123” module and 3ph_pulse module which
provides the supply voltage waveforms.

4.8.2 Tutorial 2: Symbolic Representation for Star Connected
Circuits Conversion Modules

This tutorial considers an alternative approach to that shown in the previous case.
In this tutorial use is to be made of “electrical” PLECS models, where possible
to implement the previous conversion process. The star connected load is to be
represented by three 100� resistors and the star connected three-supply as used
in the previous example should also be used here.

A possible implementation of said problem as given in Fig. 4.35 shows three
star connected voltage sources which in turn are controlled by the 3ph-pulse
unit used in the previous example. The star connected load formed by the resistors
R1, R2, and R3 has a “star point” which can be connected via a “manual switch”
Switch to the “star point” of the three-phase supply. A set of voltage measurement
modules have been added which measure the phase supply voltage uR, load phase
voltages uS1; uS2, and uS3, and zero sequence voltage uS0. A standard 123 ! vector
module is used to generate the vector variables uS’ and uS“ from the load phase
voltage variables. When the manual switch is open the results on the “Scope” and
“XY plot” modules will be identical to those shown in Figs. 4.32, 4.33, and 4.34. If,
however, the manual switch is closed prior to running the simulation, the load “star
point” is then connected to the supply “star point” in which case the load phase
voltage waveforms will be equal to the supply waveforms given in Fig. 4.31. The
vector representation according to Figs. 4.33 and 4.34 is NOT affected by the switch
change as the presence of a zero sequence voltage component uS0 does not affect this
transformation. Note that opening the manual switch in this example is equivalent to
removing the uS0 link in Fig. 4.30 between conversion modules “RST!(star)123”
and “123!(star)RST.”
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Fig. 4.35 PLECS model: conversion modules for star connected circuits using an electrical
(symbolic) representation

4.8.3 Tutorial 3: PLECS Based Model of Star Connected
Circuit Example

An implementation of the generic diagram shown in Fig. 4.19 is considered in this
tutorial. The load is represented in this figure by the module “R-L-e-3ph.” This
module will be used more extensively in Sect. 4.8.8. In this tutorial this model
is simplified by setting the resistance value to zero and the inductance value to
L D 100mH. Furthermore, the “sinus” modules shown in this figure are not
implemented. The supply waveforms as used in tutorial 1 (see Sect. 4.8.1) remain
unchanged. Add a “three to three” phase conversion module as shown in Fig. 4.6a
to convert the supply voltages to phase voltages. Build this simulation and examine
the current waveforms iS’, iS“, and iS1. Repeat this exercise after removing the
“three-phase to three-phase” module used to convert the supply voltages to phase
voltages. Explain if there is likely to be a difference in the current output waveforms.
Note that for the star connected circuit the phase currents are equal to the supply
currents. An example of the current waveforms, which should appear in your
simulation, is given in Fig. 4.36. Shown are the real and imaginary current space
vector components together with the phase/supply current iS1. The phase voltage
uS1 is also added for reference purposes. Removal of the module “RST!(star)123”
will not change the current waveforms despite the presence of a zero sequence
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component uS0 in the supply voltages. The reason for this is that the space vector
components uS’ and uS“ are not affected by the presence of a component uS0

[see Eq. (4.40)].

4.8.4 Tutorial 4: PLECS Based Symbolic Model of Star
Connected Circuit Example

This tutorial considers an alternative approach to that shown in the previous case.
In this tutorial use is to be made of “electrical” PLECS models, where possible to
implement the previous conversion process. The star connected load is represented
by three 100mH inductors and the star connected three-supply as used in the
previous examples should also be used here.

A possible implementation of said problem as given in Fig. 4.37 shows three star
connected voltage sources which in turn are controlled by the 3ph-pulse unit
used in the previous examples. The star connected load formed by the inductances
L1, L2, and L3 has a “star point” which is NOT connected to the “star point”
of the three-phase supply (as is usually the case for drive applications). A set of
voltage measurement modules have been added which measure the phase supply
voltage uR and load phase voltage uS1. In addition a set of current sensors have been
added, which measure the phase currents iS1; iS2, and iS3. A standard 123 ! vector
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Fig. 4.37 PLECS symbolic model: star connected circuit

module is use to generate the vector variables iS’ and iS“ from the load phase current
variables. When running this simulation the results as shown in Fig. 4.36 should
appear.

4.8.5 Tutorial 5: PLECS Based Model of Conversion Modules
for Delta Connected Circuits

Tutorial 1 as discussed in Sect. 4.8.1 for the “star” configured three-phase circuit
is repeated here for the “delta” connected case, i.e., load connected in “delta,”
supply in “star” configuration. This means that the module “RST!(star)123” (see
Fig. 4.30) must be replaced by a new module “URST!(delta)123” as shown in
Fig. 4.38, which has a conversion matrix according to Eq. (4.13). Note that the
conversion matrices for supply to phase variables and vice versa are different for
voltages and currents. An example of the phase voltage uD1, which should appear
from this module, is given in Fig. 4.39. The waveforms uR and uS0 which also appear
in this figure remain unchanged. The module “123!vector” is unchanged but the
output of this module will be different given the new phase voltage inputs. The space
vector EuD123, formed by the variables uD’ and uD“, should be of the form given by
Fig. 4.40. A further cross check on the output of this module can also be made for
this case. Figure 4.41 shows the locus of the space vector end point EuD123 versus
time for the delta connected case. Note that the shape is again that of a hexagon.
However, the hexagon is now rotated clockwise by an angle of ��=6. Furthermore,
the hexagon is larger by a factor of

p
3when compared to the previous example (see

Fig. 4.34). The conversion from space vector to phase variables remains unchanged.
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Fig. 4.38 PLECS model: conversion modules for delta connected circuit
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Fig. 4.39 Waveforms: uR, uD1, and uS0

However, the voltage module “123!(star)RST” must be replaced by a new module
“U123!(delta)RST” which has a conversion matrix given by Eq. (4.16). The output
waveforms from this module should be the supply voltage waveforms according
to Fig. 4.31.
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4.8.6 Tutorial 6: Symbolic Representation for Delta Connected
Circuits Conversion Modules

This tutorial considers a symbolic implementation of the previous tutorial. The
excitation and parameters are identical to those used in the previous examples.
Furthermore three single phase pulse generator modules are used to generate
the three supply voltages uR; uS, and uT as shown in Fig. 4.32. The aim is to
reproduce the same waveforms shown in the previous example, with exception
being the zero sequence voltage waveform uS0, given that there is no load “star
point” present in this example hence access to this variable is not directly possible.
A set of 100� resistors may be used to represent the delta connected load.
A possible implementation example of this problem as given in Fig. 4.42 shows
the star connected three-phase supply together with a delta connected load which
is represented by the resistors R1, R2, and R3. A set of voltage measurement
modules are used to obtain the supply phase voltage uR and phase load voltages
uD1; uD2, and uD3. The latter are connected to a PLECS “standard” 123 ! vector
module, which generates the real and imaginary variables uD’ and uD“. The results
shown on the “Scope” and “XY plot” are identical to those shown in Figs. 4.39
(waveform uS0 not shown), 4.40, and 4.41.
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Fig. 4.42 PLECS symbolic model: delta connected circuit
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4.8.7 Tutorial 7: PLECS Based Model of a Delta Connected
Circuit Example

This exercise is concerned with the implementation of the generic diagram accord-
ing to Fig. 4.27. The delta connected load is in the form of an ideal inductance value
with value L D 100mH, as discussed in Sect. 4.8.3. The revised circuit model as
given by Fig. 4.43 shows the three-phase pulse generator module 3ph_pulse and
conversion modules (as discussed in the previous tutorials) needed to arrive at the
voltage space vector EuD123 for the delta connected case. The output from the “R-L-
e-3ph” module is the current vector EiD123 D iD’ C j iD“ which must be converted
to three-phase currents using a PLECS standard vector to three-phase conversion
module. This module is unchanged, but the phase current to RST current module
“I123!(delta)RST” as shown in Fig. 4.43 must be build with a conversion matrix
as defined by Eq. (4.9). An example of the current waveforms, which should appear
(with a zero resistance coil) in your simulation, is given in Fig. 4.44. Shown are the
real and imaginary current space vector components iD’ and iD“ together with the
supply current iR. The phase voltage uD1 is also added for reference purposes. When
comparing the supply current iR waveform according to Fig. 4.44 against the result
obtained with the star connected circuit (see Fig. 4.36) we see that the latter is three
times smaller (as expected). The waveform shape remains unchanged. It is again
noted that the process of modeling a delta connected circuit could be avoided if we
simply take the delta circuit parameter values, divide these by a factor of three, and
re-configure the circuit in “star.”

It is left to the reader to redo this tutorial example using an electrical circuit
model approach.

4.8.8 Tutorial 8: PLECS Based Model of a Star Connected
Circuit Example with Sinusoidal Excitation

This tutorial is concerned with a phasor analysis of a star configured three-phase
circuit connected to a sinusoidal supply. The simulation model as illustrated by
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Fig. 4.45 PLECS model: star connected circuit

Fig. 4.45 needs to be modified by replacing the 3ph_pulse module with a three-
phase sinusoidal excitation module 3ph_Sine as shown in Fig. 4.46.

The three-phase supply unit needs to be built and an implementation example
of this module is given in Fig. 4.47a. The output waveforms should be according
to Eq. (4.19). The sub-module shown is made with three “sine” modules which
represent the “RST” supply voltages. The sub-module should have the numerical
inputs as given by Table 4.1.

Note that the “phase” entry is set to �=2 given that our supply voltages are chosen
as cosine functions. If we set the 	 parameter to zero, the output will be a sine
function, i.e., at t D 0 the value of uR will be zero. In our case its value should
be UR

p
2.
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Fig. 4.46 PLECS model: star connected circuit, sinusoidal excitation
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Fig. 4.47 PLECS: supply and branch circuit modules. (a) Three-phase supply. (b) Branch circuit

Table 4.1 Parameters for
three-phase supply unit

Parameters Value

RMS supply voltage UR 220 V

RMS supply voltage US 220 V

RMS supply voltage UT 220 V

Supply frequency f 50 Hz

Phase 	 �=2 rad

The branch circuit model as shown in Fig. 4.47b (in space vector form) is
extended to include an “EMF” three-phase voltage source defined according to
Eq. (4.67).
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e1 D E
p
2 cos .!t C 	e/ (4.67a)

e2 D E
p
2 cos .!t C 	e � / (4.67b)

e3 D E
p
2 cos .!t C 	e � 2/ (4.67c)

where the parameters E and 	e are set to 100V and ��=3 rad, respectively. Note that
this equation is again built with “sine” modules, which means that an additional
phase shift of �=2 must be added, given that we have chosen cosine functions in
this example. Furthermore, the supply angular frequency is set to ! D 2�f , with
f D 50Hz. In addition, a “three to two-phase” conversion module as discussed
in Sect. 4.8.1 must be added in order to arrive at the vector Ee123. The remaining
parameters for this module are taken to be R D 10� and L D 100mH. The
results of the simulation, which should be run over a period of 20ms, are shown
on the Scope module and subsequently exported to MATLAB via a .csv file. An
example of the results obtained is given in Fig. 4.48. Shown in Fig. 4.48 are the fol-
lowing waveforms: phase voltage uS1 (which in this case is also the supply voltage
uR), current vector components iS’ and iS“, and phase/supply current iS1 (which is
also iR). The phase/supply current obtained with the simulation “iS1 sim” is shown
together with the “steady-state” phase/supply current “iS1 phasor,” as obtained via
a phasor analysis of the problem at hand. An observation of Fig. 4.48 shows that the
two waveforms converge towards the end of the simulation. This implies that the
“transient” components present in our dynamic simulation become less significant
after approximately one cycle of operation.
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On the basis of the approach outlined in Sect. 4.7, build an M-file which allows
you to calculate the steady-state current waveform iS1, as shown in Fig. 4.48 with the
notation “iS1 phasor.” An example of this phasor calculation is shown in the M-file
below.

M-file Code

%tutorial 8, chapter 4
close all
%phasor analysis
C=2/3; %space vector amplitude invariant
U=220; %supply phase voltage RMS
E=100; %EMF phase voltage RMS
rho_e=-pi/3; %EMF phase angle
u_123=3/2*C*U*sqrt(2); %supply phasor
e_p=3/2*C*E*sqrt(2); %emf peak voltage
e_123=e_p*cos(rho_e)+j*e_p*sin(rho_e);%EMF phasor
R=10; %phase resistance
L=100e-3; %phase inductance(H)
w=100*pi; %supply frequency (rad/s)
X=w*L; %load reactance
i_123=(u_123-e_123)/(R+j*X); %current phasor
ip=abs(i_123); %peak value phasor
rho_i=angle(i_123); %phase angle current phasor
i1p=2/(3*C)*ip; %phase/supply current amplitude
%plot data
dat = csvread(’tut8ch4_data.csv’,1,0) %read in data from PLECS
subplot(3,1,1)
plot(dat(:,1)*1e3,dat(:,2)) %load phase voltage
grid on
legend(’u_{S1}’);
xlabel(’(a) time (ms)’)
ylabel(’(V)’)
subplot(3,1,2)
plot(dat(:,1)*1e3,dat(:,3)) %real current
hold on

plot(dat(:,1)*1e3,dat(:,4)) %imaginary current
grid
legend(’i_{S\alpha}’,’i_{S\beta}’);
xlabel(’(b) time (ms)’)
ylabel(’(A)’)
ylim([-15 15])
%%%%%%plot phase current i1 in sub-plot with waveform from simulation
subplot(3,1,3)
plot(dat(:,1)*1e3,dat(:,5))
hold on
t=[0:.1e-3:60e-3];
i1vt=i1p*cos(w*t+rho_i); %phase current versus time
plot(t*1e3,i1vt)
grid
legend(’i_{S1} sim’,’i_{S1} phasor’)
xlabel(’(c) time (ms)’)
ylabel(’(A)’)
ylim([-15 15])



Chapter 5
Concept of Real and Reactive Power

5.1 Introduction

In this chapter the meaning of “real” and “reactive” power is explored for sinusoidal
systems. Initially, single phase (so-called two-wire) circuits are discussed to gain an
understanding of the energy flow within a circuit configuration that is representative
for electrical machines. We will then extend this analysis to three-phase (three-wire)
circuits. In the final part of this chapter a set of tutorials is introduced to reinforce
the concepts discussed.

5.2 Power in Single Phase Systems

The concept of power is introduced with the aid of Fig. 5.1, which shows a load in
the form of an inductor L, resistance R, and voltage source ue in series connection.
The voltage source ue is generally known as the induced voltage or back-emf.
Hence, the circuit configuration as described above is representative for electrical
machines. A current source i .t/ is connected to this network. The reason for using a
sinusoidal supply current source instead of a supply voltage source is to simplify the
mathematical analysis. Application of Kirchhoff’s voltage laws to this circuit shows
that the voltage across the current source can be written as

u D uR C uL C ue (5.1)

where uR; uL; andue represent the instantaneous voltages across the resistance,
inductor, and voltage source ue, respectively. If we multiply Eq. (5.1) with the
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Fig. 5.1 R-L-ue load
connected to current source

instantaneous current produced by the current source, the so-called power balance
equation appears as shown in Eq. (5.2).

u i„ƒ‚…
pin

D i uR„ƒ‚…
pR

C i uL„ƒ‚…
pL

C i ue„ƒ‚…
pe

(5.2)

The instantaneous power, which is a physical quantity, is simply the product
of the instantaneous voltage and instantaneous current. Note that the voltage and
current variables of the current source are shown in the so-called generator arrow
system, while the voltage and current variables of the R-L-ue load follow the “motor
arrow system.” Hence, if the value of the instantaneous power is positive then power
flows out of the current source into the circuit element and internal voltage source ue.
With reference to Eq. (5.2), the term pin refers to the power supplied to the network.
For the resistance and inductor the instantaneous power is given as pR and pL,
respectively. The same definition in terms of energy/power flow also applies to the
voltage source ue. It will be shown later that this type of circuit element is also
present in electrical machines where it is instrumental in the electrical to mechanical
energy conversion process. It is noted that for a resistance the instantaneous power
is always positive as it is dissipated, which means that its energy is given as heat to
the environment. Note that energy (Ws D Joule) is defined as �We D R t

0 p .�/ d� ,
i.e. in a time-diagram the area underneath the respective power function and the
horizontal time line.

It is instructive to discuss these concepts with the aid of an example where we
assume a sinusoidal current time function of the form

i .t/ D Oi cos!t (5.3)

The “steady-state” voltage across the current source will be of the form

u .t/ D Ou cos .!/ (5.4)
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In addition we will assume that the voltage across the induced voltage source ue can
be written as

ue .t/ D Oe cos .!/ (5.5)

It is convenient at this stage to introduce a phasor representation of the variables
u .t/ ; andi .t/ according to the approach discussed in Sect. 2.5. The variables
according to Eqs. (5.3) and (5.4) may also be written as

i .t/ D <
8<
: Oi„ƒ‚…

i

ej!t

9=
; (5.6a)

u .t/ D <
8<
: Ou ej	„ƒ‚…

u

ej!t

9=
; (5.6b)

An observation of Fig. 5.2 shows that we can also represent the voltage phasor
in terms of the vector sum of the two phasors ure D Ou cos	 and uim D jOu sin 	, i.e.
u D ure C uim. The phasor ure is aligned (in phase) with the current phasor, the other
uim is orthogonal, i.e. at right angles to i. If the nature of the circuit is “inductive”
(as shown) the angle 	, which is conventionally measured from the current vector
to the voltage vector, will be greater than zero. Alternatively, circuits which exhibit
a negative 	 are referred to as being “capacitive.” This definition ties in with the
fact that the phasor diagram of, for example, an inductor corresponds to the case
	 D �=2 rad, whereas for a capacitor the angle equals 	 D ��=2 rad.

Fig. 5.2 Phasor diagram of
phasors i; u
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The voltage phasor components ure and uim can also be converted to variables as
function of time (by using the transformations given in Eq. (5.6)) namely

ure .t/ D Ou cos	 cos!t (5.7a)

uim .t/ D �Ou sin 	 sin!t (5.7b)

Note that expression (5.7) may also be written in space vector form as

Eu .t/ D ure .t/C juim .t/ (5.8)

The introduction of phasor components ure; and uim allows us to rewrite the input
power equation pin D i u as

pin D i ure„ƒ‚…
pre

C i uim„ƒ‚…
pim

(5.9)

which shows that the instantaneous input power expression is now defined in terms
of two components which with the aid of Eqs. (5.3) and (5.7) can also be written as

pre D Ou Oi cos	 cos2 !t (5.10a)

pim D �Ou Oi sin 	 cos!t sin!t (5.10b)

Equation (5.10) can also be rewritten in the form given below

pre D Ou Oi
2

cos 	
„ ƒ‚ …

P

.1C cos 2!t/ (5.11a)

pim D Ou Oi
2

sin 	
„ ƒ‚ …

Q

.� sin 2!t/ (5.11b)

An analysis of Eq. (5.11a) shows that there is a time-independent term, known as
the “real power,” P, with units in “Watts,” which represents the average power level
P of the function pre. In other words, the average power level corresponds to the total
amount of energy supplied to the circuit for one cycle period T (the area enclosed by
the power function pre and time line) divided by T. Note that the average power level
is also present in the function pin given that the average value of the variable pim is
zero. The so-called reactive power value, Q, expressed in volt-ampere reactive VAr
(to differentiate from Apparent power S in VA) is tied to the energy flow associated
with expression (5.11b). Note that this power expression is based on the use of
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the voltage phasor component, which is at right angles to the current phasor (see
Fig. 5.2). An observation of expression (5.11b) shows that the average power level
of pim is zero. The amplitude of the power function pim is known as the reactive
power value “Q.”

The real, reactive, and apparent power of the circuit may be written as

P D U I cos	 W (5.12a)

Q D U I sin 	 VAr (5.12b)

S D U I VA (5.12c)

where U D Ou=p
2 and I D Oi=p

2 are the respective RMS values of the voltage/current
waveforms of the source connected to the R-L-ue circuit. The term cos	 is referred
to as the displacement factor. When no harmonics are present this factor equals the
power factor, which is defined as the ratio of real and reactive power.

It is at this stage helpful to consider a simple numerical example where we
assume the current to be of the form i D cos!t, where ! D 100 � rad/s. The
circuit elements are chosen purposely as to arrive at a voltage across the current
source which is of the form u D 2 cos .!t C 	/, with 	 D �=3. Hence, the circuit is
“inductive” given that the voltage/time function leads the current/time function. For
this example, the values of P and Q are according to Eq. (5.12), equal to P D 0:5W
and Q D 0:866VAr, respectively. The input power versus time plot together with its
components pre and pim are shown in Fig. 5.3 for one 20ms cycle of operation. An
observation of Fig. 5.3 shows that the energy flow is towards the circuit for some
parts of the cycle (shown in “green”) and back to the current source for other parts
(shown in “red”). There is, however, an average energy flow (the difference between
the “green” and “red” areas) and the power associated with this net energy is known
as the “real” power P given in watts as was discussed above.

Also shown in Fig. 5.3 are the two components pre and pim of the input power
function. An observation of this example confirms that the energy linked with the
power function pre is precisely the energy supplied to the circuit over one period
T D 20ms. The amount of energy supplied (colored “green” in the power function
pre) is equal to P times the cycle time T. The energy linked to the power waveform
pim represents the energy which is temporarily stored in the circuit (in either the
inductive, capacitive elements or the internal voltage source). This energy oscillates
between circuit and supply source (as shown by the “green” and “red” areas which
identify the energy direction).

The reactive power value Q is equal to the amplitude of the waveform pim. Note
that the value of Q can be positive or negative, in both cases its value remains linked
to the amplitude of the energy fluctuations. It is interesting to consider the changes
to Fig. 5.3 for the case 	 D 0. Under these circumstances the reactive power level Q
is zero, hence there are no energy fluctuations linked to this term. The energy level
still fluctuates, but the energy flow is unidirectional, i.e. from supply to circuit. On
the other hand, if we choose 	 D 1

2
� the real power P will be zero in which case the

average amount of energy transferred from supply to the circuit is zero. The energy
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Fig. 5.3 Power plot for R-L-ue circuit, supply side

under these circumstances is stored and recovered from the circuit, i.e. for parts of
the cycle it flows from source to the circuit and for the other (equal amount) it flows
in the opposite direction.

At this point we have considered the power and energy situation when viewed
from outside the circuit, i.e. from the source connected to the circuit. We will now
consider the energy flow within the circuit itself.

Firstly, we examine the resistive component where the voltage across this element
is given as uR D i R, which can also be linked to its phasor representation namely

uR .t/ D <
8<
: OiR„ƒ‚…

uR

ej!t

9=
; (5.13)

The phasor uR is in phase with the current phasor i as shown in Fig. 5.4. The
instantaneous power linked to this component is equal to pR D i2R, which after
substitution of Eq. (5.3) can (after some manipulation) be written as

pR .t/ D Oi2R
2
.1C cos .2!t// (5.14)
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Fig. 5.4 Phasor diagram for
R-L-ue circuit, component
side

An important observation from Eq. (5.14) is that the power pR is greater than or
equal to zero, as mentioned previously. Furthermore, the real power PR (which is
defined as the average value of pR .t/) is equal to PR D I2R D U2=R, where I D Oi=p

2

and U D Ou=p
2 are equal to the RMS value of the current and voltage, respectively.

We will now consider the inductance L of the circuit. The voltage across this
element is given as uL D L di=dt. Substitution of the current expression (5.3) leads
to uL D �Oi!L sin!t, which can also be written in terms of the phasor u L linked to
this function, namely

uL .t/ D <

8̂
<
:̂ j Oi!L„ƒ‚…

u L

ej!t

9>=
>; (5.15)

Equation (5.15) shows that the voltage phasor uL is orthogonal (at right angles) to
the current phasor as shown in Fig. 5.4. The power linked with this component is
given as pL D uLi, which can also be written as

pL .t/ D �! L Oi 2
2

sin .2!t/ (5.16)

The first observation to be made from Eq. (5.16) is that its average value is zero,
which is to be expected given that an inductor cannot dissipate energy. Hence energy
taken into the device is stored and must (at a later interval) be recovered. The peak
value of pL represents the reactive power QL of this component and is equal to
Q D I2!L. Note that a similar analysis of this type can also be done for the capacitor
in which case the reactive power is taken to be negative and of the form I2 1=!C.

Finally, the circuit component ue is considered, which is of the form given in
Eq. (5.5). The phasor e linked to this voltage function is of the form

ue .t/ D <
8<
: Oe ej�„ƒ‚…

e

ej!t

9=
; (5.17)
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The phasor e shown in Fig. 5.4 (with � D ��=4) can be defined in terms of two
phasors ere and eim (also given in Fig. 5.4 according to the approach outlined for the
voltage phasor (see Eq. (5.7)). The corresponding voltages are of the form

ere .t/ D Oe cos � cos!t (5.18a)

eim .t/ D �Oe sin � sin!t (5.18b)

The introduction of these two voltage components allows us to rewrite the power
equation pe D i ue as

pe D i ere„ƒ‚…
pe

re

C i eim„ƒ‚…
pe

im

(5.19)

which shows that the instantaneous power expression is again defined by two terms,
which with the aid of Eqs. (5.3) and (5.18) can also be written as

pe
re D Oe Oi cos � cos2 !t (5.20a)

pe
im D �Oe Oi sin � cos!t sin!t (5.20b)

Equation (5.20) can also be rewritten in the form given below

pe
re D Oe Oi

2
cos �

„ ƒ‚ …
Pe

C Oe Oi
2

cos� cos 2!t (5.21a)

pe
im D Oe Oi

2
sin �

„ ƒ‚ …
Qe

.� sin 2!t/ (5.21b)

Expression (5.21) clearly shows the real and reactive power contributions Pe and Qe,
respectively, which are associated with the voltage source ue.

It is at this stage helpful to return to the numerical example given for the supply
side. For example, if we set Oe D p

2=2V, � D ��=4 rad, R D 0:5�, !L D�p
3C 0:5

�
�, and Oi D 1A, then a simple phasor analysis of this circuit shows

that the voltage across the current supply source equals u D 2 cos .!t C �=3/, which
is the waveform used for the supply example that corresponds to the power/energy
Fig. 5.3. Use of these circuit parameters with Eqs. (5.14), (5.16), and (5.21) leads to
the power waveforms and “energy” surfaces as given in Fig. 5.5. The axis scaling
has purposely been chosen to match that of Fig. 5.3. The energy levels linked
with this circuit are again shown, where “green” implies an energy flow into the
circuit element and “red” out of an element. For example, in the resistance, energy
flow is always into this component, given that this energy is dissipated as heat.
The average value of the waveform pR represents the real power PR D 0:25W
dissipated in the resistance given our choice of parameter values. For the inductor
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Fig. 5.5 Power plot for L-R-e circuit, component side

we observe a pulsating energy flow, which corresponds to a reactive power value
of QL D 1:116VAr. Finally, we need to consider the voltage source ue that has
two power components, of which the first pe

re has a unidirectional energy flow (for
this example) into this element. The average power level with the present parameter
values is equal to Pe D 0:25W. A reactive power term is also evident, which in
this case was arbitrarily chosen to be capacitive, which corresponds with a negative
reactive value of Qe D �0:25VAr. The total real power which is absorbed by the
circuit is equal to PR C Pe D 0:25C 0:25 D 0:5W, which corresponds to the power
P D 0:5W (supplied by the current source), as shown in Fig. 5.3. The reactive
component sum is equal to QLCQe D 1:116�0:25 D 0:866VAr, which corresponds
to the reactive power level of the circuit as shown in Fig. 5.3. From this analysis we
can also observe where the real and reactive power ends up in the circuit. In this
example, real power supplied by the source is equally divided between the resistance
and voltage source ue. Furthermore, the analysis shows that the total reactive power
Q D 0:866VAr is predominantly linked to the inductor. However, a small capacitive
component equal to �0:25VAr is also linked to the voltage source ue, as shown in
Fig. 5.5.
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5.3 Power in Three-Phase Systems

The approach used to explain the concept of power in single phase systems is
extended in this section to three-phase systems, using the material presented in
Chap. 4, in particular with respect to the use of space vectors.

It is helpful to assume a three-phase supply current source of the form

iR D Oi cos .!t/ (5.22a)

iS D Oi cos .!t � / (5.22b)

iT D Oi cos .!t � 2/ (5.22c)

with  D 2�=3, as mentioned earlier. The phase voltages which appear across the
respective supply current sources may be written as

uR D Ou cos .!t C 	/ (5.23a)

uS D Ou cos .!t C 	 � / (5.23b)

uT D Ou cos .!t C 	 � 2/ (5.23c)

The corresponding space vector representation (amplitude invariant notation, see
Eq. (4.30)) of the supply waveforms is in this case given as

Eu D Ou ej	ej!t (5.24a)

Ei D Oi ej!t (5.24b)

where Ou and Oi represent the peak values of the three-phase sinusoidal variables.
The three-phase circuit configuration as described for the single phase is again

used here, which means that each phase consists of a series network in the form of
a resistance R, inductor L, and voltage source ue which for the three phases 1; 2; 3
is now of the form

ue1 D Oe cos .!t C �/ (5.25a)

ue2 D Oe cos .!t C � � / (5.25b)

ue3 D Oe cos .!t C � � 2/ (5.25c)

which can also be presented in its space vector form

Eue D Oe ej�ej!t (5.26)
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Fig. 5.6 Space vector
representation of the
three-phase circuit

It is instructive to represent the three-phase network as considered here in its
space vector form according to the approach outlined in Chap. 4. We will assume
for simplicity a “star” connected circuit, given that phase variables are under these
conditions equal to supply variables (there is no zero sequence voltage component
in this case u0 D 0). The resultant space vector based circuit diagram is of the
form shown in Fig. 5.6. On the basis of Fig. 5.6 we will examine the power/energy
concepts. A suitable starting point is the total instantaneous input power which is
now of the form

pin D uR iR„ƒ‚…
pR

C uS iS„ƒ‚…
pS

C uT iT„ƒ‚…
pT

(5.27)

in which the instantaneous power for each phase is also shown. The real power in,

for example, the “R” phase is according to Eq. (5.12a) equal to PR D Ou Oi
2

cos 	. The
total real power for this system will be three times this amount, on the grounds that
the circuit configuration for all three phases is identical, hence the total real power
is equal to

P D 3Ou Oi
2

cos 	 (5.28)

Note that this expression can also be written in terms of RMS values, namely

P D 3UI cos	 (5.29)

In this case it is helpful to use the form according to Eq. (5.28), given that it provides
a relative easy transition to the space vector form of the power, which is of the form

P D 3

2
<

n
Eu

�Ei
��o

(5.30)

Note that the superscript � indicates the conjugate of a vector. The validity of this
expression is readily verified upon substitution of Eq. (5.24), in which case the end
result must conform with Eq. (5.28).
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Equation (5.30) can also be given in terms of its space vector components
Eu D u’ C j u“ and Ei D i’ C j i“, which leads to Eq. (5.31).

P D 3

2

�
u’ i’ C u“ i“

�
(5.31)

The space vector components can also, with the aid of the conversion
matrix (4.32), be rewritten in terms of phase variables, which (with sinusoidal
variables and star connected circuit) also correspond to the supply variables
uR; uS; uT; iR; iS, and iT. After some mathematical manipulation Eq. (5.32) appears.

P D uR iR„ƒ‚…
pR

C uS iS„ƒ‚…
pS

C uT iT„ƒ‚…
pT

(5.32)

A comparison between Eqs. (5.32) and (5.27) shows that they are identical. The
significant conclusion is therefore that the total instantaneous input power of the
circuit is equal to the real power, hence

P D pin (5.33)

Equation (5.33) also states that there is no energy fluctuation present in the
waveform, pin, given that the average value (as defined by the value P) corresponds
to the instantaneous value. This observation is of fundamental importance as it
means that the energy flow in a three-phase system from supply to source is fully
utilized in terms of transport efficiency. This is the fundamental reason why three-
wire (three-phase) circuits are used for energy conversion processes. A two-wire
circuit (single phase system) cannot realize such an efficient energy transport as can
be observed from Fig. 5.3, waveform pin .t/.

For simulation purposes it is helpful to introduce a new building block as
given in Fig. 5.7, which calculates the real power P according to Eq. (5.31). The
input variables are in this case “vector” lines, which means that the voltage and
current input lines are given by the variables u’; u“ and i’; i“, respectively. The
output of this module is the power P. Prior to discussing the concept of reactive
power in three-phase systems it is instructive to extend the single phase example
according to Fig. 5.3 for the three-phase case. The same circuit parameters and
phase current/voltage parameters are used here, which means that Oi D 1A, Ou D 2V,

Fig. 5.7 Real power module
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Fig. 5.8 Three-phase “real” power plot

	 D �=3 rad, ! D 100 rad=s. On the basis of this data the instantaneous power for
the three phases can be plotted using Eqs. (5.22), (5.23), and (5.27). The results as
given in Fig. 5.8 also show the energy linked with these waveforms, where “green”
is used to identify power into the circuit, whereas “red” depicts an outgoing energy
flow.

As expected, Fig. 5.8 has a constant instantaneous power value, whereas the
phase power waveforms have an average value, which corresponds to the phase
power, PRST, calculated using Eq. (5.12a). The reader could perhaps at this point
come to the erroneous conclusion that the reactive power Q for the three-phase
circuit is zero given that the input power level is constant. This is not the case as
will become apparent in the following discussion.

The reactive power in, for example, the “R” phase is according to Eq. (5.12b)

equal to QR D Ou Oi
2

sin 	. The total reactive power for this system will be three times
this amount on the grounds that the circuit configuration for all three phases is
identical (as mentioned earlier), hence the total reactive power is equal to

Q D 3Ou Oi
2

sin 	 (5.34)
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Note that this expression can also be written in terms of RMS values, namely

Q D 3UI sin 	 (5.35)

In this case it is helpful to use the form according to Eq. (5.34) for further
development, given that it provides a relative easy transition to the space vector
format of the reactive power equation, namely

Q D 3

2
=

n
Eu

�Ei
��o

(5.36)

The validity of this expression is readily verified upon substitution of Eq. (5.24), in
which case the end result must conform with Eq. (5.34). Equation (5.36) can also be
given in terms of its space vector components Eu and Ei which leads to Eq. (5.37).

Q D 3

2

�
u“ i’ � u’ i“

�
(5.37)

At this point it is convenient to introduce a simulation building block which has
as output the reactive power value as defined in Eq. (5.37). The input variables are
in this case “vector” lines which means that the voltage and current input lines are
given by the variables u’; u“ and i’; i“, respectively (Fig. 5.9). Prior to discussing
the power/energy flow within the three phase circuit it is instructive to return to
our numerical example used to plot the waveforms given in Fig. 5.8. The reactive
power plot (for one cycle T D 20ms) which corresponds with this example is given
in Fig. 5.10. The parameters used to obtain these results are Oi D 1A, Ou D 2V,
	 D �=3 rad, ! D 100 rad/s.

The reactive power per phase corresponds to the amplitude of the pR
im, pS

im, pT
im

waveforms. Note that the instantaneous sum of these three waveforms is zero. The
total reactive power of the circuit is defined as the sum of the reactive power per
phase contributions, hence this sum is NOT zero but three times the amplitude of
the phase contributions.

Fig. 5.9 Reactive power
module
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Fig. 5.10 Three-phase “reactive” power plot

The approach used to examine the power contributions (for each element of the
circuit) is based on the real and reactive power definitions as given by Eqs. (5.30)
and (5.36), respectively. The vector Eu must be replaced by the vector which
corresponds to the circuit element under discussion.

For the resistive element the voltage vector is of the form EuR D EiR in which case
the total power dissipated is given as

PR D 3

2
Ei Ei�R (5.38)

The reactive power for the inductor is found by use of the voltage vector EuL D L dEi
dt

with Eq. (5.36), which leads to the reactive power QL expression defined as

QL D 3

2
Ei Ei�!L (5.39)

The real and reactive power contributions linked to the three phase voltage source
ue are found by using Eq. (5.26) with Eqs. (5.30) and (5.36) which lead to
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Table 5.1 Real and reactive
value for circuit example

Variable Value

Real power resistance PR 0.75 W

Reactive power inductor QL 3.348 VAr

Real power source ue Pe 0.75 W

Reactive power source ue Qe �0.75 VAr

Fig. 5.11 Vector to RMS
module

Pe D 3

2
<

n
Ee Ei�

o
(5.40a)

Qe D 3

2
=

n
Ee Ei�

o
(5.40b)

As with the single phase example it is instructive to return to the numerical example
given for the three-phase supply side (Figs. 5.8 and 5.10). If we again set Oe D p

2=2V,

� D ��=4 rad, R D 0:5�, !L D
�p

3C 0:5
�
�, and Oi D 1A then a space vector

analysis of this circuit shows that the voltage across the current supply source will
be given by Eq. (5.24a) with Ou D 2V, 	 D �=3 rad. The real and reactive power
contributions as calculated using Eqs. (5.38)–(5.40) for these circuit elements are
given in Table 5.1.

According to Table 5.1 the total real power utilized by the circuit elements is
equal to PR C Pe D 0:75 C 0:75 D 1:5W which is precisely the power level
shown in Fig. 5.8. The reactive power of the circuit is according to Table 5.1 equal
to QL C Qe D 3:348 � 0:75 D 2:598VAr. This value divided by three gives the
reactive power contribution per phase as shown in Fig. 5.10.

At the conclusion of this section it is helpful to introduce a simulation module
which has as input a space vector Ex D x’ C j x“ and as output the “RMS” value “x.”
This module is useful for simulations with three-phase sinusoidal systems, where the
RMS value linked to a space vector is often of interest. The building block which
represents this conversion process is given in Fig. 5.11.

The relationship between input and output is found by realizing that the ampli-

tude of the vector is given as jExj D
q
.x’/

2 C �
x“

�2
. Furthermore, for amplitude

invariant type transformations (and sinusoidal waveforms) the RMS phase value is
given as x D Ox=p

2, where Ox D jExj. The resultant conversion may also be written as

x D 1p
2

q
.x’/

2 C �
x“

�2
(5.41)
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5.4 Phasor Representation of Real and Reactive Power

In Sect. 4.7.1, the relationship between phasors and space vectors was discussed.
In this section the use of phasors with real and power concepts is considered.
According to Eq. (4.60) the phasor representation of a voltage/current based power
invariant space vectors may be written as

Eu D Ou ej	„ƒ‚…
u

ej!t (5.42a)

Ei D Oi„ƒ‚…
i

ej!t (5.42b)

The calculation of the real power of, for example, the R-L-ue circuit is defined in
Eq. (5.30). Substitution of Eq. (5.42) leads to the phasor based form, namely

P D 3

2
< ˚

u .i/�
�

(5.43)

A similar approach for conversion from space vector to phasor format can also
be carried out for the reactive power equation (5.36) which gives

Q D 3

2
= ˚

u .i/�
�

(5.44)

Similarly, the real and reactive power phasor based equations for the circuit
components may be obtained. Use of Eqs. (5.38)–(5.40) leads to

PR D 3

2
i .i/� R (5.45)

QL D 3

2
i .i/� !L (5.46)

Pe D 3

2
< ˚

e .i/�
�

(5.47)

Qe D 3

2
= ˚

e .i/�
�

(5.48)
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5.5 Tutorials

5.5.1 Tutorial 1: PLECS Based Model of a Single Phase
Resonant Circuit

This tutorial is concerned with the energy flow within a resonant circuit connected
to a battery source ub D 10V via a switch S which is closed at time t D 0. The
resonant period of the circuit, as shown in Fig. 5.12 is given as T D 2�

p
LC. In this

example, the period is set to T D 20ms. By choosing L D 100mH, the C value
can be found using T D 2 �

p
LC to give the selected T. A simple computation

shows that the capacitor value must be set to C D 101:32 �F. Furthermore, we
will assume that the capacitor is fully discharged at t D 0, hence uC .0/ D 0.
A PLECS “control block” representation of Fig. 5.12 is to be made based on the
equation set which is linked with this circuit. An example of a PLECS representation
of this circuit is given in Fig. 5.13. Note the significance of the integrator outputs
namely: integration of the inductance voltage uL leads to the flux-linkage  and the
current is then found using i D  =L (which assumes a linear inductance model). For
a capacitor an analogous reasoning is possible, where the input of the integrator is
the current i and the output the electrical charge q, on the basis of which the voltage
across the capacitor is calculated using uC D q=C. The objective of this tutorial is
to examine the voltage, current, and instantaneous power waveforms of this circuit
for the time interval 0 ! 10ms, i.e. for one-half period cycle T=2 after the switch

Fig. 5.12 Resonant circuit
example

Step

−
+ 1/s K

1/L

1/s K

1/C

Scope

u_i psi i q u_c

Fig. 5.13 PLECS control block model: resonant circuit model
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Fig. 5.14 Resonant circuit model: results i .t/, uL .t/, uC .t/

is closed. This means that the “run” time of your simulation must be set to 10ms.
An example of the results which should appear on the Scope module in terms of
the current i, voltage across the capacitor uC, and inductor uL is given in Fig. 5.14.
The energy flow for this circuit can be studied with the aid of the instantaneous
power for each of the elements. The power for the battery, inductor, and capacitor
are of the form ps D ub i, pL D uL i, and pC D uC i, respectively. The power plots
for this example are given in Fig. 5.15 and these show the energy supplied to and
from the circuit elements. Areas shaded “green” correspond to energy supplied to
an element, whereas “red” relates to energy which is recovered. An observation of
Fig. 5.15 shows that during the first quarter (0!5ms) of the cycle, energy from the
battery source is supplied to the capacitor and inductor. During the second part of
the cycle (5! 10ms) the capacitor receives energy from the battery as well as the
inductor.

5.5.2 Tutorial 2: PLECS Circuit Model Representation
of a Single Phase Resonant Circuit

In this tutorial, a circuit model implementation of Fig. 5.12 is considered.
The parameters for this example correspond to those given in the previous tutorial.
The simulation model as given in Fig. 5.16 on page 148 is in this case constructed
with the aid of “circuit” modules instead of generic (control block) modules as
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Fig. 5.15 PLECS: results pL .t/, pC .t/, ps .t/

V_dc

Vu_b

A

i

Vu_C

V

u_L

C1

L1 Scope

*
*

i

i

u_C

*
*

*
*i

i

u_C

Fig. 5.16 Circuit model representation: resonant circuit

shown in the previous tutorial. The run time of 10ms remains unchanged. A Scope
module is used to monitor the circuit current i, inductor voltage uL, capacitor voltage
uC, and DC supply voltage ub. In addition, a set of multiplier control blocks have
been introduced to measure the instantaneous power of the DC supply, inductance,
and capacitor. The results shown on the Scopemodule are identical to those shown
in Figs. 5.13 and 5.15.
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u_s

u_e
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−

1/s K

1/L

10

R
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*
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Scope

u_s

u_s

i

i

u_s

u_L i

Fig. 5.17 PLECS: single phase R-L-ue circuit example

5.5.3 Tutorial 3: PLECS Based Model of a Single Phase
Circuit Used for Power Analysis

This tutorial is concerned with an R-L-ue series circuit as given in Fig. 5.1. However,
in this case a voltage source is connected to the load. A PLECS implementation
of this circuit configuration, as given in Fig. 5.17, has an input voltage function
u D Ou cos .!t/, where Ou D 220

p
2V, ! D 100� rad/s. The voltage source ue is

given as e D Oe cos .!t C �/, where Oe D 100
p
2, � D �7�=6. The resistance and

inductor value are taken to be R D 10� and L D 100mH, respectively.
Run the simulation for a period of 60ms and plot the voltage/current waveforms

u, e, and i. An example of the results after running this simulation is given in
Fig. 5.18. The instantaneous power waveforms pin D u i for the circuit and for the
voltage source ue, pe D e i are given in Fig. 5.19. The objective of this tutorial is
to examine the power linked with the voltage source ue on the basis that the latter
is an unknown quantity. A problem of this type is typical for machines, hence its
inclusion here. The input to this problem are the “measured” steady-state current
(as observed from the simulation, see Fig. 5.18), which is equal to I D 9:29A and
the “measured” real power level (taken from Fig. 5.19) P D 293W.

On the basis of the data provided calculate the reactive power Q for the circuit,
inductor QL and ue source Qe. In addition, calculate the real power associated with
the resistance PR and ue source Pe. Finally, calculate on the basis of the Qe and
Pe values the amplitude and phase angle of the ue source. An example of this
calculation together with the M-file used to generate the plots for this tutorial is
given at the end of this tutorial. The real and reactive results obtained after running
the simulation and corresponding M-file are given in Table 5.2.

The amplitude and phase of the ue source are found by taking the ratio of the
terms Qe and Pe which gives the angle � D arctan .Qe=Pe/. Substitution of the values
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Fig. 5.18 Results u, i, ue
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Fig. 5.19 Results pin, pe

Table 5.2 Real and reactive
values for tutorial 2 example

Variable Value

Real power resistance PR 863.0 W

Reactive power inductor QL 2711.3 VAr

Real power source ue Pe �570.0 W

Reactive power source ue Qe �688.6 VAr

Qe and Pe as given in Table 5.2, gives � D �129ı which is the angle between
the phasors e; i as shown in the phasor diagram (see Fig. 5.20). Once the angle �
is known, the amplitude of the ue source can be calculated using Eq. (5.21) which
gives Oe ' 96:22 � p

2. The value calculated using this approach compares favorably
with the actual value of 100�p2 as used for the simulation. The phase angle between
the voltage and current phasors was found to be 	i D �81:7ı and this angle is also
shown in the phasor diagram given in Fig. 5.20.



5.5 Tutorials 151

Fig. 5.20 Phasor diagram for
tutorial 3

Also shown in the phasor diagram are the phasor components ere and eim used
to derive the real and reactive power components Pe and Qe for the ue source. Note
that these components are in phase and orthogonal to the current phasor, not to the
voltage phasor.

M-file Code

%Tutorial 3, chapter 5
%we set E=100; eta=-7*pi/6 assume we don’t know these

values
%determine real reactive components on the basis of

measured
%current
close all
R=10; % resistance
L=100e-3; % inductor
w=100*pi; % frequency in rad/s
%%%%%%%%%%%%%%%%
t=dat(:,4); u=dat(:,3); i=dat(:,1);
e=dat(:,2); % used to cross check

results calculation
%%%%%%%%%%%%%%%%%%5
plot(t,u);
grid
hold on
plot(t,i*10,’r’)
plot(t,e,’g’)
legend(’u’,’i*10’,’e’)
ylabel(’u (V), i (A), e (V)’)
xlabel(’time(s)’)
%%%%analysis
%measured current
I=9.29;%measured RMS current
U=220; %RMS voltage
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%watt meter,
figure
plot(t,u.*i);
grid
hold on
plot(t,e.*i,’g’)
legend(’p_{in}’,’p_e’)
ylabel(’p_{in} (VA), p_e (VA)’)
xlabel(’time (s)’)
P=293; % measured average power
rho_i=acos(P/(U*I)); % phase angle u and i

(rad)
%Current lags voltage, i.e., inductive circuit
P_R=I^2*R; % dissipated power
P_e=P-P_R; % calculated power in

$u_e$
Q=U*I*sin(rho_i);
Q_L=I^2*w*L; % reactive power in

inductor
Q_e=Q-Q_L; % calculated reactive

power in $u_e$
eta=atan(Q_e/P_e); % phase angle $u_e$,

between e,i ,
% solution in third

quadrant
eta3=(pi-eta)*180/pi; % result in degrees
E=1/I*sqrt(P_e^2+Q_e^2); % amplitude e source

5.5.4 Tutorial 4: Three-Phase Star/Delta Circuit Model
Used for Power Analysis

The objective of this tutorial is to modify the simulation model given in Sect. 4.8.8
in such a manner as to give the user the option of choosing a star or delta configured
R-L-ue branch circuit. This means that we should be able to examine how the
supply power and RMS current changes when the phase configuration is changed.
Furthermore, the real and reactive power modules and RMS conversion modules
are to be added as shown in Fig. 5.21. The circuit shown in Fig. 5.21 appears on the
surface to be very similar to that given in Fig. 4.47b. The difference is that the power
and RMS conversion modules according to Figs. 5.7, 5.9, and 5.11 have been added
together with “display” modules to observe the respective values. A set of modules
needs to be added which will allow the R-L-ue space vector based phase circuit to be
used in a star or delta configuration. The key is to introduce a menu variable for this
sub-module which is linked to a variable SD shown in Fig. 5.22 within a “constant”
module. The output of this module must change with the configuration selected.
For example, SD=0 for star, SD=1 for delta, in which case a switch module can be
used for the conversion as shown in Fig. 5.23. In addition to the use of a switch, a
set of conversion modules must be added for the delta connected case, as discussed
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Fig. 5.21 Three-phase L-R-ue circuit example, with star/delta selection
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Fig. 5.23 Star/delta conversion

in Sect. 4.6.3. The conversion modules for conversions from EuRST ! EuD123 and
EiD123 ! EiRST need to be implemented for the delta connected case, as shown in
Fig. 5.23. The “function” modules shown in Fig. 5.23 are used to realize the vector
rotation ˙=4 and

p
3 scaling as required for the current and voltage space vectors.

The supply voltage and circuit components remain unchanged when compared
to those given in Sect. 4.8.8. Run your simulation with a “run” time of 600ms
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Table 5.3 Simulation results
tutorial 4

Parameters Value

RMS supply current (star) IS 5.79 A

RMS supply current (delta) ID 17.36 A

Real power (star) PS 2684.2 W

Real power (delta) PD 8052.7 W

Reactive power (star) QS 2717.0 VAr

Reactive power (delta) QD 8151.0 VAr

and observe the results on the numerical display modules for the star and delta
configured circuit case. If your circuit is implemented correctly the results according
to Table 5.3 should appear. The sequel to this tutorial is concerned with verifying
the results shown in Table 5.3 by way of a phasor analysis (in the form of an M-file)
of this problem for the star and delta connected case. The results of this analysis
should be the variables and values as given in Table 5.3. Note that the values for the
delta connected circuit configuration are three times higher than those shown for the
star case. An example of an M-file for this problem is given below:

M-file Code

%Tutorial 4, chapter 5
%%%%eta=-pi/3
R=10; % phase resistance
L=100e-3; % phase inductance(H)
w=100*pi; % supply frequency

(rad/s)
X=w*L; % load reactance
C=2/3; % space vector ampl

invariant
U=220; % supply phase

voltage RMS
E=100; % EMF phase voltage

RMS
rho_e=-pi/3; % EMF phase angle
u_RST=3/2*C*U*sqrt(2); % supply phasor
U=u_RST/sqrt(3); % RMS suply
e_p=3/2*C*E*sqrt(2); % emf peak voltage
e_RST=e_p*cos(rho_e)+j*e_p*sin(rho_e); % EMF phasor
gamma=2*pi/3;
% Star/delta choice in circuit module
% phasor analysis-star connected
u_123s=u_RST;% phase vector
e_123s=e_RST;%e phase vector
i_123s=(u_123s-e_123s)/(R+j*X); % current phasor
ips=abs(i_123s); % peak value phasor
rho_is=angle(i_123s); % phase angle current

phasor
% RMS supply current
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Is=ips/sqrt(2); % RMS current
Ps=real(u_123s*conj(i_123s))*3/2; % real power W
Qs=imag(u_123s*conj(i_123s))*3/2; % reactive power VAr
%%%%%%%%%%%%%%%%%%%%%%5
%Delta connected
u_123d=u_RST*sqrt(3)*(cos(-gamma/2)+j*sin(-gamma/2));

% U_phase phasor
e_123d=e_RST*sqrt(3)*(cos(-gamma/2)+j*sin(-gamma/2));

% e_phase phasor
i_123d=(u_123d-e_123d)/(R+j*X); % current phasor
ipd=abs(i_123d); % peak value phasor
rho_id=angle(i_123d); % phase angle current

phasor
%RMS supply current
Id=ipd/sqrt(2)*sqrt(3); % RMS current
Pd=real(u_123d*conj(i_123d))*3/2; % real power W
Qd=imag(u_123d*conj(i_123d))*3/2; % reactive power VAr



Chapter 6
Space Vector Based Transformer Models

6.1 Introduction

This chapter considers an extension of the (single phase) ideal transformer (ITF)
model to a two-phase space vector based version. The introduction of a two- phase
(ITF) model is instructive as a tool for moving towards the so-called ideal rotating
transformer “IRTF” concept, which forms the basis of machine models for this book.
The reader is reminded of the fact that a two-phase model is a convenient method of
representing three-phase systems as discussed in Sect. 4.6. The development from
ITF to a generalized two-inductance model, as discussed for the single phase model
(see Chap. 3), is almost identical for the two-phase model. Consequently, it is not
instructive to repeat this process here. Instead, emphasis is placed in this chapter
on the development of a two-phase space vector based ITF symbolic and generic
model.

6.2 Development of a Space Vector Based ITF Model

The process of moving from a single phase ITF model to a space vector based
version is readily done by making use of Fig. 3.1, which is modified to a two-phase
configuration as shown in Fig. 6.1.

A comparison between the single phase (Fig. 3.1) and two-phase (Fig. 6.1)
shows that there are now two windings (or coils) on the primary and two on the
secondary side of the transformer. The primary and secondary “alpha” winding
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Fig. 6.1 Two-phase physical transformer model

pair are orthogonal to the “beta” winding pair. The number of “effective” primary
and secondary turns in both winding sets is equal to n1 and n2, respectively.
Note that the windings are shown in symbolic form to show how the windings
are positioned. The primary and secondary phase windings are assumed to be
sinusoidally distributed. A discussion on the concept of sinusoidally distributed
windings and “effective” number of turns is given in Appendix A. The currents in
the primary and secondary windings are defined as i1’; i1“ and i2’; i2“, respectively.
A complex plane with a real and imaginary axis is also introduced in Fig. 6.1. Also
shown in this figure is the circuit flux distribution which is linked to a flux space
vector E m D  m’ C j m“. The complex plane is purposely tied to the orientation of
the primary windings of the transformer, as can be explained by considering the two-
phase model in a single phase form. If we ignore, for the purpose of this discussion,
the windings which carry the currents (i1“; i2“), then a primary current i1’ (formerly
i1 in the single phase model) leads to a primary MMF n1i1’. In an ITF, this primary
MMF must, for reasons discussed in Chap. 3, correspond to a secondary MMF n2i2’,
where i2’ is now used instead of i2 (as used in the single phase model). Furthermore,
the circuit flux vector E m is under these circumstances oriented along the horizontal
axis, which is precisely the chosen direction for the “real” axis of the new complex
plane, in which case E m D  m’.

The relationship between currents and flux-linkages for the two-phase ITF model
proceeds along similar lines as discussed for the single phase ITF model. The
relationship between the primary and secondary currents is given as
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n1i1’ � n2i2’ D 0 (6.1a)

n1i1“ � n2i2“ D 0 (6.1b)

The primary and secondary flux-linkages are defined as

 1’ D n1�m’ (6.2a)

 2’ D n2�m’ (6.2b)

 1“ D n1�m“ (6.2c)

 2“ D n2�m“ (6.2d)

Expressions (6.1) and (6.2) correspond to the space vector form given in Sect. 4.4
where the general notational form Ex D x’ C jx“ was introduced. The resultant space
vector based ITF equation set is given by (6.3).

Eu1 D d E 1
dt

(6.3a)

Eu2 D d E 2
dt

(6.3b)

E 2 D
�

n2
n1

�
E 1 (6.3c)

Ei1 D
�

n2
n1

�
Ei2 (6.3d)

The corresponding symbolic model and generic model of the space vector based
ITF are given in Fig. 6.2. Note that the generic model shown in Fig. 6.2b represents
the so-called ITF-flux version, which is one of two possible model configurations
available (see Fig. 3.3). One configuration is shown here to demonstrate the
transition from single phase phasor representation to space vector form. However,
both are equally applicable for the space vector based ITF model. To illustrate the
difference between the single and two-phase ITF models, we use “vector lines”
(lines which are drawn wider when compared to single phase), which now represent
the real and imaginary components. For example, the “vector line” i1’; i1“ represents

the vector Ei1. The symbolic and generic models as discussed for the single phase
ITF based transformer remain unchanged in terms of configuration. Consequently,
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a b

Fig. 6.2 Symbolic and Generic space vector based ITF models. (a) Symbolic model. (b) Generic
model

Fig. 6.3 Axonometric view
of the two-phase ITF space
vector representation

the ITF based single phase models with its extensions as discussed in Chap. 3 are
directly applicable here. An alternative symbolic way to represent the space vector
ITF model of Fig. 6.2a is given in Fig. 6.3. In this figure, the ITF is shown in terms of
its primary and secondary ’; “ components. This representation will be particularly
instructive when discussing the so-called IRTF module.

6.2.1 Simplified ITF Based Transformer Example

In this section an application example is given which demonstrates the use of the
space vector based ITF model (see Fig. 6.2). The ITF model is extended by the
introduction of a finite magnetizing inductance Lm as discussed in Sect. 3.4 for the
single phase case. Leakage inductance and winding resistance are ignored in this
model. A series configured resistive/inductive load is connected to the secondary
winding. The symbolic model representation of this system is given in Fig. 6.4.

The aim is to build a generic model of this system which will be transformed
to a PLECS model (see the tutorial’s at the end of this chapter). As input to the
generic model we will assume the primary flux-linkage space vector E 1 rather than
the primary supply voltage vector Eu1. The reason for doing this is to emphasize the
fact that it is the flux-linkage vector, which is central to the behavior of this type of
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Fig. 6.4 Two-phase transformer example with R; L load (space vector model)

a

b

Fig. 6.5 Module and vector diagram from polar to cartesian conversion. (a) Module. (b) Vector
diagram

system. It is noted that generally we are not able to use the flux-linkage as an input
vector given that its amplitude will change when a more complicated transformer
model is used (as discussed earlier, see single phase transformer Sect. 3.6).

We will assume that the primary flux-linkage vector is given by

E 1 D O 1 ej!t (6.4)

The implementation of Eq. (6.4) in generic form calls for the introduction of a new
building block, namely a “polar to cartesian” conversion module, as indicated in
Fig. 6.5a. The conversion equation set is derived with the aid of Fig. 6.5b, which
tells us that a vector Ex can be either written in its polar form Ex D r ej	 or cartesian
form Ex D x’Cjx“. A comparison of these notation forms and observation of Fig. 6.5b
gives

x’ D r cos	 (6.5a)

x“ D r sin 	 (6.5b)

For this problem it is helpful to reconsider the module according to Fig. 6.5a, as
this can be directly used to build the generic model shown in Fig. 6.6. The model
according to Fig. 6.6 shows the polar to cartesian conversion unit which has as
input the amplitude and argument of the space vector E 1. The output represents
the real and imaginary components of the flux-linkage vector. These components
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Fig. 6.6 Generation of the
flux-linkage vector E 1

Fig. 6.7 Generic ITF based transformer model with load: space vector form

are then combined via a “multiplexer” to give a single “vector.” In the following the
multiplexer will be placed inside the conversion module. The resultant vector E 1
serves as an input to the generic model of the transformer.

A suitable generic model of the ITF based transformer model with load can found
by making use of the single phase model shown in Fig. 3.9. In the latter case the load
was a resistance, which in this case needs to be replaced by a resistance-inductance
combination. Furthermore, the reader is reminded of the fact that the generic model
is now used in its space vector form, i.e., “vectors” are now used in the diagram.
The generic model of the load is directly taken from the earlier example shown in
Fig. 4.19 given that it represents precisely the resistance-inductance network. In this
case, the resistance and inductance values are defined as RL and LL.

The model according to Fig. 6.7 shows a differentiator module, which we can
implement in different ways to avoid potential simulation problems. The reader is
reminded that the use of differentiator modules in simulations can be problematic
and should therefore be handled with care. For the tutorial exercise linked with this
chapter, we need access to the primary voltage vector which is defined in Eq. (6.3a).
Furthermore, the differentiator module shown in Fig. 6.7 is there to implement
Eq. (6.3b). Both equations differentiate a flux vector which (in this section) in its
general form is given as

E D O ej!t (6.6)

where O is (in this example) not a function of time. If we differentiate Eq. (6.6)
according to Eu D d E =dt, we find a very simple representation, namely Eu D j! E .
The generic implementation of this alternative “differentiator” module is shown in
Fig. 6.8.
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Fig. 6.8 Alternative
implementation of
differentiator module for
sinusoidal flux-linkage time
functions

The generic module according to Fig. 6.8 is only usable when the flux amplitude
and frequency are constant. These conditions are valid here and consequently the
module can be used to implement Eqs. (6.3a) and (6.3b) with the appropriate flux
vector.

The gain module shown in Fig. 6.8 requires some further attention in terms of
modeling such a unit. Essentially the gain j D ej�=2 rotates an input vector Ex D
x’ C jx“ by �=2 rad (90ı). Hence the relation between input and output (for the gain
module) vector Ey D y’ C jy“ is of the form Ey D j Ex, which may also be written in the
form given in Eq. (6.7).

	
y’
y“



D

	
0 �1
1 0


 	
x’
x“



(6.7)

In the Simulink environment, Eq. (6.7) is directly usable with a “Matrix gain” type
element.

6.2.2 Phasor Analysis of Simplified Model

The analysis shown here is in fact very similar to that carried out for the three-phase
R; L model (see Sect. 4.7.1). Its inclusion here can therefore be seen as a revision
exercise applied to the transformer system.

The flux-linkage vector (see Eq. (6.4)) is the input vector which corresponds with
the phasor  

1
D O 1. The remaining phasors are found using the phasor based

equation set of this system which is of the form

u1 D j!  
1

(6.8a)

u2 D j!  
2

(6.8b)

 
2

D
�

n2
n1

�
 
1

(6.8c)

i02 D
�

n2
n1

�
i2 (6.8d)

i1 D i02 C im (6.8e)

im D  
1

Lm
(6.8f)

u2 D .RL C j!LL/ i2 (6.8g)
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a b

Fig. 6.9 Phasor diagrams for transformer with R-L load. (a) Voltage/flux. (b) Current/flux/voltage

The reader is advised to look carefully at Eq. (6.8) in terms of correlating with the
generic block diagram (Fig. 6.7), which in fact represents the space vector based
equation set for the system under consideration.

We will now proceed with the analysis to find the unknown phasors. The input
voltage phasor is found using Eq. (6.8a) with 

1
D O 1, which gives u1 D j! O 1. The

secondary flux-linkage vector is found using (6.8c), which gives  
2

D .n2=n1/ O 1.
This vector in turn allows us to find (with the aid of Eq. (6.8b)) the secondary voltage
phasor, namely u2 D j! n2

n1
O 1. We are now able to find the load current phasor with

the aid of Eq. (6.8g) which yields

i2 D u2
RL C j!LL

(6.9)

The load current phasor on the secondary side corresponds with a current phasor
(known as the primary referred secondary current phasor) i02 on the primary side of
the ITF, which is calculated using Eqs. (6.9) and (6.8d). Finally, the primary current
is calculated by making use of Eqs. (6.8e) and (6.8f) with  

1
D O 1. Two phasor

diagrams are given in Fig. 6.9 for the case n2=n1 D 0:5.
An observation of Fig. 6.9a shows that the primary flux-linkage is aligned with

the real axis. This can be expected given that the primary flux-linkage has no
imaginary component. The secondary flux-linkage phasor must be aligned with the
primary phasor and its amplitude is reduced by a factor 0.5, which corresponds to
the chosen winding ratio. The voltages are �=2 rad rotated forward with respect to
their flux phasors. The secondary current phasor i2, as shown in Fig. 6.9b, lags the
secondary voltage phasor by an angle 	 D � arctan .!LL=RL/ as may be deduced
from Eq. (6.9). The primary referred secondary current must be in phase with the
secondary current phasor and its value is reduced by a factor 0.5, given our choice
of winding ratio. Adding, in vector terms, the primary referred secondary current
i02 and the magnetizing current phasor (which must be in phase with the primary
flux-linkage phasor) yields the primary current phasor i1, as may be observed from
Fig. 6.9b.
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6.3 Two-Phase ITF Based Universal Transformer Model

The use of a space vector type notation allows us to take any single phase symbolic
or generic model (as developed in Chap. 3) and use it in a two-phase system context.

The single phase transformer development to include magnetizing inductance
and leakage is therefore equally applicable to two-phase systems. Likewise, the
universal model as given in Fig. 3.16 is readily converted to a space vector form
as indicated in Fig. 6.10. Note that the lines shown in Fig. 6.10 now represent two
variables. Furthermore, the primary and secondary winding resistances are added to
this model. The equation set which corresponds with Fig. 6.10 is as follows:

Eu1 D Ei1R1 C d E 1
dt

(6.10a)

E 1 D Ei1Lpr
¢ C E M (6.10b)

E M D LMEiM (6.10c)

E 0
2 D E M � Lse

¢
Ei 0
2 (6.10d)

d E 2
dt

D Eu2 CEi2R2 (6.10e)

E 0
2 D k E 2 (6.10f)

Ei2 D kEi 0
2 (6.10g)

where the transformer ratio k and inductance parameters Lpr
¢ ; Lse

¢ , and LM are
a function of the transformation factor a as may be deduced from Eqs. (3.26)
and (3.27).

Fig. 6.10 Space vector based universal transformer model
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Fig. 6.11 Symbolic model, transformer example

6.3.1 Primary Leakage Inductance Based
Transformer Example

A transformer application example is considered in this section which is based on
the symbolic model given in Fig. 6.10 for the case Lse

¢ D 0. A two-inductor model
representation thus appears which is similar to that discussed in Sect. 3.7.1 (for a
single phase model). The resultant model, shown in Fig. 6.11, consists of a leakage
inductance Lpr

¢ , which for the sake of readability is renamed as L¢ , and a magnetizing
inductance LM. Observation of Fig. 6.11 shows that a load resistance RL is connected
to the secondary winding. Furthermore, the secondary phase windings are assumed
to be connected in delta while the primary windings are star configured. The load
resistance RL as shown in Fig. 6.10 represents in three-phase terms a delta connected
symmetrical load where each load phase consists of a resistance RL. The star!delta
symbol underneath the ITF module identifies the presence of a winding connection
change between primary and secondary. No such notation is normally shown with
the ITF module if the winding configuration between secondary and primary is
unchanged. Equation set (6.10) is applicable to this example where the subscripts S
and D need to be added (as given in Fig. 6.11) to identify secondary star/delta space
vectors. Furthermore, an additional equation must be added to equation set (6.10),
namely

Eu2D D Ei2DRL (6.11)

where RL represents the load resistance. The primary windings are taken to be
connected to a three-phase sinusoidal grid with angular frequency!, which in space
vector form corresponds to a vector Eu1 D Ou1ej!t.

An example of a generic diagram based on Eqs. (6.10) and (6.11) which can be
used for dynamic simulation purposes is given in Fig. 6.12. The diagram according
to Fig. 6.12 uses an ITF-current module (because the primary current is designated
as an input). In addition, if the internal delta variables are required, a star/delta
and delta/star conversion module are explicitly shown in this example. The first
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Fig. 6.12 Generic model, transformer example

Fig. 6.13 Primary referred
phasor model of transformer
with load

conversion E 2D ! E 2S uses the “voltage” conversion equation (4.49), while the
second conversion Ei2S ! Ei2D uses Eq. (4.57). A voltage vector Ee2D D d E 2D=dt is
introduced on the secondary side of model, given that the input to the integrator (on
the secondary side) is equal to Ee2D D RsecEi2D, where Rsec D R2 C RL.

6.3.2 Phasor Analysis of Primary Leakage Inductance Based
Model Example

The model according to Fig. 6.11 can also use phasors. Such an analysis may, in
some cases, be useful if it is sufficient to consider the model under steady-state
conditions. In other instances a phasor analysis is useful as means of verifying the
steady-state results obtained with a dynamic simulation model.

In this example, the aim is to calculate the phasors ji1j, ji2Dj, j 
1
j, and j 

2D
j

which represent the output variables from the dynamic simulation. The excitation
to the model is the phasor u1 which is linked with the space vector representation
Eu1 D u1e

j!t. The supply vector amplitude is Ou1, hence u1 D Ou1. The calculation
of the primary current phasor i1 is similar to the approach discussed for the single
phase transformer. This approach makes use of a primary referred model as shown
in Fig. 6.13.

The components which represent the primary resistance, leakage inductance, and
magnetizing inductance are readily identifiable. Also shown is a component Reff,
which is the effective “primary referred” load resistance. Its value is of the form
given in Eq. (6.12).
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Reff D 1

3
k2 .RL C R2/„ ƒ‚ …

R

(6.12)

Equation (6.12) can be made plausible by realizing that the total secondary
resistance R must be transformed from a delta to a star equivalent form, which,
according to Sect. 4.7.1, is possible by multiplying the impedance by a factor 1

3
.

Furthermore, Eq. (6.12) shows a factor k2, where k represents the ITF winding
ratio. This factor as introduced for the single phase models is required to “refer”
a secondary impedance to the primary side.

The primary current phasor i1 is found using i1 D u1=Z1, where Z1 represents the
input impedance. Once the current is found, the phasor  

1
can be calculated using

 
1

D .u1� i1R1/
1
j! . The calculation of the secondary current is more elaborate as it

requires access to the phasor e2D. The process of calculating this phasor is initiated
by determining the phasor e0

2S, which according to Fig. 6.13 can be found using
e0
2S D u1 � i1R1 � j!L¢ i1.

The phasor e2S D j! 
2S

is found using e2S D e0
2S
1
k and this phasor must be

transformed to the delta form (see Eq. (4.66a)) with e2D D e2S

p
3 e�j=4. Once this

phasor is found, the flux-linkage phasor  
2D

and secondary current phasor i2D can

be calculated according to  
2D

D e2D
1
j! and i2D D e2D

1
RLCR2

.

6.4 Tutorials

6.4.1 Tutorial 1: Three-Phase Transformer with Load

This tutorial is concerned with implementing the generic model given in Fig. 6.7.
The load which is connected to the secondary winding is formed by an inductance
LL D 1mH and resistance RL D 0:4�. As input to the model, a flux-linkage
space vector E 1 is assumed of the form E 1 D O 1 ej!t, where O 1 D 1:0Wb and
! D 2� 50 rad/s. The ITF winding ratio is taken to be n1

n2
D 5. Furthermore, the

magnetizing inductance is set to Lm D 1:5H. Leakage inductance and winding
resistances are ignored.

Make use of a PLECS Polar->rect module to generate the flux vector input,
with components  1’ and  1“ for the transformer. Use a Constant module to
generate the ! (electrical frequency in rad/s) value and add an integrator which will
give as output the variable !t. Check your work by using an “XY” scope module.
Under “simulation parameters,” set the simulation time to 1 s and observe the result,
which should be a circle with a radius equal to 1.0. Maintain the solver settings and
run time as given above for the rest of the tutorial.

Create a sub module which will generate the voltage space vector Eu1 D j! E 1 as
shown in Fig. 6.8. You will need to use a multiplier and gain module with gain j.
The latter is realized in PLECS by using a Gain module. Select “Matrix gain
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K*u” within this module and set the gain to [0 -1;1 0]. Next, add an ITF_flux
module, magnetizing inductance Lm, and a series of modules which will allow you
to calculate the secondary voltage vector Eu2 D j! E 2, where E 2 is the output vector
from the ITF module. Use four vector to RMS converters with display units to show
the RMS primary/secondary voltage and RMS primary/secondary current values.
Furthermore, add two additional sub-modules (as discussed in tutorial 5.5.4) which
calculate the primary real and reactive power values P(W) and Q(Var), respectively.

The last step is concerned with testing our transformer under load and no-load
conditions. Add a manual switch which enables you to connect/disconnect the
load. An example of a PLECS model which corresponds to the generic model in
question is given in Fig. 6.14. Clear observable are two sub-modules jwX which are
used to generate the voltage vectors Eu1 and Eu2 based on the generic model shown in
Fig. 6.8. Also present in Fig. 6.14 is a Polar->rect module which generates the
primary flux vector E 1. Run the simulation and record the six display values. Repeat
the exercise for the no-load case.

The values which should appear on the display modules for the variables under
discussion are given in Table 6.1.

Fig. 6.14 PLECS model of transformer with load

Table 6.1 Simulation results
transformer no-load/load

Parameters No-load Load

RMS primary voltage Uprim 222.14 V 222.14 V

RMS secondary voltage Usec 44.42 V 44.42 V

RMS primary current Iprim 0.47 17.76 A

RMS secondary current Isec 0.00 A 87.35 A

Real primary power Pprim 0.00 W 9156.32 W

Reactive primary power Qprim 314.15 VA 7505.52 VAr
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6.4.2 Tutorial 2: Phasor Analysis of a Three-Phase
Transformer with Load

A phasor analysis should be carried out of the transformer configuration as discussed
in the previous tutorial, to verify the simulation results obtained via the six display
units shown in Fig. 6.14. The input for this analysis is taken to be the flux phasor
 
1

D 1:0Wb. On the basis of this phasor we can calculate the remaining phasors
 
2
, u1, u2, im, i2, i1. In addition, the real and reactive power value can be calculated.

The exercise should be carried out for the no-load (means no R-L network connected
to the secondary of the transformer) and load situation. A MATLAB file must be
written for this exercise. An example of such an M-file is as follows:

M-file Code

%Tutorial 2, chapter 6
psi1_hat=1.0; % primary flux amplitude
psi1=psi1_hat; % primary flux phasor
k=5; % n1/n2=5 winding ratio
Lm=1.5; % magnetizing inductance
w=2*pi*50; % frequency rad/s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
u1=j*w*psi1_hat; % primary supply voltage phasor
U1=abs(u1)/sqrt(2); % primary RMS voltage
psi2=1/k*psi1; % secondary flux phasor
u2=j*w*psi2; % secondary voltage phasor
U2=abs(u2)/sqrt(2); % secondary RMS voltage
%
%%%%%%%no-load case
im=psi1/Lm; % magnetizing current phasor
i1n=im; % no secondary current
I1n=abs(i1n)/sqrt(2); % primary current no-load
Pn=3/2*real(u1*conj(i1n)); % primary real power
Qn=3/2*imag(u1*conj(i1n)); % primary reactive power
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% load case
LL=1e-3; % load inductance
RL=0.4; % load resistance
i2=u2/(RL+j*w*LL); % secondary load current phasor
I2=abs(i2)/sqrt(2); % secondary RMS current
i2r=i2/k; % primary referred current phasor
i1=im+i2r; % primary current phasor load
I1=abs(i1)/sqrt(2); % primary current load
P=3/2*real(u1*conj(i1)); % primary real power (load)
Q=3/2*imag(u1*conj(i1)); % primary reactive power (load)

The results obtained after running the M-file should match closely with those
given in Table 6.1.
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Fig. 6.15 PLECS model of transformer with resistive load

6.4.3 Tutorial 3: Three-Phase Star/Delta Configured
Transformer with Load

A PLECS implementation of the example outlined in Sect. 6.3.1 is considered in
this tutorial. A three-phase supply source as given in Fig. 4.47a is to be used, with an
RMS phase voltage of U1 D 220V and angular supply frequency of ! D 2�f rad/s,
where f D 50Hz. The primary and secondary winding resistances are set to R1 D
10� and R2 D 5�, respectively. The leakage and magnetizing inductance are equal
to L¢ D 10mH and LM D 300mH, respectively, while the load resistance of the
delta connected load is set to RL D 20�. An ITF winding ratio of k D 2 is assumed.

The simulation is to be run for a period of 0:4 s and outputs of the simulation
should be the amplitude of vectors Ei1, Ei2D, E 1, and E 2D. An example of a possible
implementation of this problem is given in Fig. 6.15. The modules used in this
example for the conversion of supply voltages to space vector format and those used
for the star/delta conversions have been discussed in Chap. 4. Two Scope modules
have been added to plot the results in the form of the absolute value versus time of
the vectors Ei1, Ei2D, E 1, and E 2D. Figure 6.16 shows the current and flux plots which
should appear after running your simulation.

The results show the presence of a transient in the current and flux waveforms
after the transformer has been connected to the supply. A detailed observation of the
results show that the steady-state currents and steady-state flux values are equal to
jEi1j D 7:42A, jEi2Dj D 8:08A and j E 1j D 0:77Wb, j E 2Dj D 0:64Wb, respectively.

6.4.4 Tutorial 4: Phasor Analysis of a Three-Phase Star/Delta
Configured Transformer with Load

The aim of this tutorial is to undertake a phasor analysis, as discussed in Sect. 6.3.2,
to confirm the steady-state results obtained with the dynamic model discussed in
the previous tutorial. The phasor analysis is to be given in the form of an M-file.
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Fig. 6.16 Results: primary and secondary currents, jEi1j; jEi2Dj and flux-linkage, j E 1j; j E 2Dj

An example of an M-file which shows this analysis is given at the end of this tutorial.
The results, in the form of the variables ji1j; ji2Dj; j 

1
j, and j 

2D
j, should match

(within 1%) the steady-state results obtained from the dynamic simulation.

M-file Code

%Tutorial 4, chapter 6
close all
%parameters
L_sig=10e-3; % leakage inductance
L_M=300e-3; % magnetizing inductance
R_1=10; % primary resistance
R_2=5; % secondary resistance
R_l=20; % load resistance
k=2; % winding ratio ITF
%phasor analysis
U=220; % RMS phase voltage
gamma=2*pi/3;
w=100*pi; % angular freq
u_1=U*sqrt(2); % phasor amplitude
X_sig=j*w*L_sig; % magnetizing reactance
X_M=j*w*L_M; % leakage reactance
Rt=R_2+R_l; % sum load resistance
Rtref=k^2*Rt/3; % delta load/3,star,

and referred
Zp=Rtref*X_M/(Rtref+X_M); % XM/Rtref
Z1=R_1+X_sig+Zp; % total prim. impedance
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i_1ph=u_1/Z1; % primary current
phasor

i_1=abs(i_1ph); % abs value primary
current

e_1ph=u_1-i_1ph*R_1;
psi_1ph=e_1ph/(j*w); % primary flux phasor
psi_1=abs(psi_1ph); % abs value primary

flux
e2rSph=u_1-i_1ph*(R_1+X_sig);
e2Sph=e2rSph/k; % phasor secondary side

(star)
e2Dph=e2Sph*sqrt(3)*(cos(-gamma/4)+j*sin(-gamma/4));
psi_2Dph=e2Dph/(j*w); % secondary flux phasor

(delta)
psi_2D=abs(psi_2Dph); % abs value secondary

flux
i_2Dph=e2Dph/Rt; % secondary current

phasor
i_2D=abs(i_2Dph); % abs value secondary

current



Chapter 7
Introduction to Electrical Machines

7.1 Introduction

This chapter considers the basic working principles of the so-called classical
set of machines. This set of machines represents the asynchronous (induction),
synchronous, DC machines, and variable reluctance machines. The latter will be
discussed in detail, in the book “Advanced Electrical Drives” by the same authors.
Of these classical machines, the asynchronous machine is most widely used in
a large range of applications. Note that the term “machine” is used here, which
means that the unit is able to operate as a motor (converting electrical power into
mechanical power) or as a generator (converting mechanical power into electrical
power). The machine can be fed via a power electronic converter or connected
directly to an AC or DC supply.

Central to this chapter is the development of an ideal rotating transformer
(IRTF), which is in fact a logical extension of the two-phase ITF module discussed
in Chap. 6. We will then look to the conditions required for producing constant
torque in an electrical machine. This in turn will allow us to derive the principle
of operation for the three classical machine types. A universal two-phase model
concept will be introduced at the end of this chapter which forms the backbone of
the machine models presented in this book.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-
319-29409-4_7) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
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Fig. 7.1 Two-phase IRTF model

7.2 Ideal Rotating Transformer Concept

The fundamental building block for rotating machines used in this book is the IRTF
module, which is directly derived from the two-phase space vector ITF concept
given in Fig. 6.1 [13] . The new IRTF module, shown in Fig. 7.1, differs in two
points. Firstly, the inner (secondary) part of the transformer is assumed to be
able to rotate freely with respect to the outer (primary) side. The airgap between
the two components of this model remains infinitely small. Secondly, the number
of “effective” turns on the primary and secondary is assumed to be equal, i.e.,
n1Dn2Dn. Furthermore, the windings are (like the ITF) taken to be sinusoidally
distributed (see Appendix A). This implies that the winding representation as shown
in Fig. 7.1 is only symbolical as it shows where the majority of conductors for each
phase are located. In the following, the primary and secondary will be referred to
as the stator and rotor, respectively. A second complex plane (in addition to the
stator based complex plane) with axis <xy, =xy is introduced in Fig. 7.1 which
is tied to the rotor. Note the use of the superscript “xy” which indicates that a
vector is represented in rotor coordinates. For a stationary coordinate system, as
used on the stator side, we sometimes use the superscript “’“.” However, in most
cases this superscript is omitted to simplify the mathematical expressions. Hence,
no superscript implies a stationary coordinate based vector.

The angle between the stationary and rotating complex plane is given as � and
this is in fact the machine shaft angle of rotation (relative to the stationary part of
the motor). If the angle of rotation � is set to zero, then the IRTF module is reduced
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Fig. 7.2 Symbolic IRTF
representation

a b

Fig. 7.3 Flux-linkage and current space vector diagrams. (a) Flux-linkage space vector.
(b) Current space vector

to the two-phase ITF concept (with n1 D n2) as given by Fig. 6.1. The symbolic
representation of the IRTF module as given in Fig. 7.2 shows similarity with the ITF
module (see Fig. 6.2a).

The IRTF is a three-port unit (stator circuit, rotor circuit, and machine shaft). In
Fig. 7.2, a symbolic shaft (shown in “red”) is introduced, which links the rotor and
stator circuits. The mechanical variables Te and !m appear at the stator side of this
symbolic representation as they can be observed by an observer linked to the stator
coordinate system.

The flux linked with the stator and rotor is equal to E m D n E�m and can be
expressed in terms of the components seen by each winding, namely

E m D  m’ C j m“ (7.1a)

E xy
m D  mx C j my (7.1b)

An illustration of the flux-linkage seen by the rotor and stator winding is given in
Fig. 7.3a. The relationship between the stator and rotor oriented flux-linkage space
vectors can be expressed according to

E xy
m D E m e�j� (7.2)
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Fig. 7.4 Axonometric IRTF
representation

The relationship between the rotor and stator oriented current space vectors as
shown in Fig. 7.3b can be written as

Ei D Ei xy ej� (7.3)

Figure 7.3 emphasizes the fact that there is only one flux-linkage and one current
space vector present in the IRTF. The components of these vectors can be projected,
in a rotating or stationary complex reference frame. The rotation relationship
between the variables i’, i“ and ix, iy, � of Eq. (7.3) can also be written as

	
i’
i“



D

	
cos � � sin �
sin � cos �


 	
ix
iy



(7.4)

The symbolic diagram of Fig. 7.2 can also be shown in terms of its space vector
components as was done for the ITF case (see Fig. 6.3). The result, given in Fig. 7.4,
shows that the rotor side of the IRTF now rotates with the rotor shaft, given that it
is physically attached to it. The energy balance for the IRTF module is found by
using the power expressions (5.30) and (5.33) which are directly linked with the
incremental energy dW D pdt. The input (stator) power pin for the IRTF module is
of the form

pin D 3

2
<

n
Eu

�Ei
��o

(7.5)

Note that Eu and Ei are taken to be time dependent complex vectors as indicated by
Eq. (5.8). Equation (7.5) can, with the aid of Eu D d E m=dt, be expressed in terms of
the stator (input) incremental energy

dWin D 3

2
<

n
d E m

�Ei
��o

(7.6)

Similar to the ITF, the IRTF is defined with a positive electrical and positive (rotor)
electrical “power out” convention (see Fig. 3.4). Unlike the ITF, the IRTF has a
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second output power component formed by the product of the shaft torque Te (Nm)
and shaft speed !m (rad/s). If this product is positive, the machine is said to operate
as motor. The total (mechanical plus electrical) output power is now of the form

pout D 3

2
<

n
Eu xy

�Ei xy
��o

C Te!m (7.7)

The incremental mechanical and electrical output energy linked with the rotor side
of the IRTF can, with the aid of Eu xy D d E xy

m =dt, be written as

dWout D 3

2
<

n
d E xy

m

�Ei xy
��o

C Ted� (7.8)

The overall IRTF incremental energy balance can, with the aid of Eqs. (7.6) and (7.8)
and using the energy conservation law, be written as

3

2
<

n
d E m

�Ei
��o

� 3

2
<

n
d E xy

m

�Ei xy
��o

D Ted� (7.9)

The LHS of Eq. (7.9) shows the electrical incremental energy IRTF components.
In Eq. (7.9), the term d E xy

m may be developed further using Eq. (7.2) and the
differential “chain rule,” which leads to

d E xy
m D e�j�d E m � j E me�j�d� (7.10)

Multiplication of Eq. (7.10) by the vector
�Ei xy

�� D Ei�ej� (see Eq. (7.3)) gives

d E xy
m

�Ei xy
�� D d E mEi� � j E mEi�d� (7.11)

Substitution of Eq. (7.11) into Eq. (7.9) leads to the following expression for the
electro-mechanical torque on the rotor.

Te D 3

2
<

n
j E mEi�

o
(7.12)

Equation (7.12) can, with the aid of expression <
n
jEaEb�

o
D =

n
Ea�Eb

o
, be rewrit-

ten as

Te D 3

2
=

n E �
m
Ei
o

(7.13)
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a b

Fig. 7.5 Generic representations of IRTF module. (a) IRTF-flux. (b) IRTF-current

Hence, the torque acting on the rotor is at its maximum value when the two
vectors E m and Ei, shown in Fig. 7.3, are perpendicular with respect to each other.
Under these circumstances the torque is directly related to the product of the rotor
radius and Lorentz force. The latter is proportional to the magnitudes of the flux and
current vectors. The generic diagram of the IRTF module that corresponds to the
symbolic representation shown in Fig. 7.2 is based on Eqs. (7.2), (7.3), and (7.13).
The IRTF generic module as given in Fig. 7.5a is shown with a stator to rotor
coordinate flux conversion module and rotor to stator current conversion module.
The two coordinate conversion modules can also be reversed as shown in Fig. 7.5b.
The IRTF version used is application dependent as will become apparent at a later
stage. The torque computation is not affected by the version used. Nor, for that
matter, is the torque affected by the choice of coordinate system. The rotor angle �
required for the IRTF module must be derived from the mechanical equation set of
the machine, which is of the form

Te � Tl D J
d!m

dt
(7.14a)

!m D d�

dt
(7.14b)

with Tl and J representing the load torque and inertia of the rotor/load combination,
respectively (as discussed in Sect. 1.4.2). Finally, it is noted that the IRTF has a
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a b

Fig. 7.6 Two- and four-pole flux distributions. (a) Two-pole flux distribution. (b) Four-pole flux
distribution

unity winding ratio, which implies that an inductance component (unlike a resistive
component) may be moved from one side to the other without having to change its
numerical value.

7.2.1 IRTF Extension to “Multi-Pole” Representation

Up to now we have considered magnetic structures which have two magnetic
poles, for example, the bar magnet given in Fig. 1.9a. The flux distribution (shown
symbolically) of such a magnet is very similar to that shown in Fig. 7.6a, which
is in fact a simplified version of Fig. 7.1, given that the rotor windings are not
shown for didactic reasons. These rotor windings are however essential to the
correct functioning of the IRTF. The model according to Fig. 7.6a has two magnetic
poles or one pole pair (p D 1). Many electrical machines have more than one pole
pair because often a more efficient winding configuration can be realized in, for
example, a four-pole (p D 2) machine. The flux distribution which will occur in a
four-pole machine is shown (symbolically) in Fig. 7.6b. The corresponding four-
pole (sinusoidally distributed) phase windings, shown symbolically in Fig. 7.6b,
are markedly different when compared to the two-pole case. In the latter case
the majority of “’” windings are located on the imaginary axis. Furthermore,
the angle between the phase winding halves is equal to � rad (see Fig. 7.6a). In
addition, the two-phase windings are mechanically displaced by an angle of �=2 rad
(90ı). In the four-pole case the angle between phase winding halves is reduced to
�=4 rad. In addition, each phase winding now has the majority of its sinusoidally
distributed windings at four locations as shown in Fig. 7.6b. Furthermore, the two-
phase windings are now mechanically displaced (with respect to each other) by an
angle of �=4 rad.
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This change in winding configuration has important implications for the so-called
rotational speed (see Appendix A for more details on this concept). For example, in
the two-pole machine we can rotate the resultant magnetic field by an angle of �=2
radians by way of a voltage excitation sequence of the two stator windings over a
given time. When we apply the same excitation sequence to the four-pole machine,
a magnetic field rotation of �=4 radians would occur. Vice versa if we move from
a multi-pole to a two-pole model we need to double (when starting from a four-
pole model) the rotor angle. The process of modeling the behavior of a multi-pole
machine with a two-pole IRTF model can thus be initiated by introducing (as a first
step) a “gain” module with gain p to the rotor angle input side of the IRTF model.

The torque per ampère produced by the multi-pole machine will increase when a
larger number of pole pairs are used. A qualitative explanation of this statement is
as follows: in the two-pole machine, as shown in Fig. 7.6a, a set of current carrying
conductors is positioned along the circumference where the flux is at its highest
level. This in turn causes a force on these windings and consequently a torque on
the rotor. In the four-pole model as shown in Fig. 7.6b, there are four high flux
concentration areas (magnetic poles), which implies that we can double the number
of current carrying conductors (with half the cross-sectional area, given that total
available area for the windings remains unchanged). Hence, the torque produced per
ampère on the rotor will be doubled when compared to the two-pole case. This leads
to the important conclusion that a (second) gain module, with gain p, must be added
to the torque output of a two-pole generic IRTF model. For simulation purposes the
two gain modules with gain p are combined as may be observed from Fig. 7.7. The
relationship that exists between the multi-pole and two-pole torque/angle variables
may be written as

Fig. 7.7 Use of IRTF module
for multi-pole pair models
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Fig. 7.8 IRTF module
connected to voltage and
current source

Tem D p Te (7.15a)

�m D 1

p
� (7.15b)

where Tem and �m represent the shaft torque and shaft angle, respectively. Note that
changing the number of poles does not affect the rated torque of the machine, given
that the latter is constrained by the rotor volume, as was discussed in Sect. 1.7 on
page 21.

7.2.2 IRTF Example

The IRTF module forms the backbone to the electrical machine concepts presented
in this book. Consequently, it is particularly important to fully understand this
concept. In the example given here we will discuss how stator currents and torque
can be produced in the event that stator windings are connected to a voltage source
and the rotor windings to a current source as shown in Fig. 7.8. In the following
discussion, we will use Fig. 7.1 in a stylized form for didactic reasons. Furthermore,
we will assume that we can hold the motor shaft at any desired position. The voltage
source shown in Fig. 7.8 delivers a voltage pulse to the “’” winding at t D t0 as
shown in Fig. 7.9. The flux-linkage  m’ versus time waveform which corresponds
with the applied pulse is also shown in Fig. 7.9. The ““” stator winding is short
circuited with initial condition  m“ D 0. We will consider events after t D t0 C T
in which case a flux distribution will be present in the IRTF where the majority of
the flux is concentrated along the “<’“” axis, as shown in Fig. 7.10a. Furthermore,
the flux-linkage value will be equal to  m’ D O m. The corresponding space vector
representation will be of the form E m D O m.

In addition, we would like to realize a rotor excitation of the form Ei xy D jOi,
which implies that the “y” rotor winding must carry a current iy D Oi. We have
omitted for didactic reasons the “x” winding from Fig. 7.10 because this winding is
not in use (open circuited). We will now examine the IRTF model and corresponding
space vector diagrams for the excitation conditions indicated above and three rotor
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Fig. 7.9 Voltage excitation
and flux-linkage for the “’”
winding

positions. For each case (rotor position) we will assume that the rotor is initially set
to the required rotor position after which the stator and rotor excitation is applied,
as discussed above. The aim is to provide some understanding with respect to the
currents which will occur on the stator side and the nature of torque production
based on first principles. To assist us, two “contours,” namely “x” and “y” are
introduced in Fig. 7.10, which are linked to the rotating complex plane. These
contours are helpful in determining the currents which must appear on the stator
side. If we assume that such a contour represents a flux tube, then there would need
to be a corresponding resultant MMF within the contour in case the latter would
contain some form of magnetic reluctance. The magnetic reluctance of the IRTF
model is assumed to be zero (infinite permeability material and infinitely small
airgap). Hence the MMF “seen” inside either contour must always be zero in the
IRTF.

• Rotor position � D 0: if we consider the “x” contour in Fig. 7.10a, then it
coincides with the flux distribution that exists in the model. The MMF seen by
this contour is equal to ni’. The excited rotor winding cannot contribute (given
both halves are in the contour) to this contour. Hence, the current i’ must be
zero. By observing the “y” contour and the MMF “seen,” we note the presence
of the imposed rotor current iy D Oi. The number of winding turns on rotor and
stator is equal, hence a stator current i“ D Oi (with the direction shown) must
appear in the short-circuited “ coil to ensure that the zero MMF condition with
this contour is satisfied. The space vector representation of the current and flux,
given in Fig. 7.10a, shows that they are �=2 radian apart. Note (again) that there is
only one set of space vectors and their components may be projected onto either
the rotor or stator complex plane. According to Eq. (7.13), the torque will under
these circumstances (with the current vector leading the flux vector) be equal
to Te D 3=2 O mOi. From first principles (see Fig. 1.8), we note that forces will be
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a

b

c

Fig. 7.10 IRTF symbolic model and space vector diagrams, for: � D 0, � D �=4, and � D �=2.
(a) � D 0, i’ D 0, i“ D Oi, and Te D 3=2 O mOi. (b) � D �=4, i’ D �Oi=

p

2, i“ D Oi=
p

2, and
Te D 3=2 O mOi=

p

2. (c) � D �=2, i’ D �Oi, i“ D 0, and Te D 0
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exerted on the rotor winding in case the latter carries a current and is exposed
to a magnetic field. In this case, the flux and flux density distributions are at
their highest level along the “’” axis (see Appendix A). The “y” winding carries
a current in the direction shown and this will cause a force on the individual
conductors of the “y” rotor winding and thus a corresponding torque in the anti-
clockwise (positive) direction.

• Rotor position � D �=4: if we consider the “x” contour in Fig. 7.10b, then we
note that an MMF due to the “’” winding would be less than ni’. The reason
for this is that the contour also encloses part of “’” winding which gives a
negative MMF contribution to the total MMF. The resultant MMF is found by
integrating equation (A.9) over the angle range �=4 ! � and �� ! �3�=4 and
comparing the outcome of this integral with the integral over the range 0 ! � .
This analysis shows that the MMF is reduced by a factor 1=

p
2 (when compared

to the previous case). Hence the resultant MMF of the “’” winding is equal
to ni’=

p
2. The same “x” contour also encloses part of the ““” winding and its

MMF contribution is equal to ni“=
p
2. There are no other contributions, which

implies that the sum of these two MMFs is of the form ni’=
p
2 C ni“=

p
2 D 0

because the MMF in the contour must be zero. From this analysis it follows
that, for the given angle, the currents must be in opposition, i.e., i’ D �i“. If
we now consider the MMF enclosed by the “y” contour, we note that the “’”
winding will contribute an MMF component �ni’=

p
2 (now negative), while the

““” will contribute a component “ni“=
p
2.” Furthermore, the “y” winding will add

a component nOi. The resultant MMF (the sum of these three contributions) gives
together with the condition i’ D �i“, the required stator currents i’ D �Oi=p

2

and i“ D Oi=p
2, respectively. The space vector representation shown in Fig. 7.10b

confirms the presence of the two current components. Note also that the angle
between the current and flux vectors is equal to 3�=4 radian. The torque according
to Eq. (7.13) and given the circumstances equals Te D 3=2 O mOi=p

2. The torque
must be less than the previous case, because a number of the conductors of the
“y” winding now “see” a flux density value which is in opposition to that seen by
the majority of the conductors.

• Rotor position � D �=2: if we consider the “x” contour in Fig. 7.10c, then we can
conclude that the current i“ must be zero (the other winding cannot contribute,
given that both halves are in the contour). The reason for this is that the MMF
seen by this contour must be zero. By observing the “y” contour and the MMF
“seen” by this contour we note the presence of the rotor current iy D Oi. The
number of winding turns on rotor and stator is equal, hence a stator current
i’ D �Oi must appear to ensure that the zero MMF condition with this contour
is satisfied. The space vector representation of the current and flux as given in
Fig. 7.10c shows that they are � radian apart. The torque according to Eq. (7.13)
will under these circumstances be equal to Te D 0. From first principles we note
that half the conductors of the “y” winding will experience a force in opposition
to the other half, hence the net torque will be zero.
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7.3 Conditions Required to Realize Constant Torque

The ability of a machine to produce a torque with a non-zero average component is
of fundamental importance. In this section, we will consider the conditions under
which electrical machines are able to produce a constant time independent torque,
i.e., torque with zero torque ripple. For this analysis it is sufficient to reconsider the
model according to Fig. 7.8. The rotor is again connected to a current source which
in this case is assumed to be of the form Oiej.!rtC	r/, where !r represents the angular
velocity of this vector relative to the rotor of the IRTF. The current Ei xy is therefore
of the form

Ei xy D Oiej.!rtC	r/ (7.16)

The stator is connected to a three-phase sinusoidal voltage source such that the
voltage vector is taken to rotate at a constant angular velocity!s. The corresponding
flux vector E m can be found using Eu D d E m=dt, which results in a rotating flux vector
of the form

E m D O m ej!st (7.17)

The rotor angle � is a function of rotor speed !m and load angle 	m and is (for
constant speed operation) defined as

� D !mt C 	m (7.18)

The importance of the variable 	m will be discussed at a later stage. The induced
voltage on the rotor side in Fig. 7.11 is in this case Ee xy

m D d E xy
m =dt, which, with the

Fig. 7.11 Simplified
two-phase machine model
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aid of Eqs. (7.17), (7.2), and (7.18), may also be written as

Ee xy
m D d E xy

m

dt
D ej..!s�!m/t�	m/

d O m

dt
C j .!s � !m/ E xy

m (7.19)

The term d O m
dt is taken to be zero given that a quasi-steady-state operation is

assumed, i.e., we assume that the flux amplitude O m is constant. On the basis of
this assumption, Eq. (7.19) reduces to

Ee xy
m D j .!s � !m/ E xy

m (7.20)

Note that the amplitudes of the vector Ee xy
m and its stationary transformed counterpart

Eem can (and usually are) different. The torque produced by this machine is found
using Eq. (7.13). Further mathematical handling of this torque equation and using
Eqs. (7.17) (in rotor coordinates), (7.2), and (7.18) give

Te D 3

2
=

n O mOi ej..!rC!m�!s/tC	rC	m/
o

(7.21)

It is emphasized that the angle variables 	r and 	m, shown in Eq. (7.21), are not
a function of time. Equation (7.21) is of prime importance as it shows that, with
sinusoidal excitation, a time independent torque value can only be obtained in case
the following condition is met

!s D !m C !r (7.22)

If the speed condition, according to Eq. (7.22), is satisfied, then the torque
expression is reduced to

Te D 3

2
O mOi sin .	r C 	m/ (7.23)

Equations (7.22), (7.23), and (7.20) are useful in terms of explaining the basic
classical machine concepts as will be done in the next three chapters. Prior to
considering how these expressions are applied for the three types of machines it
is instructive to look at the vector diagram given in Fig. 7.12 which corresponds to
machine configurations discussed in this section. The diagram shows the stationary



7.4 Universal IRTF Based Machine Model 189

Fig. 7.12 Space vector
diagram for machine model

complex plane (<’“, =’“) and the rotating (with constant rotor speed !m) rotor
coordinate frame, which is displaced by an angle � D !mt C 	m with respect to the
former. Also shown in the diagram is the rotating (with angular speed !s) flux vector
E m, which is caused by the presence of the three-phase voltage supply connected to
the stator. Finally, the current vector Ei xy is shown which rotates at an angular speed
!r relative to the rotating reference frame. This means that this vector rotates at a
speed !r C !m relative to the stator based (stationary) reference frame.

In the example shown, the current vector leads (we assume positive direction as
anti-clockwise) the flux vector. This combination of the two vectors corresponds
to a positive torque condition as will be shown below. A time independent torque
will be realized if the angle between the current and flux vectors remains constant.
This is the case when condition (7.22) is met. Furthermore, we also assume that
the magnitude of the two vectors is constant. If condition (7.22) is met, the angle
between the two vectors is equal to the sum of 	m and 	r. In the example shown, the
sum of these two angles is taken to be positive, which according to Eq. (7.23) gives
a positive torque, i.e., the machine acts as a motor. The induced voltage vector Eexy

m

is orthogonal to the flux vector. The projection of the current vector on this voltage
vector, shown as itorque D Oi sin .	r C 	m/ (see Fig. 7.12), is according to Eq. (7.23)
proportional to the torque, provided the condition as given by Eq. (7.22) is met. The
highest motor torque value, equal to OTe D 3=2 O mOi, which can be delivered is realized
when the rotor current vector leads the flux vector by �=2 rad, i.e., in phase with the
voltage d m=dt. We will use this diagram again in the next three chapters in different
forms consistent with the three main types of machines in use today. A tutorial at
the end of this chapter is given to reinforce the concepts discussed in this section.

7.4 Universal IRTF Based Machine Model

The process of arriving at a universal two-phase machine model may be initiated by
considering the model shown in Fig. 7.13. This model resembles the IRTF model
as discussed in Sect. 7.2, with notable changes, namely the introduction of a finite
airgap and an unequal stator to rotor turns ratio ns=nr. Furthermore, the currents in
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Fig. 7.13 Generalized two-phase machine model

Fig. 7.14 Symbolic “universal” two-phase, IRTF/ITF machine model

the stator and rotor windings are defined as is’; is“ and irwx; irwy, respectively. The
task of determining a symbolic representation of the machine given in Fig. 7.13
can be undertaken by first considering the case where the rotor angle � is locked
to � D 0. Under such conditions, the machine is simply a two-phase transformer
and the symbolic model topology given in Fig. 6.10 applies. The modeling process
is completed by introducing the IRTF model, given in Fig. 7.2, to the two-phase
ITF model, which leads to the symbolic model shown in Fig. 7.14. The location
of the IRTF module has been chosen to accommodate the machine models to be
discussed in subsequent chapters. However, the module can be relocated to suit
a particular application, provided that only inductances are relocated from the
stator to the rotor side and vice versa. Readily apparent in Fig. 7.14 are the stator
and rotor leakage inductances L¢S and L¢R which, together with the magnetizing
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inductance LM, form a universal inductance network, as was discussed in Sect. 3.7.
The inductance parameters L¢S, L¢R, and LM and the winding ratio kr are a function
of the transformation factor a as described for the single phase case (see Eq. (3.26)
and equation set (3.27)), albeit the nomenclature needs to be adapted, which gives

L¢S D Lm

�
Ls

Lm
� a

�
(7.24a)

L¢R D aLr

�
a � Lm

Lr

�
(7.24b)

LM D aLm (7.24c)

kr D a
ns

nr
(7.24d)

with Lr D Lm C L¢r and Ls D Lm C L¢s, where L¢s and L¢r represent the original
stator leakage inductance and stator referred rotor leakage inductance, respectively.
Observation of Eq. (7.24) shows that the transformation variable a is bound by the
condition

Lm

Lr
� a � Ls

Lm
(7.25)

on the grounds that the inductance parameters must be greater or equal to zero.
Note that a unity transformation value corresponds to the “original” three inductance
network with

L¢S D L¢s (7.26a)

L¢R D L¢r (7.26b)

LM D Lm (7.26c)

Also shown in Fig. 7.14 is an ITF module with winding ratio krW1 as defined by
Eq. (7.24d). The relationship between “universal” rotor parameters (with subscript
R) and actual rotor parameters (with subscript rw) is given as

EiR D Eirw
kr

(7.27a)

E R D kr E rw (7.27b)
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In a number of machine modeling applications it is convenient to only use the
universal model variables, in which case the ITF is simply ignored, provided that
the original rotor resistance Rrw is referred to the “primary” side using

RR D .kr/2 Rrw (7.28)

The corresponding equation set for the model according to Fig. 7.14 is of the
form

Eus D EisRs C d E s

dt
(7.29a)

E s D E M CEisL¢S (7.29b)

E R D E M �EiRL¢R (7.29c)

E M

LM
D Eis �EiR (7.29d)

d E xy
rw

dt
D Euxy

rw CEixy
rwRrw (7.29e)

EiR D Ei xy
R ej� (7.29f)

E xy
R D E R e�j� (7.29g)

Te D 3

2
=

n E �
R
EiR

o
(7.29h)

The resultant model as indicated in Fig. 7.14 forms the basic concept which will
be used in the following chapters to examine, with the aid of simulation models, a
range of classic motor configurations as they exist today. Given the importance of
this model it is instructive to summarize the underlying considerations, namely:

• Linear magnetic material stator/rotor,
• No magnetic losses,
• Sinusoidal distributed windings, and
• Two-pole machine.

7.4.1 Generic Model of a Universal IRTF Based Machine

It is instructive to consider a generic representation of the universal model given
in Fig. 7.14. Such a generic model is of interest to demonstrate with the aid of a
tutorial (see Sect. 7.5.3) that changing the transformation factor within the range
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given by Eq. (7.25) will not affect, for example, the torque of the machine. Note that
in subsequent chapters more generic models will be introduced, with the ability to
represent a three-inductance model with a two-inductance version.

The approach used to arrive at a generic model follows that of Sect. 3.6 for a
single phase transformer. For this purpose of the analysis it is helpful to reconsider
the relationship between the space vector based flux-linkages E s; E R and currents
Eis; EiR. These can, with aid of Eqs. (7.29b)–(7.29d), be written in matrix format as

" E s

E R

#
D

	
Ls �LM

LM �LR


 " Eis
EiR

#
(7.30)

with LR D LM C L¢R and Ls D LM C L¢S. For the development of an IRTF/ITF
based model it is helpful to invert Eq. (7.30) which gives

" Eis
EiR

#
D 1

LsLR � .LM/2

	
LR �LM

LM �Ls




„ ƒ‚ …
ŒL�1�

" E s

E R

#
(7.31)

which, together with Eq. (3.17), leads to the generic model given in Fig. 3.15 that
corresponds to the symbolic model given in Fig. 7.15. Note that this generic model
is not suitable for modeling an open circuited (with a passive load) rotor winding or
for that matter a stator winding since the rotor current Eixy

rw and stator current Eis are
outputs of this generic model. In applications where, for example, the rotor current
is an input vector a different type of generic model should be used, as will become
apparent in the next chapter.

Fig. 7.15 Generic universal two-phase, two-pole, IRTF/ITF machine model
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7.5 Tutorials

7.5.1 Tutorial 1: PLECS Based Model of an IRTF Module
with Stator Flux Excitation

This tutorial is aimed at providing a better understanding of the IRTF module.
As a first step, a PLECS model of the IRTF module must be built. The imple-
mentation follows the generic version given in Fig. 7.5a. An example of possible
implementation is given in Fig. 7.16, where the IRTF sub-module RRF->SRF
(which is a standard PLECS module) performs the conversion Ei D Eixyej� . A similar
(standard PLECS module) SRF->RRF is used to implement the conversion E xy

m D
E me�j� . Finally, the torque produced by the machine is calculated according to

Te D 3=2=
n E �

m
Ei
o
, which requires the vector components  m’,  m“, i’, and i“.

Further development of the torque equation leads to an expression which can be
used in a Fcn module to generate the torque. In the second part of this tutorial a
numerical implementation of the example as discussed in Sect. 7.2.2 is considered.
The simulation diagram, as given in Fig. 7.17, shows the IRTF module developed in
the first part of this tutorial. The flux vector, which is the input on the stator side, is
of the form E m D 1:0Wb. This is a scalar, i.e., no imaginary component. The rotor
side is connected to a current source (as shown in Fig. 7.8) and we assume that the
vector is equal toEi xy D j2A, i.e., only an imaginary component is present. The rotor
angle is provided via an integrator which in turn has as input the angular frequency
2� 50 rad/s. Hence if we run the simulation for 20ms, the rotor will have moved

SRF->RRF

αβ
dq

RRF->SRF

dq
αβ

psi_m

θ

i_s

psi_m_xy

i_s_xy

T_e
f(u)

Fcn

ITRF_flux

2 psi_m

1 θ

2 i_s

2psi_m_xy

2i_s_xy

1T_e

Fig. 7.16 PLECS model of IRTF module
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Fig. 7.17 PLECS model of IRTF simulation

one full rotation. For this reason, we will set the “run time” for our simulation to
20ms. Furthermore, in the dialog box “Simulation Parameters,” set the “Max step
size” to 1e-8, which will slow down the simulation process. This will make it
easier to observe the vectors Eis; E m during said simulation. To view the results a
Scope and “XY Plot” module flx-I should be added. The latter module is used
to observe the current and flux vectors over the course of the simulation. Examine
the results produced carefully to determine if the IRTF module is working correctly.
To assist you with this task it is helpful to look carefully at the example given in
Sect. 7.2.2. The output produced after running your simulation should look similar
to those given in Figs. 7.18 and 7.19. Shown in Fig. 7.19 are the stator flux vector
(“green”) E m and the stator current vector (“red”) Eis at the end of the simulation. In
this case the flux remains stationary, whilst the current vector rotates, as is evident
by the presence of the locus trajectory. Note that the simulation time was purposely
chosen to ensure that the current vector would rotate 360ı, hence the plot shown is
identical for the beginning and end of the simulation interval. A module mux_plt
(see Fig. 7.17) has been added to show two vectors in one “XY Plot.”

7.5.2 Tutorial 2: PLECS Based Model to Examine Constant
Torque Operation Using an IRTF Module

The IRTF example discussed in tutorial 1 is modified to explore how a constant
(time independent) torque value can be obtained (see Sect. 7.3). The revised model,
as given in Fig. 7.20, shows the IRTF-flux module with inputs E m D O mej!st and
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Fig. 7.19 “XY Plot” results of IRTF simulation

Ei xy D Oiej.!rC	r/. The simulation model is directly based on the symbolic model
given in Fig. 7.20 with the important change that the voltage source is replaced with
a “flux” source E m.

The amplitudes for the flux and current vectors are arbitrarily set to O m D 1:0Wb
and Oi D 2A, respectively, which results in a peak torque value of OTe D 3:0Nm. The
generation of the flux vector for the IRTF module is realized with the aid of a polar
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Fig. 7.20 Speed condition model: “DC brushless configuration” selected

to cartesian conversion module, as shown in Fig. 6.6. A similar approach is also used
for the generation of the current vector Ei xy with the minor change that a phase angle
input 	r must be added as shown in Fig. 7.20.

The “controller” module sets the variables !s, !m, and !r (rad/s) and angles 	r

and 	m (rad) for the simulation. The controller inputs are taken to the rotational
speed (rpm) variables ns, nm, and nr (rpm), which correspond to the angular
frequencies given above. The controller multiplies these variables with a factor
2�=60. In addition, the user must set values for the angles 	r and 	m (rad). As with
the previous tutorial the shaft angle, speed, and load angle are defined by the user
and taken to be of the form � D !mt C 	m. The torque Te produced by the machine
(IRTF module) is examined using a “scope” and “display” module.

The “scope” module is used to verify that the torque is indeed time independent,
while the display module is added to show directly the torque as a numerical
value. In addition an “XY Plot” module has been added to observe the current Eis
and stator flux vector E m over the course of the simulation interval. The aim is
to choose the controller variables in such a manner as to ensure that the machine
delivers a constant torque level equal to the maximum value of 3.0 Nm. Four cases
are considered which reflect the basic operation of electrical machines. Run your
simulation for a “run” time of 20 ms and “Max step size” to 1e-8 (to be able
to observe the vector during the simulation). Note that controller variables must
be chosen in accordance with Eqs. (7.22) and (7.23). In the latter case the sum
of the two angles 	r and 	m (rad) must be equal to �=2 rad because the aim is
to set the output torque to its maximum value, i.e., Te D OTe. Observe the output
of your simulation for the following cases: An example of the results which will
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Fig. 7.21 Scope result of the simulation: “DC brushless” configuration
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Fig. 7.22 “XY Plot” results of simulation: “DC brushless” configuration

appear on the Scope and “XY Plot” flx-I modules (shown in Fig. 7.20) is given
in Figs. 7.21 and 7.22. These results reflect operation according to configuration
“DC brushless” (see Table 7.1). Observation of Fig. 7.21 shows that the torque
Te is indeed constant and equal to 3:0Nm. Furthermore, the stator current vector
components i’; i“ are also shown which point to a rotating vector as may also be
confirmed by observation of the “XY Plot” during operation. Figure 7.22 shows the
current and stator flux vectors at the end of the simulation. Clearly observable are
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Table 7.1 Case studies

Machine type ns (rpm) nm (rpm) nr (rpm) 	r (rad) 	m (rad)

Synchronous 3000 3000 0 � ��=2
Asynchronous 3000 2000 1000 �=2 0

DC brush 0 3000 �3000 �=2 0

DC brushless 3000 3000 0 �=2 0

Table 7.2 Parameters of a
two-phase machine

Parameters Value

Stator inductance Ls 346.9 mH

Rotor inductance Lr 346.9 mH

Magnetizing inductance Lm 340.9 mH

Stator resistance Rs 6.9 �

Rotor resistance Rrw 0.03 �

Effective stator turns ns 100 t

Effective rotor turns nr 10 t

Inertia J 0.001 kg m2

Pole pairs p 1

Initial rotor speed !o
m 0 rad/s

the locus traces of both vectors which are circular as expected. Furthermore, the
angle between said vectors is 90ı with the current vector “leading” the flux vector
which results in a positive and constant torque output.

7.5.3 Tutorial 3: PLECS Based Model to Examine
the Universal Machine Concept

The purpose of this tutorial is to demonstrate the universal model transformation
concept. For this purpose a PLECS based simulation model is to be developed which
is based on the generic model shown in Fig. 7.15. For the purpose of the tutorial
the secondary windings are to be short circuited, which implies that the condition
Euxy

rw D 0 holds. Note that the assumed machine configuration with a parameter set
defined by Table 7.2 is in fact an asynchronous machine as will become apparent in
Chap. 8. A constant load torque of Tl D 10Nm is to be used for this simulation. To
simplify the ensuing analysis, stator flux excitation will be assumed, in which case
it is helpful to define the stator flux space as E s D 1:0 ej!st, with !s D 100 � rad/s.

The simulation model shown in Fig. 7.23 satisfies the requirement for this
tutorial. Clearly identifiable are the IRTF module and ITF module. The latter
module IFR_cur has in this case been provided with an additional input a_
which is connected to the L-1 matrix module that sets (among others) the
transformation factor a. This implies that the ITF winding ratio is now defined as
kr D a .ns=nr/ which is in accordance with Eq. (7.24d). The L-1 matrix module
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Fig. 7.23 PLECS simulation: two-phase IRTF/ITF machine, universal model concept verification

Table 7.3 Simulation results for different transformation factor values

Transformation factor Is (A) IR (A) Irw (A) Te (Nm) nm (rpm)

a D Lm
Lr

D 0:9827 5.3027 4.891 48.133 10.0 2800.8

a D 1 5.3027 4.813 48.133 10.0 2800.8

a D Ls
Lm

D 1:018 5.3027 4.728 48.133 10.0 2800.8

content is in accordance with the L�1 matrix expression given in Eq. (7.31). A set
of dialog boxes is present in said L-1 matrix module, which are used to enter
the machine inductance parameters and notably the transformation factor a. A set
of space vector to RMS conversion modules RMS have been introduced, the outputs
of which will be used to monitor the quasi-steady-state behavior of the machine
when the transformation factor is changed. Also show in Fig. 7.23 are a set of
PLECS mechanical control modules which are used to implement the load equation
Te � Tl D Jd!m=dt. The speed output is integrated, which yields the desired rotor
angle of the IRTF module IRTF_current. The steady-state results obtained from
the simulation model for three key transformation values are shown in Table 7.3.
The first and third row entries shown in Table 7.3 correspond to a universal model
configuration with L¢R D 0 and L¢S D 0, respectively. Also shown in the second
row is the case a D 1 which corresponds to the original machine, hence L¢S D L¢s

and L¢R D L¢r. An important observation that can be made from the table is that
the torque, shaft speed, RMS stator current Is, and RMS rotor winding current
Irw are NOT affected by a change in transformation factor. Only the variable IR

changes, which is in line with theory presented as this variable is indirectly defined
by Eq. (7.27a).



Chapter 8
Voltage Source Connected Synchronous
Machines

8.1 Introduction

The synchronous machine has traditionally been used for power generation
purposes. For motor applications (when connected to the power grid), a synchronous
machine is ideal when the operating speed must remain constant, i.e., independent
of load changes. Starting up, however, needs special measures.

Modern drives use a converter, which gives us more flexibility in terms of
controlling the machine and enable the machine to self-start. Synchronous machines
fed by power converters have become important players in the field of high
performance drives.

In this chapter, we will look at the basic operation of the synchronous machine.

8.2 Synchronous Machine Configuration

The synchronous machine has a non-rotating component known as the stator,
which is shown in Fig. 8.1. The stator consists of a “frame” within which a
laminated stator core stack is positioned. This core has a series of slots that house
the three-phase windings of the machine. Of these windings the so-called active
sides (named thus because these are responsible for the energy conversion) are
distributed appropriately in the core slots. The stator-coil end-winding-parts are at
each end of the core stack, as shown in Fig. 8.1. The three-phase windings will,
when connected to a three-phase supply source, produce a rotating magnetic field
which is, as was discussed in the previous chapter, an essential requirement for
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Fig. 8.1 Stator of three-phase synchronous machine

Fig. 8.2 Simple rotor for synchronous machine

producing constant torque. More details on machines and rotating fields are given in
Bödefeld [1] or Hughes [5]. Note that the same stator is also used when discussing
the asynchronous, or the so-called induction machine. The rotor configuration for
the synchronous machines may take on several forms. A very simple configuration
as shown in Fig. 8.2 conveys the basic structure. A more extensive discussion on
the machine structure can be found in electrical machine design books. Shown in
Fig. 8.2 is a rotor in the form of a single coil (referred to as the field winding)
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Fig. 8.3 PM synchronous machine with rotor magnets [2]

with sides “A” and “B” which are connected to slip rings 1 and 2, respectively.
These copper slip rings are linked to a set of brushes which in turn are connected
to a stationary DC power supply. The use of the slip ring/brush combination allows
us to excite the rotor coil with a DC “field” current via a stationary source. Note
that this rotor coil can be replaced by a permanent magnet which means that the
slip ring/brush and the DC source can be avoided. However, the excitation under
these circumstances cannot be varied. Such machines belong to the class of the so-
called brushless DC machines. An example of such a machine is shown in Fig. 8.3,
where the presence of magnets on the rotor is readily visible. Also present are the
three-phase windings that are located in the slots of the stator.

8.3 Operating Principles

The synchronous machine with a slip ring/brush combination is, as was discussed
in the previous section, fed on the rotor side with a DC field current. This implies
that the current Eixy (as introduced in Sect. 7.3) is given by Eq. (7.16), with !r D 0,
hence Eixy D Oi ej	r . A choice remains with respect to the angle 	r; its value can be
taken to be zero or � rad. The latter choice amounts to reversing the polarity of the
DC current source shown in Fig. 7.11. This option is chosen here for reasons which
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will become apparent shortly, hence Eixy D �Oi. The magnitude of the current Oi is in
context of synchronous machines more commonly known as the field current if, i.e.,
Eixy D �if. On the basis of the speed condition (see Eq. (7.22), with !r D 0), constant
torque operation is only possible when the shaft speed is equal to the rotational
speed !s of the rotating flux vector produced by the three-phase stator winding.
The term “synchronous machine” reflects this type of operation, i.e., the rotor speed
is synchronized to the rotating field. The torque produced by this machine can be
calculated using Eq. (7.23) with Eixy D �if and 	r D � which yields

Te D �3
2

O mif sin .	m/ (8.1)

If a mechanical load is applied to the machine, the load angle 	m will be non-
zero. This explains why this angle is referred to as the “load angle.” When a load
is applied, the rotor will lag behind the magnetic field (	m < 0), which leads to
a positive torque value that matches the applied load. The load angle can for a
given load torque be modified by varying the amplitude of the field or rotor current.
The maximum torque OTe that can be delivered by this machine is reached when the
load angle reaches �=2 rad. Speed changes are implemented by changing the stator
frequency !s, which nowadays requires the use of a power electronic converter.

The general space vector diagram, according to Fig. 7.12, changes to the form
shown in Fig. 8.4 given the present choice of rotor excitation. Several interesting
observations can be made with respect to Fig. 8.4. Firstly, the current vector Eixy is
tied to the negative real axis of the rotor given that the rotor is fed with a DC current
if, which is in the opposite direction, as shown in Fig. 7.11. Secondly, the vectors

Fig. 8.4 Space vector diagram for synchronous machine, motoring operation shown with 	m < 0
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E m and Ei are stationary with respect to each other. The angle between the two can
and will vary depending on the load torque. For example, an increase in the load
torque will see the rotor slip back momentarily (in the clockwise direction) so that
the machine adjusts its torque Te to match the load torque Tl. As indicated above,
the highest torque (known as the “pull out” torque) that can be delivered by the
machine is equal to OTe D 3=2 O m if. The machine will stall (or rotate uncontrolled
in the opposite direction) when a load torque above this value is applied. In this
situation, the two vectors will no longer be stationary with respect to each other, i.e.,
the machine will deliver a pulsating torque with zero average value. Also shown in
Fig. 8.4 is the voltage vector Eem, shown in stator coordinates (which is equal to the
supply voltage vector Eu), which leads the flux vector by �=2 rad. The projection of
the current onto this vector, shown as itorque in Fig. 8.4, is proportional to the torque.

If the option 	r D 0 would have been selected, then the field current would be
aligned with the positive real axis. Under the circumstances shown in Fig. 8.4 the
torque would be negative, hence the rotor would rotate until the current vector would
be diametrically opposite to its present position.

8.4 Zero Leakage Inductance and Zero Resistance Model

The universal model as shown in Fig. 7.14 is a convenient starting point for this
type of model. Elimination of the leakage inductances L¢S; L¢R from this model
implies that transformation ratio will be equal to a D 1, given that Ls D Lr D
LM D Lm. A synchronous machine with a rotor based field winding is assumed,
which is connected to a current source ifw via a set of slip rings. Note that the ITF
module shown in Fig. 7.14 has effectively been omitted in Fig. 8.5 by making use of
a current source with current if. The latter source is located on the ‘primary’ side of
the ITF module. The relationship between the actual field winding current ifw and
the ITF primary referred current if is therefore of the form ifw D .ns=nf/ if, where nf

represents the number of field winding turns, which replaces the variable nr. This
implies that the ITF transformation ratio, as shown in the universal model, is defined
as kr D ns=nf. For the synchronous machine the magnetizing inductance is relocated
to the “rotor” side of the IRTF as may be observed from Fig. 8.5. The reason for
this choice is that modeling of machines with saliency becomes a lot easier when
the magnetizing inductance is located on the rotor side [2]. Hence, for consistency
reasons the magnetizing inductance is also located on the rotor side of the IRTF.

Fig. 8.5 Synchronous
machine, zero resistance and
zero leakage inductance
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The equation set which corresponds to Fig. 8.5 is of the form

Eus D d E m

dt
(8.2a)

E m D Lm

�Eis C ifej�
�

(8.2b)

Te � Tl D J
d!m

dt
(8.2c)

!m D d�

dt
(8.2d)

Note that in this equation set, the flux vector E m [see Eq. (8.2b)] is given in its stator
based form. This expression is in fact found by using Kirchhoff’s current law on the

rotor side which gives E xy
m D Lm

�Eixy
s C if

�
.

A rotating stator flux vector E s D O s ej!st is established as a result of the machine
being connected to a three-phase grid with angular frequency !s. Note that in the
present case (zero leakage inductance), the magnetizing flux space vector is equal
to the stator flux vector hence E m D E s.

8.4.1 Generic Model

A generic representation of the (two-pole) synchronous machine in its present
form is given in Fig. 8.6. The model follows directly from Eq. (8.2). Central to
this model is the IRTF sub-module, which is represented by Fig. 7.5a. The load
torque is provided by a sub-module Tl .!m/, which assumes, for simplicity reasons,
a relationship between load torque and speed (not position).

The model in question provides the user with a simple machine representation,
that can be used to examine various operating modes (including steady-state
operation) as will become apparent in the tutorial section at the end of the chapter.

8.5 Generalized Machine Model

For the development of a complete model which accommodates the leakage
inductance it is helpful to reconsider the universal model shown in Fig. 7.14, in a
more convenient (to reflect the synchronous machine topology) configuration. The
model as given in Fig. 8.7 shows the magnetizing inductance Lm, stator leakage
inductance L¢s, and field winding leakage inductance L¢fw. Also shown are the stator
resistance Rs and field winding resistance Rfw. Note that the variables ufw; ifw which
represent the field winding terminal voltage and field winding current, respectively,
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Fig. 8.6 Generic representation of a voltage source connected synchronous machine, which
corresponds to Fig. 8.5

Fig. 8.7 Generalized synchronous machine model

are scalar quantities because they are linked to the “x” winding of the IRTF
module. Note that the “y” rotor winding is not used and is therefore ignored in
the subsequent analysis. The current if D nf=ns ifw shown in Fig. 8.7 represents
the stator referred field current. A comparison between the synchronous machine
model and the universal model with unity transformation variable a D 1 shown in
Fig. 7.14 confirms the presence of the three inductance structure in both models.
For the synchronous model the rotor leakage inductance is located on the field
winding side, but could equally have been referred to the primary side of the ITF.
For the purpose of the analysis in this chapter we will assume that a DC current
source ifw is connected to the “x” rotor (field) winding. This implies that the field
winding leakage inductance and resistance do not need to be accommodated in
the generic model to be developed. A further simplification of the present model
can be undertaken by introducing a DC current source if on the “primary” side
of this transformer to replace the current source ifw connected to the “x” rotor
(field) winding. The complete model shown in Fig. 8.8 is applicable to the so-called
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Fig. 8.8 Generalized synchronous machine model, with referred field winding current source

non-salient machines, which generally do not carry any damper windings (short-
circuited windings on the rotor). Damper windings can be accommodated in this
IRTF model but this is considered to be outside the scope of this book. Salient
machines show different Lm values for the x and y direction as is discussed in our
text “Advanced Electrical Drives” [2]. The equation set which corresponds to this
machine model in its present form is given by Eq. (8.3).

Eus D EisRs C d E s

dt
(8.3a)

E s D EisL¢s C E m (8.3b)

E xy
m D Lm

�Eixy
s C if

�
(8.3c)

Te � Tl D J
d!m

dt
(8.3d)

!m D d�

dt
(8.3e)

In order to move towards a generic model where we are able to group the two
inductances L¢s and Lm it is helpful to introduce the flux  mf D Lmif. This allows
us to rewrite Eq. (8.3c) in the form given by Eq. (8.4).

E xy
m D LmEixy

s C  mf (8.4)

Substitution of Eq. (8.4) into Eq. (8.3b) (written in rotor coordinate format) leads
to Eq. (8.5), which for completeness contains the complete set needed to derive a
generic model of this machine.

Eus D EisRs C d E s

dt
(8.5a)
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Fig. 8.9 Full generic synchronous machine model, which corresponds to the model given in
Fig. 8.8, where the current source if has been replaced by a “field” flux source  mf D Lm if

E xy
s D Eixy

s .L¢s C Lm/„ ƒ‚ …
Ls

C mf (8.5b)

Te � Tl D J
d!m

dt
(8.5c)

!m D d�

dt
(8.5d)

In Eq. (8.5b) the sum of the two inductances known as the stator inductance Ls

appears as intended.

8.5.1 Generic Model

The generic model of the two-pole non-salient synchronous machine without
damper winding is directly found using Eq. (8.5). An example of implementation as
given in Fig. 8.9 shows the presence of a gain module which represents the inverse
stator inductance 1=Ls. Observation of Fig. 8.9 shows that the IRTF module has as
“inputs” the flux vector E s and stator current vector Eixy

s . The variable  mf represents
the stator referred magnetizing flux which for a machine with a field winding will
be different to the stator referred field flux linkage  f. The difference between the
two is attributed to the field winding leakage inductance. For machines where the
excitation is provided by a permanent magnet the field winding leakage inductance
will be zero, which implies that  mf D  f.
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The mechanism through which a stator current will occur is readily shown using
this generic model. Note that the reasoning presented here differs from that given
in Sect. 8.3, given the way in which the IRTF module is now used. Both approaches
to describing machine operation must of course give the same result. For simplicity
we will ignore the stator resistance in this discussion. If we assume that the stator is
connected to a three-phase sinusoidal supply, then this leads to a rotating stator flux
vector E s. The rotor winding carries a current if (which is a referred value, the actual
field winding current is ifw). If we assume that the rotor rotates at the same speed
as the stator flux field, then the rotor and stator flux vectors will move at the same
speed. If we initially assume that the magnitude of both vectors is equal and aligned
(which implies E s.0/ D  mf), then no stator current will be present. Under these
circumstances the vector into the gain module 1=Ls (see Fig. 8.9) is zero, hence the
current Eis will be zero. If, for example, we increase the field current, then the field
flux  mf will increase and a stator current component will occur which will lead the
voltage vector by �=2 radians. No torque will be realized under these circumstances.

If we return to our initial conditions (flux vectors equal magnitude and aligned),
then the application of a mechanical load will momentarily cause the rotor to slow
down, until an angle between the two flux vectors occurs. The difference vector
between the two vectors is proportional to the stator current. Hence, a current vector
will occur which means that the machine will produce a torque to counteract the
new load torque (after transient effects have died down following the load torque
change).

8.6 Steady-State Characteristics

In this section we look at the steady-state performance of the synchronous machine
in case we connect the stator windings to a three-phase sinusoidal source. This
implies that the stator phase voltage equals the grid voltage with its fixed amplitude
and frequency. We also assume the shaft speed to run at synchronous speed,
although different shaft angles are possible with respect to the rotating field in the
stator. Consequently the torque and field current are the only independent variables
left at this stage. Steady-state analysis provides insight with regard to the trajectory
of the stator current vector and load angle when either of these independent variables
is varied.

The approach taken is to consider the simplified model first and develop the so-
called Blondel diagram and torque angle curves on the basis of the phasor equation
set applicable to this model. This model is then extended to a full machine model.
Synchronous operation is assumed which means that the condition !s D !m is
met. The stator is connected to a three- phase sinusoidal voltage supply which is
represented by the space vector Eus. Up to now we have chosen the flux vector of
the form E m D O mej!st which corresponds to a supply vector Eus D j!s O mej!st.
The corresponding phasor representations are according to Eq. (4.60) of the form
 

m
D O m and us D j!s O m.
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The phasor diagrams which are linked to AC machines will be discussed in line
with the general convention where the supply voltage phasor is chosen along the real
axis, i.e., us D Ous. With our present choice of flux vector the voltage phasor is along
the imaginary axis. If we re-define (for the purpose of examining the steady-state
performance only) the relationship between space vectors and phasors as

Ex D x ej.!stC �
2 / (8.6)

then the flux and voltage phasor will be of the form  
m

D O me�j �2 and us D !s O m,
respectively, i.e., rotated clockwise so that the voltage phasor is real, as preferred
for steady-state analysis.

8.6.1 Steady-State Characteristics, Simplified Model

The steady-state characteristics of the non-salient synchronous machine are studied
with the aid of Fig. 8.6. The magnetizing flux vector E m will also rotate at the same
speed but will lag the voltage vector Eus by �=2 radians. This vector is derived from
the voltage vector using Eus D d E m=dt, or us D j!s m

in phasor form.
The basic characteristics of the machine relate to the stator current of the two-

pole machine in phasor form and the torque load angle curve. The flux phasor  
m

according to Eq. (8.2b) can, with the aid of Eqs. (8.6) and (7.18) (with !m D !s), be
written as

 
m

D Lm

�
is C ifej.	m� �

2 /
�

(8.7)

The current is can, with the aid of Eq. (8.7) and expression  
m

D Ous=j!s, be
written as

is D Ous

j!sLm
� if ej.	m� �

2 / (8.8)

Equation (8.8) can also be represented in terms of an equivalent circuit as given by
Fig. 8.10. Equation (8.8) may also be rewritten in the following form

is D Ous

j!sLm„ƒ‚…
is1

� Ous kF ej	m

j!sLm„ ƒ‚ …
is2

(8.9)
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Fig. 8.10 Simplified
synchronous machine, phasor
based model

in which the factor kF is defined as

kF D !sLm if
Ous

(8.10)

which can also be written in the form given by Eq. (8.11).

kF D Lm if
O m

(8.11)

If the value of kF is greater than 1, the machine is said to be operating under “over-
excited” conditions. For kF value less than 1 a so-called under-excited machine
operating condition is present.

The current phasor is can be plotted as a function of the load angle 	m with
kF as parameter. This type of diagram as given in Fig. 8.11 shows the two current
components according to Eq. (8.9) together with lines of constant output power pout.
These output power curves are found by making use of the energy balance equation,
which for the current machine with zero stator resistance is of the form

3

2
< ˚

usi
�
s

� D pout (8.12)

where pout D Te!m. The power balance states that the output power is in this case
equal to the input power. This expression may be reduced to

3

2
Ous<

˚
i�s

� D pout (8.13)

where use is made of us D Ous. Equation (8.13) shows that lines of constant output
power are represented by vertical lines in Fig. 8.11. It is noted that for a given shaft
speed the output power is proportional to the output torque.

The diagram according to Fig. 8.11 is known as a “Blondel” diagram and is
particularly useful for identifying a range of operating situations. In particular the
user is able to gain insight as to how, for example, changes to the load torque or
field current will affect the stator current and power factor. A number of these are
itemized as follows.
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Fig. 8.11 Blondel diagram
of synchronous machine with
Rs D 0, 	m < 0, and kF < 1

• Motor operation is realized in the first and fourth quadrant of the complex plane.
• Generator operation is achieved if the current vector end point “A” is located in

the second or third quadrant of the complex plane.
• When the load angle is changed a circle will appear which represents the stator

current end point trajectory. The circle radius is proportional to the current if,
where point “B” represents the case for if D 0. In case the load torque is zero
and if > 0, the operating point will be located at, for example, point “F”. As the
load torque is increased (	m < 0) the motoring region is entered and the output
power will increase. The horizontal distance from the operating point to the zero
power line determines the output power level. The larger this distance, the higher
the output power. This means that motor operation with a current phasor end
point positioned at “C” gives the highest output power level achievable for a
given field current. This operating point also represents the limit for stable motor
operation. If the load torque is increased beyond this value, then the load angle is
increased (in absolute terms) further, which leads to a smaller rather than larger
output torque. The motor will now loose synchronization with the grid. A similar
reasoning is also applicable for generator operation in which case the limit of
stable operation is identified by point “D”. The entire operating trajectory for
unstable operation is also shown in Fig. 8.11.

• For a given output power level at, for example, point “A” it is possible to
change the excitation current as to minimize the stator current amplitude. This
is achieved at point “E” which corresponds to unity power factor. Under these
conditions the machine will be over-excited, i.e., kF > 1.
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• The Blondel diagram according to Fig. 8.11 is shown with kF D 0:7. The current
end point trajectory from point A ! E is realized in case kF is increased (by
changing if) to the value 1:06 while maintaining a constant output power level.

In addition to using the Blondel diagram it is desirable to have access to a cartesian
type diagram in the form of the output power/load angle diagram. This type of
diagram is readily obtained by making use of, for example, Eqs. (8.1) and (8.11),
with pout D Te!s and O m D Ous=!s, which leads to the following output power
expression

pout D � 3Ou2s kF

2!sLm
sin 	m (8.14)

This expression can be further developed by introducing a normalization factor
3Ou2s=2!sLm which gives

pn
out D �kF sin 	m (8.15)

A graphical representation of Eq. (8.15) is shown in Fig. 8.12 with kF D 0:7. The
parameters used here are identical to those used for Fig. 8.11. This means that a
number of operating points given in the Blondel diagram can also be shown here
for comparison purposes. A second torque/load angle curve is included in Fig. 8.12
which represents the case kF D 1:06which as was discussed earlier allows operation
with unity power factor. Observation of Fig. 8.12 shows that the stable operating
range of load angles corresponds to region C � D. The concept of the so-called
stable operation is readily illustrated by considering operation at, for example,
point “A”. If the mechanical load power is increased, the machine can respond by
producing more output power which in turn leads to a more negative load angle. If
this example is carried out for operation at, for example, point “C”, then an increase
in load power cannot be met by increase in machine output power, in which case
de-synchronization will occur.

Fig. 8.12 Normalized output
power versus load angle
curves, with Rs D 0
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8.6.2 Steady-State Characteristics, Full Model

In reality machines have a finite stator resistance and stator inductance. It is therefore
necessary to consider the Blondel diagram and load torque/angle curves for the more
general case.

The Blondel diagram is found by making use of equation set (8.5), which may be
converted to phasor form using Eqs. (8.6) and (7.18) (with !m D !s), which leads
to Eq. (8.16).

us D isRs C j!s s
(8.16a)

 
s

D Lsis C  mf ej.	m� �
2 / (8.16b)

Elimination of the flux phasor  
s

from Eq. (8.16) leads to the following current
phasor expression.

is D Ous
�
1 � kF ej	m

�
Rs C j!sLs

(8.17)

Note that this expression contains the variable kF as introduced in expression (8.10).
This variable in its general format is defined by Eq. (8.19), as will be discussed
shortly. Expression (8.17) may also be presented in terms of a circuit representation
as given in Fig. 8.13. Observation of this figure shows that the current is can also
be found by application of a Superposition Theorem strategy which considers the
current component for each voltage source separately (in this case the supply source
us and back-emf kF Ous) and then adding (in complex format) the two terms, which
gives

is D Ous

Rs C j!sLs„ ƒ‚ …
is1

� kF Ous ej	m

Rs C j!sLs„ ƒ‚ …
is2

(8.18)

The excitation factor kF as defined by Eq. (8.10) is expressed in its more general
form (in terms of  mf D Lmif) as given by Eq. (8.19).

Fig. 8.13 Synchronous
phasor based machine model
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Fig. 8.14 Blondel diagram of synchronous machine with kF D 0:7 and !sLs=Rs D 1:96

kF D !s mf

Ous
(8.19)

A graphical representation of Eq. (8.18) as given in Fig. 8.14 on page 216 shows
the two current components together with curves of constant output power pout.
The speed is kept quasi-constant while the load angle is able to vary. The curves
of constant torque, i.e., constant output power, are found using the energy balance
equation

3

2
< ˚

usi
�
s

� � 3

2
< ˚

isi
�
s

�
Rs D pout (8.20)

In this case, a dissipative term is introduced which was not present in the previous
energy equation (8.12). Expression (8.20) can be written in a more simplified
normalized form which after some mathematical handling gives
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�
x � Ous

2Rs

�2
C y2 D 1

Rs

� Ou2s
4Rs

� 2

3
pout

�
(8.21)

with

x D < ˚
is

�
y D = ˚

is
�

Equation (8.21) states that we are able to represent circles of constant output power
in the complex plane as well as the stator current phasor. These circles are centered
on the < axis with coordinates (Ous=2Rs; 0) and radius

rout D
s
1

Rs

� Ou2s
4Rs

� 2

3
pout

�
(8.22)

Equation 8.22 implies that the zero output power circle has a radius of rout D Ous=2Rs.
Furthermore, the machine has a maximum output power level

pmax
out D 3Ou2s

8Rs
(8.23)

which in Fig. 8.14 is found at coordinates (Ous=2Rs; 0) of the complex plane with
rout D 0. It is noted that for a given shaft speed the output power is proportional
to the output torque. The general Blondel diagram with Rs > 0 as given by Fig. 8.14
has a number of interesting operating points which are itemized below.

• If the field current if is set to zero (point “B”), then the stator current will be
positioned on the zero output power circle.

• Motor operation is present within the circle constrained by pout D 0.
• For a given field current (and corresponding kF value) and variable load angle

a circle will appear which represents the stator current end point trajectory. The
radius of this circle is proportional to the current iF. When the load torque is
zero the operating point will be located at point “F”. As load torque is increased,
the motoring region is entered and the output power will increase. The distance
from the operating point to the maximum output power point pmax

out determines the
output power level. The shorter this distance, the higher the output power. This
means that operation with a current phasor end point positioned at “C” gives the
highest output power level achievable for the given field current. This operating
point also represents the limit for stable operation.



218 8 Voltage Source Connected Synchronous Machines

• For a given output power level at, for example, point “A”, it is possible to change
the excitation to minimize the stator current. This is achieved at point “E” which
corresponds to unity power factor.

• The Blondel diagram according to Fig. 8.14 is shown with kF D 0:7 and !sLs=Rs D
1:96. The current end point trajectory can be made to intersect with the maximum
power point in case kF is increased to the value 1:1.

• Lines of constant power are represented as circles in this case which have their
center at coordinates (Ous=2Rs; 0).

The output power/load angle diagram is found using Eqs. (7.29h) and (8.18).
An observation of the generic diagram (Fig. 8.9) shows that the IRTF module now
calculates the torque using the flux vector E s and current vector Eixy

s D Eis e�j� . Both
vectors can be converted to phasor form using Eqs. (8.6) and (7.18) (with !m D !s),
which leads, with the aid of Eq. (8.16b), to expression (8.24).

Te D 3

2
= ˚

j mf is e�j	m
�

(8.24)

The output power, defined as pout D Te!m, is then found using Eqs. (8.24), (8.18),
and (8.19). The output power expression in a normalized form is given by Eq. (8.25)

pn
out D � 4kFr

1C
�
!sLs
Rs

�2
n
sin

�
	m C  � �

2

�
� kF sin

�
 � �

2

�o
(8.25)

where  D arctan .!sLs=Rs/. The normalization used in Eq. (8.25) is of the form

pn
out D pout

pmax
out

(8.26)

A graphical representation of Eq. (8.25) as function of the load angle 	m is shown
in Fig. 8.15 with kF D 0:7 and !sLs=Rs D 1:96.

The parameters used here are identical to those used for Fig. 8.14. This means
that a number of operating points given in the Blondel diagram can also be shown
here for comparison purposes. A second torque/load angle curve is included in
Fig. 8.15 that represents the case kF D 1:1, which as was discussed earlier, allows
operation at the maximum power point.

Several interesting observations can be made with respect to the output power
versus load angle diagram.

• The peak values for motor and generator operation are generally not equal.
Equality of the peak values is achieved in case the term !sLs=Rs ! 1. This is
readily apparent for the zero resistance case (Fig. 8.12).
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Fig. 8.15 Normalized output
power versus load angle
curves

• Zero load angle does generally not correspond to zero output power. Only for
kF D 1 is this the case.

• The stable operating range of load angle corresponds to region C � D.

8.7 Tutorials

8.7.1 Tutorial 1: Simplified Grid Connected Synchronous
Machine

This tutorial considers a three-phase IRTF based synchronous machine in its
simplified form, i.e., no stator resistance, rotor resistance, or leakage inductance.
The aim is to build a PLECS model of this machine in accordance with the
generic model given in Fig. 8.6. This model can be used to examine the steady-state
characteristics of this simplified machine. An example of such a model is given in
Fig. 8.16. The machine in question has a magnetizing inductance of Lm D 1H, and
an inertia of J D 10�kg m2. The rotor is connected to a DC current source which
provides a (referred) current if. Furthermore, a rotating magnetizing flux vector E m

is assumed which is the result of connecting the machine on the stator side to a three-
phase sinusoidal voltage source. The use of a rotating flux vector is in line with the
approach taken in the previous tutorial on space vector transformers (see Sect. 6.4.1
on page 168). The machine is connected to a mechanical load via which the load
torque can be altered under motor operation. For this part of the model use is made
of modules for the PLECS “Mechanical” library. We will now consider some of the
modules shown in Fig. 8.16 in more detail.
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Fig. 8.16 PLECS model (simplified) of synchronous machine

A PLECS standard “Polar to Rectangular” module shown in Fig. 8.16 is used to
generate the input flux vector

E m D O m ej	 (8.27)

where O m D 1:0Wb. This flux vector may also be written as E m D  m’ C
j m“. The angle 	 D !s t is produced in exactly the same way as discussed in
tutorial (Sect. 6.4.1). Check your work by using an “XY” scope module.

Run the simulation for 1s and observe the result, which should be a circle with a
radius of 1.0, given that the flux vector is of the form E m D 1:0 ej100� t.

Add a module which will generate the voltage space vector Eus D j!s E m which
is based on the model given in Fig. 6.8. Use the PLECS sub-module jwX developed
in an earlier tutorial example (see Sect. 6.4.1).

Add a sub-module which allows you to calculate the RMS value of the three-
phase waveforms which corresponds to a vector Ex. Connect the output of the vector
Eus via an RMS converter to a “Display module,” which will give the RMS stator
voltage value.

The value on this display follows from the flux amplitude and frequency, namely
Ous D O m!s, where Ous represents the amplitude of the voltage vector. The readout
value is therefore equal to Us D !s O m=

p
2, which in numerical terms is equal to

Us D 1:0 � 100�=p2 D 222:1V.
The IRTF module as developed in Sect. 7.5.1 on page 194 is directly applicable to

this tutorial. The magnetizing current component Eixy
m D E xy

m=Lm must also be added in
order to calculate the primary current vector Eixy

s . This vector is given asEixy
s D Eixy

m �if.
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It is helpful to also add a series of modules which will allow you to show the torque,
rotational speed (rpm), and load angle. The latter is the angle between the shaft and
flux vector, its value is shown in degrees, i.e., you need to convert from radians to
degrees (factor 180=�). If a mechanical load is applied, then a NEGATIVE load angle
will occur. In addition to the above, use a vector to RMS converter with display unit
to show the RMS stator current value.

We will also need to add two additional sub-modules which will give us the
stator real and reactive power values known as P (W) and Q (VAr), respectively.
The inputs to these modules will be the space vectors Eus and Eis. The last part of
this tutorial is concerned with the load side of the machine. The generic diagram
(Fig. 8.6) shows the implementation of the mechanical equation set which links
load torque Tl, shaft torque Te, and inertia J with the shaft speed !m and rotor
angle � . Figure 8.16 shows how the mechanical equation set is implemented in
PLECS, where use is made of mechanical control blocks. Note that the inertia
module must have its initial condition set to !s D 100 � rad/s. This means that the
simulation starts with the machine rotating at synchronous speed. The load torque
control module load curve controls the mechanical Torque block. With this
module the user can select a “constant,” “linear,” or “quadratic” load torque versus
speed characteristic. The relationship between load torque and speed is therefore of
the form

Tl D T� (8.28a)

or

Tl D kL1!m (8.28b)

or

Tl D
�

if !m � 0 kL2!
2
m

if !m < 0 �kL2!
2
m

(8.28c)

where kL1 D T�=!� and kL2 D T�=.!�/2. In this example we can use the quadratic load
curve as given by Eq. (8.28c). The value for !� must be set to 100� , while T� is a
variable which must be adjusted in this tutorial. This variable is in fact the steady-
state load torque value. An example of an implementation of Eq. (8.28) in PLECS
is given in Fig. 8.17. Figure 8.17 shows the use of a Selector module, which is
controlled by the variable “type,” which has a value linked to the selected load/speed
curve. The modules Tn and wn are constants which represent the variables T� and
!�, respectively.
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Fig. 8.17 PLECS model: load torque module

Table 8.1 Simulation results
synchronous machine:
no-load

Parameters if D 1:0A if D 0:833A

RMS stator voltage Us 222:14V 222:14V

RMS stator current Is 0:00A 0:11A

Real stator power Ps 0:00W 0:00W

Reactive stator power Qs 0:00VAr 78:69VAr

Load angle 	m 0:00ı 0:00ı

Shaft speed !m 3000:00 rpm 3000:00 rpm

8.7.2 Tutorial 2: Steady-State Analysis of a Simplified
Synchronous Machine Operating Under
No-Load Conditions

This tutorial is concerned with using the PLECS model as developed in the previous
tutorial. The model will be used to examine the steady-state behavior of the machine
operating as a motor under no-load conditions. Set the load torque to zero, i.e.,
T� D 0Nm, in your load torque module. Set the field current to if D 1:0A and
run your simulation with a Stop time of 1s and Max step size of 1e-5s (to
reduce the simulation speed in order to observe the space vectors on a scope).

Change the field current value to 0.833A and rerun the simulation. Observe the
result on the display modules and confirm these results via a steady-state phasor
analysis in the form of a MATLAB file. The results which should appear on the
numerical display modules for the two simulation runs are given in Table 8.1.

It is instructive to consider the vector plot u-i gives in this model which shows
the scaled voltage vector Eus=300 and currentEis for the two selected field current values
at the end of the simulation interval. Observation of Fig. 8.18, subplot (a) confirms
that the current vector is zero (as shown by a “dot”) when the field current is equal
to if D 1:0A. When the field current is reduced, as shown in subplot (b), a “lagging”
stator current vector appears which is consistent with the results shown in Table 8.1.
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Fig. 8.18 Vector plots showing Eus=300 (“green”) and current Eis for different field current values
under no-load conditions. (a) if D 1A. (b) if D 0:833A

Note also that the phase angle between the two vectors is 90ı hence the real power
Ps is zero. The M-file as given below shows the phasor analysis for this problem.
The file must be run for the two if current values in order to obtain the results shown
in Table 8.1.

M-Code

%Tutorial 2, chapter 8
%steady state analysis
Lm=1; % Magnetizing inductance
ws=2*pi*50; % frequency rad/s
psim_hat=1.0; % flux vector amplitude
psim_ph=-j*psim_hat; % input flux phasor
im_ph=psim_ph/Lm; % magnetizing current
us_ph=j*ws*psim_ph; % stator voltage phasor
U_s=abs(us_ph)/sqrt(2); % RMS value phase voltage
T_e=0; % no-loadcase,zero torque
i_f=1.0; % field current
rho_m=-asin(T_e/(psim_hat*i_f)); % load angle rad
rho_mD=rho_m*180/pi; % load angle in degrees
rh=rho_m-pi/2;
is_ph=im_ph-i_f*(cos(rh)+j*sin(rh)); % stator current phasor

calculation
I_s=abs(is_ph)/sqrt(2); % RMS value phase current
P=3/2*real(us_ph*conj(is_ph)); % real stator power
Q=3/2*imag(us_ph*conj(is_ph)); % reactive stator power
wm=ws; % shaft speed rad/s
nm=wm*60/(2*pi); % shaft speed rad/s
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8.7.3 Tutorial 3: Steady-State Analysis of a Simplified
Synchronous Machine Operating Under Variable
Load Conditions

This tutorial considers the steady-state behavior of the model as discussed in
tutorials 1 and 2 under varying load conditions. For this example, maintain a field
current value of 1 A and vary the load torque. The maximum load torque which our
machine can handle is 1:5Nm. Explain where this value comes from.

Answer: the peak flux level is O m D 1:0V s/rad, the field current is if D 1:0A,
which according to Eq. (8.1) gives a maximum torque of 1:5Nm. Change the load
torque in ten steps in the range 0–1:5Nm and record (after doing a simulation run
for each STEP) the following data from the display modules: load angle 	m, shaft
torque Te, RMS stator current, real and reactive stator power.

The data as given in Table 8.2 should appear from your simulation.
Build an M-file which will display the data from your simulation in the form of

four subplots: Te .	m/ ; Is .	m/ ;Ps .	m/ ;Qs .	m/. In addition, plot the current phasor
is in the form of a “Blondel” diagram. Note that the angle between the current and
voltage phasor can be calculated using your real and reactive power readings. Add
to these plots the results as calculated via a steady analysis. Show these calculations
in the same M-file.

An example of the results which should appear from this M-file is given in
Figs. 8.19 and 8.20.

Also shown (not to scale) in Fig. 8.20 by way of reference is the stator voltage
phasor us. Clearly noticeable from Fig. 8.20 is that the locus of the stator current
phasor is is part of a circle which has its center at 0, �1:0A. An example of an
M-file implementation is given below.

Table 8.2 Simulation results
Synchronous machine:
no-load!load

Te (Nm) 	m (ı) Ps (W) Qs (VAr) Is (A)

0.0 0 0 0 0

0.15 �5.73 47.12 2.36 0.07

0.30 �11.53 94.24 9.52 0.14

0.45 �17.45 141.37 21.70 0.21

0.60 �23.57 188.40 39.34 0.28

0.75 �30.00 235.61 63.13 0.36

0.90 �36.87 282.74 94.24 0.44

1.05 �44.42 329.86 134.70 0.53

1.20 �53.13 376.99 188.49 0.63

1.35 �64.16 424.11 265.83 0.75

1.50 �89.28 471.20 465.35 0.99
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Fig. 8.19 PLECS/MATLAB result: Te .	m/ ; Is .	m/ ;Ps .	m/ ;Qs .	m/

M-Code

%Tutorial 3, Chapter 8
%Tutorial synchronous machine-simplified model
%steady state analysis
clear all
close all
Lm=1; % Magnetizing

inductance
ws=2*pi*50; % frequency rad/s
psim_hat=1.0; % flux vector

amplitude
psim_ph=-j*psim_hat; % input flux phasor
im_ph=psim_ph/Lm; % magnetizing current
us_ph=j*ws*psim_ph; % stator voltage

phasor
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Fig. 8.20 PLECS/MATLAB
result: Blondel diagram
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U_s=abs(us_ph)/sqrt(2); % RMS value phase
voltage

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%Data PLECS
Te=[0:1.5/10:1.50]; % selected load

torque values
%measured, from display, load angle (deg)
rhoM=[0 -5.73 -11.53 -17.45 -23.57 -30.00 -36.87 -44.42 -53.13

-64.16 -89.28];
%measured, from display, real power (W)
PM=[0 47.12 94.24 141.37 188.4 235.61 282.74 329.86 376.99

424.11 471.2];
%measured, from display, reactive power (VA)
QM=[0 2.36 9.52 21.70 39.34 63.13 94.24 134.70 188.49 265.83

465.35];
%measured, from display, RMS stator current (A)
IsM=[0 0.07 0.14 0.21 0.28 0.36 0.44 0.53 0.63 0.75 0.99];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%display measured results
figure (1)
subplot(4,1,1)
plot(rhoM,Te,’*’)
grid
xlabel(’(a) \rho_m (deg)’)
ylabel(’(Nm)’)
subplot(4,1,2)
plot(rhoM,IsM,’*’)
grid
xlabel(’(b) \rho_m (deg)’)
ylabel(’(A)’)
xlabel(’(b) \rho_m (deg)’)
subplot(4,1,3)
plot(rhoM,PM,’*’)
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grid
ylabel(’(W)’)
xlabel(’(c) \rho_m (deg)’)
subplot(4,1,4)
plot(rhoM,QM,’*’)
grid
ylabel(’(VAr)’)
xlabel(’(d) \rho_m(deg)’)
%%%%%%%%%%%%%%%plot Blondel diagram
rhos=atan(-QM./PM); Is_phM=IsM*sqrt(2).*(cos(rhos)+j*sin(rhos));
ISRE=real(Is_phM); ISIM=imag(Is_phM);
figure(2)
plot(ISRE,ISIM,’*’)
grid
%%%%%%%%%%%%%%%%%%Add theoretical results phasor analysis to

plots
T_e=[0:1.5/100:1.5]; % Te values for

analysis
i_f=1.0; % field current
rho_m=-asin(T_e/(1.5*psim_hat*i_f)); % load angle rad
rho_mD=rho_m*180/pi; % load angle in

degrees
%%%plot results
figure(1)
subplot(4,1,1)
hold on
plot(rho_mD, T_e,’r’)
legend(’T_e PLECS’,’ T_e MATLAB’)
%%%%%%%%%%%%%%%%%
rh=rho_m-pi/2;
is_ph=im_ph-i_f*(cos(rh)+j*sin(rh)); % stator current
% phasor calculation
I_s=abs(is_ph)/sqrt(2); % RMS value phase

current
subplot(4,1,2)
hold on
plot(rho_mD, I_s,’r’)
legend(’I_s PLECS’,’ I_s MATLAB’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
P=3/2*real(us_ph*conj(is_ph)); % real stator

power
subplot(4,1,3)
hold on
plot(rho_mD, P,’r’)
legend(’P_s PLECS’,’ P_s MATLAB’)
Q=3/2*imag(us_ph*conj(is_ph)); % reactive stator

power
subplot(4,1,4)
hold on
plot(rho_mD, Q,’r’)
legend(’Q_s PLECS’,’ Q_s MATLAB’)
%%%%%%%%%%Blondel diagram
figure(2)
hold on
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Table 8.3 Simulation results
synchronous machine:
if � Œ0:5; : : : ; 1:75�A

if (A) Is (A) Qs (VA) 	m .
ı/

0.5 0.57 329.86 �53.13

0.75 0.38 172.27 �32.23

1.0 0.28 39.34 �23.58

1.25 0.31 �86.83 �18.66

1.50 0.42 �210.0 �15.47

1.75 0.57 �331.59 �13.21

isRE=real(is_ph); isIM=imag(is_ph);
figure(2)
plot(isRE,isIM,’r’)
axis([0 1 -1 0])
axis equal
legend(’PLECS’,’MATLAB’)
xlabel(’Re(is_{ph}) (A)’)
ylabel(’Im(is_{ph}) (A)’)

8.7.4 Tutorial 4: Steady-State Analysis of a Simplified
Synchronous Machine Operating with Constant Load
and Variable Field Current Conditions

This tutorial is an extension of the previous tutorial. However, in this case constant
torque operation is assumed while varying the field current. Set the load torque to
0:6Nm and vary the field current in the range of 0.5–1:75A with an incremental
step of 0:25A. At each incremental step, run your simulation and record the RMS
stator current, stator reactive power, and load angle. Plot these variables versus the
field current.

The data as shown in Table 8.3 should appear from your simulation.
Build an M-file which will display the data from your simulation in the form of

three subplots: Is .if/ ;Qs .if/ ; 	m .if/. In addition, plot the stator current phasor is in
the form of a “Blondel” diagram.

Add to these plots the results as calculated via a steady-state (phasor) analysis.
Show these calculations in the same M-file. An example of the results which should
appear from this M-file is given in Figs. 8.21 and 8.22.

The stator voltage phasor us is again added to the Blondel diagram shown in
Fig. 8.22. An important observation which can be made from Fig. 8.22 is that the
reactive power can be controlled by varying the field current, without affecting
the output power of the machine. Indeed, the reactive power can be changed from
inductive Q > 0 (stator current phasor lags the voltage phasor) to capacitive Q < 0

(stator current leads the voltage phasor). An example of an M-file implementation
for this tutorial is given below:
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Fig. 8.21 PLECS/MATLAB result: Is .if/ ;Qs .if/ ; 	m .if/

Fig. 8.22 PLECS/MATLAB
result: Blondel diagram,
constant torque Te D 0:6Nm
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M-Code

%Tutorial 4, Chapter 8
%Tutorial synchronous machine-simplified model
%steady state analysis: constant torque
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close all
Lm=1; % Magnetizing inductance
ws=2*pi*50; % frequency rad/s
psim_hat=1.0; % flux vector amplitude
psim_ph=-j*psim_hat; % input flux phasor
im_ph=psim_ph/Lm; % magnetizing current
us_ph=j*ws*psim_ph; % stator voltage phasor
U_s=abs(us_ph)/sqrt(2); % RMS value phase voltage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%Data PLECS
TeM=0.6; %torque
ifM=[0.5:0.25:1.75]; % selected field current

values
%measured, from display, load angle (deg)
rhoM=[-53.13 -32.23 -23.58 -18.66 -15.47 -13.21];
%measured, from display, real power (W)
PM=188.49;
%measured, from display, reactive power (VA)
QM=[329.86 172.27 39.34 -86.83 -210.0 -331.59];
%measured, from display, RMS stator current (A)
IsM=[0.57 0.38 0.28 0.31 0.42 0.57];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%display measured results
figure (1)
subplot(3,1,1)
plot(ifM,IsM,’*’)
grid
xlabel(’(a) i_f (A)’)
ylabel(’(A)’)
subplot(3,1,2)
plot(ifM,QM,’*’)
grid
ylabel(’(VAr)’)
xlabel(’(b) i_f (A)’)
subplot(3,1,3)
plot(ifM,rhoM,’*’)
grid
ylabel(’(deg)’)
xlabel(’(c) i_f (A)’)
%%%%%%%%%%%%%%%plot Blondel diagram
rhos=atan(-QM./PM); Is_phM=IsM*sqrt(2).*(cos(rhos)+j*sin

(rhos));
ISRE=real(Is_phM); ISIM=imag(Is_phM); figure(2)
plot(ISRE,ISIM,’*’)
grid
%%%%%%%%%%%%%%%%%%Add theoretical results phasor analysis to

plots
%Constant torque T=0.5 Nm
i_f=[0.5:0.025:1.75]; % field current values

for analysis
T_e=0.6;% Torque
rho_m=-asin(T_e./(1.5*psim_hat.*i_f)); % load angle rad
rho_mD=rho_m*180/pi; % load angle in degrees
rh=rho_m-pi/2;



8.7 Tutorials 231

is_ph=im_ph-i_f.*(cos(rh)+j*sin(rh));% stator current phasor
calculation

I_s=abs(is_ph)/sqrt(2); % RMS value phase current
P=3/2*real(us_ph*conj(is_ph)); % real stator power
Q=3/2*imag(us_ph*conj(is_ph)); % reactive stator power
%%%plot results
figure(1)
subplot(3,1,1)
hold on
plot(i_f, I_s,’r’)
legend(’I_s PLECS’,’ I_s MATLAB’)
%%%%%%%%%%%%%%%%%
subplot(3,1,2)
hold on
plot(i_f, Q,’r’)
legend(’Q_s PLECS’,’Q_s MATLAB’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(3,1,3)
hold on
plot(i_f, rho_mD,’r’)
legend(’rho_m PLECS’,’rho_m MATLAB’)
%%%%%%%%%%Blondel diagram
figure(2)
hold on
isRE=real(is_ph); isIM=imag(is_ph);
figure(2)
plot(isRE,isIM,’r’)
axis equal
axis([0 1 -1.0 1.0])
legend(’PLECS’,’MATLAB’)
xlabel(’Re(is_{ph}) (A)’)
ylabel(’Im(is_{ph}) (A)’)

8.7.5 Tutorial 5: PLECS Based Model of a Permanent
Magnetic Machine Connected to a Three-Phase
Voltage Source

The aim of this tutorial is to examine the operation of a general purpose synchronous
machine model under load at a given shaft speed. A three-phase sinusoidal variable
voltage/frequency voltage source is required because it is assumed that the machine
is at standstill at the start of the simulation. Typically this type of excitation is
referred to as voltage/frequency (V/f) control as provided by a power electronic
drive shown in our book “Applied Control of Electrical Drives” [10]. Hence to start
drive operation from standstill, a frequency and supply voltage ramp function will
need to be implemented in order to achieve steady-state synchronous operation at
a given speed. The practical alternative is to accelerate the machine mechanically
(as a generator) to its required speed and then connect the stator windings to the
three-phase supply. This process, referred to as ‘synchronization’, must be done
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Table 8.4 Parameters for
PM synchronous motor for
Teknic motor [10]

Parameters Value

Stator inductance Ls 180�H

Stator resistance Rs 0.43�

PM flux amplitude  f 6.42e�3 Wb

Inertia J 0.02e�3 kg m2

Pole pairs p 4

Initial rotor speed !0m 0 rad/s

Fig. 8.23 PLECS model: synchronous machine

carefully to ensure that the phase voltages from machine and supply are in phase and
equal in magnitude before the connection is made. Synchronization is typically used
for mains connected synchronous machines, given that the frequency of the supply
is constant. For this example a three-phase eight-pole permanent magnet machine
is considered [10] with a topology shown in Fig. 8.3 (which has eight magnetic
poles) and a set of parameters as given in Table 8.4. Note that the field flux  mf [as
introduced in Eq. (8.4)] is for permanent magnet machines also equal to  f given
that there is no leakage flux component due to a rotor winding, hence L¢rfw D 0.
The generic model according to Fig. 8.9 can be directly implemented in terms of a
PLECS model as shown in Fig. 8.23. The IRTF sub-module for this example needs
to be version: IRTF_flux (see Fig. 7.5a). The reason for this is that a stator based
flux vector and rotor based current vector are to be used as IRTF inputs. For this
machine model the stator flux vector E s is also an output variable. As mentioned
above, an eight-pole machine model is assumed, which means that two additional
gain modules with gain p must be added to the model as discussed in Sect. 7.2.1 on
page 181. The machine in question was designed for operation at 6000 rpm, which
correspond to a stator frequency of 400 Hz. However such operation typically takes
place under so-called field oriented control [2, 10]. In this example a simplified
control technique is used which warrants (for reasons of stability) a lower steady-
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Fig. 8.24 PLECS model: synchronous machine connected to V/f source

state operation frequency of 100 Hz. A steady-state peak phase voltage of 6.0 V
is assumed, in order to limit the peak currents to values less than 7.1 A rated.
Both frequency and voltage must be ramped up to the steady-state value over a
time interval of 20 s (this is to ensure that the machine remains in synchronous
operation during the ramp up). A quadratic load module is to be used which
generates a load torque of 100 mNm at 1500 rpm (which is the designated steady-
state operating speed). The simulation model given in Fig. 8.24 shows the “star”
configured machine, which is connected to a variable frequency/voltage source that
meets the requirements set out above. Input to the PM_Teknic machine model is a
voltage vector Eus, which is generated by a PLECS Polar to Rectangular
module. This module has as input the voltage amplitude Ous and vector angle
	s D !s t, where the latter represent the stator frequency in rad/s. Both frequency
and amplitude are ramped up over a period of 20 s to steady-state values of 100Hz
and 6V, respectively. The Saturation modules are used to limit the output of
the ramp-up integrators to the required values. The load module shown in Fig. 8.24
as discussed in Sect. 8.7.1 is used with a quadratic load torque/speed curve. The
torque and speed reference values for this module must be set to T� D 0:1Nm
and !� D 2�ns=1500 rad/s, respectively. The output of this unit is connected to a
“mechanical” torque module which acts as the load for the machine. A Scope
module is used to observe the RMS phase current, shaft torque, and speed over the
25 s run time interval. Furthermore, an “XY” Plot module u_i is provided to show
the stator voltage and current space vectors. An example of the results which appear
after running this simulation is given in Figs. 8.25 and 8.26.

An observation of these simulation results reveals some interesting details,
namely

• The machine accelerates to the synchronous speed of 1500 rpm from standstill as
required. A linear ramp-up is apparent, which is conform the ramp rate set by the
reference frequency.

• Clearly observable is the quadratic load curve which leads to the steady-state
load torque of 0:1Nm at t D 20 s and shaft speed of 1500 rpm.

• The RMS current increases until a steady-state value of 4A is reached.
• The vector plot (b) given in Fig. 8.26 shows the voltage and current space vectors

under load conditions at the end of the simulation period. Clearly observable
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Fig. 8.26 Vector plots showing stator voltage Eus (“green”) and stator currentEis during steady-state
operation under no-load/load conditions. (a) No-load. (b) Load

is the current which has an amplitude equal to RMS current time
p
.2/. For

comparison purposes the simulation was repeated without a load, in which case
the vector plot (b) as given in Fig. 8.26 was found. A comparison between the two
vector plots shows that the current amplitude and the angle between the voltage
and current vectors is larger under no-load conditions.
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8.7.6 Tutorial 6: Steady-State Analysis of a Permanent
Magnetic Machine Connected to a Three-Phase
Voltage Source

It is instructive to examine the steady operation of the PM machine by way of a
phasor analysis according to the theory presented in Sect. 8.6.2. More specifically it
is considered important to understand the relationship between current and voltage
phasors under steady-state operation as the machine moves from no-load to load
conditions. Construct a Blondel diagram for the Teknic machine as presented in
the previous tutorial using the steady conditions discussed and present in this
diagram:

• the operating trajectory for motor operation
• a circle which represents the power output of the motor
• the maximum available power out and its value of the motor
• the operating points which correspond to no-load operation, operation with the

specified 0:1Nm load torque and the maximum load torque that can be realized
by the motor, given the steady-state excitation conditions in use.

Show your calculations in the form of an M-file. In addition, use this M-file to plot
the output power versus speed curve [see Eq. (8.25)] as shown in Fig. 8.15, for the
Teknic machine in use.

An example of the results obtained from the M-file is shown in Fig. 8.27 in the
form of a Blondel diagram. Central to this figure is the zero output power circle
with diameter Ous=Rs D 13:95, within which motor operation takes place. Aligned
with the < axis is the voltage phasor us D 6. When the machine is not synchronized
machine operation at point B takes place, which is on the zero output power curve
with is D is1. Under synchronous machine operation the operation curve is formed
by the circle with radius jis2j. Motor operation from no-load, steady-state torque
Tl D 0:1 and maximum possible torque is given by operating points F, A, and C,
respectively. The operating point A of the drive is found by calculating the phasor
is1 and radius of the circle jis2j using Eq. (8.18). In addition the radius of the output
power curve rout using Eq. (8.22), the output power under steady conditions, and the
parameters/excitation of the machine. The intersection of the output power circle
pout D 15:7with the operating circle F ! C leads to the operating point of the drive
A, which matches with the vector plot shown in Fig. 8.26, subplot (b). Under no-load
the machine operating point moves to F, which confirms the earlier observation that
the phase current amplitude and angle between the voltage/current phasors increase
under no-load conditions (see Fig. 8.26).

A further observation is that the maximum power possible for this machine is
less than the theoretical maximum power level of the machine, which for the present
excitation is equal to pmax

out D 31:4W [see Eq. (8.23)]. This may be deduced by the
fact that the maximum power operating point C does not coincide with the pmax

out
point. A similar observation may also be deduced by calculating the normalized
output power versus load characteristic for the machine using Eq. (8.25), which for
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Fig. 8.27 Blondel diagram Teknic motor with fs D 100Hz and Ous D 6V

this machine is given by Fig. 8.28. In this figure the operating points F, A, and
C shown earlier in Fig. 8.27 are also introduced, where it is noted that operating
point C in Fig. 8.28 is at pn

out D 0:89. Hence the maximum achievable power of the
machine at point C is equal to 27:9W.

The M-file given below shows the steady-state analysis linked with this problem.

M-Code

%Tutorial 8, chapter 8
%steady-state analysis
clear all
close all
p=4; % pole pair
T_m=100e-3 % shaft torque (Nm)
T_e=T_m/p % shaft torque

electrical
Ls=180e-6; % stator inductance (H)
Rs=0.43; % stator resistance
psiF=6.42e-3; % amplitude PM flux



8.7 Tutorials 237

load angle (rad)
−π −π/2 0 π/2 pi

−5

−4

−3

−2

−1

0

1

normalized output power pout
n

Point C:  pout
max = 0.89

Point A:  pout
n   = 0.5

Point F:  pout
n   = 0

Fig. 8.28 Normalized output power versus load angle: pn
out .	m/

phasor
freq=100; % frequency (Hz)
ws=2*pi*freq;
us_ph=6; %phase/peak voltage

amplitude
us_hat=abs(us_ph);
%calculate Blondel diagram data
is1_ph=us_ph/(Rs+j*ws*Ls) %eqn (8.12) part 1
is1=abs(is1_ph);
rho_isi=180/pi*angle(is1_ph);
kF=ws*psiF/us_hat %KF factor eqn

(8.19)
is2=abs(kF*us_hat/(Rs+j*ws*Ls)) %eqn (8.12) part 2

(circle)
pout=T_e*ws; %output power (w)
r_pout=sqrt(1/Rs*(us_hat*us_hat/(4*Rs)-(2/3)*pout)) % via

eqn (8.21)
pout_MAX=3*us_hat*us_hat/(8*Rs); %max power equation

(8.23)
%%% calculate power/load angle curve
rhom=[-pi:pi/20:pi];
%%%%%%%calculate load angle using Te(rho_m) eqn in theory
pN_out=pout/pout_MAX; % normalized output

power
sig=ws*Ls/Rs; % electrical time

constant machine
gamma=atan(sig);
term1=kF*sin(gamma-pi/2)-pN_out/(4*kF)*sqrt(1+sig^2);
rho_m=-gamma+pi/2+asin(term1); % load angle in use.
%calculate current phasor check
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is_ph=us_hat*(1-kF*(cos(rho_m)+j*sin(rho_m)))/(Rs+j*ws*Ls);
is_hat=abs(is_ph);
%%%%%check powfig
pn=-4*kF/sqrt(1+sig^2)*(sin(rhom+gamma-pi/2)-kF*sin

(gamma-pi/2));
%plot result
plot(rhom,pn,’b’)
grid
legend(’normalized output power’)
xlabel(’load angle (rad)’)

8.7.7 Demo Lab 1: Voltage/Frequency PM Drive

Experimental verification of theoretical models, such as those discussed in this
chapter, is important. It is for this reason that a number of demonstration (demo)
laboratory examples have been included in this book. The demonstration setup as
shown in Fig. 8.29 consists of two mechanically connected machines and a Texas
Instruments LAUNCHXL-F28069M kit as used in our book “Applied Control” [10].
A Texas Instruments LVSERVOMTR (Teknic) PM machine (top black machine
in Fig. 8.29) which is part of the 2MTR-DYNO Dual PM motor kit is shown
together with the LVACIMTR (EMsynergy) induction machine which will be used
in a forthcoming chapter. In this laboratory it is not used, hence the PM motor is
operating with a friction load (due to the bearings of both machines) only. Attached
to the Texas Instruments LAUNCHXL-F28069M module are two (6 cm 	 6 cm)
BOOSTXL-DRV8301 modules which provide the excitation for both machines if
required. Each BOOSTXL-DRV8301 houses a DRV 8301 module that contains
the MOSFET power electronics devices, voltage/current sensing, and protection
circuitry. Observation of Fig. 8.29 shows that the LAUNCHXL-F28069M setup
has a small footprint which (in this case) translates to a relative inexpensive drive
setup. Note that a 24 V DC power supply must also be acquired for this laboratory.
Furthermore, Fig. 8.29 also shows an oscilloscope and DC current probe, both of
these are “optional.” However, the presence of this type of equipment certainly
facilitates the learning experience.

For this demonstration the LVSERVOMTR (Teknic) PM machine which is the
motor used in the previous two tutorials is to be connected to the aft (furthest
away from the USB connector) BOOSTXL-DRV8301 module. A voltage/frequency
controller is used [10] which can generate a three-phase sinusoidal supply with
the required voltage amplitude and frequency. This controller, implemented in
embedded software VisSim[14], is shown in Fig. 8.30. Central to this figure is a
target interface module which controls the microcontroller (MCU) present on the
LAUNCHXL-F28069M module. A set of sliders are used to set the required 100Hz
frequency and 6V amplitude of the three-phase supply voltage for the PM motor.
Furthermore, a Plot module is present which shows the scaled (by a factor 48)
voltage un’ (“blue”) and scaled (by a factor 20) current in’ over a period of 60ms.
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Fig. 8.29 Demonstration
drive setup [10]

The following critical observations of the results shown on the scope module
(see Fig. 8.30) can be made in conjunction with the results shown earlier in
tutorials Sects. 8.7.5 and 8.7.6, namely:

• Synchronous operating speed of the drive is 1500 rpm which corresponds to a
frequency of 100Hz and a period time of 100ms, which is indeed the case.

• The drive was set to operate with voltage space vector Eus D us’ C j us“ with
amplitude jEusj D 6:0V. Shown on the plot module is the scaled real component
un’ D us’=48, which is indeed 0:125.

• The scale current component in˛ D is’=20 has an amplitude of 0:35 which implies
that the amplitude of the current space vector is equal to jEisj D 7:0A. Inspection
of the no-load XY scope simulation result (see Fig. 8.26) and corresponding
Blondel diagram (see Fig. 8.27, operating point F) suggest that the current
amplitude should be 8:0A instead of the 7:0A found experimentally. However,
as mentioned above, the drive is operating with a friction load, which accounts
for the fact that lower current is found. The operating point on the Blondel
diagram (see Fig. 8.27) will be on the “green” circle between operating points
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Fig. 8.30 VisSim[14] based V/f drive demonstration controller [10]

F and A, where the exact position corresponds to a phase amplitude of 7:0A.
Some trigonometric analysis shows that the angle between the voltage (located
on the real axis) and current phasors is in that case equal to 53ı.

• The expected phase angle between the scales voltage and current waveforms
should as mentioned in the previous bullet be 53ı, which with the current
operating conditions corresponds to a time delay of 14:7ms. Observation of the
result shows that this phase lag is indeed present.

An overall conclusion is that the results derived with the DEMO lab confirm
the theoretical and simulated results shown. Further experimental results could be
obtained by, for example, using the second BOOST converter, which could be used
to implement a field oriented induction drive [2, 10] that acts as a dynamometer
for the PM machine. In which case behavior of the machine under load could also
be verified. Note however that drive operation under voltage/frequency control is
relatively inefficient hence the reader needs to be aware of thermal constraints, i.e.,
rapid heating up of the PM machine under test.



Chapter 9
Voltage Source Connected Asynchronous
(Induction) Machines

9.1 Introduction

The induction machine is by far the most commonly used machine around the globe.
Induction machines consume approximately one-third of the energy used in indus-
trialized countries. Consequently this type of machine has received considerable
attention in terms of its design and application.

The induction machine is one of the older electric machines with its invention
being attributed to Tesla, then working for Westinghouse, in 1888. However, as
with most great inventions there were many contributors to the development of
this machine. The fundamental operation principle of this machine is based on the
magnetic induction principle discovered by Faraday in 1831.

In this chapter we will look at this type of machine in some detail. As with the
synchronous machine a simple symbolic and generic diagram will be discussed,
which in turn is followed by a more extensive dynamic model of this type of
machine. Finally, a steady-state analysis will be discussed where the role of the
machine parameters will become apparent.

9.2 Machine Configuration

The stator with its three-phase winding as given in Fig. 8.1 on page 202 is used
to develop a rotating magnetic field in exactly the same way as realized with the
synchronous machine.

The rotor of an induction machine usually consists of a laminated steel rotor
stack as shown in Fig. 9.1. The metal shaft is through the center of this stack. The
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Fig. 9.1 Cage rotor for asynchronous machine

rotor stack is provided with slots around its circumference which house the rotor
bars of the so-called squirrel cage. This cage, which consists of rotor bars attached
to end rings, is also shown (without the rotor stack) in Fig. 9.1. The cage can be
copper or die-cast in aluminum [5]. A recent development in this context has been
the introduction of a copper coating on the rotor designed to replace the traditional
cage concept. In some cases aluminum fan blades are attached to the end rings to
serve as a fan for cooling the rotor. The cage acts as a three-phase sinusoidally
distributed short-circuited winding which has a finite rotor resistance [5].

Some induction machines have a wound rotor provided with a three-phase
winding where access to the three phases is provided via a brushes/sliprings (similar
to the type used for the synchronous machine). This type of machine known as a
“slipring” machine allows us to influence the rotor circuit, e.g., to alter the rotor
resistance (and therefore the operating characteristics) by adding external rotor
resistance.

The squirrel cage type rotor is very popular because of its robustness and is
widely used in a range of industrial applications.

9.3 Operating Principles

The principles are again discussed with the aid of Sect. 7.3 on page 187. This type
of machine has no rotor excitation hence the current source shown in Fig. 7.11 is
removed and the rotor is connected to a resistance Rr. This resistance is usually
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the stator referred resistance of the rotor winding itself, as will become apparent in
Sect. 9.5. The rotor current is in this case determined by the induced voltage Eexy

m and
the rotor resistance Rr, which with the aid of Eq. (7.20) on page 188 leads to

Eixy D j .!s � !m/ E xy
m

Rr
(9.1)

The corresponding torque produced by this machine is found using Eqs. (7.13) and
(7.17) together with Eq. (9.1), which gives

Te D 3 O 2m
2Rr

.!s � !m/ (9.2)

In which O m is the magnitude or peak value of the flux vector. The term
!r D .!s � !m/ is referred to as the “slip” rotational frequency. The term
asynchronous follows from the operating condition that torque can only be produced
when the rotor speed is not synchronous with the rotating field. This condition is
readily observed from Eqs. (9.1) and (9.2) which states that there is no rotor current
and hence no torque in case !r D 0. When the machine is operating under no-load
conditions, the shaft speed will in the ideal case be equal to !s. When a load torque
is applied the machine speed reduces and the voltage jEexy

m j increases, because the
slip rotational frequency !r increases. A higher voltage jEexy

m j leads to a higher rotor
current component itorque (see Fig. 9.2), which acts together with the flux vector to
produce a torque to balance the load torque.

Additional insight into the operation principles of this machine is obtained by
making use of the space vector diagram shown in Fig. 9.2. The diagram stems from
the generalized diagram (see Fig. 7.12). The generalized diagram has been redrawn
to correspond to the induction machine operating under motoring conditions, i.e.,
the rotational speed 0 < !m < !s. Shown in Fig. 9.2 is the rotating flux vector
E m which is responsible for the (in the rotor) induced voltage, represented by the

Fig. 9.2 Space vector
diagram for asynchronous
machine
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vector Eexy
m . Observe that both vectors Eexy

m and Ei rotate synchronous with the flux
vector. Hence the current and flux vector shown in this example are orthogonal and
stationary with respect to each other, which is the optimum situation in terms of
torque production. It is noted that the current vector Eixy rotates with respect to the
rotor at a speed !r. The rotor rotates at speed !m, hence the current vector Ei has an
angular frequency (with respect to the stator) of !s. When a higher load torque is
applied the machine slows down which means that the induced voltage in the rotor
increases, which in turn leads to a higher rotor current and larger torque to match
the new load torque.

9.4 Zero Leakage Inductance Model Without
Magnetizing Inductance

In this section a simplified model is considered where the leakage inductances L¢s

and L¢r shown in Fig. 7.14 are set to zero which implies that the stator, magnetizing
and rotor flux vectors will be equal, hence E s D E m D E r. Furthermore the
magnetizing inductance Lm and stator resistance Rs will also be ignored which
implies that the model according to Fig. 7.14 may be reduced to the configuration
shown in Fig. 9.3. A rotating magnetizing flux vector E m D O m ej!st is assumed as
input for our (two pole) model. This rotating field is established as a result of the
machine being connected to a three-phase voltage supply with angular frequency!s

(rad/s). The equation set which corresponds with Fig. 9.3 is of the form

Eixy
s D 1

Rr

d E xy
m

dt
(9.3a)

Te � Tl D J
d!m

dt
(9.3b)

!m D d�

dt
(9.3c)

Included (for completeness) in this equation set is the relationship between shaft
torque Te, load torque Tl, and rotor acceleration d!m=dt.

Fig. 9.3 Voltage source
connected asynchronous
machine, simplified version
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Fig. 9.4 Generic representation of simplified asynchronous machine model corresponding to
Fig. 9.3 with mechanical load

9.4.1 Generic Model of a Simplified Asynchronous Machine

The generic representation of the asynchronous machine in its present form is given
in Fig. 9.4. The IRTF and load torque sub-modules are identical to those used for
the synchronous machine (see Fig. 8.6). This means that the IRTF model calculates
the torque on the basis of the flux vector provided from the stator side and the
stator current vector which has been created on the rotor side, i.e., use is made
of an “IRTF-flux” module. The model according to Fig. 9.4 uses a differentiator to
generate the induced voltage vector from the flux vector. From a didactic perspective
this is useful as it shows the mechanism of torque production and the formation of
the stator current vector. However, in simulations the use of a differentiator is not
preferred given that such models are prone to numerical errors. It will be shown that
we can in most cases avoid the use of differentiators. In the tutorial at the end of this
chapter a steady-state type analysis will be considered which is based on Fig. 9.4.
In that case the differentiator function is created with an alternative “differentiator”
module (see Fig. 6.8).

9.5 Generalized Machine Model

The symbolic and generic model of the simplified machine as discussed in the
previous section provides a basic understanding. Most importantly the model shows
the significance of the rotor resistance Rr. A more general model of the machine can
be found by taking into consideration that the configuration shown in Fig. 9.5 is in
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Fig. 9.5 Universal two-phase IRTF model, adapted for asynchronous machine use

Fig. 9.6 Stator leakage inductance based asynchronous (induction) machine model

fact a special case, namely jEuxy
rwj D 0 (short-circuited winding) of the universal

model given in Fig. 7.14. The resistance Rrw shown in Fig. 9.5 represents the
resistance of the squirrel cage rotor or three-phase winding for a slip-ring machine.
The term “universal” underlines the fact that the transformation variable a can be
chosen in such a way that the model according to Fig. 9.5 can be reduced to a two
inductance configuration by setting either L¢S or L¢R to zero. A two inductance
model is simpler to model and avoids the practical problem of determining values
for the individual parameters L¢S and L¢R of a machine. For machine modeling
purposes a universal model with variable transformation factor a is not required
(other then for didactic reasons as discussed in Sect. 7.4.1). The “universal” model
is, however, of prime importance for the control of induction machines [2]. For
machines which are connected to a voltage source a stator based leakage inductance
model is often used. The term “stator based” refers to the fact that the total leakage
inductance of the machine is now represented to be a single leakage inductance
which is located to the “left” of the magnetizing inductance LM of the model. This
implies that the leakage inductance L¢R is set to zero by choosing the transformation
factor equal to a D Lm=Lr [see Eq. (7.24)]. Note that this transformation leads to the
condition E M D E R which is why this type of model is also known as a rotor
flux based IRTF model. With this choice of transformation factor the universal
model given in Fig. 9.5 reduces to the configuration shown in Fig. 9.6. Note that
the magnetizing inductance has been arbitrarily relocated to the rotor side of the
IRTF. The rotor parameters EiR and E R can be expressed in terms of the actual rotor
variables using Eqs. (7.27) and (7.28) with kr D Lm ns=Lr nr which gives



9.5 Generalized Machine Model 247

EiR D Lrnr

Lmns

Eirw (9.4a)

E R D Lmns

Lrnr

E rw (9.4b)

RR D
�

Lmns

Lrnr

�2
Rrw (9.4c)

Note that the turns ratio ns=nr is not required when modeling squirrel cage induction
machines. The reason being that the parameters Rs; LM; L¢S, and RR are normally
found via a set of stator based measurements. Expression (9.4) becomes relevant for
modeling, for example, slip-ring machines with rotor based power converters. The
equation set which corresponds to Fig. 9.6 is of the form

Eus D RsEis C d E s

dt
(9.5a)

E s D E R C L¢S Eis (9.5b)

E xy
R

LM
D Eixy

s �Eixy
R (9.5c)

0 D �Eixy
R RR C d E xy

R

dt
dt (9.5d)

The torque for this two-pole machine may be written as Te D 3=2=
n E �

R
EiR

o
[see

Eq. (7.29h)] which with the aid of Eq. (9.5c) can also be written as

Te D 3

2
=

n E �
R
Eis

o
(9.6)

9.5.1 Generic Induction Machine Model

The development of a generic dynamic model as shown in Fig. 9.7a on page 248 is
directly based on Eq. (9.5). This generic diagram builds directly on the simplified
model given in Fig. 9.4. The model shown in Fig. 9.7a also contains a differentiator
model which is undesirable for dynamic simulations. An improved representation
of the generic model according to Fig. 9.7a is possible which avoids the use
of a numerically undesirable differentiator. This model as shown in Fig. 9.7b is
preferable for dynamic simulation of induction machines for reasons mentioned
above. However the model becomes untenable when considering a hypothetical
machine without leakage inductance or infinite rotor resistance.
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a

b

Fig. 9.7 Generic asynchronous (induction) machine dynamic models which can be used to repre-
sent the symbolic model shown in Fig. 9.6. (a) Differentiator based dynamic model. (b) Integrator
based dynamic model

9.6 Steady-State Analysis

The steady-state characteristics of the asynchronous machine are studied with the
aid of Fig. 9.6. The stator is again connected to a three-phase sinusoidal supply
which is represented by the space vector Eus D Ous ej!st, hence us D Ous. The basic
characteristics of the machine relate to the stator current end point locus of the
machine in phasor form (when varying the shaft speed) and the torque speed curve.
To arrive at a phasor type representation the space vector equations must be rewritten
in terms of phasors. For example, the rotor flux on the stator and rotor side of the
IRTF are of the form

E R D  
R

ej!st (9.7a)
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E xy
R D  

R
ej.!st��/ (9.7b)

where � is equal to !mt (constant speed). Use of Eqs. (9.5) and (9.7) leads to the
following phasor based equation set for the machine:

us � eR D isRs C j!sL¢S is (9.8a)

eR D j!s R
(9.8b)

exy
R D j .!s � !m/  R

(9.8c)

iR D exy
R

RR
(9.8d)

 
R

D LM
�
is � iR

�
(9.8e)

Elimination of the flux phasor from Eqs. (9.8b) and (9.8c) leads to an expression for
the airgap EMF on the stator and rotor side of the IRTF, namely

exy
R D eR s (9.9)

where “s” is known as the slip of the machine and is (for a two-pole machine)
given by

s D 1 � !m

!s
(9.10)

The slip according to Eq. (9.10) is simply the ratio between the rotor rotational
frequency !r D !s � !m (as apparent on the rotor side of the IRTF) and the stator
rotational frequency !s. Three important slip values are introduced, namely

• Zero slip: s D 0, which corresponds to synchronous speed operation, i.e.,
!m D !s.

• Unity slip: s D 1, which corresponds to a locked rotor, i.e., !m D 0.
• Infinite slip: s D ˙1, which according to Eq. (9.10) corresponds to infinite shaft

speed or zero rotational stator frequency (DC excitation). This slip value is for
!s ¤ 0 not practically achievable but this operating point is of relevance, as will
become apparent at a later stage.

The rotor current phasor may be conveniently rewritten in terms of the slip
parameter by making use of Eqs. (9.8d) and (9.9) which gives

iR D eR� RR
s

� (9.11)

The rotor current is according to Eq. (9.11) determined by the ratio of the airgap
EMF eR and a slip dependent resistance

� RR
s

�
. At slip zero its value will be 1,

which corresponds to zero current as is expected at synchronous speed, given that
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the rotor EMF on the rotor side exy
R will be zero. At standstill (s D 1) its value is

simply RR.
The development of the basic machine characteristics in the form of the stator

current phasor as function of slip and the torque/slip curve is presented on a step
by step basis. This implies that gradually more elements of the model in Fig. 9.6
are introduced in order to determine their impact on the machine characteristics.
The key elements which affect the operation of the machine in steady-state are
the rotor resistance RR and the leakage inductance L¢S. We will initially consider
the machine with zero stator resistance, infinite magnetizing inductance, and firstly
without leakage inductance.

9.6.1 Steady-State Analysis with Zero Leakage Inductance
and Zero Stator Resistance

A model with zero leakage inductance and zero stator resistance can be represented
in Fig. 9.7a, assuming L¢S D 0 and Rs D 0. Observation of Fig. 9.7a and phasor
equation set (9.8), (9.9), and (9.11) shows that the stator current phasor and EMF
phasor are given as is D iR and eR D Ous, respectively. Furthermore, the stator current
phasor as function of the slip may be written as

is D Ous�
RR
s

� (9.12)

An observation of Eq. (9.12) shows that the phasor current can be calculated using
the equivalent circuit shown in Fig. 9.8. The steady-state torque may be found using
Eq. (9.6) where the space vector variables are replaced by the equivalent phasor
quantities. This implies that the torque is of the form

Te D 3

2
=

n
 �

R
is

o
(9.13)

Use of Eqs. (9.12) and (9.8b) with (9.13) leads to the following torque slip
expression for the machine in its current simplified form

Fig. 9.8 Equivalent circuit of
an asynchronous machine
with zero stator impedance
and voltage source in
steady-state
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a b

Fig. 9.9 Steady-state characteristics of voltage source connected asynchronous machine with
Rs D 0, L¢S D 0, and LM D 1, according to Fig. 9.8. (a) Stator current phasor. (b) Torque
versus speed

Te D 3 Ou2s s

2 !sRR
(9.14)

Note that this analysis makes use of the circuit condition eR D Ous (see Eq. (9.8a)
with Rs D 0; L¢S D 0). A graphic illustration of the current space phasor and
torque versus speed characteristic is given in Fig. 9.9. The current phasor will in
this case be either in phase or � rad out of phase, with respect to the supply phasor
us D Ous. The “in phase” case will occur under motoring conditions, i.e., Te and !m

have the same polarity. It is noted that a torque sign change will always occur at
s D 0, while a shaft speed reversal will take place at s D 1. This means that motor
operation is confined to the slip range 0 � s � 1. Note that generation (in, for
example, wind turbine applications) starts when the slip becomes negative.

Shown in Fig. 9.9a are three current phasor end points which correspond to the
slip conditions s D �1, 0, 1. The torque versus speed curve as given in Fig. 9.9b
is according to Eq. (9.14) a linear function of which the gradient is determined
by (among others) the rotor resistance RR. The effect of doubling this resistance
value on the torque speed curve is also shown in Fig. 9.9b by way of a “green” line.
Increasing the rotor resistance leads to a torque/speed curve which is less “stiff,” i.e.,
as a result of a certain mechanical load variation, the shaft speed will vary more.

9.6.2 Steady-State Analysis with Leakage Inductance

The simplified RR-based model (Fig. 9.8) is now expanded by introducing the
leakage inductance parameter L¢S. Under these revised circumstances the current
phasor can according to Eq. (9.8a) with Rs D 0, be written as

us � eR D j!sL¢S is (9.15)
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Fig. 9.10 Equivalent circuit
of an asynchronous machine
(Rs D 0, L¢S > 0) and
voltage source in steady-state

The stator current is also defined in Eq. (9.11) given that iR D is. Substitution of this
expression into Eq. (9.15) gives

is D Ous
RR
s C j!sL¢S

(9.16)

The equivalent circuit which corresponds with Eq. (9.16) is shown in Fig. 9.10. The
steady-state torque is found using Eq. (9.13) which requires access to the stator
current phasor is as defined in Eq. (9.16). The rotor flux 

R
is found using Eq. (9.8a)

with Rs D 0 and Eq. (9.8b) which gives

 
R

D Ous

j!s
� L¢S is (9.17)

Subsequent evaluation of Eqs. (9.16) and (9.17) with Eq. (9.13) gives after some
manipulation the following expression for the steady-state torque:

Te D 3 Ou2s
2 !s

RR
s� RR

s

�2 C .!sL¢S/
2

(9.18)

In order to gain an understanding of the torque versus slip function it is helpful to
introduce a normalized form of Eq. (9.18), namely

Tn
e D 2

s
Os

1C �
s
Os
�2 (9.19)

The normalization introduced is of the form Tn
e D Te=OTe where OTe D 3 Ou2s=.4!2s L¢S/.

Furthermore, a parameter Os D RR=!sL¢S is introduced which is known as the pull-out
slip value. Note that the pull-out slip Os is not a peak value of the slip s itself, rather
it refers to the slip values s D ˙Os, where the highest attainable torque or the so-
called pull-out torque values of the machine are reached for the model discussed
here. It is helpful to recall that the slip is defined as s D !r=!s, which means that
the highest attainable torque and corresponding pull-out slip value is reached when
the rotor angular frequency !r D RR=L¢S. The extremes of Eq. (9.19) as function of
the slip s may be found by differentiation of said expression with respect to the
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slip and zeroing the result. Alternatively, the normalized torque/slip function can be
examined for two slip regions as indicated in Eq. (9.20)

for jsj � Os Tn
e ' 2

s

Os (9.20a)

for jsj 
 Os Tn
e ' 2

Os
s

(9.20b)

The intersection of the two torque/slip functions indicated in Eq. (9.20) leads to the
following two slip values, which correspond to a maximum and minimum torque
value of OTe and � OTe, respectively.

s D ˙Os (9.21)

A normalization of the stator current phasor [Eq. (9.16)] is also helpful in terms
of understanding the slip dependency. The normalized stator current phasor ins D
is=.Ous=!sL¢S/ can with the aid of Eq. (9.16) and Os D RR=!sL¢S written

ins D
s
Os

1C j s
Os

(9.22)

A graphical representation of the normalized stator current locus versus slip is given
in Fig. 9.11a with Os D 1=2. It should be kept in mind that the selected pull-out slip
value of 0.5 was chosen to clearly show the low and high slip regions given in
Eq. (9.20). In reality the pull-out slip values of squirrel cage based machines are
considerably smaller. The stator current locus is circular as determined by Heyland
in 1894, hence these diagrams are commonly referred to as “Heyland diagrams.”
The process of verifying that the locus is a circle may be initiated by introducing the
variables x D <fins g, y D =fins g in Eq. (9.22) which leads to

x C jy D �

1C j�
(9.23)

with � D s=Os. Equating the real and imaginary terms in Eq. (9.23) gives

x D � .y C 1/ (9.24a)

0 D y C �x (9.24b)

Eliminating the slip dependent term � in Eq. (9.24) gives the following expression:

x2 C
�

y C 1

2

�2
D

�
1

2

�2
(9.25)

which indeed represents a circle with its origin at .0; �1=2/ and radius 1=2.
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a b

Fig. 9.11 Steady-state characteristics of voltage source connected asynchronous machine with
Rs D 0, L¢S > 0, and LM D 1, according to Fig. 9.10. (a) Normalized stator current phasor.
(b) Torque versus speed

A graphical representation of the normalized torque versus shaft speed is given
in Fig. 9.11b for the slip range �1 � s � 1 and Os D 1=2 (“blue” curve). A second
torque/slip curve is also shown (“green” curve) which corresponds to a machine
which has a rotor resistance value that is 1:5 times larger than the first. Some
interesting observations may be drawn from the basic characteristics according to
Fig. 9.11, namely

• The introduction of leakage inductance has a significant impact on the character-
istics of the machine as may be concluded by comparing Fig. 9.11 with Fig. 9.9.

• Variations of the rotor resistance RR affect among others the value of the pull-out
slip value Os and the gradient of the torque slip curve in the low slip region. The
peak torque OTe is not affected by these changes. For a “slipring” type induction
machine it is possible to vary the rotor resistance by prudently adding external
resistance to improve the starting torque.

• The peak torque value is dependent on the ratio Ous=!s. If this ratio is kept constant
the torque/shaft speed curves may be moved horizontally along the horizontal
axis by changing !s without affecting the peak torque value. Such drives are
known as “V/f” drives. Note that the pull-out slip value is inversely proportional
to !s, which means that the peak (motoring) torque is found at an !m value
which is RR=L¢S (rad/s) lower than the synchronous value !m D !s. In practical
V/f drives, provision needs to be made to compensate for the change in  s due to
the voltage drop across the stator resistance. In the present model configuration
the stator resistance is set to zero.

• The Heyland diagram shows motor and generator regions. In addition it shows
how the phase angle between voltage phasor us D Ous and stator current phasor
changes as function of the slip. For low slip operation the power factor (for the
machine in its present form) approaches unity.
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The machine model with leakage inductance and rotor resistance represents the
basic model in terms of showing the fundamental operating principles of the
machine.

9.6.3 Steady-State Analysis with Leakage Inductance
and Stator Resistance

The machine model with leakage inductance and rotor resistance is now extended
to include stator resistance. The terminal equation according to (9.15) must be
revised and is now defined by expression (9.8a). Use of Eq. (9.8a) and iR D is with
Eq. (9.11) gives

is D Ous�
Rs C RR

s

� C j!sL¢S
(9.26)

The equivalent circuit which corresponds with Eq. (9.26) is shown in Fig. 9.12.
A normalization of the stator current according to in

s D is=.Ous=!sL¢S/ as introduced
to obtain Eq. (9.22) is also applied to Eq. (9.26) which gives, with pull-out slip Os as
defined on page 252

ins D
s
Os�

1C r s
Os
� C j s

Os
(9.27)

where the parameter r is introduced which is defined according to Eq. (9.28),
namely

r D Rs

RR
Os (9.28)

Note that Eq. (9.27) reverts back to Eq. (9.22) in case the stator resistance is set
to zero. The Heyland diagram for the revised machine is again a circle as may be
deduced by evaluation of Eq. (9.27) and introducing the variables x D <fins g, y D
=fins g as discussed for the previous case.

Fig. 9.12 Equivalent circuit
of an asynchronous machine
with both Rs and L¢S, voltage
source, steady-state
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a b

Fig. 9.13 Steady-state characteristics of voltage source connected asynchronous machine with
Rs > 0 (in blue), L¢S > 0, and LM D 1, according to Fig. 9.12. (a) Normalized stator current
phasor. (b) Torque versus speed

In this case the circle in the complex plane is again centered at .0; �1=2/ and has
again a radius of 1=2 as may be observed from Fig. 9.13a. The circle has not changed
in size or position relative to the origin of the complex plane when compared to
the previous case (see Fig. 9.11a). The various operating regions on the circle have
changed. For example, the motor operating region 0 � s � 1 is now confined to a
smaller section of the circle. In other words the non-linear slip scale along the circle
has changed as a result of adding the stator resistance to the model. Furthermore,
the infinite slip point has moved into the fourth quadrant. This means that the torque
slip curve will no longer be symmetrical with respect to the zero slip point as will
become apparent shortly.

The torque versus slip equation of the revised machine is calculated with the
aid of Eqs. (9.13), (9.8b), and (9.11) with iR D is. Note that this condition is still
applicable, given that the magnetizing inductance LM is still assumed to be infinite
at this stage. This means that the torque can be written as Te D 3 jisj2=2!s RR=s which
after substitution of Eq. (9.26) gives

Te D 3 Ou2s
2 !s

RR
s�

Rs C RR
s

�2 C .!sL¢S/
2

(9.29)

Normalization of Eq. (9.29) as undertaken for the previous case [Eq. (9.19)] leads to

Tn
e D 2

s
Os�

1C r s
Os
�2 C �

s
Os
�2 (9.30)
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A graphical representation of Eq. (9.30) as function of shaft speed !m with Rs=RR D 1

(which to r D 1=2) with Os D 1=2 as used previously is given in Fig. 9.13b. The torque
characteristic shown in Fig. 9.13b has as may be expected a maximum and minimum
value which correspond to the slip values

s D ˙ Osp
1C r2

(9.31)

It is emphasized that the slip values which correspond to the peak torque values
[as given in Eq. (9.31)] are in this new model no longer equal to the pull-out
slip values Os. The new pull-out slip values according to Eq. (9.31) are found by
differentiation of Eq. (9.30) with respect to the slip and setting the result to zero. The
peak torque values which correspond to the pull-out slip values given in Eq. (9.31)
are equal to

Tn
eC D 1p

1C r2 C r
(9.32a)

Tn
e� D �1p

1C r2 � r
(9.32b)

Equation (9.32) confirms the earlier statement that the two peak torque values
indicated in Fig. 9.13b will be unequal when the value of the stator resistance is
non-zero.

9.6.4 Steady-State Analysis with Leakage Inductance, Stator
Resistance, and Finite Magnetizing Inductance

The development of the asynchronous machine model is completed by adding the
magnetizing inductance LM. The Heyland diagram for this revised model is found
by making use of Eq. (9.8) which leads to the following expression for the phasor
based stator current:

is D Ous
�

RR
s C j!sLM

�
j!sLM

RR
s C .Rs C j!sL¢S/

�
RR
s C j!sLM

� (9.33)

The equivalent circuit which corresponds with Eq. (9.33) is shown in Fig. 9.14.
A normalization of expression (9.33) is again introduced which is again of the
form ins D is=.Ous=!sL¢S/. Furthermore, the parameters Os D RR=!sL¢S, r D Rs=RR Os again
introduced together with a new parameter l D L¢S=LM. Use of these parameters with
Eq. (9.33) leads to

ins D
s
Os � jl�

1C r s
Os C l

� C j
�

s
Os � lr

� (9.34)
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Fig. 9.14 Equivalent circuit
of an asynchronous machine
with L¢S, Rs, and LM, voltage
source, steady-state version
of dynamic model in Fig. 9.6

An indication of its validity can be obtained by setting l D 0 which corresponds
to the case LM ! 1, in which case Eq. (9.34) is reduced to expression (9.27).
A similar exercise can be undertaken with Eq. (9.34) for the case r D 0, l D 0,
which corresponds to infinite magnetizing inductance and zero stator resistance. The
Heyland diagram is found by introducing the variables x D < ˚

in
s

�
, y D = ˚

ins
�

in
Eq. (9.34) and eliminating the slip dependency. Subsequent mathematical handling
along the lines indicated in the previous section shows that the Heyland diagram is a
circle with midpoint coordinates .xc; yc/ and radius rc which are defined as follows:

xc D r l

1C l .1C r2/

yc D �
�
1
2

C l
�

1C l .1C r2/

rc D
1
2

1C l .1C r2/

An example of the Heyland diagram for the complete machine model is shown
in Fig. 9.15a for the cases Os D 1=2, r D 1=2, and l D 1=5. The parameters values Os
and r are identical to the values introduced previously for the sake of comparison.
The value l D 1=5 is chosen considerably higher than those normally encountered
(typical values for l would be in the order of 0:05 or smaller) in machines in order
to demonstrate the impact on the diagram when compared to the cases r D 0, l D 0

and r > 0, l D 0 which are also shown in Fig. 9.15a for comparative purposes.
Also indicated in Fig. 9.15a are the normalized stator current phasor end points

which correspond with the three key slip points: s D 0, s D 1, s D ˙1
as calculated using Eq. (9.34) with the present choice of parameters Os, r, and l.
A comparison between the two Heyland circles shows that the introduction of
magnetizing inductance reduces the radius of the circle and also causes its midpoint
to move to the right and downwards. At synchronous speed (s D 0) the stator current
will in this case no longer be zero but is instead determined by the stator resistance
Rs and the sum (which is the stator reactance !sLs) of the magnetizing reactance
!sLM and leakage reactance !sL¢S, i.e., under these circumstances RR=s ! 1.
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a b

Fig. 9.15 Steady-state characteristics of voltage source connected asynchronous machine, com-
plete model (in blue) according to Fig. 9.14. (a) Normalized stator current phasor. (b) Torque versus
speed

The task of finding the torque versus shaft speed characteristic is initiated by
making use of Eqs. (9.11) and (9.8) which leads to an expression for the flux phasor
 

R
, namely

 
R

D is
RR
s LM

RR
s C j!sLM

(9.35)

Use of Eq. (9.13) with expression (9.35) gives the following steady-state torque
equation:

Te D 3

2

ˇ̌
is

ˇ̌2 !sL2M
RR
s� RR

s

�2 C .!sLM/
2

(9.36)

Substitution of the stator current expression (9.33) into Eq. (9.36) gives after
some considerable mathematical manipulation the following normalized torque
expression:

Tn
e D 2

s
Os�

1C r s
Os C l

�2 C �
s
Os � l r

�2 (9.37)

The normalization introduced is identical to that used in the previous cases, namely
Tn

e D Te=OTe, with OTe D 3 Ou2s=4!2s S. Furthermore, the parameters Os; r, and l, as defined for
Eq. (9.34) are also introduced in Eq. (9.37). The torque versus speed characteristic
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as shown (“blue” curve) in Fig. 9.15b has a maximum and minimum value which
correspond to the slip values

s D ˙Os
s
.l r/2 C .1C l/2

1C r2
(9.38)

The peak torque values which correspond to the pull-out slip values given in
Eq. (9.38) are of the form

Tn
eC D 1r�

.lr/2 C .1C l/2
�
.1C r2/C r

(9.39a)

Tn
e� D �1r�

.lr/2 C .1C l/2
�
.1C r2/� r

(9.39b)

Two additional torque speed curves have been added to Fig. 9.15b which correspond
to the cases r D 0, l D 0, and r > 0, l D 0. It is noted that in most practical cases the
influence of magnetizing inductance on the Heyland diagram and torque speed curve
is marginal, given the relatively small value of l, i.e., the magnetizing inductance LM

is much larger than the leakage inductance L¢S.

9.7 Tutorials

9.7.1 Tutorial 1: Grid Connected Simplified
Induction Machine

This tutorial considers a three-phase IRTF based asynchronous (induction) machine
in its simplified form, i.e., no stator resistance Rs, magnetizing inductance LM, or
leakage inductance L¢S. The aim is to build a PLECS model of this machine, which
is in accordance with the generic model given in Fig. 9.7a (without LM, Rs, or L¢S).
An implementation of the PLECS model in its present form is given in Fig. 9.16.

The model in its present form is not designed for dynamic analysis, given that
the so-called alternative differentiator module (see Fig. 6.8) has been introduced in
the simulation model which are only usable for quasi-steady-state conditions. The
aim of this example is to examine the steady-state characteristics, hence the use of
numerical display modules as well as RMS and real power modules introduced in
earlier tutorials. The machine in question has an inertia of J D 0:001 kg m2.

A rotating stator flux vector E s with angular frequency !s D 100� rad/s
and amplitude O s D 1:0Wb is assumed as an input to this model. This means
that the integrator with output E s (see Fig. 9.7a) can be omitted in this tutorial.
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Fig. 9.16 PLECS model of (simplified) asynchronous machine

The generation of the vector E s in PLECS is described in Sect. 8.7.1. The machine
is connected to a mechanical load with a quadratic torque speed curve, where we
are able to vary the load torque (so we can achieve motor operation) value. Add a
XY Plot module to observe the stator voltage and stator current vectors at the end
of the simulation.

Under “simulation parameters” set the simulation run time to 0:1 s and observe
the results by way of the values on the display modules.

The operation of the model is to be examined for two values of the rotor
resistance, namely RR D 5� and RR D 10�. Set the reference speed !ref D
100� rad/s in the load torque module. Change the load torque T ref (in the load torque
module) in five steps in the range 0–30Nm and record (after doing a simulation run
for each step) the data from the display modules. Note that the machine shaft speed
will be at that point where the load torque speed curve Tl .!m/ and machine torque
speed curve Te .!m/ intersect. An example of the results which should appear on
the displays is given in Table 9.1. The load torque reference value T ref used with
the load torque sub-module is also given in Table 9.1. Note that RMS stator voltage
reading will remain constant at Us D 222:14V. Rerun your simulation for the case
where the rotor resistance is doubled, i.e., RR D 10�. For this example change
the load torque T ref (in the load torque module) in five steps in the range 0–50Nm.
The results which should appear on the display are given in Table 9.2. An example
of the vector plots which should appear on the XY Plot module u_i at the end of
the simulation is given in Fig. 9.24. The results given represent the attenuated stator
voltage vector and current vector at a shaft speed of 2200 rpm for rotor resistance
values of 5� (subplot (a)) and 10� (subplot (b)), respectively. Clearly noticeable
from these vectors is that the voltage and current vectors are aligned, hence the stator
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Table 9.1 Simulation results asynchronous machine RR D 5�: load!no-
load

Tref (Nm) nm (rpm) Te (Nm) Is (A) Ps (W) ER (V) fr (Hz)

30 2392.60 19.08 8.99 5994.74 44.97 10.12

20 2542.67 14.36 6.77 4513.57 33.86 7.62

10 2735.36 8.31 3.91 2611.79 19.59 4.41

5 2855.77 4.53 2.13 1423.39 10.67 2.40

0 3000.00 0 0 0 0 0

Table 9.2 Simulation results asynchronous machine RR D 10�: load!
no-load

Tref (Nm) nm (rpm) Te (Nm) Is (A) Ps (W) ER (V) fr (Hz)

50 1823.70 18.47 8.71 5804.78 87.10 19.60

30 2081.01 14.43 6.80 4535.01 68.04 15.31

20 2270.61 11.45 5.40 3599.39 54.00 12.15

10 2542.67 7.18 3.38 2256.78 33.86 7.62

5 2735.36 4.15 1.95 1305.89 19.59 4.41

0 3000.00 0 0 0 0 0
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Fig. 9.17 Vector plot: scaled stator voltage vector Eus=10 (“green”) and stator current vector Eis

(“red”) for shaft speed nm D 2200 rpm. (a) RR D 10�, Te D 25Nm. (b) RR D 5�,
Te D 12:5Nm

reactive power is zero. Consequently, the real input power to the machine is the sum
of the shaft power Pm D Tm: 2���nm=60 and dissipated power Pr D 3: I2R RR, where
IR is the RMS current in the rotor (which in this case is equal to Is). Furthermore,
recall that the stator flux lags the stator vector by 90ı, hence the stator current is
perpendicular to the flux, which is the most favorable orientation for efficient torque
production. Note that doubling the rotor resistance halves the stator current (as may
be observed from Fig. 9.17) and consequently the torque.
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Fig. 9.18 PLECS/MATLAB result: Te .nm/, Is .nm/, Ps .nm/, RR D 5; 10�

Build an M-file which will display the data from your simulations in the form
of three subplots Te .nm/, Is .nm/, Ps .nm/. In addition, undertake a phasor analysis
of the drive and add these results to the PLECS generated data. An example of
the results which should appear is given in Fig. 9.18. Also shown in Fig. 9.18
(continuous lines) are the results obtained via a steady analysis of the model in
its current form. The M-file which contains the steady-state analysis and required
code to plots the results obtained from the PLECS model is as follows:

M-Code

%tutorial 1, chapter 9
close all
clear all
%steady-state analysis
psis_ph=-j*1.0; % stator flux

vector
ws=100*pi;%stator frequency rad/s
us_ph=j*ws*psis_ph; % voltage phasor

(assumed real)
Us=abs(us_ph)/sqrt(2); % stator voltage

RMS
nm=[0:10:3000]; % selected speed

range
wm=2*pi*nm/60; % shaft speed
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rad/s
slip=(ws-wm)/ws; % slip

calculation
wr=ws-wm; % slip frequency
fr=wr/(2*pi); % rotor freq Hz
P_a=[]; Te_a=[]; I_sa=[];
for j=1:2
RR=5*j;
is_ph=us_ph./(RR./slip); % stator current

phasor
I_s=abs(is_ph)/sqrt(2); % RMS value phase

current
I_sa=[I_sa;I_s];
P=3/2*real(us_ph*conj(is_ph)); % real stator

power
P_a=[P_a;P];
Te=3/2*imag(conj(psis_ph)*is_ph); % torque
Te_a=[Te_a;Te];
end
%show PLECS results
%with RR=5,
nm1=[2392.66 2542.67 2735.36 2855.77 3000];% shaft speed
Te1=[19.08 14.36 8.31 4.53 0]; % torque
Is1=[8.99 6.77 3.91 2.13 0]; % RMS stator

current
Ps1=[5994.74 4513.57 2611.79 1423.39 0]; % real power
%%%%%%%%%%%%%%%%%%%%%%%%%
%with RR=10,
nm2=[1823.7 2081.01 2270.61 2542.67 2735.36 3000];
Te2=[18.47 14.43 11.45 7.18 4.15 0];
Is2=[8.71 6.80 5.40 3.38 1.95 0];
Ps2=[5804.78 4535.01 3599.39 2256.78 1305.89 0];
%plot PLECS results
figure(1)
subplot(3,1,1)
plot(nm1,Te1,’*’)
grid
hold on
plot(nm2,Te2,’+’)
legend(’PLECS Torque ,RR=5’,’PLECS Torque,RR=10’)
plot(nm,Te_a(1,:),’r’)
plot(nm,Te_a(2,:),’k’)
axis([1500 3000 0 35])
ylabel(’(Nm)’)
subplot(3,1,2)
plot(nm1,Is1,’*’)
grid
hold on
plot(nm2,Is2,’+’)
legend(’PLECS RMS stator current,RR=5’,’PLECS RMS stator
current,RR=10’)

plot(nm,I_sa(1,:),’r’)
plot(nm,I_sa(2,:),’k’)
axis([1500 3000 0 15])
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ylabel(’(A)’)
subplot(3,1,3)
plot(nm1,Ps1,’*’)
grid
hold on
plot(nm2,Ps2,’+’)
legend(’PLECS Real stator power,RR=5’,’PLECS Real stator
power,RR=10’)

plot(nm,P_a(1,:),’r’)
plot(nm,P_a(2,:),’k’)
axis([1500 3000 0 10000])
ylabel(’(W)’)

9.7.2 Tutorial 2: Grid Connected Simplified Induction
Machine with Leakage Inductance

The purpose of this tutorial is to modify the PLECS model shown in Fig. 9.16 to
include leakage inductance L¢ S. A suitable starting point for this task is the model
shown in Fig. 9.6 which for this tutorial has been simplified to include the leakage
inductance and rotor resistance. Furthermore a rotating flux vector E s D O s ej!s t
as introduced in the previous tutorial is to be used here. The aim is to use the
revised PLECS model to plot the torque, real/reactive power, and RMS current
versus shaft speed characteristics so that the reader can ascertain the significance
of adding leakage inductance.

A solution to this problem may be found by making use of the IRTF model given
in Fig. 9.6 AND realizing that such models allow inductive elements to be moved
to either stator or rotor side without impunity. Hence in this case it is convenient
to move the leakage inductance to the rotor side as shown in Fig. 9.19. In which
case the rotor resistance as used in the previous PLECS tutorial (see Fig. 9.16) must
be replaced by a set of control blocks that represent a series network formed by
the elements RR and Ls

¢ . Furthermore, the excitation term Euxy
s D d E xy

s =dt can be
simplified given the use of a constant amplitude O s D 1:0Wb rotating stator flux
vector and the IRTF transformation E xy

s D E s ej!mt. Evaluation of the differential
term gives: Euxy

s D j .!s � !m/ E xy
s , which can be readily implemented using an

Fig. 9.19 Simplified IRTF based model of asynchronous machine with leakage inductance
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Fig. 9.20 PLECS model of (simplified) asynchronous machine with leakage inductance

‘alternative differentiator function’ as introduced earlier (see Fig. 6.8). The revised
PLECS model as given in Fig. 9.20 shows this alternate differentiator module as
jwX2. A second module jwX1 is used to generate the stator voltage vector Eus in
line with the approach used in the previous tutorial. Note that the rotor EMF vector
Euxy

R is now found by evaluating the term Euxy
R D Eixy

R RR. A set of control modules
\RR, L_sig, and integrator are used to model the rotor resistor/leakage inductance
network. A set of vector to RMS conversion models and real/reactive power modules
with corresponding numerical displays have been added to analyses steady-state
operation. Furthermore, a XY plot module u_i has been added to observe the stator
voltage and stator current vectors at the end of the simulation. The mechanical part
of the PLECS model remains unchanged when compared to the previous tutorial.

Repeat the simulation exercise described in tutorial 1 with ten load reference
torque T ref steps in the range of 1000 ! 0Nm. An example of the data which should
appear after running this simulation (after each load step) is given in Table 9.3.
An example of the vector plots which should appear on the XY Plot module u_i
at the end of the simulation is given in Fig. 9.21. The results given represent the
attenuated stator voltage vector and current vector for two different operating points
with rotor resistance and leakage inductance values of 5� and �=80H, respectively.
Clearly noticeable from these vectors is the impact of the leakage reactance to rotor
resistance ratio: !rLs

¢=RR. For low slip (subplot (b)) the rotor frequency!r is relatively
low as is the induced rotor voltage ER. Consequently the phase relationship between
the stator voltage and current is dominated by the rotor resistance term. Under high
slip conditions slip frequency and induced voltage are high but the leakage reactance
dominates the rotor resistance hence the increased lag between the two vectors as
observed in subplot (a).

On the basis of the data given in Table 9.3 generate four subplots which
represent the relationships Te .nm/, Is .nm/, Ps .nm/, Qs .nm/. In addition plot the
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Table 9.3 Simulation results asynchronous machine RR D 5�, L¢S D �=80H:
load!no-load

Tref (Nm) nm (rpm) Te (Nm) Is (A) Ps (W) Qs (VA) ER (V)

1000 369.48 14.51 16.35 4561.17 9898.17 81.76

200 859.14 16.40 15.65 5153.05 9073.43 78.28

100 1271.95 17.97 14.72 5647.42 8026.46 73.63

70 1555.47 18.81 13.77 5911.99 7023.86 68.87

60 1690.23 19.04 13.19 5983.43 6445.60 65.98

50 1852.56 19.06 12.35 5989.95 5652.89 61.79

30 2257.59 16.98 9.38 5337.29 3258.96 46.91

20 2484.84 13.72 7.02 4310.56 1826.39 35.12

10 2724.03 8.24 3.98 2590.20 587.89 19.92

5 2853.89 4.52 2.14 1421.51 170.82 10.74
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Fig. 9.21 Vector plot: scaled stator voltage vector Eus=10 (“green”) and stator current vector Eis

(“red”) for two slip conditions. (a) High slip: Te D 14:5Nm, nm D 369 rpm. (b) Low slip:
Te D 8:2Nm, nm D 2724 rpm

Heyland diagram for the machine under motor operation. An example of the results
which should appear is given in Fig. 9.22. Also shown in Fig. 9.22, in the form of
continuous lines are the results from the steady-state analysis. The M-file given
at the end of this tutorial shows the steady-state calculations, together with the
MATLAB code required to plot the results from Table 9.3.

A Heyland diagram of the machine which shows the stator current phasor end
point versus slip can be made by using the data given in Table 9.3. This requires
use of the real and reactive power table entries and stator current data. On the
basis of this data the angle between the voltage and current phasor is found using:
	s D � arctan .Qs=Ps/ (the negative sign is introduced because the phasor current lags
the voltage phasor). The current phasor magnitude jisj is found using jisj D Is

p
2.
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Fig. 9.22 Simulink/MATLAB result: Te .nm/, Is .nm/, Ps .nm/, Qs .nm/, RR D 5�, L¢S D �=80H

Fig. 9.23 PLECS/MATLAB
result: Heyland diagram,
speed range 3000 ! 0 rpm
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The result which should appear is given in Fig. 9.23 together with the supply voltage
phasor us. Shown in this Heyland diagram are the low and high slip operating point
also shown in the XY plot, see Fig. 9.21. The operating points shown in the Heyland
diagram are located on a circle which is according to the theory discussed in this
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chapter (see Fig. 9.11). The M-file given below shows the code that undertakes the
steady-state phasor analysis and plotting of the results for the desired speed range
(standstill to synchronous speed).

M-Code

%tutorial 2 chapter 9
close all
clear all
psis_ph=-j*1.0; % stator flux vector
ws=100*pi;%stator frequency rad/s
us_ph=j*ws*psis_ph; % voltage phasor

(assumed real)
Us=abs(us_ph)/sqrt(2); % stator voltage RMS
RR=5; % rotor resistance
L_sig=pi/80; % leakage inductance
nm=[0:10:3000]; % selected speed range
wm=2*pi*nm/60; % shaft speed rad/s
slip=(ws-wm)/ws; % slip calculation
wr=ws-wm; % slip frequency
fr=wr/(2*pi); % rotor freq Hz
is_ph=us_ph./(RR./slip+j*ws*L_sig); % stator current phasor
I_s=abs(is_ph)/sqrt(2); % RMS value phase

current
P=3/2*real(us_ph*conj(is_ph)); % real stator

power
Q=3/2*imag(us_ph*conj(is_ph)); % reactive stator

power
Te=3/2*imag(conj(psis_ph)*is_ph); % torque
psiM_ph=psis_ph-L_sig*is_ph; % magnetizing flux
e_ph=j*wr.*psiM_ph; % e_rot
E=abs(e_ph)/sqrt(2); % RMS value e_rot
%
%with RR=5 and leakage inductance Lsig=pi/80
nm3=[369.48 859.14 1271.95 1555.47 1690.23 1852.56 2257.59

2484.84 ...
2724.03 2853.89 3000];
Te3=[14.51 16.40 17.97 18.81 19.04 19.06 16.98 13.72 8.24

4.52 0];
Is3=[16.35 15.65 14.72 13.77 13.19 12.35 9.38 7.02 3.98 2.14

0];
Ps3=[4561.17 5153.05 5647.42 5911.99 5983.43 5989.95 5337.29

4310.56 ...
2590.20 1421.51 0];
Qs3=[9898.17 9073.43 8026.46 7023.86 6445.6 5652.89 3258.96

1826.39 ...
587.89 170.82 0];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%plot PLECS results
subplot(4,1,1)
plot(nm3,Te3,’*’)
grid
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hold on
plot(nm,Te,’r’)
ylabel(’(Nm)’)
legend(’Torque PLECS’,’Torque Matlab ’,0)
subplot(4,1,2)
plot(nm3,Is3,’*’)
grid
hold on
plot(nm,I_s,’r’)
ylabel(’(A)’)
legend(’RMS Stator current PLECS’,’RMS Stator current

Matlab’,0)
subplot(4,1,3)
plot(nm3,Ps3,’*’)
grid
hold on
plot(nm,P,’r’)
ylabel(’(W)’)
legend(’Real stator power PLECS’,’Real stator power

Matlab’,0)
subplot(4,1,4)
plot(nm3,Qs3,’*’)
grid
hold on
plot(nm,Q,’r’)
ylabel(’(VAr)’)
legend(’Reactive stator power PLECS’,’Reactive stator power

Matlab’,0)
%%%%%%plot Heyland diagram
figure(2)
rhos=-atan(Qs3./Ps3);
isR=sqrt(2)*Is3.*cos(rhos);
isI=sqrt(2)*Is3.*sin(rhos);
plot(isR,isI,’*’)
hold on
plot(real(is_ph),imag(is_ph),’r’)
axis equal
grid
axis ([0 20 -30 0])
xlabel(’Re(is_{ph})(A)’)
ylabel(’Im(is_{ph})(A)’)
legend(’PLECS’,’Matlab’)

9.7.3 Tutorial 3: Asynchronous Machine Connected to a
Three-Phase Source

The purpose of this tutorial is to consider the operation of a general purpose
asynchronous machine model under load and connected to a three-phase sinusoidal
voltage source. Central to the development of this simulation diagram is the
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Fig. 9.24 PLECS model: asynchronous machine

Table 9.4 Parameters Texas
Instruments LVACIMTR
(EMsynergy) induction
machine

Parameters Value

Leakage inductance L¢S 6.22 mH

Stator resistance Rs 1.84�

Rotor resistance RR 1.08�

Magnetizing inductance LM 30.0 mH

Inertia J 0.07 10�3 kg m2

Pole pairs p 2

Initial rotor speed !0m 0 rad/s

generic model given in Fig. 9.7b. The IRTF module shown in this diagram is a
“IRTF-current” type unit, given that the stator current vector is selected as an input
on the stator side. Furthermore, it is instructive to expand this model to suit multi-
pole machine operation as discussed in Sect. 7.2.1. A PLECS model interpretation
along the lines discussed above is given in Fig. 9.24, which shows the basic IRTF
module with (two pole) torque output T_e. A set of mechanical blocks is to used
to implement the relationship between shaft Tm, load torque Tl, inertia J, and shaft
speed !m. For this tutorial a Texas Instruments LVACIMTR (EMsynergy) 13:6W,
4-pole machine [10] is used with the a set of parameters given in Table 9.4. This
machine, which is shaft coupled to the Teknic PM machine introduced in the
previous chapter, will also be deployed for de “demonstration” lab at the end of
this section, hence its inclusion here. Note that the inertia given in Table 9.4 is the
combined value of the induction machine and the attached PM (Teknic) machine as
shown in Fig. 8.29. Said model is to be connected to a three-phase 7.0 V RMS/50 Hz
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Fig. 9.25 PLECS model: asynchronous machine connected to a three-phase voltage source

supply. Hence a 3000 rpm rotating vector with an amplitude of 10.0 V must be
generated as an input for this model. Connect a load module [see Eq. (8.28)] to the
machine model. This module must be configured with a quadratic load speed curve
and parameters T ref D 100mNm, !ref D 2�1500=60 rad/s. A PLECS implementation
of the machine connected to the required mechanical load and three-phase supply is
given in Fig. 9.25. Run the simulation for 0.5 s and add a scope model which shows
the RMS phase current, shaft torque, and shaft speed. In addition, add a Vector plot
module to show the stator voltage (attenuated by a factor 10) and stator current
space vectors. Observe these vectors and the end of the simulation period under
load AND no-load conditions. The results from your simulation Matlab processed
should be in accordance with those given in Fig. 9.26. A set of numerical display
modules has also been added which show the steady-state torque and shaft speed at
the end of the simulation interval. The required vector plots of the machine under no-
load (reference torque in load module load curve set to zero for this simulation
example) and load are shown in Fig. 9.27. Readily observable from the waveforms
shown in Fig. 9.26 is the presence of a transient on the current and torque during
start up. Current during this type of start up can typically be three times the rated
value. In this case the effect is less pronounced during to the presence of a relatively
large stator resistance (typical for small electrical machines).

9.7.4 Tutorial 4: Steady-State Analysis of an Asynchronous
Machine Connected to a Three-Phase Supply

It is instructive to examine the steady operation of the IM machine by way of a
phasor analysis according to the theory presented in Sect. 9.6.4. More specifically it
is considered important to understand the relationship between current and voltage
phasors under steady-state operation as the machine moves from no-load to load
conditions. Construct a Heyland diagram for the EMsynergy machine as presented
in the previous tutorial using the steady conditions discussed and present in this
diagram:
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Fig. 9.26 Startup sequence: LVACIMTR (EMsynergy) asynchronous machine connected to a
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Fig. 9.27 Vector plot: scaled stator voltage vector Eus=10 (“green”) and stator current vector Eis

(“red”) for two slip conditions: s D 0, nm D 1500 rpm and s D 0:176, Tm D 68 � 10�3 Nm,
nm D 1236 rpm. (a) No-load (s D 0). (b) load (s D 0:176)

• the operating trajectory for motor/generator operation
• the operating points which corresponds to standstill, no-load operation, and

operation with the steady-state torque and speed value found in the previous
tutorial at the end of the simulation interval.
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Fig. 9.28 Heyland diagram:
EMsynergy machine

Show your calculations in the form of an M-file. In addition, use this M-file to plot
the shaft torque versus speed curve for the machine in use over the speed range
0 ! 3000 rpm. Also add the load torque versus speed characteristic and confirm
that the steady-state operating torque/shaft speed match those found in the previous
tutorial.

An example of the results obtained from the M-file is shown in Fig. 9.28 in the
form of a Heyland diagram. Central to this figure is the Heyland circle, which shows
the required operating points under no-load s D 0, standstill s D 1, and under load
conditions with Tm D 68 � 10�3 Nm, shaft speed 1236 rpm, which corresponds to a
slip value of s D 0:176. This diagram clearly shows how the relationship between
voltage and current phasors changes as the machine operating point moves from
s D 0 ! s D 0:176 and conforms with the results shown in the vector plot for both
load conditions (see Fig. 9.25). The shaft torque versus speed curve over the required
speed range can be found with the aid of Eq. (9.37) and the machine parameters
given in Table 9.4. Said equation must be scaled as shown in Sect. 9.6.4, given the
need to present actual shaft torque and speed variables as may be observed from
Fig. 9.29. Also shown in this figure is the quadratic load versus shaft speed as used
in the previous tutorial. The intersection of the machine and load torque curves
represents the steady-state operating point, which matches the torque and speed
value found on the numerical displays of the previous tutorial (see Fig. 9.25). An
example of an M-file which shows the required calculations for this tutorial is given
below:

M-Code

%tutorial 4 chapter 9
%parameters machine
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Fig. 9.29 MATLAB results: shaft torque versus slip curve, EMsynergy machine, and load
torque/speed characteristic

Rs=1.84; %stator resistance
RR=1.08; % Rotor resistance
Lsig=6.22e-3; % leakage inductance
LM=30e-3; % magnetizing inductance
p=2; % pole pair number
%%%%%%%
%excitation in use
us_hat=10; %peak voltage (V)
fs=50; % stator frequency (Hz)
ws=2*pi*fs; % stator freq (rad/s)
%%%
%calculate Heyland circle see eqn (9.34)
s_p=RR/(ws*Lsig); % peak slip frequency
l=Lsig/LM;
r=Rs/RR*s_p;
%scale factor
Isc=us_hat/(ws*Lsig); %scaling factor current
%%%center circle
xc=r*l/(1+l*(1+r^2));
yc=-(0.5+l)/(1+l*(1+r^2));
rc=0.5/(1+l*(1+r^2));
Xc=xc*Isc;
Y=yc*Isc;
R=rc*Isc;
%%%%%%%%%%%%
%determine the current phasor
%location for a given slip(s) using eqn (9.34)
s=(1500-1236)/1500; %equal s value
isn_ph=(s/s_p-j*l)/((1+r*(s/s_p)+l)+j*(s/s_p-l*r));
rho_ph=180/pi*angle(isn_ph); % angle between voltage and
current (deg)

is=abs(isn_ph)*Isc; % current amplitude (A)
%%%add torque/slip curve
Te_p=3*us_hat^2/(4*ws^2*Lsig) %peak electrical torque
sl=1:-0.01:-1;
Te_n=2*(sl./s_p)./((1+r*sl./s_p+l).^2+(sl./s_p-l*r).^2);
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%perunit torque
%calculated using eqn(9.38)
T_m=Te_n*Te_p*p;
nmm=(1-sl)*1500;
plot(nmm,T_m*1000);
hold on %plot load curve
Tl=nmm.^2*100/1500^2;
plot(nmm,Tl,’--’);
grid on
legend(’shaft torque’, ’load torque’)
ylabel(’milli-Nm’)
xlabel(’shaft speed (rpm)’)
axis([0 3000 -400 200])

9.7.5 Demo Lab 2: Voltage/Frequency IM Drive

For this demonstration the LVACIMTR (EMsynergy) asynchronous machine which
is the motor used in the previous two tutorials is to be connected to the aft
(furthest away from the USB connector) BOOSTXL-DRV8301 module shown in
Fig. 8.30. A voltage/frequency controller is used [10] which can generate a three-
phase sinusoidal supply with the required voltage amplitude and frequency. This
controller implemented in embedded software VisSim [14] is shown in Fig. 9.30.
The LVSERVOMTR (Teknic) PM machine is connected to the forward converter
and the resulting drive functions as a dynamometer for the induction machine. The
drive setup was used to measure the variables u’ and i’ (which is also the phase
current) under no-load and identical load conditions (see Fig. 9.31) as discussed in

Fig. 9.30 VisSim [14] based V/f drive Demonstration controller [10]
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Fig. 9.31 Matlab processed scope results VisSim [14] based V/f drive: no-load (s D 0) and load
(s D 0:716) condition [10]

the previous tutorial. The results derived from the demonstration setup have been
processed to show actual values. The following critical observations of the results
according to Fig. 9.31 can be made in conjunction with the results from the vector
plot in Fig. 9.27.

• The voltage waveform is 20 ms, which corresponds with a rotating voltage vector
of 3000 rpm, i.e., a excitation frequency of 50 Hz.

• The drive was set to operate with voltage space vector Eus D us’ C j us“ with
amplitude jEusj D 10V. The amplitude of the attenuated real component us’ D
us’=5 is indeed 2.0 V.

• Inspection of the no-load current amplitude jis’j and the phase angle relative
to the attenuated voltage waveform us’ shows that these are equal to jis’j D
0:86A and 71ı, respectively. This compares favorably with the current vector
amplitude and phase angle between the voltage and current vectors shown in
Fig. 9.27 (“left” subplot). The no-load vector plot shows a current amplitude of
0.9 A and phase angle between the two vectors of �80ı.

• Inspection of the load (with the same load conditions used in the previous
tutorial) current amplitude jis’j and the phase angle relative to the attenuated
voltage waveform us’ shows that these are equal to jis’j D 1:26A and 27.9ı,
respectively. This compares favorably with the current vector amplitude and
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phase angle between the voltage and current vectors shown in Fig. 9.27 (“right”
subplot). The load vector plot shows a current amplitude of 1.25 A and phase
angle between the two vectors of �36ı.

An overall conclusion is that the results derived with the DEMO lab confirm the
theoretical and simulated results shown and most importantly shown that the theory
introduced in this chapter is applicable to actual machines.



Chapter 10
Direct Current Machines

10.1 Introduction

The genesis of the ideas required to build an electrical machine can be traced back
to the discovery of electromagnetism by the Danish scientist Oersted in 1819–1820.
Oersted discovered that a current in a wire could deflect a compass needle. Thus the
connection between a current carrying conductor, a magnetic field, and a mechanical
movement was established. A German chemist named Schweigger, who studied
Oersted’s experiment, found that if the wire carrying the current was wound into
a coil then the deflection of the magnet was greatly increased. The Professor
of Chemistry at Cambridge, Cumming, coined the term “Galvanometer” for this
configuration and used it as a current detector. At around the same time Ampère
developed a theory to support the observations made about current carrying coils
in wire. In 1825 Sturgeon found that putting an iron core in the coil increased the
magnetic field strength considerably for the same current.

Meanwhile, a laboratory assistant by the name of Faraday, working for the Royal
Institution in England, developed what could be called the first electrical motor in
September 1821. It was a crude device that caused a wire suspended in a basin of
mercury with a vertical magnet, to rotate around the magnet when current flowed
through the wire and mercury. It produced continuous motion.

In 1837 Davenport filed a patent for an electro-magnetic engine. It incorporated
a crude commutator and a multi-pole stator with electromagnets rather than
permanent magnets. He could use this machine to drill 6 mm holes in wood and
steel. Gramme introduced a ring type rotor configuration in 1870, which in turn led
to a rotor concept introduced by Von Hefner in 1873, which is still in use today.
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319-29409-4_10) contains supplementary material, which is available to authorized users.
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The direct current (DC) machine is still in use given that it has certain advantages
in terms of controllability and low manufacturing costs. In household appliances
and automotive applications series DC machines or universal machines (these run
on both DC or AC) are often used for the reasons mentioned above. However, the
development of adjustable speed drives has demonstrated that the same type of
performance can also be achieved with, for example, an asynchronous machine
in combination with a power electronic converter. Asynchronous machines are
considerably cheaper to manufacture at most power levels and very much easier
to maintain than a DC machine.

In this chapter we will consider the various DC machine configurations in use,
which also including those which make use of permanent magnets. The operating
principle of these machines as well as the steady-state characteristics will be
discussed. In addition, a dynamic model of this machine will be introduced, which
will be verified against a “demonstration” example in the trial section of this chapter.

10.2 Machine Configuration

A simple two pole stator of a DC machine is shown in Fig. 10.1. The field winding
consists of an N turn concentrated winding of which each half is wrapped around
a pole. The two parts of the winding are connected in series and attached to a DC
power supply. The frame is in this case also the yoke-part of the magnetic flux
path. The use of a field winding gives us the ability to control the magnetic flux in
the circuit in terms of amplitude and polarity. Permanent magnets are often used
to replace the field winding which leads to a more compact and efficient machine.
However, we loose in practical terms one degree of freedom, as we are now unable to

Fig. 10.1 DC machine stator
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Fig. 10.2 Two segment/conductor DC machine armature

control (in electrical terms) the flux magnitude during operation. We also loose the
potential of operating the machine on an AC source, therefore universal machines
(AC/DC) always have a field winding and no permanent magnets.

A very simple example of a DC rotor, more commonly referred to as the
“armature”, is given in Fig. 10.2. Said figure shows the same single turn winding
introduced for the synchronous machine. In this case, the slipring/brush combination
is replaced by the so-called commutator. This commutator consists, for this simple
rotor (armature), of two brushes and two commutator segments. Segment 1 and 2
are connected to coil which is formed by conductors A and B. The “conductor” part
of the coil is exposed to the magnetic field due to the field winding (or magnets)
and is therefore instrumental for torque production. The brushes are connected to
a direct current (DC) power supply. The purpose of the commutator is to reverse
the current polarity in the armature winding every half revolution in this case. For
example, in the case shown, conductor A is connected via segment 1 and a brush to
terminal 1. Likewise side B is connected via segment 2 and a brush to terminal 2.
When we rotate the rotor by 180ı, conductor A will be electrically connected to
terminal 2 and conductor B to terminal 1. This means that a current reversal in the
winding will take place twice during one period.

10.3 Operating Principles

The operating principles of this machine are discussed with the aid of Fig. 10.3,
which is based on the armature model shown in Fig. 10.2. Furthermore a set of
magnetic poles have been added to represent the magnetic field  m due to a field
winding or permanent magnetics. A current source with amplitude ia is connected to
the armature via the brushes. Also shown in Fig. 10.3 are two conductors (located
on the rotor) which are exposed to a magnetic field that is represented by the space
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Fig. 10.3 Simplified DC machine with two segments/conductors

vector E m. The flux vector is aligned with the real axis of an ’“ coordinate frame.
Both conductors carry a current ia which due to the presence of the magnetic field
causes Lorentz forces (as shown in Fig. 1.8) to rotate in a clockwise direction.
Torque production can also be shown with aid of current and flux space vectors (see
Chap. 7), hence the current in the two conductors can be represented by the current
vector Eia, in which case the torque is defined in Eq. (7.13), with Ei D Eia. Furthermore
the factor 3=2 in this expression must be removed, because we are NOT dealing with
a three-phase system. Consequently, the torque for this simplified machine with a 2
segment commutator can be written as

Te D � m ia sin 	i (10.1)

where m and ia represent the amplitudes of the flux vectors E m and Eia, respectively.
Furthermore, the angle between said vectors is defined as 	i which is tied directly
to the orientation of the rotor. Maximum torque occurs with 	i D �90ı, i.e.,
with the current vector oriented along the negative “ axis. Zero torque occurs
when flux and current vectors are aligned (	i D 0ı, 	i D �180ı), which is also
the ideal moment to commutate the current in the armature as may be observed
from Fig. 10.3. Observation of the commutation process shown in Fig. 10.3 shows
that the current polarity in the conductors changes due to the presence of the
brush/commutator assembly. This implies that the current space vector will stay in
quadrants 3 and of the ’“ coordinate system. Hence the vector will rotate clockwise
starting at 	i D �180ı to 	i D 0ı at which point commutation will ensure the (near
instantaneous) transition 	i D 0 ! �180ı. The torque associated with this process,
as defined in Eq. (10.1) is shown in Fig. 10.4, subplot (a), with  m D 1:0Wb and



10.3 Operating Principles 283

(N
m

)

0

0.5

1

1.5

2

Torque: with 2 segments

(N
m

)

0

0.5

1

1.5

2

Torque: with 4 segments

 (a) time (s)
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

 (a) time (s)
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

 (a) time (s)
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

(N
m

)

0

0.5

1

1.5

2

Torque: with 8 segments

Fig. 10.4 Torque production with 2, 4, and 8 segmented commutator

ia D 2:0A. Clearly observable from Fig. 10.4, subplot (a) is that the torque is not
constant. By adding more conductors and segments the effect of commutation of any
two conductors becomes less influential in which case the armature current vector
will deviate less from the negative “ axis. The two DC machine configurations
shown in Fig. 10.5 both utilize a 18 segment commutator. Both machines use the
same armature but excitation is provided by either a field winding or permanent
magnets. Readily observable is that a more compact machine can be realized when
permanent magnets are used, however, the disadvantage is that the flux  m cannot
be changed. Torque ripple will also reduce as segment numbers are increased as
may also be observed from Fig. 10.4, subplots (b) and (c), where use is made of a
commutator with 4 respectively eight segments. With sufficient segments present the
current vector will remain firmly aligned with the negative “ axis, i.e., 	i D �90ı in
which case Eq. (7.13), with Ei D Eia (without the factor 3=2) is reduced to

Te D  m ia (10.2)
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Fig. 10.5 DC machine with field winding (Left) and permanent magnet excitation

which for the chosen flux and current value used to derive Fig. 10.4 corresponds to
Te D 2:0Nm. Equation (10.1) shows that the torque produced by the DC machine
can be independently controlled by the flux DC current amplitude ia. For example, a
torque step of the machine can be realized by an appropriate armature current step.

In the sequel to this section the reader is alerted to the presence of the so-
called compensation winding winding in Fig. 10.5, that is, located within the stator
poles and also carries the armature current ia. The current space vector due to the
compensation winding is purposely chosen to be in the OPPOSITE direction of the
space vector due to the armature. The reason for this is that the armature, which
also has inductance La, will produce a flux E a (which also point in the negative
“ direction) that must be added to the flux vector E m. The effect of this so-called
armature reaction is that a slight misalignment of the main flux vector E m relative
to the ’ axis will occur, that can negatively impact the commutation process, i.e.,
brush sparking can take place. The presence of the compensation winding, which
is only found on relatively large machines, produces a magnetic flux component
that reduces the armature flux component. This ensures that the main flux vector
E m remains aligned with the ’ axis, even under large armature current conditions,
which in turn insures that the commutation process is not hindered.

10.4 Armature Based Voltage Source Model

In this section we will consider the development of a dynamic model of either
machine shown in Fig. 10.5. A suitable starting point for this analysis is Fig. 10.6
that shows a symbolic model of the machine, which is connected to a current source
with magnitude ia. Motor operation is assumed, with the machine operating at a
speed !m, with a torque of Te. The armature of the machine shown is assumed
to have zero resistance and inductance. Under these conditions an induced voltage
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Fig. 10.6 Symbolic armature
model of machine connected
to a current source DC

Fig. 10.7 DC machine
model with armature
resistance Ra and armature
inductance La

ea will be present across the brush terminals, which can be determined using the
input/output power balance for this machine. Electrical input power to this machine
is equal to pin D ea ia, whereas the output power is given as pout D Te !m.
Subsequent evaluation of the power balance using the variables introduced gives

ea D Te !m

ia
(10.3)

which after substitution of expression (10.2) leads to

ea D  m !m (10.4)

Hence the EMF generated by the machine is proportional to the flux-linkage  m

(due to the field winding or permanent magnets) and the shaft speed !m. In reality
the armature has resistance Ra and inductance La which must be added to the
symbolic armature model introduced in Fig. 10.6. The full symbolic model of the
machine is shown in Fig. 10.7. On the basis of Fig. 10.7 the terminal equation for
the machine connected to a voltage source ua can be derived, which is of the form

ua D Raia C La
dia
dt

C ea (10.5)

The corresponding generic model of the DC machine as shown in Fig. 10.7 is
directly based on the use of Eqs. (10.5), (10.4), and (10.2), respectively. Also added
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to the generic module is the mechanical equation set (7.14) and a load torque/speed
module Tl.!m/. The flux-linkage  m input for this machine can be provided by
either a field winding or permanent magnet. Both these options will be entertained
in the next section.

10.5 Steady-State Characteristics

It is instructive to consider the steady-state characteristics of the machine. The
variables which exist under steady circumstances are given in the form Nx. For exam-
ple, the steady-state speed would appear as N!m. The steady equation set is directly
derivable from the armature terminal equation (10.5), torque equation (10.2), EMF
equation (10.4), and mechanical equation (7.14a) which leads to

Nua D RaNia C  m N!m (10.6a)

NTe D Nia m (10.6b)

NTe D NTl (10.6c)

The equation set emphasizes that under steady-state conditions the electro-magnetic
torque produced by the machine is equal to the load torque. The equation set is given
for the case that the field is provided by a permanent magnet. However, as pointed
out earlier, the magnet can and often is replaced by a field winding. Hence from the
point of considering the characteristics we can assume that the flux  m can be set to
different values.

The torque versus speed characteristic can be found with the aid of Eq. (10.6)
which after some manipulation gives

NTe D  m

Ra
Nua �  2m

Ra
N!m (10.7)

Observation of Eq. (10.7) shows that the torque speed curves are in fact linear
functions with a gradient given by � 2m=Ra. Furthermore, the no-load shaft speed is
given by N!mo D Nua= m.

In terms of changing the shaft speed it is possible to resort to the so-called
armature voltage control. In this case the voltage Nua is varied. The effect of changing
the armature voltage is shown in Fig. 10.8.

From Fig. 10.8 it can be observed that the shaft speed is reduced as the load
torque is increased. The sensitivity of speed variations to load changes is dependent
on the gradient of the torque speed curve. Machines with a lower armature resistance
will be less sensitive to this effect. Note that an increase in torque will also
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Fig. 10.8 Steady-state torque
speed curves with armature
voltage control

Fig. 10.9 Steady-state torque
speed curves with field flux
control

increase the armature current given that Nia D NTe= m. The maximum load is therefore
constrained by the condition Nia � NiRa , where NiRa represents the rated armature current.

Replacing the permanent magnet with a field winding provides an extra degree
of freedom which comes at the price of a larger volume of the machine (when
compared to a permanent magnet machine of the same rating) and the need to excite
the field winding.

The effect of a variable field flux level on the torque speed may be again analyzed
with the aid of Eq. (10.7), when we vary m and keep Nua constant. Figure 10.9 shows
how the torque speed curves are effected when controlling the speed of the machine
with the aid of a field winding.

The machine configuration which we have discussed up to now is referred to as
“separately excited” given that the field flux can be chosen (or varied) independently
of the armature variables. For machines which utilize a field winding it is possible
to electrically connect the latter in series or parallel with the armature winding.
If the field winding is connected in parallel the machine is referred to as “shunt-
wound.” The third option, which is commonly used for traction drives and starter
motors for combustion engines, has the field winding in series with the armature
winding in which case the machine is referred to as “series-wound.” The field flux
level is then proportional to the armature current, hence  m D kfNia where kf is a
constant which is largely determined by the winding arrangement of the machine.
In a series-wound machine the field winding has a relatively low number of turns,
but uses a larger wire diameter (to carry the armature current) when compared with
the configurations indicated above. The torque for this type of machine is of the
form
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Fig. 10.10 Steady-state
torque speed curves with
series connected field
winding

NTe D kf Ni2a (10.8)

The torque speed curve for the voltage fed series connected machine can be found
by substitution of Eq. (10.8) into Eq. (10.6), in which  m is replaced with  m D kfNia
which gives

NTe D kf
Nu2a

.Ra C kf N!m/
2

(10.9)

A typical torque speed for this type of machine is given in Fig. 10.10. As with
the previous cases the torque upper limit is determined by the rated current NiRa of
the machine. It is emphasized that motor operation with the series-wound machine
is advantageous for traction drives, given that low speed operation yields a high
starting torque. However, care should be taken to ensure that the load is not removed
from this machine given that there is no finite “no-load” operating speed (see
Fig. 10.10). The series machine is also commonly used in electrical appliances
where it is often referred to as a “universal machine” given the fact that the supply
can be either AC or DC. The use of an AC machine is possible because the supply
voltage is proportional to the square of the voltage [see Eq. (10.9)]. This implies
that, for example, a sinusoidal supply voltage will provide a non-zero torque value.
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10.6 Tutorials

10.6.1 Tutorial 1: PLECS Based Model of a Separately Excited
DC Machine

The aim of this tutorial is to build a dynamic, PLECS based, DC model which can
be connected to a voltage source. The model is to be evaluated for transient and
steady state conditions.

The motor module parameters are set to the values indicated in Table 10.1 given
that these correspond to the data of the machine used in the “demonstration lab”
introduced at the end of this section. A PLECS sub-module is to be build on the
basis of the generic diagram for this machine as given in Fig. 10.11. An example
of a possible implementation is given in Fig. 10.12. The dynamic simulation is
to be undertaken with the aid of the PLECS model given in Fig. 10.13. The
machine is to be studied by considering a start up sequence from zero shaft speed
with a mechanical load connected. The load torque/speed curve is assumed to be
“constant” (hence speed independent) function, which can be set in the load module.
The load module settings must be set to produce a load torque of 80 � 10�3 Nm.
Electrically the machine is to be connected to a DC voltage supply source of 20 V
at t D 0. Add a set of display modules as indicated in Fig. 10.13, so that we are able
to view the shaft speed (in rpm), shaft torque, and armature current at the end of
the simulation. Run the simulation for 0.5 s and add a “Scope” module as indicated
in Fig. 10.12 so that the results can be observed and processed in MATLAB. In
addition, two numerical display modules should be provided so that the torque
and speed at the end of the simulation (when the drive is operating under steady-

Table 10.1 DC machine
parameters

Parameters Value

Armature inductance La 7.35 mH

Armature resistance Ra 5.0 �

Field flux (due to PM)  m 95.0 mWb

Inertia (estimated) J 80.0 �kg m2

Initial rotor speed !0
m 0 rad/s

Fig. 10.11 Generic dynamic DC machine model, with mechanical load
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Fig. 10.12 PLECS model: separately excited brushed DC machine model

Fig. 10.13 PLECS model: dynamic simulation with general machine

state conditions) can be derived. An example of the Scope results which should
appear with the chosen armature voltage, field flux (due to the magnets in this case),
and load module settings is given in Fig. 10.14. Observation of the results given
in Fig. 10.14 shows that a peak transient current of approximately 3.8 A appears
during startup. Accordingly, a torque peak will also be present given that torque
is directly proportional to current and flux [see Eq. (10.2)]. The two numerical
displays show the torque and shaft speed present at the end of the simulation, i.e.,
machine operation under steady-state conditions.
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Fig. 10.14 Direct-on-line (DOL) start of a separately excited DC machine

10.6.2 Tutorial 2: Separately Excited DC Machine with
Variable Load, Supply Conditions

To test the dynamic model according to tutorial 1 with respect to its correct
functioning we can observe the display module values given in the PLECS model
(see Fig. 10.13) at the end of a simulation run. Set the run time for your simulation
to 0.5 s, to ensure that steady-state operation is reached at the end of each simulation
run. Vary the load reference torque level from 80 � 10�3 to 0 � 10�3 Nm in five steps
and record the display readings. Rerun your simulation after each reference torque
change. Redo this tutorial for two different armature voltages, namely: ua D 17:5V
and ua D 15:0V. An example of the steady-state results obtained with the PLECS
simulation is given in Table 10.2.

The data obtained from these simulation runs should be compared against the
results calculated with the aid of the steady state analysis given in Sect. 10.5.
Calculate and plot the torque versus speed curves for the machine over a speed
range from 0 ! 2100 rpm with an armature voltage of ua D 20V, ua D 17:5V, and
ua D 15V, respectively. Build an M-file to show these performance curves and add
the steady-state torque versus speed data obtained from your PLECS simulations.

Figure 10.15 shows how your results should appear for the three armature voltage
levels chosen. Also shown in this figure by way of discrete data points, are the
results obtained via the PLECS model. The results confirm the qualitative analysis as
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Table 10.2 Steady-state results PLECS model with variable armature voltage

nm (rpm)

Tref (10�3 Nm) Te (10�3 Nm) Ua D 20:0V Ua D 17:5V Ua D 15:0V

80 80 1587.12 1335.83 1084.53

60 60 1692.93 1441.64 1190.34

40 40 1798.74 1547.44 1296.15

20 20 1904.55 1653.25 1401.96

0 0 2010.36 1759.06 1507.77

speed (rpm)
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Fig. 10.15 MATLAB results: torque/speed curves, varying armature voltage

indicated in Fig. 10.8. Observe that the gradient of the torque/speed characteristics
is NOT affected by changes to the armature voltage. The reason for this is that said
gradient is proportional to the square of the field flux and inversely proportional to
the armature resistance [see Eq. (10.7)].

An example of an M-file which can produce the results shown in Fig. 10.15 is as
follows:

M-file Code

%Tutorial 2, chapter 10
close all
clear all
%results from PLECS model (constant load)
Tem=[80 60 40 20 0];%mill-Nm
nm1=[1587.12 1692.93 1798.74 1904.55 2010.36]; %Ua=20
nm2=[1335.83 1441.64 1547.44 1653.25 1759.06]; %Ua=17.5
nm3=[1084.53 1190.34 1296.15 1401.96 1507.77]; %Ua=15
%steady-state analysis DC machine
%machine parameters
Ra=5; % armature resistance
La=7.35e-3; % armature inductance
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psif=95e-3; % PM field flux value
%%%%%%%%%%%%%%%%%%%%%%%%%%5
ua=[20 17.5 15]; % armature voltages
ns=[0:100:2100]; % speed points for plot
TeA=[];
for i=1:3,
ws=2*pi*ns/60; % speed in rad/s
Te=psif/Ra*ua(i)-psif^2/Ra*ws; % torque data
TeA=[TeA;Te];
end
%plot torque speed curves
plot(ns,TeA(1,:)*1000,’r’)
grid
hold on
plot(ns,TeA(2,:)*1000,’b’)
plot(ns,TeA(3,:)*1000,’g’)
legend(’ua= 20 V’,’ua= 17.5 V’,’ua= 15 V’)
plot(nm1,Tem,’*’)
plot(nm2,Tem,’*’)
plot(nm3,Tem,’*’)
axis([0 2100 0 100])
xlabel(’speed (rpm)’)
ylabel(’torque (mill-Nm)’)

10.6.3 Separately Excited Variable Field Conditions

For machines which carry a field winding the option is present to change the field
flux-linkage flux  f by altering the field current if. The machine used in this tutorial
section has a field which is provided by permanent magnets. Nevertheless it is
instructive to consider how the torque versus speed curves of this machine will
change as a result of increasing or decreasing the size of the magnets. The latter
implies that the flux-linkage  f will also change accordingly.

For this tutorial keep the armature voltage ua=17.5 V constant and vary the field
flux value. Consider three cases, namely  f D  m � 1:2,  f D  m, and  f D
0:8 �  m, respectively, where  m represents the PM flux of the “original” machine
as introduced in the previous two tutorials. An example of the steady-state results
obtained with the PLECS model is given in Table 10.3.

The torque versus speed curves for this part of the tutorial should again
be calculated using the theory presented in Sect. 10.5. The results from these
calculations should be of the form given in Fig. 10.16. Also shown in this figure are
the data points obtained via the PLECS model. The results according to Fig. 10.16
reinforce the quantitative analysis given in Sect. 10.5 and Fig. 10.9 in particular.
Clearly observable from Fig. 10.16 is that weakening the flux of the machine allows
operation at higher speeds for a given supply voltage.

The M-file which corresponds to this part of the tutorial is as follows:
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Table 10.3 Steady-state results PLECS model with variable field flux

nm (rpm)

Tref (10�3 Nm) Te (10�3 Nm)  f D 1:2 �  m  f D  m  f D 0:8 �  m

80 80 1171.98 1335.83 1536.55

60 60 1245.46 1441.64 1701.77

40 40 1318.94 1547.44 1867.00

20 20 1392.42 1653.25 2032.22

0 0 1459.90 1759.06 2197.44

speed (rpm)
0 500 1000 1500 2000 2500
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Fig. 10.16 MATLAB results: torque/speed curves, varying field flux

M-file Code

%Tutorial 3, chapter 10
close all
clear all
%results from PLECS model (constant load)
Tem=[80 60 40 20 0];%mill-Nm
nm1=[1171.98 1245.46 1318.94 1392.42 1465.90]; %psi_f=1.2*psi_m
nm2=[1335.83 1441.64 1547.44 1653.25 1759.06]; %psi_f=1.0*psi_m
nm3=[1536.55 1701.77 1867.00 2032.22 2197.44]; %psi_f=0.8*psi_m
%steady-state analysis DC machine
%machine parameters
Ra=5; % armature resistance
La=7.35e-3; % armature inductance
psim=95e-3; % PM field flux value
%%%%%%%%%%%%%%%%%%%%%%%%%%5
ua=17.5; % armature voltage
psif=[1.2 1.0 0.8]*psim; % flux values
ns=[0:100:2500]; % speed points for plot
TeA=[];
for i=1:3,
ws=2*pi*ns/60; % speed in rad/s
Te=psif(i)/Ra*ua-psif(i)^2/Ra*ws; % torque data
TeA=[TeA;Te];
end
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%plot torque speed curves
plot(ns,TeA(1,:)*1000,’r’)
grid
hold on
plot(ns,TeA(2,:)*1000,’b’)
plot(ns,TeA(3,:)*1000,’g’)
legend(’\psi_f= 1.2*\psi_m’,’\psi_f= 1.0*\psi_m’,’\psi_f= 0.8*\psi_m’)
plot(nm1,Tem,’*’)
plot(nm2,Tem,’+’)
plot(nm3,Tem,’d’)
axis([0 2500 0 100])
xlabel(’speed (rpm)’)
ylabel(’torque (mill-Nm)’)

10.6.4 Demo Lab 3: Voltage Controlled DC Drive

For this demonstration the LVACIMTR (EMsynergy) asynchronous machine which
was connected to the aft (furthest away from the USB connector) BOOSTXL-
DRV8301 module shown in Fig. 8.29 is replaced by the DC machine [11] introduced
in the tutorials above. A voltage controller is used [10] which can generate a variable
DC voltage supply. For this purpose, phases A and B of the aft boost converter are
combined to form the so-called H-bridge [10], which is also discussed in the next
chapter. This controller implemented in embedded software VisSim [14] is used in
Fig. 10.17, where the user is able to set the armature voltage via slider uA_ref. The
LVSERVOMTR (Teknic) PM machine is connected to the forward boost converter
and the resulting drive functions as a dynamometer for the DC machine. The
torque of this machine is controlled via slider Iq_ref. The drive setup was used
to measure the variables iArm (armature current) and nm (shaft speed) under load
conditions as discussed in tutorial 2 (see Sect. 10.6.2). The results derived from the
demonstration setup have been processed to show the shaft torque versus speed
for DC supply voltages of 20 V and 15 V, respectively. For comparison purposes

Fig. 10.17 VisSim [14] based “H-drive” Demonstration controller [10]
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Fig. 10.18 MATLAB results: shaft torque versus shaft speed characteristics

the theoretical steady-state torque/speed curves as calculated in tutorial 2 have also
been added. Note that the experimental drive has mechanical friction. This implies
that the DC machine must provide the torque needed to overcome this friction in
addition to any load imposed by the PM machine. The magnitude of the friction
torque present can be found by using the PM machine as a motor and adjusting the
slider Iq_ref to a value where the armature current reduces to zero. Under these
(constant speed) conditions the torque meter will show the friction torque which is
in this case approximately 20 � 10�3 Nm.

The following comments/observations of the results according to Fig. 10.18 can
be made:

• There is good agreement between the measured results (shown by discrete data
points “�”) and those calculated using a steady-state analysis.

• The “measured” torque was calculated using the measured armature current
which was then multiplied by the known magnet flux  m of the machine.

An overall conclusion is that the results derived with the DEMO lab confirm the
theoretical and simulated results shown and most importantly shown that the theory
introduced in this chapter is applicable to actual machines.



Chapter 11
Pulse Width Modulation and Current Control
for DC Drives

11.1 Introduction

In this chapter we will look at some basic drive implementations with a DC machine
as discussed in Sect. 10.4. Our aim is to arrive at generic models of all major drive
components (excluding the DC machine which has already been discussed) which
we can then transpose to a PLECS type environment in the tutorials at the end of
this chapter. A central topic of this chapter is the so-called pulse width modulation
(PWM) which is used to realize uni-polar and bipolar voltage control of converters.

In the sequel of the chapter a so-called model based current control algorithm
will be presented [2, 10, 12] which will allow precise torque control of the DC
machine used. The techniques described here are fundamental not only to the
DC machine but also to all the machines discussed in this book.

11.2 Single Phase Uni-Polar “Drive” Circuit

An elementary drive model as shown in Fig. 11.1 has almost the same structure as
the general drive model given in Fig. 1.2 on page 4. In this example the mechanical
“load” module has been removed. Furthermore, the power source is now shown
in a two-wire configuration (C; �) which is helpful here because a symbolic
implementation of the “converter” module is shown. The DC motor is represented
as an “R-L-ea” network as was discussed in Sect. 10.4 on page 285. The purpose
of the modulator is to control the converter switch shown in Fig. 11.1 on the
basis of a set-point given by the controller. A simple controller structure is also
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319-29409-4_11) contains supplementary material, which is available to authorized users.
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Fig. 11.1 Basic electrical drive

given in Fig. 11.1 which shows a micro-processor (�P or DSP), which is a digital
computational element that implements the control algorithm of the drive. The input
to the control module is the load current i .t/ which is obtained via a current sensor
which measures the load current, i.e., the armature current of the DC machine in
this case. A user input value i� is also shown which represents the reference current
level.

The aim of this drive circuit is to control the current in the motor in such
a way that the reference current value matches the actual load current under all
circumstances, i.e., transient as well as in steady state. A typical situation to be
discussed is to apply a step change to the reference current and our aim is to ensure
that the load current will match this step change, within the limits of the system. To
achieve this aim we will need to initially discuss in some detail the functioning of the
modules shown in Fig. 11.1. Afterwards we will develop a control structure which
can be implemented in the micro-processor (�P or DSP) as to realize our task.

11.2.1 Power Source

A DC voltage source is assumed here which has a value of uDC. The bottom side is
set to 0 V which means that the upper wire (red) shown in Fig. 11.1 has a potential of
uDC. The voltage source is “uni-polar” which means that there is only one voltage
level other than zero. At a later stage in this chapter we will replace the power
source by a bipolar power source which gives us a positive and a negative supply
voltage level with respect to 0 V. The term “uni-polar drive” reflects the ability to
operate with a variable but single positive supply value.

11.2.2 Converter Module

The converter module shown in Fig. 11.1 consists of a single two-way switch. In
reality such a switch is formed by two switches as shown in Fig. 11.2 which also
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Fig. 11.2 Half-bridge converter with single voltage supply

gives the power source module. The switches are controlled by two logic signals
Swt and Swb where logic 1 corresponds to a “closed” switch state and logic 0 to
an “open” switch state. In this case there are four possible switch combinations of
which states: Swt D 1 and Swb D 1 (both switches closed; “shoot-through” mode,
this state should always be avoided) and Swt D 0 and Swb D 0 (both switches open;
“idle” mode, normally used to disable the inverter output), both are not considered in
the following part. The remaining two states are: Swt D 1 and Swb D 0 (top switch
closed/bottom switch open) and Swt D 0 and Swb D 1 (top switch open/bottom
switch closed). In the first case (Swt D 1 and Swb D 0), the converter output
is connected to the positive supply line, i.e., u D uDC, while in the second case
Swt D 0 and Swb D 1, the output line is connected to the lower supply line, i.e.,
u D 0. The two switches can therefore in symbolic form be replaced by a single
two-way switch as shown in Fig. 11.1, where the logic signal Sw is used to control
its state. The state Sw D 1 corresponds to the switch in the “up” state, i.e., the output
voltage is given as u D uDC. As expected the switch state Sw D 0 corresponds to
the switch in the “down” state, i.e., the output voltage is given as u D 0.

11.2.3 Controller Module

Today, the controller is in most cases digital. This means that the analog input
variables, here in the form of the measured current i .t/ and user defined reference
current i� .t/, need to be converted to a digital form. We have therefore introduced
in Fig. 11.1 a new building block in the form of an “analog-digital” (A/D) converter.

The function of the unit is readily shown with the aid of Fig. 11.3. Figure 11.3
shows an input function x .t/ to the A/D converter. The diagram shows an example
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Fig. 11.3 A/D converter unit with example input/output waveforms

waveform together with a set of discrete time points tk�1, tk, and tkC1 where k can
be any integer value. The difference in time between any two time points is constant
and equal to the “sampling interval period” Ts. For drive systems the sampling
time is in the order of 100-�s, 1 ms. The output of the converter module is such
that at these time points the input is “sampled,” i.e., the output is then set equal
to the input value. Hence, at these “sampling points” the output changes to match
the instantaneous value found at the input of the converter. The output is therefore
held constant during the sampling time. For example, the output x .tk/ represents the
value of the input variable as sampled at the time mark tk.

The A/D units are used to sample the measured and reference current values.
These inputs, at for example tk, are then used by the micro-processor or DSP to
calculate an output variable known as the “reference average voltage per sample
U� .tk/,” which acts as an input to the modulator. We will define the variable U� .tk/
in the next section.

11.2.4 Modulator Module

The basic task of the modulator module is to control the switch or switches of the
converter module in such a way that the condition according to Eq. (11.1) is met
(within the constraint of this unit) for each sampling interval.

U� .tk/ D U .tk/ (11.1)



11.2 Single Phase Uni-Polar “Drive” Circuit 301

where U .tk/ is known as the average voltage per sample value which is defined as

U .tk/ D 1

Ts

Z tkCTs

tk

u .t/ dt (11.2)

The term u .t/ shown in Eq. (11.2) represents the instantaneous voltage across
the load (output from the converter) within a sample period in this case between
sample points tk; tkC1. We have in the past [see Eq. (2.7)] commented on the fact
that it is the incremental flux-linkage which controls the current in an inductance.
For electrical loads where the time constant 
 D L=R of the load is deemed to be
relatively large (as is normally the case for electrical machines) the incremental
current is given as

�i .tk/ Š U .tk/ Ts

L
(11.3)

Expression (11.3) is significant as it shows that in regularly sampled systems with
sampling time Ts the current change per sample is defined by the average voltage per
sample value U .tk/. Condition (11.1) in fact states that the modulator should set the
converter switches during each sampling interval in such a way as to ensure that the
reference average voltage per sample value at, for example, time tk (as provided by
the controller) matches the converter average voltage per sample value [as defined
by Eq. (11.2)].

We will now consider two basic “single edged” modulation strategies by
examining the converter average voltage per sample as a function of the switch
on/off time within a sample interval tk : : : tkC1. We will in the first instance make
use of the converter configuration as shown in Fig. 11.1.

The so-called rising edge type modulation strategy calls for the switch Sw to be
placed in the “up” (switch logical control level 1) position after a time tr measured
from the start of the sampling interval. The switch is placed in the “down” (switch
logical control level 0) position at the end of each sampling interval. An example of
the output voltage waveform which appears as a result of this modulation strategy
is given in Fig. 11.4 for the sampling interval tk : : : tkC1. Also shown in Fig. 11.4 is
the average voltage per sample value U.tk/ as a function of the rise time tr and the
switch state Sw of the converter. The variable tr can change between zero and Ts. For
a particular value tr we can evaluate the average voltage per sample value by making
use of Eq. (11.2) which in this case gives the function U .tr/ D uDC .1 � tr=Ts/, which
is illustrated in Fig. 11.4. It is noted that this function repeats each sample interval
and this gives us the possibility to find the required tr value for a given average
voltage per sample reference value.
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Fig. 11.4 Average voltage
per sample and output
waveforms: rising edge
modulation

The basic algorithm for finding the rise time tr is based on the use of Eq. (11.1).
Basically, we compare for each sample interval the required reference value with
the average voltage per sample function U .tr/ and move the converter switch to
the “up” position when the condition U� � U .tr/ is met. An example as given
in Fig. 11.5 shows two consecutive sampling intervals where the reference average
voltage per sample levels (as provided by the controller) is taken to be U� .tk�1/ and
U� .tk/, respectively. The switching point for the converter (which corresponds to
the required tr value) is identified by comparison with the U .tr/ function for each
sample interval. We note that the converter will provide the correct average voltage
per sample value which means that the modulator will achieve its aim.

A further two observations of Fig. 11.5 are of interest. Firstly, this modulator–
converter combination will provide an average voltage per sample value between
zero and uDC, which is why this converter topology is “uni-polar.” Secondly, the
required average voltage per sample value produced by the converter is realized by
adjusting the width of the output voltage pulse for each sample interval. This is why
this modulation strategy is known as PWM. So far, we have discussed a “single
rising edge” PWM scheme which operates with a uni-polar converter.

The so-called falling edge type PWM modulation strategy calls for the switch Sw
to be placed in the “up” (switch logical control level 1) position at the start of each
sampling interval and moved to its “down” (switch logical control level 0) position
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Fig. 11.5 Switch algorithm
for rising edge modulation

after a time tf (measured from the start of the sampling interval). An example of the
output voltage waveform which appears as a result of this modulation strategy is
given in Fig. 11.6 for the sampling interval tk : : : tkC1. Also shown in Fig. 11.6 is the
average voltage per sample value as a function of the fall time tf. This variable can
change between zero and Ts. For a particular value tf we can evaluate the average
voltage per sample by making use of Eq. (11.2), which in this case gives the function
U .tr/ D uDC tf=Ts which is also illustrated in Fig. 11.6 together with the switch Sw
sequence.

The algorithm for finding the time tf is again based on the use of Eq. (11.1).
Basically, we compare for each sample interval the required reference value with
the average voltage per sample function U

�
tf

�
and move the converter switch to

the “down” position when the condition U� < U
�
tf

�
is met. How this is achieved

is illustrated in Fig. 11.7, which shows two consecutive sampling intervals where
the reference average voltage per sample values (as provided by the controller) is
taken to be U� .tk�1/ and U� .tk/, respectively. The switching point for the converter
(which corresponds to the required tf value) is identified by comparison with the
U

�
tf

�
function for each sample interval. We note that the converter will provide

the correct average voltage per sample value which means that the modulator will
achieve its aim. Note that in this case we have discussed a “single falling edge”
PWM scheme which operates with a uni-polar converter. A generic implementation
of a “falling edge” PWM strategy is given in Fig. 11.8. Shown in Fig. 11.8 are two



304 11 Pulse Width Modulation and Current Control for DC Drives

Fig. 11.6 Average voltage
per sample and output
waveforms: falling edge
modulation

A/D modules which take the average voltage per sample reference value (from
the controller) and the measured uDC value from the converter module. We in
fact use this value as to allow us to adjust the converter switch or switches as
to accommodate voltage changes as will be discussed shortly. The sampled DC
voltage is multiplied by a “saw tooth” function which is in fact the U

�
tf

�
function

with the maximum value set to 1. We could have implemented this function directly
in the “function generator” module shown. However, the chosen implementation
allows us to take into consideration changes to the supply voltage uDC. A summation
module compares the voltage values and its output " is used by a so-called
comparator module. This is a new addition to our building block library and its
function is given by Eq. (11.4).

if " > 0 comparator output D 1 (11.4a)

if " � 0 comparator output D 0 (11.4b)

In our case the output of the comparator is known as Sw and drives the converter
switch. A logical level Sw D 1 moves the converter switch to the “up” position
and Sw D 0 sets it to the “down” position. It is left to the reader to consider how
Fig. 11.8 should be changed when a rising edge PWM strategy is to be implemented.

The modulator generic structure as given by Fig. 11.8 was specifically chosen to
allow changes to the supply voltage which (within limits) will not affect the ability
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Fig. 11.7 Switch algorithm
for falling edge modulation

Fig. 11.8 Generic model of
falling edge PWM

of the modulator/converter combination to meet condition (11.1). With the aid of
Fig. 11.9, we will show how the modulator/converter combination is able to cope
with a change in supply voltage. In this example, the average voltage per sample
reference U� is held constant. The supply voltage has been changed with time and
this is reflected by the sampled DC bus voltage, which in the second sample is
arbitrarily taken to be lower than in the first sample. The immediate effect is that
the average voltage per sample function U

�
tf

�
in the second sample will have a

lower gradient than in the first. The consequence of this is that the fall time for
the second sample is increased. Furthermore, the output waveform voltage in the
second sample is reduced (because the converter supply was lowered). What in fact
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Fig. 11.9 Falling edge PWM, with change of supply voltage

has occurred is that the modulator has increased the fall time in the second sample to
offset the reduced output voltage level of the converter. This means that the average
voltage per sample value delivered to the load remains unaffected by the supply
voltage change as long as the supply voltage is of sufficient magnitude.

At the conclusion of the discussion on single edged PWM we will look at an
important modulation strategy known as “double edged” PWM. This modulation
strategy combines the rising and falling edged PWM strategies into one. Basically
this new modulation strategy alternates between the two single edged PWM options
for every sample. For example, in the first sample we use rising edge PWM and
in the next we use falling edge PWM. How this operates in practice is shown in
Fig. 11.10. Two sample intervals are shown and in the first sample interval a rising
edged PWM strategy (as given in Fig. 11.5) is shown. In the second sample a falling
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Fig. 11.10 Double edged
PWM strategy, with a
uni-polar converter

edge strategy is shown (as given earlier in Fig. 11.7). The reference average voltage
per sample value for the second sample was arbitrarily set lower than the first
sample. Also shown in Fig. 11.10 is the switch Sw sequence for the double edged
PWM strategy. The generic module according to Fig. 11.8 is readily modified given
that the “saw tooth” generator is now replaced by a triangular function (of unity
amplitude). Several important observations are to be made with respect to this
modulation strategy.

Firstly, the fundamental frequency fmod of the new modulator is now changed
from 1=Ts to 1=2Ts, i.e., it is halved. Secondly, each so-called modulator period or
carrier-wave period 1=fmod consists of two samples. This type of PWM strategy
is in this text referred to as double edged PWM. However a variety of other
names are found in the literature, for example, “center-aligned PWM with double
update,” “symmetric PWM” (referring to the symmetrical carrier wave) and also
“asymmetrically sampled PWM” (referring to the sampling), or “sine-triangle
modulation.” It has been shown [4] that this type of modulation is superior to
single edged PWM strategies, due to its double update frequency and the fact that
the pulse’s center of gravity does not depend on its width (for a DC set-point).
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11.3 Half-Bridge Single Phase Bipolar Converter

The converter module shown in Fig. 11.1 consists of a single two-way switch, which
in reality is formed by two switches as was shown in Fig. 11.2, which also gives the
power source module.

The problem with the uni-polar circuit discussed in the previous section is that we
cannot change the sign of the average voltage per sample quantity delivered (each
sample) to the load. We can improve the situation by splitting the supply source uDC

and rearranging the two new supply sources as shown in Fig. 11.11. The load is in
this case connected between the converter midpoint, i.e., to both switches and the
0 V (neutral) point shown in Fig. 11.11. The switches are controlled by two logic
signals Swt and Swb where logic 1 corresponds to a closed switch state, similar to
the half bridge in Fig. 11.2. The only difference with the explanation in Sect. 11.2.2
is a shift in output voltage by uDC=2. For the half-bridge converter in Fig. 11.11, the
state Sw D 1 corresponds to the switch in the “up” state, i.e., the output voltage is
given as u D uDC=2. As expected the switch state Sw D 0 corresponds to the switch
in the “down” state, i.e., the output voltage is given as u D �uDC=2. A modulator
module with user input U�, which is the commanded average voltage per sample
value, controls both switches as will be discussed in the next section.

11.3.1 Modulation Strategy for the Half-Bridge Converter

Similar to the uni-polar modulator we can make a choice as to whether we use
a single or double edged PWM strategy. The double edged strategy is preferable
and will therefore be applied to this case. Note that the output waveforms will
now change during each sample as shown in Fig. 11.12. Furthermore, the average
voltage per sample versus rise and fall time must in this case be recalculated using

Fig. 11.11 Two-switch “half bridge” bipolar converter with power source and modulator
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Fig. 11.12 Double edged
PWM strategy, with
half-bridge converter

Eq. (11.2). Figure 11.12 shows two samples, which correspond to one modulator
period of operation. The first sample shows rising edge modulation and this means
that the converter sets the load voltage to u D �uDC=2 at the beginning of the sampling
interval and after a time interval tr the output voltage is changed to u D uDC=2. Use
of Eq. (11.2) allows us to find the average voltage per sample value versus rise time
function, which is in this case of the form U.tr/ D uDC=2 � uDC tr=Ts. In the second
sample a falling edge PWM strategy is used which means that the converter switches
the load voltage to u D uDC=2 at the beginning of the sample interval and after a time
interval tf it is switched to u D �uDC=2. Use of Eq. (11.2) allows us to find the average
voltage per sample value versus fall time function which is in this case of the form
U.tf/ D �uDC=2 C uDC tf=Ts. The combination of both rising and falling single edged
PWM strategies gives us the double edged PWM strategy. Also shown in Fig. 11.12
is the switch Sw state for the operating sequence shown. A comparison between
the reference incremental flux value and the flux versus rise or fall time gives us
the correct value for tr and tf, as to meet the condition as specified by Eq. (11.1)
for each sample. Bipolar output voltage capability enables negative output voltages,
but reduces the maximum positive output voltage in comparison with the uni-polar
case (assuming the same total DC supply voltage). One main reason not to use
bipolar half-bridge converters for low-frequency applications such as DC motors is
the fact that energy is not only moved from the supply to the load, but also from
the upper supply to the lower supply (the so-called supply-pumping). The always
present supply capacitors can handle the effect of an AC output voltage and current,
but low-frequency or DC output cannot be maintained by a half-bridge converter
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with a practical supply. For this reason most converters intended to drive DC loads
are of the full-bridge (H-bridge) type. The two DC supplies in the bipolar converter
needs to be able to handle bidirectional current flow especially when DC or low-
frequency outputs levels are required. Such supplies are uncommon, hence mostly
full-bridge or H-bridge converters are used.

11.4 Full-Bridge Single Phase Bipolar Converter

The problem with the half-bridge circuit discussed in the previous section is
the presence of a split DC power supply. We can improve the situation by
combining two half-bridge converters, which results in a so-called full- or H-bridge
configuration as shown in Fig. 11.13. The load is in this case connected between
the two half-bridge converter midpoints, i.e., between both switches. The switches
of each half bridge are controlled by two logic signals Swa;b

t and Swa;b
b where logic

1 corresponds to a closed switch state, similar to the half bridge in Fig. 11.2. For
each half-bridge converter in Fig. 11.13, a logic variable Swa;b is introduced which
is linked to the switch states. For example, Swa D 1 corresponds with switch state
Swa

t D 1 (hence closed) and switch state Swa
b D 0 (hence open). Likewise, Swb D 1

corresponds with switch state Swb
t D 1 (hence closed) and switch state Swb

b D 0

(hence open). When the states Swa D 1; Swb D 0 are active the output voltage is
equal to u D uDC. Alternatively states Swa D 0; Swb D 1 will ensure an output
voltage of u D �uDC hence bipolar operation is also possible with this converter,
without the need for a split DC supply. Finally the voltage across the load will be
zero for switch state combinations Swa D 0; Swb D 0 and Swa D 1; Swb D 1,
respectively. The two modulators (shown as separate modules for convenience)
control the half bridges and the average voltage per sample reference values U�

a ; U�
b

must be appropriately chosen to ensure that the required load average voltage per
sample value U� is realized.

Fig. 11.13 Four switch “full-bridge” bipolar converter with power source and modulators
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Fig. 11.14 Double edged PWM strategy, for full-bridge converter

11.4.1 Modulation Strategy for the Full-Bridge Converter

To understand the modulation of the full-bridge converter it is helpful to initially
consider one half bridge, whilst the other is idle (both switches open). For this
discussion will be assume the “left” half-bridge converter as active, whilst the
right converter is “idle.” A double edged modulation strategy is used, for which
the average voltage per sample functions must be recalculated using Eq. (11.2).
The half-bridge converter output voltages ua;b are defined relative to a DC voltage
uDC=2 for reasons which will become apparent at a later stage. Figure 11.14 shows
two samples, which correspond to one modulator period of operation. The first
sample shows rising edge modulation and this means that the half-bridge converter
sets the voltage to ua D �uDC=2 at the beginning of the sampling interval and
after a time interval tr (when U�

a .tk�1/ D Ua.tr/) the output voltage is changed to
ua D uDC=2. Use of Eq. (11.2) allows us to find the average voltage per sample value
versus rise time function, which is in this case of the form Ua.tr/ D uDC=2 � uDC tr=Ts.
In the second sample a falling edge PWM strategy is used which means that the
half-bridge converter switches the output voltage to ua D uDC=2 at the beginning of
the sample interval and after a time interval tf (U�

a .tk/ D Ua.tf/) it is switched to
ua D �uDC=2. Use of Eq. (11.2) allows us to find the average voltage per sample value
versus fall time function which is in this case of the form Ua.tf/ D �uDC=2C uDC tf=Ts.
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The combination of both rising and falling single edged PWM strategies gives us the
double edged PWM strategy. Also shown in Fig. 11.12 is the switch Swa state for
the half-bridge operating sequence discussed. A comparison between the reference
average voltage per sample value and the average voltage per sample function
Ua.tr/; Ua.tf/ gives the correct values for tr and tf, required to meet the condition
specified by Eq. (11.1) for each sample. This analysis undertaken with the “left”
half-bridge converter active can readily be undertaken for the case where the “right”
half-bridge converter is active and left converter “idle.” A subsequent analysis of
this scenario leads to the average voltage per sample functions Ub.tr/; Ub.tf/ and
corresponding switch state Swb as shown in Fig. 11.14.

When considering the operation of both half bridges together the question arises
how to choose the reference voltage per sample values U�

a ; U�
b relative to the

reference voltage per sample value U� that must be applied to the load shown in
Fig. 11.13. This issue may be addressed by considering the voltage across the load
u, which can be written as

u D ua � ub (11.5)

where ua; ub are the output voltages of the half-bridge converters. The corresponding
reference average voltage per sample output voltage U� can, with the aid of
Eqs. (11.5), (11.3), and (11.2), be written as

U� D U�
a � U�

b (11.6)

where U�
a ; U�

b are the reference voltage per sample value of the left and right half-
bridge converters. A detailed discussion on choosing the most appropriate values for
U�

a ; U�
b relative to the output average voltage per sample value U� is shown in our

book “Advanced Electrical Drives” [2], which leads to the following guidelines:

U�
a D 1

2
U� (11.7a)

U�
b D �1

2
U� (11.7b)

In the modulation example given in Fig. 11.14 the half-bridge reference value
was precisely chosen according to Eq. (11.7). Note also that the limit average volt-
age per sample outputs of a full-bridge converter is ˙uDC, which is double the value
possible with a single half-bridge converter. Furthermore, the voltage across the
load is now equal to ˙uDC pending the polarity of the reference average voltage
per sample value U�. When positive (as shown in Fig. 11.14) the output pulses will
be uDC, vice versa when a negative pulse amplitude �uDC will appear. Finally if the
reference average voltage per sample value U� is set to zero, the average voltage per
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sample of both half-bridge converters will be equal to uDC=2, which was the reason for
choosing the half-bridge converter output voltages ua; ub relative to said value (see
Fig. 11.13). Under these conditions the output voltage across the load will be zero.

11.5 Current Control Algorithm

For regularly sampled control systems as considered here we are able to derive
a simple controller structure which can be used to control the current in the DC
machine (in this case represented as an R-L-ea circuit). Central to our proposed
controller is the use of a modulator/converter combination which is designed to
deliver (in a given sampling interval Ts) an average voltage per sample quantity
U .tk/, which corresponds to the set-point (reference) U� .tk/ value provided by the
current control module. The task of the current control module is thus reduced to
determining this set-point (reference) average voltage per sample value on the basis
of the measured discretized load current i .tk/ and the set-point current value i�.

The nature of this control philosophy is shown with the aid of Fig. 11.15. Shown
in this figure are the non-sampled reference current i�.t/ and typical (for PWM
based control) converter current i.t/. These currents are sampled by the controller
at time marks 0; t1; t2; : : : ; etc. At time t D t1 a current error (between the sampled
reference and sampled converter current) i�.t1/ � i.t1/ is present and the objective
of the control approach is to determine the required average voltage reference value
needed to zero said error. This leads to the condition i�.t1/ D i.t2/.

The control objective aimed at driving the current error to zero during each
sample interval may be written as

i .tkC1/ D i� .tk/ (11.8)

Fig. 11.15 Model based current control [2]
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for a regularly sampled system with sampling time Ts. The modulator converter
module will ensure that the following condition is satisfied

U� .tk/ D
Z tkC1

tk

u .�/ d� (11.9)

where u represents the voltage across the load [see Fig. 11.1]. An observation of
Fig. 11.1 shows that the load voltage may be expressed as

u D Ri C L
di

dt
C ea (11.10)

which is precisely the differential equation used to represent the armature based
machine model (see Eq. (10.5)). For simplicity the armature “a” subscripts have
been removed and the variable ea D  mf!m is introduced. Use of Eq. (11.10) with
Eq. (11.9) allows the latter to be written as

U� .tk/ D R

Ts

tkCTsZ

tk

i .�/ d� C L

Ts

i.tkCTs/Z

i.tk/

di C 1

Ts

tkCTsZ

tk

ea .�/ d� (11.11)

Equation (11.11) forms the basis for determining a generic control structure that
is able to calculate the required average voltage per sample quantity capable
of satisfying condition (11.8). It is noted that this set-point value can only be
determined on the basis of a detailed knowledge of the load parameters R and L.

For a discrete (use of sampled data for processing via a micro-processor) type
controller considered here discretization of Eq. (11.11) is required. A first order
approximation technique can be used, provided that the sampling time is sufficiently
small, in which case the resistive term of (11.11) is reduced to

R

Ts

Z tkC1

tk

i .�/ d� Š R

2
.i .tkC1/C i .tk// (11.12)

The inductive term present in Eq. (11.11) can be directly evaluated which gives

L

Ts

Z i.tkC1/

i.tk/
di D L

Ts
.i .tkC1/� i .tk// (11.13)

The third term which contains the induced voltage (back-emf) is reduced to the form

1

Ts

Z tkC1

tk

ea .�/ d� Š ea .tk/ (11.14)
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where use is made of the fact that the voltage variations of ea .t/ are relatively small
within one sampling period. The reason being that such variations are linked to the
mechanical time constant of the machine.

The resultant reference average voltage per sample value is found by adding
together the three terms given in Eqs. (11.12)–(11.14) which upon use of (11.8)
gives

U�.tk/ Š R

2

�
i� .tk/C i .tk/

� C L

Ts

�
i� .tk/� i .tk/

� C ea .tk/ (11.15)

A further simplification is possible by rewriting the resistive term in Eq. (11.15) as

R

2

�
i� .tk/C i .tk/

� D R

2

�
i� .tk/ � i .tk/

� C R i .tk/ (11.16)

in which case the set-point average voltage per sample value is given as

U�.tk/ Š R i .tk/C
�

L

Ts
C R

2

� �
i� .tk/ � i .tk/

� C ue .tk/ (11.17)

A control structure based on Eq. (11.17) is basically a so-called proportional type
controller. In practice, a so-called proportional-integral type structure is preferable
and this may be achieved by rewriting the term R i .tk/ as

R i .tk/ Š R
jDk�1X

jD0

�
i�

�
tj
� � i

�
tj
��

(11.18)

which means that the current i .tk/ is composed of a series of difference terms as can
be observed from Fig. 11.15. Use of Eq. (11.18) with (11.17) leads to
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�
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�
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�
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(11.19)

In practical terms some further simplification can be applied by assuming that the
gain term .L=Ts C R=2/ can be reduced to �L=Ts. Furthermore Eq. (11.19) can also be
expressed in terms of a gain Kp D� L=Ts, bandwidth !i D R=L, and current error
term � .tk/ D .i� .tk/� i .tk// which leads to

U� .tk/ Š Kp

0
@� .tk/C !i

jDk�1X
jD0

� .tk/

1
A C ea .tk/ (11.20)
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Fig. 11.16 Model based
current controller structure

The generic structure which corresponds to Eq. (11.20) as shown in Fig. 11.16
contains a so-called PI (proportional-integral) controller and “feed-forward” term
ea .tk/. In practical implementations the PI controller in its current form is prone to
“windup” which occurs when the limits of a linear system are reached. Windup
can occur in this case when the reference average voltage value generated by
the PI controller exceeds the maximum value which can be delivered by the
converter. Under such circumstances a current error occurs at the input of the
controller which will cause the integrator output to ramp up or down. Practical
controllers have a “anti-windup” feature which limits integrator action when the user
defined limits are reached. In the tutorial section controllers with and without “anti-
windup” are introduced so that the reader can examine the impact of “anti-windup.”
A disadvantage of model based control is that a priori knowledge of the load is
required, which is not the case for the so-called hysteresis type current controllers
which are discussed (among others) in our text “Advanced Electrical Drives” [2].

11.6 Tutorials

11.6.1 Tutorial 1: “Rising” Edge PWM
with a Uni-Polar Converter

This tutorial considers a simple example which consists of a modulator, uni-polar
converter, and load in the form of an ideal inductance. A single “rising” edge type
modulator will be considered. The average voltage per sample value is taken to be
the input to the modulator. A sampled (discrete) system is assumed with a sampling
time Ts D 1ms. The supply voltage uDC is taken to be 300V. Furthermore, the load
inductance is set to L D 100mH. The aims are to build this system in PLECS in
order to analyze the converter output and verify that the converter is able to supply
an average voltage per sample value which is equal to the reference average voltage
per sample value. We then reduce (for the single edge PWM version) the supply
voltage to 200V and determine if the converter is still able to meet the reference
average voltage per sample value U�. The reference average voltage per sample
function is taken to be of the form U� D 100V� sin!t where ! D 100� rad/s.
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Fig. 11.17 PLECS model of uni-polar converter with “rising” edged PWM

Figure 11.17 shows a PLECS implementation of a model which addresses the
requirements of this tutorial. The Sine Wave module produces the reference
average voltage per sample value U�, which is then fed to an A/D converter. In
PLECS this module is found in the discrete library and called a “zero order hold”
ZOH. In this (and others of the same type) module set the sampling time to 1.0 ms.
The Triangular Wavemodule is found under “Sources” and within this module
set in the entry “Frequency values” the value 1000 Hz and ‘Maximum signal value’
to 1.0 V. In addition, set the “Duty cycle” value to 0. This in effect sets up the
modulator saw-tooth function as shown in Fig. 11.8 for “rising” edge PWM. The
output of this module is multiplied by uDC. An A/D unit is used to sample the uDC

value from the converter (output u_DC) in order to obtain uDC .tk/. A summation
unit takes the reference and modulator average voltage per sample values and
produces an input � for the comparator. In PLECS a Comparator (found in the
“Discontinuous” library) is used. The output of the comparator module is connected
via a Manual Switch to the two switches S1 and S2 of the converter. Attached
to the converter is an ideal inductance L together with a set of voltage/current
measurement probes Vm1, Vm2, and Am1. Also shown in Fig. 11.17 is a PLECS
module Sawtooth PWM which is a “standard library module” that is configured
to generate the same control input for the converter as the set of modules shown in
the “Modulator” window. At a later state use will be made of the library modulators
hence at that stage the user can verify (with the aid of the manual switch) that the
output of the library and discrete modulator produce identical results.

Set the “simulation parameters” to an initial run time of 5 ms (five samples) and
test your PLECS model step by step. Consider first the reference average voltage per
sample value before and after the A/D unit by adding a “Multiplexer” and “scope”
and plot the result. An example as to the waveform you should see is given in
Fig. 11.18a. The “blue” line represents the reference average voltage per sample
variable U�, the “red” line is the sampled version of this function.
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Fig. 11.18 PLECS results: uni-polar converter, uDC D 300

Next observe the modulator average voltage per sample U_carrier and
sampled reference average voltage per sample U_sample an example of which
is given in Fig. 11.18b. The “green” plot is the modulator output U.t/ and the
“red” waveform is the sampled reference average voltage per sample. Check
(by calculating the voltage time area within the sample interval) for one sample
if the average voltage per sample produced by the converter is equal to the reference
value.

Add the electrical converter components, measurement probes, and L D 100mH
inductance to the PLECS model and rerun your simulation. Observe the converter
voltage (divided by 100, to view the result with the other outputs) and current
waveforms together by adding a “multiplexer” and Scope. An example of the
converter voltage and current waveforms (processed via Matlab) is given in
Fig. 11.18c. The current change will occur as a result of a converter output pulse,
the area of which (being the average voltage per sample times Ts) will (for a given
value of the load inductance) determine the amplitude of the variation as shown in
Fig. 2.3. Note that the results shown in Fig. 11.18 could also have been generated
using the PLECS library modulator Sawtooth PWM module (see Fig. 11.17) and
using the manual switch to connect its output to the converter.
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Fig. 11.19 PLECS results: uni-polar converter, uDC D 200 and “rising edge” PW

We now look at the effect of changing the DC supply voltage level by changing
UDC from 300 to 200 V. Make this change in the PLECS model (using DC
source u_dc) and rerun the simulation. Observe and plot the inductance current
together with the converter voltage u=100. An example of the new waveforms
is given in Fig. 11.19c. A comparison between Figs. 11.18c and 11.19c shows
that the current waveform (shown in “red”) is unaffected (in terms of the current
step which takes place for each sample) by the change, which is precisely what
should happen as shown in Fig. 11.9 (where use was made of “falling edge”
PWM). The converter output voltage amplitude is reduced but the modulator carrier
waveform u_carrier amplitude is also reduced as can be observed by comparing
Figs. 11.18b and 11.19b. This in turn implies that the width of the output pulses will
be increased given the same sampled average voltage per sample reference function
is used.

It is left as an exercise to the reader to consider to reconfigure the tutorial to
“falling” edge PMW. Hint: this can be realized by setting the “duty cycle” to 1 in
the Triangular Wave module dialog box and choosing the option “rising” in
the “Ramp” dialog box of the Sawtooth PWM module.



320 11 Pulse Width Modulation and Current Control for DC Drives

0

Sine Wave

Triangular Wave

+
-

Comparator

ZOH

A/D

ZOH

A/D1

+
−

*
*

S1

S2

u_dc/2

L VVm1
A

Am1
NOT

V

Vm2

*
/

Divide

u_dc/2_

1/2

Gain

Symmetrical PWM

sm

U_carrier

U_DCdiv2

Manual Switch

Scope

U_sample

U_carrier

K

U_sample

U_sample

U_DCdiv2

Fig. 11.20 PLECS model of bipolar half-bridge converter with double edged PWM

11.6.2 Tutorial 2: “Double” Edged PWM
with a Half-Bridge Converter

In this tutorial we will look at building/analyzing a double edged PWM with the
so-called asymmetrical sampling. The modulator will be connected to a bipolar half-
bridge converter which in turn is connected to an inductive load.

The PLECS model according to Fig. 11.17 must now be modified in terms of
the modulator and converter configuration. The revised simulation model shown in
Fig. 11.20 contains a new Triangular Wave module which is located within
the modulator window. In the dialog box of the Triangular Wave module set
the “frequency” to 500 Hz, which is half the sampling frequency used in this (and
previous) two tutorials. The dialog settings for “maximum” and “minimum” signals
values should be set to 1 and �1, respectively. Furthermore, the measured DC bus
voltage attenuated by a factor 2 (shown as variable u_DCdiv2) is multiplied by the
output of the triangular module which leads to the carrier waveform U_carrier.
The maximum and minimum values of this variable are set to uDC=2 and �uDC=2 which
are the limit average voltage per sample value that can be realized with a half-bridge
converter.

On the converter side a configuration change needs to be made where the
inductance, arbitrarily set to L D 200mH, is now connected to midpoint between
the two DC supply modules as shown in Fig. 11.20. Each supply source is set to
150V, hence the total bus voltage is equal to 300 V, as also used in the previous
two cases. The sinusoidal reference average voltage per sample function (with the
same frequency and amplitude used earlier) is also used for this tutorial. However
change the run time for this PLECS simulation to 10 ms. Typical results which
should appear after running the simulation and processing the results via Matlab are
shown in Fig. 11.21. Note that the results shown in Fig. 11.21 could also have been
generated by the PLECS library module Symmetrical PWM (see Fig. 11.20) and
selecting sample option: “regular” (double edged) in the dialog box of this module.
The manual switch (also shown in Fig. 11.20) allows the user to either use the
discretely build modulator or the PLECS library module.
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Fig. 11.21 PLECS results: bipolar half-bridge converter, uDC D 300

11.6.3 Tutorial 3: “Double” Edged PWM
with a Full-Bridge Converter

The purpose of the tutorial is to examine operation of a full-bridge converter using
double edged asymmetrical pulse width modulation as introduced in the previous
PLECS model (see Fig. 11.20). This implies that the PLECS module according to
Fig. 11.20 must be modified in terms of the modulator and converter configuration
according to the theory discussed in Sect. 11.4. For this tutorial both load and
reference average voltage per sample function are assumed to be identical to those
used for the half-bridge tutorial.

The revised simulation model shown in Fig. 11.22 shows a set of four switches
S1–s4 which are configured for full-bridge operation. The 200 mH inductive load
L is now connected between the midpoints of the two half-bridge converters.
Both half-bridge converters must now be controlled via two logic variables sw_a
and sw_b which must be generated via the discrete modulator or the PLECS
library module Symmetrical PWM. A Manual Switch is used so that the user
can select either modulator. Observation of the discrete modulator shows that an
additional set of modules have been introduced, which makes use of the reference
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Fig. 11.22 PLECS model of full-bridge converter with double edged PWM

average voltage per sample variables U_a and U_b. These variables are in turn
linked to the sampled reference average voltage per sample variable U_sample.
The outputs of the two comparator modules have been combined into a single
column matrix given that the PLECS library module also provides such a vector.
Inputs to the latter mentioned module is a vector which is formed by the variables
U_a and U_b.

The supply source u_dc should be set to 300V, hence the bus voltage is equal
to that used in the previous two tutorial examples. The sinusoidal reference average
voltage per sample function (with the same frequency and amplitude used earlier) is
also used for this tutorial. However change the run time for this PLECS simulation
to 20 ms which implies that one full period of operation is now considered. Typical
results which should appear after running this simulation and processing the results
using Matlab should be according to Fig. 11.23. Subplot Fig. 11.23a shows the
reference average voltage per sample waveform together with its sampled version
(shown as U_sample in the PLECS diagram). Observation of subplot Fig. 11.23b
reveals the carrier waveform (shown as U_carrier in the PLECS diagram)
together with the reference average voltage per sample waveforms for the two
half-bridge converters (shown as U_a and U_b in the PLECS diagram). Finally
subplot Fig. 11.23c shows the voltage across the load (attenuated by a factor 100)
and the current through the inductance. Note that said current at time t D 10:0ms
is precisely the same value as found with the half bridge in the previous tutorial
(see Fig. 11.21). This is to be expected, as the same reference signal is used in both
tutorials. Note also that the peak load voltage amplitude is now 300 V which is
double the value found in the half-bridge converter. Furthermore the amplitude of
the output voltage changes polarity when the reference average voltage per sample
value becomes negative.
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Fig. 11.23 PLECS results: bipolar full-bridge converter, uDC D 300V

11.6.4 Tutorial 4: “Model Based” Current Control
with R-L Type Load

The aim is to analyze a “model based” type current PI controller with a full-bridge
converter and modulator (from the PLECS “modulator” library) discussed in the
previous tutorial. A “discrete” PI controller is to be used which will deliver the
required reference average voltage per sample value to the modulator needed to
control the current in the load.

The load is taken to be a resistance R D 5� and inductance L D 7:35mH
(series connected) which are the parameters of the “Erik” DC machine introduced
in the previous chapter (see Table 10.1). This machine will also be used for the next
tutorial and demonstration (proof of concept) laboratory given at the end of this
chapter. A sampling frequency of 15 kHz is used, which corresponds to a sampling
time of Ts D 66:66 �s. The supply voltage for the converter is set to uDC D 24V.

An example of the PLECS model for this tutorial given in Fig. 11.24 shows
the H-bridge converter configuration, modulator Symmetrical PWM, and current
controller PI controller. All of the above, with exception of the current
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Fig. 11.24 PLECS model: modulator/converter with R/L load

controller, have been introduced in the previous tutorial (see Fig. 11.22). The load
for the converter is in this tutorial represented by a set of “control block” instead
of the “electrical blocks” used earlier. This implies the need to build an interface
between the “electrical” converter and “control block” based load. The latter is
realized by using the voltage probe Vm2 output which now acts as an input for the
load. The current output of the load is connected to a “controlled current source” I
that is connected between the midpoints of the two half-bridge converters. A current
probe Am1 provides a control signal representation of the “measured” load current,
as required by the current controller.

We will examine the performance of this system by making use of a
Pulse Generator module which provides a ˙1 A, 2 Hz square wave reference
current function shown as i_ref in the PLECS diagram. Set the run time of your
simulation to 0.6 s.

The PLECS model of the current controller given in Fig. 11.25 contains a discrete
integrator formed by a “summation block,” modules Delay1, Saturation,
and gain module wixTs. Input to the controller are the sampled reference and
measured currents shown as i_ref and i_meas, respectively. The difference
between these two variables [defined as � in Eq. (11.20)] is multiplied by a gain
factor P. The key dialog box entries for this current controller are the gain Kp and
bandwidth !i as introduced in Eq. (11.20). Note that the feed-forward term ea in
said equation is zero in this example. Henceforth these variables are defined by the
load inductance/resistance and sample frequency. The latter variable in the form of
the sampling time must also be set in the current controller dialog box together with
the limit output values set to ˙24V in this case. The two Saturation modules
shown in Fig. 11.25 limit the output voltage to the required value and also implement
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Fig. 11.25 PLECS model: PI controller
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Fig. 11.26 PLECS results: modulator/full-bridge converter with R-L load

the integrator “anti-windup” function of the controller. A detailed discussion on
discrete controller implementation is given in our book “Applied Control” [10].

An example of the results achieved with this simulation is shown in Fig. 11.26.
Subplot (a) shows the converter load voltage u.t/ together with the current controller
reference average voltage per sample output U�. Both reference current i� and actual
load current are shown in subplot (b), which confirms that correct current control
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has been achieved. An expanded view of subplots (a) and (b) for the time interval
49 ms ! 55 ms given in subplots (c) and (d) shows how the current controller
responds to a step change in the reference current. Observe that the output voltage of
the current controller is limited to 24 V, which is the maximum average voltage per
sample value that the full-bridge converter can deliver. When the reference current
is equal to the measured value, the current control output voltage is ˙5 V, which is
expected given the use of a 5� load resistance and ˙1 A current amplitude.

11.6.5 Tutorial 5: “Model Based” Current Control of a DC
Drive Using a Full-Bridge Converter

The aim of this tutorial is to simulate a DC motor drive, with model based current
control and a full-bridge converter. The DC motor model discussed in Sect. 10.6.1
on page 289 is to be used for this tutorial given that the drive setup used here
will be experimentally verified in the ensuing demonstration laboratory. Hence the
converter, sampling frequency, and DC bus voltage values used here must reflect
those that will be used in the demonstration setup.

The previous tutorial was already configured for this purpose, hence the only
change which needs to be made to the PLECS model shown in Fig. 11.24 is
with respect to the converter load. A PLECS implementation example of this
simulation given in Fig. 11.27 shows the DC motor Eriks_DC, current controller
PI controller, and full-bridge converter. In the demonstration setup the DC
motor is mechanically connected to a permanent magnet machine, hence the inertia
value used in the DC model must reflect the sum inertia of both machines.

Fig. 11.27 PLECS model: DC drive using model based current control and a full-bridge converter
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Furthermore, it is known from the previous demonstration example (see
Sect. 10.6.4) that the combined friction of the drive is �20 � 10�3 Nm, hence
a mechanical block Rotational Friction must be added to Fig. 11.27
to accommodate this load requirement for the DC motor. We will examine the
performance of this system by making use of a Triangular Wave module
which provides a ˙1 A, 2 Hz triangular wave reference current function. Set the run
time of your simulation to 2.0 s.

A typical set of results obtained after running the simulation should look like
those given in Fig. 11.28. These results, which have been processed via Matlab,
show operation over the time period 1.2 s ! 1.8 s, which reflects steady-state drive
operation. The following waveforms are shown in this diagram:

• Subplot (a): Voltage across the DC motor referred to as the “Armature voltage.”
This waveform consists of a set of converter pulses, as shown previously in
Fig. 11.26, subplot (c).

• Subplot (b): Measured DC motor current referred to as the “Armature current.”
This is a triangular waveform with a 2 A peak to peak current amplitude, in
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Fig. 11.28 PLECS results: DC drive using model based current control and a full-bridge converter
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accordance with the 2 Hz reference waveform provided to the current controller.
Note that this controller does not make use of the feed-forward term mentioned
in Eq. (11.20). The reason for this is that in most practical cases adding such
a term is likely to be counterproductive because this variable is derived from a
measured speed signal which typically has a noise component. Hence adding a
feed-forward term also implies injecting a noise source into the current controller
which tends to offset any anticipated dynamic performance improvements.

• Subplot (c): the shaft torque of the machine, which will also be a triangular
waveform, given that it is proportional to the armature current.

• Subplot (d): the shaft speed of the machine, which will be parabola shaped
curves, due to the fact that the shaft torque is a triangular waveform.

11.6.6 Demo 4: “Model Based” Current Control of a DC Drive
Using a Full-Bridge Converter

This demonstration laboratory aims to experimentally confirm the results derived
with the simulation model introduced in tutorial 4 (see Sect. 11.6.5). The Texas
Instruments LaunchpadXL [6] setup introduced earlier (see Fig. 8.29) is again
used here, with important difference that the LVACIMTR (EMsynergy) induc-
tion machine (“gray” motor) is now replaced by the DC machine [11] used
in Sect. 11.6.5. The LVSERVOMTR (Teknic) PM machine is now mechanically
connected to the DC machine, as its encoder will be used to measure the shaft speed.
For this demo the DC machine was connected to the aft (furthest away from the USB
connector) BOOSTXL-DRV8301 module shown in Fig. 8.29. Said module has three
half-bridge converters and for this purpose phases A and B are combined to form a
“H-bridge” converter.

The DC drive controller is implemented using real time embedded software
VisSim [14]. This software provides the user with the ability to construct any type
of controller using a set of building blocks that represent the controller and also
provides direct access to the attached hardware. The set of VisSim modules appli-
cable to this demo, given in Fig. 11.29, show a “current controller” module which
generates the two variables mA_ref and mB_ref that control the modulation of
the two half-bridge converters. Input to the current controller is a reference current
REF, which is generated by a 2 Hz triangular waveform generator. The amplitude
of this waveform is controlled by the variable Ampld_n which is set by the user
via a “slider.” The “current controller” module itself is directly based on the PLECS
model shown in Fig. 11.25. However implementation is undertaken in the so-called
fixed point format [10], an approach that is applied to the complete drive controller.
Furthermore, the sampling frequency for this controller is set to 15 kHz (as used in
tutorial 4). The module “ADC-PWM LaunchXL-069 BOOSTXL-2” controls the
PWM of the two half-bridge converters and also provides the low pass filtered
converter voltages u_A and u_B and currents i_A and i_B. The latter variables
are combined to form the variable iArm, which represents the measured “armature”
current.
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Fig. 11.29 VisSim [14] based “H-drive” with “model based” current control [10]

Fig. 11.30 “Run version” of VisSim [14] based “H-drive” demonstration controller with model
based current control [10]

Also shown in Fig. 11.29 is the module “Encoder speed/angle,” that is used to
process data from the attached shaft encoder. For this demo the scaled shaft speed
variable shaft_fe is used and subsequently displayed on a plot module.

The set of modules given in Fig. 11.29 must be compiled by VisSim, which
then generates a file demo-4_LaunchXLphCv2.out that is used by a VisSim
target module shown in Fig. 11.30. Attached to the target module is a slider which is
used to control the amplitude of the triangular reference current waveform. A scope
module is also present which shows the scaled armature current and shaft speed
during operation. The drive development approach briefly outlined above (and in
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Fig. 11.31 Results: shaft torque and shaft speed versus time waveforms

the previous demonstration laboratories) is used extensively in our book “Applied
Control” of Electrical Drives’ [10], hence the reader is referred to this text for further
guidance on this topic.

The results derived from the demonstration setup (via the Plot module) have
been processed via Matlab to show the shaft torque and shaft speed for a time
interval 0 ! 0.6 s. The following comments/observations of the results according
to Fig. 11.31 can be made:

• There is good agreement between the measured results and those derived via the
PLECS simulation model (see subplots (c) and (d) of Fig. 11.28).

• The “measured” torque was calculated using the measured armature current
which was then multiplied by the known magnet flux  m of the machine.

An overall conclusion is that the results derived with the DEMO lab validate the
theoretical and simulated results presented in this chapter.



Appendix A
Concept of Sinusoidal Distributed Windings

Electrical machines are designed in such a manner that the flux density distribution
in the airgap due to a single phase winding is approximately sinusoidal. This
appendix aims to make plausible the reason for this and the way in which this is
realized. In this context the so-called sinusoidally distributed winding concept will
be discussed.

Figure A.1 represents an ITF based transformer or IRTF based electrical machine
with a finite airgap g. A two-phase representation is shown with two n1 turn stator
phase windings . The windings which carry the currents i1’and i1“, respectively,
are shown symbolically. This implies that the winding symbol shown on the airgap
circumference represents the locations of the majority windings in each case, not
the actual distribution as will be discussed shortly. If we consider the “’” winding
initially, i.e., we only excite this winding with a current i1’, then the aim is to arrange
the winding distribution of this phase in such a manner that the flux density in the
airgap can be represented as B1’ D OB’ cos �. Similarly if we only excite the ““”
winding with a current i“, a sinusoidal variation of the flux density should appear
which is of the form B1“ D OB“ sin �. The relationship between phase currents and
peak flux density values is of the form B1’ D Ci1’; B1“ D Ci1“ where C is a
constant to be defined shortly. In space vector terms the following relationships hold

Ei1 D i1’ C ji1“ (A.1a)

EB1 D OB1’ C j OB1“ (A.1b)

Given that the current and flux density components are linked by a constant C it is
important to ensure that the following relationship holds, namely:

EB1 D CEi1 (A.2)
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Fig. A.1 Simplified ITF
model, with finite airgap, no
secondary winding shown

If, for example, the current is of the form Ei1 D Oi1ej	 then the flux density should
be of the form EB1 D C Oi1ej	 for any value of 	 and values of Oi1 which fall within
the linear operating range of the machine. The space vector components are in this
case of the form i1’ D Oi1 cos	, i1“ D Oi1 sin 	. If we assume that the flux density
distributions are indeed sinusoidal then the resultant flux density Bres in the airgap
will be the sum of the contributions of both phases namely

Bres .�/ D C Oi1 cos	„ ƒ‚ …
OB1’

cos � C C Oi1 sin 	„ ƒ‚ …
OB1“

sin � (A.3)

Expression (A.3) can also be written as Bres D C Oi1 cos .� � 	/which means that the
resultant airgap flux density is again a sinusoidal waveform with its peak amplitude
(for this example) at � D 	, which is precisely the value which should appear
in the event that expression (A.2) is used directly. It is instructive to consider
the case where 	 D !st, which implies that the currents i’andi“ are sinusoidal
waveforms with a frequency of !s. Under these circumstances the location within
the airgap where the resultant flux density is at its maximum is equal to � D !st.
A traveling wave exists in the airgap in this case, which has a rotational speed of
!s rad/s.

Having established the importance of realizing a sinusoidal flux distribution in
the airgap for each phase we will now examine how the distribution of the windings
affects this goal.

For this purpose it is instructive to consider the relationship between the flux
density in the airgap at locations �; � C�� with the aid of Fig. A.2. If we consider
a loop formed by the two “contour” sections and the flux density values at locations
�; �C��, then it is instructive to examine the sum of the magnetic potentials along
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Fig. A.2 Sectional view of phase winding and enlarged airgap

the loop and the corresponding MMF enclosed by this loop. The MMF enclosed
by the loop is taken to be of the form N� i, where N� represents all or part of the
“’” phase winding and i the phase current. The magnetic potentials in the “red”
contour part of the loop are zero because the magnetic material is assumed to
be magnetically ideal (zero magnetic potential). The remaining magnetic potential
contributions when we traverse the loop in the anti-clockwise direction must be
equal to the enclosed MMF which leads to

g

�0
B .�/ � g

�0
B .� C��/ D N� i (A.4)

Expression (A.4) can also be rewritten in a more convenient form by introducing the
variable n� D N�

��
which represents the phase winding distribution per radian. Use

of this variable with Eq. (A.4) gives

B .� C��/� B .�/

��
D ��0

g
n� i (A.5)

which can be further developed by imposing the condition �� ! 0 which allows
Eq. (A.5) to be written as

dB .�/

d�
D ��0

g
n� i (A.6)

The LHS of Eq. (A.6) represents the gradient of the flux density with respect to �.
An important observation of Eq. (A.6) is that a change in flux density in the airgap is
linked to the presence of a non-zero n� i term, hence we are able to construct the flux
density in the airgap if we know (or choose) the winding distribution n� and phase
current. Vise versa we can determine the required winding distribution needed to
arrive at, for example, a sinusoidal flux density distribution.
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Fig. A.3 Example: concentrated winding, N� D N

A second condition must also be considered when constructing the flux density
plot around the entire airgap namely

Z �

��
B .�/ d� D 0 (A.7)

Equation (A.7) basically states that the flux density versus angle � distribution along
the entire airgap of the machine cannot contain a non-zero average component.
Two examples are considered below which demonstrates the use of Eqs. (A.6) and
(A.7). The first example as shown in Fig. A.3 shows the winding distribution n�
which corresponds to the so-called concentrated winding. This means that the entire
number of “N” turns of the phase winding is concentrated in a single slot (per
winding half) with width ��, hence N� D N. The corresponding flux density
distribution is in this case trapezoidal and not sinusoidal as required.

The second example given by Fig. A.4 shows a distributed phase winding as often
used in practical three-phase machines. In this case the phase winding is split into
three parts [and three slots (per winding half), spaced � rad apart] hence, N� D N

3
.

The total number of windings of the phase is again equal to N. The flux density
plot which corresponds with the distributed winding is a step forward in terms of
representing a sinusoidal function. The ideal case would according to Eq. (A.6)
require a n� i representation of the form

n� i D g

�0

OB sin .�/ (A.8)

in which OB represents the peak value of the desired flux density function
B .�/ D OB cos .�/. Equation (A.8) shows that the winding distribution needs to
be sinusoidal. The practical implementation of Eq. (A.8) would require a large
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Fig. A.4 Example: distributed winding, N� D N
3

number of slots with varying number of turns placed in each slot. This is not
realistic given the need to typically house three-phase windings, hence in practice
the three slot distribution shown in Fig. A.4 is normally used and provides a flux
density versus angle distribution which is sufficiently sinusoidal.

In conclusion it is important to consider the relationship between phase flux-
linkage and circuit flux values. The phase circuit flux (for the “’” phase) is of the
form

�m’ D
Z �

2

� �
2

B .�/ d� (A.9)

which for a concentrated winding corresponds to a flux-linkage value  1’ D N�m’.
If a distributed winding is used then not all the circuit flux is linked with all the
distributed windings components in which case the flux-linkage is given as  1’ D
Neff�m’, where Neff represents the “effective” number of turns.
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