
 123

20th International Conference, FASE 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 1

02
02

AR
Co

SS
Marieke Huisman
Julia Rubin (Eds.)

Lecture Notes in Computer Science 10202

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marieke Huisman • Julia Rubin (Eds.)

Fundamental Approaches
to Software Engineering
20th International Conference, FASE 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017
Proceedings

123

Editors
Marieke Huisman
University of Twente
Enschede
The Netherlands

Julia Rubin
University of British Columbia
Vancouver, BC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54493-8 ISBN 978-3-662-54494-5 (eBook)
DOI 10.1007/978-3-662-54494-5

Library of Congress Control Number: 2017934067

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee

consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

January 2017 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

This book contains the proceedings of FASE 2017, the 20th International Conference
on Fundamental Approaches to Software Engineering, held in Uppsala, Sweden in
April 2017, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2017).

As usual for FASE, the contributions combine the development of conceptual and
methodological advances with their formal foundations, tool support, and evaluation on
realistic or pragmatic cases. As a result the volume contains regular research papers,
long tool papers, and short tool demo papers. The papers in this volume cover a wide
range of topics, such as program and system analysis, model transformations, con-
figuration and synthesis, graph modeling and transformation, software product lines,
test selection, and learning and inference. We hope that the community will find this
volume engaging and worth reading.

The contributions included have been carefully selected. For the second time, FASE
used a double-blind review process, as last year’s experiment was considered valuable
by authors and worth the additional effort of anonymizing the papers. We received 114
abstract submissions from 33 different countries, from which 91 full-paper submissions
materialized. All papers were reviewed by three experts in the field, and after intense
discussion, only 25 were accepted, giving an acceptance rate of 27%.

We thank the ETAPS 2017 organizers, Parosh Aziz Abdulla and his team, the
ETAPS publicity chair, Tarmo Uustala, and the ETAPS SC chair, Joost-Pieter Katoen,
for their support during the whole process. We thank all the authors for their hard work
and willingness to contribute. Last but not least, we thank all the Program Committee
members and external reviewers who invested time and effort in the selection process
to ensure the scientific quality of the program.

January 2017 Marieke Huisman
Julia Rubin

Organization

Program Committee

Jordi Cabot ICREA, Spain
Yuanfang Cai Drexel University, USA
Sagar Chaki Carnegie Mellon University, USA
Hana Chockler King’s College London, UK
Ewen Denney SGT/NASA Ames, USA
Bernd Fischer Stellenbosch University, South Africa
Milos Gligoric University of Texas at Austin, USA
Stefania Gnesi ISTI-CNR, Italy
Dilian Gurov KTH Royal Institute of Technology, Sweden
Mark Harman University College London, UK
Reiko Heckel University of Leicester, UK
Marieke Huisman University of Twente, The Netherlands
Valérie Issarny Inria Paris – Rocquencourt, France
Einar Broch Johnsen University of Oslo, Norway
Martin Leucker University of Lübeck, Germany
Antónia Lopes University of Lisbon, Portugal
Shiva Nejati University of Luxembourg, Luxembourg
Fabrizio Pastore University of Milano-Bicocca, Italy
Julia Rubin University of British Columbia, Canada
Bernhard Rumpe RWTH Aachen, Germany
Alessandra Russo Imperial College London, UK
Rick Salay University of Toronto, Canada
Ina Schaefer Technische Universität Braunschweig, Germany
Andy Schürr TU Darmstadt, Germany
Perdita Stevens University of Edinburgh, UK
Gabriele Taentzer Philipps-Universität Marburg, Germany
Dániel Varró McGill University, Canada, and Budapest University of

Technology and Economics, Hungary
Andrzej Wasowski IT University of Copenhagen, Denmark
Virginie Wiels ONERA, France

Additional Reviewers

Adam, Kai
Al-Sibahi, Ahmad Salim
Angarita, Rafael
Balliu, Musard
Basile, Davide

Baumann, Christoph
Bergmann, Gábor
Boniol, Frédéric
Bruce, Bobby
Butting, Arvid

Bürdek, Johannes
Canovas Izquierdo,

Javier Luis
Carnevali, Laura
Chemouil, David

Ciccozzi, Federico
Clarisó, Robert
D’Ausbourg, Bruno
Daniel, Gwendal
De Vink, Erik
Debreceni, Csaba
Decker, Normann
Dimovski, Aleksandar S.
Din, Crystal Chang
Eikermann, Robert
Enea, Constantin
Fantechi, Alessandro
Ferrari, Alessio
Franco, Juliana
Greene, Gillian
Greifenberg, Timo
Guanciale, Roberto
Gómez, Abel
Heim, Robert
Janota, Mikolas
Kautz, Oliver
Kluge, Roland
Knüppel, Alexander
Kulcsár, Géza
Kusmenko, Evgeny
Kästner, Christian
Lachmann, Remo

Lamo, Yngve
Leblebici, Erhan
Lity, Sascha
Luthmann, Lars
Mao, Ke
Markin, Grigory
Markov, Minko
Martins, Francisco
Martínez, Salvador
Mauro, Jacopo
Melgratti, Hernan
Melo, Jean
Nagy, András Szabolcs
Nassar, Nebras
Nemati, Hamed
Nesic, Damir
Nieke, Michael
Picazo-Sanchez, Pablo
Planas, Elena
Proenca, Jose
Pun, Ka I.
Raco, Deni
Roth, Alexander
Roux, Pierre
Santos, André
Scheffel, Torben
Schlatte, Rudolf

Schlie, Alexander
Schmitz, Malte
Schwarz, Oliver
Semeráth, Oszkár
Semini, Laura
Stanciulescu, Stefan
Stolz, Volker
Stümpel, Annette
Szárnyas, Gábor
T. Vasconcelos, Vasco
Tapia Tarifa, Silvia Lizeth
Ter Beek, Maurice H.
Thoma, Daniel
Thorn, Johannes
Tomaszek, Stefan
Tribastone, Mirco
van der Berg, Freark
Varro, Gergely
Vaupel, Steffen
von Wenckstern, Michael
Weckesser, Markus
Westman, Jonas
Whiteside, Iain
Wong, Peter
Xiao, Lu

X Organization

Contents

Learning and Inference

Should We Learn Probabilistic Models for Model Checking?
A New Approach and An Empirical Study . 3

Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang

Bordeaux: A Tool for Thinking Outside the Box. 22
Vajih Montaghami and Derek Rayside

Test Selection

Bucketing Failing Tests via Symbolic Analysis . 43
Van-Thuan Pham, Sakaar Khurana, Subhajit Roy,
and Abhik Roychoudhury

Selective Bisection Debugging . 60
Ripon Saha and Milos Gligoric

On the Effectiveness of Bug Predictors with Procedural Systems:
A Quantitative Study . 78

Cristiano Werner Araújo, Ingrid Nunes, and Daltro Nunes

Program and System Analysis

Inference and Evolution of TypeScript Declaration Files 99
Erik Krogh Kristensen and Anders Møller

Explicit Connection Actions in Multiparty Session Types. 116
Raymond Hu and Nobuko Yoshida

Change and Delay Contracts for Hybrid System Component Verification 134
Andreas Müller, Stefan Mitsch, Werner Retschitzegger,
Wieland Schwinger, and André Platzer

Precise Version Control of Trees with Line-Based Version Control Systems . . . 152
Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth

Graph Modelling and Transformation

StaticGen: Static Generation of UML Sequence Diagrams 173
Chris Alvin, Brian Peterson, and Supratik Mukhopadhyay

http://dx.doi.org/10.1007/978-3-662-54494-5_1
http://dx.doi.org/10.1007/978-3-662-54494-5_1
http://dx.doi.org/10.1007/978-3-662-54494-5_2
http://dx.doi.org/10.1007/978-3-662-54494-5_3
http://dx.doi.org/10.1007/978-3-662-54494-5_4
http://dx.doi.org/10.1007/978-3-662-54494-5_5
http://dx.doi.org/10.1007/978-3-662-54494-5_5
http://dx.doi.org/10.1007/978-3-662-54494-5_6
http://dx.doi.org/10.1007/978-3-662-54494-5_7
http://dx.doi.org/10.1007/978-3-662-54494-5_8
http://dx.doi.org/10.1007/978-3-662-54494-5_9
http://dx.doi.org/10.1007/978-3-662-54494-5_10

Inter-model Consistency Checking Using Triple Graph Grammars
and Linear Optimization Techniques . 191

Erhan Leblebici, Anthony Anjorin, and Andy Schürr

GTS Families for the Flexible Composition of Graph
Transformation Systems . 208

Steffen Zschaler and Francisco Durán

Symbolic Model Generation for Graph Properties . 226
Sven Schneider, Leen Lambers, and Fernando Orejas

Model Transformations

Traceability Mappings as a Fundamental Instrument
in Model Transformations . 247

Zinovy Diskin, Abel Gómez, and Jordi Cabot

Reusing Model Transformations Through Typing Requirements Models 264
Juan de Lara, Juri Di Rocco, Davide Di Ruscio, Esther Guerra,
Ludovico Iovino, Alfonso Pierantonio, and Jesús Sánchez Cuadrado

Change-Preserving Model Repair . 283
Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle

A Deductive Approach for Fault Localization in ATL
Model Transformations . 300

Zheng Cheng and Massimo Tisi

Configuration and Synthesis

OpenSAW: Open Security Analysis Workbench . 321
Noomene Ben Henda, Björn Johansson, Patrik Lantz, Karl Norrman,
Pasi Saarinen, and Oskar Segersvärd

Visual Configuration of Mobile Privacy Policies . 338
Abdulbaki Aydin, David Piorkowski, Omer Tripp, Pietro Ferrara,
and Marco Pistoia

Automated Workarounds from Java Program Specifications Based
on SAT Solving . 356

Marcelo Uva, Pablo Ponzio, Germán Regis, Nazareno Aguirre,
and Marcelo F. Frias

Slicing from Formal Semantics: Chisel . 374
Adrián Riesco, Irina Măriuca Asăvoae, and Mihail Asăvoae

XII Contents

http://dx.doi.org/10.1007/978-3-662-54494-5_11
http://dx.doi.org/10.1007/978-3-662-54494-5_11
http://dx.doi.org/10.1007/978-3-662-54494-5_12
http://dx.doi.org/10.1007/978-3-662-54494-5_12
http://dx.doi.org/10.1007/978-3-662-54494-5_13
http://dx.doi.org/10.1007/978-3-662-54494-5_14
http://dx.doi.org/10.1007/978-3-662-54494-5_14
http://dx.doi.org/10.1007/978-3-662-54494-5_15
http://dx.doi.org/10.1007/978-3-662-54494-5_16
http://dx.doi.org/10.1007/978-3-662-54494-5_17
http://dx.doi.org/10.1007/978-3-662-54494-5_17
http://dx.doi.org/10.1007/978-3-662-54494-5_18
http://dx.doi.org/10.1007/978-3-662-54494-5_19
http://dx.doi.org/10.1007/978-3-662-54494-5_20
http://dx.doi.org/10.1007/978-3-662-54494-5_20
http://dx.doi.org/10.1007/978-3-662-54494-5_21

EASYINTERFACE: A Toolkit for Rapid Development of GUIs for Research
Prototype Tools . 379

Jesús Doménech, Samir Genaim, Einar Broch Johnsen,
and Rudolf Schlatte

Software Product Lines

Family-Based Model Checking with mCRL2 . 387
Maurice H. ter Beek, Erik P. de Vink, and Tim A.C. Willemse

Variability-Specific Abstraction Refinement for Family-Based
Model Checking . 406

Aleksandar S. Dimovski and Andrzej Wąsowski

A Unified and Formal Programming Model for Deltas and Traits 424
Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan,
and Michael Lienhardt

Author Index . 443

Contents XIII

http://dx.doi.org/10.1007/978-3-662-54494-5_22
http://dx.doi.org/10.1007/978-3-662-54494-5_22
http://dx.doi.org/10.1007/978-3-662-54494-5_23
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_25

Learning and Inference

Should We Learn Probabilistic Models
for Model Checking? A New Approach

and An Empirical Study

Jingyi Wang1(B), Jun Sun1, Qixia Yuan2, and Jun Pang2

1 Singapore University of Technology and Design, Singapore, Singapore
jingyi wang@mymail.sutd.edu.sg, sunjun@sutd.edu.sg

2 University of Luxembourg, Luxembourg City, Luxembourg
{qixia.yuan,jun.pang}@uni.lu

Abstract. Many automated system analysis techniques (e.g., model
checking, model-based testing) rely on first obtaining a model of the
system under analysis. System modeling is often done manually, which
is often considered as a hindrance to adopt model-based system analy-
sis and development techniques. To overcome this problem, researchers
have proposed to automatically “learn” models based on sample system
executions and shown that the learned models can be useful sometimes.
There are however many questions to be answered. For instance, how
much shall we generalize from the observed samples and how fast would
learning converge? Or, would the analysis result based on the learned
model be more accurate than the estimation we could have obtained
by sampling many system executions within the same amount of time?
In this work, we investigate existing algorithms for learning probabilis-
tic models for model checking, propose an evolution-based approach for
better controlling the degree of generalization and conduct an empirical
study in order to answer the questions. One of our findings is that the
effectiveness of learning may sometimes be limited.

Keywords: Probabilistic model checking · Model learning · Genetic
algorithm

1 Introduction

Many system analysis techniques rely on first obtaining a system model. The
model should be accurate and often is required to be at a proper level of
abstraction. For instance, model checking [3,10] works effectively if the user-
provided model captures all the relevant behavior of the system and abstracts
away the irrelevant details. With such a model as well as a given property,
a model checker would automatically verify the property or falsify it with a
counterexample. Alternatively, in the setting of probabilistic model checking

This work was supported by NRF Award No. NRF2014NCR-NCR001-40.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 3–21, 2017.
DOI: 10.1007/978-3-662-54494-5 1

4 J. Wang et al.

(PMC, see Sect. 2) [3,5], the model checker would calculate the probability of
satisfying the property.

Model checking is perhaps not as popular as it ought to be due to the fact that
a good model is required beforehand. For instance, a model which is too general
would introduce spurious counterexamples, whereas the checking result based on
a model which under-approximates the relevant system behavior is untrustwor-
thy. In the setting of PMC, users are required to provide a probabilistic model
(e.g., a Markov chain [3]) with accurate probabilistic distributions, which is often
challenging.

In practice, system modeling is often done manually, which is both time-
consuming and error-prone. Worse, it could be infeasible if the system is a black
box or it is so complicated that no accurate model is known (e.g., the chemical
reaction in a water treatment system [35]). This is often considered by industry
as one hindrance to adopt otherwise powerful techniques like model checking.
Alternative approaches which would rely less on manual modeling have been
explored in different settings. One example is statistical model checking (SMC,
see Sect. 2) [33,41]. The main idea is to provide a statistical measure on the
likelihood of satisfying a property, by observing sample system executions and
applying standard techniques like hypothesis testing [4,13,41]. SMC is consid-
ered useful partly because it can be applied to black-box or complex systems
when system models are not available.

Another approach for avoiding manual modeling is to automatically learn
models. A variety of learning algorithms have been proposed to learn a variety
of models, e.g., [7,17,31,32]. It has been showed that the learned models can
be useful for subsequent system analysis in certain settings, especially so when
having a model is a must. Recently, the idea of model learning has been extended
to system analysis through model checking. In [9,23,24], it is proposed to learn
a probabilistic model first and then apply techniques like PMC to calculate
the probability of satisfying a property based on the learned model. On one
hand, learning is beneficial, and it solves some known drawbacks of SMC or
even simulation-based system analysis methods in general. For instance, since
SMC relies on sampling finite system executions, it is challenging to verify un-
bounded properties [29,39], whereas we can verify un-bounded properties based
on the learned model through PMC. Furthermore, the learned model can be used
to facilitate other system analysis tasks like model-based testing and software
simulation for complicated systems. On the other hand, learning essentially is a
way of generalizing the sample executions and there are often many variables.
It is thus worth investigating how the sample executions are generalized and
whether indeed such learning-based approaches are justified.

In particular, we would like to investigate the following research questions.
Firstly, how can we control the degree of generalization for the best learning
outcome, since it is known that both over-fitting or under-fitting would cause
problems in subsequent analysis? Secondly, often it is promised that the learned
model would converge to an accurate model of the original system, if the num-
ber of sample executions is sufficiently large. In practice, there could be only a

Should We Learn Probabilistic Models for Model Checking? 5

limited number of sample executions and thus it is valid to question how fast the
learning algorithms converge. Furthermore, do learning-based approaches offer
better analysis results if alternative approaches which do not require a learned
model, like SMC, are available?

In order to answer the above questions, we mainly make the following con-
tributions. Firstly, we propose a new approach (Sect. 4) to better control the
degree of generalization than existing approaches (Sect. 3) in model learning. The
approach is inspired by our observations on the limitations of existing learning
approaches. Experiment results show that our approach converges faster than
existing approaches while providing better or similar analysis results. Secondly,
we develop a software toolkit Ziqian, realizing previously proposed learning
approaches for PMC as well as our approach so as to systematically study and
compare them in a fair way. Lastly, we conduct an empirical study on compar-
ing different model learning approaches against a suite of benchmark systems,
two real world systems, as well as randomly generated models (Sect. 5). One
of our findings suggests that learning models for model checking might not be
as effective compared to SMC given the same time limit. However, the learned
models may be useful when manual modeling is impossible. From a broader
point of view, our work is a first step towards investigating the recent trend on
adopting machine learning techniques to solve software engineering problems.
We remark there are extensive existing research on learning non-probabilistic
models (e.g., [1]), which is often designed for different usage and is thus beyond
the scope of this work. We review related work and conclude this paper in Sect. 6.

2 Preliminary

In this work, the model that we focus on is discrete-time Markov chains
(DTMC) [3]. The reason is that most existing learning algorithms generate
DTMC and it is still ongoing research on how to learn other probabilistic models
like Markov Decision Processes [6,9,23,24,32]. Furthermore, the learned DTMC
is aimed for probabilistic analysis by methods like PMC, among others. In the
following, we briefly introduce DTMC, PMC as well as SMC so that we can
better understand the context.

astart c

b

d

0.98

0.01

0.01

0.5

0.5
0.9

0.1

Fig. 1. DTMC of egl protocol.

Markov Chain. A DTMC D is a triple
tuple (S, ıinit, T r), where S is a countable,
nonempty set of states; ıinit : S → [0, 1] is
the initial distribution s.t.

∑
s∈S ıinit(s) = 1;

and Tr : S × S → [0, 1] is the transi-
tion probability assigned to every pair of
states which satisfies the following condition:∑

s′∈S Tr(s, s′) = 1. D is finite if S is finite.
For instance, an example DTMC modelling
the egl protocol [21] is shown in Fig. 1.

A DTMC induces an underlying digraph
where states are vertices and there is an edge

6 J. Wang et al.

from s to s′ if and only if Tr(s, s′) > 0. Paths of DTMCs are maximal paths in
the underlying digraph, defined as infinite state sequences π = s0s1s2 · · · ∈ Sω

such that Tr(si, si+1) > 0 for all i ≥ 0. We write PathD(s) to denote the set of
all infinite paths of D starting from state s.

Probabilistic Model Checking. PMC [3,5] is a formal analysis technique for
stochastic systems including DTMCs. Given a DTMC D = (S, ıinit, T r) and a set
of propositions Σ, we can define a function L : S → Σ which assigns valuation of
the propositions in Σ to each state in S. Once each state is labeled, given a path
in PathD(s), we can obtain a corresponding sequence of propositions labeling
the states.

Let Σ� and Σω be the set of all finite and infinite strings over Σ respectively.
A property of the DTMC can be specified in temporal logic. Without loss of
generality, we focus on Linear Time Temporal logic (LTL) and probabilistic
LTL in this work. An LTL formula ϕ over Σ is defined by the syntax:

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2

where σ ∈ Σ is a proposition; X is intuitively read as ‘next’ and U is read
as ‘until’. We remark commonly used temporal operators like F (which reads
‘eventually’) and G (which reads ‘always’) can be defined using the above syntax,
e.g., Fϕ is defined as trueUϕ. Given a string π in Σ� or Σω, we define whether
π satisfies a given LTL formula ϕ in the standard way [3].

Given a path π of a DTMC, we write π |= ϕ to denote that the sequence
of propositions obtained from π satisfies ϕ and π �|= ϕ otherwise. Furthermore,
a probabilistic LTL formula φ of the form Pr��r(ϕ) can be used to quantify the
probability of a system satisfying the LTL formula ϕ, where ��∈ {≥,≤,=} and
r ∈ [0, 1] is a probability threshold. A DTMC D satisfies Pr��r(ϕ) if and only
if the accumulated probability of all paths obtained from the initial state of D
which satisfy ϕ satisfies the condition �� r. Given a DTMC D and a probabilistic
LTL property Pr��r(ϕ), the PMC problem can be solved using methods like the
automata-theoretic approach [3]. We skip the details of the approach and instead
remark that the complexity of PMC is doubly exponential in the size of ϕ and
polynomial in the size of D.

Statistical Model Checking. SMC is a Monte Carlo method to solve the prob-
abilistic verification problem based on system simulations. Its biggest advantage
is perhaps that it does not require the availability of system models [11]. SMC
works by sampling system behaviors randomly (according to certain underlying
probabilistic distribution) and observing how often a given property ϕ is satisfied.
The idea is to provide a statistical measure on the likelihood of satisfying ϕ based
on the observations, by applying techniques like hypothesis testing [4,13,41]. We
refer readers to [3,41] for details.

Should We Learn Probabilistic Models for Model Checking? 7

3 Probabilistic Model Learning

Learning models from sample system executions for the purpose of PMC has
been explored extensively in recent years [7,9,17,23,24,31,32]. In this section,
we briefly present existing model learning algorithms for two different settings.

3.1 Learn from Multiple Executions

In the setting that the system can be reset and restarted multiple times, a set
of independent executions of the system can be collected as input for learning.
Learning algorithms in this category make the following assumptions [23]. First,
the underlying system can be modeled as a DTMC. Second, the sampled system
executions are mutually independent. Third, the length of each simulation is
independent.

Let Σ denote the alphabet of the system observations such that each letter
e ∈ Σ is an observation of the system state. A system execution is then a finite
string over Σ. The input in this setting is a finite set of strings Π ⊆ Σ�. For any
string π ∈ Σ�, let prefix (π) be the set of all prefixes of π including the empty
string 〈〉. Let prefix (Π) be the set of all prefixes of any string π ∈ Π. The set of
strings Π can be naturally organized into a tree tree(Π) = (N, root, E) where
each node in N is a member of prefix (Π); the root is the empty string 〈〉; and
E ⊆ N × N is a set of edges such that (π, π′) is in E if and only if there exists
e ∈ Σ such that π · 〈e〉 = π′ where · is the sequence concatenation operator.

The idea of the learning algorithms is to generalize tree(Π) by merging the
nodes according to certain criteria in certain fixed order. Intuitively, two nodes
should be merged if they are likely to represent the same state in the underlying
DTMC. Since we do not know the underlying DTMC, whether two states should
be merged is decided through a procedure called compatibility test. We remark
the compatibility test effectively controls the degree of generalization. Different
types of compatibility test have been studied [7,20,30]. We present in detail the
compatibility test adopted in the AALERGIA algorithm [23] as a representative.
First, each node π in tree(Π) is labeled with the number of strings str in Π such
that π is a prefix of str . Let L(π) denote its label. Two nodes π1 and π2 in
tree(Π) are considered compatible if and only if they satisfy two conditions. The
first condition is last(π1) = last(π2) where last(π) is the last letter in a string π,
i.e., if the two nodes are to be merged, they must agree on the last observation
(of the system state). The second condition is that the future behaviors from π1

and π2 must be sufficiently similar (i.e., within Angluin’s bound [2]). Formally,
given a node π in tree(Π), we can obtain a probabilistic distribution of the next
observation by normalizing the labels of the node and its children. In particular,
for any event e ∈ Σ, the probability of going from node π to π · 〈e〉 is defined
as: Pr(π, 〈e〉) = L(π·〈e〉)

L(π) . We remark the probability of going from node π to
itself is Pr(π, 〈〉) = 1 − ∑

e∈Σ Pr(π, 〈e〉), i.e., the probability of not making any
more observation. The multi-step probability from node π to π · π′ where π′ =
〈e1, e2, · · · , ek〉, written as Pr(π, π′), is the product of the one-step probabilities:

8 J. Wang et al.

Pr(π, π′) = Pr(π, 〈e1〉) × Pr(π · 〈e1〉, 〈e2〉) × · · · × Pr(π · 〈e1, e2, · · · , ek−1〉, 〈ek〉)
(1)

Two nodes π1 and π2 are compatible if the following is satisfied:

|Pr(π1, π) − Pr(π2, π)| <
√

6ε log(L(π1))/L(π1) +
√

6ε log(L(π2))/L(π2) (2)

for all π ∈ Σ�. We highlight that ε used in the above condition is a parameter
which effectively controls the degree of state merging. Intuitively, a larger ε leads
to more state merging, thus fewer states in the learned model.

If π1 and π2 are compatible, the two nodes are merged, i.e., the tree is trans-
formed such that the incoming edge of π2 is directed to π1. Next, for any π ∈ Σ∗,
L(π1 · π) is incremented by L(π2 · π). The algorithm works by iteratively iden-
tifying nodes which are compatible and merging them until there are no more
compatible nodes. After merging all compatible nodes, the last phase of the
learning algorithms in this category is to normalize the tree so that it becomes
a DTMC.

3.2 Learn from a Single Execution

In the setting that the system cannot be easily restarted, e.g., real-world cyber-
physical systems. We are limited to observe the system for a long time and collect
a single, long execution as input. Thus, the goal is to learn a model describing
the long-run, stationary behavior of a system, in which system behaviors are
decided by their finite variable length memory of the past behaviors.

In the following, we fix α to be the single system execution. Given a string π =
〈e0, e1, · · · , ek〉, we write suffix (π) to be the set of all suffixes of π, i.e., suffix (π) =
{〈ei, · · · , ek〉|0 ≤ i ≤ k} ∪ {〈〉}. Learning algorithms in this category [9,31]
similarly construct a tree tree(α) = (N, root, E) where N is the set of suffixes of
α; root = 〈〉; and there is an edge (π1, π2) ∈ E if and only if π2 = 〈e〉 ·π1. For any
string π, let #(π, α) be the number of times π appears as a substring in α. A node
π in tree(α) is associated with a function Prπ such that Prπ(e) = #(π·〈e〉,α)

#(π,α) for
every e ∈ Σ, which is the likelihood of observing e next given the previous
observations π. Effectively, function Prπ defines a probabilistic distribution of
the next observation.

Based on different suffixes of the execution, different probabilistic distrib-
utions of the next observation will be formed. For instance, the probabilistic
distribution from the node 〈e〉 where e is the last observation would predict the
distribution only based on the last observation, whereas the node corresponding
to the sequence of all previous observations would have a prediction based the
entire history. The central question is how far we should look into the past in
order to predict the future. As we observe more history, we will make a better
prediction of the next observation. Nonetheless, constructing the tree completely
(no generalization) is infeasible and the goal of the learning algorithms is thus to
grow a part of the tree which would give a “good enough” prediction by looking
at a small amount of history. The questions are then: what is considered “good
enough” and how much history is necessary. The answers control the degree of
generalization in the learned model.

Should We Learn Probabilistic Models for Model Checking? 9

Algorithm 1. Learn PST

1: Initialize T to be a single root node representing 〈〉;
2: Let S = {σ|fre(σ, α) > ε} be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π′ be the longest suffix of π in T ;
5: (B) If fre(π, α) ·∑σ∈Σ Pr(π, σ) · log Pr(π,σ)

Pr(π′,σ)
≥ ε

add π and all its suffixes which are not in T to T ;
6: (C) If fre(π, α) > ε, add 〈e〉 · π to S for every e ∈ Σ if fre(〈e〉 · π, α) > 0;
7: end while

In the following, we present the approach in [9] as a representative of algo-
rithms proposed in the setting. Let fre(π, α) = #(π,α)

|α|−|π|−1 where |π| is the length
of π be the relative frequency of having substring π in α. Algorithm 1 shows
the algorithm for identifying the right tree by growing it on-the-fly. Initially, at
line 1, the tree T contains only the root 〈〉. Given a threshold ε, we identify the
set S = {π|fre(π, α) > ε} at line 2, which are substrings appearing often enough
in α and are candidate nodes to grow in the tree. The loop from line 3 to 7 keeps
growing T . In particular, given a candidate node π, we find the longest suffix
π′ in T at line 4 and if we find that adding π would improve the prediction of
the next observations by at least ε, π is added, along with all of its suffixes if
they are currently missing from the tree (so that we maintain all suffixes of all
nodes in the tree all the time). Whether we add node π into tree T or not, we
update the set of candidate S to include longer substrings of α at line 6. When
Algorithm 1 terminates, the tree contains all nodes which would make a good
enough prediction. Afterwards, the tree is transformed into a DTMC where the
leafs of tree(α) are turned into states in the DTMC (refer to [31] for details).

4 Learning Through Evolution

Model learning essentially works by generalizing the sample executions. The
central question is thus how to control the degree of generalization. To find the
best degree of generalization, both [9,23] proposed to select the ‘optimal’ ε value
using the golden section search of the highest Bayesian Information Criterion
(BIC) score. For instance, in [23], the BIC score of a learned model M , given
the sample executions Π, is computed as follows: log(PrM (Π)) − μ × |M | ×
log(|Π|) where |M | is the number of states in M ; Π is the total number of
observations and μ is a constant (set to be 0.5 in [23]) which controls the relative
importance of the size of the learned model. This kind of approach to optimize
BIC is based on the assumption that the BIC score is a concave function of the
parameter ε. Our empirical study (refer to details in Sect. 5), however, shows
that this assumption is flawed and the BIC score can fluctuate with ε.

In the following, we propose an alternative method for learning models based
on genetic algorithms (GA) [18]. The method is designed to select the best degree
of generalization without the assumption of BIC’s concaveness. The idea is that

10 J. Wang et al.

instead of using a predefined ε value to control the degree of generalization, we
systematically generate candidate models and select the ones using the principle
of natural selection so that the “fittest” model is selected eventually. In the
following, we first briefly introduce the relevant background on GA and then
present our approach in detail.

4.1 Genetic Algorithms

GA [18] are a set of optimization algorithms inspired by the “survival of the
fittest” principle of Darwinian theory of natural selection. Given a specific prob-
lem whose solution can be encoded as a chromosome, a genetic algorithm typi-
cally works in the following steps [12]. First, an initial population (i.e., candidate
solutions) is created either randomly or hand-picked based on certain criteria.
Second, each candidate is evaluated using a pre-defined fitness function to see
how good it is. Third, those candidates with higher fitness scores are selected
as the parents of the next generation. Fourth, a new generation is generated by
genetic operators, which either randomly alter (a.k.a. mutation) or combine frag-
ments of their parent candidates (a.k.a. cross-over). Lastly, step 2–4 are repeated
until a satisfactory solution is found or some other termination condition (e.g.,
timeout) is satisfied. GA are especially useful in providing approximate ‘optimal’
solutions when other optimization techniques do not apply or are too expensive,
or the problem space is too large or complex.

GA are suitable for solving our problem of learning DTMC because we view
the problem as finding an optimal DTMC model which not only maximizes
the likelihood of the observed system executions but also satisfies additional
constrains like having a small number of states. To apply GA to solve our prob-
lem, we need to develop a way of encoding candidate models in the form of
chromosomes, define operators such as mutation and crossover to generate new
candidate models, and define the fitness function to selection better models. In
the following, we present the details of the steps in our approach.

4.2 Learn from Multiple Executions

We first consider the setting where multiple system executions are available.
Recall that in this setting, we are given a set of strings Π, from which we can
build a tree representation tree(Π). Furthermore, a model is learned through
merging the nodes in tree(Π). The space of different ways of merging the nodes
thus corresponds to the potential models to learn. Our goal is to apply GA to
search for the best model in this space. In the following, we first show how to
encode different ways of merging the nodes as chromosomes.

Let the size of tree(Π) (i.e., the number of nodes) be X and let Z be the
number of states in the learned model. A way of merging the nodes is a function
which maps each node in tree(Π) to a state in the learned model. That is, it can
be encoded as a chromosome in the form of a sequence of integers 〈I1, I2, · · · , IX〉
where 1 ≤ Ii ≤ Z for all i such that 1 ≤ i ≤ X. Intuitively, the number Ii means
that node i in tree(Π) is mapped into state Ii in the learned model. Besides, the

Should We Learn Probabilistic Models for Model Checking? 11

Algorithm 2. Model learning by GA from multiple executions
input: tree(Π) and the alphabet Σ
output: A chromosome encoding a DTMC D
1: Let Z be |Σ|; Let Best be null;
2: repeat
3: Let population be an initial population with Z states;
4: Let generation be 1;
5: repeat
6: Let newBest be the fittest in population;
7: if newBest is fitter than Best then
8: Set Best to be newBest;
9: end if

10: for all fit pairs (p1, p2) in population do
11: Crossover (p1, p2) to get children C1 and C2;
12: Mutate C1 and C2;
13: Add C1 and C2 into population;
14: Remove (p1, p2) from population;
15: end for
16: generation ← generation + 1;
17: until generation > someThreshold
18: Z ← Z + 1;
19: until Best is not improved
20: return Best

encoding is done such that infeasible models are always avoided. Recall that two
nodes π1 and π2 can be merged only if last(π1) = last(π2), which means that
two nodes with different last observation should not be mapped into the same
state in the learned model. Thus, we first partition the nodes into |Σ| groups so
that all nodes sharing the same last observation are mapped to the same group
of integers. A chromosome is then generated such that only nodes in the same
group can possibly be mapped into the same state. The initial population is
generated by randomly generating a set of chromosomes this way. We remark
that in this way all generated chromosomes represent a valid DTMC model.

Formally, the chromosome 〈I1, I2, · · · , IX〉 represents a DTMC M =
(S, ıinit, T r) where S is a set of Z states. Each state s in S corresponds to a
set of nodes in tree(Π). Let nodes(s) denote that set. Tr is defined such that
for all states s and s′ in M ,

Tr(s, s′) =

∑
x∈nodes(s)

∑
e∈Σ|〈s,e〉∈nodes(s′) L(x · 〈e〉)

∑
x∈nodes(s) L(x)

(3)

The initial distributions ıinit is defined such that for any state s ∈ S, ıinit(s) =∑
x∈nodes(s) L(x)/L(〈〉).
Next, we define the fitness function. Intuitively, a chromosome is good if

the corresponding DTMC model M maximizes the probability of the observed
sample executions and the number of states in M is small. We thus define the
fitness function of a chromosome as: log(PrM (Π)) − μ × |M | × log|Π| where

12 J. Wang et al.

|M | is the number of states in M and |Π| is the total number of letters in
the observations and μ is a constant which represents how much we favor a
smaller model size. The fitness function, in particular, the value of μ, controls
the degree of generalization. If μ is 0, tree(Π) would be the resultant model;
whereas if μ is infinity, a model with one state would be generated. We remark
that this fitness function is the same as the formula for computing the BIC
score in [23]. Compared to existing learning algorithms, controlling the degree
of generalization in our approach is more intuitive (i.e., different value of μ has
a direct effect on the learned model). In particular, a single parameter μ is used
in our approach, whereas in existing algorithms [9,23], a parameter μ is used to
select the value of ε (based on a false assumption of the BIC being concave),
which in turn controls the degree of generalization. From a user point of view,
it is hard to see the effect of having a different ε value since it controls whether
two nodes are merged in the intermediate steps of the learning process.

Next, we discuss how candidate models with better fitness score are selected.
Selection directs evolution towards better models by keeping good chromosomes
and weeding out bad ones based on their fitness. Two standard selection strate-
gies are applied. One is roulette wheel selection. Suppose f is the average fitness
of a population. For each individual M in the population, we select fM/f copies
of M . The other is tournament selection. Two individuals are chosen randomly
from the population and a tournament is staged to determine which one gets
selected. The tournament is done by generating a random number r between
zero and comparing it to a pre-defined number p (which is larger than 0.5). If r
is smaller than p, the individual with a higher fitness score is kept. We refer the
readers to [18] for discussion on the effectiveness of these selection strategies.

After selection, genetic operators like mutation and crossover are applied
to the selected candidates. Mutation works by mapping a random node to a
new number from the same group, i.e., merging the node with other nodes with
the same last observation. For crossover, chromosomes in the current generation
are randomly paired and two children are generated to replace them. Following
standard approaches [18], we adopt three crossover strategies.

– One-point Crossover. A crossover point is randomly chosen, one child gets its
prefix from the father and suffix from the mother. Reversely for the other
child.

– Two-point Crossover. Two crossover points are randomly chosen, which results
in two crossover segments in the parent chromosomes. The parents exchange
their crossover segments to generate two children.

– Uniform Crossover. One child gets its odd bit from father and even bit from
mother. Reversely for the other child.

We remark that during mutation or crossover, we guarantee that only chromo-
somes representing valid DTMC models are generated, i.e., only two nodes with
the same last observations are mapped to the same number (i.e., a state in the
learned model).

The details of our GA-based algorithm is shown as Algorithm2. Variable Z
is the number of states in the learned model. We remark that the number of

Should We Learn Probabilistic Models for Model Checking? 13

states in the learned model M is unknown in advance. However, it is at least the
number of letters in alphabet Σ, i.e., when all nodes in tree(Π) sharing the same
last observation are merged. Since a smaller model is often preferred, the initial
population is generated such that each of the candidate models is of size |Σ|.
The size of the model is incremented by 1 after each round of evolution. Variable
Best records the fittest chromosome generated so far, which is initially set to be
null (i.e., the least fit one). At line 3, an initial population of chromosome with
Z states are generated as discussed above. The loop from line 5 to 17 then lets
the population evolve through a number of generations, during which crossover
and mutations take place. At line 18, we then increase the number of states in
the model in order to see whether we can generate a fitter chromosome. We
stop the loop from line 2 to 19 when the best chromosome is not improved after
increasing the number of states. Lastly, the fittest chromosome Best is decoded
to a DTMC and presented as the learned model.

Example. We use an example to illustrate how the above approach works.
For simplicity, assume we have the following collection of executions Π =
{〈aacd〉, 〈abd〉, 〈acd〉} from the model shown in Fig. 1. There are in total 10
prefixes of these execution (including the empty string). As a result, the tree
tree(Π) contains 10 nodes. Since the alphabet {a, b, c, d} has size 4, the nodes
(except the root) are partitioned into 4 groups so that all nodes in the same
group have the same last observation. The initial population contains a single
model with 4 states, where all nodes in the same groups are mapped into the
same state. After one round of evolution, models with 5 states are generated (by
essentially splitting the nodes in one group to two states) and evaluated with the
fitness function. The evolution continues until the fittest score does not improve
anymore when we add more states.

4.3 Learn from Single Execution

In the following, we describe our GA-based learning if there is only one system
execution. Recall that we are given a single long system observation α in this
setting. The goal is to identify the shortest dependent history memory that yields
the most precise probability distribution of the system’s next observation. That
is, we aim to construct a part of tree(α) which transforms to a “good” DTMC.
A model thus can be defined as an assignment of each node in tree(α) to either
true or false. Intuitively, a node is assigned true if and only if it is selected
to predict the next observation, i.e., the corresponding suffix is kept in the tree
which later is used to construct the DTMC model. A chromosome (which encodes
a model) is thus in the form of a sequence of boolean variable 〈B1, B2, · · · , Bm〉
where Bi represents whether the i-th node is to be kept or not. We remark that
not every valuation of the boolean variables is considered a valid chromosome.
By definition, if a suffix π is selected to predict the next observation, all suffixes
of π are not selected (since using a longer memory as in π predicts better) and
therefore their corresponding value must be false. During mutation and crossover,

14 J. Wang et al.

we only generate those chromosomes satisfying this condition so that only valid
chromosomes are generated.

A chromosome defined above encodes a part of tree(α), which can be trans-
formed into a DTMC following the approach in [31]. Let M be the corresponding
DTMC. The fitness function is defined similarly as in Sect. 4.2. We define the
fitness function of a chromosome as log(PrM (α)) − μ × |M | × log(|α|) where
PrM (α) is the probability of exhibiting α in M , μ is a constant that controls the
weight of model size, and |α| is the size of the input execution. Mutation is done
by randomly selecting one boolean variable from the chromosome and flip its
value. Notice that afterwards, we might have to flip the values of other boolean
values so that the chromosome is valid. We skip the discussion on selection and
crossover as they are the same as described in Sect. 4.2.

We remark that, compared to existing algorithms in learning models [9,23,
24], it is straightforward to argue that the GA-based approaches for model learn-
ing do not rely on the assumption needed for BIC. Furthermore, the learned
model improves monotonically through generations.

5 Empirical Study

The above mentioned learning algorithms are implemented in a self-contained
tool called Ziqian (available at [37], approximately 6 K lines of Java code). In
this work, since the primary goal of learning the models is to verify properties
over the systems, we evaluate the learning algorithms by checking whether we can
reliably verify properties based on the learned model, by comparing verification
results based on the learned models and those based on the actual models (if
available). All results are obtained using PRISM [22] on a 2.6 GHz Intel Core i7
PC running OSX with 8 GB memory. The constant μ in the fitness function of
learning by GA is set to 0.5.

Our test objects can be categorized in two groups. The first group contains
all systems (brp, lse, egl, crowds, nand, and rsp) from the PRISM benchmark
suite for DTMCs [21] and a set of randomly generated DTMC models (rmc)
using an approach similar to the approach in [36]. We refer the readers to [21]
for details on the PRISM models as well as the properties to be verified. For
these models, we collect multiple executions. The second group contains two
real-world systems, from which we collect a single long execution. One is the
probabilistic boolean networks (PBN), which is a modeling framework widely
used to model gene regulatory networks (GRNs) [34]. In PBN, a gene is modeled
with a binary valued node and the interactions between genes are expressed by
Boolean functions. For the evaluation, we generate random PBNs with 5, 8 and
10 nodes respectively using the tool ASSA-PBN [25]. The other is a real-world
raw water purification system called the Secure Water Testbed (SWaT) [35].
SWaT is a complicated system which involves a series of water treatments like
ultrafiltration, chemical dosing, dechlorination through an ultraviolet system,
etc. We regard SWaT as a representative complex system for which learning is
the only way to construct a model. Our evaluation consists of the following parts
(all models as well as the detailed results are available at [38]).

Should We Learn Probabilistic Models for Model Checking? 15

We first show that assumptions required by existing learning algorithms may
not hold, which motivates our proposal of GA-based algorithms. Existing learn-
ing algorithms [9,23] require that the BIC score is a concave function of ε in order
to select the best ε value which controls the degree of generalization. Figure 2
shows how the absolute value of BIC scores (|BIC|) of representative models
change with ε. It can be observed that this assumption is not satisfied and ε is
not controlling the degree of generalization nicely. For example, the |BIC| (e.g.,
for brp, PBN and egl) fluctuate with ε. Besides, we observe climbings of |BIC|
for lse when ε increases, but droppings for crowds, nand and rsp. What’s worse,
in the case (e.g., PBN) of learning from a single execution, if the range of ε
is selected improperly, it is very likely that an empty model (a tree only with
root 〈〉) is learned.

Fig. 2. How the absolute values of BIC score
change over ε.

Second, how fast does learning con-
verge? In the rest of the section,
we adopt absolute relative difference
(ARD) as a measure of accuracy of
different approaches. The ARD is
defined as |Pest − Pact|/Pact between
the precise result Pact and the esti-
mated results Pest, which can be
obtained by AA, GA as well as
SMC. A smaller ARD implies a bet-
ter estimation of the true probability.
Figure 3 shows how the ARD of dif-
ferent systems change when we grad-
ually increase the time cost from 30
seconds to 30 min by increasing the
size of training data. We remark that some systems (brp, egl, lse) are not applica-
ble due to different reasons. We can observe that GA converges faster and better
than AA. In general, both AA and GA converges to relatively accurate results
when we are given sufficient time. But there are also cases of fluctuation of
ARD, which is problematic, as in such cases, we would not know which result to
trust (given the different verification results obtained with different number of
sampled executions), and it is hard to decide whether we have gathered enough
system executions for reliable verification results.

Third, how accurate can learning achieve? We compare the accuracy of AA,
GA, and SMC for benchmark systems given the same amount of time in Fig. 4.
We remark that due to the discrimination of system complexity (state space,
variable number/type, etc.), different systems can converge in different speed.
For SMC, we adopt the statistical model checking engine of PRISM and select the
confidence interval method. We fix confidence to 0.001 and adjust the number
of samples to adjust time cost. We have the following observations based on
Fig. 4. Firstly, for most systems, GA results in more accurate results than AA
given same amount of time. This is especially true if sufficient time (20 m or
30 m) are given. However, it should be noticed that SMC produces significantly

16 J. Wang et al.

Fig. 3. Convergence of AA and GA over time. The numbers after the system of legends
are one kind of system configuration.

more accurate results. Secondly, we observe that model learning works well if the
actual model contains a small number of states. Cases like random models with 8
states (rmc-8) are good examples. For systems with more states, the verification
results could deviate significantly (like nand-20-3, rsp-11).

Among our test subjects, PBN and SWaT are representative systems for
which manual modelling is extremely challenging. Furthermore, SMC is not
applicable as it is infeasible to sample the executions many times for these sys-
tems. We evaluate whether we can learn precise models in such a scenario. Note
that since we do not have the actual model, we must define the preciseness of the
learned model without referring to the actual model. For PBN, following [34], we
use mean squared error (MSE) to measure how precise the learned models are.
MSE is computed as follows: MSE = 1

n

∑n
i=1(Ŷi − Yi)2 where n is the number

of states in PBN and Yi is the steady-state probabilities of the original model
and Ŷi is the corresponding steady-state probabilities of the learned model. We
remark that the smaller its value is, the more precise the learned model is. Table 1
shows the MSE of the learned models with for PBN with 5, 8, and 10 nodes
respectively. Note that AA and GA learn the same models and thus have the
same MSE, while GA always consumes less time. We can observe the MSEs are
very small, which means the learned models of PBN are reasonably precise.

For the SWaT system, we evaluate the accuracy of the learned models by
comparing the predicted observations against a set of test data collected from
the actual system. In particular, we apply steady-state learning proposed in [9]
(hereafter SL) and GA to learn from executions of different length and observe
the trends over time. We select 3 critical sensors in the system (out of 50),
named ait502, ait504 and pit501, and learn models on how the sensor readings
evolve over time. During the experiments, we find it very difficult to identify
an appropriate ε for SL in order to learn a non-empty useable model. Our GA-
based approach however does not have such problem. Eventually we managed to
identify an optimal ε value and both SL and GA learn the same models given the
same training data. A closer look at the learned models reveals that they are all

Should We Learn Probabilistic Models for Model Checking? 17

Fig. 4. The comparison of accuracy of AA, GA, and SMC given same amount of time,
which varies from 30 s to 30min. The horizontal-axis point represents a benchmark
system with certain configuration in Fig. 3.

first-order Markov chains. This makes sense in the way that sensor readings in
the real SWaT system vary slowly and smoothly. Applying the learned models to
predict the probability of the test data (from another day with length 7000), we
observe a very good prediction accuracy. We use the average prediction accuracy
for each observation P̄obs = P

1/|td|
td , where td is the test data and |td| is its length,

to evaluate how good the models are. In our experiment, the average accuracy of
prediction for ait502 and pit501 is over 0.97, and the number is 0.99 for ait504,
which are reasonably precise.

Last, there are some potential problems that may render learning ineffective.
One of them is the known problem of rare-events. For brp system, the prob-
ability of satisfying the given properties are very small. As a result, a system
execution satisfying the property is unlikely to be observed and learned from.
Consequently, the verification results based on the learned models are 0. It is
known that SMC is also ineffective for these properties since it is also based
on random sampling. Besides, learning doesn’t work when the state space of
underlying system is too large or even infinite. If there are too many variables
to observe (or when float/double typed variables exist), which induces a very
large state space, learning will become infeasible. For example, to verify the fair-
ness property of egl protocol, we need to observe dozens of integer variables.
Our experiment suggests that AA and GA take unreasonable long time to learn
a model, e.g., more than days. In order to apply learning in this scenario, we
thus have to apply abstraction on the sampled system executions and learn from
the abstract traces. Only by doing so, we are able to reduce the learning time
significantly (in seconds) and successfully verified the egl protocol by learning.

18 J. Wang et al.

Table 1. Results of PBN steady-state learning.

nodes # states trajectory

size

(×103)

time cost(s) MSE

(×10−7)

#

nodes

#

states

trajectory

size

(×103)

time cost(s) MSE

(×10−7)

SL GA SL GA

5 32 5 37.28 6.37 36.53 8 256 5 29.76 2.36 1.07

15 161.57 53.49 15.21 15 105.87 26.4 0.03

25 285.52 182.97

6.04

25 197.54 73.92 0.37

35 426.26 348.5

7.75

35 310.87 122.61 0.94

45 591.83 605.1

5.74

45 438.09 429.81 0.78

50 673.55 767.7

4.28

50 509.59 285.66 0.34

10 1024 5 902.69 266.74

1.78

10 1024 15 5340.54 2132.68 0.61

10 2772.56 1010.16

1.01

20 8477.24 3544.82 0.47

However, how to identify the right level of abstraction is highly non-trivial in
general and is to be investigated in the future. What’s more, there are other
complications which might make model learning ineffective. For the lse proto-
col, the verification results based on the learned models may deviate from actual
result for properties that show the probability of electing a leader in L rounds,
with a different value for L. While the actual result ‘jumps’ as L increases, the
result based on the learned model is smooth and deviates from actual results
significantly when L is 3, 4 or 5, while results based on SMC are consistent with
the actual results.

6 Conclusion and Related Work

In this work, we investigate the validity of model learning for the purpose of
PMC. We propose a novel GA-based approach to overcome limitations of existing
model learning algorithms and conducted an empirical study to systematically
evaluate the effectiveness and efficiency of all these model learning approaches
compared to statistical model checking over a variety of systems. We report
their respective advantages and disadvantages, potential applications and future
direction to improve.

This work is inspired by the work on comparing the effectiveness of PMC and
SMC [40] and the line of work on adopting machine learning to learn a variety
of system models (e.g., DTMC, stationary models and MDPs) for system model
checking, in order to avoid manual model construction [9,23,24]. Existing learn-
ing algorithms are often based on algorithms designed for learning (probabilistic)
automata, as evidenced in [1,7,8,17,30,31]. Besides the work in [9,23,24] which
have been explained in detail, this work is also related to the work in [32], which
learns continuous time Markov chains. In addition, in [6], learning algorithms
are applied in order to verify Markov decision processes, without constructing

Should We Learn Probabilistic Models for Model Checking? 19

explicit models. Our proposal on adopting genetic algorithms is related to work
on applications of evolutionary algorithms for system analysis. In [14], evolution-
ary algorithm is integrated to abstraction refinement for model checking. This
work is remotely related to work on SMC [33,41], some recent work on extending
SMC to unbounded properties [29,39]. Lastly, our work uses the PRSIM model
checker as the verification engine [22] and the case studies are taken from various
practical systems and protocols including [15,16,19,25–28].

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Angluin, D.: Identifying languages from stochastic examples (1988)
3. Baier, C., Katoen, J.P., et al.: Principles of Model Checking. MIT press, Cambridge

(2008). vol. 26202649
4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:

Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). doi:10.1007/11944836 25

5. Bianco, A., Alfaro, L.: Model checking of probabilistic and nondeterministic sys-
tems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). doi:10.1007/3-540-60692-0 70

6. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 8

7. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol.
862, pp. 139–152. Springer, Heidelberg (1994). doi:10.1007/3-540-58473-0 144

8. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. Informatique théorique et applications 33(1), 1–19
(1999)

9. Chen, Y., Mao, H., Jaeger, M., Nielsen, T.D., Guldstrand Larsen, K., Nielsen,
B.: Learning Markov models for stationary system behaviors. In: Goodloe, A.E.,
Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 216–230. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28891-3 22

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

11. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

12. Dyer, D.W.: Watchmaker framework for evolutionary computation. http://
watchmaker.uncommons.org

13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). doi:10.1007/3-540-46002-0 24

14. He, F., Song, X., Hung, W.N., Gu, M., Sun, J.: Integrating evolutionary computa-
tion with abstraction refinement for model checking. IEEE Trans. Comput. 59(1),
116–126 (2010)

http://dx.doi.org/10.1007/11944836_25
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/3-540-58473-0_144
http://dx.doi.org/10.1007/978-3-642-28891-3_22
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://watchmaker.uncommons.org
http://watchmaker.uncommons.org
http://dx.doi.org/10.1007/3-540-46002-0_24

20 J. Wang et al.

15. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). doi:10.1007/3-540-58085-9 75

16. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
17. De la Higuera, C.: Grammatical Inference, vol. 96. Cambridge University Press,

Cambridge (2010)
18. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press,

Cambridge (1992)
19. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.

88(1), 60–87 (1990)
20. Kermorvant, C., Dupont, P.: Stochastic grammatical inference with multinomial

tests. In: Adriaans, P., Fernau, H., Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI),
vol. 2484, pp. 149–160. Springer, Heidelberg (2002). doi:10.1007/3-540-45790-9 12

21. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings of 9th International Conference on Quantitative Evaluation of SysTems
(QEST 2012), pp. 203–204. IEEE CS Press (2012)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS
2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). doi:10.1007/
3-540-46029-2 13

23. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: 2011 Eighth International Confer-
ence on Quantitative Evaluation of Systems (QEST), pp. 111–120. IEEE (2011)

24. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.:
Learning markov decision processes for model checking. arXiv preprint (2012).
arXiv:1212.3873

25. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN: an approximate steady-state analyser
of probabilistic boolean networks. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 214–220. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 16

26. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating the reliability
of nand multiplexing with prism. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 24(10), 1629–1637 (2005)

27. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. J. Comput.
Secur. 14(6), 561–589 (2006)

28. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

29. Rohr, C.: Simulative model checking of steady state and time-unbounded temporal
operators. In: Koutny, M., Aalst, W.M.P., Yakovlev, A. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VIII. LNCS, vol. 8100, pp. 142–158.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40465-8 8

30. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic proba-
bilistic finite automata. In: Proceedings of the Eighth Annual Conference on Com-
putational Learning Theory, pp. 31–40. ACM (1995)

31. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)

32. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time markov chains
from sample executions. In: Proceedings of First International Conference on the
Quantitative Evaluation of Systems, QEST 2004, pp. 146–155. IEEE (2004)

http://dx.doi.org/10.1007/3-540-58085-9_75
http://dx.doi.org/10.1007/3-540-45790-9_12
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/3-540-46029-2_13
http://arxiv.org/abs/1212.3873
http://dx.doi.org/10.1007/978-3-319-24953-7_16
http://dx.doi.org/10.1007/978-3-319-24953-7_16
http://dx.doi.org/10.1007/978-3-642-40465-8_8

Should We Learn Probabilistic Models for Model Checking? 21

33. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 16

34. Shmulevich, I., Dougherty, E., Zhang, W.: From boolean to probabilistic boolean
networks as models of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792
(2002)

35. SUTD: Secure water treatment testbed. http://itrust.sutd.edu.sg/research/
testbeds/secure-water-treatment-swat/

36. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

37. Wang, J.: ziqian. https://bitbucket.org/jingyi wang/ziqian develop
38. Wang, J.: ziqian evaluation. https://bitbucket.org/jingyi wang/ziqian evaluation
39. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic

properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19829-8 10

40. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. Int. J. Softw. Tools Technol. Transf. 8(3), 216–228
(2006)

41. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 17

http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://dx.doi.org/10.1007/11591191_28
https://bitbucket.org/jingyi_wang/ziqian_develop
https://bitbucket.org/jingyi_wang/ziqian_evaluation
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/3-540-45657-0_17

Bordeaux: A Tool for Thinking Outside the Box

Vajih Montaghami(B) and Derek Rayside

Electrical & Computer Engineering, University of Waterloo, Waterloo, Canada
{vmontagh,drayside}@uwaterloo.ca

Abstract. One of the great features of the Alloy Analyzer is that it can
produce examples illustrating the meaning of the user’s model. These
inside-the-box examples, which are formally permissible but (potentially)
undesirable, help the user understand underconstraint bugs in the model.
To get similar help with overconstraint bugs in the model the user needs
to see examples that are desirable but formally excluded: that is, they
need to see outside-the-box (near-miss) examples. We have developed a
prototype extension of the Alloy Analyzer, named Bordeaux, that can
find these examples that are near the border of what is permitted, and
hence might be desirable. More generally, Bordeaux finds a pair of exam-
ples, a, c, at a minimum distance to each other, and where a satisfies
model A and c satisfies model C. The primary use case described is
when model C is the negation of model A, but there are also other uses
for this relative minimization. Previous works, such as Aluminum, have
focused on finding inside-the-box examples that are absolutely minimal.

1 Introduction

Examples can help people understand abstractions [1,6,22,23] such as models.
One of the great features of the Alloy Analyzer is that it can mechanically
generate examples of the user’s model (formula). These examples are inside-the-
box, meaning that they are consistent with the model. If the user deems the
generated example desirable then it affirms that the model is a true expression
of the user’s intent. If the user deems the generated example undesirable, then
it is a concrete representation of an underconstraint problem in the model: the
model needs to be tightened to exclude the undesirable example. The Alloy
Analyzer generates examples arbitrarily, without specifically targeting towards
either desirable or undesirable examples.

If the model has a partial overconstraint bug, then Alloy’s example genera-
tion facility is of limited assistance. A partial overconstraint bug means that
the model unintentionally excludes some examples that should be included.
Total overconstraint means that there are no examples that are consistent with
the model. Alloy’s unsatisfiable core feature highlights a subset of the model
that causes the total overconstraint. Partial overconstraint bugs are tricky to
detect [14], and currently have no explicit tool support in Alloy.

A facility for generating near-miss examples (i.e., outside-the-box examples)
might help the user diagnose partial overconstraint bugs. What the user might

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 22–39, 2017.
DOI: 10.1007/978-3-662-54494-5 2

Bordeaux: A Tool for Thinking Outside the Box 23

like to see is an example that is formally excluded by the model but which she
actually intends the model to include (i.e., is desirable). Cognitive psychologists
have found that near-miss examples revealing contrast are effective for human
learning [6].

A simple, if inconvenient, technique for generating outside-the-box examples
is to manually negate the model and use Alloy’s existing example generation
facility. But the chances of this technique generating examples that are desirable
is slim, since there are typically so many more examples outside the box than
inside the box. The chances of a near-miss example being desirable are higher,
because a near-miss example is similar to examples that are desirable.

We have developed a technique and prototype tool, named Bordeaux, for
doing relative minimization of examples. Given mutually inconsistent con-
straints, A and C, it will search for examples a and c, respectively, that are
at a minimum distance to each other (measured by the number of tuples added
or removed).

To find a near-miss example for A, simply set C to be the negation of A
and commence the relative minimization procedure. We say that a is a near-hit
example and that c is a near-miss example (both of A with respect to C).
The space between the near-hit and the near-miss is the border : there are, by
definition, no examples of either A or C on the border. Examples consistent with
either A or C must be within A or C and hence are not on the border. Therefore,
the distance of an example to the border cannot be assessed directly: only the
distance between the near-hit and the near-miss examples can be measured.

To further guide the search towards desirable near-miss examples, the
Bordeaux tool has an affordance for the user to specify which relations are
permitted to differ. Bordeaux uses Alloy∗ [9], which is an extension of Alloy
Analyzer, to solve formulas with higher-order quantifiers.

The experiments in Sect. 5 compare Bordeaux with Aluminum [13] and the
Alloy Analyzer version 4.2. Bordeaux does a better job of producing pairs of near-
hit and near-miss examples that are close to each other, with some computational
cost. In some cases the absolute minimization technique of Aluminum produces
results similar to the relative minimization technique of Bordeaux, but in other
cases the results differ significantly.

Based on observations of the experiments, we design and implement two
optimizations for Bordeaux in Sect. 6: scope tightening and parallelization. The
key observation is that, in practice, the near-hit and near-miss are usually very
close to each other. The optimizations reduce the computational cost of Bordeaux
by over an order of magnitude.

In the next section, we review related works and discuss how Bordeaux dif-
fers from similar tools. Section 3 sketches an illustrative example. In Sect. 4, we
define the concepts and formulas for finding near-hit and near-miss examples,
and discuss some other special cases of these formulas that might be interesting
for users. Section 5 demonstrates the experimental evaluation of Bordeaux and
its comparison with the state-of-the-art Alloy analysis tools. Two approaches to
optimize the prototype are described in Sect. 6. Section 7 concludes.

24 V. Montaghami and D. Rayside

2 Related Work

Both Nelson et al. [13] and Cunha et al. [4] have proposed techniques to guide
Alloy Analyzer’s example generation facility towards more interesting inside
examples. The stock Alloy Analyzer generates arbitrary inside examples, which
might or might not be interesting, and might or might not help the user discover
underconstraint bugs.

The Nelson et al. [13] extension of Alloy, called Aluminum, generates min-
imal inside examples. We say that this approach produces absolute minimum
examples, because it finds the smallest examples that satisfy a given model. By
contrast, our technique looks for relatively minimum pairs of examples: one inside
(near-hit) and the other outside (near-miss) that are at a minimum distance from
each other; they might not be absolutely minimal from Aluminum’s perspective.
Aluminum also has a facility for growing the minimal example, called scenario
exploration.

Cunha et al. [4] used PMax-SAT [3] to enhance Kodkod [21] to find examples
that are close to a target example. They discussed applications in data structure
repair and model transformation. Perhaps this technique could be modified to
replace our usage of Alloy∗ in Bordeaux.

When the model is completely overconstrained (i.e., inconsistent), then no
inside examples are possible. Shlyakhter et al. [19] enhanced Alloy to highlight
the unsatisfiable core of such models; Torlak et al. [20] further enhanced this
functionality. This tells the user a subset of the model (i.e., formula) that needs
to be changed, but does not give an example (because none are possible inside).

Browsing desirable outside examples might help the user understand what is
wrong with the model [1]. In an empirical user study, Zayan et al. [23] evaluated
the effects of using inside and outside examples in model comprehension and
domain knowledge transfer. The study demonstrated evidence of the usefulness
of outside in understanding the models, but did not state any preferences for
particular examples. Browsing (desirable) outside examples might also help the
user understand partially overconstrained models (in which some, but not all,
desirable instances are possible).

Batot [2] designed a tool for automating MDE tasks. The tool generates
examples from partial or complete metamodels to be evaluated or corrected
by an expert. The minimality and coverage of examples are two major criteria
for generating useful examples. Mottu et al. [12] proposed a mutation analy-
sis technique to improve model transformation testing. Their technique mutates
the model w.r.t. four abstract model transformation operators and generates
mutants for evaluating test-suites. Macedo and Cunha [7] proposed a tool for ana-
lyzing bidirectional model transformations based on least changes using Alloy.
The tool tries different number of changes to find the least number. Selecting
proper scopes for Alloy Analyzer is a major obstacles to scaling the tool.

In his seminal work Winston [22], introduced using near-miss examples
in learning classification procedures as well as explaining failures in learning
unusual cases. Gick and Paterson [6] studied the value of near-miss examples
for human learning. They found that contrasting near-miss examples were the

Bordeaux: A Tool for Thinking Outside the Box 25

most effective examples for learning. Popeĺınsky [15] used near-miss examples
for synthesizing normal logic programs from a small set of examples. Seater
[18] employed the concepts of near-miss and near-hit examples to explain the
role, i.e., restricting or relaxing, of a constraint in a given model. Modeling
By Example [8] is an unimplemented technique used to synthesize an Alloy
model using near-miss and near-hit examples. The technique synthesizes an
initial model from a set of examples; it learns the boundaries by generating
near-miss and near-hit examples to be reviewed by the user. The near-hit and
near-miss examples are from a slightly modified model.

ParAlloy [16] and Ranger [17] realize parallel analysis of models written in
Alloy. Both tools partition a given Alloy model and make multiple calls to the
underlying SAT-solver. The idea of parallelization in Bordeaux relies on selecting
proper scopes as opposed to partitioning the model.

3 Illustrative Example

Consider a model that describes an undergraduate degree in computer engineer-
ing, as in Fig. 1. In this illustrative model, a student must take two courses to
graduate, and she must have taken all necessary prerequisites for each course.

One can ask Alloy Analyzer to generate an inside example consistent with
the model, the analyzer generates an example similar to Fig. 2a. Everything
looks OK: this example corresponds with the user’s intentions. But this model
harbours a partial overconstraint bug: there are examples that the user intends,
but which are not consistent with the model.

Bordeaux generates two near-miss examples (Figs. 2b and c). These are out-
side examples at a minimum distance from the example in Fig. 2a, adding one
tuple to relations courses and reqs, respectively. The first near-miss example
reveals the partial overconstraint: a student is prevented from graduating if they
take an extra course. The user rectifies this by changing the equality predicate
(eq[]) on Line 6 of Fig. 1 to a less-than-or-equal-to (leq[]). The second near-miss
example is not interesting to the user because it just involves a perturbation of
the pre-requisites. Subsequent searches can be set to exclude the reqs relation.

Alloy can be used to generate an arbitrary outside example (e.g., Fig. 2d) if
the user manually negates the model. This unfocused outside example is unlikely
to be meaningful for the user, as it might be too divergent from her intention.

1 abstract sig Course{reqs: set Course}
2 one sig ECE155, ECE240, ECE250, ECE351 extends Course{}
3 one sig Program{courses: set Course}
4 pred prerequisites{ reqs = ECE240→ECE155 + ECE250→ECE155 + ECE351→ECE250 }
5 fun graduationPlan[]: Program{ {p: Program| eq[#p.courses, 2] and
6 all c: p.courses| some c.reqs implies c.reqs in p.courses} }
7 pred showSuccesfulPlan[]{ prerequisites and some graduationPlan }
8 run showSuccesfulPlan

Fig. 1. Model of requirements for undergraduate Computer Engineering degree

26 V. Montaghami and D. Rayside

(a) Alloy example (inside) (b) Bordeaux near-miss 1

(c) Bordeaux near-miss 2 (d) Alloy outside example

Fig. 2. Examples revealing an overconstraint issue in the model of Fig. 1

4 Proximate Pair-Finder Formula

We first define the basic concepts and formulas required to understand the for-
mulas that Bordeaux synthesizes for producing near-hit and near-miss examples.

Definition 1 (Model). We define an Alloy model as triple 〈R,C,B〉 compris-
ing an ordered set of relations R, a set of constraints (formulas) on those rela-
tions C, and finite bounds B for those relations.

Definition 2 (Valuation). A valuation V of model M is a sequence of sets of
tuples, where each entry in the sequence corresponds to a relation in M , and is
within M ’s bounds B. Let V name the set of all possible valuations of M .

The size (#) of a valuation is the number of tuples: #V �
∑|R|

i=1 |Vi|
Definition 3 (Instance). An instance I of model M is a type-correct valuation
of M , according to Alloy’s type system [5]. Briefly, every atom contained in the
instance will be in exactly one unary relation, and the columns of each non-unary
relation will be defined in terms of the unary relations.

Suppose that I and J are two instances of model M .
The difference of I and J (I − J) is a valuation of model M that, for each

relation, contains the tuples from I that are not in J .

Bordeaux: A Tool for Thinking Outside the Box 27

We say that J is a subset (⊂) of I if there is at least one relation for which
J ’s tuples are a strict subset of I’s tuples, and no relation for which I’s tuples
are not included in J ’s tuples; formally: J ⊂ I � ∧|R|

i=1(Ji ⊆ Ii) ∧ ∃i|Ji ⊂ Ii
The distance from I to J is #(I − J).
Let I name the set of all instances M .

Definition 4 (Inside-the-box Example). Instance I is an inside example of
model M if I satisfies M ’s constraints C.

Definition 5 (Outside-the-box Example). Instance O is an outside example
of model M if O does not satisfy M ’s constraints C.

4.1 Proximate Pair-Finder Formula

The core of Bordeaux generates variants of the Proximate Pair-Finder Formula
(PPFF), which it gives to Alloy∗ to solve. The input to the PPFF generation is
two mutually inconsistent sets of constraints, C1 and C2, over the same set of
relations, R. A solution to the PPFF is a pair of examples, one of which (e1) is
inside C1, and the other of which (e2) is inside C2. The key property of these
two examples is that they are a minimum distance to each other. In the special
case where C2 is the negation of C1, which the narrative of this paper focuses
on, then e1 is a near-hit example of C1 and e2 is a near-miss example of C1.

The PPFF is expressed as a set-comprehension that returns a pair of exam-
ples e1 and e2. The PPFF contains two higher-order quantifiers: they are higher-
order because they quantify over valuations (sets of sets). The formula effectively
says that there is no other pair of examples that are closer to each other than
are e1 and e2. Valuation v in the PPFF is the difference e2 − e1. Valuation w in
the PPFF is the difference e′

2 − e′
1. The relative minimization condition is that

the size of w is not smaller than the size of v: #v ≤ #w.
In the degenerate case where C1 and C2 are not mutually inconsistent, then

the PPFF will always return e1 = e2, because any arbitrary example is at dis-
tance zero to itself. The PPFF is not designed to be meaningful when the con-
straints are not mutually inconsistent.

Fig. 3. Proximate Pair-Finder Formula (PPFF). The first line defines e1 and
e2 as examples of C1 and C2, respectively. The second line defines v as the difference
e2 − e1. The third line introduces alternative examples e′

1 and e′
2, and their difference

w. The fourth line says that w is not less than v: i.e., there is no pair of alternative
examples that are closer to each other than are e1 and e2.

28 V. Montaghami and D. Rayside

The examples e1 and e2 are not necessarily absolutely minimal with respect
to C1 and C2, respectively. These two examples are relatively minimal with
respect to each other: that is, the distance between them is small.

4.2 Encoding the PPFF for Alloy∗

Alloy∗ supports higher-order quantifiers: i.e., quantifiers over relations, which is
required to solve PPFF. The user’s model must be written in regular Alloy, with
no higher-order quantifiers. Bordeaux transforms the user’s Alloy model into an
Alloy∗ model and adds a variant of the PPFF synthesized for the user’s desired
search. Bordeaux then transforms the Alloy∗ solution back into the terms of the
user’s original model.

While the Alloy∗ language is syntactically a superset of the regular Alloy
language, so the user’s model is a legal Alloy∗ model, simply taking the user’s
model as-is will not work for the PPFF. This paper focuses on the special case
where C2 is the negation of C1, and C1 is all of the constraints of the model. So
the transformation to prepare for solving the PPFF must bundle up all of the
constraints of the original model (fact blocks, multiplicity constraints, etc.) into
a single predicate.

In actuality, the PPFF is generated using existential quantifiers rather than
a set comprehension, and the skolemization gives the examples e1 and e2.

4.3 Special Cases of Potential User Interest

The user might be interested in some of the following special cases, which can all
be easily accommodated by generating the PPFF with specific settings for C1

and C2 (some of these are not yet implemented in the current prototype [10]):

1. Find a near-miss example and a near-hit example: Set C2 to be the
negation of C1 (as discussed above).

2. Find a near-miss example close to an inside example: Set C1 to be a
predicate that defines the inside example, and set C2 to be the negation of
the model’s constraints.

3. Find a near-hit example close to an outside example: Set C1 to be
a predicate that defines the outside example, and set C2 to be the model’s
constraints.

4. Restrict the difference between the examples to certain relations:
The difference operation can easily be generated over a user-specified subset
of the relations, rather than all of them.

5. Smaller near-miss examples: In PPFF, e2 is bigger than e1. If C2 is the
negation of the model’s constraints, this will result in a near-miss example
that is larger than the near-hit. To get a smaller near-miss example, simply
set C1 to be the negation of the model’s constraints, and C2 to be the model’s
constraints.

Bordeaux: A Tool for Thinking Outside the Box 29

6. Find a near-miss example for an inconsistent model: If the original
model is inconsistent, then it has no inside examples. A workaround for this
situation is to set C1 to be an empty example (no tuples), and set C2 to be
the negation of the model.

5 Experiments

To study the idea of browsing near-hit and near-miss examples, we have devel-
oped Bordeaux, a prototype that extends Alloy Analyzer. This study includes
the experiments carried out to compare Bordeaux with other tools. From this
study, we also show paths that optimize the performance of Bordeaux in finding
near-miss examples. In this section, we explore the experiments revealing the
position of Bordeaux among other similar tools. The next section discusses our
ideas to optimize the prototype.

Given an example, Bordeaux can find a near-miss example. Users can browse
more near-miss examples or ask for a near-hit example. To support this way
of browsing, Bordeaux performs a relative minimization; namely, minimizing a
distance between an inside example and an outside example. Although users
cannot browse near-hit and near-miss examples with Alloy Analyzer, they can
manually modify models to produce inside example and outside examples. Using
Aluminum, the users can find minimal examples, and if they manually negate
the model, they can browse minimal outside examples, too. Aluminum’s concept
of a minimal example, which we call absolute minimal, is an example with the
smallest number of tuples.

The experiment includes five models that are shown in Table 1. We have used
an Intel i7-2600K CPU at 3.40 GHz with 16 GB memory. All experiments are
done with MiniSat. In what follows, we explain the experiments and discuss their
contribution to answer the following research questions:

RQ-1 What is the extra cost for the relative minimums?
RQ-2 How many near-miss examples can Bordeaux find in one minute?
RQ-3a How far are arbitrary outside examples from the near-miss?
RQ-3b How far are absolute minimum outside examples from the near-miss?

To study the extra cost for finding near-miss examples with Bordeaux, we
used Alloy Analyzer to find arbitrary inside examples and outside examples and
compared their costs to using Bordeaux to find near-hit/near-miss example pairs
(Table 1). To find the outside examples, we manually negated the studied models,
i.e., if C is a model’s constraint, then ¬C gives the negation of the model. In
these experiments, for Bordeaux, we set C1 to be equal to the arbitrary example
returned by Alloy.

In Table 1, it can be seen that Bordeaux does not incur much additional cost
for small models, but once the model gets larger the costs get significant (Item
RQ-1). The small Binary Tree model is an exception where Bordeaux appears
to run faster than the stock Alloy Analyzer. Occasional anomalies such as this
are common with technology based on SAT solvers.

30 V. Montaghami and D. Rayside

T
a
b
le

1
.
C

o
m

p
a
ri

n
g

B
o
rd

ea
u
x

(B
)

a
n
d

A
ll
oy

A
n
a
ly

ze
r

(A
)

to
fi
n
d

o
u
ts

id
e

ex
a
m

p
le

s

#
S
A

T
va

ri
a
b
le

s
#

S
A

T
cl

a
u
se

s
T
ra

n
sl

a
ti

o
n

ti
m

e(
m

s)
E

x
ec

u
ti

o
n

ti
m

e(
m

s)

N
u
m

b
er

o
f

S
iz

e
o
f

B
A

B
/
A

B
A

B
/
A

B
A

B
/
A

B
A

B
/
A

re
la

ti
o
n
s

ex
a
m

p
le

S
in

g
ly

-l
in

k
ed

L
is

t
2

1
8
4
6

4
9
2

1
.7
2

2
,5

1
8

7
5
7

3
.3
3

1
5

2
6

0
.5
8

2
9

2
0

1
.4
5

D
o
u
b
ly

-l
in

k
ed

L
is

t
3

7
2
0
,5

3
1

1
,9

0
9

1
0
.7
5

5
6
,3

5
8

4
,5

8
0

1
2
.3
1

3
9
,7

0
0

1
4
1

2
8
1
.5
6

1
2
1
,6

6
4

1
1
1

1
,0
9
6
.0
7

B
in

a
ry

T
re

e
3

1
1
,0

8
8

7
1
0

1
.5
3

3
,2

9
5

1
,4

4
0

2
.2
9

1
2

4
3
8

0
.0
3

4
4

1
6
6

0
.2
7

G
ra

d
u
a
ti

o
n

P
la

n
5

8
5
,9

3
4

7
3
4

8
.0
8

1
7
,8

4
6

1
,2

7
6

1
3
.9
9

3
8
1

3
3
6

1
.1
3

4
3
9

7
4

5
.9
3

F
il
e

S
y
st

em
1
0

8
8
,1

5
4

2
,6

0
5

3
.1
3

2
7
,6

7
2

4
,6

9
0

5
.9
0

3
,8

8
3

5
7
1

6
.8
0

1
3
,3

6
6

3
0
8

4
3
.4
0

Bordeaux: A Tool for Thinking Outside the Box 31

For answering Item RQ-2, we have done another experiment to count the
number of distinct near-miss examples that Bordeaux generates in one minute.
The results show how the prototype’s performance degrades for the Alloy models
with more relations or larger formula size. Given examples, Bordeaux produces
27, 4, 31, 15, and 9 distinct near-miss examples respectively for Singly-linked
List, Doubly-linked List, Binary Tree, Graduation Plan, and File System mod-
els in one minute. The performance descends because Bordeaux reformulates
and resolves the model per each distinct inside example and outside example.
Bordeaux returns more near-miss examples for Singly-linked List and Binary
Tree models, as the given examples of both models are fairly simpler than the
others. Therefore, the near-miss examples will have relatively fewer tuples. That
is, smaller near-miss examples lead to smaller and relatively simpler formulas
for excluding redundant near-miss examples.

To answer Item RQ-3a and Item RQ-3b, we have performed another exper-
iment to demonstrate how near-miss examples that Bordeaux systematically
produces differ from outside examples that other tools produce from manually
modified models. To do so, using various sizes of examples of different mod-
els, we evaluated their distances to outside examples that each instance-finder
produces. We have selected Alloy Analyzer and Aluminum for comparing with
Bordeaux. Although Alloy Analyzer and Aluminum do not provide capabilities
for browsing outside examples, we have manually transformed the models and
synthesized required statements.

For comparing relative minimal, absolute minimal, and arbitrary outside
examples, we have used the aforementioned tools to find outside examples given
arbitrary, small, medium, and large size examples. In the case of arbitrary exam-
ples, each tool finds a pair of inside example and outside example without any
extra constraints on the size of examples. With restricted-size examples, all the
tools have to first generate the same size examples, then generate outside exam-
ples for them. Depending on the models, the size of the examples varies from two
to five tuples in small size examples and nine to thirteen tuples for the large size
examples. We have recorded the size of inside examples and outside examples
that each tool produces, as well as the number of tuples that should be added or
removed from an example to make an example identical with its paired outside
example.

As Fig. 4 shows, Aluminum generates absolute minimal inside examples and
outside examples once the example size is arbitrary. It also always produces min-
imal outside examples regardless of the size of given examples. Alloy Analyzer
generates arbitrary examples close to absolute minimal size, but the sizes of out-
side examples do not follow any particular pattern. Although Bordeaux produces
examples in arbitrary sizes, it produces outside examples with one more tuple
in all the models.

Depicted in Fig. 4, Bordeaux produces an outside example in a minimum
distance from a given example. Answering Item RQ-3a, Alloy Analyzer behaves
arbitrarily to produce outside examples close to the examples. The distances from
examples to outside examples increase for larger examples. Answering RQ-3b,

32 V. Montaghami and D. Rayside

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

B
or

de
au

x

A
llo

y
A

na
ly

ze
r

A
lu

m
in

um

1
6

11
16

21
26

31
36

Arbitrary Small Medium Large

Solvers

D
is

ta
nc

e

Example size

Fig. 4. Comparing Bordeaux, Alloy Analyzer, and Aluminum with respect to the num-
ber of tuples that differ between an example and an outside-the-box example.

for arbitrary and small examples, Aluminum produces outside examples that
are fairly close to the examples. Given medium and large examples, Aluminum
finds outside examples with larger distances from the given examples. Although
the distances between inside examples and outside examples, generated by Alu-
minum, do not fluctuate like the distances between inside examples and outside
examples produced by Alloy Analyzer, they show relative minimum distance
similar to those found by Bordeaux.

Moreover, finding an outside example by negating the model provides no
direction for adding or removing tuples. Although we expected to see a near-
miss example with extra tuples, as generated by Bordeaux, Aluminum produced
an outside example with fewer tuples for the Singly Linked-list model. Unlike
Bordeaux, Alloy Analyzer and Aluminum do not directly produce outside exam-
ples of a model. Simulating a model’s negation does not necessarily cause that
Alloy Analyzer and Aluminum produce outside examples in a minimum distance
from given examples of the studied models.

6 Optimization

By reviewing the experiment results, we have observed a trend in distances
between inside examples and outside examples returned by Bordeaux. In the

Bordeaux: A Tool for Thinking Outside the Box 33

studied models, with the addition of a single tuple, all inside examples and
outside examples become identical. In the other words, the examples are already
near-hit examples, and they can be pushed to be outside examples with the
minimum number of changes, i.e., a single tuple. This observation assists us
to select tighter scopes and parallelize searches for inside examples and outside
examples. Without choosing tight scopes, the analysis becomes infeasible. Using
parallelization, the time to find near-miss examples improves to 2.2 s on average
from several minutes without parallelization.

6.1 Selecting Tighter Scopes

If most examples are near-hit examples, as the case studies show, Bordeaux can
approximate the scope of each unary relation to be one more than the number
of its tuples in the example when Alloy∗ is used for the underlying solver. As
depicted in Table 2, we have rerun our experimental models by selecting scopes
of one (+1), two (+2), and three (+3) more than the number of tuples of the
example for each unary relation in the models. Note that these scopes limit the
number of tuples only for unary relations. Non-unary relations still can have any
tuples in difference between inside example and an outside example.

When the scopes of unary relations increase by one, Bordeaux can find a
near-miss example for a studied model within 7.5 min on average. Provided
the scopes increase by two, the time to find a near-miss example is inflated by
the ratio of 8.43 on average. If the scopes increase by three, the time to find a
near-miss example is fifteen times longer than the scopes with one more unary
tuple. Moreover, except for one model, Bordeaux did not terminate within 90
min if the example size is large, and the scopes increase by two. Such a lack
of results within the time-limit is more frequent once the scope increases by
three. Selecting the tightest scope increase can make the problem tractable for
Bordeaux. If Bordeaux cannot find a near-miss example with the least scope
increase, it can increase the scopes and search in a larger universe of discourse.

6.2 Parallelization

Increasing the number of atoms exponentially elevates the size of the SAT-
formula, the translation time to generate it, and its solving time. In some cases,
such as the Binary Tree model with a large size example, if the scope is not
properly selected, Alloy∗ cannot find a near-miss example within several hours.
Another factor that influences on the magnitude of the SAT-formula is the num-
ber of integer atoms that Bordeaux incorporates into the formula to prevent the
integer overflow that might occur for distance calculations.

Observing that most examples are near-hit examples and can become near-
miss examples by adding or removing a single tuple, we make new formulas
so that each one applies PPFF on individual relations. Solving each formula,
Bordeaux may find a near-miss example for a given example regarding a partic-
ular relation of the model.

34 V. Montaghami and D. Rayside

T
a
b
le

2
.

S
h
ow

in
g

h
ow

se
le

ct
in

g
d
iff

er
en

t
sc

o
p
es

a
ff
ec

ts
th

e
co

st
o
f

a
n
a
ly

si
s

p
er

fo
rm

ed
b
y

A
ll
oy

∗ .
T

h
e

n
o
ta

ti
o
n
s

‘+
1
’,

‘+
2
’,

a
n
d

‘+
3
’

sh
ow

th
e

re
co

rd
s

w
h
en

th
e

sc
o
p
es

o
f
a
ll

u
n
a
ry

re
la

ti
o
n
s

in
th

e
st

u
d
ie

d
m

o
d
el

s
a
re

se
t

to
o
n
e,

tw
o
,
a
n
d

th
re

e
m

o
re

tu
p
le

s
th

a
n

th
e

n
u
m

b
er

o
f
tu

p
le

s
in

th
e

sa
m

e
re

la
ti

o
n
s

o
f
ex

a
m

p
le

s.
T

h
e

co
lu

m
n
s

w
it

h
‘+

1
’
in

th
ei

r
h
ea

d
er

s
co

n
ta

in
th

e
a
ct

u
a
l
re

co
rd

s.
T

h
e

o
th

er
co

lu
m

n
s

co
n
ta

in
th

e
in

cr
ea

se
ra

ti
o
s.

S
A
T

v
a
ri
a
b
le
s

S
A
T

c
la
u
se

s
T
ra

n
sl
a
ti
o
n

ti
m

e
(m

s)
E
x
e
c
u
ti
o
n

ti
m

e
(m

s)
T
o
ta

l
ti
m

e
(m

s)

+
1

+
2
/
+
1

+
3
/
+
2

+
1

+
2
/
+
1

+
3
/
+
2

+
1

+
2
/
+
1

+
3
/
+
2

+
1

+
2
/
+
1

+
3
/
+
2

+
1

+
2
/
+
1

+
3
/
+
2

A
rb

it
ra

ry
S
in

g
ly
-l
in

k
e
d

L
is
t

8
4
6

1
.8
8
4
2

1
.5
5
5
8

2
,5
1
8

1
.9
6
8
2

1
.5
6
7
2

1
5

1
.0
6
6
7

1
.2
5
0
0

2
9

0
.8
2
8

1
.4
5
8

4
4

0
.9
0
9
1

1
.3
7
5
0

D
o
u
b
ly
-l
in

k
e
d

L
is
t

2
0
,5
3
1

2
.4
8
7
1

T
/
O

5
6
,3
5
8

2
.7
3
6
8

T
/
O

3
9
,7
0
0

1
1
.8
5
3
2

T
/
O

1
2
1
,6
6
4

1
.1
7
2

T
/
O

1
6
1
,3
6
4

3
.7
9
9
8

T
/
O

B
in

a
ry

T
re

e
1
,0
8
8

1
.9
7
4
3

1
.6
2
9
4

3
,2
9
5

2
.0
8
5
9

1
.6
7
7
0

1
2

1
.1
6
6
7

1
.2
8
5
7

4
3
.5
0
0

1
.4
2
9

1
6

1
.7
5
0
0

1
.3
5
7
1

G
ra

d
u
a
ti
o
n

P
la
n

5
,9
3
4

1
.9
8
2
1

1
.4
8
4
0

1
7
,8
4
6

2
.0
2
8
4

1
.5
0
2
6

3
8
1

7
.4
4
3
6

1
.7
5
8
5

4
3
9

3
.1
4
6

1
.5
4
7

8
2
0

5
.1
4
2
7

1
.6
8
9
1

F
il
e
S
y
st
e
m

8
,1
5
4

2
.1
6
3
4

T
/
O

2
7
,6
7
2

2
.2
6
6
4

T
/
O

3
,8
8
3

1
2
.4
0
7
4

T
/
O

1
3
,3
6
6

1
5
.2
3
9

T
/
O

1
7
,2
4
9

1
4
.6
0
1
3

T
/
O

S
m

a
ll

S
in

g
ly
-l
in

k
e
d

L
is
t

1
,8
6
2

1
.5
3
9
7

1
.6
9
9
3

5
,8
5
8

1
.5
6
8
3

1
.7
6
4
8

1
2

1
.4
1
6
7

1
.4
1
1
8

1
9

0
.9
4
7

2
.2
2
2

3
1

1
.1
2
9
0

1
.8
2
8
6

D
o
u
b
ly
-l
in

k
e
d

L
is
t

3
,2
0
4

1
.8
1
2
1

2
.0
5
4
1

1
0
,9
2
2

1
.9
7
3
6

2
.2
6
3
5

3
1

1
.7
7
4
2

2
.8
3
6
4

1
7
4

0
.6
3
2

2
.0
3
6

2
0
5

0
.8
0
4
9

2
.3
0
3
0

B
in

a
ry

T
re

e
5
,3
7
1

2
.0
6
4
6

2
.2
6
1
5

1
7
,4
0
4

2
.1
4
8
5

2
.3
0
9
7

1
0
5

5
.5
4
2
9

7
.3
8
4
9

1
4
1

1
3
.6
5
2

3
.4
8
4

2
4
6

1
0
.1
9
1
1

4
.3
8
9
3

G
ra

d
u
a
ti
o
n

P
la
n

4
,3
4
2

1
.7
7
2
5

1
.5
6
5
4

1
3
,2
4
4

1
.7
8
8
2

1
.5
5
0
3

2
9
2

7
.7
6
7
1

1
.7
6
3
7

5
0
3

5
.8
6
5

2
.2
7
1

7
9
5

6
.5
6
3
5

2
.0
5
0
2

F
il
e
S
y
st
e
m

2
,8
9
0

1
.8
2
1
8

1
.5
4
7
0

8
,9
1
0

1
.9
2
7
4

1
.5
8
5
2

6
0

1
.0
5
0
0

1
.2
5
4
0

1
3
8

3
.7
3
2

1
.4
5
0

1
9
8

2
.9
1
9
2

1
.4
2
9
1

M
e
d
iu

m
S
in

g
ly
-l
in

k
e
d

L
is
t

3
,5
3
7

1
.8
4
7
6

1
.3
7
7
0

1
0
,8
8
7

1
.9
5
5
5

1
.4
7
1
6

6
6

4
.3
0
3
0

0
.7
0
0
7

4
9

3
.4
9
0

2
.1
4
6

1
1
5

3
.9
5
6
5

1
.2
4
4
0

D
o
u
b
ly
-l
in

k
e
d

L
is
t

6
,1
7
5

1
.9
8
6
9

2
.1
9
4
6

2
0
,1
0
9

2
.1
3
5
8

2
.3
2
8
7

1
7
8

5
.8
4
2
7

7
.6
6
6
3

3
8
8

1
.2
8
4

5
7
.5
0
4

5
6
6

2
.7
1
7
3

2
3
.8
0
3
6

B
in

a
ry

T
re

e
1
3
,1
5
3

2
.4
0
0
4

T
/
O

4
4
,9
7
2

2
.4
7
0
2

T
/
O

2
0
,8
0
4

1
4
.7
9
6
6

T
/
O

9
,8
7
3

1
1
.2
9
9

T
/
O

3
0
,6
7
7

1
3
.6
7
1
1

T
/
O

G
ra

d
u
a
ti
o
n

P
la
n

4
,8
6
2

1
.8
3
7
5

1
.5
6
4
0

1
4
,8
3
8

1
.8
6
8
4

1
.5
4
5
6

2
9
1

8
.0
5
8
4

1
.7
6
9
3

1
5
5

2
3
.5
8
7

0
.9
6
3

4
4
6

1
3
.4
5
5
2

1
.2
7
8
1

F
il
e
S
y
st
e
m

6
,9
4
6

2
.2
4
6
9

T
/
O

2
1
,0
0
8

2
.2
0
7
6

T
/
O

1
2
,2
5
6

1
5
.8
2
0
4

T
/
O

1
3
,1
7
4

5
9
.4
1
5

T
/
O

2
5
,4
3
0

3
8
.4
0
4
3

T
/
O

L
a
rg

e
S
in

g
ly
-l
in

k
e
d

L
is
t

4
5
,6
6
8

T
/
O

T
/
O

9
1
,4
9
5

T
/
O

T
/
O

1
,0
4
0
,1
2
1

T
/
O

T
/
O

2
6
0

T
/
O

T
/
O

1
,0
4
0
,3
8
1

T
/
O

T
/
O

D
o
u
b
ly
-l
in

k
e
d

L
is
t

2
0
,5
4
9

2
.4
8
4
6

T
/
O

5
6
,4
3
6

2
.7
3
3
2

T
/
O

3
5
,2
7
5

1
4
.9
5
6
4

T
/
O

1
6
3

1
.2
2
7

T
/
O

3
5
,4
3
8

1
4
.8
9
3
2

T
/
O

B
in

a
ry

T
re

e
2
4
,1
4
9

T
/
O

T
/
O

7
9
,1
2
7

T
/
O

T
/
O

1
,8
6
0
,9
4
4

T
/
O

T
/
O

9
2
4
,1
7
6

T
/
O

T
/
O

2
,7
8
5
,1
2
0

T
/
O

T
/
O

G
ra

d
u
a
ti
o
n

P
la
n

1
6
,5
2
8

T
/
O

T
/
O

3
4
,8
0
6

T
/
O

T
/
O

7
,8
1
4

T
/
O

T
/
O

3
5

T
/
O

T
/
O

7
,8
4
9

T
/
O

T
/
O

F
il
e
S
y
st
e
m

1
4
,2
1
5

T
/
O

T
/
O

4
1
,2
4
6

T
/
O

T
/
O

2
,8
3
9
,6
9
7

T
/
O

T
/
O

2
,0
1
8
,7
8
1

T
/
O

T
/
O

4
,8
5
8
,4
7
8

T
/
O

T
/
O

Bordeaux: A Tool for Thinking Outside the Box 35

T
a
b
le

3
.
P
a
ra

ll
el

iz
in

g
P

P
F
F

ca
n

im
p
ro

v
e

th
e

effi
ci

en
cy

o
f
B

o
rd

ea
u
x
.
C

o
lu

m
n
s

sh
ow

th
e

ra
ti

o
o
f
m

et
ri

cs
m

ea
su

re
d

fr
o
m

so
lv

in
g

w
it

h
o
u
t

b
re

a
k
in

g
P

P
F
F
,
re

co
rd

ed
in

co
lu

m
n
s

la
b
el

ed
b
y

‘+
1
’

in
T
a
b
le

2
,
to

d
iff

er
en

t
a
p
p
ro

a
ch

es
so

lv
in

g
P

P
F
F

fo
r

ea
ch

re
la

ti
o
n
.
T

h
e

co
lu

m
n
s

M
in
-R

a
n
d
M
a
x-
R

sh
ow

th
e

im
p
ro

v
em

en
t

ra
ti

o
fo

r
u
si

n
g

p
a
ra

ll
el

iz
a
ti

o
n
.
F
o
r
M
in
-R

,
th

e
fi
rs

t
p
ro

ce
ss

fi
n
d
s

a
n
ea

r-
m

is
s

ex
a
m

p
le

,
a
n
d

fo
r

M
a
x-
R

,
a
ll

p
ro

ce
ss

es
fi
n
is

h
th

ei
r

se
a
rc

h
es

.
C

o
lu

m
n
s
S
eq
-R

sh
ow

s
th

e
d
iff

er
en

ce
s

w
h
il
e

a
ll

p
ro

ce
ss

es
ru

n
se

q
u
en

ti
a
ll
y.

S
A
T

v
a
ri
a
b
le
s

S
A
T

cl
a
u
se
s

T
ra
n
sl
a
ti
o
n
ti
m
e

E
x
ec
u
ti
o
n
ti
m
e

T
o
ta
l
ti
m
e

M
in
-R

M
a
x
-R

S
eq

-R
M
in
-R

M
a
x
-R

S
eq

-R
M
in
-R

M
a
x
-R

S
eq

-R
M
in
-R

M
a
x
-R

S
eq

-R
M
in
-R

M
a
x
-R

S
eq

-R

A
rb

it
ra
ry

S
in
g
ly
-l
in
k
ed

L
is
t

4
.4
3

1
.2
5

0
.5
5

5
.0
7

0
.7
4

0
.6
0

1
.6
7

1
.5
0

0
.5
2

5
.8
0

4
.8
3

1
.8
1

3
.1
4

2
.7
5

0
.9
8

D
o
u
b
ly
-l
in
k
ed

L
is
t

3
.2
4

1
.8
9

0
.4
5

3
.8
1

0
.4
8

0
.5
1

7
2
.5
8

4
5
.7
4

1
0
.7
9

1
0
,1
3
8
.6
7

3
2
2
.7
2

1
7
0
.4
0

2
8
8
.6
7

1
2
9
.6
1

3
6
.7
2

B
in
a
ry

T
re
e

5
.0
4

1
.2
7

0
.8
4

5
.8
4

0
.7
4

0
.9
2

1
.3
3

1
.2
0

0
.4
3

1
.0
0

1
.0
0

0
.3
3

1
.2
3

1
.1
4

0
.4
0

G
ra
d
u
a
ti
o
n
P
la
n

2
.0
5

1
.4
9

0
.2
8

2
.1
1

0
.6
5

0
.2
8

2
.0
1

1
.3
7

0
.2
6

5
4
.8
8

3
6
.5
8

1
3
.3
0

4
.1
4

2
.8
3

0
.5
5

F
il
e
S
y
st
em

2
.9
8

2
.2
2

0
.2
7

3
.2
8

0
.4
1

0
.3
0

2
3
.2
5

1
4
.9
3

1
.9
6

1
,3
3
6
.6
0

6
3
6
.4
8

2
3
0
.4
5

9
7
.4
5

6
1
.3
8

8
.4
4

S
m
a
ll

S
in
g
ly
-l
in
k
ed

L
is
t

2
.2
5

1
.3
2

0
.5
1

2
.4
4

0
.7
1

0
.5
5

1
.3
3

1
.2
0

0
.4
3

4
.7
5

3
.1
7

1
.2
7

2
.3
8

1
.9
4

0
.7
2

D
o
u
b
ly
-l
in
k
ed

L
is
t

1
.4
5

1
.4
5

0
.3
4

1
.5
7

0
.6
4

0
.3
7

1
.1
5

1
.0
7

0
.2
4

2
.6
8

2
.3
8

1
.2
3

2
.2
3

2
.0
1

0
.7
6

B
in
a
ry

T
re
e

1
.4
9

1
.3
8

0
.4
7

1
.5
7

0
.7
0

0
.4
9

2
.7
6

2
.3
9

0
.8
8

2
0
.1
4

4
.1
5

2
.8
2

5
.4
7

3
.1
5

1
.4
5

G
ra
d
u
a
ti
o
n
P
la
n

2
.3
6

1
.6
7

0
.3
1

2
.4
8

0
.5
7

0
.3
3

2
.2
5

1
.3
6

0
.2
9

8
3
.8
3

7
1
.8
6

2
2
.8
6

5
.8
5

3
.5
8

0
.7
7

F
il
e
S
y
st
em

5
.4
9

2
.3
0

0
.3
4

6
.2
7

0
.4
0

0
.3
8

1
.2
5

1
.1
1

0
.1
2

1
.0
5

1
.0
2

0
.1
5

1
.1
0

1
.0
5

0
.1
4

M
ed

iu
m

S
in
g
ly
-l
in
k
ed

L
is
t

1
.9
5

1
.1
8

0
.4
6

2
.0
7

0
.8
0

0
.4
8

4
.4
0

1
.5
3

0
.7
0

9
.8
0

6
.1
3

2
.4
5

5
.7
5

2
.2
5

1
.0
1

D
o
u
b
ly
-l
in
k
ed

L
is
t

2
.1
9

1
.4
9

0
.3
4

2
.4
2

0
.6
2

0
.3
7

3
.7
1

2
.6
6

0
.6
0

5
.5
4

4
.0
4

0
.9
2

4
.8
0

3
.4
7

0
.7
9

B
in
a
ry

T
re
e

3
.0
7

2
.0
7

0
.8
8

3
.3
4

0
.4
6

0
.9
4

7
3
.2
5

4
4
.4
5

1
9
.8
7

5
8
0
.7
6

4
6
.7
9

3
8
.7
2

1
0
1
.9
2

4
5
.1
8

2
3
.5
6

G
ra
d
u
a
ti
o
n
P
la
n

2
.2
7

1
.6
0

0
.3
0

2
.3
5

0
.6
1

0
.3
1

2
.2
2

1
.2
1

0
.2
9

1
9
.3
8

3
.3
0

2
.2
5

3
.2
1

1
.5
5

0
.4
1

F
il
e
S
y
st
em

2
.8
0

1
.9
3

0
.2
3

2
.7
3

0
.5
3

0
.2
3

3
.4
4

2
.1
1

0
.2
7

8
2
3
.3
8

2
6
8
.8
6

7
5
.7
1

7
.1
1

4
.3
5

0
.5
5

L
a
rg
e

S
in
g
ly
-l
in
k
ed

L
is
t

2
.5
2

1
.3
1

0
.5
2

3
.1
9

0
.6
2

0
.6
4

9
8
.9
8

1
9
.2
6

1
3
.8
5

8
.6
7

4
.5
6

1
.9
0

9
8
.7
3

1
9
.2
4

1
3
.8
3

D
o
u
b
ly
-l
in
k
ed

L
is
t

3
.2
3

1
.8
8

0
.4
5

3
.7
8

0
.4
8

0
.5
1

6
9
.7
1

3
7
.8
9

9
.7
2

7
.7
6

0
.4
0

0
.2
0

6
7
.2
4

2
6
.4
5

7
.9
6

B
in
a
ry

T
re
e

2
.8
1

1
.7
5

0
.7
8

3
.1
6

0
.5
5

0
.8
4

3
1
2
.7
6

1
8
2
.6
8

8
3
.3
4

3
,5
1
3
.9
8

3
3
7
.5
4

1
6
8
.5
5

4
4
8
.2
7

2
1
5
.4
8

1
0
0
.1
4

G
ra
d
u
a
ti
o
n
P
la
n

2
.5
5

1
.9
1

0
.3
5

2
.3
1

0
.5
1

0
.3
2

2
.2
6

1
.4
2

0
.3
1

1
.8
4

1
.5
9

0
.5
1

2
.2
6

1
.4
2

0
.3
1

F
il
e
S
y
st
em

3
.9
4

2
.7
9

0
.3
2

4
.0
3

0
.3
4

0
.3
4

1
5
5
.9
8

5
4
.3
7

9
.7
1

1
1
2
,1
5
4
.5
0

1
5
1
.1
6

1
4
9
.8
9

2
6
6
.6
0

7
4
.0
8

1
5
.8
8

36 V. Montaghami and D. Rayside

Finding near-miss examples for each relation has the benefit of avoiding addi-
tional integers in the universe of discourse. Depending on how many relations
a model has, Bordeaux can solve a PPFF per each relation that leads to a
relatively smaller universe of discourse. As Bordeaux can independently find
near-miss examples per each relation, one approach is to parallelize the search
so that each process searches for a near-miss example per each relation.

The parallelization applies to all relations in the model. The parallelization
has no particular restriction on the scopes of the model’s relations. However,
selecting proper scopes increases the performance. If a process tries to find a
minimum distance with respect to a unary relation, increasing the scope of the
relation by one causes a found instance to be in the distance of one, provided
adding tuples is requested. Since Alloy only allows restricting scope for unary
relations, no increase is the tightest scopes for a process that tries to find a
minimum distance with respect to a non-unary relation; more than one tuple of
a non-unary relation can also change.

In this approach, if a process finds a near-miss example first that is at a
distance of one from the given example, then all other processes can stop their
searches. Otherwise, all processes should continue. In the end, either (a) the last
process returns a near-miss example with the distance of one from the given
example, (b) all processes return nothing, (c) some processes return near-miss
examples with a distance of two, or (d) some processes return near-miss examples
with a distance of three or more.

If PPFF can find a near-miss example in distance one from the given example,
then one of the processes must be able to find it too. Clearly, the near-border
examples finder formula found the example because only one relation gets or
loses a tuple, so running the formula over that relation will get the same result.
If such a near-miss example exists, one process has to return it. In case (a), the
last finished process returns such a near-miss example.

If no process returns a near-miss example, i.e., case (b), either such an
instance does not exist at any distance from the given example or adding or
removing more than one tuple from two or more relations turns the given exam-
ple into an outside example. In the first situation, PPFF also returns no near-miss
example; however, PPFF returns a near-miss example once tuples of more than
a single relation need to be changed.

In case (c), some processes return near-miss examples with distance two from
the given example. Then two is the true minimum distance. If there were a closer
near-miss, it would be at distance one, and one of the other processes would have
found it. Since that didn’t happen, two is the minimum distance.

If a process returns a near-miss example with a distance of three from a given
example and all other processes return no shorter distances, the PPFF might
find a near-miss example in a closer distance which is exactly two. The distance
might be two if simultaneously altering tuples of two relations makes a near-
miss example; therefore, the individual processes cannot find such a near-miss
example. If there was a near-miss example with distance one, processes should

Bordeaux: A Tool for Thinking Outside the Box 37

have returned it. In this case, distance three might be a local minimum. The
same argument is valid for a distance of four or more in case (d).

As the case studies show, distances between an example and its paired near-
miss example is highly likely to be one; therefore, parallelizing Bordeaux would
often give the near-miss examples. As discussed, the process could also provide
a good approximation of the minimum distance. In our practiced cases, all near-
miss examples are found in distance one from given examples.

As Table 3 shows, parallelization improves the search for near-miss examples.
In all studied models, regardless of the sizes of the given examples, parallelization
decreases the size of the SAT-formula, the translation time to generate it, and
the solving time. We have measured this improvement by recording the time
and resources taken to find the first near-miss example, as well as the time
and resources taken to finish all parallel processes. Compared to using non-
broken PPFF with the least scope increase, the time to concurrently find the
first near-miss example decreases by the ratio of 70.9 on average. Waiting for
the termination of all processes’ results changes the ratio to 30.2.

If there are not enough resources available for parallelization, sequentially
running the decomposed processes still has value. The studied models show that
the sum of the process times is often less than the general time when the size of an
example is large. Since most of the Alloy statements synthesized for each process
are the same, the translation time might be saved by reusing some parts that
have already been translated for the formula of another relation. Full assessment
of this idea is left for future work.

7 Conclusion

Bordeaux is a tool for finding near-hit and near-miss example pairs that are
close to each other. The near-hit example is inside-the-box: it is an example
of the model the user wrote. The near-miss example is outside-the-box: it is
almost consistent with the user’s model except for one or two crucial details.
Others have found near-miss examples to be useful [1,6,22,23]. In particular,
Gick and Paterson [6] found that pairing a near-miss example with a similar
near-hit example increased human comprehension of the model. We posit that
such pairs might be particularly helpful for discovering and diagnosing partial
over-constraints in the model. Tool support for this task is currently limited.

The Bordeaux prototype has been built to work with ordinary Alloy models.
It works by transforming the user’s Alloy model and synthesizing a query with
higher-order quantifiers that can be solved by Alloy∗ [9]. Through experiments
we have observed that near-hit and near-miss examples often differ in no more
than one tuple. We have based two optimizations on this observation: scope
tightening and parallelization. Together, they significantly reduce the cost of
searching. The formalization of the idea, the PPFF (Fig. 3), is more general
than the specific use-case that our narrative has centred on. The formalization
works from a pair of inconsistent constraints. The use-case narrative in this paper
has focused on the specific circumstance when one constraint is the negation of

38 V. Montaghami and D. Rayside

the other, and sometimes even more narrowly on when the first constraint is
a specific example. We intend to make use of the more general facility in our
forthcoming implementation of a pattern-based model debugger [11].

Acknowledgements. We thank Vijay Ganesh, Krzysztof Czarnecki, and Marsha
Chechik for their helpful discussions. This work was funded in part by NSERC
(National Science and Engineering Research Council of Canada).

References

1. Bak, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z., Wasowski, A.,
Rayside, D.: Example-driven modeling: model = abstractions + examples. In: Pro-
ceedings of the 2013 International Conference on Software Engineering, ICSE 2013,
pp. 1273–1276. IEEE Press (2013)

2. Batot, E.: Generating examples for knowledge abstraction in MDE: a multi-
objective framework. In: Balaban, M., Gogolla, M. (eds.) Proceedings of the ACM
Student Research Competition at MODELS 2015 co-located with the ACM/IEEE
18th International Conference MODELS 2015, Ottawa, Canada, 29 September,
2015. CEUR Workshop Proceedings, vol. 1503, pp. 1–6 (2015). CEUR-WS.org

3. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for
partial maxsat. AAAI/IAAI 263268 (1997)

4. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational model finding.
In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 17–31. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54804-8 2

5. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: Taylor,
R.N., Dwyer, M.B. (eds.) Proceedings of the 12th ACM/SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE). Newport Beach,
CA, USA, November 2004

6. Gick, M.L., Paterson, K.: Do contrasting examples facilitate schema acquisition
and analogical transfer? Can. J. Psychol./Rev. Can. Psychol. 46(4), 539 (1992)

7. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using Alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
297–311. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 22

8. Mendel, L.: Modeling by example. Master’s thesis, Massachusetts Institute of Tech-
nology, September 2007

9. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: Proceedings of the 37th International Con-
ference on Software Engineering - vol. 1, pp. 609–619. ICSE 2015, IEEE Press
(2015)

10. Montaghami, V., Odunayo, O., Guntoori, B., Rayside, D.: Bordeaux prototype
(2016). https://github.com/drayside/bordeaux

11. Montaghami, V., Rayside, D.: Pattern-based debugging of declarative models. In:
2015 ACM/IEEE 18th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 322–327. IEEE (2015)

12. Mottu, J.-M., Baudry, B., Traon, Y.: Mutation analysis testing for model transfor-
mations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). doi:10.1007/11787044 28

http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-54804-8_2
http://dx.doi.org/10.1007/978-3-642-37057-1_22
https://github.com/drayside/bordeaux
http://dx.doi.org/10.1007/11787044_28

Bordeaux: A Tool for Thinking Outside the Box 39

13. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: Cheng, B., Pohl, K. (eds.)
Proceedings of the 35th ACM/IEEE International Conference on Software Engi-
neering (ICSE), San Francisco, CA, pp. 232–241 (2013)

14. Newcombe, C.: Debugging designs using exhaustively testable pseudo-code.
Amazon Web Services (2011). Presentation Slides http://hpts.ws/papers/2011/
sessions 2011/Debugging.pdf

15. Popeĺınský, L.: Efficient relational learning from sparse data. In: Scott, D. (ed.)
AIMSA 2002. LNCS (LNAI), vol. 2443, pp. 11–20. Springer, Heidelberg (2002).
doi:10.1007/3-540-46148-5 2

16. Rosner, N., Galeotti, J.P., Lopez Pombo, C.G., Frias, M.F.: ParAlloy: towards a
framework for efficient parallel analysis of alloy models. In: Frappier, M., Glässer,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.
396–397. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11811-1 33

17. Rosner, N., Siddiqui, J.H., Aguirre, N., Khurshid, S., Frias, M.F.: Ranger: parallel
analysis of alloy models by range partitioning. In: 2013 IEEE/ACM 28th Interna-
tional Conference on Automated Software Engineering (ASE), pp. 147–157. IEEE
(2013)

18. Seater, R.M.: Core extraction and non-example generation: debugging and under-
standing logical models. Master’s thesis, Massachusetts Institute of Technology
(2004)

19. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging
overconstrained declarative models using unsatisfiable cores. In: Proceedings of
the 18th IEEE International Conference on Automated Software Engineering, pp.
94–105. IEEE (2003)

20. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores
of declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM
2008. LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68237-0 23

21. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

22. Winston, P.H.: Artificial Intelligence, 3rd edn, pp. 150–356. Addison-Wesley, Read-
ing (1992)

23. Zayan, D., Antkiewicz, M., Czarnecki, K.: Effects of using examples on structural
model comprehension: a controlled experiment. In: Proceedings of the 36th Inter-
national Conference on Software Engineering, pp. 955–966. ACM (2014)

http://hpts.ws/papers/2011/sessions_2011/Debugging.pdf
http://hpts.ws/papers/2011/sessions_2011/Debugging.pdf
http://dx.doi.org/10.1007/3-540-46148-5_2
http://dx.doi.org/10.1007/978-3-642-11811-1_33
http://dx.doi.org/10.1007/978-3-540-68237-0_23
http://dx.doi.org/10.1007/978-3-540-68237-0_23
http://dx.doi.org/10.1007/978-3-540-71209-1_49

Test Selection

Bucketing Failing Tests via Symbolic Analysis

Van-Thuan Pham1(B), Sakaar Khurana2, Subhajit Roy2,
and Abhik Roychoudhury1

1 National University of Singapore, Singapore, Singapore
{thuanpv,abhik}@comp.nus.edu.sg

2 Indian Institute of Technology Kanpur, Kanpur, India
sakaark@gmail.com, subhajit@iitk.ac.in

Abstract. A common problem encountered while debugging programs is
the overwhelming number of test cases generated by automated test gener-
ation tools, where many of the tests are likely to fail due to same bug. Some
coarse-grained clustering techniques based on point of failure (PFB) and
stack hash (CSB) have been proposed to address the problem. In this work,
we propose a new symbolic analysis-based clustering algorithm that uses
the semantic reason behind failures to group failing tests into more “mean-
ingful” clusters. We implement our algorithm within the KLEE symbolic
execution engine; our experiments on 21 programs drawn from multiple
benchmark-suites show that our technique is effective at producing more
fine grained clusters as compared to the FSB and CSB clustering schemes.
As a side-effect, our technique also provides a semantic characterization
of the fault represented by each cluster—a precious hint to guide debug-
ging. A user study conducted among senior undergraduates and masters
students further confirms the utility of our test clustering method.

1 Introduction

Software debugging is a time consuming activity. Several studies [4,6,8,9,18]
have proposed clustering techniques for failing tests and proven their effective-
ness in large-scale real-world software products. The Windows Error Reporting
System (WER) [8] and its improvements such as ReBucket [6] try to arrange
error reports into various “buckets” or clusters. WER employs a host of heuris-
tics involving module names, function offset and other attributes. The Rebucket
approach (proposed as an improvement to WER) uses specific attributes such
as the call stack in an error report.

Although the techniques have been applied widely in industry, there are
three common problems that they can suffer from (as mentioned in [8]). The
first problem is “over-condensing” in which the failing tests caused by multiple
bugs are placed into a single bucket. The second problem is “second bucket” in
which failing tests caused by one bug are clustered into different buckets. The
third one, “long tail” problem, happens if there are many small size buckets
with just one or a few tests. For example, using failure type and location (as
used in KLEE [4]) for clustering tests are more likely to suffer from both over-
condensing and second bucket problems as they would group all tests that fail

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 43–59, 2017.
DOI: 10.1007/978-3-662-54494-5 3

44 V.-T. Pham et al.

at the same location, completely insensitive to the branch sequence and the call-
chain leading to the error. Call stack similarity for clustering tests also suffers
from the “over-condensing” and “second bucket” problems because it is insensi-
tive to the intraprocedural program paths (i.e. the conditional statements within
functions). One of the main reasons why techniques in [4,6,8,9,18] suffer from
these problems is that they do not take program semantics into account.

In this work, we propose a novel technique to cluster failing tests via symbolic
analysis. Unlike previous work that drive bucketing directly from error reports,
we adapt symbolic path exploration techniques (like KLEE [4]) to cluster (or
bucket) the failing tests on-the-fly. We drive bucketing in a manner such that
tests in each group fail due to the same reason. Since we use symbolic analysis
for clustering, our technique leads to more accurate bucketing; that is (a) tests
for two different bugs are less likely to appear in the same bucket, and (b)
tests showing the same bug are less likely to appear in different buckets. We
experimentally evaluate our semantics-based bucketing technique on a set of 21
programs drawn from five repositories: IntroClass, Coreutils, SIR, BugBench and
exploit-db. Our results demonstrate that our symbolic analysis based bucketing
technique is effective at clustering tests: for instance, the ptx program (in our set
of benchmarks) generated 3095 failing tests which were grouped into 3 clusters
by our technique. Similarly, our tool clustered 4510 failing tests of the paste
program into 3 clusters.

In addition to bucketing failures, our tool provides a semantic characteriza-
tion of the reason of failure for the failures in each cluster. This characterization
can assist the developers better understand the nature of the failures and, thus,
guide their debugging efforts. The existing approaches are not capable of defin-
ing such an accurate characterization of their clusters (other than saying that
all tests fail at a certain location or with a certain stack configuration).

While our algorithm is capable of bucketing tests as they are generated via
a symbolic execution engine, it is also capable of clustering failures in existing
test-suites by a post-mortem analysis on the set of failures.
The contributions of this paper are as follows:

– We propose an algorithm to efficiently cluster failing test cases, both for the
tests generated automatically by symbolic execution as well as tests available
in existing test-suites. Our algorithm is based on deriving a culprit for a failure
by comparing the failing path to the nearest correct path. As we use semantic
information from the program to drive our bucketing, we are also able to derive
a characterization of the reason of failure of the tests grouped in a cluster. The
existing approaches are not capable of defining such characterization for the
clusters they produce.

– We implement a prototype of the clustering approach on top of the symbolic
execution engine KLEE [4]. Our experiments on 21 programs show that our
approach is effective at producing more meaningful clusters as compared to
existing solutions like the point of failure and stack hash based clustering.

Bucketing Failing Tests via Symbolic Analysis 45

2 Overview

We illustrate our technique using a motivating example in Fig. 1. In the main()
function, the code at line 27 manages to calculate the value of (2x +x!+

∑y
i=0 i)

in which x and y are non-negative integers. It calls three functions, power(),
factorial() and sum(), to calculate 2x, x! and sum of all integer numbers from
0 to y. While sum() is a correct implementation, both power() and factorial()
are buggy.

In the power() function, the programmer attempts an optimization of saving
a multiplication: she initializes the result (the integer variable pow()) to 2 (line 2)
and skips the multiplication at line 5 if n equals 1. However, the optimization
does not handle the special case in which n is zero. When n is zero, the loop is
not entered and the function returns 2: it is a wrong value since 20 must be 1.
Meanwhile, in the factorial() function the programmer uses a wrong condition
for executing the loop at line 13. The correct condition should be i ≤ n instead
of i < n. The incorrect loop condition causes the function to compute factorial
of n − 1 so the output of the function will be wrong if n ≥ 2.

1 unsigned int power(unsigned int n) {

2 unsigned int i, pow = 2;

3 /* Missing code: if (n == 0) return 1; */

4 for(i=1; i<=n; i++) {

5 if(i==1) continue;

6 pow = 2*pow;

7 }

8 return pow;

9 }

10 unsigned int factorial(unsigned int n) {

11 unsigned int i,result = 1;

12 /* Incorrect operator: < should be <= */

13 for(i=1;i<n;i++)

14 result = result*i;

15 return result;

16 }

17 unsigned int sum(unsigned int n) {

18 unsigned int result = 0, i;

19 for (i=0; i<=n; i++)

20 result += i;

21 return result;

22 }

23 int main() {

24 unsigned int x, y, val , val_golden;

25 make_symbolic(x, y);

26 assume(x<=2 && y <=2);

27 val = power(x)+ factorial(x)+sum(y);

28 assert(val == golden_output(x, y));

29 return 0;

30 }

Fig. 1. Motivating example

We can use a symbolic exe-
cution engine (like KLEE) to
generate test cases that expose
the bugs. In order to do that,
we first mark the variables x
and y as symbolic (line 25)
and add an assert statement
at line 28. The assertion is
used to check whether the cal-
culated value for 2x + x! +∑y

i=0 (as stored in val) is
different from the expected
value which is fetched from
golden output().

The specification oracle
golden output() can be inter-
preted in many ways depend-
ing on the debugging task: for
example, it can be the previ-
ous version of the implemen-
tation when debugging regres-
sion errors, or the expected
result of each test when run
over a test-suite. For the
sake of simplicity, we add
an assume() statements at
line 26 to bound the values of

symbolic variables x and y.

46 V.-T. Pham et al.

Fig. 2. Symbolic execution tree for motivating example

Figure 2 shows the symbolic execution tree that KLEE would explore when
provided with this example. In this paper, we use the term failing path to indi-
cate program paths that terminate in error. The error can be assertion violation
or run-time error detected by symbolic execution engine such as divide-by-zero
or memory access violation (as supported in KLEE). In contrast, the term pass-
ing path indicates paths that successfully reach the end of the program (or the
return statement in the intraprocedural setting) with no errors.

As shown in Fig. 2, KLEE explores 9 feasible executions and detects 6 failing
paths; the paths are labeled from 1 to 9 in the order tests are generated while
following the Depth-First-Search (DFS) search strategy. If we apply failure loca-
tion based or call-stack based bucketing techniques, both of them will place all
6 failing tests in a single cluster as there is only one failure location at line 28,
and the call stacks are identical when the failure is triggered. Hence, both the
techniques suffer from the “over-condensing” problem as the failures are due to
two different bugs (in the power() and factorial() functions).

Let us now present our approach informally: given a failing test t encountered
during symbolic exploration, our algorithm compares the path condition of t
with the path condition of a successful test t′ that has the longest common
prefix with t. The branch b at which the execution of t and t′ differ is identified
as the culprit branch and the branch condition at b which leads to the failing
path is identified as the culprit constraint—the “reason” behind the failure of t.
Intuitively, the reason behind blaming this branch for the failure is that the
failing path t could have run into the passing execution t′—only if this branch b
had not misbehaved!

Table 1 presents the result produced by our clustering algorithm (refer to
Fig. 2 for the symbolic execution tree). The failing tests 1–3 fail due to the bug
in the power() function. The culprit constraint or “reason” for these failures is
attributed as x < 1, since it is the condition on the branch where these failing
tests diverge from their nearest passing test (Test 4), after sharing the longest
common prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)). Hence, we create the first cluster

Bucketing Failing Tests via Symbolic Analysis 47

Table 1. Clustering result: Symbolic analysis

Path

ID

Test Case Path Condition Culprit

Constraint

Clus.

ID

1 x=0, y=0 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y ≤ 0) (x < 1) 1

2 x=0, y=1 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y ≤ 1) (x < 1) 1

3 x=0, y=2 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x < 1) 1

4 x=1, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1) ∧ (x < 2)∧(y ≤ 0) NA NA

5 x=1, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1) ∧ (x < 2)∧(y > 0)∧(y ≤ 1) NA NA

6 x=1, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1) ∧ (x < 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) NA NA

7 x=2, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y ≤ 0) (x ≥ 2) 2

8 x=2, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y ≤ 1) (x ≥ 2) 2

9 x=2, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x ≥ 2) 2

(Cluster 1) and place tests 1–3 in it, with the characterization of the cluster as
(x < 1). Similarly, the failing tests 7–9 (failing due to the bug in factorial())
share the longest common prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)∧(x ≥ 1)) with Test
4; thus, the culprit constraint for tests 7–9 is inferred as (x ≥ 2). Hence, these
tests are placed in Cluster 2 with the characterization (x ≥ 2). Note that the
culprit constraints (x < 1) and (x ≥ 2) form a neat semantic characterization of
the failures in these two clusters.

Summary. In this example, our semantic-based bucketing approach correctly
places 6 failing tests into 2 different clusters. Unlike the two compared tech-
niques, it does not suffer from the “over-condensing” problem, and therefore,
yields a more meaningful clustering of failures. Moreover, we provide a semantic
characterization for each cluster that can assist developers in their debugging
efforts. In fact, the characterization for Cluster1 (x < 1) exactly points out
the bug in power() (as x is non-negative integer, x < 1 essentially implies that
x equals zero). Likewise, the characterization for Cluster2 (x ≥ 2) hints the
developer to the wrong loop condition in the factorial() function (as the loop
is only entered for x ≥ 2). We, however, emphasize that our primary objective
is not to provide root-causes for bugs, but rather to enable a good bucketing of
failures.

3 Reasons of Failure

The path condition ψp of a program path p is a logical formula that captures
the set of inputs that exercise the path p; i.e. ψp is true for a test input t if and
only if t exercises p. We say that a path p is feasible if its path condition ψp is
satisfiable; otherwise p is infeasible.

We record the path condition ψp for a path p as a list of conjuncts lp. Hence,
the size of a path condition (|ψp|) is simply the cardinality of the list lp. We also
assume that as symbolic execution progresses, the branch constraints (encoun-
tered during the symbolic execution) are recorded in the path condition in order.
This enables us to define prefix(i, ψp) as the prefix of length i of the list lp that

48 V.-T. Pham et al.

represents the path condition ψp. Hence, when we say that two paths p and q
have a common prefix of length i, it means that prefix(i, ψp) = prefix(i, ψq).

Definition 1 (Culprit Constraint). Given a failing path πf with a path con-
dition ψf (as a conjunct b1 ∧ b2 ∧ · · · ∧ bi ∧ . . . bn) and an exhaustive set of all
feasible passing paths Π, we attribute bi (the i-th constraint where i ranges from
1 to n) as the culprit constraint if and only if i − 1 is the maximum value of
j (0 ≤ j < n) such that prefix(j, ψf) = prefix(j, ψp) among all passing paths
p ∈ Π.

We use the culprit constraint (as a symbolic expression) as the reason why
the error path “missed” out on following the passing path; in other words, the
failing path could have run into a passing path, only if the branch corresponding
to the culprit constraint had not misbehaved.

Our heuristic of choosing the culprit constraint in the manner described above
is primarily designed to achieve the following objectives:

– Minimum change to Symbolic Execution Tree: Our technique targets
well-tested production-quality programs that are “almost” correct; so, our
heuristic of choosing the latest possible branch as the “culprit” essentially tries
to capture the intuition that the symbolic execution tree of the correct program
must be similar to the symbolic execution tree of the faulty program. Choosing
the latest such branch as the culprit is a greedy attempt at encouraging the
developer to find a fix that makes the minimum change to the current symbolic
execution tree of the program.

– Handle “burst” faults: In Fig. 2, all paths on one side of the node with
[PC : 1 ≤ x ≤ 2; 0 ≤ y ≤ 2] fail. So, the branching predicate for this node,
x ≥ 2, looks “suspicious”. Our heuristic of identifying the latest branch as the
culprit is directed at handling such scenarios of “burst” failures on one side of
a branch.

4 Clustering Framework

4.1 Clustering Algorithm

Algorithm 1 shows the core steps in dynamic symbolic execution with additional
statements (highlighted in grey) for driving test clustering. The algorithm operates
on a representative imperative language with assignments, assertions and condi-
tional jumps (adapted from [3,13]). A symbolic executor maintains a state (l, pc, s)
where l is the address of the current instruction, pc is the path condition, and s is a
symbolic store that maps each variable to either a concrete value or an expression
over input variables. At line 3, the algorithm initializes the worklist with an initial
state pointing to the start of the program (l0, true, ∅): the first instruction is at l0,
the path condition is initialized as true and the initial store map is empty.

The symbolic execution runs in a loop until the worklist W becomes empty. In
each iteration, based on a search heuristic, a state is picked for execution (line 7).
Note that to support failing test bucketing, the search strategy must be DFS

Bucketing Failing Tests via Symbolic Analysis 49

Algorithm 1. Symbolic Exploration with Test Clustering
1: procedure SymbolicExploration(l0, W)

2: C ← {}; passList ← []; failList ← [] � initialization for bucketing

3: W ← {(l0, true, ∅)} � initial worklist
4: while W �= ∅ do

5: (l, pc, s) ← pickNext(W)

6: S ← ∅
7: switch instrAt(l) do � execute instruction
8: case v := e � assignment instruction
9: S ← {(succ(l), pc, s[v → eval(s, e)])}

10: case if (e) goto l′ � branch instruction
11: e ← eval(s, e)
12: if (isSat(pc ∧ e) ∧ isSat(pc ∧ ¬e)) then
13: S ← {(l′, pc ∧ e, s), (succ(l), pc ∧ ¬e, s)}
14: else if (isSat(pc ∧ e) then
15: S ← {(l′, pc ∧ e, s)}
16: else
17: S ← {(succ(l), pc ∧ ¬e, s)}
18: end if
19: case assert(e) � assertion
20: e ← eval(s, e)
21: if (isSat(pc ∧ ¬e)) then
22: testID ← GenerateTest(l, pc ∧ ¬e, s)

23: pc′ ← ConvertPC(pc ∧ ¬e)

24: AddToList(failList,(testID,pc′))
25: continue
26: else
27: S ← {(succ(l), pc ∧ e, s)}
28: end if
29: case halt � end of path
30: testID ← GenerateTest(l,pc,s)

31: pc′ ← ConvertPC(pc)

32: AddToList(passList,(testID,pc′))

33: if failList �= [] then

34: ClusterTests(C,passList,failList)

35: failList ← [] � empty failing list

36: end if
37: continue
38: W ← W ∪ S � update worklist
39: end while
40: if failList �= [] then

41: ClusterTests(C,passList,failList)

42: end if
43: end procedure

or an instance of our clustering-aware strategy (clustering-aware search strategy
discussed in Sect. 4.2). A worklist S (initialized as empty) keeps all the states
created/forked during symbolic exploration.

50 V.-T. Pham et al.

If the current instruction is an assignment instruction, the symbolic store s
is updated and a new state pointing to the next instruction is inserted into S
(lines 8 − 9). A conditional branch instruction is processed (line 10) via a con-
straint solver that checks the satisfiability of the branch condition; if both its
branches are satisfiable, two new states are created and inserted into S. If only
one of the branches is satisfiable, the respective state is added to S. For assert
instructions, the symbolic execution checks the assert condition, and if it holds,
a new program state is created and the state is added to S. If the condition
does not hold, it triggers an assertion failure, thereby, generating a failing test
case (we call the respective test case a “failing test”). Some symbolic execution
engines (like KLEE [4]) perform run-time checks to detect failures like divide-
by-zero and memory access violations; in this algorithm, the assert instruction
is used to represent the failures detected by such checks as well. On encountering
a halt instruction, the symbolic execution engine generates a test-case for the
path (we refer to such a test case as a “passing test”). The halt instruction
represents a normal termination of the program.

Algorithm 2. Clustering failing tests
1: procedure ClusterTests(Clusters,passList,failList)

2: for (failID, failPC) ∈ failList do

3: maxPrefixLength ← 0

4: for (passID, passPC) ∈ passList do

5: curPrefixLength ← LCP (failPC, passPC)

6: if curPrefixLength > maxPrefixLength then

7: maxPrefixLength ← curPrefixLength

8: end if

9: end for

10: reason ← failPC[maxPrefixLength+1]

11: Update(Clusters,failID,reason)

12: end for

13: end procedure

14: ———————————————————————–

15: procedure Update(Clusters,failID,reason)

16: for r ∈ Clusters.Reasons do

17: if isValid(reason ⇒ r) then

18: Clusters[r].Add(failID)

19: return

20: else if isValid(r ⇒ reason) then

21: UpdateReason(Clusters[r], reason)

22: Clusters[reason].Add(failID)

23: return

24: end if

25: end for

26: AddCluster(Clusters, reason, failID)

27: end procedure

To support clustering
of tests, we define two
new variables, passList
and failList, to store
information about all
explored passing and failing
tests (respectively). For
each test, we keep a pair
(testID, pathCondition),
where testID is the iden-
tifier of the test generated
by symbolic execution,
and pathCondition is a
list of branch conditions
(explained in Sect. 3). We
also introduce a variable
C that keeps track of all
clusters generated so far;
C is a map from a culprit
constraint (cluster reason)
to a list of identifiers of
failing tests. The bucketing
functionality operates in
two phases:

Phase 1: Searching for failing and passing tests. The selected search
strategy guides the symbolic execution engine through several program paths,
generating test cases when a path is terminated. We handle the cases where tests
are generated, and update the respective list (passList or failList) accordingly.
In particular, when a failing test case is generated, the path condition (pc) is

Bucketing Failing Tests via Symbolic Analysis 51

converted to a list of branch conditions (pc′). The pair comprising of the list
pc′ and the identifier of the failing test case form a representation of the failing
path; the pair is recorded in failList (lines 23–24). The passList is handled in
a similar manner (lines 31–32).

Phase 2: Clustering discovered failing tests. Once a passing test is found
(lines 35–37) or the symbolic execution engine completes its exploration (lines
42–43), the clustering function ClusterTests will be invoked. The procedure
ClusterTests (Algorithm 2) takes three arguments: (1) all clusters generated so
far (Clusters), (2) all explored passing tests (passList) and (3) all failing tests
that have not been clustered (failList). In this function, the culprit constraints
of all failing tests in failList is computed (lines 2–9) and, then, the function
Update is called (line 10) to cluster the failing tests accordingly.

The Update function (Algorithm 2) can place a failing test into an existing
cluster or create a new one depending on the culprit constraint (reason) of the
test. We base our clustering heuristic on the intuition that the reason of failure of
each test within a cluster should be subsumed by a core reason (rc) represented
by the cluster. Hence, for a given failing test f (with a reason of failure rf) being
clustered and a set of all clusters Clusters, the following three cases can arise:

– There exists c ∈ C such that rc subsumes rf : in this case, we add the test
f to the cluster c (line 18);

– There exists c ∈ C such that rf subsumes rc: in this case, we generalize
the core reason for cluster c by resetting rf as the general reason for failure
for tests in cluster c (lines 21–22);

– No cluster reason subsumes rf , and rf subsumes no cluster reason:
in this case, we create a new cluster c’ with the sole failing test f and attribute
rf as the core reason of failure for tests in this cluster (line 26).

4.2 Clustering-Aware Search Strategy

It is easy to see that Algorithm 1 will yield the correct culprit constraints if
the search strategy followed is DFS: once a failing path fi is encountered, the
passing path that shares the maximum common prefix with fi is either the last
passing path encountered before the failure, or is the next passing path after
fi (i.e. ignoring all failures in the interim). Hence, a depth-first traversal of the
symbolic execution tree will always find the culprit constraints by constructing
the largest common prefix of the failing paths with at most two passing paths
(the passing executions just before and just after encountering the failures).

However, DFS has a very poor coverage when used with a time-budget.
Hence, we require search strategies different than DFS (like the Random and
CoverNewCode strategies in KLEE) to achieve a good coverage. In fact, during
our experiments, we could not trigger most of the failures in our benchmarks
with DFS within reasonable timeouts.

We design a new clustering-aware search strategy (CLS) that is capable of
discovering the precise culprit constraint while achieving a high coverage at the

52 V.-T. Pham et al.

same time. CLS is built on a crucial observation that we only require DFS
on a failing test to guide the search to its nearest passing test; on a passing
test, the next test can be generated as per any search heuristic. Hence, one can
implement any combination of suitable search strategies (to achieve high code
coverage) while maintaining the use of DFS on encountering a failure (to identify
the culprit constraint precisely).

Fig. 3. A branching tree

We leverage a so-called branching tree, a data
structure maintained by many symbolic execu-
tion engines (like KLEE) to record the symbolic
execution tree traversed in terms of the branch-
ing/forking history (KLEE refers to it as the
process tree). Let us illustrate as to how we com-
bine an arbitrary search strategy (SS) with DFS
exploration to implement an instance of CLS
using the branching tree in Fig. 3. In the tree,
i1–i7 are internal nodes while p1–p8 are leaf nodes. Note that in the following
paragraphs, we will use the term (leaf) node and path interchangeably. Basically,
CLS works in two phases:

Phase 1: SS searches for a failing test. The search heuristic SS searches for
a failure using its own algorithm. Suppose SS first detects a failing path p5, it
returns control to CLS that now switches to the DFS heuristic (to locate the
“nearest” passing test, i.e. the one that has the longest common prefix with p5).

Phase 2: DFS looks for “nearest” passing test. Continuing with our exam-
ple (Fig. 3), by the time SS detects the failing path p5, assume that we have
explored three paths p1, p2, p7 and successfully put the failing path p2 into
its correct cluster. So, now only four active paths remain: p3, p4, p6 and p8.
At this point, our CLS search strategy uses another crucial observation: since
p7 is a passing path and i4 is the closest common ancestor node of p5 and p7,
the nearest passing path for p5 must be p7 or another passing path spawned
from intermediate nodes i5, i6 or i7. Hence, we can reduce the search space for
finding the nearest passing path for p5 from the space represented by outer blue
triangle to the inner (smaller) triangle (as p7 is a passing path, it must be the
nearest passing path if no “nearer” passing path is discovered in the subtree
rooted at i4). We omit the details of how it is achieved for want of space.

If the symbolic execution is run with a timeout setting, the timeout can
potentially fire while CLS is searching for the nearest passing path to a failing
execution. In this case, we simply pick the nearest passing path to the failing
execution among the paths explored so far to compute the culprit constraint.

Our technique is potent enough to cluster an existing test-suite by running
the symbolic execution engine needs to run in a mode that the exploration of a
path that is controlled by the failing test (like the “seed” mode in KLEE [4]).
During path exploration, the first passing test encountered in a depth-first tra-
versal seeded from the failing test t would necessarily be the passing test that has
the longest common prefix with t. Thus, we can compute the culprit constraint
accordingly, and use it to form a new cluster or update an existing cluster.

Bucketing Failing Tests via Symbolic Analysis 53

4.3 Generalize Reasons for Failure

Consider Fig. 4: the program checks if the absolute value of each element in
the array is greater than 0. The buggy assertion contains > comparison instead
of ≥), which would cause 10 failing test cases ∀ i ∈ {0..9}. Since each array
element is modeled as a different symbolic variable, all 10 cases are clustered
separately.

1 int main() {

2 int arr[10], int i;

3 make_input(arr , sizeof(arr));

4 for (i = 0; i < 10; i++) {

5 if (a[i] < 0) a[i] = -a[i];

6 assert(a[i] > 0); // a[i] >= 0

7 }

8 }

Fig. 4. Generalization for arrays

In such cases, we need to generalize
errors that occur on different indices
but due to the same core reason. For
example, if the reason is: arr[4] >
0 ∧ arr[4] < 10, we change this for-
mula to ∃x (arr[x] > 0 ∧ arr[x] < 10).
Note that this is only a heuristic, and
our implementation allows the user to
disable this feature.

5 Experimental Evaluation

We evaluated our algorithm on a set of 21 programs: three programs from Intro-
Class [10] (a micro benchmark for program repair tools) and the remaining
eighteen real-world programs taken from four benchmarks-suites: eleven pro-
grams from Coreutils [1] version 6.10, three from SIR [7], one from BugBench
[16] and three from exploit-db [2]. The three subject programs from exploit-db
(downloaded them from the project’s website) were used in [11]. The bugs in
IntroClass, Coreutils, exploit-db and BugBench programs are real bugs, whereas
the ones in SIR are seeded.

We manually inserted assert statements in the programs taken from the Intro-
Class benchmark to specify the test oracle, while all remaining 18 real-world pro-
grams were kept unchanged. During symbolic execution, the failing test cases are
generated due to the violation of embedded assertions or triggering of run-time
errors (captured by KLEE) like divide-by-zero and invalid memory accesses.

We compared our symbolic-analysis based (SAB) test clustering method
to two baseline techniques: call-stack based (CSB) and point-of-failure based
(PFB) clustering. While SAB refers to the implementation of our algorithm
within KLEE, we implemented CSB and PFB on top of KLEE to evaluate our
implementation against these techniques. Specifically, our implementation first
post-processes the information of test cases generated by KLEE to compute the
stack hash (on function call stack) and extract failure locations. Based on the
computed and extracted data, they cluster the failing tests.

We conducted all of the experiments on a virtual machine created on a host
computer with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of RAM. The virtual
machine was allocated 4 GB of RAM and its OS is Ubuntu 12.04 32-bit. For our
experiments, we use the clustering-aware search strategy (CLS), enable array
generalization and use a timeout of one hour for each subject program. KLEE
is run with the --emit-all-errors flag to enumerate all failures.

54 V.-T. Pham et al.

5.1 Results and Analysis

Table 2 shows the results from our experiments on selected programs. Size pro-
vides the size of the program in terms of the number of LLVM bytecode instruc-
tions. #Fail Tests provides the number of failing tests. The rest of the columns
provide the number of clusters (#C) for Point-of-failure (PFB), Stack Hash (CSB)
and our Symbolic Analysis (SAB) based methods. Note that #C(PFB) doubles
up to also record the number of failing locations. As KLEE symbolically exe-
cutes the LLVM [14] bitcode, we show the size of the program in terms of the
total lines of the LLVM bitcode instructions.

In several programs (like ptx, paste, grep) SAB places thousands of fail-
ing tests into manageable number of clusters. Compared to CSB, in 12 out of
21 subjects (∼57%), our method produces more fine-grained clustering results.
Compared to PFB, our technique expands the number of clusters to get a more
fine-grained set in 10/21 subjects. However, our method also collapses the clus-
ters in case the program has failures that are likely to be caused by the same
bug but the failures occur at several different locations (like ptx and paste)
(Table 2).

RQ1. Does our technique produce more fine-grained clusters? In the
experiments, we manually debugged and checked the root causes of failures in
all subject programs. Based on that, we confirm that our SAB approach does

Table 2. Test clustering: num. of clusters

Program Repository Size #Fail #C #C #C

(kLOC) Tests PFB CSB SAB

median IntroClass 1 7 1 1 5

smallest IntroClass 1 13 1 1 3

syllables IntroClass 1 870 1 1 5

mkfifo Coreutils 38 2 1 1 1

mkdir Coreutils 40 2 1 1 1

mknod Coreutils 39 2 1 1 1

md5sum Coreutils 43 48 1 1 1

pr Coreutils 54 6 2 2 4

ptx Coreutils 62 3095 16 1 3

seq Coreutils 39 72 1 1 18

paste Coreutils 38 4510 10 1 3

touch Coreutils 18 406 2 3 14

du Coreutils 41 100 2 2 8

cut Coreutils 43 5 1 1 1

grep SIR 61 7122 1 1 11

gzip SIR 44 265 1 1 1

sed SIR 57 31 1 1 1

polymorph BugBench 25 67 1 1 2

xmail Exploit-db 30 129 1 1 1

exim Exploit-db 253 16 1 1 6

gpg Exploit-db 218 2 1 1 1

Table 3. Test clustering: overhead

Program #Pass #Fail Time Ovrhd

paths paths (sec) (%)

median 4 7 5 ∼0

smallest 9 13 5 ∼0

syllables 71 870 1800 4.35

mkfifo 291 2 3600 ∼0

mkdir 326 2 3600 ∼0

mknod 72 2 3600 ∼0

md5sum 62449 48 3600 0.42

pr 540 6 3600 ∼0

ptx 9 3095 3600 2.04

seq 445 72 1800 0.73

paste 3501 4510 3600 16.17

touch 210 406 3600 0.84

du 44 100 3600 0.81

cut 38 5 3600 ∼0

grep 169 7122 3600 34.13

gzip 5675 265 3600 0.7

sed 3 31 3600 0.03

polymorph 3 67 3600 14.36

xmail 1 129 3600 0.06

exim 178 16 3600 0.03

gpg 10 2 3600 ∼0

Bucketing Failing Tests via Symbolic Analysis 55

1 int a, b, c, d, smallest;

2 make_symbolic(a, b, c, d);

3 assume(a>=-10 && a <=10);

4 assume(b>=-10 && b <=10);

5 assume(c>=-10 && c <=10);

6 assume(d>=-10 && d <=10);

7 if (a < b && a < c && a < d)

8 smallest = a;

9 if (b < a && b < c && b < d)

10 smallest = b;

11 if (c < b && c < a && c < d)

12 smallest = c;

13 if (d < b && d < c && d < a)

14 smallest = d;

15 assert(smallest ==

16 golden_smallest(a,b,c,d));

Fig. 5. Code snippet from ‘smallest’

1 case ’e’:

2 if (optarg)

3 getoptarg (optarg , ’e’, ...);

4 // ...
5 break;

6 // other cases
7 case ’i’:

8 if (optarg)

9 getoptarg (optarg , ’i’, ...);

10 // ...
11 break;

12 // other cases
13 case ’n’:

14 if (optarg)

15 getoptarg (optarg , ’n’, ...);

16 break;

Fig. 6. Code snippet from ‘pr’

effectively produce more fine-grained clusters. For instance, as shown in Fig. 5,
the buggy smallest program, which computes the smallest number among four
integer values, does not adequately handle the case in which at least two of the
smallest integer variables are equal. For example, if d equals b, none of the four
conditional statements (at lines 7, 9, 11 and 13) take the true branch; the result
is incorrect as the variable smallest then takes an arbitrary value.

As shown in Fig. 5, we instrumented the program to make it work with KLEE.
During path exploration, KLEE generated 13 failing tests for this program and
the CSB technique placed all of them into one cluster as they share the same
call stack. However, our SAB approach created three clusters with the following
reasons: (Cluster 1) d ≥ b, (Cluster 2) d ≥ c and (Cluster 3) d ≥ a. The reasons
indeed show the corner cases that can trigger the bugs in the program. We
observed similar cases in median and syllables programs (see Table 2).

In the subject program pr (a Coreutils utility), we found that 6 failing tests
due to two different bugs are placed in two clusters on using stack hash similarity.
Meanwhile, our approach placed these 6 failing tests into 4 different clusters: one
cluster contained 3 failing tests corresponding to one bug, and the other three
clusters contain three failing tests of the second bug. Figure 6 shows a code
snippet from pr that shows three call sites for the buggy function getoptarg()
(at lines 3, 9 and 15). In this case, because all of the three call sites are in one
function, so the stack hash based technique placed the three different failing
paths in the same cluster. Similar cases exist in the exim and du applications.

RQ2. Can our clustering reasons (culprit constraints) help users to
look for root causes of failures? One advantage of our bucketing method
compared to CSB and PFB approaches is its ability to provide a semantic char-
acterization of the failures that are grouped together (based on the culprit con-
straint). The existing techniques are only capable of capturing syntactic infor-
mation like the line number in the program or the state of the call-stack when
the failure is triggered.

56 V.-T. Pham et al.

Table 4. Sample culprit constraints

Program Culprit constraint
mkfifo (= (select arg0 #x00000001) #x5a)
pr (= (select stdin #x00000009) #x09)

Table 4 shows a few
examples of the culprit
constraints that our tech-
nique used to cluster fail-
ing tests for mkfifo and
pr. In mkfifo, the culprit

constraint can be interpreted as: the second character in the first argument is
the character ‘Z’. This is, in fact, the correct characterization of this bug in
mkfifo as the tests in this cluster fail for the “-Z” option. In case of pr, the
culprit constraint indicates that: the tenth character of the standard input is a
horizontal tab (TAB). The root cause of this failure is due to incorrect handling
of the backspace and horizontal tab characters.

RQ3. What is the time overhead introduced by our bucketing tech-
nique over vanilla symbolic execution? Overall, in most of the subject
programs the time overhead is negligible (from 0% to 5%), except in some pro-
grams where the overhead is dominated by the constraint solving time (Table 3).

5.2 User Study

A user study was carried out with 18 students enrolled in a Software Security
course (CS4239) in the National University of Singapore (NUS) to receive feed-
back on the usability and effectiveness of our bucketing method. Among the
students, there were 14 senior undergraduate and 4 masters students. Before
attending the course, they had no experience on applying bucketing techniques.
The students were required to run the three bucketing techniques (our method
and two others based on call-stack and point of failure information) to cluster
the found failing tests, and (primarily) answer the following questions:

Q1. Rate the level of difficulty in using the three techniques for bucketing failing tests.

Q2.To what extent do the bucketing techniques support debugging of program error?

Q3.Are the numbers of clusters generated by the bucketing techniques manageable?

Table 5. Responses from the user study. Q1 enquires

about the difficulty of using a technique: Easy (E), Moderate

(M), Difficult (D) and Very Difficult (VD). Q2 responses are

about the usefulness of a method: Not Useful (N), Useful (U)

and Very Useful (VU).

Bucketing technique Difficult(Q1) Useful(Q2)
E M D VD N U VU

Point of failure (PFB) 8 8 2 0 0 7 11

Stack hash (CSB) 3 13 2 0 3 8 7

Symbolic analysis (SAB) 1 9 7 1 2 4 12

The users’ responses for
Q1 & Q2 are summarized in
Table 5; for example, the first
cell of Table 5 shows that 8
of the 18 respondents found
the PFB technique “Easy” for
bucketing. In response to Q3,
14 out of the 18 respondents
voted that the number of clus-
ters generated by our tech-
nique is manageable.

In terms of usefulness as a debugging aid, our technique is ranked “Very
Useful” by 12 of the 18 respondents. It gains a high rating for its usefulness as

Bucketing Failing Tests via Symbolic Analysis 57

it provides a semantic characterization for each bucket (in terms of the culprit
constraint), that can help users locate the root cause of failure. At the same
time, we found that the main reason that they found our technique harder to
use was that this characterization was shown in the form of logical formula in the
SMT-LIB format—a format to which the students did not have enough exposure.
We list some of the encouraging feedback we got:

– “I believe it is the most powerful of the three techniques, letting me understand
which assert are causing the crash or how it is formed.”

– “It is very fine grain and will allow us to check the path condition to see
variables that causes the error.”

6 Related Work

One related line of research involves clustering crash reports or bug reports [6,8,
12,17,20]. Crash Graph [12] uses graph theory (in particular, similarity between
graphs), to detect duplicate reports. In terms of duplicate bug report detection,
Runeson [20] proposed a technique based on natural language processing to check
similarity of bug reports.

Another relevant work involves clustering program failing traces. Liu and
Han [15] proposed the technique to use results of fault localization methods for
clustering failing traces. Given two set of failing and passing traces which are
collected from instrumented predicates of software program, they statistically
localize the faults and two failing traces are considered to be similar if the pointed
fault locations in the two traces are the same. Podelski et al. [19] cluster failure
traces by building symbolic models of their execution (using model checking
tools) and use interpolants as signatures for clustering tests. Due to the cost of
symbolic model-checking, their technique seems to suffer from scalability issues
as in their experiments, even their intraprocedural analysis times out (or the
interpolant generator crashes) on a large number of methods.

Although the above-mentioned lines of research are relevant to our work,
we target our research on clustering failing tests — instead of crash reports,
bug reports or failing traces. The other lines of research do not assume they
have concrete test inputs to trigger the bugs, so they build the techniques on
exploring run-time information collected in the field (i.e.,where the software
systems are deployed). In our case, we work on failing tests obtained during
symbolic exploration of software programs or provided by test teams.

To the best of our knowledge, all popular symbolic execution engines only
borrow and slightly change the techniques that have been proposed for clustering
crash reports to cluster their generated failing tests. The clustering approach can
be as simple as using point of failure in KLEE [4] or using call stack information
in SAGE [9] and MergePoint [3].

7 Conclusions

We leverage the symbolic execution tree built by a symbolic execution engine
to cluster failing tests found by symbolic path exploration. Our approach can

58 V.-T. Pham et al.

also be implemented on symbolic execution engines like S2E [5] for clustering
tests for stripped program binaries (when source code is not available). Unlike
many other prior techniques, our technique should be able to handle changing
of addresses when Address Space Layout Randomization (ASLR) is enabled as
symbolic expressions are unlikely to be sensitive to address changes.

Acknowledgment. This research is supported in part by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its National Cybersecurity R&D Pro-
gram (TSUNAMi project, Award No. NRF2014NCR-NCR001-21) and administered
by the National Cybersecurity R&D Directorate.

References

1. Coreutil benchmarks: http://www.gnu.org/software/coreutils/coreutils.html
2. Exploit-db benchmarks. https://www.exploit-db.com/
3. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution

with veritesting. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 1083–1094. ACM, New York (2014)

4. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008)

5. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-path
analysis of software systems. SIGPLAN Not. 47(4), 265–278 (2011)

6. Dang, Y., Wu, R., Zhang, H., Zhang, D., Nobel, P.: Rebucket: A method for clus-
tering duplicate crash reports based on call stack similarity. In: Proceedings of the
34th International Conference on Software Engineering, ICSE 2012, pp. 1084–1093.
IEEE Press, Piscataway (2012)

7. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Softw.
Engg. 10(4), 405–435 (2005)

8. Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G.,
Grant, D., Loihle, G., Hunt, G.: Debugging in the (very) large: Ten years of imple-
mentation and experience. In: Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP 2009, pp. 103–116. ACM, New York (2009)

9. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

10. Goues, C.L., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W.: The manybugs and introclass benchmarks for automated repair of C
programs. IEEE Trans. Softw. Eng. 41(12), 1236–1256 (2015)

11. Jin, W., Orso, A.: F3: Fault localization for field failures. In: Proceedings of the
2013 International Symposium on Software Testing and Analysis, ISSTA 2013, pp.
213–223. ACM, New York (2013)

12. Kim, S., Zimmermann, T., Nagappan, N.: Crash graphs: An aggregated view of
multiple crashes to improve crash triage. In: Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems & Networks, DSN 2011, pp.
486–493. IEEE Computer Society, Washington, DC (2011)

http://www.gnu.org/software/coreutils/coreutils.html
https://www.exploit-db.com/

Bucketing Failing Tests via Symbolic Analysis 59

13. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012, pp. 193–204. ACM,
New York (2012)

14. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004, p. 75, . IEEE Computer Society, Washington, DC (2004)

15. Liu, C., Han, J.: Failure proximity: A fault localization-based approach. In: Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT 2006/FSE-14, pp. 46–56. ACM, New York (2006)

16. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of Software Defect
Detection Tools (2005)

17. Modani, N., Gupta, R., Lohman, G., Syeda-Mahmood, T., Mignet, L.: Automati-
cally identifying known software problems. In: Proceedings of the 2007 IEEE 23rd
International Conference on Data Engineering Workshop, ICDEW 2007, pp. 433–
441. IEEE Computer Society, Washington, DC (2007)

18. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: Proceedings of the 18th Conference on USENIX
Security Symposium, SSYM 2009, pp. 67–82. USENIX Association, Berkeley
(2009)

19. Podelski, A., Schäf, M., Wies, T.: Classifying bugs with interpolants. In: Aichernig,
B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762, pp. 151–168. Springer,
Cham (2016). doi:10.1007/978-3-319-41135-4 9

20. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports
using natural language processing. In: Proceedings of the 29th International Con-
ference on Software Engineering, ICSE 2007, pp. 499–510. IEEE Computer Society,
Washington, DC (2007)

http://dx.doi.org/10.1007/978-3-319-41135-4_9

Selective Bisection Debugging

Ripon Saha1(B) and Milos Gligoric2

1 Fujitsu Laboratories of America, Sunnyvale, CA 94085, USA
rsaha@us.fujitsu.com

2 The University of Texas at Austin, Austin, TX 78712, USA
gligoric@utexas.edu

Abstract. Bisection debugging, which is based on binary search over
software version history, is widely used in practice to identify the bug
introducing commit. However, this process can be expensive because it
requires costly compilation and test execution at many commits. We
introduce a novel technique—selective bisection (consisting of test selec-
tion and commit selection)— reduce the number of bisection steps, the
number of compiler invocations, and the number of executed tests. We
evaluated selective bisection on 10 popular open-source projects by per-
forming 25,690 debugging sessions and measuring: (1) savings in number
of compiler invocations obtained by commit selection, (2) savings in num-
ber of executed tests obtained by test selection, and (3) savings in overall
debugging time by selective bisection. Our results show that, in 65% of
debugging sessions, commit selection saves between 14% and 71% com-
piler invocations. Test selection saves 74% of testing effort on average
(ranging from 42% to 95%) compared to when developers do not use
any test selection. Finally, we demonstrate that one can save substantial
time using selective bisection for large projects.

1 Introduction

In large software systems, where many developers work together making hun-
dreds of commits per day [14,36,37], coping with regression bugs is one of the
most challenging problems. According to Linux Kernel developers, 80% of the
release cycle time is dedicated to fixing regression bugs [3]. Identifying the bug
introducing commit is very important to isolate and understand regression bugs.
Bisection debugging is a well known technique that performs a binary search over
software version history to identify the bug introducing commit. The popular ver-
sion control systems, such as Git and Mercurial, have in-built commands (git
bisect and hg bisect) to help developers perform bisection debugging [7,15].
Since these commands are integrated with the version control systems, they are
frequently used by developers. For example, a well known Linux developer, Ingo
Molnar says about his use of Git bisect [3]:

Most of this work was completed when Ripon Saha was a Ph.D. Student at
The University of Texas at Austin.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 60–77, 2017.
DOI: 10.1007/978-3-662-54494-5 4

Selective Bisection Debugging 61

“I most actively use it during the merge window (when a lot of trees get
merged upstream and when the influx of bugs is the highest) - and yes, there
have been cases that I used it multiple times a day. My average is roughly once
a day.”

Although bisection debugging can isolate the bug introducing commit quickly
in terms of number of bisection steps, the whole process could be still expensive
if the program takes a long time (even a couple of minutes) to compile and the
tests take a long time to run, which is the case for most large systems [2,8].

This paper presents a novel technique called selective bisection that fre-
quently reduces the cost of bisection debugging by minimizing (1) the number
of compiler invocations using commit selection and (2) the number of tests to
execute using test selection . Test selection [10,14,19,20,23,30,31,35–39,42] is
a well known technique to select tests that are affected by a particular change.
Therefore, test selection is used to speed up regression testing [39]. Our key
insight is that a significant amount of compilation and testing effort could be
reduced during debugging by selecting only relevant commits and running only
those tests that are relevant to the buggy changes. To this end, we have proposed
a commit selection technique and leveraged an existing test selection technique
for bisection debugging. In order to evaluate the effectiveness of our idea, we
performed 25,690 bisection debugging sessions in 10 open-source projects. Our
empirical evaluation shows that commit selection saves between 14% and 71%
compiler invocations across all projects in 65% of debugging sessions. Addition-
ally, test selection saves 74% of testing effort on average (ranging from 42% to
95%) compared to when developers do not use any test selection. This paper
makes the following key contributions:

• To the best of our knowledge, we are the first to introduce the notion of commit
selection and test selection in bisection debugging.

• We present a commit selection approach to save the number of compilations.
We also present various testing strategies used in bisection debugging, and
show how an existing test selection technique can be integrated with various
strategies to substantially reduce the testing effort.

• We present an extensive evaluation to demonstrate the effectiveness of commit
selection and test selection.

2 Background

This section introduces the basic terminology used in this paper and briefly
describes bisection debugging and test selection.

2.1 Commit and Version

In this paper, by a commit we mean a set of changes that developers include
one at a time in a version control system. By a version, we mean the snapshot
of the code base at a given commit.

62 R. Saha and M. Gligoric

Good Bad

1st Bisection
Step

Bisec

Bad

2nd Bisection
Step
Bisec 3rd Bisection

Step
Bisec4th Bisection

Step
Bisec5th Bisection

Step
Bisec

Good Good Bad Bad Bad

6th Bisection
Step

Bisec

Fig. 1. Process of bisection debugging

2.2 Bisection Debugging

In large projects, commits happen so frequently that a bug introducing commit,
even after a few days of introduction, can be hundreds of commits away from
the current version [2]. Certainly, going through all the commits in software
history from the latest known good version is not feasible. Bisection debugging
performs a binary search through the commit history to help developers quickly
identify the bug introducing commit. git bisect is a popular tool for bisection
debugging [7]. Given a range of commits where the version (νgood) at the first
commit is good and the version (νbad) at the last commit is bad, git bisect

checks out the version (νbisect) at the middle commit. Then νbisect is tested
(manually or automatically) to determine whether it is good or bad, and marked
as νgood or νbad for the next step depending on the test results. The whole
process is repeated until a νgood followed by a νbad is found. Figure 1 illustrates
a debugging scenario where a developer starts bisection debugging with 100
commits and finally discover that 29th commit introduced the bug.

Although bisection debugging is based on the binary search, the number of
steps in bisection debugging to isolate a bug introducing commit and that of
binary search to search a value in a list is not the same. In a list of n values,
a binary search can terminate even at the first step if the value is found there.
Therefore, the best case performance of binary search is O(1). On the other
hand, in the worst case when the desired value is not in the list, the complexity
is O(log 2n). However, the number of steps in bisection debugging is always
�log 2n + 1�, since we do not know which commit actually introduced the bug.
Even if the version at first bisection step introduced the bug, we cannot terminate
the search until we find two consecutive versions such that a good version is
followed by a bad version.

2.3 Test Selection

Given a set of changes in a project, a test selection technique [10,14,19,20,23,
30,31,35–37,39,42] seeks to select a subset of tests that are sufficient to test
the new version of the program. A test selection technique is safe if it selects all
tests affected by changes. Among many test selection techniques, we have chosen
Ekstazi [9,10] for our work, since our goal was to improve bisection debugging of
projects written in JVM languages (e.g., Java, Scala, etc.). Additionally, Ekstazi
is publicly available. Ekstazi collects coverage for each test class, i.e., dynamically

Selective Bisection Debugging 63

accessed files. It then selects, at a new version, all tests that depend on at
least one modified file. Ekstazi collects both the executable and data files (e.g.,
property files) that are used during the execution of the test class; in the reminder
of the text, we denote a test class with test. Ekstazi is considered safe under
certain assumptions [29,32], e.g., that test cases are deterministic and that the
environments used in testing remains unchanged. Prior work showed Ekstazi’s
effectiveness (selects a small number of tests and provides speedup compared
to running all the tests) on a number of open-source projects [4,10]. Recently,
Ekstazi has been adopted by several open-source projects and companies.

In the default configuration, which we use in Sect. 4, Ekstazi collects a check-
sum for each dependency used by tests; the checksum is used later to find the
tests that should be run after code changes. Ekstazi computes the checksum of
executable files (i.e., classfiles) by ignoring the content that is commonly not
observed by tests (e.g., debug information). Ekstazi smoothly integrates with
popular testing frameworks (e.g., JUnit) and build systems (e.g., Maven) [5],
which simplified our study.

3 Selective Bisection

This section describes selective bisection that comprises of two techniques: com-
mit selection and test selection.

3.1 Commit Selection

In bisection debugging, at each bisection step, first the current version is
compiled and then tests are executed. However, compiling a large project is
costly [12,40]. Commit selection predicts if a certain commit in a bisection step
is likely irrelevant to failing tests. If it predicts that a commit is irrelevant to
the failing tests, it skips compiling that version, and moves to the next bisection
step. Predicting if a given commit νbisect is relevant or irrelevant to the failing
tests is always performed with respect to a reference version νref , for which we
already have the test results. Our key insight is that for a given pair of versions
(νref and νbisect), if we have the test coverage for νref and we know all the source
code changes between νref and νbisect, we can predict whether the failing tests
are affected due to changes between νref and νbisect without compiling νbisect.
If failing tests are not affected by the changes, the test results of νref and νbisect
are the same, i.e., if νref is good, νbisect is good; if νref is bad, νbisect is also bad.

Note that this is a prediction, not a determination, because it detects dif-
ferences between source files, but test selection technique that we used collects
tests coverage on compiled code (i.e., classfiles). For example, if two classes are
defined in a single source file, they are compiled to two classfiles (and a test
can depend on either of those classfiles or both of them), however, by looking at
differences between source files, we can detect changes only in the classfile that
matches the name of the source file. However, we can make the whole approach

64 R. Saha and M. Gligoric

Table 1. An example of commit selection for Jackrabbit for the failing test
OakSolrNodeStateConfigurationTest. Result: Number of compilations with and with-
out commit selection is 2 and 7 respectively. Savings: 71%.

G = Good, B = Bad, C = Current, LAG = Last Actual Good, LAB = Last Actual Bad

Step G B C Affected (G, C) Affected (B, C) Compile LAG LAB

1 1 100 50 Yes No No 1 100

2 1 50 25 No Yes No 1 100

3 25 50 37 Yes No No 1 100

4 25 37 31 Yes No No 1 100

5 25 31 28 Yes Yes Yes&Run 1 28

6 25 28 26 No Yes No 1 28

7 26 28 27 No Yes No 1 28

8 27 28 – – – Yes&Run 27 28

correct by automatically detecting inconsistencies due to any inaccurate predic-
tion, and then switching back to traditional bisection debugging. On the other
hand, if prediction is accurate, we may save substantial amount of compile time.

Prediction. This section describes our technique to predict if the failing tests
are affected by the change between νref and νbisect. The following steps describe
the way we predict if a test should execute:

1. For a given version νbisect, and a reference version νref , we extract the source
code differences between (νbisect and νref) = Δref only for Java source files.

2. We extract the file names of each added, deleted, and modified Java files from
Δref , and store them in a list, Fref = {F1, F2, .., Fk}.

3. We extract the coverage information from νref , which contains the infor-
mation of all tests and the name of source code classes that each test class
executes. We convert class names to file names. For most classes, class name
is the same as the file name. However, if a class is an inner class then file
name does not directly match the class name. For example, for an inner class
B in file A, the fully qualified name would be A$B. We will discard the later
part of the fully qualified name to get the file name A.

4. Then we search if the failing tests access any of the files in Fref . If yes, then
we conclude that we have to run that test for νbisect.

Commit selection in action. A developer generally starts bisection debugging
with a known good version νgood and a known bad version νbad.

1. We instrument both versions using Ekstazi to collect test coverage matrix at
file level for a negligible cost [10].

2. In each bisection step, we predict if failing tests are affected by the changes
between (i) νbisect and νgood, and (ii) νbisect and νbad.

Selective Bisection Debugging 65

(a) If both reference versions tell that the failing tests are affected at νbisect,
then we compile νbisect, run the tests, and mark νbisect as νgood or νbad
depending on the results.

(b) If one of the reference versions (νgood or νbad) tells that the failing tests
are not affected, we would simply transfer the corresponding test result
of νref (νgood or νbad) to νbisect, and thus would not compile νbisect.

3. We keep track of versions where the test results are updated using prediction,
and where the results are updated after actual test run. Therefore, we always
know the last actual good version (νlastActualGood) and the actual bad version
(νlastActualBad) where the good or bad was decided after running tests.

Detecting inconsistencies and switching back. After we get a buggy ver-
sion (νprobableBuggy) at the end of a debugging session, we check the consis-
tency of our result. For a valid bug introducing version, the version before the
bug introducing changes (νprobableBuggy−1) should be good. Therefore, we test
νprobableBuggy−1. If that is a good version, then we conclude that νprobableBuggy

is actually buggy. Otherwise, we perform traditional bisect (without prediction)
between νlastActualGood and νlastActualBad. Table 1 illustrate commit selection on
an open-source project, Jackrabbit, when its 28th commit is buggy.

3.2 Test Selection

During a bisection debugging session, at each step, (some) tests are executed
to determine if the current version is good or bad. To this end, developers may
follow one of the three testing strategies:1

1. All Tests (AT): In the safest form, developers run all the tests to determine
if a given version is good or bad.

2. Failing Tests (FT): In the most optimistic form, developers only run the
failing tests to determine if a given version is good or bad.

3. All Tests After Failing Tests (ST): A middle ground may be that devel-
opers first run the failing tests. If they keep failing, the version is marked as
bad. However, if the failing tests pass, developers run other tests to make sure
that the version is good indeed.

At a first glance, the second strategy may be tempting but it may not always
give the expected result, since even if the failing test passes, it is not guaranteed
that the version is good since other affected tests may fail. To get developers’
feedback, we asked a question on Stack Overflow2. As we expected, we got mixed
answers. One developer prefers the second strategy but another developer dis-
agrees. By combining the first and the second strategy, we introduced ST, which
we believe is the optimal strategy that gives the expected result.
1 It should be noted that we have not found any study on the use of bisection debug-

ging; the identified methodologies are inspired by reading blogs and posts on GitHub
related to bisection debugging [7,8].

2 http://goo.gl/oHyX2g.

http://goo.gl/oHyX2g

66 R. Saha and M. Gligoric

Our key insight is that developers could safely use a test selection tool such
as Ekstazi to select only the tests that are affected by the changes between
νbad/νgood and νbisect in each debugging step. In traditional test selection, gen-
erally a subset of tests are selected with respect to a single (often the previous)
version. However, for bisection debugging, we can take advantage of both νgood
and νbad to reduce the number of tests further. The idea is that only intersection
of two selected subsets for νbisect with respect to νgood and νbad are enough to
test νbisect safely [11].

Let us discuss a debugging scenario with a hypothetical example, as presented
in Fig. 2. Assume that Alice is debugging with seven versions of a program (ν1
and ν7) to identify a bug introducing commit (which are changes introduced in
ν2 in our example). Let us assume that there are n source files {C1, C2, . . . , Cn}
and m tests {T1, T2, . . . , Tm} in the project. In Fig. 2, the label between two con-
secutive versions represents the program difference between those two versions
in terms of Java files. For instance, δ(ν1, ν2) = C1, which means that the file C1

has been changed between ν1 to ν2. The level of granularity in our example is
at the file level, which is also the level of granularity of Ekstazi (Sect. 2). Table 2
represents a hypothetical test coverage matrix. In this example, we assume that
the matrix remains constant, but our approach works even if the matrix changes
due to changes in code.

Table 2. A hypothetical test coverage matrix

C1 C2 C3 C4 C5 C6 · · · Cn

T1 ✓ ✓ · · ·
T2 ✓ ✓ · · ·
T3 ✓ ✓ · · ·
T4 ✓ · · ·
T5 ✓ · · ·
T6 ✓ · · · ✓

· ·
Tm · · · ✓

C1 C1 C2 C3 C4 C3
Good

1st Bisection
Step

Bad Bad

2nd Bisection
Step

Bad Bad

3rd Bisection
Step

Fig. 2. Some hypothetical change scenarios in a git repository

Selective Bisection Debugging 67

Savings when running all tests (AT). Now let us simulate the number of
tests Alice has to run without test selection during this debugging session. First,
Alice marked ν1 as good and ν7 as bad. At this step bisection debugging moves
to ν4. Alice runs all m tests to test ν4. In this case, ν4 would be buggy since
the bug was introduced in ν2. So Alice marks ν4 as bad. The next bisection step
is at ν3. Alice runs the tests again, marks ν3 as buggy. Finally Alice does the
same thing for ν2, and identifies that ν2 is the bug introducing commit. So Alice
executed all tests 3 times, which is 3 × m tests in total.

Now we simulate the same scenario when Alice integrates Ekstazi in the
project and then starts debugging. In the first step at ν4, Ekstazi first uses ν1
and then ν7 as a reference version to select tests for ν4. When ν7 is the reference
version, δ(ν4, ν7) = {C3, C4}. From the coverage matrix in Table 2 (which is
generated by Ekstazi) we see that only T1, T2, T3, T4, and T6 are affected by the
changes. When ν1 is the reference version, the affected tests are T1, T2, T3 since
the change set is {C1, C2}. Therefore, Alice runs only the tests in the intersection,
i.e., T1, T2, and T3, to test ν4. The results for the other tests can be transferred
from the corresponding reference versions. In the second bisection step, Alice
need not run any tests in ν3 since no test is affected by both changes in C1 and
C2. Finally, Alice runs T1 and T3 to test ν2 due to the change in C1. Therefore,
in total Alice runs only five tests using test selection instead of 3 × m tests.

Savings when running only failing tests (FT). Now we consider the sce-
nario where Alice plans to run only failing tests. Even in this scenario, Ekstazi
can save testing effort by not running the failing tests at all, if they are not
affected by the changes. Since in this scenario Alice would run only the failing
tests, she knows the failing tests in advance. To simplify the discussion, let us
assume that Alice got only one failing test, T1. Now while testing at the first
bisection step ν4, we can see that the changes between ν4 and ν7 are {C3, C4}.
From the coverage matrix we observe that test T1 is affected by the change in C3

and C4. Therefore, Ekstazi would run T1. Since at ν4 the result of T1 should be a
failure, ν4 would be bad. Now for the second bisection step, ν3, Ekstazi sees that
only C2 changed. From the coverage matrix we observe that T1 is not affected by
this change. Therefore, Ekstazi would not run the test at all, and would transfer
the results of T1, which is a “failure” from ν4 to ν3. Therefore, ν3 would be bad.
Further, Ekstazi would run T1 for ν2 since it is affected. So Ekstazi would save
running the failing test one out of three times for this example.

Savings when running all tests after failing tests (ST). Since ST is a
combination of AT and FT, we do not describe it step by step.

4 Empirical Evaluation

To investigate the effectiveness of selective bisection, we performed an empirical
evaluation in terms of three research questions.

68 R. Saha and M. Gligoric

RQ1: How much compilation effort is saved through commit selection?
RQ2: How much testing effort is saved through test selection for different testing

strategies (AT, FT, and ST)?
RQ3: How much overall time is saved through selective bisection?

4.1 Projects

We used 10 open-source projects in our evaluation. We followed several criteria,
similar to prior studies on regression testing [10,34], to select these projects.
Specifically, the projects (i) use Git as a version control system, (ii) use Maven
as a build system, (iii) have at least 100 commits, and (iv) build without any
error. These projects are from diverse application domains and have been widely
used in software testing research. The first requirement is necessary since we
are investigating git bisect as bisection debugging. The requirements of Maven
and JUnit tests were set to make our experiments fully automatic. Finally, the
requirement of 100 commits helps ensure that the projects are non trivial. For
each selected project, Table 3 shows its name, the start and end version SHA
(which we consider to be a starting pair of a good and a bad version in each
debugging session), the code size in terms of lines of code (LOC), the number
of source files and test classes, and their build time and test execution time (on
the latest version). From the table, we can see that the sizes of the projects
vary from small (Codec) to fairly large (Jetty) in terms of LOC. Their build
times (without test execution) vary from few seconds to several minutes, and
test execution times vary from few seconds to 44 minutes (Jackrabbit). The last
two rows show the total and average values computed across all projects.

Table 3. Projects used in the evaluation

Project Start SHA End SHA KLOC #Source
files

#Test
classes

Time
build

[mm:ss]
test

CCompiler 14a9e6fe a8a53e83 239.2 630 262 01:08 02:20

Codec 5af6d236 535bd812 17.6 67 48 00:29 00:18

Collections 45a0337e c87eeaa4 60.3 357 160 00:24 00:42

Lang 9e575c4d 17a6d163 69.0 159 134 00:30 00:33

Math ff4ec1a3 471e6b07 174.8 841 479 00:30 02:35

Net 17ecff74 4450add7 26.9 224 42 00:26 01:13

GraphHopper d1a0fd81 c0a328f8 43.6 254 100 00:35 00:45

Guava 67695cce e9a23fe5 274.2 1, 372 364 01:09 08:15

Jackrabbit 4a309b76 222b4cda 253.1 1, 654 539 02:12 44:18

Jetty f645e186 f630a841 301.1 1, 929 550 07:05 30:29
∑

N/A N/A 1, 459.8 7, 487 2, 678 14:28 91:28

Average N/A N/A 146.0 749 268 01:27 09:08

Selective Bisection Debugging 69

CCompiler Codec Collection Lang Math Net GraphHopper Guava Jackrabbit Jetty

0

2

4

6

8

10

12
T

he
 N

um
be

r
of

 F
ile

s
C

ha
ng

ed

Fig. 3. Distribution of number of files changed in each commit

We also present the distribution of changes per commit in Fig. 3 in terms of
the number of files added, deleted or modified. We presented the changes at file
level, since all of our analysis is at that level. From the figure we observe that
in all projects the number of files changed was one or two (median values). This
statistics further motivated us to propose selective bisection debugging since it is
highly likely that a small number of tests would be selected due to small changes.

4.2 Experimental Setup

For an extensive evaluation, we designed our experiment based on simulation to
replicate the steps in bisection debugging. More specifically, in order to answer
RQ1 we took 100 versions [νi, νi+99] for each project, and considered that any
of the intermediate versions [νi+1, νi+98] can be the one with a bug introducing
commit. Then for each intermediate version νj where (i + 1) ≤ j ≤ (i + 98),
we set the test results w.r.t. the bug introducing commit. For example, if for a
given debugging session we assume that ν5 is the bug introducing commit, all
the commits after (and including) ν5 would be bad, and all the commits before
ν5 would be good. Then for each bisection step, we have used Ekstazi to select
tests for the version under test based on the real changes between that version
and good/bad version and test coverage information.

To answer RQ2, in addition to assuming a buggy version, we also had to
assume the fault-revealing tests. For a change set between two versions, literally
any test, which is affected by the changes, can be the failing test. For example,
when we assume that νj is buggy, we first check which tests are affected by the
changes between νj−1 and νj . If there are m tests that are affected by the bug
introducing change, any subset of them can be failing. If we assume that there is
only one failing test, we have to simulate our experiment m times for the buggy
version νj . For two failing tests, we have to simulate for

(
m
2

)
times, and so on.

In order to keep the experiment cost affordable, we assumed there is only one
failing test due to the bug. Even for a single test failure, we have simulated our
experiment 25,690 times in 10 projects.

4.3 Results

This section presents the experimental results for our research questions.

70 R. Saha and M. Gligoric

RQ1: Savings due to commit selection. We present the savings in compila-
tion effort in terms of the proportion of compilations skipped. More specifically,
for a given bisection debugging session, if we need to compile nc times without
commit selection and mc times with commit selection, the savings is computed
as nc−mc

nc . It should be noted that a negative saving indicates the case where
commit selection actually increases the cost. This may happen when commit
selection predicts an irrelevant commit inaccurately, and our technique moves
some steps back to perform traditional bisection (Sect. 3). Therefore, to present
the complete results, we provide the number of simulations where we decreased
or increased the number of compilations in Table 4, and complete distribution of
savings, both positive and negative, in Fig. 4.

From the results, we observe that commit selection frequently reduces com-
pilation cost. The “Total” row in Table 4 shows that commit selection helped
saving compilation cost in 65% of simulations, whereas it increased the cost in
only 6% of simulations. Interestingly, most of the cost increase came from Jetty.
For other projects, the cost increase happened in only 1% of simulations. Com-
mit selection did not change any effort in compilation in 29% of simulations.
From Fig. 4, we observe that the improvement (in 65% of simulations) varied
between 14% and 71% across projects. Although cost increase can be also high
in some cases (up to 67% for Jetty; this cannot be seen in Fig. 4 as we do not
show the outliers), our results show that this happens rarely.

CCompiler Codec Collection Lang Math Net GraphHopper Guava Jackrabbit Jetty

−0.4

−0.2

0.0

0.2

0.4

0.6

S
av

in
gs

 in
 C

om
pi

la
tio

n

Fig. 4. Savings in the number of compiler invocations via commit selection

RQ2: Savings Due to Test Selection. We present the savings in testing
effort in terms of the proportion of tests that one can skip with test selection.
More specifically, for a given bisection debugging, we compute the savings as:

PTts =

∑
for−each−bisection−step n(Tts)

∑
for−each−bisection−step n(T)

(1)

savings = 1 − PTts (2)

Selective Bisection Debugging 71

Table 4. Number of simulations when the compilation cost decreased, remained the
same, or increased due to commit selection

Projects #Simulations #Decreased #Same #Increased %Decreased

CCompiler 6, 171 3, 615 2, 556 0 59

Codec 91 87 4 0 96

Collection 975 657 212 106 67

Lang 678 548 125 5 81

Math 5, 275 3, 411 1, 856 8 65

Net 204 96 104 4 47

GraphHopper 1, 247 613 612 22 49

Guava 1, 347 997 346 4 74

Jackrabbit 3, 436 3, 034 313 89 88

Jetty 6, 266 3, 667 1, 404 1195 59

All projects 25, 690 16, 725 7, 532 1, 433 65

where n(Tts) is the number of tests to run selected by Ekstazi and n(T) is the
number of tests to run without Ekstazi. Therefore, the savings may vary between
0 and 1, which can be translated to percentages as well.

Figure 5 presents the distribution of savings, computed by Eq. 2, for AT, FT,
and ST strategies. Our results show that, regardless of a testing strategy, test
selection is very effective to reduce the number of tests in bisection debugging.
For AT (the first/orange box in each group), the median savings varied from 43%
(CCompiler) to 95% (Codec). Considering that there are hundreds of tests in
projects and a number of steps in bisection debugging, the savings are significant.
For example, Jetty has 550 test classes. In our simulation for 100 commits, it
takes 6 or 7 steps to complete a bisection debugging. Therefore, we may need to
run 3,850 tests to test Jetty in a single debugging session if all tests are executed.

0.00

0.25

0.50

0.75

1.00

CCompiler Codec Collection Lang Math Net GraphHopper Guava Jackrabbit Jetty
Projects and Various Strategies

S
av

in
gs

 in
 T

es
tin

g Method

1.AT

2.FT

3.ST

4.CS+ST

Fig. 5. Savings in the number of tests during bisection debugging via test selection
(Color figure online)

72 R. Saha and M. Gligoric

From Fig. 5, we see that the median savings in Jetty is 63%. So test selection
may skip running 2,425 tests to debug Jetty. For majority of the projects, the
savings in AT is 70% or more. Even in FT (the second/gray box in each group),
where only the failing tests are run, test selection can reduce the number of
executed tests by 29%–71% (median values). Like AT, we also observe a similar
savings in ST, which we consider to be the optimal strategy. The median savings
(the third/white box in each group) varied from 42% to 91% across projects.
For majority of projects, the median savings are more than 70%. Finally, the
fourth/blue box in each group shows the savings for ST when we also apply
commit selection. Results show that the savings of ST is further increased (up to
7%) by commit selection. Interestingly, although in some cases commit selection
increases the number of compilation, it does not increase the number of tests
to run.

RQ3: Overall time savings. Since ST is the optimal strategy with respect
to the testing effort and correctness, we calculate the end-to-end time savings
for ST. It should be also noted that we considered the median compilation and
testing savings for each project. Table 5 presents the total time required for
traditional bisection and selective bisection including the time required for pro-
gram instrumentation and test coverage collection by Ekstazi. From the results,
we observe that, on average, we achieved 24% to 60% of time savings across
projects. Even for small projects like Codec, we achieved more than 2 min of
savings, which is 44% of time using traditional bisection. The savings can be as
big as 1 h and 23 min (Jackrabbit). It also should be noted that this saving is for
ST, which is already considered optimal for traditional bisection. If developers
follow AT, the savings would be even more.

Table 5. Time savings (in seconds) using selective bisection for ST

Projects Traditional
bisection

CS +
TS

Ekstazi
over-
head

Selective
bisection

Total
time
savings

Savings
[%]

CCompiler 1, 029 672 81 753 276 27

Codec 276 150 4 154 122 44

Collection 329 187 6 193 136 41

Lang 337 200 5 205 132 39

Math 831 387 152 539 292 35

Net 403 231 5 236 167 41

GraphHopper 423 295 6 301 122 29

Guava 1, 880 683 75 758 1, 122 60

Jackrabbit 8, 873 3, 299 544 3, 843 5, 030 57

Jetty 8, 462 5, 515 908 6, 423 2, 039 24

Selective Bisection Debugging 73

5 Discussion

Effect of simulation based evaluation. Our evaluation is based on simu-
lation. However, in the context of measuring savings using selective bisection
debugging, there is no difference between a real bug reproducing experiment
and a simulation. For example, in our evaluation, when we assume that νi is
buggy and Tj is the failing test, we followed exactly the same steps to isolate
the bug what any bisection debugging technique (e.g., git bisect) would take if
there is a real bug in νi and Tj is the real failing test. And since, we have used
real tests in each version and the real commits, we got exact number of tests in
simulation that developers need to run with and without test selection. Further-
more, due to simulation our advantage is that we were able to conduct massive
number of experiments for many combination of buggy version and failing tests,
that would have never been possible with real bugs.

Effect of number of commits. In our simulation, we have isolated each bug
by considering only 100 commits. Our rational is that developers use bisection
debugging like git bisect for a reasonable number of commits since linear search
for a bug introducing commit is not effective [2]. Therefore, we believe that the
evaluation with 100 commits shows the effectiveness of our technique but in a
wider range of commits, our technique would provide additional savings.

6 Threats to Validity

External. The projects used in our evaluation may not be the representative
of the general projects population. To mitigate the threat, we performed our
experiments on a diverse set of projects in terms of size, number of tests, and
applications. However, we do not generalize our results to other projects. Fur-
thermore, we performed our experiments with 100 commits in each project. For
a different set or length of commits, we may have different savings. We discussed
the rationale and effect of this choice in the previous section. We have used only
projects that are written in the Java programming language. In the future, it
will be interesting to explore if the results differ for projects written in other
programming languages.

We have used Ekstazi as the test selection tool. A different tool, which
tracks test dependencies on methods or statements, would likely produce differ-
ent results (and select even small number of tests). Future work should evaluate
various test selection techniques with selective bisection.

Internal. The implementation of Ekstazi or our scripts for bisection debugging
may have bugs which may impact our conclusion. However, Ekstazi is, to the
best of our knowledge, the only available tool for regression test selection (for
Java). Furthermore, it has been adopted in a number of open-source projects,
which increases our confidence in its correctness. We have also performed many
small experiments and code reviews to validate our scripts. Therefore, the effect
of this threat should be minimal.

74 R. Saha and M. Gligoric

We have assumed that there is only one bug introducing commit in the
versions under investigation. Furthermore, we assume that the monotonicity
property holds, i.e., once a change introduces a bug, any subsequent version
manifests the bug as well.

Construct. Our experiment is based on simulation. We have already discussed
the effect of this threat in detail.

7 Related Work

Automated debugging has been an active research area over the past few decades.
To date, researchers proposed many approaches for localizing and isolating the
root causes of bugs automatically. Test selection is also an active research area
for a long time. Therefore, related work in these fields are enormous. In this
section, we focus on the representative work in each area.

Bug localization. Researchers proposed many automated bug localization
approaches to aid debugging. Existing techniques can be broadly categorized
into two categories: dynamic [1] and static [16]. Spectrum based bug localization
[1,17,21] and dynamic slicing [43] are some of the well known techniques in this
category. Spectrum based techniques generally monitor the program execution of
passing and failing tests. Then based on the execution traces, these tools present
developers a ranked list of suspicious lines. Pastore et al.’s [27] and Zuddas
et al.’s [46] techniques do not only provide the suspicious lines but also provide
explanations to help developers understand the bug.

Static approaches, on the other hand, do not require any program tests or
execution traces. In most cases, they need only program source code and/or bug
reports. The static approaches can be also divided into two categories: (i) pro-
gram analysis based approaches, and (ii) information retrieval based approaches.
FindBug [16] and Error Prone [6] are two popular bug localization tools based
on static program analysis that can detect bugs by identifying buggy patterns
that frequently happen in practice. On the other hand, IR based approaches
utilize the contents of bug reports. In these approaches [22,25,28,33,45], each
bug report is treated as a query, and all the source files in the project comprise
the document collection. IR techniques then rank the documents by predicted
relevance, returning a ranked list of candidate source code files that may contain
the bug. Recently, researchers also combined the spectrum based and IR-based
bug localization to get advantages from both approaches [18]. Unlike the forego-
ing techniques, selective bisection localizes the bug introducing commit rather
than suspicious lines.

Isolating buggy changes. Ness and Ngo [24] first proposed a linear approach
to isolate buggy changes. In their approach, when a bug is discovered in a partic-
ular version, they consider a set of ordered changes to investigate, and apply one
after another until they find first buggy version. Gross first introduced the notion
of bisection debugging [13]. However, his context was a little different from git

Selective Bisection Debugging 75

bisect. Given two versions of a program, Gross applied binary search by parti-
tioning program source code until the bug is isolated in minimum changed lines.
Delta debugging is a well known technique to isolate a buggy change between
two versions [41].

Recently Ziftci and Ramavajjala [2] proposed an algorithm to rank all the
commits based on a suspiciousness score to find the bug introducing commit
as early as possible. They calculated the suspicious score using metrics such as
the change size, and the distance between changed files and the project under
investigation. However, all these prior approaches run all tests once a version is
selected for testing. In this paper, we use dynamic test dependencies to select
commits and then we reduce the number of executed tests at each version.

Test selection. To date, researchers have proposed quite a few approaches for
test section [10,14,19,20,23,30,31,35–37,39,42]. These approaches vary in terms
of strategies such as static program analysis based [44] vs. dynamic test coverage
based [10], and/or granularity of tests e.g., class [10,26] vs. method [29]. In this
paper, we have used Ekstazi, which is a dynamic tool and works at the class
granularity. In this work, our objective is not to introduce any new test selection
technique. Rather, we introduce an application of test selection in automated
debugging to improve debugging effectiveness.

8 Conclusion

In a large software project, it frequently happens that a bug is detected many
commits after it was actually introduced. In this case, bisection debugging such
as git bisect is frequently used to isolate the bug introducing commit. However,
for large projects even bisection debugging may be expensive. In this paper, we
introduced selective bisection debugging, which comprises of commit selection
and test selection. We investigated the savings through selective bisection debug-
ging for various testing strategies, where developers execute all tests, only failing
tests, and execute passing tests if and only if the failing tests pass. Our evalua-
tion shows that commit selection can save compilation time in 65% of debugging
scenarios. The savings (in number of compiler invocations) may vary from 14%
to 71%. Test selection can skip up to 95% tests during debugging, where devel-
opers follow safe approach, i.e., execute all tests. The saving is also very similar
if a developer first execute the failing tests, and then execute the passing tests
if and only if failing tests pass. Finally, we demonstrate that the overall time
savings can be substantial using selective bisection for large projects. We believe
our results will encourage developers to use selective bisection debugging, and
researchers to investigate commit selection and test selection in more detail.

Acknowledgments. We thank Ahmet Celik, Julia Lawall, and Darko Marinov for
their feedback on a draft of this paper. This research was partially supported by the
NSF Grant No. CCF-1566363 and a Google Research Faculty Award.

76 R. Saha and M. Gligoric

References

1. Abreu, R., Zoeteweij, P., Golsteijn, R., Van Gemund, A.J.C.: A practical evaluation
of spectrum-based fault localization. JSS 82(11), 1780–1792 (2009)

2. Finding culprits automatically in failing builds - i.e. who broke the build? GTAC
(2013). https://www.youtube.com/watch?v=SZLuBYlq3OM

3. Couder, C.: Fighting regressions with git bisect. https://www.kernel.org/pub/
software/scm/git/docs/git-bisect-lk2009.html

4. Dini, N., Sullivan, A., Gligoric, M., Rothermel, G.: The effect of test suite type on
regression test selection. In: ISSRE, pp. 47–58 (2016)

5. Ekstazi. http://www.ekstazi.org
6. Error Prone. http://errorprone.info/
7. Git bisect. https://git-scm.com/docs/git-bisect
8. OrientDB. https://github.com/orientechnologies/orientdb/issues/2581
9. Gligoric, M., Eloussi, L., Marinov, D.: Ekstazi: lightweight test selection. In: ICSE

Tool Demonstration Track, pp. 713–716 (2015)
10. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection with

dynamic file dependencies. In: ISSTA, pp. 211–222 (2015)
11. Gligoric, M., Majumdar, R., Sharma, R., Eloussi, L., Marinov, D.: Regression

test selection for distributed software histories. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 293–309. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9 19

12. Gligoric, M., Schulte, W., Prasad, C., van Velzen, D., Narasamdya, I., Livshits,
B.: Automated migration of build scripts using dynamic analysis and search-based
refactoring. In: OOPSLA, pp. 599–616 (2014)

13. Gross, T.R.: Bisection debugging. In: AADEBUG, pp. 185–191 (1997)
14. Herzig, K., Greiler, M., Czerwonka, J., Murphy, B.: The art of testing less without

sacrificing quality. In: ICSE, pp. 483–493 (2015)
15. Hg bisect. https://www.mercurial-scm.org/repo/hg/help/bisect
16. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Note 39(12), 92–106

(2004)
17. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-

localization technique. In: ASE, pp. 273–282 (2005)
18. Le, T.-DB., Oentaryo, R.J., Lo, D.: Information retrieval and spectrum based bug

localization: better together. In: FSE, pp. 579–590 (2015)
19. Leung, H., White, L.: A cost model to compare regression test strategies. In: ICSM,

pp. 201–208 (1991)
20. Leung, H.K.N., White, L.: Insights into regression testing. In: ICSM, pp. 60–69

(1989)
21. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug

isolation. In: PLDI, pp. 15–26 (2005)
22. Lukins, S., Kraft, N., Etzkorn, L.: Bug localization using latent Dirichlet allocation.

IST 52(9), 972–990 (2010)
23. Nanda, A., Mani, S., Sinha, S., Harrold, M.J., Orso, A.: Regression testing in the

presence of non-code changes. In: ICST, pp. 21–30 (2011)
24. Ness, B., Ngo, V.: Regression containment through source change isolation. In:

COMPSAC, pp. 616–621 (1997)
25. Nguyen, A.T., Nguyen, T.T., Al-Kofahi, J., Nguyen, H.V., Nguyen, T.: A topic-

based approach for narrowing the search space of buggy files from a bug report.
In: ASE, pp. 263–272 (2011)

https://www.youtube.com/watch?v=SZLuBYlq3OM
https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
http://www.ekstazi.org
http://errorprone.info/
https://git-scm.com/docs/git-bisect
https://github.com/orientechnologies/orientdb/issues/2581
http://dx.doi.org/10.1007/978-3-319-08867-9_19
http://dx.doi.org/10.1007/978-3-319-08867-9_19
https://www.mercurial-scm.org/repo/hg/help/bisect

Selective Bisection Debugging 77

26. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-
tems. ACM SIGSOFT Softw. Eng. Notes 29(6), 241–251 (2004)

27. Pastore, F., Mariani, L., Goffi, A.: Radar: a tool for debugging regression problems
in C/C++ software. In: ICSE Tool Demonstration Track, pp. 1335–1338 (2013)

28. Rao, S., Kak, A.: Retrieval from software libraries for bug localization: a compar-
ative study of generic and composite text models. In: MSR, pp. 43–52 (2011)

29. Rothermel, G., Harrold, M.: A safe, efficient regression test selection technique.
TOSEM 6(2), 173–210 (1997)

30. Rothermel, G., Harrold, M.J.: A safe, efficient algorithm for regression test selec-
tion. In: ICSM, pp. 358–367 (1993)

31. Rothermel, G., Harrold, M.J.: A framework for evaluating regression test selection
techniques. In: ICSE, pp. 201–210 (1994)

32. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. TSE
22(8), 529–551 (1996)

33. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: ASE, pp. 345–355 (2013)

34. Shi, A., Gyori, A., Gligoric, M., Zaytsev, A., Marinov, D.: Balancing trade-offs in
test-suite reduction. In: FSE, pp. 246–256 (2014)

35. Streamline testing process with test impact analysis. http://msdn.microsoft.com/
en-us/library/ff576128%28v=vs.100%29.aspx

36. Testing at the speed and scale of Google. http://google-engtools.blogspot.com/
2011/06/testing-at-speed-and-scale-of-google.html

37. Tools for continuous integration at Google scale. http://www.youtube.com/watch?
v=b52aXZ2yi08

38. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: ISSTA,
pp. 140–150 (2007)

39. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. STVR 22(2), 67–120 (2012)

40. Yu, Y., Dayani-Fard, H., Mylopoulos, J.: Removing false code dependencies to
speedup software build processes. In: CASCON, pp. 343–352 (2003)

41. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Nierstrasz,
O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -1999. LNCS, vol. 1687, pp. 253–267.
Springer, Heidelberg (1999). doi:10.1007/3-540-48166-4 16

42. Zhang, L., Kim, M., Khurshid, S.: Localizing failure-inducing program edits based
on spectrum information. In: ICSM, pp. 23–32 (2011)

43. Zhang, X., He, H., Gupta, N., Gupta, R.: Experimental evaluation of using dynamic
slices for fault location. In: AADEBUG, pp. 33–42 (2005)

44. Zheng, J., Robinson, B., Williams, L., Smiley, K.: An initial study of a lightweight
process for change identification and regression test selection when source code is
not available. In: ISSRE, pp. 225–234 (2005)

45. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate infor-
mation retrieval based bug localization based on bug reports. In: ICSE, pp. 14–24
(2012)

46. Zuddas, D., Jin, W., Pastore, F., Mariani, L., Orso, A.: Mimic: locating and under-
standing bugs by analyzing mimicked executions. In: ASE, pp. 815–826 (2014)

http://msdn.microsoft.com/en-us/library/ff576128%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/ff576128%28v=vs.100%29.aspx
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
http://dx.doi.org/10.1007/3-540-48166-4_16

On the Effectiveness of Bug Predictors
with Procedural Systems: A Quantitative Study

Cristiano Werner Araújo1(B), Ingrid Nunes1,2, and Daltro Nunes1

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil

{cwaraujo,ingridnunes,daltro}@inf.ufrgs.br
2 TU Dortmund, Dortmund, Germany

Abstract. Many bug predictors have been proposed, and their main tar-
get is object-oriented systems. Although object-orientation is currently
the choice for most of the software applications, the procedural para-
digm is still being used in many—sometimes crucial—applications, such
as operating systems and embedded systems. Consequently, they also
deserve attention. We present a study in which we investigated the effec-
tiveness of existing bug prediction approaches with procedural systems.
Such approaches use as input static code metrics. We evaluated to what
extent they are applicable to our context, and compared their effective-
ness using standard metrics, with adaptations when needed. We assessed
five approaches, using eight procedural software systems, including open-
source and industrial projects. We concluded that lines of code is the
metric that plays the key role in our context, and approaches that use
of a large set of metrics can introduce noise in the prediction model. In
addition, the best results were obtained with open-source systems.

Keywords: Bug prediction · Procedural programming · Static code
metrics

1 Introduction

Software testing is a crucial task to improve software quality, as it identifies
software defects (or bugs) to be fixed. This task can be complemented by
automated approaches that identify fault prone software components, poten-
tially decreasing verification time, and thus improving software maintenance
and reducing costs. By learning which components are fault prone, it is pos-
sible to prioritize system modules or components to be verified, thus allowing
defects to be identified earlier. Given these potential benefits, many bug predic-
tion approaches [7,14,16,18,22,28,34] have been proposed, investigating the use
of different types of information in order to improve precision and recall when
predicting defects.

Examples of inputs used by bug prediction approaches are static code met-
rics, change metrics, and previous defects [6]. Such approaches were individually
evaluated by their authors using different software projects, or compared using
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 78–95, 2017.
DOI: 10.1007/978-3-662-54494-5 5

Bug Predictors with Procedural Systems 79

the same set of projects. These evaluations involved mostly, if not only, object-
oriented (OO) systems. Object orientation is the choice for many software sys-
tems, such as web and mobile applications. However, the procedural paradigm
is still being used in many—sometimes crucial—software systems, such as oper-
ating systems, embedded systems, and scientific computing applications. These
applications deserve attention not only because they must be maintained, but
also because they are often long-lived systems and procedural languages lack
some mechanisms (e.g. inheritance and polymorphism) that improve code qual-
ity. These factors may cause the maintenance and evolution of those systems to
be even harder. A previous study, performed by Khoshgoftaar and Allen [15],
focused specifically on embedded systems. Nevertheless, they used information
collected at runtime, which requires many scenarios of system execution to obtain
data.

Approaches that rely on change metrics, e.g. number of changes, which often
come from version control systems (VCSs), can also be adopted in the context
of procedural systems, because they are paradigm- and language-independent.
However, this is not the case of approaches that use static code metrics. Although
there are metrics that can be measured in procedural systems, such as lines
of code or cyclomatic complexity [21], most of the approaches also use OO-
specific metrics, such as depth of inheritance tree or coupling between object
classes [5]. Consequently, such approaches must be adapted and evaluated to be
used with procedural software systems. There is evidence that change metrics can
outperform static code metrics, but: (i) the former may not always be available,
because of the need for the existence and access to VCSs, and (ii) information
provided by static code metrics and change metrics are complementary [22].

We thus in this paper present a study conducted to evaluate approaches that
rely on static code metrics [28] in the context of procedural software systems.
Approaches were evaluated from two perspectives: (i) degree of applicability, by
measuring the amount of OO-specific information they use; and (ii) effectiveness,
by measuring their precision, recall and F-measure with a set of procedural soft-
ware systems. Effectiveness was evaluated with the subset of metrics applicable
to procedural systems, and with this subset together with metrics adapted to the
procedural paradigm. For building our dataset, we selected a range of procedural
software systems from many application domains, both open-source and propri-
etary, including operating systems and tools, bare-metal environments (software
that does not require the support of a host operating system), and embedded
commercial applications. Static code metrics and defects were extracted from
each target system. Prediction was performed using learning techniques applied
by the evaluated approaches. As result, we concluded that lines of code is the
metric that plays the key role in our context, and approaches that use of a large
set of metrics can introduce noise in the prediction model. In addition, the best
results were obtained with open-source systems.

We next discuss existing bug prediction approaches. Then, we present our
study settings and target systems in Sect. 3. Results and discussions are detailed
in Sects. 4 and 5, respectively. Finally, we conclude in Sect. 6.

80 C.W. Araújo et al.

2 Related Work

As said in the introduction, bug prediction approaches make predictions based on
different kinds of information. We classify such approaches into three groups. The
first group of approaches [4,7,14,18,25,26,34] is based on static code metrics.
They use only a snapshot of the source code, using information such as number
of lines, in order to extract static code metrics. Such approaches are founded
by prior studies, which concluded that there is a correlation between static code
metrics and defects [4]. The second group of approaches [9,10,13,17,19,23,24,31]
requires another type of information, change metrics, which is usually obtained
from VCSs. Such systems allow extraction of metrics associated with changes
made during the software project evolution. Examples of typical metrics of this
type are number of changes and change size. Some approaches use the frequency
and recency of file change [10,24], using caching concepts to indicate the most
fault prone components. In addition to change metrics, Li et al. [19] used informa-
tion collected from e-mails to predict a release quality. Approaches [6,16,22,33]
in the last group mixed different types of metrics, and some evaluated different
proposed approaches.

Given that change metrics do not depend on the language or paradigm of the
analyzed project, they can be used both for OO and procedural systems. In fact,
some approaches included in their evaluation procedural systems [9] or used mul-
tiple versions of a single procedural system [19]. Nevertheless, approaches based
on static code metrics typically rely on a metric set that includes OO-specific
metrics. Koru and Liu [18], in particular, included two procedural systems in
their evaluation, ignoring the OO-specific metrics for these systems. However,
none of the approaches focused solely on procedural systems or contrasted results
obtained with OO and procedural systems.

In Table 1, we detail a set of recent approaches that proposed bug predictors
based on static code metrics—approaches that simply evaluated the correlation
between metrics and defects rather than proposed predictors were excluded.
They vary mainly in two aspects: (i) used metrics (this table overviews used
metric suites); and (ii) investigated learning techniques. These approaches are
those evaluated in this paper, and hereafter they are referred to as the acronyms
introduced in Table 1. We included in the study approaches that also use change
metrics [16], but only static metrics were taken into account. Moser et al. [22]’s
approach extended that proposed by Zimmermann et al. [34], by including
change metrics and exploring other learning techniques. In our evaluation, we
use the static code metrics as well as learning techniques used by Moser et al.
They used a subset of metrics from Zimmermann et al.’s dataset because all code
metrics would “involve overly complex models and not yield better performance
as most of the measures are highly correlated with each other.”

3 Study Settings

Given the lack of provision of bug predictors dedicated to procedural software
systems, we performed a study to fulfill this gap. We used existing bug prediction

Bug Predictors with Procedural Systems 81

Table 1. Summary of investigated approaches.

Approach Acronym Metric suites Learning techniques

Gyimothy et al. [7] GY CK [5] Decision Trees
Linear Regression
Neural Networks

Jureczko and
Madeyski [14]

JU CK [5], QMOOD [2],
Tang et al. [29],
Martin [20],
Henderson-Sellers [11]

Linear Regression

Kim et al. [16] KI Metrics provided by
the Understand [1] tool

SVM

Koru and Liu [18] KO Halstead [8],
McCabe [21]

Decision Tree
K-Star
Random Forests

Moser et al. [22] MO CK [5], traditional OO
metrics

Decision Trees
Logistic Regression
Naive Bayes

approaches with procedural software systems, also making required adaptations
in this process, and evaluated and compared the obtained performance. We next
provide details of our study.

3.1 Goal and Research Questions

In order to design our study, we followed the GQM (goal-question-metric) par-
adigm proposed by Basili et al. [3]. According to it, the first step is to specify
the goal of the study, which is the following according to the GQM template:
to assess the effectiveness of existing bug prediction approaches in the context
of procedural software systems, evaluate existing bug prediction approaches based
on static code metrics from the perspective of the researcher in the context of 8
open source and proprietary software projects. Based on our goal, we derived two
research questions presented as follows.

RQ-1: How bug prediction approaches based on static code metrics can be applied
to procedural software systems? Given that some approaches consider
OO-specific metrics, we investigate the amount of metrics that can be
used with procedural software systems and, from metrics that cannot be
used, which can be adapted to our context.

RQ-2: What is the effectiveness of bug prediction approaches based on static code
metrics, possibly adapted, with procedural software systems? Considering
the investigated approaches and the set of metrics that can be extracted
from procedural software, possibly with adaptations, we measure and
compare the effectiveness of each approach. We evaluate both the set
of metrics that can be extracted as-is, and also a set including adapted
metrics.

82 C.W. Araújo et al.

The metrics used to answer these research questions are detailed in the next
section together with our study procedure.

3.2 Procedure

Our study procedure is composed of three main steps. We first analyzed each
investigated approach in order to verify whether their metrics can be used in our
study. In the second step, we prepared our dataset, by performing two activi-
ties: (i) extraction of defects; and (ii) extraction of static code metrics. Last, we
executed all the approaches with our target systems and measured their perfor-
mance. We next provide details regarding our procedure.

Metric Adaptations. In order to answer our RQ1, we identified all metrics used
by each approach, and verified whether they can be extracted from procedural
systems. In the cases that they cannot, we adapted the metric calculation using
the following mapping between OO concepts and procedural structures. In OO
systems, there are classes with attributes and methods, with visibility modifiers.
In procedural systems, there are source files (in C, files *.c), which contain global
variables and functions, and header files (in C, files *.h), which contain function
declarations and possibly global variables. In order to adapt metrics, we map:
(i) classes to a combination of header and source files; (ii) public attributes and
methods to variables and functions, respectively, declared in header files; and (iii)
private attributes and methods to variables and functions, respectively, declared
only in source files. Header files are thus considered similar to public interfaces
of classes. Inheritance is not mapped, given that there is no similar concept in
procedural languages, like C.

For evaluating the applicability of each approach to procedural systems, we
measured the following scores.

Applicability with No Adaptations Ratio (A-scoreNA) is the fraction of
metrics that can be extracted from procedural systems with no adaptations.
It is calculated as follows:

A-ScoreNA =
|MP |
|M |

where MP is the set of metrics that can be extracted from procedural systems
with no adaptations, and M is the set of all metrics used by the approach.

Applicability with Adaptations Ratio (A-scoreWA) is the fraction of met-
rics that can be extracted from procedural systems with or without adapta-
tions. It is calculated as follows:

A-ScoreWA =
|MP ∪ MA|

|M |
where MP is the set of metrics that can be extracted from procedural systems
with no adaptations, MA is the set of metrics that can be extracted from
procedural systems with adaptations, and M is the set of all metrics used by
the approach.

Bug Predictors with Procedural Systems 83

Defect and Metric Extraction. We used commits indicated as fixes to identify
defects in our target systems, which is an approach typically used in similar
work. When a certain file is modified in a fix, it counts as one defect in that
file. In order to mine commits, we used two approaches, depending on the tools
available (only VCS, or VCS and issue tracker). For projects in which an issue
tracker was available, we searched for commit messages that contained the issue
id of issues that are bugs (and not features). Therefore, the issue category was
used to identify commits that are fixes. For projects in which we had no access
to an issue tracker, we searched for commit messages that matched a regular
expression, which is a method adopted in previous work [14,16,32]. Regular
expressions were selected for each project according to message patterns adopted
by developers, e.g. in Linux, the regular expression includes “fix” and its variants.

Extraction of static source code metrics was performed using the Understand
[1] static code analysis tool. Metrics for pure C not available in the Under-
stand, or those we adapted, were extracted using: (i) implemented and available
scripts1; and (ii) open-source tools, namely Cflow, CTags, and CCCC2. Cflow
provides a call-graph for a C file, which can be parsed and used for extracting
the fan-in and fan-out metrics. Complementary, CTags provides the functions
and variables available both in header and source files, used for computing the
public and private attributes and methods. CCCC, in turn, is a tool for metric
measurement for C and C++.

Prediction and Evaluation. The evaluation of the effectiveness of each approach
was made by building a predictor for our dataset using machine learning algo-
rithms adopted by each investigated approach. Details of how these algorithms
were executed are available elsewhere3, as well as the used dataset. We then mea-
sured results with common machine learning scores, also used by most of the
evaluated approaches (thus being used as a baseline), and used 10-fold cross-
validation. The Scikit-Learn Framework [27] was used for prediction and score
calculation. The following scores were used.

Precision is the fraction of all classified files that are classified as defective. It is
calculated as follows: Precision = TP/(TP +FP), where TP is the correctly
classified defective files and FP is non-defective files classified as defective.

Recall is the fraction of all files that should be classified as defective that are
classified as defective. It is calculated as follows: Recall = TP/(TP + FN),
where TP is the correctly classified defective files and FN is the defective files
classified as non-defective.

F-measure is a score that combines recall and precision. It is the harmonic
mean between them, calculated as follows: F-measure = (2 · Precision ·
Recall)/(Precision + Recall).

1 https://github.com/dborowiec/commentedCodeDetector.
2 Available at http://www.gnu.org/software/cflow/, http://ctags.sourceforge.net/,

and http://cccc.sourceforge.net/, respectively.
3 http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/.

https://github.com/dborowiec/commentedCodeDetector
http://www.gnu.org/software/cflow/
http://ctags.sourceforge.net/
http://cccc.sourceforge.net/
http://www.inf.ufrgs.br/prosoft/resources/bug-prediction-procedural/

84 C.W. Araújo et al.

All presented scores are in [0, 1], were the closer to one, the better the classi-
fication. Now that we have described our procedure, we proceed to the presen-
tation of the target procedural systems of our study.

3.3 Target Systems

In order to build our dataset, we selected known open-source procedural sys-
tems as well as proprietary systems to which we have access. The latter have
the advantage of having an accessible issue tracker, from which we can extract
reported bugs and associated commits. Some open-source systems have avail-
able issue trackers, but we could not trace bug fixes to the files that changed in
commits. In total, our study involved eight target systems, as listed in Table 2,
from which three are proprietary. In order to be selected, systems had to satisfy
two requirements. The first is that selected systems must be implemented in the
C language. This is mainly due to two reasons: (i) it simplifies the process of
extracting metrics; and (ii) C is the most popular and used procedural language.
The second requirement is that information regarding bug fixes should be avail-
able, either through commit messages or an issue tracker. Selected applications
are from different domains and have multiple sizes, as can be seen in Table 2.

Table 2. Target systems.

System Description LOC #Files #Commits Bugs (%)

Linux Operating system 9,434,808–9,529,552 30,058–30, 252 560,519 16–22%

Commercial

system A

Telecom embedded

application

407,660–509,856 1027–1148 1,027–1148 4–10%

Commercial

system B

Telecom embedded

application

337,203–351,923 939–949 2,211 6–12%

Commercial

system C

Telecom embedded

application

279,325 394 109 5%

BusyBox Operating system

applications

153,448 624 13,891 19%

Git Version control

system

153,855–157,193 500–507 41,356 16–29%

Light weight

IP

Network stack for

microcontrollers

18,510–32579 89–132 3,658 14–49%

CpuMiner Bitcoin mining

application

4,455–6,927 20 339 20%

Our target systems include Linux, which is an established operating system
and a well documented project. Much work has been developed specifically on
bug prediction for Linux [13,31], but all used change metrics. It is the largest
project used in our study. BusyBox, in turn, provides operating system tools
for embedded systems, being associated with Linux. Git is a widely used multi-
platform VCS, with a consolidated development process, while Light Weight IP is
a bare-metal network stack, thus being a low-level microcontroller environment,
with restricted resources. CpuMiner is the smallest investigated system, but with

Bug Predictors with Procedural Systems 85

a complex domain. It consists of a Bitcoin calculator, performing cryptographic
calculations. Finally, the commercial applications included in our study consist of
logic controllers for network devices containing hardware configuration, network
protocols, configuration management and user interface.

To investigate a larger dataset, we used more than one system version
when possible—some versions were not available and we excluded versions that
diverged from the master branch. For each system, we analyzed bug fixes of a
release i, extracting metrics from the source code of this release and bugs using
commits made before the release i+1. Therefore, if we had N releases available,
we managed to evaluate N − 1 releases. Consequently, for applications with just
one analyzed release, e.g. Commercial System C, we had, in fact, two available
releases. Releases were determined using VCS tags for all systems. We investi-
gated only two Linux versions due to the computational time needed for metric
extraction. Moreover, only one version was investigated from the Commercial
System C, because it was mostly developed by a third-party company, and the
company that gave us access to it is responsible only for evolving it. Therefore,
we had no access to the source code repository used during this initial applica-
tion development. This explains the low number of commits presented in Table 2.
In Table 2, we also present the percentage of files containing bugs for each sys-
tem. In next section, we present how the investigated bug prediction approaches
performed using these introduced systems.

4 Results and Analysis

In this section, we report obtained results, after performing the procedure
described above. Results are presented and discussed according to our research
questions.

RQ1: How bug prediction approaches based on static code metrics can be applied
to procedural software systems? Each of the five investigated approaches was
analyzed, and we assessed how applicable they are to our context. In Table 3, we
list all static code metrics used by the selected approaches. We grouped some
sets of metrics, due to space restrictions. The number in parenthesis indicate the
number of metrics in each group. Based on Table 3, it is possible to observe that
all but one of the approaches use metrics that rely on OO concepts. Therefore, we
adapted such metrics in order to extract them from procedural systems to build
bug predictors—they are described in the last column of Table 3. Adaptations
follow the overall mapping rule described in our study procedure.

Considering this information, we classified metrics used by each approach in
three classes (column Class): (i) those that can be extracted from procedural sys-
tems, labeled with Y; (ii) those that cannot be extracted from procedural sys-
tems, labeled with N; and (iii) those that can be extracted from procedural
systems only with adaptations, labeled with A. Based on this classification, we
verified how much applicable each approach is, using the measurements described
in the previous section. We present results in Table 4, which shows the applicabil-
ity ratios (without and with adaptations) of each approach. Note that, although

86 C.W. Araújo et al.

Table 3. Static code metrics used by bug prediction approaches.

Suite Metric GY JU KI KO MO Class Adaptation

Lines of Code (LOC) ✓ ✓ ✓ ✓ ✓ Y

Line count ✓ ✓ Y

Lines of comment ✓ ✓ Y

Lines of code with comments ✓ Y

Blank lines ✓ ✓ Y

Fan-in/fan-out (2) ✓ Y

Branch count ✓ Y

McCabe Cyclomatic complexity (avg) ✓ ✓ Y

McCabe Cyclomatic complexity (max) ✓ ✓ ✓ Y

McCabe Essential complexity ✓ ✓ Y

McCabe Design complexity ✓ ✓ Y

Halstead Standard and derived metrics (12) ✓ Y

Understand metrics (29) ✓ Y

Understand metrics - OO (18) N

OO Number of inherited attributes ✓ N

OO Number of inherited methods ✓ N

OO Number of attributes ✓ A Number of global
variables

OO Number of methods ✓ A Number of
functions

OO Number of private attributes ✓ A Number of global
variables not
declared in the
header file

OO Number of public attributes ✓ A Number of global
variables
declared in the
header file

OO Number of private methods ✓ A Number of
functions not
declared in the
header file

QMOOD Number of public methods (NPM) ✓ ✓ A Number of
functions
declared in the
header file

QMOOD Data Access Metrics (DAM) ✓ Y

QMOOD Measure of Aggregation (MOA) ✓ Y

QMOOD Measure of Functional
Abstraction (MFA)

✓ N

QMOOD Cohesion among Methods of Class
(CAM)

✓ A Use of types of
function
parameters
instead of
method
parameters

Bug Predictors with Procedural Systems 87

Table 3. (Continued)

Suite Metric GY JU KI KO MO Class Adaptation

CK Depth of Inheritance Tree (DIT) ✓ ✓ ✓ ✓ N

CK Number of Children (NOC) ✓ ✓ ✓ ✓ N

CK Coupling between Object Classes

(CBO)

✓ ✓ ✓ ✓ A Functions or

global variables

from other files

used in a target

file

CK Response for a Class (RFC) ✓ ✓ ✓ ✓ A Number of

distinct functions

from other files

called by a target

file

CK Weighted Methods per Class

(WMC)

✓ ✓ ✓ ✓ A Weighted

functions per file

CK Lack of Cohesion in Methods

(LCOM)

✓ ✓ ✓ ✓ A Global variables

count as

attributes and

functions count
as methods

HS Lack of Cohesion in Methods
(LOCM3)

✓ Y Same as LCOM

Lack of Cohesion on Methods
allowing Negative value
(LCOMN)

✓ Y Same as LCOM

Tang et al. Inheritance Coupling (IC) ✓ Y

Tang et al. Coupling between Methods
(CBM)

✓ N

Tang et al. Average Method Complexity
(AMC)

✓ A Average
complexity of
functions in file

Martin Afferent Couplings (Ca) ✓ A Number of files
that use a pair of
header and
source file

Martin Efferent Couplings (Ce) ✓ A Number of
referenced header
files

Legend: Y-Yes; N-No; A-Adaptations Required.

MO approach, in theory, uses 31 static code metrics from Zimmermann et al.’s [34]
dataset, its provided dataset contains only 17 metrics extractable from source
code. Other metrics in the dataset are target metrics, e.g. TrivialBugs, or rely on
CVS information, e.g. CvsEntropy, which is not our focus.

Results indicate that the GY, JU, and MO approaches largely rely on OO
metrics, while KO uses only metrics that do not rely on OO concepts. With our

88 C.W. Araújo et al.

Table 4. Approach applicability to procedural software systems.

GY JU KI KO MO

Extractable metrics 1 5 37 21 3

Metrics extractable with adaptations 5 11 4 0 10

Not extractable metrics 2 4 20 0 4

Total 8 20 61 21 17

A-ScoreNA 0.12 0.25 0.60 1.00 0.17

A-ScoreWA 0.75 0.80 0.67 1.00 0.76

adaptations, it is possible to use at least 67% (KI has the minimum A-ScoreWA)
of proposed metrics of each approach. Given this analysis, we proceed to the
evaluation of the effectiveness of each approach.

RQ2: What is the effectiveness of bug prediction approaches based on static code
metrics, possibly adapted, with procedural software systems? We executed each
investigated approach, considering different learning techniques, with all target
systems (and their different versions). As result, we obtained the precision, recall
and F-measure values presented in Fig. 1 and Table 5. On the left hand side
charts of Fig. 1, we show results using only the metrics that can be extracted
from procedural systems, while those on the right hand side also include adapted
metrics. Table 5 reports the mean and standard deviation of the values obtained
with our different target systems. For a comparison, we show in the baseline row
the results reported by each approach’s authors, if they were provided.

Comparing results obtained with and without adaptations, we observed that
they are similar to each other—all measurements vary ±0.05. The differences are
so small that they could be due to the randomness of the 10-fold cross validation.
This can be seen in the KO approach (A-ScoreNA = 1.00), which uses no OO
metrics, thus both evaluations use the same set of metrics. Consequently, there
is evidence that the OO-inspired metrics bring little information associated with
defect presence in procedural software systems and increase model complexity.
Therefore, they can be discarded. Note that, for some approaches, the number
of adapted metrics is not small, as discussed in the previous research question.

The best results were obtained with KO RF (which is based only on no
OO metrics), considering F-measure, which combines precision and recall. Two
approaches presented the worst results. The first, KI, relies on a large set of
metrics. The second, GY, presented worse results only with NN, but results
obtained with the other algorithms (DT and LR) are much better, providing
evidence of the importance of the selected algorithm. Considering precision and
recall individually, it is possible to observe that two other approaches (GY LR
and MO LR) have higher precision than KO, at the cost of compromising recall.

With respect to the GY approach, the approach that with DT obtained the sec-
ond best results, it is interesting to highlight that it has only one metric used with-
out adaptations: LOC. Other approaches with best results also use this metric.

Bug Predictors with Procedural Systems 89

Fig. 1. Effectiveness measurements by each approach.

Table 5. Summary of effectiveness evaluation of each approach.

GY

DT

GY

LR

GY

NN

JU KI KO

DT

KO

KS

KO

RF

MO

DT

MO

LR

MO

NB

Precision

Without adaptations 0.52

(0.27)

0.64

(0.21)

0.34

(0.21)

0.62

(0.22)

0.36

(0.30)

0.49

(0.28)

0.39

(0.26)

0.52

(0.26)

0.48

(0.25)

0.64

(0.25)

0.53

(0.30)

With adaptations 0.52

(0.28)

0.66

(0.20)

0.38

(0.27)

0.59

(0.21)

0.38

(0.30)

0.49

(0.28)

0.40

(0.26)

0.53

(0.26)

0.46

(0.25)

0.61

(0.21)

0.53

(0.30)

Baseline 0.68 0.68 0.82 0.72 0.62 0.65

Recall

Without adaptations 0.51

(0.25)

0.37

(0.30)

0.35

(0.25)

0.42

(0.33)

0.52

(0.35)

0.47

(0.23)

0.55

(0.25)

0.72

(0.18)

0.45

(0.25)

0.39

(0.34)

0.44

(0.29)

With adaptations 0.51

(0.26)

0.40

(0.29)

0.40

(0.25)

0.44

(0.27)

0.50

(0.30)

0.47

(0.22)

0.57

(0.28)

0.71

(0.15)

0.44

(0.24)

0.41

(0.29)

0.47

(0.28)

Baseline 0.67 0.64 0.89 0.68 0.68 0.42 0.33 0.40

F-Measure

Without adaptations 0.51

(0.26)

0.44

(0.29)

0.33

(0.22)

0.47

(0.31)

0.40

(0.31)

0.48

(0.24)

0.44

(0.26)

0.59

(0.23)

0.46

(0.25)

0.45

(0.32)

0.42

(0.26)

With adaptations 0.51

(0.26)

0.48

(0.28)

0.37

(0.25)

0.49

(0.25)

0.40

(0.30)

0.47

(0.24)

0.45

(0.27)

0.58

(0.23)

0.45

(0.24)

0.46

(0.27)

0.43

(0.25)

Baseline 0.67 0.65 0.85 0.69 0.65 0.36

Legend: DT-Decision Trees; KS-K-Star; LR-Logistic Regression; NB-Naive Bayes;
NN-Neural Networks; RF-Random Forest.

90 C.W. Araújo et al.

However, the other metrics used by GY slightly improved both precision and
recall for LR and NN but for DT, which obtained the best results for GY, they
remained the same. Therefore, there is evidence that LOC plays a key role in
our context. Although KI also uses LOC, the other used metrics might have
introduced noise in the model used for prediction.

In addition to comparing results across different approaches, we also investi-
gated how our measurements vary across different target systems, as presented
in Fig. 2. We observed that commercial applications presented worse results in
comparison with open source systems. This observation holds even for the Com-
mercial System C, which has a low number of commits as described in Sect. 3.3.
Analyzing results, we considered two hypotheses: (1) there are differences in the

Fig. 2. Effectiveness measurements by target system.

Bug Predictors with Procedural Systems 91

system datasets that has impact in the construction of the prediction model;
and (2) coding standards and practices adopted by developers of our commer-
cial applications are less suitable for bug prediction. The number of investigated
systems is not large enough to allow us to reach a conclusion regarding this and,
therefore, further studies could help clarify this issue. However, it is possible to
observe in Table 2 that the percentage of files with bugs is much lower in commer-
cial applications. Consequently, the highly unbalanced classes in these datasets
make the prediction model construction more difficult. Moreover, although our
proprietary applications are maintained by the same company, they were origi-
nally developed outside this company (not by the same provider). Consequently,
hypothesis (2) is less likely to be true.

With LWIP, an open source system, results obtained were impressively high,
for three of its four analyzed versions. Based on an analysis of LWIP’s commits
and release information, our hypothesis is that, again, the balance between the
dataset classes is the reason for these results. In the version in which LWIP
performed significantly well, the number of files with bugs are similar to that of
files with no bugs. Therefore, this facilitates the machine learning process.

5 Discussion

We now discuss relevant issues that emerged from the analysis of our results.
These issues are related to the differences of results obtained using different sets
of metrics or systems.

Use of Adapted Object-Oriented Metrics. Based on our results, we observed that
all metrics adapted from OO metrics were not helpful to predict defects in pro-
cedural systems. On the one hand, this was expected given that programming
practices are different in procedural and OO systems. Moreover, metrics that
are associated with inheritance could not be adapted, because this concept does
not exist in procedural systems, and such metrics may be relevant to be used
in combination with other OO metrics to build predictors. On the other hand,
some of the metrics, such as CBO, capture coupling and cohesion in classes,
while our adapted metrics capture them in source files. Therefore, they could
have been helpful. Although coupling is useful in predictors for OO systems,
we could not observe this in our study. Possibly, this metric alone may be not
enough for the predictor, and it should be combined with other metrics that can-
not be adapted, e.g. those related with inheritance, so that a proper correlation
with bugs is found.

Open-Source vs. Proprietary Systems. As discussed before, the results obtained
with open-source and proprietary systems are different. This can be seen in
Fig. 2. As discussed before, a potential explanation is that these differences are
due to the unbalanced classes (i.e. number of files with bugs and with no bugs)
in the proprietary systems’ datasets. Because of the low number of instances of
files with bugs, it is difficult to the learning technique to build a model that dis-
tinguishes these two classes. This is actually a general problem of bug prediction

92 C.W. Araújo et al.

because, typically, the number of files with bugs is relatively small. Moreover,
datasets usually contain noise, because the bugs are not those that exist, but
those that were identified. Therefore, techniques that address these issues are
essential and should be explored in the context of bug prediction.

Another possible explanation for the differences between results is the devel-
opment process adopted in open-source and proprietary systems. In the former,
developers have their own agenda (most of them are volunteers or employers of
different companies), while in the latter changes can be limited to a set of files in
each software release, because it may be focused on a particular system feature.

Effectiveness with Object-Oriented vs. Procedural Systems. In Table 5, we pre-
sented previously reported results for us to have as a baseline. Note that the
results reported by the KI approach include change metrics, and KO’s evalua-
tion included procedural and OO systems, made available by NASA. As can be
seen, for all approaches but MO, our results are worse. The only approach that
presented results similar to ours is KO but with a different learning technique
(our results with RF is similar to the baseline performance, which used DT).
All approaches performed better with the original set, indicating that obtained
results may not generalizable to systems other than those obtained with the
dataset used for evaluation. Moreover, the differences between results can also
be explained using the arguments we presented above, when we compared results
using adapted OO metrics—use of a subset of metrics and different meanings of
the relationships between the metrics and defects.

In addition to these issues that might explain difference between results, the
typical application domains of procedural systems may also be an issue. Such
domains often involve low level details or complex calculations. Consequently,
complexity metrics may be more correlated with defects than metrics associated
with aspects more relevant to OO systems, such as response for a class or number
of children. In fact, previous work indicates that there is a correlation between
code complexity and defects [30]. Moreover, variability is often present in such
application domains, which results in the inclusion of macro definitions from the
C language. This may compromise code legibility and make it more fault-prone.

A relevant observation from the results of the GY approach is the importance
of the lines of code (LOC) metric for building a bug predictor for procedural
systems. Using only LOC for identifying fault-prone files is almost as good as
using other metrics, confirming the correlation between LOC and defects [12,25].
This may be an indication that approaches are overfitting their models with large
amounts of metrics, which do not bring useful information. Therefore, studies
that identify which metrics are in fact responsible for good prediction results,
both for OO and procedural systems, are needed. This also helps reduce the cost
of metric extraction.

Threats to Validity. We performed an empirical evaluation of existing bug pre-
dictors, and we mitigated identified threats that could invalidate our results. An
external threat is the number of projects used for evaluation. In order to address
this, we selected systems from different domains, with difference sizes, and both
open-source and proprietary.

Bug Predictors with Procedural Systems 93

A construction threat is the procedure adopted to extract defects. To mitigate
this, we followed a procedure similar to that adopted by existing approaches,
when issue trackers were not available. Based on the analysis of our systems,
we observed that we would not be able to detect defects introduced and fixed
during the development of a single release—we are not aware how or if prior
work has addressed this issue, given that this was not reported. It would be
inadequate to count them as bugs, because they were not present in the code
from which metrics were extracted. Therefore, we added an additional step in the
defect extraction, which verified if the fix commit changed code present in the
code baseline. Another construction validity is that we implemented ourselves
the investigated approaches. Although most approaches require only to execute
learning techniques, parameters used in previous studies were not published.
Consequently, we calibrated the models. For mitigating this threat, we replicated
published studies using datasets that were made available by the authors, before
performing our study.

6 Conclusion

In this paper, we presented a study in which we investigated how existing bug
prediction approaches perform in the context of procedural software systems,
using static code metrics. Although object orientation is currently the most
used paradigm, procedural languages are still largely used for many fundamen-
tal applications, such as operating systems and scientific computing applica-
tions. The only investigated approach that relies solely on metrics that can be
extracted from procedural systems is that proposed by Koru and Liu [18]. This
approach presented one of the best results, followed by the approach proposed by
Gyimothy et al. [7]. Note that such results were obtained with a subset of metrics
used by these authors, given that some metrics rely on object-oriented concepts.
In fact, the second best approach uses only one metric that can be extracted,
namely lines of code. Therefore, we concluded that this metric plays a key role
to build bug predictors in our context. We also adapted object-oriented metrics
to be extracted from procedural systems. Our conclusion is that they do not
improve the bug prediction for these systems.

Our results showed that bug predictors that have good performance with
object-oriented systems do not necessarily are the best with procedural systems.
Therefore, our future work includes the exploration of particularities of proce-
dural systems and exploitation of metrics based on these particularities to build
prediction models. Moreover, based on the analyzed systems, there is evidence
that it is difficult to obtain good results with systems associated with datasets
that have a low number of files with bugs. Therefore, it is important to explore
techniques in the context of machine learning that deal with the issue of unbal-
anced classes.

94 C.W. Araújo et al.

Acknowledgments. The authors are very grateful to the Parks S/A (http://www.
parks.com.br) Company that allowed analyzing three of their proprietary projects.
Ingrid Nunes would like to thank for research grants CNPq ref. 303232/2015-3, CAPES
ref. 7619-15-4, and Alexander von Humboldt, ref. BRA 1184533 HFSTCAPES-P.

References

1. Understand static code analysis tool. https://scitools.com/. Accessed 01 June 2016
2. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality

assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)
3. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineer-

ing. IEEE Trans. Softw. Eng. 12(7), 733–743 (1986)
4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-

rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)
5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE

Trans. Softw. Eng. 20(6), 476–493 (1994)
6. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction

approaches. MSR 2010, 31–41 (2010)
7. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics

on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10),
897–910 (2005)

8. Halstead, M.H.: Elements of Software Science (Operating and Programming Sys-
tems Series). Elsevier Science Inc., New York (1977)

9. Hassan, A.E.: Predicting faults using the complexity of code changes. In: ICSE
2009, pp. 78–88. IEEE Computer Society, USA (2009)

10. Hassan, A.E., Holt, R.C.: The top ten list: dynamic fault prediction. In: ICSM
2005, pp. 263–272. IEEE Computer Society, USA (2005)

11. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall Inc., Upper Saddle River (1996)

12. Jay, G., Hale, J.E., Smith, R.K., Hale, D., Kraft, N.A., Ward, C.: Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship. J.
Softw. Eng. Appl. 2(3), 137–143 (2009)

13. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: 2013 IEEE/ACM
28th International Conference on Automated Software Engineering (ASE), pp.
279–289, November 2013

14. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with
regard to defect prediction. In: PROMISE 2010, pp. 9:1–9:10. ACM, USA (2010)

15. Khoshgoftaar, T.M., Allen, E.B.: Predicting fault-prone software modules in
embedded systems with classification trees. In: The 4th IEEE International Sym-
posium on High-Assurance Systems Engineering (HASE 1999), p. 105. IEEE Com-
puter Society, Washington, DC (1999)

16. Kim, S., Whitehead, E.J., Zhang, Y.: Classifying software changes: clean or buggy?
IEEE Trans. Softw. Eng. 34(2), 181–196 (2008)

17. Kim, S., Zimmermann, T., Whitehead Jr., E.J., Zeller, A.: Predicting faults from
cached history. In: ICSE 2008, pp. 15–16. ACM, USA (2008)

18. Koru, A.G., Liu, H.: Building effective defect prediction models in practice. IEEE
Softw. 22(6), 23–29 (2005)

19. Li, P.L., Herbsleb, J., Shaw, M.: Finding predictors of field defects for open source
software systems in commonly available data sources: a case study of openBSD.
In: METRICS 2005, pp. 10–32, September 2005

http://www.parks.com.br
http://www.parks.com.br
https://scitools.com/

Bug Predictors with Procedural Systems 95

20. Martin, R.: OO design quality metrics: an analysis of dependencies. In: OOPSLA
1994 (1994)

21. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. SE 2(4), 308–320
(1976)

22. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: ICSE 2008, pp.
181–190. ACM, USA (2008)

23. Munson, J.C., Elbaum, S.G.: Code churn: a measure for estimating the impact of
code change. In: ICSM 1998, pp. 24–31. IEEE Computer Society, USA (1998)

24. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: ICSE 2005, pp. 284–292. ACM, USA (2005)

25. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:
Proceedings of the 28th International Conference on Software Engineering (ICSE
2006), pp. 452–461. ACM, New York (2006)

26. Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.: Empirical validation
of three software metrics suites to predict fault-proneness of object-oriented classes
developed using highly iterative or agile software development processes. IEEE
Trans. Softw. Eng. 33(6), 402–419 (2007)

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

28. Radjenović, D., Heričko, M., Torkar, R., Živkovič, A.: Software fault prediction
metrics. Inf. Softw. Technol. 55(8), 1397–1418 (2013)

29. Tang, M.H., Kao, M.H., Chen, M.H.: An empirical study on object-oriented met-
rics. In: METRICS 1999, p. 242. IEEE Computer Society, USA (1999)

30. Tashtoush, Y., Al-maolegi, M., Arkok, B.: The correlation among software com-
plexity metrics with case study. Int. J. Adv. Comput. Res. 4(2), 414–419 (2014)

31. Tian, Y., Lawall, J., Lo, D.: Identifying linux bug fixing patches. In: 2012 34th
International Conference on Software Engineering (ICSE), pp. 386–396, June 2012

32. Zhang, F., Mockus, A., Keivanloo, I., Zou, Y.: Towards building a universal defect
prediction model. In: MSR 2014, pp. 182–191. ACM, USA (2014)

33. Zimmermann, T., Nagappan, N., Zeller, A.: Predicting bugs from history. In: Mens,
T., Demeyer, S. (eds.) Software Evolution, pp. 69–88. Springer, Heidelberg (2008)

34. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In:
PROMISE 2007, p. 9. IEEE Computer Society, USA (2007)

Program and System Analysis

Inference and Evolution of
TypeScript Declaration Files

Erik Krogh Kristensen and Anders Møller(B)

Aarhus University, Aarhus, Denmark
{erik,amoeller}@cs.au.dk

Abstract. TypeScript is a typed extension of JavaScript that has
become widely used. More than 2000 JavaScript libraries now have pub-
licly available TypeScript declaration files, which allows the libraries to
be used when programming TypeScript applications. Such declaration
files are written manually, however, and they are often lagging behind the
continuous development of the libraries, thereby hindering their usability.
The existing tool tscheck is capable of detecting mismatches between
the libraries and their declaration files, but it is less suitable when cre-
ating and evolving declaration files.

In this work we present the tools tsinfer and tsevolve that are
designed to assist the construction of new TypeScript declaration files
and support the co-evolution of the declaration files as the under-
lying JavaScript libraries evolve. Our experimental results involving
major libraries demonstrate that tsinfer and tsevolve are superior
to tscheck regarding these tasks and that the tools are sufficiently fast
and precise for practical use.

1 Introduction

The TypeScript [13] programming language has become a widely used alter-
native to JavaScript for developing web applications. TypeScript is a super-
set of JavaScript adding language features that are important when developing
and maintaining larger applications. Most notably, TypeScript provides optional
types, which not only allows many type errors to be detected statically, but also
enables powerful IDE support for code navigation, auto-completion, and refac-
toring. To allow TypeScript applications to use existing JavaScript libraries, the
typed APIs of such libraries can be described in separate declaration files. A
public repository exists containing declaration files for more than 2000 libraries,
and they are a critical component of the TypeScript software ecosystem.1

Unfortunately, the declaration files are written and maintained manually,
which is tedious and error prone. Mismatches between declaration files and
the corresponding JavaScript implementations of libraries affect the TypeScript
application programmers. The type checker produces incorrect type error mes-
sages, and code navigation and auto-completion are misguided, which may cause

1 https://github.com/DefinitelyTyped/DefinitelyTyped
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 99–115, 2017.
DOI: 10.1007/978-3-662-54494-5_6

https://github.com/DefinitelyTyped/DefinitelyTyped

100 E.K. Kristensen and A. Møller

programming errors and increase development costs. The tool tscheck [8] has
been designed to detect such mismatches, but three central challenges remain.
First, the process of constructing the initial version of a declaration file is still
manual. Although TypeScript has become popular, many new libraries are still
being written in JavaScript, so the need for constructing new declaration files
is not diminishing. We need tool support not only for checking correctness of
declaration files, but also for assisting the programmers creating them from the
JavaScript implementations. Second, JavaScript libraries evolve, as other soft-
ware, and when their APIs change, the declaration files must be updated. We
observe that the evolution of many declaration files lag considerably behind the
libraries, which causes the same problems with unreliable type checking and IDE
support as with erroneous declaration files, and it may make application pro-
grammers reluctant or unable to use the newest versions of the libraries. With the
increasing adaptation of TypeScript and the profusion of libraries, this problem
will likely grow in the future. For these reasons, we need tools to support the pro-
grammers in this co-evolution of libraries and declaration files. Third, tscheck
is not sufficiently scalable to handle modern JavaScript libraries, which are often
significantly larger than a couple of years ago.

The contributions of this paper are as follows.

– To further motivate our work, we demonstrate why the state-of-the-art tool
tscheck is inadequate for inference and evolution of declaration files, and we
describe a small study that uncovers to what extent the evolution of Type-
Script declaration files typically lag behind the evolution of the underlying
JavaScript libraries (Sect. 2).

– We present the tool tsinfer, which is based on tscheck but specifically
designed to address the challenge of supporting programmers when writing
new TypeScript declaration files for JavaScript libraries, and to scale to even
the largest libraries (Sect. 3).

– Next, we present the tool tsevolve, which builds on top of tsinfer to sup-
port the task of co-evolving TypeScript declaration files as the underlying
JavaScript libraries evolve (Sect. 4).

– We report on an experimental evaluation, which shows that tsinfer is better
suited than tscheck for assisting the developer in creating the initial ver-
sions of declaration files, and that tsevolve is superior to both tscheck and
tsinfer for supporting the co-evolution of declaration files (Sect. 5).

2 Motivating Examples

The PixiJS Library. PixiJS2 is a powerful JavaScript library for 2D rendering
that has been under development since 2013. A TypeScript declaration file3
was written manually for version 2.2 (after some incomplete attempts), and the
authors have since then made numerous changes to try to keep up-to-date with
2 http://www.pixijs.com/
3 https://github.com/pixijs/pixi-typescript

http://www.pixijs.com/
https://github.com/pixijs/pixi-typescript

Inference and Evolution of TypeScript Declaration Files 101

Fig. 1. Example output from tsinfer, when run on PixiJS version 2.2.

the rapid evolution of the library. At the time of writing, the current version
of PixiJS is 4.0, and the co-evolution of the declaration file continues to require
substantial manual effort as testified by the numerous commits and issues in the
repository. Hundreds of library developers face similar challenges with building
TypeScript declaration files and updating them as the libraries evolve.

From Checking to Inferring Declaration Files. To our knowledge, only one tool
exists that may alleviate the manual effort required: tscheck [8]. This tool
detects mismatches between a JavaScript library and a TypeScript declaration
file. It works in three phases: (1) it executes the library’s initialization code
and takes a snapshot of the resulting runtime state; (2) it then type checks the
objects in the snapshot, which represent the structure of the library API, with
respect to the TypeScript type declarations; (3) it finally performs a light-weight
static analysis of each library function to type check the return value of each
function signature. This works well for detecting errors, but not for inferring and
evolving the declaration files. For example, running tscheck on PixiJS version
2.2 and a declaration file with an empty PIXI module (mimicking the situation
where the module is known to exist but its API has not yet been declared) reports
nothing but the missing properties of the PIXI module, which is practically useless. In
comparison, our new tool tsinfer is able to infer a declaration file that is quite close
to the manually written one. Figure 1 shows the automatically inferred declaration for
one of the classes in PixiJS version 2.2. The declaration is not perfect (the types of
frameId, crossorigin, scaleMode, and shader could be more precise), but evidently
such output is a better starting point when creating the initial version of a declaration
file than starting completely from scratch.

Evolving Declaration Files. The PixiJS library has recently been updated from
version 3 to version 4. Using tscheck as a help to update the declaration file would not
be particularly helpful. For example, running tscheck on version 4 of the JavaScript
file and the existing version 3 of the declaration file reports that 38 properties are

102 E.K. Kristensen and A. Møller

Fig. 2. Example output from tsevolve, when run on PixiJS versions 3 and 4.

missing on the PIXI object, without any information about their types. Moreover, 15
of these properties are also reported if running tscheck on version 3 of the JavaScript
file, since they are due to the developers intentionally leaving some properties undoc-
umented. Our experiments presented in Sect. 5 show that many libraries have such
intentionally undocumented features, and some also have properties that intentionally
exist in the declaration file but not in the library.4 While tsinfer does suggest a type
for each of the new properties, it does not have any way to handle the intentional dis-
crepancies. Our other tool tsevolve attempts to solve that problem by looking only
at differences between two versions of the JavaScript implementation and is thereby
better at only reporting actual changes. When running tsevolve on PixiJS version 3
and 4, it reports (see Fig. 2(a)) that 8 properties have been removed and 24 properties
have been added on the PIXI object. All of these correctly reflect an actual change
in the library implementation, and the declaration file should therefore be updated
accordingly. This update inevitably requires manual intervention, though; in this spe-
cific case, PrimitiveShader has been removed from the PIXI object but the developers
want to keep it in the declarations as an internal class, and TransformManual, although
it is new to version 4, is a deprecated alias for the also added TransformBase.

Changes in a library API from one version to the next often consist of extensions,
but features are also sometimes removed, or types are changed. As an example of the
latter, one of the changes from version 3 to 4 for PixiJS was changing the type of the
field stencilMaskStack in the class RenderTarget from type PIXI.StencilMaskStack
to type PIXI.Graphics[]. The developer updating the declaration file noticed that the
field was now an array, but not that the elements were changed to type PIXI.Graphics,
so the type was erroneously updated to PIXI.StencilMaskStack[]. In comparison,
tsinfer reports the change correctly as shown in Fig. 2(b).

4 This situation is rare, but can happen if, for example, documentation is needed for a
class that is not exported, see e.g. https://github.com/pixijs/pixi.js/issues/2312/#
issuecomment-174608951.

https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951
https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951

Inference and Evolution of TypeScript Declaration Files 103

A Study of Evolution of Type Declarations. To further motivate the need for new
tools to support the co-evolution of declaration files as the libraries evolve, we have
measured to what extent existing declaration files lag behind the libraries.5 We collected
every JavaScript library that satisfies the following conditions: it is being actively
developed and has a declaration file in the DefinitelyTyped repository, the declaration
file contains a recognizable version number, and the library uses git tags for marking
new versions, where we study the commits from January 2014 to August 2016. This
resulted in 49 libraries. By then comparing the timestamps of the version changes for
each library and its declaration file, respectively (where we ignore patch releases and
only consider major.minor versioning), we find that for more than half of the libraries,
the declaration file is lagging behind by at least a couple of months, and for some
more than a year. This is notable, given that all the libraries are widely used according
to the github ratings, and it seriously affects the usefulness of the declaration files in
TypeScript application development.

Interestingly, we also find many cases where the version number found in the decla-
ration file has not been updated correctly along with the contents of the file.6 Not being
able to trust version numbers of course also affects the usability of the declaration files.
For some high-profile libraries, such as jQuery and AngularJS, the declaration files are
kept up-to-date, which demonstrates that the developers find it necessary to invest the
effort required, despite the lack of tool support. We hope our new tools can help not
only those developers but also ones who do not have the same level of manual resources
available.

Scalability. In addition to the limitations of tscheck described above, we find that
its static analysis component, which we use as a foundation also for tsinfer and
tsevolve, is not sufficiently scalable to handle the sizes and complexity of contempo-
rary JavaScript libraries. In Sect. 3.2 we explain how we replace the unification-based
analysis technique used by tscheck with a more precise subset-based one, and in
Sect. 5 we demonstrate that this modification, perhaps counterintuitively, leads to a
significant improvement in scalability. As an example, the time required to analyze
Moment.js is improved from 873 s to 12 s, while other libraries simply are not analyz-
able in reasonable time with the unification-based approach.

3 tsinfer: Inference of Initial Type Declarations

Our inference tool tsinfer works in three phases: (1) it concretely initializes the library
in a browser and records a snapshot of the resulting runtime state, much like the first
phase of tscheck (see Sect. 2); (2) it performs a static analysis of all the functions in
that snapshot, similarly to the third phase of tscheck; (3) lastly it emits a TypeScript
declaration file. As two of the phases are quite similar to the approach used by tscheck,
we here focus on what tsinfer does differently.

3.1 The Snapshot Phase

In JavaScript, library code needs to actively put entry points into the heap in order for
it to be callable by application code. This initialization, however, often involves complex
5 Our data material from this study is available at http://www.brics.dk/tstools/.
6 An example is Backbone.js, until our patch https://github.com/DefinitelyTyped/

DefinitelyTyped/pull/10462.

http://www.brics.dk/tstools/
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462

104 E.K. Kristensen and A. Møller

metaprogramming, and statically analyzing the initialization of a library like jQuery
can therefore be extremely complicated [2]. We sidestep this challenge by concretely
initializing the library in a real browser and recording a snapshot of the heap after the
top-level code has finished executing. This is done in the same way as described by
tscheck, and we work under the same assumptions, notably, that the library API has
been established after the top-level code has executed. We have, however, changed a
few things.

For all functions in the returned snapshot, we record two extra pieces of information
compared to tscheck: (1) the result of calling the function with the new operator (if
the call returned normally), which helps us determine the structure of a class if the
function is found to be a constructor; (2) all calls to the function that occur during the
initialization, which we use to seed the static analysis phase.

The last step is to create a class hierarchy. JavaScript libraries use many different
and complicated ways of creating their internal class structures, but after the initial-
ization is done, the vast majority of libraries end up with constructor functions and
prototype chains. The class hierarchy is therefore created by making a straightforward
inspection of the prototype chains.

3.2 The Static Analysis Phase

The static analysis phase takes the produced snapshot as input and performs a static
analysis of each of the functions. It produces types for the parameters and the return
value of each function.

The analysis is an unsound, flow-insensitive, context-insensitive analysis that has
all the features described in previous work [8], including the treatment of properties
and native functions. There are, however, some important changes.

tscheck analyzes each function separately, meaning that if a function f calls a
function g, this information is ignored when analyzing function g. This works well for
creating an analysis such as tscheck that only infers the return type of functions.
When creating an analysis that also infers function parameter types, the information
gained by observing calls to a function is important. Our analysis therefore does not
analyze each function separately, but instead performs a single analysis that covers all
the functions.

While tscheck opts for a unification-based analysis, we find that switching to
a subset-based analysis is necessary to gain the scalability needed to infer types for
the bigger JavaScript libraries, as discussed in Sect. 2. The subset-based analysis is
similar to the one described by Pottier [15], as it keeps separate constraint variables
for upper-bounds and lower-bounds. After the analysis, the types for the upper-bound
and lower-bound constraint variables are merged to form a single resulting type for
each expression.

Compared to tscheck, some constraints have been added to improve precision for
parameter types, for example, so that the arguments to operators such as - and * are
treated as numbers. (Due to the page limit, we omit the actual analysis constraints
used by tsinfer.)

A subset-based analysis gives more precise dataflow information compared to a
unification-based analysis, however, more precise dataflow information does not neces-
sarily result in more precise type inference. For example, consider the expression foo
= bar || "", where bar is a parameter to a function that is never called within the
library. A unification-based analysis, such as tscheck, will unify the types of foo, bar

Inference and Evolution of TypeScript Declaration Files 105

and "", and thereby conclude that the type of bar is possibly a string. A more precise
subset-based analysis will only constrain the possible types of foo to be a superset of
the types of bar and "", and thereby conclude that the type of bar is unconstrained.
In a subset-based analysis with both upper-bound and lower-bound constraint vari-
ables, the example becomes more complicated, but the result remains the same. This
shows that changing from unification-based to subset-based analysis does not neces-
sarily improve the precision of the type inference. We investigate this experimentally
in Sect. 5.

3.3 The Emitting Phase

The last phase of tsinfer uses the results of the preceding phases to emit a declaration
for the library. A declaration can be seen as a tree structure that resembles the heap
snapshot, so we create the declaration by traversing the heap snapshot and converting
the JavaScript values to TypeScript types, using the results from the static analysis
when a function is encountered.

Implementing this phase is conceptually straightforward, although it does involve
some technical complications, for example, handling cycles in the heap snapshot and
how to combine a set of recursive types into a single type.

4 tsevolve: Evolution of Type Declarations

The goal of tsevolve is to create a list of changes between an old and a new version
of a JavaScript library. To do this it has access to three input files: the JavaScript files
for the old version old.js and the new version new.js and an existing TypeScript
declaration file for the old version old.d.ts.

To find the needed changes for the declaration file, a naive first approach would
be to compare old.d.ts with the output of running tsinfer on new.js. However,
this will result in a lot of spurious warnings, both due to imprecisions in the analysis
of new.js, but also because of intentional discrepancies in old.d.ts, as discussed in
Sect. 2.

Instead we choose a less obvious approach, where tsevolve uses tsinfer to gen-
erate declarations for both old.js and new.js. These declarations are then traversed
as trees, and any location where the two disagree is marked as a change. The out-
put of this process will still contain spurious changes, but unchanged features in the
implementation should rarely appear as changes, as imprecisions in unchanged features
are likely the same in both versions. We then use old.d.ts to filter out the changes
that concern features that are not declared in old.d.ts, which removes many of the
remaining spurious changes. Relevant function sources code from old.js and new.js
are also printed as part of the output, which allows for easy manual identification of
many of the remaining spurious changes. As the analysis does not have perfect preci-
sion, it is necessary to manually inspect and potentially adjust the suggested changes
before modifying the declaration file.

As an extra feature, in case a partially updated declaration file for the new version
is available, tsevolve can use that file to filter out some of the changes that have
already been made.

106 E.K. Kristensen and A. Møller

5 Experimental Evaluation

Our implementations of tsinfer and tsevolve, which together contain around 20000
lines of Java code and 1000 lines of JavaScript code, are available at http://www.brics.
dk/tstools/.

We evaluate the tools using the following research questions.

– RQ1: Does the subset-based approach used by tsinfer improve analysis speed and
precision compared to the unification-based alternative?

– RQ2: A tool such as tscheck that only aims to check existing declarations may
blindly assume that some parts of the declarations are correct, whereas a tool such
as tsinfer must aim to infer complete declarations. For this reason, it is relevant
to ask: How much information in declarations is blindly ignored by tscheck but
potentially inferred by tsinfer?

– RQ3: Can tsinfer infer useful declarations for libraries? That is, how accurate is the
structure of the declarations and the quality of the types compared to handwritten
declarations?

– RQ4: Is tsevolve useful in the process of co-evolving declaration files as the under-
lying libraries evolve? In particular, does the tool make it possible to correctly
update a declaration file in a short amount of time?

We answer these questions by running the tools on randomly selected
JavaScript libraries, all of which have more than 5000 stars on GitHub and a Type-
Script declaration file of at least 100 LOC. Our tools do not yet support the require
function from Node.js,7 so we exclude Node.js libraries from this evaluation. All exper-
iments have been executed on a Windows 10 laptop with 16GB of RAM and an Intel
i7-4712MQ processor running at 1.5 GHz.

RQ1 (Subset-Based vs. Unification-Based Static Analysis)

To compare the subset-based and unification-based approaches, we ran tsinfer on
20 libraries. The results can be found in the left half of Table 1. The Funcs column
shows the number of functions analyzed for each library. The Unification and Subset
columns show the analysis time for the unification-based and subset-based analysis,
respectively, using a timeout of 30min.

The results show that our subset-based analysis is significantly faster than the
unification-based approach. This is perhaps counterintuitive for readers familiar with
Andersen-style [1] (subset-based) and Steengaard-style [20] (unification-based) pointer
analysis for e.g. C or Java. However, it has been observed before for JavaScript, where
the call graph is usually inferred as part of the analysis, that increased precision often
boosts performance [2,19].

We compared the precision of the two approaches by their ability to infer func-
tion signatures on the libraries where the unification-based approach does not reach a
timeout. Determining which of two machine generated function signatures is the most
precise is difficult to do objectively, so we randomly sampled some of the function
signatures and manually determined their precision. To minimize bias, each pair of
generated function signatures was shown randomly.

7 https://nodejs.org/

http://www.brics.dk/tstools/
http://www.brics.dk/tstools/
https://nodejs.org/

Inference and Evolution of TypeScript Declaration Files 107

Table 1. Analysis speed and precision.

Library Speed Precision
Funcs Unification Subset Unification Subset Equal Unclear

Ace 1 249 timeout 13.8 s - - - -
AngularJS 609 193.3 s 7.8 s 1 14 17 0
async 169 28.2 s 4.9 s 2 22 20 6
Backbone.js 176 28.7 s 4.8 s 1 9 44 0
D3.js 1 030 181.7 s 15.8 s 4 19 44 2
Ember.js 2 902 timeout 319.7 s - - - -
Fabric.js 1 032 timeout 15.7 s - - - -
Hammer.js 122 32.5 s 3.2 s 0 2 61 3
Handlebars.js 280 9.2 s 6.9 s 0 3 12 1
Jasmine 51 135.4 s 4.6 s 2 4 71 0
jQuery 500 timeout 41.2 s - - - -
Knockout 325 168.8 s 14.4 s 2 7 41 8
Leaflet 758 timeout 11.6 s - - - -
Moment.js 446 872.6 s 12.4 s 1 27 21 2
PixiJS 1 527 timeout 308.0 s - - - -
Polymer.js 748 424.2 s 8.5 s 1 10 41 3
React 1 261 timeout 14.0 s - - - -
three.js 1 243 timeout 208.8 s - - - -
Underscore.js 298 81.2 s 4.2 s 0 4 47 0
vue.js 433 timeout 6.2 s - - - -
Total 15 159 - 1 026.5 s 14 121 419 25

The results from these tests are shown in the right half of Table 1 where the function
signatures have been grouped into four categories: Unification (the unification-based
analysis inferred the most precise signature), Subset (the subset-based analysis was the
most precise), Equal (the two approaches were equally precise), and Unclear (no clear
winner). The results show that the subset-based approach in general infers better types
than the unification-based approach. The unification-based did in some cases infer the
best type, which is due to the fact that a more precise analysis does not necessarily
result in a more precise type inference, as explained in Sect. 3.2.

RQ2 (Information Ignored by tscheck but Considered by tsinfer)

tscheck only checks the return types of the functions where the corresponding sig-
nature in the declaration file do not have a void/any return type, which may detect
many errors, but the rest of the declaration file is blindly assumed to be correct. In
contrast, tsinfer infers types for all functions, including their parameters, and it also
infers classes and fields.

108 E.K. Kristensen and A. Møller

Table 2. Features in handwritten declaration files ignored by tscheck but taken into
account by tsinfer.

Library void/any functions (all) Parameters Classes Fields

Ace 301 (460) 370 2 4
AngularJS 8 (26) 39 0 0
async 64 (80) 222 0 0
Backbone.js 67 (149) 210 7 31
D3.js 7 (219) 271 5 12
Ember.js 270 (629) 991 58 103
Fabric.js 93 (330) 382 25 17
Hammer.js 33 (53) 53 16 24
Handlebars.js 20 (20) 19 1 0
Jasmine 1 (1) 1 1 0
jQuery 19 (53) 88 1 0
Knockout 68 (125) 226 6 0
Leaflet 48 (325) 435 26 17
Moment.js 0 (70) 71 0 0
PixiJS 338 (522) 639 86 584
Polymer.js 3 (4) 3 0 0
React 3 (21) 30 1 4
three.js 328 (993) 1 295 180 632
Underscore.js 36 (121) 241 0 0
vue.js 7 (23) 42 1 8
Total 1 714 (4 224) 5 628 416 1 436

Table 2 gives an indication of the amount of extra information that tsinfer can
reason about compared to tscheck. For each library, we show the number of functions
that have return type void or any (and in parentheses the total number of functions),
and the number of parameters, classes, and fields, respectively. The numbers are based
on the existing handwritten declaration files.

We see that on the 20 benchmarks, tscheck ignores 1714 of the 4224 functions,
silently assumes 5628 parameter types to be correct, and ignores 1436 instance fields
spread over 416 classes. In contrast tsinfer, and thereby also tsevolve, does consider
all these kinds of information.

RQ3 (Usefulness of tsinfer)

As mentioned in Sect. 2, tscheck is effective for checking declarations, but not for
inferring them. We are not aware of any other existing tool that could be considered as
an alternative to tsinfer. To evaluate the usefulness of tsinfer, we therefore evaluate
against existing handwritten declaration files, knowing that these contain imprecise
information.

Inference and Evolution of TypeScript Declaration Files 109

We first investigate the ability of tsinfer to identify classes, modules, instance
fields, methods, and module functions (but without considering inheritance relation-
ships between the classes and types of the fields, methods, and functions). These fea-
tures form a hierarchy in a declaration file. For example, PIXI.Matrix.invert identifies
the invert method in the Matrix class in the PIXI module of PixiJS. When comparing
the inferred features with the ones in the handwritten declaration files, a true positive
(TP) is one that appears in both, a false positive (FP) exists only in the inferred dec-
laration, and a false negative (FN) exists only in the handwritten declaration. In case
of FP or FN we exclude the sub-features from the counts. The quality of the types of
the fields and methods is investigated later in this section; for now we only consider
their existence.

The counts are shown in Table 3, together with the resulting precision (Prec) and
recall (Rec). We see that tsinfer successfully infers most of the structure of the decla-
ration files, although some manual post-processing is evidently necessary. For example,
80.9% of the classes and 95.7% of the fields are found by tsinfer. Having false positives
in an inferred declaration (i.e., low precision) is less problematic than false negatives
(i.e., low recall): it is usually easier to manually filter away extra unneeded information
than adding information that is missing in the automatically generated declarations.

The identification of classes, modules, methods, and module functions in tsinfer is
based entirely on the snapshots (Sect. 3.1), so one might expect 100% precision for those
counts. (Identification of fields is partly also based on the static analysis.) The main
reason for the non-optimal precision is that many features are undocumented in the

Table 3. Precision of inferring various features of a declaration file.

Library Classes Modules Class fields Class methods Module functions

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Ace 0 2 0 1 0 1 0 0 0 0 0 0 3 2 0

AngularJS 0 0 0 2 1 0 0 0 0 0 0 0 22 2 4

async 0 0 0 1 1 0 0 0 0 0 0 0 88 6 0

Backbone.js 5 0 2 1 1 0 18 3 12 183 8 3 12 10 2

D3.js 5 13 0 1 9 9 12 4 0 15 4 2 56 247 12

Ember.js 62 64 54 16 32 7 8 187 35 40 54 74 333 678 112

Fabric.js 25 21 0 7 3 1 16 193 1 248 402 8 165 24 3

Hammer.js 8 8 7 2 0 1 7 64 0 39 6 0 16 9 9

Handlebars.js 2 4 0 4 3 2 0 3 0 20 4 0 28 8 3

Jasmine 2 22 0 1 4 0 0 0 0 0 8 0 28 33 3

jQuery 2 6 0 4 29 2 0 6 0 0 6 0 90 59 6

Knockout 5 3 1 14 11 1 0 4 0 14 3 0 91 63 2

Leaflet 33 10 0 22 21 1 5 75 12 241 248 2 137 135 1

Moment.js 0 2 0 1 0 0 0 0 0 0 0 0 89 25 6

PixiJS 70 2 16 31 8 2 812 46 52 450 37 7 128 14 16

Polymer.js 0 2 0 1 19 0 0 0 0 0 0 0 2 9 0

React 1 0 0 4 3 0 3 7 1 2 0 1 26 6 130

three.js 169 12 11 12 18 0 2 348 71 33 907 105 24 241 26 8

Underscore.js 0 1 0 1 0 0 0 0 0 0 0 0 117 1 3

vue.js 1 1 0 2 4 0 8 22 0 23 21 0 12 1 1

Total 390 173 91 128 167 27 3 237 685 146 2 182 906 121 1 684 1 358 321

Precision/Recall Prec: 69.3% Prec: 43.4% Prec: 82.5% Prec: 70.7% Prec: 55.36%

Rec: 80.9% Rec: 82.6% Rec: 95.7% Rec: 94.8% Rec: 84.0%

110 E.K. Kristensen and A. Møller

manually written declarations. By manually inspecting these cases, we find that most of
these are likely intentional: although they are technically exposed to the applications,
the features are meant for internal use in the libraries and not for use by applications.
Non-optimal recall is often caused by intentional discrepancies as discussed in Sect. 2
or by libraries that violate our assumption explained in Sect. 3.1 about the API being
fully established after the initialization code has finished. Other reasons for non-optimal
precision or recall are simply that the handwritten declaration files contain errors or, in
cases where the version number is not clearly stated in declaration file, we were unable
to correctly determine which library version it is supposed to match.

To measure the quality of the inferred types of fields and methods, we again used
the handwritten declaration files as gold standard and this time manually compared
the types, in places where the inferred and handwritten declaration files agreed about
the existence of a field or method. Such a comparison requires some manual work, so we
settled for sampling: for each library, we compared 50 fields and 100 methods (thereof
50 that were classified as constructors), or fewer if not that many were found in the
library.

The result of this comparison can be seen in Table 4 where Perfect means that
the inferred and handwritten type are identical, Good means that the inferred type
is better than having nothing, Any means that the main reason for the sample not
being perfect is that either the inferred or the handwritten type is any, Bad means
that the inferred type is far from correct, and No params means that the inferred type
has no parameters while the handwritten does. Obviously, this categorization to some
extent relies on human judgement, but we believe it nevertheless gives an indication of
the quality of the inferred types. An example in the Good category is in PixiJS where
tsinfer infers a perfect type for the PIXI.Matrix().applyInverse method, except
for the first argument where it infers the type {x: number, y: number} instead of the
correct PIXI.Point.

As can be seen in Table 4, the types inferred for fields are perfect in most cases,
and none of them are categorized as Bad. The story is more mixed for method types.
Here, there are relatively fewer perfect types, but function signatures are also much
more complex, given that they often contain multiple parameters as well as a return
type, and parameters can sometimes be extremely difficult to infer correctly. For many
method types categorized as Good, the overall structure of the inferred type is correct
but some spurious types appear in type unions for some of the parameters or the
return type, or, as in the example with applyInverse, an object type is inferred whose
properties is a subset of the properties in the handwritten type. The main reason that
some method types are categorized as No params is that our analysis is unable to reason
precisely about the built-in function Function.prototype.apply and the arguments
object. We leave it as future work to explore more precise abstractions of these features.

RQ4 (Usefulness of tsevolve)

To evaluate if tsevolve can assist in evolving declaration files, we performed a case
study where tsevolve was used for updating declaration files in 7 different evolution
scenarios. In each case, we used the output from tsevolve to make a pull request to
the relevant repository. All of these libraries have more than 10000 stars on GitHub
and had a need for the declaration file to be updated, but were otherwise randomly
selected. We had no prior experience in using any of the libraries.

Inference and Evolution of TypeScript Declaration Files 111

Table 4. Measuring the quality of inferred types of fields and methods.

Library Class fields Class methods and module functions
Perfect Good Any Bad Perfect Good Any Bad No params

Ace 0 0 0 0 0 3 0 0 0
AngularJS 0 0 0 0 10 10 2 0 0
async 0 0 0 0 0 26 18 0 6
Backbone.js 14 2 2 0 12 6 30 0 7
D3.js 3 0 9 0 11 36 5 2 1
Ember.js 3 3 2 0 42 37 11 5 5
Fabric.js 13 0 3 0 22 18 10 3 22
Hammer.js 0 0 1 0 7 17 9 0 8
Handlebars.js 0 0 0 0 6 22 9 2 7
Jasmine 0 0 0 0 1 12 6 0 9
jQuery 0 0 0 0 5 21 20 1 0
Knockout 0 0 0 0 5 25 24 0 1
Leaflet 3 2 0 0 14 36 7 0 19
Moment.js 0 0 0 0 8 15 21 0 6
PixiJS 32 5 13 0 38 40 21 1 0
Polymer 0 0 0 0 1 1 2 0 0
React 2 0 1 0 0 32 5 0 0
three.js 37 3 10 0 44 46 10 0 0
Underscore.js 0 0 0 0 0 11 35 3 1
vue.js 2 0 6 0 6 15 2 1 0
Total 109 15 47 0 232 429 247 18 92

The output from tsevolve is a list of changes for each declaration file. We took
the output lists from each of the 7 updates and classified each entry in each list based
upon how useful it was in the process of evolving the specific library.

The result of this can be seen in Table 5 where each change listed by tsevolve is
counted in one of the four columns. TP counts true positives, i.e. changes that reflect
an actual change in the library that should be reflected in the declaration file. Both FP
and FP* count false positives, the difference being that changes counted in FP* could
easily be identified as spurious by looking at the output from tsevolve, as explained
in Sect. 4. Unclear counts the listed changes that could not be easily categorized.

In the update from Ember.js version 1.13 to version 2.0, all of the 24 in the Bad
category are due to Ember.js breaking our assumption about the API being fully
established after the top-level code has executed. None of the other libraries violate
that assumption.

In the update of Handlebars.js from version 3 to 4, all the 59 in the Unclear cat-
egory are due to the structures of the handwritten and the inferred declaration files
being substantially different. tsevolve is therefore not able to automatically filter out
undocumented features, and all 59 entries are therefore filtered out manually.

112 E.K. Kristensen and A. Møller

Table 5. Classification of tsevolve output.

Library TP FP FP* Unclear

async 1.4 → 2.0 38 0 52 2
Backbone.js 1.0 → 1.3 34 0 42 2
Ember.js 1.13 → 2.0 55 24 40 0
Ember.js 2.0 → 2.7 44 0 54 0
Handlebars.js 3 → 4 37 3 8 59
Moment.js 2.11 → 2.14 10 0 54 2
PixiJS 3 → 4 270 13 41 2
Total 488 40 291 67

From Table 5 we can see that the output from tsevolve mostly points out changes
that should be reflected in the corresponding declaration file. Among the spuriously
reported changes, most of them can easily be identified as being spurious and are
therefore not a big problem.

These outputs of tsevolve were used to create pull requests, which are described
in Table 6. For each pull request, we show how many lines the pull request added and
removed in the declaration file,8 along with a response from a library developer, if one
was given. For Handlebars.js, the pull request additionally contains a few corrections
of errors in the declaration file that were spotted while reviewing the report from

Table 6. Pull requests sent based in tsevolve output (The pull requests: https://
gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889).

Library Lines added Lines removed Library author response

async 1.4 → 2.0 46 13 “pretty thorough and
seems to follow the 2.x
API much better than
what we currently have”

Backbone.js 1.0 → 1.3 27 3
Ember.js 1.13 → 2.0 8 508 “LGTMa ”
Ember.js 2.0 → 2.7 96 92 “ ”
Handlebars.js 3 → 4 49 2
Moment.js 2.11 → 2.14 4 0 “thank you, looks good”
PixiJS 3 → 4 (pre-release) 158 261 “Awesome PR”
PixiJS 3 → 4 19 4 “I went through all of

your changes and can
confirm everything is
perfect”

a An acronym for “Looks Good To Me”.

8 The complete pull requests in some cases contain more lines changed, due to minor
refactorings or copying and renaming of files to match the version numbers.

https://gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889
https://gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889

Inference and Evolution of TypeScript Declaration Files 113

tsinfer. All 7 pull requests were accepted without any modifications to the changes
derived from the tsevolve output.

The total working time spent going from tsevolve output to finished pull requests
was approximately one day, despite having no prior experience using any of the libraries.
Without tool support, creating such pull requests, involving a total of 407 lines added
and 883 lines removed, for libraries that contain a total of 129365 lines of JavaScript
code across versions and declaration files containing 3938 lines (after the updates),
clearly could not have been done in the same amount of time.

6 Related Work

The new tools tsinfer and tsevolve build on the previous work on tscheck [8], as
explained in detail in the preceding sections. Other research on TypeScript includes
formalization and variations of its type system [4,17,18,22], and several alternative
techniques for JavaScript type inference exist [6,11,16], however, none of that work
addresses the challenges that arise when integrating JavaScript libraries into typed
application code.

The need for co-evolving declaration files as the underlying libraries evolve can be
viewed as a variant of collateral evolution [14]. By using our tools to increase confidence
that the declaration files are consistent with the libraries, the TypeScript type checker
becomes more helpful when developers upgrade applications to use new versions of
libraries.

Our approach to analyze the JavaScript libraries differs from most existing dataflow
and type analysis tools for JavaScript, such as, TAJS [2,9] and SAFE [3], which are
whole-program analyzers and not sufficiently scalable and precise for typical JavaScript
library code. We circumvent those limitations by concretely executing the library ini-
tialization code and using a subset-based analysis that is inspired by Pottier [15],
Rastogi et al. [17], and Chandra et al. [6].

Other languages, such as typed dialects of Python [10,23], Scheme [21], Clojure [5],
Ruby [12], and Flow for JavaScript [7], have similar challenges with types and cross-
language library interoperability, though not (yet) at the same scale as TypeScript.
Although tsinfer and tsevolve are designed specifically for TypeScript, we believe
our solutions may be more broadly applicable.

7 Conclusion

We have presented the tools tsinfer and tsevolve and demonstrated how they
can help programmers create and maintain TypeScript declaration files. By making
the tools publicly available, we hope that the general quality of declaration files will
improve, and that further use of the tools will provide opportunities for fine-tuning the
analyses towards the intentional discrepancies found in real-world declarations.

Acknowledgments. This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 647544).

114 E.K. Kristensen and A. Møller

References

1. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. PhD thesis, University of Copenhagen (1994)

2. Andreasen, E., Møller, A.: Determinacy in static analysis for jQuery. In: Pro-
ceeding ACM International Conference on Object Oriented Programming Systems
Languages & Applications (2014)

3. Bae, S., Cho, H., Lim, I., Ryu, S.: SAFEWAPI: web API misuse detector for web
applications. In: Proceeding 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2014)

4. Bierman, G.M., Abadi, M., Torgersen, M.: Understanding typescript. In: Proceed-
ing 28th European Conference on Object-Oriented Programming (2014)

5. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68–94.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1_4

6. Chandra, S., Gordon, C.S., Jeannin, J.-B., Schlesinger, C., Sridharan, M., Tip,
F., Choi, Y.-I.: Type inference for static compilation of JavaScript. In: Proceed-
ing ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (2016)

7. Facebook. Flow (2016). http://flowtype.org/
8. Feldthaus, A., Møller, A.: Checking correctness of TypeScript interfaces for

JavaScript libraries. In: Proceeding ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (2014)

9. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Proceed-
ing 16th International Static Analysis Symposium (2009)

10. Lehtosalo, J., et al.: Mypy (2016). http://www.mypy-lang.org/
11. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: retrofitting type

systems for JavaScript. In: Proceeding 9th Symposium on Dynamic Languages
(2013)

12. ‘Matz’ Matsumoto, Y.: RubyConf 2014 – opening keynote (2014). http://confreaks.
tv/videos/rubyconf2014-opening-keynote

13. Microsoft. TypeScript language specification, February 2015. https://github.com/
Microsoft/TypeScript/blob/master/doc/spec.md

14. Padioleau, Y., Lawall, J.L., Hansen, R.R., Muller, G.: Documenting and automat-
ing collateral evolutions in Linux device drivers. In: Proceeding EuroSys Confer-
ence. ACM (2008)

15. Pottier, F.: A framework for type inference with subtyping. In: Proceeding 3rd
ACM SIGPLAN International Conference on Functional Programming (1998)

16. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type infer-
ence. In: Proceeding 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2012)

17. Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient
gradual typing for TypeScript. In: Proceeding 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2015)

18. Richards, G., Zappa Nardelli, F., Vitek, J.: In: Proceeding 29th European Confer-
ence on Object-Oriented Programming (2015)

19. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for
points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 435–458. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31057-7_20

http://dx.doi.org/10.1007/978-3-662-49498-1_4
http://flowtype.org/
http://www.mypy-lang.org/
http://confreaks.tv/videos/rubyconf2014-opening-keynote
http://confreaks.tv/videos/rubyconf2014-opening-keynote
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://dx.doi.org/10.1007/978-3-642-31057-7_20

Inference and Evolution of TypeScript Declaration Files 115

20. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceeding 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1996)

21. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
Scheme (2008)

22. Vekris, P., Cosman, B., Jhala, R.: Refinement types for TypeScript. In: Proceeding
37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (2016)

23. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proceeding 10th ACM Symposium on Dynamic Languages
(2014)

Explicit Connection Actions in Multiparty
Session Types

Raymond Hu(B) and Nobuko Yoshida

Imperial College London, London, UK
rhu@doc.ic.ac.uk

Abstract. This work extends asynchronous multiparty session types
(MPST) with explicit connection actions to support protocols with
optional and dynamic participants. The actions by which endpoints
are connected and disconnected are a key element of real-world pro-
tocols that is not treated in existing MPST works. In addition, the use
cases motivating explicit connections often require a more relaxed form
of multiparty choice: these extensions do not satisfy the conservative
restrictions used to ensure safety in standard syntactic MPST. Instead,
we develop a modelling-based approach to validate MPST safety and
progress for these enriched protocols. We present a toolchain implemen-
tation, for distributed programming based on our extended MPST in
Java, and a core formalism, demonstrating the soundness of our app-
roach. We discuss key implementation issues related to the proposed
extensions: a practical treatment of choice subtyping for MPST progress,
and multiparty correlation of dynamic binary connections.

1 Introduction

Multiparty session types (MPST) is a type systems theory for verifying message
passing concurrent processes, originally developed in the π-calculus [21]. A stan-
dard top-down presentation of syntactic MPST systems consists of three layers:
(1) a global specification of an asynchronous message passing protocol as a global
type, with the participants abstracted as roles; (2) a syntactic projection to a
localised view of the protocol for each role as a local type; which are in turn used
to (3) type check the endpoint processes implementing the roles. A well-typed
system of session endpoint implementations is guaranteed free from communi-
cation safety errors, such as unexpected message receptions and deadlocks.

In our view, the central design point of practical languages and tools based
on session types is: (a) to identify a class of protocols, through the constraints
of the type syntax and accompanying well-formedness conditions; such that
MPST safety is indeed guaranteed by (b) (independent) verification of end-
point programs against their local projections. Much research, both multiparty
and the special case of binary sessions, has focused on addressing (b) in var-
ious ways: extending existing languages to support static session typing (e.g.,
Links [32]) via pre-processing tools (Java [25,45]), embedding into existing lan-
guages via encodings (Haskell [26,40], Rust [27]), dynamic session typing by run-
time monitoring (Python [15], Erlang [19]), hybrid (part static, part dynamic)
approaches (Java [24], Scala [42], ML [36]), and code generation (MPI/C [35]).
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 116–133, 2017.
DOI: 10.1007/978-3-662-54494-5 7

Explicit Connection Actions in Multiparty Session Types 117

Regarding (a), the multiparty works of the above mostly follow the core
theoretical systems [12,22], where protocol well-formedness is directly derived
from syntactic restrictions in conjunction with various simplifying assumptions.
Unfortunately, these restrictions are too conservative for many useful patterns
found in practice. For example, consider a basic, generic pattern starting with
interactions between two session participants that, in some cases, leads to the
later involvement of a third party. By contrast, the standard MPST notion of
session initiation is assumed to be a single, atomic synchronisation between all
parties (as in all of the above works), which inherently rules out any instance of
this pattern. Standard MPST basically do not support protocols with dynamic
joining/leaving of participants during a session, nor optional participation.

This paper. We develop an MPST toolchain to address limitations w.r.t. to (a)
as discussed above, that can be readily integrated with some of the existing
approaches for (b). There are two main contributions.

One is to extend MPST to support explicit connection actions in protocol
specifications, in a manner that is closely guided by the practical motivations.
Rather than a globally interconnected structure between a fixed number of par-
ticipants, we consider a multiparty session as a dynamically evolving configu-
ration of binary bidirectional connections that are established and closed (and
possibly re-established) as the session progresses. Concretely, we extend an exist-
ing MPST-based protocol description language, Scribble [44,47]. The following
is an instance of the pattern from above in our extended Scribble:

explicit global protocol OptionalDynamicThirdParty(role A, role B, role C) {
hello () connect A to B; // A connects to B; sends a message labelled hello

goodday() from B to A; // B replies to A on the established connection

choice at A { opt1() from A to B; // A has two choices: send opt1 or opt2 to B

greetings () connect B to C; } // B connects to C; sends greetings

or { opt2() from A to B; } } // Session ends without involving C

(The syntax is explained more in Sect. 2.) Explicit connection actions allow
MPST to better fit real-world use cases from domains such as Internet applica-
tions and Web services, where multiparty systems are often implemented over
binary transports like TCP and HTTP. As we shall see in examples, many pat-
terns involving explicit connections also require a more relaxed form of choice
than in standard MPST, with mixed action kinds and destination roles.

The second aspect relates to global type validation in our extended MPST.
The proposed extensions do not satisfy the conservative restrictions used to
ensure safety in standard syntactic MPST: they allow writing additional use
cases, but also introduce the potential for errors that were previously precluded.

118 R. Hu and N. Yoshida

The minimal examples above illustrate some of the issues at hand. P1 features a
choice involving only A and B in one case, and A and C in the other (which is not
permitted in [12,17,18,22]), that is repeated continuously by the recursion (not
permitted in [18]). However, P1 does satisfy the intuitive notion of MPST safety
(e.g., no reception errors or deadlocks); and under an assumption of output choice
fairness, i.e., provided A does not starve B or C of messages, P1 also satisfies MPST
progress (otherwise, if, e.g., A talks only to B, then C remains in the session but
never progresses). Using explicit connection actions, this pattern can be rewritten
in P2 to satisfy both safety and progress without such an assumption.

Our approach is to develop a modelling-based validation for MPST protocols.
Specifically, we derive a model of a global type from the 1-bounded execution
of the induced multiparty session, i.e., where the capacity of each dynamically
established, asynchronous channel is limited to one message; and explicitly check
the model is free of the traditional MPST safety and progress errors, as well as
the additional kinds of errors introduced by our extensions, such as unexpected or
duplicate (dis)connections. The key to this approach is that the characteristics
of syntactic MPST can be leveraged to serve the soundness of the bounded
validation; as opposed to solely relying on syntactic restrictions for outright
safety. We treat output choice fairness by a structural transformation in the
model construction, that reflects the underlying issue of session subtyping [37];
e.g., our validation accepts P1 (above) only if fairness is assumed.

Techniques based on “minimal asynchrony” have been employed for various
purposes in related theoretical works (Sect. 5); e.g., to show the decidability of
choreography realisability [4], classifying session types in the context of commu-
nicating FSMs [18], and the study of properties of half-duplex binary systems [11].
The advance of this work is to formulate the 1-bounded validation for our extended
MPST; and its application in a practical toolchain, from the validation of our
extended Scribble specifications to safe implementations of distributed Java end-
points. We believe that such an approach may offer a practical, uniform validation
methodology for MPST-based protocols, towards incorporating further MPST
extensions (e.g., [5,6,15,29,46]) together in an integrated toolchain.

2 Use Case and Overview

2.1 Use Case: Travel Agency Web Service (Revisited)

Travel Agency is one of the widely-used examples in session types literature,
based on a W3C Web services choreography use case;1 we follow the version
in [1]. The basic scenario starts by a Client (C) initiating a session with the
Travel Agent (A) to negotiate a product quote. The client may eventually choose
to reject all quotes, ending the session; or to accept one, leading to a payment
transaction between the client and a third-party Service (S). Although this is
a natural multiparty use case, it is not actually fully supported by standard
MPST. To see the potential problems, consider the following fragment from the
latter part of the protocol:
1 https://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/ Sect. 3.1.1.

https://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/

Explicit Connection Actions in Multiparty Session Types 119

1 explicit global protocol TravelAgency

2 (role C, role A, role S) {

3 connect C to A;

4 do Nego(C, A, S);

5 }

6 // aux subprotocols
7 aux global protocol Nego

8 (role C, role A, role S) {

9 choice at C {

10 query(Str) from C to A;

11 quote(Int) from A to C;

12 do Nego(C, A, S);

13 } or {

14 do Pay(C, A, S);

15 } }

17 // So far, only C and A are connected
18 aux global protocol Pay

19 (role C, role A, role S) {

20 choice at C {

21 // C connects to S, sends pay info
22 pay(Str) connect C to S;

23 // S returns a payment reference
24 confirm(Int) from S to C;

25 // C forwards the payref to A
26 accpt(Int) from C to A;

27 } or {

28 reject() from C to A;

29 }

30 } // End of protocol
31

Fig. 1. The Travel Agency choreography use case1 using explicit connection actions.

choice at C { pay(Str) from C to S; confirm(Int) S to C; accpt(Int) from C to A;}
or { reject () from C to A; } // S not involved [i]

In standard MPST, the execution model is that all three roles are synchronised
on session initiation, and there are no further implicit messages (e.g., no session
termination handshake). Under these assumptions, the above fragment is unsafe
because, in the second case, there is no way for an implementation of S to
locally determine that the session is finished. Consequently, specifications in
existing MPST use workarounds that are less rigorous (e.g., decomposing the
protocol into separate global types, losing some of the message causalities) or
less realistic/efficient (e.g., by introducing extra messages, or delegation [12]).

The above fragment is also not permitted as a standard MPST choice due to
the directed choice restriction: the messages from a branch point must be sent to
the same role in all cases (e.g., r′ in the type grammar r → r′ : {li.Gi}i∈I [12,22];
similarly in automata-based works [17,18]) as a conservative element towards
ensuring safety. The superficial quick fix by simply moving the accpt message to
the start of the first case is not possible in this example, because the Int payload
of this message is intended to be the value (the payment reference Int) received
by C in the preceding confirm message.

Explicit connection actions allow this use case to be safely captured as a sin-
gle global type, as given by TravelAgency and its two subprotocols (aux) in our
extended Scribble in Fig. 1. Line 1 declares the root protocol with the three roles
C, A and S. The new explicit modifier means that every inter-role connection
used for message passing must first be established by explicitly specified connec-
tion actions. A session starts by C connect to A (line 3), creating a bidirectional
channel (e.g., TCP) between client C and server A.

We then enter the Nego subprotocol by the do-statement, with the do argu-
ment roles playing the target parameter roles (given the same names in this
example). The choice at C on line 9 means C makes an internal choice between
the two cases (the or-separated blocks), to be explicitly communicated as an

120 R. Hu and N. Yoshida

external choice to other roles as appropriate. In the first case, a message of sig-
nature query(Str) (a message with header/label query, and one payload value
of type Str) is sent from C to A. A replies with a quote(Int), and the choice is
repeated by the recursive do on line 12. A and C thus perform the query/quote
exchange some number of times (possibly zero, in this simplified version). Finally,
in Pay, C has two further options. C may connect to S, thereby dynamically bring-
ing S into the session: C exchanges payment details pay(Str) for a payment ref-
erence confirm(Int) with S, and forwards the reference to A. Otherwise, C sends
a reject to A, and the session ends without involving S. Note that these syn-
tactically nested choices actually amount to a single choice at C, between mixed
kinds of actions to different roles: the connect to S, and the sends to A.

Extending MPST with explicit connection actions allows such protocols
because, e.g., the connect from C to S, serves to delimit the scope of S’s involve-
ment to the relevant choice case only. From S’s view, the whole session starts
and ends, by interactions with C, in this one case, if the session indeed proceeds
this way at run-time: while S remains unconnected, we can consider it as “inac-
tive” with regards to session safety and progress. At the same time, this solution
reduces the gap between MPST-based descriptions and real protocols, like Inter-
net application RFCs, by recognising that the client/server connection actions
are as important to a rigorous specification as the message passing (e.g., the
STARTTLS “re-connection” in SMTP [28], and FTP’s active/passive modes [39]).

The communication model promoted by our extended MPST is at most one
(as opposed to exactly one) connection between any pair of roles. Consider the
following explicit protocol with roles A, B and C:

connect A to B; rec X { [ii]
choice at A { 1() from A to B; 2() connect B to C; disconnect B and C;continue X;

} or { 3() from A to B; } }
The disconnect is necessary, inside the recursion rec X { ...continue X; }, to
ensure there is never more than one connection between B and C (similarly in P2

in Sect. 1). We can assume implicit disconnect actions at the end of a protocol.

2.2 Overview of 1-Bounded Global Type Validation and Examples

The restrictions employed in standard MPST are convenient for reasoning about
the MPST safety properties. Aside from surface syntax details, systems like [12]
ensure safety by essentially requiring pairwise syntactic duality of per-role views
at all points in a protocol (called consistency [12] or coherence [22]). By contrast,
our proposed extensions allow additional safe protocols, but also (syntactically)
allow protocols with errors that were previously precluded. E.g., consider the
choice from P1 in Sect. 1, where it is safe, but now without the recursion: either
B or C is unsafely left hanging at the end of a session.

choice at A { 1() from A to B; } or { 2() from A to C; } [iii]

To deal with such additional errors, and those related to explicit connection
actions, we validate global types by (1) a lighter set of syntactic conditions, in
comparison to standard MPST; complemented by (2) explicit error checking on
a 1-bounded model of the protocol. The key conditions of (1) are:

Explicit Connection Actions in Multiparty Session Types 121

Role Enabling. For any given choice, we consider the subject (the at role)
to be enabled by default; other roles become enabled after receiving a message.
Only enabled roles may connect or send messages to other roles. Role enabling
checks that this transitive propagation of the enabled status is respected.

Consistent External Choice Subjects. Every potentially incoming message
in an input choice (i.e., accepts or receives) must be directed from the same role.

These basic conditions, in conjunction with the inherent pairing of role-to-role
actions in global types, serve the soundness of (2) in the presence of asyn-
chrony and recursion (in general, the state space of an MPST protocol may
be unbounded; e.g., P1 in Sect. 1). We note that the latter condition is implicitly
imposed by the standard projection in existing MPST [12,22] (and by projec-
tions extended with merging [18,46]), with the additional restriction of directed
choice to send every output choice message to the same role.

1
A : B!1

B : A?1

A : C!2

C : A?2

1

A : B!1

B : A?1 A : C!2
C : A?2

A : C!2
C : A?2 A : B!1

A : B?1

1

2

3

A : B!1

B : A?1
A : B!1

A : C!2

C : A?2
A : C!2

(a) (b) (c)

We first demonstrate the validation by illustrating some models used by our
tool for some previous examples; the details will be covered in Sects. 3 and 4.
Initial states are labelled 1; the notation, e.g., A : B!1 means A performs the local
send B!1. (a) is for Ex. [iii]: the two terminals are unfinished role errors (Sect. 3.2),
where the system is terminated but either B or C is not locally terminated.
(b) is for P1 from Sect. 1 assuming output choice fairness, i.e., that both the B!1

and C!2 options are always viable; this model passes the validation. (c) is the
contrary view for P1, where A commits exclusively to a single choice case after the
first selection. Our tool additionally constructs this variant to expose such role
progress violations (Sect. 3.2), where an unfinished role never progresses along
some infinite execution, e.g., C does not progress in the cycle between 2 and 3.
(a) is not affected by the fairness assumption, as there is no recursion.

The “unfair” model for P2 (not shown) has the same structure as (c), but with
connects/disconnects in place of the sends/receives. It would not violate progress
because either B or C remains in a local connection-accept “guard” state, which
is not considered unfinished (rather, “inactive”). TravelAgency satisfies progress
(i.e., wrt. S) regardless of output choice fairness for the same reason.

3 MPST with Explicit Connection Actions

3.1 Global Types, Local Types and Sessions

Syntax. A core syntax of global types G and local types L is defined in Fig. 2.
Global types have guarded choices Σi∈Iπi.Gi, with connection r � r′ : l, messag-
ing r → r′ : l and disconnection r # r′ actions; recursion μX.G and X; and termi-
nation end. As an example, TravelAgency from Fig. 1 may be written (assuming

122 R. Hu and N. Yoshida

Roles A, B, . . . ∈ R ranged over by r, r′, . . .
Message labels 1, 2, 3, . . . ∈ L l, l′, . . .
Recursion variables X, Y, . . . ∈ X X, Y, . . .
Paired interactions (R × {→, �} × R × L) ∪ (R × {#} × R) π, π′, . . .
Localised actions A ⊆ (R × {!, ?, !!, ??} × L) ∪ (R × {#}) α, α′, . . .

G ::= Σi∈Iπi.Gi | μX.G | X | end L ::= Σi∈Iαi.Li | μX.L | X | end |I| ≥ 1

r1 † r2 : l.G�Δr =

⎧
⎪⎨

⎪⎩

r2[[†]]•l.(G�∅r) r = r1

r1[[†]]◦l.(G�∅r) r = r2

G�Δr r {∈� r1, r2}

r1 # r2.G�Δr ={
r′

#.(G�∅r) r, r′ ∈ {r1, r2}, r �= r′

G�Δr otherwise

[[→]]•=! [[→]]◦=? [[�]]•=!! [[�]]◦=??

Σi∈IGi�Δr
(|I|>1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X (resp. end) ∀i ∈ I.Gi�Δr = X (resp. ∀i ∈ I.Gi�Δr = end)

Σj∈J⊆I(Lj = Gj �Δr) |J | > 0, ∀k ∈ I\J(Gk �Δr = end or X∈Δ), and

either

{
∀j ∈ J.Lj = α•

j .L′
j

∃r′∀j ∈ J.Lj = α◦
j .L′

j ∧ subj(α◦
j) = r′

μX.G�Δr =

{
end G�Δ ∪{X}r = X ′ or end

μX.(G�Δ ∪{X}r) otherwise

X �Δr = X
end�Δr = end

Fig. 2. Core syntax and global-to-local type projection.

an empty label nil for the initial connect, and “flattening” the nested choices):
C � A : nil.μTravelAgency. (C → A : query.A → C : quote.TravelAgency

+ C � S : pay.S → C : confirm.C → A : accpt.end + C → A : reject.end)
Local types are the same except for localised actions: connect r!!l, accept r??l,
send r!l, receive r?l, and disconnect r#. For a local action α = r † l, the anno-
tation α◦ means † ∈ {?, ??}; and α• means either α with † ∈ {!, !!} or an action
r#. We sometimes omit end.

The projection of G onto r, written G � r, is the L given by G�∅ r in Fig. 2,
where the Δ is a set {Xi}i∈I . Our projection is more “relaxed” than in standard
MPST, in that we seek only to regulate some basic conditions to support the
later validation (see below). Δ is simply used to prune X that become unguarded
in choices during projection onto r, when the recursive path does not involve
r; e.g., projecting TravelAgency onto S: C??pay.C!confirm.end). Note: we make
certain simplifications for this core formulation, e.g., we omit payload types and
flattening of nested choice projections [23].

We assume some basic constraints (typical to MPST) on any given G. (1)

For all π† = r † r′ : l, † ∈ {→,�}, and all π# = r#r′, we require r �= r′.
We then define: subj(π†) = {r}, obj(π†) = {r′}, lab(π†) = l; and subj(π#) =
{r, r′}, obj(π#) = ∅. (2) G is closed, i.e., has no free recursion variables. (3) G
features only deterministic choices in its projections. We write: r ∈ G to mean r
occurs in G; and α ∈ L to mean L′ = Σi∈Iαi.Li, where L′ is obtained from L
by some number (possibly zero) of recursion unfoldings, with α = αi for some i.

Explicit Connection Actions in Multiparty Session Types 123

(Sessions) S ::= (P, Q) P ::= {Lr}r∈R Q : (R × R) }⊥{→� ∪ �l

[Conn] ∃i′ ∈ I, j′ ∈ J αi′ = r′!!l α′
j′ = r??l Q(r, r′) = Q(r′, r) = ⊥

({(Σi∈Iαi.Li)r, (Σj∈Jα′
j .L′

j)r′} ∪ P, Q) →k ({(Li′)r, (L′
j′)r′} ∪ P, Q[r, r′ �→ ε][r′, r �→ ε])

[Send]
∃j ∈ I αj = r′!l Q(r, r′) �= ⊥ Q(r′, r) =�l |�l| < k

({Σi∈Iαi.Li}r ∪ P, Q) →k ({Lj}r ∪ P, Q[r′, r �→ �l · l])

[Recv]
∃j ∈ I αj = r′?l Q(r, r′) = l ·�l

({Σi∈Iαi.Li}r ∪ P, Q) →k ({Lj}r ∪ P, Q[r, r′ �→ �l])

[Dis] Q(r, r′) = ε

({r′#.L}r ∪ P, Q) →k ({L}r ∪ P, Q[r, r′ ⊥→�])
[Rec]

({L[μX.L/X]}r ∪ P, Q) →k (P ′, Q′)

({μX.L}r ∪ P, Q) →k (P ′, Q′)

Fig. 3. Sessions (pairs of participants and message queues), and session reduction.

(Unfolding is the substitution on recursions unf(μX.G)=G[μX.G/X]; unf(G)=G
otherwise.) We use RG to denote {r | r ∈ G}, omitting the subscript G where
clear from context.

Well-formed global type. For a given G, let ϕ(G) be the global type resulting
from the once-unfolding of every recursion μX.G′ occurring within G (defined by
ϕ(μX.G) = ϕ(G[end/X]), and homomorphic for the other constructors). Role
enabling (outlined in Sect. 2) on global types R � G, R ⊆ R, is defined by
R � end for any R, and:

subj(π) ⊆ R R ∪ obj(π) � G

R � π.G

|I| > 1 ∃r ∈ R ∀i ∈ I.subj(πi) = {r} ∧ {r} ∪ obj(πi) � Gi

R � Σi∈Iπi.Gi

A global type G is well-formed, wf(G), if RG � ϕ(G), and for all r ∈ RG,
G � r is defined. A consequence is that disconnects are not prefixes in non-unary
choices. Also, every local choice in a projection of a wf(G) comprises only α• or
α◦ actions, with a consistent subject r in all cases of the latter.

Sessions (Fig. 3) are pairs of a set of participant local types P and inter-role
message queues Q. ⊥ designates a disconnected queue. We use the notation
Q[K 	→ V] to mean Q′ where Q′(K) = V , and Q′(K ′) = Q(K ′) for K �= K ′.
Session reduction (Fig. 3), S →k S′, is parameterised on a maximum queue
size k ∈ N1 ∪ {ω}. If two roles are mutually disconnected, [Conn] establishes
a connection, synchronising on a common label l. If both sides are connected,
[Send] asynchronously appends a message to destination queue if there is space.
If the local queue is still connected: [Recv] consumes the first message, if any;
and [Dis] disconnects the queue if it is empty.

For a wf(G) with roles R, we define: (1) →∗
k is the reflexive and transitive

closure of →k; (2) the k-reachable set of a session S for some k is RSk(S) =
{S′ |S →∗

k S′}; we say S′ ∈RSk(S) is k-reachable from S; (3) the initial session
is the session S0 = ({G � r}r∈R, QR0), where QR0 = {r, r′ 	→ ⊥ | r, r′ ∈ R}; and
(4) a k-final session S is such that �S′(S →k S′). We may annotate a reduction

124 R. Hu and N. Yoshida

step S
r−→k S′ by a subject role r of the step: in Fig. 3, in [Send], [Recv] and [Dis]

the subject is r; in [Conn], both r and r′ are subjects. Given S, r and k, S
r−→k

stands for ∃S′(S r−→k S′). For k = ω, we often omit ω.

3.2 MPST Safety and Progress

The following defines MPST safety errors and progress for this formulation.
Assume a wf(G) with initial session S0 and S ∈ RSk(S0) for some k. For r ∈ G,
we say: r is inactive in S, with S = (P,Q) and Lr ∈ P , if (1) Lr = end; or (2)

Lr = G � r and ∀α ∈ Lr ∃l(α = r′??l). Otherwise, r is active in S.
Then, session S = (P,Q) is a safety error, Err, if:

(i) Lr ∈ P and one of the following holds:
(Connection error) α ∈ Lr, α = r′!!l or r′??l, and Q(r, r′) �= ⊥;
(Disconnect error) r′ # ∈Lr and Q(r, r′) �= ε;
(Unconnected error) α ∈ Lr, α = r′!l or r′?l, and Q(r, r′) = ⊥;
(Synchronisation error) r′!!l ∈ Lr, (Σi∈Ir??li.Li)r′ ∈ P , and l {∈� li}i∈I ;
(Reception error) Lr = Σi∈Ir

′?li.Li, Q(r, r′) = l ·�l and l {∈� li}i∈I ;
or (ii) S is either:

(Unfinished role) S is k-final and r ∈ G is active in S;
(Orphan message) r ∈ G is inactive in S and ∃r′(Q(r, r′) ⊥{∈� , ε}).

Session S satisfies k-progress if, for all S′ = (P,Q) ∈ RSk(S), we have both:
(Role progress) for all r ∈ R, if r is active in S′, then S′ →∗

k
r−→k; and (Eventual

reception) if Q(r, r′) = l · l, then S′ →∗
k (P ′, Q′) where Lr ∈ P ′ and r′?l ∈ Lr.

A session S is k-safe if �Err ∈ RSk(S). We simply say session S is safe if it
is ω-safe; and S satisfies progress if it satisfies ω-progress.

The following establishes the soundness of our framework. Our approach is
to adapt the CFSM-based methodology of [6,18], by reworking the notion of
multiparty compatibility developed there, in terms of the syntactic conditions
and explicitly checked 1-bounded properties of our extended setting. The omit-
ted/expanded definitions and proofs can be found at [23].

Theorem 1 (Soundness of 1-bounded validation). Let S0 be the initial session
of a wf(G) that is 1-safe and satisfies 1-progress. Then S0 is safe and satisfies
progress.

4 Implementation

4.1 Modelling MPSTs by CFSMs with Dynamic Connections

We present a prototype implementation [43] that adapts the preceding formula-
tion by constructing and checking explicit state models of our extended global
types, based on a correspondence between MPST and communicating FSMs

Explicit Connection Actions in Multiparty Session Types 125

(CFSMs) [15,18,30]. In this setting, our extensions correspond to CFSMs with
dynamic connection actions. An Endpoint FSM (EFSM) for a role is:

(EFSM) M = (S, R, s0, L, δ) (States) s, s′, . . . ∈ S (Transitions) δ ⊆ S × A × S

where s0 is the initial state; R, L and A are as defined in Fig. 2. We write δ(s) to
denote {α | ∃s′.δ(s, α) = s′}. EFSMs are given by a (straightforward) translation
from local types, for which we omit the full details [23]: an EFSM essentially
captures the structure of the syntactic local type with recursions reflected as
cycles. E.g., for C in TravelAgency (Fig. 1), omitting payload types:

1 2 3 4 5 6
A!! A!query

A?quote

S!!pay S?confirm A!accpt

A!reject

The execution of EFSM systems is adapted from basic CFSMs [9] following
Fig. 3 in the expected way [23]. Then, assuming an initial configuration c0 (the
system with all endpoints in their initial EFSM states and unconnected) for a
wf(G), the (base) model of G is the set of configurations that can be reached by
1-bounded execution from c0. We remark that the model of a wf(G) is finite.

Based on Sect. 3.2, G can be validated by its model as follows. The MPST
safety errors pertain to individual configurations: this allows to simply check
each configuration by adapting the Err-cases to this setting. E.g., an unfinished
role error is a terminal configuration where role r is in a non-terminal state sr,
and sr is not an accept-guarded initial state. MPST progress for potentially non-
terminating sessions can be characterised on the finite model in terms of closed
subsets of mutually reachable configurations (sometimes called terminal sets).
E.g., a role progress violation manifests as such a closure in which an active role
is not involved in any transition (e.g., configs. 2 and 3, wrt. C, in (c) on p. 6).

Choice subtyping vs. progress. A projected local choice is either an output choice
(connects, sends) or an input choice (accepts, receives). While input choices
are driven by the received message, output choices are driven by process-level
procedures that global and local types abstract from. The notion of session
subtyping [13,20] was developed to allow more flexible implementations against
a local type. E.g., the projection of P1 from Sect. 1 for A is μX.(B!1.X + C!2.X)
which says A repeatedly has the choice of sending 1 to B or 2 to C: intuitively, it
is safe here to implement an A that always opts to send 1 (e.g., a process P (x)=
x⊕〈B, 1〉.P 〈x〉, where x is A’s session channel, ⊕ is the select primitive [12]). For
our relaxed form of multiparty choice, however, such an (naive) interpretation
of subtyping raises the possibility of progress errors (in this case, for C).

To allow our validation approach to be integrated with the various methods
of verifying local types in real-world languages, we consider this issue from the
perspective of two basic assumptions on implementations of output choices. One
is to simply assume output choice fairness (the basic interpretation that an
infinite execution of an output choice selects each recursive case infinitely many
times), which corresponds to the model construction defined so far.

126 R. Hu and N. Yoshida

The other interpretation is developed as a “worst case” view, where we do
not assume any direct support for session typing or subtyping (fair or otherwise)
in the target language (e.g., native Java), and allow the implementation of every
recursive output choice to be reduced to only ever following one particular case.
Our tool implements this notion as a transformation on each EFSM, by refining
the continuations of output choices such that the same case is always selected if
that choice is repeated in the future. We outline the transformation below (see
[23] for the definition):

– For each non-unary output choice s•, we clone the subgraph reachable via an
action α∈δ(s•) in each case that s• is reachable via α, i.e., if s•∈RS(δ(s•, α)).

– In each subgraph cloned via α, all α′ ∈δ(s•) edges, s.t. α′ �=α, are pruned from
the clone of s•. We redirect the α-edge from s• to the clone of its successor
δ(s•, α) in the cloned subgraph. (States no longer connected are discarded.)

– This transformation is applied recursively on the cloned subgraphs, until every
recursive output choice is reduced to a single action.

This transformation reflects endpoint implementations that push output choice
subtyping to exercise a minimum number of different recursive cases along
a path. To expose progress violations under subtyping when fairness is not
assumed, our tool uses the transformed EFSMs to additionally construct and
check the “unfair” 1-bounded global model in the same manner as above.

1

B!1

C!1

1
B!1

B!1

C!2

C!2

1
B!!1

B#
B!!1

C!!2

C#
C!!2

1

A??2 A#

(d) (e) (f) (g)

We illustrate some examples. (d) is the base EFSM, i.e., assuming output
choice fairness, for A in P1 from Sect. 1. (e) is the transformed EFSM: if A starts
by selecting the 1 case it will continue to select this case only; similarly for 2.
(The transformation does not change B or C.) Using (e) gives the global model for
P1 in (c) on p. 6, raising the role progress violations for B and C. By contrast, (f)

is the transformed EFSM for A in P2 from Sect. 1: as in (e), A commits exclusively
to whichever case is selected first. However, P2 does not violate progress, despite
the transformation of A in (f), because the involvement of C is guarded by the
initial connection-accept actions in (g); similarly for B.

4.2 Type-Checking Endpoint Programs by Local Type Projections

Java endpoint implementation via API generation. We demonstrate an integra-
tion of the above developments with an existing approach for using local types
to verify endpoint programs. Concretely, we extend the approach of [24], to gen-
erate Java APIs for implementing each role of a global type, including explicit
connection actions, via the translation of projections to EFSMs. The idea is to
reify each EFSM state as a Java class for a state-specific channel, offering meth-
ods for exactly the permitted I/O actions. These channel classes are linked by

Explicit Connection Actions in Multiparty Session Types 127

1 TravelAgency sess = new TravelAgency(); // Generated session class
2 try (ExplicitEndpoint<TravelAgency, C> ep = new ExplicitEndpoint<>(sess, C) {

3 Buf<Integer> b = new Buf<>();

4 TravelAgency_C_2 C2 = new TravelAgency_C_1(ep) // Generated channel classes
5 .connect(A, SocketChannelEndpoint::new, host_A, port_A); // TCP client
6 for (int i = 0; i < queries.length; i++) // Assume queries: String[]
7 C2 = C2.send(A, query, queries[i]).receive(A, quote, b);

8 C2.connect(S, SocketChannelEndpoint::new, host_S, port_S, // TCP client
9 pay, "..paymentInfo..").receive(S, confirm, b)

10 .send(A, accpt, b.val); // C simplified to always accept the quote
11 } // (reject option unused)

Fig. 4. Safe Java implementation of C in TravelAgency (Fig. 1) using generated APIs.

setting the return type of each method to its successor state. Session safety is
assured by static (Java) typing of the I/O method calls, combined with run-time
checks (built into the API) that each instance of a channel class is used exactly
once, for the linear aspect of session typing. An endpoint implementation thus
proceeds, from a channel instance of the initial state, by calling one I/O method
on the current channel to obtain the next, up to the end of the session (if any).

Figure 4 illustrates the incorporation of explicit connect, accept and discon-
nect actions from local types into the API generated for C in TravelAgency; this
code can be compared against the EFSM on p. 10. TravelAgency C 1 is the initial
state channel (cf. EFSM state 1), for which the only permitted I/O method is the
connect to A; attempting any other session operation is simply a Java type error.
(The various constants, such as A and query, are singleton type values in the
API.) The connect returns a new instance of TravelAgency C 2, offering exactly
the mixed choice between the non-blocking query (line 7) or reject (unused, cf.
Sect. 4.1, output choice subtyping) to A, or the blocking connect to S (line 8).

If the programmer respects the linear channel usage condition of the gener-
ated API, as in Fig. 4, then Java typing statically ensures the session code (I/O
actions and message types) follows its local type. The only way to violate the
protocol is to violate linearity, in which case the API will raise an exception
without actually performing the offending I/O action. Our toolchain, from val-
idated global types to generated APIs, thus assures safe executions of endpoint
implementations up to premature termination.

Correlating dynamic binary connections in multiparty sessions. Even aside from
explicit connections, session initiation is one aspect in which applications of
session type theory, binary and multiparty, to real distributed systems raises
some implementation issues. The standard π-calculus theory assumes a so-called
shared channel used by all the participants for the initiation synchronisation.2

The formal typing checks, on a “centralised” view of the entire process sys-
tem, that each and every role is played by a compliant process, initiated via the
shared channel. These assumptions transfer to our distributed, binary-connection
programs as relying on correct host and port argument values in, e.g., the

2 E.g., a in a[1](y).P1 | ... | a[n− 1](y).Pn−1 | ā[n](y).Pn, initiating a session between n
processes [12].

128 R. Hu and N. Yoshida

connect calls in C in Fig. 4 (lines 5 and 8); similarly for the arguments to the
SocketChannelServer constructor and accept call in the A and S programs [23].

Existing π-calculus systems could be naively adapted to explicit connection
actions by assigning a (binary) shared channel to each accept-point in the ses-
sion, since the type for any given point in a protocol is fixed. Unfortunately,
reusing a shared channel for dynamic accepts across concurrent sessions may
lead to incorrect correlation of the underlying binary connections. E.g., consider
A�B..A�C..B�C.., where the C process uses multithreading to concurrently
serve multiple sessions: if the same shared channel is used to accept all connec-
tions from the A’s, and likewise for B’s, there is no inherent guarantee that the
connection accepted from a B by a given server thread will belong to the same
session as the earlier connection from A, despite being of the expected type.

In practice, the correlation of connections to sessions may be handled by
various mechanisms, such as passing session identifiers or port values. Consider
the version of the Pay subprotocol (from Fig. 1), modified to use port passing
(cf. FTP [39]), on the left:

C sends accpt to A, and then A connects to S; S sends A an Int port value, which A

forwards to C; C then connects to S at that port. To capture this intent explicitly,
we adapt an extension of Scribble with assertions [34] to support the specification
on the right. In general, value-based constraints, like forwarding and connecting
to p, can be generated into the API as implicit run-time Java assertions. How-
ever, we take advantage of the API generation approach to directly generate
statically safe operations for these actions. N.B., in the following, port is simply
the message label API constant ; assigning, sending and using the actual port
value is safely handled internally by the generated operations.

This combination of explicit connection actions, assertions, and typed API gen-
eration is essentially a practical realisation of (private) shared channel passing
from session π-calculi for our binary connection setting in Java.

To facilitate integration with some existing implementations of session typed
languages, our toolchain also supports an optional syntactic restriction on
types where: each projection of a Scribble protocol may contain at most one
accept-choice constructor, and only as the top-most choice constructor (cf. the
commonly used replicated-server process primitives in process calculus works).

Explicit Connection Actions in Multiparty Session Types 129

This constraint allows many useful explicit connection action patterns, including
nested connects and recursive accepts, while ruling out correlation errors; apart
from Ex. [iv], all of the examples in this paper satisfy this constraint.

5 Related Work and Concluding Remarks

Dynamic participants in typed process calculi and message sequence charts. To
our knowledge, this paper is the first session types work that allows a single
session to have optional roles, and dynamic joining and leaving of roles.

[16] presents a version of session types where a role designates a dynamic set
of one or more participant processes. Their system does not support optional
nor dynamic roles (every role is played by at least one process; the number of
processes varies, but the set of active roles is fixed). It relies on a special-purpose
run-time locking mechanism to block dynamically joining participants until some
safe entry point, hindering its use in existing applications. Implementations of
sessions in Python [15] and Erlang [19] have used a notion of subsession [14]
as a coarse-grained mechanism for dynamically introducing participants. The
idea is to launch a separate child session, by the heavyweight atomic multiparty
initiation, involving a subset of the current participants along with other new
participants; unlike this paper, where additional roles enter the same, running
session by the connect and accept actions between the two relevant participants.

The conversation calculus [10] models conversations between dynamic con-
texts. A behavioural typing ensures error-freedom by characterising processes
more directly; types do not relate to roles, as in MPST. Their notion of dynamic
joining is more abstract (akin to standard MPST initiation), allowing a con-
text n to interact with all other conversation members after a single atomic join
action by n; whereas our explicit communication actions are designed to map
more closely to concrete operations in standard network APIs.

Dynamic message sequence charts (DMSCs) in [31] support fork-join pat-
terns with potentially unbounded processes. Model checking against a monadic
second order logic is decidable, but temporal properties are not studied. [7] stud-
ies the implementability of dynamic communication automata (DCA) [8] against
MSCs as specifications. The focus of study of DCA and DMSCs is more about
dynamic process spawning ; whereas we target dynamic connections (and discon-
nects) between a set of roles with specific concern for MPST safety and progress.
Our implementation goes another “level” down from the automata model, apply-
ing the validated session types to Java programs with consideration of issues such
as choice subtyping and connection correlation.
Well-formedness of session types and choreographies. Various techniques involv-
ing bounded executions have been used for multiparty protocols and choreogra-
phies. [3,4,41] positions choreography realisability in terms of synchronisability,
an equivalence between a synchronous global model and the 1-bounded execution
of local FSMs; this reflects a stricter perspective of protocol compliance, demand-
ing stronger causality between global steps than session type safety. Their com-
munication model has a single input queue per endpoint, while asynchronous

130 R. Hu and N. Yoshida

session types has a separate input queue per peer: certain patterns are not syn-
chronisable in the former while valid in the latter. [2] develops more general
realisability conditions (in the single-queue model) than the above by determin-
ing an upper-bound on queue sizes wrt. equivalent behaviours. Our validation
of MPST with explicit connection actions remains within a 1-bounded model.

[18] characterises standard MPST wrt. CFSMs by multiparty compatibility,
a well-formedness condition expressed in terms of 1-reachability; it corresponds
to the syntactic restrictions of standard MPST in ensuring safety. This paper
relaxes some of these restrictions with other extensions, by our 1-bounded vali-
dation, to support our use cases. [30] develops a bottom-up synthesis of graphical
choreographies from CFSMs via a correspondence between synchronous global
models and local CFSMs. These works and the above works on choreographies:
(1) do not support patterns with optional or dynamic participants; and (2) study
single, pre-connected sessions in isolation without consideration of certain issues
of implementing endpoint programs in practice (type checking, subtyping, con-
current connection correlation).

Advanced subtyping of local types with respect to liveness is studied theo-
retically in [37]. Our present work is based on a coarser-grained treatment of
fairness in the global model, to cater for applications to existing (mainstream)
languages where it may be difficult to precisely enforce a particular subtyping
for sessions via the native type system. We plan to investigate the potential for
incorporating their techniques into our approach in future work.

Implementations of session types. The existing version of Scribble [24,47] follows
the established theory through syntactic restrictions to ensure safety (e.g., the
same set of roles must be involved in every choice case, precluding optional par-
ticipation). [24] concerns only the use of local types for API generation; it has no
formalism, and does not discuss global type validation or projection. This paper
is motivated by use cases to relax existing restrictions and add explicit connec-
tion actions to types. [38] develops a tool for checking or testing compatibility,
adapted from [18], in a local system of abstract concurrent objects. It does not
consider global types nor endpoint programs.

Recent implementation works [24–27,32,35,36,40,42,45], as discussed in
Sect. 1, have focused more on applying standard session types, rather than devel-
oping session types to better support real use cases. This is in contrast to the
range of primarily theoretical extensions (e.g., time [6,33], asynchronous inter-
rupts [15], nested subsessions [14], assertions [5], role parameterisation [46], event
handling [29], multi-process roles [16], etc.), which complicates tool implemen-
tation because each has its own specific restrictions to treat the subtleties of its
setting. The approach of this paper, shifting the emphasis from outright syntac-
tic well-formedness to a more uniform validation of the types, may be one way
to help bring some of these scattered features (and those in this paper) together
in practical MPST implementations. We plan to investigate such directions in
future work, in addition to closer integrations of MPST tools, that treat concepts
like role projections, endpoint program typing, subtyping and channel passing,
with established model checking tools and optimisations.

Explicit Connection Actions in Multiparty Session Types 131

Acknowledgements. We thank Gary Brown and Steve Ross-Talbot for collabora-
tions, and Rumyana Neykova for comments. This work is partially supported by
EPSRC projects EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1, and
EP/N028201/1; and by EU FP7 612985 (UPSCALE).

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: ASE 2014, pp. 743–754. ACM (2014)

3. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 2

4. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL
2012, pp. 191–202. ACM (2012)

5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15375-4 12

6. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015.
LIPIcs, vol. 42, pp. 283–296. Schloss Dagstuhl (2015)

7. Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic communicat-
ing automata and branching high-level MSCs. In: Dediu, A.-H., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 177–189. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37064-9 17

8. Bollig, B., Hélouët, L.: Realizability of dynamic MSC languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13182-0 5

9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30,
323–342 (1983)

10. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51–52),
4399–4440 (2010)

11. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

12. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 760, 1–65
(2015)

13. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 19

14. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32940-1 20

15. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. In: Formal Methods in System Design, pp. 1–29 (2015)

16. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL 2011,
pp. 435–446. ACM (2011)

http://dx.doi.org/10.1007/978-3-662-49665-7_2
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-37064-9_17
http://dx.doi.org/10.1007/978-3-642-13182-0_5
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-32940-1_20

132 R. Hu and N. Yoshida

17. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

18. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966,
pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2 18

19. Fowler, S.: An erlang implementation of multiparty session actors. In: ICE 2016.
EPTCS, vol. 223, pp. 36–50 (2016)

20. Gay, S., Hole, M.: Subtyping for session types in the pi-calculus. Acta Informatica
42(2/3), 191–225 (2005)

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016)

23. Hu, R., Yoshida, N.: Explicit Connection Actions in Multiparty Session Types
(Long Version). https://www.doc.ic.ac.uk/rhu/∼scribble/explicit.html

24. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 24

25. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-70592-5 22

26. Imai, K., Yuen, S., Agusa, K.: Session type inference in haskell. In: PLACES.
EPTCS, vol. 69, pp. 74–91 (2010)

27. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: WGP
2015, pp. 13–22. ACM (2015)

28. Klensin, J.: IETF RFC 5321 Simple Mail Transfer Protocol. https://tools.ietf.org/
html/rfc5321

29. Kouzapas, D., Yoshida, N., Hu, R., Honda, K.: On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26(2), 303–364 (2016)

30. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232. ACM (2015)

31. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic message sequence
charts. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 253–
264. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1 23

32. Lindley, S., Morris, J.G.: Lightweight Functional Session Types. http://homepages.
inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf

33. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: BEAT 2014. EPTCS, vol. 162, pp. 19–26 (2014)

34. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40787-1 25

35. Ng, N., Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke, B.
(ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46663-6 11

36. Padovani, L.: FuSe homepage. http://www.di.unito.it/padovani/Software/FuSe/
FuSe.html

37. Padovani, L.: Fair subtyping for multi-party session types. Math. Struct. Comput.
Sci. 26(3), 424–464 (2016)

http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-39212-2_18
https://www.doc.ic.ac.uk/rhu/~scribble/explicit.html
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-540-70592-5_22
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
http://dx.doi.org/10.1007/3-540-36206-1_23
http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://dx.doi.org/10.1007/978-3-642-40787-1_25
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://www.di.unito.it/padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/padovani/Software/FuSe/FuSe.html

Explicit Connection Actions in Multiparty Session Types 133

38. Perera, R., Lange, J., Gay, S.J.: Multiparty compatibility for concurrent objects.
In: PLACES 2016. EPTCS, vol. 211, pp. 73–82 (2016)

39. Postel, J., Reynolds, J.: IETF RFC 959 File Transfer Protocol. https://tools.ietf.
org/html/rfc959

40. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell
2008, pp. 25–36. ACM (2008)

41. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE Trans. Serv. Comput. 5(3), 290–304 (2012)

42. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP
2016. LIPIcs, vol. 56, pp. 21:1–21:28. Schloss Dagstuhl (2016)

43. Scribble.: GitHub repository. https://github.com/scribble/scribble-java
44. Scribble homepage. http://www.scribble.org
45. Sivaramakrishnan, K.C., Qudeisat, M., Ziarek, L., Nagaraj, K., Eugster, P.: Effi-

cient sessions. Sci. Comput. Program. 78(2), 147–167 (2013)
46. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12032-9 10

47. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). doi:10.1007/978-3-319-05119-2 3

https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://github.com/scribble/scribble-java
http://www.scribble.org
http://dx.doi.org/10.1007/978-3-642-12032-9_10
http://dx.doi.org/10.1007/978-3-319-05119-2_3

Change and Delay Contracts for Hybrid System
Component Verification

Andreas Müller1(B), Stefan Mitsch2, Werner Retschitzegger1,
Wieland Schwinger1, and André Platzer2

1 Department of Cooperative Information Systems, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria

{andreas.mueller,wieland.schwinger,werner.retschitzegger}@jku.at
2 Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
{smitsch,aplatzer}@cs.cmu.edu

Abstract. In this paper, we present reasoning techniques for a com-
ponent-based modeling and verification approach for hybrid systems
comprising discrete dynamics as well as continuous dynamics, in which
the components have local responsibilities. Our approach supports
component contracts (i.e., input assumptions and output guarantees
of interfaces) that are more general than previous component-based
hybrid systems verification techniques in the following ways: We intro-
duce change contracts, which characterize how current values exchanged
between components along ports relate to previous values. We also intro-
duce delay contracts, which describe the change relative to the time that
has passed since the last value was exchanged. Together, these contracts
can take into account what has changed between two components in a
given amount of time since the last exchange of information. Most cru-
cially, we prove that the safety of compatible components implies safety
of the composite. The proof steps of the theorem are also implemented as
a tactic in KeYmaera X, allowing automatic generation of a KeYmaera X
proof for the composite system from proofs of the concrete components.

Keywords: Component-based development · Hybrid systems · Formal
verification

1 Introduction

Cyber-physical systems (CPS) feature discrete dynamics (e.g., autopilots in air-
planes, controllers in self-driving cars) as well as continuous dynamics (e.g.,
motion of airplanes or cars) and are increasingly used in safety-critical areas.
Models of such CPS (i.e., hybrid system models, e.g., hybrid automata [8], hybrid
programs [23]) are used to capture properties of these CPS as a basis to ana-
lyze their behavior and ensure safe operation with formal verification methods.

This material is based on research sponsored by DARPA under agreement DARPA
FA8750-12-2-0291, and by the Austrian Science Fund (FWF) P28187-N31.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 134–151, 2017.
DOI: 10.1007/978-3-662-54494-5 8

Change and Delay Contracts for Hybrid System Component Verification 135

However, as the complexity of these systems increases, monolithic models and
analysis techniques become unnecessarily challenging.

Since complex systems are typically composed of multiple subsystems and
interact with other systems in their environment, it stands to reason to apply
component-based modeling and split the analysis into isolated questions about
subsystems and their interaction. However, approaches supporting component-
based verification of hybrid system models are rare and differ strongly in the
supported class of problems (cf. Sect. 5). Component-based techniques for hybrid
(I/O) automata are based on assume-guarantee reasoning (AGR) [3,6,9] and
focus on reachability analysis. Complementarily, hybrid systems theorem proving
provides proofs, which are naturally compositional [22] (improves modularity)
and support nonlinear dynamics, but so far limit components [15,16] to contracts
over constant ranges (e.g., speed of a robot is non-negative and at most 10). Such
contracts require substantial static independence of components, which does not
fit to dynamic interactions frequently found in CPS. For example, one might
show that a robot in the kitchen will not collide with obstacles in the physically
separated back yard, but nothing can be said about what happens when both
occupy the same parts of the space at different times to be safe. We, thus, extend
CPS contracts [15,16] to consider change of values and timing.

In this paper, we introduce a component-based modeling and verification app-
roach, which improves over previous approaches in the following critical ways.
We introduce change contracts to specify the change of a variable between two
states (e.g., current speed is at most twice the previous speed). We further add
delay contracts to capture the time delay between the states (e.g., current speed
is at most previous speed increased by accelerating for some time ε). Together,
change and delay contracts make the hybrid (continuous-time) behavior of a
component available as a discrete-time measurement abstraction in other com-
ponents. That way, the joint hybrid behavior of a system of components sim-
plifies to analyzing each component separately for safety and for satisfying its
contracts (together with checks of compatibility and local side conditions). The
isolated hybrid behavior of a component in question is, thus, analyzed with
respect to simpler discrete-time abstractions of all other components in the sys-
tem. We prove that this makes safety proofs about components transfer to the
joint hybrid behavior of the composed system built from these compatible com-
ponents. Moreover, we automate constructing the safety proof of the joint hybrid
behavior from component proofs with a proof tactic in KeYmaera X [7]. This
enables a small-core implementation [4] of the theory we develop here.

2 Preliminaries: Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, we
use differential dynamic logic (dL) [19,21], which supports hybrid programs as a
program notation for hybrid systems, according to the following EBNF grammar:

α ::= α;β | α ∪ β | α∗ | x := θ | x := ∗ | (x′
1 = θ1, . . . , x

′
n = θn & H) | ?H

136 A. Müller et al.

For details on the formal semantics of hybrid programs see [19,21]. The sequential
composition α;β expresses that β starts after α finishes. The non-deterministic
choice α ∪ β follows either α or β. The non-deterministic repetition operator α∗

repeats α zero or more times. Discrete assignment x := θ instantaneously assigns
the value of the term θ to the variable x, while x := ∗ assigns an arbitrary value
to x. The ODE (x′ = θ & H) describes a continuous evolution of x (x′ denotes
derivation with respect to time) within the evolution domain H. The test ?H
checks that a condition expressed by property H holds, and aborts if it does not.
A typical pattern x := ∗; ?a ≤ x ≤ b, which involves assignment and tests, is
to limit the assignment of arbitrary values to known bounds. Other control flow
statements can be expressed with these primitives [19].

To specify safety properties about hybrid programs, dL provides modal oper-
ator [α]. When φ is a dL formula describing a state and α is a hybrid program,
then the dL formula [α]φ expresses that all states reachable by α satisfy φ. The set
of dL formulas relevant in this paper is generated by the following EBNF gram-
mar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expressions in +,−, ·, /
over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ

Proof for properties containing non-deterministic repetitions often use invari-
ants, representing a property that holds before and after each repetition. Even
though there is no unified approach for invariant generation, if a safety property
including a non-deterministic repetition is valid, an invariant exists.

We use V to denote a set of variables. FV (.) is used as an operator on terms,
formulas and hybrid programs returning the free variables, whereas BV (.) is an
operator returning the bound variables.1 Similarly, V (.) = FV (.)∪BV (.) returns
all variables occurring in terms, formulas and hybrid programs. We use dL in
definitions and formulas to denote the set of all dL formulas. We use “�→” to
define functions. f = (a �→ b) means that the (partial) function f maps argument
a to result b and is solely defined for a.

3 Hybrid Components with Change and Delay Contracts

In this section, we extend components (defined as hybrid programs) and their
interfaces [16] with time and delay concepts. Interfaces identify assumptions
about component inputs and guarantees about component outputs. We define
what it means for a component to comply with its contract by a dL formula
expressing safe behavior and compliance with its interface. And we define the
compatibility of component connections rigorously as dL formulas as well. The
main result of this paper is a proof showing that the safety properties of com-
ponents transfer to a composed system, given proofs of contract compliance,
compatibility and satisfaction of local side conditions. Users only provide a spec-
ification of components, interfaces, and how the components are connected, and
1 Bound variables of a hybrid program are all those that may potentially be written

to, while free variables are all those that may potentially be read [25].

Change and Delay Contracts for Hybrid System Component Verification 137

Fig. 1. Components for a collision avoidance system with remote control

show proof obligations about component contract compliance, compatibility and
local side conditions; system safety follows automatically.

To illustrate the concepts, we use a running example of a tele-operated robot
with collision avoidance inspired by [10,13], see Fig. 1: a robot reads speed advice
d at least every ε time units from a remote control (RC), but automatically over-
rides the advice to avoid collisions with an obstacle that moves with an arbitrary
but bounded speed 0 ≤ so ≤ S (e.g., a moving person). Two consecutive speed
advisories from the RC should be at most D apart (|d − d−| ≤ D). The RC issues
speed advice to the robot, but has no physical part. The obstacle chooses a new
non-negative speed but at most S and moves according to the ODE p′

o = so. The
robot measures the obstacle’s position. If the distance is safe, the robot chooses
the speed suggested by the RC; otherwise, the robot stops.

The RC satisfies a change contract (two consecutive speed advisories are not
too far apart), while the obstacle and the robot satisfy delay contracts (their
positions change according to speed and how much time passed). Formal defin-
itions of these three components, their interfaces, and the respective contracts,
will be introduced step-by-step along the definitions in subsequent sections. A
comprehensive explanation of the running example can be found in [17].

3.1 Specification: Components and Interfaces

Change components and interfaces specify what a component assumes about the
change of each of its inputs, and what it guarantees about the change on its out-
puts. To make such conditions expressible, every component will use additional
variables to store both the current and the previous value communicated along
a port. These so-called Δ-ports can be used to model jumps in discrete control,
and for measurement of physical behavior if the rate of change is irrelevant.

Components may consist of a discrete control part and a continuous plant, cf.
Definition 1. Definition 1 does not prescribe how control and plant are composed;
the composition to a hybrid program is specified later in Definition 5. We allow
components to be hierarchically composed from sub-components, so components
list the internally connected ports of sub-components.

Definition 1 (Component). A component C = (ctrl, plant, cp) is defined as

– ctrl is the discrete part without differential equations,
– plant is a differential equation (x′

1 = θ1, . . . , x
′
n = θn&H) for n ∈ N,

– cp are deterministic assignments connecting ports of sub-components, and
– V (Ci)

def= V (ctrl) ∪ V (plant) ∪ V (cp), correspondingly for BV (Ci).

138 A. Müller et al.

If a component is atomic, i.e., not composed from sub-components, the port
connections cp are empty (skip statement of no effect). The variables of a com-
ponent are the sum of all used variables. We aim at components that can be
analyzed in isolation and that communicate solely through ports. Global shared
constants (read-only and thus not used for communication purposes) are included
for convenience to share common knowledge for all components in a single place.

Definition 2 (Variable Restrictions). A system of components C1, ...,Cn is
well-defined if

– global variables V global are read-only and shared by all components:
V global ∩ BV (Ci) = ∅,

– ∀i �= j . V (Ci) ∩ V (Cj) ⊆ V global such that no variable of other components
can be read or written.

Consider the robot collision avoidance system. Its global variables are the
maximum obstacle speed S and the maximum difference D between two speed
advisories, i.e., V global = {S,D}. They can neither be bound in control nor
plant, cf. Definition 2. The RC component’s controller picks a new demanded
speed d that is not too far from the previous demanded speed d−. Since it is not
composed from sub-components the cprc part is skip in Fig. 1. The obstacle’s
controller chooses any speed so that does not exceed the maximum speed S. The
plant ODE p′

o = so describes how the position of the obstacle changes according
to its speed. Since the obstacle is an atomic component, cpo is skip, cf. Fig. 1.

An interface defines how a component may interact with other components
through its ports, what assumptions the component makes about its inputs, and
what guarantees it provides for its outputs, see Definition 3.

Definition 3 (Admissible Interface). An admissible interface IΔ for a com-
ponent C is a tuple IΔ =

(
V in, πin, V out, πout, V Δ, V −, pre

)
with

– V in ⊆ V (C) and V out ⊆ V (C) are disjoint sets of input- and output variables,
– V in ∩ BV (C) = ∅, i.e., input variables may not be bound in the component,
– πin : V in → dL is a function specifying exactly one formula per input variable

(i.e., input port), representing input requirements and assumptions,
– πout : V out → dL specifies output guarantees for output ports,
– ∀v ∈ V in : V (πin(v)) ⊆ (

V (C) \ (
V in ∪ V out

))∪{v} such that input formulas
are local to their port,

– V Δ = V Δ+ ∪ V Δi ⊆ V (C) is a set of Δ-port variables of unconnected public
V Δ+ ⊆ V in ∪ V out, and connected private V Δi, with V Δi ∩ (

V in ∪ V out
)

= ∅,
so V Δ+ ∩ V Δi = ∅,

– V − ⊆ V (C) with V − ∩ BV (C) = ∅ is a read-only set of variables storing the
previous values of Δ-ports, disjoint from other interface variables V − ∩ (V in ∪
V out ∪ V Δ) = ∅,

– pre : V Δ → V − is a bijective function, assigning one variable to each Δ-port to
store its previous value.

Change and Delay Contracts for Hybrid System Component Verification 139

The definition is accordingly for vector-valued ports that share multiple vari-
ables along a single port, provided that each variable is part of exactly one
vectorial port. This leads to multi-ports, which transfer the values of multiple
variables, but have a single joint output guarantee/input assumption over the
variables in the multi-port vector. Input assumptions are local to their port, i.e.,
no input formula can mention other input variables (which lets us reshuffle port
ordering) nor any output variables (which prevents cyclic port definitions). Not
all ports of a component need to be connected to other components; unconnected
ports simply remain input/output ports of the resulting composite system.

Considering our example, the RC interface IΔrc from (1) contains one output
port d in V out, where the robot can retrieve the demanded speed. The RC guar-
antees that the new demanded speed d will not deviate too far from the previous
speed d−, so |d − d−| ≤ D. Since the current and the previous demanded speed
are related, d is a Δ-port in V Δ with its previous value d− in V − per pre.

IΔrc =
({}
︸︷︷︸
V in

, ()
︸︷︷︸
πin

, {d}
︸︷︷︸
V out

,
(
d �→ ∣

∣d − d−∣
∣ ≤ D

)

︸ ︷︷ ︸
πout

, {d}
︸︷︷︸
V Δ

, {d−}
︸ ︷︷ ︸

V −

,
(
d �→ d−)

︸ ︷︷ ︸
pre

)
(1)

3.2 Specification: Time and Delay

In a monolithic hybrid program with a combined plant for all components,
time passes synchronously for all components and their ODEs evolve for the
same amount of time. When split into separate components, the ODEs are split
into separate plants too, thereby losing the connection of evolving for identi-
cal amounts of time. From the viewpoint of a single component, other plants
reduce to discrete abstractions through input assumptions on Δ-ports. These
input assumptions are phrased in terms of worst-case behavior (e.g., from the
viewpoint of the robot, the obstacle may jump at most distance S · ε between
measurements because it lost a precise model). The robot’s ODE, however, still
runs for some arbitrary time, which makes the measurements and the continuous
behavior of the robot drift (i.e., robot and obstacle appear to move for different
durations). To address this issue, we introduce delay as a way of ensuring that
the changes are consistent with the time that passes in a component.

To unify the timing for all components of a system, we introduce a globally
synchronized time t and a global variable t− to store the time before each run
of plant. Both are special global variables, which cannot be bound by the user,
but only on designated locations specified through the contract, cf. Definition 4.

Definition 4 (Time). Let Ci, i ∈ N be any number of components with vari-
ables according to Definition 2. When working with delay contracts, we assume

– the global system time t changes with constant rate t′ = 1,
– t− is the initial plant time at the start of the current plant run,
– {t, t−} ∩ BV (Ci) = ∅, thus clocks t, t− are not written by a component.

Let us continue our running example with the obstacle’s interface, which has
one output port (providing the current obstacle position) that uses the intro-
duced global time in its output property to restrict the obstacle’s position relative

140 A. Müller et al.

to its previous position and maximum speed, i.e.,

IΔo =
({}
︸︷︷︸
V in

, ()
︸︷︷︸
πin

, {po}
︸︷︷︸
V out

,
(
po �→ ∣

∣po − p−
o

∣
∣ ≤ S · (

t − t−
))

︸ ︷︷ ︸
πout

, {po}
︸︷︷︸
V Δ

, {p−
o }

︸ ︷︷ ︸
V −

,
(
po �→ p−

o

)

︸ ︷︷ ︸
pre

)
.

3.3 Proof Obligations: Change and Delay Contract

Contract compliance ties together components and interfaces by showing that a
component guarantees the output changes that its interface specifies under the
input assumptions made in the interface. Contract compliance further shows a
local safety property, which describes the component’s desired safe states. For
example, a safety property of a robot might require that the robot will not
drive too close to the last measured position of the obstacle. Together with the
obstacle’s output guarantee of not moving too far from its previous position,
the local safety property implies a system-wide safety property (e.g., robot and
obstacle will not collide), since we know that a measurement previously reflected
the real position. Contract compliance can be verified using KeYmaera X [7].

In order to make guarantees about the behavior of a composed system we use
the synchronized system time t to measure the delay (t− t−) between controller
runs in delay contract compliance proof obligations, cf. Definition 5.

Definition 5 (Contract Compliance). Let C be a component with its admis-
sible interface IΔ (cf. Definition 3). Let formula φ describe initial states of C
and formula ψsafe the safe states, both over the component variables V (C). The
output guarantees Πout ≡ ∧

v∈V out πout(v) extend safety to ψsafe ∧Πout. Change
contract compliance CC(C, IΔ) of C with IΔ is defined as the dL formula:

CC(C, IΔ)
def≡ φ → [(Δ; ctrl; plant; in; cp)∗]

(
ψsafe ∧ Πout

)

and delay contract compliance DC(C, IΔ) is defined as the dL formula:

DC(C, IΔ)
def≡ t = t− ∧ φ → [

(
Δ; ctrl; t− := t;

(
t′ = 1, plant

)
; in; cp

)∗
]
(
ψsafe ∧ Πout

)

where
in

def≡ (
v := ∗; ?πin(v)

)
for all v ∈ V in,

are (vectorial) assignments to input ports satisfying input assumptions πin(v)
and Δ are (vectorial) assignments storing previous values of Δ-port variables:

Δ
def≡ pre(v) := v for all v ∈ V Δ.

The order of the assignments in both in and Δ is irrelevant because the
assignments are over disjoint variables and πin(v) are local to their port, cf.
Definition 3. The function pre can be used throughout the component to read
the initial value of a Δ-port. Since pre(v) ∈ V − for all v ∈ V Δ, Definitions 3 and
5 require that the resulting initial variable is not bound anywhere outside Δ.

Change and Delay Contracts for Hybrid System Component Verification 141

This notion of contracts crucially changes compared to [16] with respect to
where ports are read and how change is modeled: reading from input ports at
the beginning of a component’s loop body (i.e., before the controller runs) as in
[16] may seem intuitive, but it would require severe restrictions to a component’s
plant in order to make inputs and plant agree on duration. Instead, we prepare
the next loop iteration at the end of the loop body (i.e., after plant), so that
actual plant duration can be considered for computing the next input values.

Example: Change Contract. We continue the collision avoidance system
with a change contract (2) according to Definition 5 for the RC from Fig. 1. The
difference between speed advisories should be non-negative, whereas the output
port’s previous value d− is bootstrapped from the current demanded speed d
to guarantee contract compliance even without component execution, since non-
deterministic repetitions can execute 0 times, so φrc ≡ D ≥ 0 ∧ d = d−. The
RC guarantees that consecutive speed advisories are at most D apart, see Πout

rc

(ψsafe
rc ≡ �).

φrc → [(d− := d︸ ︷︷ ︸
Δrc

; d := ∗; ?
∣
∣d − d−∣

∣ ≤ D
︸ ︷︷ ︸

ctrlrc

; skip
︸ ︷︷ ︸
plantrc

; skip
︸ ︷︷ ︸
inrc

; skip
︸ ︷︷ ︸
cprc

)∗]
(∣
∣d − d−∣

∣ ≤ D
)

︸ ︷︷ ︸
Πout

rc

(2)
We verified the RC contract using KeYmaera X and thus know that the

component is safe and complies with its interface. Compared to contracts with
fixed ranges as in approaches [3,16], we do not have to assume a global limit
for demanded speeds d, but consider the previous advice d− as a reference value
when calculating the next speed advice.

Example: Delay Contract. Change in obstacle position depends on speed and
on how much time passed. Hence, we follow Definition 5 to specify the obstacle
delay contract (3). For simplicity, assume that maximum speed S is non-negative
and the obstacle stopped initially. As before, the previous position p−

o is boot-
strapped from the current position po, so φo ≡ S ≥ 0 ∧ po = p−

o ∧ so = 0. We
model an adversarial obstacle, which does not care about safety. Thus, the out-
put property only guarantees that positions change at most by S ·(t − t−), which
is a discrete abstraction of the obstacle’s physical movement. Such an abstrac-
tion can be found by solving the plant ODE or from differential invariants [24].
Again, we verified the obstacle’s contract compliance using KeYmaera X.

t = t− ∧ φo → [(

Δo
︷ ︸︸ ︷
p−

o := po;

ctrlo
︷ ︸︸ ︷
so := ∗; ?(0 ≤ so ≤ S); t− := t; {t′ = 1,

planto
︷ ︸︸ ︷
p′

o = so};

skip
︸ ︷︷ ︸
ino

; skip
︸ ︷︷ ︸
cpo

)∗]
(∣
∣po − p−

o

∣
∣ ≤ S · (t − t−

))

︸ ︷︷ ︸
Πout

o

(3)

142 A. Müller et al.

3.4 Proof Obligations: Compatible Parallel Composition

From components with verified contract compliance, we now compose systems
and provide safety guarantees about them, without redoing system proofs. For
this, Definition 6 introduces a quasi-parallel composition, where the discrete ctrl
parts of the components are executed sequentially in any order, while the contin-
uous plant parts run in parallel. The connected ports cp of all components are
composed sequentially in any order, since the order of independent deterministic
assignments (i.e., assignments having disjoint free and bound variables) is irrele-
vant. Such a definition is natural in dL, since time only passes during continuous
evolution in hybrid programs, while the discrete actions of a program do not con-
sume time and thus happen instantaneously at a single real point in time, but in
a specific order. The actual execution order of independent components in a real
system is unknown, which we model with a non-deterministic choice between
all possible controller execution orders. Values can be exchanged between com-
ponents using Δ-ports; all other variables are internal to a single component,
except global variables, which can be read everywhere, but never bound, and
system time t, t−, which can be read everywhere, but only bound at specific
locations fixed by the delay contract, cf. Definition 5. Δ-ports store their previ-
ous values in the composite component, regardless if connected or not. For all
connected ports, Definition 6 replaces the non-deterministic assignments to open
inputs (cf. in) with a deterministic assignment from the connected port (cf. cp).
This represents an instantaneous and lossless interaction between components.

Definition 6 (Parallel Composition). Let Ci = (ctrli,planti, cpi) denote
components with their corresponding admissible interfaces

IΔ
i =

(
V in

i , πin
i , V out

i , πout
i , V Δ

i , V −
i , prei

)
for i ∈ {1, . . . , n},

sharing only V global and global times such that V (Ci)∩V (Cj) ⊆ V global ∪{t, t−}
for i �= j. Let further

X :
(⋃

1≤j≤n V in
j

)
⇀

(⋃
1≤i≤n V out

i

)
, provided X (v) /∈ V out

j , for all v ∈ V in
j

be a partial (i.e., not every input must be mapped), injective (i.e., every output
is only mapped to at most one input) function, connecting some inputs to some
outputs, with domain IX = {x ∈ V in | X (x) is defined} and image OX = {y ∈
V out | y = X (x) for some x ∈ V in}. The composition of n components and their
interfaces (C, IΔ)

def≡ (
(C1, IΔ

1)‖. . .‖(Cn, IΔ
n)

)
X according to X is defined as:

– controllers are executed in non-deterministic order of all the n! possible per-
mutations of {1, . . . , n},

ctrl ≡ (ctrl1; ctrl2; . . . ; ctrln) ∪ (ctrl2; ctrl1; . . . ; ctrln)
∪ . . . ∪ (ctrln; . . . ; ctrl2; ctrl1)

– plants are executed in parallel, with evolution domain H ≡ ∧
i∈{1,...,n} Hi

plant ≡ x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1︸ ︷︷ ︸

component C1

, . . . , x(1)′
n = θ(1)n , . . . , x(m)′

n = θ(m)
n︸ ︷︷ ︸

component Cn

& H,

Change and Delay Contracts for Hybrid System Component Verification 143

– port assignments are extended with connections for some {vj , . . . , vr} = IX

cp
def≡ cp1; cp2; . . . ; cpn︸ ︷︷ ︸

components’ cp

; vj := X (vj); . . . ; vr := X (vr)
︸ ︷︷ ︸

connected inputs

,

– previous values V − def=
⋃

1≤i≤n V −
i are merged; connected ports become private

V Δi def=
(⋃

1≤i≤n V Δi
i

)
∪ IX ∪ OX ; unconnected ports remain public V Δ+ def=

(⋃
1≤i≤n V Δ+

i

)
\ (IX ∪ OX),

– prei are combined such that pre(v) ≡ prei(v) if v ∈ V Δ
i for all i ∈ {1, . . . , n},

– unconnected inputs V in =
(⋃

1≤i≤n V in
i

)
\IX and unconnected outputs V out =

(⋃
1≤i≤n V out

i

)
\ OX are merged and their requirements preserved

πin(v) ≡ πin
i (v) if v ∈ V in

i \ IX for all i ∈ {1, . . . , n}
πout(v) ≡ πout

i (v) if v ∈ V out
i \ OX for all i ∈ {1, . . . , n}.

The order of port assignments is irrelevant because all sets of variables
are disjoint and a port can only be either an input port or output port, cf.
Definitions 1 and 3, and thus the assignments share no variables. This also entails
that the merged pre, πin and πout are well-defined since V Δ

i , V in
i , respectively

V out
i , are disjoint between components by Definition 2.

The user provides component specifications (Ci, IΔi) and a mapping function
X , defining which output is connected to which input. The composed system of
parallel components can be derived automatically from Definition 6. It follows
that the set of variables of the composite component V (C) is the union of all
involved components’ variable sets V (Ci), i.e., V (C) =

⋃
1≤i≤n V (Ci). The set

of global variables V global contains all global variables in the system (i.e., in
all components) and thus, its contents do not change. Since V Δ =

⋃
1≤i≤n V Δ

i ,
this definition implies that internally connected Δ-ports V Δi of sub-components,
as well as the previous values V Δ+ for all open Δ-ports are still stored. As a
result, the current and previous values of Δ-ports can still be used internally in
the composite, even when the ports are no longer exposed through the external
interface of the composed system.

Returning to our running example of Fig. 1 the component Csys in (4) and
interface IΔsys in (5) result from parallel composition of the RC, the robot, and
the obstacle. The robot controller follows the speed advice received on input
port d̂ if the robot is at a safe distance from the obstacle position measured with
input port p̂o; otherwise it stops. The robot plant changes the robot’s position
according to its speed, where the controller executes at least every ε time-units.
The robot’s input ports are connected to the RC’s and obstacle’s output ports.2

Csys = ((ctrlrc ; ctrlr ; ctrlo ∪ ctrlo ; . . .)
︸ ︷︷ ︸

ctrlsys

, (plantr , planto)
︸ ︷︷ ︸

plantsys

, p̂o := po; d̂ := d
︸ ︷︷ ︸

cpsys

) (4)

2 For the detailed robot component Cr and interface IΔ
r , see [17].

144 A. Müller et al.

IΔsys =
({}
︸︷︷︸
V in

, ()
︸︷︷︸
πin

, {}
︸︷︷︸
V out

, ()
︸︷︷︸
πout

, {po, d, p̂o, d̂}
︸ ︷︷ ︸

V Δ

, {p−
o , d−, p̂−

o , d̂−}
︸ ︷︷ ︸

V −

,
(
po �→ p−

o , ...
)

︸ ︷︷ ︸
pre

)
(5)

During composition, the tests guarding the input ports of an interface are
replaced with a deterministic assignment modeling the port connection of the
components, which is only safe if the respective output guarantees and input
assumptions match. Hence, in addition to contract compliance, users have to
show compatibility of components as defined in Definition 7.

Definition 7 (Compatible Composite). A composite of n components with
interfaces

(
(C1, IΔ

1)‖. . .‖(Cn, IΔ
n)

)
X is a compatible composite iff dL formula

CPO(IΔ
i)

def≡ (
pre(X (v)) = pre(v)

) → [v := X (v)](πout
j (X (v)) → πin

i (v))

is valid over (vectorial) equalities and assignments for input ports v ∈ IX ∩
V in

i from IΔ
i connected to X (v) ∈ OX ∩ V out

j from IΔ
j . We call CPO(IΔ

i) the
compatibility proof obligation for the interfaces IΔ

i and say the interfaces IΔ
i are

compatible (with respect to X) if CPO(IΔ
i) is valid for all i.

Components are compatible if the output properties imply the input prop-
erties of connected ports. Compatibility guarantees that handing an output
port’s value over to the connected input port ensures that the input port’s
input assumption πin holds, which is no longer checked explicitly by a test, so
πout

j (X (v)) → πin
i (v). To achieve local compatibility checks for pairs of connected

ports, instead of global checks over entire component models, we restrict out-
put guarantees, respectively input assumptions to the associated output ports,
respectively input ports (cf. Definition 3). In our example, the robot and the
obstacle, respectively the RC are compatible, as witnessed by proofs of CPO(IΔrc)
and CPO(IΔo), cf. [17].

3.5 Transferring Local Component Safety to System Safety

After verifying contract compliance and compatibility proof obligations,
Theorem 1 below ensures that the safety properties in component contracts imply
safety of the composed system. Thus, to ensure a safety property of the mono-
lithic system, we no longer need a (probably huge) monolithic proof, but can
apply Theorem 1 (proof available in [17]).

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be compo-
nents with admissible interfaces IΔ

1 and IΔ
2 that are delay contract compliant

(cf. Definition 5) and compatible with respect to X (cf. Definition 7). Initially,
assume φp def≡ ∧

v∈IX X (v) = v to bootstrap connected ports. Then, if the side
condition (6) holds (ϕi is the loop invariant used to prove the component’s con-
tract)

|= ϕi → [Δi][ctrli][t− := t][(t′ = 1,planti)]Π
out
i (6)

Change and Delay Contracts for Hybrid System Component Verification 145

for all components Ci, the parallel composition (C, IΔ) =
(
(C1, IΔ

1)‖(C2, IΔ
2)

)
X

then satisfies the contract (7) with in, cp, ctrl, and plant according to Definition 6:

|= (
t = t− ∧ φ1 ∧ φ2 ∧ φp

) → [(Δ; ctrl; t− := t; (t′ = 1,plant);

in; cp)∗]
(
ψsafe
1 ∧ Πout

1 ∧ ψsafe
2 ∧ Πout

2

)
.

(7)

The composite contract’s precondition φp ensures that the values of con-
nected ports are consistent initially. Side condition (6) shows that a component
already produces the correct output from just its ctrl and plant; preparing the
port inputs for the next loop iteration does not change the current output.

The side condition (6) is trivially true for components without output ports,
since Πout

i ≡ true. For atomic components without input ports, the proof of (6)
automatically follows from the contract proof, since in; cp is empty. Because of
the precondition φp and because cp is executed after every execution of the main
loop (cf. Definition 5), we know that the values of connected input and output
ports coincide in the safety property, as one would expect. Thus, for instance,
if the local safety property of a single component mentions an input port (e.g.,
ψsafe
1 ≡ |pr − p̂o| > 0, we can replace the input port with the original value as

provided by the output port for the composite safety property (e.g., ψsafe ≡
|pr − p̂o| > 0 ≡ |pr − po| > 0). Theorem 1 easily extends to n components (cf.
proof sketch in [17]) and also holds for change contracts. A change port cannot
be attached to a delay port and vice versa.

Going back to our example, the overall system property of our collision avoid-
ance system follows from Theorem 1, given the local safety property of the robot,
the change contract compliance of the RC, the delay contract compliance of the
obstacle, and the compatibility of the connections. Since we verified all com-
ponent contracts as well as the compatibility proof obligations and since the
components with output ports are atomic and have no input ports (i.e., the side
condition holds), safety of the collision avoidance system follows.

Automation. We implemented the proof steps of Theorem1 as a KeYmaera X
tactic, which automatically reduces a system safety proof to separate proofs
about components3. This gave us the best of the two worlds: the flexibility
of reasoning with components that our Theorem1 provides, together with the
soundness guarantees we inherit from KeYmaera X, which derives proofs by uni-
form substitution from axioms [25]. This is to be contrasted with the significant
soundness-critical changes we would have to do if we were to add Theorem 1 as a
built-in rule into the KeYmaera X prover core. Uniform substitution guarantees,
e.g., that the subtle conditions on how and where input and output variables
can be read or written in components are checked correctly.

3 Implementation and full models available online at http://www.cs.cmu.edu/
∼smitsch/resource/fase17.

http://www.cs.cmu.edu/~smitsch/resource/fase17
http://www.cs.cmu.edu/~smitsch/resource/fase17

146 A. Müller et al.

4 Case Studies

To evaluate our approach (See footnote 3), we use the running example of
a remote-controlled robot (RC robot) and revisit prior case studies on the
European Train Control System (i.e., ETCS) [26], two-component robot col-
lision avoidance (i.e., Robix) [13], and adaptive cruise control (i.e., LLC) [10].
In ETCS, a radio-block controller (RBC) communicates speed limits to a train,
i.e., it requires the train to have at most speed d after some point m. The
RBC multi-port change contract relates distances m,m− and demanded speeds
d, d− in input assumptions/output guarantees of the form d ≥ 0 ∧ (d−)2 − d2 ≤
2b(m − m−) ∧ state = drive, thus avoiding physically impossible maneuvers.

In Robix, a robot measures the position of a moving obstacle with a maximum
speed S. The obstacle guarantees to not move further than S · (t − t−) in either
axis between measurements, using a delay contract.

In LLC, a follower car measures both speed vl and position xl of a leader
car, with maximum acceleration A and braking capabilities B. Hence, we use a
multi-port delay contract with properties of the form 2·(xl−x−

l) ≥ vl+v−
l ·t∧0 ≤

vl ∧ −B · t ≤ vl − v−
l ≤ A · t tying together speed change and position progress.

Table 1 summarizes the experimental results of the component-based app-
roach in comparison to monolithic models in terms of duration and degree of
proof automation. The column Contract describes the kind of contract used in
the case study (i.e., multiport, delay contract or change contract), as well as
whether or not the models use non-linear differential equations. The column
Automation indicates fully automated proofs with checkmarks; it indicates the
number of built-in tactics composed to form a proof script when user input is
required. The column Duration compares the proof duration, using Z3 [14] as
a back-end decision procedure to discharge arithmetic. The column Sum sums
up the proof durations for the components (columns C1 and C2) and Theorem 1
(column Th. 1, i.e., checking compatibility, condition (6) and the execution of
our composition proof). Checking the composition proof is fully automated, fol-
lowing the proof steps of Theorem1.

All measurements were conducted on an Intel i7-6700HQ CPU@2.6 GHz with
16 GB memory. In summary, the results indicate that our approach verification
leads to performance improvements and smaller user-provided proof scripts.

Table 1. Experimental results for case studies

Contract Automation Duration [s]

Multi Change Delay Non- C1 C2 Th. 1 Mono- C1 C2 Th. 1 Sum Mono-

linear lithic lithic

RC robot � � � � � 32 101 56 189 1934

ETCS [26] � � � � � � 127 608 179 873 15306

Robix [13] � � (31) � � (96) 469 117 132 718 902

LLC [10] � � � (50) � (131) 135 351 267 753 568

Change and Delay Contracts for Hybrid System Component Verification 147

5 Related Work

We group related work into hybrid automata, hybrid process algebras, and hybrid
programs.

Hybrid Automata and Assume-Guarantee Reasoning. Hybrid automata [1] can
be composed in parallel. However, the associated verification procedure (i.e.,
verify that a formula holds throughout all runs of the automaton) is not compo-
sitional, but requires verification of the exponential product automaton [1]. Thus,
for a hybrid automaton it is not sufficient to establish a property about its parts
in order to establish a property about the automaton. We, instead, decompose
verification into local proofs and get system safety automatically. Hybrid I/O
automata [11] extend hybrid automata with a notion of external behavior. The
associated implementation relation (i.e., if automaton A implements automaton
B, properties verified for B also hold for A) is respected by their composition
operation in the sense that if A1 implements A2, then the composition of A1 and
B implements the composition of A2 and B. Hybrid (I/O) automata are mainly
verified using reachability analysis. Therefore, techniques to prevent state-space
explosion are needed, like assume-guarantee reasoning (AGR, e.g., [3,6,9]), which
was developed to decompose a verification task into subtasks. In [6], timed tran-
sition systems are used to approximate a component’s behavior by discretization.
These abstractions are then used in place of the more complicated automata to
verify refinement properties. The implementation of their approach is limited
to linear hybrid automata. In analogy, we discretize plants to delay contracts;
however, in our approach, contracts completely replace components and do not
need to retain simplified transition systems. A similar AGR rule is presented
in [9], where the approximation drops continuous behaviors of single components
entirely. As a result, the approach only works when the continuous behavior is
irrelevant to the verified property, which rarely happens in CPS. Our change
and delay contracts still preserve knowledge about continuous behavior. The
AGR approach of [3] uses contracts consisting of input assumptions and out-
put guarantees to verify properties about single components: a component is an
abstraction of another component if it has a stricter contract. The approach is
restricted to constant intervals, i.e., static global contracts as in [16].

In [5], a component-based design framework for controllers of hybrid systems
with linear dynamics based on hybrid automata is presented. It focuses on check-
ing interconnections of components: alarms propagated by an out-port must be
handled by the connected in-ports. We, too, check component compatibility, but
for contracts, and focus on transferring proofs from components to the system
level. We provide parallel composition, while [5] uses sequential composition.
The compositional verification approach in [2] bases on linear hybrid automata
using invariants to over-approximate component behavior and interactions. How-
ever, interactions between components are restricted to synchronization. (i.e., no
variable state can be transferred between components).

148 A. Müller et al.

In summary, aforementioned approaches are limited to linear dynamics [5]
or even linear hybrid automata [2], use global contracts [3], focus on sequential
composition [5] or rely on reachability analysis, over-approximation and model
checking [3,6,9]. We, in contrast, focus on theorem proving in dL, using change
and delay contracts and handle non-linear dynamics and parallel composition.
Most crucially, we focus on transfer of safety properties from components to
composites, while related approaches are focused on property transfer between
different levels of abstraction [3,6,9].

Hybrid process algebras are compositional modeling formalisms for the
description of behavior and interaction of processes, based on algebraic equa-
tions. Examples are Hybrid χ [27], HyPA [18] or the Φ-Calculus [28]. Although
the modeling is compositional, for verification purposes the models are again
analyzed using simulation or reachability analysis in a non-compositional fash-
ion (e.g., Hybrid χ using PHAVer [30], HyPA using HyTech [12], Φ-Calculus
using SPHIN [29]), while we focus on exploiting compositionality in the proof.

Hybrid Programs. Quantified hybrid programs enable a compositional verifica-
tion of hybrid systems with an arbitrary number of components [20], if they all
have the same structure (e.g., many cars, or many robots). They were used to
split monolithic hybrid program models into smaller parts to show that adaptive
cruise control prevents collisions for an arbitrary number of cars on a highway
[10]. We focus on different components. Similarly, the approach in [15] presents
a component-based approach limited to traffic flow and global contracts.

Our approach extends [16], which was restricted to contracts over constant
ranges. Such global contracts are well-suited for certain use cases, where the
change of a port’s value does not matter for safety, such as the traffic flow
models of [15]. However, for systems such as the remote-controlled robot obstacle
avoidance from our running example (cf. Sect. 3.1), which require knowledge
about the change of certain values, global contracts only work for considerably
more conservative models (e.g., robot and obstacle must stay in fixed globally
known regions, since the obstacle’s last position is unknown). Contracts with
change and delay allow more liberal component interaction.

6 Conclusion and Future Work

Component-based modeling and verification for hybrid systems splits monolithic
system verification into proofs about components with local responsibilities. It
reduces verification effort compared to proving monolithic models, while change
and delay contracts preserve crucial properties about component behavior to
allow liberal component interaction.

Change contracts relate a port’s previous value to its current value (i.e.,
the change since the last port transmission), while delay contracts additionally
relate to the delay between measurements. Properties of components, described
by component contracts and verified using KeYmaera X, transfer to composed
systems of multiple compatible components without re-verification of the entire

Change and Delay Contracts for Hybrid System Component Verification 149

system. We have shown the applicability of our approach on a running example
and three existing case studies, which furthermore demonstrated the potential
reduction of verification effort. We implemented our approach as a KeYmaera X
tactic, which automatically verifies composite systems based on components with
verified contracts without increasing the trusted prover core.

For future work, we plan to (i) introduce further composition operations (e.g.,
error-prone transmission), and (ii) provide support for system decomposition by
discovery of output properties (i.e., find abstraction for port behavior).

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata:
an algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

2. Aştefănoaei, L., Bensalem, S., Bozga, M.: A compositional approach to the veri-
fication of hybrid systems. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 88–103. Springer,
Cham (2016). doi:10.1007/978-3-319-30734-3 8

3. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. Robust
Nonlinear Control 24(4), 699–724 (2014)

4. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th
ACM SIGPLAN Conference on Certified Programs and Proofs, pp. 208–221. ACM
(2017)

5. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design
of hybrid systems: safety and stability. In: Manna, Z., Peled, D.A. (eds.) Time for
Verification. LNCS, vol. 6200, pp. 96–143. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13754-9 6

6. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Con-
ference on Decision and Control, CDC, vol. 1, pp. 479–484 (2004)

7. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). doi:10.1007/978-3-319-21401-6 36

8. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer
Society (1996)

9. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 275–290. Springer, Heidelberg (2001). doi:10.
1007/3-540-45351-2 24

10. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 42–56. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 6

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/978-3-319-30734-3_8
http://dx.doi.org/10.1007/978-3-642-13754-9_6
http://dx.doi.org/10.1007/978-3-642-13754-9_6
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/3-540-45351-2_24
http://dx.doi.org/10.1007/3-540-45351-2_24
http://dx.doi.org/10.1007/978-3-642-21437-0_6

150 A. Müller et al.

11. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput.
185(1), 105–157 (2003)

12. Man, K.L., Reniers, M.A., Cuijpers, P.J.L.: Case studies in the hybrid process
algebra Hypa. Int. J. Softw. Eng. Knowl. Eng. 15(2), 299–306 (2005)

13. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.)
Robotics: Science and Systems IX (2013)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

15. Müller, A., Mitsch, S., Platzer, A.: Verified traffic networks: component-based ver-
ification of cyber-physical flow systems. In: 18th International Conference on Intel-
ligent Transportation Systems, pp. 757–764 (2015)

16. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 441–456. Springer, Cham
(2016). doi:10.1007/978-3-319-33693-0 28

17. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Change
and delay contracts for hybrid system component verification. Technical report
CMU-CS-17-100, Carnegie Mellon (2017)

18. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebr. Program.
62(2), 191–245 (2005)

19. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

20. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15205-4 36

21. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for
distributed hybrid systems. Logical Methods Comput. Sci. 8(4), 1–44 (2012)

22. Platzer, A.: The complete proof theory of hybrid systems. In: Proceedings of the
27th Annual IEEE Symposium on Logic in Computer Science, pp. 541–550. IEEE
Computer Society (2012)

23. Platzer, A.: Logics of dynamical systems science. In: Proceedings of the 27th
Annual IEEE Symposium on Logic in Computer Science, pp. 13–24. IEEE Com-
puter Society (2012)

24. Platzer, A.: The structure of differential invariants and differential cut elimination.
Logical Methods Comput. Sci. 8(4), 1–38 (2012)

25. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 1–47 (2016). doi:10.1007/s10817-016-9385-1

26. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal
verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5 13

27. Schiffelers, R.R.H., van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E.: For-
mal semantics of hybrid Chi. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, pp. 151–165. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-40903-8 12

28. Rounds, W.C., Song, H.: The Ö-calculus: a language for distributed control
of reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC
2003. LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003). doi:10.1007/
3-540-36580-X 32

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-33693-0_28
http://dx.doi.org/10.1007/978-3-642-15205-4_36
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-540-40903-8_12
http://dx.doi.org/10.1007/978-3-540-40903-8_12
http://dx.doi.org/10.1007/3-540-36580-X_32
http://dx.doi.org/10.1007/3-540-36580-X_32

Change and Delay Contracts for Hybrid System Component Verification 151

29. Song, H., Compton, K.J., Rounds, W.C.: SPHIN: a model checker for reconfig-
urable hybrid systems based on SPIN. Electr. Notes Theor. Comput. Sci. 145,
167–183 (2006)

30. Xinyu, C., Huiqun, Y., Xin, X.: Verification of hybrid Chi model for cyber-physical
systems using PHAVer. In: Barolli, L., You, I., Xhafa, F., Leu, F.Y., Chen, H.C.
(eds.) 7th International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, pp. 122–128. IEEE Computer Society (2013)

Precise Version Control of Trees
with Line-Based Version Control Systems

Dimitar Asenov1, Balz Guenat1, Peter Müller1(B), and Martin Otth2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{dimitar.asenov,peter.mueller}@inf.ethz.ch, guenatb@student.ethz.ch

2 Ergon Informatik AG, Zurich, Switzerland
martin.otth@ergon.ch

Abstract. Version control of tree structures, ubiquitous in software
engineering, is typically performed on a textual encoding of the trees,
rather than the trees directly. Applying standard line-based diff and
merge algorithms to such encodings leads to inaccurate diffs, unnecessary
conflicts, and incorrect merges. To address these problems, we propose
novel algorithms for computing precise diffs between two versions of a
tree and for three-way merging of trees. Unlike most other approaches for
version control of structured data, our approach integrates with main-
stream version control systems. Our merge algorithm can be customized
for specific application domains to further improve merge results. An
evaluation of our approach on abstract syntax trees from popular Java
projects shows substantially improved merge results compared to Git.

Keywords: Version control · Trees · Structured editor · Software
evolution

1 Introduction

Tree structures such as XML, JSON, and source code are ubiquitous in software
engineering, but support for precise version control of trees is lacking. Main-
stream version control systems (VCSs) such as Git, Mercurial, and SVN treat
all data as sequences of lines of text. Standard diff and merge algorithms dis-
regard the structure of the data they manipulate, which has three major draw-
backs for versioning trees. First, standard line-based diff algorithms may lead to
inaccurate and confusing diffs, for instance when differences in formatting (e.g.,
added indentation) blend with real changes or when lines are incorrectly matched
across different sub-trees (e.g., across method boundaries in a program). Inaccu-
rate diffs do not only waste developers’ time, but may also corrupt the result of
subsequent merge operations. Second, standard merge algorithms may lead to
unnecessary conflicts, which occur for incompatible changes to the formatting
(e.g., breaking a line at different places), but also for more substantial changes
such as merging two revisions that each add an element to an un-ordered list
(for instance, a method at the end of the same class). Unnecessary conflicts
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 152–169, 2017.
DOI: 10.1007/978-3-662-54494-5 9

Precise Version Control of Trees with Line-Based Version Control Systems 153

could be merged automatically, but instead require manual intervention from
the developer. Third, standard merge algorithms may lead to incorrect merges;
for instance, if two developers move the same tree node to two different places,
a line-based merge might incorrectly duplicate the node. Incorrect merges lead
to errors that developers need to detect and fix manually.

To solve these problems, we propose a novel approach to versioning trees. Our
approach builds on a standard line-based VCS (in our case, Git), but provides diff
and merge algorithms that utilize the tree structure to provide accurate diffs,
conflict detection, and merging. In contrast to VCSs that require a dedicated
backend for trees [14,15,21,24,25], employing a standard VCS allows developers
to use established infrastructures and workflows (such as GitHub or BitBucket)
and to version trees and text files such as documentation in the same VCS.
Our diff algorithm relies on the optimized line-based diff of the underlying VCS,
but utilizes the tree structure to accurately report changes. Building on the diff
algorithm, we designed a three-way merge algorithm that reduces unnecessary
conflicts and incorrect merges by using the tree structure and, optionally, domain
knowledge such as whether the order of elements in a list is relevant.

Diff and merge algorithms rely on matching different revisions of a tree to
recognize commonalities and changes. One option to obtain such a matching is
to associate each tree node with a unique ID that remains unchanged across
revisions. This approach yields precise matchings and makes it easy to recognize
changed and moved nodes, but requires a custom storage format and support
from an editor such as MPS [30] or Envision [5]. Alternatively, one can use tra-
ditional textual encodings of trees without IDs (e.g., source code to represent an
AST) and compute matchings using an algorithm such as ChangeDistiller [10]
or GumTree [9]. However, such algorithms require significant time and produce
results that are approximate and, thus, lead to less precise diffs and merges. Our
approach supports both options; it benefits from the precise matchings provided
by node IDs when available, but can also utilize the results of matching algo-
rithms and, thus, be used with standard editors. We will present the approach
for a storage format that includes node IDs, but our evaluation shows that even
with approximate matchings computed on standard Java code, our approach
achieves substantially better results than a standard line-based merge.

The contributions of this paper are:

– A textual encoding of generic trees that enables their precise version control
within standard line-based VCSs such as Git.

– A novel algorithm for computing the difference between two versions of a tree
based on the diff reported by a line-based VCS.

– A novel algorithm for a three-way merge of trees, which allows the customiza-
tion of conflict detection and resolution.

– An implementation of the algorithms in the Envision IDE and an evaluation
on several popular open-source Java code bases.

The rest of this paper is structured as follows. In Sect. 2, we present a textual
encoding of trees and a corresponding diff algorithm, which builds on a line-based
diff. We describe a generic algorithm for merging trees and two customizations

154 D. Asenov et al.

that improve the merge result in Sect. 3. In Sect. 4, we discuss the results of
our evaluation. We discuss related work in Sect. 5 and conclude in Sect. 6. More
details of the algorithms can be found in the PhD thesis of the first author [6].

2 Tree Versioning with a Line-Based VCS

The algorithms we designed work on a general tree structure. In order to enable
precise version control of trees, we assume, without loss of generality, that each
tree node is a tuple with the following elements:

– id : a globally unique ID. This ID is used to match and compare nodes from
different versions and track node movement. IDs can be randomly generated,
as long as matching nodes from different versions have the same ID, which
can be achieved by using a tree-matching algorithm such as GumTree [9]. We
use a standard 128-bit universally unique identifier (UUID).

– parentId : the ID of the parent node. The parent ID of the root node is a
null UUID. All other nodes must have a parentId that matches the ID of an
existing node.

– label : a name that is unique among sibling nodes. The label is essentially
the name of the edge from parent to child node. This could be any string or
number, e.g., 1, 2, 3, ... for the children of nodes representing lists.

– type: an arbitrary type name from the target domain. For example, types of
AST nodes could be Method or IntegerLiteral. Types enable additional cus-
tomization of the version control algorithms, used to improve conflict detection
and resolution. In domains without different node types, one type can be used
for all nodes.

– value: an optional value.

A valid tree is a set of nodes which form a tree and meet the requirements above.

2.1 Textual Encoding of Valid Trees

In order to efficiently perform version control of trees within a line-based VCS,
we encode trees in a specific text format, which enables using the existing line-
based diff in the first of two stages for computing the changes between two tree
versions. A valid tree is encoded into text files as illustrated in Fig. 1. The key
property of the encoding is that a single line contains the encoding of exactly
one tree node with all its elements. In Fig. 1, each line encodes a node’s label,
type, UUID, the UUID of the parent node, and the optional value in that order.
A reserved node type External indicates that a subtree is stored in a different
file (Fig. 1b).

This encoding allows two versions of a set of files to be efficiently compared
using a standard line-based diff. The different lines reported by such a diff corre-
spond directly to a set of nodes that is guaranteed to be an overapproximation
of the nodes that have changed between the two versions of the encoded tree.

Precise Version Control of Trees with Line-Based Version Control Systems 155

2 Method {9c2c...} {e0b6...}
modifiers Modifier {8842...} {9c2c...} 1
name Name {3269...} {9c2c...} foo
body StatementList {1023...} {9c2c...}

0 If {f3c2...} {1023...}
condition BinOp {b0a0...} {f3c2...}

left Text {f7c3...} {b0a0...} two\nlines

(a)

12 Class {5414...} {425d...}
methods List {e0b6...} {5414...}

0 External {e239...} {e0b6...}
1 External {5db1...} {e0b6...}
2 External {9c2c...} {e0b6...}

(b)

Fig. 1. (a) An example encoding of an AST fragment. For brevity, only the first 2 bytes
of UUIDs are shown here. (b) A file that references external files, which contain the
subtrees of a class’s methods. The last line refers to the file from (a). At most two lines
in different files may have the same ID, and one of them must be of type External.

For efficient parsing, we indent each child node and insert children after their
parents (Fig. 1), enabling simple stack-based parsing. The names of the files that
comprise a single tree is irrelevant, but for quickly finding subtrees, it is advisable
to include the UUID of the root of each file’s subtree in the file name.

2.2 Diff Algorithm

The diff algorithm computes the delta between two versions of a tree (Told and
Tnew). The delta is a set of changes, where each change represents the evolution
of one node and is a tuple consisting of:

– oldNode: the node tuple from Told, if it exists (node was not inserted).
– newNode: the node tuple from Tnew, if it exists (node was not deleted).
– kind : the kind of the change – one of Insertion, Deletion, Move (change of

parent and possibly label, type, or value), Stationary (no change of parent,
but change in at least one of label, type, or value).

These elements provide the full information necessary to report precisely how
a node has changed. The encoding from Sect. 2.1 enables an efficient two-stage
algorithm for computing the delta between two versions of a tree. The operation
of the algorithm is illustrated in Fig. 2.

The first stage computes two sets of nodes oldNodes ⊆ Told and
newNodes ⊆ Tnew, which overapproximate the nodes that have changed between
Told and Tnew. The sets are computed by comparing the encodings of Told and
Tnew using a standard line-based diff [20,22,29]. Given two text files, a line-based
diff computes a longest common subsequence (LCS), where each line is treated
as an atomic element. The LCS is a subset of all identical lines between Told and
Tnew. The diff outputs the lines that are not in the LCS, thus overapproximating
changes: lines from the “old” file are marked as deleted and lines from the “new”
file are marked as inserted. In the middle of Fig. 2, lines B, E, G, H, and D on
the left are marked as removed and lines B′, E′, G, H, and X on the right are
marked as inserted. The combined diff output for all files is two sets of removed
and inserted lines. The nodes corresponding to these two sets, ignoring nodes of
type External, are the inputs to the second stage of the diff algorithm.

156 D. Asenov et al.

Fig. 2. A tree modification and the outputs of the two stages of the diff algorithm.

The second stage (Algorithm 2.1) filters the overapproximated nodes and
computes the final, precise delta between Told and Tnew. The algorithm essen-
tially compares nodes with the same id from oldNodes and newNodes and if they
are different, adds a corresponding change to the delta. A node from oldNodes
might be identical to a node from newNodes, for example, if its corresponding
line has moved, but is otherwise unchanged. This is the case for nodes G and H
in Fig. 2, where the final delta consist only of real changes to the nodes B, D,
E, and X. This is in contrast to a line-based diff, which will also report G and
H as changed, even though they have not.

In the absence of unique IDs stored with the tree, it is possible to com-
pute matching nodes using a tree match algorithm, enabling our diff and merge
algorithms to be used for traditional encodings of trees, such as Java files. To
achieve this, the first stage needs to be replaced so that it parses the input files,
computes a tree matching, and assigns new IDs according to the matching.

1: function TreeDiffStageTwo(oldNodes, newNodes)
2: changes ← ∅
3: for all {(old, new) ∈ (oldNodes × newNodes) | old.id=new.id ∧ old �=new} do
4: if old.parentId = new.parentId then
5: changes ← changes ∪ {(old, new, Stationary)}
6: else
7: changes ← changes ∪ {(old, new, Move)}
8: end
9: end

10: for all {old ∈ oldNodes | old.id /∈ IDs(newNodes)} do
11: changes ← changes ∪ {(old, NIL, Deletion)}
12: end
13: for all {new ∈ newNodes | new.id /∈ IDs(oldNodes)} do
14: changes ← changes ∪ {(NIL, new, Insertion)}
15: end
16: return changes
17: end

Algorithm 2.1. The second stage of the TreeDiff algorithm. IDs is the set of all
identifiers of nodes from the input set. A more detailed version of this algorithm
and a proof of correctness can be found in [12].

Precise Version Control of Trees with Line-Based Version Control Systems 157

The described diff algorithm eliminates (with unique IDs), or greatly reduces
(using a tree matching algorithm) inaccurate diffs. This is because the formatting
of the encoding is irrelevant, changes are expressed in term of tree nodes, and
moved nodes are tracked, even across files. The diff provides a basis for improved
merges, discussed next.

3 Merging Trees and Domain-Specific Customizations

Building on the diff algorithm from Sect. 2.2, we designed an algorithm for merg-
ing two tree revisions TA and TB given their common ancestor Tbase. At the core
of the merge is the change graph – a graph of changes performed by the two
revisions, which includes conflicts and dependencies. In this section, we will first
describe the change graph and how it is used to merge files, and then we will
outline additional merge customizations, which use knowledge about the domain
of the tree to improve conflict detection and resolution. Unlike the diff algorithm,
the merge does not build on its line-based analog, which is unaware of the tree
structure and may produce invalid results. For example, if two revisions move
the same node (line) to two different parents, which are located in different parts
of a file or in different files, a line-based algorithm would simply keep both lines,
incorrectly duplicating the subtree, whereas our algorithm will report a conflict.

3.1 Change Graph and Merge Algorithm

The purpose of the change graph (CG) is to bring together changes from two
diverging revisions and facilitate the creation of a merged tree. The nodes of the
CG are changes, similar to the ones reported by the diff. The changes are con-
nected with two types of edges, which constrain when changes may be applied.
A change may require another change to be applied first, expressed as a directed
dependency edge. For example, a change inserting a node might depend on the
change inserting the parent node. Two changes may be in conflict with each
other, expressed as an undirected conflict edge. For example, if both revisions
change the same node differently, these changes will be in conflict. An example
change graph is illustrated in Fig. 3.

To merge TA and TB into a tree Tmerged, first an inverse topological ordering
of the CG is computed using the dependency edges. Changes are applied accord-
ing to this ordering, if possible. A change is applicable if it does not depend on
any other change and has no conflict edges. Changes that form cycles in the CG
may be applied together, in one atomic step, provided that all changes (i) have
no conflict edges; (ii) are made by the same revision or by both revisions simul-
taneously; and (iii) do not depend on any change outside the cycle. Essentially,
changes in such cycles are independent of other changes and are compatible with
both revisions, making them safe to apply. These restrictions ensure that apply-
ing changes preserves the validity of the tree (see Sect. 7.3.1 in [6] for details).

158 D. Asenov et al.

baserevision P revision Q change graph

Fig. 3. A base tree with two modifying revisions and the corresponding CG. Each edge
in the CG is labeled with the dependency or conflict type that the edge represents.

Applied changes are removed from the CG along with any incoming dependency
edges. Once all applicable changes have been applied, any remaining changes
represent conflicts and will be reported to the user. Next, we explain how the
CG is constructed.

Merge Changes. A merge change is a tuple that extends the change tuple
from the diff algorithm with one new element, revisions, which indicates which
revisions make this change: RevA, RevB, or Both. The nodes of the CG are
the merge changes obtained by running the diff algorithm twice to compute
the delta between Tbase and TA and between Tbase and TB , respectively. First,
each change from the two deltas is associated with either RevA or RevB to
create a corresponding merge change. Then, we organize the elements of a tree
node into two element groups: (i) parent and label; and (ii) type and value.
Each group contains tuple elements whose modification by different revisions is
a conflict. Any merge changes that modify both element groups are split into
two merge changes: one for each element group. For example, if a node is moved
to a new parent and its value is modified, this will appear as two separate and
independent merge changes within the CG. This separation reduces conflicts
and dependencies in the CG, since the two groups are independent. Finally, any
identical changes made by different revisions are combined into a single merge
change with revisions=Both, which ensures that identical changes are applied
only once.

Dependencies Between Merge Changes. A dependency X → Y means
that change X cannot be applied before Y , and is the first of two means that
restrict applicable changes. Dependencies prevent three cases of tree structure
violations.

(d1) orphan nodes: (a) Before a change IM inserts or moves a node N , N ’s
parent destination node P must exist. If P does not already exist in Tbase, then
there must be an insertion change I, which inserts it. An edge IM → I is added
to indicate that I must be applied before IM can be applied. In Fig. 3, nodes

Precise Version Control of Trees with Line-Based Version Control Systems 159

Y and Z depend on the insertion of X. (b) Before a change D deletes a node
N , all of N ’s children must be deleted or moved. An edge D → DM is added
between D and each change DM that moves or deletes a child of N . In both (a)
and (b), the changes I and DM are guaranteed to exist if they are necessary,
because the merge changes were computed from the deltas of valid trees. Note
that dependencies that prevent orphan nodes cannot form cycles on their own.

(d2) clashing labels: Before a change IMR inserts, moves, or relabels (modifies
the label of) a node N , there must be no sibling at the destination of N with the
same label. If a node with the same label as N ’s final label exists in Tbase at the
destination parent of N then there must be a change DMR that deletes, moves,
or relabels that sibling. An edge IMR → DMR is added to the CG. In Fig. 3,
node X depends on the relabeling of E. Such dependencies may form cycles. For
example, swapping two elements in a list yields two relabel changes, where each
change depends on the other.

(d3) cycles: If a change MN moves a node N , N must not become its own
ancestor. Such a situation occurs, for example, if a revision A moves an if-
statement IF1 into an if-statement IF2, and revision B moves IF2 into IF1. To
prevent such issues, move changes are applied only if the destination subtree does
not need to be moved. This is enforced using dependencies. If MN moves N to a
subtree that needs to be moved, let MP be the change that moves the subtree.
An edge MN → MP is added to the CG. Move changes from different revisions
may create dependency chains that form a cycle in the CG. For example, the
move of IF1 will depend on the move of IF2, which will itself depend on the move
of IF1. Such a cycle means that the two revisions perform incompatible moves
and the changes from the cycle cannot be applied. Move changes from different
revisions do not always result in a cycle. For example, in Fig. 3, the move of L
depends on the move of D, which is independent.

Conflicting Merge Changes. Conflicts that would result in a node becoming
its own ancestor are indirectly represented in the CG in the form of dependency
cycles described above. Other conflicts cannot be expressed with dependencies
and appear directly as conflict edges, which are the second means for restricting
change application. There are three cases of direct conflicts.

(c1) same node: If two revisions make non-identical changes X and Y to the
same node, these changes may be conflicting. Deletions conflict with all other
changes. Other changes conflict only with changes of the same element group.
Conflicting changes are connected with an undirected edge X ∼ Y in the CG.
An example of such a conflict is the modification and deletion of B in Fig. 3.

(c2) label clash: If a change IMRN inserts, moves, or relabels a node N , and
another change IMRQ inserts, moves, or relabels a node Q such that N and
Q have identical final labels and parent nodes, the two changes are in conflict.
An edge IMRN ∼ IMRQ is added to the CG. In Fig. 3, such a conflict is the
relabeling of E and the insertion of V .

160 D. Asenov et al.

(c3) deletion clash: If a change DN deletes a node N , and another change IMQ

inserts or moves a node Q as a child of N , the two are in conflict. An edge
DN ∼ IMQ is added to the CG.

In contrast to line-based merges, applying changes using the CG prevents
incorrect merges by considering the tree structure. The algorithm, as described
so far, has no knowledge about the domain of the tree, and misses opportunities
for improved merges and better error reporting. Next, we explain customizations,
that improve the merge results and report potential semantic issues.

3.2 Domain-Specific Customizations

Merging two tree revisions without any domain knowledge, as described so far,
can lead to suboptimal merges. Figures 3 and 4 illustrate one such example,
where revision P inserts a node X in the beginning of list L and revision Q
inserts a node V at the end. These two changes conflict, because the label of
E in P is identical to the label of V in Q. Despite this conflict, intuitively
these changes can be merged by relabeling V . To achieve better merge results,
we allow the merge process to be customized by taking domain knowledge into
account. Customizations use domain knowledge, such as the semantics of specific
node types or values, to tweak the CG, eliminating conflicts and dependencies,
and thus, enabling additional changes to be applied. Customizations may also
produce review items, which are messages that inform the user of a potential
semantic issue with the final merge. Review items have two advantages over
conflicts. First, unlike changes in a conflict or their depending changes (even if
not in a conflict), which are not applicable, review items are not part of the
CG and do not prevent the application of changes. Applying more changes is
desirable because the final merge more closely represents both revisions and the
user has to review issues with only a selected group of nodes, instead of manu-
ally exploring many unapplied changes. Second, review items provide semantic
information to the user, making it easier to take corrective action, unlike con-
flicts, which represent generic constraints on the tree structure. Similarly, review

merge outcome before customizations customized merge outcome

Fig. 4. The resulting Tmerged and CG after applying all possible changes from Fig. 3
(left) and after additional customizations (right).

Precise Version Control of Trees with Line-Based Version Control Systems 161

LA

LBase

LB

order
rev. item

input lists 3-way LCS 2 x 2-way LCS per chunk final linearization

Fig. 5. Computing a total order for the elements of a merged list. Stable chunks have
a light-gray background. At the end, V and W are linearized and added to a review
item. In the merged list, B and C will be removed to reflect changes from revisions.

items are preferable to conflicts in line-based merges, because review items are
more focused and provide semantic information. Next, we present two examples
of customizations, which we have found useful for achieving high-quality merges.

List-Merge Customization. Data from many domains (e.g., ASTs, UML
models) has list entities. Merging lists is challenging [13,28], as it is not trivial
to determine the order of the merged elements and to detect and resolve conflicts.
In addition, the CG often contains label clash conflicts in lists (e.g., for nodes E
and V in Fig. 4), which are usually easy to resolve automatically. We developed
the List-Merge customization, which is crucial for merging list nodes well. Essen-
tially, the customization computes a total order of all list elements from both
revisions. This total order is used to relabel all elements, giving each element a
unique label. Thus, all conflicts or dependencies due to previously clashing labels
are removed from the CG, allowing many more changes to be merged. Next, we
describe the computation of the total order and how ambiguities are handled.

The total order is computed in three steps as illustrated in Fig. 5. In the
first step, a three-way longest common subsequence (LCS) between LBase, LA,
and LB is computed and used to create an alternating sequence of stable and
unstable chunks. The stable chunks are a partition of the LCS – elements in a
single chunk are adjacent in all lists. There are two stable chunks in Fig. 5:
[A] and [D]. An unstable chunk consists of one element span per list, each
span containing elements that are not in the LCS. There are two unstable
chunks in Fig. 5: [XB,BC,CY] and [V, ε,W]. Elements from different chunks
are totally ordered using the order of the chunks, e.g., A before X and D. Ele-
ments from the same stable chunk are totally ordered using their order within
the chunk. In the second step, for each unstable chunk C, two two-way LCSs
lcsa = LCS(Cbase, Ca) and lcsb = LCS(Cbase, Cb) are computed. Elements
from lcsa are totally ordered with respect to elements from lcsb using the order
in Cbase. In Fig. 5 these are B and C. The remaining elements from Ca and
Cb are ordered with respect to elements from lcsa and lcsb, respectively. Such
elements are totally ordered using the order from one revision, if there are no ele-
ments from the other revision in the corresponding chunk (X and Y in Fig. 5).
Otherwise, the elements are not totally ordered (V and W in Fig. 5). In the
third step, unordered elements are linearized in an arbitrary order. If the list

162 D. Asenov et al.

represents an ordered collection within the domain, a review item is created to
inform the user of the ambiguity.

The List-Merge customization brings essential domain knowledge about lists
to the merge algorithm. The customization not only resolves many conflicts
automatically, but also reports merge ambiguities on a semantic level. Thus, it
lets developers deal with less conflicts and do so more easily, saving time.

Conflict Unit Customization. Our merge algorithm is able to merge changes
at the very fine-grained level of tree nodes, which is not desirable in some
domains. For example, if x < y in an AST is changed to x ≤ y in one revi-
sion, and to x < y +1 in another, these two changes can be merged as x ≤ y +1,
which is not intended. A common case where fine-grained merges might result
in semantic issues is when changes affect nodes that are “very close” according
to the semantics of the tree domain. We designed the Conflict Unit (CU) cus-
tomization to detect such situations. In essence, the customization partitions the
tree into small regions called CUs and creates review items for each CU that is
changed by both revisions. The customization does not alter the change graph.

The CU customization is parametrized by a set of node types – the CU types.
The conflict root of a node is its closest reflexive ancestor of a CU type. The tree
root is always a conflict root. The set of nodes that have the same conflict root
constitute a CU (see Fig. 6). If two revisions change nodes from the same CU,
there is a potential for a semantic issue and this is reported with a review item.

With an appropriate choice of CU types, the CU customization can be useful
in identifying potential semantic issues. For example, in ASTs, if statements are
CU types, like in Fig. 6, a change in one statement is semantically independent
from a change in another statement, but two changes in the subtree of the same
statement will result in a review item. In this setting, if a developer changes one
part of the i ≥ 0 expression, while another developer changes another part, these
changes will no longer be silently merged, but a semantic issue will be reported.

Structure- and semantics-based review items are more precise and meaning-
ful than the line-based conflicts produced by standard algorithms. A line-based

conflict root

conflict unit

Fig. 6. A tree with three conflict units.

Precise Version Control of Trees with Line-Based Version Control Systems 163

conflict might incorrectly arise due to compatible changes (e.g., moving a dec-
laration in one revision and adding a comment in another revision) or it might
be due to formatting (e.g., renaming a method in one revision and moving the
opening brace to a new line in another revision). In contrast, our CU approach is
precise, predictable, and uses domain knowledge to report issues on a semantic
level.

4 Evaluation and Discussion

To evaluate our approach, we implemented our version control algorithms in
the Envision IDE [5]. Even though Envision supports unique node IDs, we use
Gumtree [9] to evaluate our approach on large existing Java projects to show its
applicability on large trees with a long history. We inspected the default branch
of the most popular (having more than 10000 stars) Java projects on GitHub,
19 in total. Six of the projects did not contain any merges of Java files. In the
remaining 13 projects, we evaluate each merge of a Java file by comparing the
merge results of Git and our implementation. We focus on the merge here since
the merge operation depends on the diff and thus, reflects its quality. The results
are presented in Table 1. All tests were run on an Intel i7-2600K CPU running
at 3.4 GHz, 32 GB RAM, and an SSD.

A divergent merge (DM) is one that results in conflicts (C) or one where the
automatically merged file is different from the file committed by the developer.
One exception are successful automatic merges in Envision that only differ from
the developer committed version by the order of methods or import declara-
tions. Since this order is semantically irrelevant, we do not consider such merges
divergent – they are counted as order difference (OD). For Envision, we also list
the number of files whose merge produced review items due to linearized list
elements (RIl) or changes to the same conflict unit by two revisions (RIcu). For
conflict unit types we use all statement and declaration node types. The total
and average merge times are reported for both tools (merge and avg. merge).
Merging Java sources with Envision incurs a significant overhead (ovrhd.) in
addition to the merge time, because (i) the sources have to be parsed, (ii) the
different revisions have to be matched to the base using Gumtree, and (iii) these
two-way matchings are tweaked to enable a three-way merge. Almost all of this
overhead can be avoided by using IDs directly stored on disk.

Tree-based merging results in significantly fewer divergent merges, 717, com-
pared to the standard line-based approach, 1100. The difference in conflicts is
even more substantial, with 362 for the tree-based approach, and 1039 for Git.
Our approach also reports a significant number of files with review items for lists,
222, and conflict units, 662. Unlike textual conflicts, review items describe the
semantic issue they reflect and report the minimal set of nodes that are affected,
which makes it easier for developers to understand and act on review items.

To get more insight, we manually investigated all 46 cases of Envision’s
diverging merges in the RxJava project. All of these merges also diverge when
using Git. There are 34 merges with real conflicts or merges where the developer

164 D. Asenov et al.

Table 1. Comparison between merges by Git (G) and Envision (E). DM – divergent
merge; C – merge with conflicts; OD – merge where only order differs; RI – review item
(l – due to linearized list elements, cu – due to multiple changes in a CU).

made a semantic change, neither of which can be automatically handled. In the
remaining 12 cases, we observed two reasons for divergence in Envision.

First, in six cases the result of a tree merge was, in fact, correct, but the
version committed by the developer was incorrect. This occurred when a Git
merge results in a conflict which the developer resolves incorrectly, even though
the resulting code compiles. For example, a conflict marker (<<<<<<< HEAD)
inserted by Git was forgotten inside a block comment. Another example is the
accidental omission of an @Test annotation which appeared just before a conflict
marker. This omission potentially disabled one of the test cases in the code and
went unnoticed for nearly three years until the RxJava developers accepted our
patch for fixing it. Our approach automatically merges all of these cases correctly.

Second, six merges diverge due to the suboptimal matchings produced by
GumTree. For example, if a particular Java import declaration is present in the
base version, but is deleted in both revisions, GumTree may match the deleted
import to two different newly inserted imports from the different revisions. Our
merge algorithm detects this as a conflict and fails to merge the file.

In terms of run-time, merging files with Envision is, on average, 16 times
slower compared to Git. Nevertheless, Envision still allows merging at a rate of
12.5 files a second, which is significantly faster than manually resolving conflicts.

Precise Version Control of Trees with Line-Based Version Control Systems 165

However, if the files are not stored using the format we described in Sect. 2.1,
and require parsing and tree-matching, there is significant overhead, which
further slows down Envision by a factor of 60. In this case merging a single
file could take about one minute. To further investigate the effect of the match-
ing on the merge result, we implemented a simple tree-matching algorithm and
used it instead of Gumtree on the RxJava project. Our tree-matching produces
worse matchings compared to GumTree, but incurs less overhead (81 minutes
instead of 122). The simpler matcher resulted in more divergent merges (70)
and more conflicts (40), compared to using GumTree, but the results are still
better than using Git. These results suggest that our approach is most useful
for storage formats that include unique node IDs such that matching algorithms
are avoided altogether.

Threats to Validity. We evaluated our implementation on 13 Java repositories.
Our results might not apply to other projects, other languages, or trees that are
not ASTs. Nevertheless, the code bases we used provide a wide variety of tree-
merge situations, and we used popular projects in order to increase the ecological
validity of the results.

The tool we used to convert Java files into files encoded as we described in
Sect. 2.1 omits some rarely-used Java constructs such as multiple type bounds
for generic types. It is possible that a conflict in Git is due to a part of the code,
which is missing in the new encoding. We are not aware of such cases.

We discard the text formatting and some comments. To handle such unstruc-
tured data with our approach the data would have to be encoded as part of the
AST, e.g., by attaching a textual prefix node to each AST node.

5 Related Work

Researches have proposed a number of systems for version control of structured
data. Molhado [24] is a powerful stand-alone framework for versioning object-
oriented data. It is based on an extensible model that could be used to version
arbitrary types of objects. Molhado requires deep integration with the develop-
ment environment, making Molhado the “heart of the environment”, in contrast
to our more lightweight approach. OperV [25] is another approach for version-
ing of structured tree data with fine granularity, which, unlike our system, is
operation-based, thereby requiring additional data and more complex tool sup-
port. Unlike our approach, both Molhado and OperV introduce a custom storage
backend and do not integrate with an existing VCS.

Altmanninger has surveyed various systems for versioning models [2]. One
of the most popular model repositories is EMFStore [14], part of the Eclipse
Modeling Framework. There is continued interest in the research community in
improving EMFStore, e.g., by formalizing merging for models [31] or performing
semantics-based mering [1]. Odyssey [21,26] is another model VCS, which targets
UML models and features advanced merge capabilities. EMFStore, Odyssey, and
most systems for versioning models are not often used to version trees, and unlike

166 D. Asenov et al.

our approach, they use a custom backend and do not integrate with standard line-
based VCSs. Our approach may be applied to graph models, e.g., by expressing
them as containment trees, similar to Mikhaiel et al. [19].

Mens [18] provides an overview of different approaches for merging program
sources. Newer approaches based on the full [3] or partial structure [4] of source
files have been proposed by Apel et al. These approaches improve on the merge
results of Git, and can be fast and practical, but unlike our approach they do not
work with unique IDs stored as part of the files, and thus may be inaccurate.
Other approaches, rely on storing unique IDs, for example, the version con-
trol system of TouchDevelop [27] or MolhadoRef [7]. However, TouchDevelop is
designed for a specific language and automatically resolves conflicts by ignoring
one of the revisions, and MolhadoRef is an operation-based system, in contrast
to our approach. Neither of the two integrate with a standard VCS like our
approach.

There are also approaches to enhance VCSs for software with additional
knowledge about the semantics of code and refactoring in order to improve
merging [7,8,23]. Our customization mechanism can also be used to provide
similar semantics-based improvements to the merge.

Ghezzi et al. [11] propose that a pluggable framework be built on top of
traditional VCSs in order to provide additional services and analysis capabilities.
Our algorithms can be seen as an instance of their suggestion.

Lorenz and Rosenan [17] propose a JSON format for storing structured data
and integrating it with a traditional VCS. Their proposal however uses the VCS
only for storage and performs versioning on its own – one version of the JSON file
in the VCS stores itself all previous versions of the objects that comprise it. In
contrast, our approach uses the underlying VCS for both storage and versioning.

Lindholm [16] proposes a way to merge XML documents using the XML tree
structure. Their approach focuses on the particular class of document-oriented
XML files, whereas our approach is designed for arbitrary trees.

MPS [30] is a commercial system which stores programs as XML files and
implements custom merge hooks to integrate with traditional VCSs. It relies on
IDs for precise merging, but the system does not seem to be customizable or
easily usable for other data.

Schwägerl et al. have designed a graph-based algorithm [28] for merging
ordered collections. Unlike our List-Merge customization, their algorithm only
works with inserted, deleted, and relabeled elements, and there is no treatment
for elements which are moved in or out of the list to another subtree and possible
conflicts with these operations.

6 Conclusion

We described an approach for accurate version control of tree structures using a
mainstream line-based VCS. Our diff algorithm can work with either stored node
identifiers or tree matching algorithms. It provides accurate deltas with respect
to the input matching, which prevents inaccurate or confusing diffs. Our merge

Precise Version Control of Trees with Line-Based Version Control Systems 167

algorithm and domain-specific customizations eliminate incorrect merges, reduce
unnecessary conflicts, and report semantic issues, improving the merge result.

We evaluated our approach on traditional Java ASTs with the help of the
Gumtree tree-matching algorithm. We observed a substantial reduction in merge
conflicts compared to a line-based approach. It will be worth to experiment with
trees with stored IDs instead of computing node matchings, which would allow
us to further quantify the performance of our approach.

Another promising research direction is the design of additional merge cus-
tomizations that understand trees at a more semantic level. For example, we
have started exploring a customization that can detect renamings of declara-
tions in an AST in one revision and apply them automatically to another on
merge. Such high-level customizations might help to further reduce conflicts
in particular domains and detect additional semantic incompatibilities between
revisions.

References

1. Altmanninger, K., Schwinger, W., Kotsis, G.: Semantics for accurate conflict detec-
tion in SMoVer: specification, detection and presentation by example. IJEIS 6(1)
(2010)

2. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inf. Syst. 5(3), 271–304 (2009)

3. Apel, S., Leßenich, O., Lengauer, C.: Structured merge with auto-tuning: balancing
precision and performance. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012. ACM (2012)

4. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.: Semistructured merge:
rethinking merge in revision control systems. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE 2011. ACM (2011)

5. Asenov, D., Müller, P.: Envision: A fast and flexible visual code editor with
fluid interactions (overview). In: 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), July 2014

6. Asenov, D.: Envision: Reinventing the Integrated Development Environment.
Ph.D. thesis, ETH Zurich (to appear, 2017)

7. Dig, D., Manzoor, K., Johnson, R., Nguyen, T.N.: Refactoring-aware configuration
management for object-oriented programs. In: 29th International Conference on
Software Engineering (ICSE 2007), May 2007

8. Ekman, T., Asklund, U.: Refactoring-aware versioning in Eclipse. Electron. Not.
Theor. Comput. Sci. 107, 57–69 (2004)

9. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Montperrus, M.: Fine-grained
and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 2014. ACM
(2014)

10. Fluri, B., Wuersch, M., Pinzger, M., Gall, H.: Change distilling: tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11),
725–743 (2007)

168 D. Asenov et al.

11. Ghezzi, G., Würsch, M., Giger, E., Gall, H.C.: An architectural blueprint for a
pluggable version control system for software (evolution) analysis. In: Proceedings
of the Second International Workshop on Developing Tools As Plug-Ins, TOPI
2012. IEEE Press (2012)

12. Guenat, B.: Tree-based Version Control in Envision. BSc. Thesis, ETH Zurich
(2015)

13. Kehrer, T., Kelter, U.: Versioning of ordered model element sets. Technical report
2, University of Siegen (2014)

14. Koegel, M., Helming, J.: EMFstore: a model repository for EMF models. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, ICSE 2010, vol. 2. ACM (2010)

15. Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J.: Operation-
based conflict detection. In: Proceedings of the 1st International Workshop on
Model Comparison in Practice, IWMCP 2010 (2010)

16. Lindholm, T.: A three-way merge for XML documents. In: Proceedings of the 2004
ACM Symposium on Document Engineering, DocEng 2004. ACM (2004)

17. Lorenz, D.H., Rosenan, B.: Source code management for projectional editing.
In: Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, Languages & Applications: Software for Humanity, SPLASH 2013.
ACM (2013)

18. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28(5), 449–462 (2002)

19. Mikhaiel, R., Tsantalis, N., Negara, N., Stroulia, E., Xing, Z.: Differencing UML
models: a domain-specific vs. a domain-agnostic method. In: International Summer
School on Generative and Transformational Techniques in Software Engineering
IV, GTTSE 2011 (2013)

20. Miller, W., Myers, E.W.: A file comparison program. Softw. Pract. Exp. 15(11),
1025–1040 (1985)

21. Murta, L., Corrêa, C., Prudêncio, J.G., Werner, C.: Towards Odyssey-VCS 2:
improvements over a UML-based version control system. In: Proceedings of the
2008 International Workshop on Comparison and Versioning of Software Models,
CVSM 2008. ACM (2008)

22. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(1)
(1986)

23. Nguyen, H.V., Nguyen, M.H., Dang, S.C., Kästner, C., Nguyen, T.N.: Detecting
semantic merge conflicts with variability-aware execution. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015.
ACM (2015)

24. Nguyen, T., Munson, E., Boyland, J.: An infrastructure for development of object-
oriented, multi-level configuration management services. In: Proceedings of the
27th International Conference on Software Engineering, (ICSE 2005), May 2005

25. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Nguyen, T.N.: Operation-based, fine-
grained version control model for tree-based representation. In: Rosenblum, D.S.,
Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 74–90. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12029-9 6

26. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a flexible version control system
for UML model elements. In: Proceedings of the 12th International Workshop on
Software Configuration Management, SCM 2005. ACM (2005)

http://dx.doi.org/10.1007/978-3-642-12029-9_6

Precise Version Control of Trees with Line-Based Version Control Systems 169

27. Protzenko, J., Burckhardt, S., Moskal, M., McClurg, J.: Implementing real-time
collaboration in TouchDevelop using AST merges. In: Proceedings of the 3rd
International Workshop on Mobile Development Lifecycle, MobileDeLi 2015. ACM
(2015)

28. Schwägerl, F., Uhrig, S., Westfechtel, B.: A graph-based algorithm for three-way
merging of ordered collections in EMF models. Sci. Comput. Program. 113(Pt.
1), 51–81 (2015). Model Driven Development (Selected & extended papers from
MODELSWARD 2014)

29. Ukkonen, E.: International conference on foundations of computation theory algo-
rithms for approximate string matching. Inf. Control 64(1), 100–118 (1985)

30. Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projec-
tional editors. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.)
SLE 2014. LNCS, vol. 8706, pp. 41–61. Springer, Cham (2014). doi:10.1007/
978-3-319-11245-9 3

31. Westfechtel, B.: A formal approach to three-way merging of EMF models. In:
Proceedings of the 1st International Workshop on Model Comparison in Practice,
IWMCP 2010. ACM (2010)

http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://dx.doi.org/10.1007/978-3-319-11245-9_3

Graph Modelling and Transformation

StaticGen : Static Generation of UML
Sequence Diagrams

Chris Alvin1(B), Brian Peterson2, and Supratik Mukhopadhyay2

1 Bradley University, Peoria, IL 61625, USA
calvin@bradley.edu

2 Louisiana State University Baton Rouge, Baton Rouge, LA 70803, USA
{brian,supratik}@csc.lsu.edu

Abstract. UML sequence diagrams are visual representations of object
interactions in a system and can provide valuable information for pro-
gram comprehension, debugging, maintenance, and software archeology.
Sequence diagrams generated from legacy code are independent of exist-
ing documentation that may have eroded. We present a framework for
static generation of UML sequence diagrams from object-oriented source
code. The framework provides a query refinement system to guide the
user to interesting interactions in the source code. Our technique involves
constructing a hypergraph representation of the source code, traversing
the hypergraph with respect to a user-defined query, and generating the
corresponding set of sequence diagrams. We implemented our framework
as a tool, StaticGen, analyzing a corpus of 30 Android applications. We
provide experimental results demonstrating the efficacy of our technique.

1 Introduction

Legacy object-oriented code may be accompanied by high-level documentation
and/or descriptive source code comments, each of which may contain omissions
or erroneous information. As documentation erodes, an engineer can trust only
the source code. A necessary component of software archeology in object-oriented
systems is the interactions among objects. A sequence diagram is a visual rep-
resentation of those object interactions as well as their lifelines.

Sequence diagrams generated from legacy code are independent of existing
documentation. Dynamic techniques for generation of sequence diagrams from
legacy code [5,16,17,22,25] can synthesize a subset of all possible sequence dia-
grams based on runtime traces. Existing static techniques [34] result in sequence
diagrams that replicate the original legacy source code, including conditionals
and loops, without providing further intuitive notions beyond the code itself.

We present a technique, depicted in Fig. 1, for static generation of UML
sequence diagrams together with a query system to guide the user to the most
interesting interactions in the (unobfuscated) source code. Given an existing
object-oriented code base as input, our technique involves three distinct steps
as shown in Fig. 1. The first step in our technique (Fig. 1) takes the input code
base and transforms it into a typed control flow graph (TCFG): a control flow
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 173–190, 2017.
DOI: 10.1007/978-3-662-54494-5 10

174 C. Alvin et al.

Code Base (1) Typed Control Flow Graph

(2) Source Code Hypergraph(3) Sequence Diagrams
Query-Based Refinement

Fig. 1. The StaticGen system flowchart

public class Main extends ActionBarActivity {
private int goodId, btnID = 2131296336; private Button b;
private Random r = new Random();

public boolean onOptionsItemSelected(MenuItem item) {
int id = item.getItemId();
return super.onOptionsItemSelected(item);

}
public void middleButtonOnClick(View v) {

((Button)v).setText("Clicked");

int c = 0;
if (r.nextBoolean()) c = getRed();
else c = getBlue();

int opt = r.nextInt(4);
if (opt == 0) SetUpperLeftButton(c);
else if (opt == 1) SetUpperRightButton(c);
else if (opt == 2) SetLowerLeftButton(c);
else SetLowerRightButton(c);

}
// Other Set methods omitted for redundancy
private void SetUpperRightButton(int c) {

b = (Button)findViewById(btnID);
SetBtnColor(b, c);

}
private void SetBtnColor(Button b, int c) {

b.setBackgroundColor(c);
goodId = b.getId();

}
private int getRed() { return Color.RED; }
private int getBlue() { return Color.BLUE; }

}

Fig. 2. Example android source code

graph annotated with type information—a familiar structure in static analysis
acquired from an existing front-end tool such as Soot [29] or goto-cc [15].

The TCFG for a program P captures the execution of P , but does not capture
(a) the interactions among the objects constituting P , (b) their context, and (c)
the causal ordering of their interactions. Hence, the second step of our method-
ology involves constructing a directed code hypergraph [6, Ch. 1] (Sect. 3) that
captures (1) intra- and inter-procedural control flow, (2) message interactions
among objects, (3) message context, and (4) causal ordering of messages. From
the source code in Fig. 2, we consider a portion of the generated code hypergraph
(corresponding to a hyperpath [6, Ch. 1]) in Fig. 3. A code hypergraph corre-
sponding to the input source code contains two categories of nodes. The first
category refers to code objects: objects and their datatypes (rounded corners in
Fig. 3). The second category of nodes, called trace nodes, capture a trace of a

StaticGen: Static Generation of UML Sequence Diagrams 175

middleButtonOnClick, σ1

v: View

setText("Clicked")

opt = r.nextInt()

c = getBlue()

SetUpperRightButton(c)

getBlueReturn, σ3

Color.BLUE

getBlue, σ2

c: int

SetUpperRightButton, σ4

b = findViewByID(String)

SetBtnColor(b, c)

findViewByIDReturn, σ5

b: Button

SetBtnColor, σ6
b.setBackgroundColor(c)

goodId = b.getId()

getIdReturn, σ7

goodId: int

Fig. 3. A portion of the code hypergraph corresponding to the code in Fig. 2

method (rectangles in Fig. 3). For example, it is clear that middleButtonOnClick
in Fig. 2 has 2 ∗ 4 = 8 possible traces due to the permutation of respective
branches; Fig. 3 depicts one of those 8 trace nodes.

A directed hyperedge captures a message context in the form of an origin
hypernode (a set of nodes) and causal ordering by virtue of directedness of
hyperedges. The annotation of each hyperedge defines corresponding messages.
For example, a call to middleButtonOnClick in Fig. 2 requires the context of
an object of type View and a callee; the corresponding hyperedge in Fig. 3 is
labeled accordingly with the destination method and program state information
for context.

The third step in our technique (Fig. 1) constructs sequence diagrams
(Sect. 4) given a code hypergraph corresponding to an input code base. Each
hyperpath [6, Ch. 1] in that hypergraph encodes all object interactions in an
execution of the code base and therefore a corresponding sequence diagram can
be generated. The hyperpath in Fig. 3 corresponds to the sequence diagram
shown in Fig. 4. To empower the user to identify ‘interesting’ interactions, we
provide a query-based refinement interface that allows the user to narrow the
resultant set of generated sequence diagrams based on their criteria and guides
the user to the most interesting interactions in the source code.

We evaluated the effectiveness of our tool, StaticGen, on 30 open source
Android applications [1,35]. StaticGen generated 647.1 sequence diagrams on
average per package taking a mean of 96.78 s for each package. In addition to
helping developers comprehend legacy code, StaticGen could fill an important
security role for normal users as well. In a second experiment, we conducted
a case study of using StaticGen to uncover security vulnerabilities. The query
refinement system of StaticGen using the notions of ‘interesting’ and ‘refine-
ment’, allowed us to narrow down the set of all sequence diagrams of a program
to a subset that exposed a vulnerability.

176 C. Alvin et al.

Fig. 4. Sequence diagram for an execu-
tion path in Fig. 2

Fig. 5. Uninteresting sequence dia-
gram for Fig. 2

This paper makes the following contributions:

• Section 2 formalizes a sequence diagram with respect to a hyperpath in a
hypergraph.

• We describe a tool, StaticGen, for statically generating sequence diagrams by
constructing (Sect. 3) and exploring (Sect. 4) a code hypergraph for an input
code base.

• StaticGen provides a query system to refine the set of generated diagrams and
guide the user to the most interesting interactions in the source code. (Sect. 5).

• We illustrate the efficacy of our technique (Sect. 6) with quantitative analyses
and a case study to identify a security vulnerability.

2 Program Abstraction and Code Hypergraphs

In this section, we describe an abstract model for programs, formalize the notion
of a code hypergraph, define a sequence diagram in that context, and define terms
related to the features and quality of a given sequence diagram.

2.1 Program Abstraction Model

To define a framework for static generation of sequence diagrams not tied to
a particular object-oriented language, we introduce a typed control flow graph
(TCFG), an abstract model that will serve as the basis for our analysis. The
model maintains both data flow (i.e. program points with state information
attributed to collecting semantics, alias analysis, etc.) and control flow infor-
mation (i.e. intra-procedural instructions and inter-procedural method calls).
A program is abstracted by a typed control flow graph (Definition 1) contain-
ing two types of edges: intra-procedural transfer edges and inter-procedural call
edges.

StaticGen: Static Generation of UML Sequence Diagrams 177

Definition 1 (Typed Control-Flow Graph). A typed control-flow graph for
a program P is a control flow graph GNT

= (NT ,X,C, n0) where NT is the set
of program points including type information for all variables, X is the set of
intra-procedural transfer edges, C is the set of inter-procedural call edges, and
n0 is the entry point of the program.

For acyclic TCFGs, we assume the standard notion of sequential ordering
of instructions as induced by the directed nature of the representative graph.
We describe our approach in the context of a simple object-oriented program-
ming language with conditionals, assignments, loops, references, and methods
with call-by-value. We omit the details of the language as the operational and
denotational semantics are defined in the usual way.

2.2 The Code Hypergraph

For a program P , we use a directed hypergraph [6, Ch. 1] data structure where
hypernodes (sets of nodes) capture the context of interactions and directed hyper-
edges capture the interactions of objects constituting P . The order of hyperedges
in a hypergraph captures the notion of causal ordering [2]; for events (invoca-
tions or returns of methods) U and V , we write U → V if event U is causally
ordered before event V . In our model, hyperedges consist of a set of origin nodes
and a single target node; a many-to-one relationship.

We formally introduce an abstract, many-to-one directed hypergraph called
an annotated hypergraph where all hyperedges are annotated according to the
problem space. A simple annotation may consist of a boolean expression indi-
cating if a hyperedge is to be considered (in)active; that is, all the context
information corresponding to the hyperedge is available or not.

Definition 2 (Annotated Hypergraph). An annotated hypergraph is a
directed hypergraph H (N,EA) where N is a set of nodes and EA ⊆ 2N×N×A a
set of directed annotated hyperedges over a set of annotations A. Each directed
hyperedge e ∈ EA is defined as an ordered pair e = (S, t, A) where S ⊆ N ,
t ∈ N , and A ∈ A.

Hyperedge annotations correspond to events in the program. Given two
hyperedges, EA = (S1, t1, A) and EB = (S2, t2, B) with origin hypernodes S1

and S2, respectively, t1 and t2 target nodes, respectively, and annotations A and
B respectively, we say A � B if t1 ∈ S2. We define → to be the transitive closure
of �. An important component of our technique is the hyperpath construction;
we define hyperpath in the context of an annotated hypergraph.

Definition 3 (Hyperpath). Let H (N,EA) be an annotated hypergraph, G ⊂
N , and g ∈ N . A hyperpath Y (of length n) from G to g is a sequence of
hypernodes G0, G1, G2, . . . , Gn−1 where G0 = G and Gn−1 = {g} such that for
each 1 ≤ i ≤ n − 1 there exists a hyperedge (Gi−1, gi, Ai) ∈ E where gi ∈ Gi

and Ai ∈ A.

178 C. Alvin et al.

The annotated hypergraph in Definition 2 is an abstract structure that we
instantiate to encode interactions, context, and causal ordering through nodes
and hyperedges. We call the resulting hypergraph a code hypergraph. Before we
formally define a code hypergraph, we define the set of nodes and hyperedges
that will constitute it.

Nodes. The nodes of a code hypergraph are of two types: code object and
(method) trace. A code object captures the notion of an object in an object-
oriented program. A trace is more than just a basic block in a TCFG, it
is a sequential set of instructions corresponding to an execution path for an
entire method. For example, in Fig. 3, the trace node corresponding to the
middleButtonOnClick method is composed of instructions that would span
many basic blocks in a TCFG.

Definition 4 (Code Object). A code object v of type T in an object-oriented
program P is an instantiated object variable of type T . For code object v of type
T , we say Datatype (v) = T .

Definition 5 (Trace). For a method M with entry instruction m0 and set of
exit instructions Mexit, a method trace is a path in a TCFG consisting of intra-
procedural instructions from m0 to mexit for mexit ∈ Mexit.

Hyperedges. There are two varieties of hyperedges we consider: one based on
method invocations and the other based on objects being returned from non-void
methods. Each call hyperedge is a many-to-one, annotated relationship among
nodes in the hypergraph and is constructed for each method invocation. For a
method invocation m in a method trace t, a hyperedge is constructed with the
set of source nodes consisting of the node corresponding to t and the set of nodes
corresponding to the formal parameter types of method m. The target of the
hyperedge is a node corresponding to a method trace for method m. We annotate
this node with the program state information for context as well as the method
name. For a set of annotated hyperedges EA, CallEdges (EA) defines the set of
call hyperedges. Each return hyperedge is a one-to-one relationship between an
origin trace node and a target code object with an annotation comprising of the
method name for the origin node and program state information for context.
For a program P , we say a program state σ of a program P is data store for all
variables at a given execution point in P .

Definition 6 (Code Hypergraph). Let Π be the set of all program states
for a program P with TCFG T . A code hypergraph corresponding to a TCFG
T is an annotated hypergraph H (N,EA) where, for each n ∈ N , n corresponds
to either a (1) code object or (2) a method trace (acquired from an analysis of
T). Each directed hyperedge e ∈ EA is defined by the ordered pair e = (S, t, A)
where S ⊆ N and t ∈ N is a target set of instructions corresponding to some
method call. Each hyperedge annotation, A ∈ A, is defined as a pair A = (m,σ)
where m is a method in the source code and σ ∈ Π. We say that a hyperedge
(S, t, A) is labeled by m if A = (m,σ) for some σ ∈ Π.

StaticGen: Static Generation of UML Sequence Diagrams 179

It is clear from Definition 6 that we can encode method invocations and
returns as events and thus as annotations of hyperedges in a code hypergraph.

2.3 Sequence Diagrams

A sequence diagram is an instance of the more general message sequence chart.
Succinctly, a message sequence chart [11, Ch. 4] [2,18] can be described as a set
of partially-ordered, labeled events over a set of “processes”. We will define a
sequence diagram as a code hyperpath in a code hypergraph. A code hyperpath
in a code hypergraph H (N,EA), constructed from a TCFG T , is a hyperpath
in H.

We now define a sequence diagram in terms of a (code) hyperpath in a code
hypergraph.

Definition 7 (Hypergraph Sequence Diagram). Let H (N,EA) be a code
hypergraph. Also let m be a method with entry point m0 and let mexit be an
exit point of m. A hypergraph sequence diagram for method m corresponds to
a hyperpath in H from the source hypernode of a hyperedge labeled m0 to the
target node of a hyperedge labeled mexit and is denoted by Y (H,m0,mexit). The
set of sequence diagrams Y(H,m0,mexit) for a fixed pair of entry and exit points,
m0 and mexit respectively, is the set of all Y (H,m0,mexit). Since a method
has one fixed entry point and many possible exit points (given by Mexit), the
collection of all such sequence diagrams (code hyperpaths) is given by Y =⋃

mexit∈Mexit
Y(H,m0,mexit).

We prove the equivalence of a message sequence chart with our notion of a
sequence diagram as a hyperpath in [3].

To generate sequence diagrams, the code hypergraph is extracted according
to the discussion in Sect. 3 where method m is a parameter specified by the user.

2.4 Characteristics of Sequence Diagrams

In this subsection, we formalize some properties of sequence diagrams that will
be used by the query-based refinement interface for narrowing down the set of
sequence diagrams generated to those that would be most “informative” to the
user.

Depth of a Sequence Diagram. As a metric for code complexity, we define depth
which relates the longest sequence of causally ordered messages without return-
ing. We call O1, . . . ,On = {O}i an object sequence where for all 1 ≤ i ≤ n, Oi

are code objects. The length of the object sequence O1, . . . ,On is n. We define
depth for a sequence diagram independent of the hypergraph definitions.

Definition 8 (Depth of a Sequence Diagram). The depth of a sequence
diagram D is the greatest length d of the object sequence O1, . . . ,Od in the
diagram such that for each 1 ≤ i ≤ d − 1, there exists a message mi from Oi to
Oi+1 and for each 1 ≤ j ≤ d − 2, mj → mj+1 (mj causally precedes mj+1) and
there does not exist any message m either from Oj to Oj+1 or vice versa such
that mj → m and m → mj+1.

180 C. Alvin et al.

Interesting Sequence Diagrams. Not all sequence diagrams are of particular inter-
est to a user. Requiring user interaction for refinement from the set of all sequence
diagrams corresponding to a program is not ideal in terms of time and effort;
therefore, we suggest a first step in formalizing the notion of an interesting
sequence diagram to make interactions with StaticGen more efficient.

Formally defining an interesting sequence diagram requires quantification of
some characteristic(s) of a sequence diagram. For a code hypergraph H (N,EA),
we define function Msg : H → N, as Msg (H) = |CallEdges (EA)|. For a hyper-
graph sequence diagram D in H (N,EA), we define Msg(D) = Msg(H)D where
the subscript denotes restriction to D and note that Msg is a measure that spec-
ifies the number of messages (method invocations) in the sequence diagram.

Let DP be the set of all sequence diagrams for a program P . For D ⊆ DP ,
let Msgs (D) = {u | ∃D ∈ D s.t. Msg (D) = u ∈ N} and let Msgs (D)k denote
the set of the k greatest elements of Msgs (D) where 1 ≤ k ≤ |D|. We define a
function select : N → DP that, for a u ∈ N, returns a sequence diagram D ∈ DP

such that Msg (D) = u. If there exists multiple D ∈ DP with Msg (D) = u, ties
are broken arbitrarily; select (u) is undefined if there does not exist any sequence
diagram D ∈ DP such that Msg (D) = u. We define a function top that, for
a set of sequence diagrams D ⊆ DP and a fixed number 0 ≤ k ≤ |D|, returns
k sequence diagrams in D having the greatest number of messages. Formally,
top (D, k) = {select (u) | u ∈ Msgs (D)k} where D ⊆ DP and 1 ≤ k ≤ |D|.
Definition 9 (Interesting Sequence Diagram). For a program P with the
set of sequence diagrams DP with |DP | = n and a fixed 0 < k ≤ n, DP is an
interesting sequence diagram if DP ∈ top (DP , k).

For example, consider method middleButtonOnClick in Fig. 2 with gener-
ated set of sequence diagrams D. The sequence diagram in Fig. 4 is interest-
ing for 0 < k ≤ 8, since Msg (D) = 6 for each D ∈ D describing a trace of
middleButtonOnClick. The sequence diagram in Fig. 5 contains two messages
and is therefore uninteresting for 0 < k ≤ 8.

While it is arguable that Definition 9 may not be ideal for every user, we
believe that code complexity is often rooted in the number of method invoca-
tions and thus the probability is greater that a single trace can provide more
information and thus is more likely to expose bugs and vulnerabilities.

3 Constructing the Hypergraph

In this section, we describe how StaticGen constructs a code hypergraph from
an input set of code files; see [3] for pseudocode of the algorithms described
here. The input to StaticGen is a set of (unobfuscated) code files in an object-
oriented language. We assume that the code is processed by an intermediate
system [15,29] into a TCFG. We construct a corresponding H and populate the
nodes and hyperedges.

StaticGen: Static Generation of UML Sequence Diagrams 181

Nodes. As in Definition 6, there are two types of nodes in a code hypergraph. To
construct both types of nodes, we parse the TCFG. For code objects, if a partic-
ular instruction is a declaration or a formal parameter, we add a corresponding
node to H. If a node m defines a method prototype, we construct all possible
traces for m using a process that identifies all possible naive execution paths
for a method m over a control-flow graph; we then add each trace to the code
hypergraph.

Hyperedges. We consider the two varieties of hyperedges in turn: call hyperedge
and return hyperedge. A call hyperedge captures the callee trace, context of a
caller through the set of input objects, and annotation of the method. For method
calls, the hyperedge origin nodes consist of the callee trace nodes and the set
of nodes corresponding to the actual parameters in the method call. The target
node is then a node corresponding to a trace of the called method. The result
is a call hyperedge for the code hypergraph with an annotation consisting of the
name of the called method and an empty program state. For non-void methods,
we construct a return hyperedge relating the current trace node as source and
the object being returned as target annotated with the called method name and
empty program state and an indicator that it is a return hyperedge.

4 Static Sequence Diagram Construction

Sequence diagram generation consists of three phases: (1) sub-hypergraph iden-
tification through pebbling [8], (2) hyperpath identification, and (3) converting
from a hyperpath to a sequence diagram. For a more detailed description and
pseudocode of each phase, see the extended paper [3].

Pebbling. Pebbling is a linear-time traversal over an annotated hypergraph that
identifies a sub-hypergraph [6, Ch. 1] satisfying constraints placed on code
objects and methods by the user. Pebbling is a breadth-first traversal over an
annotated hypergraph where we mark each node with a pebble once it is vis-
ited using the rule “once all source nodes in a hyperedge have been pebbled,
the target node is pebbled” (similar to the Dowling and Gallier [8] marking
algorithm for satisfiability of propositional horn clauses). For example, in Fig. 3,
if we pebble the trace node for middleButtonOnClick, we immediately peb-
ble the trace node for getBlue. In turn, we pebble the code object node for
c. Then, since both source nodes are pebbled, we pebble the target trace node
for SetUpperRightButton. We assume that a code hypergraph has been pebbled
resulting in a pebbled code hypergraph.

Hyperpath Identification. For a given method m, we construct the corresponding
set of all hyperpaths in a code hypergraph H. Our algorithm maintains the same
information for a sequence diagram as stated in Definition 7, but instead of
maintaining a code hyperpath the result is an equivalent path consisting of
one-to-one edges and an associated set of objects. For simplicity, we consider
constructing a single path P by considering a single trace T of m. Recall that
a trace T is a sequential set of instructions. For each instruction i ∈ T , we

182 C. Alvin et al.

consider if i is a method invocation. If i is not a method invocation, we add i
to P maintaining sequential order of instructions. If i is a method invocation,
we recur with a trace of the method called in i. P is then a valid, sequential
ordering of instructions for method m.

Hyperpath to Sequence Diagram Conversion. Given a path P corresponding to
a hyperpath in a code hypergraph, we construct the corresponding sequence dia-
gram D. For each method invocation instruction i in P, we add to D each of the
following: (a) the invocation of method m in i as a message, (b) a recursively
constructed sub-sequence diagram of m, and (c) a message indicating a return
from m.

5 Interface for Diagram Generation

A sequence diagram D has features such as: depth as defined in Definition 8,
number of messages (number of call hyperedges), types of all code objects,
method coverage, and branch coverage. In this section, we describe the query
language, the interface for query-based refinement, and provide some examples.

5.1 Query over the Language of Sequence Diagrams

We define a query over the language of sequence diagrams. The language of
sequence diagrams L is defined over the alphabet Σ consisting of code objects
and method traces. For simplicity, we will refer to code objects as ci with i ∈ Z

+,
method traces as mj with j ∈ Z

+ with corresponding method returns m′
j . Hence,

Σ = {c}i ∪ {m}j ∪ {m}′
j for i and j finite in Z

+ and i ≥ 1 and j ≥ 1.
We note that a hyperpath Y in a code hypergraph H is a string in L [3] since

a topological sort of the DAG corresponding to Y results in a string s ∈ L.
We note that distinct orders of topological sorts on a DAG corresponding to a
hyperpath will result in distinct strings; however, each such string is unique in
L over the original program. A query is defined over a set of sequence diagrams
D ⊆ L generated using the techniques described in Sect. 4; however, generation
can be more targeted. It is often cumbersome and unnecessary to generate all
sequence diagrams beginning at a main method in a program. Generation can
be performed on-demand beginning at any method reducing the size of the cor-
responding hypergraph. In order to acquire the initial set of sequence diagrams
DS , we may use the predicate “start M ,” where M is a method dictating where
the resultant sequence diagram(s) will begin.

Query Operations. A query Q = {q}i over L consists of a finite sequence of
operations {q}i that refine the given set of sequence diagrams D ⊆ L into the
resulting set Q(D) = F ⊆ D.

• For a method trace � ∈ Σ, “filter � D” prunes the substring from � to �′ in
each sequence diagram in D. This removal process efficiently eliminates calls
to library-based functionality or method definitions that are not of interest.

StaticGen: Static Generation of UML Sequence Diagrams 183

For a set of code objects � ⊆ Σ, “filter � D” prunes all characters c ∈ � from
each string in D. Removal of a code object allows the user to refine the set of
sequence diagrams by omitting specific variables.

• For a set of predicates R describing strings in L, “remove R D” will remove
all resulting sequence diagrams for which all r ∈ R evaluate to true. The
complementary operation “accept R D” will collect all sequence diagrams for
which all r ∈ R evaluate to true.

• For an integer k, “top-interesting k D” returns top (D, k).
• “meth-cover p D” and “br-cover p D” each return sequence diagrams ensur-

ing minimal method and branch coverage respectively for a lower bound per-
centage p ([3] formally defines method and branch coverage).

We define a simple grammar for a query Q over L; the terminal symbols
include �, R, 0 ≤ p ≤ 1, and k ∈ Z

+ as defined above.

Q(D) → D | filter � Q(D) | remove R Q(D) | accept R Q(D)
| top-interesting k Q(D) | meth-cover p Q(D)
| br-cover p Q(D)

5.2 Query Interface to Diagram Generation

We present an interface where a user of StaticGen can query over the set of
sequence diagram features to obtain a subset of sequence diagrams. Our method-
ology requires manual input of the code as well as a query Q as previously
described. Depending on the specification of Q, we may omit, through the
pebbling process, call hyperedges corresponding to method calls that may be
removed. Given a pebbled code hypergraph, we construct the corresponding set
of all sequence diagrams. We then filter the resulting set of sequence diagrams
related to method removal, coverage, or top into the desired set of sequence
diagrams.

If the user wishes to refine Q into Q′ we may re-pebble the code hypergraph
and generate according to Q′. Our query system provides continual refinement
until the appropriate set of sequence diagrams is acquired. That is, initially, a
user might simply request a set of interesting sequence diagrams. Then, as the
user becomes more familiar with the code base, they may define a more restricted
query. This process of query refinement can continue ad nauseum.

Within the bounds of the user selected query, we prioritize what the user
sees by first eliminating strictly isomorphic diagrams [3] and diagrams which are
“subsets” of other diagrams. We then determine the set of sequence diagrams S
that match the user’s query. Using a method coverage metric for the code, we
prioritize the diagrams into a list I.

5.3 Sample Queries

Assume the user specifies as input the code base containing the source code in
Fig. 2. To filter elements from the set of resulting sequence diagrams, the user

184 C. Alvin et al.

defines a query Q with start being middleButtonOnClick and filters object
r and its corresponding methods as well as the setText method. The result is
eight diagrams, seven of which are strictly isomorphically unique [3], and one of
which is shown in Fig. 4. If we append to Q an accept predicate with method
SetUpperRightButton(int), the only diagram returned is shown in Fig. 4.

As another example, Fig. 5 arises from a query requesting the least interesting
diagram from analyzing all methods.

6 Experimental Results

Timely generation of sequence diagrams depends on two factors: (1) complexity
of branching in the given code and (2) user-defined queries to pebble the hyper-
graph and prune the resultant set sequence diagrams. For our experiments, we
limit diagram generation to package prefixes. This limitation allows the user to
visualize internal package interactions without dealing with bloat from exterior
execution paths to that package. We ran our generation algorithm on a desk-
top with Intel Core i5-4460 at 3.2 GHz with 8 GB RAM on 64-bit Linux Mint
operating system.

Benchmark Code. Our initial tests have focused on open-source Android byte-
code applications taken from [1,35] with wide-ranging focus, including: ad block-
ing, email, and web browsing. The bytecode was input into the Soot framework
[29] which can process bytecode or source code thus bringing the same capabili-
ties to bear, independent of input format. [3] lists the projects and corresponding
facts about each code base in the chosen corpus, including the package we ana-
lyzed, the number of constituent classes, processing time, and the operation
count.

Soot analyzes bytecode by breaking down classes into groups of methods, and
methods into groups of abstract statements; the number of abstract statements
is referred to as the operation count. While operation count may not correspond
one to one with source lines of code, it does correspond to essential logical state-
ments executed by the processor, and is a useful measurement of the complexity
of the program analyzed. The operation count for our corpus is shown in [3].

As another measure of complexity of the target Android code, we consider the
histogram in Fig. 6 depicting the mean depth of diagrams for non-library func-
tionality for each benchmark Android package. Our event-driven benchmarks
are generally shallow as is evident in Fig. 6; the mean depth among all pack-
ages is 1.29 with standard deviation 0.92. We view the depth metric as a guide
to the number of corresponding sequence diagrams; the greater the depth, the
more diagrams should result. Figure 7 is a scatterplot of the relationship between
mean depth and number of diagrams generated. We see a linear model given by
y = 887.58x − 496.56, where y is the number of diagrams generated, and x is
the mean depth of the set of diagrams for an Android package. The correlation
is moderate with correlation coefficient r2 = 0.5643.

StaticGen: Static Generation of UML Sequence Diagrams 185

0 5 10 15 20 25 30

0

1

2

3

4

Android Application Package

M
ea
n
D
ia
gr
am

D
ep
th

Fig. 6. Mean sequence diagram depth
per android application package

0 1 2 3 4

0

1,000

2,000

3,000

4,000

Mean Diagram Depth

N
o.

Se
qu

en
ce

D
ia
gr
am

s

Fig. 7. No. generated sequence dia-
grams vs. mean diagram depth for the
entire corpus

Time and Scope of Synthesis. We measure tool efficiency by considering gener-
ation time. Our reported execution times include Soot’s Simplification [29] pro-
cedure, hypergraph construction, diagram generation, and refinement. In Fig. 8,
several Android packages are processed quickly. However, the mean of 96.78s
and the standard deviation of 174.58s indicates more complex packages result in
greater time dispersion. For each Android package, Fig. 9 describes the number of
diagrams that give complete method coverage. Some of the more complex pack-
ages skew the distribution (std. dev. 1085.23 and mean 647.1) with a strongly
correlated linear model (r2 = 0.9082) comparing the number of diagrams with
respect to generation time. This is strong evidence indicating our technique does
not require a significant amount of processing time for code bases with large sets
of sequence diagrams.

Comparison with Dynamic Synthesis Tools. Several existing tools for sequence
diagram generation are based on traces saved from debug runs of a program
[10,24]. While our approach differs significantly in that we utilize static analysis
to generate diagrams from a large number of potential execution paths, we did
compare our approach against Diver [24]. We found that StaticGen was able to
construct similar sequence diagrams compared to Diver which uses a dynamic
approach. The full text of this comparison is available at [3].

Evaluation of Interestingness. We test the usefulness of our interestingness met-
ric by examining the possibility of using it in uncovering security vulnerabilities in
code. We selected an independently studied example for assessing our definition
of interestingness. Both Livshits [19] and Sampaio [31] used a web application
named BlueBlog [7] in their corpora of applications with security vulnerabili-
ties. In addition, [31] provided a software tool, ESVD [30], to analyze code for
vulnerabilities.

186 C. Alvin et al.

0 5 10 15 20 25 30

0

200

400

600

Android Application Package

T
im

e
(s
ec
on

ds
)

Fig. 8. Time per android application
package

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

Android Application Package

N
o.

Se
qu

en
ce

D
ia
gr
am

s

Fig. 9. Number of sequence diagrams
per android application package

We focus on a vulnerability evident in the unsafe http request in the code
in Fig. 10 that was originally detected by ESVD [30]. The value returned by the
getServletPath function is stored in the variable url and is not sanitized by
both branches. Without any filtering, StaticGen generated 2800 diagrams from
BlueBlog, while the interestingness criterion narrowed it down to 45 diagrams
ranked according to top defined in Sect. 5. The doGet method was the subject
of the diagrams ranked 22 and 32 of the 45 interesting diagrams; a fragment of
the rank-22 diagram is shown in Fig. 11. This example shows that prioritizing
novel information allows us to reduce a set of diagrams to a useful fraction,
while retaining information about crucial code paths, that can then be dele-
gated to a human expert or a vulnerability analysis tool for further analysis
for security vulnerabilities. It is possible that an excluded diagram may contain
the vulnerability; however, our query focusing on interestingness, by definition,
includes diagrams that provide novel information. Hence, a vulnerability as we
have described cannot hide only in the discarded diagrams.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String url = request.getServletPath() + toPath;
if(forward) {

RequestDispatcher disp = getServletContext().getRequestDispatcher(url);
disp.forward(request, response);

} else {
response.sendRedirect(url);

}
}

Fig. 10. BlueBlog [7] doGet function

StaticGen: Static Generation of UML Sequence Diagrams 187

Fig. 11. BlueBlog [7] doGet sequence diagram fragment

7 Related Work

In [16,17,22], Lo, et al., propose techniques for dynamic specification mining
by inferring sequence diagrams over execution traces that include inter-object
behavior and causal ordering. Lo, et al. use a graph of symbolic message sequence
charts as an intermediate representation while we invoke a hypergraph represen-
tation. Tools such as jTracert [5] and Object-Aid [25] generate sequence diagrams
directly from application runtime while [25] uses the Eclipse IDE [9] to reverse
engineer all or part of a stack trace. Similarly, [12] divides a long dynamic trace
of a Java program into a series of smaller diagrams culminating in a sequence
diagram. Finally, [36] describes an approach for generating sequence diagrams
dynamically using a k-tail merging algorithm that merges the collected traces.
The goal of merging by [36] is to construct a single sequence diagram. Our tech-
nique does not limit generation to a single diagram, but generates a complete
space of sequence diagrams that is refined by query.

There are several tools that statically generate sequence diagrams. Visual
paradigm [34] is a simple tool for sequence diagram generation that is in one-to-
one correspondence with the source code without refinement. Other tools such
as eUML2 Modeler [32] and Visual Studio [23] generate diagrams statically, but
also offer the ability for the user to refine the diagram by selection or omission of
methods. Similarly, Architexa [4] generates sequence diagrams, but is completely
interactive with the user during construction. While all of these tools are based on
a static analysis of the target code, none of these tools automate the refinement
process based on a query scheme over the set of all possible diagrams.

The Interaction Scenario Visualizer (ISVis) [13], employs a combination of
static and trace-based information and communicates the overall importance of
visualizing source code. Tonella and Potrich [33] describe static extraction of
UML sequence diagrams from C++ code using partial analysis and focusing,
but do not perform analysis of intraprocedural flow of control. The CPP2XMI
tool [14] processes XMI into sequence diagrams with no means of user-based
refinement as with StaticGen. I2SD [26] is a static generation tool that leverages
metadata through interceptors whereas our technique does not rely on such
information. The RED tool [27,28] was a significant step forward in reverse-
engineering diagrams by mapping reducible CFGs to interactions. In contrast,
our use of an annotated hypergraph provides the means to refine the object
interactions, context, and causal ordering based on user query; in some respects,

188 C. Alvin et al.

our approach attempts to fill the “exploration mode” described in [27]. In total,
our approach seeks to empower the user by supporting query-based refinement
over the set of all sequence diagrams.

In [20,21] authors present techniques for user-guided specification mining over
executions traces by proposing approaches to filter mined sequence diagrams. We
similarly aim to support property discovery through an iterative and interactive
approach by incorporating a notion of interestingness.

8 Conclusions

This paper describes a framework for static generation of sequence diagrams
using a directed hypergraph to encode message context, interactions, and causal-
ity. Based on a user-query, we prune the sequence diagram space through a
pebbling procedure to generate the desired set of sequence diagrams. We showed
that, in practice, our framework provides the basis for interactive software arche-
ology as well as an important tool for debugging legacy code.

References

1. List of Open-Source Android Apps (2013). http://forum.xda-developers.com/
showthread.php?t=2124002

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
ICSE 2000, pp. 304–313 (2000). http://doi.acm.org/10.1145/337180.337215

3. Alvin, C., Peterson, B., Mukhopadhyay, S.: StaticGen: Static Generation of UML
Sequence Diagrams - Technical Report (2017). http://hilltop.bradley.edu/∼calvin/
papers/fase17-technical.pdf

4. Architexa.com: Introduction to Architexa—Sequence Diagram Generation (2015).
http://www.architexa.com/support/videos/sequence-diagrams

5. Bedrin, D.: jtracert (2015). https://code.google.com/p/jtracert/
6. Berge, C.: Graphs and Hypergraphs, vol. 45. North-Holland Mathematical Library,

Elsevier Science Publishers B.V. (1989)
7. Burén, R.: BlueBlog. https://sourceforge.net/projects/blueblog/. Accessed 16 Oct

2016
8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfia-

bility of propositional horn formulae. J. Log. Program. 1(3), 267–284 (1984).
dx.doi.org/10.1016/0743-1066(84)90014–1

9. Eclipse Foundation Inc: Eclipse (2015). https://eclipse.org/
10. Gestwicki, P.V., Jayaraman, B.: JIVE: Java interactive visualization environment.

In: OOPSLA 2004, pp. 226–228. ACM, New York (2004). http://doi.acm.org/10.
1145/1028664.1028762

11. Harel, D., Thiagarajan, P.: Message sequence charts. In: Lavagno, L., Martin, G.,
Selic, B. (eds.) UML for Real: Design of Embedded Real-time Systems, 1st edn.
Kluwer Academic Publishers (2003)

12. Ishio, T., Watanabe, Y., Inoue, K.: AMIDA: A sequence diagram extraction toolkit
supporting automatic phase detection. In: ICSE 2008, pp. 969–970 (2008). http://
doi.acm.org/10.1145/1370175.1370212

http://forum.xda-developers.com/showthread.php?t=2124002
http://forum.xda-developers.com/showthread.php?t=2124002
http://doi.acm.org/10.1145/337180.337215
http://hilltop.bradley.edu/~calvin/papers/fase17-technical.pdf
http://hilltop.bradley.edu/~calvin/papers/fase17-technical.pdf
http://www.architexa.com/support/videos/sequence-diagrams
https://code.google.com/p/jtracert/
https://sourceforge.net/projects/blueblog/
http://dx.doi.org/10.1016/0743-1066(84)90014--1
https://eclipse.org/
http://doi.acm.org/10.1145/1028664.1028762
http://doi.acm.org/10.1145/1028664.1028762
http://doi.acm.org/10.1145/1370175.1370212
http://doi.acm.org/10.1145/1370175.1370212

StaticGen: Static Generation of UML Sequence Diagrams 189

13. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program exe-
cutions. In: ICSE 1997, pp. 360–370 (1997). http://doi.acm.org/10.1145/253228.
253356

14. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI:
Reverse engineering of UML class, sequence, and activity diagrams from C++
source code. In: WCRE 2006, pp. 297–298 (2006). http://dx.doi.org/10.1109/
WCRE.2006.21

15. Kroening, D.: goto-cc–A C/C++ Front-End for Verification (2015). http://www.
cprover.org/goto-cc/

16. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Mining message sequence graphs.
In: ICSE 2011, pp. 91–100 (2011). http://doi.acm.org/10.1145/1985793.1985807

17. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Inferring class level specifications
for distributed systems. In: ICSE 2012, pp. 914–924 (2012). http://dx.doi.org/10.
1109/ICSE.2012.6227128

18. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic message sequence
charts. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 253–
264. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1 23

19. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with
static analysis. In: SSYM 2005, pp. 18–18. USENIX Association, Berkeley (2005).
http://dl.acm.org/citation.cfm?id=1251398.1251416

20. Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In: ASE 2008, pp.
109–118 (2008). http://dx.doi.org/10.1109/ASE.2008.21

21. Lo, D., Maoz, S.: Mining hierarchical scenario-based specifications. In: ASE 2009,
pp. 359–370 (2009). http://dx.doi.org/10.1109/ASE.2009.19

22. Lo, D., Maoz, S., Khoo, S.: Mining modal scenario-based specifications from exe-
cution traces of reactive systems. In: ASE 2007, pp. 465–468 (2007). http://doi.
acm.org/10.1145/1321631.1321710

23. Msdn.microsoft.com: Visualize Code on Sequence Diagrams (2015). https://msdn.
microsoft.com/en-us/library/ee317485.aspx

24. Myers, D., Storey, M.A.: Using dynamic analysis to create trace-focused user inter-
faces for IDEs. In: FSE 2010, pp. 367–368. ACM, New York (2010). http://doi.
acm.org/10.1145/1882291.1882351

25. Objectaid.com: UML Explorer (2015). http://www.objectaid.com/sequence-
diagram

26. Roubtsov, S.A., Serebrenik, A., Mazoyer, A., van den Brand, M.G.J., Roubtsova,
E.E.: I2SD: Reverse engineering sequence diagrams from enterprise java beans with
interceptors. IET Softw. 7(3) (2013). http://dx.doi.org/10.1049/iet-sen.2012.0056

27. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered
sequence diagrams. In: ICSE 2005, pp. 254–263 (2005). http://doi.acm.org/10.
1145/1062455.1062510

28. Rountev, A., Volgin, O., Reddoch, M.: Static control-flow analysis for reverse engi-
neering of UML sequence diagrams. In: PASTE 2005, pp. 96–102 (2005). http://
doi.acm.org/10.1145/1108792.1108816

29. Sable Research Group: Soot: A framework for Analyzing and Transforming Java
and Android Applications (2015). http://sable.github.io/soot/

30. Sampaio, L.: Early Security Vulnerability Detector. https://marketplace.eclipse.
org/content/early-security-vulnerability-detector-esvd. Accessed 16 Oct 2016

31. Sampaio, L., Garcia, A.: Exploring context-sensitive data flow analysis
for early vulnerability detection. J. Syst. Softw. 113, 337–361 (2016).
http://www.sciencedirect.com/science/article/pii/S0164121215002873

http://doi.acm.org/10.1145/253228.253356
http://doi.acm.org/10.1145/253228.253356
http://dx.doi.org/10.1109/WCRE.2006.21
http://dx.doi.org/10.1109/WCRE.2006.21
http://www.cprover.org/goto-cc/
http://www.cprover.org/goto-cc/
http://doi.acm.org/10.1145/1985793.1985807
http://dx.doi.org/10.1109/ICSE.2012.6227128
http://dx.doi.org/10.1109/ICSE.2012.6227128
http://dx.doi.org/10.1007/3-540-36206-1_23
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dx.doi.org/10.1109/ASE.2008.21
http://dx.doi.org/10.1109/ASE.2009.19
http://doi.acm.org/10.1145/1321631.1321710
http://doi.acm.org/10.1145/1321631.1321710
https://msdn.microsoft.com/en-us/library/ee317485.aspx
https://msdn.microsoft.com/en-us/library/ee317485.aspx
http://doi.acm.org/10.1145/1882291.1882351
http://doi.acm.org/10.1145/1882291.1882351
http://www.objectaid.com/sequence-diagram
http://www.objectaid.com/sequence-diagram
http://dx.doi.org/10.1049/iet-sen.2012.0056
http://doi.acm.org/10.1145/1062455.1062510
http://doi.acm.org/10.1145/1062455.1062510
http://doi.acm.org/10.1145/1108792.1108816
http://doi.acm.org/10.1145/1108792.1108816
http://sable.github.io/soot/
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
http://www.sciencedirect.com/science/article/pii/S0164121215002873

190 C. Alvin et al.

32. Soyatec.com: Soyatec - Sequence diagram generation (2015). http://www.soyatec.
com/euml2/features/eUML2%20Modeler/

33. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from C++
code. In: ICSM 2003, pp. 159–168 (2003). http://dx.doi.org/10.1109/ICSM.2003.
1235418

34. Visual-paradigm.com: Reverse Engineering Sequence Diagram from Java Source
Code (2015). https://www.visual-paradigm.com/tutorials/seqrev.jsp

35. Wikipedia: List of Free and Open-Source Android Applications (2015). http://en.
wikipedia.org/wiki/List of free and open-source Android applications

36. Ziadi, T., da Silva, M.A.A., Hillah, L., Ziane, M.: A fully dynamic approach to
the reverse engineering of UML sequence diagrams. In: ICECCS 2011, pp. 107–116
(2011). http://dx.doi.org/10.1109/ICECCS.2011.18

http://www.soyatec.com/euml2/features/eUML2%20Modeler/
http://www.soyatec.com/euml2/features/eUML2%20Modeler/
http://dx.doi.org/10.1109/ICSM.2003.1235418
http://dx.doi.org/10.1109/ICSM.2003.1235418
https://www.visual-paradigm.com/tutorials/seqrev.jsp
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://dx.doi.org/10.1109/ICECCS.2011.18

Inter-model Consistency Checking Using Triple
Graph Grammars and Linear Optimization

Techniques

Erhan Leblebici1(B), Anthony Anjorin2, and Andy Schürr1

1 Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,andy.schuerr}@es.tu-darmstadt.de

2 Universität Paderborn, Paderborn, Germany
anthony.anjorin@uni-paderborn.de

Abstract. An important task in Model-Driven Engineering (MDE) is
to check consistency between two concurrently developed yet related mod-
els. Practical approaches to consistency checking, however, are scarce in
MDE. Triple Graph Grammars (TGGs) are a rule-based technique to
describe the consistency of two models together with correspondences.
While TGGs seem promising for consistency checking with their precise
consistency notion and explicit traceability information, the substantial
search space involved in determining the “optimal” set of rule applica-
tions in a consistency check has arguably prevented mature tool support
so far. In this paper, we close this gap by combining TGGs with lin-
ear optimization techniques. We formulate decisions between single rule
applications of a consistency check as integer inequalities, which serve
as input for an optimization problem used to detect maximum consis-
tent portions of two models. To demonstrate our approach, we provide
an experimental evaluation of the tool support made feasible by this
formalization.

Keywords: Consistency check · Traceability · Linear optimization

1 Introduction and Motivation

Models are used in Model-Driven Engineering (MDE) to represent abstractions
of a system with respect to a certain perspective. In a typical MDE process,
especially when different disciplines are involved, there are often models con-
taining related information but maintained by different engineers concurrently
giving rise to consistency challenges. A crucial task in MDE is thus to perform
a consistency check, i.e., to determine if, or to what extent, two models are con-
sistent, before applying any consistency restoration. We discuss in this paper
consistency checking with Triple Graph Grammars (TGGs) [25], a rule-based
language for specifying a consistency relation between two modeling languages.

The basic idea of TGGs is to specify a set of rules (a grammar) describing how
consistent model pairs are constructed together with a correspondence model
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 191–207, 2017.
DOI: 10.1007/978-3-662-54494-5 11

192 E. Leblebici et al.

representing explicit traceability information. Given such a specification and two
models, the goal of a consistency check is to determine whether the models can
be constructed by the grammar and, if so, to create a respective correspondence
model. If the model pair is not completely consistent, we propose to determine
a partial correspondence model referencing consistent subparts of the models.

Establishing consistency checking with TGGs is crucial as practical solutions
to consistency checking are currently scarce in MDE. QVT-R [22] (in particular
its checkonly mode) is the only available standard for consistency checking in
MDE. The QVT-R implementation candidate Medini QVT [20], however, is able
to check consistency only if one of the models is generated by the tool itself via
model transformation and auxiliary traces are already available. Consistency
checking for models developed concurrently (in independent environments by
different developers) where traces are not available beforehand is not addressed
so far. Our goal is to tackle this general consistency challenge in concurrent MDE
activities by clearing the last obstacles for the applicability of TGGs.

The pioneer work for consistency checking with TGGs is [4] which derives con-
sistency checking rules from a TGG. How to conclude consistency (or inconsis-
tency) of two models with these rules, however, remains open due to the substan-
tial state space regarding decisions among possible rule applications. Finding the
best partial correspondence model between two inconsistent models (e.g., relating
as many elements as possible) is consequently also an open issue. We close this gap
by formulating a linear optimization problem for choices among rules, and discuss
the respective tool support made feasible by this novel formalization. While we
discuss relating a maximum number of model elements as a general objective fort
the optimization problem, our approach can be extended with custom objectives
reflecting case-specific policies for handling inconsistency (e.g., covering as many
elements as possible of a certain type, model, or property).

class List
{

void remove (Object obj){…}

void remove (int index){…}
}

List

remov e(obj : Object)
remov e(index: int)

Fig. 1. A consistent model pair

As a running example, we consider consis-
tency between Java code and UML class dia-
grams throughout the paper. Note that many
UML tools generate Java code from UML class
diagrams (or vice versa) in a consistent way
but no practical solution exists to check consis-
tency between these artifacts if they are devel-
oped concurrently (similar to the shortcomings of QVT-R implementations as
discussed above). The excerpt we focus on in our running example is a one-to-one
mapping between Java and UML classes, methods, and parameters but already
reveals the complexity of consistency checking. The challenging part of our case
study arises from overloaded methods: Determining the corresponding pairs of
methods belonging to the same class and sharing the same name can require a
careful decision making. Consider, for example, the consistent Java and UML
class pair in Fig. 1. The dashed lines represent correct decisions of corresponding
remove methods (and consequently corresponding parameters), while the dotted
lines represent wrong decisions. In fact, such local decisions while relating two
models are not specific to this example and wrong decisions can be chosen by a

Inter-model Consistency Checking Using Triple Graph Grammars 193

TGG-based consistency check. In this case, our consistent model pair would be
identified erroneously as inconsistent (due to incompatible parameters of mis-
takenly corresponding methods). Our experiments with HenshinTGG [8], the
only TGG tool we are aware of with consistency checking support, showed that
consistency checking indeed fails in cases where such decisions are necessary.

Our approach considers alternative steps of a consistency check and uses
logical dependencies between single steps to calculate a correct subset. This
corresponds to creating all lines together in Fig. 1, solving a suitable optimiza-
tion problem to maximize the number of related elements, and eliminating the
dotted lines in retrospect. Intuitively, the dashed and dotted lines in Fig. 1 are
alternatives where the dashed ones relate a larger number of elements.

After reviewing basic TGG theory in Sect. 2, we formalize in Sect. 3 choices
between alternative decisions in a consistency check as integer inequalities. Our
basic formal result in Theorem 1 states that any choice satisfying these inequal-
ities leads to some consistent portions of models. Subsequently, we state a suffi-
cient (Corollary 1) as well as a sufficient and necessary (Corollary 2) condition for
consistency by maximizing these portions. Section 4 evaluates our tool support.
Section 5 discusses related work, and Sect. 6 concludes the paper.

2 Preliminaries

: P2P

: M2M

: C2C
: JClass

name == "List"

: JMethod
name == "remove"

: JParameter
name == "obj"

: UMLClass
name == "List"

: UMLMethod
name == "remove"

: UMLParameter
name == "obj"

method

parameter parameter

method

Fig. 2. A triple graph

In line with the algebraic formalization of graph
grammars [6], we represent models as graphs. We
then introduce triples of graphs (Fig. 2) as we shall
be dealing with source, target, and correspondence
models (denoted with S, T, or C prefix, respec-
tively). The notion of triple graphs provides a
precise means for describing correspondences as
graph patterns that are amenable to mature graph
transformation tools. We provide our formaliza-
tion without type and attribute information in graphs for brevity. The formal-
ization can be extended compatibly to attributed typed graphs with inheritance
according to [6].

Definition 1 (Graph, Triple Graph). A graph G = (V,E, s, t) consists of
a set V of vertices, a set E of edges, and two functions s, t : E → V assigning
to each edge a source and target vertex, respectively. elements(G) denotes the
union V ∪E where each e ∈ elements(G) is an element of G. A graph morphism
f : G → G′, with G′ = (V ′, E′, s′, t′), is a pair of functions fV : V → V ′,
fE : E → E′ such that fV ◦ s = s′ ◦ fE ∧ fV ◦ t = t′ ◦ fE. f is a monomorphism
iff fV and fE are injective.

A triple graph G = GS
γS← GC

γT→ GT consists of graphs GS, GC , GT , and
graph morphisms γS : GC → GS and γT : GC → GT . elements(G) denotes the
union elements(GS)∪ elements(GC)∪ elements(GT). A triple morphism f : G →
G′ with G′ = G′

S

γ′
S← G′

C

γ′
T→ G′

T , is a triple f = (fS , fC , fT) of graph morphisms

194 E. Leblebici et al.

where fX : GX → G′
X and X ∈ {S,C, T}, fS◦γS = γ′

S◦fC and fT ◦γT = γ′
T ◦fC .

f is a triple monomorphism iff fS , fC , and fT are monomorphisms.

A TGG comprises monotonic (i.e., non-deleting) triple rules that generate
and thus define the language of consistent source and target graphs.

Definition 2 (Triple Rule and Derivation). A triple rule r :

m m'
r

PO

G G '
g

L RL → R is a triple monomorphism. A direct derivation via a
triple rule r, denoted as G

r@m===⇒ G′, is constructed, as depicted
to the right, by a pushout over r and a triple monomorphism
m : L → G where m is called match. A derivation D : G

r1@m1====⇒
G1

r2@m2====⇒ . . .
rn@mn====⇒ Gn (short D : G

∗=⇒ Gn) is a sequence
of direct derivations. We refer to the set D = {d1, . . . , dn} of direct derivations
included in D as the underlying set of D.

Example 1. Figure 3 depicts four TGG rules for our running example where
created elements of a rule (i.e., elements in R but not in L) are depicted green
with a ++-markup. Context elements (L) are depicted black. Triple rule r1
creates a Java class and a UML class together with a correspondence. Triple
rule r2 does the same with additional inheritance links on both sides. Triple rule
r3 creates a corresponding pair of Java and UML methods, while triple rule r4
creates parameters. The attribute constraints (e.g., jc.name == uc.name in r1)
enforce name equality of corresponding classes, methods, and parameters.

r1 r2

r3 r4 p : P2P

++

m :
M2M

jm :
JMethod

um :
UMLMethod

jp :
JParameter

++
up :

UMLParameter

++

jp.name == up.name

++parameter ++ parameter

++ ++
m :

M2M

++

c :
C2C

jc :
JClass

uc :
UMLClass

jm :
JMethod

++
um :

UMLMethod

++

jm.name == um.name

++method

++++

++ method

c1 :
C2C

c2 :
C2C

++
jc2 :

JClass

++
uc2 :

UMLClass

++

jc1 :
JClass

uc1 :
UMLClass

jc2.name == uc2.name

++
superClass

++
superClass

++++

c :
C2C

++
jc :

JClass

++
uc :

UMLClass

++

jc.name == uc.name

++++

Fig. 3. TGG rules describing how consistent models are constructed

Definition 3 (Triple Graph Grammar and Consistency). A triple graph
grammar TGG : R consists of a set R of triple rules. The generated language

Inter-model Consistency Checking Using Triple Graph Grammars 195

L(TGG) is defined as follows: L(TGG) = {G∅}∪{G | ∃D : G∅
r1@m1====⇒ G1

r2@m2====⇒
. . .

rn@mn====⇒ Gn = G}, where G∅ is the empty triple graph and, ∀i ∈ {1, . . . , n},
ri ∈ R. A source graph GS and a target graph GT are consistent with respect to
TGG iff ∃G ∈ L(TGG) with G = GS ← GC → GT .

Finally, we define consistency rules derived from the original triple rules.
They mark source and target elements that would be created by the original
TGG rules. This way, it can be determined whether a given pair of source and
target graphs can be constructed by applying the original triple rules of a TGG.

Definition 4 (Consistency Rule and Marking Elements).

Given a triple rule r : L → R
with L = LS ← LC → LT

and R = RS ← RC →
RT , the respective consis-
tency rule cr : CL → CR
is constructed, as depicted to
the right, such that CL is a pushout of L and RS ← ∅ → RT over LS ← ∅ → LT ,
and CR = R (cr : CL → CR is induced as the universal property of the pushout).
An element e ∈ elements(RS)∪elements(RT) is referred to as a marking element
of cr iff �e′ ∈ elements(LS) ∪ elements(LT) with rS(e′) = e or rT (e′) = e.

p : P2P

++

m :
M2M

jm :
JMethod

um :
UMLMethod

jp :
JParameter

up :
UMLParameter

jp.name == up.name

parameter

++

parameter

++

☑ ☑

☑ ☑
cr4

Fig. 4. Consistency rule cr4 derived from
r4 in Fig. 3

Example 2. The consistency rule cr4
derived from the original triple rule
r4 is depicted to the right together
with its marking elements. Intuitively,
a consistency rule marks exactly those
source and target elements that are
created by the original triple rule (++-
markup is replaced by a gray checked
box on the source and target side),
and creates the same correspondences.
Consistency rules cr1, cr2, and cr3 for
the respective triple rules r1, r2, and r3 are derived analogously.

3 Choices Between Markings as an Optimization Problem

Our goal in this section is to check consistency for a given model pair GS and GT

with respect to a TGG, i.e., to find a triple graph G′
S ← GC → G′

T ∈ L(TGG)
where G′

S and G′
T refer to the consistent portions of GS and GT , respectively

(G′
S = GS and G′

T = GT if GS and GT are consistent). Direct derivations via
consistency rules represent the single steps of such a consistency check. Markings
simulate the creation of GS and GT by the original triple rules and correspon-
dences (GC) are created in the process serving as traceability information. As
we have discussed in Sect. 1, however, this process can result in wrong markings
and correspondence creations if it is not suitably controlled.

196 E. Leblebici et al.

In the following, we consider derivations with consistency rules that possibly
mark model elements multiple times and thus represent a superset of correct
markings. We consider each direct derivation of such a derivation as an inte-
ger between 0-1 and formulate integer inequalities for exclusion and implica-
tion dependencies between direct derivations which were discussed in previous
work [17]. In sum, we combine two techniques: Graph pattern matching (via con-
sistency rules) is performed on triple graphs and logical constraints over matched
patterns are solved. While the first reduces the search space via structural pat-
terns (as compared to purely constraint-based solutions such as [18,19]), the
latter leads to a final choice between matchings.

Moreover, we handle the logical constraints as an optimization problem to
address consistency and inconsistency in a unified manner. This allows us to
use an objective function that governs the process to find a best choice among
collected direct derivations, which is especially crucial in case of inconsistency.
In this paper, we only focus on maximizing the number of related elements as
the objective while our approach can be extended by further custom objectives
reflecting case-specific consistency policies (e.g., marking as many UML elements
as possible while marking Java elements is not of uppermost priority). The main
idea is depicted schematically in Fig. 5 based on our exemplary model pair.

Fig. 5. A schematic overview of our approach with consistent models

Inter-model Consistency Checking Using Triple Graph Grammars 197

In the upper left part of Fig. 5, a derivation of seven direct derivations
{d1, . . . , d7} with consistency rules marks the source and target model elements.
Every source and target model element is annotated with its marking direct
derivations. Similarly, each correspondence is annotated with its creating direct
derivation. Without taking a decision, for instance, all overloaded remove meth-
ods are marked twice due to multiple options. Sets of constraints then state
logical dependencies between direct derivations. For example, both d2 and d3
mark the same remove method on the Java side as alternatives and thus cannot
be chosen together, leading to d2 + d3 ≤ 1 (highlighted with a gray shading in
Fig. 5). Furthermore, d2 creates a correspondence and marks source and target
elements used by d4 as context to mark obj parameters. Hence, d4 can only be
chosen if d2 is chosen (leading to d4 ≤ d2). Finally, an objective function max-
imizes the number of marked elements while satisfying the inequalities (each
direct derivation is weighted with the number of its marked elements). This
forms a linear optimization problem and can be appropriately handled with
Integer Linear Programming (ILP) techniques in practice (in fact, a special case
of ILP with 0-1 integers). The model pair in Fig. 5 is identified to be consistent
as the outcome of the optimization problem marks each model element exactly
once (as they would be if created by the original TGG rules).

To formalize this idea, we first define sets of marked, required, and created
elements of a direct derivation, which are decisive for formulating constraints.

Definition 5 (Marked, Required, and Created Elements). For a direct
derivation d : G

cr@cm====⇒ G′ via a consistency rule cr : CL → CR with G = GS ←
GC → GT and G′ = GS ← G′

C → GT , we define the following sets:

– marks(d) = {e ∈ elements(GS) ∪ elements(GT) | ∃e′ ∈ elements(CL) with
cm(e′) = e where e′ is a marking element of cr}

– requiresSrcTrg(d) = {e ∈ elements(GS) ∪ elements(GT) | ∃e′ ∈ elements(CL)
with cm(e′) = e where e′ is not a marking element of cr}

– requiresCorr(d) = {e ∈ elements(GC) | ∃e′ ∈ elements(CL) with cm(e′) = e}
– creates(d) = elements(G′

C) \ elements(GC).

Given a model pair G0 = GS ← ∅ → GT , a derivation constraint is a set
of integer inequalities representing exclusions and implications between direct
derivations collected in a consistency check process starting from G0.

Definition 6 (Constraints for Consistency Check Derivations). Given
a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. For each direct
derivation d1, . . . , dn ∈ D, we define respective integer variables δ1, . . . , δn with
0 ≤ δ1, . . . , δn ≤ 1. A constraint C for D is a conjunction of linear inequalities
which involve δ1, . . . , δn. A set D′ ⊆ D fulfills C, denoted as D′ � C, iff C is
satisfied for variable assignments δi = 1 if di ∈ D′ and δi = 0 if di /∈ D′.

Our first constraint markedAtMostOnce(G0) requires that each source and
target element of a model pair G0 be marked at most once, i.e., a choice between

198 E. Leblebici et al.

alternative markings of the same element(s) is enforced. As a result of a consis-
tency check, an element can either remain unmarked (due to inconsistency) or
it can be marked once. Definition 7 introduces the sum of alternative markings
of the same element and Definition 8 restricts it to 0–1 as a constraint.

Definition 7 (Sum of Alternative Markings for an Element). Given a
triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via con-
sistency rules with the underlying set D of direct derivations. For each element
e ∈ elements(G0), let E = {d ∈ D | e ∈ marks(d)}. The integer markersSum(e)
denotes the sum of variables for each d ∈ E as follows:
If E = ∅, markersSum(e) = 0. If E = {d1}, markersSum(e) = δ1.
If E = {d1, . . . , dn}, markersSum(e) = δ1 + . . . + δn.

Definition 8 (Constraint 1: Marking Each Element at Most Once).
Given a triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. The constraint
markedAtMostOnce(G0) denotes

∧

e∈elements(G0)

markersSum(e) ≤ 1.

The next constraint context(D) defines dependencies as implications between
direct derivations due to their required context: A direct derivation is either
not chosen, or its required source and target elements must be marked and its
required correspondences must be created by some other chosen direct deriva-
tions. This is necessary as each chosen marking should be traced back to a deriva-
tion by the original TGG rules, where the context must always be provided.

Definition 9 (Constraint 2: Providing Context for Markings). Given
a triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. For each direct
derivation di ∈ D, we define the following constraints:
contextSrcTrg(di) =

∧

e∈requiresSrcTrg(di)

δi ≤ markersSum(e), contextCorr(di) =
∧

dj∈D,requiresCorr(di)∩creates(dj) �=∅
δi ≤ δj,

The constraint context(D) denotes
∧

di∈D
contextSrcTrg(di) ∧ contextCorr(di).

Example 3. In Fig. 5, the constraints markedAtMostOnce(G0) and context(D) are
depicted (after some logical simplifications) for our example.

The constraint context(D) ensures that the context for each chosen direct
derivation is supplied but cycles must still be avoided. Intuitively, two chosen
direct derivations may not provide context for each other (also not transitively)
as such derivations cannot be sequenced in terms of the underlying TGG.

Definition 10 (Cyclic Markings). Let D : G0
∗=⇒ Gn be a derivation via

consistency rules with the underlying set D of direct derivations. We define a
relation � ⊆ D × D between two direct derivations di, dj ∈ D as follows: di � dj

iff requiresSrcTrg(di) ∩ marks(dj) �= ∅ or requiresCorr(di) ∩ creates(dj) �= ∅.
A sequence cy ⊆ D with cy = {d1, . . . , dn} of direct derivations is a cycle iff
d1 � . . . � dn � d1.

Inter-model Consistency Checking Using Triple Graph Grammars 199

Definition 11 (Constraint 3: Eliminating Cycles). Given a triple graph
G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via consistency rules
with the underlying set D of direct derivations and let CY be the set of all cycles
cy ⊆ D. We define a constraint acyclic(D) as follows:
acyclic(D) =

∧

cy∈CY,
cy={d1,...,dn}

δ1 + . . . + δn < |cy| where |cy| is the cardinality of cy.

Example 4. The derivation depicted in Fig. 5 exhibits no cycles. In Fig. 6, how-
ever, two direct derivations (d2 and d3, both via the consistency rule cr2 derived
from r2) mark each others required elements (d2 � d3 and d3 � d2).

: C2C

: C2C

: JClass
name == "List"

: JClass
name == "Queue"

: UMLClass
name == "List"

: UMLClass
name == "Queue"

: C2C

superClass

superClass

superClass

superClass

d1

d3

d2d2

d3d2 d2

d2

d1,d3 d1,d3

d3

Fig. 6. Cyclic markings of d2 and d3

Given two classes List and Queue with
cyclic inheritance relation on both sides,
d2 marks the Queue classes and requires
List classes, and conversely for d3.
Although d2 and d3 mark the model pair
entirely (without being alternatives to
each other for any element), they can-
not be chosen together as they cannot be
sequenced in terms of the original gram-
mar. In fact, these models are inconsistent
(they just exhibit the same type of inconsistency on both sides) as our TGG (in
particular the triple rule r2) cannot create cyclic inheritance relations.

Our constraints so far enforce that (i) each element is marked at most once,
(ii) chosen direct derivations completely satisfy their context with other direct
derivations, and (iii) direct derivations do not provide context in a cyclic manner
to each other. Theorem 1 in the following states that, given a model pair G0 =
GS ← ∅ → GT and a derivation D via consistency rules, each subset of direct
derivations in D satisfying these constraints leads to a triple graph representing a
consistent portion of GS and GT . The consistent triple graph consists of elements
marked and created by the chosen subset of direct derivations.

Theorem 1 (Consistent Portions of Source and Target Graphs). Given
a TGG : (TG,R) with the set CR of respective consistency rules and a triple
graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via rules in
CR with the underlying set D of direct derivations. For any set D′ ⊆ D with
D′ � markedAtMostOnce(G0) ∧ context(D) ∧ acyclic(D), we get a triple graph
G′ = G′

S ← G′
C → G′

T such that G′ ∈ L(TGG), elements(G′
S) ⊆ elements(GS),

elements(G′
T) ⊆ elements(GT), and elements(G′) =

⋃

d∈D′
(marks(d) ∪ creates(d)).

Proof. For each direct derivation d in D′, the required source and target ele-
ments are marked and the required correspondences are created by some other
direct derivations in D′ (context(D)). Furthermore, direct derivations in D′ pro-
vide context for each other in an acyclic manner (acyclic(D)). Hence, all direct
derivations in D′ can be sequenced to a derivation D′ via rules in CR. Marked

200 E. Leblebici et al.

and created elements of each direct derivation in D′ are equal to created ele-
ments by the respective original triple rule (cf. consistency rule construction
in Definition 4). Consequently, the union of marked and created elements of
D′ leads to a triple graph G′ = G′

S ← G′
C → G′

T ∈ L(TGG). Moreover, G′
S

and G′
T are composed by picking each element of GS and GT at most once

as markedAtMostOnce(G0) holds, i.e., we get elements(G′
S) ⊆ elements(GS) and

elements(G′
T) ⊆ elements(GT). ��

In practice, when applying Theorem 1, we employ an ILP solver together
with an objective maximizing the number of marked elements as depicted in
Fig. 5. Consistency of two models can be concluded if the maximally marked
portions in Theorem 1 are equal to the entire models.

Corollary 1 (A Sufficient Condition for Consistency). Given a TGG :
(TG,R) with the set CR of respective consistency rules and a triple graph
G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via rules in CR with
the underlying set D of direct derivations. GS and GT are consistent if a set
D′ ⊆ D exists with D′ � markedAtMostOnce(G0) ∧ context(D) ∧ acyclic(D) and⋃

d∈D′
marks(d) = elements(G0).

Proof. This is a special case of Theorem 1 where elements marked and created
by direct derivations in D′ result in GS ← GC → GT ∈ L(TGG). ��
Example 5. In Fig. 5, two models GS and GT are given together with a derivation
that marks some model elements multiple times. A subset of direct derivations
satisfying the constraints is then determined leading to a triple graph GS ←
GC → GT , i.e., GS and GT are marked entirely.

Corollary 1 is a sufficient condition for consistency and already useful to con-
clude consistency from arbitrarily collected markings. If no subset of markings
in a derivation D is found that satisfies constraints and marks all elements, how-
ever, it is unclear if the models are really inconsistent or if there are some further
markings that were not collected in D. We thus characterize final derivations
with consistency rules providing all possible markings, and lift our result to a
sufficient and necessary condition for consistency. We restrict ourselves in the
following to TGGs whose consistency rules mark at least one element (called
progressive TGGs). Consistency rules that only create correspondences but do
not contribute any markings are excluded as it is unclear how often to apply
such rules for collecting a complete set of markings. This restriction does not
have any significant consequence in practice according to our experience, and is
fulfilled by all industrial and academic case studies we have worked on so far.

Definition 12 (Progressive TGG). A TGG : (TG,R) with the set CR of
respective consistency rules is progressive iff each cr ∈ CR has at least one
marking element.

Inter-model Consistency Checking Using Triple Graph Grammars 201

Definition 13 (Final Derivations with Consistency Rules). Given a pro-
gressive TGG : (TG,R) with the set CR of respective consistency rules and
a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation
via rules in CR with the underlying set D of direct derivations. D is final iff

∀dn+1 : Gn
crn+1@cmn+1=========⇒ Gn+1 with crn+1 ∈ CR, ∃di : Gi−1

cri@cmi=====⇒ Gi where
di ∈ D, cri = crn+1, and cmi = cmn+1.

Remark 1. An interesting issue is the existence of a final derivation for a given
TGG and a model pair. In some cases, the search for a final derivation does not
terminate when consistency rules create new matches for each other in a cyclic
manner (e.g., in case of a cyclic inheritance in our example as depicted in Fig. 6,
direct derivations via cr2 continuously create new correspondences and thus new
matches for each other). The problem is similar to the termination problem of
graph grammars which is in general undecidable [23]. In practice, such cycles
can either be detected and aborted at runtime, or additional restrictions for the
model pair or for the TGG can be imposed. For example, a TGG can be specified
in the style of a Layered Graph Grammar [5,24] whose termination with distinct
matches is shown in [5], or models can be constrained to avoid cyclic matches
(cyclic inheritance must be prohibited in our concrete case). We leave it to future
work to explore a restricted yet sufficiently expressive class of TGGs (statically)
guaranteeing the existence of a final derivation.

A final derivation provides all possible markings. In this case, inconsistency
can be concluded if a subset of direct derivations satisfying our constraints and
marking all elements does not exist. Corollary 2 in the following thus extends our
result from Corollary 1 to a sufficient and necessary condition for final derivations
via consistency rules of progressive TGGs.

Corollary 2 (A Sufficient and Necessary Condition for Consistency).
Given a progressive TGG : (TG,R) with the set CR of respective consistency
rules, and a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a final
derivation via rules in CR with the underlying set D of direct derivations. GS

and GT are consistent iff a set D′ ⊆ D exists with D′ � markedAtMostOnce(G0)∧
context(D) ∧ acyclic(D) and

⋃

d∈D′
marks(d) = elements(G0).

Proof. If D′ exists, the same arguments as in Corollary 1 apply to conclude
consistency of GS and GT . We show in the following that inconsistency can be
concluded if D′ does not exist: TGG is progressive and D is final. Hence, there
does not exist any further direct derivation via consistency rules that contribute
new markings with a different match to D. If D′ does not exist, there does
not exist any derivation D′ via consistency rules whose marked and created
elements compose a triple graph GS ← GC → GT ∈ L(TGG). As a result of the
consistency rule construction (Definition 4), furthermore, for each derivation via
original triple rules in R there exists a unique derivation via consistency rules in
CR. Thus, the absence of D′ leads to the absence of a derivation via triple rules
in R, i.e., GS and GT cannot be constructed together by the grammar. ��

202 E. Leblebici et al.

Fig. 7. A further example with inconsistent models

Example 6. Figure 7 shows an example where inconsistency of two models is con-
cluded (we have less methods on the UML side). In the upper left part, we have
a final derivation consisting of four direct derivations where d2 and d4 mark the
same remove method on the UML side. The upper right part depicts a subset
of direct derivations satisfying our constraints with the maximum number of
marked elements (d2 is preferred over d4 in order to mark obj parameters with
d3). Having still unmarked elements on the Java side, however, the models are
identified to be inconsistent. Nevertheless, the retained markings and correspon-
dences refer to the maximum consistent portions of these models.

4 Experimental Evaluation

Our goal in this section is to evaluate the applicability of our tool support for
consistency checking with regard to performance. To this end, we state the fol-
lowing two research questions to be investigated with our experiments:

RQ1: Are consistency checks by combining TGGs and linear optimization
applicable to real-world model pairs?

RQ2: How is the scalability of our implementation affected by different factors
including model size and numbers of collected/chosen marking steps?

Evaluation set-up. We approach both research questions with an extended
version of our running example. We extracted Java and UML model pairs from

Inter-model Consistency Checking Using Triple Graph Grammars 203

real and synthetically generated software projects using the MoDisco tool [21]
and performed consistency checks using our TGG tool. Our TGG tool collects
alternative markings between two models and utilizes an ILP solver, namely
Gurobi [13], for a decision in retrospect (we chose Gurobi due to its performance,
available academic licence, and Java API). The TGG in our experiments has
17 rules and relates packages, types, attributes, methods, and parameters on
both sides. Method bodies in Java models are ignored as they do not have any
counterpart in UML models. In all cases, the only inconsistency detected with
our TGG was the primitive type string in UML models (which is not primitive in
Java). We repeated our measurements 15 times with Intel i5@3.30 GHz, Windows
7 (64 bit), Java 8, Eclipse Neon, and 15 GB memory, and show the median.

Evaluation results and discussion. The upper part of Table 1 shows mea-
surement results with four real software projects with diverse sizes. The number
of marked source elements is generally larger than the number of marked tar-
get elements as Java models represent the same information with more vertices
and edges as compared to UML models. Moreover, there is always a difference
between the number of all marking steps and the number of chosen marking
steps (as a result of the optimization problem) due to alternative markings of
overloaded methods as we have exemplified throughout the paper. Especially the
project modisco.java makes intensive usage of method overloading and is thus
the most noticeable one among our real software projects with respect to this
difference (ca. 3.8 K of 30 K marking steps are chosen). In all experiments with
real software projects, ILP solving requires under 1 s while collecting all mark-
ings requires between 5 s and 2.5 min depending on the model size. Removing
eliminated markings and correspondences has negligible runtime.

Table 1. Measurement results with real and synthetically generated software projects

Model size ILP problem size Runtime

src.

elts.

trg.

elts.

all

marking

steps

chosen

steps

Collect

markings

(sec)

ILP

solving

(sec)

Retain

chosen

(sec)

Total (sec)

tgg.core 8, 484 5, 594 2, 007 1, 919 5.29 0.11 0.01 5.39

modisco.java 16, 705 11, 279 29, 977 3, 791 15.28 0.94 0.12 16.34

eclipse.graphiti 33, 778 21, 778 8, 819 7, 271 63.20 0.36 0.03 63.60

eclipse.compare 53, 391 31, 912 11, 670 10, 700 143.63 0.42 0.03 144.09

Synthetic (n = 25) 2, 300 1, 081 6, 162 362 1.70 0.51 0.05 2.26

Synthetic (n = 50) 8, 950 4, 006 45, 437 1, 337 6.18 7.64 0.31 14.13

Synthetic (n = 75) 19, 975 8, 806 149, 087 2, 937 23.53 53.50 2.64 79.665

Synthetic (n = 100) 35, 375 15, 481 348, 362 5, 162 67.51 201.33 13.89 282.73

Synthetic (n = 125) 55, 150 24, 031 674, 512 8, 012 164.70 674.08 51.91 890.69

204 E. Leblebici et al.

class MyClass
{

void do(int p1)
void do(int p1, int p2)
…
void do(int p1, int p2, …, int pn)

}

In order to explore the limits of the ILP solver (which is
not challenged by real models), we furthermore generated
synthetic projects consisting of a class with n overloaded
methods including 1 to n parameters. We used the same
naming convention for all parameters as depicted to the
right. With this strategy, we get n2 possible markings for methods where n of
them must be chosen. For parameters, the number of all markings is given by
n∑

i=1

i2 and the number of chosen ones by
n∑

i=1

i. In all cases, there are 12 further

alternativeless markings for (primitive) types and packages. Measurement results
in the lower part of Table 1 show that collecting markings requires similar run-
time as in real models of similar size, while ILP solving requires more than 3 min
for n = 100 (ca. 5 K of 348 K markings are chosen) and more than 11 min for
n = 125 (ca. 8K of 674 K markings are chosen). This time, removing eliminated
markings has also observable runtime (52 s) in the largest case.

In line with our results, we conclude the following for RQ1 and RQ2:

RQ1: Our approach is applicable to realistic models, terminating in the order of
only a few minutes for large models with up to 50 K elements. ILP solving can
easily cope with our specific type of constraints and objectives if the number of
alternative markings is not exceptionally large. Collecting all markings, however,
is currently the limiting factor for applicability to larger models.

RQ2: Scalability of collecting all markings strictly depends on the model size
but not necessarily on the number of collected markings. This step shows similar
runtime behaviour for real and synthetic projects although much more markings
are collected in the latter. Apparently, searching for markings between large
models (pattern matching) is the most costly operation which we also confirmed
by profiling. Conversely, scalability of ILP solving has a strict dependency on the
number of collected markings (as they form together the optimization problem).

Finally, we believe to have come up with a consistency checking approach
which (i) is already applicable to realistic models in its current form, (ii) has
reasonable runtime even for corner cases with lots of alternative markings, and
(iii) has potential for improvements, especially with respect to pattern matching.

Threats to validity. External validity is our primary concern as generalizability
of our results requires further non-trivial case studies. We argue, nevertheless,
that our synthetically generated models address ultimately challenging cases for
their sizes. Furthermore, expectations and research interests of the authors may
be a threat to conclusion validity. We thus used real-world and randomly chosen
models to make experiments unpredictable and carefully utilized profiling tools
to draw conclusions on the scalability of individual components.

5 Related Work

We consider two groups of related work: (i) consistency checking approaches in
MDE and (ii) MDE-related applications of optimization techniques.

Inter-model Consistency Checking Using Triple Graph Grammars 205

Consistency checking approaches. QVT-R [22] proposed by OMG is the
only current standard for consistency checking and describes consistency as a
set of relations between two models. Seminal contributions to QVT-R, however,
primarily address its ambiguous semantics due to a missing formalization in
the standard. In [26], a game-theoretic approach is proposed to define seman-
tics of consistency checking with QVT-R, later extended by recursive relations
in [1]. In this setting, consistency checking is a game between a verifier and a
refuter whose interest is to satisfy or to contradict relations, respectively. In [12],
QVT-R is translated to graph constraints using similar formal foundations as for
TGGs. Due to the nature of QVT-R, however, consistency must be designed in
two directions in these formalisms (there is a forward and backward consistency
check) and direction-agnostic traceability information is not provided [26]. An
interesting approach is proposed in [18,19] defining QVT-R semantics as a con-
straint solving problem. While constraint solving is employed for entire models
in this case, our approach is in contrast rule-based and formulates only deci-
sions between rule applications as constraints. Our constraints are thus more
compact and manageable for state-of-the-art solvers. This claim is supported
by the order of processable model sizes of our approach (currently up to 50 K
elements) as compared to experimental results in [19] (hundreds of elements).
It is, nonetheless, crucial to establish benchmarks for a direct comparison of
different approaches. Considering recent work on TGGs, reusing existing mark-
ings and correspondences from former runs is proposed in [7,14] when relating
two models. Decision making for remaining parts, however, is still open and can
be tackled with our approach. Combining our approach with [7,14] could yield
performance gains via incrementality and is thus important future work.

Optimization techniques in MDE. We observe a close relation between
our work and [10] which combines search-based optimization techniques with
model transformation. Given a set of rules, input model(s), and an objective,
the idea is to calculate an “optimal” sequence of rule applications via search-
based algorithms. Interestingly, this can reverse the complexity distribution of
our approach: While we invest substantial effort in rule applications (collecting
all markings) and solve a rather simple optimization problem (at least in case
of realistic models) in retrospect, more effort is put into optimization in [10]
and necessary rule applications are determined in advance. Different MDE tasks
are addressed with search-based optimization including change detection [9] and
refactoring [11]. Further investigation is needed to understand to what extent
the same methodologies are applicable to our goals. Other applications of opti-
mization techniques in MDE include bidirectional model transformation [2] and
learning model transformation by examples [15]. Applicability to large models,
however, is again a critical limitation in these cases as the papers openly discuss.

6 Conclusion and Future Work

We presented an approach to inter-model consistency checking by combining
TGGs with linear optimization techniques. We evaluated our respective tool

206 E. Leblebici et al.

support and explored its scalability with realistic and synthetically generated
models. Our results show that the idea of combining a model transformation
engine with optimization techniques is promising and we believe that it can
be transferred to other approaches (e.g., QVT-R) to facilitate decision mak-
ing. Tasks for future work include (i) experimenting with further industrial case
studies as well as with academic non-trivial examples as collected in the bx
example repository [3], (ii) comparing our approach to hand-written solutions
of the same problem (developed with general purpose or bidirectional program-
ming languages such as [16]), (iii) utilizing novel pattern matching techniques
(e.g., [27,28]) to attain applicability to larger models, (iv) incremental consis-
tency checking by reusing results from former runs, and (v) exploring new types
of optimization problems beyond identifying maximal consistent portions and
represent case-specific policies. Finally, our contribution paves the way to bidi-
rectional model integration. Starting with two inconsistent models, consistent
parts can be detected with the current contribution. Remaining parts can be
synchronized again by TGGs (possibly after a conflict resolution).

Acknowledgement. This work has been funded by the German Federal Ministry
of Education and Research within the Software Campus project GraTraM at TU
Darmstadt, funding code 01IS12054.

References

1. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R transformations with general
when and where clauses via the modal Mu calculus. In: Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 194–208. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28872-2 14

2. Callow, G., Kalawsky, R.: A satisficing bi-directional model transformation engine
using mixed integer linear programming. J. Object Technol. 12(1), 1–43 (2013)

3. Cheney, J., McKinna, J., Stevens, P., Gibbons, J.: Towards a repository of BX
examples. In: Candan, K.S., Amer-Yahia, S., Schweikardt, N., Christophides, V.,
Leroy, V. (eds.) BX 2014. CEUR Workshop Proceedings, vol. 1133, pp. 87–91
(2014). CEUR-WS.org

4. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration
based on the algebraic approach to triple graph grammars. ECEASST 10, 1–15
(2008)

5. Ehrig, H., Ehrig, K., Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termina-
tion criteria for model transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol.
3442, pp. 49–63. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31984-9 5

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

7. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2015)

8. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual modeling and analysis of
EMF model transformations based on triple graph grammars. ECEASST 54, 1–12
(2012)

http://dx.doi.org/10.1007/978-3-642-28872-2_14
http://dx.doi.org/10.1007/978-3-642-28872-2_14
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-540-31984-9_5

Inter-model Consistency Checking Using Triple Graph Grammars 207

9. Fadhel, A.B., Kessentini, M., Langer, P., Wimmer, M.: Search-based detection of
high-level model changes. ICSM 2012, 212–221 (2012)

10. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of NasBASE (2015)

11. Fleck, M., Troya, J., Wimmer, M.: Search-based model transformations with
MOMoT. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
79–87. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6 6

12. Guerra, E., de Lara, J.: An algebraic semantics for QVT-relations check-only trans-
formations. Fundam. Inform. 114(1), 73–101 (2012)

13. Gurobi: (2016). http://www.gurobi.com/
14. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,

S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Softw. Syst. Model. 14(1), 241–269 (2015)

15. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transformation as an opti-
mization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-87875-9 12

16. Ko, H., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-
based bidirectional programming. In: Erwig, M., Rompf, T. (eds.) PEPM 2016,
pp. 61–72 (2016)

17. Leblebici, E.: Towards a graph grammar-based approach to inter-model consistency
checks with traceability support. In: Anjorin, A., Gibbons, J. (eds.) BX 2016.
CEUR Workshop Proceedings, vol. 1571, pp. 35–39 (2016). CEUR-WS.org

18. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
297–311. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 22

19. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. Softw. Syst. Model. 15(3), 783–810 (2016)

20. Medini-QVT: (2016). http://projects.ikv.de/qvt
21. MoDisco: (2016). http://www.eclipse.org/MoDisco/
22. OMG: QVT Specification, V1.2 (2015). http://www.omg.org/spec/QVT/
23. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Inform. 33(2),

201–209 (1998)
24. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph

grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)
25. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). doi:10.1007/3-540-59071-4 45

26. Stevens, P.: A simple game-theoretic approach to checkonly QVT relations. In:
Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 165–180. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02408-5 12

27. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

28. Varró, G., Deckwerth, F.: A Rete network construction algorithm for incremental
pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38883-5 13

http://dx.doi.org/10.1007/978-3-319-42064-6_6
http://www.gurobi.com/
http://dx.doi.org/10.1007/978-3-540-87875-9_12
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-37057-1_22
http://projects.ikv.de/qvt
http://www.eclipse.org/MoDisco/
http://www.omg.org/spec/QVT/
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-642-02408-5_12
http://dx.doi.org/10.1007/978-3-642-38883-5_13

GTS Families for the Flexible Composition
of Graph Transformation Systems

Steffen Zschaler1(B) and Francisco Durán2

1 Department of Informatics, King’s College London, London WC2R 2LS, UK
szschaler@acm.org

2 Dpto. de Lenguajes y Ciencias de la Computación,
University of Málaga, Málaga, Spain

duran@lcc.uma.es

Abstract. Morphisms between graph-transformation systems (GTSs)
have been successfully used for the refinement, reuse, and composition
of GTSs. All these uses share a fundamental problem: to be able to define
a morphism, source and target GTSs need to be quite similar in their
structure (in terms of both the type graphs and the set of rules and their
respective structures). This limits the applicability of these approaches
by excluding a wide range of mappings that would intuitively be accepted
as meaningful, but that cannot be captured formally as a morphism.
Some researchers have attempted to introduce some flexibility, but these
attempts either focus only on the type graphs (e.g., Kleisli morphisms
between type graphs) or only support specific forms of deviation (e.g.,
supporting sub-typing in type graphs through clan morphisms). In this
work, we introduce the notion of GTS families, which provide a general
mechanism for explicitly expressing the amount of acceptable adaptabil-
ity of the involved GTSs so that the intended morphisms can be defined.
On this basis, we demonstrate how GTS families that are extension pre-
serving can be used to enable flexible GTS amalgamation.

1 Introduction

Graph transformation systems (GTSs) were proposed in the late seventies as
a formal technique for the rule-based specification of the dynamic behaviour
of systems [1]. Since then, GTSs have been used in different contexts in com-
puter science, including the formalisation of systems, programming languages
and model-driven engineering.

In the many contexts in which GTSs have been used, a key ingredient for
exploiting their power is that of GTS morphisms. GTS morphisms have been
used for different purposes in system specification, for instance, to characterise
the relationship between a system and views of it [2], for expressing refinements
[3,4], or for modelling import and export interfaces of modules [5]. Recent uses of
GTSs in the context of Model-Driven Engineering (MDE) have gone one step fur-
ther, proposing practical uses of different forms of parametric GTSs for reusing
model transformations, and reusing and composing domain specific language
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 208–225, 2017.
DOI: 10.1007/978-3-662-54494-5 12

GTS Families for the Flexible Composition 209

(DSL) definitions. In [6], de Lara and Guerra proposed the use of transforma-
tion templates, typed by a graph, that they call concept, which can then be
instantiated by binding the concept to a concrete graph. Durán et al. proposed
in [7,8] what they call parameterised GTSs, where the parameter is not just a
type graph, but a complete GTS, and where composition of GTSs is based on a
GTS amalgamation construction. In the same way concepts gather the structural
requirements, the set of rules of parameter GTSs are behavioural requirements
over the concrete GTSs used in the instantiation. In each of these cases, using
GTS morphisms enables useful syntactic or semantic guarantees to be given.
For example, in [6] the use of morphisms means that transformations can be
guaranteed to be syntactically reusable. In the case of [8], the use of suitable
morphisms enables guarantees on behaviour protection of amalgamated GTSs.

For reuse and composition, the main difficulty is the flexibility of the mech-
anisms available. In specific domains, ad hoc definitions of GTS morphisms
have been proposed. For example, an alternative notion of refinement relation is
given for transactional graph transformation systems in [9], where a graph typ-
ing mechanism induces a distinction between stable and unstable graph items
and where implementation morphisms map single productions to whole transac-
tions so that morphisms define simulations. Taentzer [10] uses a subset of UML
extended by reconfiguration and import/export view facilities, represented as
embedding morphisms, to propose a formal framework for visual modeling of
distributed object systems. Component composition is defined by only allowing
embedding morphisms between import and export rules where each two rules
connected by an embedding morphism are named equally. These specialised solu-
tions do not easily extend to the general setting. The use of GTSs in MDE
introduces even more challenges, as we need to consider more complex graphs
including attributes and node-type inheritance [11].

The need for a mechanism for relating different GTSs, or their type graphs,
that is more flexible than direct morphisms—to broaden opportunities for GTS
reuse—has been recognised before: In the case of models, represented as graphs,
this has been resolved more or less pragmatically by supporting a specific, fixed
set of adaptations to be applied prior to applying the morphism (see, e.g., [6,11–
13]). For example, Diskin et al. [12] propose using Kleisli categories for relating
models. De Lara and Guerra extended their work on concepts in [13] by using
adapters to allow heterogeneities between the concept and the concrete graph.
Each of these works “hard wires” a specific set of flexibilities.

To support complete GTSs, rules must also be related in a flexible manner.
In [4,14], Große-Rhode et al. introduce temporal and spatial refinement rela-
tions. In a spatial refinement, each rule is refined by an amalgamation (i.e., a
parallel composition with sharing) of rules, while in a temporal refinement it is
refined by a sequential composition. Engels et al. [5] present a framework for
classifying and systematically defining GTS morphisms. Different types of mor-
phisms are characterised by their relationship between the behaviours of source
and target GTSs. For instance, refinements are a case of behaviour-preserving
morphisms, while views are a case of behaviour-reflecting morphisms. Durán
et al. [8] similarly introduce different behaviour-aware GTS morphisms.

210 S. Zschaler and F. Durán

These solutions are, however, far from satisfactory. Even though the intro-
duction of derived attributes and links as in [12] or [13], and the behavioural
relations provided for GTS morphisms as in [8] improve the chances of defining
the required morphisms, structural mismatch remains a problem. Often even
where there is an intuitive match, no morphism can be established. This sub-
stantially limits the reuse potential of these approaches. In many cases, a simple
restructuring of the GTSs involved could easily allow a valid mapping to be
established. However, there is currently no support for capturing such restruc-
turings, and in particular for capturing exactly the set of restructurings the
designer of a GTS would consider valid and meaningful.

In this work, we propose the use of GTS transformers to refactor GTSs
with the goal of resolving the structural mismatches between source and target
GTSs so that GTS morphisms can be defined. In fact, GTS transformers may
be seen as re-factoring mechanisms, which provide a general setting for defining
adaptations. GTS transformers are functions, and can successively be applied
to our source GTS to find the one on which the morphism can be defined.
To systematise this, we introduce the notion of GTS families. Given a set of
transformers T , the T -family of a GTS GTS0 is the set of GTSs reachable from
GTS0 using the transformers in T . The problem of defining a mapping morphism
between a GTS GTS0 and a target GTS GTS1 then amounts to finding a GTS
in the family of GTS0 from which the morphism can be defined. This way, the
problem becomes a model-based search problem [15].

Of course, any mechanisms enabling more flexibility must balance this
against the required level of control so that suitable semantic properties can
be guaranteed. We provide different transformers and prove that they preserve
extensions [16] between GTSs. As a result, we show how these transformers can
be used to enable flexible composition of GTSs.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
a running example and motivate the limitations of GTS morphisms and the need
for more flexibility. After providing some formal background on typed attributed
graphs, GTSs, and their morphisms in Sect. 3, Sect. 4 introduces the notions of
GTS transformers and GTS families as well as three example GTS transformers.
In Sect. 4.3, we show that these transformers are extension preserving and can,
thus, be used to compose GTSs using the mechanism from [16]. We wrap up in
Sect. 5 with some conclusions and lines of future research.

2 Running Example

Let us consider a simple production-line system (PLS) GTS, part of which is
depicted in Fig. 1. This GTS models a PLS for making hammers out of hammer
heads and handles. In the type graph TGPLS in Fig. 1a we find different types
of machines, different types of parts, and different containers of parts.1 The
behaviour of such systems is defined through a number of graph-transformation
rules, like the one in Fig. 1b, which models the polishing of a part by a polishing
1 We use the hollow-arrow notation from UML to denote inheritance relationships.

GTS Families for the Flexible Composition 211

GenHead GenHandle

Tray

Conveyor

Hammer Handle

Head

Machine

Part

Container

Assemble

Generator

parts

out

in out

Polisher

(a) PLS type graph

out
p : Polisher t : Tray c : Conveyor

p : Part

in

out p : Polisher t : Tray c : Conveyor

p : Part

in

LHS
RHS

parts

parts

(b) Polisher transformation rule

:Assemble :Tray :Conveyor in
:GenHead

:GenHandle

:Conveyor

:Conveyor
out

out

out out :Tray out :Polisher :Conveyor in out :Tray out

(c) Sample typed graph

Fig. 1. Production line system

Queue

Server

Element
elts

out in

Output Input
made

(a) Server type graph
(b) Process transformation rule

Fig. 2. Server tracking system

machine. Other actions, like the generation of head and handle parts in generator
machines, the assembling of hammers out of hammer heads and handles, the
moving of parts along conveyors, or the collection of parts from final trays is
modelled by corresponding rules. A sample graph conforming to such type graph,
providing an instance of the system, is shown in Fig. 1c. In it, we can see how
machines take parts from input trays and put their outputs in corresponding
conveyors, which move parts towards trays.

Let us suppose now that we wanted to keep track of the elements polished in
our production line system. Instead of modifying our PLS GTS, we may use the
mechanism in [16] to compose it with a generic tracker system, the Tracker GTS
defined in Fig. 2. Its type graph TGTracker is depicted in Fig. 2a. It describes the
concepts related to servers that process elements taken from input queues into
resulting elements that are placed in output queues. The action of processing an
input element is then modelled by the transformation rule in Fig. 2b. The made
association allows servers to keep track of all processed instances.

To compose the Tracker and the PLS GTSs following the construction in [16],
we take the Tracker GTS as a parameterized GTS. The Server GTS, shown in
Fig. 3, defines a generic behaviour, the structural and behavioural requirements
the Tracker GTS builds on. Note that we can easily establish an inclusion g to

212 S. Zschaler and F. Durán

Fig. 3. Server system parameter GTS

the Tracker GTS. Then, we can compose the Tracker GTS with the PLS GTS
so that polisher machines would keep track of the parts it processes:

GTS 0� �
g

��

f �� GTS2� �

ĝ���
�

GTS 1
����� ĜTS

where GTS0 is the parameter GTS Server, GTS1 is the parameterized GTS
Tracker, and GTS 2 is the PLS GTS used in the instantiation.

For this to work, we need to establish a GTS morphism between the Server
GTS (the parameter) and the PLS GTS. Intuitively, the PLS GTS might be
seen as a concrete interpretation of the Server GTS—e.g., polishing of parts
can be seen as particular case of the server processing. A morphism between
the two GTSs would be the formal expression of this. Let us first focus on the
type graphs. At first sight, it may seem quite reasonable to define a binding
between TGServer and TGPLS by mapping Server into Polisher, and Queue into
Container,2 with the in and out associations going to the corresponding ones in
the PLS system type graph. However, in TGPLS input and output “queues” are
represented by two different types: Tray and Conveyor, respectively. As a result,
we cannot establish a valid morphism. Whether source and target queues are
of the same type is not actually relevant to our specification of Server nor to
the definition of tracking. We would like to be able to express the intuition that
this particular mapping should be considered valid. Even where we can establish
a morphism between the type graphs, there may still be problems establishing
morphisms between the rule sets.

In this paper, we introduce the notions of GTS transformers and GTS families
and show how they can be used to automatically rewrite the Server and Tracker
GTSs in sync to find the GTS depicted in Fig. 4, for which a morphism to the PLS
GTS can straightforwardly be defined. Thus, GTS families enable expressing the
above intuition about what GTS mappings we would like to allow.

2 Notice that although we use Queue to name the device in which input and output
elements are placed, no specific order is assumed on its elements in the server GTS.

GTS Families for the Flexible Composition 213

Fig. 4. Modified GTS

3 Preliminaries on GTSs, Clans, and Clan Morphisms

We focus on the double pushout (DPO) approach to graph transformation [3]. In
this section, we introduce some of the basic definitions concerning typed graphs
and the algebraic approaches to the rewriting of typed graphs, and provide
background definitions underpinning our discussion throughout this paper. The
notation and most of the definitions in this section follow very closely those in,
e.g., [3,8,13,17].

3.1 Graph Transformation Systems

Given some category of graphs and graph morphisms Graph, and given a dis-
tinguished graph TG , called type graph, a TG-typed graph (G, gG), or simply
typed graph if TG is known, consists of a graph G and a typing homomorphism
gG : G → TG associating with each vertex and edge of G its type in TG . To
enhance readability, we will use simply gG to denote a typed graph (G, gG), and
when the typing morphism gG can be considered implicit, we will often refer to a
typed graph (G, gG) just as G. A TG-typed graph morphism between TG-typed
graphs (Gi, gi : Gi → TG), with i = 1, 2, denoted f : (G1, g1) → (G2, g2), is a
graph morphism f : G1 → G2 which preserves types; that is, g2 ◦ f = g1.

A graph transformation rule3 p is of the form L
l← K

r→ R with graphs L,
K, and R, called, resp., left-hand side, interface, and right-hand side, and some
kind of monomorphisms (typically inclusions) l and r.

In the DPO approach to graph transformation, the application of a trans-
formation rule p = L

l← K
r→ R to a graph G via a match m : L → G is

constructed as two gluings (1) and (2), which are pushouts in the corresponding
graph category, leading to a direct transformation G

p,m
=⇒ H.

L
m �� (1)

K
l�� r ��

�� (2)

R

��
G D�� �� H

3 As a simplification, we do not consider application conditions (cf., e.g., [8]).

214 S. Zschaler and F. Durán

A graph transformation system (GTS) over a type graph TG is a triple
(TG , P, π) where P is a set of rule names and π is a function mapping each rule
name p into a rule L

l← K
r→ R typed over TG .

Since we are interested in relating GTSs over different type graphs, we need
to move graphs and graph morphisms along morphisms. Assuming GraphTG

the category of TG-typed graphs and TG-typed graph morphisms, a graph
morphism f : TG → TG ′ induces forward and backward retyping functors f> :
GraphTG → GraphTG′ and f< : GraphTG′ →GraphTG . Since, as said above,
we refer to a TG-typed graph G → TG just by its typed graph G, leaving TG
implicit, given a morphism f : TG → TG ′, we may refer to the corresponding
TG ′-typed graph by f>(G). Since we can retype graphs and graph morphisms,
we can retype rules. Given a rule p over a type graph TG and a graph morphism
f : TG → TG ′, we will write things like f<(p) and f>(p) denoting, respectively,
the backward and forward retyping of rule p.

3.2 Morphisms Between Graph Transformation Systems

Although the mechanisms presented in the following sections may be applicable
to most notions of GTS morphisms defined in the literature, to simplify the pre-
sentation we will focus on a specific type of rule morphism and GTS morphism.
We begin with rule morphisms, relating two graph-transformation rules.4

Definition 1. Given rules pi = Li
li←− Ki

ri−→ Ri, for i = 0, 1, a rule morphism
f : p0 → p1 is a tuple f = (fL, fK , fR) of graph monomorphisms fL : L0→L1,
fK : K0→K1, and fR : R0→R1 such that the squares with the span morphisms
l0, l1, r0, and r1 are pullbacks, as in the diagram below.

p0 :

f
��

L0

fL �� pb

K0
l0�� r0 ��

fK�� pb

R0

fR��
p1 : L1 K1

l1

��
r1

�� R1

We are now ready to introduce GTS morphisms.5

Definition 2. Given GTSs GTS i = (TG i, Pi, πi), for i = 0, 1, a GTS morphism
f : GTS0→GTS1, with f = (fTG , fP , fr), is given by a morphism fTG : TG0→
TG1, a surjective mapping fP : P1→P0 between the sets of rule names, and a
family of rule morphisms fr = {fp : f>

TG(π0(fP (p))) → π1(p)}p∈P1 .

A special kind of GTS morphism is a GTS extension, which is essentially an
inclusion such that everything being added to the rules of the extended GTS is
typed by elements also added to the type graph.
4 Similar definitions of rule morphisms can be found in the literature where the squares

are pushouts instead of pullbacks, or simply commuting squares (e.g., [18]), or where
the relations are between a single rule and a collection of rules (e.g., spatial and
temporal refinements [4]). Requiring pullbacks is quite natural though: the intuition
of morphisms is that they should preserve the “structure” of objects.

5 See [5] for a systematic classification of other definitions of GTS morphisms.

GTS Families for the Flexible Composition 215

Definition 3 (GTS Extension [16]). Given GTSs GTS i = (TG i, Pi, πi), for
i = 0, 1, a GTS morphism f : GTS0 → GTS 1, with f = (fTG , fP , fr), is an
extension morphism if fTG is a monomorphism and for each p ∈ P1, π0(fP (p)) =
f<
TG(π1(p)).

3.3 Typed Attributed Graphs and Clan Morphisms

Our underlying graphs are attributed graphs typed over attributed type graphs
with inheritance [3,11]. In these graphs, attributes are represented as edges
between graph nodes and data nodes (captured by the notion of E-graphs in
[3]). We use symbolic graphs [19,20] to enrich graphs with a set Φ of formulas
over a signature Σ = (S,Ω), with S a set of sorts and Ω a set of operations.
We assume that each formula is an equality between a variable and its value
(grounded symbolic graphs in [19]). For simplicity, we assume attributed graphs
on the same signature and omit a treatment of cardinalities and composition
relations, which could be given as constraints as discussed in [21]. We refer the
interested reader to [19,20] for a more general presentation of symbolic attributed
graphs.

An attributed graph ATG = (TG , Φ) may be used as a type graph. As for
any type of graph, a typed attributed graph (AG, t) over an attributed type graph
ATG consists of an attributed graph AG together with an attributed morphism
t : AG → ATG . A typed attributed graph morphism f : (AG1, t1) → (AG2, t2)
is an attributed graph morphism f : AG1 → AG2 such that t2 ◦ f = t1.

To deal with object-oriented systems we need some additional machinery. We
follow [11] in defining attributed type graphs with inheritance.

Definition 4. An attributed type graph with inheritance ATGI = (ATG , I, Ab)
consists of an attributed type graph ATG = (TG , Φ), with an E-graph TG =
(V,E,A,D, sE , tE , sA, tA), a set I ⊆ V × V of inheritance relations, and a set
Ab ⊆ V of abstract nodes.

The typing of an object diagram with respect to a class diagram is typically
represented as a clan morphism [11]. Intuitively, a clan morphism f : AG →
ATGI from an attributed graph AG to an attributed type graph with inheritance
ATGI is an attributed graph morphism that takes into account the inheritance
relation and abstraction definitions of the target ATGI .

Definition 5. Let ATG i =(TG i, ΦATGi), with i=1, 2, be attributed type graphs,
with TG i =(VTGi

, ETGi
, ATGi

,DTGi
, sE

TGi
, tETGi

, sA
TGi

, tATGi
), and let ATGI 2=

(ATG2, I, Ab) be an attributed type graph with inheritance. For each node v in
VTG2 , clan(v) = {v′ ∈ VTG2 | (v′, v) ∈ I∗}, with I∗ the reflexive and transitive
closure of I. Then, given an algebra A, a clan morphism f : ATG1 → ATGI 2 is
an attributed graph morphism (fV , fE , fA, fD) : ATG1 → ATG2 such that

1. ∀e ∈ ETG1 , fV (sE
TG1

(e)) ∈ clan(sE
TG2

(fE(e))) and fV (tETG1
(e)) ∈

clan(tETG2
(fE(e))), and

216 S. Zschaler and F. Durán

2. ∀a ∈ ATG1 , fA(sA
TG1

(a)) ∈ clan(sA
TG2

(fA(a))) and fA(tATG1
(a)) =

tATG2
(fA(a)).

Definition 6. Given ATGI i = (ATG i, Ii, Abi), for i = 1, 2, attributed type
graphs with inheritance, and an algebra A, a morphism f : ATGI 1 → ATGI 2 is
a clan morphism f = (fV , fE , fA, fD) : ATG1 → ATGI 2 that

1. preserves the inheritance relation, i.e., if (a, b) ∈ I1 then (fV (a), fV (b)) ∈ I∗
2 ,

2. reflects subtyping, that is, for each (a, b) ∈ I∗
2 with some a′ ∈ V1 such that

fV (a′) = a, there must be a b′ ∈ V1 such that fV (b′) = b and (a′, b′) ∈ I∗
1 ,

where V1 is the node set of ATG1, and
3. preserves the abstraction definitions, that is, u ∈ Ab1 ⇔ fD(u) ∈ Ab2.

Example 1. The mapping in Sect. 2 between TGServer and TGPLS does not
satisfy the conditions to be part of a clan morphism. Specifically, the mapping for
the in association fails condition 1 in Definition 5: fV (tEServer (in)) = Container
∈
clan(tEPLS (fE(in))) = {Tray}.

4 GTS Transformers and Families

Intuitively, a GTS family is a set of GTSs inductively defined from a source
GTS GTS0, capturing exactly the kind of flexibility we would like to permit
when mapping GTS 0 to another GTS GTS 1. Given a set of transformers T ,
that model the different alterations that may be applied on GTSs, we denote by
[GTS 0]T the family of GTS0 using T . Mappings are then formally defined by
selecting one GTS from the GTS family of GTS0, written [GTS 0]T � GTS ′

0,
and establishing a morphism between GTS ′

0 and GTS1. We first introduce the
notion of GTS transformers, before using them to formally define GTS families.
We then show how extension preserving transformers can be used to enable the
flexible composition of GTSs and how individual members of a GTS family can
be identified based on a given target GTS for a mapping.

4.1 GTS Transformers

GTS transformers, and the GTS families we generate with them, generalise the
idea of adapters over transformations (also called adaptations in [13,22,23]). We
start by defining GTS transformers as transformations between GTSs.6

Definition 7 (GTS transformer). A GTS transformer t is a triple of three
inter-related transformations t = (tTG , tP , tπ):

tTG takes GTSs to type graphs;
tP takes GTSs to sets of rule names;
tπ takes GTSs to functions mapping rule names to rules.

6 In effect, GTS transformers are a form of higher-order transformation [24].

GTS Families for the Flexible Composition 217

Fig. 5. IntroSC -modified type graph

GTS transformers define functions over the set of all ATGI-typed GTSs. Given
a GTS GTS0 = (TG0, P0, π0), t(GTS 0) = (TG1, P1, π1) such that: TG1 =
tTG(GTS 0), P1 = tP (GTS 0), π1 = tπ(GTS 0), and for all p ∈ P1, π1(p) is a
rule typed over TG1.

Note that while the three component functions are defined to range over the
entire GTS, they each only transform one aspect of the GTS. For example, tTG

will only transform the type graph of the given GTS. However, we define them
to range over the entire GTS so that they can ensure consistency of the result.

Remark 1. By definition, given a valid GTS as input, a well-defined GTS trans-
former will always produce a valid GTS as output.

To make this definition more concrete, we now introduce three examples
of transformers, namely tIntroSC , tMvAssoc and tInhUnfld , which, respectively, add
subclasses in the inheritance hierarchy, move associations in its type graph down
in the inheritance hierarchy, and specialise rules to particular subclasses.

Definition 8. The tIntroSC transformer modifies the type graph of a GTS by
introducing a subclass to a class. It non-deterministically chooses a class from
the type graph of the original GTS and adds a subclass with no attributes nor
associations. All other classes, attributes, and associations are maintained. The
set of rules is not changed.

Example 2. By repeatedly applying tIntroSC to the Server GTS in Fig. 3 we could
obtain, e.g., a GTS Server v1 with the type graph shown in Fig. 5. The set of
rules in the new GTS are identical to the rules in the original GTS.

Definition 9. Given a GTS GTS0 = (TG0, P0, π0), the tInhUnfld transformer
produces a new GTS GTS1 with the same type graph and a rule set resulting of
modifying its rules as follows:

1. Non-deterministically picks a class C ∈ TG0 that has a number of subclasses
SCi ∈ TG0, i = 1, . . . , n;

2. Non-deterministically picks a rule name p ∈ P0 s.t. π0(p) contains objects
that are typed by C;

3. Non-deterministically picks one subclass of C for every free object in π0(p)
typed by C (different subclasses may be picked for different objects);

218 S. Zschaler and F. Durán

4. Generates a new rule π1(p) using the chosen subclasses to type the corre-
sponding objects;

5. Copies all other rules as they are.

Example 3. Given the Server v1 GTS resulting from the application of the
tIntroSC transformer as in Example 2, the application of the tInhUnfld trans-
former on it may result in the GTS Server v2 with the same type graph and a
rule as in Fig. 4b. All other rules remain as in the original GTS.

Definition 10. Given a GTS, the tMvAssoc transformer produces a GTS with
all rules as in the original GTS and where the type graph is modified as follows:

1. Non-deterministically picks a class C.
2. Non-deterministically picks an association assoc that ends in C.
3. Non-deterministically picks a set SC of subclasses of C. At least every subclass

S of C for which there is a rule in π0 where assoc refers to an object typed
as S will be included in SC.

4. If C and assoc are such that there are no rules that use assoc to refer to
an object typed as C, then assoc is removed from the type graph, and a new
replica of assoc with the same source as the original is created and defined to
point to each S ∈ SC.

If the type graph modification is not possible, because the condition in Step 4
fails, tMvAssoc returns the original GTS.

The condition in Step 4 as well as the specific construction of the set SC are
required to ensure that tMvAssoc produces a valid and well-typed GTS.

Example 4. Repeatedly applying tMvAssoc to the Server v2 GTS produced in
Example 3, may result in a GTS Server v3 with the type graph in Fig. 4a and
the rules as those of Server v2 GTS.

The three introduced transformers are just a sample of the kind of transfor-
mations we can define on GTSs. For our running example, we have used these
transformers to reflect our intuition that the specific types of input and output
queues are not important for the behaviour we want to abstract in the Server
GTS. As we have mentioned at the beginning of this section, the mismatches
may be both in the structure or in the transformation rules, and therefore more
sophisticated transformers operating on the type graph and on the rules may
be necessary in other cases. In the next subsection we introduce GTS families
as a way of packaging the transformers representing our intuition about the
behaviour we want to capture.

4.2 GTS Families

Given a set of GTS transformers, new GTSs can be derived from a GTS.

GTS Families for the Flexible Composition 219

Fig. 6. Sketch of the morphism between GTSs Server v3 and PLS

Definition 11. Given a GTS GTS0 and a GTS transformer t, a single-step
GTS derivation GTS0 ⇒t GTS1 is induced iff GTS 1 = t(GTS 0). Given a set
T = {ti|i = 1, . . . , n} of GTS transformers, a GTS derivation of GTS0 over
T (GTS0 ⇒∗

T GTSm) is given by a, possibly empty, sequence of single-step
derivations GTS j ⇒tj GTS j+1, j = 0, . . . , m − 1, tj ∈ T .

Example 5. After the application of transformers tIntroSC , tInhUnfld , and tMvAssoc

as in Examples. 2–4, the morphism between GTSs Server v3 and PLS can now
be defined, as sketched in Fig. 6.

We call the (possibly infinite) set of all GTSs derivable from GTS0 over a
set of transformers T the T -family of GTS 0.

Definition 12. Given a set of GTS transformers T = {ti|i = 1, . . . , n}, and
a GTS GTS0, the T -family of GTS0, denoted by [GTS 0]T , is the (possi-
bly infinite) reflexive-transitive closure of GTS derivations of GTS0 over T :
GTS ′

0 ∈ [GTS0]T ⇔ GTS0 ⇒∗
T GTS ′

0.

We will write [GTS 0]T � GTS ′
0 to denote the selection of some GTS ′

0 from
the GTSs in [GTS0]T . Note that GTS0 ∈ [GTS0]T .

The GTS transformers defined above, non-deterministically select elements of
the type graph or rules to be modified. In analogy to graph-transformation rules,
we allow transformer applications to be guided by providing a (partial) match for
these elements. We will refer to the combination of a transformer and a complete
match for each of the elements it would otherwise select non-deterministically
as a specific application of a transformer.

Example 6. Consider the GTS Server v1 in Example 2. It results from the
repeated application of the tIntroSC transformer (Definition 9). Specifically, given

220 S. Zschaler and F. Durán

the Server GTS we may invoke the application of tIntroSC on class Queue, intro-
ducing subclass Queue1, followed again by its application on class Queue to
introduce the subclass Queue2.

4.3 Extension Preserving Transformers and GTS Amalgamation

An interesting case, with direct application to parameterized GTSs, is the case of
extensions (see Definition 3). Parametrization of GTSs establishes an inclusion
between the parameter GTS (GTS 0) and the full, parametrized GTS (GTS 1)—
for example, see [8]. Typically, these inclusions are extensions.

To improve the possibilities of instantiating a parameterized GTS, we would
like to be able to consider as parameter GTS any of the GTSs we can reach using
a given set of transformers. In other words, we would like to be able to consider
as parameter, not a single GTS, but its entire family. To make this safe, we need
to ensure that for any path of transformers GTS 0 ⇒∗

T GTS ′
0 we can find a cor-

responding path GTS1 ⇒∗
T GTS ′

1 such that the extension GTS0 ↪→ GTS1 leads
to the extension GTS ′

0 ↪→ GTS ′
1; that is, a new parametrized GTS preserving

the extension. The easiest way of finding such a corresponding path is by con-
structing it from the same transformer applications in both cases. Transformers
for which this can be done, we will call extension-preserving transformers.

Definition 13. A transformer t preserves extensions if for any GTS extension
GTS0 ↪→ GTS1, the exact same specific application of t to GTS 0 and GTS 1

results in an extension as depicted in the following diagram, where the dotted
arrow means that the application of the transformer on GTS1 is exactly the
same as the one on GTS 0.

GTS 0
��

� �

��
t
�� GTS ′

0� �
��

GTS 1
��
t
�� GTS ′

1
��

Note that it is enough to prove that each individual transformer is extension
preserving for any combination of these transformers to be extension preserv-
ing, too. In particular, to be extension preserving, a transformer needs to be
applicable both on GTS 0 and on GTS1 without changes.

Proposition 1. The tIntroSC transformer preserves extensions.

Proof. Given GTSs GTS i = (TG i, Pi, πi), with i = 0, 1, and ι = (ιTG , ιP , ιr) :
GTS0 ↪→ GTS1 an inclusion morphism, the first observation is that if the
tIntroSC transformer is applicable to GTS 0, then it can also be applied to GTS 1

in exactly the same way. All classes in TG0 are in TG1, and specifically the class
C to which the new subclass is added. Assume that the application of tIntroSC
on GTS0 results in a new GTS GTS ′

0 =
(
TG ′

0, P0, π0

)
, with rules as in GTS 0

and a type graph TG′
0 as TG0 but with a new class C ′ added, and declared

subclass of C. Applying tIntroSC to GTS1 results in the introduction of the new

GTS Families for the Flexible Composition 221

class C ′′ as a subclass of ιTG(C), with no attributes or links. This produces a
new GTS GTS ′

1 =
(
TG ′

1, P1, π1

)
, with the same rules as in GTS1. The inclusion

morphism ι′ = (ι′TG , ι′P , ι′r) : GTS ′
0 ↪→ GTS ′

1 can trivially be defined by defining
ι′TG by extending ιTG for the new class and subclass relation, mapping C ′ to C ′′,
with the same components for the rules. Notice that if ιTG is an attribute type
graph morphism, then ι′TG is as well, since it preserves the inheritance relation,
reflects subtyping, and preserves the abstraction definitions. Since rules are not
changed, if ι is an extension, then ι′ is also an extension.

Proposition 2. The tInhUnfld transformer preserves extensions.

Proof. Let GTSs GTS0 and GTS1 and inclusion GTS morphism ι : GTS0 ↪→
GTS1 as in Proposition 1, and let us assume it is an extension. Since the type
graph is not changed, if the transformer is applicable on GTS0, it is obviously
applicable on GTS1 for same class C, rule p and subclasses of C. We can define
the inclusion morphism ι′ = (ι′TG , ι′P , ι′r) : GTS ′

0 ↪→ GTS ′
1 by taking the same

type graph morphism and morphisms for non-modified rules. Since the trans-
former replaces rules π0(p) and π1(p) with rules π′

0(p) and π′
1(p), respectively

in GTS0 and GTS1, with these new rules generated in exactly the same way,
given ιp : ι>TG(π0(ιP (p))) → π1(p) we have ι′p : ι>TG(π′

0(ι
′
P (p))) → π′

1(p). Since ι
is an extension, to have that ι′ is also an extension we just need to check that
π′
0(f

′
P (p)) = f<

TG(π′
1(p)). But this is the case, since the transformer is exactly

making the same changes.

Proposition 3. The tMvAssoc transformer preserves extensions.

Proof. Let GTSs GTS0 and GTS1 and inclusion GTS morphism ι : GTS0 ↪→
GTS1 as in Proposition 1. The transformer just moves an association assoc from
class C to one or more of its subclasses, requiring that there is no rule in the
source GTS using assoc on instances of C. Assuming ι is an extension, then, if
tMvAssoc is applicable on GTS0 for some C, some subclass(es) of C and rule p,
there cannot be in GTS1 a new rule, or an extension of a rule in GTS 0, with such
a link (to C or any of its subclasses), and therefore the same application of the
transformer is possible on GTS1. Since the transformer is changing associations
consistently in TG0 and TG1, the definition of ι′TG follows quite closely that of
ιTG . Rules are left unchanged, so the definitions of ι′P and ι′r are as those in ι.
Thus, we can conclude that ι′ is also an extension.

Let us go back to our example in Sect. 2. First, notice that Tracker is an
extension of the Server GTS. A new association is added to its type graph,
and its rules are modified just by adding instances of the new elements. Then,
to apply the composition scheme from [16], we need a morphism f from the
parameter GTS Server to the PLS GTS. However, as we have seen in Sect. 2,
the morphism f cannot be established. To support this composition scenario, we
can express our server GTS as a GTS family and follow the scheme below:

222 S. Zschaler and F. Durán

[GTS0]T �� ����
� �
g��

T
�������� GTS ′

0� �
g′��

f �� GTS2� �
ĝ��

[GTS1]T �� ����
T

�������� GTS ′
1

����� ĜTS��

In other words, we explicitly encode the variability we find acceptable by extend-
ing the parameter GTS GTS0 into a GTS family [GTS0]T , providing transform-
ers tIntroSC , tInhUnfld , and tMvAssoc in T . By using these transformers, we can
derive a GTS GTS ′

0 (see Fig. 4) for which a GTS morphism f can be estab-
lished to the PLS described in GTS2. Because all the transformers in T are
extension-preserving, we can derive a corresponding GTS ′

1 and the extension
g′ : GTS ′

0 ↪→ GTS ′
1. With these, we can finally apply the amalgamation scheme

from [16] to produce the composed GTS ĜTS .

4.4 Finding GTS-Family Members

Finding the appropriate representative of a GTS family for a given composition
problem is not trivial. Essentially, this requires searching through the space of
GTSs spanned by the GTS family, looking for a GTS with the right structure, if
any exists. Search-based problems have long been the subject of intense research
interest [15]. More recently, there have been proposals for tools solving search
problems in an MDE context [25–27]. Of particular interest in the context of
GTS families is the work on MoMOT by Fleck et al. [27]. Here, new candidate
solutions are found by applying a sequence of transformations to an initial model
(e.g., a GTS). The search is guided by appropriate fitness criteria (e.g., the num-
ber of matching elements that could be used to construct a suitable morphism).
Their approach keeps track of the transformation sequence at all time and thus
guarantees that it will only find solutions for which there is a transformation
sequence—a key criteria in finding representatives of GTS families.

Based on similar ideas, we have developed a basic automated search algorithm
in Maude [28]. This prototype demonstrates that automated search of suitable
GTSs in a GTS family is possible, but the prototype still suffers from inefficien-
cies. As part of our future work, we are exploring improving the implementation
based on MoMOT or similar tools.

5 Conclusions

In this paper, we have presented GTS families as a mechanism for encoding
controlled flexibility for morphisms between GTSs. This is achieved by extending
a GTS GTS0 to a set of GTSs that can be derived from GTS0 given a set of GTS
transformers T . This set is called the GTS T -family of GTS 0 and is taken to
encode the full intent of what is expected to be preserved by any morphism from
GTS0. Then a direct morphism between GTS0 and GTS1 is replaced by selecting
a suitable representative from the GTS family and defining the morphism from

GTS Families for the Flexible Composition 223

that representative. Thus, instead of direct morphisms GTS 0 → GTS 1 we will
use the construction [GTS0]T � GTS ′

0 → GTS 1.
In addition to providing an explicit design mechanism for transformation

developers, GTS families as a formal concept also open up a new research agenda:
rather than relying on the pragmatic approaches taken to the definition of valid
adaptations so far, we can now begin to study the fundamental properties of
different types of GTS transformers, identifying different classes of GTS families
that can be most appropriately used in different scenarios (e.g., are there easily
checked conditions that will guarantee extension preservation?). In this paper,
we have shown how extension-preserving transformers can be used to construct
GTS families that enable flexible GTS amalgamation. As part of our future
work, we plan to study the properties required of GTS transformers to allow
flexible reuse of transformations, extending the work by de Lara et al. to semantic
transformation reuse.

Acknowledgements. This work has been partially supported by Spanish
MINECO/FEDER project TIN2014-52034-R and Univ. Málaga, Campus de Excelencia
Internacional Andalućıa Tech.

References

1. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Claus, V.,
Ehrig, H., Rozenberg, G. (eds.) 1st Graph Grammar Workshop, vol. 73, LNCS,
pp. 1–69. Springer, Heidelberg (1979)

2. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model- and
view-based approach to system specification. Int. J. Software Eng. Knowl. Eng.
7(4), 457–477 (1997)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

4. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Spatial and temporal refine-
ment of typed graph transformation systems. In: Brim, L., Gruska, J., Zlatuška,
J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 553–561. Springer, Heidelberg (1998).
doi:10.1007/BFb0055805

5. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph trans-
formation modules. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol.
3393, pp. 38–63. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31847-7 3

6. de Lara, J., Guerra, E.: From types to type requirements: Genericity for model-
driven engineering. SoSyM 12(3), 453–474 (2013)

7. Durán, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745,
pp. 332–351. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36089-3 19

8. Durán, F., Moreno-Delgado, A., Orejas, F., Zschaler, S.: Amalgamation of domain
specific languages with behaviour. J. Log. Algebraic Methods Program. (2015)

9. Baldan, P., Corradini, A., Dotti, F.L., Foss, L., Gadducci, F., Ribeiro, L.: Towards
a notion of transaction in graph rewriting. Electr. Notes Theor. Comput. Sci. 211,
39–50 (2008)

http://dx.doi.org/10.1007/BFb0055805
http://dx.doi.org/10.1007/978-3-540-31847-7_3
http://dx.doi.org/10.1007/978-3-642-36089-3_19

224 S. Zschaler and F. Durán

10. Taentzer, G.: A visual modeling framework for distributed object computing. In:
Jacobs, B., Rensink, A. (eds.) FMOODS 2002. IFIP, vol. 81, pp. 263–278. Springer,
Boston, MA (2002). doi:10.1007/978-0-387-35496-5 18

11. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
graph transformation with node type inheritance. Theoret. Comput. Sci. 376, 139–
163 (2007)

12. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2 12

13. de Lara, J., Guerra, E.: Towards the flexible reuse of model transformations: A for-
mal approach based on graph transformation. J. Log. Algebraic Methods Program.
83(5–6), 427–458 (2014)

14. Große-Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements of graph trans-
formation systems via rule expressions. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 368–382. Springer, Heidel-
berg (2000). doi:10.1007/978-3-540-46464-8 26

15. Harman, M.: The current state and future of search based software engineering. In:
Briand, L.C., Wolf, A.L. (eds.) International Conference on Software Engineering,
ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, 23–25
May, Minneapolis, MN, USA, 342–357. IEEE Computer Society (2007)

16. Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based
system specifications. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 24–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37635-1 2

17. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, vol. 1: Foundations, World Scientific (1997)

18. Parisi-Presicce, F.: Transformations of graph grammars. In: Cuny, J., Ehrig, H.,
Engels, G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp.
428–442. Springer, Heidelberg (1996). doi:10.1007/3-540-61228-9 103

19. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. ECEASST 30 (2010)

20. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symbolic Comput.
46(3), 294–315 (2011)

21. Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models
with type inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31984-9 6

22. Cuadrado, J.S., Guerra, E., de Lara, J.: Flexible model-to-model transformation
templates: an application to ATL. J. Object Technol. 11(2), 4:1–4:28 (2012)

23. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model
subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31491-9 30

24. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4 3

25. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven framework for guided
design space exploration. In: Proceedings of the 26th IEEE/ACM International
Conference Automated Software Engineering (ASE 2011), pp. 173–182, November
2011

http://dx.doi.org/10.1007/978-0-387-35496-5_18
http://dx.doi.org/10.1007/978-3-642-28872-2_12
http://dx.doi.org/10.1007/978-3-540-46464-8_26
http://dx.doi.org/10.1007/978-3-642-37635-1_2
http://dx.doi.org/10.1007/3-540-61228-9_103
http://dx.doi.org/10.1007/978-3-540-31984-9_6
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3

GTS Families for the Flexible Composition 225

26. Zschaler, S., Mandow, L.: Towards model-based optimisation: Using domain knowl-
edge explicitly. In: Proceedings of Workshop on Model-Driven Engineering, Logic
and Optimization (MELO 2016) (2016)

27. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of the 1st North American Search Based
Software Engineering Symposium (NasBASE 2015) (2015) (Preprint). http://
martin-fleck.github.io/momot/downloads/NasBASE MOMoT.pdf

28. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, vol. 4350. LNCS. Springer, Heidelberg (2007)

29. Brim, L., Gruska, J., Zlatuška, J. (eds.): MFCS 1998. LNCS, vol. 1450. Springer,
Heidelberg (1998)

http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf

Symbolic Model Generation
for Graph Properties

Sven Schneider1(B), Leen Lambers1, and Fernando Orejas2

1 Hasso Plattner Institut, University of Potsdam, Potsdam, Germany
{sven.schneider,leen.lambers}@hpi.de

2 Dpto de L.S.I., Universitat Politècnica de Catalunya, Barcelona, Spain
orejas@cs.upc.edu

Abstract. Graphs are ubiquitous in Computer Science. For this reason,
in many areas, it is very important to have the means to express and
reason about graph properties. In particular, we want to be able to check
automatically if a given graph property is satisfiable. Actually, in most
application scenarios it is desirable to be able to explore graphs satisfying
the graph property if they exist or even to get a complete and compact
overview of the graphs satisfying the graph property.

We show that the tableau-based reasoning method for graph proper-
ties as introduced by Lambers and Orejas paves the way for a symbolic
model generation algorithm for graph properties. Graph properties are
formulated in a dedicated logic making use of graphs and graph mor-
phisms, which is equivalent to first-order logic on graphs as introduced
by Courcelle. Our parallelizable algorithm gradually generates a finite
set of so-called symbolic models, where each symbolic model describes a
set of finite graphs (i.e., finite models) satisfying the graph property. The
set of symbolic models jointly describes all finite models for the graph
property (complete) and does not describe any finite graph violating the
graph property (sound). Moreover, no symbolic model is already covered
by another one (compact). Finally, the algorithm is able to generate from
each symbolic model a minimal finite model immediately and allows for
an exploration of further finite models. The algorithm is implemented in
the new tool AutoGraph.

Keywords: Graph properties · Nested graph conditions · Model gener-
ation · Tableau method · Satisfiability solving · Graph transformation

1 Introduction

Graphs are ubiquitous in Computer Science. For this reason, in many areas,
it is (or it may be) very important to have the means to express and reason
about graph properties. Examples may be, (a) model-based engineering where
we may need to express properties of graphical models; (b) the verification of
systems whose states are modeled as graphs; (c) to express properties about sets
of semi-structured documents, especially if they are related by links; (d) graph
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 226–243, 2017.
DOI: 10.1007/978-3-662-54494-5 13

Symbolic Model Generation for Graph Properties 227

databases, where we may want to state integrity constraints in the form of graph
properties or where we may want to be able to reason about the validity of graph
queries and, in particular, to understand why queries might be valid or not.

Let us take a closer look at the latter application field to understand how
the symbolic model generation approach for graph properties, as presented in
this paper, will support a typical usage scenario. In general, a graph query for
a graph database G (as formalized in [3] and used in extended form in [18])
formulates the search for occurrences of graph patterns of a specific form L
satisfying some additional property in G. Since such a query can become quite
complex it is important to have an intuitive query language to formulate it and
to have additional support allowing for reasoning about the query to enhance
understandability and facilitate debugging. Validity of a graph query means
that there should exist a graph database G in which we find an occurrence of
the pattern L satisfying the additional property for L encoded in the query,
see e.g. Fig. 1b depicting a graph property p1 expressing validity for a query
taken from [9,35] explained in detail in Sect. 3. First of all automatic support
to answer this validity question for a query is thus desired. Moreover, if validity
is the case, then one wants to be able to inspect a graph database G as a
concrete example, but this example should be of a manageable size. Moreover,
if there are considerably different types of graph databases being witnessed for
the validity of a query then we would like to get a finite, complete, and compact
overview S of all these graph databases. Also a flexible exploration starting from
some minimal example graph database to a bigger one still being a witness for
validity is desirable. Finally, of course one wants to see all these results within a
reasonable amount of time.

For a given graph property p, formulating more generically all requirements
occurring in this usage scenario means that we would like to have an algorithm
A returning for p a finite set of so-called symbolic models S such that

– S jointly covers each finite graph G satisfying p (complete),
– S does not cover any finite graph G violating p (sound),
– S contains no superfluous symbolic model (compact),
– S allows for each of its symbolic models the immediate extraction of a minimal

finite graph G covered (minimally representable), and
– S allows an enumeration of further finite graphs G satisfying p (explorable).

The contribution of this paper is the presentation and implementation of a
parallelizable symbolic model generation algorithm delivering a complete (pro-
vided termination), sound, compact, minimally representable, and explorable
set of symbolic models. We illustrate the algorithm w.r.t. checking validity of
some complex graph queries from [9,35]. Our algorithm takes as input graph
properties formulated in an intuitive, dedicated logic making use of graphs and
graph morphisms as first-class citizens. This logic of so-called nested graph con-
ditions was defined by Habel and Pennemann [13]. A similar approach was first
introduced by Rensink [30]. The origins can be found in the notion of graph
constraint [15], introduced in the area of graph transformation [31], in connec-
tion with the notion of (negative) application conditions [8,12], as a form to

228 S. Schneider et al.

limit the applicability of transformation rules. These graph constraints origi-
nally had a very limited expressive power, while nested conditions have been
shown [13,26] to have the same expressive power as first-order logic (FOL) on
graphs as introduced by Courcelle [4]. Note that because we support FOL on
graphs our algorithm might in general not terminate. It is designed however
(also if non-terminating) to gradually deliver better underapproximations of the
complete set of symbolic models.

This paper is structured as follows: In Sect. 2 we give an overview over related
work. In Sect. 3 we introduce our running example and we reintroduce the key
notions of the tableau-based reasoning method that our symbolic model genera-
tion algorithm is based on. In Sect. 4 we present our algorithm and its formaliza-
tion and in particular show that it fulfills all requirements. In Sect. 5 we describe
the algorithm implementation in the new tool AutoGraph. We conclude the
paper in Sect. 6 together with an overview of future work. A more elaborate
presentation including further evaluation and proofs is given in the technical
report [33].

2 Related Work

Instead of using a dedicated logic for graph properties, one can define and reason
about graph properties in terms of some existing logic and reuse its associated
reasoning methods. In particular, Courcelle [4] studied systematically a graph
logic defined in terms of first-order (or monadic second-order) logic. In that app-
roach, graphs are defined axiomatically using predicates node(n), asserting that
n is a node, and edge(n1, n2) asserting that there is an edge from n1 to n2.
Such a translation-based approach for finding models of graph-like properties is
followed, e.g., in [10], where OCL properties are translated into relational logic,
and reasoning is then performed by Kodkod, a SAT-based constraint solver for
relational logic. In a similar vein, in [1] reasoning for feature models is being
provided based on a translation into input for different general-purpose reason-
ers. Analogously, in [34] the Alloy analyzer is used to synthesize in this case
large, well-formed and realistic models for domain-specific languages. Reasoning
for domain specific modeling is addressed also in [16,17] using the FORMULA
approach taking care of dispatching the reasoning to the state-of-the-art SMT
solver Z3. In [32] another translation-based approach is presented to reason with
so-called partial models expressing uncertainty about the information in the
model during model-based software development. In principle, all the previously
exemplarily presented approaches from the model-based engineering domain rep-
resent potential use cases for our dedicated symbolic model generation approach
for graph-like properties. Since we are able to generate symbolic models being
complete (in case of termination), sound, compact, minimally representable, and
explorable in combination, we believe that our approach has the potential to
enhance considerably the type of analysis results, in comparison with the results
obtained by using off-the-shelf SAT-solving technologies.

Following this idea, in contrast to the translation-based approach it is pos-
sible, e.g., to formalize a graph-like property language such as OCL [29] by

Symbolic Model Generation for Graph Properties 229

a dedicated logic for graph properties [13] and apply corresponding dedicated
automated reasoning methods as developed in [20,23–25]. The advantage of such
a graph-dedicated approach as followed in this paper is that graph axioms are
natively encoded in the reasoning mechanisms of the underlying algorithms and
tooling. Therefore, they can be built to be more efficient than generic-purpose
methods as demonstrated e.g. in [24–26], where such an approach outperforms
some standard provers working over encoded graph conditions. Moreover, the
translation effort for each graph property language variant (such as e.g. OCL)
into a formal logic already dedicated to the graph domain is much smaller than
a translation into some more generic logic, which in particular makes translation
errors less probable. As most directly related work [24,26] presents a satisfiabil-
ity solving algorithm for graph properties as employed in this paper [13]. This
solver attempts to find one finite model (if possible), but does not generate a
compact and gradually complete finite set of symbolic models allowing to inspect
all possible finite models including a finite set of minimal ones. In contrast to
[24,26] our symbolic model generation algorithm is interleaved directly with a
refutationally complete tableau-based reasoning method [20], inspired by rules
of a proof system presented previously in [25], but in that work the proof rules
were not shown to be refutationally complete.

3 Preliminaries

In this section we first introduce our running example and then recall definitions
and results from [20] simplified for their application in subsequent sections.

We consider as an example two social network queries as described in the
Social Network Benchmark developed by the Linked Data Benchmark Council [9,
35]. The form of social networks to be queried is given by the type graph in
Fig. 1a. Moreover, we forbid parallel edges of the same type. The first considered
graph query (a variant of query 8 from [3]) looks for pairs of Persons and Tags
such that in such a pair a Tag is new in some Post by a friend of this Person.
To be a Post of a friend, the Post must be from a second Person the Person
knows. In order to be new, the Tag must be linked in the latest Post of the
second Person (and thus in a Post that has no successor Post) and there has to
be no former Post by any other or the same friend that is not her last one and
where the same Tag has been already used. In both cases only Tags that are not
simply inherited from a linked Post should be considered. This query is valid if
there is a graph database G in which such a Person and Tag pair can be found
at least once. The corresponding graph property p1 is depicted in Fig. 1b. The
graph property p2 for a variant of query 10 [9,35] is given in Fig. 1c.

Technically, we express graph properties as a special case of nested graph
conditions that are formulated over a graph C and satisfied by monomorphisms
(monos for short) [13]. In particular, a graph property satisfied by a graph G is
a graph condition over the empty graph ∅ satisfied by the unique mono ∅ ↪−→ G.

230 S. Schneider et al.

Fig. 1. Graph properties for queries from the Social Network Benchmark [9,35].

Definition 1 (condition, property). We define conditions inductively:

– ∃(m, c) is a condition over a graph C, if m : C ↪−→ D is a mono and c is a
condition over D,

– ¬c is a condition over C, if c is a condition over C, and
– ∧(c1, . . . , ck) is a condition over C, if c1, . . . , ck are conditions over C.

A graph property is a condition over the empty graph ∅.
Note, the empty conjunction ∧() serves as a base case for the inductive defi-
nition. Without extending expressiveness of the conditions, we define the fol-
lowing operators: ∨(c1, . . . , ck):=¬ ∧ (¬c1, . . . ,¬ck), true:=∧(), false:=∨(), and
∀(m, c):=¬∃(m,¬c). Finally, we also use ∧(S) if S is a finite set instead of a list.

Symbolic Model Generation for Graph Properties 231

Definition 2 (satisfaction). A graph mono q : C ↪−→ G satisfies a condition
∃(m, c) where m : C ↪−→ D is a mono and where c is a condition over D, written
q |= ∃(m, c), if there is a mono q′ : D ↪−→ G such that q′◦m = q and q′ |= c. The
satisfaction relation |= is defined on the other connectives as expected. Finally,
if G is a graph, p is a graph property, and the unique mono i : ∅ ↪−→ G satisfies
p, then G satisfies p, written G |= p.

Note that we reintroduced these definitions for graphs, but our results can
be generalized to variants of graphs such as, e.g., typed attributed graphs, Petri
nets, or even algebraic specifications, since they belong to an M-adhesive cat-
egory [6,19] satisfying some additional categorical properties that the tableau-
based reasoning method [20] requires. This is another advantage as opposed to
using encodings as referred to in related work, since each kind of graph structure
would otherwise need a different encoding.

Our symbolic model generation method will operate on the subset of con-
ditions in conjunctive normal form (CNF), simplifying the corresponding rea-
soning. For example, ∧(∨()) = ∧(false) is a condition in CNF equivalent to
false. We therefore assume an operation [·], similarly to operations in [20,25,26],
translating conditions into equivalent conditions in CNF. This operation applies,
besides the expected equivalences, like the equivalence for removal of universal
quantification mentioned before Definition 2, an equivalence for the removal of
literals with isomorphisms (e.g., ∃(i : A ∼−→ B,∃(m : B ↪−→ C, true)) is replaced
by ∃((m ◦ i) : A ↪−→ C, true) by moving the isomorphism i into the literals of the
next nesting level). In particular, a negative literal in CNF is trivially satisfi-
able by the identity morphism, a property that will be exploited heavily in our
symbolic model generation algorithm. Note, skolemization, which removes exis-
tential quantification in FOL SAT-reasoning, is not needed for graph conditions
[26, p. 100]; we employ CNF-conversion on quantified subconditions separately.

Definition 3 (CNF). A literal � is either a positive literal ∃(m, c) or a nega-
tive literal ¬∃(m, c) where m is no isomorphism and c is in CNF. A clause is a
disjunction of literals. A conjunction of clauses is a condition in CNF.

The tableau-based reasoning method as introduced in [20] is based on so-
called nested tableaux. We start with reintroducing the notion of a regular
tableau for a graph condition, which was directly inspired by the construction
of tableaux for plain FOL reasoning [14]. Intuitively, provided a condition in
CNF, such an iteratively constructed tableau represents all possible selections
(computed using the extension rule in the following definition) of precisely one
literal from each clause of the condition (note, a condition is unsatisfiable if it
contains an empty clause). Such a selection is given by a maximal path in the
tableau, which is called branch. In this sense, we are constructing a disjunctive
normal form (DNF) where the set of nodes occurring in a branch of the resulting
tableau corresponds to one clause of this DNF. Then, to discover contradictions
in the literals of a branch and to prepare for the next step in the satisfiability
analysis we merge (using the lift rule in the following definition) the selected
literals into a single positive literal (note, if no positive literal is available the

232 S. Schneider et al.

condition is always satisfiable), which is called opener. Note that the lift rule is
based on a shifting translating a condition over a morphism into an equivalent
condition [7,13].

Definition 4 (tableau, tableau rules, open/closed branches). Given a
condition c in CNF over C. A tableau T for c is a tree whose nodes are conditions
constructed using the rules below. A branch in a tableau T for c is a maximal
path in T . Moreover, a branch is closed if it contains false; otherwise, it is open.
Finally, a tableau is closed if all of its branches are closed; otherwise, it is open.

– initialization rule: a tree with a single root node true is a tableau for c.
– extension rule: if T is a tableau for c, B is a branch of T , and ∨(c1, . . . , cn) is

a clause in c, then if n > 0 and c1, . . . , cn are not in B, then extend B with
n child nodes c1, . . . , cn or if n = 0 and false is not in B, then extend B with
false.

– lift rule: if T is a tableau for c, B is a branch of T , ∃(m, c′) and � are literals
in B, �′ = ∃(m, [c′ ∧ shift(m, �)]) is not in B, then extend B with �′.

The operation shift(·, ·) allows to shift conditions over morphisms preserving
satisfaction in the sense that m1 ◦ m2 |= c iff m1 |= shift(m2, c) (see [20,
Lemma 3]). Semi-saturated tableaux are the desired results of the iterative con-
struction where no further rules need to be applied.

Definition 5 (semi-saturation, hook of a branch). Let T be a tableau for
condition c over C. A branch B of T is semi-saturated if it is either closed or

– B is not extendable with a new node using the extension rule and
– if E = {�1, . . . , �n} is nonempty and the set of literals added to B using the

extension rule, then there is a positive literal � = ∃(m, c′) in E such that the
literal in the leaf of B is equivalent to ∃(m, c′ ∧�′∈(E−{�}) shift(m, �′)). Also,
we call � the hook of B.

Finally, T is semi-saturated if all its branches are semi-saturated.

In fact, a condition c is satisfiable if and only if the leaf condition of some open
branch of a corresponding semi-saturated tableau is satisfiable. Hence, the next
analysis step is required if there is a leaf ∃(m : C ↪−→ C ′, c′) of some open branch
for which satisfiability has to be decided. That is, the next analysis step is to
construct a tableau for condition c′. The iterative (possibly non-terminating)
execution of this procedure results in (possibly infinitely many) tableaux where
each tableau may result in the construction of a finite number of further tableaux.
This relationship between a tableau and the tableaux derived from the leaf lit-
erals of open branches results in a so called nested tableau (see Fig. 2 for an
example of a nested tableau).

Definition 6 (nested tableau, opener, context, nested branch, semi-
saturation). Given a condition c over C and a poset (I,≤, i0) with minimal
element i0. A nested tableau NT for c is for some I ′ ⊆ I a family of triples
{〈Ti, j, ci〉}i∈I′ constructed using the following rules.

Symbolic Model Generation for Graph Properties 233

Fig. 2. Nested tableau (consisting of tableau T0, . . . , T5) for graph property

. In the middle branch
false is obtained because ¬ ∨ L2 is reduced to false because ∨L2 is reduced to true
because L2 contains due to shifting, which is reduced by [·] to true because of the
used isomorphism. We extract from the nested branches ending in T4, T5, and T3 the

symbolic models , , and . Here

is a refinement of and, hence, would be removed by compaction as explained
in Sect. 4.4.

– initialization rule: If Ti1 is a tableau for c, then the family containing only
〈Ti1 , i0, true〉 for some index i1 > i0 is a nested tableau for c and C is called
context of Ti1 .

– nesting rule: If NT is a nested tableau for c with index set I ′, 〈Tn, k, ck〉 is in
NT for index n, the literal � = ∃(mn : An ↪−→ Aj , cn) is a leaf of Tn, � is not
the condition in any other triple of NT, Tj is a tableau for cn, and j > n is
some index not in I ′, then add the triple 〈Tj , n, �〉 to NT using index j, � is
called opener of Tj, and Aj is called context of Tj.

A nested branch NB of the nested tableau NT is a maximal sequence of branches
Bi1 , . . . , Bik , Bik+1 , . . . of tableaux Ti1 , . . . , Tik , Tik+1 , . . . in NT starting with a
branch Bi1 in the initial tableau Ti1 of NT, such that if Bik and Bik+1 are
consecutive branches in the sequence then the leaf of Bik is the opener of Tik+1 .
NB is closed if it contains a closed branch; otherwise, it is open. NT is closed if
all its nested branches are closed. Finally, NT is semi-saturated if each tableau
in NT is semi-saturated.

It has been shown in [20] that the tableau based reasoning method using
nested tableaux for conditions c is sound and refutationally complete. In partic-
ular, soundness means that if we are able to construct a nested tableau where all

234 S. Schneider et al.

its branches are closed then the original condition c is unsatisfiable. Refutational
completeness means that if a saturated tableau includes an open branch, then
the original condition is satisfiable. In fact, each open finite or infinite branch
in such a tableau defines a finite or infinite model of the property, respectively.
Informally, the notion of saturation requires that all tableaux of the given nested
tableau are semi-saturated and that hooks are selected in a fair way not post-
poning indefinitely the influence of a positive literal for detecting inconsistencies
leading to closed nested branches.

4 Symbolic Model Generation

In this section we present our symbolic model generation algorithm. We first
formalize the requirements from the introduction for the generated set of sym-
bolic models, then present our algorithm, and subsequently verify that it indeed
adheres to these formalized requirements. In particular, we want our algorithm
to extract symbolic models from all open finite branches in a saturated nested
tableau constructed for a graph property p. This would be relatively straightfor-
ward if each saturated nested tableau would be finite.

However, in general, as stated already at the end of the previous section
this may not be the case. E.g., consider the conjunction p0 = ∧(p1, p2, p3) of
the conditions p1 = (there is a node which has no pre-
decessor), p2 = (every node has a successor), and p3 =

(no node has two predecessors), which is only satisfied by
the infinite graph G∞ =

Thus, in order to be able to find a complete set of symbolic models without
knowing beforehand if the construction of a saturated nested tableau terminates,
we introduce the key-notions of k-semi-saturation and k-termination to reason
about nested tableaux up to depth k, which are in some sense a prefix of a
saturated tableau. Note, the verification of our algorithm, in particular for com-
pleteness, is accordingly based on induction on k. Informally, this means that by
enlarging the depth k during the construction of a saturated nested tableau, we
eventually find all finite open branches and thus finite models. This procedure
will at the same time guarantee that we will be able to extract symbolic mod-
els from finite open branches even for the case of an infinite saturated nested
tableau. E.g., we will be able to extract ∅ from a finite open branch of the infinite
saturated nested tableau for property p4 = .

4.1 Sets of Symbolic Models

The symbolic model generation algorithm A should generate for each graph
property p a set of symbolic models S satisfying all requirements described in
the introduction. A symbolic model in its most general form is a graph condition
over a graph C, where C is available as an explicit component. A symbolic
model then represents a possibly empty set of graphs (as defined subsequently
in Definition 10). A specific set of symbolic models S for a graph property p

Symbolic Model Generation for Graph Properties 235

satisfies the requirements soundness, completeness, minimal representability, and
compactness if it adheres to the subsequent formalizations of these notions.

Definition 7 (symbolic model). If c is a condition over C according to
Definition 1, then 〈C, c〉 is a symbolic model.

Based on the notion of m-consequence we relate symbolic models subsequently.

Definition 8 (m-consequence on conditions). If c1 and c2 are conditions
over C1 and C2, respectively, m : C1 ↪−→ C2 is a mono, and for all monos
m1 : C1 ↪−→ G and m2 : C2 ↪−→ G such that m2 ◦ m = m1 it holds that m2 |= c2
implies m1 |= c1, then c1 is an m-consequence of c2, written . We can
state the existence of such an m by writing . We also omit m if it is
the identity or clear from the context. Finally, conditions c1 and c2 over C are
equivalent, written c1 ≡ c2, if and .

We define coverage of symbolic models based on the notion of m-refinement,
which relies on an m-consequence between the contained conditions.

Definition 9 (m-refinement of symbolic model). If 〈C1, c1〉 and 〈C2, c2〉
are symbolic models and m : C1 ↪−→ C2 is a mono, and , then 〈C2, c2〉
is an m-refinement of 〈C1, c1〉, written . The set of all such
symbolic models 〈C2, c2〉 is denoted by refined(〈C1, c1〉).
We define the graphs covered by a symbolic model as follows.

Definition 10 (m-covered by a symbolic model). If 〈C, c〉 is a symbolic
model, G is a finite graph, m : C ↪−→ G is a mono, and m |= c then G is an m-
covered graph of 〈C, c〉. The set of all such graphs is denoted by covered(〈C, c〉).
For a set S of symbolic models covered(S) = ∪s∈Scovered(s).

Based on these definitions, we formalize the first four requirements from Sect. 1
to be satisfied by the sets of symbolic models returned by algorithm A.

Definition 11 (sound, complete, minimally representable, compact).
Let S be a set of symbolic models and let p be a graph property. S is sound
w.r.t. p if covered(S) ⊆ {G | G |= p ∧ G is finite}, S is complete w.r.t. p if
covered(S) ⊇ {G | G |= p∧G is finite}, S is minimally representable w.r.t. p if
for each 〈C, c〉 ∈ S: C |= p and for each G ∈ covered(〈C, c〉) there is a mono m :
C ↪−→ G, and S is compact if all (s1 �= s2) ∈ S satisfy covered(s1) � covered(s1).

4.2 Symbolic Model Generation Algorithm A
We briefly describe the two steps of the algorithm A, which generates for a graph
property p a set of symbolic models A(p) = S. The algorithm consists of two
steps: the generation of symbolic models and the compaction of symbolic models,
which are discussed in detail in Sects. 4.3 and 4.4, respectively. Afterwards, in
Sect. 4.5, we discuss the explorability of the obtained set of symbolic models S.

236 S. Schneider et al.

Step 1 (Generation of symbolic models in Sect. 4.3). We apply the tableau and
nested tableau rules from Sect. 3 to iteratively construct a nested tableau. Then,
we extract symbolic models from certain nested branches of this nested tableau
that can not be extended. Since the construction of the nested tableau may not
terminate due to infinite nested branches we construct the nested tableau in
breadth-first manner and extract the symbolic models whenever possible. More-
over, we eliminate a source of nontermination by selecting the hook in each
branch in a fair way not postponing the successors of a positive literal that was
not chosen as a hook yet indefinitely [20, p. 29] ensuring at the same time refuta-
tional completeness of our algorithm. This step ensures that the resulting set of
symbolic models is sound, complete (provided termination), and minimally rep-
resentable. The symbolic models extracted from the intermediately constructed
nested tableau NT for growing k is denoted SNT ,k.

Step 2 (Compaction of symbolic models in Sect. 4.4). We obtain the final
result S from SNT ,k by the removal of symbolic model that are a refinement
of any other symbolic model. This step preserves soundness (as only symbolic
models are removed), completeness (as only symbolic models are removed that
are refinements, hence, the removal does not change the set of covered graphs),
and minimal representability (as only symbolic models are removed), and addi-
tionally ensures compactness.

4.3 Generation of SNT ,k

By applying a breadth-first construction we build nested tableaux that are for
increasing k, both, k-semi-saturated, stating that all branches occurring up to
index k in all nested branches are semi-saturated, and k-terminated, stating that
no nested tableau rule can be applied to a leaf of a branch occurring up to index
k in some nested branch.

Definition 12 (k-semi-saturation, k-terminated). Given a nested tableau
NT for condition c over C. If NB is a nested branch of length k of NT and each
branch B contained at index i ≤ k in NB is semi-saturated, then NB is k-semi-
saturated. If every nested branch of NT of length n is min(n, k)-semi-saturated,
then NT is k-semi-saturated. If NB is a nested branch of NT of length n and the
nesting rule can not be applied to the leaf of any branch B at index i ≤ min(n, k)
in NB, then NB is k-terminated. If every nested branch of NT of length n is
min(n, k)-terminated, then NT is k-terminated. If NB is a nested branch of NT
that is k-terminated for each k, then NB is terminated. If NT is k-terminated
for each k, then NT is terminated.

We define the k′-remainder of a branch, which is a refinement of the condition
of that tableau, that is used by the subsequent definition of the set of extracted
symbolic models.

Definition 13 (k′-remainder of branch). Given a tableau T for a condition
c over C, a mono q : C ↪−→ G, a branch B of T , and a prefix P of B of length
k′ > 0. If R contains (a) each condition contained in P unless it has been used

Symbolic Model Generation for Graph Properties 237

in P by the lift rule (being ∃(m, c′) or � in the lift rule in Definition 4) and (b)
the clauses of c not used by the extension rule in P (being ∨(c1, . . . , cn) in the
extension rule in Definition 4), then 〈C,∧R〉 is the k’-remainder of B.

The set of symbolic models extracted from a nested branch NB is a set of certain
k′-remainders of branches of NB . In the example given in Fig. 2 we extracted
three symbolic models from the four nested branches of the nested tableau.

Definition 14 (extracted symbolic model). If NT is a nested tableau for
a condition c over C, NB is a k-terminated and k-semi-saturated nested branch
of NT of length n ≤ k, B is the branch at index n of length k′ in NB, B is
open, B contains no positive literals, then the k’-remainder of B is the symbolic
model extracted from B. The set of all such extracted symbolic models from k-
terminated and k-semi-saturated nested branches of NT is denoted SNT ,k.

Based on the previously introduced definitions of soundness, completeness, and
minimal representability of sets of symbolic models w.r.t. graph properties we
are now ready to verify the corresponding results on the algorithm A.

Theorem 1 (soundness). If NT is a nested tableau for a graph property p,
then SNT ,k is sound w.r.t. p.

Theorem 2 (completeness). If NT is a terminated nested tableau for a graph
property p, k is the maximal length of a nested branch in NT, then SNT ,k is
complete w.r.t. p.

As explained by the example at the beginning of Sect. 4 the algorithm may
not terminate. However, the symbolic models extracted at any point during the
construction of the nested tableau are a gradually extended underapproximation
of the complete set of symbolic models. Moreover, the openers ∃(m : G1 ↪−→
G2, c) of the branches that end nonterminated nested branches constitute an
overapproximation by encoding a lower bound on missing symbolic models in
the sense that each symbolic model that may be discovered by further tableau
construction contains some G2 as a subgraph.

Theorem 3 (minimal representability). If NT is a nested tableau for a
graph property p, then SNT ,k is minimally representable w.r.t p.

For p1 ∧ p2 from Fig. 1 we obtain a terminated nested tableau (consisting of 114
tableaux with 25032 nodes) from which we generate 28 symbolic models (with a
total number of 5433 negative literals in their negative remainders). For p from
Fig. 2 we generate 3 symbolic models, which are given also in Fig. 2. In the next
subsection we explain how to compact sets of symbolic models.

4.4 Compaction of SNT ,k into S
The set of symbolic models SNT ,k as obtained in the previous section can be
compacted by application of the following lemma. It states a sufficient condition

238 S. Schneider et al.

for whether a symbolic model 〈A1, c1〉 refines another symbolic model 〈A2, c2〉,
which is equivalent to covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉). In this case we can
remove the covered symbolic model 〈A2, c2〉 from SNT ,k without changing the
graphs covered. Since the set of symbolic models SNT ,k is always finite we can
apply the following lemma until no further coverages are determined.

Lemma 1 (compaction). If 〈A1, c1〉 and 〈A2, c2〉 are two symbolic models,
m : A1 ↪−→ A2 is a mono, and ∃(i2, c2 ∧ ¬shift(i2,∃(i1, c1))) is not satisfiable by
a finite graph, then covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉).
This lemma can be applied when we determine a mono m such that ∃(i2, c2 ∧
¬shift(i2,∃(i1, c1))) is refutable. For this latter part we apply our tableau con-
struction as well and terminate as soon as non-refutability is detected, that is,
as soon as a symbolic model is obtained for the condition.

For the resulting set S of symbolic models obtained from iterated application
of Lemma 1 we now state the compactness as defined before.

Theorem 4 (compactness). If NT is a nested tableau for a graph property p,
then S ⊆ SNT ,k is compact.

For p1∧p2 from Fig. 1 we determined a single symbolic model with minimal model
(given in Fig. 1e) that is contained by the minimal models of all 28 extracted
symbolic models. However, this symbolic model covers only 2 of the other 27
symbolic models in the sense of Lemma 1. For p from Fig. 2 we removed one of
the three symbolic models by compaction ending up with two symbolic models,
which have incomparable sets of covered graphs as for the symbolic models
remaining after compaction for p1 ∧ p2 from Fig. 1.

4.5 Explorability of S
We believe that the exploration of further graphs satisfying a given property
p based on the symbolic models is often desireable. In fact, covered(S) can be
explored according to Definition 10 by selecting 〈C, c〉 ∈ S, by generating a
mono m : C ↪−→ G to a new finite candidate graph G, and by deciding m |= c.
Then, an entire automatic exploration can proceed by selecting the symbolic
models 〈C, c〉 ∈ S in a round-robin manner using an enumeration of the monos
leaving C in each case. However, the exploration may also be guided interactively
restricting the considered symbolic models and monos.

Fig. 3. Two extension candidates that include the graph G0 from Fig. 1e with obvious
monos m1 : G0 ↪−→ G1 and m2 : G0 ↪−→ G2.

Symbolic Model Generation for Graph Properties 239

For example, consider p2 from Fig. 1c for which the algorithm A returns a
single symbolic model 〈G0, c0〉 of which the minimal model is given in Fig. 1c.
In an interactive exploration we may want to decide whether the two graphs
given in Fig. 3 also satisfy p2. In fact, because m1 |= c0 and m2 � |= c0 we derive
G1 |= p2 and G2 � |= p2 as expected.

5 Implementation

We implemented the algorithm A platform-independently using Java as our new
tool AutoGraph using xsd-based [36] input/output-format.

For p1∧p2 from Fig. 1 we computed the symbolic models using AutoGraph
in 7.4 s, 4.6 s, 3.4 s, 2.7 s, and 2.1 s using 1, 2, 3, 4, and 13 threads (machine:
256 GB DDR4, 2 × E5-2643 Xeon @ 3.4 GHz × 6 cores × 2 threads). The minimal
models derived using AutoGraph for p1, p2, and p1 ∧ p2 from Fig. 1 are given
in Fig. 1d and e. For p from Fig. 2 AutoGraph terminates in negligable time.

While some elementary constructions used (such as computing CNF, exis-
tence of monos, and pair factorization) have exponential worst case executing
time, we believe, based on our tool-based evaluation, that in many practical
applications the runtime will be acceptable. Furthermore, we optimized perfor-
mance by exploiting parallelizability of the tableaux construction (by considering
each nested branch in parallel) and of the compaction of the sets of symbolic
models (by considering each pair of symbolic models in parallel).

To limit memory consumption we discard parts of the nested tableau not
required for the subsequent computation, which generates the symbolic models,

Fig. 4. Implemented construction rules: � is a literal, �s is a sequence of literals, L is a
set of literals, cli is a clause, and � is the unchanged value from the input.

240 S. Schneider et al.

as follows. The implemented algorithm operates on a queue (used to enforce the
breadth-first construction) of configurations where each configuration represents
the last branch of a nested branch of the nested tableau currently constructed
(the parts of the nested tableau not given by theses branches are thereby not
represented in memory). The algorithm starts with a single initial configuration
and terminates if the queue of configurations is empty.

A configuration contains the information necessary to continue the further
construction of the nested tableau (also ensuring fair selection of hooks) and to
extract the symbolic models whenever one is obtained.

A configuration of the implementation is a tuple containing six elements
(inp, res,neg , q-pre, q-post , cm) where inp is a condition c over C in CNF and is
the remainder of the condition currently constructed (where clauses used already
are removed), res is ⊥ or a positive literal ∃(m : C ↪−→ D, c′) into which the other
literals from the branch are lifted, neg is a list of negative literals over C from
clauses already handled (this list is emptied as soon as a positive literal has been
chosen for res), q-pre is a queue of positive literals over C from which the first
element is chosen for the res component, q-post is a queue of positive literals:
once res is a chosen positive literal ∃(m : C ↪−→ D, c′) we shift the elements from
q-pre over m to obtain elements of q-post , and cm is the composition of the
morphisms from the openers of the nested branch constructed so far and is used
to obtain eventually symbolic models (if they exist).

Given a condition c over C the single initial configuration is
(c,⊥, λ, λ, λ, idC). The implemented construction rules operating on these con-
figurations are given in Fig. 4. Given a configuration c we check the rules in the
order given for applicability and apply only the first rule found. For each rule,
applicability is determined by the conditions above the line and each rule results
in a set of configurations given below the rule.

Rule 1 stops further generation if the current result is unsatisfiable. Rule 2
ensures that hooks are selected from the queue (if the queue is not empty) to
ensure fairness of hook selection. Rule 3 if the queue can not be used to select
a hook and no clause remains, the nested branch is terminated and a symbolic
model can be extracted by taking 〈codomain(cm),∧neg〉. Rule 4 implements
the lifting rule (see Definition 4) for negative literals taken from neg . Rule 5
implements the lifting rule (see Definition 4) for positive literals taken from q-pre;
if the morphism of the resulting positive literal is an isomorphism, as forbidden
for literals in CNF, we move an equivalent condition in CNF into the current hook
(also implementing the lift rule) instead of moving the literal to the queue q-post .
Rule 6 implements the nesting rule (see Definition 6). Rule 7 deterministically
implements the extension rule (see Definition 4) constructing for each literal of
the first clause a new configuration to represent the different nested branches.

For soundness reconsider Definition 13 where the set R used in the condi-
tion ∧R recovers the desired information similarly to how it is captured in the
configurations. The separation into different elements in the configurations then
allows for queue handling and determinization.

Symbolic Model Generation for Graph Properties 241

6 Conclusion and Outlook

We presented a symbolic model generation procedure for graph properties being
equivalent to FOL on graphs. Our algorithm is innovative in the sense that it
is designed to generate a finite set of symbolic models that is sound, complete
(upon termination), compact, minimally representable, and flexibly explorable.
Moreover, the algorithm is highly parallelizable. The approach is implemented
in a new tool, called AutoGraph.

As future work we aim at applying, evaluating, and optimizing our approach
further w.r.t. different application scenarios from the graph database domain [37]
as presented in this paper, but also to other domains such as model-driven
engineering, where our approach can be used, e.g., to generate test models
for model transformations [2,11,22]. We also aim at generalizing our approach
to more expressive graph properties able to encode, e.g., path-related proper-
ties [21,27,28]. Finally, the work on exploration and compaction of extracted
symbolic models as well as reducing their number during tableau construction
is an ongoing task.

References

1. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. SoSyM 15(3), 811–845 (2016)

2. Baudry, B.: Testing model transformations: a case for test generation from input
domain models. In: MDE4DRE (2009)

3. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operationalization of graph
queries with generalized discrimination networks. In: [5], 170–186

4. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: [31], 313–400

5. Echahed, R., Minas, M. (eds.): ICGT 2016. LNCS, vol. 9761. Springer, Cham
(2016)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

7. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

8. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24(4) (2014)

9. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat-Pérez,
A., Pham, M., Boncz, P.A.: The LDBC social network benchmark: interactive
workload. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 619–630. ACM (2015)

10. Gogolla, M., Hilken, F.: Model validation and verification options in a contem-
porary UML and OCL analysis tool. In: Modellierung 2016. LNI, vol. 254, pp.
205–220. GI (2016)

11. González, C.A., Cabot, J.: Test data generation for model transformations
combining partition and constraint analysis. In: Ruscio, D., Varró, D. (eds.)
ICMT 2014. LNCS, vol. 8568, pp. 25–41. Springer, Cham (2014). doi:10.1007/
978-3-319-08789-4 3

http://dx.doi.org/10.1007/978-3-319-08789-4_3
http://dx.doi.org/10.1007/978-3-319-08789-4_3

242 S. Schneider et al.

12. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

13. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. MSCS 19(2), 245–296 (2009)

14. Hähnle, R.: Tableaux and related methods. In: Handbook of Automated Reasoning
(in 2 vols.), pp. 100–178 (2001)

15. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a
constructive approach. ENTCS 2, 118–126 (1995)

16. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24485-8 48

17. Jackson, E.K., Sztipanovits, J.: Constructive techniques for meta- and model-level
reasoning. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 405–419. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75209-7 28

18. Krause, C., Johannsen, D., Deeb, R., Sattler, K., Knacker, D., Niadzelka, A.: An
SQL-based query language and engine for graph pattern matching. In: Echahed
and Minas [5], 153–169

19. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–
545 (2005)

20. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Cham
(2014). doi:10.1007/978-3-319-09108-2 2

21. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, vol. 1, pp. 609–619 (2015)

22. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02674-4 10

23. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints. Formal Asp.
Comput. 22(3–4), 385–422 (2010)

24. Pennemann, K.: An algorithm for approximating the satisfiability problem of high-
level conditions. ENTCS 213, 75–94 (2008)

25. Pennemann, K.-H.: Resolution-like theorem proving for high-level conditions. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 289–304. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87405-8 20

26. Pennemann, K.H.: Development of Correct Graph Transformation Systems, PhD
Thesis. Dept. Informatik, Univ. Oldenburg (2009)

27. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Cham (2014). doi:10.1007/978-3-319-09108-2 3

28. Radke, H.: Hr* graph conditions between counting monadic second-order and
second-order graph formulas. ECEASST 61 (2013)

29. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential
OCL invariants to nested graph constraints focusing on set operations. In: Parisi-
Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 155–170.
Springer, Cham (2015). doi:10.1007/978-3-319-21145-9 10

http://dx.doi.org/10.1007/978-3-642-24485-8_48
http://dx.doi.org/10.1007/978-3-540-75209-7_28
http://dx.doi.org/10.1007/978-3-540-75209-7_28
http://dx.doi.org/10.1007/978-3-319-09108-2_2
http://dx.doi.org/10.1007/978-3-642-02674-4_10
http://dx.doi.org/10.1007/978-3-540-87405-8_20
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-319-21145-9_10

Symbolic Model Generation for Graph Properties 243

30. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30203-2 23

31. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

32. Salay, R., Chechik, M.: A generalized formal framework for partial modeling. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 133–148. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 9

33. Schneider, S., Lambers, L., Orejas, F.: Symbolic Model Generation for Graph
Properties (Extended Version). No. 115 in Technische Berichte des Hasso-Plattner-
Instituts für Softwaresystemtechnik an der Universität Potsdam, Universitätsverlag
Potsdam, Hasso Plattner Institute (Germany, Potsdam), 1 edn. (2017)

34. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633,
pp. 87–103. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 6

35. The Linked Data Benchmark Council (LDBC): Social network benchmark (2016).
http://ldbcouncil.org/benchmarks/snb

36. T.W.W.W.C. (W3C): W3C xml schema definition language (xsd) 1.1 part 1: struc-
tures (2012)

37. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012)

http://dx.doi.org/10.1007/978-3-540-30203-2_23
http://dx.doi.org/10.1007/978-3-662-46675-9_9
http://dx.doi.org/10.1007/978-3-662-49665-7_6
http://ldbcouncil.org/benchmarks/snb

Model Transformations

Traceability Mappings as a Fundamental
Instrument in Model Transformations

Zinovy Diskin1(B), Abel Gómez2, and Jordi Cabot2,3

1 McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

2 IN3, Universitat Oberta de Catalunya, Barcelona, Spain
agomezlla@uoc.edu, jordi.cabot@icrea.cat

3 ICREA, Barcelona, Spain

Abstract. Technological importance of traceability mappings for model
transformations is well-known, but they have often been considered as
an auxiliary element generated during the transformation execution and
providing accessory information. This paper argues that traceability
mappings should instead be regarded as a core aspect of the transforma-
tion definition, and a key instrument in the transformation management.

We will show how a transformation can be represented as the result of
execution of a metamodel mapping, which acts as a special encoding of
the transformation definition. Since mappings enjoy Boolean operations
(as sets of links) and sequential composition (as sets of directed links),
encoding transformations by mappings makes it possible to define these
operations for transformations as well, which can be useful for model
transformation reuse, compositional design, and chaining.

1 Introduction

Translating models from one to another metamodel (also known as model-
to-model transformation, mmt) is ubiquitous in software engineering. The
technological importance of traceability for mmt is well recognized in the mmt
community. Such widely used transformation languages as ATL [11,16] and
ETL [12,17] automatically create traceability links during the transformation
execution in order to resolve dependencies between the rules, and perhaps for
debugging and maintenance. Moreover, a traceability mapping (i.e., a set of
links) between the metamodels can be used as an mmt definition, which may
be immediately executed [7,13,14], or used for automatic transformation code
generation [4].

Here, we present a theoretical framework, in which traceability aspects of
mmt are precisely discussed: we specify execution of metatraceability mappings
as an abstract mathematical operation, show the importance of several concepts,
which are underestimated or missing from the literature, and derive some practi-
cal recommendations on mmt management, including transformation chaining.

In Sect. 2, we show that semantics of mmts without traceability mappings
is essentially incomplete: we present an example of two different transforma-
tions indistinguishable in the traceability-free setting. We then demonstrate that
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 247–263, 2017.
DOI: 10.1007/978-3-662-54494-5 14

248 Z. Diskin et al.

traceability links between the source and the target models work in concert with
the respective links between the source and the target metamodels, which means
commutativity of the respective diagrams. Moreover, execution of a metamodel
mapping for a given source model can be specified as an algebraic operation
(called pullback in category theory), for which commutativity is central.

However, simple traceability mappings considered in Sect. 2, which relate two
metamodels with similar structures, do not cover many practically interesting
cases of structurally different metamodels. To address the problem of executing
metamodel mappings relating metamodels with different structures, several com-
plex approaches have been developed [7,19]. We propose a simpler solution, in
which we first augment the source metamodel with derived elements that make
its structure similar to the target metamodel, and then relate the two by a sim-
ple mapping. The derived elements actually encode operations/queries against
the source metamodel, which can be executed for any model instantiating it.
Hence, a complex metamodel mapping is executed in two steps: first the query
is executed, then the mapping as such is executed. The approach is discussed in
Sect. 3, and in Sect. 5 we show how it can be implemented with ATL.

Thus, even complex mmts are encoded in a unified and transparent way as
mappings relating metamodels with, perhaps, derived elements/queries involved.
An important consequence of this encoding is that we can employ well stud-
ied algebraic operations over mappings for manipulating mmts as black-boxed
objects. Specifically, being sets of links, mappings enjoy intersections and union
operations over them, which can be employed for reuse. Being sets of directed
links, mappings can be sequentially composed, and the respective transforma-
tions chained (which is considered to be a challenging task). Particularly, chain-
ing can be employed for incremental compositional design of mmts. Algebra of
mmts is considered in Sects. 4, and 5 we show how it can be applied for manip-
ulating ATL transformations. Finally, we observe related work in Sect. 6, and
conclude in Sect. 7.

2 Analysing Traceability Mappings

We show the semantic necessity of traceability mappings in Sect. 2.1, consider
their properties and representation in Sect. 2.2, and execution in Sect. 2.3.

2.1 The Semantic Necessity of Traceability Mapping

Semantics of a model-to-model transformation T is commonly considered to be
a function [[T]] : [[M]] → [[N]], where [[M]] and [[N]] are model spaces defined by,
resp., the source, M , and the target, N , metamodels. However, in this section we
present two different transformations generating the same model space mapping,
and then call traceability mappings to the rescue.

Figure 1(a) presents a toy transformation example. The source metamodel M
specifies two classes, Car and Boat, and the target metamodel N specifies their
possible roles as Commuting and Leisure Vehicles, connected by association same

Traceability Mappings as a Fundamental Instrument in MT 249

Transformation T1:
c:Car --> cv: CV, lv:LV,
 cv.same = lv
b:Boat --> lv:LV

Model T1 (A)

Metamod. M

Car

Boat

Metamod. N

Leisure
Vehicle

1

Model A

Commut.
Vehicle

same0..1

:same

Traceability mapping
Model T2 (A)

Metamod. M

Car

Boat

:same

Metamod. N

Leisure
Vehicle

1

Model A
Traceability mapping

Commut.
Vehicle

same0..1

Transformation T2:
c:Car --> lv:LV,
b:Boat --> cv:CV, lv:LV
 cv.same = lv

)b()a(

Fig. 1. Two sample transformations. (Color figure online)

if two roles are played by the same physical vehicle; e.g., such a transformation
may be needed for an insurance company. The transformation T1 consists of two
rules specified in Fig. 1(a) in some pseudo MT language. The first rule says that
a car produces a commuting vehicle and a leisure vehicle connected by a same-
link. The second rule says that a boat generates a leisure vehicle. An example
of executing this transformation for a model A consisting of a car and a boat
is shown in the lower half of Fig. 1(a), where T1(A) denotes the target model
produced by the transformation; ignore the mapping from T1(A) to A for the
moment. Here we write T(A) for [[T]] (A). We will often abuse such a notation
and use the same symbol for a syntactic construct and its intended semantics.

Figure 1(b) presents a different transformation T2. Now a boat gives rise to
a commuting and a leisure vehicle, whereas a car only produces a leisure vehicle
(think about people living on an island). Clearly, being executed for the same
source model A, transformation T2 produces the same target model consisting
of three objects and a same-link. More accurately, models T1(A) and T2(A) are
isomorphic rather than equal, but the same transformation T executed twice
for the same model A would also produce isomorphic rather than equal models
as mmts are normally defined up to OIDs. We will always understand equality
of models up to OID isomorphism, and thus can write T1(A) = T2(A). It is
easy to see that such an equality will hold for any source model containing
equal numbers of cars and boats. If wesuppose that the metamodel M includes
a constraint requiring the numbers of cars and boats to be equal (e.g., has an
association between classes Car and Boat with multiplicity 1..1 at both ends),
then any instance X of M would necessarily consist of equal numbers of cars
and boats. Hence, T1(X) = T2(X) holds for any source instance X∈ [[M]].

Thus, the common semantics of a model transformation as a model space
mapping [[T]] : [[M]] → [[N]] is too poor and should be enriched. Comparison of
the two transformations in Fig. 1(a, b), now with traceability mappings, shows
what should be done: we need to include traceability mappings into the semantics
of mmts, and define it as a function [[T]] : [[M]] → [[N]] ×Map([[N]],[[M]]), where

250 Z. Diskin et al.

Map([[N]],[[M]]) denotes the set of all mappings from N -models (elements of [[N]])
to M -models (in [[M]]). It is convenient to split semantics into two functions:

[[T]]• : [[M]] → [[N]] and [[T]]�: [[M]] → Map([[N]],[[M]])

such that for any source model A, mapping [[T]]�(A) is directed from model
[[T]]• (A) to A (as suggested by the tringle superindex). Thus, what is missing
in the common mmt-semantics is the mapping-valued function [[T]]�. Including
this function into semantics has several important consequences discussed below.
Below we will use a simplified notation with semantic double-brackets omitted.

2.2 Traceability Under the Microscope

Fig. 2. Meta-traceability (Color figure online)

We discuss properties of trace-
ability mappings: structure
preservation, commuting with
typing, and their span repre-
sentation. As an example, we
use transformation T1 from
Fig. 1(a), but denote it by T
to avoid excessive indexing.

2.2.1 Structure Preserva-
tion
A mapping is a collection of
directed links that is compat-
ible with models’ structure. If
models are graphs, then their
graph structure, i.e., the inci-
dence of nodes and edges, should be respected. Consider, e.g., the lower map-
ping T�(A) in Fig. 2, which reproduces the respective traceability mapping in
Fig. 1(a). The dashed link from edge same to node c:Car in this mapping actu-
ally denotes a link targeted at the identity loop of the node c, which relates c to
itself. Such loops can be added to every graph node, and when we draw a link
from an arrow to a node, it is just a syntactic sugar to specify a link targeted at
the node’s identity loop. With this reservation, it is seen that both traceability
mappings in Fig. 1 are correct graph morphisms, which map nodes to nodes and
edges to edges so that the incidence between nodes and edges is preserved.

2.2.2 Meta-Traceability and Commutativity
Another important condition to be respected is compatibility of links between
model elements with relationships between metamodel elements established by
the transformation definition. To explicate the latter, we need meta-traceability
links between metamodels as shown in the upper half of Fig. 2. The mapping T

Traceability Mappings as a Fundamental Instrument in MT 251

consists of four links mtr i (i = 1, 12, 2, 3) “tracing” the origin of the target meta-
model elements according to the (green) transformation definition in Fig. 1(a):
commuting vehicles appear from cars (rule 1) and only from cars (neither of the
other rules produce commuting vehicles), and leisure vehicles appear either from
cars (rule 1) or boats (rule 2). The dashed link to Car again denotes a formal link
from edge same to not-shown identity loop link from Car to Car, and encodes the
clause in rule 1 that a same-link appears when a car generates both a commuting
and leisure vehicle. Thus, the upper three meta-links in mapping T “trace” rule
1 in transformation T, and the lower link “traces” rule 2.

Now recall that a model A is actually a pair (DA, τA) with DA the model’s
datagraph, and τA: DA → M a typing mapping. By a common abuse of notation,
we denote the datagraph by the same letter A as the entire model. In Fig. 2, two
typing mappings (two vertical block-arrows) and two traceability mappings (two
horizontal block-arrows) form a square, and this square is semi-commutative in
the sense that the following two conditions hold. First, each of the four paths
from T•(A) to A (via traceability links tri) to M (via A’s type links) can be
matched by a same-source-same-target path from T•(A) to N (via type links)
to M (via meta-traceability links mtri). Second, there is an upper path without
match, namely, the path from object lv1∈T•(A) to class LeisureVehicle to class
Boat (hence the ≤ symbol denoting this property of the square diagram). As
commutativity rather than semi-commutativity is an important ingredient of
the mapping machinery, we need to fix the commutativity violation. The next
sections shows how to do it.

2.2.3 Traceability Mappings via Spans
As traceability links are fundamental, we reify them as model elements, and
collect these elements in model |T | in the upper part of Fig. 3. Three nodes in
this model reify links mtr1,2,3 between nodes in the metamodels (see Fig. 2), and
the arrow in |T | reifies the (dashed) link tr12 between arrows in the metamodels
(recall that the actual target of this link is the identity loop of the targte node). In
this way we build a metamodel |T | consisting of three classes and one association.
The special nature of |T |’s elements (which are, in fact, links) is encoded by
mapping each element to its ends in metamodels M and N . These secondary links
form totally-defined single-valued mappings TM : M ← |T | and TN : |T | → N so
that we replaced a many-to-many mapping T by a pair of single-valued (many-
to-one) mappings. Working with single-valued mappings is usually much simpler
technically, and below we will see that it allows us to fix commutativity.

The triple T = (TM , |T |, TN) is called a span with the head |T |, and legs TM

and TN . We will call the first leg in the triple the source leg, and the second one
the target leg. Thus, span T in Fig. 3 encodes mapping T in Fig. 2 (and they are
thus denoted by the same letter). We will also use the same letter for the head
of the span to reduce the number of symbols in our formulas. Note that the head
of the span is a graph (because mapping T is a graph mapping), and its legs
are correct graph morphisms. This is an accurate formalization of the structure
preservation property discussed in Sect. 2.2.1.

252 Z. Diskin et al.

The reification procedure applied to mapping T�(A) (Fig. 2) provides the
span shown in the lower part of Fig. 3. We denote its head by T •

M (A) rather
than by T�(A), as in the next subsection we will show how this model (and
mapping T�

M) can be computed from the left half of the upper span and model
A, and by the same reason, these elements are blank (and blue with a color
display) rather than shaded (and black)—ignore these details for a moment. We
also omitted all vertical links constituting typong mappings (shown by vertical
block arrows).

Fig. 3. Meta-traceability via spans (Color figure
online)

Since in contrast to map-
ping T , mapping T�(A) in
Fig. 2 is many-to-one, the right
leg of the span is an isomor-
phism (of graphs), which we
show as a block-rectangle rather
than a block-arrow (actually we
could identify the two models).
Now it is easy to check com-
mutativity of the two square
diagrams, which is recorded
by markers [=] at their cen-
ters. Commuting makes it pos-
sible to type elements in model
|T�(A)| (i.e., traceability links)
by elements in model |T | (i.e.,
meta-traceability links), and
ensures that typing is a cor-
rect graph morphism. We have
thus obtained an accurate for-
mal specification of mutually
consistent traceability mappings.

Fig. 4. Trace-links metamodel

Span T (the upper half of
Fig. 3) is presented in Fig. 4 in
a MOF-like way via metamod-
eling. In these terms, meta-
traceability links are classifiers
for model traceability links,
and commutativity conditions
in Fig. 3 provide consistency
of traceability links’ classifi-
cation with model elements’
classification.

Traceability Mappings as a Fundamental Instrument in MT 253

2.3 Meta-Traceability Links Can Be Executed!

A somewhat surprising observation we can make now is that the meta-
traceability mapping can actually replace the transformation definition T: by
applying two standard categorical operations to the span T and the typing map-
ping of model A, we can produce model T•(A) (together with its typing) and
the traceability mapping T�(A) in a fully mechanized way.

The first operation is called (in categorical jargon) pull-back (PB). Its takes
as its input two graph mappings with a common target, TM and τA (such con-
figuration is called a cospan), and outputs a span of graph mapping shown in
Fig. 3 blank and blue (to recall the mechanic nature of the operation) so that the
entire square diagram is commutative. The PB works as follows. For any pair
of elements a∈A and n∈N such that there is an element m∈M together with a
pair of links (�1, �2) targeted at it, �1: a → m in mapping τA and �2 : m ← n in
mapping TM , an object (a, n) is created together with projection links to a and
n. All such pairs (a, n) together with projection links to N make a model T •

M (A)
(whose typing mapping is denoted by T�

M (A) – note the tringle pointing upward),
and projection links to A constitute its traceability mapping T�

M (A). The entire
operation can be seen as pulling the model A together with its typing mapping
back along mapping TM , hence, the name PB. Note that commutativity of the
left square now becomes the very essence of the transformation: we build model
T •
M (A) and its traceability mapping in such a way that commutativity holds.

Moreover, we make this model the maximal model that respect commutativity
by collecting in T •

M (A) all pairs (a, n) that respect commutativity. For example,
if model A would have three cars and boats, model T •

M (A) would have three
commuting and five leisure vehicles with three same-links.

The second operation is fairly easy: we sequentially compose mappings
T�
M (A) and TN by composing their links, and obtain a mapping T •

M (A) → N
that provides graph T •

M (A) with typing over N . We will denote the model whose
datagraph is T •

M (A) (or its isomorphic copy up to OIDs) and typing map is com-
position T�

M (A);TN by T •(A). The right square in Fig. 3 illustrates this specifi-
cation. It is now seen that PB followed by composition produce exactly the same
model as rule-based definition T1 in Fig. 1(a), and the span with head T •

M (A) is
exactly the reified traceability mapping T�

1 (A) from Fig. 1(a).

3 Transformations via Mappings and Queries

Pulling a source model A back along a meta-traceability mapping T as described
above covers a useful but not too wide class of transformations; more complex
transformations need a more expressive mechanism. In [5,10], it was proposed
to separate an MT into two parts: first, a complex computation over the source
model is encoded by a query against the source metamodel, and then the result
is relabeled (with, perhaps, multiplication) by the target metamodel according
to the meta-traceability mapping.

We will illustrate how the machinery works by encoding the same transfor-
mation T by a different type of meta-traceability mapping employing queries

254 Z. Diskin et al.

against the source metamodel as shown in Fig. 5. The first basic idea of the
transformation—creation of commuting vehicles by cars only—is encoded by
direct linking class Commut.Vehicle to class Car as we did before. The second
idea—creation of leisure vehicles by both cars and boats—is now encoded in two
steps. First, we augment the source metamodel M with a derived class Car +
Boat computed by applying the operation (query) of taking the disjoint union
of two classes; we denote the augmented metamodel by Q(M) with Q referring
to the query (or a set of queries) used for augmentation. Second, we link class
LeisureVehicle to the derived class Car + Boat, and association same in meta-
model N is linked to its counterpart in metamodel Q(M), as shown in Fig. 5.

All links have a clear semantic meaning: given a link qmtr from an element
n of N to an element m on Q(M), we declare that n is to be instantiated
exactly as m is instantiated, that is, for any model A, every element instantiating
m in A or Q(A) (see below), generates an element instantiating n in T1

•(A).
Note also that the mapping is of one-to-one type: two classes responsible for
LeisureVehiclegeneration now contribute to a single query, and two respective
links (mtr2 and mtr3 in Fig. 2) are replaced by one link qmtr2 into the query.

Fig. 5. Meta-traceability via queries

Execution of the transfor-
mation for a model A also goes
in two steps. First, the query
used in the mapping definition
is executed for the model. In
our example, we take the dis-
joint union of Car and Boat
instantiations in A, i.e., the
set {c′, b′}. A reasonable imple-
mentation would add a new
type Car + Boat to the same
object c rather than creating
a new object c′, but the pair
(c,Car) is still different from
pair (c,Car + Boat). Thus, it
may happen that c′ = c and
b′ = b, but this is just a special
case of a general pattern presented in Fig. 5. Second, objects c, c′, b′ are retyped
according to the respective meta-traceability links qmtr1 (for c) and qmtr2 (for
c′ and b′). The link cc′ is also retyped along the link qmtr12.

Thus, a model transformation definition is divided into two parts: finding a
query (or a set of queries) Q against the source metamodel M , which captures the
computationally non-trivial part of the transformation, and then mapping the
target metamodel into the augmentation Q(M), which shows how the results
of the computation are to be retyped into the target metamodel. The second
part can capture some simple computations like multiplication of objects (which
often appears in mmt), but not more. In contrast, with a broad understand-
ing of queries as general operations, the first part is Turing complete with the

Traceability Mappings as a Fundamental Instrument in MT 255

Fig. 6. Execution of meta-traceability mappings. Derived elements are blank.

only reservation that all result of the computation must have new types (which
distinguishes queries from updates).

A formal abstraction of the example is described in Fig. 6(a). A model trans-
formation is considered to be a pair T = (QT ,mT) with QT a query against the
source metamodel M and mT : QT (M) ← N a mapping from the target meta-
model N to model M augmented with derived elements specified by the query.
Formally, we have an inclusion ηT : M ↪→ QT (M). Note that construct QT is a
query definition, which can be executed for any data conforming to schema M ,
i.e., for any model properly typed over the metamodel M . Execution is mod-
eled by an operation qExe, which for a given query QT and model A produces
an augmented model QT (A)1 properly typed over the augmented metamodel
by an augmented typing mapping QT (τA). To complete the transformation, the
result of the query is retyped according to the mapping mT (retyping is given by
pulling back the augmented typing mapping as discussed above). In Fig. 6(b),
an abstract view of Fig. 6(a) is presented, in which the upper double arrow
encodes the sequential composition of the two upper arrows in diagram (a), and
operation trExe of transformation execution is a composition of two operations
in diagram (a). Paper [6] presents an accurate categorical formalization of this
construction by modeling the query language as a monad and the transforma-
tion definition mapping T as a Kleisli mapping over this monad. We do not need
formal details in this paper, but we will use the term Kleisli mapping to refer to
mappings such as mT : QT (M) ← N . By an abuse of notation, we will often use
the same symbol T for both transformation T and its mapping mT .

4 An Algebra for Model Transformations

Mappings have a dual nature. As sets of links, mappings are amenable to Boolean
operations (union, intersection, difference). As sets of directed link, mappings can
be sequentially composed in the associative way. Hence, representing a model
transformation by a mapping allows us to build an algebra of useful opera-
tions over model transformations. For example, Boolean operations allow for

1 We should write [[QT]] (A) but we again use the same symbol for both syntactic and
semantic constructs.

256 Z. Diskin et al.

Fig. 7. BA for traceability mappings (Color figure online)

reuse, and sequential composition establishes a mathematical approach to model
transformation chaining. In this section, we briefly and informally consider, first,
Boolean operations, and then sequential composition.

4.1 Boolean Operations for Model Transformations

Consider our two transformations, T1 and T2, each consisting of two rules,
described in Fig. 1(a, b). Although rules are related, they are all different, and,
formally speaking, for model transformation understood as sets of rules, we have
T1∩T2 = ∅. Hence, specifying commonalities and differences between transfor-
mations needs going inside the rules and working on a finer granularity level,
which may be not easy for complex rules. In contrast, encoding transformation
definitions by mappings, i.e., sets of (meta) links, makes them well amenable to
the variability analysis.

Mappings T1,2 encoding transformations T1,2 resp. are shown in Fig. 7 (col-
ored green and resp. orange with a color display). Each mapping consists of three
links, and one link (double-lined and brown) is shared. This link constitutes the
intersection mapping, whose domain consists of the only class LeisureVehicle
(in the categorical jargon, this mapping is called the equalizer of T1 and T2).
Thus, T1∧2 = T1 ∩ T2 = {mtr2}. We can also merge T1 and T2 into mapping
T1∨2 = T1 ∪ T2 consisting of five links. It is easy to see that for our exam-
ple, execution of mappings via pullbacks is compatible with these operations so
that T�

1∧2(A) = T�
1(A) ∩ T�

2(A) and T�
1∨2(A) = T�

1(A) ∪ T�
2(A); particularly

T •
1∧2(A) = T •

1(A) ∩ T •
2(A) and T •

1∨2(A) = T •
1 (A) ∪ T •

2 (A) (note the boot-like
shapes of T •

i(A) (i = 1, 2) and their intersection consisting of two objects).
The simple and appealing algebraic picture described above does not hold

if transformations are seen as sets of rules as described in Fig. 1: then, as

Traceability Mappings as a Fundamental Instrument in MT 257

mentioned, T1∩T2 = ∅, and transformation T1∪T2 would translate model A
into a model consisting of six rather than four objects (consider disjoint union of
model T1(A) and T2(A) presented in Fig. 1(a, b)), which seems not well match-
ing the intuition of how the merged transformation should work. Indeed, the
two transformations differ in how commuting vehicles are generated, but agree
on leisure vehicles. This agreement is exactly captured by shared link mtr2 in
mappings T1,2, but is not taken into account in T1∪T2.

Nevertheless, suppose we still want to merge the two transformations in a
disjoint way so that the merged transformation would produce a six element
model from model A. We can do it with the mapping representation as well
by defining a new mapping T1+2 via disjoint union T1 + T2, in which link mtr2
is repeated twice: imagine a version of Fig. 7, in which one copy of link mtr2
belongs to mapping T1, and the other copy belongs to T2. It is easy to check
that PB applied to mappings Q(τA) and T1+2 would result in the disjoint union of
models T•

1(A) and T•
2(A) with the respective disjoint union of their traceability

mappings (see Fig. 1) as required. Thus, (T1 + T2)
•(A) = T •

1 (A) + T •
1 (A) and

(T1 + T2)
�(A) = T�

1 (A) + T�
1 (A), and our traceability execution procedure is

compatible with disjoint union as well.

4.2 Sequential Composition of Model Transformations

Suppose that transformation T1 is followed by a transformation T3 from meta-
model N to metamodel O consisting of the only class Vehicle (Fig. 8). This trans-
formation is defined by two rules: every object of class Commut.Vehicle generates
a Vehicle-object, and every LeisureVehicle-object generates a Vehicle-object too.
Mapping T3 encoding this transformation would consist of the only link mapping
class Vehicle to the disjoint union of Commut.Vehicle and LeisureVehicle. To chain
the transformations, we need to compose mappings T3 and T1 but they are not
composable: mapping T1 is not defined for the target class of mapping T3.

The problem can be fixed if we apply the query Q3 to the augmented meta-
model Q1(M) by replacing arguments of Q3 (classes Commut.Vehicle and Leisure-
Vehicle) by their images in Q1(M) along mapping T1 as shown in the figure. In
this way, mapping T1 can be homomorphically extended to mapping Q3(T1),
and now mappings T3 and Q3(T1) can be composed. The lower part of Fig. 8 is
a “link-full” demonstration that the consecutive composition of two executions
is equal to the execution of the composed mapping:

T •
3 (T •

1 (A)) = (T3 ◦ T1)•(A) and T3
�(T •

1 (A)) = (T3 ◦ T1)
�(A),

where ◦ denotes sequential mapping composition. In fact, the case is nothing
but an instance of the well known construction of query substitution and view
compositionality: a view of a view is a view of the very first source.

5 From Rule-Based MMT to Kleisli Mappings (and Back)

General Landscape. Rule-based programs such as in ATL or ETL are good
for effective execution of mmts, but their analysis and manipulation may be

258 Z. Diskin et al.

Fig. 8. Model chaining via mapping composition

difficult. For example, it is not easy to say whether the result of transformation
always satisfies the constraints of the target metamodel, and chaining rule-based
transformations is difficult too. The Kleisli mapping encoding of mmts can help
by providing a more abstract view that may be better amenable for some analyses
and operations. For instance, it was shown in [9] the Kleisli mapping encoding
converts the target metamodel conformance into to a well-known logical problem
of whether a formula is entailed by a theory, for which a standard theorem prover
or a model checker could be applied. To perform such logical analyses, we need a
translating procedure tl2km: TL → KMQL, where TL denotes the set of programs
written in the rule-based language at hand, and KMQL denotes the set of Kleisli
mappings over some query language QL. Below we will omit the subindex QL.

To employ the KM approach for operations over rule-based transformations,
we also need an inverse translation km2tl : TL ← KM. Suppose that T1: M → N
is a rule-based transformation that maps instances of metamodel M to instances
of metamodel N , and T3: N → O is another transformation that we want to
chain with T1. To do this, we translate both transformations to the respective
Kleisli mappings T1, T3, then perform their sequential composition and obtain
mapping TT = T3 ◦ T1 as it was explained in Sect. 4, and then translate the
result back to TL obtaining a rule-based transformation T = km2tl(TT), which
is semantically equivalent to sequential composition of T1 and T3. In a similar
way, we can perform Boolean operations over rule-based parallel transformations
Ti: M → N , i = 1, 2 (see Sect. 4) and employ them, e.g., for reuse.

Example. Suppose we want to chain two ATL transformations: T1: M → N
and T3: N → O specified in Listings 1.1 and 1.2 resp. The first one is an ATL
encoding of transformation T1 in Fig. 1, and the second transformation, in fact,

Traceability Mappings as a Fundamental Instrument in MT 259

Listing 1.1. T1 expressed in ATL
1 module T1 ;
2 create OUT : N from IN : M ;
3 rule car2vehicle {
4 from c : M ! Car
5 to cv : N ! CommutVehicle
6 (same <− lv) ,
7 lv : N ! LeisureVehicle
8 }
9 rule boat2vehicle {

10 from b : M ! Boat
11 to lv : N ! LeisureVehicle
12 }

Listing 1.2. T3 expressed in ATL
1 module T3 ;
2 create OUT : O from IN : N ;
3 rule commutVehicle2vehicle {
4 from cv : N ! CommutVehicle
5 to v : O ! Vehicle
6 }
7 rule leisureVehicle2vehicle {
8 from lv : N ! LeisureVehicle
9 to v : O ! Vehicle

10 }

merges two classes in N into class Vehicle in O. To chain these transformations,
we first encode them as Kleisli mappings as shown in Fig. 8. Then we compose
them using query substitution as explained in Sect. 4.2, and let the resulting
mapping be mTT : QQ(M) ← O, where QQ(M) = Q3(Q1(M)) is the composed
query against metamodel M , which augments it with derived class Car + Car +
Boat (see Fig. 8). Now we need to translate Kleisli mapping TT = (QQ,mTT)
into an ATL transformation.

We do the inverse translation in two separate steps. First, we translate query
QQ into an ATL module QQ as shown in Listing 1.3. Then we translate the
mapping mTT : QQ(M) ← O into an ATL module mTT as shown in Listing 1.4.
The structure of these modules makes their chaining quite straightforward (in
contrast to chaining the initial two transformation), and the result is shown
in Listing 1.5. Of course, in our trivial example, chaining the initial modules is
also easy, but even in moderately more complex cases, chaining ATL modules
is difficult, whereas with the Kleisli mapping approach, all the complexity is
managed via query substitution, while the final chaining of the query module QQ
and the mapping module mTT remains simple (see Fig. 8).

Listing 1.3. Query QQ in ATL
1 module QQ ;
2 create OUT : QQM from IN : M ;
3 rule car2carcarboat {
4 from c : M ! Car
5 to qqc : QQM ! Car
6 (same <− qqccb1) ,
7 (same <− qqccb2) ,
8 qqccb1 : QQM ! CarCarBoat
9 qqccb2 : QQM ! CarCarBoat

10 }
11 rule boat2carcarboat {
12 from b : M ! Boat

13 to qqb : QQM ! Boat
14 (same <− qqccb) ,
15 qqccb : QQM ! CarCarBoat
16 }

Listing 1.4. Mapping mTT in ATL

1 module mTT ;
2 create OUT : O from IN : QQM ;
3 rule carcarboat2vehicle {
4 from ccb : QQM ! CarCarBoat
5 to v : O ! Vehicle
6 }

Listing 1.5. TT as an ATL transformation
1 module TT ;
2 create OUT : O from IN : M ;
3 rule boat2vehicle {
4 from b : M ! Boat
5 to v : N ! Vehicle
6 }

7 rule car2vehicle {
8 from c : M ! Car
9 to v1 : O ! Vehicle

10 v2 : O ! Vehicle
11 }

260 Z. Diskin et al.

Automatic Translations TL ↔ KM and ATL. Finding general algorithms
for automatization of both translations is a very non-trivial task because of the
conceptual and technical differences between the two views of mmts. Particu-
larly, the TL view is elementwise, i.e., based on model elements, while the KM—
view is setwise as queries are typically formulated as operations over sets (cf.
SQL). Bridging the gap is a challenge, and we have began to work in this direc-
tion for the case of ATL as a rule-based language. Below we argue why, we think,
ATL should be sufficiently well-amenable for the TL ↔ KM translations.

In rule-based transformation languages, rules applied to different parts of the
model may interact in complex ways. However, in ATL, inter-rule communication
is specially constrained by specific properties of the language (cf. [3]), which
make it suitable to express declarative metamodel mappings. Such properties
are: 1© forbidden target navigation, 2© locality, 3© non-recursive rule application,
and 4© single assignment on target properties.

Owing these properties, a direct correspondence between a metamodel map-
ping and the ATL constructs can be defined as follows. A meta-traceability
mapping can be completely described using a module in which every inde-
pendent matched rule represents a meta-traceability link between two entities
(e.g. classes) of the source and the target metamodels 1©. This is possible due
to the fact that a matched rule is the only responsible of the computation of
the elements it creates 2©, and model elements that are produced by ATL rules
are not subject to further matches 3©. In such a matched rule, the source of the
link is represented using the to block, and the target of the link is represented
using the from block. On the other hand, in the case of meta-traceability links
between two properties of the source and the target metamodel, the source of
the link is represented by the property being initialised, and the target of the
link is represented by the property on the source metamodel. This assignment
is possible because ATL allows assigning the default target model element of
another rule. In this case, meta-traceability links between two properties can
only be defined in the rule that maps the owner of the property, since that rule
is the only responsible of the initialisation of the attributes of the owner 2©, and
the assignment of a single-valued property in a target model element happens
only once in the transformation execution 4©.

6 Related Work

Traceability understood broadly is an enormous area [1,15], but in the present
paper we consider its special sub-area connected with mmt, and especially using
traceability mappings as transformation definitions.

Atlas Model Weaver was proposed in [4] as a means to facilitate transfor-
mation design. Weaving models (WMs) represent different kinds of relationships
between model elements, and are comparable to the metamodel mappings consid-
ered in our paper. WMs are executed with higher-order transformations, which
build an ATL transformation from a WM. However, WMs aim to manage mmt’s
complexity in a single step. Hence, as WMs cannot cope with all the semantics

Traceability Mappings as a Fundamental Instrument in MT 261

provided by general purpose transformation languages, they may produce incom-
plete ATL transformations that must be manually reviewed.

To provide a more structured framework to define executable mappings
between metamodels, Wimmer et al. [19] propose a set of kernel operators, from
which composite mapping operators are built. The building process is performed
by connecting input and output ports. Executability of the composite complex
mappings is achieved by extending the framework proposed in [4].

Since meta-traceability links provide limited semantics compared to generic
mmt, and building rich mappings may imply complex meta-traceability links, a
generic transformation algorithm is proposed in [7] to execute mapping models.
This proposal uses simple mapping models to execute mmt putting the hard
work in the execution of the algorithm. Any ambiguity caused by the semantic
gap between mapping models and mmt is solved by using a “smart” algorithm
that analyses the target metamodel. Since the philosophy of this proposal is to
provide a result as good as possible, it does not guarantee that ambiguities are
always correctly resolved (and may even require users’ interaction).

Paper [18] provides an in-depth discussion of traceability in the context of
QVT-rules execution, and hence executability of meta-traceability links. The
machinery employed is described informally, but seems close to our use of pull-
back. The overall picture is broader than ours and includes mapping refinement,
dynamic dispatch, and concurrency. A formalization of these constructs in terms
of our framework would be a useful application; we leave it for future work.

In papers [2,8,9], the authors translate the source and the target metamodels
to Alloy and specify the transformation rules as relations. In terms of our paper,
both queries and mappings are encoded as logical theories, whose execution is
provided by Alloy instance finder. Separating queries and mappings is discussed
in [10], but the expressiveness of pullback seems underestimated; particularly,
the many-to-many traceability mappings are not considered. A precise formal-
ization of traceability mappings with queries in categorical terms as Kleisli map-
pings is provided in [6], sequential composition then follows from Kleisli mapping
composition. However, the general context for paper [6] is general inter-model
relationships (which corresponds to a broad view of traceability as correspon-
dence emphasized in [1]), while in the present paper we consider traceability in
the mmt context and are focused on mapping execution. In neither of the works
mentioned above, operations over transformations are considered, and we are
not aware of their explicit introduction and discussion in the literature.

7 Conclusion

Technological importance of traceability mappings for model transformations is
well-known, but they have often been considered as an auxiliary element gen-
erated during the transformation execution and providing accessory informa-
tion. This paper argues that traceability mappings should instead be regarded
as a core aspect of the transformation definition, and a key instrument in the
transformation management. We have shown that mmt semantics is essentially

262 Z. Diskin et al.

incomplete without traceability links between models, which should be typed by
the respective metalinks between metamodels. Metalinks taken together consti-
tute a traceability mapping between metamodels, which can be executed and
thus appears as a transformation definition. We considered two cases of such
definitions: simple mappings whose execution can be specified by an operation
called pullback, and complex (Kleisli) mappings involving queries against the
source metamodel, whose execution consists of the query execution followed by
pullback. An important consequence of defining transformations via mappings is
that algebraic operations over mappings can be translated into operations over
transformations specified in conventional transformation languages. We argue
that ATL should be well amenable to such translation, and presented a simple
example illustrating these ideas. Of course, a real application of our algebraic
framework requires an automatic translation from ATL to Kleisli mappings and
back. This challenging task is an important future work.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceabil-
ity. IBM Syst. J. 45(3), 515–526 (2006)

2. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
alloy. In: Proceedings of the 4th MoDeVVa workshop Model-Driven Engineering,
Verification and Validation, pp. 47–56 (2007)

3. Benelallam, A., Gómez, A., Tisi, M., Cabot, J.: Distributed model-to-model trans-
formation with ATL on mapreduce. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2015, pp. 37–48.
ACM, New York (2015)

4. Didonet Del Fabro, M., Valduriez, P.: Towards the efficient development of model
transformations using model weaving and matching transformations. Softw. Syst.
Model. 8(3), 305–324 (2009)

5. Diskin, Z.: Model synchronization: mappings, tiles, and categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
92–165. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18023-1 3

6. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2 12

7. Freund, M., Braune, A.: A generic transformation algorithm to simplify the devel-
opment of mapping models. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2016,
pp. 284–294. ACM, New York (2016)

8. Gammaitoni, L., Kelsen, P.: F-alloy: an alloy based model transformation language.
In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 166–180.
Springer, Cham (2015). doi:10.1007/978-3-319-21155-8 13

9. Gholizadeh, H., Diskin, Z., Kokaly, S., Maibaum, T.: Analysis of source-to-target
model transformations in quest. In: Dingel, J., Kokaly, S., Lucio, L., Salay, R.,
Vangheluwe, H. (eds.) Proceedings of the 4th Workshop on the Analysis of Model
Transformations co-located with the 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2015), Ottawa, Canada,
28 September 2015, vol. 1500, CEUR Workshop Proceedings, pp. 46–55 (2015).
CEUR-WS.org

http://dx.doi.org/10.1007/978-3-642-18023-1_3
http://dx.doi.org/10.1007/978-3-642-28872-2_12
http://dx.doi.org/10.1007/978-3-319-21155-8_13
http://CEUR-WS.org

Traceability Mappings as a Fundamental Instrument in MT 263

10. Gholizadeh, H., Diskin, Z., Maibaum, T.: A query structured approach for model
transformation. In: Dingel, J., de Lara, J., Lucio, L., Vangheluwe, H. (eds.) Pro-
ceedings of the Workshop on Analysis of Model Transformations co-located with
ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages & Systems (MoDELS 2014), CEUR Workshop Proceedings Valencia, Spain,
September 29, 2014, vol. 1277, pp. 54–63. CEUR-WS.org (2014)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9 4

13. Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Mapping specification in
MDA: from theory to practice. In: Konstantas, D., Bourriéres, J.-P., Léonard, M.,
Boudjlida, N. (eds.) Interoperability of Enterprise Software and Applications, pp.
253–264. Springer, London (2006)

14. Marschall, F., Braun, P.: Model transformations for the MDA with BOTL. In: Pro-
ceedings of the Workshop on Model Driven Architecture: Foundations and Appli-
cations, pp. 25–36 (2003)

15. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous identification and encoding of trace-links in model-driven
engineering. Softw. Syst. Model. 10(4), 469–487 (2011)

16. The Eclipse Foundation: ATL, October 2016. url:http://www.eclipse.org/atl/
17. The Eclipse Foundation: Epsilon October 2016. url:http://www.eclipse.org/

epsilon/
18. Willink, E., Matragkas, N.: QVT traceability: what does it really mean? In: Analy-

sis of Model Transformations, AMT 2015, 4th Workshop Models 2015 (2015)
19. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,

Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13688-7 18

http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://www.eclipse.org/atl/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/
http://dx.doi.org/10.1007/978-3-642-13688-7_18

Reusing Model Transformations Through
Typing Requirements Models

Juan de Lara1, Juri Di Rocco2(B), Davide Di Ruscio2, Esther Guerra1,
Ludovico Iovino3, Alfonso Pierantonio2, and Jesús Sánchez Cuadrado1

1 Universidad Autónoma de Madrid, Madrid, Spain
2 University of L’Aquila, L’Aquila, Italy

juri.dirocco@univaq.it
3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Model transformations are key elements of Model-Driven
Engineering (MDE), where they are used to automate the manipula-
tion of models. However, they are typed with respect to concrete source
and target meta-models and hence their reuse for other (even similar)
meta-models becomes challenging.

In this paper, we describe a method to extract a typing requirements
model (TRM) from an ATL model-to-model transformation. A TRM
describes the requirements that the transformation needs from the source
and target meta-models in order to obtain a transformation with a syn-
tactically correct typing. A TRM is made of three parts, two of them
describing the requirements for the source and target meta-models, and
the last expressing dependencies between both. We define a notion of con-
formance of meta-model pairs with respect to TRMs. This way, the trans-
formation can be used with any meta-model conforming to the TRM. We
present tool support and an experimental validation of correctness and
completeness using meta-model mutation techniques, obtaining promis-
ing results.

1 Introduction

Model-Driven Engineering [19] (MDE) employs models as first-class assets dur-
ing the software development life cycle. Models are typically constructed using
Domain-Specific Languages (DSLs), specially tailored to a particular domain. In
MDE, the abstract syntax of a DSL is described through a meta-model, which
describes the structure of the models considered valid. Therefore, it does not
come as a surprise that meta-models proliferate in MDE as a means of for-
malising application domains [23]. Sometimes, these meta-models are variants
of known languages like state-machines or workflow languages [17], for which
services, like model transformations, already exist.

Model transformations are key to MDE, because they can leverage automa-
tion in model manipulation and management. Model transformations are typed
with respect to the involved (source and target) meta-models. Therefore, reusing
transformations is difficult, because they are not immediately applicable to other
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 264–282, 2017.
DOI: 10.1007/978-3-662-54494-5 15

Reusing Model Transformations Through Typing Requirements Models 265

meta-models, different from the ones they were initially conceived for. Hence,
techniques to enhance transformation reusability are needed [1,15] since devel-
oping (non-trivial) transformations from scratch is typically a complex and time-
consuming task.

Some works propose transformation reuse based on concepts [9] to express
meta-model requirements, and bindings from those concepts into concrete meta-
models. The binding induces an adaptation of the transformation, which becomes
applicable to the concrete meta-models. However, concepts have limitations: they
have to be manually created, and they present limited expressiveness, as for
instance when variability must be described (e.g., when a feature can be typed
according to a set of allowed types). Other approaches extract effective meta-
models [20] by pruning unused typing information of the source/target domains
according to the syntactical requirements in the transformation. Similarly to
concept-based techniques, they also present limited expressiveness, although the
procedure can be partly automated.

In this paper, we propose using a transformation typing requirements model
(TRM) to express the syntactical needs of a transformation with respect to its
source and target domains. TRMs support variability regarding, e.g., the con-
crete types of attributes, the inheritance relations between classes, the allowed
targets for references, or the existence of classes with certain features but for
which the class name is unknown or irrelevant. We propose an algorithm to auto-
matically infer a TRM from an ATL model-to-model transformation, as ATL is
one of the most widely used transformation languages nowadays [14]. Moreover,
as ATL transformations consider several meta-models (typically source and tar-
get), dependencies between the allowed feature types in the source and target
meta-models are required. This way, the transformation can be reused as-is with
any pair of meta-models conforming to the extracted TRM.

The main advantages of TRMs with respect to existing techniques are:
(i) TRM extraction is automatic; (ii) source and target meta-models are not
needed to extract the TRMs; (iii) TRMs permit more expressive requirements
(e.g., variability) that lead to improved reuse possibilities; and (iv) dependencies
cross-linking requirements over source and target meta-models can be given in
terms of feature models.

A preliminary evaluation is provided by means of a prototype tool. For this
purpose, TRMs of third-party transformations have been extracted and variants
of source and target meta-models have been defined by means of mutation tech-
niques. The correctness and completeness of the method is empirically assessed
by measuring the degree in which the transformation is correctly typed with
meta-models conformant to the TRM, and incorrectly with meta-models not
conformant to the TRM. Correctness of typing is checked with the anATLyzer

tool as oracle [6]. The evaluation shows promising results, encouraging further
investigation of transformation reuse based on TRMs.

Paper Organization. Section 2 discusses applicability scenarios. Section 3
introduces TRMs, and a notion of conformance. Section 4 explains how to extract
TRMs from ATL transformations. Section 5 validates the approach over a set

266 J. de Lara et al.

of transformations developed by third parties. Section 6 compares with related
work and Sect. 7 concludes the paper.

2 Motivating Scenarios and Running Example

Figure 1 describes our approach for model transformation reuse. Model transfor-
mations are typed with respect to source and target meta-models. However, these
meta-models might not be available (e.g., for transformations found in code repos-
itories like GitHub or BitBucket), or we might want to reuse the transformation
with other meta-models, different from the ones the transformation was designed
for. Therefore, given an existing transformation, we extract its typing require-
ments model (TRM, see label 1) that consists of three parts: the requirements
for the source and target meta-models, and a compatibility model specifying the
dependencies between them. The TRM can be used in different ways. For exam-
ple, to query an existing meta-model repository in order to find conforming meta-
model pairs (see 2a). In particular, such queries are OCL expressions [16], gener-
ated from the TRM. Any meta-model pair 〈MMs,MMt〉 conforming to the TRM
can be used as source/target meta-models of the transformation. The TRM can
also be used to generate suitable meta-model pairs (see 2b), so that the transfor-
mation can be executed on instances of them (see 3).

extract
TRM

M-to-M
transform.

source
MM reqs

target
MM reqs

compatibility

TRM

discover
compatible
meta-models

generate
compatible
meta-modelsMMs MMt

execute
transformation

«conforms»

1

2a

2b

3

MM
repository

Fig. 1. Overview of our approach

We illustrate our proposal
using ATL since it is one
of the most widely accepted
transformation languages. How-
ever, the approach can be
adapted to most of the exist-
ing model-to-model transforma-
tion languages. ATL [14] pro-
vides a mixture of declarative
and imperative constructs to
develop model-to-model trans-
formations. Listing 1 shows our
running example, partially taken
from the ATL Zoo1. The transformation creates a table with the number of times
each method in a piece of Java code is called within any declared method. The
transformation is defined by a module specification consisting of a header section
(lines 1–2), helpers (lines 4–7) and transformation rules (lines 9–23). The header
specifies the source and target models of the transformation together with their
corresponding meta-models. This way, the JavaSource2Table module is a one-
to-one transformation, which generates a target model conforming to a Table

meta-model from a source JavaSource model (see line 2).

1 http://www.eclipse.org/atl/atlTransformations/#Java2Table.

http://www.eclipse.org/atl/atlTransformations/#Java2Table

Reusing Model Transformations Through Typing Requirements Models 267

1module JavaSource2Table;
2create OUT : Table from IN : JavaSource;
3
4helper context JavaSource!MethodDefinition
5 def : computeContent(col : JavaSource!MethodDefinition) : String =
6 self.invocations->select(i | i.method.name = col.name
7 and i.method.class.name = col.class.name)->size().toString();
8
9rule Table {

10 from s : JavaSource!ClassDeclaration
11 to t : Table!Table (rows <- s.methods)
12}
13rule MethodDefinition {
14 from m : JavaSource!MethodDefinition
15 to row : Table!Row (
16 cells <- Sequence{JavaSource!MethodDefinition.allInstances()
17 ->collect(md | thisModule.DataCells(md, m))}
18)
19}
20lazy rule DataCells {
21 from md: JavaSource!MethodDefinition, m: JavaSource!MethodDefinition
22 to cell: Table!Cell (content <- m.computeContent(md))
23}

Listing 1. Fragment of a sample ATL transformation

Helpers and rules are the main ATL constructs to specify the transformation
behaviour. The source pattern of rules (e.g., line 10) consists of types from
the source meta-model. Thus, a rule gets applied for any instance of the given
source types that satisfies the optional OCL rule guard. Rules also specify a
target pattern (e.g., line 11) indicating the target objects created by the rule
application, and a set of bindings to initialize their features (attributes and
references). For example, the binding rows ← s.methods (line 11) initializes the
rows feature of the target type Table with the elements created by the rules
applied on the input elements referred by s.methods.

Rule MethodDefinition (lines 13–19) creates a target Row from each source
MethodDefinition. The binding in this rule assigns to the reference cells a sequence
of elements created by an OCL expression, which selects all the source Method-

Definition objects and apply on them the lazy rule DataCells. Differently from
matched rules (like rules Table and MethodDefinition), lazy rules are executed only
when explicitly called and use the passed parameters. The DataCell rule takes
two MethodDefinition objects as input and generates a target Cell containing a
number calculated by the helper of lines 4–7. Helpers are auxiliary operations
that permit defining complex model queries using OCL. In particular, the helper
computeContent returns a string with the number of occurrences of the received
MethodDefinition object.

Our goal is to extract, from this transformation, a description (a TRM) of
the features needed in source and target meta-models for the transformation to
work. This way, the transformation can be reused with any meta-model satisfying
the TRM, and not just with the ones used for its definition. Details about the
TRM are given in Sect. 3, whereas the algorithm able to extract TRMs from
ATL transformations is detailed in Sect. 4.

268 J. de Lara et al.

3 Representing Transformation Typing Requirements

This section explains how we describe transformation typing requirements
through TRMs. TRMs contain three parts, two describing the typing require-
ments from source and target meta-models (Sect. 3.1), and a compatibility model
relating both (Sect. 3.2).

3.1 Describing Single Meta-Model Requirements

Domain Typing Requirements. We use the meta-model in Fig. 2 to repre-
sent structural requirements for single meta-models. Its instances, called domain
typing requirements models (DRMs), resemble meta-models but where some deci-
sions can be left open if they are irrelevant for the problem at hand, like class
names, the type of attributes, the target of references, or the cardinality of fea-
tures. This way, a potentially infinite set of meta-models may conform to a DRM.

We consider two kinds of classes: named and anonymous. While the former
have a name, in the latter the name is irrelevant as the class can have any name.
Classes can be flagged as abstract, for which we use a three-valued enum type
UBoolean which allows us to require the class to be abstract, concrete or any. A
class defines a collection of features. The flag mandatoryAllowed permits a class to
have more mandatory fields than those indicated in collection feats, while there is
no constraint concerning the number of extra non-mandatory fields. A class may
defer the conformance checking to all its concrete subclasses, which is indicated
by the subsAllowed flag. A class may be required to inherit (directly or indirectly)
from another class, and this is specified through relation ancs. Conversely, a
class is forbidden to inherit from those in relation antiacs. More precisely, if B ∈
A.antiancs, then we reject meta-models in which B is an ancestor of A, or both
share a common subclass.

Features have minimum and maximum cardinality, which can be a number,
many, or we might allow any cardinality. If the maximum is many, it can also be

Fig. 2. Domain typing requirements meta-model (excerpt)

Reusing Model Transformations Through Typing Requirements Models 269

Fig. 3. DRM examples: (a) Source DRM of Listing 1. (b) Target DRM of Listing 1.
(c) Multiple compatible reference targets.

specified whether the feature should be ordered or unique using UBoolean values.
For the case of a number, we can define whether the cardinality is allowed to
be lower (allowLess) or upper (allowMore) than this number. Features always have
a name, and optionally, they may have a type which can be Reference, Attribute
or both. References can indicate the admissible compatible target types, some
of which can be anonymous classes. Attributes can specify their data type, or it
can be left open using the AnyDataType class.

Example. Figure 3 shows three DRM examples. A specific concrete syntax has
been adopted to denote additional characteristics. In particular, in the upper-
right corner of a class is specified whether (a) it can be either abstract or concrete
(AC), only abstract (A), or only concrete (C); (b) it can defer the conformance
checking to its subclasses (encircled inheritance-like triangle); and finally (c)
it forbids extra mandatory features (crossed-out circle). In addition, the anti-
ancestor relation is shown as a crossed-out red inheritance relation.

DRM (a) has been extracted from the source domain of the transformation
in Listing 1. The extraction procedure is described in Sect. 4. The DRM requires
two classes named ClassDeclaration and MethodDefinition, which cannot inherit from
each other otherwise the transformation would raise a runtime error due to mul-
tiple matches on the same element, that is not allowed in ATL. The latter class
should have an attribute name whose type can be any, and two references named
class and invocations to anonymous classes (i.e., their name is unimportant). The
lower bound of invocations is open. In its turn, ClassDeclaration requires a feature
methods which can be an attribute or a reference (we use a “?” prefix to denote
this). The DRM also demands four anonymous classes for which only certain
features are required. These classes could be matched by the same or different
classes in concrete meta-models, or even by the same classes conforming to the
named classes.

DRM (b) has been extracted from the target domain of Listing 1. It requires
three named concrete classes. Class Table requires a feature rows which can be an
attribute or a reference. As shown in Sect. 3.2, the transformation requires the
types of Table.rows and ClassDeclaration.methods in DRM (a) to be correlated, for

270 J. de Lara et al.

which we will introduce a compatibility model. None of the classes are allowed to
have extra mandatory features (which is represented with a crossed-out circle).

Finally, DRM (c) shows that a reference can be required to be compatible
with several target types. In a concrete meta-model, this could be realized by
reference members targeting a (possibly indirect) common superclass of Method-

Definition and Attribute.

Meta-Model Conformance. Next, the notion of conformance of a meta-model
with respect to a DRM is introduced. For this purpose we define predicate
confMM which applies to a requirements model RM and a meta-model MM ,
and checks if for every Class in RM , there is a conforming class in MM .

confMM(RM,MM) � ∀RC ∈ RM ∃C ∈ MM • confC(RC,C) (1)

where RC is a Class in RM , C is a class in MM , and we use the predicate confC
to check conformance of the latter with respect to the former. As defined in
Eq. (2), this accounts to assessing conformance of names (confname), abstractness
(confabs), features (conffeat) and ancestors (confancs). In the case of abstract
meta-model classes, compatibility may also come from the compatibility of all
their concrete subclasses (confsubs). Instead, for concrete meta-model classes,
there is no need to check the compatibility of their subclasses because if a class
is conformant, so will be its subclasses as they inherit the class features and
ancestors. In the following equations, we use isTypeOf to check if the type of
an object is compatible with the given type parameter. Moreover, given a class
C ∈ MM , C.feats∗ yields its owned and inherited features, C.ancs∗ yields its
direct and indirect superclasses, and C.subs∗ yields the set of its direct and
indirect subclasses including C.

confC(RC,C) � confname(RC,C) ∧
((confabs(RC,C) ∧ conffeat(RC,C) ∧ confancs(RC,C)) ∨

confsubs(RC,C))

(2)

confname(RC,C) � RC.isTypeOf(AnonymousClass) ∨ RC.name = C.name (3)

confabs(RC,C) � (RC.isAbstract = true =⇒ C.isAbstract = true) ∧
(RC.isAbstract = false =⇒ C.isAbstract = false)

(4)

conffeat(RC,C) � ∀rf ∈ RC.feats ∃f ∈ C.feats∗ • confF(rf, f) ∧
¬RC.mandatoryAllowed =⇒

|{fm | fm ∈ C.feats∗ ∧ fm.isMand}|
= |{fm | fm ∈ RC.feats ∧ fm.isMand}|

(5)

confancs(RC,C) � ∀RCA ∈ RC.ancs, ∃CA ∈ C.ancs∗ • confC(RCA, CA) ∧
∀RCA ∈ RC.antiancs, ∀ C′ ∈ MM • confC(RCA, C

′) =⇒
C′ /∈ C.ancs∗ ∧ �C′′ ∈ MM • {C,C′} ⊆ C′′.ancs∗

(6)

Reusing Model Transformations Through Typing Requirements Models 271

confsubs(RC,C) � RC.subsAllowed ∧ RC.isAbstract ∈ {any, true} ∧
C.isAbstract = true ∧
∀C′ ∈ C.subs∗ • C′.isAbstract = false =⇒

(conffeat(RC,C′) ∧ confancs(RC,C′))

(7)

In particular, predicate confname (Eq. (3)) requires classes to have the same
name, or if RC is an AnonymousClass, no name checking is performed. Predicate
confabs (Eq. (4)) checks compatibility of the isAbstract flag, which may have value
true, false or any. Equation (5) checks that every feature of RC is matched by
some owned or inherited feature in C. If RC forbids additional mandatory fea-
tures (i.e., mandatoryAllowed is false), then the set of mandatory features of C
should be exactly that required by RC2. We use f.isMand to check if feature
f is mandatory. Equation (6) checks that the ancestor set of C includes classes
matching those in RC.ancs, and none from RC.antiancs. Finally, confsubs checks
conformance when RC allows abstractness and subsAllowed is true. In that case,
if C is abstract, then the conformance relation is required for all its concrete sub-
classes. Typically, subsAllowed will be true on classes of the input transformation
domain, whenever no isTypeOf OCL operator is used on them.

For features, the confF predicate in Eq. (8) checks the conformance of their
names (which are always known), cardinalities (using predicates confmin and
confmax), and types (either there is no type requirement, in which case any
reference and attribute would match, or some allowed type in types should match
as reference or as attribute).

confF(rf, f) � rf.name = f.name ∧ confmin(rf, f) ∧ confmax(rf, f) ∧
(rf.types = nil ∨ ∃t ∈ rf.types •

(t.isTypeOf(Reference) ∧ confref(t, f)) ∨
(t.isTypeOf(Attribute) ∧ confatt(t, f)))

(8)

A reference f ∈ MM matches t ∈ RM if, in addition to the conditions in Eq. (8),
both have compatible target types. This is so if t.targets is empty as any target
type would be valid, or if every target in t.targets is matched by the target class
of f or a subclass. Predicate confref in Eq. (9) checks this compatibility condi-
tion. Similarly, predicate confatt (omitted) checks the compatibility of attribute
types. Hence, this predicate holds if no specific attribute type is required, if it is
AnyDataType, or if the type of f is compatible with that of rf .

confref(t, f) � ∀RC ∈ t.targets • ∃D ∈ f.target.subs∗ • confC(RC,D) (9)

We omit the formulation of predicates confmin(rf, f) and confmax(rf, f) for space
constraints. The former holds when the required minimum cardinality of a fea-
ture is AnyCardinality, or when the minimum cardinalities of f and rf are the
same (or less or more if allowed). The latter predicate is similar but for the
2 For simplicity, this formalization ignores opposite references. In practice, we exclude

from this set the mandatory features which are opposite of already matched
references.

272 J. de Lara et al.

Fig. 4. Conformance examples with respect to DRM (a) in Fig. 3.

maximum cardinality of features. Moreover, in this case, rf can also be Many (a
collection), for which (non-)uniqueness and (non-)ordered is checked if required.

Example. Figure 4 shows conforming (a, b, c) and non-conforming (d) meta-
models with respect to DRM (a) in Fig. 3. Meta-model (a) conforms to the DRM
because both MethodDefinition and ClassDeclaration inherit a name attribute from
NamedElement. Moreover, MethodInvocation conforms to one of the anonymous
classes in the DRM, MethodDefinition conforms to another anonymous class, and
ClassDeclaration to two of them. The feature methods in the DRM, which can be
either a reference or an attribute, has been matched by the meta-model reference
ClassDeclaration.methods.

Meta-model (b) also conforms to the DRM. In this case, the name attribute
is directly owned by the classes and has different types. In addition, there is
no class MethodInvocation, whose role is played by MethodDefinition. This way,
the four anonymous classes in the DRM are matched by the two meta-model
classes. Meta-model (c) is conforming because all concrete subclasses of the
abstract class MethodDefinition structurally conform to MethodDefinition in the
DRM. Finally, meta-model (d) does not conform because NestedMethod inherits
from both MethodDefinition and ClassDeclaration, which is forbidden by the antiancs

relations in the DRM. With reference to the transformation in Listing 1, some
instances of this meta-model could cause a runtime error as NestedMethod objects
would be matched by rules Table and MethodDefinition.

In essence, the proposed conformance relation performs a structural compar-
ison of classes, as required features can be owned or inherited by meta-model
classes. However, it does not rely on an explicit mapping between classes and
features of RM and MM . While several classes in a meta-model may conform
to an anonymous class in RM , our conformity just checks that any such class
exists. An explicit definition of the mapping, allowing adaptation (e.g., class
renamings) through adapters [4], is left for future work.

Reusing Model Transformations Through Typing Requirements Models 273

Fig. 5. Excerpt of the compatibility model for the running example.

3.2 Expressing Compatibility Requirements

The DRM implicitly describes possible choices for a concrete meta-model to
satisfy the conformance relationship introduced above. However, a given choice
for an open element of the source (or target) DRM may forbid some choices of
the target (or source) DRM in case such choices break the syntactic correctness
of the transformation. For instance, in Listing 1, the binding rows ← s.methods

constrains the possible types of the rows and methods features to those that yield
a non-faulty execution.

Hence, we gather the inter-dependencies between the source and target DRMs
in a compatibility model which makes explicit how the choices for one DRM
restrict the choices in the other DRM. We represent this compatibility model
as a feature model where the different choices are depicted as nodes and the
compatibility requirements are shown as dependencies between child nodes, so
that the occurrence of a child node forces the presence of the dependent nodes.

Figure 5 shows an excerpt of the compatibility model for the running exam-
ple, which focuses on the admissible types for attributes (i.e., data types) and
references (i.e., target classes). Feature ClassDeclaration.methods can be either an
attribute or a reference, as it is only used in line 11 as part of a binding. If
it is an attribute, then it can have any data type (the figure only shows Inte-
ger and Real). However, the particular selection restricts the choices for feature
Table.rows in the target DRM to keep the transformation syntactically correct.
Similarly, if methods is a reference with type MethodDefinition, then the type of
Table.rows must be Row because, otherwise, the binding will assign an incorrect
target value. These dependencies also work from target to source.

4 Extracting Typing Requirements from ATL
Transformations

This section explains the procedure for extracting TRMs out of existing ATL
transformations. To this end, we rely on the Attribute Grammar formalism,

274 J. de Lara et al.

Table 1. Fragment of the developed ATL attribute grammar (AGATL)

Productions Computation Rules
p1 〈matchedRule〉::=

rule ID { 〈inPattern〉 〈outPattern〉* }
p2 〈inPattern〉::= from 〈inPatternElement〉*
p3 〈InPatternElement〉::=

ID:〈oclModelElement〉
type(〈InPatternElement〉) ←
addClassToSourceDRM(type(〈oclModelElement〉))

p4 〈outPattern〉::= to 〈outPatternElement〉
p5 〈OutPatternElement〉::=

ID:〈oclModelElement〉 (〈binding〉*)
type(〈OutPatternElement〉) ←
addClassToTargetDRM(type(〈oclModelElement〉)

p6 〈binding〉::=
ID ’<-’ 〈oclExpression〉;

leftType ← createFeature(name(ID), type(〈oclExpression〉))
rightType ← type(〈oclExpression〉)
type(〈bindings〉) ← addClassToTargetDRM(owner(leftType))
analyseCompatibilityNodes(leftType, rightType)

p7 〈oclModelElement〉::= ID1!ID2 type(〈oclModelElement〉) ← createClass(name(ID2))
p8 〈oclExpression〉::=

〈navigationOrAttributeCallExp〉 |
〈oclModelElement〉 | ...

p9 〈navigationOrAttributeCallExp〉::=
〈oclExpression〉.ID;

type(〈oclExpression〉) ←
if (isNavigationOrAttributeCallExp(〈oclExpression〉) then
createReference(type(〈oclExpression〉), ”AnonymousClass”)

type(〈navigationOrAttributeCallExp〉) ←
if (isOperation(name(ID))) then
createFeatureByOperation(
name(ID), getReferenceClass(〈oclExpression〉))

else
createFeature(name(ID), getReferenceClass(〈oclExpression〉)))

which represents an elegant and powerful mechanism to describe computations
over syntax trees [21].

Attribute grammars extend context-free grammars by associating attributes
with the symbols of the underlying context-free grammar. The values of such
attributes are computed by rules, which are executed while traversing the syntax
trees as needed. More formally, let G = (N,T, P, S) be a context-free grammar
for a language LG where N is the set of non-terminals, T is the set of terminals,
P is the set of productions, and S ∈ N is the start symbol. An attribute grammar
AG is a triple (G,A,AR), where G is a context-free grammar, A associates each
grammar symbol X ∈ N ∪ T with a set of attributes, and AR associates each
production R ∈ P with a set of attribute computation rules. While traversing
syntax trees, values can be passed from a node to its parent (by means of syn-
thesized attributes), or from the current node to a child (by means of inherited
attributes). Attribute values can be assigned, modified, and checked at any node
in the considered syntax tree.

Table 1 shows a fragment of the ATL attribute grammar (AGATL) we
have developed to create TRMs while traversing the syntax tree of the con-
sidered ATL transformations. It is important to remark that the shown
grammar is a simplification of the real one. The aim of such a simplification
is to give a flavour of how the proposed extraction mechanism works, without
compromising the readability of the explanation. However, the developed tool

Reusing Model Transformations Through Typing Requirements Models 275

Fig. 6. A sample AGATL parse tree

available online3 takes into account all the productions defined for the actual
AGATL by implementing all the concepts presented in Sect. 3.

The first column of Table 1 contains ATL grammar productions. For each pro-
duction, computation rules are given. The defined computations aim at inferring
the value of the attribute type of the parsed elements and thus generating the
DRMs as presented in Sect. 3.1. The attribute type behaves both as inherited
and synthesized, thus it is initialized during a top-down phase, and it is updated
during a bottom-up phase.

Figure 6 shows a fragment of the AGATL parse tree related to the rule Table

of the transformation given in Listing 1. Each node of the tree is decorated with
the corresponding computation rules according to the grammar given in Table 1.
Such computation rules makes use of the auxiliary functions described below,
developed to properly create and update elements in the TRM while traversing
the syntax tree:

� createClass(name: String): it creates and returns a new class named name.
The function is used in the production p7 to manage the non-terminal
〈oclModelElement〉 like JavaSource!ClassDeclaration and Table!Table of the sample
ATL transformation. The actual DRMs including the newly created classes are
decided later in the process while traversing the tree bottom-up.

� addClassToSourceDRM(c: Class) and addClassToTargetDRM(c: Class): they
add a new class of type c in the source and target DRM, respectively. They are
used in the production p3 to manage the non-terminal 〈InPatternElement〉 like the
element s:JavaSource!ClassDeclaration, and in p5 for managing 〈OutPatternElement〉

3 http://github.com/totem-mde/totem.

http://github.com/totem-mde/totem

276 J. de Lara et al.

like Table!Table. In both cases, the new classes previously generated by the func-
tion createClass (e.g., ClassDeclaration and Table) are added in the correspond-
ing DRMs. The value of the mandatoryAllowed attribute for the created classes
is specified as true (false) for those added in the source (target) DRMs. The
value of the isAbstract attribute is specified as Any for the classes added in the
source DRMs, and false otherwise. The antiancs relation is set between any non-
anonymous classes of the source domain, which were created by the production
p2 applied on 〈inPattern〉 elements consisting of only one 〈inPatternElement〉.
� isNavigationOrAttributeCallExp(o: OclExpression): since the non-terminal ele-
ment 〈oclExpression〉 can be matched in several cases (see production p8), this
function checks if the input OCL expression is a 〈navigationOrAttributeCallExp〉.
Examples of 〈navigationOrAttributeCallExp〉 are i.method.name and s.methods, which
use the infix “.” operator to call properties and to navigate across association
ends, respectively.

� getReferenceClass(o: OclExpression): it returns the class of the DRM being
generated related to the input OCL expression.

� isOperation(c: String): it checks if the input string is the name of an OCL
operation (e.g., size, sum, and exists) defined over OCL data types. The func-
tion is used in the production p9 to check if the last part of the matched
〈navigationOrAttributeCallExp〉 is an operation. If it is not (e.g., name in the expres-
sion i.method.name) then a new feature is added in the class, which is being cre-
ated because of the matched 〈oclExpression〉 element (e.g., i.method). If isOperation
returns true then a new feature is created by means of the createFeatureByOp-
eration function (see below).

� createFeature(name: String, c: Class): it creates a new feature typed by the
input class c. It is used in the productions p6 and p9. The former is for managing
the non-terminal 〈binding〉 like rows <- s.methods at line 11 of Listing 1, whereas
the latter is for managing the non-terminal 〈NavigationOrAttributeCallExp〉 like
i.method.name at line 6. In the case at line 11, a new feature named rows is added
in the target DRM and its type is inferred from the type of the OCL expression
s.methods. In the case at line 6, the production p9 would match i.method with
〈oclExpression〉 and name with ID. Since name is not an operator, a new feature
named name will be created in the class referred by the reference i.method. Con-
cerning the cardinality of the created features, when a Number element is created,
the corresponding attribute allowMore is true in the minimum cardinality of the
source DRM, or in the maximum cardinality of the target DRM. The value of
the attribute allowLess is true in the maximum cardinality of the source DRM, or
in the minimum cardinality of the target DRM.

� createFeatureByOperation(opName: String, c: Class): it creates a new feature
and its cardinality is specified according to the operation name given as input.
For instance, if the operation is size, then it means that the matched expression
refers to a collection and, consequently, the max cardinality of the created feature
has to be Many.

Reusing Model Transformations Through Typing Requirements Models 277

� createReference(f: Feature): given a previously created feature as input, it
specializes it as a Reference element. It is used in p9 in case the matched
〈oclExpression〉 is a 〈navigationOrAttributeCallExp〉. In such a case, the previously
created feature has to be specialized to a reference typed with a new Anonymous-

Class.

� analyseCompatibilityNodes(left: Class, right: Class): it is used in the production
p6 for adding elements in the compatibility model being generated. In particular,
it does a case analysis between the left and right types of the matched 〈binding〉
element by checking compatibility issues like cardinality or problems regarding
the types of resolving rules. Then, it creates the corresponding nodes of the
feature model accordingly.

5 Implementation and Validation

The approach has been implemented as an Eclipse plugin called TOTEM. This
is able extract a TRM from an ATL transformation, and check the conformance
of meta-models with respect to the TRM. The tool, a screencast demonstration,
and the evaluation results are available at http://github.com/totem-mde/totem.

Next, we evaluate the precision of our TRM extraction process and the flex-
ibility of the conformance relationship. While a formal proof of correctness and
completeness of the TRM extraction method would be desirable and will be
tackled in future work, ATL is an unformalised language4. Therefore, we opted
for an empirical evaluation using mutation-based testing. This has the advantage
of validating the approach in practice, testing the specificities of real transfor-
mations and the particularities of the EMF framework (e.g., opposite references,
compositions, etc.).

We use the following ATL transformations in our evaluation: JavaSource2Table
(the original version of the running example), PetriNet2PNML (a translation from
Petri nets to the PNML document format), KM32EMF (a conversion between
OO formalisms), and HSM2FSM (a flattening of hierarchical state machines).
The selection criterion was to choose transformations written by a third-party,
with no errors or very easily fixable not to introduce a bias. In particular, the
first three transformations belong to the ATL Zoo, while the latter is presented
in [2].

For each transformation, we extract its TRM (i.e., source and target DRMs
and compatibility model) using TOTEM. Then, we generate first-order mutants5

of the original source and target meta-models (which are also available in the
ATL Zoo together with the transformations) by systematically applying the
meta-model modifications identified in [3]. Our aim is generating many slightly
different variants of the original meta-models, so that some break the transfor-
mation, while others do not. Finally, we evaluate whether our algorithm correctly
4 Some efforts exist to express the execution semantics of ATL by compilation into

Maude [22]. However, formal typing rules for ATL, including OCL, are not available.
5 First-order mutants are obtained by applying a mutation operator to the original

artifact once.

http://github.com/totem-mde/totem

278 J. de Lara et al.

classifies each mutant as conformant when the transformation can use it safely,
and non-conformant otherwise. To determine if the classification is correct, we
use the anATLyzer [6] ATL static type checker as an oracle of the typing rela-
tionship between the mutated meta-model and the transformation.

For each meta-model mutant, we may obtain one of the following results:
our conformance method correctly categorizes the mutant as conformant (true
positive, TP) or non-conformant (true negative, TN), or it incorrectly categorizes
the mutant as conformant (false positive, FP) or non-conformant (false negative,
FN). Then, we compute precision (an indicator of correctness) as #TP

#TP+#FP , and
recall (an indicator of completeness) as #TP

#TP+#FN . The transformations, meta-
models and scripts to run the experiment, as well as the evaluation results, are
available in the tool website.

Table 2. Evaluation results.
JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF

Mutants 141 316 325 2,515

True
positives

70 150 185 1,785

True
negatives

64 154 131 695

False
positives

7 12 9 35

False
negatives

0 0 0 0

Precision 91% 93% 95% 98%

Recall 100% 100% 100% 100%

Conforming 70 150 185 1,785

Non-
conforming

62 141 113 684

Incompatible 2 13 18 11

Table 2 summarizes the
obtained results. There are
no false negatives, and
thus recall is 100%, sig-
nifying that our method
classifies correctly non-
conforming meta-models as
such. There are some false
positives though, meaning
that some non-conformant
meta-models get incorrectly
classified as conformant,
and the transformation
may raise runtime errors if
executed with them. Nev-
ertheless, the overall precision is still high. An example of false positive occurs
in the expression i.method.name of the running example (line 6). In the origi-
nal meta-model, the name attribute is compulsory, but one meta-model mutant
relaxes this cardinality to 0..1. The extracted DRM is not precise enough to put
any restriction about the cardinality, however anATLyzer does signal this typ-
ing problem, and thus it is reported as a false positive. We have observed that
false positives occur due to limitations in the extraction process. To solve these
cases, we plan to combine our TRM extraction mechanism with information
from anATLyzer’s static analysis. However, this is only possible if the source
and target meta-models are available.

To analyse the effects of the mutations, the second and third last rows of
the table show the number of conforming and non-conforming generated meta-
model mutants. The numbers are comparable in the first three transformations.
Notably, there is a high number of conforming meta-models correctly classified
by our algorithm, which means that we can reuse the transformations with many
meta-models (more than 2,000) different from the ones used to develop the trans-
formations. The last row of the table shows how many meta-models individually
conform to the DRMs but do not satisfy the compatibility model. This shows
the usefulness of this model.

Reusing Model Transformations Through Typing Requirements Models 279

We have manually revised the extracted DRMs and some mutants to analyse
whether the evaluation demanded a flexible typing from our conformance rela-
tionship. We found several interesting cases. For instance, PNML2PetriNet exer-
cised the subsAllowed flag (illustrated in Fig. 4(c) for the running example), since
some features of an abstract class Arc were located in all subclasses. Mutations
like pull meta-property, push meta-property, inline meta-class and flatten hier-
archy generate variants which require structural typing to enable conformance.
All these cases were correctly handled by our conformance algorithm.

Threats to Validity. A few aspects may threat the internal validity of the
experiment. The number of transformations in the evaluation is low, and it
will be expanded in future evaluations. However, our first results are promising
and encourage us to follow this line of research. In any case, the number of
generated meta-model mutants is relatively high (around 3,300). Still, the set of
considered meta-model mutation operators might be not complete, potentially
preventing exercising all features of our conformance relationship. Finally, we use
anATLyzer as oracle to well-typedness. Although anATLyzer has been reported
to have high precision and recall [6–8], it is not infallible. However, we have
manually revised the dubious cases and have not find any incorrect result.

6 Related Work

The closest related work is by Zschaler [24], who uses logic to express meta-
model requirements extracted from toy in-place transformations. Instead, we
use a model to represent requirements. The advantage is that we can process
those models to, e.g., generate OCL queries, check meta-model conformance,
or synthesize meta-models. Our TRM includes abstractions to express common
model-to-model transformation requirements (e.g., that a class may have extra
mandatory features), and includes a compatibility model, which is novel. Finally,
extracting the requirements from ATL transformations is more challenging as we
need to deal with OCL expressions, mechanisms like automated binding resolu-
tion, and dependencies between meta-models.

In the previous work of some of the authors [4,5], we developed the notion
of concepts to enable transformation reuse. Concepts are meta-models repre-
senting the transformation interface, which need to be bound to meta-models.
Instead, in this work we propose using TRMs, which provide further flexibility to
express meta-model requirements, like (dis-)allowing extra mandatory features
in classes, or declaring features which can be references or attributes. While bind-
ings may encode some of these requirements, the TRMs make explicit constraints
that bindings ought to obey. Moreover, concepts lack the notion of compatibility
model. On the other hand, bindings permit bridging heterogeneities between con-
cepts and concrete meta-models, while resolving heterogeneities between TRMs
and meta-models is future work.

Other approaches to reusability [10,12] are based on establishing a subtyping
relationship or binding between the transformation meta-model and other meta-
model. However, these approaches still describe the transformation interface in
terms of meta-models, while TRMs are more expressive.

280 J. de Lara et al.

Several works analyse the model transformations to obtain their foot-
print [6,13]. This is the part of the input and output meta-models accessed
by the transformation, which is itself a meta-model. While these works rely
on the actual transformation meta-models, our analysis is done without them.
Moreover, we produce a TRM, which is more general as it allows using the
transformation with different meta-models.

Transformation intents [18] describe semantical properties that ensure a cor-
rect transformation reuse according to the designer expectations. In our case, we
aim at ensuring syntactical correctness, but it would be interesting to incorporate
such intents into our framework in the future.

Finally, Famelis et al. [11] propose a meta-model independent approach to
express uncertainty in models, which is applicable to meta-models. We use a
DRM meta-model as it allows expressing domain-specific aspects in a more nat-
ural way, like the possibility of features to be both attributes and references, the
semantics of flags mandatoryAllowed and subsAllowed, or defining transformation-
specific compatibility constraints.

7 Conclusions and Future Work

In this paper, we have presented a new approach, based on TRMs, for model
transformation reusability. TRMs are automatically extracted from model trans-
formations, and contain a compatibility model constraining the possible options
in the source and target meta-models. We have implemented prototype tool
support and presented an experiment, based on meta-model mutation, showing
promising results.

In the future, we would like to add the notion of binding into our confor-
mance relationship in order to improve reusability. Such bindings may resolve
heterogeneities (e.g., class renamings) between the TRMs and the meta-models,
inducing a transformation adaptation like in [4]. We plan to explore heuristics
for automatic meta-model generation from TRMs. As our checks are syntactical,
we would like to incorporate the notion of transformation intent. Finally, we are
working on building a graphical modelling tool to visualize and bind TRMs, and
on formal proofs of correctness of the TRM extraction procedure.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity, grants TIN2014-52129-R and TIN2015-73968-JIN (AEI/FEDER, UE),
and the Madrid Region (S2013/ICE-3006).

References

1. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of
model transformations with incompatible metamodels. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
602–618. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 37

http://dx.doi.org/10.1007/978-3-319-11653-2_37

Reusing Model Transformations Through Typing Requirements Models 281

2. Cheng, Z., Monahan, R., Power, J.F.: Formalised EMFTVM bytecode language
for sound verification of model transformations. Softw. Syst. Model. 1–29 (2016,
in press)

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, EDOC 2008, pp. 222–231. IEEE Computer Society
(2008)

4. Cuadrado, J.S., Guerra, E., de Lara, J.: A component model for model transfor-
mations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

5. Cuadrado, J.S., Guerra, E., de Lara, J.: Reverse engineering of model transforma-
tions for reusability. In: Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 186–201. Springer, Cham (2014). doi:10.1007/978-3-319-08789-4 14

6. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transfor-
mations using static analysis and constraint solving. In: 25th IEEE International
Symposium on Software Reliability Engineering, ISSRE, pp. 34–44. IEEE Com-
puter Society (2014)

7. Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL transformations with
speculative analysis. Softw. Syst. Model. 1–32 (2016, in press). Springer

8. Cuadrado, J.S., Guerra, E., de Lara, J.: Static analysis of model transformations.
IEEE Trans. Softw. Eng. 1–32 (2017, in press)

9. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. Softw. Syst. Model. 12(3), 453–474 (2011)

10. de Lara, J., Guerra, E., Cuadrado, J.S.: A-posteriori typing for model-driven engi-
neering. In: 18th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MoDELS 2015, pp. 156–165. IEEE (2015)

11. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: 34th International Conference on Software Engineering,
ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 573–583. IEEE Computer
Society (2012)

12. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model
subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31491-9 30

13. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations. In:
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 601–610. ACM (2011)

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

15. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? Softw.
Syst. Model. 14(2), 537–572 (2015)

16. Object Management Group. UML 2.0 OCL Specification. http://www.omg.org/
docs/ptc/03-10-14.pdf

17. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara, J.: Pattern-
based development of domain-specific modelling languages. In: MODELS, pp. 166–
175. IEEE (2015)

18. Salay, R., Zschaler, S., Chechik, M.: Correct reuse of transformations is hard to
guarantee. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
107–122. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6 8

19. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

http://dx.doi.org/10.1007/978-3-319-08789-4_14
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://dx.doi.org/10.1007/978-3-319-42064-6_8

282 J. de Lara et al.

20. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04425-0 4

21. Slonneger, K., Kurtz, B.L.: Formal Syntax and Semantics of Programming Lan-
guages, vol. 340. Addison-Wesley, Reading (1995)

22. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

23. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

24. Zschaler, S.: Towards constraint-based model types: a generalised formal founda-
tion for model genericity. In: VAO, pp. 11:11–11:18. ACM, New York (2014)

http://dx.doi.org/10.1007/978-3-642-04425-0_4

Change-Preserving Model Repair

Gabriele Taentzer1(B), Manuel Ohrndorf2, Yngve Lamo3, and Adrian Rutle3

1 Philipps-Universität Marburg, Marburg, Germany
taentzer@informatik.uni-marburg.de
2 Universität Siegen, Siegen, Germany
mohrndorf@informatik.uni-siegen.de

3 Western Norway University of Applied Sciences, Bergen, Norway
{Yngve.Lamo,Adrian.Rutle}@hvl.no

Abstract. During modeling activities, inconsistencies can easily occur
due to misunderstandings, lack of information or simply mistakes. In this
paper, we focus on model inconsistencies that occur due to model editing
and cause violation of the meta-model conformance. Although temporar-
ily accepting inconsistencies helps to keep progress, inconsistencies have
to be resolved finally. One form of resolution is model repair. Assuming
that model changes are state-based, (potentially) performed edit opera-
tions can be automatically identified from state differences and further
analyzed. As a result, inconsistent changes may be identified causing
a need to repair the model. There may exist an overwhelming number
of possible repair actions that restore consistency. The edit history may
help to identify the relevant repairs. Model inconsistencies are repaired by
computing and applying complement edit operations that are needed to
re-establish the overall model consistency. In this paper, we clarify under
which conditions this kind of model repair can be applied. The sound-
ness of this approach is shown by formalizing it based on the theory of
graph transformation. A prototype tool based on the Eclipse Modeling
Framework and Henshin is used to conduct an initial evaluation.

Keywords: Model-based engineering · Model repair · Graph
transformation

1 Introduction

Model-based engineering has gained increasing popularity in various disciplines,
especially in software development. This means that modeling plays a primary
role throughout the engineering process and thus, it has to be well supported.
While models are edited, they may get inconsistent for various reasons as, e.g.,
misunderstandings, lack of information, incomplete modeling actions or simply
mistakes. Another source of inconsistency may be different interpretations of
requirements especially where models are developed collaboratively [1]. In this
paper, we focus on model inconsistencies related to the violation of conformance
to the underlying meta-model, especially as they occur during editing processes.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 283–299, 2017.
DOI: 10.1007/978-3-662-54494-5 16

284 G. Taentzer et al.

Prior to model repair, model inconsistencies have to be detected. Currently
many approaches are available that detect inconsistencies fast and correctly, e.g.
[2–4]. This may be performed in a check-only mode or integrated with model
repair as done in various rule-based approaches such as [5–9].

While it is important to allow inconsistencies during modeling processes [10],
they must be resolved eventually. One way of inconsistency resolution is model
repair. There are various approaches to repair models which capture this problem
in different ways. An overview is given in [11], also stating a common problem
in model repair: “One of the main challenges of model repair is that for any
given set of inconsistencies, there (possibly) exists an overwhelming number
of repair updates that restore the consistency. Yet, since the selection of the
most suitable repair is ultimately a choice of the developer, approaches to model
repair must balance the automation level of the technique and the need for user
guidance in the generation of the repairs.” Roughly, we distinguish between the
following approaches to model repair: Given an inconsistent model, search-based
approaches return a repaired model which is consistent, such as [12–15]. Syntactic
and rule-based approaches return a (partially ordered) set of possible repair
actions instead (see e.g. repair plans in [8]). Badger [16] is the only model repair
approach so far that uses the change history: It uses the date of model revisions
to select repair plans but does not consider the performed edit operations to
select repair actions.

So far, model repair approaches have not taken the history of user actions into
account, hence they miss an important information source for repair generation.
By the performed edit operations, users state how they want to evolve the model.
Guiding the repair process by the change history can help to identify promising
repair possibilities from the overwhelming number of possible ones.

Model changes are either recorded in a state-based manner where just pre-
and post-states are stored, or in a delta-based manner where information about
the performed user actions is stored. Delta-based approaches have the advantage
of keeping the history of the model evolution. If model changes are given state-
based, all interesting information about a possible sequence of user actions is
not immediately available but can be automatically determined assuming that
all the possible user actions have been specified before [17]. Specifications of
edit operations can be computed to a large extent as shown in [18]. Hence,
independent of the approach that is applied to record changes, we will assume
that the delta information can be automatically computed when needed.

Fig. 1. Change-preserving
model repair

Our approach is rule-based in the sense that
an edit operation (EO) is specified by one or more
rules depending on its complexity. We assume that a
repair action is also specified by a rule, called repair
operation (RO), such that the composition of an edit
operation with a suitable repair operation leads to a
consistency-preserving operation (CPO), i.e., a rule
that – being applied to a consistent model – yields
a consistent model again (see Fig. 1). Hence, ROs are complementing preceding

Change-Preserving Model Repair 285

EOs and therefore, preserve already performed model changes. In general, there
may be several possible ROs for one EO.

This repair approach is interactive since the user may select among several
applicable repair actions to repair a model step-by-step. Moreover, it is consis-
tency improving with each application of a repair action. We will show as a main
result that, if all the repair operations are causally independent from the subse-
quent edit operations, all inconsistencies can be resolved without side-effects in
the sense that no new inconsistencies are introduced while repairing the model,
i.e., the repair is fully consistent in that case. In addition, if an edit operation
does not cause any inconsistency, there is not any repair action to be performed,
hence, our approach is stable. Our model repairs are not necessarily least change,
i.e., repaired models are not necessarily as close as possible to the original model,
since this is dependent on the specified CPOs.

Typical application scenarios are the following ones: If a model consists of
several viewpoints as, e.g., UML models which consist of several diagrams, edit
operations in one viewpoint may have to be complemented by actions in other
diagrams. If one or several of these complements are forgotten in the original
editing process, they may be easily repaired by our approach. Although this
complementation might sound a bit mechanical, it cannot be automated in gen-
eral since often necessary information is lacking. When, e.g., a new method call
is inserted in a sequence diagram, it has to be complemented with the definition
of a corresponding method in the class model. While the method name may
already be fixed by the call, its return type as well as its parameters (with name
and type) still have to be specified.

Considering a scenario with just one viewpoint, our approach may also be
useful to easily complete more complex edit activities that are not available as
separate edit operations. For example, changes of interfaces have to be repeated
on implementing classes or attribute changes have to be repeated on their getter
and setter methods. Another motivation may be fast editing where just key
information is given which can be automatically completed to a bigger extent.

The main contributions of this paper are:

1. A new process for repairing model inconsistencies taking the history of edit
operations into account.

2. A formalization of this process using algebraic graph transformation (see e.g.
[19]), i.e., a precise formulation of each of its tasks. The main theorem shows
that all repair processes of our approach are consistency-improving.

3. A prototypical implementation in Henshin [20], a model transformation lan-
guage based on the Eclipse Modeling Framework and graph transformation
concepts. The prototype is used to conduct a case study where edit processes
in the bCMS (Barbados Crash Management System) [21] are considered.

The rest of this paper is organized as follows: The running example is pre-
sented in Sect. 2. Section 3 introduces our model repair process. The formaliza-
tion of our approach follows in Sect. 4. Tool support and an initial evaluation
are presented in Sect. 5. Finally, we compare with related work and conclude in
Sects. 6 and 7.

286 G. Taentzer et al.

2 Running Example

Let us consider an example: A simple class model of an online shop focusing on
the customer’s viewpoint covers (at least) orders and a shopping cart collecting
these orders (see Fig. 2).

Fig. 2. Class model of an online shop - Versions 0 and 1

Fig. 3. Class model of an online shop -
Inconsistency repaired, Version V1-R

The model declares ExpressOrders as
a special kind of orders. This class
shall implement the interface class
CreditCardPayment. The interface is
extended by a method called setCard-
Number() as shown in Fig. 2. The mod-
eler has introduced an inconsistency
here since the class ExpressOrder does
not implement this method; the model
has to be repaired. A suitable model
repair that takes the performed model
change into account is to execute the indicated completion, i.e., to add the
method also to the class ExpressOrder as shown in Fig. 3.

Fig. 4. A sequence diagram for ordering a product - Versions 1 and 2

Building on our example, we will now specify the behavior related to the
main use case which is ordering of a product. It is modeled by a simple sequence
diagram as shown on the left of Fig. 4 which – together with the class model
in Fig. 3 – constitutes a consistent view on the system model in the sense that
all object types and messages used are defined in the class model. (Note that
attribute values and links are not visible in sequence diagrams.) On the right
of Fig. 4 the sequence diagram has been further developed by inserting a new

Change-Preserving Model Repair 287

method call of setProduct on the object of type Order. This method is not defined
in the current class model; hence, this view of the system model is inconsistent
and has to be repaired.

Fig. 5. A class model of an online shop -
Inconsistency repaired, version V2-R

In principle, there are many dif-
ferent repair actions possible, e.g.,
adding a method setProduct to class
Order, removing the message from the
sequence diagram while keeping the
lifeline of type Order, or removing
also this structure. Since the modeler
added the message, its removal is a
possible repair action. If the modeler
selects it, our approach is not specifi-
cally helpful for this repair but could
be used to identify repairs that are still missing thereafter. But if the modeler
wants to keep the added message, our repair approach would immediately pro-
pose the missing complement operation which is the addition of the method to
the class model; this is shown in Fig. 5.

3 Model Repair Approach

In the following, we informally present our approach to change-preserving model
repair. The approach relies on edit operations (EOs), consistency-preserving
operations (CPOs) and repair operations (ROs); EOs and CPOs have to be
defined first by the language designer. Thereafter, modelers can repair their
inconsistent models.

3.1 Preparing Change-Preserving Model Repair

Before being able to perform change-preserving model repair, the necessary oper-
ations for the modeling language and its model editor have to be specified. An
overview on the preparation tasks is given in Fig. 6.

Fig. 6. Preparation for
change-preserving model
repair

For a given modeling language which is specified
by a meta-model MM , a set of CPOs w.r.t. the MM
has to be defined. These CPOs are usually defined
by language designers in cooperation with domain
experts. For identifying reasonable edit operations
(EOs), we do not consider the original language meta-
model but an effective meta-model being the original
one in a relaxed form, i.e., without (most of the) OCL
constraints and with relaxed multiplicities. The effec-
tive meta-model defines the language of all possible
inputs to a model editor (which may cause inconsistencies w.r.t. the original
meta-model). In [18], an automated approach for deriving EOs from effective
meta-models is presented and evaluated at several modelling languages and
editors.

288 G. Taentzer et al.

For each CPO, one need to identify sub-operations that are reasonable edit
operations in the modeling language, e.g. EOs for inserting, deleting, and moving
model parts as well as for changing their attributes [18,22]. An EO is completed
to a CPO by a repair operation (RO); i.e., applying an EO followed by an RO to
a model, yields the same result as applying the corresponding CPO. In this way,
an EO can be seen as a sub-operation of a CPO. It may also happen that an EO
is not a sub-operation of any CPO or of several CPOs; in the former case the
application of an EO may lead to irreparable inconsistencies while in the latter
case, the complement ROs w.r.t. each containing CPO are computed. We stick to
the case where each EO is complemented by at most one RO to each of its CPOs.
A more general case would be EOs being complemented by sequences of ROs,
e.g. adding an interface operation is complemented with adding an operation in
each realizing class. In the special case that an EO is already a CPO, model
repair is obviously not needed.

3.2 Change-Preserving Model Repair

A change-preserving model repair takes the preceding applications of EOs, i.e.,
edit steps, into account; edit steps that may cause inconsistencies are followed
by applications of ROs, called repair steps, that re-establish consistency (see
Fig. 1). To find out which ROs shall be applied, the edit steps since the last
consistent model version are needed. If edit steps are not already provided by
the model editor, they can be automatically computed as follows: Given two
model versions M1 and M2 and a set of EOs, we are looking for a sequence
of edit steps from M1 to M2. The algorithm presented in [17] yields an edit
script, i.e., a set of EOs with actual arguments being partially ordered along
their sequential dependencies. This algorithm is fast in the sense that it does
not need backtracking. It has been implemented for EMF models and applied in
several case studies.

Next, the reported edit steps can be analyzed w.r.t. inconsistencies. Each
edit step which causes inconsistencies will lead to one of the following two cases:

1. There exists one or more CPOs that have the applied EO as a sub-operation.
The modeler chooses one of them and thereby determines the complement RO
that has to be performed to re-establish consistency w.r.t. the considered edit
step. In Sect. 2 we presented two inconsistent edit steps which are repaired by
complements.

2. The edit step introduces a model for which there does not exist any CPO that
has the applied EO as a sub-operation. In this case the model change cannot
be preserved. It has to be rolled back, at least partly. An example for such
an EO (in the context of class models) is the insertion of a generalization
relation between two classes such that the overall generalization structure
becomes cyclic. The model editor usually allows such an EO.

If all edit steps can be repaired (if needed) and each of the repair steps is causally
independent of all the edit steps following the edit step it repairs, we can guarantee
the overall consistency of the final model after all repairs (see Theorem1 below).

Change-Preserving Model Repair 289

The independence of steps can be checked automatically based on the critical pair
analysis implemented in Henshin (for more details see Sect. 4.4 below).

4 Formalization

The formalization of the described model repair approach is a means to clarify
the assumptions and outcomes of each involved task. Since models can be basi-
cally considered as graphs, we rely on the theory of algebraic graph transforma-
tion as presented in [19]. In the following, we first recall all basic concepts needed
to precisely define models, model changes and modeling languages. We define
CPOs as graph transformation rules whose applications preserve the model con-
sistency. Thereafter, change-preserving model repair is formally defined.

4.1 Defining Modeling Languages

When formalizing meta-modeling, graphs occur at two levels: the type level (repre-
senting meta-models) and the instance level (given by all valid instance models).
This idea is described by the concept of typed graphs, where a fixed type graph
TG together with a set C of constraints serves as an abstract representation of
the meta-model. Types are usually structured by an inheritance relation. Mul-
tiplicities and other annotations are expressed by additional constraints as well
as additional well-formedness rules. The constraints could be defined by means
of graph constraints, OCL, first order logic, etc., however the proposed approach
is not limited to any particular constraint language. Instances of the type graph
are typed graphs being equipped with a structure-preserving mapping to the type
graph, i.e., a mapping that preserves the source and target functions for edges.

Definition 1 (Meta-model and modeling language). A meta-model
MM = (TG,C) consists of a type graph TG and a set C of constraints typed
over TG. All well-typed graphs w.r.t. TG form the set L(TG). All graphs in
L(TG) satisfying all the constraints in C form the set L(MM), i.e., the model-
ing language specified by MM .

Example 1 (UML meta-model excerpt). Looking behind the scenes of our initial
example, the example meta-model presented in Fig. 7 is a small and simplified
excerpt of the UML meta-model.

Fig. 7. Small and simplified excerpt of the UML
meta-model

It focuses on classifiers with
their properties and operations
being core ingredients of class
models on the one hand and life-
lines sending messages as core
concepts of sequence diagrams
on the other hand. To make the
Realization relationship between
interfaces and classes more pre-
cise, we require the following

290 G. Taentzer et al.

constraint: Each class has to provide all operations which are defined by imple-
mented interfaces. Another constraint which is used in the running example is
this: Each message has to refer to an operation with the same signature belonging
to a class the receiving lifeline is typed over.

4.2 Model Changes and Their Consistency

Model changes may be formalized by graph transformation, i.e. the rule-based
modification of graphs. A rule r is defined by two graphs (L,R) and a left
application condition AC. L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. In addition, this pattern has
to fulfill the condition AC before rule application. After the rule application,
a pattern equal to R, the right-hand side (RHS), has to occur in the resulting
graph. The intersection L ∩ R, i.e. the graph part that is not changed, and the
union L ∪ R have to form a graph each. The graph part that is to be deleted is
defined by L \ (L ∩ R), and R \ (L ∩ R) defines the graph part to be created.

A graph transformation step G
r,m
=⇒ H between two instance graphs G and H

is defined by first finding a match m of the left-hand side L of rule r in the current
instance graph G such that m is structure-preserving and type-compatible (i.e.,
m is a typed graph morphism) and second by constructing H in two passes:
(1) building D := G\m(L\ (L∩R)), i.e., erasing all the graph items that are to
be deleted, and (2) constructing H := D∪(R\(L∩R)), i.e., adding all the graph
items that are to be created. Note that m has to fulfill the dangling condition,
i.e., all adjacent graph edges of a graph node to be deleted have to be deleted
as well, such that D becomes a graph.

Fig. 8. Rules for adding an operation to an interface class (left) and for sending a new
message (right)

Example 1 (Transformation rules). To specify the consistency-preserving oper-
ations (CPOs) in our running example, we rely on two rules that preserve the
consistency of the simplified UML meta-model. On the left of Fig. 8 the rule for

Change-Preserving Model Repair 291

synchronously adding a new operation to an interface and a realizing class is
shown. The rule is denoted in a compact form where all elements denoted with
preserve are in the LHS, all elements denoted with preserve or create are in the
RHS, and all elements denoted with preserve and forbid form a negative applica-
tion condition. All forbidden elements must not occur in the graph. Note that
this rule would have to be extended if there are more than one realizing class for
the same interface. Actually a new operation has to be inserted in all the realiz-
ing classes. It could also be accomplished with the complement rule in Fig. 10 on
the right. The rule on the right of Fig. 8 specifies the synchronous insertion of a
message call between two lifelines and its operation into the corresponding class.

Fig. 9. Example object diagram showing an excerpt
of the class model in Fig. 2 and the sequence diagram
in Fig. 2 in abstract syntax evolving over time, differ-
ent versions are indicated by colors and object names

Given a UML model in
abstract syntax, edit and
model repair actions can be
expressed by graph trans-
formation steps. Consider,
e.g., the graph in Fig. 9
which shows an excerpt of
the abstract syntax of the
class model on the right of
Fig. 2 and the sequence dia-
gram on the left of Fig. 4.
Rule addOperationToInter-
face can be applied to the
subgraph indicated by V0
and V1 and adds the object
marked with V1-R. Apply-
ing rule sendNewMessage
thereafter adds all elements
marked with V2 and V2-R as well.

For a given meta-model, all available CPOs can be specified by a graph
transformation system.

Definition 2 (Graph transformation system). Given a set R of rules, a
graph transformation (sequence) G

R=⇒ H consists of zero or more graph trans-
formation steps applying rules of R. A set R of graph rules, together with a
type graph TG, are called a graph transformation system GTS = (TG,R). A
GTS = (TG,R) is consistency-preserving w.r.t. MM if, for every graph G in
L(MM), all transformations G

R=⇒ H yield a consistent graph, i.e., H is in
L(MM).

A modeling language may also be formally defined by a graph grammar GG
being a GTS = (TG,R) together with a start graph G0. It defines a modeling
language by all graphs G resulting from transformation sequences starting at
G0, that is, L(GG) = {G ∈ L(TG)|G0

R∗
=⇒ G}. A graph grammar conforms to

meta-model MM if L(GG) ⊆ L(MM).

292 G. Taentzer et al.

4.3 Complement Construction

Our model repair approach is mainly based on the complement construction.
Given an edit operation (EO), its complement w.r.t. some CPO can be computed.
This complement forms the RO to be performed. If an edit operation is already
consistency-preserving, it is also a CPO leading to an empty complement rule.

EOs are specified as sub-rules of corresponding CPOs. An EO has to be large
enough in the sense that it does not delete nodes that are used as source or target
for edges in the super-rule, i.e., it has to fulfill the dangling condition w.r.t. its
rule embedding. Otherwise, a complete complement rule cannot be constructed.

Definition 3 (Sub-rule). A rule rs = ((Ls, Rs), ACs) is a sub-rule of rule
r = ((L,R), AC) if Ls ⊆ L, Rs ⊆ R, the inclusion of rs in r fulfills the dangling
condition, and AC can be decomposed into ACs and a (possibly empty) rest
application condition.

Example 2 (Complement rules). A simple EO that just inserts a new operation
into an interface has to be complemented by doing so in all realizing classes. This
means that the computed RO has to be applied as often as possible to repair all
the affected classes. The left rule in Fig. 10 shows the edit rule while the right
one shows the corresponding repair rule computed as its complement w.r.t. the
left rule in Fig. 8.

The left rule in Fig. 11 inserts a new message between two lifelines and ignores
the existence of the corresponding operation in the class model. Since it does
not delete anything, it trivially fulfills the dangling condition. The right rule in
Fig. 11 shows its complement rule w.r.t. to the overall rule shown on the right
of Fig. 8. It inserts the missing operation and its relation to the message call.

Fig. 10. Adding an operation to an interface: sub-rule (left) and complement rule
(right)

Theorem 4.4 in [23] shows that, given a rule r with a sub-rule rs, there
is a canonical way to construct a rule r̄s with an overlap graph E such that
the sequential composition rs ∗E r̄s = r. Such a constructed rule r̄s is called
complement rule of rs w.r.t. r. Furthermore, Fact 4.8 in [23] states that any
transformation step G

r,m
=⇒ H can be decomposed into two steps G

rs,ms=⇒ Ḡ and
Ḡ

r̄s,m̄s=⇒ H of edit step and complement step such that m is an extension of ms

and r̄s is the complement rule of rs w.r.t. r.

Change-Preserving Model Repair 293

Fig. 11. Sending a message: sub-rule (left) and complement rule (right)

To apply this result to model repair we have to do the following check: Given
G

rs,ms=⇒ Ḡ we compute the difference of pre-conditions w.r.t. some G
r,m
=⇒ H.

This means that the match m has to complete the match ms for L \ Ls and all
AC \ ACs have to be fulfilled.

If an edit rule is already consistency-preserving, it is a CPO as well. In this
case, the complement transformation would apply the empty rule, i.e., Ḡ = H.
Hence, our approach is stable in the sense of [11].

4.4 Sequential Independence and Confluence of Transformations

Since the application of complement rules is meant to repair previous edit steps,
they usually depend on their edit operations and cannot be applied before the
edit step is performed. For example, a graph node has to be created first to
further connect it with other model parts. However, the application of a comple-
ment rule may be independent of all subsequent edit steps. In that case, a model
repair step is called side effect-free, and may be exchanged with subsequent edit
steps. This means that repairing steps may be performed flexibly throughout
the editing process, i.e., immediately after an inconsistent edit step or later –
allowing temporary inconsistencies.

Definition 4 (Sequential independence). Given two transformation steps
t1 : G1

r1,m1=⇒ Ḡ2 and t2 : Ḡ2
r̄2,m̄2=⇒ G3, the execution of t1; t2 is sequentially

independent if match m2 does not need any element of Ḡ2 newly created by
applying r1 and does not use any attribute changed in t1, i.e., t2 does not need
the preceding application of r1. Furthermore, match m1 is not destroyed by t2.
The rules r1 and r2 are sequentially independent if all sequences t1; t2 applying
first rule r1 and then r2 are sequentially independent.

Example 3 (Independent steps). Considering the edit steps applying first the left
rule in Fig. 10 and then the left one in Fig. 11, these two steps are sequentially
independent of each other since they do not overlap. Actually, any two applica-
tions of these rules are sequentially independent of each other since they act on
different viewpoints, i.e., they can never overlap. An execution consisting of an

294 G. Taentzer et al.

edit step and its repair step by applying the complement rule is usually sequen-
tially dependent. Consider e.g. the rules in Fig. 11 where the message is first
inserted and then used to add a corresponding operation.

Checking the sequential independence of rules by hand is tedious. Fortunately
this is not necessary since the critical pair analysis (CPA) is a well-known tech-
nique to analyze potential conflicts and dependencies of transformation systems.
The CPA was originally introduced for term rewriting and later generalized to
graph transformation [24]. Henshin contains tool support for the CPA. If there
does not exist any critical pair for two given rules r1 and r2, all transforma-
tion pairs t1 : G

r1,m1=⇒ H1 and t2 : G
r2,m2=⇒ H2 applying these two rules are

independent of each other. In this case, the Local-Church-Rosser Property [19]
holds ensuring that two independent transformation steps may be executed in
any order yielding the same result, i.e., they are also sequentially independent
and confluent.

4.5 Change-Preserving Model Repair

The main result in this paper is the following: Given a model change history by
a sequence of transformation steps where each rule has at least one complement,
each step can be complemented such that a consistent graph can be reached
finally. The following result ensures that our approach is fully consistent. To
show it we have to ensure that the repair steps are sequentially independent
from all edit steps following the edit step it repairs. In that case, repair steps
can be arbitrarily interleaved with these edit steps. Several repair steps, however,
may dependent on each other such as, for a method call in an interface class,
creating first the corresponding interface method and then all corresponding
methods in implementing classes.

Theorem 1 (Change-preserving model repair). Let be given a meta-model
MM , a graph transformation system GTS = (TG,R) with a set Rs ⊆ R of
subrules and Rs of all complement rules of Rs, a graph G in L(MM), and a
transformation sequence G

Rs=⇒ G0n. If all rule pairs (rsi , r̄sj) in Rs × Rs for
i > j are sequentially independent then there exists a repairing transformation

sequence, i.e., a transformation sequence G0n
Rs=⇒ H such that graph H is in

L(MM).

This theorem tells us that a repair is easier if not too many edit steps have to be
considered. Its proof can be found in [25]. The main proof idea is to split each
CPO into an EO and an RO which can be shifted after all EOs due to the local
Church-Rosser property.

Example 4 (Change-preserving model repair). The two subsequent edit steps in
our initial example lead both to inconsistencies (of different kinds). Each edit
rule is sequentially independent of its opposite repair rule (i.e., the repair rule
of the other edit rule) since it just inserts elements that are not needed by the
opposite repair rule.

Change-Preserving Model Repair 295

5 Tool Support and Initial Evaluation

Tool support. A first prototype implementation of change-preserving model
repair is available at [26]. It is based on the Eclipse Modeling Framework (EMF),
Papyrus, and Henshin and supports the following activities: (1) comparison of
model versions, (2) recognition of performed edit operations, and (3) provision
of concrete repair steps.

Initially the historic version V1 and the potentially inconsistent version V2 of a
model have to be compared. The modeler can choose between different comparison
algorithms, e.g. ID-based, signature-based, or similarity-based [27]. Having the set
of common model elements available, the tool derives the elementary changes of
versions V1 and V2, on the level of model elements, references and attributes. We
call this kind of change description the technical difference of V1 and V2.

For recognizing performed edit operations, the algorithm requires a rule set
containing all available EOs for a given model editor. Each edit operation pro-
duces a pattern of changes in the technical difference. There is an algorithm pre-
sented in [28] which describes how to transform a graph transformation-based
rule into a graph pattern which recognizes the corresponding set of changes in
the technical difference. In this way, we can recognize all performed EOs. By
hiding all those EOs that are already CPOs, only true sub-operations remain in
the technical difference showing some inconsistencies. Now the remaining EOs
are recognized on the remaining changes using the same algorithm. This even
works with incomplete sets of EOs, i.e. elementary changes which cannot be
recognized as EOs are ignored.

For each recognized EO we have to calculate all possible embeddings into
corresponding CPOs (Sect. 4.3). For each pair of CPO and EO rules, a corre-
sponding complement rule RO can be created, by removing all already executed
changes of the EO from the CPO.

Next, the available repair steps are determined, i.e. the complement rules still
have to be provided with parameters for the remaining changes. This means that
we have to find all complete matches of the LHS of an RO in the actual model
V2. Usually, a part of the match is already determined by the corresponding EO.
Each completed match is reported as a repair to the user. The tool can visualize
a selected repair by highlighting the parts in the model diagrams that will be
changed. The user can also test a repair by applying and, if necessary, revert-
ing it. The underlying graph transformation logic of the presented approach is
transparent to the tool user.

Initial evaluation. For an initial performance estimation, we applied our proto-
type to the class, sequence and state machine diagrams of the bCMS (Barba-
dos Crash Management System) [21] case study. The UML model V1 contains
approx. 2600 model elements and 22.000 references. The difference to a model
V2 has been computed in ≈2 s and contains approx. 600 model elements and
1900 reference changes. 12 inconsistencies were introduced in this edit sequence.
Including the EOs of our running example, there are 15 CPOs and 12 EOs.
The additional operations consider changes in state machines, e.g. dangling tran-
sitions after deleting a state. The EO detection took ≈500 ms and filters already

296 G. Taentzer et al.

500 consistent changes of 50 steps. (Approx. 2000 changes are ignored since they
are not covered by the EOs provided.) The subsequent EO recognition took
≈100 ms; it detects 60 changes performed by 12 steps. After the calculation of
the EO × CPO embeddings in ≈500 ms, a total of 33 concrete repairs were
found. The initial performance estimation already allows some conclusions to be
made. The performance of the model difference calculation depends on the size
of models. The time for the repair calculation, however, mainly depends on the
size of the calculated difference and the number of inconsistencies.

To support larger rule sets efficiently, we intend to store rule embeddings in a
database. Furthermore, an incremental difference calculation and CPO detection
would be interesting for an online editing scenario, i.e. suggesting repairs during
the user edits the model.

6 Related Work

Most of the existing model repair techniques can be categorized into syntactic,
rule- and search-based approaches [11]. In this section, we will compare our
approach to existing techniques of those categories.

Syntactic and rule-based approaches. A syntactic repair generator derives repair
plans by analyzing the consistency rules at specification time. In rule-based
approaches a repair tool is configured with a set of repair rules for frequently
occurring inconsistencies. Repair rules or plans are suggested and instantiated
at modeling time when inconsistencies occur.

Our approach is closely related to triple graph grammars (TGGs) [29] in the
sense that the consistency between two kinds of graphs is specified by rules, called
triple rules. Those rules can be used to evolve both related graphs simultaneously
in a consistent manner. If the source graph is changed independently by source
rules, the corresponding forward rules can be used to synchronize the target
graph. A corresponding result is shown in [30]. In this paper, we consider a more
general setting where graphs do not have to be sub-structured, edit operations
may contain add and delete actions, an edit rule may have several (or no) repair
rules (and CPOs), and complex application conditions may be used.

In a wider context, syntactic and rule-based approaches as presented in e.g.
[5–9,31] are interactive and incremental since each inconsistency is repaired sep-
arately. While providing full control over the repair process, it may happen,
however, that the repair of existing inconsistencies leads to new ones. Criteria
for side-effect-free repair are usually not considered. Moreover, the change his-
tory is not taken into account to restrict the usually overwhelming number of
possible repair rules.

Search-based approaches. Search-based approaches such as [14–16] take the
inconsistent model as input and search for a consistent one which is usually
related to the original one by least changes. This problem is mostly solved by
using a constraint solver. Supporting tools may be parameterizable through the
definition of valid edit operations giving the user the possibility to find favored

Change-Preserving Model Repair 297

solutions. Current approaches, however, are somewhat restricted to handle small
models only; otherwise the search space has to be restricted to user-defined upper
bounds w.r.t. instance size, back-tracking or time.

A search-based tool which considers the model history is Badger [16]. The
regression planning algorithm can take a variety of parameters to guide the
search process. One of them is to prioritize model elements by their version in the
model history, e.g., repairs should change preferably newer model elements and
keep the older ones. Therefore, the algorithm respects the temporal dimension
of the history but does not necessarily preserve the edit operations that have
taken place.

7 Conclusion

To handle model inconsistencies, there are often many possible repair actions to
consider. In this paper, we have proposed a change-preserving model repair app-
roach to tackle this challenge. Based on the edit operations already performed,
model repairs are proposed building on the assumption that the latest change of
the model is the most significant. To use this approach, we have to do the fol-
lowing: For a given modeling language we specify a set of consistency-preserving
operations. For a given model editor we identify the set of allowed edit oper-
ations. The basic idea is to identify the history of performed edit operations
since the last consistent model state, and to analyze these operations for identi-
fying those causing inconsistencies. If an inconsistent edit operation turns out to
be a sub-rule of a consistency-preserving operation, the complement operation
is constructed which is able to repair this inconsistency. The soundness of our
approach is shown based on the theory of graph transformation. A prototypical
implementation illustrates its practical applicability.

Our approach may be combined with other rule-based approaches: Since
rule-based approaches usually allow to choose among a large number of repair
operations, their selection needs more guidance. Preserving already performed
changes seems to be a reasonable criterion. Our approach supports to find out if
a repair operation is a complement of an edit operation such that their sequential
combination leads to a consistency-preserving operation. Furthermore, a change-
preserving model repair process is side-effect-free if each edit operation is inde-
pendent of all repair operations of later applied edit operations. It is up to future
work to further investigate relations between existing rule-based approaches in
different editing scenarios and thereby, integrate change-preservation with other
important aspects of model repair.

References

1. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
Softw. Eng. J. 11(1), 31–43 (1996)

2. Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Inconsistency management for
multiple-view software development environments. IEEE Trans. Softw. Eng.
24(11), 960–981 (1998)

298 G. Taentzer et al.

3. Egyed, A.: Instant consistency checking for the UML. In: 28th International Con-
ference on Software Engineering (ICSE), pp. 381–390. ACM (2006)

4. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: 30th International Conference on
Software Engineering (ICSE), pp. 511–520. ACM (2008)

5. Enders, B., Heverhagen, T., Goedicke, M., Tröpfner, P., Tracht, R.: Towards an
integration of different specification methods by using the viewpoint framework.
Trans. SDPS 6(2), 1–23 (2002)

6. Amelunxen, C., Legros, E., Schürr, A., Stürmer, I.: Checking and enforcement of
modeling guidelines with graph transformations. In: Schürr, A., Nagl, M., Zündorf,
A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 313–328. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-89020-1 22

7. Königs, A., Schürr, A.: MDI: a rule-based multi-document and tool integration
approach. Softw. Syst. Model. 5(4), 349–368 (2006)

8. Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in design
models. In: International Conference on Automated Software Engineering, pp. 220–
229. ACM (2012)

9. Straeten, R.V.D., D’Hondt, M.: Model refactorings through rule-based inconsis-
tency resolution. In: Proceedings of the ACM Symposium on Applied Computing
(SAC), pp. 1210–1217. ACM (2006)

10. Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th International Con-
ference on Software Engineering, pp. 158–165. IEEE Computer Society/ACM Press
(1991)

11. Macedo, N., Tiago, J., Cunha, A.: A feature-based classification of model repair
approaches. CoRR, vol. abs/1504.03947 (2015)

12. Straeten, R.V.D., Mens, T., Simmonds, J., Jonckers, V.: Using description logic
to maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45221-8 28

13. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the kodkod model finder
for resolving model inconsistencies. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21470-7 6

14. Sen, S., Baudry, B., Precup, D.: Partial model completion in model driven engi-
neering using constraint logic programming. In: 17th International Conference on
Applications of Declarative Programming and Knowledge Management (INAP
2007) and 21st Workshop on (Constraint) (2007)

15. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with
echo. In: 28th International Conference on Automated Software Engineering, ASE
2013, pp. 694–697. IEEE (2013)

16. Puissant, J.P., Straeten, R.V.D., Mens, T.: Resolving model inconsistencies using
automated regression planning. Softw. Syst. Model. 14(1), 461–481 (2015)

17. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 191–201. IEEE (2013)

18. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the specifi-
cation of model editing operations from meta-models. In: Van Gorp, P., Engels, G.
(eds.) ICMT 2016. LNCS, vol. 9765, pp. 173–188. Springer, Cham (2016). doi:10.
1007/978-3-319-42064-6 12

http://dx.doi.org/10.1007/978-3-540-89020-1_22
http://dx.doi.org/10.1007/978-3-540-45221-8_28
http://dx.doi.org/10.1007/978-3-642-21470-7_6
http://dx.doi.org/10.1007/978-3-319-42064-6_12
http://dx.doi.org/10.1007/978-3-319-42064-6_12

Change-Preserving Model Repair 299

19. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

20. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 9

21. Capozucca, A., Cheng, B., Guelfi, N., Istoan, P.: Oo-spl modelling of the focused
case study. In: Comparing Modeling Approaches (CMA) International Workshop
affiliated with ACM/IEEE 14th International Conference on Model Driven Engi-
neering Languages and Systems (CMA@ MODELS2011) (2011)

22. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for MDE tools. In: Demonstrations Track of the ACM/IEEE 17th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS). CEUR Workshop Proceedings, vol. 1255 (2014)

23. Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application
conditions in M-adhesive categories. Math. Struct. Comput. Sci. 24(4), 68 (2014)

24. Plump, D.: Critical pairs in term graph rewriting. In: Pŕıvara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg
(1994). doi:10.1007/3-540-58338-6 102

25. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving model
repair: extended version. Philipps-Universität Marburg, Technical report (2017).
www.uni-marburg.de/fb12/swt/research/publications

26. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving model
repair - tool support and initial evaluation. pi.informatik.uni-siegen.de/projects/
SiLift/fase2017/

27. Kehrer, T., Kelter, U., Pietsch, P., Schmidt, M.: Adaptability of model comparison
tools. In: IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), Essen, Germany, pp. 306–309. ACM (2012)

28. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lift-
ing of model differences in the context of model versioning. In: 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Lawrence,
KS, USA, pp. 163–172. IEEE (2011)

29. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). doi:10.1007/3-540-59071-4 45

30. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information pre-
serving bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.)
FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71289-3 7

31. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model incon-
sistencies using transformation dependency analysis. In: Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006). doi:10.1007/11880240 15

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/3-540-58338-6_102
http://www.uni-marburg.de/fb12/swt/research/publications
http://pi.informatik.uni-siegen.de/projects/SiLift/fase2017/
http://pi.informatik.uni-siegen.de/projects/SiLift/fase2017/
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-540-71289-3_7
http://dx.doi.org/10.1007/978-3-540-71289-3_7
http://dx.doi.org/10.1007/11880240_15

A Deductive Approach for Fault Localization
in ATL Model Transformations

Zheng Cheng(B) and Massimo Tisi

AtlanMod Team (Inria, IMT Atlantique, LS2N), Nantes, France
{zheng.cheng,massimo.tisi}@inria.fr

Abstract. In model-driven engineering, correct model transformation
is essential for reliably producing the artifacts that drive software devel-
opment. While the correctness of a model transformation can be spec-
ified and checked via contracts, debugging unverified contracts imposes
a heavy cognitive load on transformation developers. To improve this
situation, we present an automatic fault localization approach, based
on natural deduction, for the ATL model transformation language. We
start by designing sound natural deduction rules for the ATL language.
Then, we propose an automated proof strategy that applies the designed
deduction rules on the postconditions of the model transformation to
generate sub-goals: successfully proving the sub-goals implies the satis-
faction of the postconditions. When a sub-goal is not verified, we present
the user with sliced ATL model transformation and predicates deduced
from the postcondition as debugging clues. We provide an automated
tool that implements this process. We evaluate its practical applicability
using mutation analysis, and identify its limitations.

1 Introduction

Model-driven engineering (MDE), i.e. software engineering centered on software
models and their transformation, is widely recognized as an effective way to
manage the complexity of software development. One of the most widely used
languages for model transformation (MT) is the AtlanMod Transformation Lan-
guage (ATL) [18]. Like several other MT languages, ATL has a relational nature,
i.e. its core aspect is a set of so-called matched rules, that describe the mappings
between the elements in the source and target model.

With the increasing complexity of ATL MTs (e.g., in automotive indus-
try [25], medical data processing [29], aviation [6]), it is urgent to develop tech-
niques and tools that prevent incorrect MTs from generating faulty models. The
effects of such faulty models could be unpredictably propagated into subsequent
MDE steps, e.g. code generation. Therefore, the correctness of ATL is our major
concern in this research. Typically correctness is specified by MT developers
using contracts [9–13,19,21,23]. Contracts are pre/postconditions that express
under which condition the MT is considered to be correct. In the context of
MDE, contracts are usually expressed in OCL [22] for its declarative and logical
nature.
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 300–317, 2017.
DOI: 10.1007/978-3-662-54494-5 17

A Deductive Approach for Fault Localization in ATL Model Transformations 301

In [12], Cheng et al. developed the VeriATL verification system to deductively
verify the correctness of ATL transformations w.r.t. given contracts. VeriATL
automatically generates the axiomatic semantics of a given ATL transformation in
the Boogie intermediate verification language [5], combined with a formal encod-
ing of EMF metamodels [26] and OCL contracts. The Z3 automatic theorem
prover [20] is used by Boogie to verify the correctness of the ATL transformation.

However, when a contract on the MT is not verified, current verification
systems like VeriATL do not report useful feedback to help the transformation
developers fix the fault. Consequently, manually examining the full MT and
its contracts and reasoning on the implicit rule interactions become a time-
consuming routine to debug MTs.

Because of the advancement in computer science in the last couple of decades
(e.g. in the performance of satisfiability modulo theory - SMT - solvers), many
researchers are interested in developing techniques that can partially or fully
automate the localization of faults in software (we refer the reader to [24,31] for
an overview).

In this work, we argue that the characteristics of the considered program-
ming language have a significant impact on the precision and automation of the
fault localization. More precisely, we think that in MT languages like ATL, auto-
mated fault localization can be more precise because of the available static trace
information, i.e. inferred information among types of generated target elements
and the rules that potentially generate these types. This idea has recently been
introduced in [8] using a conservative and syntactical approach. However, we
believe that a deductive approach can fully exploit its potential.

Our deductive approach is based on a set of sound natural deduction rules. It
includes 4 rules for the ATL language based on the concept of static trace infor-
mation, and 16 ordinary natural deduction rules for propositional and predicate
logic [16]. Then, we propose an automated proof strategy that applies these deduc-
tion rules on the input OCL postcondition to generate sub-goals. Each sub-goal
contains a list of hypotheses deduced from the input postcondition, and a sub-
case of the input postcondition to be verified. Successfully proving the sub-goals
soundly implies the satisfaction of the input OCL postcondition. When a sub-goal
is not verified, we exploit its hypotheses in two ways to help the user pinpoint the
fault: (a) slicing the ATL MT into a simpler transformation context; (b) provid-
ing debugging clues, deduced from the input postcondition to alleviate the cogni-
tive load for dealing with unverified sub-cases. Our fault localization approach has
been implemented and integrated with VeriATL. We evaluate our approach with
mutation analysis. The result shows that: (a) the guilty constructs are presented
in the slice; (b) deduced clues assist developers in various debugging tasks (e.g.
the elaboration of a counter-example); (c) the number of sub-goals that need to
be examined to pinpoint a fault is usually small.

Paper Organization. We motivate our work by a sample problem in Sect. 2.
Section 3 illustrates our fault localization approach in detail. Evaluation is pre-
sented in Sect. 4, followed by discussion of the limitations identified in our
approach. Section 5 compares our work with related research, and Sect. 6 draws
conclusions and lines for future work.

302 Z. Cheng and M. Tisi

2 Motivating Example

As our running example we use the HSM2FSM MT. HSM2FSM transforms
hierarchical state machine (HSM) models to flattened state machine (FSM)
models. Both models conform to the same metamodel (Fig. 1). However, clas-
sifiers in the two metamodels are distinguished by the HSM and FSM prefix.
Specifically, a named StateMachine contains a set of labelled Transitions and
named AbstractStates. Each AbstractState has a concrete type, which is either
RegularState, InitialState or CompositeState. A Transition links a source to a
target AbstractState. Moreover, CompositeStates are only allowed in the models
of HSM, and optionally contain a set of AbstractStates.

Fig. 1. The hierarchical and flattened state machine metamodel

2.1 Specifying OCL Contracts

We consider a contract-based development scenario where the developer first
specifies correctness conditions for the to-be-developed ATL transformation by
using OCL contracts. Let us first consider the contracts shown in Listing 1.1.
The precondition Pre1 specifies that in the input model, each Transition has at
least one source. The postcondition Post1 specifies that in the output model,
each Transition has at least one source.

1 context HSM!Transition inv Pre1:
2 HSM!Transition.allInstances()−>forAll(t | not t.source.oclIsUndefined())
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 context FSM!Transition inv Post1:
5 FSM!Transition.allInstances()−>forAll(t | not t.source.oclIsUndefined())

Listing 1.1. The OCL contracts for HSM and FSM

2.2 Developing the ATL Transformation

Then, the developer implements the ATL transformation HSM2FSM (a snippet
is shown in Listing 1.21). The transformation is defined via a list of ATL matched
rules in a mapping style. The first rule maps each StateMachine element to the
output model (SM2SM). Then, we have two rules to transform AbstractStates :
regular states are preserved (RS2RS), initial states are transformed into regular
states when they are within a composite state (IS2RS). Notice here that initial

1 Our HSM2FSM transformation is adapted from [9]. The full version can be accessed
at: https://goo.gl/MbwiJC.

https://goo.gl/MbwiJC

A Deductive Approach for Fault Localization in ATL Model Transformations 303

1 module HSM2FSM;
2 create OUT : FSM from IN : HSM;
3

4 rule SM2SM { from sm1 : HSM!StateMachine to sm2 : FSM!StateMachine (name <−
sm1.name) }

5

6 rule RS2RS { from rs1 : HSM!RegularState
7 to rs2 : FSM!RegularState (stateMachine <− rs1.stateMachine, name <−

rs1.name) }
8

9 rule IS2RS { from is1 : HSM!InitialState (not is1.compositeState.oclIsUndefined())
10 to rs2 : FSM!RegularState (stateMachine <− is1.stateMachine, name <−

is1.name) }
11

12 −− mapping each transition, that between two noncomposite states, of the source model
into the target model.

13 rule T2TA { ... }
14

15 −− mapping each transition, whose source is a composite state, of the source model into
the target model.

16 rule T2TB { ... }
17

18 rule T2TC {
19 from t1 : HSM!Transition, src : HSM!AbstractState, trg : HSM!CompositeState, c :

HSM!InitialState
20 (t1.source = src and t1.target = trg and c.compositeState = trg
21 and not src.oclIsTypeOf(HSM!CompositeState))
22 to t2 : FSM!Transition
23 (label <− t1.label, stateMachine <− t1.stateMachine, source <− src, target <− c }

Listing 1.2. Snippet of the HSM2FSM model transformation in ATL

states are deliberately transformed partially to demonstrate our problem, i.e.
we miss a rule that specifies how to transform initial states when they are not
within a composite state. The remaining three rules are responsible for mapping
the Transitions of the input state machine.

Each ATL matched rule has a from section where the source pattern to be
matched in the source model is specified. An optional OCL constraint may be
added as the guard, and a rule is applicable only if the guard evaluates to true on
the source pattern. Each rule also has a to section which specifies the elements
to be created in the target model. The rule initializes the attributes/associa-
tions of a generated target element via the binding operator (<-). An important
feature of ATL is the use of an implicit resolution algorithm during the target
property initialization. Here we illustrate the algorithm by an example: (1) con-
sidering the binding stateMachine <- rs1.stateMachine in the RS2RS rule (line
7 of Listing 1.2), its right-hand side is evaluated to be a source element of type
HSM!StateMachine; (2) the resolution algorithm then resolves such source ele-
ment to its corresponding target element of type FSM!StateMachine (generated
by the SM2SM rule); (3) the resolved result is assigned to the left-hand side of
the binding. While not strictly needed for understanding this paper, we refer the
reader to [18] for a full description of the ATL language.

2.3 Formally Verifying the ATL Transformation

The source and target EMF metamodels and OCL contracts combined with the
developed ATL transformation form a Hoare triple which can be used to verify

304 Z. Cheng and M. Tisi

1 context HSM!Transition inv Pre1: ...
2

3 rule RS2RS { ... }
4 rule IS2RS { ... }
5 rule T2TC { ... }
6

7 context FSM!Transition inv Post1 sub:
8 ∗hypothesis∗ var t0
9 ∗hypothesis∗ FSM!Transition.allInstances()−>includes(t0)

10 ∗hypothesis∗ genBy(t0,T2TC)
11 ∗hypothesis∗ t0.source.oclIsUndefined()
12 ∗hypothesis∗ not (genBy(t0.source,RS2RS) or genBy(t0.source,IS2RS))
13 ∗goal∗ false

Listing 1.3. The problematic transformation scenario of the HSM2FSM
transformation w.r.t. Post1

the correctness of the ATL transformation, i.e. MM, Pre, Exec � Post. The
Hoare triple semantically means that, assuming the axiomatic semantics of the
involved EMF metamodels (MM) and OCL preconditions (Pre), by executing
the developed ATL transformation (Exec), the specified OCL postcondition has
to hold (Post).

In previous work, Cheng et al. have developed the VeriATL verification sys-
tem that allows such Hoare triples to be soundly verified [12]. Specifically, the
VeriATL system describes in Boogie what correctness means for the ATL lan-
guage in terms of structural Hoare triples. Then, VeriATL delegates the task
of interacting with Z3 for proving these Hoare triples to Boogie. The axiomatic
semantics of EMF metamodels and the OCL language are encoded as Boogie
libraries in VeriATL. These libraries can be reused in the verifier designs of MT
languages other than ATL.

In our example, VeriATL successfully reports that the OCL postcondition
Post1 is not verified by the MT in Listing 1.2. This means that the transfor-
mation does not guarantee that each Transition has at least one source in the
output model. Without any capability of fault localization, the developer then
needs to manually inspect the full transformation and contracts to understand
that the transformation is incorrect because of the absence of an ATL rule to
transform InitialStates that are not within a CompositeState.

2.4 Our Goal: Localizing the Fault

In our running example, our proposed fault localization approach presents the
user with two problematic transformation scenarios. One of them is shown in
Listing 1.3. The scenario consists of the input preconditions (abbreviated at
line 1), a slice of the transformation (abbreviated at lines 3–5), and a sub-goal
derived from the input postcondition. The sub-goal contains a list of hypotheses
(lines 7–12) with a conclusion (line 13).

The scenario in Listing 1.3 contains the following information, that we believe
to be valuable in identifying and fixing the fault:

– Transformation slicing. The only relevant rules for the fault captured by this
problematic transformation scenario are RS2RS, IS2RS and T2TC (lines 3–5).

A Deductive Approach for Fault Localization in ATL Model Transformations 305

– Debugging clues. The error occurs when a transition t0 is generated by the rule
T2TC (lines 8–10), and when the source state of the transition is not generated
(line 11). In addition, the absence of the source for t0 is due to the fact that none
of the RS2RS and IS2RS rules is invoked to generate it (line 12).

From this information, the user could find a counter-example in the source
models that falsifies Post1 (shown in the top of Fig. 2): a transition tc between
an initial state ic (which is not within a composite state) and a composite state
cc, where cc composites another initial state ic

′. This counter-example matches
the source pattern of the T2TC rule (as shown in the bottom of Fig. 2). However,
when the T2TC rule tries to initialize the source of the generated transition t2
(line 23 in Listing 1.2), ic cannot be resolved because there is no rule to match it.
In this case, ic (of type HSM!InitialState) is directly used to initialize the source
of t2 (t2.source is expected to be a sub-type of FSM!AbstractState). This causes
an exception of type mismatch, thus falsifying Post1. The other problematic
transformation scenario pinpoints the same fault, showing that Post1 is not
verified by the MT also when t0 is generated by T2TA.

Fig. 2. Counter-example derived from Listing 1.3 that falsify Post1

In the next section, we describe how we automatically generate problematic
transformation scenarios like the one shown in Listing 1.3.

3 Overview of Fault Localization for ATL by Natural
Deduction and Program Slicing

The flowchart in Fig. 3 shows a bird’s eye view of our approach to enable fault
localization for VeriATL. The process takes the involved metamodels, all the
OCL preconditions, the ATL transformation and one of the OCL postcondi-
tions as inputs. We require all inputs to be syntactically correct. If VeriATL
successfully verifies the input ATL transformation, we directly report a confir-
mation message to indicate its correctness (w.r.t. the given postcondition) and
the process ends. Otherwise, we generate a set of problematic transformation sce-
narios (as the one shown in Listing 1.3), and a proof tree to the transformation
developer.

306 Z. Cheng and M. Tisi

To generate problematic transformation scenarios, we first perform a sys-
tematic approach to generate sub-goals for the input OCL postcondition. Our
approach is based on a set of sound natural deduction rules. The set contains
16 rules for propositional and predicate logic such as introduction/elimination
rules for ∧ and ∨ [16], but also 4 rules specifically designed for ATL expressions
(e.g. rewriting single-valued navigation expression).

Then, we design an automated proof strategy that applies the designed nat-
ural deduction rules on the input OCL postcondition. Executing our proof strat-
egy generates a proof tree. The non-leaf nodes are intermediate results of deduc-
tion rule applications. The leafs in the tree are the sub-goals to prove. Each
sub-goal consists of a list of hypotheses and a conclusion to be verified. The aim
of our automated proof strategy is to simplify the original postcondition as much
as possible to obtain a set of sub-conclusions to prove. As a by-product, we also
deduce new hypotheses from the input postcondition and the transformation as
debugging clues.

Next, we use the trace information in the hypotheses of each sub-goal to slice
the input MT into simpler transformation contexts. We then form a new Hoare
triple for each sub-goal consisting of the semantics of metamodels, input OCL
preconditions, sliced transformation context, its hypotheses and its conclusion.

We send these new Hoare triples to the VeriATL verification system to check.
Notice that successfully proving these new Hoare triples implies the satisfaction
of the input OCL postcondition. If any of these new Hoare triples is not verified
by VeriATL, the input OCL preconditions, the corresponding sliced transforma-
tion context, hypotheses and conclusion of the Hoare triple are presented to the
user as a problematic transformation scenario for fault localization. The Hoare
triples that were automatically proved by VeriATL are pruned away, and are
not presented to the transformation developer. This deductive verification step
by VeriATL makes the whole process practical, since the user is presented with
a limited number of meaningful scenarios.

Fig. 3. Overview of providing fault localization for VeriATL

Then, the transformation developer consults the generated problematic trans-
formation scenarios and the proof tree to debug the ATL transformation. If
modifications are made on the inputs to fix the bug, the generation of sub-goals
needs to start over. The whole process keeps iterating until the input ATL trans-
formation is correct w.r.t. the input OCL postcondition.

A Deductive Approach for Fault Localization in ATL Model Transformations 307

3.1 Natural Deduction Rules for ATL

Our approach relies on 20 natural deduction rules (7 introduction rules and 13
elimination rules). The 4 elimination rules (abbreviated by Xe) that specifically
involve ATL are shown in Fig. 4. The other rules are common natural deduction
rules for propositional and predicate logic [16]. Regarding the notations in our
natural deduction rules:

– Each rule has a list of hypotheses and a conclusion, separated by a line. We
use standard notation for typing (:) and set operations.

– Some special notations in the rules are T for a type, MMT for the target
metamodel, Rn for a rule n in the input ATL transformation, x.a for a nav-
igation expression, and i for a fresh variable / model element. In addition,
we introduce the following auxiliary functions: cl returns the classifier types
of the given metamodel, trace returns the ATL rules that generate the input
type (i.e. the static trace information)2, genBy(i,R) is a predicate to indi-
cate that a model element i is generated by the rule R, unDef(i) abbreviates
i.oclIsUndefined(), and All(T) abbreviates T.allInstances().

x.a : T T ∈ cl(MMT)

x.a ∈ All(T) ∨ unDef(x.a)
Tpe1

x.a : Seq T T ∈ cl(MMT)

(|x.a| > 0 i · (i ∈ x.a ⇒ i ∈ All(T) ∨ unDef(i))) ∨ |x.a| = 0
Tpe2

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i ∈ All(T)

genBy(i, R1) ∨ ... ∨ genBy(i, Rn)
Tre1

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i : T unDef(i)

¬(genBy(i, R1) ∨ ... ∨ genBy(i, Rn))
Tre2

Fig. 4. Natural deduction rules that specific to ATL

Some explanation is in order for the natural deduction rules that are specific
to ATL:

– First, we have two type elimination rules (TPe1, TPe2). TPe1 states that every
single-valued navigation expression of the type T in the target metamodel is
either a member of all generated instances of type T or undefined. TPe2 states
that the cardinality of every multi-valued navigation expression of the type
T in the target metamodel is either greater to zero (and every element i in
the multi-valued navigation expression is either a member of all generated
instances of type T or undefined) or equal to zero.

– Second, we have 2 elimination rules for trace (TRe1, TRe2). These rules state
that, given that the rules R1,...,Rn in the input ATL transformation are
responsible to create model elements of type T in the target metamodel, we
may rightfully conclude that:

• (TRe1): every created element i of type T is generated by one of the rules
R1,...,Rn.

2 In practice, we fill in the trace function by examining the output element types of
each ATL rule, i.e. the to section of each rule.

308 Z. Cheng and M. Tisi

• (TRe2): every undefined element i of type T is not generated by any of
the rules R1,...,Rn.

Soundness of Natural Deduction Rules. The soundness of our natural
deduction rules is based on the operational semantics of the ATL language.
Specifically, the soundness for type elimination rules TPe1 and TPe2 is straight-
forward. We prove their soundness by enumerating the possible states of initial-
ized navigation expressions for target elements. Specifically, assuming that the
state of a navigation expression x.a is initialized in the form x.a<-exp where x.a
is of a non-primitive type T :

– If exp is not a collection type and cannot be resolved (i.e. exp cannot match
the source pattern of any ATL rules), then x.a is undefined3.

– If exp is not a collection type and can be resolved, then the generated target
element of the ATL rule that matches exp is assigned to x.a. Consequently,
x.a could be either a member of All(T) (when the resolution result is of type
T) or undefined (when it is not).

– If exp is of collection type, then all of the elements in exp are resolved individ-
ually, and the resolved results are put together into a pre-allocated collection
col, and col is assigned to x.a.

The first two cases explain the two possible states of every single-valued naviga-
tion expressions (TPe1). The third case explains the two possible states of every
multi-valued navigation expressions (TPe2).

The soundness of trace elimination rules TRe1 is based on the surjectivity
between each ATL rule and the type of its created target elements [9]: elements
in the target metamodel exist if they have been created by an ATL rule since
standard ATL transformations are always executed on an initially empty tar-
get model. When a type can be generated by executing more than one rule,
then a disjunction considering all these possibilities is made for every generated
elements of this type.

About the soundness of the TRe2 rule, we observe that if a target element of
type T is undefined, then clearly it does not belong to All(T). In addition, the
operational semantics for the ATL language specifies that if a rule R is specified
to generate elements of type T, then every target elements of type T generated by
that rule belong to All(T) (i.e. R ∈ trace(T) ⇒ ∀i · (genBy(i, R) ⇒ i ∈ All(T)))
[12]. Thus, TRe2 is sound as a logical consequence of the operational semantics
for the ATL language (i.e. R ∈ trace(T) ⇒ ∀i · (i /∈ All(T) ⇒ ¬genBy(i, R))).

3.2 Automated Proof Strategy

A proof strategy is a sequence of proof steps. Each step defines the consequences
of applying a natural deduction rule on a proof tree. A proof tree consists of a set
3 In fact, the value of exp is assigned to x.a because of resolution failure. This causes

a type mismatch exception and results in the value of x.a becoming undefined (we
consider ATL transformations in non-refinement mode where the source and target
metamodels are different).

A Deductive Approach for Fault Localization in ATL Model Transformations 309

of nodes. Each node is constructed by a set of OCL expressions as hypotheses,
an OCL expression as the conclusion, and another node as its parents node.

Next, we illustrate a proof strategy (Algorithm 1) that automatically applies
our natural deduction rules on the input OCL postcondition. The goal is to
automate the derivation of information from the postcondition as hypotheses,
and simplify the postcondition as much as possible.

Algorithm 1. An automated proof strategy for VeriATL
1: Tree ← {createNode({}, Post, null)}
2: do
3: leafs ← size(getLeafs(Tree))
4: for each node leaf ∈ getLeafs(Tree) do
5: Tree ← intro(leaf) ∪ Tree
6: end for
7: while leafs �= size(getLeafs(Tree))
8: do
9: leafs ← size(getLeafs(Tree))

10: for each node leaf ∈ getLeafs(Tree) do
11: Tree ← elimin(leaf) ∪ Tree
12: end for
13: while leafs �= size(getLeafs(Tree))

Our proof strategy takes one argument which is one of the input postcon-
ditions. Then, it initializes the proof tree by constructing a new root node of
the input postcondition as conclusion and no hypotheses and no parent node
(line 1). Next, our proof strategy takes two sequences of proof steps. The first
sequence applies the introduction rules on the leaf nodes of the proof tree to
generate new leafs (lines 2–7). It terminates when no new leafs are yield (line 7).
The second sequence of steps applies the elimination rules on the leaf nodes of
the proof tree (lines 8–13). We only apply type elimination rules on a leaf when:
(a) a free variable is in its hypotheses, and (b) a navigation expression of the
free variable is referred by its hypotheses. Furthermore, to ensure termination,
we enforce that if applying a rule on a node does not yield new descendants (i.e.
whose hypotheses or conclusion are different from their parent), then we do not
attach new nodes to the proof tree.

3.3 Transformation Slicing

Executing our proof strategy generates a proof tree. The leafs in the tree are
the sub-goals to prove by VeriATL. Next, we use the rules referred by the genBy
predicates in the hypotheses of each sub-goal to slice the input MT into a simpler
transformation context. We then form a new Hoare triple for each sub-goal
consisting of the axiomatic semantics of metamodels, input OCL preconditions,
sliced transformation context (Execsliced), its hypotheses and its conclusion, i.e.
MM, Pre, Execsliced, Hypotheses � Conclusion.

310 Z. Cheng and M. Tisi

If any of these new Hoare triples is not verified by VeriATL, the input OCL
preconditions, the corresponding sliced transformation context, hypotheses and
conclusion of the Hoare triple are constructed as a problematic transformation
scenario to report back to the user for fault localization (as shown in Listing 1.3).

Our transformation slicing is based on the independence among ATL
rules [28]: each ATL rule is exclusively responsible for the generation of its out-
put elements. Hence, when a sub-goal specifies a condition that a set of target
elements should satisfy, the rules that do not generate these elements have no
effects on the sub-goal. These rules can hence be safely sliced away.

4 Evaluation

In this section, we evaluate the practical feasibility and performance of our fault
localization approach for the ATL language. The section concludes with a dis-
cussion of the obtained results and lessons learnt.

4.1 Research Questions

We formulate two research questions to evaluate our fault localization approach:

(RQ1) Can our approach correctly pinpoint the faults in the given MT?
(RQ2) Can our approach efficiently pinpoint the faults in the given MT?

4.2 Evaluation Setup

Our evaluation uses the VeriATL verification system [12], which is based on the
Boogie verifier (version 2.2) and Z3 (version 4.3). The evaluation is performed on
an Intel 3 GHz machine with 8 GB of memory running the Windows operating
system. VeriATL encodes the axiomatic semantics of the ATL language (version
3.7). The automated proof strategy and its corresponding natural deduction
rules are currently implemented in Java.

To answer our research questions, we use the HSM2FSM transformation as
our case study, and apply mutation analysis [17] to systematically inject faults. In
particular, we specify 14 preconditions and 5 postconditions on the original HSM
transformation from [9]. Then, we inject faults by applying a list of mutation
operators defined in [8] on the transformation. We apply mutations only to
the transformation because we focus on contract-based development, where the
contract guides the development of the transformation. Our mutants are proved
against the specified postconditions, and we apply our fault localization approach
in case of unverified postconditions. We kindly refer to our online repository for
the complete artifacts used in our evaluation [1].

A Deductive Approach for Fault Localization in ATL Model Transformations 311

4.3 Evaluation Results

Table 1 summarizes the evaluation results for our fault localization approach on
the chosen case study. The first column lists the identity of the mutants4. The
second and third columns record the unverified OCL postconditions and their
corresponding verification time. The fourth, fifth, sixth and seventh columns
record information of verifying sub-goals, i.e. the number of unverified sub-goals
/ total number of sub-goals (4th), average verification time of sub-goals (5th), the
maximum verification time among sub-goals (6th), total verification of sub-goals
(7th) respectively. The last column records whether the faulty lines (Lfaulty,
i.e. the lines that the mutation operators operated on) are presented in the
problematic transformation scenarios (PTS) of unverified sub-goals.

Table 1. Evaluation metrics for the HSM2FSM case study

Unveri. Post. Sub-goals Lfaulty ∈
PTS

ID Veri.
Time(ms)

Unveri. /
Total

Avg. Time
(ms)

Max Time
(ms)

Total Time
(ms)

MT2 #5 3116 3 / 4 1616 1644 6464 True

DB1 #5 2934 1 / 1 1546 1546 1546 -

MB6 #4 3239 1 / 12 1764 2550 21168 True

AF2 #4 3409 2 / 12 1793 2552 21516 True

MF6 #2 3779 0 / 6 1777 2093 10662 N/A

#4 3790 1 / 12 1774 2549 21288 True

DR1 #1 2161 3 / 6 1547 1589 9282 -

#2 2230 3 / 6 1642 1780 9852 -

AR #1 3890 1 / 8 1612 1812 12896 True

#3 4057 6 / 16 1769 1920 28304 True

First, we confirm that there is no inconclusive verification results of the gen-
erated sub-goals, i.e. if VeriATL reports that the verification result of a sub-goal
is unverified, then it presents a fault in the transformation. Our confirmation
is based on the manual inspection of each unverified sub-goal to see whether
there is a counter-example to falsify the sub-goal. This supports the correctness
of our fault localization approach. We find that the deduced hypotheses of the
sub-goals are useful for the elaboration of a counter-example (e.g. when they
imply that the fault is caused by missing code as the case in Listing 1.3).
4 The naming convention for mutants are mutation operator Add(A) / Del(D) / Mod-

ify(M), followed by the mutation operand Rule(R) / Filter(F) / TargetElement(T)
/ Binding(B), followed by the position of the operand in the original transformation
setting. For example, MB1 stands for the mutant which modifies the binding in the
first rule.

312 Z. Cheng and M. Tisi

Second, as we inject faults by mutation, identifying whether the faulty line
is presented in the problematic transformation scenarios of unverified sub-goals
is also a strong indication of the correctness of our approach. Shown by the last
column, all cases satisfies the faulty lines inclusion criteria. 3 out 10 cases are
special cases (dashed cells) where the faulty lines are deleted by the mutation
operator (thus there are no faulty lines). In the case of MF6#2, there are no
problematic transformation scenarios generated since all the sub-goals are veri-
fied. By inspection, we report that our approach improves the completeness of
VeriATL. That is the postcondition (#2) is correct under MF6 but unable to
be verified by VeriATL, whereas all its generated sub-goals are verified.

Third, shown by the fourth column, in 5 out of 10 cases, the developer is
presented with at most one problematic transformation scenario to pinpoint the
fault. This positively supports the efficiency of our approach. The other 5 cases
produce more sub-goals to examine. However, we find that in these cases each
unverified sub-goal gives an unique phenomenon of the fault, which we believe
is valuable to fix the bug. We also report that in rare cases more than one
sub-goal could point to the same phenomenon of the fault. This is because the
hypotheses of these sub-goals contain a semantically equivalent set of genBy
predicates. Although they are easy to identify, we would like to investigate how
to systematically filter these cases out in the future.

Fourth, from the third and fifth columns, we can see that each of the sub-goals
is faster to verify than its corresponding postcondition by a factor of about 2.
This is because we sent a simpler task than the input postcondition to verify, e.g.
because of our transformation slicing, the Hoare triple for each sub-goal encodes
a simpler interaction of transformation rules compared to the Hoare triple for
its corresponding postcondition. From the third and sixth columns, we can fur-
ther report that all sub-goals are verified in less time than their corresponding
postcondition.

4.4 Limitations

Language Coverage. In this work we consider a core subset of the ATL and
OCL languages: (a) We consider the declarative aspect of ATL (matched rules)
in non-refining mode, many-to-one mappings of (possibly abstract) classifiers
with the default resolution algorithm of ATL. Non-recursive ATL helpers can be
easily supported by inlining, and many-to-many mappings can be supported by
extending our Boogie code generator. We also plan to investigate other features
of ATL (e.g. lazy rules) to make our approach more general. (b) We support
first-order OCL contracts and we plan to study more complex contracts in future
work.

Completeness of Proof Strategy. We define the completeness of a proof
strategy meaning that every elements of target types referred by each sub-goal
and every rule that may generate them are correctly identified after applying
the proof strategy. If not detected, an incomplete proof strategy could cause our
transformation slicing to erroneously slice away the rules that the sub-goal might

A Deductive Approach for Fault Localization in ATL Model Transformations 313

depend on. By manual inspection, we confirm the completeness of our proof
strategy in our case study. However, our proof strategy is in generally incomplete
because: (a) we might lack deduction rules to continue the derivation of the proof
tree; (b) our current proof strategy lacks of a backtracking mechanism when it
chooses an unsuitable deduction rule to apply. Our current solution is detecting
incomplete cases and reporting them to the user. In practice we check whether
every elements of target types referred by each sub-goal are accompanied by a
genBy predicate (this indicates full derivation). In future, we plan to improve
the completeness of our approach by adding other natural deduction rules for
ATL and smarter automated proof strategies.

Completeness of Verification. Although we confirmed that there are no
inconclusive sub-goals in our evaluation, our approach could report inconclusive
sub-goals in general due to the underlying SMT solver. We hope the simplic-
ity offered by the sub-goals would facilitate the user in making the distinction
between incorrect and inconclusive sub-goals. In addition, if an input postcondi-
tion is inconclusive, our approach can help users to eliminate verified sub-goals
to find the source of its inconclusiveness.

Threats to Validity of Evaluation. We take a popular assumption in the
fault localization community that multiple faults perform independently [31].
Thus, such assumption allows us to evaluate our fault localization approach in
a one-postcondition-at-a-time manner. However, we cannot guarantee that this
is the case for realistic and industrial MTs. We think classifying contracts into
related groups could improve these situations.

Scalability. The main scalability issue of our approach is that a complex OCL
postcondition (e.g. an OCL expression with deeply nested quantifiers) can poten-
tially generate a big number of sub-goals and corresponding problematic trans-
formation scenarios. Verifying and displaying all of them becomes impractical
for transformation developers. Since sub-goals are meant to be manually exam-
ined by the user, a reasonable solution is allowing the user to specify a bound
for the maximum number of unverified cases to generate. To improve scalability
we are also investigating the possibility of verifying intermediate nodes in the
proof tree, and stop applying deduction rules if they are verified.

Usability. Currently, our approach relies on the experience of transformation
developer to interpret the deduced debugging clues. We think combining debug-
ging clues with model finders would further help in debugging MT, e.g. by auto-
matically generating the counter-examples [14].

5 Related Work

There is a large body of work on the topic of ensuring MT correctness [2]. To
our knowledge our proposal is the first applying natural deduction with program
slicing to increase the precision of fault localization in MT.

Büttner et al. use Z3 to verify a declarative subset of the ATL and OCL
contracts [9]. Their result is novel for providing minimal axioms that can verify

314 Z. Cheng and M. Tisi

the given OCL contracts. To understand the root of the unverified contracts,
they demonstrate the UML2Alloy tool that draws on the Alloy model finder to
generate counter examples [10]. However, their tool does not guarantee that the
newly generated counter example gives additional information than the previ-
ous ones. Oakes et al. statically verify ATL MTs by symbolic execution using
DSLTrans [21]. This approach enumerates all the possible states of the ATL
transformation. If a rule is the root of a fault, all the states that involve the rule
are reported.

Sánchez Cuadrado et al. present a static approach to uncover various typing
errors in ATL MTs [14], and use the USE constraint solver to compute an input
model as a witness for each error. Compared to their work, we focus on contract
errors, and provide the user with sliced MTs and modularized contracts to debug
the incorrect MTs.

Researchers have proposed several techniques that can partially or fully auto-
mate the localization of faults in software [24,31]. Program slicing refers to detect
a set of program statements which could affect the values of interest [27,30],
which is used for fault localization of general programming languages. Few works
have adapted this idea to localize faults in MTs. Aranega et al. define a frame-
work to record the runtime traces between rules and the target elements these
rules generated [4]. When a target element is generated with an unexpected
value, the transformation slices generated from the runtime traces are used for
fault localization. While Aranega et al. focus on dynamic slicing, our work focuses
on static slicing which does not require test suites to exercise the transformation.

The most similar approach to ours is the work of Burgueño et al. on syntacti-
cally calculating the intersection constructs used by the rules and contracts [8].
W.r.t. their approach we aim at improving the localization precision by con-
sidering also semantic relations between rules and contracts. This allows us to
produce smaller slices by semantically eliminating unrelated rules from each sce-
nario. Moreover, we provide debugging clues to help the user better understand
why the sliced transformation causing the fault. However, their work considers
a larger set of ATL. We believe that the two approaches complement each other
and integrating them is useful and necessary.

We implement our approach in Java. However, we believe that integrating our
approach to interactive theorem provers/framework such as Coq [7] and Rodin [3]
could be beneficial (e.g. drawing on recursive inductive reasoning). One of the
easiest ways is through the Why3 language [15], which targets multiple theorem
provers as its back-ends.

6 Conclusion and Future Work

In summary, in this work we confronted the fault localization problem for deduc-
tive verification of MT. We developed an automated proof strategy to apply a set
of designed natural deduction rules on the input OCL postcondition to generate
sub-goals. Each unverified sub-goal yields a sliced transformation context and
debugging clues to help the transformation developer pinpoint the fault in the

A Deductive Approach for Fault Localization in ATL Model Transformations 315

input MT. Our evaluation with mutation analysis positively supports the correct-
ness and efficiency of our fault localization approach. The result showed that: (a)
faulty constructs are presented in the sliced transformation, (b) deduced clues
assist developers in various debugging tasks (e.g. generate counter-example),
(c) the number of sub-goals that need to be examined to pinpoint a fault are
usually small.

Our future work includes facing the limitations identified during the evalu-
ation (Sect. 4.4). We also plan to investigate how our decomposition can help
us in reusing proof efforts. Specifically, due to requirements evolution, the MT
and contracts are under unpredictable changes during the development. These
changes can invalidate all of the previous proof efforts and cause long proofs to
be recomputed. We think that our decomposition of sub-goals would increase
the chances of reusing verification results, i.e. sub-goals that are not affected by
the changes.

References

1. A deductive approach for fault localization in ATL model transformations (2016).
https://goo.gl/xssbpn

2. Ab. Rahim, L., Whittle, J.: A survey of approaches for verifying model transfor-
mations. Softw. Syst. Model. 14(2), 1003–1028 (2015)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

4. Aranega, V., Mottu, J., Etien, A., Dekeyser, J.: Traceability mechanism for error
localization in model transformation. In: 4th International Conference on Software
and Data Technologies, Sofia, Bulgaria, pp. 66–73 (2009)

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

6. Berry, G.: Synchronous design and verification of critical embedded systems using
SCADE and esterel. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916,
pp. 2–2. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79707-4 2

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010)

8. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in
model transformations. IEEE Trans. Softw. Eng. 41(5), 490–506 (2015)

9. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33666-9 28

10. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34281-3 16

https://goo.gl/xssbpn
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-540-79707-4_2
http://dx.doi.org/10.1007/978-3-642-33666-9_28
http://dx.doi.org/10.1007/978-3-642-33666-9_28
http://dx.doi.org/10.1007/978-3-642-34281-3_16
http://dx.doi.org/10.1007/978-3-642-34281-3_16

316 Z. Cheng and M. Tisi

11. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for
certified model transformations. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 112–127. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19829-8 8

12. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via
translation validation. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol.
9152, pp. 133–148. Springer, Cham (2015). doi:10.1007/978-3-319-21155-8 11

13. Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on semantics defin-
ition in MDE - an instrumented approach for model verification. J. Softw. 4(9),
943–958 (2009)

14. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transfor-
mations using static analysis and constraint solving. In: 25th IEEE International
Symposium on Software Reliability Engineering, pp. 34–44. IEEE, Naples (2014)

15. Filliâtre, J.-C., Paskevich, A.: Why3 — Where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-37036-6 8

16. Huth, M., Ryan, M.: Logic in Computer Science Modelling and Reasoning About
Systems. Cambridge University Press, Cambridge (2004)

17. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

19. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation
verification. Formal Aspects Comput. 27(1), 193–235 (2014)

20. Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

21. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transformation con-
tracts for declarative ATL. In: 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pp. 256–265. IEEE, Ottawa (2015)

22. Object Management Group: The Object Constraint Language Specification (ver.
2.0) (2006). http://www.omg.org/spec/OCL/2.0/

23. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from
partially ordered specifications in Coq. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 56–73. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16901-4 6

24. Roychoudhury, A., Chandra, S.: Formula-based software debugging. Commun.
ACM 59(7), 68–77 (2016)

25. Selim, G.M.K., Wang, S., Cordy, J.R., Dingel, J.: Model transformations for
migrating legacy models: an industrial case study. In: Vallecillo, A., Tolvanen,
J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349,
pp. 90–101. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31491-9 9

26. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework, 2nd edn. Pearson Education, London (2008)

27. Tip, F.: A survey of program slicing techniques. Technical report, Centrum
Wiskunde & Informatica (1994)

28. Tisi, M., Mart́ınez, S., Choura, H.: Parallel execution of ATL transformation rules.
In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS
2013. LNCS, vol. 8107, pp. 656–672. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41533-3 40

http://dx.doi.org/10.1007/978-3-642-19829-8_8
http://dx.doi.org/10.1007/978-3-642-19829-8_8
http://dx.doi.org/10.1007/978-3-319-21155-8_11
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://www.omg.org/spec/OCL/2.0/
http://dx.doi.org/10.1007/978-3-642-16901-4_6
http://dx.doi.org/10.1007/978-3-642-16901-4_6
http://dx.doi.org/10.1007/978-3-642-31491-9_9
http://dx.doi.org/10.1007/978-3-642-41533-3_40
http://dx.doi.org/10.1007/978-3-642-41533-3_40

A Deductive Approach for Fault Localization in ATL Model Transformations 317

29. Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data. In: 2nd
Software Development Automation Conference, Amsterdam, Netherlands (2014)

30. Weiser, M.: Program slicing. In: 5th International Conference on Software Engi-
neering, pp. 439–449. IEEE, New Jersey (1981)

31. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. Pre-Print (99), 1–41 (2016)

Configuration and Synthesis

OpenSAW: Open Security Analysis Workbench

Noomene Ben Henda1, Björn Johansson1, Patrik Lantz1, Karl Norrman1(B),
Pasi Saarinen1, and Oskar Segersvärd2

1 Ericsson Research Security, Stockholm, Sweden
{noamen.ben.henda,bjorn.a.johansson,patrik.lantz,

karl.norrman,pasi.saarinen}@ericsson.com
2 School of CSC, Royal Institute of Technology (KTH), Stockholm, Sweden

oskarseg@kth.se

Abstract. Software is today often composed of many sourced compo-
nents, which potentially contain security vulnerabilities, and therefore
require testing before being integrated. Tools for automated test case
generation, for example, based on white-box fuzzing, are beneficial for
this testing task. Such tools generally explore limitations of the specific
underlying techniques for solving problems related to, for example, con-
straint solving, symbolic execution, search heuristics and execution trace
extraction. In this article we describe the design of OpenSAW, a more
flexible general-purpose white-box fuzzing framework intended to encour-
age research on new techniques identifying security problems. In addi-
tion, we have formalized two unaddressed technical aspects and devised
new algorithms for these. The first relates to generalizing and combin-
ing different program exploration strategies, and the second relates to
prioritizing execution traces. We have evaluated OpenSAW using both
in-house and external programs and identified several bugs.

1 Introduction

Background. Dynamic test generation is a testing technique where the test inputs
are automatically generated while running the System Under Test (SUT) in a
continuous loop. In each iteration, the new test input is generated based on infor-
mation collected during the execution of the SUT on previously generated input.
When the SUT is an executable binary program, that for example reads an input
file, the technique consists in performing the following procedure. First, the pro-
gram is executed on an initial file obtaining a trace of executed instructions;
second, the trace is used to generate a new input file; and finally, the previous
two steps are iteratively applied using the new file as input. Such a procedure
can continue running until a termination criterion is reached, for example a
timeout or a user interruption. The process of input generation usually relies on
symbolic execution and constraint solving, which we briefly explain as follows.
A program trace consists of instructions executed by the processor. Among these
instructions are conditional ones such as “jump if equal”. Conditional instruc-
tions have two possible outcomes or branches. For each conditional instruction
that occurs in a trace, one of the branches must have been taken. Given a trace
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 321–337, 2017.
DOI: 10.1007/978-3-662-54494-5 18

322 N. Ben Henda et al.

and a conditional instruction, we are interested in generating a new input that
causes the program to take the other untaken branch of the instruction. For
that, symbolic execution help us generate the constraint on the input that could
potentially achieve this. Symbolic execution maps the input bytes to symbolic
variables and then emulates the execution of the trace instruction while track-
ing these variables. During the simulation, the symbolic variables are assigned
expressions reflecting the effect of the instructions. When a conditional instruc-
tion is reached, a constraint is generated by substituting, in the condition, the
variables in scope by their corresponding expressions. Within a trace, the con-
junction of all the branch instruction constraints defines what often is referred to
as the path condition. For our goal, we only need to stop at the branch instruc-
tion of interest The constraint is then fed to a constraint solver, which delivers
the desired input.

In academia the technique is sometimes referred to as white-box fuzzing [12].
Compared to black-box fuzzing, used by, for example, AFL [23] and Sulley [22]
where the program input is randomly generated, the technique is guaranteed to
achieve better code coverage and thus is more likely to find bugs. Think of a
program that first tests if the input is equal to a certain value and just exits
otherwise. With black-box fuzzing it is more likely that we never pass the test but
with this technique we will be able to generate an input that passes the test after
the first iteration. The drawback is that white-box fuzzing is slower. Nevertheless
the technique will always benefit from the continuous increase in efficiency and
speed of SAT solving [2] which is the underlying key procedure in constraint
solving and symbolic execution. Currently, there are several academic [5,8] and
industrial [11] frameworks implementing the technique and efficiently used to test
industrial applications. In particular, for security testing the technique is used to
detect vulnerabilities by generating input that can cause the program to crash,
or that can allow for hijacking the execution, etc [7]. Other use-cases involve
back-door detection and malware analysis for detecting unwanted functionality
and behavior in binaries [13].

One of the challenges that we identified in this approach is the following.
Given an execution trace, how to best select the branch instruction, i.e., the
conditional instruction for which to trigger the other branch. The problem is that
there is no well-defined generic technique for such selection strategies. Existing
frameworks differ greatly in their implementations. A systematic approach that
selects each branch in each encountered trace would work for small programs
with small input domain. In such cases the technique could potentially cover
all possible execution paths in a reasonable time. For real size applications like
compilers, or document processors such an approach is inefficient. One would
think of a strategy that spreads the search across the execution path and avoid
exploring already covered portions of code. This would require some sort of code
book-keeping. In some other cases one would possibly prefer a more focused
selection strategy (in a Depth-first search manner) for traces containing portions
of code for example from newly added or upgraded libraries.

OpenSAW: Open Security Analysis Workbench 323

One other challenge is the following. In parallel settings where several exe-
cution traces can be obtained simultaneously, how to best select the trace to
consider first. One good measure for selection relies on how many new blocks
are visited by the trace. In other terms, one can measure the amount of new
program code in the trace compared to the previous traces processed earlier and
use that as a ranking measure. There is no clear method on how to effectively
implement such method. Obviously, one wants to avoid comparing each new
trace with each of the old traces as this is extremely inefficient.

Related Work. In [16] a technique is described for keeping track of execution
traces. The technique is based on recording an execution history for each trace.
An execution history records all executed instructions and their occurrences.
This is a standard data structure used for program slicing techniques. The choice
of this structure is for handling symbolic execution rather than for branch (or
path) selection strategy. For branch selection, [16] relies on a critical path ori-
ented strategy which is mainly based on choosing instructions that follow the
input data (tainted) propagation.

In [12] a technique called Generational search is proposed for branch selection.
The technique is based on classifying the generated program inputs according to
their generation level. The initial input has level 0. The inputs generated during
the ith iteration of the framework have level i + 1. Given an execution trace
obtained by running the program on an i level input, the branch conditions that
are selected are the ones that appear in ith position and upwards in the trace.
MergePoint [3] is a system which utilizes this strategy by initiating the sym-
bolic execution using a concrete input seed and explore paths using generational
search. It adds an additional step in the symbolic execution denoted as path
merging in order to reduce the number of explored paths.

Haller et al. introduce yet another search heuristic, denoted as Value Cover-
age Search (VCS) [13,14]. This strategy identifies potentially vulnerable code
regions using static analysis, and then steer the symbolic execution along
branches that are probable to lead to those regions. Code regions are deemed
potentially vulnerable if they change pointer values. The authors argue that their
strategy is superior to other traditional strategies, such as Depth-first search
which can also be infeasible to use when the symbolic input size increases. In [14],
the strategy is based on weights from a learning phase which are used to steer its
symbolic execution toward new and interesting pointer dereferences. During the
learning phase each branch is assigned a weight approximating the probability
that the path following the direction contains new pointer dereferences.

In Driller [21], a guided fuzzer is described for vulnerability detection. When-
ever the fuzzer is stuck and is unable to find new paths through a program, a
concolic execution engine is invoked. The engine uses the traces from the fuzzing
to identify new input that diverge into new code. When encountering conditional
branches, the tool checks if negating the condition would result in execution of
undiscovered code. A similar approach is also used in [10], named directed search.
There is no mentioning of how to select branch instructions given a trace con-
taining several instructions.

324 N. Ben Henda et al.

The technique closest to ours is described in [6] where a server is used in
order to decide which branch instruction to select. The server uses a heuristic to
pick the best instruction. One of the heuristic is based on picking the instruction
that were executed the fewest number of times. It is also mentioned that the
server can be configured for different heuristics. However there is no description
on how this is implemented. A project which both builds and refines upon [6],
is the symbolic execution tool KLEE [5]. When encountering branch conditions,
KLEE forks a process for each possible path. Each process executes a single
instruction within its context. For the case where there are multiple concurrent
processes at the same instruction step, a process scheduling algorithm is used to
decide which one to execute next.

S2E [8], a platform for selective symbolic execution, includes basic selection
strategy such as random, Depth- and Breadth-first strategies and mentions that
there is support for other strategies. However, these additional ones are not
described. Other projects which support Depth- and/or Breadth-first strategies
include [15,19]. In [7,18,20] the focus is on performance of symbolic execution
and applications for discovering vulnerabilities rather than selection strategies.

Compared to the other methods, ours is agnostic to the other steps of the
testing framework, i.e., how the new inputs are generated or how the program
is run. When it comes to trace prioritization, most of the related work does
not address the issue, with some exceptions. In [6,12], a code-coverage-block
method is used for ranking the traces. In particular, in [12], this measure is used
for giving scores to the generated program inputs. The rank of a trace (or the
corresponding input) is based on the number of unexplored code blocks that
appear in the trace compared to all other encountered traces. In [5] the process
scheduling depends on interleaving two strategies, randomly selecting paths at
branch conditions and selecting processes which are most likely to reach new
code. The latter apply a combination of the minimum distance to uncovered
instructions, and whether the process has recently discovered new code.

Contribution. We present OpenSAW, an open, flexible and scalable framework
for dynamic test generation. The framework leverages already available tools
like constraint solvers and trace extractors, and implements two new methods
to solve the issue of branch selection and trace prioritization. More precisely,
the framework provides a method that allows customization of the strategies in
a flexible manner. The method keeps track of the generated execution traces
by storing them in a special directed graph structure, the trace graph. In this
graph, each node represents a portion of the program code ending in a (possibly
conditional) jump instruction. Each edge represents a trace and the relative
position of the target node in the trace. We generalize branch selection strategies
to functions over trace graphs. Furthermore, the framework delivers a method
for ranking of the traces, that is fully integrated with the trace graph updating
procedure. The resulting rank value can be used to prioritize the execution traces
for parallelization purposes.

OpenSAW: Open Security Analysis Workbench 325

Outline. The next section gives an overview of the framework. Section 3 describes
in details the trace graph concept. Section 4 lists some of the features of Open-
SAW. Section 5 presents some of our experiments with the framework. Finally,
Sect. 6 concludes the article with some future work.

2 Overview of the Framework

2.1 Preliminaries

For a sequence s, we use |s| to denote its length, and s[i] to denote its ith element
for all 1 ≤ i ≤ |s|. We let s[i] be ⊥ for all i > |s|. Given two sequences s, s′, we use
s � s′ to denote that s is a subsequence of s′. A program input is a sequence of
bytes and a trace is a sequence of binary (or assembly) instructions corresponding
to a run of the program on a particular input. We will be only working with finite
inputs, and we assume that programs are deterministic and that they do always
terminate. We let i and t range respectively over program inputs and traces.
Given a program p, for an input i, we denote by tr(p, i) the trace obtained by
running p on i. We use I and T to denote respectively the set of all possible
inputs and traces. For a trace t, we denote by in(p, t) := {i ∈ I|tr(p, i) = t}, i.e.
the set of all inputs on which p generates t. Sometimes we omit p, and write
tr(i) or in(t) whenever the program is clear from the context.

In general a framework such as ours generates new inputs based on the con-
ditional branch instructions in the program traces. For that, we adopt a less
granular definition for traces and let a trace be a sequence of instruction blocks
or blocks for short. Given a trace t, a block is a maximum length subsequence
of consecutive instructions containing no branch instructions except maybe in
the last position. Observe that this definition is similar to basic blocks in the
context of Control Flow Graphs (CFG). The main difference being that blocks
may have multiple entry points. As we are dealing with individual traces, it is
not possible to know in advance how many entry points a block has. Following
our definition, in a trace t, any conditional branch instruction will be at the end
of a unique block from t. We will use B to denote the set of all possible blocks.

Let’s fix a program p. Given an input i, the corresponding trace t = tr(i)
and a block of interest b ∈ t, the framework performs a series of operations in
order to generate a new input that can potentially trigger the other branch of b.
More precisely, the framework first performs symbolic execution on t up-to the
instruction of interest in order to generate a path condition. A path condition is
a conjunction of formulas on symbols corresponding to the bytes of in(t). Each
such formula represents the condition on the taken branch of one of the encoun-
tered conditional instructions in t up-to and including the one in b. Second, the
framework generates a new path condition by negating the formula correspond-
ing to the branch of interest. Afterwards, the framework queries a constraint
solver for a possible solution. In case a solution is found, the framework uses it
in order to finally construct a new input based on the previous input i. We will
hide and collapse all theses steps into a single function gen(t, b) whose co-domain
is in I ∪ {⊥}.

326 N. Ben Henda et al.

2.2 Architecture

During the development of OpenSAW, the main focus was on flexibility and
performance. For flexibility, the goal is that the framework should be as agnostic
as possible to the underlying used tools such as for symbolic execution, constraint
solving. For performance, the aim is that it should be able to distribute and
parallelize the tasks so that it benefits as much as possible from the available
computational resources. As a result, the framework architecture is as illustrated
in Fig. 1 and its main procedure in Algorithm1.

Fig. 1. OpenSAW’s architecture

The framework relies on two procedures that can be run in parallel,
namely the extractTrace and the generateInputs procedures defined in
Algorithm 1. The modules feed each other with tasks through two different pri-
ority queues: an input queue and a trace task queue denoted respectively by
inpQ and trQ in Algorithm 1 (l.1). A trace task is a tuple (t, b) where t is a trace
and b is a sequence of blocks from t.

The extractTrace procedure (l.5–13) reads program inputs from an input
queue. For each read input i, the procedure first generates the corresponding
trace tr(i). From the resulting trace, it then computes a priority r ∈ N and
selects a number of blocks arranged in a sequence b. Finally, the resulting trace
task (t, b) is pushed onto an output queue with priority r. The generateInputs
procedure (l.14–25) reads trace task from an input queue. For each obtained task
of the form (t, b), the procedures loops through each element in the sequence b[j]
for 1 ≤ j ≤ |b| and attempts to generate an input i triggering the untaken
branch, i.e., i′ = gen(t, b[j]). The set iDB is used to keep track of produced
inputs that are discarded whenever they are generated again. In case the input
i′ is both valid and new, it is pushed onto an output queue. For now, we assume
that the returned values of the getPriority (l.9) and selectBranches (l.10)
functions are computed by an oracle.

For each task that is read, whether it is an input or a trace task, the processing
steps can be in fact delegated to worker subprocesses. and hence the nesting
representation in Fig. 1. Observe, that the priorities can be rendered useless in
case there is no queue buildup. Nevertheless, one can think of a scheme where
the priority computation is activated or deactivated depending on the queue size.
This and similar implementation details are further discussed in Sect. 4.

OpenSAW: Open Security Analysis Workbench 327

Algorithm 1. OpenSAW’s main algorithm
Input: A program p and an initial input i0
1: (iDB, inpQ, trQ) ← (∅, ∅, ∅)
2: push i0 in inpQ
3: extractTrace(p, inpQ, trQ) � Lines 3–4 are executed in parallel
4: generateInputs(iDB, trQ, inpQ)
5: procedure extractTrace(p: program, inQ, outQ: queue)
6: while true do
7: pop inQ in i � blocking
8: t ← tr(p, i)
9: r ← getPriority(t)

10: b ← selectBranches(t)
11: push (t, b) in outQ with priority r
12: end while
13: end procedure
14: procedure generateInputs(iDB: set, inQ, outQ: queue)
15: while true do
16: pop inQ in (t, b) � blocking
17: for j = 1 . . . |b| do
18: i ← gen(t, b[j])
19: if i �=⊥ ∧ i /∈ iDB then
20: add i to iDB
21: push i in outQ
22: end if
23: end for
24: end while
25: end procedure

3 Trace Graphs

3.1 Selection Strategies

One of the central features in such frameworks is the branch selection opera-
tion performed, in our case, by the selectBranches function in Algorithm1.
The selection can be done randomly, or by a heuristic [6,12,14], or based on a
graph search algorithm such as Breadth-first or Depth-first search. Furthermore,
some kind of book-keeping must be performed, for example, in order to avoid
repeatedly processing the branch instructions from the same trace. Overall, a
strategy is needed. Obviously, the choice of the strategy has a direct impact on
the performance of the framework.

In order to define strategies in general, two aspects are taken into consider-
ation. On the one hand, a strategy itself should be easy to change and hence
our choice to refactor it out and delegate to an abstract function with a specific
interface (selectBranches) unlike for example how it is handled in the SAGE
framework. On the other hand, our framework must provide support for a class
of strategies as large as possible or at least that subsumes all the ones used in
similar frameworks including for example the generational search strategy used

328 N. Ben Henda et al.

in SAGE. Observe that it is difficult to know what the most general and common
prerequisites of a selection strategy are. Nevertheless, the current history during
a run of the framework provides a good basis for a generic selection strategy.

3.2 Run Data

By history, we mean all the data generated during the run such as the program
inputs, the computed priorities, the selected branches but most importantly the
program traces. In fact, even for small applications, the number and length of the
encountered traces may quickly grow into an unmanageable number. Therefore
a new structure is needed to efficiently represent the set of generated traces.

Definition 1. A trace graph G is a tuple (N,E,wit) where N ⊆ B is a set of
nodes, E ⊆ N ×N is a set of edges, and wit : E → T ×N is a function called the
witness function mapping to each edge a pair consisting of a trace and a block
index. In addition, the witness function wit is such that for each e = (b, b′) ∈ E,
t ∈ T and j ∈ N where wit(e) = (t, j), it holds that t[j − 1] = b and t[j] = b′.

Intuitively, a trace graph can be used to represent a set of execution traces
obtained so far during a run, like a snapshot of the run. In this structure, each block
is uniquely represented by a node. An edge is used as a witness (wit) of the trace
and corresponding position where the block, represented by the edge target node,
has occurred. More precisely, given a set of traces T ⊆ T , a good representative
trace graph must account for at least each block in T . This can be fulfilled by
choosing the set of nodes to include the set of all blocks from the traces in T , and
the set of edges to account for all pairs of blocks that occur consecutively in a trace
from T . Observe that for the witness function there may be different traces that
fulfill the condition of Definition 1, for example in case the traces overlap. Now the
question is which trace to use in the function definition. To handle this, we assume
that we are given a total order on the set T .

Definition 2. For a set of traces T ⊆ T equipped with a total order 	, the
induced trace graph of T with respect to 	 denoted by G(T) is the trace graph
(N,E,wit) where:

– N := {b ∈ B|∃t ∈ T : b ∈ t},
– E := {(b, b′) ∈ B × B|∃t ∈ T : bb′ � t}, and
– ∀e = (b, b′) ∈ E, wit(e) := (t, j) where t := min{t′ ∈ T |bb′ � t′} (w.r.t.)

and j := min{1 ≤ k < |t||t[k] = b ∧ t[k + 1] = b′}.
Think of a total order on a set of traces as a way of arranging the traces in
a specific sequence so that the witness function can be uniquely defined in the
induced trace graph. If the traces are rearranged, for example by changing the
order in which the inputs are fed to the program, the set of nodes and edges in
the induced graphs are not affected. The trace order change only affects the wit-
ness function. In particular, rearranging overlapping traces changes the witness
function value for the edges in scope of that overlap. This is since by definition

OpenSAW: Open Security Analysis Workbench 329

only the minimal trace, w.r.t. the global ordering, is used in the witness function
definition a witness as captured in the following proposition.

This is relevant because it shows that the data structure captures the notion
of what has happened, but is not bogged down by details about in which order
they happened. Specifically, it allows strategies to be defined in terms of what
has happened and what is possible, which seems more meaningful compared to in
which order the information was collected. The following proposition formalizes
the notion.

Proposition 1. For a set of traces T ⊆ T and two total orders 	1 and 	2 on
T , the induced graphs of T , G1 and G2 w.r.t. 	1 and 	2 are equal up-to an
order automorphism.

This property is useful for a distributed framework such ours, since regardless
of which framework settings are used to analyze a program, the resulting trace
graph is canonical in the sense of the previous proposition.

The order in our framework is that in which the traces are generated and
we let 	 denote this order in the remainder of the section. Later on we will
describe how graphs induced by this order can be used to define different selection
strategies. What remains to do now is to devise an efficient method to construct
such graphs incrementally so that it can be integrated in our framework.

3.3 Graph Construction

Assume a set of traces T ⊆ T and the induced trace graph G(T) := (N,E,wit).
Given a trace t, Algorithm 2 computes the graph induced by T ′ := T ∪{t} where
it is assumed that t is newly generated, i.e., t is a maximal element w.r.t. 	 in
T ′. The resulting trace graph is denoted by G′ := (N ′, E′, wit′).

Algorithm 2. Trace graph update algorithm
Input: A trace graph G := (N, E, wit) induced by some set of traces T ⊆ T and a

newly generated trace t
Output: The trace graph induced by T ∪ {t}
1: (n, N ′, E′, wit′) ← (⊥, N, E, wit)
2: for j = 1 . . . |t| do
3: if t[j] /∈ N ′ then
4: add t[j] to N ′

5: end if
6: if n �=⊥ ∧ (n, t[j]) /∈ E′ then
7: add e := (n, t[j]) to E
8: wit′(e) ← (t, j)
9: end if

10: n ← t[j]
11: end for
12: return G′ := (N ′, E′, wit′)

330 N. Ben Henda et al.

Initially, G′ is defined by copying the input graph G. The main loop of the
algorithm iterates through the instruction blocks of the input trace t in their
sequence order. The variable n, which is initially undefined, is used in the loop
to keep track of the previous taint block in t. In each iteration j of the loop,
first the block t[j] is checked against the set N ′ and possibly added to it (l.3–5).
Then, the edge e := (n, t[j]) is checked against the set E′ and possibly added
to it as well. In particular, when the edge e is added, then the function wit′ is
defined at e to be (t, j) (l.6–9). The algorithm has a linear time complexity in
the length of the input trace O(|t|).
Proposition 2. Given a set of traces T ⊆ T , the induced G(T), and a trace
t such that t is the maximal element w.r.t. 	 of the set T ∪ {t}, Algorithm2
computes G(T ∪ t) w.r.t 	.

3.4 Task Priorities

Another feature in the framework is the priority computation performed by the
getPriority function in Algorithm1. A common measure is usually based on
the number of new instructions not encountered in previously processed traces.
In our case, we adopt a similar approach based on the trace graph structure.

Given a set of traces T ⊆ T and a trace t ∈ T , we define first two basic
measures on t w.r.t. to T which we will later combine to define the main measure
used in our framework. First, we define nd(t, T) by:

nd(t, t′) := |{b ∈ t| ∃t′ ∈ T : b ∈ t′}|.

Intuitively, nd counts the number of blocks occurring only in t. Second, we let
ed(t, T) denote the following:

ed(t, T) := |{j|∃t.t[j] ∈ T ∧ ∀t′ ∈ T.t′ = t : t′[j] = t[j]}|.

This measure counts the number of new positions in which some of the blocks in
the traces from T , occur in t. We are now ready to define the measure we used.

Definition 3. Given a set of traces T ⊆ T and a trace t, the rank of t w.r.t.
T denoted by rk(t, T) is defined by

rk(t, T) := nd(t, T) + ed(t, T).

Although, the computation of the rank can be fully integrated in the trace graph
update algorithm, we choose to keep it separate in Algorithm3 for clarity of the
presentation. In this algorithm, the variables nd and ed are used to compute the
measures nd(t, T) and ed(t, traces) respectively. The main loop iterates through
the blocks of the input trace in their sequence order. The loop code block can
be divided into two parts where in the first part (l.3–5) nd is updated and in the
second one (l.6–15). Like in Algorithm2, the variable n is used to keep track of
the previous taint block in t.

OpenSAW: Open Security Analysis Workbench 331

Algorithm 3. Rank computation algorithm
Input: A trace graph G := (N, E, wit) induced by some set of traces T ⊆ T and a

newly generated trace t
Output: The rank of t w.r.t. T
1: (n, nd, ed) ← (⊥, 0, 0)
2: for j = 1 . . . |t| do
3: if t[j] /∈ N then
4: nd ← nd + 1
5: end if
6: if n =⊥ ∨ (n, t[j]) /∈ E then
7: v ← 1
8: for e ∈ E where wit(e) := (t′, k) do
9: if k = j ∧ t′[k] = t[j] then

10: v ← 0
11: break
12: end if
13: end for
14: ed ← ed + v
15: end if
16: n ← t[j]
17: end for
18: return nd + ed

In each iteration j of the loop, first the taint block t[j] is checked against the
set n and nd is updated accordingly. Then, each edge e ∈ E, where wit := (t′, k)
for some trace t′ ∈ t and k ∈ N, is considered in order to check whether the
current taint block t[j] already occurs in the same position (k = j) in some
other trace t′ from T . In case it does not, then the increment variable v is not
reset and ed is updated accordingly.

Proposition 3. Given a set of traces T ⊆ T , the induced G(T), and a trace
t ∈ T , Algorithm3 computes rk(t, T).

4 Framework Features

We highlight some of the main features of OpenSAW including the choice of
the underlying tools, the support for user-defined branch selection strategies,
and the progress visualization web interface. An implicit feature is the choice
of implementation language. OpenSAW is implemented in Python, a popular
programming language. Hopefully, this will make it easier for users to write their
own modules and extend the framework.

4.1 Choice of the Underlying Tools

OpenSAW uses a modular execution engine that is responsible for extracting
execution traces and generating new inputs. The interface between this engine

332 N. Ben Henda et al.

and OpenSAW itself is generic enough so that it is easy to plug-in other engines.
The engine currently supported in OpenSAW uses Intel’s PIN [17] in combina-
tion with BAP [4]. For symbolic execution OpenSAW relies on BAP’s iltrans
tool. For constraint solving STP [9] is used.

4.2 User-Defined Strategies

Strategies are central in OpenSAW. They allow the user to steer the explo-
ration of the executable. Strategies could be generic and based on common graph
search algorithms. They could also be program specific and based for example
on instruction addresses. OpenSAW’s strategies enable users to control both
the order in which tasks are handled and which branches of a trace to examine.

OpenSAW comes with some built-in strategies and offers support for user-
defined ones. The built-in strategies include basic operations. For example,
operations for handling redundancies by skipping analyzed branches, trying to
improve coverage by only analyzing branches if they have exits that have never
been taken, and trying to avoid loops by only analyzing each branch once per
trace are included. They also cover graph search based ones such as Depth-first,
Breadth-first and Generational search. In addition, OpenSAW has two built-in
meta strategies for sequential and parallel composition of strategies. A sequen-
tial strategy chains the effect of its operand strategies while a parallel strategy
rotates among them. The command line interface allows the user to choose and
compose freely the built-in strategies.

In general, all the strategies in OpenSAW are derived from an abstract
superclass with several callback methods. This superclass defines the strategy
interface in OpenSAW. The callbacks offer hooks in the framework that are
useful during the run. Each callback method is bound to a particular event so
that it is only called when the corresponding event takes place. For example,
there is a callback method for the generation of a new input, the extraction of a
new trace, the failure of the constraint solver on a particular branch, etc. Users
can extend the framework with other strategies as long as they implement the
interface.

4.3 Progress Visualization

OpenSAW is shipped with a web interface for progress visualization and shown
in the figures below. Figure 2 corresponds to the trace graph view. This view is
animated so that the user can see the effect of the trace graph updates during
the framework run. Figure 3 shows the statistics view. Among the component in
this view is the pie graph illustrating how much of the overall runtime each of the
underlying tool accounts for. Other components in this view include the number
and type of crashes and a chart illustrating the number of visited branches over
time.

OpenSAW: Open Security Analysis Workbench 333

Fig. 2. OpenSAW features a trace
graph view that visualizes the gen-
eration of the trace graph

Fig. 3. OpenSAW features a statistics view
that, for example, contains a graph of vis-
ited branches over time

5 Experiments

We have tested OpenSAW on the binaries used in DARPAS Cyber Grand Chal-
lenge (CGC) Qualification round [1]. CGC was a challenge developed to test the
ability of cyber reasoning systems to find, prove and patch vulnerabilities in
programs. We chose this test set because the programs are complex, contain
vulnerabilities based on real-world-bugs and are written by people with different
background and skill. Additionally we have evaluated OpenSAW on a codec used
in production. By comparison to the CGC tests, the codec is much larger, runs
on a real Linux system and requires inputs of much larger size.

5.1 DARPA CGC

The DARPA CGC qualification round consisted of 131 vulnerable binaries.
These binaries run on a system called DECREE (DARPA Experimental Cyber
Research Evaluation Environment) This is a system built on Linux but with
only seven different syscalls. These allow I/O, memory allocation, randomness
and program termination. This limitation leads to a small and well defined envi-
ronment, which allows developers of analysis tools to focus on the analysis and
not on the internals and quirks of the complete set of Linux syscalls.

We were able to execute OpenSAW on 126 of the 131 CGC binaries. Five
binaries were omitted because they use inter-process communication and cur-
rently OpenSAW can only analyze one binary at a time. We let OpenSAW exe-
cute with the generational search strategy for 30 min per binary. If OpenSAW

334 N. Ben Henda et al.

had not exhaustively searched the input space of the binary within this time
we aborted the search and continued with the next binary. For each binary the
initial input consisted of the same 10 kB random data. The size of this initial
input was chosen with the assumption that all binaries could be crashed with
some input of this size.

The testing was done in a virtual machine running on a four core i7-4800 MQ
CPU with 2.70 GHz and support for eight threads. The host machine only ran
the virtual machine and assigned 15 GB of memory and four cores to it. Using
this setup, OpenSAW found seven reproducible crashes that were not caused
by the initial input.

5.2 Production Code

We also tested OpenSAW on a codec used in production. In contrast to the CGC
binaries, the source code of the codec has 200 k lines. In addition it requires
inputs of sizes between 0.5–120 kB to achieve high coverage of the code. The
codec consists of two binaries: an encoder and a decoder. The initial input files
for the encoder and the decoder were valid inputs of 46 kB and 120 kB in size
respectively. It is worth noting that the codec had already been tested internally
with AFL and presumably also by external users. As AFL was already in use
internally we have compared OpenSAW with AFL. The tools are also similar as
they both handle programs that use a single file as input and also in that neither
requires any modification of the tested program or any additional wrapper code.

We ran two instances of OpenSAW simultaneously during 96 h, one on the
encoder and the other one on the decoder on the same system setup as DARPA
CGC. We also ran AFL on the codec for the same amount of time, on the
same system setup, with multi-threaded AFL running for both the encoder and
decoder. The result of these runs can be seen in Table 1.

The inputs generated by AFL did not identify any bugs. This is probably due
to the fact that all the bugs revealed earlier by AFL have been already corrected
in the version we were testing.

OpenSAW generated a bug finding input after 40 h. This bug was identified
by executing the generated inputs on the codec with additional error detection in
place. In comparison with AFL, OpenSAW also achieved better code coverage
with fewer test cases.

Table 1. Results of running OpenSAW and AFL for 96 h each on the codec.

Inputs Bugs found Function coverage in % Line coverage in %

AFL 42 775 0 61.0 51.0

OpenSAW 464 1 66.5 53.3

OpenSAW: Open Security Analysis Workbench 335

6 Conclusion

Summary. We have presented OpenSAW, a new framework for white-box
fuzzing. OpenSAWstrives to be open, flexible and agnostic to the underlying
tools and techniques such as for symbolic execution, trace analysis and constraint
solving. In fact, it could be used as a test platform for experimenting with such
tools. We have addressed the issue of branch selection. For that purpose, we
have defined the trace graph structure and generalized the concept of selection
strategies to functions over trace graphs. This is one of the central features in
OpenSAW which offers a large catalog of built-in strategies and support for
user-defined ones. OpenSAW aims to be a flexible and efficient testing tool that
can be scaled in or scaled out depending on the available computation power. In
order to achieve this particular goal, we have addressed the issue of task prior-
itization and devised an efficient trace ranking algorithm fully integrated with
the trace graph update procedure. We have tested OpenSAW successfully on
an external benchmark and on an internal production code. In particular, the
analysis of the production code did discover a new bug not revealed earlier by
the testing process in place.

Future Work. There is potential for many research directions with OpenSAW.
In terms of use cases, it could be interesting to use strategies that steer the search
towards specific parts of the program binary. This would be a useful feature for
example for restricting the testing during upgrades. In relation to strategies,
another interesting direction could be to use machine learning to define good
strategies. This could be based on observing the program behavior during normal
operations and then developing a strategy that focuses the search along less
common paths. Another example could be based on analyzing a large data set
of OpenSAW runs over similar types of programs in order to identify crash
patterns. In terms of extensions, it could be worth looking into how to integrate
static analysis in the framework to further tune the search. For example, what
would be the benefit when starting from an approximate CFG provided by a
static analyzer. If used properly, such information could potentially reduce the
size of the trace graph and make the search converge faster.

Reflections. Our industry is extremely heterogeneous in terms of software and
hardware platforms. OpenSAW will always benefit from advances in symbolic
execution techniques addressing for example the support of multi-threading and
floating point computation. OpenSAW is good for testing in some niches and
has proven to be a useful complement to the testing process for at least one.
Therefore, this will only drive forward our quest in promoting and developing
such technology.

336 N. Ben Henda et al.

References

1. DARPA Cyber Grand Challenge Competitor Portal. http://archive.darpa.mil/
CyberGrandChallenge CompetitorSite/

2. The international SAT Competitions web page. http://www.satcompetition.org/
3. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution

with veritesting. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 1083–1094. ACM, New York (2014)

4. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 37

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) OSDI, pp. 209–224. USENIX Association (2008)

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, October 30–November 3, 2006, pp. 322–335. ACM, Alexandria
(2006)

7. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: IEEE Symposium on Security and Privacy, pp. 380–394. IEEE Computer
Society (2012)

8. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pp. 265–278. ACM, New York (2011)

9. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73368-3 52

10. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2005, pp. 213–223. ACM, New York (2005)

11. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: Whitebox fuzzing for security testing.
Queue 10(1), 20:20–20:27 (2012)

12. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS. The Internet Society (2008)

13. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowser: A guided fuzzer
for finding buffer overflow vulnerabilities. In: login: The USENIX Magazine.
vol. 38(6), December 2013

14. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In: Proceedings of the 22nd
USENIX Conference on Security, SEC 2013, Berkeley, CA, USA, pp. 49–64.
USENIX Association (2013)

15. Khurshid, S., PĂsĂreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 40

16. Lanzi, A., Martignoni, L., Monga, M., Paleari, R.: A smart fuzzer for x86 executa-
bles. In: Proceedings of the Third International Workshop on Software Engineering
for Secure Systems, SESS 2007, p. 7. IEEE Computer Society, Washington, DC
(2007)

http://archive.darpa.mil/CyberGrandChallenge_CompetitorSite/
http://archive.darpa.mil/CyberGrandChallenge_CompetitorSite/
http://www.satcompetition.org/
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://dx.doi.org/10.1007/978-3-540-73368-3_52
http://dx.doi.org/10.1007/3-540-36577-X_40

OpenSAW: Open Security Analysis Workbench 337

17. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005)

18. Ramos, D.A., Engler, D.: Under-constrained symbolic execution: Correctness
checking for real code. In: Proceedings of the 24th USENIX Conference on Security
Symposium, SEC 2015, pp. 49–64. USENIX Association, Berkeley (2015)

19. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 263–272. ACM, New York (2005)

20. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice- auto-
matic detection of authentication bypass vulnerabilities in binary firmware (2015)

21. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Krugel, C., Vigna, G.: Driller: Augmenting fuzzing through
selective symbolic execution. In: NDSS (2016)

22. Sutton, M., Greene, A., Amini, P.: Fuzzing Brute Force Vulnerability Discovery.
Pearson Education, Upper Saddle River (2007)

23. Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

Visual Configuration of Mobile Privacy Policies

Abdulbaki Aydin1(B), David Piorkowski2, Omer Tripp2, Pietro Ferrara2,
and Marco Pistoia2

1 University of California, Santa Barbara, CA, USA
baki@cs.ucsb.edu

2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
pistoia@us.ibm.com

Abstract. Mobile applications often require access to private user infor-
mation, such as the user or device ID, the location or the contact list.
Usage of such data varies across different applications. A notable exam-
ple is advertising. For contextual advertising, some applications release
precise data, such as the user’s exact address, while other applications
release only the user’s country. Another dimension is the user. Some users
are more privacy demanding than others. Existing solutions for privacy
enforcement are neither app- nor user- sensitive, instead performing gen-
eral tracking of private data into release points like the Internet. The
main contribution of this paper is in refining privacy enforcement by let-
ting the user configure privacy preferences through a visual interface that
captures the application’s screens enriched with privacy-relevant infor-
mation. We demonstrate the efficacy of our approach w.r.t. advertising
and analytics, which are the main (third-party) consumers of private
user information. We have implemented our approach for Android as
the VisiDroid system. We demonstrate VisiDroid’s efficacy via both
quantitative and qualitative experiments involving top-popular Google
Play apps. Our experiments include objective metrics, such as the aver-
age number of configuration actions per app, as well as a user study to
validate the usability of VisiDroid.

1 Introduction

The mobile era is marked by contextual and user-sensitive functionality. Notable
examples include location-aware apps and services (browsing, advertising, and
more); social features (e.g. in gaming and navigation apps); as well as person-
alization capabilities (often based on analysis of text, audio or video content).
These and other similar features are all based on access to, and use of, personal
user information.

A. Aydin–The author performed the research leading to this paper while working at
IBM Research as an intern.
O. Tripp–The author performed the research leading to this paper while at IBM
Research, but is currently affiliated with Google, Inc.
P. Ferrara–The author performed the research leading to this paper while at IBM
Research, but is currently affiliated with Julia, S.R.L.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 338–355, 2017.
DOI: 10.1007/978-3-662-54494-5 19

Visual Configuration of Mobile Privacy Policies 339

In some cases the user is conscious of the privacy/functionality tradeoff,
and can sometimes even disable (or refrain from enabling) privacy-threatening
functionality. Unfortunately, there are also common cases wherein users, and
sometimes even developers, are in the dark regarding the contexts where, and
the extent to which, their private information is exploited.

This worrisome situation links back to the design of mobile platforms. The
two major platforms, Android and iOS, both mediate access to private informa-
tion via a permission model. Permissions govern access to designated resources,
such as the contact list or GPS system. In Android, prior to API level 23 permis-
sions were managed at install time. Now both Android and iOS either grant or
deny a given permission by seeking user approval upon first access to the respec-
tive resource. In both cases, permissions apply globally across all contexts and
usage scenarios, and so for example usage of the user’s location for navigation
cannot be distinguished from its usage for contextual advertising.

Scope and Threat Model. This paper is informed by the need to create a
usable interface for end users to understand and configure how their private
information is utilized. Within this general scope, we take a first step in tar-
geting the release of private data related to contextual advertising, as well as
UI/UX (aka usability) and navigational analytics. Advertising is the most pop-
ular Android monetization model. Analytics is the gateway to user experience.
As such, these are the most prominent third-party consumers of private data.

In line with past research on user privacy [25], our assumed threat model con-
cerns authentic (rather than malicious) mobile applications. Such applications,
in contrast with malware, are aimed at executing their declared functionality.
At the same time, extraneous behaviors, such as advertising and analytics, may
access private information and share it with third parties without explicit autho-
rization. Given our focus on these clients, we define release of private user infor-
mation to remote advertising/analytics websites as a potential privacy threat,
and concentrate on this category in particular.

Blocking such releases completely is not an acceptable solution. First, for
advertising, this would disrupt the Android monetization model that currently
allows users to download apps for free. Also, certain users actually take interest
in ad content.1 Analytics data is of immense value to customize and improve
user experience. Hence, our goal is to create a method to configure, rather than
blindly suppress, usage of private information by analytics/advertising engines.

One challenge, which we later illustrate, is that private data is seldom embed-
ded into ad/analytics web messages in clear form. For security as well as perfor-
mance reasons, such messages often carry encoded and sometimes even encrypted
data. This obviates naive attempts to detect (and anonymize) sensitive data in
ad/analytics messages (e.g. via a man-in-the-middle proxy).

Our Approach. We address the gap between user experience, which is typically
far removed from notions like code-level permissions, and the need to tailor

1 http://www.adweek.com/socialtimes/study-kenshoo-mobile-app-advertising-trends
/617293.

http://www.adweek.com/socialtimes/study-kenshoo-mobile-app-advertising-trends/617293
http://www.adweek.com/socialtimes/study-kenshoo-mobile-app-advertising-trends/617293

340 A. Aydin et al.

privacy enforcement according to the preferences and sensitivities of the user at
hand. We bridge this gap via a visual configuration interface. This critical aspect
of the enforcement system is complementary to existing solutions, which typically
enforce privacy via (user-insensitive) information-flow tracking [5,9,11,25,28], in
specializing the system per the given user. In our approach, usages of private
information are rendered onto the app UI, which resonates directly with user
experience. The user can then visually configure privacy preferences atop the
UI, which are subsequently enforced by instrumenting the app. This creates
a separation of concerns: The user is provided with a visual interface to reason
about — and express — privacy concerns, while the enforcement system benefits
from a tight privacy policy, which contributes to both performance and accuracy.

In our concrete system, we instantiate the above workflow — as a first step —
w.r.t. privacy threats due to contextual advertising and UI/UX analytics. The
user is presented with annotated UI screenshots that reflect, atop advertising
widgets and analytics-empowered screens, the private information. The user
can then configure constraints on the context, which the system enforces by
anonymizing respective private fields before these are sent to the remote server.

Contributions. This paper makes the following principal contributions:

1. Usable privacy enforcement: We take a first step toward a general solu-
tion to the challenge of usable configuration of privacy enforcement systems
(Sects. 2.2 and 3.2). In our solution, which focuses on advertising and ana-
lytics, usage of private data is reported atop the app UI, enabling seamless
configuration of privacy preferences.

2. System design: We describe and illustrate the architecture and algorithms
underlying our solution (Sects. 3 and 4). These include offline analyses as well
as per-user code rewriting, where — for portability and general applicabil-
ity — we do not require a custom platform build.

3. Implementation and evaluation: We have implemented our solution as the
VisiDroid system for Android. We report on quantitative measurements as
well as a user study that we have conducted, which validate the viability
of our approach and the usability of VisiDroid. Some of the experimental
data is of wider applicability, characterizing which fields typically flow into
advertising/analytics servers and how often (Sect. 5).

2 Overview

The VisiDroid workflow begins with offline analysis of the target application
A; the user then performs interactive policy configuration; finally, an instru-
mented app that enforces the user privacy settings is emitted. We discuss these
steps, which are visualized in Fig. 1, in more detail below with reference to
Listings 1.1 and 1.2 that are based on the popular photo-blogging theCHIVE
app (package name: com.thechive). theCHIVE is a highly popular Android
photo-blogging app.2 It utilizes the location and device ID for advertising, where
2 https://play.google.com/store/apps/details?id=com.thechive.

https://play.google.com/store/apps/details?id=com.thechive

Visual Configuration of Mobile Privacy Policies 341

Fig. 1. VisiDroid architecture Fig. 2. The VisiDroid configuration interface

the recommended practice to instead use a coarsening of the precise location and
the Android ID [23].

Listing 1.1. Transformed code for
offline analysis

1 adv = findViewById(id);

2 did = getSysService("phone")

.getDeviceId ();

3 LOG SOURCE(DEVICE_ID , did);

4 adv.setKeywords("User:"+did);

5 LOG SINK(adv); //adv.loadAd();

6 // method declarations

7 LOG SINK(MoPubView adv) {

8 adReq = adv.getAdRequest ();

9 LOG(adReq); CAPTURESCREEN ();

10 adv.loadAd(); }

Listing 1.2. Transformed code for
runtime enforcement

1 adv = findViewById(id);

2 did = getSysService("phone")

.getDeviceId ();

3 adv.setKeywords("User:"+did);

4 LOADAD(adv); //adv.loadAd();

5 // method declarations

6 LOADAD(MoPubView adv) {

7 Mdid = MOCK(DEVICE_ID , did);

8 adv.setKeywords("User:"+Mdid);

9 adv.loadAd();

10 }

2.1 Phase I: Offline Analysis

Offline analysis is conducted once per application A. It mines the contexts asso-
ciated with UI objects in A. This is done in two steps. The first step is to
track flow of private data starting at privacy sources, such as getDeviceId()
and getLastKnownLocation(). The second step, if the data reaches an outgoing
ad/analytics request, is to match the message against one or more UI objects.

For high accuracy, offline tracking is done dynamically. The app is instru-
mented to enable runtime tracking (lines 3, 5 in Listing 1.1). The instrumented
version is then exercised (either manually or automatically) on a designated
device that is set up with mock user information. In the case of theCHIVE,
the location and device ID are tracked into their respective MoPubView setters.

342 A. Aydin et al.

Next, the request/response matching is established when loadAd() is invoked.
Internally, this method serializes the MoPubView object as an ad request, sends
the request, and renders the ad content received in response to the screen.

Another aspect of offline analysis is to persist programmatic and geometric
information about the UI objects to enable specification and enforcement of
privacy restrictions on the different screens/widgets across different runs. This
is done via the adb library, which provides APIs to capture stateful screenshots
with XML-structured data (line 9 in Listing 1.1).

Automated crawling is a challenging problem that has received considerable
attention [4,12,18]. To simplify and focus the contributions of the current paper,
we neither developed nor used any of the available solutions. Instead, we crawled
the subject apps manually, which was neither difficult nor burdensome. We detail
our methodology for manual crawling in Sect. 5.

2.2 Phase II: Visual Configuration

Offline analysis yields stateful app screenshots that visually link advertising/-
analytics libraries to the private information they consume. These artifacts are
uploaded to the VisiDroid server. A user can then perform visual configura-
tion with the VisiDroid client application (i.e., website). The VisiDroid client
application displays the screenshots from the server, as illustrated in Fig. 2. The
user is presented with the different privacy threats visually, with the available
configuration options on the left and a screenshot of the view under configu-
ration on the right. The user can then choose the granularity of data release
(or prevent release altogether using mock data; Disable, None) on a per-widget
basis. For example, for the location data flowing into MoPubView, the user may
permit state and city information but not their exact address.

2.3 Phase III: Enforcement

The third and final step is to rewrite the app per the customized policy, as
configured by the user. This is done via code instrumentation, which imposes
anonymized values on the private fields constrained by the user. We illustrate
the transformation in Listing 1.2 (the MOCK call at line 7). The actual values are
substituted with their anonymized counterparts at the very last point before the
ad/analytics request is discharged. This is to ensure that there are no side effects
w.r.t. other functionality that consumes the values, which is confirmed to be a
problem in practice [11].

VisiDroid imposes the anonymized values on the outgoing request via built-
in interface methods. In our running example, these are the setters defined by
the respective widget object. The loadAd() method is called inside LOADAD at
line 9 in Listing 1.2, such that prior to the original code, setter methods exposed
by MoPubView are invoked with the anonymized location and device-ID fields.

Visual Configuration of Mobile Privacy Policies 343

2.4 Scope and Limitations

In its current form, VisiDroid is designed to address privacy threats in contex-
tual advertising as well as UI/UX, or navigational, analytics. Linking privacy
threats in other categories to user experience is our goal in future research.

VisiDroid exploits commonalities across different libraries for efficiency. An
example of this, noted above, is the use of built-in setter APIs to overwrite
private fields with their anonymized counterparts. Leveraging knowledge of the
different ad/analytics servers simplifies the VisiDroid architecture, as well as
optimizes its performance and accuracy. At the same time, new servers need
to be welded into VisiDroid, which is a limitation of our design. Though this
process is facilitated by a declarative interface exposed by VisiDroid, it still
needs to be performed for every new server.

3 Offline Analysis

Offline analysis is performed once per (all users of an) app. It takes as input the
app, and produces as its output — following a crawling session that explores dif-
ferent app views and states — a visual representation of advertising -/analytics-
related privacy threats. For this, VisiDroid integrates between privacy-related
information flows and screen captures, which is the focus of this section.

3.1 Detection of Privacy Threats

A common method to track flow of private information across a mobile system
is via taint tracking [5]. Doing so via app instrumentation is highly nontrivial,
and leads to prohibitive slowdown, and so a common solution is to customize
the platform. This limits the portability and maintainability of the detection
system. Instead, inspired by the BayesDroid system [25], VisiDroid performs
value-based threat detection. Intuitively, the idea is to record private fields as
they originate, and compare them — using similarity metrics — against values
about to be released. If the level of similarity is significant, then a potential threat
has been detected. Specifically, VisiDroid utilizes the Levenshtein metric to
assess value similarity. Informally, lev(|a|, |b|) is the minimum number of single-
character edits — insertion, deletion or substitution — needed to transform
string a into string b. The significance of using “fuzzy” similarity analysis, rather
than precise matching, stems from cases where the value is reformatted by the
app (e.g., accepting email address john.doe@gmail.com as input, then releasing
john and doe separately as the first and last names). See the BayesDroid paper
[25] for more discussion. Compared to statement-level information-flow (or taint)
tracking, this approach is lightweight. It further enables characterization of the
type and amount of information about to be released per the value at hand (e.g.,
if the value matches the street name out of the full address).

VisiDroid is equipped with a diversified set of privacy sources,
including built-in platform APIs to obtain the user’s location (e.g. the

344 A. Aydin et al.

getLastKnownLocation() method in LocationManager), device identifiers
(e.g. the getSimSerialNumber() method in TelephonyManager), etc.; APIs
exposed by social apps (e.g. the Facebook graph interface); and user
inputs received through the UI, which are obtained via platform APIs (e.g.
EditText.getText()).

VisiDroid currently accounts for the five top-popular advertising libraries
(in non-gaming apps),3 as well as two of the most popular UI/UX analytics
libraries.4 These are Google AdMob, MoPub, Millenial Media, Amazon Ads and
Ad Marvel, and Google Analytics and Adobe Analytics, respectively. Extending
VisiDroid with additional libraries is straightforward via a declarative specifi-
cation interface.

While informed by BayesDroid, the detection technique of VisiDroid
is slightly different. First, rather than accounting for a single release flow,
VisiDroid has to monitor — in the case of ad requests — the composition
of (i) the outgoing flow from the app to the server (the sink being the request)
and (ii) the incoming flow from the server back to the app (the sink being the
widget). Treating both as a single composed flow — as in BayesDroid — is futile,
as the ad content reaching the widget sink is rich media rather than text that
can be searched for matches against the private field.

Instead, VisiDroid leverages a predefined specification of how different pop-
ular ad libraries load remote content. In the example in Listing 1.1, for instance,
loadAd is the API provided by MoPub to send out the ad request and render the
resulting content to the UI. Inspecting the values stored in the widget receiving
the loadAd call as it is entered establishes which private fields (if any) are about
to be released to the remote server. The widget is then annotated with these
private fields, which accounts for the incoming flow.

An advantage of performing value similarity analysis against the (fields of
the) widget object, rather than the HTTP request, is that at that point the values
are still stored in clear form. Hashing, encryption and other transformations all
take place downstream, as the widget’s state is serialized into an HTTP message.
This enables direct (and efficient) similarity analysis, without the need to account
neither for standard nor for custom transformations (unlike BayesDroid).

Another important point is that our offline analysis detects threats at the
subfield level, also accounting for transformations. If for instance the location
is transformed into a street address, but only the city (sub)field is passed to
the third-party library, then the analysis would report that subfield alone rather
than the entire location/address.

To achieve this robustness, the VisiDroid analysis proactively computes for
certain private fields, and in particular the user’s location and date of birth,
other common equivalent representations as well as derivative information. For
birthday, these include the user’s age as well as other date patterns including
month/day, round trip, short time and long time. For the location, the corre-
sponding address is computed. VisiDroid computes the transformations via

3 http://www.appbrain.com/stats/libraries/ad.
4 http://www.appbrain.com/stats/libraries/dev.

http://www.appbrain.com/stats/libraries/ad
http://www.appbrain.com/stats/libraries/dev

Visual Configuration of Mobile Privacy Policies 345

Algorithm 1. Geometric representation of ad widgets
1: procedure GeometricRep(s : app screen)
2: ids ←− [], A ←− GetFocusedActivity(s), layout ←− GetLayout(A)
3: for all node n ∈ layout do
4: if n is an ad widget then
5: C ←− extract bounds, ids ←− ids · [n �→ (A,C)]
6: return ids

standard APIs (like the Geocoder.getFromLocation method for location/ad-
dress transformation).

3.2 Screen Capturing

Interleaved into threat detection during the crawling process is the collection of
UI screens. This is done via built-in adb utilities, and in particular the screencap,
dumpsys and uiautomator shell commands.

At a given instant in the crawling process, the steps described in Algorithm1
are executed. First, the current screen is captured and the XML layout of the
screen, providing rich hierarchical information regarding the UI elements and
their geometrical representation, is derived with the help of the adb utilities
(line 2). Next, for each XML node n, representing a distinct UI element, we
read its coordinates as the bounds attribute (line 5), and compute an identity
for it as a pair (A,C) consisting of the the parent activity A and coordinates C
(line 5). Figures 3 and 4 presents example screen capture from theCHIVE and
its corresponding decomposition into UI elements, as given by the XML layout.
Note in particular the precise boundaries surrounding the ad widget, which is
disambiguated from the other content on the screen.

Fig. 3. UI capture with contextual ad Fig. 4. UI structure of Fig. 3

The geometric representation of a UI object is sensitive to the display prop-
erties, varying across users and devices, which would seemingly pose a challenge

346 A. Aydin et al.

to VisiDroid. Observe, however, that VisiDroid utilizes geometric information
only for visual configuration. This is done atop offline screen captures, and not
the user’s device, which offsets the risk of distorting the bounds for a UI object.

Yet there is another aspect of bounds extraction that is subtle. Computing
the boundaries of a UI element is straightforward as long as the element is known
to occupy a fixed region on the screen. Sometimes, however, UI widgets — in
particular ads and sometimes also views enriched with analytics — are embedded
into scrolling banners. In such cases, we fix the boundaries of the widget to be
those of a non-scrolling parent element.

4 Configuration and Enforcement

Configuration. Before installing an app A, the user performs visual configura-
tion of the privacy policy for A via the VisiDroid client. The resulting policy is
then sent to the server as input to the VisiDroid instrumentation agent, which
transforms A accordingly, and makes the new version available for the user to
download and install. We have chosen this design, rather than downloading all
the artifacts to the device and performing the configuration locally, to lower
network and (device) storage costs.

As illustrated in Fig. 2, the user is presented with the screen captures due to
offline analysis one by one. For each screen, all elements linked to privacy threats
are highlighted, such that the user can authorize which, if any, of the private
fields to release. As discussed in Sect. 3.1, the user is shown the subfields that
are actually released (e.g., city rather full address or location). This is crucial, as
otherwise the user may form a wrong impression of the app’s behavior and/or
perform redundant configuration (e.g., constraining location release even though
only the city is released).

Code Instrumentation. Upon completion of the policy configuration, the
resultant constraints are discharged to the VisiDroid instrumentation agent
(hosted on the VisiDroid server). The agent rewrites the app accordingly, as
illustrated in Fig. 1. Code instrumentation aims to mock values only for third
parties without any crashes and side effects.

We have found that the idealized assumption regarding app/library insula-
tion often holds in practice. Advertising and analytics libraries often consume
the context from the app, and then operate on their own as an independent
third party in obtaining and acting upon the contextual content. Knowing that,
VisiDroid synthesizes the mock value immediately before setting it on the
library, as shown at line 9 in Listing 1.2. The original value is preserved and
propagated beyond the setter call, such that the mock value only flows into the
library. VisiDroid is equipped with specification of formatting and logical con-
straints on privacy related data. It synthesizes a mock data that is consistent
with the original. Hence, there would not be any side effects due to enforcement
beyond potential changes to ad content and/or analytics data.

VisiDroid ensures that no private field is released without user authoriza-
tion. It (statically) scans through the entire app code base for occurrences

Visual Configuration of Mobile Privacy Policies 347

of advertising/analytics APIs (like loadAd()). For any such call that has not
already been handled, and also for private fields not configured by the user
w.r.t. handled calls (since flow of such fields has not been observed during offline
analysis), VisiDroid inserts instrumentation code immediately prior to the call
to trigger a warning at runtime. This ensures that if an unhandled privacy-
relevant call is made, then the user has the opportunity to either authorize or
reject the communication with the respective library.

5 Experimental Evaluation

We demonstrate VisiDroid’s efficacy via both quantitative and qualitative
experiments involving top-popular Google Play apps. We explain how we
designed our experiments in the following.

Benchmarks. Our benchmark selection methodology consisted of several steps.
We started from the 60 top-popular apps in every Google Play category, except
games (as we explain shortly), for a total of 25 categories and 1,462 apps. The
ideal number of apps should have been 1,500, but we experienced some technical
issues downloading certain apps.

We skipped the games category for two reasons: First, the monetization strat-
egy of gaming apps is mostly in-app purchases, where ad content (if present)
mostly refers to other games. Second, from a technical standpoint, gaming apps
are often equipped with large media files. Since the games category has 18 subcat-
egories, the download process would have become very heavy with the addition
of 1,200 big apps. Gaming apps are left for future research.

We pruned the initial set of apps via a script that searches through the app
code for usage of ad and analytics libraries (supported by VisiDroid), and in
particular initialization code for the libraries. This resulted in 364 apps (25% of
all apps), which we further filtered using a similar script that scans for contextual
advertising (i.e. occurrence of setter APIs like setAge(. . .), setBirthday(. . .),
etc.). 126 apps survived this filter.

Experimental methodology. To uncover UI screens and releases of private
information, we exercised each of the 126 applications manually, spending
approximately 5 min per app. For exhaustive crawling, as well as authentica-
tion via social apps, we created mock Facebook accounts and user profiles.

For unbiased and consistent overhead measurement, we automated — using
the adb toolset — each of the manual interaction sequences. For statistical signif-
icance, we repeated overhead measurements 20 times per app. Running times,
divided into user and system times, were derived from the device via built-in
platform APIs.

Hardware setup. We executed all the apps on a Google Nexus 4 phone, running
version 4.4.4 of the Android platform, with a Qualcomm Snapdragon S4 Pro
1.5 GHz processor and 2 GB of memory. We used a single physical device per all
apps and all experiments.

348 A. Aydin et al.

Experimental Results. VisiDroid’s offline analysis identifies 31 apps that
release private data to either advertising parties or analytics engines or both.
These are listed in Table 1, which also specifies the involved libraries (second
column), the released private fields (third column), as well as the source(s) of
the private fields (fourth column). The privacy threats identified by VisiDroid
are distributed as follows: full location – 35%; postal code – 12%; other location
fields – 25%; birthday and/or age – 9%; gender – 11%; and other threats – 9%.
Of special interest is that theCHIVE releases the device ID, and Job Search the
build serial. These identifiers are unique, enabling identification of the device and
thus also the user, though utilizing such identifiers is considered a bad practice.
These statistics, and the data underlying them in Table 1, shows that different
apps release different private fields, and at different granularities, to third-party
websites. This, combined with the fact that different users have different privacy
concerns, emphasizes the need for a configurable privacy policy.

For unbiased measurement of configuration cost, we first fixed the privacy
restrictions prior to the offline runs. We restrict location to city, personal info to
only age and gender, and device info to only operator name. These restrictions
reflect our own perspective, whereby it would be legitimate to use coarsened pri-
vate information for advertising/analytics but not fully precise data. Equipped
with the restrictions defined (i.e., policy), we configured each of the 31 appli-
cations from Table 1 via the VisiDroid client. We quantify the involved effort
by counting (i) configuration forms, where each such form is linked to one or
more ad widgets or view on some screen; (ii) configuration items, where we refer
to the total number of selections that the user can potentially make across all
screens and forms (there are e.g. 2 configuration items in the form in Fig. 2);
and (iii) configuration actions, where an action is an actual selection we made
guided by the restrictions. The results are summarized in the last 3 columns of
Table 1. In total, across all apps, 6.61 configuration items need to be reviewed
and 4.94 configuration actions are required on average. Aside from myHome-
work and MeetMe, which define 52 and 21 configuration items, respectively, all
the rest of the apps require a total of 0–16 configuration item reviews and 0–16
configuration actions. The user performs these actions once (modulo changes
to policy), and so we conclude that the user effort demanded by VisiDroid is
tolerable if not low.

Although much of the VisiDroid workflow is automated, determining what
privacy permissions to set requires users to interact with the web-application
interface of VisiDroid. Prior work has already shown that mobile device users
are aware of privacy concerns when installing mobile applications [7,8,10,14,
15,17,22]. Therefore, for the usability study, our goal was not to confirm users’
concerns, but rather to validate that users can change privacy settings easily and
correctly in the user-facing client application. To this end, we ran a usability
study based on standard approaches.

Usability Study Design. The usability study consisted of 7 male and 3 female
participants whose ages ranged from 30 to 69 and had 1 to 8 years of experience
(mean: 3.0 years) using mobile devices. Each participant was randomly assigned

Visual Configuration of Mobile Privacy Policies 349

Table 1. Applications with privacy threats (‘D’=device; ‘inp’=user input;
‘FB’=Facebook; ‘UIE’=UI element; ‘pcode’=postal code; ‘GAn’=Google Analytics;
‘GAds’=Google Ads; ‘AA’=Adobe Analytics; ‘MM’=Millennial Media)

Application Ad Private Sources Config. Config. Action

libs fields forms items items

1Weather GAn main views, settings UIE 10 10 10

AccuWeather GAn main views UIE 4 4 4

AroundMe MoPub long/lat D 1 1 1

Brightest

Flashlight

MM long/lat D 1 1 1

Cars.com GAds city, sub state, pcode D, inp 6 6 6

Checkout 51 GAn login (+FB),

browsing, account

UIE 8 8 8

com.idemfactor MoPub long/lat D 1 1 1

Daily Workouts MoPub long/lat D 3 3 3

Endomondo GAds long/lat, birthday,

gender

D, inp, FB 8 16 16

Final

Countdown

MoPub

Amazon Ads

first/last name, gender FB 2 4 2

FlightStats GAds country, mcc D 2 4 0

Fox News AA browsing UIE 6 7 7

GasBuddy GAds long/lat D 2 2 2

GrubHub GAn main views UIE 6 6 6

Horoscope GAds long/lat, birthday,

gender

D, inp, FB 5 15 10

JackThreads GAn main views UIE 5 5 5

KAYAK GAds long/lat Dice 3 3 3

KBB GAds pcode D 6 8 8

MeetMe AdMarvel long/lat, pcode,

country, mcc, age,

gender

D, inp, FB 7 21 7

myHomework GAds

Amazon Ads

MM

long/lat, birthday,

age, gender

D, inp, FB 13 52 26

Photobucket AdMarvel long/lat, pcode, gender D, inp, FB 1 2 1

Radar Express Amazon Ads long/lat D 1 1 1

Scanner Radio MoPub

MM

long/lat D 1 1 1

Snagajob GAds long/lat, build serial D 1 2 2

theCHIVE MoPub

MM

D ID, long/lat D 2 4 4

theScore MoPub long/lat D 5 5 5

Urbanspoon GAds long/lat D 1 1 1

WeatherBug AdMarvel

GAn

long/lat, pcode, city,

state, operator name,

main view

D, UIE 4 5 5

Weather Kitty GAds long/lat D 1 1 1

Whitepages AdMarvel long/lat, pcode, address

#, city, sub state, state

D 5 5 5

Yelp GAds pcode, city, country D 1 1 1

350 A. Aydin et al.

to three of five possible app configuration tasks. In each configuration task, they
were asked to modify the privacy data released by the app such that it matched
the permissions given to them with the task, such as the following example:
“Set the granularity of the location released by the advertising to None.” We
gave participants the configuration instead to test all the possible granularities
of configuration options.

Prior to each session, participants filled out a brief background questionnaire.
Then, participants were asked to complete each of the three tasks until they
stated that they were done. No instructions were given on how to complete the
configuration task, but help was available within the client application if needed.

After the three tasks, each participant was asked to select and rank words
that best represented their experience with VisiDroid. The words were taken
from the Microsoft Desirability Toolkit [1]. After all, we asked the participant:
“Could you provide additional details about why you selected <word>?”.

We measured participants’ ability to finish the task via three metrics. Com-
pleteness is the measure of how many participants were able to finish the task
and generate any configuration. Correctness is a measure of how many partici-
pants were able to complete each task correctly. Errors occur each time a setting
was misconfigured, the wrong application was selected, or an action unrelated
to the task at hand was performed. A participant can recover from errors and
still complete a given task correctly.

Usability Study Results. All 30 tasks were evaluated to be complete and
correct, and 26 of those tasks were completed error-free. We observed six errors
over four tasks. Participants 6 and 10 each made errors in their first task, where
they configured the wrong app (and saved the configuration). Participant 6 did
it three times. Participant 10 did it once. Participants 7 and 8 each had one
error, wherein they clicked on an item that had a broken link. Despite these
errors, all participants were able to return to the correct configuration page and
successfully finish all the configuration tasks.

Fig. 5. Participants’ average time per
configuration

Fig. 6. Responses for the desirability
evaluation

Efficiency. As participants became more familiar with the interface, they were
able to complete their tasks more quickly. Figure 5 indicates, across all partici-
pants, that the average time to configure a single option decreased during Task 2

Visual Configuration of Mobile Privacy Policies 351

and yet again during Task 3. The mean time to configure one option decreased
from 44.2 s in Task 1 to 8.1 s in Task 3, or approximately a five-fold improve-
ment. This suggests that the learning curve for understanding the interface and
how to configure privacy options was sufficiently low to qualify as practical and
feasible in real life. Participants’ statements from the interview corroborate this
hypothesis:
- P5: ‘...Once a workflow pattern is established, it’s the same for all screens.’
- P7: ‘After doing a couple of pages of examples, I really didn’t have to think
much about what was going on there.’
- P9: ‘Once I got into the task, especially after the first task, I found the expe-
rience to be very consistent.’

The outlier in Fig. 5 was Participant 7 for Task 1. Participant 7 spent time in
the beginning of Task 1 switching back and forth between reading the instruc-
tions available within the application and experimenting with configurations
options for other apps before reading the task and completing it. After Task 1,
he did not return to the instructions and finished the tasks faster.

Table 2. Responses to the words selected from the desirability toolkit.

Selected words Participant responses

Easy-to-use P1: “It seemed to be fairly obvious what to select from the given
tasks.”

P3: “It was very easily understandable what the controls meant and
what it was that I was doing.”

P4: “There is no confusion about what’s happening. It’s pretty
straightforward and easy to use.”

P6: “[It’s] similar to the existing applications. So I don’t need to
think a lot.”

Straightforward P2: “There’s just a small number of things that you can select over
on the left.”

P4: “It’s pretty clear that it’s about the [privacy threats] coming out
of the featured views.”

P6: “Because it’s highly predictable, so I know what I’m doing.”

Efficient P1: “It seemed to be pretty quick to go in there an select them [the
configuration options].”

P3: “It was very obvious what I selecting and what I was revealing.”

P6: “I guess the setting options are not so many, so I can know
what I’m doing so easily.”

Predictable P6: “After finishing the first task, I know what I was expecting for
the others.”

P8: “I can predict what’s going to happen on the next page. So I
think the learning path is just very short.”

P9: “I knew what to expect when I was going into the different
apps and how to use the different settings.”

352 A. Aydin et al.

User Sentiment. We also collected participants’ sentiments about configuring
privacy via the desirability toolkit. The word cloud visualization in Fig. 6 depicts
all the words that participants selected as part of their top-five words during
that part of the usability study. The more participants that select a word, the
larger it appears in the visualization. The most frequently selected words and the
number of times they were selected were: Easy-to-use (6), Straightforward (5),
Efficient (4) and Predictable (4). Table 2 provides excerpts from the participants’
responses for selecting words in the visualization.

Along with the positive responses, Fig. 6 also shows that there is room for
improvement. Participants 1 and 8 found VisiDroid confusing, expressing that
they did not understand the relationship between the released data the the
screenshots provided. Participants 8 and 9 selected too technical, referring to
the instructions in the tool. Participants 9 and 10 found VisiDroid to be rigid
because there was no way to set permissions once and apply the settings to
multiple screens. Participant 4’s selection of overwhelming referred to the large
number of screens to configure for some applications. We shall address this feed-
back in a future revision.

Enforcement. Lastly, we discuss VisiDroid’s runtime enforcement. We focus
performance (or overhead) and correctness (i.e. no missed leaks and no side
effects). First, for performance, we measured the overhead per the methodology
given in Sect. 5. On average, VisiDroid is responsible for an increase of 2.16%
in user time and 0.96% in system time. For 9 out of the 31 apps we recorded a
modest decrease in user and/or system times following the enforcement transfor-
mation (i.e., negligible if any overhead). The app exhibiting the highest overhead
is Car Buying - KBB, which uses an old version of Google Ads. Our support for
this version is based heavily on reflective calls as well as serialization/deserial-
ization of objects, which cause the high overhead.

Next, to validate absence of side effects, we executed the automated crawling
sessions for each of the apps with and without enforcement. We monitored the
sessions to validate that intermediate as well as final app states are the same
across both runs (modulo ad content). This was indeed the case for all apps.
As an illustration, we detail our experience with GasBuddy. This app utilizes
the user’s precise location to find nearby gas stations, but at the same time, it
also sends the location to ad servers. VisiDroid only mocks the location in the
latter scenario. Indeed, relevant gas stations are still displayed, and alongside
them, ad content that is not immediately related to the given location.

Finally, to confirm that there are no misses, we created another instru-
mentation scheme that — beyond applying anonymization transformations —
intercepts the internal state of ad widgets and analytics engines. This step,
shared in common with offline instrumentation, is to check whether any of the
fields classified as sensitive (according to Sect. 3.1) has unexpectedly reached
the remote library. As expected, we were unable to find a single instance of
sensitive data reaching a third-party library in its original form. As additional
anecdotal evidence, we further interacted with approximately one third of the
apps beyond the automated crawling scripts to check whether previously unseen

Visual Configuration of Mobile Privacy Policies 353

advertising/analytics behaviors would be discovered. Encountering fresh behav-
iors would have resulted in a runtime warning by VisiDroid, as explained in
Sect. 4. We could not, however, trigger any such warning.

6 Related Work

Tools like MockDroid [2] and LP-Guardian [6] replace actual user data with
mock data at the cost of functionality degradation. VisiDroid does the same,
though the user is provided with rich context to decide where and how to enable
mocking. Also, unlike MockDroid and LP-Guardian, which rely on OS-level cus-
tomizations, VisiDroid is portable.

Another approach is runtime privacy enforcement. Roesner, et al. [20] do so
via access control gadgets, which are custom gadgets embedded into the app.
TaintDroid [5], and other solutions built on top of it [13,21], perform runtime
taint tracking. Additional solutions for online monitoring and control of release
of private information are AppFence [11] and AppAudit [26], which are similar in
spirit to TaintDroid; BayesDroid [25], which VisiDroid utilizes as its core track-
ing engine; Aurasium [27], which relies on sandboxing; as well as the approach
of packet-padding-like mitigation [29] (cf. [3,24]). Unlike all of these solutions,
which enforce a general privacy policy, VisiDroid allows privacy enforcement
to be customized by the end user through a user-friendly visual interface.

Yet another category of tools is turned towards developers and analysts. The
Aquifer framework [19] lets the developer define secrecy restrictions that protect
the entire UI workflow defining a user task. AppIntent [28] outputs a sequence
of GUI interactions that lead to transmission of sensitive data, thus helping an
analyst determine whether that behavior was intended. VisiDroid targets end
users rather than developers or analysts.

Finally, there are tools to derive privacy specifications. Lin, et al. [16] cluster
privacy preferences into a small set of profiles to help users manage their private
information. Their approach relies on static code analysis to determine why an
app requests a given permission (e.g. advertising vs core functionality). Unlike
Lin, et al., VisiDroid provides a specification interface, and not inference capa-
bilities, with the goal of serving the exact preferences of the specific user at
hand.

7 Conclusion and Future Work

We have presented VisiDroid, a privacy enforcement system that allows the user
to understand and manage usage of private information for advertising/analytics
via a accessible interface. In the future, inspired by Lin, et al. [16], we intend to
explore possibilities for crowd-sourced policies. We also plan to optimize runtime
enforcement, e.g. by coarsening low-relevance privacy tags.

354 A. Aydin et al.

References

1. Benedek, J., Miner, T.: Measuring desirability: new methods for evaluating desir-
ability in a usability lab setting. In: Proceedings of Usability Professionals Associ-
ation 2003, pp. 8–12 (2002)

2. Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: Mockdroid: trading privacy for
application functionality on smartphones. In: HotMobile 2011 (2011)

3. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow. In: S&P (2010)

4. Choi, W., Necula, G., Sen, K.: Guided gui testing of android apps with minimal
restart and approximate learning. In: OOPSLA (2013)

5. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for real-time privacy monitoring
on smartphones. In: OSDI (2010)

6. Fawaz, K., Shin, K.G.: Location privacy protection for smartphone users. In: CCS
(2014)

7. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t
one: a survey of smartphone users’ concerns. In: Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 33–44.
ACM (2012)

8. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security, p. 3. ACM (2012)

9. Ferrara, P., Tripp, O., Pistoia, M.: MorphDroid: fine-grained Privacy Verification.
In: ACSAC (2015)

10. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., Sadeh, N.: Why people hate your
app: making sense of user feedback in a mobile app store. In: Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1276–1284. ACM (2013)

11. Hornyack, P., Han, S., Jung, J., Schechter, S.E., Wetherall, D.: These aren’t the
droids you’re looking for: retrofitting android to protect data from imperious appli-
cations. In: CCS (2011)

12. Jensen, C., Prasad, M., A. Møller, A.: Automated testing with targeted event
sequence generation. In: ISSTA (2013)

13. Jung, J., Han, S., Wetherall, D.: Short paper: enhancing mobile application per-
missions with run-time feedback and constraints. In: SPSM (2012)

14. Kelley, P.G., Cranor, L.F., Sadeh, N.: Privacy as part of the app decision-making
process. In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, pp. 3393–3402. ACM (2013)

15. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users
complain about? IEEE Softw. 32(3), 70–77 (2015)

16. Lin, J., Liu, B., Sadeh, N.M., Hong, J.I.: Modeling users’ mobile app privacy pref-
erences: restoring usability in a sea of permission settings. In: SOUPS (2014)

17. Lin, J., Amini, S., Hong, J.I., Sadeh, N., Lindqvist, J., Zhang, J.: Expectation and
purpose: understanding users’ mental models of mobile app privacy through crowd-
sourcing. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
pp. 501–510. ACM (2012)

18. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system for
android apps. In: FSE (2013)

Visual Configuration of Mobile Privacy Policies 355

19. Nadkarni, A., Enck, W.: Preventing accidental data disclosure in modern operating
systems. In: CCS (2013)

20. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: rethinking permission granting in modern operating systems.
In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP 2012,
pp. 224–238 (2012)

21. Schreckling, D., Posegga, J., Köstler, J., Schaff, M.: Kynoid: real-time enforce-
ment of fine-grained, user-defined, and data-centric security policies for android.
In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322,
pp. 208–223. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30955-7 18

22. Shklovski, I., Mainwaring, S.D., Skúladóttir, H.H., Borgthorsson, H.: Leakiness and
creepiness in app space: perceptions of privacy and mobile app use. In: Proceedings
of the 32nd Annual ACM Conference on Human Factors in Computing Systems,
pp. 2347–2356. ACM (2014)

23. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user
privacy in android ad libraries. In: W2SP (2012)

24. Sun, Q., Simon, D.R., Wang, Y., Russell, W., Padmanabhan, V.N., Qiu, L.: Sta-
tistical identification of encrypted web browsing traffic. In: S&P (2002)

25. Tripp, O., Rubin, J.: A Bayesian approach to privacy enforcement in smartphones.
In: USENIX Security (2014)

26. Xia, M., Gong, L., Lyu, Y., Qi, Z., Liu, X.: Effective real-time android application
auditing. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, 17–21 May 2015, pp. 899–914 (2015)

27. Xu, R., Säıdi, H., Anderson, R.: Aurasium: practical policy enforcement for android
applications. In: USENIX Security (2012)

28. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: AppIntent: analyzing
sensitive data transmission in android for privacy leakage detection. In: CCS (2013)

29. Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, C.A.,
Nahrstedt, K.: Identity, location, disease and more: inferring your secrets from
android public resources. In: CCS (2013)

http://dx.doi.org/10.1007/978-3-642-30955-7_18

Automated Workarounds from Java Program
Specifications Based on SAT Solving

Marcelo Uva1(B), Pablo Ponzio1,3, Germán Regis1, Nazareno Aguirre1,3,
and Marcelo F. Frias2,3

1 Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina
{uva,pponzio,gregis,naguirre}@dc.exa.unrc.edu.ar

2 Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
mfrias@itba.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),
Buenos Aires, Argentina

Abstract. The failures that bugs in software lead to can sometimes be
bypassed by the so called workarounds: when a (faulty) routine fails,
alternative routines that the system offers can be used in place of the
failing one, to circumvent the failure. Previous works have exploited this
workarounds notion to automatically recover from runtime failures in
some application domains. However, existing approaches that compute
workarounds automatically either require the user to manually build an
abstract model of the software under consideration, or to provide equiv-
alent sequences of operations from which workarounds are computed,
diminishing the automation of workaround-based system recovery.

In this paper, we present two techniques that automatically compute
workarounds from Java code equipped with formal specifications, avoid-
ing abstract software models and user provided equivalences. These tech-
niques employ SAT solving to compute workarounds on concrete program
state characterizations. The first employs SAT solving to compute tra-
ditional workarounds, while the second directly exploits SAT solving to
circumvent a failing method, building a state that mimics the (correct)
behaviour of this failing routine. Our experiments, based on case studies
involving implementations of collections and a library for date arith-
metic, enable us to show that the techniques can effectively compute
workarounds from complex contracts in an important number of cases,
in time that makes them feasible to be used for run time repairs.

1 Introduction

Even in software systems that are built with high quality standards using rigor-
ous software development techniques, bugs still make it through to deployment.
Various issues contribute to this situation: the intrinsic complexity of software,
the constant adaptation and extension that software systems undergo during
maintenance, and the increasing pressure to shorter time to market, among other
factors. These circumstances, combined with demands for availability on soft-
ware, make techniques that help systems tolerate bug-related failures highly
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 356–373, 2017.
DOI: 10.1007/978-3-662-54494-5 20

Automated Workarounds from Java Program Specifications 357

relevant. A mechanism that has been useful for bypassing failures led to by pro-
gram bugs is the so called workaround : when a call to a (faulty) routine leads
to a failure, alternative routines or combinations of routines that the software
system offers can be used in place of the failing one, to circumvent the failure.
Previous works have exploited the workaround notion to automatically recover
from runtime failures in some application domains, notably web applications [5].
However, while existing approaches compute workarounds automatically, they
do so from an abstract, state machine like model of the software being consid-
ered [4,5], that needs to be manually provided, or require the user to provide
equivalent alternative sequences of operations [7], from which workarounds are
computed, diminishing the automation of workaround-based system recovery.

In this paper, we propose two techniques that, through the use of state-of-
the-art SAT-based technology, can automatically compute workarounds directly
from formal specifications accompanying Java source code in the form of JML
contracts, thus avoiding the need for more abstract, manually built software
models or user provided alternatives to system routines. These techniques have
similar requirements for their application, but differ in the actual mechanism to
compute, and provide, workarounds. The first technique employs SAT solving
to compute traditional workarounds, in the sense that these exploit the intrinsic
redundancy of the module holding the failing routine. The second technique
directly exploits SAT solving to circumvent the failing method, automatically
building a state that mimics the (correct) behaviour of this failing routine. This
second technique is then closer to work on constraint-based repair, e.g., [26,30,
31], although it differs in the approaches used to improve scalability. In order
to assess the applicability of the presented techniques, we develop a number of
case studies based on contract-equipped collection classes and a Java library for
date arithmetic, combined with randomly generated program state scenarios for
these classes, where methods of these are assumed to fail, and workarounds for
them, of the two kinds just described, are computed. These case studies show
that the techniques can effectively compute workarounds from complex contracts
in an important number of concrete state situations, in times that makes them
feasible to be used for run time repairs.

2 Background

Workarounds and Run Time Repair. The concept of workaround was initially
defined in the context of self-healing systems [4]. Intuitively, a workaround
exploits the implicit redundancy present in system modules in order to over-
come a fault in the module. Given an initial state Si, a routine m (failing when
invoked in state Si), and a desired final state Sf , a workaround is a procedure
P composed of a sequence of other routines in the module that contains m,
that leads from Si to Sf . If the intended behaviour of a given system module is
captured through a finite state machine abstraction, then a method or routine
failing in a specific state is represented by a particular transition from a source
state (the initial state) to the desired target state. Workarounds composed of

358 M. Uva et al.

sequences of other routines can be systematically explored by traversing the
state machine, from the initial state, attempting to reach the final state without
traversing through transitions labeled with the failing routine. This is in fact the
process employed for automated workaround computation presented in [4,6].

Other approaches employing workarounds (although not computing them
automatically) have been developed in the context of self-healing systems. A
distinguishing approach is that presented in [7], where an architecture for
self healing systems, composed of a mechanism to monitor system execution
and automatically recover via rollbacks and the application of (user provided)
workarounds, is introduced. The concept of workaround has been successfully
applied in real software systems through the above described approaches, with
demonstrating case studies involving complex software systems such as Google
Maps and Flickr [5]. Moreover, further experimental analyses have been per-
formed, showing that the redundancy exploited by the workarounds mechanism
is actually inherent to many component based systems [8].

The Alloy and DynAlloy Modeling Languages. In Alloy [18], datatypes are
defined by signatures. For instance, assuming that we want to model the behav-
iour of linked lists, their structure can be defined through signatures Null,
Node and List in Fig. 1(a). Int (integers) is the only predefined signature.
Every signature defines a set of atoms, i.e., a domain. The modifier one forces
the corresponding signatures to have exactly one element, i.e., to be singletons,
which is useful to define constants to be used in specifications (in our case, Null
is such a “constant”). Signatures can have fields. For instance, signature List
has two fields, head and size. Field head is in fact a relation (more precisely,
a function) from List atoms to Node atoms or Null.

Alloy also features facts, predicates, and assertions. Facts define properties
assumed to be true of the models, and are written in relational logic (first-
order logic with relational operators, including transitive and reflexive-transitive
closures). For instance, if one would want to restrict analysis to acyclic lists,
one may impose acyclicity via fact acyclicLists in Fig. 1(a). In this fact, dot
(.) is relational composition (which can be intuitively seen as a navigational
operator), * and ˆ represent reflexive-transitive and transitive closures; so, the
formula expresses that, for every list l and every node n reachable from the list’s
head, n cannot be reached from n navigating through (one or more) “next” links.

Predicates are formulas with potentially free variables, and can be used to
express properties, and in particular to capture operations. For instance, pred-
icate getFirst in Fig. 1(a) captures the “get first” operation on lists. Finally,
assertions are intended properties, i.e., properties that should be implied by
facts, but must be checked for. For instance, one may check that, when lists
have size one, getFirst and getLast return the same value, expressed in
assertion getFirstEqGetLast in Fig. 1(a). Both predicates and assertions
can be subject to automated analysis using Alloy Analyzer, a tool that employs
off-the-shelf SAT solvers to build satisfying instances of predicates or violat-
ing instances for assertions, under user provided scopes. Figure 1(a) shows some
sample commands running Alloy Analyzer. These will use SAT solving to build

Automated Workarounds from Java Program Specifications 359

one sig Null { }

sig Node {
 elem: Int,
 next: Node+Null
}

sig List {
 head: Node+Null,
 size: Int
}

fact acyclicLists {
 all l: List | all n: Node | n in
l.head.*next => not (n in n.^next)
}

pred getFirst[l: List, result’: Int] {
 l.head != Null and result’ = l.head.elem
}

assert getFirstEqGetLast {
all l: List | all n1, n2: Int |
 l.size = 1 and getFirst[l,n1] and getLast[l,
n2] => n1 = n2
}

run getFirst for 5 but 1 List, 5 Int
check getFirstEqGetLast for 5 but 1 List, 5 Int

act removeAll[thiz: List,
 head: List -> one (Node+Null),
 size: List -> one Int] {
 pre { }

 post { head’ = head ++ (thiz -> Null) and
size’ = size ++ (thiz -> 0) }

}

program choose[l: List, result: Int] {
 local [chosen: Boolean, curr: Node+Null]
 chosen := false;
 curr := l.head;
 ([curr!=Null]?;
 (
 (result:=curr.elem; chosen:=true)+(skip));
 curr:=curr.next
)*;
 [chosen = true]?
}

assertCorrectness chooseIsCorrect[l: List,
result: Int]
{
 pre { l.size>0 and repOK[l] }
 program = choose[l, result]
 post { some e: l.head.*next.elem | e=result’ }
}

run choose for 5 but 1 List, 5 Int, 5 lurs
check chooseIsCorrect for 5 but 1 List, 5 Int, 5
lurs

)b()a(

Fig. 1. Alloy and DynAlloy specifications for linked lists.

instances involving at most 1 list, 5 nodes and using integers with bit-width 5,
that satisfy getFirst, and violate getFirstEqGetLast, respectively. In the
first case it will serve as a sample execution of getFirst. In the second case,
if a violation is found it exhibits a problem regarding a property that the user
thought it would be valid; if on the other hand no counterexample is found, it
helps gaining confidence on the correctness of the model and the validity of the
property (although it is clearly not a proof of validity).

Alloy is a convenient, simple and expressive language for building static mod-
els of software. Dealing with dynamic models, i.e., models that capture sys-
tem execution elements such as state change, is less straightforward. DynAlloy
[12] is an extension of Alloy that incorporates convenient constructs to easily
capture state change. DynAlloy’s syntax and semantics is based on dynamic
logic. The language extends Alloy with basic actions, programs, and partial cor-
rectness assertions. Basic actions are defined through pre and postconditions.
For instance, an action that removes all elements of a list can be defined as
removeAll in Fig. 1(b). This atomic action updates the head and size of the
list, using relational overriding (++). A few things are worth noticing. First,
action removeAll has List’s fields head and size as explicit parameters,
instead of being attributes of argument thiz. This is a necessary part of our
mutable model of the heap (see [13] for details). Second, as opposed to Alloy
predicates, which require parameters for post-state variables, these are implicit in
DynAlloy’s actions. Indeed, notice that the postcondition refers to primed vari-
ables head’ and size’, which are not listed explicitly as action arguments.

360 M. Uva et al.

Moreover, when a primed variable is not mentioned in the postcondition, it is
assumed to be left unchanged by the action; that is, variable thiz (the list object
to which removeAll is applied) is not changed by this atomic action. DynAlloy
programs are built using assignment (:=), skip, tests and atomic actions as base
cases, combined using sequential composition (;), nondeterministic choice (+)
and iteration (*). A sample program that nondeterministically returns some ele-
ment of a linked list is program choose in Fig. 1(b). DynAlloy programs can be
equipped with partial correctness assertions. For instance, one may specify the
intended behaviour of the choose program as a partial correctness assertion, as
illustrated in Fig. 1(b), where we assume repOK to be a provided Alloy predi-
cate characterizing the representation invariant of lists (e.g., acyclicity). DynAl-
loy programs are subject to SAT-based analysis, via a translation into Alloy
[12]. They can be run (i.e., producing instances that correspond to program exe-
cutions), and when they are equipped with partial correctness assertions, they
can be verified against their specifications. For instance, the first command in
Fig. 1(b) produces an execution of choose on a list with at most 5 nodes with
at most 5 iterations; the second command checks whether every terminating
execution of at most 5 iterations of choose, on valid and non-empty lists with
at most 5 nodes and integers of bit-width 5, returns an element of the list.

Alloy and DynAlloy are sufficiently expressive to capture Java programs and
JML specifications, and have been used as intermediate languages for various
analyses, including bounded verification and test generation of JML-annotated
Java programs [2,14,15] (although the SAT-based analysis of Alloy/DynAlloy is
intrinsically incomplete). Our translation is based on [14,15], and relies on sym-
metry breaking and tight field bounds as optimizations. More precisely, we use the
symmetry breaking technique introduced in [14,15], which automatically builds
predicates that force canonical orderings in heap allocated structures, allowing
the analysis to remove structures which are isomorphic to others already con-
sidered. Tight field bounds, on the other hand, are used to reduce the number
of variables and clauses in the propositional encodings of the memory heap, for
Java program analysis [14,15]. They are automatically computed from assumed
properties, such as preconditions and invariants, and are employed to restrict
structures in states that are assumed to satisfy such properties. These optimiza-
tions are crucial to our analysis’ efficiency, especially because we use the encoding
for numerical datatypes originally introduced in [2] (extended to support some
Alloy functions, notably cardinality), enabling us to support increased precision
in numerical characterizations of Java basic datatypes. We refer the reader to
[2,14,15] for further details.

3 Computing Workarounds from Program Specifications

Let us now turn our attention to our first technique for computing automated
workarounds for Java program specifications, employing the SAT based auto-
mated analysis described in the previous section. The approach exploits the
translation of JML contracts of Java programs into DynAlloy, and the bounded

Automated Workarounds from Java Program Specifications 361

iteration (*) and non-deterministic choice (+) operators from this language, to
build a partial correctness assertion involving a (nondeterministic) program,
whose counterexamples correspond to workarounds.

The overall approach works as follows. Let C be a class, and m1,m2, . . . ,mk

the public methods in C. Each method mi is accompanied by its pre and post-
condition in JML, say premi

and postmi
, respectively. Notice that, as explained

in the previous section, from the JML formulas corresponding to the contract of
mi, we can obtain corresponding Alloy formulas, using the translation embed-
ded in TACO [14]. This process leads to Alloy formulas preAmi

and postAmi
.

According to DynAlloy’s syntax, we can, with these formulas, define a DynAl-
loy atomic action ai: act ai {pre { preAmi

} post { postAmi
}}. Notice that

the behaviour of DynAlloy atomic action ai is defined by its pre and post-
condition, i.e., it is assumed that ai behaves exactly as its specification pre-
scribes. Now, given actions a1, a2, . . . , ak, corresponding to the translation of
methods m1,m2, . . . ,mk into DynAlloy, we can build the DynAlloy program
(a1 + a2 + · · · + ak)∗. According to the semantics of nondeterministic choice
and iteration, this program represents all sequential compositions of actions
a1, a2, . . . , ak, and consequently, of methods m1,m2, . . . ,mk.

Now, let us suppose that method mi fails at run time, in a concrete program
state si. Again, we can capture state si as an Alloy predicate sAi , as shown in
the previous section. Thus, we have all the elements to construct the following
partial correctness assertion:

{ sAi } (a1 + a2 + · · · + ai−1 + ai+1 + · · · + ak) ∗ { ¬postAmi
}

which can be automatically analyzed using DynAlloy Analyzer. A counterexam-
ple of the above assertion would consist of a sequence of Alloy states sA0 , . . . , sAj

such that: (i) sA0 is state sAi ; (ii) there is a sequence ap(1); ap(2); . . . ; ap(j) of
operations such that 〈sAi

, sAi+1〉 are related by ap(i) transition relation; and
(iii) sAj

is a state sAf that does not satisfy ¬postAmi
, i.e., that satisfies postAmi

.
Taking into account that sAi and postAmi

are Alloy representations of state si and
the postcondition of method mi, respectively, such counterexample is indeed a
workaround: it provides a sequence of actions, representing methods of class C,
that take the system from state si to a state that satisfies postmi

. Moreover,
if DynAlloy Analyzer does not find a counterexample to the above assertion,
within a provided scope, it is guaranteed that there are no workarounds in that
scope (with workarounds understood as simple sequences of other methods, not
more complex programs).

Dealing with Parameterized Methods. When looking for a workaround involv-
ing methods that receive parameters, we have an additional problem, namely
how to choose appropriate values to pass as parameters so that these lead to
workarounds. To do so, we define atomic actions that nondeterministically assign
a value to a variable. For instance, for integer-typed variables such an action is
defined as follows:

362 M. Uva et al.

1 act nonDetAssign[x: Int] {
2 pre { }
3 post { x’ in Int }
4 }

Then, if a method m(int i) is involved when attempting to build workarounds
for another method, it will participate in the iteration of nondeteministic choice
of methods, as program: nonDetAssign[i] ; m[i]. Notice that this nonde-
terministic assignment is inside the iteration *, to allow for the possibility of
using m[i] more than once, with different parameters. Also, in this example we
are using Alloy’s Int signature, for illustration purposes. In our case studies we
use the custom-built signatures for Java precision integers defined in [2].

An Example. Consider a simple Java implementation of tuples, with methods
setFirst(int value), setSecond(int value) and swap() (swaps first
and second elements of a tuple). Suppose that method setFirst(3) fails on a
tuple object t with values t.first: 4 and t.second: 3. Then, the DynAl-
loy program that is built to produce workarounds from is the following:

1 assertCorrectness computeWorkaround[t: Tuple+Null, first: Tuple -> one Int,
2 second: Tuple -> one Int] {
3 pre { t!=Null and t.first=4 and t.second=3 }
4 program { local i: Int;
5 (t.swap() + (nonDetAssign[i] ; t.setSecond[i]))*
6 }
7 post { !(t.first’=3 and t.second’=t.second)}
8 }

For this program, the analysis would return, for instance, the fol-
lowing workaround: swap(); nonDetAssign(i); setSecond(i), where
nonDetAssign assigned 3 to variable i (these values can be recovered from
the counterexample instance built by DynAlloy Analyzer). The minimum scope
to provide to find such workaround is 2 loop unrolls, 1 tuple and 2 32-bit integers.

It is important to notice that in the above described approach to compute
workarounds, methods are seen as atomic, i.e., we do not take into account the
code of method implementations, only their specifications. This simplification is
made for scalability reasons, since there is no technical limitation in translating
methods as programs (rather than doing so as atomic actions, as in our case).

The technique that we introduce in the following section tackles the
workaround computation problem in a different way, by resorting to the use of
SAT solving to directly build a recovery program state, rather than a recovery
sequence of methods.

4 Program State Repair Using SAT

The technique in the previous section computes standard workarounds, and dif-
fers from other workaround approaches in that it applies to contract specifica-
tions at the level of detail of source code, and it computes workarounds fully
automatically. In this section we present a different approach, which attempts

Automated Workarounds from Java Program Specifications 363

to repair the failing routine by directly producing the expected post state using
the specification of the routine and SAT solving.

While this technique has in principle the same constraints as the previous
one, i.e., that contracts must be available for the programs being subject to the
analysis, it can be better explained (and exploited) through the use of abstraction
functions. Data representations often attempt to capture more abstract models.
For instance, binary search trees are often used as an implementation of sets of
elements. The abstraction function is part of a data representation specification,
that indicates how concrete data representation instances map to the corre-
sponding abstract elements. Going back to our example of binary search trees,
the abstraction function would indicate, for each binary search tree, which is the
set is represents (i.e., it essentially returns the set of values held in the AVL).
Contract languages such as JML [9] support the definition of model variables
and abstraction functions; abstraction functions can also be captured directly
in Java, as shown in [21]. In our case, to simplify the presentation, we will use
Alloy to express abstraction functions. For instance, the abstraction function of
binary search trees, we just referred to, is captured in Alloy (in this case, using
a predicate) as follows:

1 pred absFunction[thiz: Tree, root: Tree -> one (Node+Null),
2 left: Node -> one (Node+Null), right: Node -> one (Node+Null),
3 key: Node -> one Int, result: set Int] {
4 result = thiz.root.*(left+right).key
5 }

So, let us assume that, besides the pre and post-conditions for all class meth-
ods, and the class invariant, we have the Alloy specification of the abstraction
function (this may be given in JML, and then translated to Alloy). Now, as in
the previous technique, assume that method mi breaks at run time in a concrete
program state si. We would want to recover from this failure, reaching a state sf
that satisfies the postcondition postmi

(si, sf) (notice that the postcondition in
languages such as JML and DynAlloy is actually a postcondition relation, that
indicates the relationship between precondition states and postcondition states).
We can build a formula that characterizes these “recovery” states, as follows:

1 pred recoveryStates[s_f: State] {

2 some x, y | alpha[s_i, x] and alpha[s_f, y] and post_m_i [x, y] and repOK[s_f]

3 }

where repOK is the class invariant translated to Alloy, post m i is the postcon-
dition relation of method mi, translated to Alloy from JML, and alpha is the
abstraction function. Finding satisfying instances of this predicate will produce
valid post-states, in the sense that they satisfy the class invariant, that mimic
the execution of method mi.

An Example. Consider a binary search tree representation of sets. Assume
that the JML invariant for binary search trees and the JML postcondition of
method remove have already been translated into Alloy predicates repOK and
post rem, respectively. These would look as follows:

364 M. Uva et al.

1 pred repOK[thiz: Tree, root: Tree -> one(Node+Null), left: Node -> one(Node+Null),

2 right: Node -> one (Node+Null), key: Node -> one Int] {

3 all n : Node | n in thiz.root.*(left + right) implies (n.key != null and

4 (no (((n.left).*(left+right) & (n.right).*(left+right)) -Null)) and

5 (n !in n.ˆ(left+right)) and

6 (all m: Node | m in n.left.*(left+right) implies n.key>m.key) and

7 (all m: Node | m in n.right.*(left+right) implies m.key>n.key))

8 }

9 pred post_rem[elems, elems’: set Int, elem: Int] {

10 elem in elems and elems’ = elems - elem

11 }

Now, consider the left-hand side binary search tree in Fig. 2, and suppose
that method remove(x) failed on this tree, for x = 3. By looking for models
of the following Alloy predicate:

1 pred recoveryStates [thiz: Tree, root,root’: Tree -> one (Node+Null),

2 left,left’: Node -> one (Node+Null), right,right’: Node -> one(Node+Null),

3 key,key’: Node -> one Int] {

4 thiz = T0 and root = (T0->N0) and

5 left = (N0->N1)+(N1->N3)+(N2->Null)+ (N3->Null)+(N4->Null) and

6 right =. . .and . . .key =. . .and . . .

7 some x, y : set Int | absFunction[thiz,root,left,right,key,x] and

8 absFunction[thiz’,root’,left’,right’,key’,y] and post_rem[x, y, 3]

9 }

we will be searching for a valid binary search tree that represents the set resulting
from removing 3 from the left-hand side tree of Fig. 2. The right-hand side binary
tree in Fig. 2 is an instance satisfying the predicate. Notice how this returned
structure does not perform the expected change that a removal method, of a
leaf in this case, would produce. But as far as the abstract datatype instance
that the structure represents, this resulting structure is indeed a valid result of
removing key 3.

Predicate recoveryStates above makes some simplifications, for presen-
tation purposes. First, it uses Alloy Int signature, whereas in our experiments
we use a Java precision integer specification. Second, notice the use of higher-
order existential quantification (some x, y: set Int). Such quantifications
are skolemized for analysis (a “one” signature declares x and y as set Int
fields, which are then used directly in the recoveryStates predicate), a stan-
dard mechanism to deal with existential higher-order quantification in Alloy,
since Alloy Analyzer does not directly support it (see [18] for more details).
Finally, and more importantly, two elements are also part of recoveryStates,
though not explicitly mentioned in the predicate. One is the addition of an
automatically computed symmetry breaking predicate, as put forward in [14,15],
which forces a canonical ordering in the structures and has a substantial impact
in analysis. Second, we use tight bounds [14,15] computed from class invariants
(these reduce propositional state representations by removing propositional vari-
ables that represent field values deemed infeasible by the invariants) to constrain
post-condition states, since these states are assumed to satisfy the corresponding
invariants, as shown in the above predicate.

Automated Workarounds from Java Program Specifications 365

4

2 5

31 4

2

51

}5,4,2,1{}5,4,3,2,1{

0N0N

2N1N1N N2

N3N3 N4

Fig. 2. Two binary search trees, and the sets they represent.

5 Evaluation

Our evaluation consists of an experimental assessment of the effectiveness of
the two presented techniques for automatically computing workarounds, and
repairing faulty states, respectively. The evaluation is based on the following
benchmark of collection implementations (accompanied by their corresponding
JML contracts including requires/ensures clauses, loop variant functions and
class invariants): (i) two implementations of interface java.util.List, one
based on singly linked lists, taken from [15], the other a circular double linked
list taken from AbstractLinkedList in Apache Commons.Collections; (ii)
three alternative implementations of java.util.Set, one based on binary
search trees taken from [28], another based on AVL trees taken from [3], and
the red-black trees implementation TreeSet from java.util; and (iii) one
implementation of java.util.Map, based on red-black trees, taken from class
TreeMap in java.util. This benchmark is complemented with the analysis
of a Java library, namely library JodaTime for date arithmetic. All the exper-
iments were run on a PC with 3.40 Ghz Intel(R) Core(TM) i5-4460 CPU, with
8 GB of RAM. We used GNU/Linux 3.2.0 as the OS. The workaround repair pro-
totypes together with the specifications used for the experiments can be found in
[1]. Experiments can be reproduced following the instructions provided therein.
Also, further experimental data are presented in [1].

In order to assess our workaround techniques, we artificially built repair sit-
uations, i.e., situations in which it was assumed that a method m has failed.
These situations were randomly and automatically constructed, using Randoop
[22]. For each data structure interface, we ran Randoop for 1 h, producing 116000
list traces, 136000 set traces, and 138000 map traces, leading to the same num-
ber of instances of the corresponding data structure. We sampled one every
1000 structures (number 1000, number 2000, number 3000, etc., since Randoop
tends to produce structures of increasing size due to its feedback driven gener-

366 M. Uva et al.

ation policy based on randomly extending previously obtained sequences [22]),
obtaining 116 lists, 136 sets and 138 maps. We proceeded in a similar way for
class TimeOfDay of JodaTime, producing 50 scenarios. For each method m in
the corresponding class, we assumed it failed on each of the structures, and
attempted a workaround based repair using the remaining methods. So, for
instance, for method removeLast from List, we attempted its workaround
repair using the remaining 32 methods of the class, in 116 different repair situ-
ations. Notice that for the first technique, and since workarounds are computed
at the interface level from method specifications (not implementations), we have
one experiment per interface (e.g., AVL and TreeSet set implementations are
equivalent from the specification point of view, so computing workarounds for
one implementation also work for the others). For the second technique, on the
other hand, each implementation leads to different experiments, since the tech-
nique depends on the structure implementation.

We summarize the experimental results of the evaluation of the first technique
in columns Lists, Sets and Maps of Tables 1, 2 and 3. Tables report: (i) method
being fixed (the fix is computed from the iteration of nondeterministic choice
of remaining methods); (ii) total time, the time spent in fixing all 100 faulty
situations; time is reported in h:mm:ss format; (iii) average repair time, i.e.,
the time that in average it took to repair each faulty situation; again, time
is reported in h:mm:ss format; (iv) average workaround length, i.e., number of
routines that the found workaround had, in average; and (v) number of timeouts,
i.e., faulty situations that could not be repaired within 10 min. It is important to
remark that, in the tables, we only count the repairs that actually ended within
the timeout, to compute the total and average repair times. Also, each table
reports, for the corresponding structure, the minimum, maximum and average
size for the randomly generated structures (see table headings).

Regarding the second technique, we evaluated its performance on produc-
ing recovery structures on the same scenarios as the first technique. Recall
that scenarios were produced using, for all implementations of the same data
type, the same interface, so these are shared among different implementations
of the same datatype. The timeout is set in 10 min. Results are reported in the
remaining columns of Tables 1, 2 and 3. Notice that for this technique we do not
report workaround size, since it “repairs” the failing method by directly build-
ing a suitable post-execution state. Regarding the results of both techniques on
the JodaTime date arithmetic library, these are summarized in a single table
(Table 4) due to space restrictions, for varying bitwidths in numeric datatypes.

Assessment. Notice that our first technique performed very well on the presented
experiments. Many methods could be repaired within the timeout limit of 10 min
(see the very small number of timeouts in the tables), and with small traces;
in fact, the great majority could be repaired by workarounds of size 1 (i.e.,
by calling only one alternative method), and some with workarounds of size
up to 3, confirming the observations in [8]. It is important to observe that some
methods are difficult to repair. For instance, method clear, that removes all
elements in the corresponding collection, cannot be solved alternatively by short

Automated Workarounds from Java Program Specifications 367

Table 1. Workaround computation for Lists.

Table 2. Workaround computation for Sets and Trees.

workarounds. In fact, this method requires performing as many element removals
as the structure holds, which went beyond the 10-minute timeout in all cases.
This technique also performed well on our arithmetic-intensive case study. Notice
that, as bit-width is increased, analysis becomes slightly more expensive, but
more workarounds arise (since some workarounds are infeasible with smaller
bit-widths). Our second technique features even more impressive experimental
results. Most of the repair situations that we built with Randoop were repaired
using this technique. This included repairing methods that, from many program
states, could not be repaired by the first technique.

368 M. Uva et al.

Table 3. Workaround computation for Maps.

Table 4. Workaround Computation for JodaTime.

These techniques scaled for the evaluated classes beyond some SAT based
analysis techniques, e.g., for test generation or bounded verification [2,14]. The
reason for this increased scalability might at first sight seem obvious, since the
analysis starts from a concrete program state. However, the nondeterminism of
the (DynAlloy) program used in the computation of the workarounds, formed
by an iteration of a nondeterministic choice of actions (representing methods),
makes the analysis challenging and the obtained results relatively surprising.
A technical detail that makes the results interesting is the fact that the transla-
tion from Java into Alloy and Dynalloy that we use encodes numerical datatypes
with Java’s precision. That is, integers are encoded as 32-bit integers (in the case
of JodaTime, where arithmetic is heavily used, we assessed our techniques with
different bit-widths), as opposed to other works that use Alloy integers (very
limited numerical ranges). The approach is that presented in [2], extended to

Automated Workarounds from Java Program Specifications 369

make some Alloy functions, notably cardinality (#), work on these numerical
characterization of Java basic datatypes.

Threats to Validity. Our experimental evaluation involved implementations
accompanied by corresponding abstract datatypes. When available, these were
taken from previous work, that used them in a benchmark for automated analy-
sis. We did not formally verify that these implementations and specifications are
correct, and they may contain errors that affect our results. We manually checked
that the obtained workarounds were correct, confirming that, as far as our tech-
niques required, the specifications were correct. Our experiments involved ran-
domly generated scenarios (program states), from which workaround computa-
tions were launched. Different randomly picked scenarios may of course lead to
different results. We attempted to build a sufficiently varied set of such program
states, while at the same time keeping the size of the sample maneagable. In all
cases we performed workaround computations, for each method under analysis,
on more than 100 scenarios. These were selected following an even distribution,
and taking into account how Randoop (the random testing tool used to produce
the scenarios) performed the generation, reporting our results as an average.
We took as many measures as possible to ensure that the selection of the cases
did not particularly favor our techniques. Our workaround computation tools
make use of optimizations, such as tight bounds [14,15]. These may introduce
errors, e.g., making the exploration for workarounds not bounded exhaustive.
We experimentally checked consistency of our prototypes with/without these
optimizations, to ensure these did not affect the outcomes.

6 Related Work

Existing approaches to workaround computation are among the closest work
related to our first technique. We identify two lines, one that concentrates
in computing workarounds, as in [4,6], and another that focuses on applying
workarounds [7]. Our work is closer to the former. As opposed to [4,6], requiring
a state transition system abstraction, our workarounds are computed directly
from source code contracts. Workarounds of the kind used in [7] are alternative
equivalent programs to that being repaired. Thus, workarounds can be thought
of as automated program repair strategies. In this sense, the work is related to
the works on automated program repair, e.g., [10,20,29]. The workarounds that
we compute can repair a program in a specific state, i.e., they are workarounds as
in the original works [4,6], that do not constitute “permanent” program repairs,
but “transient” ones, i.e., that only work on specific situations. Program repair
techniques often use tests as specifications and thus can lead to spurious fixes
(see [23,27] for detailed analyses of this problem).

Our second technique for workarounds directly manipulates program states,
as opposed to trying to produce these indirectly via method calls. This tech-
nique is closely related to constraint-based and contract-based structure repair
approaches, e.g. [11,17,19], in particular the approach of Khurshid and collab-
orators to repair complex structures, reported in [30,31]. While Khurshid et al.

370 M. Uva et al.

compute a kind of structure “frame” (the part of the structure that the fail-
ing program modified), and then try to repair structures by only modifying the
frame, we allow modifications on the whole structure. Also, in [30,31], Alloy
integers are used, instead of integers with Java precision. Thus, a greater scal-
ability can be observed in their work (in that work the authors can deal with
bigger structures, compared to our approach), whereas in our case the program
state characterization is closer to the actual Java program states. Moreover, our
technique can repair structures that the approach in [31] cannot. A thorough
comparison cannot be carried out, because the tool and experiments from [31]
are not available. Nevertheless, we have followed that paper’s procedure, and
attempted to repair some of the randomly produced structures of our experi-
ments. For instance, in cases where a rotation is missing (in a balanced tree),
the approach in [31] cannot produce repairs, since the fields that are allowed
to change are restricted to those visited by the program, and since the rotation
is mistakenly prevented, the technique cannot modify fields that are essential
for the repair. If, instead, we allow the approach in [31] to modify the whole
structure, then the approach is similar to ours without the use of tight bounds
and symmetry breaking, which we already discussed in the previous section.
The approaches are however complementary, in the sense that we may restrict
modifiable fields as proposed in [31], and they could exploit symmetry breaking
predicates and tight bounds, as in our case. Our work uses tight field bounds
to improve analysis. Tight bounds have been exploited in previous work, to
improve SAT-based automated bug finding and test input generation, e.g., in
[2,14,15,24], and in symbolic execution based model checking, to prune parts
of the symbolic execution search tree constraining nondeterministic options, in
[16,25].

7 Conclusions and Future Work

The intrinsic complexity of software, the constant adaptation/extension that
software undergoes and other factors, make it very difficult to produce soft-
ware systems maintaining high quality throughout their whole lifetime. This fact
makes techniques that help systems tolerate bug-related failures highly relevant.
In this paper, we have presented two techniques that contribute to tolerate run-
time bug related failures. These techniques propose the use of SAT-based auto-
mated analysis to automatically compute workarounds, i.e., alternative mecha-
nisms offered by failing modules to achieve a desired task, and automated pro-
gram state repair. These techniques apply directly to formal specifications at the
level of detail of program contracts, which are exploited for workaround and state
repair computations. Our program state characterizations are closer to the actual
concrete program states than some related approaches, and can automatically
deal with program specifications at the level of detail of source code, as opposed
to alternatives that require the engineer to manually produce high level state
machine program abstractions. We have performed an experimental evaluation
that involved various contract-equipped implementations (including arithmetic-
intensive ones), and showed that our techniques can circumvent run time failures

Automated Workarounds from Java Program Specifications 371

by automatically computing workarounds/state repairs from complex program
specifications, in a number of randomly produced execution scenarios.

As future work, we plan to evaluate the techniques’ performance in software
other than our case studies, as well as to develop more sophisticated optimiza-
tion techniques, e.g., by further exploiting tight bounds. Moreover, while the
repairs produced by workarounds are in principle “transient”, many of the com-
puted workarounds are instances of “permanent” workarounds; we plan to study
ways to automatically produce “permanent” workarounds from “transient” can-
didates, as a proposal of a program repair technique.

References

1. Replication package for Automated Workarounds from Java Program Specifications
based on SAT Solving. http://dc.exa.unrc.edu.ar/staff/naguirre/sat-workarounds/

2. Abad, P., Aguirre, N., Bengolea, V., Ciolek, D., Frias, M., Galeotti, J., Maibaum,
T., Moscato, M., Rosner, N., Vissani, I.: Improving test generation under rich
contracts by tight bounds and incremental SAT solving. In: Proceedings of 6th
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013, Luxembourg City, Luxembourg. IEEE (2013)

3. Belt, J., Robby, Deng, X.: Sireum/Topi LDP: a lightweight semi-decision pro-
cedure for optimizing symbolic execution-based analyses. In: Proceedings of the
7th Joint Meeting of the European Software Engineering Conference and The
ACM SIGSOFT International Symposium on Foundations of Software Engineering
ESEC/FSE 2009. ACM (2009)

4. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: Proceedings of 2008 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2008, Leipzig, Germany, 12–13
May. ACM (2008)

5. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: Proceedings of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2010, Santa Fe (NM), USA. ACM
(2010)

6. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: RAW: runtime automatic
workarounds. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, ICSE 2010. ACM, New York (2010)

7. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recovery
from runtime failures. In: Proceedings of the 35th International Conference on
Software Engineering ICSE 2013. IEEE/ACM, San Francisco (2013)

8. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds: exploiting
the intrinsic redundancy of web applications. ACM Trans. Softw. Eng. Methodol.
24(3) (2015). ACM

9. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006). doi:10.1007/11804192 16

10. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes to faulty
programs. In: ICST 2010, pp. 65–74 (2010)

http://dc.exa.unrc.edu.ar/staff/naguirre/sat-workarounds/
http://dx.doi.org/10.1007/11804192_16

372 M. Uva et al.

11. Demsky, B., Rinard, M.: Static specification analysis for termination of
specification-based data structure repair. In: Proceedings of the 2003 ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2003. ACM (2003)

12. Frias, M., Galeotti, J., López Pombo, C., Aguirre, N.: DynAlloy: upgrading alloy
with actions. In: Proceedings of International Conference on Software Engineering,
ICSE 2005, St. Louis, Missouri, USA. ACM (2005)

13. Galeotti, J.P., Frias, M.F.: DynAlloy as a formal method for the analysis of
Java programs. In: Sacha, K. (ed.) Software Engineering Techniques: Design
for Quality. IFIP, vol. 227, pp. 249–260. Springer, Boston (2006). doi:10.1007/
978-0-387-39388-9 24

14. Galeotti, J.P., Rosner, N., López Pombo, C., Frias, M.: Analysis of invariants
for efficient bounded verification. In: Proceedings of the Nineteenth International
Symposium on Software Testing and Analysis, ISSTA 2010, Trento, Italy, 12–16
July. ACM (2010)

15. Galeotti, J.P., Rosner, N., López Pombo, C., Frias, M.: TACO: efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Trans.
Softw. Eng. 39(9), 1283–1307 (2013). IEEE

16. Geldenhuys, J., Aguirre, N., Frias, M.F., Visser, W.: Bounded lazy initialization.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 229–243.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38088-4 16

17. Hussain, I., Csallner, C.: Dynamic symbolic data structure repair. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE
2010. ACM (2010)

18. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

19. Khurshid, S., Garćıa, I., Suen, Y.L.: Repairing structurally complex data. In: Gode-
froid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 123–138. Springer, Heidelberg
(2005). doi:10.1007/11537328 12

20. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: ICSE 2013, pp. 802–811 (2013)

21. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification
and Object-Oriented Design. Addison-Wesley, Boston (2000)

22. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proceedings of International Conference on Software Engineering,
ICSE 2007. IEEE (2007)

23. Qi, Z., Long, F., Achour, S., Rinard, M.C.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, 12–17 July 2015, pp. 24–36 (2015)

24. Rosner, N., Bengolea, V., Ponzio, P., Khalek, S., Aguirre, N., Frias, M., Khurshid,
S.: Bounded Exhaustive test input generation from hybrid invariants. In: Pro-
ceedings of the ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014. ACM (2014)

25. Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.: BLISS: improved
symbolic execution by bounded lazy initialization with SAT support. IEEE Trans.
Softw. Eng. 41(7), 639–660 (2015). IEEE

26. Samimi, H., Aung, E.D., Millstein, T.: Falling back on executable specifications.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-14107-2 26

http://dx.doi.org/10.1007/978-0-387-39388-9_24
http://dx.doi.org/10.1007/978-0-387-39388-9_24
http://dx.doi.org/10.1007/978-3-642-38088-4_16
http://dx.doi.org/10.1007/11537328_12
http://dx.doi.org/10.1007/978-3-642-14107-2_26

Automated Workarounds from Java Program Specifications 373

27. Smith, E.K., Barr, E., Le Goues, C., Brun, Y.: Is the cure worse than the disease?
overfitting in automated program repair. In: Symposium on the Foundations of
Software Engineering (FSE) (2015)

28. Visser, W., Pasareanu, C., Pelánek, R.: Test input generation for java containers
using state matching. In: Proceedings of the ACM/SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2006. ACM (2006)

29. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: ICSE 2009, pp. 364–374 (2009)

30. Nokhbeh Zaeem, R., Khurshid, S.: Contract-based data structure repair using alloy.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-14107-2 27

31. Nokhbeh Zaeem, R., Gopinath, D., Khurshid, S., McKinley, K.S.: History-aware
data structure repair using SAT. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 2–17. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 2

http://dx.doi.org/10.1007/978-3-642-14107-2_27
http://dx.doi.org/10.1007/978-3-642-28756-5_2
http://dx.doi.org/10.1007/978-3-642-28756-5_2

Slicing from Formal Semantics: Chisel

Adrián Riesco1(B), Irina Măriuca Asăvoae2, and Mihail Asăvoae2

1 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 Inria Paris, Paris, France
{irina-mariuca.asavoae,mihail.asavoae}@inria.fr

Abstract. We describe Chisel—a tool that synthesizes a program slicer
directly from a given algebraic specification of a programming language
operational semantics. This semantics is assumed to be a rewriting logic
specification, given in Maude, while the program is a ground term of
this specification. We present the tool on two types of language para-
digms: high-level, imperative and low-level assembly languages. We con-
duct experiments with standard benchmarking used in avionics.

1 Introduction

Lately we observe an increased interest in defining programming languages
semantics as rewriting systems. This desideratum is stated in the rewriting logic
semantics project [5], where the languages semantics are defined as rewriting
systems using Maude [3], and it is followed by the K framework [8]. Our work
complements the rewriting logic semantics project by developing static analysis
methods, e.g., slicing, for programs written in languages with semantics already
defined in Maude. Here we present Chisel—a Maude tool for generic slicing.

Slicing is an analysis method employed for program debugging, testing, code
parallelization, compiler tuning, etc. In essence, a slicing method evaluates data
flow equations over the control flow graph of the program. Tip gives in [9] a com-
prehensive survey on the standard program slicing techniques applied over differ-
ent programming language concepts. All these techniques are built using different
models that represent augmentations of the control flow graph. Hence, the trans-
lation of the programs into these models has to be automatized and this has to
be produced at the level of the programming language under consideration.

Chisel aims to advance the generic synthesis of program models from any
programming language, provided the algebraic semantics of the language is given
as a rewriting system. Namely, from a programming language semantics, given
as a Maude specification, Chisel extracts pieces of interest for slicing, and uses
these pieces to augment the program term and to produce the model, which
is then sliced. We use for experiments two semantics: one for an imperative

Research partially supported by MINECO Spanish projects StrongSoft (TIN2012-
39391-C04-04) and TRACES (TIN2015-67522-C3-3-R), and Comunidad de Madrid
project N-Greens Software-CM (S2013/ICE-2731).

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 374–378, 2017.
DOI: 10.1007/978-3-662-54494-5 21

Slicing from Formal Semantics: Chisel 375

programming language with functions, WhileFun, and another for the MIPS
assembly language. Chisel analyzes these semantics and extracts key information
for slicing (e.g. side-effect constructs and their data flow direction) that are used
when traversing the program term in order to obtain the program slice.

With Chisel we target sequential imperative code generated from synchro-
nous designs—a class of applications used in real-time systems, e.g., avionics.
Note that Chisel is not yet able to handle pointers, but the synchronous pro-
grams do not contain pointers either. For the evaluation of Chisel on industrial
benchmarks, the pointers are transformed into function calls.

Related Work: An early work on generic slicing is presented in [4] where the
tool compiles a program into a self slicer. Generic slicing is also the focus of the
ORBS [2] tool which proposes observation-based slicing, a statement deletion
technique for dynamic slicing. In rewriting logic [1] implements dynamic slic-
ing for execution traces of the Maude model checker. In comparison with these
tools, Chisel proposes a static approach to generating slicers for programming
languages starting from their formal semantics. Given its static base, Chisel
computes slices for programs and not for (model checker) runs. In [7] we refer
to more technical details of the approach. Nevertheless, the developing platform
of Chisel—Maude allows us to approach other types of slicing, e.g., dynamic
or amorphous. Note that while dynamic slicing methods (either the classic or
deletion-based) let us preserve genericity, determining generic statements equiv-
alence for amorphous slicing might prove difficult. For the later case, we envision
heuristics that start with our data dependence inference and compute some form
of transitive closure.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
the tool, Sect. 3 describes the experimental results obtained, while Sect. 4 con-
cludes and outlines some lines of future work. The complete code of the tool and
examples are available at https://github.com/ariesco/chisel.

2 Chisel Design

In this section we describe the ideas underlying the tool. The main observation
we use for Chisel is the fact that side-effects induce an update in the memory
afferent to the program. Hence, Chisel first detects the operators used by the
semantics to produce memory updates. Then, the usage of the memory update
operators is traced through semantics up to the language constructs. Any lan-
guage construct that may produce a memory update is classified as producing
side-effects. Moreover, following the direction of the memory updates, we infer
also the data flow details for each side-effect language construct. Finally, the
information gathered by Chisel about language constructs is used to traverse
the term representing the program and to extract the subterms representing the
slice.

In Fig. 1 we depict the structure of Chisel by components and their input-
output relation. We present next details about each of Chisel’s components that
work with S—the Maude specification of the programming language semantics.

https://github.com/ariesco/chisel

376 A. Riesco et al.

Side-Effects
Analysis

Memory Policies
Analysis

Context-Update
Analysis

S Language Semantics

Term Analysis

C M C
memory
write

memory
stack

Fig. 1. Chisel components: the formal language semantics and the analyses.

Memory Policies Semantics Analysis: Let us define M as the part of S that
defines some (abstract) form of the memory used during program execution. Our
assumption about the structure of the memory is that it connects the variables
in the program with their values possibly via a chain of intermediate addresses.
We define a memory policy as a particular type of operators specified using M.
For example, a memory-read is the set of operators in M that contain in their
arity the sort for variables and for memory, and in their co-arity the sort for
values. A memory-write operator contains in the arity the memory, the variable,
and a value, in the co-arity the memory, and the rules defining this operator
change the memory variable by updating the value.

Side-Effect Semantics Analysis: Let us denote as C the part of S that defines
the operators representing the programming language constructs, i.e., language
instructions. We name side-effect constructs those operators in C that may pro-
duce a memory-write over some of its variable component. The side-effect analy-
sis starts with the rules with C operators in the left-hand side and constructs a
hyper-tree T whose nodes are sets of rewrite rules and edges are unification-based
dependencies between these rules. The paths P in T with leaves that contain
rules classified by the memory policy phase as memory-writes are signalling the
side-effect constructs. Next, by trickling-up the paths in P, Chisel determines
the data flow (source-destination) produced by the side-effect constructs.

Context-Update Semantics Analysis: We see the program p as a term t ∈ S
that can be flattened into a list L of elements from C by a preorder traversal of
the tree associated to t. We define as context-update constructs those operators in
C that, during p execution using S, produce changes to L. For example, function
calls and gotos are context-updates. The inference of a set of constructs that
may produce context-updates filters the paths in T by using a stack memory
policy at the leaves level. This analysis is work in progress, which we only brief
here. Currently, we provide these constructs for each S.

Term Augmentation and Traversal: The algorithm for slicing a program
takes as input a slicing criterion S consisting in a set of program variables.
In this step, Chisel takes the list L of C subterms obtained from the program
term and traverses it repeatedly until the set S stabilizes. While traversing the
list L, whenever a side-effect construct is encountered, if the destination of this
construct is from S then all the source variables are added to S. Moreover, when-
ever a context-update construct is encountered, the traversal of L is redirected

Slicing from Formal Semantics: Chisel 377

towards the element of L matching a particular subterm in the context-update
construct.

3 Chisel Experiments

We run Chisel on a standard benchmark for real-time systems called
PapaBench [6], a code snapshot extracted from an actual real-time system
designed for Unmanned Aerial Vehicle. We report the results of Chisel for the
core functionalities (rows 1, 2), and the complete PapaBench benchmark (rows
3, 4). For both WhileFun and MIPS variants of the benchmarks, we quantify the
number of functions and function calls (columns #Funs and respectively #Calls),
the code size (LOC), and the slicing reduction factor, red(%). The reduction fac-
tor captures the slicing performance w.r.t. the original code on both WhileFun
and MIPS variants (Fig. 2).

No Name # Funs # Calls LOC red (%) LOC red (%)

(WhileFun) (WhileFun) (MIPS) (MIPS)

1 scheduler fbw 14 18 103 72.8 % 396 44.4 %

2 periodic auto 21 80 225 73.3 % 779 36.3 %

3 fly by wire 41 110 638 91.1 % 1913 41 %

4 autopilot 95 214 1384 92 % 5639 41.5 %

Fig. 2. Chisel performance on PapaBench benchmark

The lower percentages obtained for the MIPS code appear because of the cur-
rent limitation of Chisel in handling memory addresses. Moreover, any function
call in a small sized function involves setting the function stack with registers
global and stack pointer, which dominate the code size yielding longer slices.

4 Conclusions

In this paper we have presented Chisel, a Maude tool that, given the seman-
tics of a programming language written as a rewriting specification in Maude,
can (both intra- and interprocedural) slice programs written in that language.
We tested Chisel with different semantics: WhileFun (imperative) and MIPS
(assembly), both with different variations (e.g. different memory models and
data flow styles). In future work, we plan to extend the language with pointers,
hence supporting more complex memory policies, based on more refined memory
models.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Combining runtime checking
and slicing to improve Maude error diagnosis. In: Mart́ı-Oliet, N., Ölveczky, P.C.,
Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 72–96.
Springer, Cham (2015). doi:10.1007/978-3-319-23165-5 3

http://dx.doi.org/10.1007/978-3-319-23165-5_3

378 A. Riesco et al.

2. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS: language-
independent program slicing. In: SIGSOFT FSE 2014, pp. 109–120. ACM (2014)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71999-1

4. Danicic, S., Harman, M.: Espresso: a slicer generator. In: SAC 2000, pp. 831–839.
ACM (2000)

5. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoret. Comput.
Sci. 373(3), 213–237 (2007)

6. Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., Michiel, M.D.: PapaBench: a free
real-time benchmark. In: WCET 2006. IBFI, Schloss Dagstuhl (2006)

7. Riesco, A., Asavoae, I.M., Asavoae, M.: Memory policy analysis for semantics spec-
ifications in Maude. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp.
293–310. Springer, Cham (2015). doi:10.1007/978-3-319-27436-2 18

8. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

9. Tip, F.: A survey of program slicing techniques. JPL 3(3), 121–189 (1995)

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-319-27436-2_18

EASYINTERFACE: A Toolkit for Rapid
Development of GUIs for Research

Prototype Tools

Jesús Doménech1, Samir Genaim1(B), Einar Broch Johnsen2,
and Rudolf Schlatte2

1 Complutense University of Madrid, Madrid, Spain
genaim@gmail.com

2 University of Oslo, Oslo, Norway

Abstract. EasyInterface is an open-source toolkit to develop web-
based graphical user interfaces (GUIs) for research prototype tools. This
toolkit enables researchers to make their tool prototypes available to the
community and integrating them in a common environment, rapidly and
without being familiar with web programming or GUI libraries.

1 Introduction

During the lifetime of a research project, research prototype tools are often
developed which share many common aspects. For example, in the Envisage [2]
project, we developed various tools for processing ABS programs: static analyz-
ers, compilers, simulators, etc. Both as individual researchers and as groups, we
often develop several related tools over time to pursue a specific line of research.

Providing the community with easy access to research prototype tools is
crucial to promote the research, get feedback, and increase the tools’ lifetime
beyond the duration of a specific project. This can be achieved by building
GUIs that facilitate trying tools; in particular, tools with web-interfaces can be
tried without the overhead of first downloading and installing the tools.

In practice, we typically avoid developing GUIs until tools are fairly sta-
ble. Since prototype tools change continuously, in particular during a research
project, they will often not be available to the community during early develop-
ment. Both programming plug-ins for sophisticated frameworks such as Eclipse
Scout and building simpler GUIs from scratch are tedious tasks, in particular
for web-interfaces. It typically gets low priority when developing a research pro-
totype. Often we opt for copying the GUI of one tool and modifying it to fit the
needs of a new related tool. Apart from code duplication, these tools will “live”
separately, although we might benefit from having them in a common GUI.

EasyInterface is a toolkit that aims at simplifying the process of build-
ing and maintaining GUIs for (but not limited to) research prototype tools.

This work was partially funded by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services, the Spanish MINECO projects TIN2012-38137 and
TIN2015-69175-C4-2-R, and the CM project S2013/ICE-3006.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 379–383, 2017.
DOI: 10.1007/978-3-662-54494-5 22

380 J. Doménech et al.

Avoiding complex programming, it provides an easy, declarative way to make
existing (command-line) tools available via different environments such as a web-
interface, within Eclipse, etc. It also defines a text-based output language that
can be used to improve the way results are presented to the user without requir-
ing any particular knowledge of GUI/Web programming; e.g., if the output of a
tool is (a structured version of) “highlight line number 10 of file ex.c” and “when
the user clicks on line 10, open a dialog box with the text ...”, the web-interface
will interpret this and convert it to corresponding visual effects. An advantage
of using such an output language is that it will be understood by all the front-
end environments of EasyInterface, e.g., the web-interface and the Eclipse
plug-in (which is still under development). EasyInterface is open source and
available at http://github.com/abstools/easyinterface. Detailed description of
EasyInterface, including a step by step example on how to integrate tools
and discussion of related work, is available in the user manual [1].

2 General Overview

EasyInterface
 Server

Tool1

Tool3

Tool1.cfg

Web-Interface

Eclipse Plugin

Remote Shell

Server Side
(A machine with Linux, Windows or OSX)

Client Side

The server executes the tools via
command-line and forward their
standard output to the clients

Clients communicate
with the server using
HTTP POST requests

Tool2 ToolN

app2.cfg
Tool2.cfg

ToolN.cfg

Fig. 1. EasyInterface architecture.

The overall architecture of
EasyInterface is depicted in
Fig. 1. Its two main components
are (i) server side: a machine
with several tools (the circles
Tool1, etc.) executable from the
command-line, and with output
going to the standard output.
These are the tools that we want
to make available for the out-
side world; and (ii) client side:
several clients that communi-
cate with the server to execute
a tool. Tools may run on the server machine or on other machines; e.g., the web-
interface can be installed as a web-page on the server, and accessed from any-
where with a web browser. Clients can connect to several servers simultaneously.

app

execinfo
cmdlineapp

cmdlineapp
execinfo

parameters

selectone
option
option
selectone

parameters
app

The server side addresses the
problem of providing a uniform way
to remotely execute locally installed
tools. This problem is solved by the
server, which consists of PHP pro-
grams (on top of an HTTP server).
The server supports declarative spec-
ifications of how local tools can be
executed and which parameters they
take, using simple configuration files.
For example, the XML snippet to the
right is a configuration file for a tool

http://github.com/abstools/easyinterface

EasyInterface: A Toolkit for Rapid Development of GUIs 381

called "myapp". The cmdlineapp tag is a template describing how to execute the
tool from the command-line. The template parameter is replaced
by an appropriate value before execution. The server also supports template
parameters for, e.g., passing files, temporal working directories, session identi-
fiers, etc. The parameters tag includes a list of parameters accepted by the tool.
For example, the parameter “c” above takes one of the values 1 or 2.

Once the configuration file is installed on the server,
we can access the tool using an HTTP POST request that
includes JSON-formatted data like the one on the right.
When receiving such a request, the server generates a
shell command according to the specification in the con-
figuration file (e.g., “/path-to/myapp -c 1”), executes
it and redirects the standard output to the client. The
server also supports (i) tools that generate output in the background, we let
clients fetch output (partially) when it is ready; and (ii) tools that generate
files, we let clients download them later when needed. In all cases, the server
can restrict the resources available to a tool (e.g., the processing time), and
guarantees the safety of the generated command; i.e., clients cannot manipulate
the server to execute other programs installed on the server. In addition to tools,
the server can include example files, so users can easily try the tools.

EasyInterface not only makes the server side execution of a tool easy, it
provides client side GUIs that (1) connect to the server and ask for available
tools; (2) let users select the tool to execute, set its parameters and provide a
source program; (3) generate and send a request to the server; and (4) display the
returned output. EasyInterface provides three generic clients: a web-interface
similar to an IDE; an Eclipse IDE plug-in; and a remote command-line shell. The
last two clients are under development, so we focus here on the web-interface.

The web-interface, shown in Fig. 2, is designed like an IDE where users can
edit programs, etc. Next to the Run button there is a drop-down menu with all
available tools obtained from the associated servers. In the settings window, the
user can select values for the different parameters of each tool. These parameters
are specified in the corresponding configuration files on the server side, and
automatically converted to combo-boxes, etc., by the web-interface. When the
user clicks the Run button, the web-interface sends a request to the associated
server to execute the selected tool and prints the received output back in the
console area of the web-interface.

highlightlines
lines line lines

highlightlines

oncodelineclick
lines line lines
eicommands

dialogbox
content content

dialogbox
eicommands

oncodelineclick

Since the web-interface
and Eclipse plug-in are
GUI based clients, Easy-
Interface allows tools
to generate output with
some graphical effects,
such as opening dialog-
boxes, highlighting code
lines, adding markers, etc.

382 J. Doménech et al.

Fig. 2. EasyInterface web-interface client

To use this feature, tools must support the EasyInterface output language,
shown in the XML snippet to the right. The tag highlightlines indicates that Lines
5–10 of file /path-to/sum.c should be highlighted. The tag oncodelineclick indi-
cates that when clicking on Line 17, a dialog-box with a corresponding message
should be opened. Note that a tool is only modified once to produce such output,
with similar effect in all EasyInterface clients (including future ones).

3 Concluding Remarks

EasyInterface is a toolkit for the rapid development of GUIs for command-
line research prototype tools. The toolkit has been successfully used in the
Envisage project to integrate the tools from the different partners in a common
web-based environment, including parsers, type-checkers, compilers, simulators,
deadlock and worst-case cost analyzers, and a systematic testing framework (see
http://abs-models.org). Our experience suggests that the methodology implied
by EasyInterface for building GUIs is adequate for research prototype tools;
as such tools change continuously, the corresponding GUIs can be modified
immediately and with negligible effort. Future work includes plans to develop

http://abs-models.org

EasyInterface: A Toolkit for Rapid Development of GUIs 383

more clients, and libraries for different programming languages to facilitate gen-
eration of the output commands/actions instead of printing these directly.

References

1. Easyinterface User Manual. http://costa.ls.fi.upm.es/papers/costa/eiusermanual.
pdf

2. Envisage: Engineering Virtualized Services. http://www.envisage-project.eu

http://costa.ls.fi.upm.es/papers/costa/eiusermanual.pdf
http://costa.ls.fi.upm.es/papers/costa/eiusermanual.pdf
http://www.envisage-project.eu

Software Product Lines

Family-Based Model Checking with mCRL2

Maurice H. ter Beek1(B), Erik P. de Vink2, and Tim A.C. Willemse2

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 TU/e, Eindhoven, The Netherlands

Abstract. Family-based model checking targets the simultaneous veri-
fication of multiple system variants, a technique to handle feature-based
variability that is intrinsic to software product lines (SPLs). We present
an approach for family-based verification based on the feature μ-calculus
μLf , which combines modalities with feature expressions. This logic
is interpreted over featured transition systems, a well-accepted model
of SPLs, which allows one to reason over the collective behavior of a
number of variants (a family of products). Via an embedding into the
modal μ-calculus with data, underpinned by the general-purpose mCRL2

toolset, off-the-shelf tool support for μLf becomes readily available. We
illustrate the feasibility of our approach on an SPL benchmark model
and show the runtime improvement that family-based model check-
ing with mCRL2 offers with respect to model checking the benchmark
product-by-product.

1 Introduction

Many software systems are configurable systems whose variants differ by the
features they provide, i.e. the functionality that is relevant for an end-user, and
are therefore referred to as software product lines (SPLs) or product families.
SPLs challenge existing formal methods and analysis tools by the potentially
high number of different products, each giving rise to a large behavioral state
space in general. SPLs are popular in the embedded and critical systems domain.
Therefore, analysis techniques for proving the correctness of SPL models are
widely studied (cf. [1] for a survey).

Because for larger SPL models enumerative product-by-product approaches
become unfeasible, dedicated family-based techniques have been developed,
exploiting variability in product families in terms of features (cf., e.g., [2–8]).
In this paper, we contribute to the field of family-based model checking. Over the
past decades, model checking has seen significant progress [9]. However, state-
space explosion remains an issue, amplified for SPL models by the accumulation
of possible variants and configurations. To mitigate these problems, family-based
model checking was proposed as a means to simultaneously verify multiple vari-
ants in a single run (cf. [1]). To make SPL models amenable to family-based
reasoning, feature-based variability was introduced in many behavioral models,
e.g. based on process calculi [2,10–12] and labeled transition systems (LTSs)
[3,13–15].
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 387–405, 2017.
DOI: 10.1007/978-3-662-54494-5 23

388 M.H. ter Beek et al.

Arguably the most widely used behavioral SPL models are featured transi-
tion systems (FTSs) [13]. An FTS compactly represents multiple behaviors in
a single transition system by exploiting transitions guarded by feature expres-
sions. A transition of a given product can be taken if the product fulfills the
feature expression associated with the transition. Thus, an FTS incorporates the
behavior of all eligible products, while individual behavior can be extracted as
LTSs. Properties of such models can be verified with dedicated SPL model check-
ers [16–18] or, to a certain degree, with single system model checkers [7,12,14].

As far as we know, none of the existing tools can verify modal μ-calculus
properties over FTSs in a family-based manner. However, there have been ear-
lier proposals for using the μ-calculus to analyze SPLs (cf., e.g., [2,10,12,19,20]).
In [19], for instance, mCRL2 and its toolset [21,22] were used for product-based
model checking. The flexibility of mCRL2’s data language allowed to model and
select valid product configurations and to model and check the behavior of indi-
vidually generated products. While the SPL models of [19] have an FTS-like
semantics, to actually perform family-based model checking also the supporting
logic must be able to handle the specificity of FTSs, viz. transitions labeled with
feature expressions. In [20], we generalized the approach that led to the feature-
oriented variants fLTL [13] and fCTL [14] of LTL and CTL to the modal μ-
calculus by defining μLf , a feature-oriented variant of μL with an FTS seman-
tics obtained by incorporating feature expressions. While μLf paves the way for
family-based model checking, so far the logic was without tool support, and it
remained unclear whether it could be used effectively to model check FTSs.

Contributions. In this paper, we show how to effectively perform family-based
model checking for μLf by exploiting the mCRL2 toolset as-is, i.e. avoiding the
implementation of a dedicated SPL-oriented verifier. We first show how to solve
the family-based model-checking problem via an embedding of μLf into mCRL2’s
modal μ-calculus with data. Then we define a partitioning procedure for μLf

that allows us to apply our results from [20]. Next, we evaluate our approach
by verifying a number of representative properties over an mCRL2 specification
of the minepump SPL benchmark model [8,13,23–25]. We verify typical linear-
time and branching-time properties. We also verify properties involving more
than one feature modality in a single formula, which is a novelty that allows
to check different behavior for different variants at once. Finally, we discuss the
improvement in runtime that results from using mCRL2 for family-based model
checking as opposed to product-based model checking.

Further Related Work. There is a growing body of research on customizing
model-checking techniques for SPLs. Like our FTS-based proposals [19,20], the
CCS-based proposals PL-CCS [2,10] and DeltaCCS [12] are grounded in the μ-
calculus. In [26], PL-CCS was proven to be less expressive (in terms of the sets
of definable products) than FTSs, while DeltaCCS allows only limited family-
based model checking (viz. verifying family-wide invariants for entire SPLs).
DeltaCCS does provide efficient incremental model checking, a technique that
improves product-based model checking by partially reusing verification results

Family-Based Model Checking with mCRL2 389

obtained for previously considered products. The state-of-the-art by the end of
2013 is summarized in [1], which also discusses type checking, static analysis,
and theorem proving tailored for SPLs, as well as software model checking.

In a broader perspective, also probabilistic model checking was applied to
SPLs recently, e.g. on feature-oriented (parametric) Markov chains [27–29] or
Markov decision processes [30], and via a feature-oriented extension of the input
language of the probabilistic model checker Prism [31], making the tool amenable
to (family-based) SPL model checking [32]. Most recently, also statistical model
checking was applied to SPLs [33,34], based on a probabilistic extension of the
feature-oriented process calculus of [11].

2 A Feature µ-Calculus µLf over FTSs

The μ-calculus is an extension of modal logic with fixpoint operators whose
formulas are interpreted over LTSs (cf. [35]). We fix a set of actions A, ranged
over by a, b, . . ., and a set of variables X, ranged over by X,Y,

Definition 1. The μ-calculus μL over A and X is given by

ϕ :: = ⊥ | � | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | X | μX.ϕ | νX.ϕ

where for μX.ϕ and νX.ϕ all free occurrences of X in ϕ are in the scope of an even
number of negations (to guarantee well-definedness of the fixpoint semantics). �	
Next to the Boolean constants falsum and verum, μL contains the connectives ¬,
∨ and ∧ of propositional logic and the diamond and box operators 〈 〉 and [] of
modal logic. The least and greatest fixpoint operators μ and ν provide recursion
used for ‘finite’ and ‘infinite’ looping, respectively.

Definition 2. An LTS over A is a triple L = (S,→, s∗), with states from S,
transition relation → ⊆ S ×A× S, and initial state s∗ ∈ S. �	
Definition 3. Let L be an LTS with set of states S. Let sSet = 2S be the set
of state sets with typical element U and sEnv = X→ sSet the set of state-based
environments. The semantics [[·]]L : μL→ sEnv→ sSet is given by

[[⊥]]L(ε)=∅ [[〈a〉ϕ]]L(ε)={ s | ∃ t : s
a−→ t ∧ t∈[[ϕ]]L(ε) }

[[�]]L(ε)=S [[[a]ϕ]]L(ε)={ s | ∀t : s
a−→ t ⇒ t∈[[ϕ]]L(ε) }

[[¬ϕ]]L(ε)=S \ [[ϕ]]L(ε) [[X]]L(ε)=ε(X)
[[(ϕ ∨ ψ)]]L(ε)=[[ϕ]]L(ε) ∪ [[ψ]]L(ε) [[μX.ϕ]]L(ε)= lfp(λU.[[ϕ]]L(ε[U/X]))
[[(ϕ ∧ ψ)]]L(ε)=[[ϕ]]L(ε) ∩ [[ψ]]L(ε) [[νX.ϕ]]L(ε)=gfp(λU.[[ϕ]]L(ε[U/X]))

where ε[U/X], for ε ∈ sEnv, denotes the environment which yields ε(Y) for
variables Y different from the variable X and the set U ∈ sSet for X itself. �	

390 M.H. ter Beek et al.

As typical for model checking, we only consider closed μL-formulas whose inter-
pretation is independent of the environment. In such case we write [[ϕ]]L for the
interpretation of ϕ. Given a state s of an LTS L, we set s |=L ϕ iff s ∈ [[ϕ]]L.

We next fix a finite non-empty set F of features, with f as typical element.
Let B[F] denote the set of Boolean expressions over F . Elements χ and γ of B[F]
are referred to as feature expressions. A product is a set of features, and P
szdenotes the set of products, thus P ⊆ 2F, with p, q, . . . ranging over P. A
subset P ⊆ P is referred to as a family of products. A feature expression γ, as
Boolean expression over F , can be interpreted as a set of products Qγ , viz. the
products p for which the induced truth assignment (true for f ∈ p, false for f /∈ p)
validates γ. Reversely, for each family P ⊆ P we fix a feature expression γP to
represent it. The constant � denotes the feature expression that is always true.
We now recall FTSs from [13] as a model for SPLs, using the notation of [20].

Definition 4. An FTS over A and F is a triple F=(S, θ, s∗), with states from S,
transition constraint function θ : S ×A× S→B[F], and initial state s∗∈S. �	

For states s, t ∈ S, we write s
a|γ−−→F t if θ(s, a, t) = γ and γ �≡ ⊥. The projection

of an FTS F = (S, θ, s∗) onto a product p ∈ P is the LTS F |p = (S, →F |p, s∗)
over A with s

a−→F |p t iff p ∈ Qγ for a transition s
a|γ−−→F t of F .

Example 1. Let P be a product line of (four) coffee machines, with independent
features {$, e} representing the presence of a coin slot accepting dollars or euros.

s0 s1 s2

F

ins|�
std|�

ins|$

xxl|�
s0 s1 s2

F |p1

ins

std

ins

xxl

s0 s1 s2

F |p2

ins

std

xxl

FTS F models its family behavior, with actions to insert coins (ins) and to pour
standard (std) or extra large (xxl) coffee. Each coffee machine accepts either
dollars or euros. Extra large coffee is exclusively available for two dollars. LTSs
F |p1 and F |p2 model the behavior of products p1={$} and p2={e}. Note that
F |p2 lacks the transition from s1 to s2 that requires feature $. �	
In [20], we introduced μLf , an extension with features of the μ-calculus μL,
interpreted over FTSs rather than LTSs.

Definition 5. The feature μ-calculus μLf over A, F and X, is given by

ϕf :: = ⊥ | � | ¬ϕf | ϕf ∨ ψf | ϕf ∧ ψf | 〈a|χ〉ϕf | [a|χ]ϕf | X | μX.ϕf | νX.ϕf

where for μX.ϕf and νX.ϕf all free occurrences of X in ϕf are in the scope of
an even number of negations. �	
Also for μLf we mainly consider closed formulas. The logic μLf replaces the
binary operators 〈a〉ϕ and [a]ϕ of μL by ternary operators 〈a|χ〉ϕf and [a|χ]ϕf ,
respectively, where χ is a feature expression.

Family-Based Model Checking with mCRL2 391

A Product-Based Semantics. In [20], we gave a semantics �ϕf �F for closed μLf -
formulas ϕf with subsets of S ×P as denotations. We showed that this product-
based semantics can be characterized as follows

�ϕf �F = { (s, p) ∈ S × P | s ∈ [[pr(ϕf , p)]]F |p }
where the projection function pr : μLf × P → μL is given by

pr(⊥, p)=⊥ pr(�, p)=� pr(X, p)=X pr(¬ϕf , p)=¬pr(ϕf , p)
pr(ϕf ∨ ψf , p) = pr(ϕf , p) ∨ pr(ψf , p) pr(μX.ϕf , p) = μX.pr(ϕf , p)
pr(ϕf ∧ ψf , p) = pr(ϕf , p) ∧ pr(ψf , p) pr(νX.ϕf , p) = νX.pr(ϕf , p)

pr(〈a|χ〉ϕf , p) = if p∈Qχ then 〈a〉pr(ϕf , p) else ⊥ end
pr([a|χ]ϕf , p) = if p∈Qχ then [a]pr(ϕf , p) else � end

Thus, for a formula ϕf ∈ μLf and a product p ∈ P, a μL-formula pr(ϕf , p) is
obtained from ϕf , by replacing subformulas 〈a|χ〉ψf by ⊥ and [a|χ]ψf by �,
respectively, in case p /∈Qχ, while omitting χ otherwise. Formulas of μLf permit
reasoning about the behavior of products, as illustrated below.

Example 2. Formulas of μLf for Example 1 include the following.

(a) ϕf = 〈ins|�〉 ([ins|e]⊥ ∧ 〈std|�〉�) characterizes the family of products
P that can execute ins, after which ins cannot be executed by products
satisfying e, while std can be executed by all products of P .

(b) ψf = νX.μY.
(
([ins|e]Y∧[xxl|e]Y)∧[std|e]X

)
characterizes the (sub)family

of products which, when having feature e, action std occurs infinitely often
on all infinite runs over ins, xxl, and std. �	

In practice, we are often interested in deciding whether a family of products P
satisfies a formula ϕf . The semantics of μLf , however, does not allow for doing
so in a family-based manner as it is product-oriented. For that reason, we intro-
duced in [20] a second semantics [[·]]F for μLf (cf. Definition 6 below) providing a
stronger interpretation for the modalities to enable family-based reasoning. We
stress that this second, family-based interpretation was designed to specifically
support efficient model checking; the product-oriented � · �F remains the seman-
tic reference. The correspondence between the two interpretations was studied
in detail in [20]. We next summarize the most important results.

A Family-Based Semantics. In our family-based interpretation, the ternary oper-
ator 〈a|χ〉ϕf holds for a family P with respect to an FTS F in a state s, if all
products in P satisfy the feature expression χ and there is an a-transition, shared
among all products in P , that leads to a state where ϕf holds for P (i.e. the prod-
ucts in P can collectively execute a). The [a|χ]ϕf modality holds in a state of F
for a set of products P , if for each subset P ′ of P for which an a-transition is
possible, ϕf holds for P ′ in the target state of that a-transition. While under
the product-based interpretation � · �F of μLf , the two modalities in μLf are,
like in μL, each other’s dual, this is no longer the case under the family-based
interpretation [[·]]F below.

392 M.H. ter Beek et al.

Definition 6. Let F = (S, θ, s∗) be an FTS. Let sPSet = 2S×2P
be the set of

state-family pairs with typical element W and sPEnv=X→sPSet the set of state-
family environments. The semantics [[·]]F : μLf → sPEnv→sPSet is given by

[[⊥]]F (ζ)=∅ [[�]]F (ζ)=S × 2P

[[¬ϕf]]F (ζ)= (S × 2P) \ [[ϕf]]F (ζ) [[X]]F (ζ)= ζ(X)

[[(ϕf ∨ ψf)]]F (ζ)= [[ϕf]]F (ζ) ∪ [[ψf]]F (ζ) [[μX.ϕf]]F (ζ)= lfp(λW.[[ϕf]]F (ζ[W/X]))

[[(ϕf ∧ ψf)]]F (ζ)= [[ϕf]]F (ζ) ∩ [[ψf]]F (ζ) [[νX.ϕf]]F (ζ)= gfp(λW.[[ϕf]]F (ζ[W/X]))

[[〈a|χ〉ϕf]]F (ζ)= { (s, P) | P ⊆Qχ∧ ∃γ, t : s
a|γ−−→F t ∧P ⊆Qγ ∧(t, P ∩Qχ∩Qγ)∈[[ϕf]]F (ζ)}

[[[a|χ]ϕf]]F (ζ)= { (s, P) | ∀γ, t : s
a|γ−−→F t ∧P ∩Qχ∩Qγ �=∅ ⇒ (t, P ∩Qχ∩Qγ)∈[[ϕf]]F (ζ) }

where ζ[W/X], for ζ ∈ sPEnv, denotes the environment which yields ζ(Y) for
variables Y different from X and the set W ∈ sPSet for X. �	
The interpretation of a closed μLf formula ϕf is independent of the environment
and we therefore again simply write [[ϕf]]F . Given a state s of an FTS F , and a
set of products P ⊆ P, we write s, P |=F ϕf iff (s, P) ∈ [[ϕf]]F .

The theorem below summarizes the main results of [20], relating the family-
based interpretation of μLf to the LTS semantics of μL (and by extension, μLf ’s
product-based interpretation).

Theorem 1. Let F be an FTS, and let P be a set of products.

(a) For each formula ϕf ∈ μLf , state s ∈ S, and individual product p ∈ P:
s, {p} |=F ϕf ⇐⇒ s |=F|p pr(ϕf , p).

(b) For negation-free formula ϕf ∈ μLf , state s ∈ S, and product family P ⊆ P:
s, P |=F ϕf =⇒ ∀p ∈ P : s |=F|p pr(ϕf , p) �	

Note that in general, s, P �|=F ϕf does not imply s �|=F|p pr(ϕf , p) for all products
in the family P . In the next section, we discuss how the above results can be
exploited for family-based model checking of μLf -formulas.

3 Family-Based Model Checking with mCRL2

In this section, we show how to obtain a decision procedure for s∗, P |=F ϕf via
a mapping into the first-order μ-calculus μLFO and solving the corresponding
model-checking problem. Our approach consists of two steps: (i) translation of
the μLf -formula at hand; (ii) translation of the FTS describing the family behav-
ior into an LTS with parametrized actions. Since μLFO is a fragment of the logic
from [36,37], we can use off-the-shelf tools such as the mCRL2 toolset [21,22] to
perform family-based model checking of properties expressed in μLf . We first
review μLFO before we proceed to describe the above translations.

Family-Based Model Checking with mCRL2 393

3.1 The First-Order µ-Calculus µLFO

The first-order μ-calculus with data of [36,37] is given in the context of a data
signature Σ = (S,O), with set of sorts S and set of operations O, and of a
set of ‘sorted’ actions A. μLFO is essentially a fragment of the logic of [36,37]
in which S is the single sort FExp, with typical elements β, χ, γ, representing
Boolean expressions over features and data variables taken from a set V, with
typical element v. In toolsets such as mCRL2, FExp can be formalized as an
abstract data type defining BDDs ranging over features (cf. [38]). We fix a set
of recursion variables X̃. Formulas ϕ ∈ μLFO are then given by

ϕ :: = ⊥ | � | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | γ1⇒γ2 | ∃υ.ϕ | ∀υ.ϕ |
〈a(υ)〉ϕ | [a(υ)]ϕ | X̃(γ) | μX̃(υX̃ :=γ).ϕ | νX̃(υX̃ :=γ).ϕ

where for μX̃(υX̃ :=γ).ϕ and νX̃(υX̃ :=γ).ϕ all free occurrences of X̃ in ϕ are in
the scope of an even number of negations, and each variable X̃ is bound at most
once. To each recursion variable X̃ a unique data variable υX̃ is associated, but
we often suppress this association and simply write μX̃(υ:=γ).ϕ and νX̃(υ:=γ).ϕ
instead. The language construct γ1⇒γ2 is used to express that the set of products
characterized by γ1 is a subset of those characterized by γ2.

We interpret μLFO over LTSs whose actions carry closed feature expressions.

Definition 7. A parametrized LTS over A and F is a triple (S,→, s∗) with states
from S, transition relation → ⊆ S ×A[F] × S where A[F] = { a(γ) | a ∈ A,
γ ∈ B[F] }, and initial state s∗ ∈ S. �	
In the presence of variables ranging over feature expressions, we distinguish two
sets of environments, viz. data environments θ∈VEnv = V→ 2P and recursion
variable environments ξ ∈XEnv = X̃→ 2P→ 2S. The semantics [[·]]FO is then of
type μLFO→XEnv→VEnv→ 2S . To comprehend our translation of μLf into
μLFO, we address the semantics for the non-trivial constructs of μLFO. The full
semantics can be found in [36,37].

[[∃υ.ϕ]]FO(ξ)(θ) =
⋃ { [[ϕ]]FO(ξ)(θ[Q/υ]) | Q ⊆ P }

[[〈a(υ)〉ϕ]]FO(ξ)(θ) = { s | ∃γ, t : s
a(γ)−−−→ t ∧ θ(υ) = Qγ ∧ t∈[[ϕ]]FO(ξ)(θ) }

[[μX̃(υ:=γ).ϕ]]FO(ξ)(θ) =
(
lfp(λπ:2P→2S .λQ.[[ϕ]]FO(ξ[π/X̃])(θ[Q/υ]))

)
(θ(γ))

For existential quantification, the data environment θ[Q/υ] assigns a family of
products Q to the data variable υ; the set of states that satisfy ∃υ.ϕ is then the
set of states satisfying ϕ for any possible assignment to data variable υ.

For the diamond modality, a state s is included in its semantics, if in the
parametrized LTS, state s admits a transition with parametrized action a(γ) to
a state t such that the set of products θ(υ) is exactly the set of products Qγ

associated with the feature expression γ of the transition, while the target state t
satisfies ϕ. Note that the set of products Qγ can be established independently
from the environment θ since γ is closed, i.e. variable-free.

394 M.H. ter Beek et al.

The least fixpoint construction is more involved compared to the correspond-
ing construct of μLf because of the parametrization. Here the semantics of the
least fixpoint is taken for the functional that fixes both the recursion variable X̃
and the data variable υ, with π and Q, respectively. Next, application to the
value of the initializing feature expression γ yields a set of states.

With respect to a parametrized LTS L, we put s |=L ϕ, for s ∈ S and
ϕ ∈ μLFO closed, if s ∈ [[ϕ]]FO(ξ0)(θ0) for some ξ0 ∈ XEnv and θ0 ∈ VEnv.

3.2 Translating the Family-Based Interpretation of µLf to µLFO

To model check a μLf -formula against an FTS, we effectively verify its corre-
sponding μLFO-formula against the parametrized LTS that is obtained as follows.

Definition 8. Let F = (S, θ, s∗) be an FTS over A and F. Take A[F] =
{ a(γ) | a∈A, γ ∈B[F]}. Define the parametrized LTS L(F) for F by L(F) =
(S,→, s∗) where → is defined by s

a(γ)−−−→ t iff θ(s, a, t) = γ and γ �≡ ⊥. �	
Thus, we use the parameter of an action as placeholder for the feature expression
that guards a transition, writing s

a(γ)−−−→ t.
Next, we define a translation tr that yields for a set of products P , represented

by a closed feature expression γP of sort FExp, and a μLf -formula ϕf , a μLFO-
formula tr(γP, ϕf). We provide an explanation of this transformation, guided by
the family-based semantics of μLf , afterwards (cf. Definition 6).

Definition 9. The translation function tr : FExp × μLf → μLFO is given by

tr(γ,⊥)=⊥ tr(γ,�)=�
tr(γ,¬ϕf)=¬tr(γ, ϕf) tr(γ,X)=X̃(γ)

tr(γ, ϕf ∨ψf)=tr(γ, ϕf)∨tr(γ, ψf) tr(γ, μX.ϕf)=μX̃(υ:=γ).tr(υ, ϕf)
tr(γ, ϕf ∧ψf)=tr(γ, ϕf)∧tr(γ, ψf) tr(γ, νX.ϕf)=νX̃(υ:=γ).tr(υ, ϕf)

tr(γ,〈a|χ〉ϕf) = (γ ⇒χ) ∧ ∃υ.〈a(υ)〉((γ ⇒ υ) ∧ tr(γ∧χ∧υ, ϕf))
tr(γ, [a|χ]ϕf) = ∀υ.[a(υ)]((γ∧χ∧υ ⇒⊥) ∨ tr(γ∧χ∧υ, ϕf)) �	

Logical constants and propositional connectives are translated as expected. The
feature expression γ in our translation symbolically represents the set of products
that collectively can reach a given state in our parametrized LTS. Note that this
expression is ‘updated’ only in our translation of the modal operators and passed
on otherwise. For the 〈·|·〉-operator, the existence of a feature expression β in
Definition 6 with an a|β-transition is captured by the existentially quantified
data variable υ: a state s in a parametrized LTS satisfies ∃υ.〈a(υ)〉((γ ⇒ υ) ∧
tr(γ∧χ∧υ, ϕf)) only when a transition from s exists labeled with a parametrized
action a(β) such that for υ matching β, also γ ⇒ υ and tr(γ∧χ∧υ, ϕf) hold. Like-
wise, for the [·|·]-operator, the universal quantification over feature expressions
guarding transitions is captured by a universally quantified data variable υ that
is passed as a parameter to the action a. The formula (γ∧χ∧υ ⇒⊥) expresses
that the corresponding product families are disjoint.

Family-Based Model Checking with mCRL2 395

We utilize the data variables associated to recursion variables in tr(γ,X) to
pass the feature expression γ to the recursion variable X̃. A similar mechanism
applies to the fixpoint constructions. Thus, we assign γ to the data variable υ
associated with X̃, signified by the bindings μX̃(υ:=γ) and νX̃(υ:=γ), and use
the data variable in the translation of the remaining subformula, i.e. tr(υ, ϕf).

Next, we state the correctness of the translation.

Theorem 2. Let F be an FTS and let P be a set of products. For each μLf -
formula ϕf , state s ∈ S and product family P ⊆ P, it holds that

s, P |=F ϕf ⇐⇒ s |=L(F) tr(γP, ϕf)

Proof. (Sketch) The proof relies on the claim that, for state s, product family P ,
data environment θ, and feature expression γ such that θ(γ) = P , we have

(s, P) ∈ [[ϕf]]F (ζ) ⇐⇒ s ∈ [[tr(γ, ϕf)]]FO(ξ)(θ)

for environments ζ ∈ sPEnv, and ξ ∈ XEnv such that (s, P) ∈ ζ(X) iff
s ∈ ξ(X̃)(P) for all X ∈ X. The claim is shown by structural induction, exploit-
ing iteration for the fixpoint constructions. From the claim the theorem follows
directly. �	
As a consequence of the above theorem we can model check a μLf -formula over an
FTS by model checking the corresponding μLFO-formula over the corresponding
parametrized LTS.

Example 3. From Examples 1 and 2, recall FTS F of family
P and μLf -formula ψf stating that for products with e,
action std occurs infinitely often on all infinite runs over
{ins, xxl, std}. Take the corresponding parametrized LTS
L(F). Clearly, ψf holds in state s0 for all products without
both features e and $. mCRL2 can verify this, as deciding s0 , P ′ |=F ψf for the fam-
ily P ′ = {∅, {e}, {$}} translates to model checking s̄0 |=L(F) tr(γP , ψf), where
tr(γP , ψf) is the μLFO-formula

νX̃(υx :=γP).μỸ (υy :=υx).
(∀υ.[ins(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ Ỹ (υy∧ e∧ υ)

) ∧
∀υ.[xxl(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ Ỹ (υy∧ e∧ υ)

) ∧
∀υ.[std(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ X̃(υy∧ e∧ υ)

))

Note the passing of γP via the respective assignments υx :=γP and υy :=υx. �	

396 M.H. ter Beek et al.

4 Family-Based Partitioning for µLf

With Theorem 2 in place we are in a position where family-based model-checking
a system can be performed using a standard μ-calculus model checker. The final
issue we face is to find, given a formula ϕf ∈μLf and a family of products P , the
subfamily of P whose products satisfy ϕf , as well as the subfamily whose pro-
ducts do not satisfy ϕf . Thus, given a negation-free formula ϕf and a family of
products P , we are interested in computing a partitioning (P⊕ , P�) of P such
that

∀p ∈ P⊕ : s∗, p |=F|p pr(ϕf , p) and ∀p ∈ P� : s∗, p �|=F|p pr(ϕf , p) (1)

Rather than establishing this product-by-product, we are after a procedure that
decides Property (1) in a family-based manner.

The previous section provides a sound decision procedure for s∗ , P |=F ϕf . If
the procedure returns true for the family P , we are done: Theorem 1 guarantees
that the property holds for all products of P , i.e. s∗ |=F|p pr(ϕf , p) for all p ∈ P .
If, on the other hand, the decision procedure for s∗, P |=F ϕf returns false and
P is not a singleton family, we cannot draw a conclusion for any of the products.
However, in view of Lemma 1 below, we can run the decision procedure to decide
s∗, P |=F ϕc

f , where ϕc
f is the complement of ϕf . Formally, for negation-free μLf -

formula ϕf , the formula ϕc
f is defined inductively by

⊥c = � (ϕf ∨ ψf)c = ϕc
f ∧ ψc

f (μX.ϕf)c = νX.ϕc
f

�c = ⊥ (ϕf ∧ ψf)c = ϕc
f ∨ ψc

f (νX.ϕf)c = μX.ϕc
f

Xc = X (〈a|χ〉ϕf)c = [a|χ]ϕc
f ([a|χ]ϕf)c = 〈a|χ〉ϕc

f

We have the following result.

Lemma 1. For each negation-free formula ϕf and set of products P , it holds
that s∗, P |=F ϕc

f implies s∗ �|=F|p pr(ϕf , p) for all p ∈ P .

Proof. Let ϕf ∈ μLf be closed and negation-free, and let P be a family of
products. For closed and negation-free ψf ∈ μLf , state s, and product p,

s |=F|p pr(ψc
f , p) ⇐⇒ s |=F|p ¬pr(ψf , p) (2)

a fact readily proven by induction on ψf . Assume s∗, P |=F ϕc
f . Observe, if ϕf

is negation-free then so is ϕc
f . Hence, by Theorem 1, s∗ |=F|p pr(ϕc

f , p) for every
p ∈ P . By Equivalence (2) we find s∗ �|=F|p pr(ϕf , p) for all p ∈ P . �	
On the lemma we base the straightforward partition procedure fbp(P,ϕf) of
Algorithm 1 for computing (P⊕ , P�) for a product family P such that each prod-
uct in P⊕ satisfies the μLf -formula ϕf , while each product in P� fails ϕf .

Family-Based Model Checking with mCRL2 397

Algorithm 1. Family-Based Partitioning
1: function fbp(P, ϕf)
2: if s∗, P |=F ϕf then return (P, ∅)
3: else
4: if s∗, P |=F ϕc

f then return (∅, P)
5: else partition P into (P1, P2)
6: (P+

1 , P −
1) ← fbp(P1, ϕf)

7: (P+
2 , P −

2) ← fbp(P2, ϕf)
8: return (P+

1 ∪ P+
2 , P −

1 ∪ P −
2)

9: end if
10: end if
11: end function

Theorem 3. For closed and negation-free ϕf , procedure fbp(P,ϕf) terminates
and returns a partitioning (P⊕, P�) of P satisfying Property (1).

Proof. Observe that the algorithm can be called at most 2|P | times as each call
is performed on a strictly smaller subset of P . Therefore, the algorithm termi-
nates iff the procedure for deciding s∗, P |=F ϕf terminates. The correctness of
the resulting partitioning (P⊕ , P�) follows by a straightforward induction, using
Theorem 1 and Lemma 1. �	
Example 4. Applying the algorithm to the FTS of Example 1 and the formula ψf

of Example 2, running fbp(�, ψf), we find s0,� �|=F ψf and s0,� �|=F ψc
f . Split-

ting the family in sets e ∧ $ and ¬(e ∧ $) and recursively running fbp(e ∧ $, ψf),
returns the partition (⊥, e∧ $), since we have s0 , e∧ $ |=F ψc

f , and subsequently
running fbp(¬(e∧$), ψf) returns (¬(e∧$),⊥) since s0 ,¬(e∧$) |=F ψf . Therefore
fbp(�, ψf) returns the partition (¬(e ∧ $), e∧ $). �	
Clearly, repeatedly splitting families into subfamilies may lead to an exponential
blow-up, in the worst case ultimately yielding a product-based analysis. Exam-
ples can be synthesized achieving this. However, in the SPL setting, an obvious
strategy to partition a family P is to split along a feature f, i.e. in the algorithm
set P1 = { p ∈ P | f ∈ p } and P2 = { p ∈ P | f /∈ p }. In general, the order of
subsequent features f will influence the number of split-ups needed. Fortunately,
candidate features for splitting along may be distilled from the structure of the
system and from specific domain knowledge. The experiments reported in the
next section confirm this. As we will see, with an appropriate decomposition a
low number of splittings will do.

5 Case Study

In this section, we report on our experiments to use the mCRL2 toolset to per-
form product-based and family-based model checking of an SPL model of the
minepump from [39], making use of the logics and translations discussed above.

398 M.H. ter Beek et al.

The SPL minepump model was first introduced in [4] as a reformulation of the
configurable software system controlling a pump for mine drainage. The purpose
of the minepump is to pump water out of a mine shaft, for which a controller
operates a pump that may not start nor continue running in the presence of
a dangerously high level of methane gas. Therefore, it communicates with a
number of sensors measuring the water and methane levels. Here, we consider
the model as used in [13] that consists of 7 independent optional features for
a total of 27 = 128 variants. These features concern command types, methane
detection, and water levels, abbreviated as Ct, Cp, Ma, Mq, L�, Ln, and Lh.

The minepump model of [13] is distributed with the ProVeLines SPL
toolset [18] (http://projects.info.unamur.be/fts/provelines/). We first manually
translated the fPROMELA model to a parametrized LTS encoded in mCRL2.1 For
our model checking we considered twelve properties expressed in μLf . The first
six are μ-calculus versions of LTL properties of [13] (four of which are analyzed
also in [8]). The others are CTL-like properties. Following the approach described
in this paper, the formulas were translated into μLFO and model checked over
the mCRL2 model representing a parametrized LTS. The properties, results, and
runtimes are summarized in Table 1. All our experiments were run on a standard
Macbook Pro using revision 14493 of the mCRL2 toolset.

Family-Based Model Checking. For each of the twelve properties, we provide its
intuitive meaning, its specification in μLf , and the result of model checking the
property (indicating also the number of products for which the result holds).
This concerns the first three columns of Table 1.2, 3 In the remaining columns,
we report the runtimes (in seconds) needed to verify the properties with mCRL2,
both product-based (one-by-one, abbreviated to ‘one’) and family-based (all-in-
one, abbreviated to ‘all’). We report the internal time as measured by the tools.
We immediately notice that family-based model checking with mCRL2 compares
rather favorably to product-based model checking.

Next we discuss the verification of the properties listed in Table 1. Absence
of deadlock turns out to be one of the more involved formulas to check family-
wise for the case of the minepump. This is because in search for the truth
value of the formula, all reachable states need to be visited. The μL-formula
[true∗]〈true〉�, translates to the μLf -formula [true∗ |�]〈true|�〉�. The main
complication arises from the fact that for each non-empty set of products P that
can reach a state s in the FTS, the family-based semantics of 〈true|�〉� requires
that there is a transition from s shared among all P . A partitioning of the set of
all products that is too coarse leads to a trace indicating a violation of the μLf -
formula. Next, the trace can be analyzed with the mCRL2 toolset to identify a
suitable decomposition into subfamilies.
1 The mCRL2 code is distributed with the mCRL2 toolset (svn revision 14493).
2 For a compact presentation of formulas in Table 1 we allow regular expressions in

the modalities as syntactic sugar, as done in [22,37].
3 Standard μ-calculus formulas in μL can be seen as μLf -formulas by adjoining the

feature expression � to every modality, i.e. replacing each ‘diamond’ modality 〈a〉
by 〈a|�〉 and each ‘box’ modality [a] by [a|�].

http://projects.info.unamur.be/fts/provelines/

Family-Based Model Checking with mCRL2 399

Table 1. Minepump properties and results (true/false) and runtimes (in seconds) of
both product-based (one-by-one) and family-based (all-in-one) verification with mCRL2

For the minepump we identified 12 subfamilies, whose sets of trajectories
are pairwise independent (i.e. for any two distinct subfamilies there exists a
complete path possible for all products in one family, but not for all products
in the other, and vice versa). These are the product sets characterized by the
feature expressions Ct ∧ C̃p ∧ M̃a ∧ M̃q, where f̃ = f,¬f, yielding eight families,
and four further families yielded by the product sets given by ¬Ct ∧ C̃p ∧ M̃a.
As we shall see below, the combinations of features mentioned turn up in the
analysis of other properties as well, which shows that the analysis of deadlock
freedom (property ϕ1) is a fruitful investigation.

Since no specific feature setting is involved in performing levelMsg infinitely
often (for a stable and acceptable water level), property ϕ2 can be refuted for the
complete family of products at once by proving its complement. Also property ϕ3,
seemingly more complex, can be refuted via its complement, requiring a decom-
position in subfamilies given by the four Boolean combinations of Cp and Ma.

400 M.H. ter Beek et al.

The properties discussed so far cover general system aspects: absence of dead-
lock, future execution of an action, and fairness between subsystems. In contrast,
property ϕ4 is specific to the minepump model. The property, modeled as a
fluent [40], states that every computation involving pumpStart has, after a while,
a finite number of alternations of starting and subsequent stopping the pump
(fluent pumpStart.(¬pumpStop)∗.pumpStop), after which it is never again
started, and after starting the pump (fluent true∗.pumpStart) it is inevitably
switched off. This property does not hold for all eligible products. However, a
decomposition into a subfamily of 96 products given by ¬(Ct∧Lh), i.e. products
missing Ct or Lh, and in two subfamilies Ct ∧Mq ∧ Lh and Ct ∧ ¬Mq ∧ Lh, of
32 products in total, does the job. The products in the first family satisfy ϕ4,
whereas products in the second and third family do not.

More involved system properties are ϕ5 and ϕ6, mixing starting and stop-
ping of the pump with the rising and dropping of the methane level. Property ϕ5

considers the rising of methane after the pump started but did not stop (fluent
pumpStart.(¬pumpStop)∗.methaneRise) and, symmetrically, starting the pump
after the methane level rose (fluentmethaneRise.(¬methaneLower)∗.pumpStart).
Formula ϕ6 is a refinement of formula ϕ5, restricting it to fair computations. For
property ϕ5, family-based model checking is achieved using the same decomposi-
tion of the product space, with the same outcome, as for property ϕ4. For prop-
erty ϕ6, because of the fairness requirement, the number of satisfying products
increases from 96 to 112. This can be checked for all 112 products at once. To
identify the violating products, we consider ϕ6’s complement ϕc

6 which is proven
to hold for the family Ct ∧ ¬Ma ∧ Lh of 16 products as a whole.

An important liveness property for circuit design, the so-called reset property
AGEF reset , is expressible in CTL, but not in LTL (cf., e.g., [41]). For our case
study, ϕ7 is such a reset property. It states that from any state the controller
can, possibly after a finite number of steps, receive a message. Thus, it can
always return to the initial state. The μL-formula [true∗] 〈true∗.receiveMsg〉�
can be verified using the same split-up in subfamilies that was used before for
absence of deadlock (ϕ1). A typical safety property is property ϕ8, expressing
that the pump is not started as long as water levels are low. It holds for all
products, which can be verified for all product families at once. The third CTL-
type property ϕ9 states that when the level of methane rises, it inevitably drops
again. It holds for no products. Refuting ϕ9 can also be done for all product
families at once.

Finally, we have verified feature-rich μLf -formulas. Properties ϕ10 and ϕ11

focus on the family of products featuring Ct by means of the modalities
[true∗ |Ct] and 〈true∗. pumpStart |Ct〉. However, by definition of pr, for prod-
ucts without feature Ct, property ϕ10 translates into ⊥ of μL. Since a formula
[R∗|χ]ϕ is to be read as νX.[R|χ]X ∧ ϕ, we have that property ϕ11, for prod-
ucts without Ct, coincides with νX.[true|Ct] ∧ ⊥. Apparently, comparing ϕ10

and ϕ11, four more products with Ct (viz. those without any Cp, L�, or Ma) fail
to meet the stronger ϕ11. Finally, property ϕ12 holds for all products. Note that
the first conjunct [highLevel |Ct ∧Ma ∧ Lh] 〈true∗. pumpStart | �〉� is trivially
true for products without any Ct, Ma, or Lh due to the box modality, while the

Family-Based Model Checking with mCRL2 401

second conjunct [pumpStart | ¬Lh] ⊥ holds trivially for products that include Lh.
Model checking this property requires a decomposition into two subfamilies, viz.
the set of products with the feature Mq and the set of products without.

Family-Based Partitioning. The results from the case study underline that
family-based model checking has the potential to outperform product-based
model checking. Next, we explore the requirements for a successful implementa-
tion of family-based partitioning using off-the-shelf technology.

Figure 1 (left) shows the runtimes (in seconds) associated with the model-
checking problems of lines 2 and 4 of Algorithm1 for deadlock freedom (prop-
erty ϕ1). The total time needed to run this algorithm, given the refinement strat-
egy indicated in Fig. 1, is 27.9 s. Observe that checking all leaves takes 8.4 s.4 We
see similar figures for other properties we verified.

Fig. 1. Execution of Algorithm 1 for deadlock freedom (property ϕ1) and the initial
product family �, using an optimal partitioning strategy (depicted on the left) vs. using
an ‘unproductive’ refinement strategy, splitting Ln and ¬Ln and following the optimal
strategy afterwards (excerpt depicted on the right). The characterized family described
at each node is the conjunction of the features along the path from the root to that
node. Total computation time for the optimal strategy: 27.9 s; total computation time
for the 12 leaves (i.e. all Mq, ¬Mq, and ¬Ct nodes): 8.4 s. Total computation time for
partitioning using the ‘unproductive’ strategy: 45.0 s.

We draw two further conclusions from our experiments. First, as expected,
refining a family of products with respect to non-relevant features can have a
negative effect on runtime. For instance, partitioning with respect to a single
non-essential feature Ln at an early stage, cf. Fig. 1 (right), while following an
optimal splitting otherwise, increases the runtime to 45 s; i.e. an additional 60%.
Second, as illustrated by Fig. 1 (left), even for ‘productive’ refinements, model
checking a property for a large family of products can consume a disproportionate
amount of time. For instance, the three top nodes together account for almost
8 s, a quarter of the time spent on all model-checking problems combined.
4 The additional overhead of approximately 6 s compared to the 2.07 s we reported in

Table 1 is due to the fact that there we could inspect the model once for all possible
families, whereas here we must inspect the model once per family.

402 M.H. ter Beek et al.

We conclude that the performance of SPL verification using a general-purpose
model checker for family-based partitioning crucially depends on the initial par-
titioning of products and the ‘quality’ of the refinements of families of products
in the algorithm. This suggests that one must invest in: (i) determining heuris-
tics for finding a good initial partitioning of a family of products, (ii) extract-
ing information from the failed model-checking problems that facilitates an
informed/productive split-up of the family of products in line 5 of Algorithm1. In
particular for the μ-calculus, the second challenge may be difficult, since easily-
interpretable feedback from its model checkers is generally missing so far.

6 Concluding Remarks and Future Work

We have showed how the feature μ-calculus μLf can be embedded in μLFO, a
logic accepted by toolsets such as mCRL2. Through this embedding, we obtain
a family-based model-checking procedure for verifying μ-calculus properties of
SPLs, and similar systems with variability, using off-the-shelf verifiers. Moreover,
as our experiments indicate, the resulting family-based model-checking approach
trumps the product-based model-checking approach of [19].

The efficiency of computing a partitioning of a product family from which
we can read which products satisfy which formula, strongly depends on the
adopted strategy for splitting product families and may constitute a bottleneck
in practice. We leave it for future research to find heuristics to guide this splitting.
One possibility may be to deduce an effective strategy from the lattice of product
families that can be obtained by exploring the FTS model and keeping track of
(the largest) product families that are capable of reaching states. This lattice may
even allow for determining a proper partitioning a priori. Another potentially
promising direction is to split product families using information that is obtained
from counterexamples. Indeed, in our product-based and family-based model-
checking experiments we used counterexamples to find suitable subfamilies of
products by splitting with respect to feature expressions on transitions that
led to the violations. We must note, however, that this was largely a manual
activity which required a fair share of tool experience. More generally, we note
that constructing and interpreting counterexamples for the modal μ-calculus is
notoriously difficult, as such counterexamples are not necessarily linear.

Finally, we believe that for particular properties specific insight regarding the
model under study is required to quickly identify a successful split-up. We liken
this to the approach taken in [8], where the theory of Galois connections is used
to establish suitable abstractions of the minepump model prior to model checking
with SPIN; we quote “Given sufficient knowledge of the system and the property,
we can easily tailor an abstraction for analyzing the system more effectively”.
It is indeed common in SPL engineering to assume substantial understanding
of the SPL under scrutiny, in particular of its commonalities and variability as
documented in variability models like feature diagrams.

Family-Based Model Checking with mCRL2 403

Acknowledgements. Maurice ter Beek was supported by the EU FP7 project
QUANTICOL (600708). The authors are grateful to Franco Mazzanti for his help with
the minepump model. Finally, we thank the anonymous referees for their suggestions,
which helped improve the presentation of this paper.

References

1. Thüm, T., et al.: A classification and survey of analysis strategies for software
product lines. ACM Comput. Surv. 47(1), 1–45 (2014)

2. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68863-1 8

3. Lauenroth, K., Pohl, K., Töhning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE, pp. 269–280. IEEE (2009)

4. Classen, A., et al.: Model checking lots of systems: efficient verification of temporal
properties in software product lines. In: ICSE, pp. 335–344. ACM (2010)

5. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 193–207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 15

6. Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verification
of software product lines. In: GPCE, pp. 11–20. ACM (2012)

7. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based
analysis of software product lines. In: SPLC, pp. 432–439. ACM (2015)

8. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Cham (2015). doi:10.
1007/978-3-319-23404-5 18

9. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. C. ACM 52(11), 74–84 (2009)

10. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts
of software product lines. In: SPLC, pp. 203–212. IEEE (2008)

11. ter Beek, M.H., Lluch Lafuente, A., Petrocchi, M.: Combining declarative and
procedural views in the specification and analysis of product families. In: SPLC,
vol. 2, pp. 10–17. ACM (2013)

12. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: Incremental model checking
delta-oriented software product lines. J. Log. Algebr. Meth. Program. 85(1), 245–
267 (2016)

13. Classen, A., et al.: Featured transition systems: foundations for verifying
variability-intensive systems and their application to LTL model checking. IEEE
Trans. Softw. Eng. 39(8), 1069–1089 (2013)

14. Classen, A., et al.: Formal semantics, modular specification, and symbolic verifica-
tion of product-line behaviour. Sci. Comput. Program. 80(B), 416–439 (2014)

15. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016)

16. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 36

17. Classen, A., et al.: Model checking software product lines with SNIP. Int. J. Softw.
Tools Technol. Transf. 14(5), 589–612 (2012)

http://dx.doi.org/10.1007/978-3-540-68863-1_8
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-642-32759-9_36

404 M.H. ter Beek et al.

18. Cordy, A., et al.: ProVeLines: a product line of verifiers for software product lines.
In: SPLC, vol. 2, pp. 141–146. ACM (2013)

19. ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the analysis of software product
lines. In: FormaliSE, pp. 31–37. IEEE (2014)

20. ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Towards a feature mu-calculus
targeting SPL verification. In: FMSPLE, EPTCS, vol. 206, pp. 61–75 (2016)

21. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

22. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

23. Kim, C.H.P., et al.: SPLat: lightweight dynamic analysis for reducing combinatorics
in testing configurable systems. In: ESEC/FSE, pp. 257–267. ACM (2013)

24. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer,
D.: Facilitating reuse in multi-goal test-suite generation for software product lines.
In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 84–99. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 6

25. Lity, S., Morbach, T., Thüm, T., Schaefer, I.: Applying incremental model slicing
to product-line regression testing. In: Kapitsaki, G.M., Santana de Almeida, E.
(eds.) ICSR 2016. LNCS, vol. 9679, pp. 3–19. Springer, Cham (2016). doi:10.1007/
978-3-319-35122-3 1

26. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: expressiveness and testing pre-orders. Sci. Comput. Program. 123,
42–60 (2016)

27. Ghezzi, C., Sharifloo, A.: Model-based verification of quantitative non-functional
properties for software product lines. Inform. Softw. Technol. 55(3), 508–524 (2013)

28. Varshosaz, M., Khosravi, R.: Discrete time markov chain families: modeling and
verification of probabilistic software product lines. In: SPLC, vol. 2, pp. 34–41.
ACM (2013)

29. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: HASE, pp. 173–180. IEEE (2015)

30. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.) Transac-
tions on Aspect-Oriented Software Development XII. LNCS, vol. 8989, pp. 180–220.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46734-3 5

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

32. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 17

33. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
SPLC, pp. 11–15. ACM (2015)

34. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model check-
ing for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9952, pp. 114–133. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2 8

35. Bradfield, J.C., Stirling, C.: Modal logics and μ-calculi: an introduction. In: Hand-
book of Process Algebra, Chap. 4, pp. 293–330. Elsevier (2001)

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-662-46675-9_6
http://dx.doi.org/10.1007/978-3-319-35122-3_1
http://dx.doi.org/10.1007/978-3-319-35122-3_1
http://dx.doi.org/10.1007/978-3-662-46734-3_5
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-319-47166-2_8

Family-Based Model Checking with mCRL2 405

36. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1999. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998). doi:10.1007/3-540-49253-4 8

37. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput.
Program. 56(3), 251–273 (2005)

38. Zantema, H., van de Pol, J.C.: A rewriting approach to binary decision diagrams.
J. Log. Algebr. Program. 49(1–2), 61–86 (2001)

39. Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an integrated approach to
distributed computer control systems. IEE Proc. E 130(1), 1–10 (1983)

40. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: ESEC/FSE, pp. 257–266. ACM (2003)

41. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

http://dx.doi.org/10.1007/3-540-49253-4_8

Variability-Specific Abstraction Refinement
for Family-Based Model Checking

Aleksandar S. Dimovski(B) and Andrzej W ↪asowski

Computer Science, IT University of Copenhagen, Copenhagen S, Denmark
adim@itu.dk

Abstract. Variational systems are ubiquitous in many application areas
today. They use features to control presence and absence of system func-
tionality. One challenge in the development of variational systems is their
formal analysis and verification. Researchers have addressed this prob-
lem by designing aggregate so-called family-based verification algorithms.
Family-based model checking allows simultaneous verification of all vari-
ants of a system family (variational system) in a single run by exploiting
the commonalities between the variants. Yet, the computational cost of
family-based model checking still greatly depends on the number of vari-
ants. In order to make it computationally cheaper, we can use variability
abstractions for deriving abstract family-based model checking, where
the variational model of a system family is replaced with an abstract
(smaller) version of it which preserves the satisfaction of LTL properties.
The variability abstractions can be combined with different partitionings
of the set of variants to infer various verification scenarios for the varia-
tional model. However, manually finding an optimal verification scenario
is hard since it requires a good knowledge of the family and property,
while the number of possible scenarios is very large.

In this work, we present an automatic iterative abstraction refinement
procedure for family-based model checking. We use Craig interpolation to
refine abstract variational models based on the obtained spurious coun-
terexamples (traces). The refinement procedure works until a genuine
counterexample is found or the property satisfaction is shown for all
variants in the family. We illustrate the practicality of this approach for
several variational benchmark models.

1 Introduction

Software Product Line Engineering (SPLE) [9] is a popular methodology for
building a family of related systems. A large number of related systems (variants)
are developed by systematically reusing common parts. Each variant is specified
in terms of features (statically configured options) selected for that particular
variant. Due to the popularity of SPLs in embedded and critical system domain
(e.g. cars, phones, avionics), they require rigourous verification and analysis.

Partially supported by The Danish Council for Independent Research under a Sapere
Aude project, VARIETE.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 406–423, 2017.
DOI: 10.1007/978-3-662-54494-5 24

Variability-Specific Abstraction Refinement 407

Model checking is a well-known technique for automatic verification of sys-
tems against properties expressed in temporal logic [1]. Model checking families
of systems is more difficult than model checking single systems, since the number
of possible variants is exponential in the number of features. Hence, the sim-
plest enumerative variant-by-variant approach, that applies single-system model
checking to each individual variant of a system family, is very inefficient. Indeed,
a given execution behaviour is checked as many times as the number of variants
that are able to execute it. In order to address this problem, new dedicated
family-based model checking algorithms have been introduced [7,8,10]. They
rely on using compact mathematical structures (so called variational models or
featured transition systems) for modelling variational systems, which take the
commonality within the family into account, and on which specialized family-
based (variability-aware) model checking algorithms can be applied. Each execu-
tion behaviour in a variational model is associated with the exact set of variants
able to produce it. Therefore, the family-based algorithms check an execution
behaviour only once, regardless of how many variants can produce it. In this
way, they are able to model check all variants of a family simultaneously in a
single step and pinpoint those variants that violate properties. In order to further
speed-up family-based model checking, a range of variability abstractions can be
introduced [13,14]. They give rise to abstract family-based model checking. The
abstractions are applied at the variability level and aim to reduce the expo-
nential blowup of the number of configurations (variants) to something more
tractable by manipulating the configuration space of the family. Abstractions
can be combined with partitionings of the set of all variants to generate various
verification scenarios. Still, suitable verification scenarios are currently chosen
manually from a large set of possible combinations. This often requires a user
to have a considerable knowledge of a variational system and property. In order
for this approach to be used more widely in industry, automatic techniques are
needed for generating verification scenarios.

Abstraction refinement [4,5,10] has proved to be one of the most effective
techniques for automatic verification of systems with very large state spaces. In
this paper, we introduce a purely variability-specific (state-independent) app-
roach to abstraction refinement, which is used for automatic verification of LTL
properties over variational models. In general, each variability abstraction com-
putes an over-approximation of the original model, in a such a way that if some
property holds for the smaller abstract model then it will hold for the original
one. However, if the property does not hold in the abstract model, the found
counterexample may be the result of some behaviour in the over-approximation
which is not present in the original model. In this case, it is necessary to refine
the abstraction so that the behaviour which caused the spurious counterexam-
ple is eliminated. The verification procedure starts with the coarsest variability
abstraction, and then the obtained abstract model is fed to a model checker. If no
counterexample is found, then all variants satisfy the given property. Otherwise,
the counterexamples are analysed and classified as either genuine, which corre-
spond to execution behaviours of some variants in the original model, or spurious,

408 A.S. Dimovski and A. W ↪asowski

which are introduced due to the abstraction. If a genuine counterexample exist,
the corresponding variants do not satisfy the given property; otherwise a spuri-
ous counterexample is used to refine the abstract models. The procedure is then
repeated on the refined abstract variational model only for variants for which
no conclusive results have been found. We use Craig interpolation [18,27] to
extract from a spurious counterexample (i.e. the unsatisfiable feature expression
associated with it) the relevant information which needs to be known in order
to show the unsatisfiability of the associated feature expression. This informa-
tion is used to compute refined abstract models for the next iteration. The main
contribution of this paper is an efficient automatic abstraction refinement proce-
dure for family-based model checking, which uses variability-aware information
obtained from spurious counterexamples to guide the verification process. When
the employed variability abstractions give rise to abstract models verifiable by
a single-system model checker, we obtain a completely automatic alternative to
a dedicated family-based model checker. The experiments show that the pro-
posed abstraction refinement procedure combined with the single-system model
checker SPIN achieves performance gains compared to the family-based model
checker SNIP when applied to several benchmark variational systems for some
interesting properties.

2 Abstract Family-Based Model Checking

We now introduce featured transition systems (FTSs) [8] for modelling varia-
tional systems, fLTL temporal formulae [8] for specifying properties of variational
systems, and variability abstractions [13,14] for defining abstract FTSs.

2.1 Featured Transition Systems

Let F = {A1, . . . , An} be a finite set of Boolean variables representing the fea-
tures available in a variational system. A specific subset of features, k ⊆ F, known
as configuration, specifies a variant (valid product) of a variational system. The
set of all valid configurations (variants) is defined as: K ⊆ 2F. An alternative
representation of configurations is based upon propositional formulae. Each con-
figuration k ∈ K can be represented by a formula: k(A1) ∧ . . . ∧ k(An), where
k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k for 1 ≤ i ≤ n. We will
use both representations interchangeably. The set of valid configurations is typ-
ically described by a feature model [22], but in this work we disregard syntactic
representations of the set K.

The behaviour of individual variants is given with transition systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S × Act × S is
a transition relation1; I ⊆ S is a set of initial states; AP is a set of atomic
propositions; and L : S → 2AP is a labelling function.

1 We often write s1
λ−→ s2 when (s1, λ, s2) ∈ trans.

Variability-Specific Abstraction Refinement 409

– An execution (behaviour) of T is a nonempty, infinite sequence ρ =

s0λ1s1λ2 . . . with s0 ∈ I such that si
λi+1−→ si+1 for all i ≥ 0. The semantics of

the TS T , denoted as [[T]]TS, is the set of its executions.

The combined behaviour of a whole system family is compactly represented
with featured transition systems [8]. They are TSs where transitions are also
labelled with feature expressions, FeatExp(F), which represent propositional
logic formulae defined over F as: ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. The fea-
ture expression ψ ∈ FeatExp(F) indicates for which variants the corresponding
transition is enabled.

Definition 2. An featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L,F,K, δ), where S,Act, trans, I, AP , and L are defined as
in TS; F is the set of available features; K is a set of valid configurations; and
δ : trans → FeatExp(F) is a total function labelling transitions with feature
expressions. We write [[δ(t)]] to denote the set of variants that satisfy δ(t), i.e.
k ∈ [[δ(t)]] iff k |= δ(t). Moreover:

– The projection of an FTS F to a variant k ∈ K, denoted as πk(F), is the TS
(S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}.

– The projection of an FTS F to a set of variants K
′ ⊆ K, denoted as πK′(F),

is the FTS (S,Act, trans′, I, AP,L,F,K′, δ), where trans′ = {t ∈ trans | ∃k ∈
K

′.k |= δ(t)}.
– The semantics of an FTS F , denoted as [[F]]FTS, is the union of behaviours

of the projections on all variants k ∈ K, i.e. [[F]]FTS = ∪k∈K[[πk(F)]]TS.
– The size of an FTS F is defined as [8]: |F| = |S| + |trans| + |expr| + |K|,

where |expr| is the size of all feature expressions bounded by O(2|F| · |trans|).
Example 1. Throughout this paper, we will use a beverage vending machine
as a running example [8]. The VendingMachine family has five features:
VendingMachine (denoted by v) for purchasing a drink which is a mandatory
root feature enabled in all products; Tea (denoted by t) for serving tea; Soda
(denoted by s) for serving soda; CancelPurchase (denoted by c) for canceling
a purchase after a coin is entered; and FreeDrinks (denoted by f) for offer-
ing free drinks. The FTS of VendingMachine is shown in Fig. 1a. The feature
expression label of a transition is shown next to its label action, separated by a
slash. The transitions enabled by the same feature are colored in the same way.

For example, the transition 3© soda/s−→ 5© is enabled for variants that contain the
feature s. By combining various features, a number of variants of this Vending-
Machine can be obtained. In Fig. 1b is shown the basic version of VendingMa-
chine that only serves soda, which is described by the configuration: {v, s} (or,
as formula v ∧s∧¬t∧¬c∧¬f). It takes a coin, returns change, serves soda, opens
a compartment so that the customer can take the soda, before closing it again.
We can obtain the basic vending machine in Fig. 1b by projecting the FTS in
Fig. 1a to the configuration {v, s}. The set of all valid configurations of Vend-
ingMachine can be obtained by combining the above features. For example, we
can have K = {{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. ��

410 A.S. Dimovski and A. W ↪asowski

Fig. 1. The VendingMachine variational system.

2.2 fLTL Properties

The model checking problem consists of determining whether a model satisfies
a given property expressed as LTL (linear time logic) temporal formula [1].

Definition 3. An LTL formula φ is defined as: φ ::= true | a ∈ AP | ¬φ |
φ1 ∧ φ2 | ©φ | φ1Uφ2.

– Satisfaction of a formula φ for an infinite execution ρ = s0λ1s1λ2 . . . (we write
ρi = siλi+1si+1 . . . for the i-th suffix of ρ) is defined as:

ρ |= true, ρ |= a iff a ∈ L(s0),
ρ |= ¬φ iff ρ |= φ, ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2,

ρ |= ©φ iff ρ1 |= φ

ρ |= φ1Uφ2 iff ∃k ≥ 0. ρk |= φ2 and ∀j ∈ {0, . . . , k − 1}. ρj |= φ1

– A TS T satisfies a formula φ, denoted as T |= φ, iff ∀ρ ∈ [[T]]TS . ρ |= φ.

Note that other temporal operators can be defined as well: ♦φ = trueUφ (even-
tually) and �φ = ¬♦¬φ (always). When we consider variational systems, we
sometimes want to define properties with a modality that specifies the set of
variants for which they hold.

Definition 4.

– An feature LTL (fLTL) formula is defined as: [χ]φ, where φ is an LTL formula
and χ ∈ FeatExp(F) is a feature expression.

Variability-Specific Abstraction Refinement 411

– An FTS F satisfies an fLTL formula [χ]φ, denoted as F |= [χ]φ, iff ∀k ∈
K ∩ [[χ]]. πk(F) |= φ. An FTS F satisfies an LTL formula φ iff F |= [true]φ.

Note that F |= [χ]φ iff π[[χ]](F) |= φ. Therefore, for simplicity in the following
we focus on verifying only LTL properties φ.

Example 2. Consider the FTS VendingMachine in Fig. 1a. Suppose that states
5© and 6© are labelled with the proposition selected, and the state 8© with
the proposition open. An example property φ is: �(selected =⇒ ♦open),
which states that after selecting a beverage, the machine will eventually open
the compartment to allow the customer to take his drink. The basic vending
machine satisfies this property: π{v,s}(VendingMachine) |= φ, but the entire
variational system does not satisfy it: VendingMachine |= φ. For example, if
the feature f (FreeDrinks) is enabled, a counter-example where the state 8© is
never reached is: 1© → 3© → 5© → 7© → 1© → The set of violating products
is {{v, s, t, c, f}, {v, s, c, f}} ⊆ K. However, we have that VendingMachine |=
[¬f]φ. Therefore, we can conclude that the feature f is responsible for violation
of the property φ. ��

2.3 Variability Abstractions

We now define variability abstractions [13,14] for decreasing the sizes of FTSs,
in particular for reducing the number of features, the configuration space, and
the size of feature expressions. The goal of variability abstractions is to weaken
feature expressions, in order to make transitions in FTSs available to more vari-
ants. We define variability abstractions as Galois connections for reducing the
Boolean complete lattice of propositional formulae over F: (FeatExp(F)/≡, |=
,∨,∧, true, false). Elements of FeatExp(F)/≡ are equivalence classes of proposi-
tional formulae ψ ∈ FeatExp(F) obtained by quotienting by the semantic equiv-
alence ≡. The pre-order relation |= is defined as the satisfaction relation from
propositional logic, whereas the least upper bound operator is ∨ and the great-
est lower bound operator is ∧. Furthermore, the least element is false, and the
greatest element is true. Subsequently, we will lift the definition of variability
abstractions to FTSs.

The join abstraction, αjoin, confounds the control-flow of all variants, obtain-
ing a single variant that includes all executions occurring in any variant. The
information about which transitions are associated with which variants is lost.
Each feature expression ψ defined over F is replaced with true if there exists at
least one configuration from K that satisfies ψ. The new abstract set of features
is empty: αjoin(F) = ∅, and the abstract set of valid configurations is a singleton:
αjoin(K) = {true} if K = ∅. The abstraction αjoin : FeatExp(F) → FeatExp(∅)
and concretization functions γjoin : FeatExp(∅) → FeatExp(F) are:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(true) = true
γjoin(false) =

∨
k∈2F\K k

412 A.S. Dimovski and A. W ↪asowski

The proposed abstraction-concretization pair is a Galois connection2 [13,14].
The feature ignore abstraction, αfignore

A , ignores a single feature A ∈ F by
confounding the control flow paths that only differ with regard to A, but keeps
the precision with respect to control flow paths that do not depend on A. Let
ψ be a formula into negation normal form (NNF). We write ψ[lA �→ true] to
denote the formula ψ where the literal of A, that is A or ¬A, is replaced with
true. The abstract sets of features and configurations are: αfignore

A (F) = F\{A},
and αfignore

A (K) = {k[lA �→ true] | k ∈ K}. The abstraction and concretization
functions between FeatExp(F) and FeatExp(αfignore

A (F)), which form a Galois
connection [13,14], are defined as:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ψ′) = (ψ′ ∧ A) ∨ (ψ′ ∧ ¬A)

where ψ and ψ′ are in NNF.
The sequential composition α2 ◦ α1 runs two abstractions α1 and α2

in sequence (see [13,14] for precise definition). In the following, we will
simply write (α, γ) for any Galois connection 〈FeatExp(F)/≡, |= 〉 −−−→←−−−

α

γ

〈FeatExp(α(F))/≡, |=〉 constructed using the operators presented in this section.
Given a Galois connection (α, γ) defined on the level of feature expressions,

we now induce a notion of abstraction between FTSs.

Definition 5. Let F = (S,Act, trans, I, AP,L,F,K, δ) be an FTS, and
(α, γ) be a Galois connection. We define α(F) = (S,Act, trans, I, AP,L,
α(F), α(K), α(δ)), where α(δ) : trans → FeatExp(α(F)) is defined as: α(δ)(t) =
α(δ(t)).

Example 3. Consider the FTS F = VendingMachine in Fig. 1a with the set
of valid configurations K = {{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. We show
αjoin(π[[f]](F)) and αjoin(π[[¬f]](F)) in Fig. 2. We do not show transitions labelled
with the feature expression false and unreachable states. Also note that both
αjoin(π[[f]](F)) and αjoin(π[[¬f]](F)) are ordinary TSs, since all transitions are
labeled with the feature expression true.

For αjoin(π[[f]](F)) in Fig. 2a, note that K ∩ [[f]] = {{v, s, t, c, f}, {v, s, c, f}}.
So, transitions annotated with ¬f are not present in αjoin(π[[f]](F)).

For αjoin(π[[¬f]](F)) in Fig. 2b, note that K ∩ [[¬f]] = {{v, s}, {v, s, c}}, and
so transitions annotated with the features t and f (Tea and FreeDrinks) are
not present in αjoin(π[[¬f]](F)). ��

Abstract FTSs have interesting preservation properties [13,14].

Theorem 1 (Soundness). Let (α, γ) be a Galois connection and F be an
FTS. If α(F) |= φ, then F |= φ.

2 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L and M
iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for
all l ∈ L, m ∈ M . Here �L and �M are the pre-order relations for L and M ,
respectively.

Variability-Specific Abstraction Refinement 413

Fig. 2. Various abstractions of VendingMachine.

The family-based model checking problem given in Definition 4 can be
reduced to a number of smaller problems by partitioning the set of variants.

Proposition 1. Let the subsets K1,K2, . . . ,Kn form a partition of the set K.
Then: F |= φ, if and only if, πK1(F) |= φ, . . . , πKn

(F) |= φ.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of K, and (α1,γ1), . . . , (αn,γn)
be Galois connections. If α1(πK1(F)) |= φ, . . . , αn(πKn

(F)) |= φ, Then F |= φ.

In other words, correctness of abstract FTSs implies correctness of the con-
crete FTS. Note that verification of abstract FTSs can be drastically (even
exponentially) faster. However, if abstract FTSs invalidate a property then the
concrete FTS may still satisfy the property, i.e. the found counterexample in
abstract FTSs may be spurious. In this case, we need to refine the abstract
FTSs in order to eliminate the spurious counterexample.

Example 4. Recall the formula φ = �(selected =⇒ ♦ open) from Exam-
ple 2, and αjoin(π[[f]](VendingMachine)) and αjoin(π[[¬f]](VendingMachine)) shown in
Fig. 2. First, we can successfully verify that αjoin(π[[¬f]](VendingMachine)) |= φ,
which implies that all valid variants from K that do not contain the fea-
ture f (those are {v, s} and {v, s, c}) satisfy the property φ. On the other
hand, we have αjoin(π[[f]](VendingMachine))not |= φ with the counterexample:
1© → 3© → 5© → 7© → 1© → This counterexample is genuine for
the variants from K that contain the feature f (those are {v, s, t, c, f} and
{v, s, c, f}). In this way, the problem of verifying the FTS VendingMach. against
φ can be reduced to verifying whether two TSs, αjoin(π[[¬f]](VendingMach.)) and
αjoin(π[[f]](VendingMach.)), satisfy φ. ��

3 Abstraction Refinement

We now describe the abstraction refinement procedure (ARP), which uses spuri-
ous counterexamples to iteratively refine abstract variational models until either
a genuine counterexample is found or the property satisfaction is shown for each
variant in the family. Thus, the ARP determines for each variant whether or not
it satisfies a property, and provides a counterexample for each variant that do
not satisfy the given property.

414 A.S. Dimovski and A. W ↪asowski

The ARP for checking F |= φ, where F = (S,Act,trans,I,AP,L,F,K, δ), is
illustrated in Fig. 3. We apply an initial abstraction α, thus obtaining an ini-
tial abstract variational model α(F). If the initial abstract model satisfies the
given property, then all variants satisfy it and we stop. Otherwise, the model
checker returns a counterexample. Let ψ be the feature expression computed
by conjoining feature expressions labelling all transitions that belong to this
counterexample in F . There are two cases to consider.

Fig. 3. The abstraction refinement procedure (ARP)

First, if ψ is satisfiable and K ∩ [[ψ]] = ∅, then the found counterexample
is genuine for variants in K ∩ [[ψ]]. For the other variants from K ∩ [[¬ψ]], the
found counterexample cannot be executed (i.e. the counterexample is spurious
for K∩ [[¬ψ]]). Therefore, we call the ARP again to verify π[[¬ψ]](F) with updated
set of valid configurations K ∩ [[¬ψ]].

Second, if ψ ∧ (
∨

k∈K
k) is unsatisfiable (i.e. K ∩ [[ψ]] = ∅), then the found

counterexample is spurious for all variants in K (due to incompatible feature
expressions). Now, we describe how a feature expression ψ′ used for constructing
refined abstract models is determined by means of Craig interpolation [27] from
ψ and K. First, we find the minimal unsatisfiable core ψc of ψ∧(

∨
k∈K

k), which
contains a subset of conjuncts in ψ∧(

∨
k∈K

k), such that ψc is still unsatisfiable
and if we drop any single conjunct in ψc then the result becomes satisfiable. We
group conjuncts in ψc in two groups X and Y such that ψc = X ∧ Y = false.
Then, the interpolant ψ′ is such that: (1) X =⇒ ψ′, (2) ψ′ ∧ Y = false,
(3) ψ′ refers only to common variables of X and Y . Intuitively, we can think
of the interpolant ψ′ as a way of filtering out irrelevant information from X.

Variability-Specific Abstraction Refinement 415

In particular, ψ′ summarizes and translates why X is inconsistent with Y in
their shared language. Once the interpolant ψ′ is computed, we call the ARP to
check π[[ψ′]](F) |= φ for variants in K ∩ [[ψ′]], and π[[¬ψ′]](F) |= φ for variants in
K∩[[¬ψ′]]. By construction, we guarantee that the found spurious counterexample
does not occur neither in π[[ψ′]](F) nor in π[[¬ψ′]](F).

Note that, in Step 1, the initial abstraction can be chosen arbitrarily. This
choice does not affect correctness and termination of the ARP, but it allows
experimentation with different heuristics in concrete implementations. For exam-
ple, if we use the initial abstraction αjoin, then as an abstract model we obtain
an ordinary TS where all feature expressions associated with transitions of F
occurring in some valid variant are replaced with true. Therefore, the verifica-
tion step can be performed using a single-system model checker (e.g. SPIN).
Also note that we call the ARP until there are no more counterexamples or the
updated set of valid configurations K becomes empty.

Example 5. Let F be VendingMachine of Fig. 1a with configurations K =
{{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. Let αjoin be the initial abstraction.

We check F |= φ, where φ = �(selected =⇒ ♦ open) using the ARP. We
first check αjoin(F) |= φ? The following spurious counterexample is reported:

1© pay−→ 2© change−→ 3© tea−→ 6© serveTea−→ 7© take−→ 1© The associated feature expres-
sion in F is: (v ∧ ¬f) ∧ v ∧ t ∧ f . The minimal unsatisfiable core is: (v ∧ ¬f) ∧ f ,
and the found interpolant is ¬f . In this way, we have found that the feature f is
responsible for the spuriousness of the given counterexample. Thus, in the next
iteration we check αjoin(π[[¬f]](F)) |= φ and αjoin(π[[f]](F)) |= φ, which give
conclusive results for all variants from K as explained in Example 4.

Consider the property φ′ = �♦ open. The following counterexample
is found in αjoin(F): 1© pay−→ 2© change−→ 3© cancel−→ 4© return−→ 1© The
associated feature expression in F is: v ∧ ¬f ∧ c, so this is a genuine
counterexample for the variant {v, s, c} ∈ K. In the next iteration, we
check αjoin(π[[¬(v∧¬f∧c)]](F)) |= φ′ for variants K\{v, s, c}. We obtain the

counterexample: 1© free−→ 3© cancel−→ 4© return−→ 1© . . ., with associated feature expres-
sion f ∧ c, realizable for variants {v, s, t, c, f} and {v, s, c, f}). In the final iter-
ation, we check αjoin

(
π[[¬(f∧c)]](π[[¬(v∧¬f∧c)]](F))

) |= φ′ for the variant {v, s}.
The property holds, so φ′ is satisfied by {v, s}. ��
Theorem 2. The ARP terminates and is correct.

Proof. At the end of an iteration, the ARP either terminates with answer ‘yes’,
or finds a genuine counterexample and updates K into K

′, or finds a spurious
counterexample and updates K into K1 and K2. Given that K

′ ⊂ K (the coun-
terexample is genuine for some non-empty subset of K), and K1 ⊂ K, K2 ⊂ K

(by def. K1 = ∅, K2 = ∅, K1 ∪ K2 = K), the number of possible updates and
calls to the ARP are finite. Therefore, the number of iterations is also finite.

If the ARP terminates with answer that a property is satisfied (resp., property
is not satisfied) by a variant, then the answer is correct by Theorem 1, since any
abstraction constructs an over-approximated model for a given set of variants. ��

416 A.S. Dimovski and A. W ↪asowski

4 Evaluation

In this section, we describe our implementation of the ARP, and present the
results of experiments carried out on several variational models. We use exper-
iments to evaluate in which cases and to what extent our ARP technique out-
performs the family-based model checking algorithms of FTS [7,8] implemented
in SNIP3.

Implementation. It is difficult to use FTSs directly to model large varia-
tional systems. Therefore, SNIP uses the high-level languages fPromela and
TVL for modeling variational systems and their configuration sets, respectively.
fPromela is an extension of Promela, the language of the SPIN model
checker [19], adding feature variables, F, and a new guarded-by-features state-
ment, “gd”. The “gd” is a non-deterministic statement similar to Promela’s
“if”, except that only feature expressions can be used as guards. Actually, this
is the only place where features may be used. Thus, “gd” plays the same role
in fPromela as “#ifdef” in the C Preprocessor [24]. TVL [6] is a textual
modelling language for describing the set of valid configurations, K, for an
fPromela model along with all available features, F. It has been shown in
[13,14] that variability abstractions and projections can be implemented as syn-
tactic source-to-source transformations of fPromela and TVL models, which
enable an effective computation of abstract models syntactically from high-level
modelling languages. More precisely, let M and T be fPromela and TVL mod-
els, and let [[M]]T represent the FTS obtained by their compilation. Since vari-
ability abstractions affect only variability-specific aspects of a system, for any
abstraction α we can define α(M) and α(T) as syntactic transformations such
that α([[M]]T) = [[α(M)]]α(T). That is, the abstract model obtained by applying α
on the FTS [[M]]T coincides with the FTS obtained by compiling α(M) and α(T).
The same applies for projections π[[ψ]]. The fPromelaReconfigurator tool
[13,14] syntactically calculates the transformations corresponding to abstrac-
tions and projections. This is important for two reasons. First, it allows to eas-
ily implement our technique based on abstractions and projections. Second, we
avoid the need for intermediate storage in memory of the concrete full-blown
FTSs. In our implementation of the ARP, we use αjoin as the initial abstraction.
Hence, after applying αjoin on fPromela and TVL models M and T , we obtain
an ordinary Promelamodel and we call SPIN to check [[α(M)]]α(T) |= φ? If a
counterexample trace is returned, we inspect the error trace in detail by using
SPIN’s simulation mode. We replay the error trace through α(M) and M simul-
taneously, and we find the feature expression ψ that characterizes this trace in
M . In order to do this, we use the fact that α(M) and M have the same control
structures (same number of lines and statements), except that “gd” statements
in M are replaced with “if” statements in α(M) by the corresponding trans-
formations that affect only their guards.
3 The project on development of the SNIP tool (https://projects.info.unamur.be/fts/)

is independent of SPIN. SNIP has been implemented from scratch. We put a line
over SNIP to make the distinction from SPIN clearer.

https://projects.info.unamur.be/fts/

Variability-Specific Abstraction Refinement 417

Experimental setup. For our experiments, we use: a warm-up example to demon-
strate specific characteristics of our ARP, and the MinePump [25] variational
system whose fPromela model was created as part of the SNIP project. We ver-
ify a range of properties by using (1) the ARP with αjoin as the initial abstraction
and SPIN as the verification tool (denoted ARP+SPIN), and by using (2) plain
family-based model checking with SNIP. The reported performance numbers
constitute the average runtime of five independent executions. For each experi-
ment, we measure: Time which is the time to verify in seconds; and Space which
is the number of explored states plus the number of re-explored states (this is
equivalent to the number of transitions fired). For the ARP, along with the total
time the ARP takes to complete we also report in parentheses the time taken
by SPIN to perform the actual model checking tasks. The rest of the total time
the ARP uses to calculate abstractions, projections, analyze error traces, etc.
We only measure the times to generate a process analyser (pan) for SPIN and to
execute it. We do not count the time for compiling pan, as it is due to a design
decision in SPIN rather than its verification algorithm. All experiments were
executed on a LUbunutuVM 64-bit Intel�CoreTM i7-4600U CPU running at
2.10 GHz with 4 GB memory. The implementation, benchmarks, and all results
obtained from our experiments are available from: http://www.itu.dk/people/
adim/arp.html.

Warm-up example. Consider the fPromela model F given in Fig. 4a. After
declaring feature variables, A1 . . . An, the process foo() is defined. The first gd
statement specifies that i++ is available for variants that contain the feature
A1, and skip for variants with ¬A1. The following gd statements are similar,
except that their guards are the features from A2 to An. We want to check the
assertion, i ≥ k, where k is a meta-variable that can be replaced with different
values: 0, 1, ..., n. The corresponding TVL model specifies that all features are
optional and unconstrained, which means that all possible 2n configurations are
valid. We use two approaches to check the above assertions: ARP+SPIN and the
family-based model checker SNIP. The initial abstract model αjoin(F) used in
the ARP is shown in Fig. 4b. Since there are valid variants where Aj is enabled

Fig. 4. An fPromela model and the corresponding αjoin abstract model.

http://www.itu.dk/people/adim/arp.html
http://www.itu.dk/people/adim/arp.html

418 A.S. Dimovski and A. W ↪asowski

and valid variants where Aj is disabled (for any j ∈ {1, . . . , n}), we have that both
statements i++ and skip become available in αjoin(F) for all “gd” statements.

When k = 0, the assertion i ≥ 0 is satisfied by all variants. The ARP termi-
nates in one iteration with only one call to SPIN, which reports that αjoin(F)
satisfies the assertion. When k = 1, the ARP needs two iterations to find a
(genuine) counterexample which corresponds to a single configuration where all
features are disabled, and to certify that all other variants satisfy the assertion.
When k = 2, the ARP runs in n + 1 iterations producing n + 1 erroneous vari-
ants: one variant where all features are disabled, and n variants where exactly
one feature is enabled and all others are disabled. When k = n, the ARP will
need n+1 iterations to terminate reporting that there is only one variant, where
all features are enabled, that satisfies the assertion i ≥ n. All other variants are
erroneous. This represents the worst case for our ARP, since all possible vari-
ants will be generated explicitly and checked by SPIN in a brute-force fashion.
In addition, we have the overhead of generating all intermediate projections and
abstractions as well as their verification with SPIN, for which spurious coun-
terexamples are obtained. The performance results are shown in Fig. 5. We say
that a task is infeasible when it is taking more time than the given timeout
threshold, which we set on 1 h. Notice that SNIP reports the correct results in
only one iteration for all cases. Yet, as shown in Fig. 5, for n = 25 (for which
|K| = 225 = 33, 554, 432 variants) SNIP timeouts after visiting 150 M states. On
the other hand, our ARP based approach is feasible even for very large values
of n when k is smaller (see Fig. 5). In general, the ARP aims to partition the
configuration space into subspaces that satisfy and violate the property at hand.
When k is higher, that split becomes more irregular and the ARP needs to per-
form more iterations and calls to SPIN to find it automatically. Therefore, in
those cases it takes more time to complete.

MinePump. The MinePump variational system is given by an fPromela
model with 200 LOC and a TVL model that contains 7 independent optional
features: Start, Stop, MethaneAlarm, MethaneQuery, Low, Normal, and High,
thus yielding 27 = 128 variants. The FTS of MinePump has 21,177 states. It
consists of 5 processes: a controller, a pump, a watersensor, a methanesensor,

Fig. 5. Verification of the warm-up example. Time in seconds.

Variability-Specific Abstraction Refinement 419

Fig. 6. Verification of MinePump properties.

and a user. When activated, the controller should switch on the pump when the
water level in the mine is high, but only if there is no methane within it.

For evaluation, we consider five interesting properties of MinePump (taken
from [8]). First, we consider three properties, ϕ1, ϕ2 and ϕ3, that are intended
to be satisfied by all variants. The property ϕ1 is the absence of deadlock; the
property ϕ2 is that under a fairness assumption (the system will infinity often
read messages of various types) the pump is never indefinitely off when the
water level is high and there is no methane; whereas the property ϕ3 is that
if the pump is switched on then the controller state is running. For all three
properties, the ARP terminates after one iteration reporting that the properties
are satisfied by all variants. Then, we have two properties, ϕ4 and ϕ5, which are
satisfied by some variants and violated by others, such that there are different
counterexamples corresponding to violating variants. The property ϕ4 (when
the water is high and there is no methane, the pump will not be switched on
at all eventually) is violated by variants that satisfy Start ∧ High (32 variants
in total). The property ϕ5 (when the water is low, then the pump will be off)
is also violated by variants satisfying Start ∧ High. For both properties, our
ARP runs in seven iterations, producing 12 different counterexamples for ϕ4

and 13 different counterexamples for ϕ5. Figure 6 shows the performance results
of verifying properties, ϕ1 to ϕ5, using our ARP with SPIN approach and the
SNIP. The ARP achieves improvements in both Time and Space in most cases,
especially for properties ϕ1 to ϕ3 satisfied by all variants which are verified in
only one iteration. Of course, the performances of the ARP will start to decline
for properties for which the ARP needs higher number of iterations and calls to
SPIN in order to complete. However, we can see that for both ϕ4 and ϕ5 the
actual verification time taken by SPIN (given in parentheses) in our ARP is still
considerable smaller than the time taken by SNIP. Still, in these cases we obtain
very long counterexamples (around thousand steps) so the ARP will need some
additional time to process them.

Discussion. In conclusion, the ARP achieves the best results when the property
to be checked is either satisfied by all variants or only a few erroneous variants
exist. In those cases, the ARP will report conclusive results in few iterations.
The worst case is when every variant triggers a different counterexample, so
our ARP ends up in verifying all variants one by one in a brute-force fashion

420 A.S. Dimovski and A. W ↪asowski

(plus the overhead for generating and verifying all intermediate abstract models).
Variability abstractions weaken feature expressions used in FTSs, thus increas-
ing the commonality between the behaviours of variants. In the case of αjoin

this enables the use of (single-system) SPIN model checker. SPIN is a highly-
optimized industrial-strength tool which is much faster than the SNIP research
prototype. SPIN contains many optimisation algorithms, which are result of
more than three decades research on advanced computer aided verification. For
example, partial order reduction, data-flow analysis and statement merging are
not implemented in SNIP yet. Note that we can also implement the ARP to
work with SNIP by using αfignore instead of αjoin as the initial abstraction. The
ARP will work correctly for any choice of features to be ignored by αfignore.
However, in order the ARP to terminate faster and achieve some speedups, the
ignored features should be chosen carefully by exploiting the knowledge of the
variational system and property at hand.

5 Related Work

Family-based (lifted) analyses and verification techniques have been a topic of
considerable research recently (see [30] for a survey). Some successful examples
are lifted syntax checking [17,24], lifted type checking [23], lifted static data-flow
analysis [3,15,16,28], lifted verification [20,21,29], etc.

In the context of family-based model checking, one of the earliest attempts
for modelling variational systems is by using modal transition systems (MTSs)
[2,26]. Following this, Classen et al. present FTSs in [7,8] and show how specif-
ically designed family-based model checking algorithms (implemented in SNIP)
can be used for verifying FTSs against fLTL properties. An FTS-specific veri-
fication procedure based on counterexample guided abstraction refinement has
been proposed in [10]. Abstractions on FTSs are introduced by using existential
F-abstraction functions (as opposed to Galois connections here), and simulation
relation is used to relate different abstraction levels. There are other impor-
tant differences between the approach in [10] and our ARP. Refinement of fea-
ture abstractions in [10] is defined by simply replacing the abstract (weakened)
feature expressions occurring in transitions of the spurious counterexample by
their concrete feature expressions. In contrast, we use Craig interpolation as well
as suitable combinations of variability abstractions and projections to generate
refined abstract models. The abstractions in [10] are applied on feature pro-
gram graphs (an intermediate structure between high-level fPromelamodels
and FTSs) in SNIP. In contrast, we apply variability abstractions as preproces-
sor transformations directly on high-level fPromelamodels thus avoiding to
generate any intermediate concrete semantic model in the memory. In the case
of αjoin, this leads to generating Promelamodels and using SPIN for the ARP.
The work [12] presents an approach for family-based software model checking
of #ifdef-based second-order program families using symbolic game semantics
models [11].

Variability-Specific Abstraction Refinement 421

6 Conclusion

In this work we have proposed an automatic abstraction refinement procedure for
family-based model checking of variational systems. Automatic refinement gives
us an adaptive divide-and-conquer strategy for the configuration space. The
obtained tool represents a completely automatic alternative to the family-based
model checker SNIP, which is simpler, easier to maintain, and more efficient
for some interesting properties than SNIP. It automatically benefits from all
optimizations of SPIN. The overall design principle is general and can be applied
to lifting of other automatic verification tools to variational systems.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing

variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016).
http://dx.doi.org/10.1016/j.jlamp.2015.09.004

3. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: SPLLIFT:
statically analyzing software product lines in minutes instead of years. In: ACM
SIGPLAN Conference on PLDI 2013, pp. 355–364 (2013)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

5. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. Formal Meth. Syst. Des. 25(2–3), 105–127 (2004).
http://dx.doi.org/10.1023/B:FORM.0000040025.89719.f3

6. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
syntax and semantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011).
http://dx.doi.org/10.1016/j.scico.2010.10.005

7. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model
checking software product lines with SNIP. STTT 14(5), 589–612 (2012).
http://dx.doi.org/10.1007/s10009-012-0234-1

8. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013). http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2001)

10. Cordy, M., Heymans, P., Legay, A., Schobbens, P., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural mod-
els. In: Cheung, S., Orso, A., Storey, M.D. (eds.) Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE-
22), pp. 190–201. ACM (2014). http://doi.acm.org/10.1145/2635868.2635919

11. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014). http://dx.doi.org/10.1016/j.tcs.2014.01.016

12. Dimovski, A.S.: Symbolic game semantics for model checking program families. In:
Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 19–37. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-32582-8 2

http://dx.doi.org/10.1016/j.jlamp.2015.09.004
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1023/B:FORM.0000040025.89719.f3
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dx.doi.org/10.1007/s10009-012-0234-1
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86
http://doi.acm.org/10.1145/2635868.2635919
http://dx.doi.org/10.1016/j.tcs.2014.01.016
http://dx.doi.org/10.1007/978-3-319-32582-8_2

422 A.S. Dimovski and A. W ↪asowski

13. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23404-5 18

14. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Efficient family-
based model checking via variability abstractions. STTT 1–19 (2016). doi:10.1007/
s10009-016-0425-2

15. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading
precision for speed in family-based analyses. In: 29th European Conference on
Object-Oriented Programming, ECOOP 2015. LIPIcs, vol. 37, pp. 247–270. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). http://dx.doi.org/10.4230/
LIPIcs.ECOOP.2015.247

16. Dimovski, A.S., Brabrand, C., W ↪asowski, A.: Finding suitable variability abstrac-
tions for family-based analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philip-
pou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 217–234. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-48989-6 14

17. Gazzillo, P., Grimm, R.: Superc: parsing all of C by taming the preprocessor. In:
Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June
2012, pp. 323–334. ACM (2012). http://doi.acm.org/10.1145/2254064.2254103

18. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2004, pp. 232–244. ACM (2004). http://
doi.acm.org/10.1145/964001.964021

19. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Reading (2004)

20. Iosif-Lazar, A.F., Al-Sibahi, A.S., Dimovski, A.S., Savolainen, J.E., Sierszecki, K.,
Wasowski, A.: Experiences from designing and validating a software modernization
transformation (E). In: 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, pp. 597–607 (2015). http://dx.doi.org/10.1109/
ASE.2015.84

21. Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective
analysis of c programs by rewriting variability. In: The Art, Science, and Engineer-
ing of Programming, Programming 2017 (2017)

22. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute, November 1990

23. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14 (2012)

24. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional compi-
lation. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
pp. 805–824 (2011). http://doi.acm.org/10.1145/2048066.2048128

25. Kramer, J., Magee, J., Sloman, M., Lister, A.: Conic: an integrated approach to
distributed computer control systems. IEE Proc. 130(1), 1–10 (1983)

26. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 6

http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.1007/978-3-319-48989-6_14
http://doi.acm.org/10.1145/2254064.2254103
http://doi.acm.org/10.1145/964001.964021
http://doi.acm.org/10.1145/964001.964021
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
http://doi.acm.org/10.1145/2048066.2048128
http://dx.doi.org/10.1007/978-3-540-71316-6_6

Variability-Specific Abstraction Refinement 423

27. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31980-1 1

28. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation
of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170
(2015). http://dx.doi.org/10.1016/j.scico.2015.04.005

29. von Rhein, A., Thüm, T., Schaefer, I., Liebig, J., Apel, S.: Variability encoding:
from compile-time to load-time variability. J. Log. Algebr. Meth. Program. 85(1),
125–145 (2016). http://dx.doi.org/10.1016/j.jlamp.2015.06.007

30. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6
(2014). http://doi.acm.org/10.1145/2580950

http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://doi.acm.org/10.1145/2580950

A Unified and Formal Programming Model
for Deltas and Traits

Ferruccio Damiani1(B), Reiner Hähnle1,2, Eduard Kamburjan2,
and Michael Lienhardt1

1 University of Torino, Torino, Italy
{ferruccio.damiani,michael.lienhardt}@unito.it

2 Technical University Darmstadt, Darmstadt, Germany
{haehnle,kamburjan}@cs.tu-darmstadt.de

Abstract. This paper presents a unified model for two complemen-
tary approaches of code reuse: Traits and Delta-Oriented Programming
(DOP). Traits are used to modularly construct classes, while DOP is a
modular approach to construct Software Product Lines. In this paper,
we identify the common structure of these two approaches, present a core
calculus that combine Traits and DOP in a unified framework, provide
an implementation for the ABS modelling language, and illustrate its
application in an industrial modeling scenario.

1 Introduction

Systematic and successful code reuse in software construction remains a challenge
and constitutes an important research problem in programming language design.
The drive to digitalization, together with the fundamental changes of deployment
platforms in recent years (cloud, multi-core), implies that modern software must
be able to evolve and it must also support variability [33]. The standard reuse
mechanism of mainstream object-oriented languages—class based inheritance—
is insufficient to deal adequately with software evolution and reuse [14,24] and
provides no support for implementing software variability.

Traits are a mechanism for fine-grained reuse aimed at overcoming the lim-
itations of class-based inheritance (see [9,14,25] for discussions and examples).
Traits are sets of methods, defined independently of a class hierarchy, that can
be composed in various ways to build other traits or classes. They were orig-
inally proposed and implemented in a Smaltalk-like, dynamically typed set-
ting [14,34]. Subsequently, various formulations of traits in a Java-like, statically
typed setting were proposed [3,6,22,26,28,29,36].

Delta-oriented programming (DOP) [1, Sect. 6.6.1], [31] is a flexible and mod-
ular approach to implement Software Product Lines (SPL) [27]. Its core element

This work has been partially supported by: EU Horizon 2020 project
HyVar (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it); project FormbaR (formbar.raillab.de), Innovationsal-
lianz TU Darmstadt–Deutsche Bahn Netz AG.

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 424–441, 2017.
DOI: 10.1007/978-3-662-54494-5 25

http://www.hyvar-project.eu
http://www.cost-arvi.eu
http://runvar-project.di.unito.it
http://formbar.raillab.de

A Unified and Formal Programming Model for Deltas and Traits 425

is the delta, an explicit, structured construct for characterizing the difference
between two program variants: DOP realizes SPL by associating deltas with
product features (not necessarily one-to-one), which allows for a flexible and
modular construction of program variants [32]. DOP is an extension of Feature-
Oriented Programming (FOP) [1, Sect. 6.1], [2], a previously proposed approach
to implement SPLs, where deltas are associated one-to-one with product fea-
tures and have limited expressive power: like in DOP they can add and modify
program elements (e.g., classes and attributes1), however, they cannot remove
them. The explicit, flexible link between features and source code as realized in
DOP is key to keep design-oriented and implementation-oriented views in sync.
DOP was implemented on top of Java [21] and in the concurrent modeling
language ABS [10], where it has been successfully used in industry [16,18].

In this paper, we observe (and justify in Sect. 3.1) that, while deltas are
ideal to realize inter-product reuse, they are unsuitable to achieve intra-product
reuse. It is, therefore, natural to combine deltas and traits into a single language
that ideally supports flexible inter- as well as flexible intra-product reuse. More-
over, we also observe (and justify in Sect. 3.2) that most delta and trait oper-
ations are nearly identical from an abstract point of view: they add attributes
to an existing declaration, they remove attributes, and they modify existing
attributes. It is, therefore, natural to unify the operations provided by deltas
and traits. Such a unification simplifies the language and makes it easier to
learn (it has a smaller number of concepts). Based on these observations, we
design (in Sect. 3.3) a minimal language with a completely uniform integration
of traits and deltas. Moreover, we implement our design in the concurrent mod-
elling language ABS [10] and illustrate its application in an industrial modeling
scenario. Indeed, ABS represents an ideal platform for our investigation as it
supports DOP, but it so far lacks a construct for intra-product reuse: evaluations
of ABS against industrial requirements repeatedly identified intra-product reuse
mechanisms [15,30] as an important factor to improve usability.

Paper Organization. In Sect. 2 we introduce the FABS and FDABS languages
which formalize a minimal fragment of core ABS [20] and its extension with
deltas [10], respectively. In Sect. 3 we introduce the FDTABS language which for-
malizes our proposal by adding traits on top of FDABS. We explain and motivate
our design decisions systematically with the help of an instructive example. In
Sect. 4 we provide a formal semantics in the form of a rule system that eliminates
traits and deltas by “flattening” [26]. In Sect. 5 we present the implementation
of our ABS extension. In Sect. 6 we illustrate how it is applied in an industrial
modeling scenario. In Sect. 7 we discuss related work and conclude.

1 As usual in the OOP literature, with attribute we mean any declaration element,
i.e., a field or a method, in contrast to the usage in the UML community, where
attribute means only field.

426 F. Damiani et al.

2 FDABS: A Minimal Language for ABS with Deltas

We first present (in Sect. 2.1) FABS, a minimal fragment of core ABS [20], and
then (in Sect. 2.2) recall—as previously shown for ABS in [10]—how deltas add
the possibility to construct SPLs by factoring out the code that is common to
different products in the SPL.

2.1 FABS: Featherweight ABS

The syntax of FABS is given by the grammar in Fig. 1. The non-terminal P rep-
resents programs, ID interface declarations, CD class declarations, AD attribute
declarations, FD field declarations, HD header declarations, MD method decla-
rations, e expressions, and s statements.2 As usual, X denotes a finite sequence
with zero or more occurrences of a syntax element of type X. Our development is
independent of the exact expression and statement syntax, so we leave it unspec-
ified. Our examples use standard operators and statements whose syntax and
semantics is obvious.

The code snippet in Fig. 2 illustrates the FABS syntax. It is a fragment of
an application that manages bank accounts. Withdrawals that would result in a
negative balance are not carried out.

2.2 FDABS: Adding Deltas to FABS

Delta-Oriented Programming implements SPLs by adding three elements to the
base language: a feature model which encodes the variability available in the SPL;

P ::= ID CD

ID ::= interface I [extends I] { HD }
CD ::= class C [implements I] { AD }
AD ::= FD | MD

FD ::= I f

HD ::= I m(I x)
MD ::= HD { s return e; }

Fig. 1. FABS syntax

interface IAccount {

Int withdraw(Int amount);

}

class Account() implements IAccount {

Int withdraw(Int amount) {

if (balance-amount >= 0) { balance = balance-amount; }

return balance;

}

}

Fig. 2. Bank account example in FABS

2 ABS includes other features, like datatypes and concurrency, that we do not include
in FABS as they are orthogonal to the delta and trait composition mechanisms.

A Unified and Formal Programming Model for Deltas and Traits 427

a set of deltas that implement the variability expressed in the feature model; and
configuration knowledge which links the feature model to the deltas.

The grammar resulting from the addition of DOP to FABS is shown in Fig. 3.
An SPL L consists of a feature model M, configuration knowledge K, a (possibly
empty) list of deltas Δ, and a (possibly empty or incomplete) base program
P, defined as in Fig. 1. We leave the precise definition of the feature model
and configuration knowledge unspecified, as it is not the focus of this work
and invite the interested reader to look at [10] for a possible syntax for these
elements. Deltas have a name d and a list of operations IO on interfaces and
operations CO on classes. These operations can add or remove interfaces and
classes, or modify their content by adding or removing attributes. Moreover,
these operations can also change the set of interfaces implemented by a class or
extended by an interface by means of an optional implements or extends clause
in the modifies operation, respectively. Finally, it is also possible to modify the
declaration of a method, with the modifies operation: in this operation, the new
code can refer to a call of the original implementation of the method with the
keyword original.

L ::= M K Δ P

Δ ::= delta d {IO CO }
IO ::= adds ID | removes I | modifies I [extends I] { HO }
HO ::= adds HD | removes m

CO ::= adds CD | removes C | modifies C [implements I] { AO }
AO ::= adds FD | removes f | adds MD | removes m | modifies MD

Fig. 3. FDABS syntax: productions to be added to Fig. 1

We illustrate this extension of FABS by declaring an SPL over the example
in Fig. 2. We add two variants to the original code: one that enables interest
payment, identified by the feature “Saving” and parameterized by the interest
rate, and one that permits a negative balance, identified by the feature “Over-
draft” and parameterized by the overdraft limit. A visual representation of the
corresponding feature model is shown in Fig. 4.

Banking

Saving Overdraft
Int interest Int limit

Fig. 4. Visual representation of the feature model of the bank account example

428 F. Damiani et al.

We exemplify delta operations with delta dOverdraft shown in Fig. 5 which
implements the feature “Overdraft”. The parameter of “Overdraft” is encoded
by the field limit.3 Moreover, dOverdraft adds a setter method for that field,
and it modifies withdraw to take the limit into account.

delta dOverdraft {

modifies Account {

adds Int limit;

adds Unit setLimit(Int value) { limit = value; }

modifies Int withdraw(Int amount) {

if (balance-amount+limit >= 0) { balance = balance-amount; }

return balance;

}

}

}

Fig. 5. The dOverdraft delta in FDABS

3 FDTABS: Adding Traits to FDABS

To motivate the design of the FDTABS language, we first demonstrate (in
Sect. 3.1) that deltas cannot be used for intra-product code reuse. Then (in
Sect. 3.2) we argue—as previously shown in [14]—that traits are a nice fit instead.
Finally (in Sect. 3.3), we show how deltas and traits can be used in collaboration
to smoothly integrate intra- as well as inter-product code reuse.

3.1 Motivating Traits

In the previous subsection we used deltas to construct three variants of the
Account class: the base product, one with a feature that allows saving with inter-
est, and one with a feature allowing overdraft. One can also imagine that a
bank wants to have all these variants available at the same time to satisfy
different client needs. The result would be three very similar classes Account,
AccountSaving and AccountOverdraft: in this case, intra-product code reuse
would be highly useful to avoid the duplication of the common parts of the
three classes.

Deltas, however, cannot implement intra-product code reuse: by design, they
associate each delta operation to one class, and it is thus impossible to use them
to add the same code to different classes. Instead, traits, discussed in Sect. 3.2,
are a well-known and very flexible approach for factoring out code shared by
several classes. Moreover, in Sect. 3.3, we will illustrate our novel approach for
combing deltas and traits, which exploits traits also for inter-delta code reuse
(i.e., code reuse across different deltas and the base program).
3 ABS uses parameterized deltas to manage feature parameters, which we do not

include in our language to keep it as simple as possible.

A Unified and Formal Programming Model for Deltas and Traits 429

3.2 FTABS: Adding Traits to FABS

Historically, traits and deltas were developed independently from each other
in different communities (traits in the OOP community, deltas in the context
of SPL). Accordingly, they are usually presented in quite different styles with
different notational conventions. Perhaps for these reasons, the surprisingly close
analogies between traits and deltas have so far not been pointed out.

Traits are structurally simpler than deltas, because (i) they are declared inde-
pendently of classes and interfaces and (ii) they satisfy the so called flattening
principle [26], which states that each trait declaration just introduces a name for
a set of methods and using a trait in a class declaration is the same as declaring
the associated methods in the body of the class. Traits can be composed using
operators4 (where the first argument is always a trait) such as: (i) disjoint sum
(taking as second argument a trait having method names disjoint with those
of the first argument, resulting in a new trait that is their union); (ii) override
(similar, but the methods in the second argument override those in the first);
(iii) method exclusion (the second argument is a method name that is removed
from the resulting trait); (iv) method alias (which duplicates a given method by
supplying a new name).

The crucial observation is that these composition operators, except method
aliasing, are present in the class-modify operation of deltas as well (where they
have as implicit first argument the set of methods in the modified class): disjoint
sum (with a singleton set of methods as second argument) corresponds to adds,
overriding to modifies (without original),5 method exclusion to removes.

We show in Fig. 6 our extension of FABS with traits. A program with traits
PT is a finite number of trait declarations TD with an FABS program P using
these traits. A trait is declared with the keyword trait, given a name t, and
defined by a trait expression TE. A trait expression defines a set of methods
by either declaring the methods directly, referencing other traits t, or applying
a trait operation TO to a trait expression. The trait operations are the same
as those of deltas, with the exception that adds and modifies manipulate a set
of methods (described by a trait expression TE) instead of a single method.
Moreover, our modifies trait operation is actually an extension of the trait over-
ride operation: each overriding method may contain occurrences of the keyword
original to refer to the implementation of the overridden methods (in the same
way as in deltas). In previous proposals of traits in a Java-like setting (see [3] for
a brief overview) the attributes found in a trait (i.e., fields and methods accessed
with this in method bodies) are listed in a separate declaration as requirements
to classes that will use the trait. Here we adopt the convention from deltas to
let requirements implicitly contain all undefined attributes invoked on this.

The last production in Fig. 6 overrides the production for attribute declara-
tions in Fig. 1 by extending it with the possibility to import a trait into a class

4 We mention those proposed in the original formulation of traits [14].
5 To the best of our knowledge, the original concept is not present in any formulation

of traits in the literature. It can be encoded in traits with aliasing.

430 F. Damiani et al.

and thus make use of it. This latter extension is the only change that is necessary
in the syntax of FABS classes for them to use traits.

PT ::= TD P
TD ::= trait t = TE

TE ::= { MD } | t | TE TO
TO ::= adds TE | removes m | modifies TE

AD ::= FD | MD | uses TE

Fig. 6. FTABS syntax: productions to be added to Fig. 1—the last production overrides
the production in the last line of Fig. 1 (the differences are highlighted in gray)

In Fig. 7 we illustrate traits in FTABS with a new implementation of
the Account class that uses a trait tUpdate that can be shared by classes
AccountSaving and AccountOverdraft. The trait defines an update method which
performs an unconditional update of the account’s balance. The trait tUpdate is
then re-used by the three different classes to define their withdraw method.

trait tUpdate = {

Int update(Int amount) {

// this assignment is in reality a complex database transaction:
balance = balance+amount;

}

}

class Account() implements IAccount {

uses tUpdate

Int withdraw(Int amount) {

if (balance-amount >= 0) update(-amount);

return balance;

}

}

Fig. 7. The tUpdate trait and the refactored Account class in FTABS

3.3 FDTABS: Combining Traits and Deltas

Our chosen style of declaration for traits makes it extremely simple to combine
traits and deltas without the need to introduce further keywords and with merely
one change in one syntax rule. The key observation is that the production rule
for trait operations TO in Fig. 6 and the one for delta operations on methods
in Fig. 3 (final three slots in rule for AO) are identical, with the small exception
that the adds and modifies trait operations work on a set of methods (described
by a trait expression TE) instead of a single method. Hence, we can unify trait

A Unified and Formal Programming Model for Deltas and Traits 431

and delta operations by simply replacing delta operations on methods by trait
operations. We present the full grammar of the resulting language in Fig. 8.

The desired effect of extending attribute operations to include trait opera-
tions is that we can now use traits and trait operations for the declaration of
deltas, thereby supporting also intra- and inter-delta code reuse. It is worth to
observe that trait declarations are not part of the base program, i.e., traits are not
provided by the base language (the language in which each variant is written)—
therefore, deltas are not able to modify trait declarations and uses clauses in
classes. Our design decision is to provide traits as a construct to enabling code
reuse in FDABS in the base program as well as in deltas. The alternative design
choice of adding deltas to a base language that provides traits [13] is briefly
discussed below in Sect. 7.

L ::= M K TD Δ P

P ::= ID CD

ID ::= interface I [extends I] { HD }
CD ::= class C [implements I] { AD }

AD ::= FD | MD | uses TE

FD ::= I f

HD ::= I m(I x)
MD ::= HD { s return e; }

TD ::= trait t = TE

TE ::= { MD } | t | TE TO

TO ::= adds TE | removes m | modifies TE

Δ ::= delta d {IO CO }
IO ::= adds ID | removes I | modifies I [extends I] { HO }
HO ::= adds HD | removes m

CO ::= adds CD | removes C | modifies C [implements I] { AO }
AO ::= adds FD | removes f | TO

Fig. 8. FDTABS syntax (differences to FDABS syntax in Fig. 3 are highlighted)

We illustrate the capabilities of the FDTABS language with the refactored
dOverdraft delta in Fig. 9. Observe that dOverdraft does not have to add the trait
tUpdate, because it was already used in the base product as shown in Fig. 7. We
achieved the maximal possible degree of reuse, because the method header of
withdraw and the changed guard in its body must be repeated in any case.

Banking

Logging

The capability to use traits inside deltas is a powerful tool
to describe cross-cutting feature implementations in a succinct
manner. Assume we want to add a logging feature as illustrated
in the feature diagram on the right (ABS permits multi-feature
diagrams, i.e., orthogonal feature hierarchies). To implement log-
ging we create a delta that adds a suitable method call to update.
Since the latter is defined as a trait, we can use trait composition. First we declare
a trait tUpdateLog that uses trait tUpdate, adds a logger and suitably modifies
the original update method, see Fig. 10. Please observe that the original key-
word (which, to the best of our knowledge, is not present in other formulation

432 F. Damiani et al.

delta dOverdraft {

modifies Account {

adds Int limit;

adds Unit setLimit(Int value) { limit = value; }

modifies Int withdraw(Int amount) {

if (balance-amount+limit >= 0) update(-amount);

return balance;

}

}

}

Fig. 9. Refactored dOverdraft delta

trait tUpdateLog = tUpdate

adds { Unit log(Int value) { ... } } // logging facility
modifies { Int update(Int amount) {

original(amount);

log(amount);

}

}

delta dLogging {

modifies Account {

removes update

adds tUpdateLog

}

}

Fig. 10. Using traits inside deltas

of traits) can be used in the same manner within traits as within deltas to refer
to the most recent implementation. The delta that realizes logging now simply
removes the old version of the obsolete update method and adds the new trait.
This has to be done for each class, where the new trait is to be used, but that
is intentional: for example, logging might not be desired to take place in each
call of update throughout the whole product. This is in line with the general
design philosophy of ABS-based languages that code changes should be speci-
fied extensionally (in contrast to aspect-oriented programming, for example) to
facilitate code comprehension and analysis.

4 Semantics

We present the formal semantics of the FDTABS language. The artifact base
AB of an SPL consists of its traits, deltas and base program. Given a specific
product to generate, the semantics eliminates from the artifact base all traits
and deltas to produce an FABS program corresponding to the specified prod-
uct (in particular, first eliminating all traits produces an FDABS program).
For simplicity, we suppose in our presentation that all the deltas that do not

A Unified and Formal Programming Model for Deltas and Traits 433

take part in the generation of the chosen product have already been removed
from the artifact base and that all the remaining deltas have been sorted fol-
lowing the partial order in the configuration knowledge K. This initial step is
standard in DOP [4] and allows us to focus on the semantics of traits and delta
operations.

4.1 Semantics of Traits

We structure the semantics of traits, shown in Fig. 11, into two rule sets. The
first set formalizes the intuitive semantics of trait operations. This semantics
uses the name function which retrieves the name of a method. We extend that
notation and, given a sequence of field and method declarations AD, also use
name(AD) to obtain the names of the fields and methods declared in AD. Rule
(T:Adds) states that the adds operation combines two sets of methods that have
no name in common. Rule (T:Rems) removes a method only if it exists in the
given set of methods. Finally, rule (T:Mods) implements the modification of
a set of methods. It replaces existing methods MDi with new implementations
MD′

i. The latter, however, may refer to the most recent implementation with
references to original which our semantics inlines.

T:Adds
name(MD) ∩ name(MD

′
) = ∅

{ MD } adds { MD
′ } � { MD MD

′ }

T:Rems
name(MD) = m

{ MD MD } removes m � { MD }

T:Mods
∀1 ≤ i ≤ n, (MDi = I mi(I x) { return ei; }) ∧ (name(MD

′
i) = mi)

{ MD1 . . . MDn MD } modifies { MD
′
1 . . . MD

′
n }

� { MD
′
1[
e1/original(x)] . . . MD

′
n[

en/original(x)] MD }

T:Trait

(trait t = TE AB) � AB[
TE

/t]

T:Class
name(AD) ∩ name(MD) = ∅

class C implements I { AD uses {MD} }
� class C implements I { AD MD }

Fig. 11. Semantics of traits

The second set of rules enforces the flattening principle (cf. Sect. 3.2). Rule
(T:Trait) eliminates a trait declaration from a program by replacing occur-
rences of its name by its definition. Finally, rule (T:Class) is applicable after
the traits operations inside a class have been eliminated and puts the resulting
set of method declarations inside the body of the class, provided that there is
no name clash.

4.2 Semantics of Deltas

Due to the large number of operations a delta may contain, we split the set
or reduction rules in three parts. The first part, in Fig. 12, presents the sim-
plest elements of the semantics of deltas, which applies in sequence all the

434 F. Damiani et al.

operations contained in a delta. Rule (D:Empty) is applicable when a delta
does not contain any operation to execute: the delta is simply deleted. Rules
(D:Inter)/(D:Class) extract the first interface/class operation from the delta
and apply it to the full artifact base (denoted AB • IO/AB • CO).

D:Empty
delta d { } AB � AB

D:Inter
AB = (delta d { IO IO CO } AB

′

AB � (delta d { IO CO } AB
′
) • IO

D:Class
AB = (delta d { CO CO } AB

′
)

AB � (delta d { CO } AB
′
) • CO

D:AddsI
name(ID) 	∈ name(AB)

AB • (adds ID) � ID AB

D:RemsI
name(ID) = I

(ID AB) • (removes I) � AB

D:AddsC
name(CD) 	∈ name(AB)

AB • (adds CD) � CD AB

D:RemsC
name(CD) = C

(CD AB) • (removes C) � AB

Fig. 12. Semantics of deltas: top-level

In case when the interface operation is the addition of an interface (rule
(D:AddsI)), the specified interface is added to the artifact base AB, provided
that it was not already declared. In case the interface operation is the removal
of an interface I, the interface with that name is extracted from the artifact base
and deleted (rule (D:RemsI)). The addition and removal of classes is similar.

The rules for modifying interfaces and classes are shown in Figs. 13 & 14.
The structure of these rules is similar to the ones for deltas, in the sense
that they apply in order all the operations contained in the modification. Rule

D:I:Empty
(interface I extends I { HD } AB) • (modifies I { })

� interface I extends I { HD } AB

D:I:Adds
name(HD) 	∈ name(HD)

(interface I extends I { HD } AB) • (modifies I { (adds HD) HO })
� (interface I extends I { HD HD } AB) • (modifies I { HO })

D:I:Rems
name(HD) = m

(interface I extends I { HD HD } AB) • (modifies I { (removes m) HO })
� (interface I extends I { HD } AB) • (modifies I { HO })

D:I:Extends
(interface I extends I { HD } AB) • (modifies I extends I

′ { HO })
� (interface I extends I

′ { HD } AB) • (modifies I { HO })

Fig. 13. Semantics of deltas: interface modification

A Unified and Formal Programming Model for Deltas and Traits 435

D:C:Empty
(class C implements I { AD } AB) • (modifies C { })

� class C implements I { AD } AB

D:C:AddsF
name(FD) 	∈ name(AD)

(class C implements I { AD } AB) • (modifies C { (adds FD) AO })
� (class C implements I { FD AD } AB) • (modifies C { AO })

D:C:RemsF
name(FD) = f

(class C implements I { FD AD } AB) • (modifies C { (removes f) AO })
� (class C implements I { AD } AB) • (modifies C { AO })

D:C:Trait
(class C implements I { FD MD } AB) • (modifies C { TO AO })

� (class C implements I { FD (adds { MD } TO) } AB) • (modifies C { AO })

D:C:Extends
(class C implements I { AD } AB) • (modifies C implements I

′ { AO })
� (class C implements I

′ { AD } AB) • (modifies C { AO })

Fig. 14. Semantics of deltas: class modification

(D:I:Empty) is applicable when no further modification is requested on the
given interface, so that the result is the interface itself. Rule (D:I:Adds) adds
the specified method header to the interface (provided that no header with this
name is already present in the interface). Rule (D:I:Rems) removes an existing
method header from the interface. Finally, rule (D:I:Extends) is applicable
when a modification of the extends clause is requested, in which case that clause
is entirely replaced with the set specified in the modification.

The rules for class modification in Fig. 14 are very similar to the ones
for interfaces, with two exceptions: first, manipulation (adds and removes) of
method headers is replaced by manipulation of fields (rules (D:C:AddsF) and
(D:C:RemsF)); second, class operations also include trait operations to modify
their method set. Rule (D:C:Trait) applies a trait operation contained in a
delta to the given class simply by applying it to its set of methods.

5 Integration into the ABS Tool Chain

We implemented our approach as a part of the ABS compiler tool chain, as illus-
trated in Fig. 15. The tool chain is structured as a pipeline of three components.
The parser takes as its input an ABS program composed of a set of ABS files,
and produces an extended Abstract Syntax Tree (AST) corresponding to that
program. The rewriter is the component responsible for generating the variant
corresponding to the selected features. This is done by applying in order the
various deltas required by the selected features: the result is a core AST which
does not contain any deltas. The core AST can then be analyzed by different
tools developed for the ABS language [8]. It can also be executed using one of
the ABS code generation backends [7,19,35].

436 F. Damiani et al.

ABS program:
feature model,
base program,
delta modules,

configuration

Parser

Extended AST

Rewriter

Core AST

Semantic Analysis
and Backend

changed

Fig. 15. Structure of the ABS compiler tool chain

The integration of traits and deltas, motivated and discussed in the previ-
ous sections, was implemented in the ABS compiler tool chain by modifying
the parser and the rewriter components. We stress that, unlike in the previous
sections, the implementation is based not merely on FABS, but on the complete
core ABS language [20]. The parser was extended with the new syntax for traits,
and with the new elements in the delta and class syntax (deltas may use trait
operations, classes can use traits). The changes in the rewriter mostly concern
the semantics of deltas that now include trait operations. Moreover, the extended
rewriter eliminates traits in classes and deltas (as in Sect. 4.1): the rewriter now
first eliminates all the traits declared in a program, then it applies the activated
deltas to generate a core AST as before.

The trait extension of ABS is designed to be syntactically and semantically
conservative, i.e., it is backward compatible: legacy ABS code produces the same
result as before with the extended parser and rewriter. Moreover, as the rewriter
still generates a core AST, none of the existing analysis tools and code generation
backends for ABS need to be updated. They can correctly analyse and execute
any ABS program with traits.

Our implementation performs some checks on the input program to make sure
that traits and deltas are well-formed. First, it ensures that any call to original

is performed inside a modifies trait operation. Second, it controls the validity of
the removes operation, i.e., an error is raised if “removes m” is performed on a set
of methods or a class that does not contain m. Third, it controls that traits do
not contain circular definitions. The remaining well-formedness checks for traits
and deltas are delegated to the ABS type system. For instance, if a method is
added twice, or if a method is called that is not part of the class after all deltas
and traits have been applied, then standard ABS type checking will detect that
during semantic analysis of the generated core AST.

A Unified and Formal Programming Model for Deltas and Traits 437

6 Using Deltas and Traits in an Industrial Case Study

We adapted the FormbaR [16] case study modelling railway operations6 to
use traits. Among other aspects, FormbaR models components and rules of
operation of a railway infrastructure in a precise and comprehensive manner. It
is to date the largest ABS model with currently ca. 2600 LoC. Deltas contribute
830 LoC and are used to model different scenarios for simulation.

Due to the large number of different track elements and model ranges for
these infrastructure elements, deltas are used for variability management [17]:
Deltas are able to describe different types of track components which then can be
added to a scenario. Traits, on the other hand, are used to encapsulate aspects
or behavior of track elements shared by the core railway operations model. The
following trait, for example, encapsulates that a track element transmits no
information to the rear end of a train:

trait NoRear =

{ Info triggerRear(TrainId train, Edge e){ return NoInfo; } }

We use traits in two situations: as ABS does not have class-based inheritance,
we declare at least one trait for each interface that is implemented multiple times
and use it in the implementing classes. The trait in Fig. 16 is used in three dif-
ferent classes (only one of which is shown) that implement different components
of a signal: the methods declared in the trait encapsulate the inner signal state.
The NoRear trait is used in a different scenario: It does not accompany an inter-
face and, hence, is not used in all classes implementing an interface, but only in
a subset that shares behavior, but is not distinguished by type.

trait Sig = {

[Atomic] Unit setSignal(Signal sig){ this.s = sig; }

SignalState getState() { return this.state; }

Unit setState (SignalState nState, Time t){ this.state = nState;}

}

interface TrackElement { ... }

interface MainSignal extends TrackElement { ... }

class MainSignalImpl implements MainSignal {

uses Sig;

...

}

Fig. 16. Usage of traits in the railway case study

In one variant of the railway SPL it is modeled that a signal shows a defect
with a certain probability after the main signal is set. The delta in Fig. 17 mod-
ifies only one of the classes where trait Sig is used and merely describes the
additional behavior, while calling the original method afterwards.
6 The model is available under formbar.raillab.de.

http://formbar.raillab.de

438 F. Damiani et al.

delta RandomDefect;

modifies class TrackElements.MainSignalImpl {

modifies Unit setState(SignalState nState, Time t) {

if (random(100) > 95) this.s!defect(t);

original(nState, t);

}

}

Fig. 17. Usage of a delta with implicit trait in the railway case study

Table 1. Usage statistics of traits in the FormbaR model

Trait # methods in trait # classes where used

Sig 3 3

NoSig 1 5

Block 2 2

NoRear 1 10

NoFront 2 3

The case study is an SPL with 7 features, 7 deltas and 9 products.
Table 1 gives statistics on the current usage of traits in the railway study. The
ABS model uses five traits with one to three methods each (only one of the
traits is currently an extension of another trait and requires trait operations). In
the module with 12 classes describing track elements, where 4 of the traits are
used, the number of LoC shrinks from 262 to 203 (−22%). Using traits appears
to be natural and straightforward for the modeler. It makes the railway model
considerably easier to read and to maintain.

7 Related Work and Conclusions

We proposed a combination of traits and deltas in a uniform language frame-
work that stresses the similarities between the composition operators. We have
formalized it by means of the minimal language FDTABS, implemented it in the
full language as part of the ABS tool chain, and illustrated its applicability in an
industrial modeling scenario. The resulting language is a conservative extension
(syntactically and semantically) of the ABS language.

The commonality between delta and trait operations had not been formally
worked out and put to use in the literature so far. Relevant papers on deltas and
traits have already been discussed above. In addition we mention some work on
using traits to implement software variability and on adding deltas on top of
trait-based languages.

Bettini et al. [5] propose to use traits to implement software variability. It is
noted in [13] that this way to model variability is less structured that traits, i.e.,
traits are less suitable than deltas for the purpose. Lopez-Herrejon et al. [23]

A Unified and Formal Programming Model for Deltas and Traits 439

evaluate five technologies for implementing software variability, including the
“trait” construct of Scala, which is in fact a mixin (see [14] for a detailed
discussion about the differences between trait and mixins).

Damiani et al. [13] address the problem of defining deltas on top of pure
trait-based languages (languages, where class inheritance is replaced by trait
composition). The proposal does not permit using traits for inter-delta code
reuse. Moreover, it does not exploit the commonalities between deltas and traits.
Therefore, it results in a quite complex language, containing a disjoint union of
(the operations provided by) deltas and traits. No formal description of the
semantics and no implementation are provided.

The flattening semantics given in Sect. 4 allows to smoothly integrate traits
into the ABS tool chain (cf. Sect. 5). We plan to improve the integration fur-
ther by a type checking phase that identifies type errors before flattening traits
(building on existing type checking approaches for deltas [4,11,12] and traits [5]).

In our proposal traits are not assumed to be part of the base language: they
extend DOP by enabling code reuse in the base program as well as in deltas (see
Sect. 3.3). Our proposal to extend DOP with traits can be straightforwardly
added on top of languages that, like Java, support class-based inheritance: the
flattening principle [26] provides a straightforward semantics for using traits
in combination with class-based inheritance. In future work we would like to
extend DOP for Java along these lines and evaluate, by means of case studies,
its benefits with respect to the current implementation of DOP for Java [21,37].

Acknowledgments. We thank the anonymous reviewers for comments and sugges-
tions for improving the presentation.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013)

2. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE TSE
30(6), 355–371 (2004)

3. Bettini, L., Damiani, F.: Generic traits for the Java platform. In: PPPJ, pp. 5–16.
ACM (2014)

4. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-oriented
software product lines. Acta Informatica 50(2), 77–122 (2013)

5. Bettini, L., Damiani, F., Schaefer, I.: Implementing type-safe software product
lines using parametric traits. Sci. Comput. Program. 97, 282–308 (2015). Part 3

6. Bettini, L., Damiani, F., Schaefer, I., Strocco, F.: TraitRecordJ: a programming
language with traits and records. Sci. Comput. Program. 78(5), 521–541 (2013)

7. Bezirgiannis, N., de Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 35

8. Bubel, R., Flores Montoya, A., Hähnle, R.: Analysis of executable software mod-
els. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 1–25. Springer, Cham (2014). doi:10.1007/
978-3-319-07317-0 1

http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-319-07317-0_1
http://dx.doi.org/10.1007/978-3-319-07317-0_1

440 F. Damiani et al.

9. Cassou, D., Ducasse, S., Wuyts, R.: Traits at work: the design of a new trait-based
stream library. Comput. Lang. Syst. Struct. 35(1), 2–20 (2009)

10. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS
abstract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 13

11. Damiani, F., Lienhardt, M.: On type checking delta-oriented product lines. In:
Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 47–62. Springer,
Cham (2016). doi:10.1007/978-3-319-33693-0 4

12. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 193–207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 15

13. Damiani, F., Schaefer, I., Schuster, S., Winkelmann, T.: Delta-trait programming of
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol.
8802, pp. 289–303. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45234-9 21

14. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

15. Evaluation of Core Framework. Deliverable 5.2 of project FP7-231620 (HATS),
August 2010. http://www.hats-project.eu

16. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho,
C., Ölveczky, P. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham
(2016). doi:10.1007/978-3-319-53946-1 4

17. Hähnle, R., Muschevici, R.: Towards incremental validation of railway systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 433–446.
Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 36

18. Helvensteijn, M., Muschevici, R., Wong, P.: Delta modeling in practice, a
Fredhopper case study. In: 6th International Workshop on Variability Modelling
of Software-intensive Systems, Leipzig, Germany. ACM (2012)

19. Henrio, L., Rochas, J.: From modelling to systematic deployment of distrib-
uted active objects. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINA-
TION 2016. LNCS, vol. 9686, pp. 208–226. Springer, Cham (2016). doi:10.1007/
978-3-319-39519-7 13

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

21. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.:
DeltaJ 1.5: delta-oriented programming for Java 1.5. In: PPPJ, pp. 63–74. ACM
(2014)

22. Liquori, L., Spiwack, A.: Feathertrait: a modest extension of featherweight java.
ACM Trans. Program. Lang. Syst. 30(2), 11:1–11:32 (2008)

23. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating support for features in
advanced modularization technologies. In: Black, A.P. (ed.) ECOOP 2005. LNCS,
vol. 3586, pp. 169–194. Springer, Heidelberg (2005). doi:10.1007/11531142 8

24. Mikhajlov, L., Sekerinski, E.: A study of the fragile base class problem. In: Jul, E.
(ed.) ECOOP 1998. LNCS, vol. 1445, pp. 355–382. Springer, Heidelberg (1998).
doi:10.1007/BFb0054099

http://dx.doi.org/10.1007/978-3-642-21455-4_13
http://dx.doi.org/10.1007/978-3-642-21455-4_13
http://dx.doi.org/10.1007/978-3-319-33693-0_4
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1007/978-3-662-45234-9_21
http://www.hats-project.eu
http://dx.doi.org/10.1007/978-3-319-53946-1_4
http://dx.doi.org/10.1007/978-3-319-47169-3_36
http://dx.doi.org/10.1007/978-3-319-39519-7_13
http://dx.doi.org/10.1007/978-3-319-39519-7_13
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/11531142_8
http://dx.doi.org/10.1007/BFb0054099

A Unified and Formal Programming Model for Deltas and Traits 441

25. Murphy-Hill, E.R., Quitslund, P.J., Black, A.P.: Removing duplication from
java.io: a case study using traits. In: Companion 20th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, pp. 282–291. ACM (2005)

26. Nierstrasz, O., Ducasse, S., Schärli, N.: Flattening traits. J. Object Technol. 5(4),
129–148 (2006)

27. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

28. Quitslund, P.J., Murphy-Hill, R., Black, A.P.: Supporting java traits in eclipse.
In: OOPSLA Workshop on Eclipse Technology eXchange, ETX, pp. 37–41. ACM
(2004)

29. Reppy, J., Turon, A.: Metaprogramming with traits. In: Ernst, E. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 373–398. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73589-2 18

30. Resource-aware Modeling of the ENG Case Study. Deliverable 4.4.2 of project
FP7-610582 (Envisage), July 2015. http://www.envisage-project.eu

31. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

32. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of the
2nd International Workshop on Feature-Oriented Software Development, FOSD,
pp. 49–56. ACM (2010)

33. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. J. Softw. Tools Technol. Transf. 14(5), 477–495 (2012)

34. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45070-2 12

35. Serbanescu, V., Azadbakht, K., de Boer, F.S., Nagarajagowda, C., Nobakht, B.:
A design pattern for optimizations in data intensive applications using ABS and
Java 8. Concurrency Comput. Pract. Experience 28(2), 374–385 (2016)

36. Smith, C., Drossopoulou, S.: Chai : traits for java-like languages. In: Black, A.P.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 453–478. Springer, Heidelberg (2005).
doi:10.1007/11531142 20

37. Winkelmann, T., Koscielny, J., Seidl, C., Schuster, S., Damiani, F., Schaefer,
I.: Parametric DeltaJ 1.5: propagating feature attributes into implementation
artifacts. In: Workshops Software Engineering. CEUR Workshop Proceedings,
vol. 1559, pp. 40–54. CEUR-WS.org (2016)

http://dx.doi.org/10.1007/978-3-540-73589-2_18
http://dx.doi.org/10.1007/978-3-540-73589-2_18
http://www.envisage-project.eu
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/11531142_20

Author Index

Aguirre, Nazareno 356
Alvin, Chris 173
Anjorin, Anthony 191
Araújo, Cristiano Werner 78
Asăvoae, Irina Măriuca 374
Asăvoae, Mihail 374
Asenov, Dimitar 152
Aydin, Abdulbaki 338

Ben Henda, Noomene 321

Cabot, Jordi 247
Cheng, Zheng 300
Cuadrado, Jesús Sánchez 264

Damiani, Ferruccio 424
de Lara, Juan 264
de Vink, Erik P. 387
Di Rocco, Juri 264
Di Ruscio, Davide 264
Dimovski, Aleksandar S. 406
Diskin, Zinovy 247
Doménech, Jesús 379
Durán, Francisco 208

Ferrara, Pietro 338
Frias, Marcelo F. 356

Genaim, Samir 379
Gligoric, Milos 60
Gómez, Abel 247
Guenat, Balz 152
Guerra, Esther 264

Hähnle, Reiner 424
Hu, Raymond 116

Iovino, Ludovico 264

Johansson, Björn 321
Johnsen, Einar Broch 379

Kamburjan, Eduard 424
Khurana, Sakaar 43
Kristensen, Erik Krogh 99

Lambers, Leen 226
Lamo, Yngve 283
Lantz, Patrik 321
Leblebici, Erhan 191
Lienhardt, Michael 424

Mitsch, Stefan 134
Møller, Anders 99
Montaghami, Vajih 22
Mukhopadhyay, Supratik 173
Müller, Andreas 134
Müller, Peter 152

Norrman, Karl 321
Nunes, Daltro 78
Nunes, Ingrid 78

Ohrndorf, Manuel 283
Orejas, Fernando 226
Otth, Martin 152

Pang, Jun 3
Peterson, Brian 173
Pham, Van-Thuan 43
Pierantonio, Alfonso 264
Piorkowski, David 338
Pistoia, Marco 338
Platzer, André 134
Ponzio, Pablo 356

Rayside, Derek 22
Regis, Germán 356

Retschitzegger, Werner 134
Riesco, Adrián 374
Roy, Subhajit 43
Roychoudhury, Abhik 43
Rutle, Adrian 283

Saarinen, Pasi 321
Saha, Ripon 60
Schlatte, Rudolf 379
Schneider, Sven 226
Schürr, Andy 191
Schwinger, Wieland 134
Segersvärd, Oskar 321
Sun, Jun 3

Taentzer, Gabriele 283
ter Beek, Maurice H. 387
Tisi, Massimo 300
Tripp, Omer 338

Uva, Marcelo 356

Wang, Jingyi 3
Wąsowski, Andrzej 406
Willemse, Tim A.C. 387

Yoshida, Nobuko 116
Yuan, Qixia 3

Zschaler, Steffen 208

444 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Learning and Inference
	Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study
	1 Introduction
	2 Preliminary
	3 Probabilistic Model Learning
	3.1 Learn from Multiple Executions
	3.2 Learn from a Single Execution

	4 Learning Through Evolution
	4.1 Genetic Algorithms
	4.2 Learn from Multiple Executions
	4.3 Learn from Single Execution

	5 Empirical Study
	6 Conclusion and Related Work
	References

	Bordeaux: A Tool for Thinking Outside the Box
	1 Introduction
	2 Related Work
	3 Illustrative Example
	4 Proximate Pair-Finder Formula
	4.1 Proximate Pair-Finder Formula
	4.2 Encoding the PPFF for Alloy*
	4.3 Special Cases of Potential User Interest

	5 Experiments
	6 Optimization
	6.1 Selecting Tighter Scopes
	6.2 Parallelization

	7 Conclusion
	References

	Test Selection
	Bucketing Failing Tests via Symbolic Analysis
	1 Introduction
	2 Overview
	3 Reasons of Failure
	4 Clustering Framework
	4.1 Clustering Algorithm
	4.2 Clustering-Aware Search Strategy
	4.3 Generalize Reasons for Failure

	5 Experimental Evaluation
	5.1 Results and Analysis
	5.2 User Study

	6 Related Work

	7 Conclusions
	References

	Selective Bisection Debugging
	1 Introduction
	2 Background
	2.1 Commit and Version
	2.2 Bisection Debugging
	2.3 Test Selection

	3 Selective Bisection
	3.1 Commit Selection
	3.2 Test Selection

	4 Empirical Evaluation
	4.1 Projects
	4.2 Experimental Setup
	4.3 Results

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

	On the Effectiveness of Bug Predictors with Procedural Systems: A Quantitative Study
	1 Introduction
	2 Related Work
	3 Study Settings
	3.1 Goal and Research Questions
	3.2 Procedure
	3.3 Target Systems

	4 Results and Analysis
	5 Discussion
	6 Conclusion
	References

	Program and System Analysis
	Inference and Evolution of TypeScript Declaration Files
	1 Introduction
	2 Motivating Examples
	3 tsinfer: Inference of Initial Type Declarations
	3.1 The Snapshot Phase
	3.2 The Static Analysis Phase
	3.3 The Emitting Phase

	4 tsevolve: Evolution of Type Declarations
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Explicit Connection Actions in Multiparty Session Types
	1 Introduction
	2 Use Case and Overview
	2.1 Use Case: Travel Agency Web Service (Revisited)
	2.2 Overview of 1-Bounded Global Type Validation and Examples

	3 MPST with Explicit Connection Actions
	3.1 Global Types, Local Types and Sessions
	3.2 MPST Safety and Progress

	4 Implementation
	4.1 Modelling MPSTs by CFSMs with Dynamic Connections
	4.2 Type-Checking Endpoint Programs by Local Type Projections

	5 Related Work and Concluding Remarks
	References

	Change and Delay Contracts for Hybrid System Component Verification
	1 Introduction
	2 Preliminaries: Differential Dynamic Logic
	3 Hybrid Components with Change and Delay Contracts
	3.1 Specification: Components and Interfaces
	3.2 Specification: Time and Delay
	3.3 Proof Obligations: Change and Delay Contract
	3.4 Proof Obligations: Compatible Parallel Composition
	3.5 Transferring Local Component Safety to System Safety

	4 Case Studies
	5 Related Work
	6 Conclusion and Future Work
	References

	Precise Version Control of Trees with Line-Based Version Control Systems
	1 Introduction
	2 Tree Versioning with a Line-Based VCS
	2.1 Textual Encoding of Valid Trees
	2.2 Diff Algorithm

	3 Merging Trees and Domain-Specific Customizations
	3.1 Change Graph and Merge Algorithm
	3.2 Domain-Specific Customizations

	4 Evaluation and Discussion
	5 Related Work
	6 Conclusion
	References

	Graph Modelling and Transformation
	StaticGen: Static Generation of UML Sequence Diagrams
	1 Introduction
	2 Program Abstraction and Code Hypergraphs
	2.1 Program Abstraction Model
	2.2 The Code Hypergraph
	2.3 Sequence Diagrams
	2.4 Characteristics of Sequence Diagrams

	3 Constructing the Hypergraph
	4 Static Sequence Diagram Construction
	5 Interface for Diagram Generation
	5.1 Query over the Language of Sequence Diagrams
	5.2 Query Interface to Diagram Generation
	5.3 Sample Queries

	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques
	1 Introduction and Motivation
	2 Preliminaries
	3 Choices Between Markings as an Optimization Problem
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	GTS Families for the Flexible Composition of Graph Transformation Systems
	1 Introduction
	2 Running Example
	3 Preliminaries on GTSs, Clans, and Clan Morphisms
	3.1 Graph Transformation Systems
	3.2 Morphisms Between Graph Transformation Systems
	3.3 Typed Attributed Graphs and Clan Morphisms

	4 GTS Transformers and Families
	4.1 GTS Transformers
	4.2 GTS Families
	4.3 Extension Preserving Transformers and GTS Amalgamation
	4.4 Finding GTS-Family Members

	5 Conclusions
	References

	Symbolic Model Generation for Graph Properties
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Symbolic Model Generation
	4.1 Sets of Symbolic Models
	4.2 Symbolic Model Generation Algorithm A
	4.3 Generation of SNT,k
	4.4 Compaction of SNT,k into S
	4.5 Explorability of S

	5 Implementation
	6 Conclusion and Outlook
	References

	Model Transformations
	Traceability Mappings as a Fundamental Instrument in Model Transformations
	1 Introduction
	2 Analysing Traceability Mappings
	2.1 The Semantic Necessity of Traceability Mapping
	2.2 Traceability Under the Microscope
	2.3 Meta-Traceability Links Can Be Executed!

	3 Transformations via Mappings and Queries
	4 An Algebra for Model Transformations
	4.1 Boolean Operations for Model Transformations
	4.2 Sequential Composition of Model Transformations

	5 From Rule-Based MMT to Kleisli Mappings (and Back)
	6 Related Work
	7 Conclusion
	References

	Reusing Model Transformations Through Typing Requirements Models
	1 Introduction
	2 Motivating Scenarios and Running Example
	3 Representing Transformation Typing Requirements
	3.1 Describing Single Meta-Model Requirements
	3.2 Expressing Compatibility Requirements

	4 Extracting Typing Requirements from ATL Transformations
	5 Implementation and Validation
	6 Related Work
	7 Conclusions and Future Work
	References

	Change-Preserving Model Repair
	1 Introduction
	2 Running Example
	3 Model Repair Approach
	3.1 Preparing Change-Preserving Model Repair
	3.2 Change-Preserving Model Repair

	4 Formalization
	4.1 Defining Modeling Languages
	4.2 Model Changes and Their Consistency
	4.3 Complement Construction
	4.4 Sequential Independence and Confluence of Transformations
	4.5 Change-Preserving Model Repair

	5 Tool Support and Initial Evaluation
	6 Related Work
	7 Conclusion
	References

	A Deductive Approach for Fault Localization in ATL Model Transformations
	1 Introduction
	2 Motivating Example
	2.1 Specifying OCL Contracts
	2.2 Developing the ATL Transformation
	2.3 Formally Verifying the ATL Transformation
	2.4 Our Goal: Localizing the Fault

	3 Overview of Fault Localization for ATL by Natural Deduction and Program Slicing
	3.1 Natural Deduction Rules for ATL
	3.2 Automated Proof Strategy
	3.3 Transformation Slicing

	4 Evaluation
	4.1 Research Questions
	4.2 Evaluation Setup
	4.3 Evaluation Results
	4.4 Limitations

	5 Related Work
	6 Conclusion and Future Work
	References

	Configuration and Synthesis
	OpenSAW: Open Security Analysis Workbench
	1 Introduction
	2 Overview of the Framework
	2.1 Preliminaries
	2.2 Architecture

	3 Trace Graphs
	3.1 Selection Strategies
	3.2 Run Data
	3.3 Graph Construction
	3.4 Task Priorities

	4 Framework Features
	4.1 Choice of the Underlying Tools
	4.2 User-Defined Strategies
	4.3 Progress Visualization

	5 Experiments
	5.1 DARPA CGC
	5.2 Production Code

	6 Conclusion
	References

	Visual Configuration of Mobile Privacy Policies
	1 Introduction
	2 Overview
	2.1 Phase I: Offline Analysis
	2.2 Phase II: Visual Configuration
	2.3 Phase III: Enforcement
	2.4 Scope and Limitations

	3 Offline Analysis
	3.1 Detection of Privacy Threats
	3.2 Screen Capturing

	4 Configuration and Enforcement
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Automated Workarounds from Java Program Specifications Based on SAT Solving
	1 Introduction
	2 Background
	3 Computing Workarounds from Program Specifications
	4 Program State Repair Using SAT
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Slicing from Formal Semantics: Chisel
	1 Introduction
	2 Chisel Design
	3 Chisel Experiments
	4 Conclusions
	References

	EASYINTERFACE: A Toolkit for Rapid Development of GUIs for Research Prototype Tools
	1 Introduction
	2 General Overview
	3 Concluding Remarks
	References

	Software Product Lines
	Family-Based Model Checking with mCRL2
	1 Introduction
	2 A Feature -Calculus -1mu L -1mu f over FTSs
	3 Family-Based Model Checking with mCRL2
	3.1 The First-Order -Calculus -1mu L -0.5mu FO
	3.2 Translating the Family-Based Interpretation of -1mu L -1mu f to -1mu L -0.5mu FO

	4 Family-Based Partitioning for -1mu L -1mu f
	5 Case Study
	6 Concluding Remarks and Future Work
	References

	Variability-Specific Abstraction Refinement for Family-Based Model Checking
	1 Introduction
	2 Abstract Family-Based Model Checking
	2.1 Featured Transition Systems
	2.2 fLTL Properties
	2.3 Variability Abstractions

	3 Abstraction Refinement
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	A Unified and Formal Programming Model for Deltas and Traits
	1 Introduction
	2 FDABS: A Minimal Language for ABS with Deltas
	2.1 FABS: Featherweight ABS
	2.2 FDABS: Adding Deltas to FABS

	3 FDTABS: Adding Traits to FDABS
	3.1 Motivating Traits
	3.2 FTABS: Adding Traits to FABS
	3.3 FDTABS: Combining Traits and Deltas

	4 Semantics
	4.1 Semantics of Traits
	4.2 Semantics of Deltas

	5 Integration into the ABS Tool Chain
	6 Using Deltas and Traits in an Industrial Case Study
	7 Related Work and Conclusions
	References

	Author Index

