
Abbas Rahimi · Luca Benini
Rajesh K. Gupta

From Variability
Tolerance to Approximate
Computing in Parallel
Integrated Architectures
and Accelerators

From Variability Tolerance to Approximate
Computing in Parallel Integrated Architectures
and Accelerators

Abbas Rahimi • Luca Benini
Rajesh K. Gupta

From Variability Tolerance
to Approximate Computing
in Parallel Integrated
Architectures
and Accelerators

123

Abbas Rahimi
Department of Electrical Engineering
and Computer Sciences

University of California Berkeley
Berkeley, CA
USA

Luca Benini
Integrated Systems Laboratory
ETH Zurich
Zürich
Switzerland

Rajesh K. Gupta
Department of Computer Science
and Engineering

University of California, San Diego
La Jolla, CA
USA

ISBN 978-3-319-53767-2 ISBN 978-3-319-53768-9 (eBook)
DOI 10.1007/978-3-319-53768-9

Library of Congress Control Number: 2017932004

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my wife with everlasting love and
gratitude

–Abbas Rahimi

Foreword

There is no question that computing has dramatically changed society, and has
furthered humanity in ways that were hard to foresee at its onset. Many factors have
contributed to its unfettered success including the adoption of Boolean logic and
algorithmic thinking, the invention of the instruction set machine, and the advent
of the semiconductor technology. The latter offered us a semi-perfect switch device
and effective ways of storing data. All these factors have led to an amazing run of
almost 7 decades. Over time, the quest for ever higher performance in the presence
of power and energy limitations have forced us to make major changes to how the
processors were architected and operated—such as the introduction of concurrency,
the adoption of co-processors and accelerators, or the adoption of ever more
complex memory hierarchies. However, in essence the fundamentals remained
unchanged

For a number of reasons, this model is at the verge of undergoing some major
changes and challenges. On the one hand, the scaling model of semiconductors—
commonly known as Moore’s law—is running out of steam, hence depriving us
from a convenient means in improving computational performance, density and
efficiency. On the other hand, the nature of computation itself is changing with data
rather than algorithm taking primacy. Both these trends force us to reflect on some
of the foundational concepts that have driven computation for such a long period. In
an abundance of data, statistical distributions become more relevant than deter-
ministic answers. Many perceptual tasks related to human-world interaction fall
under the same class. Learning-based programming approaches are gaining rapid
interest and influence. Simultaneously the lack of “the perfect switch”, as well as
the high-variability of nanoscale devices operating under high energy-efficiency
(that is, low-voltage) makes deterministic computing an extremely expensive if at
all possible undertaking.

All of this has made researchers explore novel computational models that are
“approximate” in nature. This means that errors and approximations are becoming
acceptable as long as the outcomes have a well-defined statistical behavior.
A number of approaches have been identified and are being actively pursued under

vii

different headers such as approximate computing, statistical computing and
stochastic processing. In this book, the authors investigate how errors caused by
variation (especially those caused by timing) can be exposed to the software layers,
and how they can be mitigated using a range of techniques and methods to reduce
their impact. The document provides a clear insight of what is possible through pure
software intervention.

This book is at the forefront of what is to come at the frontiers in the new age of
computation. As such, I heartily recommend it as a great intellectual effort and a
superb read.

Jan M. Rabaey

viii Foreword

Preface

Variation in performance and power across manufactured parts and their operating
conditions is an accepted reality in modern microelectronic manufacturing pro-
cesses with geometries in nanometer scales. This book views such variations both
as a challenge as well an opportunity to rearchitect the hardware/software interface
that provides more resilient system architectures. We start with an examination of
how variability manifests itself across various levels of microelectronic systems.
We examine various mechanisms designers use, and can use, to combat negative
effects of variability.

This book attempts a comprehensive look at the entire software/hardware stack
and system architecture in order to devise effective strategies to address micro-
electronic variability. First, we review the key concepts on timing errors caused by
various variability sources. We use a two-pronged strategy to mitigate such errors
by jointly exposing hardware variations to the software and by exploiting flexibility
made possible by parallel processing. We consider methods to predict and prevent,
detect and correct, and finally conditions under which such errors can be accepted.
For each of these methods, our work spans defining and measuring the notion of
error tolerance at various levels, from instructions to procedures to parallel pro-
grams. These measures essentially capture the likelihood of errors and associated
cost of error correction at different levels. The result is a design platform that
enables us to combine these methods that enable detection and correction of
erroneous results within a defined criterion for acceptable errors using a notion of
memoization across the hardware/software interface. Pursuing this strategy, we
develop a set of software techniques and microarchitecture optimizations for
improving cost and scale of these methods in massively parallel computing units,
such as general-purpose graphics processing units (GP-GPUs), clustered many-core
architectures, and field-programmable gate array (FPGA) accelerators.

Our results show that parallel architectures and use of parallelism in general
provides the best means to combat and exploit variability. Using such pro-
grammable parallel accelerator architectures, we show how system designers can

ix

coordinate propagation of error information and its effects along with new
techniques for memoization and memristive associative memory. This book natu-
rally leads to use of these techniques into emerging area of approximate computing,
and how these can be used in building resilient and efficient computing systems.

Berkeley, USA Abbas Rahimi
Zürich, Switzerland Luca Benini
San Diego, USA Rajesh K. Gupta
January 2017

x Preface

Contents

1 Introduction . 1
1.1 Sources of Variability . 1
1.2 Delay Variation . 2
1.3 Book Organization . 4
References. 6

Part I Predicting and Preventing Errors

2 Instruction-Level Tolerance . 11
2.1 Introduction . 11
2.2 Effect of Operating Conditions . 12
2.3 Delay Variation Among Pipeline Stages 13
2.4 Instruction Characterization Methodology and Experimental

Results . 15
2.4.1 Gate-Level Simulation . 15
2.4.2 Instruction-Level Delay Variability 16
2.4.3 Less Intrusive Variation-Tolerant Technique 17
2.4.4 Power Variability. 18

2.5 Chapter Summary . 19
References. 19

3 Sequence-Level Tolerance . 21
3.1 Introduction . 21
3.2 PVT Variations . 22

3.2.1 Conventional Static Timing Analysis. 24
3.2.2 Variation-Aware Statistical STA 26

3.3 Error-Tolerant Applications . 27
3.3.1 Analysis of Adaptive Guardbanding

for Probabilistic Applications . 28

xi

3.4 Error-Intolerant Applications. 30
3.4.1 Sequence-Level Vulnerability (SLV) 30
3.4.2 SLV Characterization . 31

3.5 Adaptive Guardbanding . 35
3.6 Experimental Results . 37

3.6.1 Effectiveness of Adaptive Guardbanding 39
3.6.2 Overhead of Adaptive Guardbanding. 44

3.7 Chapter Summary . 44
References. 45

4 Procedure-Level Tolerance . 47
4.1 Introduction . 47
4.2 Variation-Tolerant Processor Clusters Architecture 48

4.2.1 Variation-Aware VDD-Hopping 49
4.3 Procedure Hopping for Dynamic IR-Drop 51

4.3.1 Supporting Intra-cluster Procedure Hopping 51
4.4 Characterization of PLV to Dynamic Operating Conditions 54
4.5 Experimental Results . 55

4.5.1 Cost of Procedure Hopping . 57
4.6 Chapter Summary . 59
References. 59

5 Kernel-Level Tolerance . 61
5.1 Introduction . 61
5.2 Device-Level NBTI Model . 62
5.3 GP-GPU Architecture . 64

5.3.1 GP-GPU Workload Distribution 64
5.4 Aging-Aware Compilation . 66

5.4.1 Observability: Aging Sensors . 67
5.4.2 Prediction: Wearout Estimation Module 68
5.4.3 Controllability: Uniform Slot Assignment 68

5.5 Experimental Results . 70
5.6 Chapter Summary . 73
References. 73

6 Hierarchically Focused Guardbanding . 75
6.1 Introduction . 75
6.2 Timing Error Model for PVTA. 76

6.2.1 Analysis Flow for Timing Error Extraction 76
6.2.2 Parametric Model Fitting . 78
6.2.3 TER Classification. 80
6.2.4 Robustness of Classification . 81

6.3 Runtime Hierarchically Focused Guardbanding 81
6.3.1 Observability . 83
6.3.2 Controllability . 84

xii Contents

6.4 A Case Study of HFG on GPUs. 85
6.5 Chapter Summary . 86
References. 87

Part II Detecting and Correcting Errors

7 Work-Unit Tolerance . 91
7.1 Introduction . 91
7.2 Architectural Support for VOMP . 94
7.3 Work-Unit Vulnerability and VOMP Work-Sharing 95

7.3.1 Intra- and Inter-corner WUV . 98
7.3.2 Online WUV Characterization . 103

7.4 VOMP Schedulers . 105
7.4.1 Variation-Aware Task Scheduling (VATS) 105
7.4.2 Variation-Aware Section Scheduling (VASS) 108

7.5 Experimental Results . 109
7.5.1 Framework Setup . 109
7.5.2 VOMP Results for Tasking . 110
7.5.3 VOMP Results for Sections. 112

7.6 Chapter Summary . 113
References. 114

8 Memristive-Based Associative Memory for Error Recovery 117
8.1 Introduction . 117
8.2 Energy-Efficient GP-GPUs . 119

8.2.1 Associative Memristive-Based Computing. 120
8.3 Collaborative Compilation . 122

8.3.1 FPU Memristive-Based Computing 124
8.4 Experimental Results . 125

8.4.1 FPUs with AMM Modules . 125
8.4.2 Energy Saving . 126

8.5 Chapter Summary . 129
References. 129

Part III Accepting Errors

9 Accuracy-Configurable OpenMP . 133
9.1 Introduction . 133
9.2 Controlled Approximation . 135
9.3 Accuracy-Configurable OpenMP Environment 136

9.3.1 Accuracy-Configurable FPUs. 136
9.3.2 OpenMP Compiler Extension for Approximation 137
9.3.3 Runtime Support . 138
9.3.4 Application-Driven Hardware FPU Synthesis

and Optimization . 139

Contents xiii

9.4 Experimental Results . 141
9.4.1 Error-Tolerant Applications . 142
9.4.2 Error-Intolerant Applications . 146

9.5 Chapter Summary . 147
References. 148

10 An Approximation Workflow for Exploiting Data-Level
Parallelism in FPGA Acceleration . 151
10.1 Introduction . 151
10.2 OpenCL Execution Model . 153

10.2.1 Mapping OpenCL Programs on FPGAs 153
10.3 GRATER: Approximation Design Workflow 154

10.3.1 Analysis and Pruning . 155
10.3.2 Genetic-Based Approximation Algorithm 156

10.4 Experimental Results . 159
10.4.1 Experimental Setup . 159
10.4.2 Area Savings with Approximate Kernels 160
10.4.3 Speedup. 160

10.5 Chapter Summary . 163
References. 163

11 Memristive-Based Associative Memory for Approximate
Computational Reuse . 165
11.1 Introduction . 165
11.2 GPU Architecture Using A2M2Module. 167

11.2.1 Southern Islands Architecture . 167
11.2.2 Approximate Associative Memristive Memory

Module . 168
11.3 Framework to Support A2M2 . 171

11.3.1 Execution Flow . 171
11.3.2 Design Space for A2M2. 173

11.4 Experimental Results . 175
11.4.1 Experimental Setup . 175
11.4.2 Energy Saving with Corresponding PSNR 177

11.5 Chapter Summary . 178
References. 179

12 Spatial and Temporal Memoization . 181
12.1 Introduction . 182
12.2 Spatial Memoization (Concurrent Instruction Reuse) 183

12.2.1 Single Strong Multiple Weak (SSMW)
Architecture . 184

12.2.2 Experimental Results . 186
12.3 Temporal Memoization (Temporal Instruction Reuse) 188

xiv Contents

12.3.1 Temporal Memoization for Error Recovery 188
12.3.2 Experimental Results . 189

12.4 Chapter Summary . 189
References. 190

13 Outlook . 191
13.1 Domain-Specific Resiliency . 191

13.1.1 Software . 191
13.1.2 Architecture . 192
13.1.3 Circuit . 192

13.2 Non-Von Neumann Massively Parallel Architectures 193

Index . 195

Contents xv

Chapter 1
Introduction

Chapter Summary Variation in performance and power consumption is a common
phenomenon in semiconductor manufacturing. What makes it particularly challeng-
ing, however, is its effect on manufacturing of devices as these scale down to near
atomic scale feature dimensions. Any variation in dimensions, doping, etc, has a
large effect on the resulting device and circuit behavior. To address this variation,
designers resort to design guardbands. These guardbands are increasing rapidly and
eventually obliterating any gains due to device scaling. As a consequence, reduction
of design guardbands in design has become an important research challenge with
recent results that recover a part of these guardbands through circuit-level changes.
We begin by examining sources of variability in integrated circuits and conclude
with an outline of the entire book.

1.1 Sources of Variability

Broadly speaking, there are three physical types of variations: (i) Spatial variability:
Process variations cause static variations in critical dimension, channel length (L),
and threshold voltage (Vth) of devices due to dopant fluctuations and sub-wavelength
lithography. These variations manifest themselves as die-to-die (D2D) and within-
die (WID) variations [1]. D2D variations affect all devices on a die equally, whereas
WID variations induce different characteristics for each device. (ii) Temporal vari-
ability: Aging and wearout mechanisms cause slow temporal degradation in devices
reliability. Device aging mechanisms are induced by negative bias temperature insta-
bility (NBTI), positive bias temperature instability, electromigration, time-dependent
dielectric breakdown, gate oxide integrity, thermal cycling, and hot carrier injection
[2]. (iii) Dynamic variability: Environmental variations in ambient condition are
caused by fluctuations in operating temperature and supply voltage droops. Voltage
droops result from abrupt changes in the switching activity, inducing large cur-
rent transients in the power delivery system (dI/dt voltage drops), and contain high-
frequency and low-frequency components which occur locally as well as globally
across the die [3]. On the other hand, temperature variations occur at a relatively slow
time scale with local hot spots on the die, depending on environmental, and workload

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_1

1

2 1 Introduction

conditions [4]. The origins of variability include time-independent DC component
(process variations), slow-varying low-frequency components (aging and tempera-
ture), and fast-changing high-frequency components (voltage droops). The variations
are expected to be worse with technology scaling [5].

Spatial parameter variations in the device geometries in conjunction with tempo-
ral degradation and undesirable fluctuations in the operating condition may prevent
circuit from meeting the performance and power constraints. The most immediate
manifestations of variability are in path delay (therefore, performance) and power
variations. Sequential elements are connected at the end of the paths to hold the circuit
state. Path delay variations cause violation of timing specification resulting in circuit-
level timing errors that could lead to an invalid state being stored in the sequential
element. This could result in a malfunction of the digital system. Synchronous circuit
designers commonly handle the timing errors by adding safety timing margins to the
voltage and/or the clock frequency as guardband. This practice leads to overly con-
servative designs. Currently, the guardbands tend to accumulate as design closure
is performed using a multi-corner analysis, with an increasing number of corners
[1, 6, 7]. As a result, the impact of guardbanding on the key design metrics (power,
performance, and area) has been steadily increasingwith technology scaling [5], lead-
ing to loss of operational efficiency and increased costs due to overdesign. Power
variability is also challenging, for instance 13× variation in the sleep power across
ten instances of ARM Cortex M3 core was observed over a temperature range of
22–60 ◦C [8]. This thesis focuses instead on the path delay variation and its man-
ifestation as timing errors. We identify the timing error as the most threatening
manifestation of variability and investigate various means to address it. We begin
with a quantitative feel of the extent of variation currently seen in manufactured
devices. Section1.2 covers the delay variation in details.

1.2 Delay Variation

For an Intel 80-core processor in 65nm, Fig. 1.1 shows the WID core-to-core maxi-
mum frequency (Fmax) variations for each of the 80 cores. The measurements have
been done at a fixed operating temperature of 50 ◦C with three operating voltages:
1.2, 0.9, and 0.8V. At the nominal voltage of 1.2V, the fastest core displays the Fmax
of 7.3GHzwhile in the same die the slowest core can work with the Fmax of 5.7GHz
resulting in 28%WID clock frequency variation. Figure1.2 illustrates the delay dis-
tribution of the 80 cores for the same operating conditions [9]. The single die with 80
cores exhibits an increasing value of σ /μ for lower voltages: 5.93, 6.37, and 8.64%
for 1.2, 0.9, and 0.8V, respectively. Lowering the voltage from the nominal 1.2 to
0.8V, increases the critical paths variability (σ /μ) by 45% [9].

Voltage overscaling (VOS) [10] and working at near-threshold (NT) voltage [11]
have become popular approaches for building energy-efficient digital circuits. Oper-
ating at low voltages (VDD ≤ 0.5V) unfortunately exacerbates the effects of delay
variations [10, 12–15]. This indicates the importance of variability awareness at

1.2 Delay Variation 3

Fig. 1.1 WID core-to-core
maximum clock frequency
variation for 80 cores on a
single chip [9]

Fig. 1.2 Critical path delay
distribution and its
coefficient of variation (σ /μ)
for 80 cores on a single chip
[9]

lower operating voltages, where the delay uncertainty is further increased. The WID
delay measurement for a 45nm SIMD processor shows that reducing VDD from 1.0
to 0.53V increases the delay variation by 6× [15]. Figure1.3 shows the normalized
gate delay variation due to process variations as a function of VDD [12]. Working at
near-threshold voltage of 400mV increases the performance variability by 5× com-
pared to 1.3× at the nominal operating voltage. It is then clear that for logic working
at near-threshold voltages, the statisticalWID variation in the voltage threshold (Vth)
plays an important role in determining the path delay. Vth variations result mainly
from random fluctuations in the number of dopant atoms in the transistor channels
[13]. Considering dynamic sources of variations, including temperature fluctuations,
and voltage droops results in a total performance variability of 20× [12].

Given such a growing increase in performance variability, design methods are
needed to make a design resilient to timing errors, especially for circuits operating
at low voltages where the effect of delay uncertainty is pronounced. The effects of
the static process variations can sometimes be mitigated through binning or by post-
silicon tuning during test time, while the dynamic variations manifest themselves
on the field as a function of time and environment, and therefore cannot be com-
pensated by one-time pre-silicon and post-silicon tuning techniques. Consequently,
accurate design time analysis coupled with efficient runtime techniques are required
to overcome the variability challenges.

4 1 Introduction

Fig. 1.3 Impact of voltage
scaling on gate delay
variation due to process
variation [12]

1.3 Book Organization

This book grew out of a doctoral dissertation at the University of California, San
Diego [16]. This book focuses on timing errors caused by various sources of varia-
tions at different levels.Wedevisemethods tomitigate such errors by jointly exposing
hardware variations to the software and by exploiting parallel processing. We
investigate methods to predict and prevent, detect and correct, and finally condi-
tions under which errors can be accepted. We classify our proposed methods into a
conceptual Y-chart shown in Fig. 1.4.

The Y-chart in Fig. 1.4 groups these methods to address variability into three
parts based on when and how the timing errors should be manipulated. These three
parts of the Y-chart are on radial axes. The first axis describes mainly design time
approaches for predicting and preventing timing errors. The second axis focuses on
runtime approaches for detecting and correcting timing errors, while the third axis
accepts timing errors if possible. Further, we combine these two axes to devise a
new joint method of detecting and correcting with accepting errors. Each part is
divided into levels of abstraction, using concentric rings. Every abstraction level
determines at which level of the computing stack the approaches can be applied:
circuit,architecture, and software. At the top-level outer ring,we consider approaches
applicable to software level; at the lower levels inner rings, we refine approaches into
finer architecture, and circuit implementations.

Thus, Fig. 1.4 puts our work in perspective, with the three main axes defining the
three separate methodological approaches. For each of these approaches, our work
spanned defining and measuring the notion of error tolerance, from instruction set
architecture (ISA) to procedures to parallel programs. These measures essentially
capture the likelihood of errors and associated cost of error correction at different
levels.

1.3 Book Organization 5

Circuit

Architecture

Software

Detecting and Correcting
with Accepting Errors

Part I: Predicting and Preventing Errors Part II: Detecting and Correcting Errors

Part III: Approximate Computing (Accepting Errors)

Spatial and Temporal Memoization

Hierarchical Guardbanding

Kernel-Level Tolerance

Procedure-Level Tolerance

Sequence-Level Tolerance

Instruction-Level Tolerance

Work-Unit Tolerance

Scalable Task-Level Tolerance

Task-Level Tolerance

Memristive-Based Associative Memory
for Error Recovery

Accuracy-Configurable OpenMP

Approximation Workflow for FPGA Acceleration

Memristive-Based Associative Memory

for Approximate Computational Reuse

Fig. 1.4 Taxonomy of timing error tolerance in this book: abstractions versus approaches

Next natural step is to see the possibility and consequences of relaxing the notion
of accuracy and precision in computation. We focus on parallel programming,
runtime environment, parallel integrated architecture, and accelerators to support
controlled “approximate computing.” That is, ensuring safety of error mitigation
methods through a set of rules verified by a combination of design-time and runtime
constraints. The goal is to deliver functionality within specified quality guarantees.
The result is a new joint method of detecting and correcting with accepting errors
across the hardware/software interface using memoization techniques spatially or
across time (i.e., spatial or temporal reuse of computation). We accordingly devise
an arsenal of software techniques and microarchitecture optimizations for improv-
ing cost and scale of these methods in massively parallel computing units, such as
general-purpose graphics processing units (GP-GPUs), clustered many-core archi-
tectures, and field-programmable gate array (FPGA) accelerators. The main focus
of our attention for the data-level parallelism is on single instruction, multiple data
(SIMD) andGP-GPUarchitectures, and for the task-level parallelism is on the shared-
memory processor clusters. We find that parallel architectures and parallelism in
general provide the best means to combat and exploit variability to design resilient
and efficient systems. Using such programmable parallel accelerator architectures,
we show how system designers can coordinate propagation of error information and
its effects along with new techniques for memoization and memristive associative

6 1 Introduction

memory. This discussion naturally leads to use of these techniques into emerging
area of approximate computing, and how these can be used in building resilient and
efficient computing systems.

References

1. K.A. Bowman, S.G. Duvall, J.D. Meindl, Impact of die-to-die and within-die parameter fluctu-
ations on themaximum clock frequency distribution, in IEEE International Solid-State Circuits
Conference, Digest of Technical Papers. ISSCC 2001, 278–279 (2001)

2. X. Li, J. Qin, J.B. Bernstein, Compact modeling of MOSFET wearout mechanisms for circuit-
reliability simulation. IEEE Trans. Device Mater. Reliab. 8(1), 98–121 (2008)

3. K. Bowman, C. Tokunaga, J. Tschanz, A. Raychowdhury,M.Khellah, B. Geuskens, S.-L. Lu, P.
Aseron,T.Karnik,V.De,Dynamic variationmonitor formeasuring the impact of voltage droops
onmicroprocessor clock frequency. IEEECustom IntegratedCircuitsConference (CICC)2010,
1–4 (2010)

4. S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, G. DeMicheli, Temperature
control of high-performance multi-core platforms using convex optimization, in Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’08, ACM, New York,
NY, USA (2008), pp. 110–115

5. The ITRS website. http://www.itrs.net/Links/2011ITRS/Home2011.htm
6. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, Parameter variations and

impact on circuits andmicroarchitecture. Proceedings of DesignAutomation Conference 2003,
338–342 (2003)

7. T. Austin, V. Bertacco, D. Blaauw, T. Mudge, Opportunities and challenges for better than
worst-case design, in Proceedings of the 2005 Asia and South Pacific Design Automation
Conference, ASP-DAC ’05, ACM, New York, NY, USA (2005), pp. 2–7

8. L. Wanner, R. Balani, S. Zahedi, C. Apte, P. Gupta, M. Srivastava, Variability-aware duty cycle
scheduling in long running embedded sensing systems, in Design. Automation Test in Europe
Conference Exhibition (DATE) 2011, 1–6 (2011)

9. S. Dighe, S.R. Vangal, P. Aseron, S. Kumar, T. Jacob, K.A. Bowman, J. Howard, J. Tschanz,
V. Erraguntla, N. Borkar, V.K. De, S. Borkar, Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and thread hopping for the 80-core teraflops
processor. IEEE J. Solid-State Circuits 46(1), 184–193 (2011)

10. D. Jeon, M. Seok, Z. Zhang, D. Blaauw, D. Sylvester, Design methodology for voltage-
overscaled ultra-low-power systems. IEEE Trans. Circuits Syst. II Express. Briefs 59(12),
952–956 (2012)

11. B. Zhai, R.G. Dreslinski, D. Blaauw, T. Mudge, D. Sylvester, Energy efficient near-threshold
chip multi-processing. ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED) 2007, 32–37 (2007)

12. R.G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, T.N. Mudge, Near-threshold com-
puting: reclaiming moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2),
253–266 (2010)

13. R. Rithe, S. Chou, J. Gu, A.Wang, S. Datla, G. Gammie, D. Buss, A. Chandrakasan, The effect
of random dopant fluctuations on logic timing at low voltage. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 20(5), 911–924

14. M.R. Kakoee, I. Loi, L. Benini, Variation-tolerant architecture for ultra low power shared-l1
processor clusters. IEEE Trans. Circuits Syst. II Express. Briefs 59(12), 927–931 (2012)

http://www.itrs.net/Links/2011ITRS/Home2011.htm

References 7

15. R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-Madani, M. Erez, P. Chiang, A
530mV 10-lane SIMD processor with variation resiliency in 45nm SOI. IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2012, 492–494 (2012)

16. Abbas Rahimi, “From Variability-Tolerance to Approximate Computing in Parallel Comput-
ing Architectures,” Ph.D. Dissertation, Department of Computer Science and Engineering,
University of California, San Diego, CA, (2015)

Part I
Predicting and Preventing Errors

In this part, we explore approaches to reduce the excessive guardband and enable
better than worst-case design while avoiding the timing errors [124–128]. These
methods typically use characterization metrics and rely upon modeling that derives
rules for simultaneous guardband reduction and error prevention. We show how
these methods can be implemented at different abstraction levels, from instructions
to kernels.We first characterize instructions for the effect of circuit timing errors on
tolerance of individual (Chap. 2), or streams (Chap. 3) of instructionswhen executing
on a single core architecture. Raising further the level of abstraction, procedure-level
tolerance (Chap. 4) exposes the effect of dynamic variations to procedure calls for
use in software preventive actions. Such exposure leads to a low overhead procedure
hopping technique for a tightly coupled processor clusters with 16 cores. This is even
more challenging in GP-GPUs and other many-core accelerators where the effect of
these variations is not uniformly spread across over thousands processing elements:
some are affected more (hence less reliable) than others. In this regard, we pro-
pose two methods suitable for GP-GPUs that adaptively predict the delay variations
and react accordingly to prevent the timing errors. This first method is an adap-
tive very long instruction word (VLIW) assignment which is described in Chap. 5.
We devise an adaptive compiler method that equalizes the expected lifetime of each
processing element by regenerating aging-aware healthy kernels that respond to the
specific health state of GP-GPUs. This aging-aware compiler periodically exposes
the inherent idleness in VLIW slots and guides its distribution that doesmatter for the
aging. This reallocation mitigates the impacts on lifetime uncertainty and unbalanc-
ing among the processing elements. The second method adaptively avoids PVT and
aging (PVTA) induced timing errors. Using amodel based on supervised learning and
PVTA monitoring circuits, we propose hierarchically focused guardbanding (HFG)
and demonstrate its effectiveness on GP-GPU architecture at two granularities of
observation and adaptation: (i) fine-grained instruction-level; and (ii) coarse-grained
kernel-level. Chapter 6 describes HFG in details.

http://dx.doi.org/10.1007/978-3-319-53768-9_2
http://dx.doi.org/10.1007/978-3-319-53768-9_3
http://dx.doi.org/10.1007/978-3-319-53768-9_4
http://dx.doi.org/10.1007/978-3-319-53768-9_5
http://dx.doi.org/10.1007/978-3-319-53768-9_6

Chapter 2
Instruction-Level Tolerance

Abstract Microprocessors manufactured in nanometer processes are beginning to
see variation in timing performance of individual instructions. This chapter considers
challenges and opportunities in identifying this variation andmethods to combat it for
predicting and preventing the timing errors in single-core architectures.We start from
instruction-level which is the finest granularity to present the processor functionality.
We introduce the notion of instruction-level vulnerability (ILV) to parameterize this
variation and use it for architectural and compiler optimizations. To compute ILV,
we quantify the effect of voltage and temperature variations on the performance
and power of a 32-bit RISC in-order processor in 65nm TSMC technology at the
level of individual instructions. Results show 3.4ns (68 fanout of 4 or 68FO4) delay
variation and 26.7× power variation among instructions, and across extreme corners.
Our analysis shows that ILV is not uniform across the instruction set. In fact, ILV data
partitions instructions into three equivalence classes. Based on this classification, we
show how low-overhead monitors and adaptive clocking techniques can be used to
enhance performance by a factor of 1.1×–5.5×.

2.1 Introduction

Designers commonly use conservative guardbands into the operating frequency and
voltage to handle these variations to ensure error-free operation within the presence
of worse case dynamic variations over circuit lifetime that leads to loss of opera-
tional efficiency. An alternative is to use sensor circuits to detect dynamic variations
coupled with an adaptive recovery methods for quick on-line error detection and
compensation.

Further progress in this area requires a careful analysis of the effect of variations
on individual instructions. Here we advance the state of the art through following
three means:

1. We analyze the effect of a full range of voltage and temperature variations on
the performance and power of the 32-bit in-order RISC LEON-3 [1] processor
(Sect. 2.2).

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_2

11

12 2 Instruction-Level Tolerance

2. We introduce the notion of instruction-level vulnerability (ILV) to characterize
tolerance of individual instruction to dynamic variations. ILV exposes variation
and its effects to the software stack for use in architectural/compiler optimizations.
Our results show that ILV is not uniform across the instruction set (Sects. 2.3 and
2.4).

3. Using ILV data, we show the effectiveness of a minimally intrusive and cost-
effective fine-grained technique to mitigate the dynamic variations that achieves
up to 5.5× performance improvement in comparison to the traditional worst-case
design.

2.2 Effect of Operating Conditions

We analyze the effect of operating conditions on the performance and power of
the LEON-3 [1] processor compliant with the SPARC V8 architecture. Specifically,
we used a temperature range of –40–125 ◦C, and a voltage range of 0.72–1.1V.
Figure2.1 shows how the critical path of the processor varies across corners. The
higher voltage results in the shorter critical path, while the lower temperature leads
to a higher delay in the low-voltage region (voltage ≤0.9V), since MOSFET drain
current decreases when the temperature is decreased in the deep submicron tech-
nologies [2]. These operating condition (hence dynamic) variations cause the critical
path delay to increase by a factor of 6.1× when the operating condition is varied
from the one corner to the other. Consequently, a large conservative guardband into
the operating frequency is needed to ensure the error-free operation in presence of
the dynamic variations.

Fig. 2.1 Effect of voltage and temperature variations on the critical path (ns)

2.3 Delay Variation Among Pipeline Stages 13

2.3 Delay Variation Among Pipeline Stages

We now evaluate the critical paths of each pipeline stage for a given cycle time, while
changing the operating conditions. Figure2.2 shows the number of failed paths with
a negative slack for each parallel pipeline stages across three corners. The cycle
time is set at 0.85ns, and voltage varies from 0.72 to 0.88V, and then to 1.10V at
a constant temperature of 125 ◦C. As shown in Fig. 2.2, most of the failed paths lie
in the execute and memory stages in all three operating voltages. On the other hand,
each of the fetch, decode, and register access stages contains less than 40K failed
paths. Furthermore, there is a relatively small fluctuation in their number of critical
paths across voltage variations for these stages. Quantitatively, the memory stage at
operating voltage of 0.72Vhas 1.3×, 1.8×, 3.8×more critical paths in comparison to
the execute, write back, and decode stages, respectively. Memory stage at operating
voltage of 1.10V also faces 1.4×, 1.9× more critical paths when the voltage drops
to 0.88, 0.72V, respectively.

Similarly, in Fig. 2.3 the temperature of processor is varied from –40 to 125 ◦C at
a constant voltage of 1.1V. As a result, there are no failed paths in the fetch stage
when the temperature is varied, and only a small number of failed paths are found
in the write back stage at the highest temperature. On the other hand, similar to
Fig. 2.2, many paths fail within the execute and memory stages. The execute and
memory parts of the processor are not only very sensitive to voltage and temperature
variations, but also exhibit a large number of critical paths in comparison to the rest
of processor. Therefore, we would anticipate that the instructions that significantly
exercise the execute and memory stages are likely to be more vulnerable to voltage
and temperature variations.

Let us now examine the situation of all paths through the processor under different
operating condition and frequency. The Y-axis of Fig. 2.4 shows the proportion of
failed paths to nonfailed paths for three corners. We observe that this proportion of
failed paths suddenly drops below a certain threshold while the clock is finely scaled
with a resolution of 0.01ns. For instance, the proportion falls below 0.5 with only
0.06ns clock scaling at (1.10V, 0 ◦C); in the other words, the number of nonfailed
paths is twice as many as those which fail. Alternatively, the number of nonfailed

Fig. 2.2 Effect of voltage
variation on the pipeline
stages at 125 ◦C

0

2

4

6

8

10

12

14

16

Fetch Decode Reg. acc. Execute Memory Write back

N
um

be
r o

f f
ai

le
d

pa
th

s

x 10000 0.72V 0.88V 1.10V

14 2 Instruction-Level Tolerance

Fig. 2.3 Effect of
temperature variation on the
number of failed paths
among the pipeline stages at
1.10V

0

1

2

3

4

5

6

7

8

Fetch Decode Reg. acc. Execute Memory Write back
N

um
be

r o
f f

ai
le

d
pa

th
s

x 10000 -40 C 0 C 125 C° ° °

Fig. 2.4 The proportion of
failed paths to nonfailed
paths versus clock

0

4

8

12

16

20

24

28
0.

80
0.

85
0.

90
0.

95
1.

00
1.

05
1.

10
1.

15
1.

20
1.

25
1.

30
1.

35
1.

40
1.

45
1.

50
1.

55
1.

60
1.

65
1.

70
1.

75
1.

80
1.

85
1.

90
1.

95
2.

00
2.

05
2.

10(#
 F

ai
le

d
pa

th
s)

 /
(#

 N
on

-f
ai

le
d

pa
th

s)

Cycle time (ns)

(0.9V, 125 C)

(1.0V, 25 C)

(1.1V, 0 C)

°

°

°

paths is doubled when the cycle time is increased for 0.3ns at (0.9V, 125 ◦C). These
provide an opportunity for an error-free running of some instructions that will not
activate those failed paths.

From the previous analysis, we see that instructions will have different levels of
vulnerability to variations depending on theway they exercise the nonuniform critical
paths across the various pipeline stages. To capture this phenomenon, we define the
concept of instruction-level vulnerability to dynamic variations. The classification
of instructions is a valuable mechanism to alleviate the guardbanding and improving
performance: (i) within a fixed corner, by acquiring the knowledge about which class
of instructions is running, the processor can adapt the guardbanding accordingly,
without any need for the intrusive variability sensor/observer; (ii) across every corner,
processor can adjust its guardbanding for all class of instructions by using a low-
overhead variability observer, e.g., phase locked loop (PLL) [3], and ring oscillators
(RO) [4].

2.4 Instruction Characterization Methodology and Experimental Results 15

2.4 Instruction Characterization Methodology
and Experimental Results

We use integer pipeline of LEON-3 processor with hardware multiplier/divider units
as well as the instruction/data caches to characterize instructions. First, we synthe-
sized the open-source VHDL code of LEON-3 with the TSMC 65nm technology
library (general purpose process) to generate gate-level netlist. The signoff stage for
accurate analysis of the operating conditions has been made with Synopsys Prime-
Time, using its voltage-temperature scaling features for the composite current source
approach of modeling cell behavior. Mentor Graphics’ ModelSim is also used for
detail gate-level simulations.

2.4.1 Gate-Level Simulation

In the gate-level simulation, for each individual instruction, we apply the Monte
Carlomethod to observe instruction behavior. To accurately exercise each instruction,
we use a normal distribution for the sources, destination, and immediate operands.
A large sample of the SPARC ISA is evaluated, including the logical/arithmetic
instructions, memory access instructions (load/store), multiply/divide instructions.
To quantify the ILV to voltage and temperature variations, we define the probability
of failure (PoF) for each instructioni in Eq.2.1, where Ni is the total number of clock
cycles in Monte Carlo simulation which takes to execute instructioni with random
operands; and Violation j indicates whether there is a violated stage at clock cycle j
or not.

PoFi = 1

Ni

Ni∑

j=1

Violation j

Violation j =
{
1 If any stage violates at cycle j

0 otherwise
(2.1)

In other words, PoFi defines as the total number of violated cycles over the total
simulated cycles for the instructioni . If any of the analyzed stages have one or more
violated flip-flop at clock cycle j , we consider that stage as a violated stage at cycle j .
Intuitively, if instructioni runs without any violated path, PoFi is 0; on the other hand,
PoFi is 1 if instructioni faces at least one violated path in any stage, in every cycle.

16 2 Instruction-Level Tolerance

Table 2.1 Probability of failure of ISA at 1.1 and 1.0V, while varying temperature and frequency

Corners (1.1V, -40°C) (1.1V, 0°C) (1.1V, 125°C) (1.0V, 25°C)
Cycle time (ns) 0.74 0.76 0.78 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 1.08 1.10 1.12 1.14 1.22

Lo
gi

ca
l &

 A
rit

hm
et

ic
 add 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

and 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
or 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
sll 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
sra 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
srl 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
sub 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
xnor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
xor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

M
em

load 1 0 0 1 0 0 1 0 0 0 0 0 1 0.786 0 0 0
store 1 0 0 1 0 0 1 0 0 0 0 0 1 0.814 0 0 0

M
ul

.
&

D
iv mul 1 0 0 1 0.967 0 1 0.042 0.015 0.012 0.002 0 1 0.998 0.976 0.074 0

div 1 0.837 0 1 0.948 0 1 0.991 0.991 0.984 0.984 0 1 0.964 0.993 0.990 0

2.4.2 Instruction-Level Delay Variability

Tables2.1 and 2.2 summarize the PoF of each evaluated instruction across various
corners. We finely change the clock cycle to observe the paths failure for every
exercised instruction, and then consequently evaluate its PoF. As shown, instruc-
tions exhibit a very wide range of delay under different operating conditions ranges
from 0.76 to 4.16ns. More precisely, the PoF values shown in tables evidence two
important facts. First, for their vulnerability to variations, instructions are parti-
tioned into three main classes: (i) the logical/arithmetic instructions, (ii) the memory
instructions, and (iii) the multiply/divide instructions. The 1st class shows an abrupt
behavior when the clock cycle is slightly varied. Its PoF switches from 1 to 0 with a
slight increase in the cycle time (0.02ns) for every corner, mainly because the path
distribution of the exercised part by this class is such that most of the paths have
the same length, then we have a all-or-nothing effect, which implies that either all
instructions within this class fail or all make it. The 2nd class, the memory instruc-
tions, needs much more relaxed cycle time to be able to survive across conditions.
For instance, as shown in Table2.2, only 0.04ns more guardbanding on the cycle
time of the 1st class instruction can guarantee the error-free execution of the memory
instructions while they are experiencing 40 ◦C temperature fluctuation. The 3rd class
is the multiply/divide instructions which need higher guardbanding in comparison to
the 1st class instruction, ranges from 0.02ns at (1.1V, –40 ◦C) to 0.30ns at (0.72V,
125 ◦C). Since this class highly exercises the execution unit,1 it has a higher PoF in
comparison with the rest of classes in the same clock cycle, for every corner.

Further, based on these results, we can define an adaptive clock cycle for each
class of instructions tomitigate the conservative guardbanding, not onlywithin afixed
process corner, but also across corners. All instruction classes act similarly across
the wide range of operating conditions: as the cycle time increases gradually, the
PoF becomes 0, firstly for the 1st class, then for the 2nd class, and finally for the 3rd

1Moreover, 64–82% (depends on the corner) of the failed paths in the execution stage lie in the
hardware multiplier and divider units.

2.4 Instruction Characterization Methodology and Experimental Results 17

Table 2.2 Probability of failure of ISA at constant voltage 0.72V, while varying temperature and
frequency

Corners (0.72V, -40°C) (0.72V, 0°C) (0.72V, 125°C)
Cycle time (ns) 4.10 4.12 4.14 4.16 3.58 3.60 3.62 3.64 3.66 2.88 2.90 2.92 2.94 2.98 3.00 3.20

Lo
gi

ca
l &

 A
rit

hm
et

ic
 add 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

and 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
or 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
sll 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
sra 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
srl 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
sub 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
xnor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
xor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

M
em

load 1 0.823 0.823 0 1 0.823 0.823 0 0 1 0.823 0.823 0.823 0.796 0.796 0
store 1 0.847 0.847 0 1 0.847 0.847 0 0 1 0.847 0.847 0.847 0.823 0.823 0

M
ul

.
&

D
iv

mul 1 0.995 0.995 0 1 0.996 0.994 0 0 1 0.998 0.997 0.996 0.996 0.996 0
div 1 0.995 0.995 0 1 0.995 0.995 0.812 0 1 0.994 0.994 0.993 0.991 0.991 0

class.Aprocessor can benefit from this classification by adapting its guardbanding for
each class of instruction by acquiring the knowledge aboutwhich class of instructions
is/will be running.

2.4.3 Less Intrusive Variation-Tolerant Technique

All intrusive techniques [5–7] try to avoid timing failure for instructions that activate
the critical paths by dynamically switching to two-cycle operation. These expen-
sive, instruction by instruction timing adjustment techniques do not expose opportu-
nity for further software-level optimizations especially for sequences and classes of
instructions. Therefore, we could have an advanced dynamic clock speed adaptation
technique, possibly compiler driven, which can quickly decide on the clock speed
of the processor at a very fine-grained [8], just looking at the fetched instructions
and keeping track of their entry into the stages, and at the same time monitoring
the current corner with a low-overhead monitoring hardware [3, 4]. This technique
not only provides great performance enhancement for processor, but also is a step
forward toward a less intrusive circuit monitoring and cost-effective robust design.

Table2.3 shows how a program consisting of various classes of instructions can
benefit by this technique under different operating conditions: the performance
improvement when processor runs a program only consists of specific classes, in
comparison to the traditional worst-case design. For instance, at the typical oper-
ating condition (1.0V, 25 ◦C) processor can decrease the cycle time form 4.16ns
(Table2.2) to 1.22ns (Table2.1), and consequently achieves 3.4× speed improve-
ment, when its running program consists of all three classes. It can further reduce the
cycle time to 1.12ns (3.7× speedup) when only the 1st, and 2nd classes of instruc-
tions are used in its program. As shown, the proposed solution can greatly achieve
1.1 × –5.5 × performance improvement depends on the type of instruction and the
operating condition.

18 2 Instruction-Level Tolerance

Table 2.3 Performance improvement for different classes of instructions

Vol. (V) Temp. (◦C) 1st and 2nd class 1st, 2nd, 3rd class

1.10 –40 5.5× 5.3×
1.10 0 5.5× 5.3×
1.10 125 5.1× 4.6×
1.00 25 3.7× 3.4×
0.88 –40 3.9× 3.7×
0.88 0 3.9× 3.7×
0.88 125 3.9× 3.5×
0.72 0 1.1× 1.1×
0.72 125 1.3× 1.3×

2.4.4 Power Variability

From delay variability of instructions, we examine now variation of power con-
sumption across and within process corners. The total power consumption of the
instruction classes under four operating conditions is shown in Fig. 2.5, when the
cycle time is adjusted for each class accordingly, i.e., the best frequency for each
class is applied. As a result, all three classes of instructions experience a wide range
of total power variability (0.1–2.6mW), 1.15× intra-corner power variation (across
the three classes) due to exercising various parts of processor, and 26.7× inter-corner
power variation, at maximum. This implies that ILV could potentially expose oppor-
tunity for further software-level optimizations for both performance and power.

Fig. 2.5 Intera- and inter-corner total power (W) variability of the instruction classes

2.5 Chapter Summary 19

2.5 Chapter Summary

The concept of instruction-level vulnerability to dynamic voltage and temperature
variations is defined. Based on that, all exercised instructions in the integer pipeline of
LEON-3 are partitioned into three classes for the full range of operating condition:
(i) the logical and arithmetic instructions, (ii) the memory instructions, and (iii)
the multiply and divide instructions. Using this classification in conjunction with
less intrusive variability observers provides architectural/compiler optimizations a
great opportunity to enhance processor performance by 1.1×–5.5×, in TSMC 65nm
technology. It is also a step forward toward a low-overhead, efficient, and cost-
effective robust design.

References

1. Leon3. http://www.gaisler.com/cms/
2. R. Kumar, V. Kursun, Reversed temperature-dependent propagation delay characteristics in

nanometer cmos circuits. IEEE Trans. Circuits Syst. II Express Briefs 53(10), 1078–1082 (2006)
3. K. Kang, S.P. Park, K. Kim, K. Roy, On-chip variability sensor using phase-locked loop for

detecting and correcting parametric timing failures. IEEETrans. Very Large Scale Integr. (VLSI)
Syst. 18(2), 270–280 (2010)

4. M. Bhushan, A. Gattiker, M.B. Ketchen, K.K. Das, Ring oscillators for CMOS process tuning
and variability control. IEEE Trans. Semicond. Manufact. 19(1), 10–18 (2006)

5. D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim, K. Flautner, Razor: circuit-
level correction of timing errors for low-power operation. Micro, IEEE, 24(6), 10–20 (2004)

6. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B. Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Solid-State Circuits 46(1), 194–208 (2011)

7. D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner, D. Blaauw, A power-efficient 32b
ARM ISA processor using timing-error detection and correction for transient-error tolerance
and adaptation to PVT variation, in 2010 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC) (2010), pp. 284–285

8. J. Tschanz, N.S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal, S. Narendra, Y. Hoskote,
H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan, T. Karnik,
N. Borkar, N. Kurd, V. De, Adaptive frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging. In IEEE International Solid-StateCircuitsConference,
2007. ISSCC 2007. Digest of Technical Papers (2007), pp. 292–604

http://www.gaisler.com/cms/

Chapter 3
Sequence-Level Tolerance

Abstract This chapter presents a method for predicting and preventing the timing
errors for a sequence of instruction in single-core architectures. We introduce the
notion of sequence-level vulnerability (SLV) that utilizes circuit-level vulnerability
for constructing high-level software knowledge as metadata. In effect, the SLVmeta-
data partitions sequences of integer SPARC instructions into two equivalence classes
to enable an adaptive guardbanding technique to adapt the clock frequency simul-
taneously for dynamic voltage and temperature variations, as well as adapting to
the different classes of the instruction sequences. The proposed technique achieves
on an average 1.6× speedup for error-intolerant applications compared to recent
work (Hoang, Exploring circuit timing-aware language and compilation, 2011, [1]).
However, in reality, applications exhibit varying degrees of tolerance to error in com-
putations. This chapter also proposes an adaptive guardbanding technique for error-
tolerant (probabilistic) applications where application execution does not assume an
error-free execution hardware. The proposed technique leverages a combination of
accurate design time analysis and aminimally intrusive runtime technique tomitigate
process, voltage, and temperature (PVT) variations for a near-zero area overhead.We
demonstrate our approach on a 32-bit in-order RISC processor with full post place-
ment and routing (P&R) layout results in TSMC 45nm technology. The adaptive
guardbanding technique eliminates traditional guardbands on clock frequency using
information from PVT variations and application-specific requirements on compu-
tational accuracy. For probabilistic applications, the adaptive technique guarantees
the error-free operation of a set of paths of the processor that always require correct
timing (vulnerable paths) while reducing the cost of guardbanding for the rest of the
paths (invulnerable paths). This increases the throughput of probabilistic applica-
tions upto 1.9× over the traditional worst-case design. The proposed technique has
0.022% area overhead, and imposes only 0.034 and 0.031% total power overhead
for intolerant and probabilistic applications respectively.

3.1 Introduction

Several recent efforts have focused on measures to mitigate variability through
innovations in circuit-level designs. These methods strive to achieve instruction

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_3

21

22 3 Sequence-Level Tolerance

executions exactly as specified by the application programs. In contrast,
probabilistic programs can exhibit enhanced error resilience at the application-
level when multiple valid output values are permitted. Accurate design time analysis
coupled with efficient runtime techniques are required to overcome the variability
challenges. We propose a near-zero area overhead adaptive guardbanding technique
to meet application-specific requirements on computational accuracy. This chapter
makes the following contributions:

1. We present a method to relate low-level hardware vulnerability information
obtained using accurate and practical variation-aware analysis to high-level
knowledge in software. Our analysis flow considers the dynamic voltage and
temperature as well as static process variations, and validates results on a full
post P&R layout of a 32-bit in-order RISC processor.

2. We propose an adaptive guardbanding technique to dynamically adjust the cycle
time to PVT variations and application-level computation accuracy. For proba-
bilistic applications represented by multimedia benchmarks from MiBench [2]
andMediaBench [3], the technique achieves up to 1.9× throughput improvement
in comparison to the traditional worst-case design.

3. For error-intolerant applications, we introduce the notion of sequence-level vul-
nerability (SLV) to dynamic voltage and temperature variations.Our experimental
results and analysis show that SLV is not uniform across sequences obtained from
a large set of general purpose benchmarks [2–6]. Effectively, the SLV partitions
sequences of integer SPARC instructions into two classes: ClassI, which only
consists of the arithmetic/logical instructions; and ClassII, a mixture of all types
of instructions. We also show the effectiveness of compiler technique to achieve
a favorable mix of sequences. Using SLV enables the processor to achieve 1.6×
average speedup for intolerant applications, compared to [1], by adapting the
cycle time for dynamic variations and different instruction sequences. The min-
imally intrusive and cost-effective guardbanding in software greatly reduces the
hardware cost with respect to the above-mentioned circuit techniques. Full lay-
out results on TSMC 45nm technology show that the proposed guardbanding
imposes only 0.031 and 0.034% total power overhead for the probabilistic and
the intolerant applications respectively. The total area overhead is 0.022%.

3.2 PVT Variations

In this section, we analyze the delay variations caused by PVT variations on the paths
of the 32-bit in-order LEON3 processor compliant with the SPARC V8 architecture.
This choice is keeping in view of the recent trends toward array processor architec-
tures containing many simple RISC cores, e.g., GPUs [7], TILERA [8], and Platform
2012 [9, 10]. More importantly, the availability of an advanced open-source RISC
core with full back-end details is critical to accurate variation analysis. We note that
other efforts for complex high-performance cores such as IBM POWER6 also con-

3.2 PVT Variations 23

Fig. 3.1 Nonuniform slack variation of the integer pipeline stages caused by PVT with cycle time
at 0.83ns

firm that vulnerability is not uniform across the instructions set [11]. While different
instruction sets will lead to different grouping of instructions depending upon the
processor architecture and implementation, our methodology can be applied as long
as there is a nonuniform vulnerability across the instructions.

Specifically, the effects of a full range of dynamic variations (an industrial tem-
perature range of −40–125 ◦C, and a voltage range of 0.72–0.99V) as well as static
process parameters variations (die-to-die and within-die) are analyzed on all paths
throughout the entire integer pipeline of LEON3. Figure3.1 illustrates the delay vari-
ation in the six stages of the pipeline that results in positive/negative slacks for the
flip-flops connected to the endpoints of the paths. The cycle time is set at 0.83ns
to meet the timing requirement of the typical-corner (0.9V, 25 ◦C, TT). A higher
voltage of 0.99V results in shorter delay (positive slack), while the lower tempera-
ture leads to a higher delay in the low-voltage region below 0.9V, since MOSFET
drain current decreases when the temperature is decreased in nanometer CMOS tech-
nologies [12]. In addition to these dynamic operating conditions, the static process
variations exacerbate the delay variation across various pipeline stages: Sect. 3.2.2
describes the details of modeling the process variations. Given such variations across
operating conditions and across different parts of the design, an adaptive guardband-
ing of the operating frequency is useful to ensure the error-free operation. Such a
guardband can bemuch less conservative than a statically determined guardband.We
divide pipeline paths into two groups: (a) Vulnerable Paths (VP): A set of paths that
always require correct timing and any delay variability may result in catastrophic
architectural failures and consequently visible errors in the outputs of a program;
and (b) Invulnerable Paths (IP): A set of paths that do not require 100% timing cor-
rectness. The delay variation in IP does not cause catastrophic architectural failures
since it affects only the vector of elastic outputs. The vector of elastic outputs does
not require the complete numerical correctness. Thus, the delay variation in IP may
degrade of the quality of fidelity metrics of the probabilistic applications. Specifi-
cally for LEON3 pipeline shown in Fig. 3.1, a 20% voltage variation results in many
negative slack values at the endpoints of the fetch and decode stages which causes
the wrong instructions to be executed. Thus, the paths that lie in these stages are
considered as VP and must always meet the setup time of flip-flops in PVT variation.
On the other hand, the scenario for IP is different. For example in the execution stage,
some endpoints do not suffer from delay variation at all (those paths with a positive

24 3 Sequence-Level Tolerance

slack), and some endpoints have negative slack when voltage variation occurs. The
execution stage has much more flexibility to deal with delay variation as long as it
can produce an acceptable fidelity metric.

In Sect. 3.3.1, we present guardbanding technique that seeks to guardband VP
for error-free operation, and at the same time effectively reduces the cost of guard-
bands on IP against fidelity metric of programs that are tolerant to imprecise and
approximate computations. The tolerance levels can be specified based on algo-
rithmic classifications such as RMS [13]. Section3.4 also covers another adaptive
guardbanding technique for intolerant applications in the general case.

3.2.1 Conventional Static Timing Analysis

Conventional static timing analysis (STA) calculates the maximum delay variation
using the worst-case corner, by simply combining the absolute worst-case combi-
nation of the process, voltage, and temperature parameters. The cycle time is finely
varied to observe the behavior of the pipeline stages. The number of failed paths
(i.e., paths with negative slack) for each stage using the STA in the worst-corner
(0.72V, 0 ◦C, Slow NMOS-Slow PMOS) is shown in Fig. 3.2. Increasing the cycle
time from 1.8 to 2.25ns reduces the number of failed path from hundreds of thousand
paths to zero path for all stages except the execution stage which has a higher delay.
The execution stage needs 10% more guardbanding, i.e., the clock cycle of 2.5ns.
Further, our earlier analysis [14] shows that the execution and memory stages are
highly vulnerable to dynamic variations. By setting the cycle time at 2.25ns, we
guarantee that no path will fail within the fetch, decode, register access, memory,
and write back stages even in the worst-case process parameter variation. The paths
in these stages are considered as VP because: (i) any failure in fetch or decode stages

Fig. 3.2 Number of failed paths of LEON3 pipeline using STA

3.2 PVT Variations 25

may cause the wrong instructions to be executed that cannot be masked even within
the probabilistic application; and (ii) any failure in the register/memory/write back
stages may cause an illegal access/operation on the memory/registers. It is therefore
not surprising that both Intel resilient processor [15] and relaxed-reliability cores in
ERSA [16] consider sufficient guardbanding in register stage, memory management
unit, and L1 instruction cache. By sufficient guardbanding on VP through STA, the
error-free operation of VP is guaranteed even if these paths display the worst-case
process characteristics.

Unlike the above-mentioned stages, with the cycle time of 2.25ns, the execution
stage has few failed paths in the worst-case process variation. If these paths are
activated through the pipeline, there is no guarantee for 100% timing correctness of
the execution stage. This lack of timing correctness causes inaccuracies in the result
of execution of some instructions, which can be masked by the error resilience at
the application-level of the probabilistic applications [13], or proper software-based
instruction duplication technique. Thus, these paths are considered as IP, since their
violation might cause only application-level derating which strictly depends to the
type of applications. In Sect. 3.3, we examine the likelihood of these violations, and
the type of applications that can accept or refuse this kind of inaccuracies.

To observe the behavior of VP and IP on other architectures, we also consider
a programmable graphic processing unit (GPU), THEIA [17]. THEIA features a
multi-core architecture, and uses a ray casting approach for rendering. Every core in
THEIA runs a local copy of the shader code, and has a pipelined SIMD unit, capable
of performing fixed-point arithmetic on 3D vectors. Each core includes instruction
entry point, fetch, decode, execute, and memory stages in conjunction with a control
unit. Similar to Fig. 3.2, the number of failed paths for each stage of a THEIA’s core
is shown in Fig. 3.3. As shown, VP display no failure with a clock cycle of 3.2ns,
while the execution stage faces high number of failed paths. In fact, the execution

Fig. 3.3 Number of failed paths of THEIA pipeline using STA

26 3 Sequence-Level Tolerance

stage needs 14% more guardbanding compared to other stages. In comparison to
LEON3, the execution stage of a THE-IA’s core imposes higher guardbanding, since
it performs vector fixed-point operations which involve more complex units than the
scalar integer operation in LEON3.

Indeed, several researches show that execution stage is critical not only for in-order
or SIMD architectures, but also for various VLIW and out-of-order architectures
[18–20]. For instance, despite the prior-art assumption that the register file defines
the clock frequency of a clustered VLIW processor, the realistic physical layout
experiments for an 8-issue-slot VLIW pipeline show that it is the execution stage
and its bypass network that limits the clock speed [18]. Although a clock frequency
speedup is achieved by partitioning a single cluster into two clusters (thus a shorter
bypass network); in subsequent clustering there is a steady decrease of the bypass
network delay, hence the delay of functional units is a deciding factor in clock
frequency since it occupies up to 85% of the clock period in an 8-cluster VLIWs [18].
M. Ozawa et. al. [20] also propose a cascade ALU architecture for out-of-order
processors, in which the critical path lies in the ALU. Similarly, the ALU delay also
determines the cycle time of a low-power out-of-order design [19].

3.2.2 Variation-Aware Statistical STA

Unlike the traditional STA, variation-aware statistical static timing analysis (SSTA)
takes into account the actual distribution of the physical parameters instead [21]. As
a result, the calculated slack distributions accurately reflect the true results obtained
in silicon resulting in less pessimism in the analysis. The variation-aware SSTA is
suitable for IP analysis where the processor does not need 100% timing correctness in
case of the worst process variation. Our results illustrate the value of variation-aware
SSTA. Figure3.4 distinguishes the data arrival time of the execution stage of LEON3
for two operands using the worst-case STA versus the variation-aware SSTA. The
operating condition is set for (0.81V, 125 ◦C), and the process parameter for STA is
set for the Slow NMOS-Slow PMOS (SS), while this parameter for variation-aware
SSTA varies based on the process parameter variations supported by state-of-the-art
commercial tools.

To perform an accurate design time SSTA, we use the variation-aware timing
analysis engine of Synopsys PrimeTime VX [21], leveraging characterized parame-
ters of 45nm variation-aware TSMC libraries [22] derived from first-level process
parameters by principal component analysis (PCA). PCA is a mathematical proce-
dure that simplifies a data set by transforming a number of correlated parameters
into a smaller number of uncorrelated parameters. After parasitic extraction from the
physical design data, the die-to-die (D2D) and with-in-die (WID) process parameter
variations are injected as normal distributions with zero means and standard devi-
ations of σD2D = 5% and σWID = 6.4% [23]. Therefore, we change the variation
components and analyze the delay variations with a given set of accurate variabil-
ity models from commercial libraries [22], which are certainly more accurate than

3.2 PVT Variations 27

Fig. 3.4 Variation-aware SSTA versus the worst-case STA

commonly used ‘in-house model’ extracted from predictive technology models [24].
As shown in Fig. 3.4, the data arrival time of the operands in the execution stage
based on STA is upto 40% greater than the variation-aware SSTA due to pessimistic
process parameters. For the fixed operating condition, STA results in 19% greater
data arrival time on average compared to the variation-aware SSTA for the entire
integer pipeline. These results set a baseline for the improvements from adaptive
guardbanding techniques that raise the level of abstraction at which variability is
addressed.

3.3 Error-Tolerant Applications

In moving from circuits to applications, we find a greater tolerance to failures sim-
ply because there is more contextual information available for recovery mecha-
nisms to use. Given the increasing parallelism from hardware, the computer systems
researchers have attempted to classify applications into core algorithmic categories
such as RMS [13] that not only points to the structure of the computation but also a
guidance on the degree of tolerance to individual data or even computational errors.
While a comprehensive frame for classifying applications according to degree of
data and control tolerance to error and variation is still an area of active research,
adaptive guardbanding proposed here does bring us a step closer to tie the mitigation
of PVT guardbands to the type of applications.

28 3 Sequence-Level Tolerance

3.3.1 Analysis of Adaptive Guardbanding for Probabilistic
Applications

For error-tolerant, or probabilistic, applications, the key idea is to guarantee the error-
free operations of the paths that are vital for ensuring timing of theVP,while reducing
the cost of guardbanding for the rest of the paths (IP). The adaptive guardbanding
for the probabilistic applications dynamically decides on the cycle time based on the
operating conditions, while guaranteeing the accuracy of the fidelity metric above
a user-defined threshold (UT) for the acceptable output. Timing error due to the
delay variation in IP may alter the vector of elastic outputs (OE). A fidelity metric
of a probabilistic application P, FP (I, OE) is associated with its input I and the
correspondingOE . The execution of applicationPwith input instance I in the presence
of delay variation is acceptable iff (A)∧(B)∧(C). The predicates (A)–(C) are defined
as:

(A) FP(I,OE) ≥ UT

(B) ¬∃ pathj ∈ VP | SlackSTA(pathj) < 0

(C) ¬∃ pathk ∈ IP | SlackSSTA(pathk) < 0 (3.1)

Specifically, the cycle time, for every operating condition is adjusted in such a
way to satisfy that all paths in VP always meet the setup time of flip-flops even
in the worst-case process parameter variation using STA (B); and that the paths in
IP will not miss the setup time of any connected flip-flop, in a statistical sense,
using the variation-aware SSTA (C). These two criteria guarantee the semantically
correct execution of application P, e.g., an addition instruction is always executed
as an addition instruction but it might generate inaccurate results, in case of large
variations. To satisfy (A), the fidelity metric has to be greater than the UT, thus
guarantees the acceptable accuracy from the applications’ point of view. For a given
application P, the application writer is responsible to tune the acceptable threshold
based on the end user’s requirements [25].

The adaptive guardbanding dynamically sets the cycle time to meet (A)–(C)
requirements to mitigate the inter-corner variations for a given operating condi-
tion. The assigned cycle time guarantees the error-free operation of VP even in the
worst-case process parameters variation, certified by STA. However, the guardband
provided by the adapted cycle time cannot guarantee 100% timing correctness of
IP within the execution stage in case of absolute worst-case combination of process
parameters. This might cause inaccuracy in the result of the executed instruction. If
the executed instruction produces OE (thus affecting the fidelity metric), the pred-
icate (A) guarantees that the program can produce an acceptable fidelity metric.
On the other hand, if the executed instruction is a critical instruction, the proper
application-level correctness techniques [25] is applied to identify the critical control
flow instructions. The critical instructions are statically duplicated during compile
time which guarantees the error-free execution in a fixed operating condition.

3.3 Error-Tolerant Applications 29

Table 3.1 Effectiveness of adaptive guardbanding for the probabilistic applications under dynamic
variations

Volt. (V) Temp. (◦C) Cycle time
(ns)

The worst slack of execution (ns)

mean std-dev p99 p01

0.99 −40 0.80 0.247 0.028 0.325 0.196

0.81 −40 1.35 0.400 0.057 0.565 0.302

0.81 125 1.32 0.451 0.076 0.638 0.281

...

We use SSTA methodology to analyze the effect of within-die and die-to-
die process parameters variations. It dynamically sets the cycle time depends to
the operating conditions as shown in Table3.1. For example, as soon as detecting
the operating condition at (0.99V,−40 ◦C), the adaptive guardbanding decreases the
cycle time from 2.5ns, calculated by the worst-case STA for (0.81V, 0 ◦C, SS), to
0.8ns. This cycle time of 0.8ns meets all timing requirements of VP, and at the same
time provides positive slack for the execution stage in a statistical sense. As shown in
the fourth column of Table3.1, based on SSTA, the adaptive guardbanding strategy
works well even with die-to-die and within-die process variation, while the paths
are experiencing a full swing for voltage and temperature, and provides the positive
slacks for the slowest path of the execution unit. Furthermore, the 1st percentile (p01)
values are quite far from the zero slack, thus implying that the probability that actual
slack of the path in the execution stage will be less than or equal to p01 value is 0.01.

The probability density functions of the slack value of top 1,000 critical paths
within the execution stage are analyzed, at three operating conditions using the
assigned cycle time in Table3.1. All slack values are always positive when pipeline
experiences a full swing in voltage (ΔV= 0.18V) and temperature (Δ◦C= 165 ◦C).
If an IP path in the execution stage is facedwith theworst-case combination of process
parameters, and does not meet the timing requirement, the effects of such variations
may manifest itself as an error in a bit of the output vector. Depending upon the posi-
tional significance, a probabilistic application may tolerate errors in low-order bits;
for the high-order bits of the execution stage, there is little likelihood of having errors
even in a full swing of the operating conditions, as the smallest p01 slack values are
quite positive: 0.22ns/0.37ns at (0.99V, −40 ◦C)/(0.81V, 125 ◦C). The application
writer can trade-off between the end user’s accuracy requirements versus the cost
of guardbanding using profiling and tuning mechanisms, thus satisfying predicate
(A). The trade-off between the cycle time and the probability of having a failure in
the execution paths is shown in Fig. 3.5. As shown, a higher cycle time results in
lower probability of failure and thus a lower timing error rate. Therefore, the desired
cycle time can be extracted to match with the tolerable error of the application. If the
tolerable error of the application changes over different phases of the application,
the policy of applying the adaptive guardbanding can be reprogrammed accordingly
during the execution of the application.

30 3 Sequence-Level Tolerance

Fig. 3.5 Trade-off between the cycle time and the probability of having a failure in the execution
stage

3.4 Error-Intolerant Applications

3.4.1 Sequence-Level Vulnerability (SLV)

Unlike the probabilistic applications, applications in general do not have such inher-
ent algorithmic and cognitive tolerance thus even a single bit error in the execution
unit could crash a program.We consider this class of applications as intolerant appli-
cations that require complete numerical correctness. Intolerant applications cover
most of the general purpose applications, and even those probabilistic applications
that there is no domain expert to define and analyze their fidelity metrics parameters.
Therefore, the adaptive guardbanding for the intolerant applications has to guarantee
100% timing correctness for VP as well as IP. To alleviate such expensive constraint
imposed by the intolerant programs, we have earlier defined the notion of instruction-
level vulnerability (ILV [14]) to dynamic voltage and temperature variations in order
to expose and use variation in architectural/compiler optimizations. Equation3.2
defines ILV as a function of current operating voltage and temperature (V,T), and the
corresponding class of an instruction (insti) determined by partial function of φ. ILV
is computed as the number of cycles with a failed path over the total Monte Carlo
simulated cycles for the insti in [14].

ILV = �(φ(insti), V,T)

φ(insti) =

⎧
⎪⎨

⎪⎩

ClassI if insti ∈ ALU instructions

ClassII if insti ∈ MEM instructions

ClassIII if insti ∈ HW MUL/DIV instructions (3.2)

In fact, ILV data in [14] partitions integer SPARCV8 ISA (except control instruc-
tions) into three classes: ClassI consists of ALU instructions; ClassII covers all

3.4 Error-Intolerant Applications 31

memory (MEM) instructions; andClassIII has hardwaremultiply/divide (MUL/DIV)
instructions. As shown in Eq.3.3, ILV indicates that the classes of instructions have
different levels of vulnerability to dynamic variations dependingon theway they exer-
cise the nonuniform critical paths across the various pipeline stages. For instance,
the hardware MUL/DIV instructions have a higher vulnerability in comparison to
MEM instructions.

∀(V,T) :
ILV (ClassI, V,T) ≤ ILV (ClassII, V,T) ≤ ILV (ClassIII, V,T) (3.3)

ILV does not cover the control instructions, because the characterization of a
control instruction itself is meaningless unless it is considered within a sequence of
instructions that affect the control instruction. Hence, we extend the notion of ILV;
we introduce the notion of sequence-level vulnerability (SLV) to expose dynamic
variation in Eq.3.4. Different sequences of instructions exercise the critical paths of
the pipeline differently resulting in various levels of vulnerability. The vulnerability
of a sequence of instructions (seqi) varies based on the class of instructions that
it contains. SLV is also a function of current operating voltage and temperature to
capture inter-corner dynamic variations. Therefore, SLV reflects the manifestation of
variability-induced timing errors in the specific software context which is a sequence
of instructions.

SLV = �(ϕ(seqi), V,T) (3.4)

3.4.2 SLV Characterization

To avoid an exponentially growing number of sequences for evaluations of SLV, the
highly frequent sequences are extracted from various type of applications. We have
profiled a large set of general purpose benchmarks containing 32 different applica-
tions, include MiBench [2], Parsec [6], Scimark2 [26], MediaBench [3], and Core-
Mark [5] benchmarks. The binaries of applications were dynamically instrumented.
This allows us to extract the highly frequent sequences of the instrumented instruc-
tions as well as their operands distribution for the memory, and ALU instructions.
This operands distribution helps to create the realistic values for the operands of the
instructions. To distinguish sequences, a window of three instructions is considered
since there are three stages before reaching the execution stage of LEON3. Then, for
the sake of illustration, the top 20 highly frequent sequences are considered for the
SLV analysis that are shown in Table3.2.1 After the sequence extraction, a sequence
generator applied Monte Carlo method for each of top 20 sequences, utilizing the
operands distribution instrumented from the aforementioned benchmarks. Therefore,

1We later show our method is not limited to the top sequences and a sequence with a length of three
instructions (L = 3).

32 3 Sequence-Level Tolerance

Table 3.2 Extracted highly frequent sequences of instructions

Seq. # 1 2 3 4 5 6 7 8 9 10

Inst.i ld st ld ld ld st ld call ld call

Inst.i+1 ld st bz bz st ld ld st ld st

Inst.i+2 ld st sub and ld st bz st sub ld

Seq. # 11 12 13 14 15 16 17 18 19 20

Inst.i bz ld sub and sub and and sub sub ALU

Inst.i+1 st and bz bz add add sub sub and ALU

Inst.i+2 ld st bnz bnz bz bz bz bz bz ALU

large samples of highly frequent sequences for SPARC ISA have been generated,
including ALU, MEM, and control instructions.2

Then, to accurately evaluate SLV under different operating conditions, these
sequences were fed to the post-layout simulations where the delay of the layout
implementation of the processor is back-annotated. Therefore, SLV is calculated for
every individual sequence under a full range of operating conditions and cycle times
to enable use of dynamic variations on sequences of instructions. To evaluate SLV,
seqi is run through the pipeline while varying the operands of the instructions using
the following algorithm:

For seqi ∈ list of high-frequent sequences
For (V,T) ∈ {(0.72 V,−40 ◦C), ..., (0.99V, 125 ◦C)}
For Cycle_Time ∈ {1.0 ns, ..., 3.0 ns}
For operands ∈ list of operands
Compute SLV (seqi, V , T , Cycle_Time)

TheSLV for each seqi at the operating condition (V,T)with cycle time is quantified
in Eq.3.5, where Ni is the total number of clock cycles in Monte Carlo simulation
of seqi with random operands; and Violationj indicates if there is a violated stage at
clock cyclej or not. In other terms, SLV is defined as the total number of violated
cycles over the total simulated cycles for the seqi. If any of the six stages have one
or more violated flip-flop at clock cyclej, we consider that stage as a violated stage
at cyclej since there is at least one activated critical path for seqi at cyclej that is
slow enough to miss the setup time of a flip-flop. Intuitively, if seqi runs without any
violated path, SLV is zero; on the other hand, SLV is one if for every cycle seqi faces
at least one violated path in any stage.

2The rest of ISA needs the floating-point and coprocessor units which are not available neither in
our core nor in [15].

3.4 Error-Intolerant Applications 33

SLV (seqi, V,T ,Cycle_Time) = 1

Ni

Ni∑

j=1

Violation j

Violationj =
{
1 If any stage violates at cycle j
0 otherwise (3.5)

Figure3.6 shows the SLV values of the top sequences under a wide range of
voltage and temperature variations while the cycle time is finely varied (steps of
10ps). The SLV values are 0 during the long cycle times, as the cycle time decreases
the SLV values increase toward 1 because the sequences experience higher timing
violations. Let us first examine the behavior of the sequences under the full range of
temperature variation (Fig. 3.6b and c). At the temperature of 125 ◦C, all sequences
have a SLV of 0 with clock cycle 1.35ns. By decreasing the cycle time beyond
1.33ns, seq1–seq19 start to incur the timing violation as their SLV values increase,
while seq20 is displaying a SLV of 0 until decreasing the cycle time to 1.28ns. This
trend also persists under ΔT = 165 ◦C temperature fluctuation with a shift in cycle
time (Fig. 3.6c). As shown, these sequences are partitioned into two classes based
on the SLV values. The seq1–seq19 have higher within-corner SLV values, while the
seq20 has lower within-corner SLV values.

Let us now examine the SLV values under dynamic voltage variations (Fig. 3.6a
and b). A similar pattern of within-corner SLV variations is observed: the seq1–seq19
showhigher SLVvalues compared to the seq20 at equal cycle times. This classifies the
seq1–seq20 into two classes of sequences: ClassI and ClassII. As defined in Eq.3.6,
ClassI is a sequence of instructions of length L in which every instruction has an
ILV class of ClassI. In other words, when a sequence of instructions is composed
of only ALU instructions, the sequence is classified as ClassI; otherwise it is classi-
fied as ClassII. Therefore, an instruction within the sequence of ClassII can be any
instruction, including MEM, MUL/DIV, and various control instructions. For every
operation condition (V, T), ClassI has a lower SLV (thus needs lower guardband) in
comparison to ClassII.

∀(V,T , seqi) : SLV (ClassI, V,T) ≤ SLV (ClassII, V,T), s.t.

ϕ(seqi) =
{
ClassI ∀instj ∈ seqi|φ(instj) = ClassI, 2 ≤ j ≤ L

ClassII otherwise (3.6)

Based on our analysis for the highly frequent sequences, as shown in Fig. 3.6, the
seq20 is classified as ClassI, while the seq1–seq19 are among ClassII. The seq20 has a
lower SLV compared to all sequences in ClassII; since its instructions do not involve
the critical paths of the memory and control (integer code conditions) components.
Thus, we see that the SLV value of the two classes of the sequences at the same corner
and with the same cycle time is not equal because their instructions do not uniformly
exercise the various critical paths of the pipeline. We know that the vulnerability
of instructions is not uniform [14]. Sequences in ClassII need higher guardbands

34 3 Sequence-Level Tolerance

Fig. 3.6 Intra-corner SLV to dynamic variations (ΔT= 165 ◦C andV= 0.09V); a (0.72V, 125 ◦C),
b (0.81V, 125 ◦C), c (0.81V, −40 ◦C)

3.4 Error-Intolerant Applications 35

Fig. 3.7 ILV and SLV classification for integer SPARC V8 ISA

in comparison with ClassI, mainly because in addition of ALU’s critical paths, the
critical paths of memory are also activated for the load/store instructions as well as
the critical paths of integer code conditions for the control instructions. As a result, in
the same corner, sequences in ClassI run faster, thanks to their all ALU instructions
which only exercise critical paths of the ALU component.3 Figure3.7 summarizes
ILV and SLV classification.

This intra-corner SLV enables the adaptive guardbanding to set the cycle time
for each class of sequences accordingly, and thus eliminate the conservative guard-
bands across sequences up to 6%. Therefore, for intolerant applications, the adaptive
guardbanding adjusts the cycle time depending upon the classes of the sequence, and
the current operating conditions to make sure that the processor runs at the fastest
speed compatible with both current hardware and software conditions. We classify
any noncharacterized sequence out of the analyzed highly frequent sequences as
ClassII, thus it will have appropriate timing guardband in case of activation of the
critical paths of non-ALU components. Relaxing the guardband can also be applied
to any sequence of ClassI with a length of two ALU instructions (ClassIL=2) or more
(N) ALU instructions stream (ClassIL=N). These chains of ALU instructions exer-
cise the critical paths within only ALU component, therefore, for a given operating
condition as shown in Eq.3.6, the SLV values of ClassIL for L∈ {2,3,…,N} are equal.
This classifies ALU sequences into the same class of the sequences with consistency
across a wide range of corners.

3.5 Adaptive Guardbanding

We propose a guardbanding technique that dynamically decides on the cycle
time based on the Application’s Type, the Instruction Sequence, and the operat-
ing conditions (V,T), to maximize performance. To ensure necessary observability,
our approach employs on-chip low-overhead operating condition monitors using

3ALU does not include the hardware multiply and divide units.

36 3 Sequence-Level Tolerance

CPM [27]. POWER7 results show that five CPMs per each core are sufficient to
finely capture PVT variation [28]. For controllability, a fast adaptive clocking circuit
consisting of three phase-locked loops (PLLs) is leveraged. Each PLL is running
at independent frequencies, and a multiplexer quickly switches between them in a
single cycle [29, 30]; therefore ultra-fast frequency changes are possible and PLL
lock time is not an issue. This is well suited to mitigate the inter-corner dynamic
variations where the timing guardbanding across corners are far apart. To mitigate
the intra-corner guardband between the two classes of sequences, a finer clock speed
adaptation is requiredwhich can be supported by an all-digital PLL. For instance, [30]
proposes an all-digital PLL that provides multiple equally spaced clock phases with a
small tuning step size of a few picoseconds; these phases are switched in a glitch-free
reverse switching scheme. A phase switching frequency division architecture is also
used to generate subinteger division ratios and thus a larger variety of output frequen-
cies [35]. These circuits techniques support very fast adaptation of the clock speed
of the processor in immediate response to changes in the operating corners, various
sequences of instructions, and the type of applications. The adaptive guardbanding
adjusts the cycle time as defined in Eq.3.7.

Cycle_Time = �(Application′s Type, Instruction Sequence, V, T) (3.7)

where Application’s Type is probabilistic or intolerant; Instruction Sequence is the
type of sequence which is either ClassI or ClassII; V and T are discretized current
operating conditions reported by on-chip CPM sensors; the function is represented
by a programmable lookup table (PLUT) as shown in Table3.3. The PLUT is a fully
combinational module in the pipeline.4 It is programmable through the memory-
mapped I/O in arbitrary epochs of the post-silicon stages. The PLUT is connected
to CPM (for monitoring the current operating condition (V, T)), the fetch stage (for
monitoring the Instruction Sequence), and the single-cycle adaptive clockingmodule
(for setting the cycle time). The Application’s Type is also set at the start of running
the application via memory-mapped I/O. The adaptive guardbanding monitors these
four parameters every cycle, and then sends corresponding commands to the clock
speed adjustment circuit to make sure that processor always runs at the fastest speed
compatible with these conditions.

As shown in Table3.3, there is no intra-corner cycle time adaptation for the prob-
abilistic application. The within-corner correct execution is guaranteed by static
duplication of the critical instructions which is the application-aware version of the
multiple-issue instruction replay [15]. Therefore, for the probabilistic application we
do not require an online hardware recovery unit, and avoid the frequent changing of
the cycle time within an operating corner.

In our experiments, for characterization of the PLUT, we have used six sign-off
operating corners available on an advanced real-life technology library [22]. PLUT
conservatively matches a surrounding operating condition if the discretized reported
operating condition does not appear in the PLUT. Note, this is conservative for few

4Note that PLU can be characterized and then optimized during design time stage depending upon
the range of operating conditions and application’s type.

3.5 Adaptive Guardbanding 37

Table 3.3 PLUT for adaptive guardbanding

Application’s
type

Instruction
sequence

Voltage (V) Temperature (◦C) Cycle time (ns)

Probabilistic – 0.99 0 0.78

Probabilistic – 0.81 125 1.32

Probabilistic – 0.72 125 1.55

Intolerant ClassII 0.81 −40 1.44

Intolerant ClassI 0.81 −40 1.36

Intolerant ClassI 0.72 125 1.80

.

points in the PLUT, but will converge to ideal, while still being safe, if semiconduc-
tor fabrication process provides more characterized operating corners. Furthermore,
for the intolerant applications, the adaptive guardbanding considers the worst-case
process variation, and considers a conservative guardband (as safe as ClassII) on
the noncharacterized sequence of instructions (sequences out of seq1–seq20), thus
guarantees 100% numerical correctness for the intolerant applications. As shown in
Table3.3, the PLUT assigns different cycle times to various types of applications
at the same operating condition. Inherent resiliency of the probabilistic applications
indicates that these can tolerate inaccuracies, while the intolerant applications do
not accept such inaccuracies. Therefore, when running an intolerant application the
sufficient guardbanding is guaranteed for IP as well.

3.6 Experimental Results

The experimental methodology for STA, and the variation-aware SSTA are described
using Fig. 3.8 that shows both design time and runtime flows. During the design
time analysis, the open-source synthesizable VHDL code of LEON3 [31] and Ver-
ilog description of the PLUT module have been synthesized with the TSMC 45nm
technology library, the general purpose process. The synthesized core enables the
variation analysis of paths of the integer parallel pipeline unit, as well as the L1
instruction cache (I$) and the L1 data cache (D$), unlike the resilient core [15]
that only considers the integer unit. The front-end flow with normal VTH cells has
been performed using Synopsys Design Compiler with the topographical features
enabled, while Synopsys IC Compiler has been used for the back-end. The design
is optimized for performance with the tight timing constraints, e.g., the clock period
of 1.2ns. For SSTA, the sign-off stage has been made with variation-aware timing
analysis of Synopsys PrimeTime VX, leveraging characterized parameters of TSMC
45nm variation-aware libraries discussed. The dynamic variations are also analyzed
utilizing the six accessible TSMC characterized sign-off corners. Finally, for the
post-layout simulations Mentor Graphics ModelSim is employed.

38 3 Sequence-Level Tolerance

Fig. 3.8 Methodology for the adaptive guardbanding

At the runtime, in every cycle, the PLUT module sends the desired cycle time to
the adaptive clocking circuit utilizing the characterized SLV of the current sequence
and the operating condition monitored by CPM. For detecting the current sequence,
the PLUT looks at a window of three instructions (available on IF, ID, RA stages),
thus it detects the class of the current instructions sequence before they reach the
execution stage (the stage that needs more guardbanding as shown in Fig. 3.2. The
previous stages (IF, ID, RA) are in a safe guardband, thus they will not have any
failure if a sequence of ClassI/ClassII is running while the cycle time is set for a
ClassII/ClassI. If the pipeline architecture does not have enough stages before the
execution, the prefetch buffer [32] can be monitored instead. By detecting changes
in the class of sequences, the single-cycle adaptive clocking circuit sets the core fre-
quency accordingly. If an adaptive clocking circuit has long-latency clock switching,

3.6 Experimental Results 39

the PLUT can look ahead of a prefetch buffer coupled with phase prediction tech-
niques to be able to decide about the desired core frequency in advance. Note that the
core consists of the integer pipeline, L1 I$, and L1 D$ that are clocked by a single
clock domain. Communication with L2 caches and uncore part can be done via glob-
ally asynchronous, locally synchronous interconnection supporting synchronization
across multiple clock domains [9].

3.6.1 Effectiveness of Adaptive Guardbanding

Here, we investigate the effectiveness of our adaptive guardbanding technique when
executing real-world applications.5

3.6.1.1 Error-Tolerant Applications

Aserror-tolerant probabilistic applications,wehave selectedmultimedia benchmarks
from MiBench and MediaBench suites: H264 is a video decoder while Libmad is a
MP3 decoder; Susan is an image recognition program; DCT, Huffman coding and
Ycc2rgb are important kernels in the JPEG decoder; GSM implements a decoder
for the GSM communications standard, and LDPC is a linear error correcting code.
The appropriate fidelity metric analysis and application-level correctness technique
based on [25] are performed to identify the critical control flow instructions of these
applications. Then, the critical instructions are statically duplicated during compile
time. Finally, the adaptive guardbanding determines the cycle time based on the given
error probability 0.01% which can guarantee the acceptable fidelity metrics [25].

In the traditional worst-case design, the maximum throughput of applications
is limited by 400 MIPS (million instructions per second), analyzed by the worst-
case STA. Figure3.9 shows the normalized throughput of the applications in var-
ious operating conditions, covering ΔV = 0.09V dynamic voltage variation and
ΔT = 125 ◦C temperature variation. In comparison with the worst-case design, the
adaptive guardbanding changes the throughput of these applications from 0.95× to
1.9× depends to the current operating condition. Throughput of Rician is increased
up to 1.9× at (0.81V, 125 ◦C). On the other hand, throughput of Huffman coding at
the operating condition of (0.72V, 125 ◦C) is degraded by 0.95× because 69% of its
instructions are the critical control flow instructions which are duplicated, and cancel
out the benefit of faster execution of the total instructions. On average, the through-
put of these applications is enhanced by 1.52×. This shows that utilizing SSTA and
adapting to the operating conditions highly surpasses the traditional worst-case STA,
and hides the overhead of the critical instructions duplication.

5For those applications that have encoder and decoder parts, we consider their back-to-back execu-
tions.

40 3 Sequence-Level Tolerance

Fig. 3.9 Normalized throughput improvement by utilizingSSTAcompared to theworst-case design
for probabilistic applications

3.6.1.2 Intolerant Applications

For the intolerant applications, we have selected applications from six categories
of MiBench, each suite targeting a specific area of the embedded market, including
automotive, consumer devices, office automation, networking, security, and telecom-
munications. In addition, we have also considered EEMBC AutoBench [4] suite of
benchmarks, suitable for embedded processor in automotive, industrial, and general
purpose applications. Without loss of generality, every probabilistic application can
be considered as an intolerant application and benefits from SLV utilization if there
is no domain expert to define and analyze its fidelity metric. Figure3.10 shows the
percentage of sequences of ClassI with various lengths of ALU instructions, L∈ {2,
3,…, 7}, during execution of the intolerant applications. For instance, ClassIL=2

shows the percentage of sequences that have exactly two consecutive ALU instruc-
tions, ClassIL=3 represents sequences with just three consecutive ALU instructions,
and so on. The compiler6 optimizes the applications codes with -O3 optimization
option; and then the applications are profiled during execution using TSIM [33], a
cycle-accurate instruction-level simulator. Figure3.10.a shows on average 26% of
the total executed sequences belong to ClassI, while the remaining sequences belong
to ClassII. Patricia has the maximum number of sequences of ClassI, 35%. The adap-
tive guardbanding technique with the sequence detector of three instructions benefits
from the sequences of ClassI with a length of 3 or more instructions.

Figure3.10b shows the percentage of sequences of ClassI when the compiler uti-
lizes loop unrolling technique. Loop unrolling is a loop transformation technique
that attempts to increase speed of a program by reducing instructions that control the
loop. It increases the number arithmetic instructions with regard to the memory and
control flow instructions, at the expense of register pressure and program size. There-

6GNU Compiler Collection, version 3.4.4, with floating-point, mul/div emulation.

3.6 Experimental Results 41

Fig. 3.10 Percentage of sequences of ClassI during program execution: a without loop unrolling
technique; b using loop unrolling technique

fore, applying the loop unrolling produces a longer chain of ALU instructions, and as
a result the percentage of sequences of ClassI is increased up to 41% and on average
31%. Hence, the adaptive guardbanding benefits from this compiler transformation
technique to further reduce the guardband for sequences of ClassI. Considering the
sequence detection with a length of three instructions, the adaptive guardbanding
reduces the cycle time for 20% of the executed sequences on average (up to 30% for
Adpcm). Note that the adaptive guardbanding technique also reduces the guardband
for the other sequences of ClassI with a longer length of three instructions, since each
sequence of ClassI with L instructions is composed of two consecutive sequences
with a length of L-1 instructions, considering the overlap between the two sequences.

42 3 Sequence-Level Tolerance

Table 3.4 Throughput improvement of the intolerant applications utilizing the adaptive guard-
banding with loop unrolling

Throughput
improvement (×)

Only SLV (intra-corner) SLV + inter-corner

Max Average Max Average

(0.72V, 125◦) 1.04 1.03 1.36 1.35

(0.81V, 0◦) 1.06 1.05 1.80 1.78

(0.81V, 125◦) 1.05 1.05 1.88 1.87

Table3.4 lists themaximum and the average throughput improvement of the adap-
tive guardbanding technique utilizing the loop unrolling during compilation phase of
the intolerant applications. The throughput improvement is evaluated across various
operating conditions. The second and the third columns of Table3.4 show the maxi-
mum and the average throughput improvement of the applications utilizing SLV only
within a fixed operating corner. Thus, the applications benefit from the higher rate
of execution of the sequences of ClassI accomplished by the loop unrolling method.
The last two columns show the maximum and the average normalized throughput
(the worst-case design is the baseline) improvements utilizing SLV and inter-corner
adaptation. In comparison with the worst-case design, the adaptive guardbanding
enhances the throughput of these applications by a factor of 1.35× to 1.88× depend-
ing upon the current operating condition. This shows that utilizing the operating
corner monitors and the online SLV coupled with offline compiler techniques can
result in a significant throughput improvement for general purpose applications,
where there is strict requirement on computational accuracy.

We compare our SLV technique (without the loop unrolling) with the code trans-
formation technique proposed in [1] which pads the instructions sequence with a
NOP instruction. The NOP padding eliminates the critical path activation for the
forwarding paths of a processor for a read-after-write (RAW) register dependency.
In other words, the result is no longer forwarded directly from the execution stage, it
instead is forwarded a cycle later from the pipeline register in the memory stage. For
comparison, we have identified the code sequences with a RAW register dependence
and padded them with NOP instruction. Those NOP padded sequence are clocked
as fast as the ClassI. The authors in [1] assume that they can clock that sequence
2.15× faster than the typical frequency of a processor, while Intel shows that in the
resilient processor the clock can increase up to 0.16× in a fixed operating corner [15];
our results in Sect. 3.4.2 also indicates that intra-corner clock guardbanding for var-
ious sequences is bounded by 0.06×. Figure3.11 shows the normalized (baseline is
[1]) throughput of our adaptive guardbanding utilizing SLV by adapting the cycle
for dynamic operating conditions and different classes of the sequences. On average,
our technique achieves 1.65× higher throughput because [1] imposes one extra cycle
for executing the NOP instruction, and does not adapt to the operating conditions.
Figure3.12 shows the energy overhead of the NOP padding across various operating

3.6 Experimental Results 43

Fig. 3.11 Normalized throughput improvement utilizing SLV compared to [1] for the intolerant
applications

Fig. 3.12 Energy overhead of NOP padding [1] across corners

corners. It imposes 74–564nJ energy overhead, depending upon the number of NOP
instructions and the current operating condition.

Multi-instruction code substitution, as another code transformation techniques
in [1], is not applicable for an embedded RISC machine where there are almost
no alternatives for representing an equivalent set of instructions, unless paying
the expenses of intrusive pipeline modification, ISA extension, and leveraging
co-processors. Nevertheless, there is a considerable performance and energy penalty
for replacing a multi-instruction sequence with an equivalent set of instructions [34].

The common strategy in circuit techniques [15, 35] is to allow the timing errors to
happen. Then, an extra cost is paid to compensate errors through the error recovery
technique: the multiple-issue instruction replay imposes up to 28 extra recovery

44 3 Sequence-Level Tolerance

Table 3.5 Area and power overheads of adaptive guardbanding

LEON3 Intolerant Probabilistic

Total power (W) 2.00E-01 6.79E-05 6.20E-05

Leakage power (W) 1.04E-02 1.24E-06 1.20E-06

Total area (cell) 744018 164 164

cycles per error [15]. This cost of recovery has shown to be high, thus leading to
massive performance degradation if processor blindly relies on the error recovery
in face of frequent timing errors, especially so in aggressive voltage overscaling
and near-threshold computation. However, our proposed approach guarantees the
correct execution at lower cost: (i) It proactively prevent timing errors on VP by
applying the adaptive guardbanding across the operating corners and the sequence
of instructions. For the error-intolerant applications, even if some residual timing
error probability remains mainly because of using Monte Carlo method described in
Sect. 3.4.1, our approach relies on the processor with error recovery capability that
guarantees the correct execution with 100% numerical correctness. In this way, our
online adaptive guardbanding implies that recovery actions will have to be under-
taken in an extremely small number of cases, hence the recovery penalty is minimal.
(ii) Our technique allows timing errors to happen on IPwhilemeeting the application-
specific requirements on computational accuracy for the error-tolerant applications,
hence no penalty of recovery.

3.6.2 Overhead of Adaptive Guardbanding

Table3.5 lists the overhead of hardware implementation of the adaptive guardband-
ing technique. The area overhead in comparison to LEON3 core (including I$ and
D$) is near-zero (0.022%). Five CPMs, as PVT sensors, occupy 0.12% area [28].
The adaptive guardbanding also imposes only 0.034%/0.031% average total power
overhead for the intolerant/probabilistic applications, in the worst-case operating
condition; the power leakage overhead is 0.012%. This coarse grained monitoring
and adaptation approach is less intrusive and expensive and nicely complements the
fine-grained approaches such as Razor and EDS.

3.7 Chapter Summary

A variation-aware cross-layer approach is presented that spans circuits, architectural
pipeline to the applications.Wepropose a design time analysis in conjunctionwith the
minimally intrusive runtime adaptive guardbanding technique to combat PVT vari-

3.7 Chapter Summary 45

ations while guaranteeing various applications demands on computation accuracy.
We introduce the notion of sequence-level vulnerability (SLV) to capture variabil-
ity characteristics that can be used by the compiler, runtime system, or even by the
application programmer. The adaptive guardbanding technique enables an in-order
RISC processor to run at the fastest speed compatible with the operating conditions,
various sequences of instructions, and the type of applications. This increases the
throughput of probabilistic applications upto 1.9× over the traditional worst-case
design. Utilizing SLV achieves on an average 1.6× speedup for the intolerant appli-
cations, compared to [1], by adapting the cycle for dynamic variations and different
instruction sequences. The concrete full layout results in TSMC 45nm technology
confirm that our technique incurs only 0.022, 0.012, and 0.034% overheads for the
total area, leakage power, and total power respectively.

References

1. G. Hoang, R.B. Findler, R. Joseph, Exploring circuit timing-aware language and compila-
tion, in Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI (ACM, New York, 2011) pp.
345–356

2. MiBench. http://www.eecs.umich.edu/mibench/
3. MediaBench. http://euler.slu.edu/~fritts/mediabench/
4. EEMBC benchmark consortium. http://www.eembc.org
5. CoreMark. http://www.coremark.org/home.php
6. PARSEC benchmark suite. http://parsec.cs.princeton.edu/
7. Whitepaper. NVIDIAS next generation CUDATM compute architecture: Kepler TM GK110

(2012)
8. S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,

J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger,
N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, J. Zook, Tile64 - processor: a 64-core
SoC with mesh interconnect, in IEEE International Solid-State Circuits Conference. ISSCC
2008. Digest of Technical Papers (2008), pp. 88–598

9. D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, D. Dutoit,
Platform 2012, a many-core computing accelerator for embedded SoCs: performance evalua-
tion of visual analytics applications. In 49th ACM/EDAC/IEEEDesign Automation Conference
(DAC) (2012), pp. 1137–1142

10. L. Benini, E. Flamand, D. Fuin, D. Melpignano, P2012: building an ecosystem for a scalable,
modular and high-efficiency embedded computing accelerator, in Design, Automation Test in
Europe Conference Exhibition (DATE) (2012), pp. 983–987

11. P.N. Sanda, J.W. Kellington, P. Kudva, R. Kalla, R.B. McBeth, J. Ackaret, R. Lockwood, J.
Schumann, C.R. Jones, Soft-error resilience of the IBM POWER6 processor. IBM J. Res. Dev.
52(3), 275–284 (2008)

12. R. Kumar, V. Kursun, Reversed temperature-dependent propagation delay characteristics in
nanometer CMOS circuits. IEEE Trans. Circuits Syst. II: Express Briefs 53(10), 1078–1082
(2006)

13. P. Dubey, Recognition, mining and synthesis moves computers to the era of tera. Technol. Intel
Mag. 9, 1–10 (2005)

14. A. Rahimi, L. Benini, R.K. Gupta, Analysis of instruction-level vulnerability to dynamic volt-
age and temperature variations, in Design, Automation Test in Europe Conference Exhibition
(DATE) (2012), pp. 1102–1105

http://www.eecs.umich.edu/mibench/
http://euler.slu.edu/~fritts/mediabench/
http://www.eembc.org
http://www.coremark.org/home.php
http://parsec.cs.princeton.edu/

46 3 Sequence-Level Tolerance

15. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B.Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Solid-State Circuits 46(1), 194–208 (2011)

16. H. Cho, L. Leem, S. Mitra, ERSA: error resilient system architecture for probabilistic applica-
tions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(4), 546–558 (2012)

17. THEIA. http://opencores.org/project,theia_gpu
18. A. Terechko, M. Garg, H. Corporaal, Evaluation of speed and area of clustered VLIW proces-

sors, in 18th International Conference on VLSI Design (2005), pp. 557–563
19. E. Gunadi, M. Lipasti, CRIB: consolidated rename, issue, and bypass, in 38th Annual Interna-

tional Symposium on Computer Architecture (ISCA) (2011), pp. 23–32
20. M. Ozawa,M. Imai, Y. Ueno, H. Nakamura, T. Nanya, Performance evaluation of cascadeALU

architecture for asynchronous super-scalar processors, in ASYNC 2001. Seventh International
Symposium on Asynchronus Circuits and Systems (2001), pp. 162–172

21. PrimeTime VX user guide (2011)
22. TSMC 45 nm standard cell library release note, v 120a (2009)
23. S. Herbert, D. Marculescu, Characterizing chip-multiprocessor variability-tolerance, in 45th

ACM/IEEE Design Automation Conference, DAC 2008 (2008), pp. 313–318
24. Predictive technology model (PTM). http://ptm.asu.edu/
25. J. Cong, K. Gururaj, Assuring application-level correctness against soft errors, in IEEE/ACM

International Conference on Computer-Aided Design (ICCAD) (2011), pp. 150–157
26. SciMark v2.0. http://math.nist.gov/scimark2/
27. A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd,

V. Pokala, A distributed critical-path timing monitor for a 65 nm high-performance micro-
processor, in IEEE International Solid-State Circuits Conference. ISSCC 2007. Digest of Tech-
nical Papers (2007), pp. 398–399

28. M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A.J. Drake, L. Pesantez, T.
Gloekler, J.A. Tierno, P. Bose, A. Buyuktosunoglu, Introducing the adaptive energy manage-
ment features of the POWER7 chip. IEEE Micro 31(2), 60–75 (2011)

29. J. Tschanz, N.S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal, S. Narendra, Y. Hoskote,
H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan, T. Karnik,
N. Borkar, N. Kurd, V. De, Adaptive frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging, in IEEE International Solid-State Circuits Confer-
ence. ISSCC 2007. Digest of Technical Papers (2007), pp. 292–604

30. S. Hoppner, H. Eisenreich, S. Henker, D. Walter, G. Ellguth, R. Schuffny, A compact clock
generator for heterogeneous GALS MPSoCs in 65-nm CMOS technology. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 21(3), 566–570 (2013)

31. LEON3. http://www.gaisler.com/cms/
32. ARM Cortex-M3 technical reference manual, Rev. r1p1 (2006)
33. TSIM iss. http://www.gaisler.com/index.php/products/simulators/tsim
34. A.Rajendiran, S.Ananthanarayanan,H.D. Patel,M.V.Tripunitara, S.Garg,Reliable computing

with ultra-reduced instruction set co-processors, in 49th ACM/EDAC/IEEEDesign Automation
Conference (DAC) (2012), pp. 697–702

35. K.A. Bowman, J.W. Tschanz, N.S. Kim, J.C. Lee, C.B.Wilkerson, S.L. Lu, T. Karnik, V.K. De,
Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance.
IEEE J. Solid-State Circuits 44(1), 49–63 (2009)

http://opencores.org/project,theia_gpu
http://ptm.asu.edu/
http://math.nist.gov/scimark2/
http://www.gaisler.com/cms/
http://www.gaisler.com/index.php/products/simulators/tsim

Chapter 4
Procedure-Level Tolerance

Abstract This chapter raises further the level of error tolerance to procedure calls
for scheduling different procedures on cores such that there is no timing errors. We
propose a resilient hardware/software (HW/SW)architecture for shared-L1processor
clusters to combat both static and dynamic variations. We first introduce the notion
of procedure-level vulnerability (PLV) to expose fast dynamic voltage variation and
its effects to the software stack for use in runtime compensation. To assess PLV,
we quantify the effect of full operating conditions on the dynamic voltage variation
of a post-layout processor in 45nm TSMC technology. Based on our analysis, PLV
shows a range of 18–63mV inter-corner variation among the maximum voltage
droop of procedures. To exploit this variation, we propose a low-cost procedure
hopping techniquewithin the processor clusters, utilizing compile time characterized
metadata related to PLV. Our results show that procedure hopping avoids critical
voltage droops during the execution of all procedures while incurring less than 1%
latency penalty.

4.1 Introduction

Given the close relationship between power and temperature, and the increased
importance of variability in the future, treatment of variability during pre-silicon
and post-silicon design stages is crucially important. Resilient circuit techniques
suffer from power-hungry error recovery, which is expensive for a many core fabric.
In contrast, our approach is applicable to clusters of simple processors and exploits
the opportunity given by tightly coupled architecture to dynamically shift work from
one core to another with minimal overhead. In this chapter, we proposes a resilient
HW/SWmethod for shared-L1 processor clusters to combat both static and dynamic
variations:

1. We introduce the notion of procedure-level vulnerability (PLV) to capture the
effects of dynamic IR-drop. Using characterized PLV, we enable a software pre-
ventive methods that build upon well-known hardware detection/correction tech-
niques for process variability and aging.

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_4

47

48 4 Procedure-Level Tolerance

2. We propose a low-cost runtime procedure hopping that facilitates migration of
procedures within a processor cluster, utilizing compile-time characterization
(captured as metadata) of PLV.

3. An accurate gate-level analysis flowwhich leverages industrial design implemen-
tation tools and libraries to characterize IR-drop of individual procedures in the
presence of variability is developed. We demonstrate our approach on a tightly
coupled shared-L1 multi-core cluster, representative of a large class of multi-core
architectures (e.g., GP-GPUs, programmable multimedia accelerators). Full post
place-and-route (P&R) results in 45nm TSMC technology confirm that the pro-
cedure hopping technique avoids the critical IR-drop during the execution of all
procedures while incurring less than 1% latency penalty.

4.2 Variation-Tolerant Processor Clusters Architecture

% In this section, we describe the architectural detail of proposed variation-tolerant
processing cluster. These clusters are the essential parallel components of many
core fabrics, e.g., NVIDIA Fermi [1] features 512 CUDA processors organized into
16 groups of processing cluster. In our implementation, each cluster consists of
sixteen 32-bit in-order RISC cores compliant with the SPARC V8 architecture, an
intra-cluster shared level-one instruction cache (shared-L1 I$) [2], an on-chip tightly
coupled data memory (TCDM), two fast logarithmic interconnections [3] for both
instruction and data sides, and a hardware synchronization handler module (SHM).
The shared-L1 I$ for the MIMD cluster can achieve better performance, up to 60%,
than the private I$ per core [2]. On the data side, a multi-ported, multi-banked,
level-one TCDM is directly connected to the interconnect. The number of memory
ports is equal to the number of banks to have concurrent access to different memory
locations. The logarithmic interconnection is composed of mesh-of-trees networks
to support single-cycle communication between processors and memories in L1-
coupled processor clusters [3]. When a read/write request is brought to the memory
interface, the data is available on the negative edge of the same clock cycle, leading to
two clock cycles latency for a conflict-free TCDM access. The SHM acts as an extra
slave device of the logarithmic interconnect to coordinate and synchronize cores for
accessing shared data on TCDM [2].

All components of the cluster work with the same frequency (memories with a
180◦ phase shift) decided by DFS, while only the voltage of cores is isolated by
the fast level shifters thus enabling core-level dynamic VDD-hopping [4, 5]. The
VDD-hopping uses three voltages provided by external DC-DC converters (no need
of on-chip inductor and charge pump) to control the local voltage of the core based
on the core’s delay variation. To hop between three supply voltages, a device called
power supply selector (PSS) is necessary. The VDD-hopping utilizes an efficient
voltage transition which allows changing the supply voltage following a controlled
ramp, limiting wide current variations, avoiding any supply voltage under- or over-
shoot and current flowing from one source to another [5]. Silicon results of a 65nm

4.2 Variation-Tolerant Processor Clusters Architecture 49

... I$Bi-1I$B0

Log. Interc.

Core15

V
A

-V
D

D
-h

op
pi

ng

... TCDMBj-1TCDMB0

Log. Interc.

Low VDD

Typical VDD

High VDD

D
FS...

f+
18

0 °
f+
18

0°

f

CPM

Level ShiftersLevel Shifters

Level ShiftersLevel Shifters

SHM

PSS

Core0

V
A

-V
D

D
-h

op
pi

ng

CPM

PSS

Fig. 4.1 Variation-tolerant processor cluster

test-chip indicate that the core does not need to be stopped during VDD-hopping
thanks to smooth, and fast voltage transitions (less than 100ns), with no under-shoot
or over-shoot [6]. The hopping unit and its power switches are fully integrated and
are 20× smaller than the integrated buck-boost DC-DC converter [6]. As shown in
Fig. 4.1, the level shifter standard cells are utilized in the back-end with a fine-grain
multi-VDD design flow; each the high-to-low/low-to-high level shifter imposes only
12ps/42ps delay [7] (262nW/43nW average leakage power) for a load of fan-out-of-
4, thus enabling single-cycle communications between cores and TCDM/shared-L1
I$.

4.2.1 Variation-Aware VDD-Hopping

To observe the effect of process parameters variation on frequency of individual
cores within a cluster, we have accurately analyzed how critical paths of each core
are affected, considering the back-end details implementation of cores. Each core
has been optimized during synthesis and P&R individually with a target frequency
constraint of 830MHz, then a bottom-up synthesis approach is leveraged to form the
physical implementation of the cluster.After parasitic extraction, in the sign-off stage,
the process parameters are varied based on die-to-die and within-die characterized
process parameters variations of 45nm TSMC models, derived from the first-level
process created by principal component analysis. These standard industrial libraries
and design process are supported by the state-of-the art commercial tools [7], thus

50 4 Procedure-Level Tolerance

Fig. 4.2 Frequency (MHz) variation of a 16-core cluster due to the process parameters variations
under different voltages

the calculated cores’ frequency accurately reflect the true results obtained in silicon.
The maximum frequency variation of every core under different operating voltages
is shown in Fig. 4.2. Within a cluster, each cores maximum frequency varies signifi-
cantly due to increasing within-die variations. For instance, at 0.81V, three cores (f4,
f8, f9) of out of 16-core cannot meet the design time target frequency of 830MHz.

To copewith this frequency variation problem there are three solutions: (i) limiting
the frequency of cluster by the slowest core (f8= 820MHz); (ii) disabling the slowest
cores and clocking the clusterwith the next slowest core (f4= 826MHz); (iii) running
each core at its maximum frequency independently. All these solutions impose non-
negligible performance penalty; the first and second solutions directly diminish the
throughput of cluster, and the last solution needs extra latency for synchronization
of cores with different clock frequencies. Synchronization across multiple clock
frequency islands increases the latency of interconnection which its performance
impact can be as high as the cache miss.

On the other hand, we consider a core-level VDD-hopping [12] for tuning the
voltage of each core individually to compensate the impact of process variation. For
instance, Fig. 4.2 shows that all cores of the same cluster meet the target frequency
of 830MHz when a higher VDD (0.99V) is applied. Therefore, every core can have
its own voltage domain, while all cores can work with the target frequency utilizing
the fast-level shifters. The critical paths delay of every core are measured in real time
by the less intrusive and low-overhead CPMs [8], hence the variation-aware VDD-
hopping (VA-VDD-hopping) can accordingly tune the cores’ voltage periodically
at arbitrary post-silicon stages. It mitigates both process variation and even aging
slows down. Consequently, the cores which are fabricated on a fast piece of silicon
will work on a lower voltage than the boosted “high VDD” voltage; this not only
lowers their power but delays their aging. On the contrary, slow cores will supply at
higher voltages to be able to meet the target frequency. As shown in Fig. 4.2, the VA-
VDD-hopping elevates the voltage of slow cores (f4, f8, f9) to 0.99V, while the rest
of cores are supplying at 0.81V, therefore enabling the whole cluster to clock at the
target frequency of 830MHz. Note that the VA-VDD-hopping technique mitigates
the within-cluster delay variations, but imposes voltage supply changes at the core-
level that can affect core’s aging. Therefore, to extend service life of the slow cores

4.2 Variation-Tolerant Processor Clusters Architecture 51

the ratio of stress to recovery time can be changed using core activity duty cycling
techniques [9].

4.3 Procedure Hopping for Dynamic IR-Drop

In the previous section, we have shown that the variability-affected cluster can com-
bat delay variation caused by the process parameter variations and aging, leveraging
the real-time observers and voltage as the control knob. CPMs observe the avail-
able slack on paths, and VA-VDD-hopping controls the voltage accordingly, this
detection/correction control loop is a well-suited for those variations that: (i) have
a slow time constant since compensation requires several clock cycles; (ii) contain
low-frequency components to avoid the frequent cost of rollback and calibration. On
the other hand, fast dynamic variations, like IR-drop, that contains high-frequency
component cannot be countered by a reactive detection/correction loop. They need
to be anticipated and prevented.

For this type of variations, we propose a technique consisting of twomajor phases:
design time characterization of metadata related to PLV, and runtime preventive pro-
cedure hopping. During characterization, the probability of voltage droop/rise versus
various voltage (V) and temperature (T) is characterized at the level of procedures,
where the problematic sequences of instructions [10, 11] exist. Therefore, the PLV
is calculated for every procedure on different combinations of (V, T) of the core, then
themetadata is generated as the result. The characterizedmetadata is attached to each
procedure at the compile time, to be able to use for runtime decisions about finding
the best location to run the procedure among the available (V, T)-islands within a
cluster.

During runtime, the core can evaluate the PLV of every procedure just looking at
the characterized metadata, and at the same time monitoring its current (V, T) using
CPMs. If the calculated PLV is greater than a predefined threshold (PLV_threshold),
this means that running procedure on the original core (caller) would likely cause
critical IR-drops, thus the procedure hops to another core (callee) where its (V, T) is
suitable for the procedure execution. As discussed in the next subsection, procedure
hopping can be done remarkably fast and proactively enough thanks to the tightly
coupled shared resources within a cluster.

4.3.1 Supporting Intra-cluster Procedure Hopping

Here, we describe the architectural HW/SW design to support the procedure hopping
within a cluster. The goal is to facilitate fast and proactive migration of procedures
from a caller core to the rest of cores, without special compiler support, minimal
impact on the normal execution, and reasonable memory overhead. Figure4.3 shows
the HW/SW interactions, and steps of procedure hopping of the cluster. It is shown

52 4 Procedure-Level Tolerance

Fig. 4.3 HW/SW collaborative architecture to support intra-cluster procedure hopping

that accessing both data and instruction is facilitated by shared TCDM and L1 I$.
The shared TCDM has four regions: (i) shared local: maintains variables explicitly
defined to be shared at compile time; (ii) shared stack: maintains the parameters for
passing among cores; (iii) stacks: region is defined to maintain the normal stack of
all 16 cores; (iv) heap: is used for dynamically allocated structures.

For every procedure, e.g., ProcX, two variation-aware procedures, ProcX@Caller
and ProcX@Callee, are considered to enable runtime accesses to the characterized
metadata of ProcX in the caller and callee cores respectively. The only compiler
transformation is to transform “call ProcX” to “call ProcX@Caller,” as shown in the
code of the caller core in Fig. 4.3. Therefore, the ProcX@Callerwill first run on behalf
of ProcX to decide whether current (V, T) of the caller core is suitable for running
ProcX or not, utilizing the metadata and reading the operating condition monitors to
calculate PLV. If PLV is less than/equal to the PLV_threshold, then “call ProcX” will
be executed; otherwise the procedure hopping will be applied to trigger migration
of ProcX to a favor core. Once a procedure hops from the caller core to a callee
core, its code is easily accessible via the shared-L1 I$ (without paying the penalty of
filling a private cache), but its parameters also needed to be visible for the callee core.
Therefore, a shared stack layout is created on the stack region of TCDM which is
accessible via a shared stack pointer (SSP). This 36-byte shared stack layout covers
the eight out registers of SPARC for passing six 32-bit parameters (%o0–%o5), a
pointer to extra parameters (%o6), a return address (%o7) as well as a pointer to the
return data structure. The caller core needs to copy-out the out registers and extra
parameters (if available) to TCDM before migration of procedure, and then copy-in
the return value or structure form TCDM to the registers after finishing execution of
the migrated procedure. In our implementation, we assume that procedures do not
have any global variables, and all inter-procedure communications are done through
parameters passing; otherwise the caller core needs to copy-out/in all context registers
(32 current registers window) to/from TCDM.

4.3 Procedure Hopping for Dynamic IR-Drop 53

To enable the callee core to access to the data and code of a migrated procedure, a
procedure hopping information table (PHIT) is considered in the shared local area of
TCDM. This table simply keeps the information of a migrated procedure, including
its SSP, address, and status. Every core can have up to eight nested procedure calls (the
window pointer is synthesized as a 3-bit register), and only one of them can migrate,
since the in-order core is a single thread core, and needs to wait for returning the
result of themigrated procedure. Therefore, the 192-byte PHIT has an entry for every
core which keeps the following information for a migrated ProcX: the shared stack
pointer (SSPX), the address of ProcX@Callee (ADDRX), status of ProcX (STX) =
{empty, waiting, running, done}.

As shown in the code of the caller core in Fig. 4.3, after filling the shared stack
and PHIT, the core does a broadcast_req to inform the rest of cores about a waiting
procedure for service. This broad-cast triggers an interrupt for all cores except the
caller core, as potential callee candidates, which can service the waiting procedure
based on their programmable priorities – the core can be programmed to ignore this
interrupt or trigger it only when the core is idle. In the corresponding interrupt service
routine (ISR), the callee core resumes its normal execution, and then walks through
PHIT circularly, starting from its neighbor core for minimizing contention, picks up
a waiting procedure to assess it. For instance, if the callee core picks up the waiting
ProcX for the service, it will jump to the ADDRX, the address of ProcX@Callee.
The philosophy of ProcX@Callee is like ProcX@Caller, it essentially enables the
callee core to assess PLV of the ProcX based on the current operating condition of
the callee core. If PLV is less than/equal to the threshold, then the callee core will
access to the code and data of ProcX for executing on behalf of the caller core;
otherwise the callee will resume its normal execution. Particularly, the callee core
changes the STX at PHIT from waiting to running, thus the rest of cores will not
pick ProcX up for the assessment – SHM device coordinates multiple concurrent
accesses to PHIT. The callee core then copies-in the procedure’s parameters from
the shared stack via SSPX, and calls ProcX for its execution. After executing the
procedure, the core copies-out the return value from register to the shared stack, sets
the corresponding pointer to the return data structure (if any), sets the STX to done,
and does a broad-cast_ack to inform the caller about finishing execution of ProcX.

The caller core, in the corresponding interrupt service routine of broadcast_ack,
checks the STX, if it is equal to done, it then copies-in the return value and structure (if
any) from the shared stack to the caller core’s registers. In the time between sending
a broadcast_req until receiving a broadcast_ack, the caller core can service another
waiting procedure available on PHIT, or can switch to an idle mode. If the caller
core does not get any ack response after a programmable timer value (e.g., 100µs
which is long enough to executing a procedure), this means that there is no better (V,
T)-island (no favor core) within the cluster to prevent the voltage emergency during
execution of the procedure. Therefore, the caller core sends a request to cluster’s
DFS controller to decrease the frequency of the whole cluster, thus lower the power
density and temperature.

54 4 Procedure-Level Tolerance

4.4 Characterization of PLV to Dynamic Operating
Conditions

In this section, we demonstrate an advanced CAD flow and methodology to address
variation awareness for characterization of PLV to dynamic IR-drop (we separately
consider both voltage droops on VDD and voltage rises on VSS power domains),
under a full range of operating conditions. It consists of two stages as shown in
Fig. 4.4: (i) the design time stage which accurately analyzes the dynamic volt-
age droops/rises for individual procedures under full operating conditions; (ii) the
compile-time stage which generates PLV metadata and corresponding variation-
aware procedures. Finally, the cluster benefits from the characterized PLV at the
runtime stage.

Each core of the cluster is an open-source 32-bit in-order RISC LEON3 [12]
processor which is synthesized with the normal VT H cells of 45nm TSMC tech-
nology, the general purpose process. The back-end optimization is performed using
Synopsys IC Compiler, and then the finalized net-list and parasitics are extracted
for accurate power analysis. To generate the accurate gate-level switching activity
factor for the vector-based power analysis, the procedure is simulated on top of the
back-end extracted net-list with timing back-annotation usingMentorGraphicsMod-
elSim. The instantaneous power of the procedure is then analyzed under four TSMC
operating conditions [7] using Synopsys PrimeTime. Providing the sign-off corner-

Fig. 4.4 Methodology for characterization of PLV

4.4 Characterization of PLV to Dynamic Operating Conditions 55

based instantaneous power as well as the switching activity factor enables Synopsys
PrimeRail for a fine-grain, time-based rail analysis of all resistive, capacitive and
inductive components of the post-P&R processor. Consequently, the inter-corner
dynamic voltage droop/rise of the power rails is analyzed as the output of the design
time stage.

The quantification of the PLVX (PLV of ProcX) to dynamic IR-drops defined in
Eq.4.1, where NX is the total number of clock cycles which takes to execute ProcX,
and VolEmergi indicates whether there is at least a voltage emergency at the clock
cyclei or not. The voltage fluctuations of greater than 4% are viewed as voltage
emergencies [10, 11] that can result in a malfunction within the processor, therefore
the voltage droops/rises on VDD/VSS power rails are sampled k times during one
clock cycle. The average signal activity is 70ps, so the k = 15 for the target cycle
time (1.2ns), while [10, 11] sampled a second-order linear system as a model of
power supply only once per cycle. The VolEmergi is one if the maximum sampled
voltage droop/rise is greater than 4% of VDD during the clock cyclei . In other words,
PLVX defines as the total number of cycles that have at least one voltage emergency
over the total cycles for the ProcX. Intuitively, if ProcX runs without any voltage
emergency, PLVX is zero; on the other hand, PLVX is one if ProcX faces at least one
voltage emergency in every cycle.

PLV x = 1

Nx

Nx∑

i=1

VolEmergi

VolEmergi =
{
1 If Max{drop(t), rise(t)|t = 1, . . . , k} ≥ 4 × VDD

100
0 otherwise

(4.1)

PLVX is characterized for the assigned voltages of VA-VDD-hopping to var-
ious cores, {0.81V, 0.90V, 0.99V} representing {fast, typical, slow} cores on a
variability-affected cluster. At design time, the slow cores and fast cores are distin-
guished based on their maximum frequency distribution as described in Sect. 4.2,
then their voltage is tuned accordingly to meet the target cluster frequency. At com-
pile time, the characterized PLV metadata of every ProcX is attached to the two
variation-aware procedures, ProcX@Caller and ProcX@Callee, to be able to runtime
access to the metadata on the caller and callee cores respectively. During runtime,
the discretized (V, T) operating conditions are reported by sensors thus enabling
ProcX@Caller/Callee to point to the corresponding characterized PLV metadata to
assess the vulnerability of ProcX at the current (V, T).

4.5 Experimental Results

This section shows the experimental results for embedded micro-processor Auto-
Bench suite of benchmarks [13] characterized at the design time flow of Fig. 4.4.
This section also evaluates the effectiveness of the procedure hopping technique to

56 4 Procedure-Level Tolerance

avoid voltage emergencies, and quantifies its latency overhead as well as the voltage
droop/rise during the runtime stage. Every benchmark is a program consists of a
“run” procedure for its major computation which is selected for characterization1

and can be run on every core – the cluster is a multi-programmed environment. The
inter-corner and intra-corner variations in the peak power of procedures are shown
in Fig. 4.5. The corner with higher (V, T) has higher power density which imposes
higher peak power. It is shown that themaximum inter-corner peak power variation is
3.5× for FIR, while the maximum of 1.28× intra-corner peak power variation occurs
between IFFT and tblook procedures at (0.81V,125 ◦C). Furthermore, the maximum
of 4.1× peak power variation is observed across corners and procedures, a2time at
(0.81V, −40 ◦C), and IFFT at (0.99V, 125 ◦C). We should point out that LEON3 is
a simple in-order RISC processor, thus for fast and complex cores where the stress
on the power grid is much higher, we expect to see even higher power variation.
Increasing the (V, T) increases the power density as well as the peak power, conse-
quently the power network of the core highly experiences the voltage emergencies
in the high-power corner. The voltage droops of running FIR on the same core but
various operating corners are shown in Fig. 4.6. The core at the high-power corner
(0.99V, 125 ◦C) faces the maximum voltage droop of 44 and 41mV as the average
of top-100 dynamic voltage droops, which are greater than 4% of VDD (990mV),
thus these voltage droops are considered as the voltage emergencies. As opposed to
the high-power corner (0.99V, 125 ◦C), FIR does not face any voltage emergency at
the corners with voltages of 0.90V/0.81V thanks to their lower power densities. The

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
ak

 p
ow

er
 (W

)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

Fig. 4.5 Intra-procedure peak power variation

1PLV_threshold is set at zero, since we assume that the procedures are not inherently resilient to
any timing error and even a single IR-drop may cause a wrong result.

4.5 Experimental Results 57

Fig. 4.6 Voltage droop of FIR across corners: (0.99V, 125 ◦C), (0.90V, 25 ◦C), (0.81V, 125 ◦C),
(0.81V, −40 ◦C), left to right

core has various power densities across the corners of Fig. 4.6 (left to right): 0.66,
0.21, 0.18, 0.16µW/µm2.

Figure4.7 illustrates the maximum voltage droop/rise that occurs during the exe-
cution of the procedures under the four characterized operating conditions. All pro-
cedures running at cores with 0.81V have the maximum voltage droop/rise less than
4% of VDD. Increasing the power density by switching to (0.90V, 25 ◦C) causes
only four procedures (IFFT, IDCT, matrix, ttsprk) to face the voltage emergencies.
At the highest power corner, (0.99V, 125 ◦C), most of the procedures except tblook
will face either voltage droop or voltage rise greater than 4% of VDD. These results
show that the procedure hopping technique can avoid the voltage emergency for
all procedures by hopping them form a high-voltage (0.99V) core to a low-voltage
(0.81V) core. Experimental results from the layout of variability-affected cluster,
show that 13 low-power cores lie within a cluster of 16-core, thus providing enough
callee cores to service the migrated procedures.

4.5.1 Cost of Procedure Hopping

Table4.1 lists the latency overhead of involving the procedure hopping both in the
caller and the callee cores. The total roundtrip overhead of the hopping a procedure
from the caller core and returning the results from the callee core is 793 cycles; this is
less than 1% of the total cycles needed to execute any of the characterized procedures
in [13], while [14] has at least a migration overhead of transferring 1280 flits only to
transfer the instructions and data fromone core to another. In particular, if a procedure
has a runtime of 35K cycles, the amortized cost is only 2 and 0.2% latency penalty,
in case of hopping procedure to another core, or keep running procedure on the same
core respectively. This is accomplished through the advantage of shared-L1 I$ and
TCDM that eliminates the penalty of filling a private storage.

Moreover, during the procedure hopping no voltage emergency can occur even
at (0.99V, 125 ◦C), neither in the caller nor the callee core, since the copy-in/out
parameters from/to registers/TCDM does not cause any burst of activity.
Consequently, the procedure hopping guarantees the voltage emergency-free migra-
tion of all procedures, fast and proactively enough.

58 4 Procedure-Level Tolerance

0

1

2

3

4

5

6

7

8

M
ax

 v
ol

ta
ge

 d
ro

op
 (%

)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

0

1

2

3

4

5

6

7

8

M
ax

 v
ol

ta
ge

 ri
se

 (%
)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

Fig. 4.7 Percentage of the max voltage droop (top), and rise (bottom) across various corners and
procedures

Table 4.1 Latency overhead and IR-drops of procedure hopping

Caller hopping Caller not
hopping

Callee service Callee no service

Latency 218 cycles 88 cycles 575 cycles 342 cycles

Max drop 1.3% 0.6% 2.9% 1.8%

4.6 Chapter Summary 59

4.6 Chapter Summary

This chapter presents a method for predicting and preventing timing errors at the
interface of procedure calls. Accordingly, we define a notion of procedure-level vul-
nerability (PLV) to capture fast dynamic voltage variations. Based on PLVmetadata,
a fully software low-cost procedure hopping technique is proposed which facilitates
fast and proactive migration of procedures within a shared-L1 processor cluster. Full
post-P&R results in 45nm TSMC technology confirms that the procedure hopping
avoids the voltage emergency across a variability-affected cluster, while imposing
only an amortized cost of less than 1% latency for any of the characterized embed-
ded procedures. Furthermore, the effectiveness of the variation-aware VDD-hopping
technique to combat intra-cluster static variation has been demonstrated.

References

1. Whitepaper. NVIDIA’S next generation CUDA compute architecture: Fermi (2009)
2. F. Paterna, C. Pinto, A. Marongiu, M. Ruggiero, L. Benini, Exploring instruction caching

strategies for tightly-coupled shared-memory clusters, in International Symposium on System
on Chip (SoC) (2011), pp. 34–41

3. A. Rahimi, I. Loi, M.R. Kakoee, L. Benini, A fully-synthesizable single-cycle interconnection
network for shared-l1 processor clusters, in Design, Automation Test in Europe Conference
Exhibition (DATE) (2011), pp. 1–6

4. B.H. Calhoun, A.P. Chandrakasan, Ultra-dynamic voltage scaling (UDVS) using sub-threshold
operation and local voltage dithering. IEEE J. Solid-State Circuits 41(1), 238–245 (2006)

5. S. Miermont, P. Vivet, M. Renaudin, A power supply selector for energy- and area-efficient
local dynamic voltage scaling, in Proceedings of the 17th International Workshop on Inte-
grated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
PATMOS’07 (Springer, Berlin, 2007), pp. 556–565

6. E. Beigne, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, X.-T. Tran, A. Valentian,
D. Varreau, P. Vivet, X. Popon, H. Lebreton, An asynchronous power aware and adaptive NoC
based circuit. IEEE J. Solid-State Circuits 44(4), 1167–1177 (2009)

7. TSMC 45 nm standard cell library release note, v 120a (2009)
8. A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd,

V. Pokala, A distributed critical-path timing monitor for a 65 nm high-performance micro-
processor, in IEEE International Solid-State Circuits Conference. ISSCC 2007. Digest of Tech-
nical Papers (2007), pp. 398–399

9. F. Paterna, L. Benini, A. Acquaviva, F. Papariello, A. Acquaviva,M. Olivieri, Adaptive idleness
distribution for non-uniform aging tolerance in multiprocessor systems-on-chip, in Design,
Automation Test in Europe Conference Exhibition, DATE’09 (2009), pp. 906–909

10. K.Hazelwood,D.Brooks, Eliminating voltage emergencies viamicroarchitectural voltage con-
trol feedback and dynamic optimization, in Proceedings of the 2004 International Symposium
on Low Power Electronics and Design. ISLPED’04 (2004) pp. 326–331

11. V.J. Reddi, D. Brooks, Resilient architectures via collaborative design: maximizing commodity
processor performance in the presence of variations. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 30(10), 1429–1445 (2011)

60 4 Procedure-Level Tolerance

12. LEON3. http://www.gaisler.com/cms/
13. EEMBC benchmark consortium. http://www.eembc.org
14. S. Dighe, S.R. Vangal, P. Aseron, S. Kumar, T. Jacob, K.A. Bowman, J. Howard, J. Tschanz,

V. Erraguntla, N. Borkar, V.K. De, S. Borkar, Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and thread hopping for the 80-core teraflops
processor. IEEE J. Solid-State Circuits 46(1), 184–193 (2011)

http://www.gaisler.com/cms/
http://www.eembc.org

Chapter 5
Kernel-Level Tolerance

Abstract Negative bias temperature instability (NBTI) adversely affects the
reliability of a processor by introducing new delay-induced faults. However, the
effect of these delay variations is not uniformly spread across functional units and
instructions: some are affected more (hence less reliable) than others. For massive
number of kernels executing on functional units in GPUs, we propose a preven-
tive method to ensure the absence of NBTI-induced timing errors during GPU life-
time. This chapter presents an NBTI-aware compiler-directed very long instruction
word (VLIW) assignment scheme that uniformly distributes the stress of instructions
with the aim of minimizing aging of GP-GPU architecture without any performance
penalty. The proposed solution is an entirely software technique based on static
workload characterization and online execution with NBTI monitoring that equal-
izes the expected lifetime of each processing element by regenerating aging-aware
healthy kernels that respond to the specific health state of GP-GPU. We demonstrate
our approach on AMD Evergreen architecture where iso-throughput executions of
the healthy kernels reduce NBTI-induced voltage threshold shift up to 49% (11%)
compared to naive kernel executions, with (without) architectural support for power-
gating. The kernel adaption flow takes average of 13ms on a typical host machine
thus making it suitable for practical implementation.

5.1 Introduction

Among various aging mechanisms, the generation of interface traps under NBTI in
PMOS transistors has become a critical reliability issue in determining the lifetime
of CMOS devices [1]. NBTI effects can be significant: its impact on circuit delay is
about 15% on a 65nm technology node and it gets worse in sub-65nm nodes [2].
Nonuniform NBTI-induced performance degradation is a major concern for many-
core GP-GPUs with up to 320 five-way VLIW processors. To address this issue:

1. We propose an online adaptive reallocation strategy to mitigate NBTI-induced
performance degradation in GP-GPU machines. This is accomplished through
a NBTI-aware compiler that uses a dynamic binary optimizer. During dynamic
recompilation, the binary is optimized by customizing the kernels code with

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_5

61

62 5 Kernel-Level Tolerance

respect to specific health state of GP-GPU. This technique leverages a compiler-
directed scheme that uniformly distributes the stress of instructions throughout
various VLIW resource slots, results in a healthy code generation that keeps the
underlying GP-GPU hardware healthy.

2. We propose a fully software solution that uses static (offline) workload char-
acterization and online availability of NBTI sensors. The dynamic binary opti-
mizer correlates the device stress time with instructions distribution, and equal-
izes the expected lifetime of each processing element without any architectural
modification.

3. We demonstrate our approach on AMD Evergreen GP-GPU architecture and its
tool-chain to adapt kernels to the health state of GP-GPU. The throughput of our
healthy kernel execution is the same as naive kernel execution (iso-throughput).
In comparison with the naive kernels, our healthy kernels execution achieves a
maximum 49% reduction in NBTI-induced Vth shift over five years if GP-GPU
supports power-gating during idle states. Power-gating is intrinsically protective
against NBTI by providing sleep states that spare gates from stress that produces
NBTI effects. In the absence of power-gating, our uniform self-healing NOP exe-
cution technique mitigates the Vth shift by 11%. On average, the total execution
time of the entire adaptation process is 13ms on an Intel i5 CPU 2.67GHz.

5.2 Device-Level NBTI Model

NBTI is an aging mechanism which manifests itself as an increase in the PMOS
transistor threshold voltage (Vth) and causes delay-induced failures. NBTI is best
captured by the Reaction–Diffusion (RD) model [3]. This model describes NBTI in
two stress and recovery phases. NBTI occurs due to the generation of the interface
traps at the Si–SiO2 interface when the PMOS transistor is negatively biased (Vgs =
-Vdd) (i.e., stress phase). In the stress condition, some holes in the channel interact
with the Si-H bonds in the interface which causes disassociation of Si-H bonds. The
resulting hydrogen atom diffuses away and leaves positive traps in the interface. As
a result, the Vth of the transistor increases which in turn slows down the device.
Equation5.1 shows this increase in the Vth due to stress [4]:

ΔVth−stress = (Kv
√
tstress + 2n

√
ΔVth−t0)

2n (5.1)

where tstress is the amount of time that PMOS transistor is under stress; Kv has
dependence on electrical field, temperature (T), and Vdd ; n is the time exponent
parameter which is 1/6 for H2 diffusion; and ΔVth−t0 is the initial Vth variation of
PMOS at time zero.

Removing stress from the PMOS transistor (Vgs = 0) can eliminate some of the
traps by diffusing back dissociative H atoms, which partially recover the Vth shift.
This is known as the recovery phase:

5.2 Device-Level NBTI Model 63

ΔVth−recov = ΔVth−stress(1 − 2ξ1te + √
ξ2Ctrecov

(1 + δ)tox + √
Ct

) (5.2)

where trecov is the time under recovery; tox is the oxide thickness; te is the effective
oxide thickness; t is the total time; C has temperature dependence; ξ1, ξ2, and δ are
constants [4].

Bhardwaj et al. [5] derived a long-term cycle-to-cycle model as follows. In this
model, the stress and recovery cycles can be simulated for i cycles to find the Vth

degradation. ΔVth−stress,i and ΔVth−recov,i are temporal changes in Vth at the end of
ith stress and recovery cycles, respectively:

ΔVth−stress,i = (Kv

√
αTclk + 2n

√
ΔVth−recov,i)

2n (5.3)

ΔVth−recov,i = ΔVth−stress,i (1 − 2ξ1te + √
ξ2C(1 − α)Tclk

(1 + δ)tox + √
CiTclk

) (5.4)

where α is duty cycle or the ratio of time spent in the stress to one period of stress-
recovery; Tclk is the period of one stress-recovery cycle; and i = t/Tclk . The NBTI
rate depends on many factors including process-related parameters, temperature,
voltage, and workload. Here we focus on the impact of workload or α in the above
equations. The duty cycle (α) is controlled by the software to reduce the NBTI-
induced effects.

A transistor with a larger Vth than expected has lower drive current, and higher
delay during a transition. The switching delay of a transistor can be roughly expressed
as the alpha-power law:

τ ∝ Vdd L

μ(Vdd − Vth)α
′ (5.5)

where μ is the mobility of carriers; α′ ≈ 1.3 is the velocity saturation index; and L
is the channel length. Therefore, the delay variation Δτ/τ can be derived as follows:

Δτ/τ = ΔL

L
+ Δμ

μ
+ α′

Vdd − Vth
ΔVth (5.6)

Considering only the effect ofΔVth shift and neglecting other terms, the delay degra-
dation Δτ is shown in Eq.5.7:

Δτ = α′ΔVth

Vdd − Vth−t0
τ0 (5.7)

where Vth−t0 is the original transistor threshold voltage (at time t0), and τ0 is its
corresponding delay before degradation. We consider the largest ΔVth to calculate
the worst case delay degradation [6–9] in a circuit to assess the potential benefits of

64 5 Kernel-Level Tolerance

proposed NBTI mitigation techniques. In our analysis, we set all the internal node
states to ‘0’ during the stress mode to determine the worst case circuit degradation
that limits the lifetime of a chip.

5.3 GP-GPU Architecture

We focus on the Evergreen family of AMD GP-GPUs (a.k.a. Radeon HD 5000
series), designed to target not only graphics applications but also general-purpose
data-intensive applications. The Radeon HD 5870 GP-GPU compute device consists
of 20 compute units (CUs), a global front-end ultra-thread dispatcher, and a crossbar
to connect the global memory to the L1-caches. Every CU has access to a global
memory, implemented as a hierarchy of private 8KBL1-caches, and 4 shared 512KB
L2-caches. Each CU contains a set of 16 Stream Cores (SCs) that have access to a
shared 32KB local data storage.Within a CU, a shared instruction fetch unit provides
the same machine instruction for all SCs to execute in a SIMD fashion. Finally, each
SC contains five processing elements (PEs), labeled X, Y, Z,W, and T constituting an
ALU engine to execute Evergreen machine instructions in a vector-like fashion. The
SC has also a general-purpose registers file to support private memory. The block
diagram of architecture is shown in Fig. 5.1a.

Every SC is a five-wayVLIWprocessor capable of issuing up to five floating point
scalar operations from a single very long instruction word consists primarily of five
slots (slotX , slotY , slotZ , slotW , slotT). Each slot is related to its corresponding PE.
Four PEs (X, Y, Z, W) can perform up to four single-precision operations separately
and perform two double-precision operations together, while the remaining one (T)
has a special function unit for transcendental operations. In each cycle, VLIW slots
supply a bundle of data-independent instructions to be assigned to the related PEs
for simultaneous execution. In an N-way VLIW processor, up to N data-independent
instructions, available on N slots, can be assigned to the corresponding PEs and be
executed simultaneously. Typically, this is not done in practice because the compiler
may fail to find sufficient instruction-level parallelism (ILP) to generate complete
VLIW instructions. On average, if M out of N slots are filled during an execution, we
call the achieved packing ratio is M/N. The actual performance of a program running
on a VLIW processor largely depends on the packing ratio.

5.3.1 GP-GPU Workload Distribution

In this subsection, we analyze the workload distribution on the Radeon HD GPUs
architecture, where there are many PEs to carry out computations. As it is mentioned
in Sect. 5.2, NBTI-induced degradation strongly depends on the resource utilization,
which depends on the execution characteristics of the workload. Thus, it is essential
to analyze how often the PEs are exercised during the runtime execution of the

5.3 GP-GPU Architecture 65

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

Rdn SF DCT MTAL
U

 e
ng

in
e

ex
ec

ut
ed

 in
st

ru
ct

io
ns

 (%
) X Y Z W

1

10

100

1000

N
um

be
r o

f e
xe

cu
te

d
in

st
ru

ct
io

ns
x

10
00

00

Number of compute units (CUs)

3σ/μ=0%

3σ/μ=0.03
3σ/μ=0.11%

3σ/μ=0.12%
3σ/μ=0.26%

3σ/μ=0.13

2 4 8 16 32 64

(a)

(c)

(b)

Fig. 5.1 a Block diagram of the Radeon HD 5870 architecture. b Inter-CU workload variations for
six configured compute devices. c Inter-PE ALU instructions distribution for various naive kernels
in the HD 5870 compute device (#CUs = 20)

workload. To this end, we first monitor the utilization of various CUs (inter-CU),
and then the utilization of PEs within a CU (intra-CU).

To examine the inter-CUworkload variation, the total number of executed instruc-
tions by each CU is collected during a kernel execution as per a methodology
described in Sect. 5.5. Figure5.1b shows that the CUs execute almost equal num-
ber of instructions, and there is a negligible workload variation among them. We
have configured six compute devices with different number of CUs, {2, 4,…, 64},
to finely examine the effect of the workload variation on a variety of GP-GPU archi-
tecture (The latest Radeon HD 5000 series, HD 5970, has 40 CUs featuring 4.3
billion transistors in 40nm). During DCT kernel execution, the workload variation
between CUs ranges from 0 to 0.26% depends on the number of physical CUs on the
computation device. The DCT input kernel parameters are fixed for all configured
compute devices, thus they carry out the same amount of workload—note that the
total number of executed instructions per CU is inversely proportional to the number
of available CUs on the compute device. Execution of all kernels listed in Sect. 5.5
confirms that the inter-CU workload variation is less than 3%, when running on the
device with 20 CUs (HD 5870). This nearly uniform inter-CU workload distribution
is accomplished by load balancing and uniform resource arbitration algorithms of
the ultra-thread dispatcher.

Next, we examine the workload distribution among the PEs. Figure5.1c shows
the percentage of the executed instructions of ALU engine by various PEs during

66 5 Kernel-Level Tolerance

execution of different kernels. ALU engine here refers to four PEs (PEX , PEY ,
PEZ , PEW) which are identical in their functions [10]; they differ only in the vec-
tor elements to which they write their result at the end of the VLIW. As shown,
the instructions are not uniformly distributed among PEs. For instance, the PEX

executes roughly half of the ALU engine instructions (50.7%) during Rdn kernel
execution, while only about one quarter of the ALU engine instructions (27.1%) are
executed by PEX during SF kernel execution. Execution of all kernels listed in Sect. 6
shows that seven kernels execute more than 40% of the ALU engine instructions only
on PEX . This nonuniform workload variation causes nonuniform aging among PEs,
and exhausts some PEsmore than others and shortening their lifetime. Unfortunately,
this nonuniformity happens within all CUs since their workload is highly correlated
together, therefore no PE throughout the entire compute device is immune from this
unbalanced utilization.

Thus, root cause of nonuniform aging among PEs is the frequent and nonuniform
execution of VLIW slots. For example, higher utilization of PEX implies that slotX
of VLIW is occupied more frequently than the other slots. This substantiates that the
compiler does not uniformly assign the independent instructions to various VLIW
slots, mainly because the compiler only employs optimizations for increasing the
packing ratio through finding more ILP to fully pack the VLIW slots. The VLIW
processors are designed to give the compiler tight control over program execution;
however, the flexibility afforded by such compilers, for instance to tune the order of
instructions packing, is rarely used toward reliability improvement.

5.4 Aging-Aware Compilation

The key idea of an aging-aware compilation is to assign independent instructions
uniformly to all slots: idling a fatigued PE and reassigning its instructions to a young
PE through swapping the corresponding slots during the VLIW bundle code gen-
eration. This basically exposes the inherent idleness in VLIW slots and guides its
distribution that does matter for aging. Thus, the job of dynamic binary optimizer,
for K-independent instructions, is to find K-young slots, representing K-young PEs,
among all available N slots, and then assign instructions to those slots. Therefore, the
generated code is a “healthy” code that balances workload distribution through var-
ious slots maximizing the lifetime of all PEs. In this section, we describe how these
statistics can be obtained from silicon, and how compiler can predict and thus con-
trol the nonuniform aging. The adaptation flow is illustrated in Fig. 5.2 through four
steps: (1) reading aging sensors; (2) kernel disassembler, static code analysis, and
calibration of predictions; (3) uniform slot assignment; (4) healthy code generation.

http://dx.doi.org/10.1007/978-3-319-53768-9_6

5.4 Aging-Aware Compilation 67

Aging-aware Slot Assignment

Healthy Code Generation

τ{X,…,W} [t] ∆τ{X,…,W} [t+1]

Just-in-time Disassembler

Static Code Analysis

Device-dependent Assembly Code

∆Vth−{X,…,W} [t+1]

Linear
Calibration

∆Vth−{X,…,W}[t]

NBTI
Sensors Banks GPGPU Compute Device

Input Output KernelMemory Mapped
Sensors

Memory

Naïve Kernel Binary

Healthy Kernel Binary

Host CPU

Rank Vth τ
Age[1] Vth-X [t] τX [t]
Age[2] Vth-Y [t] τY [t]
… … …

Rank ∆Vth ∆τ
Util[1] ∆Vth-Y [t+1] ∆τY [t+1]
Util[2] ∆Vth-Z [t+1] ∆τZ [t+1]
… … …

Wearout
Estimation

Module
Pred-∆Vth−{X,…,W}[t+1]

Performance
Degradation

Measurement

1

2

3
4

Fig. 5.2 Aging-aware kernel adaptation flow

5.4.1 Observability: Aging Sensors

The compiler needs to access the current aging data (ΔVth) of PEs to be able to
adapt the code accordingly. The ΔVth is caused by the temporal degradation due
to NBTI and/or the intrinsic process variation, thus PEs even during early life of a
chip might have different aging. Employing the compact per-PE NBTI sensors [11]
which provide ΔVth measurement with 3σ accuracy of 1.23mV for a wide range
of temperature, enables large-scale data-collection across all PEs. The performance
degradation of every PE can be reliably reported by a per-PE NBTI sensor, thanks to
the small overhead of these sensors. Test chips efficiently consider multiple sensors
banks containing up to total 256 NBTI sensors (in 45nm), hence the power overhead

68 5 Kernel-Level Tolerance

of laying out thousands of sensors would only be a few hundreds ofμWatmaximum,
which is a small fraction of power relative to a PE [12]. The sensors support digital
frequency outputs that are accessed through memory-mapped I/O by the dynamic
binary optimizer in arbitrary epochs of the post-silicon measurement.

5.4.2 Prediction: Wearout Estimation Module

As described, the dynamic binary optimizer accesses to the ΔVth of various PEs,
and evaluates their current performance (τ{X,...,W }[t]) using Eq.5.7. In addition to the
current aging data, the compiler needs to have an estimate regarding the impact of
future workload stress on the various PEs. This is accomplished by wearout estima-
tion module shown in Fig. 5.2. Since every naive kernel binary can be considered as
the future workload, code analysis techniques are required to predict the future work-
load in presence of branches. A just-in-time disassembler disassembles the desired
naive kernel binary to a device-dependent assembly code in which the assignment of
instructions to the various slots (corresponding PEs) are explicitly defined, and thus
observable by the dynamic binary optimizer. Then, a static code analysis technique
is applied that estimates the percentage of instructions that will be carried out on
every PE in a static sense. It extracts the future stress profile, and thus the utiliza-
tion of various PEs using the device-dependent assembly code. Then, the static code
analysis technique predicts the future ΔVth shift of PEs (Pred-ΔVth−{X,...,W }[t+1]).
If the predicted ΔVth of a PE is overestimated or underestimated, mainly due to
the static analysis of the branch conditions of the kernel’s assembly code, a linear
calibration module fits the predicted ΔVth shift to the observed ΔVth shift, in the
next adaptation period. For every PE, e.g., PEX , the linear calibration module uses
the simple linear regression with an explanatory variable (Pred-ΔVth−X [t+1]), and
a dependent variable (ΔVth−X [t+1]). The simple linear regression fits a straight line
through the set of m points (each kernel execution) in such a way that makes the sum
of squared residuals of themodel as small as possible. Themodel is developed during
online measurement by observing the actual ΔVth shift reported by NBTI sensors
(ΔVth−X [t]) after each kernel execution. Therefore, the linear calibration for every
PE determines the curve that best describes the relationship between expected and
observed sets of ΔVth data; it projects the future ΔVth of PEs (ΔVth−{X,...,W }[t+1])
by minimizing the sums of the squares of deviation between observed and expected
values. Finally, ΔVth−{X,...,W }[t+1] is used to calculate the future NBTI-induced per-
formance degradation (Δτ{X,...,W }[t+1]).

5.4.3 Controllability: Uniform Slot Assignment

Thus far, we have described how the dynamic binary optimizer evaluates the cur-
rent performance degradation (aging) of every PE (τ{X,...,W }[t]), and their future

5.4 Aging-Aware Compilation 69

performance degradation (Δτ{X,...,W }[t+1]) due to the naive kernel execution. Then,
the compiler uses that information to perform code transformations with the goal of
improving reliability, without any penalty in the throughput of code execution (main-
taining the same ILP). To minimize stresses, the compiler sorts the predicted perfor-
mance degradation of the slots increasingly and the aging of the slots decreasingly,
and then applies a permutation to assign fewer/more instructions to higher/lower
stressed slots. This algorithm for every period of adaptation [t] is shown below:

1, 2, 3, 4 X,Y, Z,W

1, 2, 3, 4 X,Y, Z,W

i 1 4
i i

[] { }

[] { }Age = Rank_aging_decreasingly ([t])
For = to
 Reallocate (slot (Age[]) slot (Degrad[]))

where slot(Degrad[1]) is the slot that will have the minimum number of instructions
during the future execution of the kernel, and slot(Age[1]) is the slot that its corre-
sponding PE has the highest aging. To take into account both initial and temporal
degradations, our algorithm considers the highest aging value across the same type
of PE since the lifetime of the chip is limited by the most aged component. Moreover,
there is no means in the assembly code to distinguish the same type of PEs spread
out among all CUs, unless the hardware architectural scheduler provides support.
As a result of the slot reallocation, the minimum/maximum number of instructions
is assigned to the highest/lowest stressed slot for the future kernel execution, thus
uniforming the lifetime of PEs.

Execution of all examined kernels shows that the average packing ratio is 0.3,
whichmeans there is a large fractionof empty slots inwhichPEs canbe relaxedduring
kernels execution. Evergreen ISA states that when a slot is empty, i.e., no instruction
is specified for that slot in a VLIW bundle, the corresponding PE implicitly executes
a NOP instruction [10]. Overall, our solution slips the preassigned instructions from
high stressed slot, thus theywill havemore NOP instructions to execute instead of the
stressful instructions. This reduces their total stress time and effectively decreases
and thus ΔVth . We can assume that during a NOP execution the PE is power-gated
as it invalidates the written result in the corresponding vector elements at the end
of NOP execution [10]. The feasibility of single-cycle power-gating is validated by
Intel through a fine-grained power-gating for a 45nm SIMD tile [13]. Nevertheless,
even in the absence of power-gating, the NOP instruction execution is self-healing
that can reduce the stress time of the PE adequately. Moreover, the NOP instruction
itself can be designed to highly minimize the NBTI effect [14]. We compare the
benefit of a GP-GPU architecture with and without power-gating for our approach
in Sect. 5.5.

Among the available software knobs to mitigate NBTI, our algorithm aims to
equalize the duty cycle (α) across all the slots. Another knob is the input pattern
which is impractical to predict both in the complex workloads and circuits, thus
our wearout estimation module relies on the online NBTI-induced measurement
feedback through the linear calibration module for better adaptation. The proposed

70 5 Kernel-Level Tolerance

compiler-directed reliability approach superposes on top of all optimization per-
formed by naive compiler and does not incur any performance penalty, since it only
reallocates the VLIW slots (slips the scheduled instructions from one slot to another)
within the same scheduling and order determined by the naive compiler. In other
words, this dynamic binary optimizer guarantees the iso-throughput execution of
the healthy kernel. It also runs fully in parallel with GP-GPU on a host CPU, thus
there will be no penalty for GP-GPU kernel execution if dynamic compilation of one
kernel can be overlapped with the execution of another kernel.

5.5 Experimental Results

Our methodology is based on AMD accelerated parallel processing (APP) software
ecosystem suitable for stream applications written in OpenCL. The stream kernels
are compiled into GP-GPU device-specific binaries using the OpenCL compiler tool-
chain which uses a standard off-the-shelf compiler front-end (g++), as well as the
low-level virtual machine framework with extensions for OpenCL as the back-end.
Wehave implemented our dynamic binary optimizer tool usingC++ leveragingAMD
compute abstraction layer (CAL)APIs. CAL provides a runtime device driver library
that supports code generation, kernel loading and execution, and allows applications
to interact with the stream cores at the low-est-level. Multi2Sim [15] cycle-accurate
simulation framework – a CPU-GPU model for heterogeneous computing targeting
Evergreen ISA – is modified to collect the ALU engines statistics. We have also
equipped the simulator with the NBTI sensors where our tool has access to them; in
a GP-GPU chip those digitally output memory-mapped sensors can be accessed by
the device management part of CAL.

The following naive binaries of AMD APP SDK 2.5 [16] kernels are run on the
simulator: Reduction (Rdn), Binary Search (BSe), Haar1D (DH1D), Bitonic Sort
(BSo), Fast Walsh Transform (FWT), Floyd Warshall (FW), Binomial Option (BO),
Discrete Cosine Transform (DCT), Matrix Transpose/Multiplication (MT/M), Sobel
Filter (SF), Uniform RandomNoise Generator (URNG). Before invoking the kernel,
our adaptation flow is triggered: the assembly code of the kernel using CAL APIs
runtime library (aticalrt) in conjunction with NBTI sensors data is passed to the
wearout estimation module, and a new code is generated that adapts the binary to
the specific health state of GP-GPU. In our experiments, to keep track of aging, this
flow of adaptation is also run periodically in parallel on a host CPU every hour so as
to impose negligible overhead.

We consider cycle-by-cycle architectural NBTI analysis [8] in the 65nm PTM
technology with Vgs = 1.2V, T = 300K, and the stress statistics of the kernels
execution obtained from the simulator; it is common to assume that all PMOS in a
circuit degrade by the same amount [6–8]. Figure5.3a shows the NBTI-induced Vth

degradation when executing a healthy Rdn kernel compared to the naive execution
at time zero, and after one year. For this experiment, we consider a HD 5870 which
is not affected by the process variability (initial inter-PEΔVth = 0mV), and without

5.5 Experimental Results 71

360

370

380

390

400

410

420

430

440

X Y Z W X Y Z W

Vt
h

(m
V)

Time=0 Time=1Y

healthy kernel

390

395

400

405

410

415

0 60 120 180 240 300 360

V t
h

(m
V)

Time (hour)

X Y
Z W

healthy kernel

390

395

400

405

410

415

0 60 120 180 240 300 360

V t
h

(m
V)

Time (hour)

X Y

Z W

naïve kernel
naïve kernel

(a) (b)

(c)

Fig. 5.3 Vth shift forRdn kernel: aNBTI-induced for 1 year;bProcess variation andNBTI-induced
for 360h

power-gating support. As shown in Fig. 5.3a, at time 0, all PEs have the equal Vth

since there was no stress, but after one year execution of naive Rdn, PEX has a
maximum Vth of 435mV, because of executing 50.7% of the total ALU engine
instructions (see Fig. 5.1c). However, the healthy Rdn kernel execution eliminates
this nonuniformity by adapting itself every hour, and thus results in 14mV lower Vth

shift after one year (for all PEs, Vth = 421mV).
We also evaluate the effectiveness of the proposed approach when executing

the healthy Rdn kernel on a process variability-affected HD 5870 (initial inter-PE
ΔVth = 10mV) and without power-gating support compared to the naive execution.
Figure5.3b shows the Vth shift over time due to the naive kernel execution, and
at the end of 360h, there is an 8mV Vth variation among PEs which limits the
lifetime of PEX (Vth−X = 413mV). On the other hand, Fig. 5.3c shows that adapting
the kernel periodically leads to a uniform Vth shift among all PEs (Vth variation
is about 0.6mV), and the maximum Vth shift is 406mV at the end of 360h – with
power-gating support it further reduces to 402mV.

Indeed, the benefit of our technique is further pronounced for a larger time scale.
Figure5.4 shows the reduction in ΔVth over five years execution of healthy kernels
with and without power-gating support of GP-GPU architecture. In comparison with
the naive execution of kernels, GP-GPU with power-gating achieves a maximum

72 5 Kernel-Level Tolerance

0

10

20

30

40

50

Rdn BSe DH1D BSo FWT FW BO DCT MT MM SF URNG

Re
du

ct
io

n
in

 Δ
V t

h
(%

)

Power-gating Without power-gating

Fig. 5.4 Reduction in Vth due to the healthy kernels execution compared to naive kernels for
5years

0

10

20

30

40

Rdn MT MM FW DCT URNG SF FWT DH1D BSo BO BSeTo
ta

l o
ve

rh
ea

d
(m

s)

Fig. 5.5 Total execution time of adaptation process

49% reduction inΔVth , while without power-gating the self-healing NOP execution
provides a maximum of 11% reduction in ΔVth . Since during power-gating the
circuits are in the sleep state their aging mechanism are recovered quickly as derived
in [17]. On average, compared to the naive kernels, the execution of healthy kernels
reduces ΔVth by 34 and 6% in the presence and absence of power-gating supports
respectively. Furthermore, the impact of our technique is higher if we consider the
local temperature reduction due to idleness and power-gating.

The total execution time of the proposed adaptation flow is measured. Figure5.5
shows the average execution time of the entire process, starting from disassembler
up to the healthy code generation. It also shows the fastest and slowest execution
we measure, as error bars. More than 95% of execution time is spent through the
kernel disassembly using online CAL APIs, so the assembly code can be cached for
faster iterations in future adaptation. The uniform slot assignment algorithm always
runs below 2K cycles for all kernels, and the static code analysis is done between
220–900K cycles depend to the size of kernel. Overall, the total execution time is
bounded by 35ms, and on average 13ms on a host machine with an Intel i5 CPU
2.67GHz.

5.6 Chapter Summary 73

5.6 Chapter Summary

This chapter presents a method for predicting and preventing the NBTI-induced
timing errors at the kernel-level executing on GP-GPUs. Although the workload
distribution among Compute Units (CUs) of GP-GPU is nearly uniform, its Process-
ing Elements (PEs) suffer from nonuniform VLIW distribution. To mitigate the
impacts on lifetime uncertainty and unbalancing among the PEs, an online adaptive
VLIW reallocation strategy is proposed that leverages a compiler-directed scheme
to uniformly distribute the stress of instructions throughout various VLIW slots.
This technique periodically regenerates healthy codes that heal over GP-GPU aging.
Compared to the naive kernels, the execution of healthy kernels not only imposes 0%
throughput penalty but also reducesΔVth : up to 49%(11%) and on average 34%(6%)
in presence(absence) of architectural power-gating supports. On average, the total
execution time of the adaption process is 13ms.

References

1. G. Chen, M.-F. Li, C.H. Ang, J.Z. Zheng, D.-L. Kwong, Dynamic NBTI of p-MOS transistors
and its impact on mosfet scaling. Electron Device Lett. IEEE 23(12), 734–736 (2002)

2. K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji, S.R. Nassif, E.J. Nowak, D.J.
Pearson, N.J. Rohrer, High-performance cmos variability in the 65-nm regime and beyond.
IBM J. Res. Develop. 50(4.5), 433–449 (2006)

3. S. Ogawa, N. Shiono, Generalized diffusion-reaction model for the low-field charge-buildup
instability at the Si-Sio2 interface. Phys. Rev. 51(7), 4218–4230 (1995)

4. W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, Y. Cao, The impact of NBTI effect
on combinational circuit: modeling, simulation, and analysis. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 18(2), 173–183 (2010)

5. S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, S. Vrudhula, Predictive modeling of the NBTI
effect for reliable design, in Custom Integrated Circuits Conference, 2006. CICC ’06 (IEEE,
New Jersey, 2006), pp. 189–192

6. A. Tiwari, J. Torrellas, Facelift: hiding and slowing down aging in multicores, in 2008 41st
IEEE/ACM International Symposium onMicroarchitecture, 2008. MICRO-41 (2008), pp. 129–
140

7. U.R. Karpuzcu, B. Greskamp, J. Torrellas, The bubblewrap many-core: popping cores for
sequential acceleration, in 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2009. MICRO-42 (2009), pp. 447–458

8. T.-B. Chan, J. Sartori, P. Gupta, R. Kumar, On the efficacy of nbti mitigation techniques, in
Design, Automation Test in Europe Conference Exhibition (DATE) (2011), pp. 1–6

9. F. Oboril, M.B. Tahoori, Extratime: modeling and analysis of wearout due to transistor aging at
microarchitecture-level, in 2012 42ndAnnual IEEE/IFIP International Conference onDepend-
able Systems and Networks (DSN) (2012), pp. 1–12

10. AMD Evergreen Family Instruction Set Architecture (2011)
11. P. Singh, E. Karl, D. Sylvester, D. Blaauw, Dynamic nbti management using a 45 nm multi-

degradation sensor. IEEE Trans. Circuits Syst. I Regul. Pap. 58(9), 2026–2037 (2011)
12. P Singh, E. Karl, D. Blaauw, D Sylvester, Compact degradation sensors for monitoring NBTI

and oxide degradation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(9), 1645–1655
(2012)

74 5 Kernel-Level Tolerance

13. H. Kaul, M.A. Anders, S.K. Mathew, S.K. Hsu, A. Agarwal, R.K. Krishnamurthy, S. Borkar, A
300mV 494GOPS/W reconfigurable dual-supply 4-way SIMD vector processing accelerator
in 45nm CMOS, in 2009 IEEE International Solid-State Circuits Conference, 2009. Digest of
Technical Papers. ISSCC (2009), pp. 260–261

14. F. Firouzi, S. Kiamehr, M.B. Tahoori, NBTI mitigation by optimized NOP assignment and
insertion, in Design, Automation Test in Europe Conference Exhibition (DATE) (2012), pp.
218–223

15. Multi2sim: A Heterogeneous System Simulator. https://www.multi2sim.org/
16. AMD app SDK v2.5. http://www.amd.com/stream
17. A. Calimera, E. Macii, M. Poncino, NBTI-aware power gating for concurrent leakage and

aging optimization, in Proceedings of the 2009 ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED ’09 (ACM, New York, NY, USA, 2009), pp. 127–132

https://www.multi2sim.org/
http://www.amd.com/stream

Chapter 6
Hierarchically Focused Guardbanding

Abstract This chapter proposes a learning-based method for modeling of
variation-induced timing errors in functional units. The model takes into account
PVT variations and device aging (PVTA), clock frequency, and the physical details
of placed-and-routed (P and R) functional units for instruction and kernel levels
adaptation. Using this model and PVTA monitoring circuits, we propose hierarchi-
cally focused guardbanding (HFG) as a method to adaptively prevent PVTA-induced
timing errors. We demonstrate the effectiveness of HFG on GPU architecture at two
granularities of observation and adaptation: (i) fine-grained instruction-level; and
(ii) coarse-grained kernel-level. Using coarse-grained PVTA monitors with kernel-
level adaptation, the throughput increases by 70% on average. By comparison, the
instruction-by-instruction monitoring and adaptation enhances throughput by a fac-
tor of 1.8×–2.1× depending on the configuration of PVTA monitors and the type
of instructions executed in the kernels. This chapter presents a supervised machine
learning method for reducing guardband as our last method for predicting and pre-
venting the timing errors.

6.1 Introduction

Several efforts focused on online error detection and correction [1–4]. These detec-
tion and correction mechanisms do not tie to any characterized modeling, thus suffer
from lack of correlation between the occurred errors and the sources of variations.
This limits their usage for prediction of the timing errors and their root causes at the
upper layers for better decision and appropriate adjustment. Thus, improve modeling
is needed to connect the timing errors with the sources of variability for better predic-
tion. Themodel should be coupledwith adaptive resourcemanagement to proactively
prevent the timing error by applying a focused guardbanding. This chapter makes
the following contributions in this regard:

1. We provide a new high-level model for timing error rate (TER) of various integer
as well as floating-point functional units that is derived using accurate industrial-
strength tools and calibration flows validated in real silicon. This model yields the
TER of microarchitectural functional units as a function of clock frequency and

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_6

75

76 6 Hierarchically Focused Guardbanding

the amount of PVT variations andAging (PVTA). Section6.2 describes themodel
that can be used both online and offline. Online, it provides a model-based rule
to derive guardband from the PVTA sensor readings. Offline, it enables design
time analysis to identify vulnerable functional units at a given amount of PVTA
variations. The model is publicly available for download at [5].

2. We introduce the notion of hierarchically focused guardbanding (HFG) in Section
IV to adaptively mitigate PVTA variations. HFG is guided by online utilization
of the model, and enables a focused adaptive guardbanding in view of monitors,
observation granularity, and reaction times.

3. We demonstrate the effectiveness of HFG using the proposed model on GPU
pipeline at two distinct granularities. HFG enhances the throughput of kernels, on
average by70%, employing coarse-grainedPVTAmonitors and applying adaptive
guardbanding at granularity of kernel-level. The finer granularity of instruction-
level monitoring and adaptation achieves 1.8×–2.1× throughput improvements
depending on the PVTA monitors configuration and the type of instructions exe-
cuted within the kernels. Section6.4 details the results.

6.2 Timing Error Model for PVTA

6.2.1 Analysis Flow for Timing Error Extraction

To build a parametric model for timing errors, we rely on design time analysis
that yields the TER of individual Functional Units (FUs) as a function of clock
period (tclk) and the amount of PVTA variations. We have analyzed a wide range
of FUs, listed in [5], that are being used in a rich GPU pipeline, including 10 32-
bit integer FUs as well as 15 single precision floating-point FUs fully compatible
with the IEEE 754 floating-point standard. The floating-point FUs also cover the
transcendental operations, thus act as the special FUs in the GPU pipeline to support
sin, cosine, reciprocal, and square root instructions. FUs are selected from Synopsys
DesignWare, a library of functions for computational circuits in high endASICs. The
speed optimized architectures have been selected for FUs in conjunction with tight
synthesis and physical optimizations for timing closure. FUs have been synthesized
for TSMC 45nm target, the general purpose process. The front-end flowwith normal
Vth cells uses Synopsys Design Compiler with the topographical features enabled
and Synopsys IC Compiler for the backend as shown in Fig. 6.1 and Table6.1.

For each FUi working with tclk and a given PVTA variations, timing error rate
(TER) is defined in Eq.6.1:

TER (FUi, tclk,V,T,P,A) =
∑

CriticalPaths (FUi, tclk,V,T,P,A)
∑

Paths (FUi)
× 100

(6.1)

6.2 Timing Error Model for PVTA 77

Fig. 6.1 Timing error
analysis flow for model
extraction

Table 6.1 Analysis flow: tools and parameters

Stage Tools/libs Version/details

Front-end Design compiler E-2010.12-SP5

Back-end IC compiler E-2010.12-ICC-SP5

Sign-off PrimeTime VX F-2011.06-SP3

Libraries 45nm GS TSMC Variation aware (v. 110d)

Linear classifier MATLAB Discriminant analysis (v.
R2011b)

where CriticalPaths are those paths with a negative slack that cannot meet the setup-
time of flip-flops with the clock period of tclk under certain PVTA variations, and
ΣPaths is the total number of paths in FUi. After the back-end optimizations, during
the sign-off, we calculate TER by analysis of FU PVTA parameter variations as
follows:

Dynamic variations: The full industrial temperature range of 0–120 ◦C, and
voltage range of 0.88–1.1V are considered by utilizing six 45nm TSMC charac-
terized sign-off corners by changing these parameters at the resolution of 10 ◦C and
0.01V, respectively. To do this, we use the voltage-temperature scaling features of
Synopsys PrimeTime for the composite current source approach of modeling cell
behavior. Then, at each pair of the voltage and temperature, we use static timing
analysis (STA) to analyze the critical paths.

Process variation: The device parameters are varied from die-to-die (D2D) as
well as within-die (WID), and then Statistical STA (SSTA) is used to report delay
variation of each path. To perform an accurate design time SSTA, we employ the

78 6 Hierarchically Focused Guardbanding

variation-aware timing analysis engine of Synopsys PrimeTime VX, using process
parameters of 45nm variation-aware TSMC libraries [6] derived from first-level
process parameters by principal component analysis (PCA). PCA is a mathematical
procedure that simplifies a data set by transforming a number of correlated para-
meters into a smaller number of uncorrelated parameters. Based on [7], the process
parameters are varied as normal distributions with zeromean and standard deviations
of σD2D = 5% and σW I D ∈ [0, 9.6%]. Therefore, we change the process variation
components and examine its induced delay variation with a given set of accurate vari-
ability models from commercial libraries. These are more accurate and realistic than
commonly used "in-house models" extracted from predictive technology models.

Aging: Two major mechanisms that induce progressive slowdown are NBTI and
HCI, these effects manifest as voltage threshold (Vth) shift and gradually slower
the critical paths. The delay of critical paths under various dynamic and process
parameter variations is reported by STA and SSTA. To analyze the effect of aging
on those paths, their Vth is increased, and then their aging-induced delay variation is
calculated using the alpha-power law. The Vth is increased with steps of 25mV and
up to 100mV which can occur over years of stress [8].

Considering the full permutation of PVTA parameters variations, the effects of
variability on the delay of a FU is finely captured for its entire lifetime. To observe
how this variability can be compensated by adaptive clocking, the tclk is changed
from 0.2 to 5.0ns. Then, TER Analysis module (Fig. 6.1) calculates TER based on
tclk and the amount of PVTA variations using Eq.6.1. Consequently, the calculated
TER function of the five variables (summarized in Table6.2) is input to a parametric
linear classifier for model generation.

6.2.2 Parametric Model Fitting

We present a parametric model at the level of FU that relates PVTA parameters
variation and tclk to TER, thus enables higher level simulation and adaptiveness. To
quantify the impact of timing error on the quality of service at the application-level,

Table 6.2 PVTA and clock parameters

Start point End point Step # of points

Voltage 0.88V 1.10V 0.01V 23

Temperature 0 ◦C 120 ◦C 10 ◦C 13

Process (σWID) 0% 9.6% 3.2% 4

Aging (�Vth) 0mV 100mV 25mV 5

tclk 0.2ns 5.0ns 0.2ns 25

6.2 Timing Error Model for PVTA 79

Table 6.3 Classes of TER

TER = 0% 33% > = TER >0% 66%> = TER >33% 100%> = TER >66%

Class0 (C0) ClassLow (CL) ClassMedium (CM) ClassHigh (CH)

we define four classes based on the magnitude of TER shown in Table6.3. A higher
TER implies higher number of violated critical paths, thus lower application-level
quality of service. If a TER is classified as C0, it means that all paths of FU meet the
timing requirement; on the contrary, more than 66% of the paths (and up to 100%)
are failed if a TER is classified as CH . Hence, this classification covers various
application-specific requirements on computational accuracy: C0 for error-intolerant
applications (e.g., general purpose applications), and CL , CM , CH for error-tolerant
applications (e.g., probabilistic applications [9]) where the acceptance threshold of
TER is specified according to the target quality of service of applications.WedefineX
as a matrix of numeric predictor values [tclk V T P A]. Each column of X represents
one variable, and each row represents one observation. Y is defined as a numeric
vector, and each row of Y represents the classification of the corresponding row of
X. A linear parametric classifier, called discriminant analysis, is used to create a
discriminant classification based on the input variables (predictors) X and output
(response) Y. Thus, the model enables mapping of the five input variables to one of
the four defined classes. The discriminant analysis assumesX has aGaussianmixture
distribution. To train the classifier, the fitting function estimates the parameters of a
multivariate Gaussian normal distribution for each class. After training, the classifier
produces the following:

• Mμ is a matrix of class means of size K-by-P, where K is the number of classes,
and P is the number of predictors. Each row of Mμ represents the mean of the
multivariate normal distribution of the corresponding class.

• Mσ is a P-by-P matrix, the between-class covariance, where P is the number of
predictors.

• Mp represents the prior probabilities for each class.Mp is a numeric positive vector
of size 1-by-K representing the frequency with which each element occurs.

For each FU, the matrix of numeric predictor values, X, has a size of 149,500
(25×23×13×4×5)-by-5, as each row represents one permutation of the parameters
summarized in Table6.2. Every row of Y depicts the characterized class of the corre-
sponding row of X, determined by the TER Analysis module. The space of X values
divides into regions where a classification Y is a particular value. The regions are
separated by straight lines for the linear discriminant analysis. Feeding X and Y to
the classifier Mμ, Mσ , and Mp are generated. The matrices for the floating-point
adder (FPadd) are shown below:

80 6 Hierarchically Focused Guardbanding

Mµ =

⎛

⎜
⎜
⎝

1.15E+00 9.97E-01 5.85E+01 4.67E+00 3.48E+01
8.38E-01 9.84E-01 6.49E+01 5.04E+00 4.09E+01
8.36E-01 9.71E-01 6.15E+01 4.85E+00 3.89E+01
4.65E-01 9.83E-01 6.13E+01 4.92E+00 4.00E+01

⎞

⎟
⎟
⎠

Mσ =

⎛

⎜
⎜
⎜
⎜
⎝

4.31E–02 -2.37E-03 4.83E-01 4.37E-02 8.81E-01
–2.37E-03 4.35E-03 1.03E-02 9.07E-04 1.83E-02
4.83E-01 1.03E-02 1.60E+03 -1.91E-01 –3.80E-00
4.37E-02 9.07E–04 -1.91E-01 1.28E+01 –3.37E-01
8.81E-01 1.83E-02 –3.80E+00 –3.37E-01 7.75E+02

⎞

⎟
⎟
⎟
⎟
⎠

Mp = [
4.80E-01 8.10E-03 5.27E-03 5.07E-01

]
(6.2)

Providing these parametric matrices, a prediction method discussed in the next
section can accurately classify a given set of variations and a tclk value to the corre-
sponding class of timing error rate. The parametric models for the rest of FUs are
detailed in [5] due to the lack space; the prefix ‘FP’ stands for floating-point FUs
and "INT" stands for integer FUs.

6.2.3 TER Classification

A classification algorithm seeks to minimize the expected classification cost:

ŷ = arg min
y=1,...,K

K∑

K=1

P
′
(k|x)C(y|k) (6.3)

ŷ is the predicted classification; K is the number of classes; Ṕ(k|x) is the posterior
probability of class k for observation x;C(y|k) is the cost of classifying an observation
as y when its true class is k. By default, C(y|k) = 1 if y≈k, and C(y|k) = 0 if y = k:
the cost is 0 for correct classification, else it is 1.

The posterior probability that a point x belongs to class k is the product of the
prior probability and the multivariate normal density. The density function of the
multivariate normal with mean μk (k-th row of Mμ) and covariance Mσ at a point x
is

P(x |k) = 1

(2π |Mσ |)0.5 exp
(

−1

2
(x − μk)

TM−1
σ (x − μk)

)

(6.4)

where |Mσ | is the determinant of Mσ , and Mσ -1 is the inverse matrix. Let P(k)
represent the prior probability of class k (k-th element of Mp vector). Then the
posterior probability that an observation x is of class k is

P
′
(k|x) = P(k|x)P(k)

P(x)
(6.5)

6.2 Timing Error Model for PVTA 81

where P(x) is a normalization constant, the sum over k of P(x|k)P(k). Therefore, we
can quantify the expected misclassification cost per observation. Suppose we have
an observation, x = [tclk V T P A], to classify with the trained discriminant analysis
classifier. The expected (average) cost of classifying the observation into class k of
K classes is

cost(k) =
K∑

i=1

P
′
(i |x)C(k|i) (6.6)

Ṕ(i|x)is the posterior probability defined in Eq.6.5; and C(k|i) is the cost of classifi-
cation as described in Eq.6.3. Therefore, x belongs to the class k that has the lowest
cost (k).

6.2.4 Robustness of Classification

To ensure the robustness of our method, we calculate resubstitution error as the
difference between the response training data and the predictions the classifier makes
of the response based on the input training data. If the resubstitution error is high,
we cannot expect the predictions of the classifier to be good. The resubstitution error
is 0.02 (the fraction of the training data X that classifier misclassifies) for the FPadd .
On average, for all FUs the resubstitution error is 0.036 which is very low, meaning
the models classify nearly all data correctly.

The sampling data for prediction is almost always a subset of the training data
set, since the resolution of the training data, depicted in Table6.2, is much finer than
the resolution of sampling sensors. In case of any out-of-sample data, for instance, a
temperature sensor with resolution of 1 ◦C, the data can be conservatively matched to
a surrounding point. However, we have obtained a full range of extra characterization
points for temperature which are not used for training the model, and use these points
to check if the model makes reasonable estimates for out-of-sample data. For extra
characterization points with temperature range of 1–120 ◦C (steps of 1 ◦C) and with
two distinct operating voltages (1.0, 1.1V), the model makes correct estimates for
97% of out-of-sample data. The remaining 3% is misclassified to the high-error rate
class (thus will have safe guardband). Note that we cannot go beyond the min/max
range of the characterized points in the provided libraries [6].

6.3 Runtime Hierarchically Focused Guardbanding

We now describe how this model for TER can guide a control system for run-
time variation-aware resource management. At design time, to ensure numerical
correctness for the computed result, we need to take the worst-case variations that
could display for any combination of values of PVTA parameters. Thus, TER can be

82 6 Hierarchically Focused Guardbanding

(P,?,?,?) (P,A,?,?) (P,A,T,?) (P,A,T,V)

P(σWID)=
0%

A(∆Vth)=
0mV

T=0°C
V=1.10V

…
V=0.88V

… …

T=120°C
V=1.10V

…
V=0.88V

… … …

A(∆Vth)=
100mV

T=0°C
V=1.10V

…
V=0.88V

… …

T=120°C
V=1.10V

…
V=0.88V

… … … …

P(σWID)=
9.6%

A(∆Vth)=
0mV

T=0°C
V=1.10V

…
V=0.88V

…

T=120°C
V=1.10V

…
V=0.88V

… … …

A(∆Vth)=
100mV

T=0°C
V=1.10V

…
V=0.88V

… …

T=120°C
V=1.10V

…
V=0.88V

A
1

Delay (ns)

0
50

100

0.9
0.95

1
1.05

1.1

0

20

40

60

80

100

Temperature (°C)VDD (V)

Ti
m

in
g

Er
ro

r R
at

e
(%

)

0

50

100
0.9 0.95 1 1.05 1.1

0

20

40

60

80

100

Temperature (°C)
VDD (V)

Ti
m

in
g

Er
ro

r R
at

e
(%

)

(P(σWID) = 0%, A(ΔVth)=100mV)
(P(σWID) = 0%, A(ΔVth)=0mV)

0

50

100

0.9
0.95

1
1.05

1.1

0
20
40
60
80

100

Temperature (°C)VDD (V)

Ti
m

in
g

Er
ro

r R
at

e
(%

)

(P(σWID) = 9.6%, A(ΔVth)=0mV)

020406080100120

0.9
0.95

1
1.05

1.1

0

20

40

60

80

100

Temperature (°C)VDD (V)

Ti
m

in
g

Er
ro

r R
at

e
(%

)

(P(σWID) = 9.6%, A(ΔVth)=100mV)

Fig. 6.2 Delay variation and TER across extreme corners of PVTA

conservatively computed with significant uncertainty over the big cloud of possible
post-silicon results. With the support of variability measurements at post-silicon fab-
rication, the PVTA parameters can be continuously monitored during the lifetime of
the device, and consequently eliminate the conservativeness. For instance, the table
in Fig. 6.2 shows that during design time the delay of the FPadd has a large uncer-
tainty of [0.73, 1.32ns], since the actual values of PVTA parameters are unknown.
But, immediately after fabrication this delay uncertainty is reduced to [0.73, 1.25ns]
if a process sensor reports that the adder is fabricated in a part of die with neg-
ligible WID variations. Even more, if the adder is monitored by an aging sensor,
the delay uncertainty is further reduced to [0.73, 1.07ns] when the device is fresh
(ΔVth = 0mV). Having set the tclk = 0.8ns, each curve in Fig. 6.2 shows how TER
can changewhen voltage and temperature are varying atminimum/maximumprocess
and aging conditions.

Thus, hierarchically focused guardbanding (HFG) adaptively eliminates the con-
servative guardband due to PVTA variations during lifetime of device. It finely
focuses on a FU and reduces its timing guardband depending on the availability
of distinct observers, in a hierarchical manner, started immediately after post-silicon
fabrication (to compensate P), to during runtime execution (to compensate VT), and
finally the entire of lifetime (to compensate A). This model-based use of PVTA
readings provides a systematic way to reduce guardbands.

6.3 Runtime Hierarchically Focused Guardbanding 83

6.3.1 Observability

The sensor instrumentation is required as delay variation changes across extreme
corners of PVTA parameters. The question is that what mix of monitors would be
useful? External nonintrusive monitors reside on the same die can measure distinct
parameters like voltage droop [10], and temperature fluctuation [11]. In a similar vein,
CPM [12] and TRC [13] monitors whole PVT variations. On the other hand, internal
in situ monitors like EDS [1], Razor [14], and NBTI sensors [8] can measure the
actual delay variation of device due to PVT and aging. Figure6.3 shows theminimum
affordable tclk (i.e., 1/FrequencyMax) in presence/absence of various sensors for three
FUs with a TER target of 0%. The sensors are sorted based on the time constant of
the measured parameter, PATV: fromDC component to high-frequency components.
For instance, tclk of FPadd can be reduced from 1.32 to 1.26ns(a 0.06ns guardband
reduction) depends to the actual value ofWID process variation reported by a process
monitor (Psensor). It can be further reduced to 1.08ns if FPadd is equipped with
the aging as well as the process sensor (PAsensors). Adding thermal sensor enables
even 0.06nsmore reduction to 1.02ns(PATsensors). Finally, considering the full set
of sensors enables decreasing tclk from 1.32 to 0.74ns (a great guardband reduction
of 0.58ns) based on the measured values of variations reported by PATVsensors . The
more sensors we provide for a FU, the better conservative guardband reduction for
that FU: the guardband can be reduced up to 8, 24, 28, 44%, if we equip FPadd only
with Psensor , PAsensors , PATsensors , and PATVsensors , respectively.

As shown, this benefit is consistent across different FUs—with a shift in theworst-
case guardband—even with better reduction for FP FUs (e.g., up to 47% for FPexp
with PATVsensor case) due to the higher complexity of the circuit topology. Internal
PVT sensors impose 1–3% area overhead [1], whereas five replica PVT sensors

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

t c
lk

(n
s)

FP_exp FP_add INT_mac

P_sensor PA_sensors PAT_sensors PATV_sensors__ _ _

Fig. 6.3 Hierarchical sensors for reducing guardband on tclk

84 6 Hierarchically Focused Guardbanding

increase area of each POWER7 core by 0.2% [12, 15]. The banks of 96 NBTI aging
sensors occupy less than 0.01% of the core’s area [8].

6.3.2 Controllability

Employing any combination of PATV sensors provides online measurement of the
actual parameters variations, and thus a control system can adaptively apply an
appropriate guardbanding utilizing the characterized models for FUs. Among avail-
able control knobs, adaptive clock scaling using phase-locked loop (PLL) is widely
utilized in resilient implementations [11, 15, 16]. Therefore, the control system tunes
the clock frequency through an online model-based rule. To support fast controller’s
computation, the parametric model (as the outcome of the analysis flow in Fig. 6.1)
generates distinct lookup tables (LUTs) for every FUs. LUTs are generated during
design time for specific configuration of sensors, their resolution, and the desire target
TER for FUs (target_TER). Figure6.4 shows a full configuration of PATVsensors with
resolutions of (3.2%, 25mV, 20 ◦C, 0.04V) that support the range of variations sum-
marized in Table6.1. Therefore, in total 980 (4×5×7×7) rows are required within a
LUT. The parametric model fills every row of a LUT for FUi with the minimum tclk
such that TER (FUi , tclk , Vrow, Trow, Prow, Arow)< target_TER. Every LUT is stored
in a dedicated 1KB SRAM to enable fast return of the 5-bit tclk for the corresponding
values of PATVsensors . The clock control changes the frequency based on the returned
tclk , thus reduces the guardbanding. Note that, since TER characterization in Eq.6.1
considers the static critical paths (which might not be activated during execution of
certain dynamic inputs), the model always returns an upper bound of the actual TER,
thus returned tclk of LUTs guarantees the target_TER.

The next question to address is what type of monitoring observation granularity
and what type of reacting time we need, e.g., cycle-by-cycle or tens of cycles or
hundred of cycles? To analyze the effect of this choice of granularity, we apply HFG
to GPU architecture at two granularities:

FU
k

FU
j

TER raw
data Classifier

Parametric
Model

PATV_config
target_TER

P A T V tclk

… … … … …

V T
AP

ro
s n

e S

CLK
control

FU
i

max

P (2-bit)
A (3-bit)
T (3-bit)
V (3-bit)
instruction

tclk(5-bit)

LU
TsGPU

SIMD IF

offline
online

Fig. 6.4 Online utilization of models through HFG

6.3 Runtime Hierarchically Focused Guardbanding 85

1. Fine-grained granularity of instruction-by-instruction monitoring and adaptation
that signals of PATVsensors come from individual FUs that reside in the execution
stage of GPU. The LUTs return theminimum tclk depending on the actual value of
PATV sensors and the chain of FUs that will be activated by the fetched instruc-
tion. To support single-cycle adaptation, a fast adaptive clocking circuit [11]
consisting of three PLLs is use. Each PLL is running at independent frequencies,
and a multiplexer quickly switches between them in a single cycle. Therefore,
the clock controller selects the highest tclk (safe across all activated FUs) and
reduces guardband that is compatible with PATV parameters and the demands of
instructions, as shown in the following algorithm:

clk

clk 1 clk 1 clk N

fetchedinstruction
N = #of activated FUsbyinstruction
for =1 to N

t =LUTs(FU , V, T, P, A)
set_clock max{t ,t ,..., t }

k

k

i i

i

2. Coarse-grained granularity of kernel-level monitoring uses a representative PATV
sensors for the entire execution stage of GPU pipeline. The clock adaptation is
applied periodically before kernel execution. The controller selects tclk based on
current value of PATV sensors of the execution units and the chain of FUs that
potentially will be activated during kernel execution (in a static sense). Since the
adaptation of clock during kernel execution is prohibited, the controller considers
a 5% extra margin on the reported voltage and temperature values to recover
intra-kernel dynamic variations.

6.4 A Case Study of HFG on GPUs

We examine the effectiveness HFG on GPU architecture with the fine-grained
instruction-by-instruction as well as the coarse-grained kernel-level monitoring and
adaptation. We demonstrate our approach in an Evergreen-like GPU pipeline where
our FUs reside in the execution stages of a processing element (PE) and benefit from
the adaptive clock scaling decided by the controller of HFG. The rest of pipeline
stages are assumed to support resilient circuit techniques, as both resilient proces-
sor [2] and relaxed-reliability cores [17] consider sufficient guardband in the register
stage, the memory management unit, L1 instruction cache, and the interconnect.
We note that the instruction fetch and decode stages are not strongly vulnerable to
variations [18], thus low-cost to protect.

For GPU kernel benchmarks, we use AMD APP SDK 2.5 [19] kernels suitable
for stream applications written in OpenCL. Their device-specific assembly code
is extracted by AMD APP KernelAnalyzer tool for applying the instruction-by-

86 6 Hierarchically Focused Guardbanding

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Th
ro

ug
hp

ut
 (G

IP
S)

P_sensor PA_sensors
PAT_sensors PATV_sensors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (G

IP
S)

P_sensor PA_sensors
PAT_sensors PATV_sensors

Fig. 6.5 Maximum throughput benefit of HFG: i at instruction-level monitoring, the left figure; ii
at kernel-level monitoring, the right figure

instruction and kernel-level HFG. Figure6.5 (right) shows the maximum throughput
(GIPS for a PE) of each kernel, when applying the coarse-grained kernel-level mon-
itoring and adaptation with support of the four scenarios of PATV sensors. The
results highlight two points: (a) more sensors in a PE result in a greater reduction in
the guardband, and thus higher throughput for all kernels. On average, the through-
put increases from 1.04 GIPS to 1.77 GIPS (70%), when the PE moves from only
Psensor to PATVsensors scenario; (b) the throughput of kernel-level adaptation is lim-
ited by the slowest FU activated during the execution of the kernel. For instance,
the throughput of MatrixMult, DCT, and EigenValue kernels is limited to 1.2 GIPS
(with PATVsensors), since those kernels activate FPmac as the slowest FU.

Figure6.5 (left) shows the maximum throughput improvement in the instruction-
by-instruction method. This method not only benefits from more sensors (60% in
average), but also exploits the within-kernel opportunities for further reduction of
inter-FU guardband. For example in PAsensor case, the throughput of AESEncr ker-
nel is increased up to 3.4 GIPS (93% higher than MatrixMult), thanks to all its
integer instructions that only activate fast INT FUs. In comparison with the kernel-
level method, the instruction-by-instruction monitoring and adaptation improves the
throughput by a factor of 1.8×–2.1× depends to the PATV sensors configuration and
kernel’s instructions. Of course, this fine-grained instrumentation and adaptation has
a higher cost in the area.

6.5 Chapter Summary

This chapter presents a learning-based model and its usage for runtime variation-
aware resource management as well as design time analysis of vulnerable functional
units. The model takes into account process parameters, temperature and voltage
operating conditions, aging, and the physical details of P and R functional units

6.5 Chapter Summary 87

using an accurate 45nm TSMC design and analysis flow. The model is used in
a guardbanding scheme as an adaptive resource management technique to proac-
tively prevent timing error by applying a focused guardbanding. HFG enhances the
throughput of GPU kernels by 70% employing coarse-grained PVTA monitors and
by applying adaptive guardbands at kernel-level. The finer granularity of instruction-
by-instruction monitoring and adaptation achieves 1.8×–2.1× throughput improve-
ments depends to the PVTA monitors configuration and the type of instructions
executed within the kernels.

This methodology of deriving guardband from model-based rules, generated by
supervised learning task, is also used for other applications. Interested readers may
refer to [20–22].We show that a learnedmodel based on logistic regression can effec-
tively predict timing errors for a given amount of guardband reduction and subject
to a required bit-level reliability specification [20]. The same modeling approach is
also used to predict the dynamic delay of various functional units based on the input
workload; this shows that logistic regression can capture the dynamic path sensi-
tization behavior under different input operands [21]. In a similar vein, a random
forest method constructs a binary classifier for detecting timing errors by using input
operands, computation history, and circuit toggling as the input features [22].

References

1. K.A. Bowman, J.W. Tschanz, Nam Sung Kim, J.C. Lee, C.B. Wilkerson, S.L. Lu, T. Karnik,
V.K. De, Energy-efficient and metastability-immune resilient circuits for dynamic variation
tolerance. IEEE J. Solid-State Circuits 44(1), 49–63 (2009)

2. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B.Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Solid-State Circuits 46(1), 194–208 (2011). Jan

3. S. Das, D. Roberts, Seokwoo Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, T. Mudge, A self-
tuning DVS processor using delay-error detection and correction. IEEE J. Solid-State Circuits
41(4), 792–804 (2006)

4. M. Floyd, M. Ware, K. Rajamani, T. Gloekler, B. Brock, P. Bose, A. Buyuktosunoglu, J.C.
Rubio, B. Schubert, B. Spruth, J.A. Tierno, L. Pesantez, Adaptive energy-management features
of the IBM power7 chip. IBM J. Res. Develop. 55(3), 8:1–8:18 (2011)

5. PVTA Models for Hierarchically Focused Guardbanding. http://mesl.ucsd.edu/site/PVTA_
MODELS/models.htm

6. TSMC 45 nm Standard Cell Library Release Note, v 120a (2009)
7. S. Herbert, D. Marculescu, Characterizing chip-multiprocessor variability-tolerance, in 45th

ACM/IEEE Design Automation Conference, 2008. DAC 2008 (2008), pp. 313–318
8. P Singh, E. Karl, D. Blaauw, D Sylvester, Compact degradation sensors for monitoring NBTI

and oxide degradation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(9), 1645–1655
(2012)

9. P. Dubey, Recognition, mining and synthesis moves computers to the era of tera, in Technology
Intel Magazine (2005), pp. 1–10

10. S. Pant, D. Blaauw, Circuit techniques for suppression and measurement of on-chip inductive
supply noise, in 34th European Solid-State Circuits Conference, 2008. ESSCIRC 2008 (2008),
pp. 134–137

11. J. Tschanz, N.S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal, S. Narendra, Y. Hoskote,
H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan, T. Karnik,

http://mesl.ucsd.edu/site/PVTA_MODELS/models.htm
http://mesl.ucsd.edu/site/PVTA_MODELS/models.htm

88 6 Hierarchically Focused Guardbanding

N. Borkar, N. Kurd, V. De, Adaptive frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging, in IEEE International Solid-State Circuits Confer-
ence, 2007. ISSCC 2007. Digest of Technical Papers (2007), pp. 292–604

12. A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd,
V. Pokala, A distributed critical-path timing monitor for a 65 nm high-performance micro-
processor, in IEEE International Solid-State Circuits Conference, 2007. ISSCC 2007. Digest
of Technical Papers (2007), pp. 398–399

13. J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, V. De, Tunable replica cir-
cuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and aging
variation tolerance, in Symposium on VLSI Circuits, 2009 (2009), pp. 112–113

14. D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, T. Mudge, Razor: a low-power pipeline based on circuit-level timing speculation.
In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36 (2003), pp. 7–18

15. M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A.J. Drake, L. Pesantez, T.
Gloekler, J.A. Tierno, P. Bose, A. Buyuktosunoglu, Introducing the adaptive energy manage-
ment features of the power7 chip. Micro, IEEE 31(2), 60–75 (2011)

16. LEON3. http://www.gaisler.com/cms/
17. H. Cho, L. Leem, S Mitra, ERSA: error resilient system architecture for probabilistic applica-

tions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(4), 546–558 (2012)
18. A. Rahimi, L. Benini, R.K. Gupta, Analysis of instruction-level vulnerability to dynamic volt-

age and temperature variations, in Design, Automation Test in Europe Conference Exhibition
(DATE) (2012), pp. 1102–1105

19. AMD app SDK v2.5. http://www.amd.com/stream
20. X. Jiao, A. Rahimi, B. Narayanaswamy, H. Fatemi, J.P. de Gyvez, R.K. Gupta, Supervised

learning based model for predicting variability-induced timing errors, in 2015 IEEE 13th Inter-
national New Circuits and Systems Conference (NEWCAS) (2015), pp. 1–4

21. X. Jiao, Y. Jiang, A. Rahimi, R.K. Gupta, Slot: a supervised learning model to predict dynamic
timing errors of functional units, in Design, Automation Test in Europe Conference Exhibition
(DATE) (2017)

22. X. Jiao, Y. Jiang, A. Rahimi, R.K. Gupta, Wild: a workload-based learning model to predict
dynamic delay of functional units, in 2016 IEEE 34th International Conference on Computer
Design (ICCD) (2016), pp. 185–192

http://www.gaisler.com/cms/
http://www.amd.com/stream

Part II
Detecting and Correcting Errors

As an alternative to methods in the previous part that seek to prevent timing errors
from happening, in this part we examine methods that work through the timing errors
[132, 137, 133, 135]. Presented methods here allow the timing errors to occur by
operating at the edge of failure. Operating at the edge of failure further reduces the
guardband. To combat the timing errors, these methods require two main mecha-
nisms: (i) an error detection mechanism to detect the incorrect state values caused
by the timing errors; and (ii) an error correction mechanism that is triggered upon an
error detection to compensate the effects of errors during system operation. These
methods span at different levels of software (Chap. 7) and architectures (Chap. 8).

The timing errors are typically corrected by error detection and recovery mecha-
nisms at the circuit level. In contrast, in Chap. 7, we propose software methods for
cost-effective countermeasures against hardware timing errors. Generally speaking, a
shared-memory parallel architecture consists of a set of computing units that enables
various options for executing a given workload. One of these options, as our central
focus, is the selection of an appropriate computing unit to execute the workload.
This choice between alternative computing units enables parsimonious execution
of the workload in the presence of timing errors. Having such a choice, enables
abstracting the errors from lower levels to higher levels that can lead to efficient
error handling and better management. Accordingly, we implement a variability-
aware OpenMP (VOMP) programming environment suitable for tightly-coupled
sharedmemory processor clusters. VOMP is available as an extension to the OpenMP
v3.0 programming model that covers various parallel constructs. Using the notion
of work-unit tolerance as descriptive metadata, we capture timing errors caused by
circuit-level variability as high-level software knowledge. As such, characterized
metadata provide a useful abstraction of hardware variability to efficiently allocate a
given work-unit to a suitable core for execution. VOMP enables hardware/software
collaboration with online variability monitors in hardware and runtime scheduling
in software providing 17% faster execution and 27% lower energy for embedded
benchmarks parallelized with task directive. We further enhance proposed task
scheduling strategies for simultaneous management of variability and workload by
exploiting centralized and distributed approaches to workload distribution [133].

http://dx.doi.org/10.1007/978-3-319-53768-9_7
http://dx.doi.org/10.1007/978-3-319-53768-9_8
http://dx.doi.org/10.1007/978-3-319-53768-9_7

90 Part II: Detecting and Correcting Errors

As another means to reduce the cost of error recovery, we focus on microarchitec-
tures for computational reuse. Computational reuse, or memory-based computing,
or memoization1 refer to methods that normally use pre-computed results in place
of actual computation at runtime. For instance, instruction reuse comes from the
observation that many instructions can be skipped if another instance has already
been executed using the same input values. The instruction reuse recalls the outcome
of an instruction on a lookup table; therefore, a processor can reuse it temporally if
the processor performs the same instruction with the same input values. Such lookup
tables are typically implemented as an associative memory module. The associa-
tive memory modules can employ exact search (Chap. 8) or approximate search
(Chap. 11) based on the accuracy requirements.

Parallel execution in GP-GPU architectures provides an important ability to reuse
computation by associative memories and reduce the cost of recovery from timing
errors. In Chap. 8, we devise an associative memory with exact search. This associa-
tive memory is coupled with a floating-point unit and recalls error-free operations
to avoid the recovery cost in the event of timing errors. The associative memory
exploits memristive nanodevices to improve density and cost of search operations.
This technique enhances computational reuse using dense memristive nanodevices
through monolithic 3D integration with CMOS at extremely low-cost.

1These three terms are used interchangeably through this book

http://dx.doi.org/10.1007/978-3-319-53768-9_8
http://dx.doi.org/10.1007/978-3-319-53768-9_11
http://dx.doi.org/10.1007/978-3-319-53768-9_8

Chapter 7
Work-Unit Tolerance

Abstract Manufacturing and environmental variations cause timing errors in
microelectronic processors that are typically avoided by ultraconservative multi-
corner design margins or corrected by error detection and recovery mechanisms at
the circuit level. In contrast, we present in this chapter runtime software support
for cost-effective countermeasures against hardware timing failures during system
operation. We propose a variability-aware OpenMP (VOMP) programming envi-
ronment, suitable for tightly coupled shared-memory processor clusters that relies
upon modeling across the hardware/software interface. VOMP is implemented as
an extension to the OpenMP v3.0 programming model that covers various parallel
constructs, including task, sections, and for. Using the notion of work-unit
vulnerability (WUV) proposed here, we capture timing errors caused by circuit-level
variability as high-level software knowledge. WUV consists of descriptivemetadata
to characterize the impact of variability on different work-unit types running on var-
ious cores. As such, WUV provides a useful abstraction of hardware variability to
efficiently allocate a given work-unit to a suitable core for execution. VOMP enables
hardware/software collaboration with online variability monitors in hardware and
runtime scheduling in software. The hardware provides online per-core characteri-
zation of WUV metadata. This metadata is made available by carefully placing key
data structures in a shared L1 memory and is used by VOMP schedulers. Our results
show that VOMP greatly reduces the cost of timing error recovery compared to the
baseline schedulers of OpenMP, yielding speedup of 3–36% for tasks, and 26–49%
for sections. Further, VOMP reaches energy saving of 2–46% and 15–50% for tasks
and sections, respectively.

7.1 Introduction

The most immediate manifestation of variability is in path delay variations. Path
delay variations cause violation of timing specification resulting in circuit-level tim-
ing errors. Timing errors can result in an errant instruction leading to a malfunction
within the computing core. Hence, robust system design needs to ensure that sys-
tems perform correctly despite increasing timing failures caused by variability in

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_7

91

92 7 Work-Unit Tolerance

many-core processor chips [1]. To ensure correct functionality in the presence of
timing error, some approaches rely upon error recovery mechanism that guarantees
correct program execution eventually. The timing failures are typically corrected
by either adaptive tuning of CMOS control knobs to provide better-than-worst case
guardband for error-free instruction execution [2], or by replaying the errant instruc-
tion [3]. For instance, a 45nm Intel resilient core [3] places EDS sensors [4] at the
endpoints of the critical paths of the pipeline stages. Once a timing error is detected
during instruction execution, the core prevents the errant instruction from corrupt-
ing the architectural state and an error control unit (ECU) triggers proper actions
to ensure error recovery. The ECU first flushes the pipeline to resolve any complex
bypass register issues, and then triggers one of the two recovery mechanisms: (1)
instruction replay at half clock frequency; (2) multiple-issue instruction replay at
the same clock frequency. These mechanisms impose energy overhead and latency
penalty of up to 28 extra recovery cycles per error [3] which can adversely affect
both performance and energy [5].

To achieve the required robustnesswhile reducing these overheads, the variability-
induced timing errors can be addressed through a combined hardware–software
approach [6–8] that allows to evaluate the impact of a timing error on the overall
system.We have shown in the previous chapters that a holistic cross-layer variability
management can abstract the circuit-level timing error information into the vulnera-
bility of individual (Chap. 2) or streams (Chap.3) of instructions when executed on a
particular core. For multi-core processors, this knowledge can be used by the runtime
system to implement variability-tolerant parallel workload deployment for reducing
the cost of timing error failure correction [9]. We have earlier defined a set of hier-
archically organized vulnerability measures—from instruction set architecture to a
parallel programming model—to expose variations and their effects to the software
stack. These measures include instruction-level vulnerability (ILV) [10], sequence-
level vulnerability (SLV) [11], procedure-level vulnerability (PLV) [12], and finally
task-level vulnerability (TLV) [9]. ILV characterizes individual instructions as the
most fine-grained abstraction of the processor’s functionality, while SLV determines
streams of instructions that have a significant impact on the timing error rate. Raising
further the level of abstraction, PLV exposes the effect of dynamic voltage variations
for use in software preventive actions. Within a shared-memory multi-core com-
puting cluster, PLV enables a runtime procedure hopping technique to mitigate the
effect of variations by means of low-cost subroutine (procedure) migration to a less
vulnerable core [12]. TLV is an extension to the OpenMP v3.0 tasking programming
model to dynamically characterize the vulnerability of tasks. Here, the runtime sys-
tem reduces the cost of error recovery by matching the characteristics of different
variability-affected cores to the vulnerability of individual parallel tasks.

In this chapter, we extend the definition of TLV to that of work-unit vulnerability
(WUV), where the notion of a parallel work-unit (WU) is specialized into any of
three OpenMP constructs to specify work-sharing among parallel threads: task,
sections, and for. Our goal is to provide runtime software support to increase
cost-effective countermeasures against timing errors in hardware. We pursue this

http://dx.doi.org/10.1007/978-3-319-53768-9_2
http://dx.doi.org/10.1007/978-3-319-53768-9_3

7.1 Introduction 93

goal by exposing variability and its effect to the OpenMP programming model, thus
enabling holistic variability management. Accordingly, wemake three contributions:

1. We devise a variation-aware synergistic hardware/software approach. It enhances
robustness of cluster-based processors through cost-effective software counter-
measures against timing failures in hardware during system operation. On the
hardware side, our multi-core cluster is equipped with circuit sensors for online
measurement of variability and per-core introspective metadata characterization
for a given workload. Fast access to metadata for each type of OpenMP work-
sharing construct is guaranteed by carefully placing the key data structures on
fast shared-L1 memory.

2. On the software side, we propose a fully variation-aware OpenMP (VOMP) envi-
ronment, which supports task, sections, and for. VOMP provides online
characterization of descriptivemetadata for these constructs. CharacterizedWUV,
or work-unit vulnerability, abstracts hardware variability that reflects the mani-
festation of circuit-level timing errors during the execution of an instance of a
specific OpenMP construct. We also propose a set of scheduling algorithms that
implement software-only countermeasure schemes, one for each work-sharing
construct. Hence, the OpenMP runtime scheduler utilizes WUVmetadata during
scheduling to efficiently mitigate the variability-induced timing errors at the level
tasks and sections. This leads to a holistic runtime management system
that strives to reduce the cost of error recovery caused by execution of various
work-sharing constructs.

3. We demonstrate the effectiveness of our approach on a variability-affected tightly
coupled processor cluster with accurate ILVmodels in 45-nm TSMC technology.
Our experimental results indicate that (i) the entire cost of online software char-
acterization and countermeasures is paid off for a variability-affected fabric. (ii)
The proposed VOMP environment is able to save both energy and total execution
time for a wide range of parallelized applications. VOMP reduces the execution
time by 3–36% and energy by 2–46% for applications parallelized with task
directives. VOMP also reaches to energy saving of 15–50% and faster execution
of 26–49% for applications using sections directives. Further, we evaluate the
robustness of our approach across 80 ◦C temperature variations.

The rest of this chapter is organized as follows. Section7.2 covers the architectural
details to support VOMP. Section7.3 describes characterization of WUV metadata
for every type of work-unit under a full range of dynamic voltage (ΔV = 0.22V) and
temperature (ΔT = 140 ◦C) variations. The proposed runtime scheduling algorithms
for each work-sharing construct are presented in Sect. 7.4. In Sect. 7.5, we explain
our methodology to capture variations, framework setup, and present experimental
results followed by conclusions in Sect. 7.6.

94 7 Work-Unit Tolerance

7.2 Architectural Support for VOMP

We now describe the architectural details of the variation-tolerant processing clus-
ter, shown in Fig. 7.1. The architecture is inspired by STMicroelectronics Platform
2012 (P2012) [1, 13] as a programmable many-core accelerator for next-generation
data-intensive embedded applications. The P2012 computing fabric is modular and
scalable, since it is based on multiple processor clusters such as those found in GP-
GPUs [14] and clustered accelerators like HyperCore architecture line processors
from Plurality [15], and Kalray multipurpose processor array [16]. Every cluster has
independent power and clock domain, therefore enabling fine-grained power and
variability management [1]. The clusters are connected via a fully asynchronous
network-on-chip that enables them to work with different clock frequencies decided
by a cluster controller for the power/variability management [1]. In our implemen-
tation, we focus on a single cluster consisting of s16 tightly coupled 32-bit in-order
RISC cores, a level-one (L1) tightly coupled data memory (TCDM) and a low-
latency 16×32 logarithmic interconnection [17]. The TCDM is a software-managed
scratchpad memory, configured as a shared, multi-ported, multibanked L1 memory
that is directly connected to the logarithmic interconnection for fast accesses. The
number of TCDM ports is equal to the number of banks (32) to enable concurrent
access to different memory locations. Note that a range of addresses mapped on the
TCDM space provides test-and-set read operations, which we use to implement basic
synchronization primitives, e.g., locks.

The logarithmic interconnection is composed of mesh-of-trees networks to sup-
port single cycle communication between the cores and TCDM banks (see the left
part of Fig. 7.1). When a read/write request is brought to the memory interface, the
data is available on the negative edge of the same clock cycle, leading to two clock
cycles latency for a conflict-free TCDM access. The cores have direct access into
the off-cluster L2 memory, also mapped in the global address space. Transactions to
the L2 are routed to a logarithmic peripheral interconnect through a demultiplexer
stage. From there, they are conveyed to the L2 via the system interconnection which
is based on the AHB bus. Since the TCDM has a small size (256KB) the software

Fig. 7.1 Variation-tolerant tightly coupled processor cluster for VOMP. The right part shows a
resilient core with EDS and ECU to correct timing errors by the replica instructions; Σ I is the
number of error-free instructions, and ΣRI is the number of replayed instructions

7.2 Architectural Support for VOMP 95

must explicitly orchestrate continuous data transfers fromL2 to L1, to ensure locality
of computation. To allow for performance- and energy- efficient transfers, the cluster
has a DMA engine. This can be controlled via memory-mapped registers, accessible
through the peripheral interconnect.

In the embedded tightly coupled processor cluster, it is essential that all the cores
within a cluster work with the same clock frequency to avoid the latency of the syn-
chronization [1]. Synchronization acrossmultiple frequencies increases the latencyof
the interconnection, and has a performance penalty as high as a L1 cache miss1 [17].
Therefore, the cores within the cluster are equipped with two circuit-level resiliency
techniques. First, each core relies on the EDS [4] circuit sensors to detect any tim-
ing error due to dynamic delay variation. To recover the errant instruction without
changing the clock frequency, the core employs the multiple-issue instruction replay
mechanism [3] in its error recovery unit (ECU). It issues seven replica instructions
(equal to the number of pipeline stages) followed by a valid instruction. Second, the
cluster supports a VDD-hopping technique [18] that discretely tunes the voltage of
slow cores—the cores that are affected by static process variation. The VDD-hopping
improves the clock speed of the slow cores, thus enabling all the components of the
variability-affected cluster to work at same frequency (with memories at a 180◦
phase shift). This technique avoids the inter-core synchronization that would signif-
icantly increase L1 TCDM latency. The core-level VDD-hopping has been already
employed in a variability-tolerant tightly coupled cluster [12]. However, a core with
higher vulnerability will impose extra cycles to correct the errant instructions.

7.3 Work-Unit Vulnerability and VOMP Work-Sharing

OpenMP [19] consists of a set of compiler directives and library routines to spec-
ify parallel execution within a sequential code. Enclosing a code block within a
#pragma omp parallel directive has the effect of launchingmultiple instances
of that code over the available processors. Differentiating the actual work done by
different processors in OpenMP is achieved by means of work-sharing constructs:
#pragma omp for,#pragma omp sections, and #pragma omp task.
The for directive can only be associated to a loop nest, and distributes loop iter-
ations over available processors. Within a sections directive multiple section
blocks can be specified, each containing a different parallel work-unit. Sections
have limited expressiveness for describing task parallelism. For this reason, the lat-
est OpenMP specifications have included the new task directive, which supports
sophisticated forms of task parallelism. However, task implies significant over-
heads, which makes sections more convenient to outline few coarse-grained
tasks in a program. In addition, it is easy to describe software pipeline parallelism

18 cycles are required for synchronization between multiple clock domains for a read/write oper-
ation, while performance of the architecture relies on the fact that we have 2 cycles access to L1
memory.

96 7 Work-Unit Tolerance

Fig. 7.2 Outlined WU types
in a OpenMP program:
task, sections, for

with sections, by just adding point-to-point synchronization to enforce depen-
dencies within parallel tasks. The latter is the main use we make of sections in
this chapter.

As discussed earlier in the introduction, to enable software-driven policies for
variability-tolerant parallel workload scheduling we need to characterize parallel
work-units, WU, in terms of vulnerability to timing errors.2 Each OpenMP work-
sharing construct outlines an execution unit which runs a sequence of instructions.
Enclosing portions of code within any of these constructs allows the programmer to
statically identify several WU types in the program, as every directive syntactically
delimits a unique stream of instructions. While at runtime the same stream may be
dynamically instantiated several times (e.g., a work-sharing directive nested within
a loop), from the point of view of our characterization it uniquely identifies a single
WU type. As a direct consequence, there are as many types of WUs in a program as
there are work-sharing directives in its code, as shown in Fig. 7.2.

Intuitively, the closer we can associate information on variability-induced timing
errors (metadata) to software abstractions of a parallel WU, the better we can sched-
ule WUs to cores in a variation-tolerant manner. From this perspective, task-level
vulnerability, or TLV, is an important metadata to address variability tolerance within
standard parallel programming models. The main limitation of TLV as described in
[9] is that its implementation is specific to the task OpenMP construct. While

2Our platform does not have control over the errors happening while executing library code. The
functionality is preserved as each core is equipped with the replay mechanism.

7.3 Work-Unit Vulnerability and VOMP Work-Sharing 97

this construct allows to express very flexible and sophisticated forms of dynamic
parallelism, it is also true that several embedded workloads focus on more regular
forms of parallelism, at the loop- or procedure-level [20]. Until the specification v2.5
OpenMP used to be focused on exactly those types of parallelism, through the for
and sections constructs.

In our previous work [10] we have introduced ILV or instruction-level vulner-
ability as a metric to expose to the software stack the effect of variations on the
performance of a processing core, at the level of individual instructions. In a
variability-affected core ILV is not uniform across the instruction set. In fact, ILV
partitions instructions into three classes: (i) logical/arithmetic, (ii) memory, (iii) hard-
ware multiply/divide. Instructions belonging to different classes have different vul-
nerability to variations depending on the way they exercise the non-uniform critical
paths across the various pipeline stages. For instance, in an in-order RISC core the
execution and memory stages are highly vulnerable to dynamic variations, and the
memory class has a higher vulnerability in comparison to the logical/arithmetic class.
We note that complex out-of-order core such as IBM POWER6 also confirms that
vulnerability is not uniform across the instructions set [21].

Here we extend the notion of ILV to a more coarse-grained (in terms of software
execution units) metric: parallelwork-unit vulnerability (WUV).WUV is a metric to
estimate execution time of eachWU type per each core, under variability. This metric
is quite useful for the purpose of simultaneous vulnerability measurement and load
balancing.Thevulnerability of aWUtypevaries basedon the class of instructions that
it executes. WUV is clearly a per-core metric since the amount of variation affecting
different classes of instructions changes fromone core to another. Therefore, different
dynamic instances of the same WU type can face different degrees of variability-
induced timing errors.

While the identification ofWU types can be done statically (i.e., at compile time),
WUV characterization has to be done online due to two main reasons. First, dynamic
instances of the sameWU typemay exercise the processor pipeline in a non-identical
manner due to data-dependent control flow that results in the execution of different
(classes of) instructions. Second, the characterization must reflect the variability-
affected characteristic of every core (not known a priori) on every WU type. WUV
is defined as follows:

WUV(i, j) =
∑

I +
∑

RI | ∀corei ,∀WUtype j , (7.1)

where Σ I is the number of error-free executed instructions; ΣRI is the number
of replayed instructions3 during execution of WU type j on core i, as reported by
the ECU. Intuitively, for a given WU type if all the instructions run without any
timing error, the corresponding WUV is equal to Σ I as the total error-free dynamic
instruction count. In the event of timing errors,WUV also accounts for the additional
replica instructions. The lower the WUV, the lower number of recovery cycles, the
lower the dynamic instruction count, and thus the higher throughput and energy

3Proportional to the number of errant instructions.

98 7 Work-Unit Tolerance

efficiency. WUV dynamically characterizes both vulnerability and execution time of
WU types. Hence based on WUV values, VOMP runtime schedulers can optimize
the system performance or energy efficiency by matching variability-affected core
characteristics to WU types.

7.3.1 Intra- and Inter-corner WUV

For Eq.7.1 WUV is the dynamic instruction count, including the replica instruc-
tions, for a given WU type. Similar to ILV, WUV is also not uniform across differ-
ent variability-affected cores, which may exhibit different vulnerability to specific
instruction classes. To demonstrate how this effect is propagated to the programming
model level, we measureWUV across different WU types. More specifically, we use
OpenMP constructs to outline software execution units, or WUs, which iterate sev-
eral times over an identical instruction. We build four WU types each stressing a
different instruction, as shown in Fig. 7.3.

In the following, we repeat the same experiment with different OpenMP work-
sharing constructs. This synthetic experiment allows to stress a use case where we
can estimate the variations in WUV among the software execution units. Figure7.4
illustrates the synthetic benchmark parallelized with the #pragma omp task
construct, while the synthetic benchmark in Fig. 7.5 uses the #pragma omp

Fig. 7.3 WU types each
stressing a different class of
instructions

7.3 Work-Unit Vulnerability and VOMP Work-Sharing 99

Fig. 7.4 Synthetic
benchmark using OpenMP
task

Fig. 7.5 Software pipelined
synthetic benchmark using
OpenMP sections

sections construct. For the sake of clarity, we organize the presentation of this
experiment in following three consecutive subsections, one per each OpenMP con-
struct. Section7.5.1 provides details of our simulation setup.

100 7 Work-Unit Tolerance

7.3.1.1 task-Level WUV

Figure 7.4 shows the synthetic benchmark parallelized using the #pragma omp
task construct. We measure WUV for different WU (here, task) types, when
executing on fixed and variable operating corners (current voltage and temperature).
Specifically, we analyze the effects of a full range of operating corners, a temperature
range of 0–140 ◦C, and a voltage range of 0.88–1.1V. For sake of simplicity, in this
section we illustrate a normalizedWUV (thereafter called NWUV) as ametric which
divides WUV value to its Σ I , therefore this normalized metric will have a range of
values greater than or equal to 1. For instance, if NWUV displays a value of 1, it
indicates that there is no replica instructions (ΣRI=0).

Figure7.6 shows the task-level WUV for a core that works at fixed voltage supply
of 1.1V, while the environmental temperature is varied. As shown, the task-level
vulnerability is an increasing function of temperature; for instance, the execution
of task type one (task1) at a temperature of 0 ◦C results in an NWUV value of
1.0017, while executing the same task at 140 ◦C causes an NWUV of 1.09 that

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

0 20 40 60 80 100 120 140

N
W

U
V

Temperature (C)

task 1 task 2 task 3 task 4

Fig. 7.6 Normalized WUV (NWUV) to temperature variations for task types

1.00

1.10

1.20

1.30

1.40

1.50

1.60

N
W

U
V

Voltage (V)

task 1 task 2 task 3 task 4

Fig. 7.7 Normalized WUV to voltage variations for task types

7.3 Work-Unit Vulnerability and VOMP Work-Sharing 101

increases the vulnerability of task1 by 9%. This inter-corner WUV variation is the
direct manifestation of dynamic temperature fluctuation. At supply voltage of 1.1V,
higher temperature leads to a higher timing error rate that increases the number of
errant instructions, as mirrored by the WUV values.

Apart from the inter-corner WUV variation, for a given (fixed) temperature point
there is an intra-corner WUV variation among the four types of WUs (tasks). As
shown in Fig. 7.6, at the fixed temperature of 0 ◦C, the WUV value of task3 is 6%
higher than the WUV of task2, indicating a considerable variation across task types.
WUV of each task type is different, even within the fixed operating conditions and
in the absence of environmental variations, since each task type executes distinct
classes of instructions experiencing different rates of the errant instructions.

Figure7.7 shows the task-level WUV for the core operating at a fixed tempera-
ture of 10 ◦C, while voltage is dynamically varied. As shown by the plot, NWUV is
a decreasing function of voltage. Higher voltages result in shorter critical path delay,
thus lower error rate and finally lower NWUVvalues. Similar to Fig. 7.6, intra-corner
WUV variation can also be observed: WUV for different task types at the same oper-
ating corner is not equal because their instructions do not uniformly exercise the
various critical paths of the pipeline. We have already seen that the vulnerability of
instructions is not uniform [10] resulting in different levels of vulnerability for task
types.

7.3.1.2 sections-Level WUV

Figure7.5 shows the code for the synthetic software pipeline implemented using
parallel sections. Each WU type (here indicated as section1, section2, section3
and section4) is mapped on a different core. Synchronization between the pipeline
stages is accomplished via simple point-to-point synchronization primitives that we
implement on top of test-and-set semaphores. This guarantees that once computation
of one pipeline stage is finished we can start the following stages. The sections
construct is nested within a loop, which models the repetitions of the pipeline. It
outlines four WUs, each dependent from the previous one. Note however that there
is no dependence between the last stage of one iteration and the first stage of the next
iteration.

In this parallel pattern, representative of image processing kernels where a set of
filters is applied in sequence to independent image blocks (e.g., JPEGmacro-blocks),
there are Nsec stages, such that Nsec < Ncore, where Ncore is the number of available
cores (16 cores in our platform). Normally, at the end of any work-sharing construct
it is implied a barrier synchronization operation among all processors. However, we
specify the nowait clause to skip this and allow the idle cores to start execution of
the next pipeline iteration.

We now examine the sections-level WUV for different section types when
executing on fixed and variable operating corners. Figure7.8 shows NWUV values
for a core operating at fixed supply voltage of 1.1Vwith a variable temperature range
of 0–140 ◦C, while Fig. 7.9 shows NWUV values for a fixed temperature of 10 ◦C

102 7 Work-Unit Tolerance

1.00

1.02

1.04

1.06

1.08

1.10

0 20 40 60 80 100 120 140

N
W

U
V

Temperature (C)

section 1 section 2 section 3 section 4

Fig. 7.8 Normalized WUV to temperature variations for sections types

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

0 .
94

0 .
95

0.
96

0.
97

0.
98

0.
99

1.
00

1.
0 1

1.
02

1 .
03

1 .
04

1.
05

1.
06

1 .
07

1.
08

1 .
09

1.
10

N
W

U
V

Voltage (V)

section 1 section 2 section 3 section 4

Fig. 7.9 Normalized WUV to voltage variations for sections types

with a supply voltage variation range of 0.22V. Akin to the task-level WUV, the
sections-level WUV is an increasing function of temperature and a decreasing
function of voltage. A temperature fluctuation of 140 ◦C increases the sections-
level WUV by an average of 9%, and the voltage variation of 0.22V increases the
sections-level WUV by an average of 50%. Among the different section types,
a maximum of 16% intra-corner WUV variation is observed at (10 ◦C, 1.09V).

7.3.1.3 for-Level WUV

Applications running on multi-core systems often focus on a very common data
parallel scenario where each core works on a portion of a data structure (e.g., array
or matrix) and must synchronize with the others on a barrier. Similar parallelization
schemes are typically focused on parallel loops, whose iterations are spread among
several concurrent threads. Data-level parallelism, for instance parallel loops, can be
exploited to distribute workload within a cluster. OpenMP v3.0 provides dynamic
loop scheduling as another work-sharing construct based on the notion of a work
queue to parallelize loops locally inside a cluster. A parallel for directive

7.3 Work-Unit Vulnerability and VOMP Work-Sharing 103

describes a loop as a set of identical work-units; therefore the parallel for
directive statically identifies one type of work-unit in the program. For every loop
iteration, the work-unit is dynamically instantiated but it uniquely identifies a single
type fromour characterization point of view. In otherwords, thework-units generated
from the parallel for directive are equivalent hence forming a homogeneous
workload across all cores. This limits the capability of VOMP to schedule a single
type work-unit to an appropriate core given that maintaining all cores busy.

7.3.1.4 Conclusion for WUV

The main conclusion that we can draw from the experiments presented in the afore-
mentioned subsections is that WUV varies significantly: (i) among WU types; and
(ii) among the operating conditions. On one hand, this is due to how different instruc-
tion streams exercise the variability-affected critical paths in the processor pipelines,
which is the typical case for programs parallelized with sections or task direc-
tives that outline several parallel tasks (i.e., WU types). This confirms the previous
observation that executing different streams of instructions may result in various
error rates [22]. For example, for any given operating condition the WUV of sim-
ple arithmetic operations (e.g., addition/shift) is lower than or equal to the WUV of
complex arithmetic operations (e.g., MUL/DIV). Detailed sensitivity analysis of a
sequence of instructions to changes in voltage and temperature is provided in [11].
On the other hand, even identical instruction streams behave differently on different
cores in presence of dynamic temperature and voltage variations. This is particularly
evident for the #pragma omp for construct, which always distributes among
processors an identical work-unit type (i.e., the same instruction stream). Yet, WUV
across cores varies significantly, because of the different vulnerability to specific
instruction classes and to operating conditions.

This motivates the need to specialize WUV for different WU types and for online
characterization. In the following section, we describe how we augment the VOPM
runtime support for each of the work-sharing constructs to support online WUV
characterization.

7.3.2 Online WUV Characterization

In the proposed VOMP, each core performs online characterization while execut-
ing a given WU type. To quantify WUV, the core collects Σ I and ΣRI statistics
for Eq.7.1 through a set of available counters in the ECU. The online characteriza-
tion mechanism is distributed among all the cores in the cluster, thus enables full
parallel WU execution monitoring and characterization. WUV is represented as a
two-dimensional lookup table (LUT) for different WU types and cores. This lookup
table is physically distributed across all the banks of the L1 TCDM for fast parallel
read/write operations. Since each entry of the LUT consists of 32-bit integer data, and

104 7 Work-Unit Tolerance

since each application includes a bounded4 number (NWU) of work-sharing direc-
tives, the LUT has a footprint of NWU × 4 × Ncore Bytes, Ncore being the number
of cores in the cluster. We provide two simple functions for reading and writing the
LUT, namely:

int LUT_rd (int WUtype, int coreID);

void LUT_wr (int WUtype, int coreID,

int WUV);

In addition, we implement two functions for retrieving the calculated WUV of a task
running on a core.

int read_WUV (int coreID);

void reset_WUV (int coreID);

The former function (read_WUV) reads the WUV value from per-core hardware
counters, identified via the coreID parameter. These counters implement Eq.7.1,
accumulating instruction count and replica instruction count for the target core since
the last reset. The second function (reset_WUV) resets the counter for the target
core (coreID).

Based on these low-level APIs, we modify the OpenMP runtime schedulers to
enable online WUV characterization as illustrated in Fig. 7.10 (our additions in bold
font). While this pseudocode explicitly refers to the task scheduler, we modify in
an equivalent manner also the scheduler for sections. For what concerns loops
the implementation is slightly more complicated. OpenMP allows to couple the
schedule(static|dynamic) clause to the #pragma omp for directive.
Choosing dynamic scheduling, chunks of iterations of user-defined size are sched-
uled to parallel cores in a first-come, first-served manner. This allows for better
load balancing at runtime, but is implemented through calls to a runtime sched-
uler and implies higher overhead. For those cases where loop iterations contain
identical amount of works it is often better to use static scheduling, which is imple-
mented by statically inlining the code that precomputes the assigned iterations to
any cores. Thus, for dynamic scheduling we instrument the runtime scheduler simi-
lar to Fig. 7.10. For static scheduling, we modify the OpenMP compiler to inline the
additional WUV characterization code during the loop expansion pass.

Note that in principle, it would be strictly necessary to characterize a couple
<WUtype, coreID> only once. Once a WU type is characterized for a given core
the online characterization could be stopped. However, we rather keep the character-
ization active at every scheduling event and apply a history-based weighted average
calculation between the new characterized WUV value and the previously WUV
value stored in the LUT. This has been used to estimate power and time for a given
interval [23]; and also better captures recent effects of dynamic variations on the
cores, conditional code within WUs, and future workload. At each scheduling point,

4Up to a few tens, for large programs.

7.3 Work-Unit Vulnerability and VOMP Work-Sharing 105

Fig. 7.10 Pseudocode for
task-level WUV
characterization

the encountering core incurs only a fixed negligible overhead for WU characteriza-
tion. This is achieved by distributing the LUT in the multibanked TCDM that enables
not only predictable accesses, as opposed to cache-based hierarchical memories, but
also fast parallel read/write operations among the cores.

From the observation point of view, our online characterization can reflect any
changes in dynamic behavior of a core and the environment in which the core is used.
More specifically, in our cluster each core can be powered at a different voltage (that
could lead to different temperature points due to self-heating), but all the 16 cores
have to work with a fixed clock frequency. Figures7.6, 7.7, 7.8, and 7.9 show the
sensitivity of WUV to changes in the operating voltage and temperature. These
figures illustrate that a wide range of dynamic variations can be reflected by WUV
metric. From the controllability point of view, the cluster as an accelerator operate
under the control of a main host processor, capable of running full-fledged operating
systems (OS). The cluster itself, on the other hand, typically does not have all the
necessary support to run unmodified OS. Resource management is demanded to
custom lightweight middleware. In this respect, the OpenMP implementation that
we leverage in this work [24] as a baseline to demonstrate our techniques is designed
to operate on bare metal, as it is built directly on top of the hardware abstraction layer
(HAL). The HAL provides the lowest level software services for processor (thread)
and memory management, as well as the power control APIs.

7.4 VOMP Schedulers

7.4.1 Variation-Aware Task Scheduling (VATS)

In this subsection, we first explain our OpenMP tasking implementation followed
by our specific variation-aware scheduling policy. OpenMP tasking has already been
considered as a convenient programming abstraction for embedded multi- and many
cores [9, 25–27]. Typically in these approaches, the task scheduler is implemented
using a centralized queuewhich collects the task descriptors. The central FIFOdesign
reduces the overhead for task management, which is usually a relevant design choice

106 7 Work-Unit Tolerance

Fig. 7.11 Distributed queues for OpenMP tasking

for energy- and resource-constrained systems. This design choice works well for
homogeneous systems, but places limitations on applying efficient scheduling poli-
cies in presence of variability-induced heterogeneity across computational resources.

Our OpenMP implementation leverages distributed task queues (private queue per
each core), where all the threads5 involved in parallel computation can actively push
and pop job descriptors. Figure7.11 shows the design of our OpenMP tasking frame-
work based on a distributed queue system. Every thread can access a queue using
two basic operations: insert and extract, which are translated into lock-protected
operations on a queue descriptor (stored in TCDM for minimal access time). Queue
descriptors are statically instantiated during the initialization of the runtime to avoid
the time overheads for dynamic memory management. Since threads with an empty
queue are set to a low-power IDLE mode, the insertion of a task in a queue wakes
up the associated core. This is achieved by inspecting an additional flag of the queue
descriptor, where the destination core operating mode is annotated (executing, sleep-
ing). The core that inserts the task in a remote queue is responsible for checking the

5There is a 1:1 correspondence between threads and cores, thus we will use the two terms inter-
changeably.

7.4 VOMP Schedulers 107

flag andwakingup the destination core to resumeexecution of the newly inserted task.
In addition, the queue descriptor holds synchronization flags used for thetaskwait
directive. Extracting a task from a queue updates the queue descriptor in the dual
manner. Note that also in this case we use lock-protected operations, since we allow
all threads to extract work from any queue. Extracting tasks always occurs from the
head of the queue, while insertion can be done at the head and tail. Insert operations
at the head are useful to prioritize the execution of non-characterized tasks (in terms
of vulnerability to errors). Stealing tasks occurs from the head of the queue.

As a baseline policy we implement a simple round-robin scheduler (RRS) [19].
This policy aims at balancing the number of tasks assigned among all cores, and
introduces minimal runtime overhead due to a very lightweight implementation.
To account for tasks of different durations, RRS is enhanced with a task stealing
algorithm, which searches remote queues in a round-robin fashion for work to steal.

We propose a reactive policy for variability-aware task scheduling (VATS) shown
in Algorithm 7.4.1. This scheduler leverages the characterized WUV metadata to
allocate tasks to cores so as to minimize both overall number of instruction replays
and unbalanced loads. Themain goal of this scheduler is to prevent allocation of tasks
to unreliable cores, which is representative of a policy adopted in a system where
task failure has critical consequences. At system startup, when there is no WUV
available, the scheduler operates in round-robin mode. Since the OpenMP tasking
model assumes completely independent tasks, it is allowed to execute them in any
order. We leverage this property to insert tasks for which WUV is not available yet
at the head of the queue (out-of-order task characterization). This will give higher
priority to non-characterized task types, thus speeding up the “system warm-up”.

Algorithm 7.4.1. VATS (task j)

for i ← 1 to Ncore

do
{
loadi ← loadQueuei + WUV (corei , task j)

min ← f indMinimum(loadi)
Queuemin ← insert (task j)

return (min)

VATS scheduling policy strives to minimize the number of replayed instructions
utilizing characterized WUV metadata. VATS also extends its awareness of the load
on each queue, thus avoids heavily unbalanced situations that could increase the
total execution time. Each queue descriptor is enhanced with a status register that
estimates the overall load (loadQueue), in terms of dynamic instructions count, of
all tasks present into that queue. This is a better metric for workload awareness than
just the total task count, because different task types present in the queue may have
various computational weight.

To account for imbalance effects due to non-homogeneous task durations and
other system-level issues, VATS is further enhanced with a most loaded queue-first

108 7 Work-Unit Tolerance

stealing algorithm. An additional array structure is used to keep the sorted workload
over the various queues. This array is then traversed to steal work from the most
loaded queues first. Note that after the execution of a stolen task, we always check
if in the meantime some tasks have been inserted in the local queue. It this case, we
switch to the execution of the tasks with better WUV values, otherwise we continue
executing the stealing algorithm until there is no task left in the system.

7.4.2 Variation-Aware Section Scheduling (VASS)

The default OpenMP section scheduling policy is to allocate a section to an avail-
able thread in a first-come, first-served (FCFS) fashion. When sections are used
in a traditional manner to outline parallel tasks with no dependencies among each
other Algorithm 7.4.1 can be applied. However, when sections are used to model
software pipeline parallelism we have an additional constraint: avoiding the
variability-induced errors (hence their instruction replays) that lengthen in an uncon-
trolled manner one or more sections. This effect dominates the overall pipeline dura-
tion. Since in a variability-affected computing cluster, theremight be a set of cores that
display poor performance—depending upon their software and hardware context—
causing bottlenecks in the entire pipeline execution.

For these cases, we propose a variation-aware section scheduling (VASS) policy
shown in Algorithm 7.4.2. VASS has a warm-up phase which assigns execution
of different section types to all cores for a constant6 number of iterations. After
execution of each section, the characterization process updates the corresponding
WUV metadata in LUT using the mechanisms described in Sect. 7.3.2. When the
warm-up phase is completed, the WUV metadata in the LUT are ready and can be
inspected by the runtime environment to take decisions on workload distribution.
Accordingly, VASS assigns the execution of each section to a set of suitable cores.

In this way, VASS strives to maintain all cores in the executing operating mode,
while reducing the instruction replays and the overall pipeline duration. VASS sorts
each section types based on their averageWUVdecreasingly. The first section type in
the sorted list has either high instruction count (Σ I) or high replica instruction count
(ΣRI). Therefore it should be executed on a set of suitable cores that display fewer
error rate during its execution. Basically, every core has a private tag vector that lists
the types of permissible sections for executing on this particular core. This constraint
limits the participation of worse cores for executing long or high vulnerable types of
sections. Theworse cores insteadmay execute shorter sections or sections with lower
vulnerability; therefore avoiding the latency penalty for the synchronization between
the unbalanced stages and effectively utilizing all the resources in the variability-
affected cluster.

As shown in Algorithm 7.4.2, VASS assigns the execution of the longest section
type to the best set of cores (those that display lower WUV values), then the exe-

6In our applications, it is selected as 2 iterations.

7.4 VOMP Schedulers 109

cution of the second longest section type to the next best set of cores, and so on. In
other words, VASS performs a one-to-many dynamic pipeline mapping between the
section types (i.e., the stages) and the cores such that the overall execution time is
reduced. After the section-to-core assignment, once a corei encounters a section j ,
VASS checks the condition to decide whether section j is assigned for the execution
on top of corei . If section j is assigned for corei , it means that there is amatch between
the characteristics of corei and section j , therefore the execution will be performed.
Otherwise VASS does not allocate the section j to the corei . Thanks to the nowait
statement, for a parallel sections consists of Nsec sections, VASS replicates
the entire parallel sections for R = Ncore/Nsec times to maintain all Ncore

cores active while reducing overall pipeline duration.

Algorithm 7.4.2. VASS (sec0 : secNsec)

sortedSecList ← Sort SectionsWUV (sec0 : secNsec)

while sortedSecList �= EMPTY

do

⎧
⎨

⎩

secI D ← extractT opList (sortedSecList)
{coreI Ds} ← f indBest SetCores(secI D)

tag[{coreI Ds}] ← tag[{coreI Ds}]⋃ secI D
return (tag[core0 : coreNcore])

7.5 Experimental Results

7.5.1 Framework Setup

We demonstrate our approach on an OpenMP-enabled SystemC-based virtual plat-
form [28] modeling the tightly coupled cluster described in Sect. 7.2. The virtual
platform supports tasking on top of a runtime [24] optimized for the target plat-
form. Table7.1 summarizes the main architectural parameters, a typical setup for
the considered platform template (see [1]). To emulate variations on the virtual plat-
form, we have integrated variations models at the level of individual instructions
using the ILV characterization methodology presented in [10]. Integration of ILV
models for every core enables online assessment of presence or absence of errant
instructions at the certain amount of dynamic voltage and temperature variations.
We re-characterized ILV models of an in-order RISC LEON-3 [29] core for 45-nm,
for which an advanced open-source RISC core with back-end details for variation
analysis is available. First, we synthesized the VHDL code of LEON-3 with the
45-nm TSMC technology library, general-purpose process. The frontend flow with
normal VT H cells has been performed using Synopsys DesignCompiler, while Syn-
opsys IC Compiler has been used for the back-end where the core is optimized for
performance.

110 7 Work-Unit Tolerance

Table 7.1 Architectural parameters for VOMP cluster

ARM v6 core 16 TCDM banks 16

I$ size 16KB per core TCDM latency 2 cycles

I$ line 4 words TCDM size 256KB

Latency hit 1 cycle L2 latency �60 cycles

Latency miss �59 cycles L2 size 256MB

To observe the effects of a full range of dynamic voltage and temperature vari-
ations, we analyze the delay variability on the individual instructions, leveraging
voltage–temperature scaling features of Synopsys PrimeTime for the composite cur-
rent source approach ofmodeling cell behavior. Finally, delay variability is annotated
to the gate-level simulations for creating ILV models. To utilize ILV models on the
virtual platform, each core maps ARM v6 instructions to the corresponding ILV
models in an instruction-by-instruction fashion during execution of tasks. Therefore,
every core will face the errant instructions during work-units execution based on the
available amount of variations on the variability-affected cluster. From the same flow
we also extract energy models for our cluster architecture.

For the following experiments we consider the cluster with 16 cores. To observe
the effect of static process variation on the clock frequency of individual cores
within the cluster, we analyze how critical paths of each core are affected due to
die-to-die and within-die process parameters variation, following the methodology
presented in [12]. Each core maximum frequency varies significantly due to the
process variation. As a result, six cores for 16-core cluster cannot meet the design
time target clock frequency. To compensate this core-to-core frequency variation,
the VDD-hopping technique [18] uses the measured delay variation of each core
and then selects one of available three discrete voltage modes: VDD-high, VDD-
medium, VDD-low. This technique mitigates the core-to-core frequency variations
within the variability-affected cluster: six cores are powered up with VDD-high, four
cores with VDD-medium, and six cores with VDD-low. This ensures all cores work
with the design time target frequency, but they face different error rate based on the
instruction type and the operating condition.

7.5.2 VOMP Results for Tasking

Weuse ninewidely adopted computational kernelsmainly from the image processing
domain that we parallelize using task directives. These kernels include RGB-to-
HSV and XYZ-to-RGB for colormap conversions, Integral image and Sobel for filter
operations, FAST for corner detection, Color Tracking, Strassen matrix multiplica-
tion, andBlowfish for encryption/decryption. Each kernel has one task type, therefore
there is no task dependency during execution. We compare the total execution time

7.5 Experimental Results 111

and energy consumption of VATS, our variability-aware task scheduler, to the base-
line RRS policy. Figure7.12 shows the execution time for all the kernels for three
operating corners with temperature of 0, 40, and 80 ◦C. VATS aims at reducing the
instruction replays by allocating tasks on reliable cores while taking into account the
load of every queue. As a result, at an operating temperature of 0 ◦C, VATS achieves
up to 30% better performance than RRS, and 13% on average. This clearly indicates
that the entire overhead of the variation-tolerant technique is paid off, including the
online task characterization, reading and updating WUV metadata, and cost of exe-
cution of Algorithm 7.4.1. As shown, VATS displays a robust behavior across a wide
range of temperature variations thanks to the reflection by the always-on character-
izations. At higher temperature, VATS achieves better average performance gain of
17% (at 40 ◦C) and 21% (80 ◦C), since WUV is increased at higher temperature.

Figure7.13 shows the energy consumption of the kernels for VATS normalized
to RRS. VATS achieves on average 21% and up to 38% better energy efficiency than
RRS at the temperature of 0 ◦C. VATS further reaches to an average energy saving
of 31% at the operating temperature of 80 ◦C.

Fig. 7.12 Execution time for VATS normalized to RRS under temperature variation

Fig. 7.13 Energy consumption for VATS normalized to RRS under temperature variation

112 7 Work-Unit Tolerance

We also compare the TLV technique with the centralized queue proposed in [9].
TLV, which has variation-agnostic task insertion operations displays on average 75%
slower execution than RRS. TLV is on average 100% less energy efficient than RRS.
This lack of efficient utilization of resources under variability is mainly because of
TLV characterization that does not consider the overall system workload. Its single
tasking queue also limits the potentials of task scheduling policies: a core can utilize
TLV to only decide whether to proceed to the execution of a task or leave it in the
single queue for other cores that leads to an imbalanced system.

7.5.3 VOMP Results for Sections

For evaluating VOMP in the parallel sections, we used seven computa-
tional intensive kernels amenable to software pipelining. Pitch extractor algorithm
(PEA), and FFT with covariance matrix factorization (DFT-COV) are embedded sig-
nal processing kernels extracted from [30, 31]. Sobel andPrewitt are filter operations
useful in the edge detection algorithms. N-body is a simulation of a large number
of particles under the influence of physical forces.Mersenne twister is a pseudoran-
dom number generator. Synthetic is a microkernel implementing a 4-stage parallel
pipeline (see Fig. 7.5), representative of streaming applications [32]. We evaluate
the effectiveness and robustness of our approach across a wide temperature range of
80 ◦C.

Figure7.14 shows the normalized performance (execution time) of VASS to FCFS
for three operating corners with temperature of 0, 40, and 80 ◦C. At an operating
temperature of 0 ◦C, the total execution time is reduced on average by 31% (and up to
40%) thanks to proper assignment of sections to those cores that avoid unbalanced
pipelines. This is accomplished by preventing the worst cores from executing a
section type that leads to the highestWUV.At the temperature of 80 ◦C,VASS reaches

Fig. 7.14 Execution time for VASS normalized to FCFS under temperature variation

7.5 Experimental Results 113

Fig. 7.15 Energy consumption for VASS normalized to FCFS under temperature variation

on average 39% performance improvement, thanks to the online WUV metadata
characterization which reflects the latest temperature variations, thus enabling the
scheduler to react accordingly.

Moreover, as shown in Fig. 7.15, VASS simultaneously reduces the total dynamic
instruction count that yields an average of 28% (up to 35%) reduction in energy
consumption at an operating temperature of 0 ◦C. A similar pattern for energy sav-
ing is observed under temperature fluctuations, confirming the robustness of our
approach. VASS reduces energy consumption on average by 37% for high operating
temperatures of 80 ◦C.

7.6 Chapter Summary

Circuit failures due to timing errors are considered an important concern in the design
of reliable circuits. In this chapter, we show that processing cores can be made robust
against an important class of such errors, caused by manufacturing and environmen-
tal variabilities, by raising the visibility of such failures across the hardware/software
boundary. This is achieved by attaching metadata that captures work-unit vulnera-
bility (WUV) from hardware sensing circuits to the runtime system via the software
stack.We specifically address its implementation in a parallel execution environment
that associates WUV metadata to OpenMP parallel constructs: task, sections,
and for. WUV metadata is characterized during work-unit execution on individual
cores, and is used to efficiently schedule new instances of the same work-unit type.
We have implemented our approach in VOMP, a variability-aware OpenMP execu-
tion environment. With VOMP, we propose scheduling algorithms for tasks and
sections that useWUVmetadata for countermeasures against variability-induced
timing errors. This matches the characteristics of different variability-affected cores
to the error vulnerability of different work-unit types in the program, minimiz-
ing the need for timing error recovery and the associated costs. Across a wide

114 7 Work-Unit Tolerance

operating temperature of 80 ◦C, VOMP effectively eliminates the timing error recov-
ery in the 16-core cluster resulting in average 17 and 36% faster execution for tasks
and sections, respectively. VOMP achieves an average energy saving of 27% for
tasks and 33% for sections.

References

1. D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, D. Dutoit,
Platform 2012, a many-core computing accelerator for embedded socs: performance evalu-
ation of visual analytics applications, in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE (2012), pp. 1137–1142

2. L.M. de Lima Silva, A. Calimera, A. Macii, E. Macii, M. Poncino, Power efficient variability
compensation through clustered tunable power-gating. IEEE J. Emerg. Sel. Top. Circuits Syst.
1(3), 242–253 (2011)

3. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B.Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Solid-State Circuits 46(1), 194–208 (2011)

4. K.A. Bowman, J.W. Tschanz, N.S. Kim, J.C. Lee, C.B.Wilkerson, S.L. Lu, T. Karnik, V.K. De,
Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance.
IEEE J. Solid-State Circuits 44(1), 49–63 (2009)

5. H. Zakaria, L. Fesquet, Designing a process variability robust energy-efficient control for
complex socs. IEEE J. Emerg. Sel. Topics Circuits Syst. 1(2), 160–172 (2011)

6. P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R.K. Gupta, R. Kumar, S. Mitra, A. Nicolau, T.S.
Rosing, M.B. Srivastava, S. Swanson, D. Sylvester, Underdesigned and opportunistic comput-
ing in presence of hardware variability. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
32(1), 8–23 (2013)

7. G. Karakonstantis, A. Chatterjee, K. Roy, Containing the nanometer “pandora-box”: cross-
layer design techniques for variation aware low power systems. IEEE J. Emerg. Sel. Topics
Circuits Syst. 1(1), 19–29 (2011)

8. L. Leem, H. Cho, H.-H. Lee, Y.M. Kim, Y. Li, S. Mitra, Cross-layer error resilience for robust
systems, in 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
(2010), pp. 177–180

9. A. Rahimi, A. Marongiu, P. Burgio, R.K. Gupta, L. Benini, Variation-tolerant openmp task-
ing on tightly-coupled processor clusters, in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013 (2013), pp. 541–546

10. A. Rahimi, L. Benini, R.K. Gupta, Analysis of instruction-level vulnerability to dynamic volt-
age and temperature variations, in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012 (2012), pp. 1102–1105

11. A. Rahimi, L. Benini, R.K. Gupta, Application-adaptive guardbanding to mitigate static and
dynamic variability. IEEE Trans. Comput. (2013)

12. A. Rahimi, L. Benini, R.K. Gupta, Procedure hopping: a low overhead solution to mitigate
variability in shared-l1 processor clusters, in Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED ’12, ACM, New York, NY, USA
(2012), pp. 415–420

13. L. Benini, E. Flamand, D. Fuin, D. Melpignano, P2012: building an ecosystem for a scalable,
modular and high-efficiency embedded computing accelerator, in Design, Automation Test in
Europe Conference Exhibition (DATE), 2012 (2012), pp. 983–987

14. Whitepaper. Nvidia’s next generation cuda compute architecture: Fermi (2009)
15. Plurality, the hypercore processor. http://www.plurality.com/hypercore.html
16. Kalray,mppa. http://www.kalray.eu/products/mppa-manycore-a-multicore-processors-family

-13/

http://www.plurality.com/hypercore.html
http://www.kalray.eu/products/mppa-manycore-a-multicore-processors-family-13/
http://www.kalray.eu/products/mppa-manycore-a-multicore-processors-family-13/

References 115

17. A. Rahimi, I. Loi, M.R. Kakoee, L. Benini, A fully-synthesizable single-cycle interconnection
network for shared-l1 processor clusters, in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011 (2011), pp. 1–6

18. S. Miermont, P. Vivet, M. Renaudin, A power supply selector for energy- and area-efficient
local dynamic voltage scaling, in Proceedings of the 17th International Workshop on Inte-
grated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
PATMOS ’07 (Springer, Berlin, 2007), pp. 556–565

19. The gnu project, gomp – an openmp implementation for gcc. http://gcc.gnu.org/projects/gomp
20. E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.Massaioli, X. Teruel, P. Unnikrishnan,

G. Zhang, The design of openmp tasks. IEEE Trans. Parallel Distrib. Syst. 20(3), 404–418
(2009)

21. P.N. Sanda, J.W. Kellington, P. Kudva, R. Kalla, R.B. McBeth, J. Ackaret, R. Lockwood, J.
Schumann, C.R. Jones, Soft-error resilience of the ibm power6 processor. IBM J. Res. Dev.
52(3), 275–284 (2008)

22. G. Hoang, R.B. Findler, R. Joseph, Exploring circuit timing-aware language and compilation,
in Proceedings of the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, ACM, New York, NY, USA
(2011), pp. 345–356

23. E.K. Ardestani, E. Ebrahimi, G. Southern, J. Renau, Thermal-aware sampling in architectural
simulation, in Proceedings of the 2012 ACM/IEEE International Symposium on Low Power
Electronics and Design, ISLPED ’12, ACM, New York, NY, USA (2012), pp. 33–38

24. A. Marongiu, P. Burgio, L. Benini, Fast and lightweight support for nested parallelism on
cluster-based embedded many-cores, in Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2012 (2012), pp. 105–110

25. P. Burgio, G. Tagliavini, A. Marongiu, L. Benini, Enabling fine-grained openmp tasking on
tightly-coupled shared memory clusters, in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013 (2013), pp. 1504–1509

26. S.N. Agathos, V.V. Dimakopoulos, A. Mourelis, A. Papadogiannakis, Deploying openmp on
an embedded multicore accelerator, in 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII) (2013), pp. 180–187

27. O. Tahan,M. Shawky, Using dynamic task level redundancy for openmp fault tolerance, inPro-
ceedings of the 25th InternationalConference onArchitecture of Computing Systems, ARCS’12
(Springer, Berlin, 2012) pp. 25–36

28. D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, L. Benini, Virtualsoc: A full-system simu-
lation environment for massively parallel heterogeneous system-on-chip, in IPDPSWorkshops
(2013), pp. 2182–2187

29. Leon3. http://www.gaisler.com/cms/
30. P.D. Hoang, J.M. Rabaey, Scheduling of dsp programs onto multiprocessors for maximum

throughput. IEEE Trans. Signal Process. 41(6), 2225–2235 (1993)
31. V.K. Prasanna M. Lee, W. Liu, A mapping methodology for designing software task pipelines

for embedded signal processing, in Parallel and Distributed Processing (1998), pp. 937–944
32. A. Moreno, E. Cesar, A. Guevara, J. Sorribes, T. Margalef, Load balancing in homogeneous

pipeline based applications. Parallel Comput. 38(3), 125–139 (2012)

http://gcc.gnu.org/projects/gomp
http://www.gaisler.com/cms/

Chapter 8
Memristive-Based Associative Memory
for Error Recovery

Abstract Thousands of deep and wide pipelines working concurrently make
GP-GPU high power consuming parts. Energy-efficient techniques employ voltage
overscaling that increases timing sensitivity to variations and hence aggravating the
energy use issues. This chapter proposes amethod to increase spatiotemporal reuse of
computational effort by a combination of compilation and microarchitectural design
to enhance error recovery. An associative memristive memory (AMM) module is
integrated with the floating point units (FPUs) for exact computing. Together, we
enable fine-grained partitioning of values and find high-frequency sets of values for
the FPUs by searching the space of possible inputs, with the help of application-
specific profile feedback. For every kernel execution, the compiler pre-stores these
high-frequent sets of values in AMM modules—representing partial functionality
of the associated FPU—that are concurrently evaluated over two clock cycles. Our
simulation results show high hit rates with 32-entry AMMmodules that enable 36%
reduction in average energy use by the kernel codes. Compared to voltage over-
scaling, this technique enhances robustness against timing errors with 39% average
energy saving. This proposed method not only reduces energy consumption of error-
free operations but also enhances the scope of error recovery in a GP-GPU architec-
ture. It is accomplished through an ultra-low-power error recovery via computational
reuse, thus offering both scalability and low-cost self-resiliency in the face of high
timing error rates. Further, our method leverages memristor technology in the right
angle by limiting the stress of write to finite number of write operations only at the
start of kernel execution, therefore extending the lifetime of AMM modules. This
chapter enhances methods for detecting and correcting the timing errors in GP-GPUs
using memristor technology.

8.1 Introduction

The scaling of physical dimensions in semiconductor circuits opens the way to an
astonishing over 7 billion transistors on a 28nm process which gives a grand total
of 2,880 CUDA cores in recent GP-GPU chips enforcing energy efficiency as a pri-
mary concern [1]. Near-threshold computing (NTC) and supply voltage overscaling

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_8

117

118 8 Memristive-Based Associative Memory for Error Recovery

(VOS) are primary approaches to build energy-efficient circuits [2]. These techniques
achieve energy efficiency at a cost to performance. To compensate this performance
loss, microarchitectural approach [3] has been proposed to apply these low-power
techniques to single instruction multiple data (SIMD) architectures that exploit data
parallelism.

Unfortunately, technology scaling also comes with the side effect of ever-
increasing parametric variations across process, voltage, and temperature (PVT) [4],
which are expected to worsen in future technologies [5]. The most common effect
of variability is delay variation that causes circuit-level timing errors. Both NTC
and VOS exacerbate the effects of timing errors. Clearly, design methods are needed
to make a design resilient to timing errors. Low-voltage resilient technique applies
to both logic and memory blocks. For logic, Razor [6] circuit sensors have been
employed in the critical paths of the pipeline stages to reduce voltage guardbanding
close to edge-of-failure. A common strategy is to detect variability-induced delays by
sampling and comparing signals near the clock edge to detect the timing errors. The
timing errors are then corrected by a recovery mechanism [7]. This recovery process
imposes energy overhead and latency penalty of up to 28 extra recovery cycles per
error for the seven-stage integer pipeline [7].

In nonvolatile memory area, resistive RAM (ReRAM/memristor) is a promis-
ing candidate with fast write speed and low-power operation [8]. To avoid its read
disturbance challenge, reliable read operation techniques are proposed including a
process-temperature-aware dynamic bit-line bias scheme on a 4-Mb memristor fab-
ricated chip [8]. Li et al. demonstrate a 1-Mb ternary content addressable memory
(TCAM) test chip using 2-transistor/2-resistive-phase-change-storage (2T-2R) cells
[9]. It achieves >10× smaller cell size than SRAM-based TCAMs, and ensures
reliable low-voltage search operation in the presence of PVT variations, thanks to a
clocked self-referenced sensing scheme [9].

For our GP-GPU targets, floating point (FP) pipelines consume higher energy-
per-instruction than their integer counterparts and typically have high latency for
instance over 100 cycles to execute on a GP-GPU [10]. As energy becomes the
dominant design metric, aggressive VOS and NTC increase the rate of timing errors
and correspondingly the costs (in energy, performance) of the recovery mechanisms
[2, 3]. This cost is exacerbated in FPSIMDarchitectureswhere there arewide parallel
lanes with deep pipelined stages. This makes the cost of recovery per single error
quadratically more expensive relative to scalar functional units [11]. Effectively, the
energy-hungry high-latency FP pipelines are prone to inefficiencies under the timing
errors.

Parallel execution in the GP-GPU architectures provides an important ability to
reuse computation for reducing energy. This chapter exploits this opportunity to
make three main contributions:

1. We propose compiler analysis and memristive-based associative memory design
(AMM) to identify frequent redundant computations, carefully pre-store these
key computations in appropriate AMM, and reuse them to avoid re-executions.

8.1 Introduction 119

2. To enable spatiotemporal hardware reconfigurability, we tightly integrate an
AMM to every FPU in GP-GPUs. The AMM is a software programmable mod-
ule composed of a TCAM and a crossbar-based memristive memory block that
together represent the pre-stored computations as partial functionality of the asso-
ciated FPU. The AMMmodule here performs an exact matching during compar-
isons, and hence does not produce any intentional error into the program and
maintains 100% numerical correctness. The framework applies a fine-grained
value partitioning, and finds high-frequent sets of values for FPUs by searching
the space of possible inputs, with the help of application-specific profile feed-
back described in Sect. 8.3. For every kernel execution, compiler pre-stores these
high-frequency sets of values in AMM modules that are concurrently evaluated
over two clock cycles, thus creating a spatiotemporal computing model.

3. We demonstrate the effectiveness and robustness of our technique on the Ever-
green GP-GPUs. Our experimental results in Sect. 8.4 show that the AMMmod-
ules with 32-entry exhibit high hit rate that avoids redundant re-execution by
FPUs, therefore resulting in 36% reduction in average energy. Moreover, given
that the AMMmodules have ample time margins, upon a hit event the likelihood
of error recovery is reduced that further improves the energy efficiency. This
enhances robustness in VOS scenario with frequent timing errors.

8.2 Energy-Efficient GP-GPUs

Wefocus on theEvergreen family ofAMDGP-GPUs (a.k.a. RadeonHD5000 series),
which targets general-purpose data-intensive applications. TheRadeonHD5870GP-
GPU consists of 20 compute units, a global front-end ultra-thread dispatcher, and a
crossbar to connect the memory hierarchy. Each compute unit contains a set of 16
StreamCores (SCs), i.e., 16 parallel lanes.Within a compute unit, a shared instruction
fetch unit provides the same machine instruction for all SCs to execute in a SIMD
fashion. Each SC contains five Processing Elements (PEs)—labeled X, Y, Z, W, and
T—forming an ALU engine to execute Evergreen machine instructions in a vector-
like fashion. Finally, the ALU engine has a pool of pipelined integer and FP units.
The block diagram of the architecture is shown in Fig. 8.1.

The device kernel is written in OpenCL which runs on a GP-GPU device. An
instance of the OpenCL kernel is called a work-item. Each SC is devoted to the
execution of one work-item. In the Radeon HD 5870, a wavefront is defined as the
total number of 64work-items virtually executing at the same time on a compute unit.
To manage 64 work-items in a wavefront on 16 SCs of the compute unit, a wavefront
is split into subwavefronts at the execute stage, where each subwavefront contains
as many work-items as available SCs. In other words, SCs execute the instructions
from the wavefront mapped to the SIMD unit in a 4-slot time-multiplexed manner
using the integer units and FPUs. The timemultiplexing at the cycle granularity relies
on the functional units to be fully pipelined.

120 8 Memristive-Based Associative Memory for Error Recovery

Ultra-threaded Dispatcher

Compute
Unit
(CU0)

Compute
Unit

(CU19)

L1 L1

Crossbar

Global Memory Hierarchy

SIMD Fetch Unit

Stream
Core (SC0)

Stream
Core (SC15)

Local Data Storage

Compute Device Compute Unit (CU)

B
ra

nc
h

Proc. Elements (PEs)

Stream Core (SC)

W
av

ef
ro

nt

Sc
he

du
le

r
G

P
R

eg
is

te
r

W
Z
Y
X
T

Integer Units

ADD
MUL

SQRT
FPUs

…

ALU Engine

 AMM
 AMM
 AMM

Fig. 8.1 Block diagram of the Radeon HD 5870 GP-GPU with AMM modules

Evergreen assembly code uses a clause-based format classified into three cat-
egories: ALU clause, TEX clause, and control-flow instructions. The control-flow
instructions triggering ALU clauses will be placed in the input queue at the ALU
engine. There is only one wavefront associated with the ALU engine. After fetch and
decode stages, the source operands for each instruction are read that can come from
the register file or local memory. For higher throughput, buffers are attached to SCs
to read the registers ahead of time. The core stage of a GP-GPU is the execute stage,
where arithmetic instructions are carried out in each SC. When the source operands
for all work-items in the wavefront are ready, the execution stage starts to issue the
operations into the SCs. Finally, the result of the computation is written back to the
destination operands.

8.2.1 Associative Memristive-Based Computing

In this subsection we present microarchitectural design of an associative mem-
ory module, using memristive parts, that enables partial memory-based computing
by leveraging pre-stored high-frequency computations. For every type of FPU, we
accordingly designed anAMMmodule that is tightly integrated to the FPU providing
fast local data communication. The key idea is to pre-calculate the output results of
a FPU for a partial set of input values and store them before execution on the corre-
sponding AMM module connected to the FPU. In this way, during execution when
there is a match between the input values of the FPU and the pre-calculated values,

8.2 Energy-Efficient GP-GPUs 121

the AMM module returns the pre-stored results on behalf of the FPU at extremely
lower energy cost. Therefore, the FPU avoids re-execution and saves energy. The
AMM module has a standard interface as it mimics the partial functionality of the
associated FPU: as the inputs, it accepts the input operands of the FPU, and as the
output it returns the result as well as a hit signal.

The AMM module is composed of two pipelined stages. In the first stage, a
TCAM searches the input operands and determines whether there is a match (i.e.,
hit) between the input operands and the content of TCAM. In the second stage, a
1T-1R memristive memory is used to return the pre-stored output result in case of a
match. For TCAM design, we use a memristive 2T-2R cell structure proposed in [9].
Each line in the TCAM stores one set of the frequent input operands, and each bit cell
consists of twomemristive elements to store the pattern and two access transistors, as

S
ta

ge
1

S
ta

ge
2

S
ta

ge
3

S
ta

ge
4

er
r 1

er
r 2

er
r 3

er
r 4

OP1

OP2

TC
A

M

Error Control Unit (ECU)replay

clock

QAMM

recovery

QFPU

QAMM

QPipe

0
1

errorPipe

error

R
ea

d
st

ag
e

Execution stage of FPU

W
rit

e
st

ag
e

Hit

write
signals

1T-1R
Memory

EnLs

…

…

…

…

… … … …… … … …S
e

n
s

e
 A

m
p

s

E
nL

s

clock

MLs
E n c o d e r

OP1 OP2

1-bit

ML

…

…

…

…

…

…

…

… ……… … …

…

S e n s e A m p s

QAMM

E
nL

s

Search Line (SL)

Fig. 8.2 Execution stage of the FPU with AMM module

122 8 Memristive-Based Associative Memory for Error Recovery

shown in Fig. 8.2. To program the TCAM, the write voltages are applied on thematch
lines (ML), and access transistors of select devices are connected via the search line
(SL) to perform the write operation. In order to search the TCAM, match lines are
precharged during the precharge phasewhile all the SLs are inactive to disconnect the
access transistors. In the evaluation phase, based on the pattern-under-search, one of
two access transistors in each bit cell is ON, connecting the correspondingmemristor
to the ML. In case of a bit mismatch, ML will be connected to the ground through
a low-resistance memristive device. Thus even one bit of mismatch can quickly
discharge the ML. In case of a match for a line, the ML is not connected to the
ground because of the high-resistant memristive devices and stays at the precharged
value for a longer time, providing a clear margin. A clocked self-referenced sensing
scheme as well a 2-bit encoding is also applied to further increase the noise margin
[9], and provide digital match/mismatch outputs that are fed to the next stage as the
enable lines (EnL) which display a one-hot encoding; therefore, the hit signal is the
logical OR of EnLs.

In case of a match, the hit signal alongside with the previously computed result
(QAMM) are propagated toward the end of the pipeline. TCAM raises the hit signal
that squashes the remaining stages of the FPU to avoid the redundant computation
by clock-gating; the clock-gating signal is forwarded to the rest of FPU stages,
cycle by cycle. Given that the first stage of the FPU is concurrently working with
TCAM, considerable energy is saved by spontaneously clock-gating the remaining
stages. Instead, the pre-stored result is read from thememristivememory at negligible
energy cost. Figure8.2 shows the structure of such 1T-1R memory that is used to
store the output patterns. To program the memory, write voltage is applied on the
bit-lines, while the enable lines are used to select the target cell. For read operation,
the enable lines are derived by the EnL values of TCAM, thus either none or only
one of the enable lines are active at any given clock cycle, connecting a memristive
cell to the bit-line. The bit-lines that are precharged during a precharge phase will
discharge/remain charged based on the resistance of the connected memristive cell.
The same sense circuitry as TCAM is utilized to enhance the noise margins and read
the value. The stored value is then propagated toward the end of pipeline for the
reuse purpose. The hit signal selects the propagated output of the memory (QAMM)
as the output of the pipeline; further, it disables the propagation of timing error signal
(if any) occurred during execution of any FPU stages to the ECU, thus avoids the
recovery penalty. In case of a TCAM miss, the FPU works normally, and its result
(QFPU) is selected as the pipeline output.

8.3 Collaborative Compilation

We briefly describe proposed collaborative compiler analysis followed by an eval-
uation of how memristive-based computing can increase the energy efficiency of
GP-GPUs. Figure8.3 illustrates the collaborative compilation flow. In the profiling
stage, we have an OpenCL kernel with a training input dataset. We focus on the indi-

8.3 Collaborative Compilation 123

Kernel Functional Evergreen
Simulator

Training
datasets

High-frequent
computations

Customized clCreateBuffer to
insert AMM contents

FPU AMM

Kernel AMM
contents

P
rofiling

1) programming 2) lunching kernel

C
ode generation

R
untim

e

Fig. 8.3 Collaborative compilation framework and memristive-based computing flow

vidual FPUs to observe the dispersion of the input operands at the finest granularity.
To expose high-frequent set of operands for each FP operation, we individually pro-
file every type of FP operation and keep the distinct sets of the input operands and the
related result. The kernel is instrumented on the Evergreen functional simulator—
this can also be done by proper emission of instrumentation APIs in the naive kernel
code. The output of this stage for every FP operation is high-frequent computations:
a list of top sets of values, i.e., the operands and the related result, which are sorted
based on their frequency of occurrence. This profiling stage is a one-off activity
whose cost is amortized across all future usage of the kernel.

In the next step, the compiler generates codes to store a subset of these high-
frequent computations as the content of AMM modules. To do so, the compiler
leverages AMD compute abstraction layer (CAL) APIs that facilitate programming
AMM modules that are addressable by software. CAL provides a runtime device
driver library that supports code generation, kernel loading, and execution, and allows
the host program to interact with the stream cores at the lowest level. Right before
lunching kernel execution, compiler inserts codes for programming AMM modules:
for every type of FP operation executed during the kernel, a custom version of “clCre-
ateBuffer” writes the AMMcontents (up to few hundred bytes) to the AMMmodules
accordingly. In this way, we concurrently program all AMM modules integrated to
a type of FPU across all PEs in GP-GPUs since their content is equivalent.

124 8 Memristive-Based Associative Memory for Error Recovery

8.3.1 FPU Memristive-Based Computing

We evaluate the memristive-based computing at the fine-grained instruction-level
across all types of the FPUs activated during the execution of two kernels: Sobel
filter from image processing applications and Haar wavelet transform from signal
processing applications—more kernels are evaluated in Sect. 8.4.2. Figure8.4 shows
the train and test images for Sobel filter. To identify the high-frequent computations,
the compiler profiles Sobel kernel with the train input image. Four types of FP oper-
ations, including addition, multiplication, square root, and multiplication–addition,
are activated during the kernel execution; profiler sorts each type and stores top-32
sets with highest frequency of occurrence as AMM contents. Later, for the consec-
utive kernel executions, the compiler first programs the AMM modules with the

train test1

test2

test3

test4

Fig. 8.4 Train and test images for Sobel filter

0

10

20

30

40

50

60

ADD MUL SQRT MULADD

A
M

M
 h

it
ra

te
 fo

r S
ob

el
 (%

)

test1
test2
test3
test4

0

10

20

30

40

50

60

ADD MUL

A
M

M
 h

it
ra

te
 fo

r H
aa

r (
%

)

corr(train,test)=0.18
corr(train,test)=0.24
corr(train,test)=0.29
corr(train,test)=0.34
corr(train,test)=0.40
corr(train,test)=0.45

Fig. 8.5 AMM (32-line) hit rates for (i) Sobel with the test images; (ii) Haar with various signals

8.3 Collaborative Compilation 125

stored AMM contents, and then starts kernel execution. Figure8.5 shows the AMM
hit rates for the activated FP operations during Sobel execution with the test images.
As shown, the hit rate depends on the FPU operations, but all AMMmodules display
a hit rate of greater than 25% with a tiny TCAM of 32 lines. The AMM modules
for MUL and SQRT exhibit a significant hit rate of up to 49 and 35%, respectively.
Overall, an average hit rate of 25, 46, 31, and 31% is observed for ADD, MUL,
SQRT, and MULADD, respectively. This means a significant number of operands
are matched with the stored computation in the AMM modules, and therefore there
is no need for re-executing those values.

To evaluateHaar kernel, we use a random signal as the training input and then six
different signals having various correlations with the trained input signal. Figure8.5
shows that the AMM modules display a hit rate in the range of 7–11% for ADD,
and 39–41% for MUL. We also evaluate the tradeoff between the hit rate and energy
when the AMMs utilizing larger TCAM and memory with 64, 128, and 256 lines.
The hit rate of the kernels increases less than 10% when the number of lines is
increased from 32 to 256. On the other hand, the AMMs with 32-line display higher
energy efficiency (7× higher hit rate per power compared to the AMMs with 256
lines). Therefore, we have used the AMMswith 32-line for our proposed framework,
and we also measured its energy efficiency in Sect. 8.4.2. Please note that the AMM
content per each kernel occupies few kilobytes, for instance 32 × 48 = 1.5KB for
Sobel, and 32 × 24 = 0.75KB for Haar.

8.4 Experimental Results

Our methodology uses the AMD Evergreen GP-GPUs, but can be applied to other
GP-GPUs as well. We have selected applications from AMD APP SDK v2.5 [12]
in OpenCL. We have examined three image processing filters: Sobel, Gaussian, and
URNG; as well as one-dimensional Haar wavelet transform, FastWalsh transform,
Prefixsum, and Eigenvalues of a symmetric matrix. Multi2Sim [13], a cycle-accurate
CPU–GPU simulation framework, is used for profiling. The naive binaries of the
kernels are run on the simulator; the input values for the kernels are generated by
the default OpenCL host program. We analyzed the effectiveness of the proposed
technique in the presence of timing errors and VOS in TSMC 45 nm.

8.4.1 FPUs with AMMModules

Since the fetch and decode stages display a low criticality [14], we focus on the
execution stage consisting of six frequently exercised FPUs: ADD, MUL, SQRT,
RECIP, MULADD, and FP2FIX. On Evergreen, every ALU functional unit has a
latency of four cycles and a throughput of one instruction per cycle [15]. Therefore,
VHDL codes of the FPUs are generated and optimized using FloPoCo [16]—an

126 8 Memristive-Based Associative Memory for Error Recovery

Table 8.1 Energy(pJ) comparison of the FPUs with corresponding AMMs

ADD MUL SQRT RECIP MADD F2FIX

FPU 5.81 12.76 16.92 30 21.21 3.04

AMM 1.66 1.66 1.30 1.30 1.99 1.30

arithmetic synthesizable FP core generator. To achieve a balanced clock frequency
across the FP pipelines, the RECIP has a latency of 16 cycles, while the rest of the
FPU have four cycles latency.

The FPUs are synthesized andmapped using the TSMC45-nm technology library.
The front-end flow has been performed using Synopsys Design Compiler with the
topographical features, while Synopsys IC Compiler has been used for the back-end.
The design has been optimized for a signoff clock period of 2ns at (SS/0.81V/125 ◦C),
and then optimized for power. The AMM module has different sizes based on the
type of FPU, and its TCAM has 32 × 32 for SQRT, RECIP, and FP2FIX; 32 × 64
for ADD, and MUL; 32 × 96 for MULADD. The transistor-level CMOS circuitry
is implemented and then SPICE simulations are done using Cadence Virtuoso. For
line resistances and capacitances, the same model and numbers used in [17] were
assumed. The memristor models are having 250K Ron and 100M Roff, and are
based on the fabricated memristors in [18]. To integrate the resilient architecture,
the AMM modules are integrated into the FPUs pipelines with the multiple-issue
recovery mechanism [7].

Table8.1 summarizes the power results of FPUs andAMMs’ implementations. As
shown, integration of FPUs with AMMs incurs negligible overhead and it is entirely
paid off by the power saving due to the frequent clock-gating of the FPUs during
the hit events that results into even higher energy efficiency detailed in the following
subsection. We note that the overhead will be further reduced for deeper pipelines.
The AMM module does not limit the clock frequency as it has a positive slack of
300ps.

8.4.2 Energy Saving

We measure the overall AMM modules’ hit rates for the image processing filters
using two datasets: dataset1 which is a relatively small dataset of ∼400 face images
[19]; dataset2 which a large 2,000Web faces [20]. For profiling, we have used only 20
random images from dataset1 as the training inputs. Figure8.6 shows the worst, the
best, and average hit rates for the two datasets. The best hit rate of 84% is observed
during Sobel execution for one of the images in dataset2. As shown, for every filter,
the average hit rate is almost equal across the two different datasets: 38 or 36% for
URNG, 22 or 24% for Gaussian, and 34% for Sobel. The worst hit rate is 13% that
Gaussianfilter experienced in one of the images in the large dataset2, guaranteeing the

8.4 Experimental Results 127

0

20

40

60

80

100

Sobel Gaussian URNG Sobel Gaussian URNG

O
ve

ra
ll

AM
M

s h
it

ra
te

 (%
) dataset1 dataset2

Fig. 8.6 Overall AMM hit rates for test datasets: dataset1 [19], dataset2 [20]

absence of a poor locality in real-life datasets. It therefore confirms the applicability of
profiling for the associative memory-based computing. The proposed optimization
framework is based on either profiling or designer knowledge (provided from a
domain expert). We should note that the profiling is a common technique used for
runtime optimizations [21].

We evaluate the energy saving of our proposed architecture with a baseline archi-
tecture that utilizes recent resilient techniques: Razor error detection [6], and the
scalable recovery mechanism of the multiple-issue instruction replay [7] adapted
for the FPUs. Our architecture (FPUs + AMMs) superposes the AMM modules on
the baseline architecture. Figure8.7 illustrates the energy consumption of the two
architectures at different voltage points for each kernel. At the nominal voltage of
1.0V, where there is no timing errors, the proposed architecture with AMM mod-
ules achieves 36% better energy efficiency across all the kernels, thanks to the high
hit rates in the AMMs. This is accomplished through the appropriate coupling of
the memristive-based computing and value prediction that is extended to GP-GPU
architectures.

We also assess the efficacy of the proposed architecture in the VOS regime while
clocking at constant speed. To do so, the voltage of FPUs is scaled down in the
range of 1.0–0.88V. To ensure always correct functionality of the AMM modules,
we maintain their operating voltage at the fixed nominal 1.0V. We employ voltage
scaling feature of Synopsys PrimeTime to analyze the delay variations under the
voltage overscaling. Then, the voltage overscaling-induced delay is back annotated
to the post-layout simulation which is coupled with Multi2Sim simulator to quantify
the timing error rate. The baseline architecture triggers the recoverymechanismwhen
any voltage overscaling-induced timing error occurs, while our proposed architecture
does it in case of simultaneous events of the error and the AMM miss.

At the nominal voltage of 1.0V,without any timing error, the proposed architecture
reaches up to 76% energy saving for FastWalsh. The proposed architecture also
exhibits a great potential of survival in the VOS regime. Scaling down the voltage
below 0.92V for the FPUs causes abrupt increasing of the error rate and therefore
these units incur frequent recovery cycles. Our implementation excludes the fact

128 8 Memristive-Based Associative Memory for Error Recovery

0

500

1000

1500

2000

2500

3000

3500

4000

0.88 0.90 0.92 0.94 0.96 0.98 1.00

En
er

gy
 (μ

J)

Voltage (V)

Sobel

Eigenvalue

0

20

40

60

80

100

120

0.88 0.90 0.92 0.94 0.96 0.98 1.00

Voltage (V)

Gaussian

URNG

0

20

40

60

80

100

120

140

160

0.88 0.90 0.92 0.94 0.96 0.98 1.00

Voltage (V)

Prefixsum

FastWalsh

x FPUs FPUs+AMMs

Harr

En
er

gy
 (μ

J)
En

er
gy

 (μ
J)

Fig. 8.7 Total energy consumption of proposed architecture with AMMmodules (FPUs+AMMs)
in comparison with the baseline architecture (FPUs) under VOS

that the AMM module may produce an erroneous result, because the module has a
positive slack of 300ps and always works at the nominal voltage proving sufficient
guardband. Therefore, it is unlikely for AMM modules to face any timing errors. In
the voltage range of 0.92–0.88V, the kernels face 10–38% error rate in the baseline
architecturewhich is further reduced to a rangeof 3–24%in theproposed architecture.
The proposed architecture consumes a little bit more energy till 0.88V because of the

8.4 Experimental Results 129

errors that are not masked by our AMMmodules; it reaches an average energy saving
of 39% at voltage of 0.88V. This is accomplished through the efficient timing error
recovery by associative memristive-based modules that do not impose any penalty
as opposed to the baseline recovery.

8.5 Chapter Summary

This chapter proposes static compiler analysis and coordinated microarchitectural
design that enable efficient reuse of computations in GP-GPUs. The proposed tech-
niquemakes use of emerging associativememristivemodules connectedwith floating
point units that enables spatial and temporal computational reuse. Fast and efficient
accesses to the pre-stored computation are guaranteed by carefully placing these key
values in tightly coupled associative memory modules. The GP-GPU kernels exhibit
a low entropy that is high contextual information, yielding up to 84% hit rate on the
32-entry AMMs with an average energy saving of 36%. Our proposed framework
also enhances robustness and energy saving in the VOS regime by avoiding con-
ventional timing error recovery costs. This technique highly surpasses the baseline
architecture by an average energy saving of 39%.

References

1. Whitepaper. NVIDIAs next generation CUDATM compute architecture: Kepler TM GK110
(2012)

2. D. Jeon, M. Seok, Z. Zhang, D. Blaauw, D. Sylvester, Design methodology for voltage-
overscaled ultra-low-power systems. IEEE Trans. Circuits Syst. II Express Briefs, 59(12),
952–956 (2012)

3. R. Pawlowski, E. Krimer, J. Crop, J. Postman, N.Moezzi-Madani,M. Erez, P. Chiang, A 530mv
10-lane SIMD processor with variation resiliency in 45nm SOI, in 2012 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 492–494

4. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, Parameter variations and
impact on circuits and microarchitecture, in Proceedings of Design Automation Conference,
2003 (2003), pp. 338–342

5. The ITRS website. http://www.itrs.net/Links/2011ITRS/Home2011.htm
6. S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, T. Mudge, A self-tuning

DVS processor using delay-error detection and correction. IEEE J. Solid-State Circuits, 41(4),
792–804 (2006)

7. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B.Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Solid-State Circuits 46(1), 194–208 (2011)

8. M.-F. Chang, S.-S. Sheu, K.-F. Lin, C.-W. Wu, C.-C. Kuo, P.-F. Chiu, Y.-S. Yang, Y.-S. Chen,
H.-Y. Lee, C.-H. Lien, F.T. Chen, K.-L. Su, T.-K. Ku, M.-J. Kao, M.-J. Tsai, A high-speed 7.2-
ns read-write random access 4-mb embedded resistive RAM (ReRAM) macro using process-
variation-tolerant current-mode read schemes. IEEE J. Solid-State Circuits 48(3), 878–891
(2013)

http://www.itrs.net/Links/2011ITRS/Home2011.htm

130 8 Memristive-Based Associative Memory for Error Recovery

9. J. Li, R.K.Montoye,M. Ishii, L.Chang, 1Mb 0.41µm2 2T-2R cell nonvolatile TCAMwith two-
bit encoding and clocked self-referenced sensing. IEEE J. Solid-State Circuits 49(4), 896–907
(2014)

10. Micro-benchmarking the GT200 GPU. Technical report, Computer Group, ECE, University of
Toronto

11. A. Rahimi, L. Benini, R.K. Gupta, Temporal memoization for energy-efficient timing error
recovery in GPGPUs, in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014 (2014), pp. 1–6

12. AMD APP SDK v2.5. http://www.amd.com/stream
13. Multi2Sim: a heterogeneous system simulator. https://www.multi2sim.org/
14. A. Rahimi, L. Benini, R.K. Gupta, Analysis of instruction-level vulnerability to dynamic volt-

age and temperature variations, in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012 (2012), pp. 1102–1105

15. AMD evergreen family instruction set architecture (2011)
16. Flopoco: floating-point cores generator. http://flopoco.gforge.inria.fr/
17. A. Ghofrani, M.A. Lastras-Montano, K.-T. Cheng, Towards data reliable crossbar-based mem-

ristive memories, in 2013 IEEE International Test Conference (ITC) (2013), pp. 1–10
18. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, L. Wei, A

functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic
applications. Nano Lett. 12(1), 389–395 (2012) (PMID: 22141918)

19. Caltech 101 dataset. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
20. Caltech 10K web faces dataset. http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_

WebFaces/
21. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose

approximate programs, in 2012 45th Annual IEEE/ACM International Symposium onMicroar-
chitecture (MICRO) (2012), pp. 449–460

http://www.amd.com/stream
https://www.multi2sim.org/
http://flopoco.gforge.inria.fr/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/

Part III
Accepting Errors

In this part, we describe new methods that have a relaxed behaviour toward the tim-
ing error handling. The methods presented in the previous parts strive to achieve
instruction executions exactly as specified by the application programs. In contrast,
probabilistic or approximate programs can exhibit enhanced error resilience for appli-
cationswhenmultiple valid output values are permitted.Conceptually, such programs
have ‘elastic outputs’, and if execution is not 100% numerically correct, the program
can still appear to execute correctly from the user’s perspective. Programs with elas-
tic outputs have application-dependent fidelity metrics, such as peak signal to noise
ratio, associated with them to measure the quality of the computational result. The
degradation of output quality for such applications is acceptable if the fidelitymetrics
satisfy a certain threshold. This provides an opportunity for ignoring the effect of
timing errors as long as such errors do not lead to program failures, crashes, or hangs.
Table 5 illustrates these techniques with spacial emphasis on application/algorithm,
architecture, and circuit levels.

This part explores the possibility and consequences of accepting errors, or what
is called “approximate computing” paradigm [138, 134]. In other words, we seek
ways for continued operation of a computer system even in the presence of errors. In
Chap. 9, we propose programming and runtime environment to support controlled
approximate computing in tightly-coupled shared-memory processor clusters. It pro-
vides OpenMP extensions as custom directives for floating-point computations to
specify parts of a program that can be executed “approximately”. Using the notions
of approximate and exact computing, we have built a compiler and architecture envi-
ronment to use approximate computations in a user- or algorithmically-controlled
fashion. This is achieved via design-time profiling, synthesis, and optimization in
conjunction with runtime characterization techniques. This approach eliminates the
cost of error correction for specific annotated regions of code if and only if the propa-
gated error significance and error ratemeet application-specific constraints on quality
of output. At design-time, these code regions are profiled to identify acceptable error
significance and error rate. This application-specific information drives optimizations
for approximate hardware synthesis of floating-point units. At runtime, as different
sequences of OpenMP directives are dynamically encountered during program exe-

http://dx.doi.org/10.1007/978-3-319-53768-9_9

132 Part III: Accepting Errors

cution, the scheduler promotes the floating-point unit to exact mode, or demotes
them to approximate mode depending upon the code region requirements. In addi-
tion, in Chap. 10, we also explore purely software transformation methods to unleash
untapped capabilities of the contemporary fabrics for exploiting approximate com-
puting. Exploiting this opportunity is particularly important for field-programmable
gate array (FPGA) accelerators that are inherently subject to many resource con-
straints. To better utilize the FPGA resources, we develop an automated design
workflow for FPGA accelerators that leverages approximate computation to increase
data-level parallelism and achieve higher computational throughput.

As a follow up to our earlier use of memristive associative memory modules to
reduce the cost of error recovery and speed up computations, we also seek its use in
approximate computing in Chap. 11. These memristive modules provide an average
energy saving of 32% by operating at low-voltages and approximately recalling the
frequent computations, hence avoiding re-executions. The modules accept a Ham-
ming distance range of 0-2 during approximate matches that leads to a controllable
approximate computing suitable for GPU applications.

GPGPUs execute workload in SIMD fashion with high utilization. We show in
Chap. 12, parallel execution in such SIMDarchitectures provides an important ability
to reuse computation (i.e., spatial and temporal memoization).

We conclude with an outlook for the emerging field in Chap. 13.

http://dx.doi.org/10.1007/978-3-319-53768-9_10
http://dx.doi.org/10.1007/978-3-319-53768-9_11
http://dx.doi.org/10.1007/978-3-319-53768-9_12
http://dx.doi.org/10.1007/978-3-319-53768-9_13

Chapter 9
Accuracy-Configurable OpenMP

Abstract We propose an OpenMP programming environment for fine-grained
approximate computing on multi-core cluster architecture with shared and accuracy-
reconfigurable floating-point units (FPUs). This shared-FPUs cluster dynamically
characterize FP pipeline vulnerability (FPV) and expose it as metadata to a soft-
ware scheduler for reducing the cost of error correction. To further reduce this cost,
our programming, and runtime environment also supports controlled approximate
computation through a combination of design-time and runtime techniques. We pro-
vide OpenMP extensions (as custom directives) for FP computations to specify parts
of a program that can be executed approximately. We use a profiling technique to
identify tolerable error significance and error rate thresholds in error-tolerant image
processing applications. This information further guides an application-driven hard-
ware FPU synthesis and optimization design flow to generate efficient FPUs. At
runtime, the scheduler utilizes FPV metadata and promotes FPUs to accurate mode,
or demotes them to approximatemode depending upon the code region requirements.
We demonstrate the effectiveness of our approach (in terms of energy savings) on
a 16-core tightly coupled cluster with eight shared-FPUs for both error-tolerant and
general-purpose error-intolerant applications. This chapter provides a method for
accepting errors in tightly coupled processor clusters with shared FPUs.

9.1 Introduction

The cost of error recovery mechanisms is high in the face of frequent timing errors
in aggressive voltage down-scaling and near-threshold computation in an attempt to
save power [1, 2]. This cost is exacerbated in floating-point (FP) pipelined architec-
tures because FP pipelines typically have high latency, e.g., up to 32 cycles to execute
depending upon the type and precision on an ARM Cortex-A9, and higher energy-
per-instruction costs than their integer counterparts. Further, deeper pipelines induce
higher pipeline latency and higher cost of recovery through flushing and replaying.
These energy-hungry high-latency pipelines are prone to inefficiencies under timing
errors because the number of recovery cycles per error is increased at least linearly
with the pipeline length. More importantly, FP pipelines are often shared among

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_9

133

134 9 Accuracy-Configurable OpenMP

cores due to their large area and power cost. For instance, the AMD Bulldozer archi-
tecture shares a floating-point unit (FPU) between a dual-clustered integer core, with
four pipelines. UltraSPARC T1 also has a shared-FPU between eight cores. This
makes the cost of recovery even more pronounced for a cluster of tightly coupled
processors utilizing shared resources.

We present techniques to enhance OpenMP and the shared-memory architecture
to support approximate computing. Our goal is to reduce the cost of a resilient
FP environment which is dominated by the error correction. Tolerance to error in
execution is often a property of the application: some applications, or their parts, are
tolerant to errors (notably, media processing applications), while some other parts
must be executed exactly as specified. We either explicitly accept the timing errors –
if possible – in a fully controlled manner to avoid undefined behavior of programs;
or we try to reduce the frequency of timing errors by assigning computations to
appropriate pipelines with lower vulnerability. Accordingly, this chapter makes three
contributions:

1. We propose a set of accuracy-reconfigurable FPUs that are resistant to variation-
induced timing errors and shared among tightly coupled processors in a cluster.
This resilient shared-FPUs architecture supports online timing error detection,
correction, and characterization. We introduce the notion of FP pipeline vulner-
ability (FPV), captured as metadata, to expose variability and its effects to a
software scheduler for reducing the cost of error correction. A runtime ranking
scheduler utilizes the FPV metadata to identify the most suitable FPUs for the
required computation accuracy for the minimum timing error rate.

2. Using the notions of approximate and accurate computations, we describe a com-
piler and architecture environment to use approximate computations in a user-
or algorithmically controlled fashion. This is achieved via design-time profiling,
synthesis, and optimization in conjunction with runtime characterization tech-
niques. This approach eliminates the cost of error correction for specific annotated
approximate regions of code if and only if the propagated error significance and
error rate meet application-specific constraints on quality of output. For error-
tolerant applications our OpenMP extensions specify parts of a program that can
be executed approximately, thus providing a new degree of scheduling flexibility
and error resilience. At design-time, code regions are profiled to identify accept-
able error significance and error rate. This information drives synthesis of an
application-driven hardware FPU. At runtime, as different sequences of OpenMP
directives are dynamically encountered during program execution, the scheduler
promotes FPUs to accurate mode, or demotes them to approximate mode depend-
ing upon the code region requirements.

3. Our approach enables efficient execution of finely interleaved approximate and
accurate operations enforced by various computational accuracy demands within
and across applications. We demonstrate the effectiveness of our approach on
a 16-core tightly coupled cluster in the presence of timing errors. For general-
purpose error-intolerant application, our approach reduces the recovery cycles
that yield an average energy saving of 22% (and up to 28%), compared to the

9.1 Introduction 135

worst-case design. For error-tolerant image processing applications with anno-
tated approximate directives, 36% energy saving is achieved while maintaining
acceptable quality degradation.

9.2 Controlled Approximation

Approximate computation leverages the inherent tolerance of some (type of) appli-
cations within certain error bounds that are acceptable to the end application. Two
metrics have been previously proposed to quantify tolerance to errors [3]: error rate
and error significance. The error rate is the percentage of cycles in which the com-
puted value of a FPoperation is different from the correct value. The error significance
is the numerical difference between the correct and the computed results.

Disciplined approximated programming allows programmers to identify parts of
a program for approximate computation [4]. This is commonly found in applications
in vision, machine learning, data analysis, and computer games. Conceptually, such
programs have a vector of ‘elastic outputs’ than a singular correct answer. Within
the range of acceptable outputs, the program can still appear to execute correctly
from the user’s perspective [4–6] even if the individual computations are not exact.
Programs with elastic outputs have application-dependent fidelity metrics, such as
peak signal to noise ratio (PSNR), associated with them to characterize the quality
of the computational result. The degradation of output quality for such applications
is acceptable if the fidelity metrics satisfy a certain threshold. For example, in mul-
timedia applications the quality of the output can be degraded but acceptable within
the constraints of PSNR ≥30dB.

The timing error must be controllable because it could occur anytime and any-
where in the circuit. Therefore, three conditions must be satisfied to ensure that it is
safe not to correct a timing error when approximating the associated computation:

1. The error significance is controllable and below a given threshold;
2. The error rate is controllable and below a given error rate threshold;
3. There is a region of the program that can produce an acceptable fidelity metric

by tolerating the uncorrected, thus propagated, errors with the above-mentioned
properties.

These conditions can be satisfied either through a set of profiling phases, or a set
of threshold values specified by a domain expert via application knowledge. As we
will detail in Sect. 9.4.1.2, the output information of our profiling phase is a set of
threshold values that guarantee an acceptable fidelitymetric. Any timing error greater
than the set of thresholds triggers the recovery mechanism during the approximate
operation to avoid unacceptable accuracy and undefined program behavior (e.g.,
in case of data-dependent control-flow), therefore guaranteeing a safe approximate
computation.

136 9 Accuracy-Configurable OpenMP

In the following sections, we describe howwe use these rules in OpenMP environ-
ment to ensure that approximate computations always deliver the required accuracy,
and how they can be used for efficient hardware FPU synthesis and optimizations.

9.3 Accuracy-Configurable OpenMP Environment

9.3.1 Accuracy-Configurable FPUs

We extend the baseline cluster architecture with our resilient shared-FPUs. Similar to
theDMA, our FPUdesign is also controlled viamemory-mapped registers, accessible
through a slave port on the peripheral interconnect. As shown in the rightmost part
of Fig. 9.1, the FPU has three pipeline blocks which work in parallel. Each pipeline’s
inputs and outputs are retrieved from a minimal register file (one register file per
pipeline to allow for parallel execution). For each pipeline there is a write-only
opmode register that determines whether the current operation is accurate (i.e., exact)
or approximate. Every pipeline block has two dynamically reconfigurable operating
modes: (i) accurate, and (ii) approximate. To ensure 100% timing correctness in the
accurate mode, every pipeline uses the EDS sensors as well as the ECU to detect and
correct any timing errors. During the accurate operation if a timing error is detected,
the EDS circuits prevent pipeline from writing results to the register and thus avoid
corrupting the architectural state. To recover the errant operation, the ECU adopts
the multiple-issue operation replay mechanism [7].

In the approximate mode, the pipeline simply disables the EDS sensors on the
less significant N bits of the fraction. The sign and the exponent bits are always
protected by EDS. This allows the pipeline to ignore any timing error below the less
significant N bits of the fraction and save on the recovery cost. We only disable the
error detection circuits partially onN bits of the fraction. This enables the FP pipeline

Fig. 9.1 Variability-aware cluster architecture with accuracy-configurable FPUs

9.3 Accuracy-Configurable OpenMP Environment 137

for executing the subsequent accurate or approximate software blocks without any
problem in power retention. Further, this ensures that the error significance threshold
is always met, but limits the use of the recovery mechanism to those cases where the
error is present on the most significant bits. To characterize vulnerability of every
FP pipeline to the timing error, we use FPV which is defined as the percentage of
cycles in which a timing error occurs on the pipeline reported by the EDS sensors.
To compute FPV, the ECU dynamically characterizes this per-pipeline metric over
a programmable sampling period. The characterized FPV of each pipeline is visible
to the software through the memory-mapped registers. Thus, the runtime scheduler
leverages this characterized information for better utilization of FP pipelines, for
example, it can assign fewer operations to a pipeline with higher FPV metadata. The
runtime scheduler can also demote an error-prone pipeline to the approximate mode.

9.3.2 OpenMP Compiler Extension for Approximation

We provide two custom directives to OpenMP to identify approximate or accurate
computations with an arbitrary granularity determined by the size of the structured
block enclosed by the two custom directives:

#pragma omp accurate

structured-block

#pragma omp approximate [clause]

structured-block

The approximate directive allows the programmer to specify the tolerated error
for the specific computation through an additional clause:

error_significance_threshold (<value N>)

The error is specified as the least significant N bits of the fraction. By default, if
the programmer does not specify an error significance threshold, it is assumed zero-
tolerance (i.e., the approximate directive behaves as the accurate). By using
this clause the approximate structured blocks have deterministic fully predictive
semantics: the maximum error significance for every FP instruction of the structured
block is bound below the less significantN bits of the fraction.Moreover, any approx-
imate instruction cannot modify any register other than its own. Let us consider the
code snippet for Gaussian filter in Fig. 9.2.

Here, the programmer has indicated the whole parallel block as the accurate
computation, with the exception of the FP multiplication and accumulation of the
input data. These two operations are annotated for the approximate computation with
a tolerance threshold of less significant 20 bits of the fraction derived from a profiling
stage. We use a profiling technique [8] to identify tolerable error significance and

138 9 Accuracy-Configurable OpenMP

Fig. 9.2 Code snippet for Gaussian filter utilizing OpenMP approximation directives

error rate thresholds in error-tolerant image processing applications. The compiler
transforms the blocks to appropriate API calls implemented through the runtime
library.

9.3.3 Runtime Support

The runtime library is a software layer that lies between the variation-tolerant shared-
FPU architecture and the compiler-transformed OpenMP program. The goal of
our runtime scheduler is to inspect the status of the FPUs and allocate them to
approximate or accurate software blocks to reduce the overall cost of timing
error correction. This is accomplished in a twofold manner: (i) the runtime scheduler
reduces the number of recovery cycles for accurate blocks by favoring utilization of
FPUs with a lower FPV, thus lower the error rate and energy; (ii) the scheduler fur-
ther reduces the cost of error correction by deliberately propagating the error toward
the program, thus excluding the correction cost. The latter guarantees the quality of
service for approximate blocks by demoting FPUs to the approximate mode for

9.3 Accuracy-Configurable OpenMP Environment 139

Fig. 9.3 RANK scheduling based on FPV ranks

ignoring errors that match the tolerance expressed via the error significance threshold
clause.

To allow for quick selection of best suited units for the accuracy target at hand,
our scheduler ranks all the individual pipelines based on their FPV. The scheduler
traverses the sorted list, starting from the head, until it finds an available pipeline.
Once the target FP pipeline has been identified, it is configured to the desired oper-
ation mode on-the-fly, and a handler is returned to the program for offloading the
consecutive FP instruction. Using this, for every type of FP operations the ranking
algorithm tries to highly utilize those pipelines with a lower FPV (and rarely allocate
operations to the pipelines at the end of list), thus the aggregate recovery cycles for
execution of FP operations will be reduced. Figure9.3 illustrates the ranking algo-
rithm (RANK). For the approximate operations, in case of specifying an error rate
threshold the scheduler limits its search to a certain element of the sorted list, e.g.,
until the Kth pipeline in Fig. 9.3.

As soon as the scheduler finds a pipeline which has a higher FPV than the error
rate threshold, it marks it as the virtual end point of the list for the approximate
operations. Therefore, for the following approximate requests, the scheduler starts
from the start point of the sorted list, and traverses down toward the virtual end point
of the corresponding sorted list for finding a free pipeline.However, this virtualization
technique limits the available parallelisms discussed in the Sect. 9.4.

9.3.4 Application-Driven Hardware FPU Synthesis
and Optimization

In the earlier sections, we describe the three essential components of our variability-
aware OpenMP environment: the language directive extensions, the compiler and
runtime support, and the accuracy-configurable architecture. In this section, we intro-
duce an optional yet effective methodology to generate efficient hardware FPU. The
design flow should be done by choosing a threshold that is acceptable on a wide
class of application, and if an application cannot tolerate this type of inaccuracy,

140 9 Accuracy-Configurable OpenMP

Fig. 9.4 Methodology for
application-driven hardware
FPU synthesis and
optimization

the runtime system must reconfigure architecture to the accurate mode. We couple
the proposed methodology with the application tolerable error analysis presented
in Sect. 9.2. As we have mentioned earlier, the output information of the profiling
phase is two threshold values, i.e., the error significance threshold and the error rate
threshold, that guarantee the acceptable fidelity metric (in our case: PSNR ≥30dB).
This information is utilized during design-time flow for synthesis and optimization
of hardware FPUs; Fig. 9.4 illustrates the proposed methodology.

The error significance threshold indicates that any timing error below the bit
position of, e.g., N can be ignored since it will not induce large deviations from the
corrected value. This means for the approximate computation the only important
parts are the bit positions higher than N since any timing error on these bits have to
be corrected to guarantee the acceptable fidelity metric. Therefore, an efficient FPU
for the approximate mode should eliminate the possibility of any timing error on the
high-order bits, while relaxing this constraint on the low-order bits. At the same time
they should not be too relaxed, to avoid the generation of many errors that have to
be recovered in the accurate mode. Consequently, a set of tight timing constraints is
generated to guide the hardware synthesis and optimization flow for providing fast
paths connected to the high order bits (thus the lower delay, and the lower probability

9.3 Accuracy-Configurable OpenMP Environment 141

of timing errors). The synthesis CAD tool meets these constraints by utilizing fast
leaky standard cells (low-VT H) for the paths with the tight timing constraint, while
utilizing the regular and slow standard cells (regular-VT H and high-VT H) for the
rest of paths. As a result, the new generated hardware FPU will experience a lower
probability of the timing error on the bit positions higher thanN, at the power expense
of higher leaky cells.

We have applied the proposed methodology to optimize the netlist of the shared-
FPUs. The approximation-aware timing constraints try to deliver fast paths connected
to bit position of 20–32. As a result, the optimized shared-FPUs experience lower
timing error rate; compared to the nonoptimized shared-FPUs, the total recovery
cycles are reduced by 46 and 27% in the accurate and approximate modes, respec-
tively. On the other hand, the total power over-head of the optimized shared-FPUs is
16% in comparison with the nonoptimized shared-FPUs (19% overhead in leakage
power). However, this power overhead is highly compensated because the optimized
shared-FPUs spend smaller number of clock cycles to compute the same amount
of work. Experimental results in Sect. 9.4.1.3 quantify the energy benefit of this
proposed methodology.

The proposed optimization methodology is based on either designer knowledge
(provided from a domain expert), or static profiling (derived from the fidelity metric
and error analysis).We should note that the static profiling is a common technique for
approximate computation analysis [9, 10]. However, our methodology takes advan-
tage of the maximum allowable error significance at design-time, while the error
detection and correction circuits embedded in FPUs are responsible to dynamically
handle any non-maskable timing error.

9.4 Experimental Results

We demonstrate our approach on an OpenMP-enabled SystemC-based virtual plat-
form for on-chipmulti-core shared-memory clusterswith hardware accelerators [11].
Table9.1 summarizes the architectural parameters. A cycle-accurate SystemCmodel
of the shared-FPUs is also integrated to the virtual platform, which enables the
variability-affected emulation. To accurately emulate the low-level device variabil-
ity on the virtual platform, we have integrated the variability-induced error models at
the level of individual FP pipelines using the instruction-level vulnerability charac-
terization methodology presented in [12]. The RTL description of shared-FPUs are
generated and optimized by FloPoCo [13], an arithmetic FP core generator of syn-
thesizable VHDL. Then, the shared-FPUs have been synthesized for TSMC 45nm
technology, the general purpose process. The front-end flow with multi VT H cells
has been performed using Synopsys Design Compiler with the topographical fea-
tures, while Synopsys IC Compiler has been used for the back-end. The design has
been typically optimized for timing to meet the signoff frequency of 625MHz at
(SS/0.81V/125 ◦C).

142 9 Accuracy-Configurable OpenMP

Table 9.1 Architectural parameters of shared-FPUs cluster

ARM v6 core 16 TCDM banks 16

I$ size(per core) 16KB TCDM latency 2 cycles

I$ line 4 words TCDM size 256KB

Latency hit 1 cycle L3 latency ≥60 cycles

Latency miss ≥59 cycles L3 size 256MB

Shared-FPUs 8 FP ADD latency 2

FP MUL latency 2 FP DIV latency 18

Next, we have analyzed the delay variability of the shared-FPUs under process
and temperature variations. First, to observe the effect of static process variation on
the eight shared-FPUs, we have analyzed how the critical paths of each pipeline are
affected due to within-die and die-to-die process parameters variation. Therefore, the
various pipelines within the FPUs experience different variability-induced delay and
thus display various error rate. During the sign-off stage, we have injected process
variation in the shared-FPUs using the variation-aware timing analysis engine of
Synopsys PrimeTime VX [14]. It utilizes process parameters and distributions of
45nm variation-aware TSMC libraries [15] derived from first-level process parame-
ters by principal component analysis. Second, to observe the effects of temperature
variations, we employ voltage-temperature scaling feature of Synopsys PrimeTime
to analyze the delay and power variations under temperature fluctuations. Finally, the
variation-induced delay is back-annotated to the post-layout simulation to quantify
the error rate of individual pipelines. For every back-annotated variation scenarios,
the FP pipelines are characterized with a representative random set of 107 inputs,
automatically generated by FloPoCo. Finally, these error rate models are integrated
to the corresponding modules in the SystemC virtual platform to emulate variability.

9.4.1 Error-Tolerant Applications

In this section, we evaluate the effectiveness of the proposed variability-aware
OpenMP environment under the process variability for the error-tolerant image
processing applications. For benchmark,we consider twowidely used image process-
ing applications as the approximate programs: Gaussian smoothing filter, and Sobel
edge detection filter.

9.4.1.1 Execution Without Approximation Directives

For the first experiments, we marked the entire program for accurate computa-
tion (#pragma omp accurate), representative of what a nonexpert program-
mer would achieve without application profiling, tuning, and code annotation. Later,

9.4 Experimental Results 143

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0.80

0.85

0.90

0.95

1.00

1.05

10×10 20×20 30×30 40×40 50×50 60×60

N
or

m
al

iz
ed

 to
ta

l e
xe

cu
tio

n
tim

e

N
or

m
al

iz
ed

 s
ha

re
d-

FP
U

s
en

er
gy

Input size

Gaussian (energy) Sobel (energy)

Fig. 9.5 Energy and execution time of RANK scheduling (normalized to RR) for accurate Gaussian
and Sobel filters

we show how these applications can benefit from the approximate code annota-
tion. We have compared the proposed ranking scheduling (RANK) with the baseline
round-robin scheduling (RR) in terms of FP energy and total execution time. The
RR algorithm assigns the FP operations to the pipelines in the order they become
available, while RANK utilizes the sorted list structure of the FPV. Figure9.5 shows
the shared-FPU energy and total execution time for the target applications for RANK
normalized to the baselineRR algorithm. Each bar (or point) indicates the normalized
shared-FPUs energy (or the total execution time) for a set of different input sizes.

As shown, the RANK algorithm achieves up to 12% lower energy for the shared-
FPU compared to RR algorithm, while the maximum timing penalty is less than 1%.
This energy saving is achieved by leveraging the characterized FPVmetadata and the
sorted list data structure that enable high utilization of those pipelines that display
lower error rates. Consequently, it reduces the total recovery cycles, and energy.
Moreover, the total timing overhead of the RANK is minimal, and the overhead for
sorting and searching among eight shared-FPUs is highly amortized. These low cost
features are accomplished through the advantages of fast TCDM, carefully placing
the key data structures in TCDM, and the low-latency logarithmic interconnection.

9.4.1.2 Profiling Error-Tolerant Applications

In this section, we present the profiling phases for producing useful threshold infor-
mation to enable approximate computation. We analyze the manifestation of a range
of error significance and error rate on the PSNR of the two image processing appli-
cations. We have annotated the approximable regions of the application codes using
the proposed OpenMP custom directives (the code snippet for the Gaussian filter is
shown in Fig. 9.2). The annotated approximate regions of both applications are only
composed of FP addition andmultiplication operations.We quantify howmuch error

144 9 Accuracy-Configurable OpenMP

0

20

40

60

80

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

PS
NR

 (d
B)

Error Significance (bit position)

R G B

PSNR=60dB PSNR=30dB

PSNR=101dB PSNR=31dB

0
20
40
60
80

100
120

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

PS
NR

 (d
B)

Error Significance (bit position)

R G B

Fig. 9.6 PSNR degradation as a function of error significance: a for Gaussian filter (top); b for
Sobel filter (bottom)

significance can be tolerated in these approximate regions, given a maximum error
rate. To do so, we have profiled the annotated approximate regions of the programs.
In a series of profiling, we have monotonically increased the error significance by
injecting the timing errors as random multiple-bit toggling up to a certain bit posi-
tion of the FP single precision representation. The position of multiple-bit toggling
is varied from 1 to 28, for a wide range of 1% error rate to 100%.

Figure9.6 illustrates results for the error rate of 100%, i.e., every addition and
multiplication operation in the FP approximate regions has an errant output depend-
ing up on the injected error significance. Figure9.6a shows the PSNR degradation of
output image of the Gaussian filter as a function of the error significance. As shown,
the three channels of RGB color space, experience similar PSNR degradations by
increasing the error significance. Figure9.6b also illustrates the similar trend for the
Sobel filter. The rightmost part of Fig. 9.6 shows that this degradation of the quality is
acceptable from the user’s perspective. In summary, the output information of these
profiling indicates that for a given error rate of 100, 50, 25% if the timing error lies
within the bit position of 0–20, 21, 22 of the fraction part, these two applications can
tolerate the timing error by delivering a PSNR of greater than 30dB. This informa-
tion is essential not only during runtime to intentionally ignore the tolerable timing
errors, but also for efficient hardware FPU synthesis and optimizations, detailed in
the following section.

Therefore, for the approximate regions of these applications, we have set the
error rate threshold to 100%, and the error significance threshold to 20 to maintain
the acceptable PSNR. By setting the threshold of the error rate to 100%, during
the runtime execution of the approximate regions all FPUs can be utilized. This is
important in data-parallelized image applications where there is enough parallelism,

9.4 Experimental Results 145

and especially so when the number of FPUs is lower than the number of the cores
and any time-multiplexing might incur performance degradation.

9.4.1.3 Execution with Approximation Directives

Now, let us quantify the benefit of the approximate computation using the information
of the profiling. Since the RANK scheduling algorithm surpasses the baseline RR
algorithm, for the rest of results we have used theRANKalgorithm.We have repeated
the experiments in Sect. 9.4.1.1, but for two variants of the applications code. In the
first version, the programs are entirely composed of the accurate FP operations,
and the in the second version the programs utilize the approximate ADD and MUL
operations in the annotated regions of code.

Figure9.7 shows the total shared-FPUs energy for these two versions of the pro-
grams with different input sizes. The first group of bars shows the energy of the
shared-FPUs for the accurate programs, while the second group of bars refers to the
approximate programs. For example, with an input size of 60×60, the shared-FPUs
consume 3.5µJ (or 4.6µJ) for the accurate Gaussian (or Sobel) program, while exe-
cution of the approximate version of the program reduces the energy to 2.8µJ (or
3.5µJ), achieving 24% (or 30%) energy saving. This energy saving is achieved by
ignoring the timing error within the bit position of 0–20 of the fraction part. The
next two bars show the energy of an optimized hardware implementation of the
shared-FPUs, discussed in the following.

To generate the efficient FPUs suitable for these applications we leveraged the
hardware FPU synthesis and optimization methodology proposed in Sect. 9.3.4.
Therefore, the application-driven timing constraints guide the CAD flow to selec-
tively optimize timing of the desired paths. Figure9.7 also shows the energy differ-
ences between the nonoptimized and optimized FPUs in the two operating modes.
On average, compared to the nonoptimized shared-FPUs, the optimized shared-FPUs
achieves 25 and 7% lower energy for the accurate and approximate modes, respec-
tively. Overall, utilization of the annotated programs with the approximate directives
on top of the optimized shared-FPUs achieves an average energy saving of 36%.

0

500

1,000

1,500
2,000

2,500

3,000

3,500

4,000

30×30 40×40 50×50 60×60

Sh
ar

ed
-F

PU
s

en
er

gy
 (

nJ
)

Input size of Gaussian filter

accurate approximate accurate (optmized) approximate (optmized)

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

30×30 40×40 50×50 60×60

Sh
ar

ed
-F

PU
s

en
er

gy
 (

nJ
)

Input size of Sobel filter

accurate approximate accurate (optmized) approximate (optmized)

Fig. 9.7 FP energy of accurate and approximate programs for nonoptimized and optimized hard-
ware shared-FPUs

146 9 Accuracy-Configurable OpenMP

9.4.2 Error-Intolerant Applications

Using the concept of configurable accuracy as discussed earlier, we now show that
the proposed variability-aware OpenMP environment not only facilitates efficient
execution of the approximate programs, but also reduces the cost of recovery for the
error-intolerant general-purpose applications. We have evaluated the effectiveness of
our proposed approach in the presence of process variability under operating temper-
ature fluctuations for five applications where we have no domain expert knowledge
about their tolerance to error: three widely used 2-D computational kernels (matrix
multiplication, matrix addition with scalar multiplication, and DCT), Monte Carlo
kernel, and image conversion kernel (HSV2RGB).

Figure9.8 shows the shared-FPUs energy saving of these applications compared
to the worst-case design. For these experiments, we consider 25% voltage overde-
signed for the baseline FPUs which can guarantee their error-free operations [4]. On
average 22% (and up to 28%) energy saving is achieved at the operating tempera-
ture of 125 ◦C, thanks to allocating the FP operations to the appropriate pipelines.
As shown, this saving is consistent (20–22% on average) across a wide tempera-
ture range (ΔT=125◦C), thanks to the online FPV metadata characterization which
reflects the latest variations, thus enabling the scheduler to react accordingly. The
lower temperature leads to a higher delay in the low-voltage region of nanometer
CMOS technologies [16], thus the higher error rate and themore energy for recovery.
Please note that after having the ranked pipelines tables on TCDM, we rarely need
to re-execute the sorting algorithm unless we sense a temperature fluctuation which
has a slow timing-constant.

We also compare our proposed environment with method presented in Truffle [4].
Truffle, as a single core architecture, duplicates all the functional units in the execution
stage. Half of them are hardwired to VddHigh (to execute the accurate operations),
while the other half operate at VddLow (to execute the approximate operations).
To have an iso-area comparison with Truffle, as it is suggested in their paper, we
assume that Truffle uses dual-voltage FPUs and changes the voltage depending on
the instruction being executed. This would also save the static power. To have a
fair comparison, we also assume that Truffle employs a fast Vdd-hopping technique

Fig. 9.8 Shared-FPUs
energy saving for the
error-intolerant applica-tions
compared to the worst-case
design

0

5

10

15

20

25

30

Monte Carlo DCT HSV2RGB Mat_Scal Mat_MultSh
ar

ed
-F

PU
s

en
er

gy
 s

av
in

g
(%

)

60 C 125 C

9.4 Experimental Results 147

Fig. 9.9 Energy comparison
with Truffle: (i) only
approximate; (ii) concurrent
approximate and accurate
applications

0

1,000

2,000

3,000

4,000

5,000

6,000

Sobel
(50î50)

Sobel
(60î60)

Gaussian
(50î50)

Gaussian
(60î60)

Gaussian+
Mat_Mult
(10î10)

Gaussian+
Mat_Mult
(15î15)

Sh
ar

ed
-F

PU
s

en
er

gy
 (n

J)

This work Truffle

to switch between VddHigh and VddLow. Among the Vdd-hopping implementation
techniques [17], Beigne et al. propose a Vdd-hopping unit with voltage transitions
less than 100ns [17, 18]. Kim et al. also propose fast on-chip voltage regulators
with transitions time of 15–20ns [18], thus we consider this transition time and
optimistically augment a latencyof 10-cycle for switchingFPUsbetween the accurate
and approximate modes. We apply Truffle limitation to our virtual plat-form cluster
to quantify its energy.

For comparison, we consider two application scenarios: (i) once the cluster is exe-
cuting only one approximate application; (ii) simultaneous execution of one approx-
imate application with one accurate application. In the former scenario, entire 16
cores of the cluster cooperatively execute one of the approximate image applica-
tions, while in the latter scenario, eight cores execute the approximate Gaussian
filter and the other eight core execute the accurate matrix multiplication, simulta-
neously. Figure9.9 compares the shared-FPUs energy of Truffle with our proposed
approachwhen executing the above two scenarios. As shown, our proposed approach
surpasses Truffle in the both applications scenarios. In the former scenario, on aver-
age, our approach saves 20% more energy compared to Truffle by reducing the
conservative voltage overdesigned for the accurate part of filters application. For the
mixed scenario of the applications, our approach saves 36%more energy, since Truf-
fle highly faces with the overhead of frequent switching between the accurate and
approximate modes which is imposed by interference of the accurate and approx-
imate operations resulting from the concurrent execution of Gaussian and matrix
multiplication applications.

9.5 Chapter Summary

We propose an OpenMP programming environment that is resilient to variability-
induced timing errors and suitable for fine-grained interleaved approximate and accu-
rate computation on shared-FPUs processor clusters. This is orchestrated through
a vertical abstraction of circuit-level variations into a high-level parallel soft-
ware execution. The OpenMP extensions help a programmer specify accurate

148 9 Accuracy-Configurable OpenMP

and approximate FP parts of a program. The underlying architecture features a set
of shared-FPUs with two sensing and actuation primitives; every FPU dynamically
senses the timing errors, characterizes its own FPV metadata, and can be configured
to operate in the approximate or accurate modes. The runtime scheduler utilizes the
sensed FPV metadata, and parsimoniously actuates depending upon the code region
requirements on the computational accuracy. These three components in the pro-
posed environment support a controlled approximation computation through various
design-time phases (applications profiling, and FPU synthesis and optimization) in
combination with runtime sensing and actuation primitives. Either the environment
deliberately ignores the otherwise expensive timing error correction in a fully con-
trolled manner, or it tries to reduce the frequency of timing errors.

For general-purpose error-intolerant applications with no domain expert knowl-
edge, our approach reduces energy up to 28%, across a wide temperature range
(ΔT=125◦C), compared to the worst-case design. For error-tolerant image process-
ing applications with the annotated approximate directives, on average, 36% energy
saving is achieved while maintaining the PSNR ≥30dB. In comparison with the
state-of-the-art architecture [4], our approach saves 36% more energy when execut-
ing finely interleaved mixture of FP operations.

References

1. M.R. Kakoee, I. Loi, L. Benini, Variation-tolerant architecture for ultra low power shared-11
processor clusters. IEEE Trans. Circuits Syst. II Express Br. 59(12), 927–931 (2012)

2. D. Jeon, M. Seok, Z. Zhang, D. Blaauw, D. Sylvester, Design methodology for voltage-
overscaled ultra-low-power systems. IEEE Trans. Circuits Syst. II Express Br. 59(12), 952–956
(2012)

3. M.A. Breuer, Intelligible test techniques to support error-tolerance, in 13th Asian Test Sympo-
sium (ATS 2004), 15–17 November 2004 (Kenting, Taiwan, 2004), pp. 386–393

4. H. Esmaeilzadeh,A. Sampson, L. Ceze, D. Burger, Architecture support for disciplined approx-
imate programming, in Proceedings of the Seventeenth International Conference on Architec-
tural Support for Programming Languages andOperating Systems, ASPLOS XVII (ACM,New
York, NY, USA, 2012), pp. 301–312

5. H. Cho, L. Leem, S. Mitra, Ersa: error resilient system architecture for probabilistic applica-
tions. IEEE Trans. Comput. Aided Des. Int. Circuits Syst. 31(4), 546–558 (2012)

6. A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, D. Grossman, Enerj: approx-
imate data types for safe and general low-power computation, in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’11 (ACM, New York, NY, USA, 2011), pp. 164–174

7. K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M.
Geuskens, C. Tokunaga, C.B.Wilkerson, T. Karnik, V.K. De, A 45 nm resilient microprocessor
core for dynamic variation tolerance. IEEE J. Sol. State Circuits 46(1), 194–208 (2011)

8. A. Rahimi, A. Marongiu, R.K. Gupta, L. Benini, A variability-aware openMP environment
for efficient execution of accuracy-configurable computation on shared-FPU processor clus-
ters, in 2013 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) (2013), pp. 1–10

9. W. Baek, T.M. Chilimbi, Green: a framework for supporting energy-conscious programming
using controlled approximation, in Proceedings of the 2010 ACM SIGPLAN Conference on

References 149

Programming Language Design and Implementation, PLDI ’10 (ACM, New York, NY, USA,
2010), pp. 198–209

10. M.S.K. Lau,K.-V. Ling,Y.-C. Chu, Energy-aware probabilisticmultiplier: Design and analysis,
inProceedings of the 2009 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, CASES ’09 (ACM, New York, NY, USA, 2009), pp. 281–290

11. P. Burgio, A. Marongiu, D. Heller, C. Chavet, P. Coussy, L. Benini, Openmp-based synergistic
parallelization and HW acceleration for on-chip shared-memory clusters, in 15th Euromicro
Conference onDigital SystemDesign, DSD 2012, Cesme, Izmir, Turkey, September 5–8 (2012),
pp. 751–758

12. A. Rahimi, L. Benini, R.K. Gupta, Analysis of instruction-level vulnerability to dynamic volt-
age and temperature variations, in Design, Automation Test in Europe Conference Exhibition
(DATE) (2012), pp. 1102–1105

13. Flopoco: Floating-point Cores Generator. http://flopoco.gforge.inria.fr/
14. PrimeTime VX User Guide, June 2011
15. TSMC 45 nm Standard Cell Library Release Note, v 120a, November 2009
16. R. Kumar, V. Kursun, Reversed temperature-dependent propagation delay characteristics in

nanometer cmos circuits. IEEE Trans. Circuits Syst. II Express Br. 53(10), 1078–1082 (2006)
17. E. Beigne, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, X.-T. Tran, A. Valentian, D.

Varreau, P. Vivet, X. Popon, H. Lebreton, An asynchronous power aware and adaptive noc
based circuit. IEEE J. Sol. State Circuits 44(4), 1167–1177 (2009)

18. W.Kim,D.M. Brooks, Gu-Y.Wei, A fully-integrated 3-level DC/DC converter for nanosecond-
scale DVS with fast shunt regulation, in IEEE International Solid-State Circuits Conference,
ISSCC 2011, Digest of Technical Papers, San Francisco, CA, USA, 20–24 February (2011),
pp. 268–270

http://flopoco.gforge.inria.fr/

Chapter 10
An Approximation Workflow for Exploiting
Data-Level Parallelism in FPGA Acceleration

Abstract Modern applications including graphics, multimedia, web search, and
data analytics not only can benefit from acceleration, but also exhibit significant
degrees of tolerance to imprecise computation. This amenability to approximation
provides an opportunity to trade quality of the results for higher performance and
better resource utilization. Exploiting this opportunity is particularly important for
FPGA accelerators that are inherently subject to many resource constraints. To better
utilize the FPGA resources, we devise, Grater, an automated design workflow for
FPGA accelerators that leverages imprecise computation to increase data-level par-
allelism and achieve higher computational throughput. The core of our workflow is a
source-to-source compiler that takes in an input kernel and applies a novel optimiza-
tion technique that selectively reduces the precision of kernel’s data and operations.
By selectively reducing the precision of the data and operation, the required area to
synthesize the kernels on the FPGA decreases allowing to integrate a larger number
of operations and parallel kernels in the fixed area of the FPGA. The larger number
of integrated kernels provides more hardware context to better exploit data-level par-
allelism in the target applications. To effectively explore the possible design space
of approximate kernels, we exploit a genetic algorithm to find a subset of safe-to-
approximate operations and data elements and then tune their precision levels until
the desired output quality is achieved. Graterexploits a fully software technique
and does not require any changes to the underlying FPGA hardware. We evalu-
ate Grateron a diverse set of data-intensive OpenCL benchmarks from the AMD
SDK. The synthesis result on a modern Altera FPGA shows that our approximation
workflow yields 1.4×–3.0× higher throughput with less than 1% quality loss.

10.1 Introduction

Before the effective end of Dennard scaling, we were able to improve all three of
performance, efficiency, and generality. With the end of Dennard scaling, the com-
munity is facing an iron triangle. We can only improve any two of the performance,
efficiency, and generality at the expense of the third. Solutions that provide significant
performance and efficiency gains while retaining as much generality as possible, are

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_10

151

152 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

highly desirable. One promising approach is the use of programmable accelerators,
such as FPGAs to achieve higher performance and efficiency in certain application
domains. Approximate computing is another promising approach that leverages tol-
erance of applications to imprecision and trades small losses of quality for gains in
performance and efficiency [1–5].

The confluence of these two trends can potentially yield significant performance
and efficiency gains since many of the applications that can benefit from the FPGA
accelerations are amenable to approximation. However, there is a lack of techniques
that exploits this opportunity. This work aims to bridge the gap between approxima-
tion and the FPGA acceleration through an automated design workflow. Altera and
Xilinx recently offer high-level acceleration frameworks for OpenCL [6, 7], hence
in our work we target acceleration of data-intensive computational OpenCL appli-
cations. The challenge is, however, devising a workflow that can be plugged into the
existing toolsets and can automatically identify the opportunities for approximation
while keeping the quality loss reasonably low. This chapter addresses this challenge
and makes the following contributions:

1. We propose Grater, a design workflow that automatically leverages approxi-
mation to provide more opportunities for the FPGA accelerators to utilize data-
level parallelism and achieve higher throughput. Graterautomatically reduces
required hardware area for synthesizing an instance of an OpenCL kernel. This
required area is determined by the precision of data and operations which is speci-
fied by the kernel program. By selectively reducing the precision, a larger number
of parallel approximate kernels can be mapped in the fixed area budget of an
FPGA. Graterprovides a readily applicable workflow that exploits the inherent
error tolerance of the emerging applications for higher computational throughput
with off-the-shelf FPGAs without any changes to their hardware structure.

2. Grater systematically tunes the precision of the operations and data in the input
OpenCL kernel, subject to a statistical target for quality-of-result. Grateruses
a source-to-source compiler that leverages an automated transformation to selec-
tively reduce the precision. The precision of the data and operations are auto-
matically inferred from the precision of their operands. We devise a genetic
programming-based optimization algorithm that assigns various precision lev-
els to different data and operations in the kernel. We use genetic programming to
evolve kernel variants until one is found with optimal assignments that reduces
synthesized kernel area while stochastically satisfying the quality-of-result target.

3. We evaluate Graterwith a diverse set of data-intensive OpenCL benchmarks
selected from the AMD APP SDK v2.9 [8]. The synthesis result on an Altera
Stratix V FPGA shows that the reduced area of the transformed approximate
kernels yields 1.4×–3.0× higher throughput with less than 1% loss of quality.

The rest of the chapter is organized as follows. Section10.2 describes acceleration
of OpenCL applications on the FPGAs. Graterapproximation design workflow is
presented in Sect. 10.3. In Sect. 10.4, we present experimental results, followed by
conclusion in Sect. 10.5.

10.2 OpenCL Execution Model 153

10.2 OpenCL Execution Model

OpenCL is a platform-independent framework for writing programs that execute
across a heterogeneous system consisting of multiple compute devices including
CPUs or accelerators such asGPUs, DSPs, and FPGAs. OpenCL uses a subset of ISO
C99 with added extensions for supporting data and task-based parallel programming
models. The programmingmodel in OpenCL comprises of one or more device kernel
codes in tandem with the host code. The host code typically runs on a CPU and
launches kernels on other compute devices like the GPUs, DSPs, and/or FPGAs
through API calls. The instance of an OpenCL kernel is called a work-item. These
kernels execute on compute devices that are a set of compute units (CUs), each
comprising of multiple processing elements having ALUs. The work-items execute
on a single processing element and exercise the ALU. The OpenCL platform model
from the programming model to the framework of the compute devices is illustrated
in Fig. 10.1.

10.2.1 Mapping OpenCL Programs on FPGAs

TheAltera OpenCL SDK [6] allows programmers to use high-level OpenCL kernels,
written for GPUs, to generate an FPGA design with higher performance perWatt [9].
An OpenCL kernel is first compiled and then synthesized as a special dedicated
hardware for mapping on an FPGA. However, GPUs and FPGAs exploit data-level
parallelism differently, which leads to disparate benefit in terms of performance per

…
…

…

…
…

…

…
…

…

Processing Element

Compute Unit (CU) Compute Device

Host

Host Code

Kernel Code

Work-item

Fig. 10.1 OpenCL platform model

154 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

watt. GPUs are single-instruction multiple-data (SIMD) devices that exploit data-
level parallelism: they group processing elements in a CU to perform the same
operation but on their own individual data. On the other hand, FPGAs exploit pipeline
parallelism in a CU where different stages of the instructions are applied to different
work-items concurrently leading to a higher performance per Watt.

FPGAs can further improve the performance benefits by creating multiple copies
of the kernel pipelines (synthesized version of an OpenCL kernel).1 For instance,
this replication process can make N copies of the kernel pipeline. As the kernel
pipelines can be executed independently from one another, the performance would
scale linearly with the number of copies created owing to the data-level parallelism
model supported byOpenCL. In the following sections,we describe howGratercan
reduce the amount of resources for a kernel pipeline to save area and exploit remaining
area resources to boost performance by replication. Grater systematically reduces
the precision of data and operations in OpenCL kernels to shrink the resources used
per kernel pipeline by transforming complex kernels to simple kernels that produce
approximate results.

10.3 GRATER: Approximation Design Workflow

Grater supports a source-to-source compiler to generate approximate kernels via
source-to-sourceOpenCL kernel transformation. The transformation algorithm auto-
matically detects and simplifies parts of the kernel code that can be executed with
reduced precision while preserving the desired quality-of-result. To achieve this
goal, Grater takes in as inputs, an exact OpenCL kernel, a set of input test cases,
and a metric for measuring the quality-of-result target. Gratercompiler investi-
gates the exact kernel code and detects data elements, i.e., OpenCL kernel variables,
that provide possible opportunities for increased performance in exchange of accu-
racy.Grater then automatically generates a set of approximate kernels that produce
acceptable results. These approximate kernels provide improved performance ben-
efits by reducing the area when implemented on the FPGAs. Grateroutputs an
optimized approximate kernel with the least area whose output quality satisfies the
quality-of-result target. Figure10.2 illustrates an overview of our workflow.

Grateruses the precision of the operations and data to tune performance as a
tradeoff against precision. The transformation investigates a set of kernels where
in each version, some of these potential variables are replaced with a less accurate
variable.2 We assign a precision tag (PT) to each variable type. For example, a kernel
with data types ranging from floating point to char has four levels of complexity:

1Replication is handled in Altera OpenCL by setting num_compute_units as a kernel attribute.
2We limit the space of our optimization search across the available variable types in OpenCL, as
opposed to within a type itself [10], due to the nature of a source-to-source transformer that requires
to work at the same level of abstraction of the input programming language.Graterenables Altera
OpenCL synthesis tool chain to benefit from this source-to-source translation by generating standard
OpenCL approximate kernels.

10.3 Grater: Approximation Design Workflow 155

Fig. 10.2 Overview of
Grater, our approximation
design workflow

FPGA
OpenCL

to
FPGA

Final Set of Approximate Kernels

Quality
Target

Approximate
Kernel1

Approximate
Kernel2

Approximate
Kernel3

Area #1 Area #2 Area #3

Source-to-Source Compiler

Test
cases

Mutation/
Crossover

Fitness Evaluation

Selection

Population
(Modified kernel)

GPU
Accelerated Profiling

…

Exact
OpenCL Kernel

{4, 3, 2, 1} are assigned to {float, int, short, char} respectively. The higher
the PT, the higher the accuracy requirements, and the higher resource consumption.
A brute-force methodology for exploring the approximate kernels is to generate an
approximate kernel for every possible combination of the variable types. For instance,
for a kernelwith |V| number of float variables, a total number of 4|V | kernelswould
be generated where in each version every float variable is replaced by different
PTs. This results in an exponentially growing design space intractable to search. To
avoid this huge design space exploration, we devise an algorithm that first detects
those variables that are amenable to approximation and then applies a genetic-based
algorithm to approximate the kernel. We discuss the details of our algorithm in the
following subsections.

10.3.1 Analysis and Pruning

In the first step, Graterdetects variables in the code that are amenable to approxi-
mation. To do so, a separate kernel is generated for testing the amenability of every
variable. In each kernel, the precision of one variable is demoted by one level (a
ΔPT demoting), while other variables have their exact precision, to measure the
significance of a small precision loss of a variable on the quality of result. This test

156 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

determines whether the precision of the selected variable can be reduced or not.
If the output quality is less than the desired output quality, Graterexcludes this
variable from the set of safe-to-approximate variables and does not modify its pre-
cision.3 Consequently, the variable is eliminated from the candidate list of variables
for approximation. The pruning algorithm continues the screening process for all the
variables in the code (Line 4–10 in Algorithm 1). The pruning algorithm is executed
|V| times to determine approximable variables (AV). This sensitivity test is done
with the help of profiling feedback that is accelerated on a GPU.

Grater then finds the lowest possible precision for each variable in AV (Line
11–14 in Algorithm 1). It generates an approximate kernel for every variable in AV,
where in each kernel, one variable type is replaced by the lowest possible precision
(e.g., char) while other variables preserve their exact precision (EP) that originally
have in the exact code. If the quality of the generated kernel is less than the desired
output quality, then that tentative lowest precision is promoted by one level and the
same quality check is repeated. This process is continued until the lower precision
bound for each variable is found.At this point, PT value ranges for each approximable
variable is extracted (from EP to LP).

After finding the lower precision bound for all variables in AV, another approxi-
mate kernel is generated inwhich all approximable variables get their lowest possible
precision (LP values) found in the previous step. If this kernel meets the quality-of-
result target, the solution is found (Line 15–19 in Algorithm 1). Otherwise, a genetic
algorithm, described in the following, is run to find the approximate kernel.

10.3.2 Genetic-Based Approximation Algorithm

Genetic algorithm is a powerful stochastic search method which is deployed to find
a good solution from a large search space [11]. To operate with a genetic algorithm,
we need to take into account the following components: (1) a genetic representa-
tion of solutions in a form that can be interpreted as a chromosome, (2) an initial
population, (3) a fitness function which gives an evaluation of the desirability of
each chromosome, and (4) genetic operators that change the composition of new
generation during reproduction and a selection operator for choosing the survivors.

10.3.2.1 Genetic Representation of Chromosomes

We represent each individual as an array of precision tags with the length of AV
list. Each gene in this representation shows the PT of each variable in AV. Every
individual can be easily translated to a candidate approximate kernel. The precision

3Grateralso enables the programmer to annotate critical variables as non-approximable, so that
the transcompiler would not change their precision.

10.3 Grater: Approximation Design Workflow 157

Algorithm 1 Pseudo-code for the Grater
1: function Prune&Relax(ExactKernel, Quali t yT arget, input Set)
2: V = {All candidate variables in ExactKernel} AV = {}
3: TopPop = {} cInput = input0 from inputSet
4: for all variables vi in V do
5: generate kerneli s.t. vi ← ΔPT demoting
6: run kerneli with cInput on GPU
7: if (Quality(kerneli) ≥ QualityTarget) then
8: AV = AV ∪ vi
9: end if
10: end for
11: for all variables vi in AV do
12: LPi = FindLowerPT(vi , cInput)
13: EPi = getExactPT(vi , cInput)
14: end for
15: generate kernelmin s.t. ∀ vi ← LPi
16: run kernelmin with cInput on GPU
17: if (Quality (kernelmin) ≥ QualityTarget) then
18: ApproxKernel = kernelmin
19: else
20: ApproxKernel, TopPop =
21: GA(ExactKernel, LP, EP, cInput)
22: end if
23: for all inputi in the training inputSet do
24: run ApproxKernel with inputi on GPU
25: if (Quality(ApproxKernel) < QualityTarget) then
26: NeedToChangeSolution = True
27: for all kernel j in TopPop do
28: run kernel j with inputi on GPU
29: if (Quality(kernel j) > QualityTarget) then
30: ApproxKernel = kernel j
31: NeedToChangeSolution = False
32: Break
33: end if
34: end for
35: if (NeedToChangeSolution) then
36: cInput = inputi
37: Goto line 11
38: end if
39: end if
40: end for
41: return ApproxKernel
42: end function

of the variables and associated operations in the approximate kernel is inferred from
the assigned PT value in the chromosome.

10.3.2.2 Population

The initial population is randomly generated. Each approximable variable can have
a PT value range with different levels of complexity, started from its lowest precision
bound to its exact precision level (LP and EP in Algorithm 1).

All individuals in the population shouldmeet the desired quality-of-result require-
ment. This can be verified either by executing the kernel or comparing its PT val-

158 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

ues with the least precision chromosome found. The least precision chromosome
found in the population is the one that the PT values of every gene in its chromo-
some is lower than the PT values of corresponding genes in all other chromosomes.
If such a chromosome does not exist in the population, the least precision PT in
the population would be the same as LP. In this case, for all generated kernels we
need a kernel execution for accuracy check. When the quality measurement test is
done by executing an approximate kernel, its output is compared with the exact ker-
nel output on a representative data input. If the output of the approximate kernel
cannot satisfy the quality-of-result target, the approximate kernel is ruled out from
the population. Otherwise, it is considered as one of the candidates for the next
generation. This kernel profiling and execution process is accelerated on a GPU.
This is accomplished by decoupling the quality loss analysis and the approximate
kernel mapping thanks to the platform-independent nature of OpenCL. To increase
the speed of genetic algorithm, before creating and executing each approximate ker-
nel, the generated chromosome is compared to the chromosome with the least PT in
the population so far. If all PT values in the newly generated chromosome is higher
than or equal to the PT values of the least precision chromosome, this new chromo-
some can certainly meet the quality-of-result target; otherwise, the corresponding
kernel should be executed for accuracy check.

10.3.2.3 Fitness Function

Given a kernel, the fitness function returns a value showing the desirability of the
approximate kernel. The fitness value is used by the selection operation to decide
which individuals would survive to the next generation. Our main objective is to find
an approximate kernel that minimizes the resource utilization on FPGA while meet-
ing the quality-of-result requirement. To achieve this objective, our fitness function
computes a weighted summation of its assigned PT values in the chromosome to
estimate the area occupancy. For each variable, the weight is determined by a coeffi-
cient assigned to each precision tag multiplied by the number of times the variable is
used in operations in the kernel. (The coefficients are determined through simulations
which is 0, 1, 2, 6 for PT of 1, 2, 3, 4 respectively.) The higher the precision and the
number of times the variable is used in operations, the higher weight it gets.With this
definition, the lower the fitness value, the lower area occupancy that configuration
has.

10.3.2.4 Selection and Genetic Operators

Weuse two genetic operators, crossover andmutation, to produce new chromosomes.
Crossover combines the first part from one parent chromosome to the second part
from the other parent chromosome to produce a child chromosome. In this imple-
mentation, the crossover point is selected randomly. Mutation operation randomly
modifies PT values of approximable variables in the chromosome. The new PT value

10.3 Grater: Approximation Design Workflow 159

is a random value in the range of LP and EP for the approximable variable. The newly
generated chromosome is only accepted if it meets the quality-of-result requirement;
otherwise, the operation is applied again.

There are many possible selection algorithms to select more fit individuals from
the new and old population for the next generation. To rank area occupancy of the
approximate kernels without synthesizing and mapping the kernel on FPGA, we use
the fitness values as an estimate of the area occupancy. The selected chromosomes are
sorted based on their estimation of area occupancy (fitness value) in each iteration.
The top best individuals are always transferred for the next generation (elitism selec-
tion). For the rest, individuals are selected based on the proportionate selection where
some of themmight change with the crossover and mutation operations. For the sim-
ulation purpose, the crossover rate, mutation rate, and elitism rate is 0.7, 0.05, and
0.25 respectively. The algorithm runs as long as the user defined number of iterations
has not been passed yet or when the best fitness values stop growing any further.

Until here, the genetic algorithm finds the final solution using only one input test
case. This solution is verified with the other input test cases from the training set. If
it meets the quality-of-result requirement for all inputs of this set, this approximate
kernel is the final solution. Otherwise, either the other top chromosomes in the
population is checked or the genetic algorithm is applied again for the failed input
(Line 23–40 in Algorithm 1).

When this procedure is terminated, the best chromosome with the lowest fitness
value is selected and translated to its corresponding approximate kernel which has
the least area estimation on FPGA. This kernel is passed to the Altera SDK tool to
be synthesized and mapped on the FPGA.

10.4 Experimental Results

10.4.1 Experimental Setup

We focus on a diverse set of application domains, including image processing
(recursive gaussian, sobel), signal processing (convolution, dct), and physical
simulation (n-body). These benchmarks are selected from the AMD accelerated
parallel processing (APP) SDK v2.9 [8]; that is, a complete development platform
created by the AMD to leverage accelerated compute using OpenCL. All of these
applications are error tolerant and have approximable data in their kernels. The num-
ber of variables in these kernels are in the range between 11 and 17.

Grater source-to-source compiler [12] is implemented in Python, and accepts
the exact kernel, the desired quality metric, and a set of 100 training input test cases
as its inputs.Graterutilizes the AMD Evergreen Radeon HD 5870 GPU device for
accelerated profiling experiments, and finally generates an optimized approximate
kernel with the minimum area occupancy estimation and an acceptable output error.
The approximate OpenCL kernels were synthesized for Altera DE5 board with a

160 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

Stratix V FPGA using Altera OpenCL SDK 13.1 tool [6].4 Sections10.4.2 and 10.4.3
detail howGratercan reduce the area and correspondingly increase the throughput
for different applications.

10.4.2 Area Savings with Approximate Kernels

Table10.1 shows the resource utilization for an exact kernel and the optimized
approximate kernel. As shown, the area utilization is reduced by an average of 14–
25% for different FPGA resources using the transformed approximate kernel instead
of the exact one. This is achieved by the proper precision tuning of the kernel vari-
able types that brings area saving without scarifying the output quality. Figure10.3
compares the maximum number of mapped kernels on the FPGA board for the exact
kernels and the approximate kernels. For instance, the exact r-gaussiankernel con-
tains 12 float variables in which 5 of them are converted to short and one of
them to char. This precision tuning reduces DSP block utilization by 45% and logic
utilization by 11%, hence enables mapping 9 approximate kernels rather than 5 exact
kernels. Considering the geometric mean across all the benchmarks, Grater is able
to map 12 approximate kernels instead of 6 exact kernels in the fixed area budget of
the FPGA. Given a fixed area budget of the FPGA, Grater improves the number of
mapped kernel by a factor of 2× on average (maximum 3.3× in n-body).

10.4.3 Speedup

As shown in Sect. 10.4.2, Grater reduces the synthesized area for the approximate
kernels on the FPGA. Therefore, the number of parallel kernels (i.e., the kernel
pipelines) that can be fitted into the FPGA is increased resulting in higher throughput.
Figure10.4 shows the corresponding kernel speedup – throughput of the approxi-
mate kernel normalized to throughput of the exact kernel. As an example, for the
n-bodykernel the number of kernel pipelines that can be mapped into FPGA is
increased from 3 for the exact kernel to 10 for the approximate kernel. Although the
maximumclock frequency for this kernel is changed from 209MHz for the exact ker-
nel to 187MHz for the approximate kernel, the approximate n-bodykernel reaches
to 2.98× higher throughput compared to the exact kernel.As another example, convo-
lution kernel reaches 1.41× higher throughput. For this kernel, the number of kernel
pipelines (and the maximum clock frequency) is increased from 15 kernel pipelines
(and 191MHz) for the exact kernel to 21 kernel pipelines (and 193MHz) for the
approximate kernel.Ageometricmean of 1.82× higher throughput is achieved across

4It should be noted that the accelerated profiling process on GPU takes order of milliseconds to
determine if the kernel can meet the quality-of-result target. While it takes on average more than
an hour to synthesize the approximate OpenCL kernels on Stratix V FPGA.

10.4 Experimental Results 161

Ta
bl
e
10
.1

A
re
a
ut
ili
za
tio

n
fo
r
ex
ac
t(
E
xt
)
an
d
ap
pr
ox
im

at
e
(A

px
)
ke
rn
el
s
on

St
ra
tix

V
FP

G
A

R
es
ou

rc
e

ut
ili
za
-

tio
n

r-
ga
us
si
an

so
be
l

n-
bo
dy

dc
t

co
nv

A
vg
.a
re
a

re
du
ct
io
n

(%
)

E
xt

A
px

E
xt

A
px

E
xt

A
px

E
xt

A
px

E
xt

A
px

A
L
U
T
s

70
66
8

60
00
8

72
93
7

52
21
3

11
90
44

58
33
3

50
53
0

48
27
1

53
09
2

48
57
3

21
.5

R
eg
is
te
rs

11
06
68

90
82
5

11
48
92

91
21
8

17
28
94

95
15
6

85
70
7

80
20
2

91
06
2

80
93
3

20
.2

L
og
ic

bl
oc
ks

27
%

24
%

29
%

23
%

43
%

25
%

22
%

21
%

23
%

21
%

17
.3

D
SP

bl
oc
ks

16
.4
%

9%
19
%

19
%

30
%

21
%

25
%

22
%

1.
95
%

1.
17
%

25
.4

M
em

or
y

bi
ts

7.
91
%

7.
09
%

3%
3%

8.
1%

4%
9.
56
%

4.
39
%

3.
7%

3.
36
%

24
.8

M
20
K

bl
oc
ks

20
.2
3%

18
.4
%

18
%

18
%

25
%

17
%

22
.8
1%

17
.2
2%

15
.0
3%

14
.0
6%

14
.4

162 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

Fig. 10.3 Number of
mapped kernel pipelines on
FPGA

0

3

6

9

12

15

18

21

N
o.

of
 M

ap
pe

d
K

er
ne

ls

r-gaussian sobel dct conv n-body gmean

9

13
11

21

10
12

5 5

8

15

3

6

Approximate Exact

Fig. 10.4 Speedup with
Grateron FPGA and GPU

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

Sp
ee

du
p

(I
m

pr
ov

ed
T

hr
ou

gh
pu

t)

r-gaussian sobel dct conv n-body gmean

1.71×
2.02×

1.37× 1.41×

2.98×

1.82×

1.11× 1.01× 1.02× 1.03× 1.18× 1.07×

FPGA GPU

these evaluated benchmarks. Grater increases the number of kernel pipelines until
one of the resources reaches its maximum limit. The limiting factor for each of the
kernels are as follow: r-gaussian (Logic block, 96%), sobel (DSP block, 91.4%),
dct (RAM, 99%), convolution (Logic, 92%), n-body (DSP, 93%). Figure10.4 also
summarizes the speedup for executing the approximate kernels on the GPU, normal-
ized to the exact kernel execution time. The GPU exhibits a maximum speedup of
18% (with a geometric mean of 7%) due to its inflexible pipeline that cannot be fully
customized to leverage the precision tuning for boosting throughput per unit of area.

To evaluate the quality loss, we use PSNR for image processing applications and
average relative error for the other application domains [13, 14]. We compute the
quality loss of each approximate kernel by comparing against the output elements
from the exact kernel. For simplicity, herewe report the quality loss of all applications
by average relative error metric. We set the quality loss target to a maximum of
0.7% for image processing applications (which is equivalent to PSNR of a minimum
30 dB) and 1% for other applications which is conservatively aligned with other
work on quality trade-offs [1, 3–5]. We verify the output quality of the optimized
approximate kernel with 100 different test input patterns, other than the training input
set. Figure10.5 shows the minimum, maximum, and average quality loss for all the
evaluated applications. In all applications, the maximum quality loss is below the
required threshold. Hence, it satisfies the target quality-of-result.

The execution time of our proposed algorithm iswithin few seconds (for sobeland
r-gaussian that find the solution without running the genetic algorithm) to few
minutes for others.

10.5 Chapter Summary 163

Fig. 10.5 Quality loss with
Grater

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Q
ua

lit
y

Lo
ss

r-gaussian sobel dct conv n-body avg
0.003% 0.016% 0.041% 0.059% 0.110%

0.046%

10.5 Chapter Summary

This work aims to address the following challenge: how to exploit approximation
in order to increase the benefits of FPGA accelerators without changing the FPGA
hardware structure? Our approach is providing more opportunities for parallel exe-
cution by reducing the precision of kernel’s data and operations. To this end, we
devise Grater that systematically transforms an OpenCL kernel to an approximate
version through a genetic algorithm by reducing its area on the FPGA using the
state-of-the-art high-level synthesis tools. The reduction in area results in better uti-
lization of data-level parallelism and thereby increased throughput. The results show
that Grater integrates a larger number of parallel kernels on the same FPGA fab-
ric that leads to 1.4×–3.0× higher computational throughput on a modern Altera
FPGA with less than 1% loss of quality. Graterprovides these significant benefits
without applying any modifications to the underlying FPGA hardware. This feature
confirms the efficiency of our framework in exploiting approximation with current
hardware platforms. FPGA accelerators provide significant gains in performance
and efficiency, yet still require relatively long design cycles to achieve those gains.
Automated workflows, such as ours, that improve the benefits of FPGA acceleration
are imperative to their widespread applicability.

References

1. A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, H. Esmaeilzadeh, Neural accelera-
tion for GPU throughput processors, in Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48 (ACM, New York, NY, USA, 2015), pp. 482–493

2. A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethuraman,
K. Ramkrishnan,N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh,K. Bazargan,Axilog:
language support for approximate hardware design, in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE) (2015), pp. 812–817

3. T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, M. Oskin, SNNAP:
approximate computing on programmable SoCs via neural acceleration, in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA) (2015), pp.
603–614

4. A.B. Kahng, S. Kang, Accuracy-configurable adder for approximate arithmetic designs, in
2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC) (2012), pp. 820–825

164 10 An Approximation Workflow for Exploiting Data-Level Parallelism …

5. P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned mul-
tiplier architecture, in 2011 24th International Conference on VLSI Design (VLSI Design)
(2011), pp. 346–351

6. Altera SDK for OpenCL. http://www.altera.com/products/software/opencl/opencl-index.html
7. SDAccel. http://www.xilinx.com/products/design-tools/sdx/sdaccel.html (2015)
8. AMDAPPSDKv2.9. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated

-parallel-processing-app-sdk/
9. D. Chen, D. Singh, Invited paper: using OpenCL to evaluate the efficiency of CPUS, GPUS

and FPGAS for information filtering, in 2012 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL) (2012), pp. 5–12

10. E. Schkufza, R. Sharma, A. Aiken, Stochastic optimization of floating-point programs with
tunable precision, in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI’14 (ACM, New York, NY, USA, 2014), pp. 53–
64

11. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, 2nd edn., Natural Computing
Series (Springer, Heidelberg, 2007)

12. GRATER transcompiler. https://bitbucket.org/act-lab/grater/src
13. S.Misailovic,M.Carbin, S.Achour, Z.Qi,M.C.Rinard, Chisel: reliability- and accuracy-aware

optimization of approximate computational kernels, in Proceedings of the 2014 ACM Inter-
national Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA’14 (ACM, New York, NY, USA, 2014), pp. 309–328

14. P. Roy, R. Ray, C. Wang, W.F. Wong, ASAC: automatic sensitivity analysis for approximate
computing, in Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems, LCTES’14 (ACM, New York, NY, USA, 2014), pp.
95–104

http://www.altera.com/products/software/opencl/opencl-index.html
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://bitbucket.org/act-lab/grater/src

Chapter 11
Memristive-Based Associative Memory
for Approximate Computational Reuse

Abstract Multimedia applications running on thousands of deep andwide pipelines
working concurrently in GPUs have been an important target for power minimiza-
tion both at the architectural and algorithmic levels. At the hardware level, energy
efficiency techniques that employ voltage overscaling face a barrier so-called “path
walls”: reducing operating voltage beyond a certain point generates massive num-
ber of timing errors that are impractical to tolerate. We propose an architectural
innovation, called A2M2 module (approximate associative memristive memory) that
exhibits few tolerable timing errors suitable for GPU applications under voltage
overscaling. A2M2 is integrated with every floating point unit (FPU), and performs
partial functionality of the associated FPU by pre-storing high frequency patterns for
computational reuse that avoids overhead due to re-execution. Voltage overscaled
A2M2 is designed to match an input search pattern with any of the stored patterns
within a Hamming distance range of 0–2. This matching behavior under voltage
overscaling leads to a controllable approximate computing for multimedia applica-
tions. Our experimental results for the AMD Southern Islands GPU show that four
image processing kernels tolerate the mismatches during pattern matching resulting
in a PSNR ≥ 30dB. The A2M2 module with 8-row enables 28% voltage overscal-
ing in 45nm technology resulting in 32% average energy saving for the kernels,
while delivering an acceptable quality of service. This chapter provides a method for
accepting errors in GPUs.

11.1 Introduction

There is an ever-increasing demand for multimedia information processing. A graph-
ical processing unit or GPU provides a programmable fabric that orchestrates over
2,000 stream cores tomeet the required performance demanded bymultimedia appli-
cations. Given a limited thermal envelope, powering up over 4 billion transistors
makes energy efficiency a primary concern for GPUs. Earlier work has pointed to
supply voltage overscaling (VOS) [1, 2] and computational reuse [3] as promising
approaches to reduce energy consumption. For a core, there is a voltage and clock
frequency operating point at which the core is efficiently functional, but reducing

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_11

165

166 11 Memristive-Based Associative Memory for Approximate Computational Reuse

the operating voltage beyond a critical point leads to so-called “path walls” [4, 5].
The path walls effect is highly pronounced in well-optimized circuits [4]. Hitting
the path walls results either in a complete core failure, or massive number of timing
errors that are very expensive to correct, and wipe out the energy benefits of VOS.

Multimedia applications provide ability to exploit the varying degrees of tolerance
to error that an application has due to its programming or inherent application needs
[6]. To use this flexibility, “approximate programs,” programs that produce results
that may be an approximation to the specified results, have an application-dependent
fidelity metric to characterize the quality of the output result. For instance, peak
signal-to-noise ratio (PSNR) of greater than 30dB is generally considered accept-
able from users perspective in image processing applications. Therefore if program
execution is not 100% numerically correct due to few errors during computations,
the program can still “appear” to execute correctly. However, recent experiment on
an ARM Cortex-M0 core shows that VOS after the critical operating point increases
the number of timing errors dramatically [7]. In a similar vein, SRAM-based cache
counterpart displays useless behavior under VOS: operating at the nominal voltage
is error-free; reducing the voltage down by ∼25% generates few errors in data array;
below that point there is amassive number of errors in every row and column [8]. This
massive number of errors is beyond the capability of the approximate applications to
tolerate. Efforts have been done to enable VOS in traditional CMOS-based synthesis
by generating approximate hardware blocks for coarse-grained meta-function [9].

In contrast, nonvolatile memories such as resistive RAM (ReRAM/memristor)
offers low energy operation with 270mV–1.0V [10]. Their downside is limited dura-
bility beyond billion write operations that limits their lifetime [11]. Li et al. [12]
demonstrate a 1-Mb ternary content addressable memory (TCAM) test chip using
2-transistor/2-resistive-phase-change-storage (2T-2R) cell that achieves>10× smaller
cell size than SRAM-based TCAMs, and ensures reliable low voltage search opera-
tion. To build energy-efficient GPUs using the CMOS-compatible memristor parts,
we have earlier shown integration of the TCAMs with the floating point units (FPUs)
for exact computation reuse in Chap.8. These FPUs consume higher energy per
instruction than their integer counterparts, and the overall arithmetic operations con-
tribute to more than 70% of the total GPU power consumption in compute-intensive
kernels [13].

Parallel execution in the GPU architectures provides an important ability to com-
bine computational reuse and approximation for reducing energy. This work exploits
this opportunity to make three main contributions:

1. We propose approximate associative memristive memory (A2M2) microarchitec-
tural design to enable simultaneous VOS and computational reuse. A2M2 is a
programmable module accessible by software to store computations that appear
frequently, and is tightly integrated to every FPU in the GPU. A2M2 is composed
of a TCAMand a crossbar-basedmemristor memory block that together represent
the pre-stored computations as partial functionality of the associated FPU. Under
VOS, A2M2 exhibits a controllable error behavior: when we reduce the voltage

http://dx.doi.org/10.1007/978-3-319-53768-9_8

11.1 Introduction 167

from 1.0V down to 725mV, A2M2 still matches an input search pattern with any
of the stored computations within a Hamming distance of 0, 1, or 2.

2. We present a framework, compatible with OpenCL as an industry-standard pro-
gramming for heterogeneous computing, to profile GPU kernels to identify fre-
quent redundant computations. It applies a fine-grained value partitioning for
every FP operation, and extracts a set of values that are occurred frequently
through searching the space of possible inputs provided by training samples.
The framework carefully pre-stores these key computations in appropriate A2M2

modules for reusing them to avoid re-executions.
3. We demonstrate the effectiveness of our approach on the Southern Islands GPUs

with four image processing kernels adopted from AMD APP SDK v2.5 [14]. We
use 10% of Caltech 101 computer vision dataset [15] for the training, and the full
dataset for the testing. Our experimental results show that the image processing
kernels for all the test images: (1) tolerate the Hamming distance mismatches
during pattern matching by displaying a PSNR≥ 30dB; (2) save on average 32%
energy on A2M2 modules of size 8 made possible by approximate reuse under
28% VOS.

The rest of this chapter is organized as follows. Section11.2 describes design of
A2M2 for energy-efficientGPUarchitectures.A framework andkernel executionflow
to support A2M2 is presented in Sect. 11.3. In Sect. 11.4, we explain ourmethodology
and present experimental results followed by conclusions in Sect. 11.5.

11.2 GPU Architecture Using A2M2 Module

11.2.1 Southern Islands Architecture

We focus on one of the most recent GPUs from the AMD, the Southern Islands
family (Radeon HD 7000-series). The Southern Islands is based on AMD’s Graphics
Core Next which is a RISC single instruction, multiple data (SIMD) architecture; it
replaces the elder VLIW SIMD architecture from the Evergreen. We target Radeon
HD7970devicewhichhas 32 compute units. Every compute unit contains a scheduler
and a set of four SIMD execution units, aka vector units. Each SIMD execution unit
has 16 stream cores, or parallel lanes, constituting a total number of 64 stream cores
per compute unit.

An OpenCL application is formed of a host program and one or more device
kernels that can be run on a GPU device. An instance of the OpenCL kernel is called
a work item. Each stream core is devoted to the execution of one work item using the
integer or FP units. Most arithmetic operations on a GPU are performed by vector
instructions. A vector instruction is fetched once and executed in a SIMD fashion by
all its comprising work items. After the fetch and decode stages, the source operands
for each instruction are read from vector registers or local memory. The core stage
of a GPU is the execute stage, where arithmetic instructions are carried out in each

168 11 Memristive-Based Associative Memory for Approximate Computational Reuse

stream core. When the source operands are ready in the vector unit, the execution
stage starts to issue the operations into the integer units or FPUs. The execution
stage of every FPU has a latency of six cycles and a throughput of one instruction per
cycle [16]. Finally, the result of the computation is written back to the destination
operands.

11.2.2 Approximate Associative Memristive Memory Module

In order to fully exploit the energy saving potentials of both partial memory-based
computing and approximate computing, in this section we propose an approximate
associative memristive memory (A2M2) which is tightly integrated to each FPU. The
proposed A2M2 microarchitecture demonstrates controllable approximate comput-
ing capabilities under VOS.

For each type of FPU, we first identify the sets of frequent input operands and
store them alongwith their corresponding pre-calculated outputs in anA2M2 module.
Section11.3.1 describes this flow in details. During the execution, in case of a match
between the input values of the FPU and the input patterns stored in A2M2, the pre-
stored results are provided by A2M2, and FPU re-execution is avoided for frequent
operands. A2M2 module performs the match operation and returns the output at
extremely lower energy costs compared to the FPU, thanks to the ultralow power
characteristics of memristive memories. This energy cost is further reduced by VOS
that relaxes the matching criterion, from the exact to approximate, described in the
following.

A2M2 module consists of two pipelined stages as shown in Fig. 11.1: (I) a mem-
ristive TCAMwhich stores and searches for the high frequent sets of input operands,
and (II) a 1T-1Rmemristive memory which maintains the pre-calculated FPU output
results for each set of such frequent operands. For each operation, in the first stage, the
TCAM searches to determine whether there is a match between the input operands
and the stored operand patterns. In case of a match, the result of the operation is read
in the second stage from the corresponding line in the 1T-1R memory.

Each TCAM row stores one set of highly frequent input operands.We use a 2T-2R
cell structure for the TCAM design [12]. In this structure each bit of data is stored
in a cell that consists of two memristive elements to store the pattern and two access
transistors that decouple the memristors from a corresponding match line (ML), as
shown in Fig. 11.1. To program the TCAM, the write voltages are applied on the
match lines (ML), and access transistors of select devices are connected via the
search line (SL) to perform the write operation.

A memristive TCAM operation is based on the fact that a low-resistance path to
the ground discharges a precharged line faster than a high-resistance path. Each row
in the TCAM has a match line which is precharged during a precharge phase: SLs
are deactivated to disconnect the access transistors. During the evaluation phase, one
of the access transistors in each bit-cell is ON and connects the ML to the ground via
a high- (or low-) resistance path if the pattern-under-search matches (mismatches)

11.2 GPU Architecture Using A2M2 Module 169

Fig. 11.1 Execution stage of FPU with A2M2 module

the stored pattern. In case of an exact match, i.e. bit by bit, the ML stays charged for
an extended period of time due to the high-resistance of the memristive device that
connects the ML to the ground. If the pattern-under-search and the stored pattern
mismatch by even a single bit, the ML will be discharged quickly because of the
existence of low-resistive path(s) between the ML and ground, providing a clear
margin between an exact match and mismatches. As the number of bit-mismatches
increases, the ML will be discharged even faster. A clocked self-referenced sensing
circuitry and a 2-bit data encoding scheme is applied [12] to further increase the noise
margin and provide a digital match/mismatch output signal. Figure11.2 illustrates
the evolution of the digital “match” signal during the evaluation phase for different
number of bit-mismatches based on SPICE simulation results. As it is expected,
this signal drops faster when a larger number of bit-mismatches exist. The digital
match signals are sampled (i.e., latched) at the end of the evaluation phase. A logic
‘1’ means that the line is not discharged yet, indicating a match. The latched match
signals are then fed to the 1T-1R memory stage as enable lines (EnL), to read the
previously computed results that are stored in the 1T-1R memory. The logical OR

170 11 Memristive-Based Associative Memory for Approximate Computational Reuse

Fig. 11.2 TCAM match operation under VOS

of the EnLs represents a “hit signal” which indicates that the result is provided by
A2M2 module.

In case of a match, the pre-computed result (QA2M2) is read from the memristive
memory at negligible energy cost and is propagated toward the end of the FPU
pipeline along with the hit signal. The propagated hit signal is used as a clock-gating
signal for the remaining stages of the FPU to avoid the redundant computation. Given
that only the first stage of the FPU is concurrently working with TCAM, other FPU
stages are clock-gated in case of a match which results in considerable amount of
energy saving. In case of a TCAM miss, the FPU works normally, and its result
(QFPU) is selected as the pipeline output. The hit signal selects whether the QFPU

or QA2M2 should be reported as the output.
Figure11.1 shows the structure of such 1T-1R memory that is used to store the

output patterns. To program the memory, a write voltage is applied on the bit-lines,
while the enable lines are used to select the target cell. For read operation, the enable
lines are derived by the EnL values of TCAM. Assuming an exact matching, either
none or only one of EnLs are active at any given clock cycle, connecting the bit-
line to the ground through a high-/low-resistance memristive cell, depending on the
stored data. The read circuitry works as a voltage divider and is consisted of a sense
resistor RSense and a NOT gate. If the memristor is in the high-resistance state, which
represents logic ‘0’, RMemristor >> RSense and thus the voltage drop on RSense is
negligible and the output of the NOT gate will be a logic ‘0’. In case of a low-
resistance memristor, RSense >> RMemristor , thus most of the voltage is dropped on
RSense and the output of the read circuitry is a logic ‘1’.

It can be observed in Fig. 11.2 that for few bit-mismatches (e.g. 1 or 2), the
drop time of the match signals differ with clear margins. Hence, by shortening the
evaluation period (i.e. faster sampling), or similarly reducing the supply voltage
while preserving the same evaluation period, a “controllable” approximate matching

11.2 GPU Architecture Using A2M2 Module 171

can be realized in which a pattern with a Hamming distance of 1 or 2 (i.e., the
number of bit-mismatches) is considered as a “match”. Operating at the nominal
voltage of 1V guarantees an exact matching with 0 number of bit-mismatch. If we
reduce the voltage to 775mV, TCAM also matches the input pattern with any of the
stored patterns if there is a Hamming distance of 1 between them (1-HD approximate
matching). VOS down to 720mV matches the input patterns with 2 bit-mismatches
(2-HD approximate matching). Further lowering the supply voltages results in an
abrupt increase in the number of bit-mismatches.

However, the approximate matching has two downsides: (I) possibility of a false
match, and reporting a wrong output as the result of the computation, and (II) hav-
ing several matches, which would enable several word lines in the 1T-1R memory,
resulting in the logical OR of the corresponding outputs being reported as the out-
put of A2M2 module (QA2M2). Possibility of several matches can be avoided if the
stored patterns in the TCAM have a minimum Hamming distance (e.g. 3 for 1-HD
approximate matching respectively); this is practical given the typical TCAM word
size (i.e., 32, 64, or 96), and the small number of TCAM rows. As for the case of a
false match, its likelihood is reduced by a proper sizing of A2M2 module described
in Sect. 11.4.2. We limit the match set such that it decreases the likelihood of a false
matching and of the introduced error at the same time. In Sect. 11.4.2, we show the
application of this approximate matching for different image processing kernels that
can tolerate the introduced errors and display a high PSNRwhile benefiting from the
lower energy consumptions. Moreover, A2M2 module could be designed in a hybrid
fashion to always exclude the error in a few critical bits (e.g., the sign and exponent
bits); for instance, by applying a high voltage to those bits to perform a robust and
exact matching, lowering the significance effect of such error.

11.3 Framework to Support A2M2

In this section, we briefly describe our approach to programming A2M2 and evalua-
tion of A2M2 effectiveness in improving energy efficiency of GPUs.

11.3.1 Execution Flow

Execution flow using A2M2 has two main stages: (I) design time profiling, and (II)
runtime computational reuse. Figure11.3 illustrates this execution flow. The goal
of profiling stage is to identify redundant computations with a high frequency of
occurrence. In the profiling stage, we have an OpenCL kernel, a host code with a
training input dataset. We focus on the individual FPUs to observe the dispersion of
the input operands at the finest granularity. To expose highly frequent set of operands
for each FP operation, we individually profile every type of FP operation and keep
the distinct sets of the input operands with the related output result. The output of

172 11 Memristive-Based Associative Memory for Approximate Computational Reuse

Fig. 11.3 Execution flow using A2M2: design time profiling+ runtime reuse

this stage for every FP operation is highly frequent computations (HFC): a sorted list
of sets of values, each set has the input operand(s) and the related result, and the sets
are sorted based on their frequency of occurrence. After extracting HFC, we need
to determine how much approximation can be tolerated during the reuse of these
key computations. To do so, we leverage the Southern Islands functional simulator
to apply different matching constraints for determining the degree of approximation
applicable to each A2M2 module. The simulator starts with the exact matching and
then increases the degree of approximation step-by-step by applying 1-HD and 2-HD
approximate matching. For every step, the output image is compared with a golden
output image to measure PSNR. Finally, the maximum degree of approximation is
determined for each A2M2 module such that the introduced errors result in a PSNR
higher than the desired PSNR (e.g., 30dB). This profiling stage is a one-off activity
whose cost is amortized across all future usage of the kernel.

In the next step, the framework transfers the output of the profiling stage to A2M2

modules for runtime reuse. The AMD compute abstraction layer (CAL) provides
a runtime device driver library that supports code generation, kernel loading, and
allows the host program to interact with the stream cores at the lowest level. A2M2

module are designed to be addressable by software therefore the host code can
program them using CAL. Right before launching the kernel execution, the host
code programs A2M2 modules: for every type of FP operation activated during the
kernel, a subset ofHFC (up to fewhundred bytes depending up on the size ofA2M2) in
conjunction with the degree of applicable approximation is set for the corresponding
A2M2 modules accordingly. In this way, the framework concurrently programs all
the A2M2 modules integrated to a type of FPU across all the available compute units
in the GPU, since their content is equivalent.

11.3 Framework to Support A2M2 173

11.3.2 Design Space for A2M2

Here, we explain the design space for utilizing A2M2 modules as a case study for
Roberts filter, one of our edge detection kernels. We evaluate the trade-off between
the size of A2M2 module, i.e., the number of rows that store different patterns, with
its hit rate. A higher hit rate means higher number of operands are matched with the
stored computations in A2M2 module, therefore there is no need for re-executing
the results for those values, leading to higher energy saving. We quantify the hit rate
of A2M2 module for multiply–accumulator (MAC) FPU for 100 test input images.
Figure11.4 summarizes theminimum, themaximum, and the average (shown in bars)
hit rates of A2M2 module with a wider range of sizes. The experiment is repeated
for the three matching constraints.

Figure11.4a shows the hit rates for the exact matching. A2M2 module with 4-row
displays the hit rates in the range of 25–83%. Increasing the size of A2M2 from
4-row to 8-row, and to 16-row improves the average hit rate from 40 to 42%, and
to 50%. Overall, the average hit rates increases less than 12% when the number of
rows is increased from 16 to 512. A similar trend of the hit rates versus A2M2 sizes is
observed for the approximate matching, as shown in Fig. 11.4b, c. Once the number
of rows is increased from 16 to 512, the average hit rates improves less than 19
and 18% for 1-HD and 2-HD approximate matching, respectively. Figure11.4 also
illustrates that an A2M2 with a fixed size experiences higher hit rates by switching
from the exact matching to any of the approximate matching. For instance, the hit
rate of A2M2 with 4-row increases 12% on average (from 40 to 52%) by using
2-HD approximate matching instead of the exact matching. This increased hit rate
is because A2M2 relaxes the matching constraint therefore more number of input
patterns are approximately matched with one of the stored patterns.

In a nutshell, choosing large A2M2 size has two disadvantage. (I) It diminishes
the gain of energy saving, because after a certain size the average hit rates almost
saturates, while the energy consumption of the A2M2 increases for larger sizes. For
example, increasing A2M2 size from 8-row by 64× only brings 25% higher hit rates
with 2-HD approximate matching. This significantly lowers the hit rate per unit of
power consumed by A2M2. In Sect. 11.4.2, we show that enlarging A2M2 beyond a
certain size will not bring any energy saving. (II) It increases the likelihood of false
matches that might quickly drop PSNR below the desired threshold. Our profiling
results indicate that Roberts filter is able to tolerate the errors in computations (an
average PSNR of 34dB) with A2M2 modules of maximum 512-row using 2-HD
approximate matching. Increasing A2M2 size after 512-row drops the PSNR below
30dB. Visual depiction and the corresponding PSNR of different matchings for one
of the test images are shown in Fig. 11.5.

174 11 Memristive-Based Associative Memory for Approximate Computational Reuse

(a)

(b)

(c)

Fig. 11.4 Hit rate versus size of A2M2 for MAC during Roberts filter executions

11.4 Experimental Results 175

Fig. 11.5 Visual depiction of the output quality degradation with exact, 1-HD, 2-HD approximate
matching for Roberts filter

11.4 Experimental Results

11.4.1 Experimental Setup

We focus on the AMD Southern Islands GPU, Radeon HD 7970 device, but our
method can be applied to other GPUs as well. We have adopted image processing
applications fromAMDAPPSDKv2.5 [14] a software ecosystem suitable for stream
applications written in OpenCL. We have examined four image processing filters:
Roberts, Sobel, Sharpen, and Shift. Multi2Sim [16], a cycle-accurate CPU-GPU
simulation framework, is used for profiling and simulations. These kernels typically
apply a 2D convolution; we extract frequently activated FPUs during the kernel exe-
cutions: adder (ADD), multiply (MUL), multiply–accumulator (MAC), and SQRT.
Accordingly, the 6-stage balanced FPUs are generated and optimized using FloPoCo
[17]. These FPUs are synthesized and mapped using a 45-nm ASIC flow. The front-
end flow has been performed using Synopsys Design Compiler, while Synopsys IC
Compiler has been used for the back-end. The FPUs have been optimized for power
and a signoff clock period of 1.5ns. Finally, Synopsys PrimeTime is used to report
power at the nominal operating voltage of 1.0V. The second column of Table11.1
shows the energy per operation for each FPU.

Considering the single precision FPUs, we design A2M2 module with different
word sizes based on the type of FPU. TCAM has a word size of 32-bit for SQRT,
64-bit for ADD, MUL, and 96-bit for MAC; while the crossbar-based memory has a
fixed word size of 32-bit for any FPU to maintain the outputs. To estimate power and
delay of A2M2 module, transistor-level SPICE simulations are done using Cadence
Virtuoso. For the memristor parts, we integrate 50K Ron and 50M Rof f models
based on the measurements of fabricated memristors [18]. For the line resistances
and capacitances, we use the same model and numbers reported in [19]. Energy
operation of A2M2 modules is shown in Table11.1. Given the clock period of 1.5ns,
A2M2 modules can reliably work under the designated VOS points (see Sect. 11.2.2).
FPUs facemassive errors, in this range of VOS, which is simply too high to be useful.
We integrate a functional model of A2M2 module into Multi2Sim that computes the
Hamming distance for every FP operation to quantify the hit rates and PSNR drops.

176 11 Memristive-Based Associative Memory for Approximate Computational Reuse

Ta
bl
e
11
.1

E
ne
rg
y
co
ns
um

pt
io
n
(f
J)
pe
r
op
er
at
io
n
in

45
nm

te
ch
no
lo
gy

fo
r
FP

U
s
an
d
A
2
M

2

M
od
ul
e

FP
U

A
2
M

2
:e
xa
ct
m
at
ch
in
g

A
2
M

2
:1

-H
D
ap
pr
ox
im

at
e
m
at
ch
in
g

A
2
M

2
:2

-H
D
ap
pr
ox
im

at
e
m
at
ch
in
g

4-
ro
w

8-
ro
w

16
-r
ow

32
-r
ow

4-
ro
w

8-
ro
w

16
-r
ow

32
-r
ow

4-
ro
w

8-
ro
w

16
-r
ow

32
-r
ow

A
D
D

47
42

11
76

14
03

18
58

27
40

64
4

73
2

90
6

12
62

50
5

55
5

70
9

99
9

M
U
L

98
91

11
76

14
03

18
58

27
40

64
4

73
2

90
6

12
62

50
5

55
5

70
9

99
9

SQ
R
T

99
83

93
4

11
37

15
28

23
22

51
4

59
4

75
6

10
84

39
7

44
1

59
3

86
4

M
A
C

12
05
1

14
10

16
53

21
22

30
96

77
4

86
7

10
52

14
22

61
2

66
7

83
2

11
24

11.4 Experimental Results 177

11.4.2 Energy Saving with Corresponding PSNR

Table11.1 summarizes the energy consumption per operation for individual FPUs,
and different sizes of A2M2 modules in the cases of exact matching, 1-HD, and 2-HD
approximate matching. The energy numbers show the potential of A2M2 modules
to reduce the energy consumption per operation. For example for SQRT operation,
an exact-matcher A2M2 module with 8 rows provides ≈8× higher energy efficiency
compared to FPU counterpart. Although both A2M2 (exact) and FPU work at the
nominal voltage of 1.0V, this energy saving is accomplished through the ultralow
powermemristive-based computing. The energy saving is further improved by allow-
ing the approximate matching, which improves the energy efficiency by factors of
16× and 22×, for 1-HD and 2-HD approximate matching respectively. Such saving
trend is consistent for different types of FPUs, and different sizes of A2M2 modules.

Table11.1 also demonstrates that increasing the size of the A2M2 beyond a limit
sacrifices the energy efficiency. For instance in case of ADD operation, an exact-
matcher A2M2 module with 64-row roughly consumes as much energy as FPU itself.
Any larger A2M2 module can incur energy penalty rather than improving the energy
consumption; since the aggregate energy of integrating FPU with A2M2 module
cannot be paid off by the power saving offered by even an ideal hit rate. In the
following,wepresent energy savingof the kernels usingA2M2 moduleswith different
sizes.

For the four image processing kernels, our framework uses 10% of Caltech
101 computer vision dataset [15] for the training to extract HFC as explained in
Sect. 11.3.1. Depending on the size of A2M2 modules, the framework loads 4, 8,
16, 32, and 64 top pairs of HFC to A2M2 modules before the kernel execution. We
quantify the average energy saving and the corresponding average PSNRdegradation
over the full dataset [15] as the test cases. Figure11.6 shows the normalized energy
compared to FPUs for each kernel. For all the kernels, the exact-matcher A2M2

modules with 64-row exhibit poor energy efficiency, for instance Sobel (or Sharpen)
faces 20% (17%) higher energy consumption compared to using the normal FPUs.
A2M2 modules with sizes smaller than 64-row provide a significant range of energy
saving (16–45%) depending on the size and the degree of approximation. As shown
in Fig. 11.6b, A2M2 modules with 4-row reduce the average energy of Sobel by 20%
using 1-HD approximate matching. Increasing the size to 8-row leads to a higher
average energy saving of 28% because of the higher hit rate. However, increasing
the size beyond 8-row is not optimum because the amount of energy saving offered
by the extra hit events is less than the energy overhead due to the increased A2M2

sizes. We should note that once we reduce the voltage of FPUs down to 775mV,
they face massive number of errors making them impractical to use for low-power
computations.

Sobel and Shift kernels cannot tolerate the errors using 2-HD approximate match-
ing, as opposed to Sharpen and Roberts filters. For all the kernels, PSNR is degraded
with larger A2M2 sizes. Increasing the number of stored patterns beyond 32 (or 8)
for Sobel (or Shift) abruptly increases the likelihood of a false match that introduces

178 11 Memristive-Based Associative Memory for Approximate Computational Reuse

(a) (b)

(c) (d)

Fig. 11.6 A2M2 normalized energy and PSNR: for different sizes, matching criteria, and kernels—
values are averaged over the full dataset [15]

more computational errors resulting in a dropped PSNR of 30dB or lower. Consid-
ering the acceptable PSNR of 30dB or higher, A2M2 modules with 8-row provide
the best average energy saving for Sobel (28%), Sharpen (23%), and Shift (34%);
Robert exhibits the best energy saving of 45% with A2M2 modules of size 16-row.
Choosing 8-row as the size of A2M2 modules brings an average energy saving of
32% across all four kernels, while guaranteeing the acceptable PSNR.

11.5 Chapter Summary

We propose A2M2 as an associative memory module with approximate search capa-
bilities thatmixes emergingmemristor technology benefitswith the application needs
to deliver higher energy efficiency. A2M2 modules are tightly integrated to every
FPU to save energy by: (i) recalling the frequent computations therefore avoiding
re-executions, and (ii) operating at VOS by accepting the approximate matches.
Using the memristor parts in designing A2M2 enables 28% VOS while incurring
up to 2 bits mismatch during the operand matching. We observe that this introduced
error into the computations is tolerable by the image processing kernels delivering
an acceptable PSNR. Experimental results on the Southern Islands GPU show the
integrated A2M2 modules with 8-row reduce the average kernel energy by 32%. Our
continuing work will explore methods to integrate A2M2 in a programming envi-
ronment that enables accuracy- and reliability-aware optimizations of approximate
kernels.

References 179

References

1. D. Jeon, M. Seok, Z. Zhang, D. Blaauw, D. Sylvester, Design methodology for voltage-
overscaled ultra-low-power systems. IEEE Trans. Circuits Syst. II Express Briefs 59(12), 952–
956 (2012)

2. K. He, A. Gerstlauer,M. Orshansky, Circuit-level timing-error acceptance for design of energy-
efficient DCT/IDCT-based systems. IEEE Trans. Circuits Syst. Video Technol. 23(6), 961–974
(2013)

3. W.Wang,A.Raghunathan,N.K. Jha, Profiling driven computation reuse: an embedded software
synthesis technique for energy and performance optimization, in 17th International Conference
on VLSI Design, 2004. Proceedings (2004), pp. 267–272

4. S.G. Ramasubramanian, S. Venkataramani, A. Parandhaman, A. Raghunathan, Relax-
and-retime: a methodology for energy-efficient recovery based design, in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC) (2013), pp. 1–6

5. J. Patel, CMOS process variations: A critical operation point hypothesis. Online Presentation
(2008)

6. M.A. Breuer, Multi-media applications and imprecise computation, in Proceedings of the 8th
Euromicro Conference on Digital System Design, DSD’05 (IEEE Computer Society, Washing-
ton, DC, USA, 2005), pp. 2–7

7. L. Lai, P. Gupta, A case study of logic delay fault behaviors on general-purpose embedded
processor under voltage overscaling. Technical report, Department of Electrical Engineering,
University of California Los Angeles, Los Angeles, CA 90095, August 2014

8. M. Gottscho, A. BanaiyanMofrad, N. Dutt, A. Nicolau, P. Gupta, Power/capacity scaling:
energy savings with simple fault-tolerant caches, in Proceedings of the The 51st Annual Design
Automation Conference on Design Automation Conference, DAC’14 (ACM, New York, NY,
USA, 2014), pp. 100:1–100:6

9. D. Mohapatra, V.K. Chippa, A. Raghunathan, K. Roy, Design of voltage-scalable meta-
functions for approximate computing, in Design, Automation Test in Europe Conference Exhi-
bition (DATE) (2011), pp. 1–6

10. M.-F. Chang, J.-J. Wu, T.-F. Chien, Y.-C. Liu, T.-C. Yang, W.-C. Shen, Y.-C. King, C.-J. Lin,
K.-F. Lin, Y.-D. Chih, S. Natarajan, J. Chang, 19.4 embedded 1Mb ReRAM in 28nm CMOS
with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-
termination scheme, in 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC) (2014), pp. 332–333

11. H.Y. Lee, Y.S. Chen, P.S. Chen, T.Y. Wu, F. Chen, C.C. Wang, P.J. Tzeng, M.J. Tsai, C. Lien,
Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin
Ti cap. IEEE Electron Device Lett. 31(1), 44–46 (2010)

12. J. Li, R.K.Montoye,M. Ishii, L. Chang, 1Mb0.41µm2 2T-2R cell nonvolatile TCAMwith two-
bit encoding and clocked self-referenced sensing. IEEE J. Solid-State Circuits 49(4), 896–907
(2014)

13. H. Zhang, M. Putic, J. Lach, Low power GPGPU computation with imprecise hardware, in
Proceedings of the The 51st Annual Design Automation Conference on Design Automation
Conference, DAC’14 (ACM, New York, NY, USA, 2014), pp. 99:1–99:6

14. AMD APP SDK v2.5. http://www.amd.com/stream
15. Caltech 101 dataset. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
16. Multi2Sim: A heterogeneous system simulator. https://www.multi2sim.org/
17. FloPoCo: Floating-point cores generator. http://flopoco.gforge.inria.fr/
18. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, L. Wei, A

functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic
applications. Nano Lett. 12(1), 389–395 (2012). PMID: 22141918

19. A. Ghofrani, M.A. Lastras-Montano, K.-T. Cheng, Towards data reliable crossbar-based mem-
ristive memories, in 2013 IEEE International Test Conference (ITC) (2013), pp. 1–10,

http://www.amd.com/stream
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://www.multi2sim.org/
http://flopoco.gforge.inria.fr/

Chapter 12
Spatial and Temporal Memoization

Abstract In this chapter,we further combine themethods in detecting and correcting
errors with the methods in accepting errors to devise a new hybrid methods Rahimi
et al. (IEEE Trans. Circuits Syst. II Express Briefs 60:847–851, 2013) [1], Rahimi
et al. (Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014, pp. 1–6, 2014) [2], Rahimi et al. (Temporal memoization for energy-efficient
timing error recovery in GPGPU architectures. Technical Report CS2014-1006,
Department of Computer Science and Engineering, University of California San
Diego, La Jolla, CA 92093, 2014) [3], Rahimi et al. (IEEEDes. Test 33:85–92, 2016)
[4]. The cost and speed of error recovery can be improved by memoization-based
optimization method as a form of computational reuse. Accordingly, we propose two
techniques, spatial memoization and temporal memoization, that exploit parallelism
in suitable computing fabrics such as GP-GPUs. These memoization techniques
exploit value locality and similarity inside data-parallel programs for use in floating-
point units (FPUs). Spatial memoization alleviates cost of timing errors recovery,
building upon lock-step execution of single-instruction, multiple-data (SIMD) archi-
tectures. To support spatial memoization at the level of instruction, we propose a
single strong lane, multiple weak lanes (SSMW) architecture. Spatial memoization
recalls result of error-free execution of an instruction on the SS lane, and concur-
rently reuses it to spatially correct any errant instructions acrossMW lanes. This error
correction can be done exactly or approximately. Temporal memoization recalls the
context of error-free execution of an instruction on a FPU. To enable scalable and
independent error recovery, a single-cycle lookup table (LUT) is tightly coupled to
every FPU to maintain few contexts of recent error-free executions. The LUT reuses
these memorized contexts to exactly, or approximately, correct errant FP instructions
based on application needs. The proposedmemoization techniques eliminate the cost
of error recovery (e.g., on average 62% for the voltage droop-affected timing errors)
and enhance energy efficiency. Spatio-temporal memoization techniques are imple-
mented in standard CMOS technology as a joint method for detecting and correcting
with accepting the timing errors in GP-GPUs.

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_12

181

182 12 Spatial and Temporal Memoization

12.1 Introduction

Wehave shown in earlier chapters (Chaps. 4, 7, and 9) howa sharedmemory cluster of
processors can schedule parallel work-units to efficiently handle the errors utilizing
the fact that runtime system has the ability of “choosing a favor core” in close
proximity. On the contrary, such a choice of unit is not available in the data-level
parallel architectures where the workload is uniform (SIMD) and all the computing
units are fully utilized. Since such architecture has no choice for any alternative
execution, it can utilize memoization, or computational reuse, that return a pre-stored
error-free result without triggering the error recovery.

Sodani and Sohi [5] introduced the concept of instruction reuse that comes from
the observation that many instructions can be skipped if another instance has already
been executed using the same input values. The instruction reuse memoizes the out-
come of an instruction on hardware tables so a processor can reuse it temporally if
the processor performs the same instruction with the same input values. We further
extend such notion of temporal memoization to spatial memoization for use in GP-
GPUs. GP-GPUs execute workload in SIMD fashion with high utilization. Parallel
execution in such SIMD architectures provides an important ability to reuse compu-
tation (i.e., memoization) and reduce the cost of recovery from timing errors.We rely
on the memoization to safely store the result of a portion of computing on a reliable
medium, and then reuse the result rather than re-execution. To do so, we define two
notions of memoization at the instruction level: concurrent instruction reuse (CIR),
and temporal instruction reuse (TIR). Figure12.1 shows that for a SIMDarchitecture:

• CIR answers whether an instruction can be reused spatially across various parallel
lanes.

• TIR answers whether an instruction can be reused temporally for a lane itself.

CIR/TIR recalls the result of an error-free execution on an instance of data, then
reuses this memoized context in case of meeting a matching constraint. Since differ-
ent programs exhibit varying degrees of error tolerance, we consider two matching
constraints that further extend the application of the memoization to approximate
computing domain:

1. Exact matching constraint that enforces full bit-by-bit matching of the single-
precision instructions.

Fig. 12.1 Concurrent and
temporal instruction reuse
(CIR and TIR) for SIMD

http://dx.doi.org/10.1007/978-3-319-53768-9_4
http://dx.doi.org/10.1007/978-3-319-53768-9_7
http://dx.doi.org/10.1007/978-3-319-53768-9_9

12.1 Introduction 183

2. Approximate matching that relaxes the criteria of the exact matching during the
comparison by ignoring mismatches in the less significant N bits of the fraction
parts.

The latter constraint enables an approximate error correction technique suitable for
applications in approximate computing to receive further benefits from the mem-
oization technique. In a nutshell, the spatial and temporal memoization techniques
leverage inherent value locality and similarity of applications bymemoizing the result
of an error-free execution on an instance of data; and by reusing this memoized result
to exactly (or, approximately) correct any errant execution on other instances of the
same (or, similar) data at a very low cost.

These two techniques are fully compatible with the standard CMOS process.
In [6, 7], we extend usage of such spatial and temporal reuse techniques in designing
associative memory modules (AMMs) by leveraging the emerging CMOS-friendly
memristor technology. More details can be found in Chaps. 8 and 11.

12.2 Spatial Memoization (Concurrent Instruction Reuse)

To exploit the inherent spatial value locality across SIMD lanes, we propose a SIMD
architecture consisting of a single strong lane and multiple weak lanes (SSMW). The
SSMW is designed to maintain the lock-step integrity in the face of timing error. The
key idea, for satisfying both resiliency and lock-step execution goals, is to always
guarantee error-free execution of a strong lane (SS). Then, the rest of weak lanes
(MW) can reuse the output of SS lane in the case of timing errors. In other words,
SSMW provides an architectural support to leverage CIR for correcting the timing
errors of MW lanes.

To measure the exposed spatial value locality over the parallel lanes, we have
defined concurrent instruction reuse (CIR) as a metric for the entire kernel execu-
tion. CIR is defined as the number of simultaneous instructions executed on the lane1
(L1) through L15 of the CUs which satisfy the matching constraint, divided by the
total number of instructions executed in all 16 lanes (L0–L15). The matching con-
straint determines whether there is a value locality between the input operands of the
instruction executing on L0 and the input operands of another instruction executing
on any of the neighbor lanes, i.e., Li , where i ∈ [1, 15]. Thus, a tight (or, relaxed)
matching locality constraint ensures that the instructions of L0 and any of Li are
working on the same (or, adjacent) instance of data, and consequently their outputs
are equivalent (or, almost equivalent). This exchangeability allows the instructions
of L0 to correct any errant output of instructions executing on Li . In the Radeon HD
5870 with 16-wide SIMD pipeline, the maximum theoretic CIR is 93.75% (15 out
of 16).

Figure12.2 shows the CIR rate and the corresponding PSNR for various input
pictures while using different matching constraints. As shown in Fig. 12.2c, applying
the exact matching constraint yields, on an average, a CIR rate of 27%. This means

http://dx.doi.org/10.1007/978-3-319-53768-9_8
http://dx.doi.org/10.1007/978-3-319-53768-9_11

184 12 Spatial and Temporal Memoization

(a)

(b)

(c)

Fig. 12.2 CIR of the FP with the corresponding PSNR for two kernels. a Sobel and b Gaussian
filters using the approximate matching constraint– 12 bits masked. c CIR and PSNR for Sobel and
Gaussian filters with the exact and approximate constraints

that 27% of the executed instructions on the whole SIMD can reuse the results
of the executed instructions on the L0 (SS lane) for the accurate error correction,
without any quality degradation. Approximatematching relaxes thematching criteria
through masking the less significant 12 bits of the fraction parts during comparison.
Consequently, higher multiple data-parallel values fuse into a single value, resulting
in a higher CIR rate for approximate error correction, e.g., up to 76% for Sobel.
Applying the approximatematching, on average a CIR rate of 51% (32%) is achieved
on the Sobel (Gaussian) filter with the acceptable PSNR of 29 dB (39 dB).

12.2.1 Single Strong Multiple Weak (SSMW) Architecture

The cost of recovery per single timing error on a floating-point SIMD architecture
is very expensive. Pawlowski et al. [8, 9] propose to decouple the SIMD lanes
through private queues that prevent error events in any single lane from stalling all
other lanes, thus enables each lane to recover errors independently. The decoupling
queues cause slip between lanes which requires additional architectural mechanisms

12.2 Spatial Memoization (Concurrent Instruction Reuse) 185

to ensure correct execution. Therefore, the lanes are required to resynchronize when
a microbarrier (e.g., load, store) is reached, therefore, incurs performance penalty.

In response to this deficiency, we exploit the inherent value locality, therefore the
SIMD is architected to maintain the lock-step integrity in the face of timing error:
SSMW architecture, a resilient SIMD architecture. The key idea, for satisfying both
resiliency and the lock-step execution goals, is to always guarantee error-free exe-
cution of a lane (SS). Then the rest of lanes (MW) can reuse its output in case of
timing errors. In other terms, SSMW provides an architectural support to leverage
CIR for correcting the timing errors of MW lanes. Note that to achieve this goal,
SSMW superposes resilient circuit techniques on top of the baseline SIMD archi-
tecture without changing the flow of execution. SSMW employs two circuit resilient
techniques. First, it guarantees the error-free execution of the SS lane in the presence
of the worst-case PVT variations using voltage overdesign (VO). On the other hand,
the MW lanes employ EDS to detect any timing error and propagate an error-bit
toward the tail of pipeline stages.

Second, SSMW also employs a CIR detector module for every PE of the MW
lanes, as shown in Fig. 12.3. This module checks the matching constraint, and if it
is satisfied, the module forwards the output result of the PE in the SS lane to the

PET

PEZ
PEW

PEY

comparator
(aL0,aL2)

opr_a
L0

opr_a
L2

comparator
(bL0,bL2)

opr_b
L0

opr_b
L2

comparator
(aL0,bL2)

opr_a
L0

opr_b
L2

comparator
(bL0,aL2)

opr_b
L0

opr_a
L2

reuse-bit

SS: Single Strong lane: 10% voltage overdesign
MW: Multiple Weak lanes

L0

CIR
detector

CIR
detector

...

1 0

L1

errors1
errors2

errors3

errors4

errorL1

1 0

L2

errors1
errors2

errors3

errors4

errorL2

operands
L

0

operands
L1

operands
L

0

operands
L

2

PEX

stage1

stage2

stage3

stage4

stage1

stage2

stage3

stage4

stage1

stage2

stage3

stage4

Fetch
(one WF)

Decode

Read
(each SubWF)

L15L0 L1 L2 ...

SubWF3

SubWF2

SubWF1

SubWF0

W
or

k
ite

m
0

W
or

k
ite

m
15

W
or

k
ite

m
1

W
or

k
ite

m
2

Write

0 1

errorL0 errorL15

Recovery (replay)

Input queue of
ALU engine

Ex
ec

ut
e

Instruction
Memory (ALU

clauses)

Local
Memory/
Reg. File

Local
Memory/
Reg. File

reuse-bit

reuse-bit

...

opr_a[0]
L0

opr_a[0]
L2

mask[0] opr_a[31]
L0

opr_a[31]
L2

mask[31]

Fig. 12.3 Single strong lane and multiple weak lanes (SSMW) architecture

186 12 Spatial and Temporal Memoization

output of the corresponding PE in the weak lane. In case of simultaneous matching
and timing error for any of the MW lanes, the errant weak lane can reuse the result
of SS lane rather than triggering the recovery mechanism. The output result of the
SS lane is broadcast via a voltage overdesign network across the MW lanes. The
CIR detector module is a programmable combinational logic working on parallel
with the first stage of the PE execution; since every PE executes one instruction
per cycle, the module is thus shared across all FP functional units of the PE. To
check the matching constraint, the module compares bit by bit the two operands of
its own PE with the two operands of the PE on the SS lane. All the CIR detector
modules share a masking vector to ignore the differences of the operands in the less
significant N bits of the fraction part. The masking vector is a memory-mapped 32-
bit register that is set by various application demands on the computation accuracy.
If the two sets of the operations, with consideration of commutativity, meet the
value locality constraint, the module sets a reuse-bit which will traverse alongside
the corresponding instruction through the stages of the PE. At the last stage of the
execution, the PE takes three actions based on the {reuse-bit, error-bit}. In case of
no timing error, i.e., {1/0, 0}, the PE sends out its own computed result to the write
stage. If a timing error occurred for the instruction during any of the stages, but it
has a value locality with the instruction on the SS lane, i.e., {1, 1}, the PE sends out
the computed result of the SS lane, and avoids the propagation of the error-bit to the
next stage. Finally, in case of the error and lack of the value locality, i.e., {0, 1}, the
PE triggers the recovery mechanism.

12.2.2 Experimental Results

Our methodology is developed upon the AMD Evergreen GPUs, but can be applied
to other SIMD architectures as well. We use Multi2Sim [10] with naive binaries of
kernels in AMDAPP SDK 2.5 [11]; the input values for the kernels are generated by
the default OpenCL host program.We analyzed the effectiveness of SSMWarchitec-
ture in the presence of timing errors on TSMC 45-nm ASIC flow. To keep the focus
on processor architecture, we assume that the memory components are resilient,
e.g., by utilizing the tunable replica bits [12]. We have partially implemented the
FP execution stage of the PE, consisting of three frequently exercised functional
units: ADD, MUL, and SQRT with a latency of four cycles at the signoff frequency
of 1GHz at (SS/0.81V/125 ◦C). To achieve balanced pipelines with latency of four
cycles, the SQRT utilizes a polynomial approximation of degree of 5th to decrease
its delay. Finally, the variation-induced delay is back annotated to the post-layout
simulation which is coupled with Multi2Sim. To quantify the timing error, we con-
sider two global voltage droop scenarios, 3 and 6%, across all 16 lanes during the
entire execution of the kernels.

We consider five architectures for comparison. (i) The lane decoupling queues
architecture without VO [8, 9]. (ii and iii) SIMD baseline architecture with 10% (or
6%) VO across all 16 lanes. (iv and v) SSMW architecture in which the SS lane, the

12.2 Spatial Memoization (Concurrent Instruction Reuse) 187

0

20

40

60

80

100

Gaussian Sobel Eigenvalues Binomial Haar Average

C
or

re
ct

ed
 e

rr
an

t
in

st
ru

ct
io

ns
 b

y
C

IR
 (%

) 6% voltage droop 3% voltage droop

Fig. 12.4 Effectiveness of CIR for kernels in face of 3 and 6% voltage droops

CIR detector modules, and the broadcast network are guard-banded by 10% (or 6%)
VO to guarantee error-free operations. Once SSMW cannot exploit CIR for an error
event recovery, it relies on the single-cycle recovery mechanism presented in [8, 9].

To generalize the CIR concept, we have extended our experiments to the error-
intolerant applications that do not have inherent algorithmic tolerance. We consider
this class of applications as error-intolerant applications that require complete numer-
ical correctness. We have examined three applications where exact matching con-
straint is applied: Binomial option pricing, Haar wavelet transform, and Eigenvalues
of a symmetric matrix. Figure12.4 shows the effectiveness of SSMW: the percentage
of the corrected errant instructions by CIR for all kernels when encountering 6 and
3% voltage droops during the execution. On average for all kernels, SSMW avoids
the recovery for 62% of the errant instructions thus significantly reduces the total
cost of recovery.

Figure12.5 shows the total energy comparison of the kernels while experiencing
6% voltage droops. On average, SSMW (10% VO) reduces 8% of the total energy
compared to its baseline counterpart. The CIR detector modules increase the delay
of the baseline architectures up to 4.9% due to the SS lane broadcast network, and
imposes a maximum of 5.7% total power overhead. In comparison with decoupling

En
er

gy
(

J)

Fig. 12.5 Energy consumption of kernels in face of 6% voltage droops

188 12 Spatial and Temporal Memoization

queues, SSMW (10% VO) has on average 12% lower energy consumption. The
SSMW (6% VO) has also 1% lower energy compared to the baseline with 6% VO,
optimistically assuming that the baseline does not incur any timing error while oper-
ating at the edge of failure with 6% voltage droops.

12.3 Temporal Memoization (Temporal Instruction Reuse)

TIR aims to exploit the value locality and similarity inside each processing element,
i.e., FPU in our case. We observe the dispersion of the input operands at the finest
granularity for individual FPUs. To expose the value locality for eachFPUoperations,
we consider a private FIFO for every individual FPU. These FIFOs have a small depth
and keep the distinct sets of the input operands in the order of instruction arrivals. The
FIFO matches a set of incoming input operands and the current content of entries
of FIFO using the matching constraint. The FIFO maintains a limited number of
recent distinct sets. Therefore, if a set of incoming input operands does not satisfy
either matching constraints, the FIFO will be updated by cleaning its last entry and
inserting the new incoming operands accordingly.

To exploit the value locality, we tightly couple the FPU pipeline with our proposed
temporal memoization module. This module has essentially a single-cycle LUT, and
a set of flip-flops and buffers to propagate signals through the pipeline. The LUT
is composed of two parts: (i) a FIFO with four entries; (ii) a set of combinational
comparators. In every entry, the FIFO maintains a set of input operands and the
computed result provided by the output of the FPU in the last stage (QS). The
parallel combinational comparators implement the two matching constraints, and
are programmable through a 32-bit memory-mapped register as a masking vector.
They concurrently make either a full or partial comparison of the input operands
with the stored operands in each entry based on the masking vector. The LUT works
in parallel with the first stage of the FPU. Therefore, for every set of input operands,
the LUT searches the FIFO to find a match between the input operands and the
operand values stored in the entries (i.e., whether the matching constraint is satisfied
or not). A match directly results in reuse of results computed earlier. Consequently,
this affords the temporal memoization module an opportunity to correct an errant
instruction with zero cycle penalty.

12.3.1 Temporal Memoization for Error Recovery

To enable reuse, the LUT propagates a hit signal alongside with the previously
computed result (QL) toward the end of pipeline. The LUT raises the hit signal that
squashes the remaining stages of the FPU to avoid the redundant computation by
clock gating; the clock-gating signal is forwarded to the rest of stages, cycle by cycle.
The stored result is also propagated toward the end of pipeline for the reuse purpose.

12.3 Temporal Memoization (Temporal Instruction Reuse) 189

Table 12.1 Timing error
handling with temporal
instruction reuse

Hit Error Action QPipe

0 0 Normal execution + LUT
update

QS

0 1 Triggering baseline
recovery (ECU)

QS

1 0 LUT output reuse + FPU
clock-gating

QL

1 1 LUT output reuse + FPU
clock-gating + masking
error

QL

The hit signal selects the propagated output of the LUT (QL) as the output of the FPU;
it also disables the propagation of timing error signal (if any) to the recovery unit,
thus avoids the costly recovery. Therefore, each hit event reduces energy by locally
retrieving the result from the LUT, rather than doing full re-execution by the FPU.
In case of a LUT miss, the FIFO is updated to maintain the last recently computed
values. It is implemented through a write enable signal (Wen) that ensures there is
no timing error during execution of all stages of the FPU for computing QS . Finally,
if simultaneous timing error and miss occurred, the error signal will be propagated
to the recovery unit that triggers the baseline recovery. Table12.1 summarizes these
four states.

12.3.2 Experimental Results

We focus on the execution stage consisting of six frequently exercised functional
units: ADD, MUL, SQRT, RECIP, MULADD, FP2FIX. We select eight kernels
form AMD APP SDK 2.5 [11]. For these applications, TER avoids costly recovery
that improves the energy efficiency with an average energy savings of 8% (for 0%
timing error rate) to 28% (for 4% timing error rate). The memoization techniques
are explained in detail in [1–3].

12.4 Chapter Summary

Wepropose architectures to enable spatial and temporal memoization techniques that
seek to reduce error recovery costs by reuse of concurrent and temporal instructions,
while maintaining a lock-step execution of the SIMD architecture. These proposed
memoization techniques exploit the value locality and similarity in data-parallel
applications that are explicitly exposed to the parallel lanes. These memoization
techniques recall result of an error-free execution on an instance of data; then reuse
the memoized result to exactly (or, approximately) correct any errant execution on

190 12 Spatial and Temporal Memoization

other instances of the same (or, similar) data. Together, they significantly reduce the
cost of resiliency and enhance the range of variability-induced timing errors that can
be mitigated at very low cost. On an average, the proposed SSMW eliminates the
cost of recovery for 62% of the voltage droop-affected instructions, and reduces 12%
of the total energy compared to recent work [8].

The observations in this chapter open an opportunity to exploit instruction reuse
technique, in the context ofmemristive associativememories, to spontaneously apply
clock gating to FPUs beforehand, therefor avoiding redundant computations.

References

1. A. Rahimi, L. Benini, R.K. Gupta, Spatial memoization: concurrent instruction reuse to correct
timing errors in simd architectures. IEEETrans. Circuits Syst. II Express briefs 60(12), 847–851
(2013)

2. A. Rahimi, L. Benini, R.K. Gupta, Temporal memoization for energy-efficient timing error
recovery in gpgpus, in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014 (2014), pp. 1–6

3. A. Rahimi, L. Benini, R.K. Gupta, Temporal memoization for energy-efficient timing error
recovery in GPGPU architectures. Technical Report CS2014-1006, Department of Computer
Science and Engineering, University of California San Diego, La Jolla, CA 92093 (2014)

4. A. Rahimi, L. Benini, R.K. Gupta, CIRCA-GPUs: increasing instruction reuse through inexact
computing in GP-GPUs. IEEE Des. Test 33(6), 85–92 (2016)

5. A. Sodani, G.S. Sohi, Dynamic instruction reuse, in Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’97, ACM, New York, NY, USA (1997),
pp. 194–205

6. A. Rahimi, A. Ghofrani, M.A. Lastras-Montano, K.-T. Cheng, L. Benini, R.K. Gupta, Energy-
efficient GPGPU architectures via collaborative compilation and memristive memory-based
computing, in Proceedings of the The 51st Annual Design Automation Conference on Design
Automation Conference, DAC ’14, ACM, New York, NY, USA (2014), pp. 195:1–195:6

7. A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, R.K. Gupta, Approximate associative mem-
ristive memory for energy-efficient GPUs, in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE ’15 (2015), pp. 1497–1502

8. R. Pawlowski, E. Krimer, J. Crop, J. Postman, N.Moezzi-Madani,M. Erez, P. Chiang, A 530mv
10-lane SIMD processor with variation resiliency in 45nm SOI, in 2012 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 492–494

9. E. Krimer, P. Chiang, M. Erez, Lane decoupling for improving the timing-error resiliency
of wide-SIMD architectures, in Proceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA ’12, IEEE Computer Society, Washington, DC, USA, (2012) pp.
237–248

10. Multi2Sim: a heterogeneous system simulator. https://www.multi2sim.org/
11. AMD APP SDK v2.5. http://www.amd.com/stream
12. A. Raychowdhury, B.M. Geuskens, K.A. Bowman, J.W. Tschanz, S.L. Lu, T. Karnik, M.M.

Khellah, V.K. De, Tunable replica bits for dynamic variation tolerance in 8T SRAM arrays.
IEEE J. Solid-State Circuits 46(4), 797–805 (2011)

https://www.multi2sim.org/
http://www.amd.com/stream

Chapter 13
Outlook

Abstract Microelectronic variability is a phenomenon at the intersection of
microelectronic scaling, semiconductor manufacturing, and how electronic systems
are designed and deployed. Using timing errors, as the most threatening manifesta-
tion of variability, we showed various levels of microelectronic circuit and system
design where the effects of variability can be mitigated. Increasing leakage power is
another challenge; variability has already had a major impact on the leakage power.
Coordinated combined methods are central to an emerging outlook on variability
tolerance as discussed below (Fig. 13.1).

13.1 Domain-Specific Resiliency

13.1.1 Software

Software presents a great unexploited potential for diagnosis and mitigation of vari-
ation effects. Software requires runtime monitoring and re-calibration to approach
to the edge-of-failure or “nothing works” for energy efficiency, but never go on the
other side of the border with failure. The key point is that at design time there is
not enough knowledge and there is too much variability and sensitivity to have a
viable design time approach. A self-learning approach can discover the frontiers of
efficient operating points, of course we need a means of recovery is something goes
bad. Distributed software techniques and paradigms will therefore become increas-
ingly pervasive even at the chip level. The trend should be toward avoiding global
variability bottlenecks, through arranging a mix of redundant execution (avoiding
single-point of failure), globally asynchronous communication and orchestration,
and fine-grained rollback.

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9_13

191

192 13 Outlook

Fig. 13.1 Emerging outlook
on variability tolerance

13.1.2 Architecture

Variability mitigation is about cost and scale. Modular and scalable architectures
such as those found in the programmable accelerators enable better observability
and controllability of variations through explicit parallelism. Both hardware and
software can enhance variability tolerance by tuning two available axes: configura-
tions and choices. Hardware and software can jointly configure available settings
of an architecture and appropriate parameters explicitly coded in applications. They
can also selectively choose a suitable hardware resource, or an alternative code path.
For instance, one alternative can select an optimized approximate kernel rather than
exact one results in significant resource reduction enabling integration larger number
of parallel kernels on the fixed budget the underlying architecture.

13.1.3 Circuit

Focusing on CMOS circuits, a large spectrum of asynchronous circuits can be uti-
lized. For a given sub-circuit (either exact or approximate), a synthesis tool would
have the choice of selecting a communication scheme among available different com-
munication templates for realizing that sub-circuit. In other words, the problem of
determining the level of accuracy of a sub-circuit will be transformed to how much
energy we want to spend on ensuring the sub-circuit functional integrity instead of
spending the energy on the actual sub-circuit computation.

13.2 Non-Von Neumann Massively Parallel Architectures 193

13.2 Non-Von Neumann Massively Parallel Architectures

Emerging applications including graphics, multimedia, web search, data analytics,
and cyber-physical system go beyond primarily numerical computations for scien-
tific use to interacting with sensory interfaces. Functional non-determinism presents
in these applications at human–cyber interfaces. In this direction, we have observed
limitations on Von Neumann architecture: we can only relax the execution stage
and fine-grained mechanisms incur high overhead with increased complexity. On
the other hand, we found out that parallel architectures and parallelism in general
provide the best means to combat and exploit variability to design resilient and
efficient systems. Therefore, fast, highly scalable, and space-efficient methods are
very desirable that could initiate a departure from Von Neumann architecture toward
neuro-inspired computing. For instance, new sparse and distributed data representa-
tion promises to deliver substantial energy advantages and robust operation. Further,
utilizing resistive memory elements not only solves the leakage problem but also
provides a dense memory-centric architecture suitable for neuro-inspired resistive
computing.

Index

A
Accuracy-configurable FPUs, 136
Accuracy-reconfigurable floating-point

units, 133
Adaptive clocking, 11, 16
Adaptive guardbanding, 21–24, 27–29, 35–

37, 39, 41, 42, 44, 76
Adaptive VLIW, 73
Aging sensors, 67
Aging-aware compilation, 66
Aging-aware kernels, 67
Altera openCL, 153, 154, 160
Application-specific guardbanding, 21, 22,

44
Approximate computational reuse, 165
Approximate computing, 5, 6, 133, 134, 152,

165, 168
Approximate pattern matching, 165, 167
Approximation design workflow, 154
Approximation workflow for FPGAs, 151
Architectural support for VOMP, 94
Architecture, 192
Associative memory, 118, 120, 178
Associative memristive-based computing,

120

B
Book Organization, 4

C
Circui, 192
Clusters architecture, 48

Collaborative compilation, 122
Compile-time metadata, 47, 48, 51, 54, 55
Computation accuracy, 22, 45
Controllability, 84
Controlled approximation, 135
Cross-layer variability management, 92
Custom directives for approximation, 137

D
Data-level parallelism, 151–154, 163
Delay variation, 2, 4, 11, 13, 61, 63
Descriptive metadata, 93
Design space, 173
Detect and correct errors, 4
Device aging, 62, 66
Device-level NBTI, 62
Domain-specific resiliency, 191
Dynamic binary optimizer, 61, 62, 66, 68, 70
Dynamic IR-drop, 47, 51, 54, 55
Dynamic operating conditions, 54
Dynamic variations, 47, 51, 97, 104, 105

E
Effect of operating conditions, 12
Energy-efficient GP-GPUs, 119
Error recovery cost, 92, 93
Error-intolerant, 146
Error-tolerant, 27
Error-tolerant applications, 142
Exact/approximate error correction, 181
Execution flow, 171

© Springer International Publishing AG 2017
A. Rahimi et al., From Variability Tolerance to Approximate Computing
in Parallel Integrated Architectures and Accelerators,
DOI 10.1007/978-3-319-53768-9

195

196 Index

Experimental setup, 159, 175
Exposing variations to software, 4

F
Floating point units (FPUs), 117, 119, 123,

125–127, 129, 166, 168, 171, 175,
177

FPU memristive-based computing, 124

G
Genetic representation of chromosomes, 156
Genetic-based approximation, 156
GP-GPU, 117–120, 127, 129
GP-GPU architecture, 64
GP-GPU workload distribution, 64
GPU, 75, 76, 84, 85, 87, 165–167, 171, 175
GPU architecture, 167
GPU lifetime, 61
Guardbands, 1, 2

H
Hardware FPU synthesis, 139
Hierarchical guardbanding, 75, 76

I
Instruction Characterization Methodology,

15
Instruction-level tolerance, 11
Intra- and inter-corner WUV, 98

K
Kernel-level tolerance, 61

L
Learning-based method, 75
Low-power error recovery, 117

M
Mapping openCL programs, 153
Memoization, 181–183, 188, 189
Memory-based computing, 120, 127
Memristive, 117, 119–122, 129, 165, 166,

168, 170
Mix of PVTA monitors, 83
Model-based rule, 76, 84, 87

N
Negative bias temperature instability

(NBTI), 61–64, 67–70
Non-Von Neumann, 193

O
Observability, 83
Online WUV characterization, 103
OpenCL execution model, 153
OpenMP compiler extension, 137
OpenMP extensions, 133, 134, 147
OpenMP sections, 108
OpenMP task, 105–107

P
Parallel processing, 4
Parametric model fitting, 78
Pipeline stages, 13
Power variability, 18
Precision tuning, 160, 162
Predict and prevent errors, 4
Procedure hopping, 47, 48, 51–53, 55, 57, 59
Procedure-level tolerance, 47
Processor clusters, 133, 147
Processor delay variation, 22, 23
Profiling error-tolerant, 143
PVT variations, 21, 22, 45
PVT variations and aging (PVTA), 75, 76,

78, 81, 82, 87
PVTA-induced timing errors, 75

R
Robustness of classification, 81
Runtime hierarchically, 81
Runtime scheduling, 91, 93
Runtime support, 138

S
Sequence-level tolerance, 21
Shared-L1 processor clusters, 47
Shared-memory processor clusters, 91
SIMD, 181–186, 189
Single Strong Multiple Weak (SSMW), 184
SLV characterization, 31
Source-to-source compiler, 151, 152, 154
Spatial memoization, 183
Spatiotemporal computational reuse, 117
Spatiotemporal reuse, 181
Supporting intra-cluster, 51

Index 197

T
Task-level WUV, 105
Temporal instruction reuse, 188
TER classification, 80
Timing error model, 76
Timing error rate (TER) classification, 79,

80
Timing errors, 2, 4, 11, 21, 31, 43, 44, 91–

95, 97, 101, 113, 117–119, 125, 127,
133, 134, 136, 140, 144, 147, 148

U
Uniform slot assignment, 68

V
Value locality and similarity, 181, 183, 188,

189
Variability, 1–5
Variability-aware OpenMP (VOMP), 91, 93,

94, 98, 103, 113

Variable precision, 155, 156
Variation-Aware Statistical STA, 26
Variation-Aware Task Scheduling (VATS),

105
Variation-Aware VDD-hopping, 49
Variation-Tolerant Technique, 17
Voltage and temperature variations, 11–13,

15, 19
Voltage droops, 47, 54–56
Voltage overscaling (VOS), 165
Voltage threshold shift, 61
VOMP results for tasking, 110
Vulnerable paths, 28, 29, 44
Vulnerable paths (VP), 21, 23, 24

W
Wearout estimation module, 68
Work-unit tolerance, 91
Work-unit vulnerability, 95

	Foreword
	Preface
	Contents
	1 Introduction
	1.1 Sources of Variability
	1.2 Delay Variation
	1.3 Book Organization
	References

	Part I Predicting and Preventing Errors
	2 Instruction-Level Tolerance
	2.1 Introduction
	2.2 Effect of Operating Conditions
	2.3 Delay Variation Among Pipeline Stages
	2.4 Instruction Characterization Methodology and Experimental Results
	2.4.1 Gate-Level Simulation
	2.4.2 Instruction-Level Delay Variability
	2.4.3 Less Intrusive Variation-Tolerant Technique
	2.4.4 Power Variability

	2.5 Chapter Summary
	References

	3 Sequence-Level Tolerance
	3.1 Introduction
	3.2 PVT Variations
	3.2.1 Conventional Static Timing Analysis
	3.2.2 Variation-Aware Statistical STA

	3.3 Error-Tolerant Applications
	3.3.1 Analysis of Adaptive Guardbanding for Probabilistic Applications

	3.4 Error-Intolerant Applications
	3.4.1 Sequence-Level Vulnerability (SLV)
	3.4.2 SLV Characterization

	3.5 Adaptive Guardbanding
	3.6 Experimental Results
	3.6.1 Effectiveness of Adaptive Guardbanding
	3.6.2 Overhead of Adaptive Guardbanding

	3.7 Chapter Summary
	References

	4 Procedure-Level Tolerance
	4.1 Introduction
	4.2 Variation-Tolerant Processor Clusters Architecture
	4.2.1 Variation-Aware VDD-Hopping

	4.3 Procedure Hopping for Dynamic IR-Drop
	4.3.1 Supporting Intra-cluster Procedure Hopping

	4.4 Characterization of PLV to Dynamic Operating Conditions
	4.5 Experimental Results
	4.5.1 Cost of Procedure Hopping

	4.6 Chapter Summary
	References

	5 Kernel-Level Tolerance
	5.1 Introduction
	5.2 Device-Level NBTI Model
	5.3 GP-GPU Architecture
	5.3.1 GP-GPU Workload Distribution

	5.4 Aging-Aware Compilation
	5.4.1 Observability: Aging Sensors
	5.4.2 Prediction: Wearout Estimation Module
	5.4.3 Controllability: Uniform Slot Assignment

	5.5 Experimental Results
	5.6 Chapter Summary
	References

	6 Hierarchically Focused Guardbanding
	6.1 Introduction
	6.2 Timing Error Model for PVTA
	6.2.1 Analysis Flow for Timing Error Extraction
	6.2.2 Parametric Model Fitting
	6.2.3 TER Classification
	6.2.4 Robustness of Classification

	6.3 Runtime Hierarchically Focused Guardbanding
	6.3.1 Observability
	6.3.2 Controllability

	6.4 A Case Study of HFG on GPUs
	6.5 Chapter Summary
	References

	Part II Detecting and Correcting Errors
	7 Work-Unit Tolerance
	7.1 Introduction
	7.2 Architectural Support for VOMP
	7.3 Work-Unit Vulnerability and VOMP Work-Sharing
	7.3.1 Intra- and Inter-corner WUV
	7.3.2 Online WUV Characterization

	7.4 VOMP Schedulers
	7.4.1 Variation-Aware Task Scheduling (VATS)
	7.4.2 Variation-Aware Section Scheduling (VASS)

	7.5 Experimental Results
	7.5.1 Framework Setup
	7.5.2 VOMP Results for Tasking
	7.5.3 VOMP Results for Sections

	7.6 Chapter Summary
	References

	8 Memristive-Based Associative Memory for Error Recovery
	8.1 Introduction
	8.2 Energy-Efficient GP-GPUs
	8.2.1 Associative Memristive-Based Computing

	8.3 Collaborative Compilation
	8.3.1 FPU Memristive-Based Computing

	8.4 Experimental Results
	8.4.1 FPUs with AMM Modules
	8.4.2 Energy Saving

	8.5 Chapter Summary
	References

	Part III Accepting Errors
	9 Accuracy-Configurable OpenMP
	9.1 Introduction
	9.2 Controlled Approximation
	9.3 Accuracy-Configurable OpenMP Environment
	9.3.1 Accuracy-Configurable FPUs
	9.3.2 OpenMP Compiler Extension for Approximation
	9.3.3 Runtime Support
	9.3.4 Application-Driven Hardware FPU Synthesis and Optimization

	9.4 Experimental Results
	9.4.1 Error-Tolerant Applications
	9.4.2 Error-Intolerant Applications

	9.5 Chapter Summary
	References

	10 An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration
	10.1 Introduction
	10.2 OpenCL Execution Model
	10.2.1 Mapping OpenCL Programs on FPGAs

	10.3 Grater: Approximation Design Workflow
	10.3.1 Analysis and Pruning
	10.3.2 Genetic-Based Approximation Algorithm

	10.4 Experimental Results
	10.4.1 Experimental Setup
	10.4.2 Area Savings with Approximate Kernels
	10.4.3 Speedup

	10.5 Chapter Summary
	References

	11 Memristive-Based Associative Memory for Approximate Computational Reuse
	11.1 Introduction
	11.2 GPU Architecture Using A2M2 Module
	11.2.1 Southern Islands Architecture
	11.2.2 Approximate Associative Memristive Memory Module

	11.3 Framework to Support A2M2
	11.3.1 Execution Flow
	11.3.2 Design Space for A2M2

	11.4 Experimental Results
	11.4.1 Experimental Setup
	11.4.2 Energy Saving with Corresponding PSNR

	11.5 Chapter Summary
	References

	12 Spatial and Temporal Memoization
	12.1 Introduction
	12.2 Spatial Memoization (Concurrent Instruction Reuse)
	12.2.1 Single Strong Multiple Weak (SSMW) Architecture
	12.2.2 Experimental Results

	12.3 Temporal Memoization (Temporal Instruction Reuse)
	12.3.1 Temporal Memoization for Error Recovery
	12.3.2 Experimental Results

	12.4 Chapter Summary
	References

	13 Outlook
	13.1 Domain-Specific Resiliency
	13.1.1 Software
	13.1.2 Architecture
	13.1.3 Circuit

	13.2 Non-Von Neumann Massively Parallel Architectures

	Index

