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Preface

This volume contains the proceedings of the 2003 International Conference on
Formal Engineering Methods (ICFEM 2003). The conference was the fifth in
a series that began in 1997. ICFEM 2003 was held in Singapore during 5–7
November 2003.

ICFEM 2003 aimed to bring together researchers and practitioners from in-
dustry, academia, and government to advance the state of the art in formal
engineering methods and to encourage a wider uptake of formal methods in
industry.

The Program Committee received 91 submissions from more than 20 coun-
tries in various regions. After each paper was reviewed by at least three referees
in each relevant field, 34 high-quality papers were accepted based on originality,
technical content, presentation and relevance to formal methods and software
engineering. We wish to sincerely thank all authors who submitted their work
for consideration. We would also like to thank the Program Committee members
and other reviewers for their great efforts in the reviewing and selecting process.

We are indebted to the three keynote speakers, Prof. Ian Hayes of the Univer-
sity of Queensland, Prof. Mathai Joseph of the Tata Research, Development and
Design Centre, and Dr. Colin O’Halloran of QinetiQ, for accepting our invitation
to address the conference.

ICFEM 2003 was well organized. It could not have been successful without
the hard work and efforts of our organization, program and steering committee
members. We would particularly like to thank Jifeng He and P.S. Thiagarajan
for overseeing general issues of the conference, Martin Henz for handling lo-
cal organization, Hugh Anderson and Aminah Ayu for handling registrations,
Hai Wang for maintaining the conference Website, Shengchao Qin and Zongyan
Qiu for taking care of publicity, and Yuanfang Li for his excellent assistance in
preparing the proceedings with Jun Sun and in setting up and maintaining the
Web review system CyberChair (developed by R. van de Stadt). Finally, our
thanks to Springer-Verlag for their help with the publication.

ICFEM 2003 was sponsored and organized by the Computer Science Depart-
ment, National University of Singapore. More information on this conference can
be found at: http://nt-appn.comp.nus.edu.sg/fm/icfem2003/

November 2003 Jin Song Dong and Jim Woodcock
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Programs as Paths:
An Approach to Timing Constraint Analysis

Ian J. Hayes

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, 4072, Australia

ianh@itee.uq.edu.au

Abstract. A program can be decomposed into a set of possible execution paths.
These can be described in terms of primitives such as assignments, assumptions
and coercions, and composition operators such as sequential composition and
nondeterministic choice as well as finitely or infinitely iterated sequential com-
position. Some of these paths cannot possibly be followed (they are dead or in-
feasible), and they may or may not terminate.
Decomposing programs into paths provides a foundation for analyzing properties
of programs. Our motivation is timing constraint analysis of real-time programs,
but the same techniques can be applied in other areas such as program testing. In
general the set of execution paths for a program is infinite. For timing analysis
we would like to decompose a program into a finite set of subpaths that covers all
possible execution paths, in the sense that we only have to analyze the subpaths
in order to determine suitable timing constraints that cover all execution paths.

1 Introduction

The semantics of a program is usually given in terms of an input-output relation [14, 15]
or in terms of weakest preconditions [6]. These semantics are well suited to reasoning
about the correctness of a program with respect to its specification, but for analyzing
properties of programs, such as their timing behaviour, it is more appropriate to decom-
pose a program into its possible execution paths. The motivation for our work comes
from timing constraint analysis of machine-independent real-time programs in order to
determine execution-time constraints on paths through the program that guarantee that
all deadlines within the program will be met [8, 17]. The “path” view of a program is
also well suited to analyzing the worst-case execution time of programs [4], as well as
program testing [3] and static analysis of programs [9].

The primitives we use to define paths come from the refinement calculus [1, 18].
The primitives are assignments, coercions and assumptions and these primitives are
combined using sequential composition and nondeterministic choice, as well as finitely
or infinitely iterated sequential composition. For example, in refinement calculus circles
it is well known that an “if” command,

if b then s else t fi,

can be decomposed into more primitive constructs using binary nondeterministic choice
(�), binary sequential composition (;), and coercions of the form [b], where b is a
boolean expression.

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 1–15, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 Ian J. Hayes

(
[
b
]
; s) � (

[¬ b
]
; t) (1)

Nondeterministic choice demonically chooses between its two alternatives [6]. A co-
ercion

[
b
]

acts like skip (the no-operation statement) if b is true but is equivalent to
magic if b is false. To simplify the presentation here we assume all expressions are well
defined. The command skip is the identity of sequential composition:

skip; s = s = s; skip (2)

The command magic is miraculous in that it implements any specification whatsoever.
It cannot be implemented, and hence (unless b is the predicate true) a coercion

[
b
]

cannot be implemented in isolation. The command magic is the identity of nondeter-
ministic choice:

magic � s = s = s �magic (3)

and a left zero of sequential composition:

magic; s = magic (4)

as well as a right zero provided s terminates:

s; magic = magic (5)

For example, an “if” command with a constant guard of true can be decomposed as
follows.

if true then s else t fi
= by (1)

(
[
true

]
; s) � (

[
false

]
; t)

= as
[
true

]
= skip and

[
false

]
= magic

(skip; s) � (magic; t)
= by (2) and (4)

s �magic
= by (3)

s

Note how the “else” branch is eliminated because the false coercion is equivalent to
magic and magic is the identity of nondeterministic choice. Of course the elimination
only works for constant guards and is not applicable to guards that are dependent on the
program state.

The above decomposition (1) of an “if” command splits the “if” command into
its two possible execution paths. This “path” view can be exploited for analyzing, for
example, timing constraints on paths through a program.

In Section 2 we introduce of our path primitives and composition operators, and
define a simple programming language in terms of these. Section 3 defines the path
view of a repetition. Section 4 considers dead path and Section 5 extends to approach
to real-time programs.
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2 Path Primitives and Composition Operators

Given a predicate p, a vector of variables�x, and a vector of expressions�e, that is assign-
ment compatible with �x, the following are path primitives.

{
p
}

— Assumption (6)
[
p
]

— Coercion (7)

�x← �e — Multiple assignment (8)

The assumption command either acts like skip if p is true, or aborts if p is false. The
coercion command either acts like skip if p is true, or like magic if p is false. The
following can be defined in terms of the primitives.

abort =̂
{

false
}

(9)

skip =̂
{

true
}

(10)

=
[
true

]
(11)

magic =̂
[
false

]
(12)

In terms of the refinement lattice abort is the bottom program (i.e., it is refined (imple-
mented) by all other programs) and magic is the top program (i.e., it refines all other
programs). Because the coercion

[
p
]

guarantees to establish p, p may be assumed to
hold immediately after the coercion, that is,

[
p
]

=
[
p
]
;

{
p
}

(13)

The composition operators are given in Figure 1. We have already seen the binary
versions of nondeterministic choice and sequential composition. These can be gener-
alised. The general nondeterministic choice

⊔i : T • si (14)

is a choice over all the commands si for i ranging over all the values of type T. If T is
empty then the general choice is equivalent to magic (the identity of nondeterministic
choice).

Given commands s and t the following composition operators can be defined.

s � t — Binary demonic nondeterministic choice (15)

⊔i : T • si — General demonic nondeterministic choice (16)

s; t — Sequential composition (17)

si — Finite iteration of s, i times (18)

s∞ — Infinite iteration of s (19)

Fig. 1. Path composition operators.
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Sequential composition can be generalised to any finite number of iterations or even
an infinite number of iterations. Finite iteration, si, satisfies the following properties

s0 =̂ skip (20)

si+1 =̂ s; si (21)

where i is a natural number. Iteration satisfies the following properties.

s1 = s (22)

si+j = si; sj (23)

Infinite iteration, s∞, is the least-refined command that satisfies

s∞ = s; s∞ (24)

Unfolding using (24) i times gives

s∞ = si; s∞ (25)

Any nonterminating command followed by another command is equivalent to the non-
terminating command and hence

s∞; t = s∞ (26)

Infinite iteration also satisfies the following property.

(s; t)∞ = s; (t; s)∞ (27)

Table 1. Comparison with regular expressions.

Construct Regular expression Program
Alternation e | f s � t
Sequence e f s; t
Kleene star e∗ s∗

Identity of alternation ∅ magic
Identity of sequence ε skip

In order to define programming language repetitions we introduce the Kleene star
iterator, s∗, to stand for the nondeterministic choice between any finite number (zero
or more) of iterations of s. It can be defined in terms of finite iteration and general
nondeterministic choice.

s∗ =̂ ( ⊔i : N • si) (28)

Kleene star has the usual properties that we associate with it from regular expressions.
Table 1 compares regular expressions (for matching strings) with the operators on pro-
grams: sequential composition of commands corresponds to concatenation of regular
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expressions, nondeterministic choice corresponds to a choice between alternative regu-
lar expressions, magic corresponds to the empty language, and skip corresponds to the
empty string. One can split out the empty case of a Kleene star:

s∗ = s0 � ( ⊔i : N • si+1)
= skip � ( ⊔i : N • s; si)
= skip � (s; ( ⊔i : N • si))
= skip � (s; s∗)

(29)

and the following sliding law holds (the step in the middle can be proved by induction).

t; (s; t)∗ = t; ( ⊔i : N • (s; t)i)
= t; (skip � ( ⊔i : N • s; t; (s; t)i))
= t � ( ⊔i : N • t; s; t; (s; t)i)
= t � ( ⊔i : N • t; s; (t; s)i; t)
= (skip � ( ⊔i : N • t; s; (t; s)i)); t
= ( ⊔i : N • (t; s)i); t
= (t; s)∗; t

(30)

We assume the Kleene star operator has the highest precedence followed by sequential
composition and then nondeterministic choice.

3 Defining a Repetition Command

A repetition with guard b and body s,

do b→ s od

can now be defined as the choice between any finite number of iterations (including
zero) of the guarded command, and an infinite iteration of it. If the guard is initially
false the body of the repetition is never executed and repetition is equivalent to the path
containing just the coercion

[¬ b
]
. If the repetition executes exactly one iteration before

terminating it is equivalent to the path
[
b
]
; s;

[¬ b
]

If the repetition executes exactly two iterations before terminating it is equivalent to the
path

[
b
]
; s;

[
b
]
; s;

[¬ b
]

= (
[
b
]
; s)2;

[¬ b
]

More generally if it executes exactly i iterations before terminating it is equivalent to
the path

(
[
b
]
; s)i;

[¬ b
]

To allow for any finite number of iterations we take the nondeterministic choice over
all possible number of iterations (including zero).

( ⊔i : N • (
[
b
]
; s)i);

[¬ b
]

(31)
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The nondeterministic choice in the above chooses from alternatives corresponding to
zero or more iterations of the guarded body. This has exactly the properties of the
Kleene star operator introduced earlier. Hence (31) can be rewritten as

(
[
b
]
; s)∗;

[¬ b
]

Assuming the command s terminates, this defines all the finite execution paths of the
repetition. If the number of iterations taken by a repetition before terminating is de-
terministic and, say, j then b will be true on the first j iterations and false on the next.
Hence

(
[
b
]
; s)j;

[¬ b
]

= (
[
true

]
; s)j;

[¬ false
]

= (skip; s)j; skip = sj

and for i less than j

(
[
b
]
; s)i;

[¬ b
]

= (
[
true

]
; s)i;

[¬ true
]

= (skip; s)i; magic
= si; magic
= magic

The last step relies on the property that magic is a right zero of sequential composition
provided si terminates (5), and si terminates because s terminates. For i greater than j

(
[
b
]
; s)i;

[¬ b
]

= (
[
true

]
; s)j;

[
false

]
; s; (

[
b
]
; s)i−(j+1);

[¬ b
]

= sj; magic; s; (
[
b
]
; s)i−(j+1);

[¬ b
]

= magic

Again the last step requires that s terminates and uses property (5). If the number of
iterations, j, executed by the repetition is deterministic and finite, all other the alterna-
tive numbers of iterations within the nondeterministic choice are equivalent to magic.
Because magic is the identity of nondeterministic choice, the choice over all i reduces
to just the single path

(
[
b
]
; s)j;

[¬ b
]

If the number of iterations is finite but nondeterministic then, rather than ending up
with a single path, we end up with a nondeterministic choice over all possible number
of iterations of the repetition for which it may terminate.

If the repetition never terminates (still assuming s terminates) then for all i

(
[
b
]
; s)i;

[¬ b
]

= (
[
true

]
; s)i;

[¬ true
]

= si; magic = magic

To allow for a nonterminating repetition we use an infinite iteration of the guarded body:

(
[
b
]
; s)∞
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This represents the infinite path that repeatedly evaluates the coercion (to true) and
executes s, forever. If b ever becomes false, say after j iterations, then this is equivalent
to magic because using (25)

(
[
b
]
; s)∞

= (
[
true

]
; s)j;

[
false

]
; s; (

[
b
]
; s)∞

= (skip; s)j; magic; s; (
[
b
]
; s)∞

= magic

For the last step we are still assuming that s always terminates and using property (5).
The whole iteration can be defined via the following.

do b→ s od =̂ ((
[
b
]
; s)∗;

[¬ b
]
) � (

[
b
]
; s)∞ (32)

Above we assumed that the body of the repetition, s, always terminates, but if s termi-
nated on the first j iterations and did not terminate on iteration j + 1, then paths with
less than j + 1 iterations are equivalent to magic (as before), but paths with i iterations,
where i is at least j + 1, satisfy the following (because if t does not terminate t; u = t
for any u).

(
[
b
]
; s)j;

[
b
]
; s; (

[
b
]
; s)i−(j+1);

[¬ b
]

= as s does not terminate on iteration number j + 1
(
[
b
]
; s)j;

[
b
]
; s

Hence the definition above also covers the case in which the body of the repetition fails
to terminate on some iteration.

The definition of a repetition using an approach similar to the above was used by
Back and von Wright [2] and in the real-time context in [11]. Earlier work on using
Kleene algebra with tests has been done by Kozen [16] and Cohen [5].

4 Dead Paths

Identifying dead paths in a program is useful in contexts such as devising test cases and
timing constraint analysis (see Section 6). Dead paths are paths that cannot possibly
be followed (they are infeasible) or paths that do not terminate. In the testing context
one would like to avoid trying to devise test cases for paths that cannot possibly be
followed, or for paths that do not terminate. For timing analysis, including paths that
cannot possibly be followed leads to more pessimistic timing estimates, and there is no
point analyzing the time taken by a path that does not terminate.

As an example with dead paths, consider the following program.

if b then s else t fi; u; if b then v else w fi

The path view of this program can be calculated as follows.

(
[
b
]
; s � [¬ b

]
; t); u; (

[
b
]
; v � [¬ b

]
; w)

=
[
b
]
; s; u;

[
b
]
; v �[

b
]
; s; u;

[¬ b
]
; w �[¬ b

]
; t; u;

[
b
]
; v �[¬ b

]
; t; u;

[¬ b
]
; w
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t

[¬ b]

s

[b]

v w

u

[b] [¬ b]

Fig. 2. Control-flow graph for the example.

This decomposes the program into its four possible execution paths. Paths that cannot
possibly be followed are equivalent to magic and can be eliminated from the nondeter-
ministic choice. If we assume that none of the commands s, t, and u modify variables
used in b, then the second path is dead because if b is true at the start of the path then
¬ b will be false (and hence

[¬ b
]

will be equivalent to magic) later in the path. The
third path is also dead for similar reasons.

The same four paths would be extracted with a conventional control-flow analysis
of the control-flow graph of the program. Here the extraction is done using algebraic
properties of programs and the resulting paths are valid constructs in the primitives of
the language. Fig. 2 gives an control-flow graph of the example. When drawing control-
flow graphs we draw the conditions differently to the most common form (a diamond
with edges labeled true and false emanating from it). Instead we represent the true and
false forms of the condition by separate boxes labeled with the condition that must hold
to follow the path. This form of graph is more general because it is able to represent
“case”-like commands with no additional primitives.

A dead path is either equivalent to magic or nonterminating (including aborting). In
earlier work [12] we characterised dead paths using Dijkstra’s weakest liberal precon-
ditions. A path s is dead if and only if

wlp.s.false ≡ true (33)

Alternatively wlp.s.false characterises those initial states from which the path s is dead.

5 Extending to Real-Time

To extend to path view to real-time programs we introduce a special real-valued vari-
able, τ , to stand for the current time. In order to remain the identity of sequential com-
position, the command skip must take no time to execute, i.e., it does not change τ .



Programs as Paths: An Approach to Timing Constraint Analysis 9

In the real-time language we distinguish between local (state) variables, including
auxiliary variables (see below), and external inputs and outputs, in that the latter are
represented by a timed trace, a function from time to their value at that time, whereas
the former are just represented by their current value. For a real-time program we are
not just interested in the final value of an external variable but the relationship between
the traces of inputs and outputs over the execution time of the program.

We introduce a new command, idle, that may take some finite time to execute, but
changes no variables or program outputs. Using idle as well as our existing constructs
we can define a real-time version of the “if” command, in which the times taken to
evaluate the guard and exit the branches of the “if” command are represented by idle
commands.

if b then s else t fi =̂ (
[
b @ τ

]
; idle; s; idle) �

(
[¬ b @ τ

]
; idle; t; idle)

(34)

The evaluation of the guard of the “if” command is represented by “
[
b @ τ

]
; idle”

for the “then” branch and “
[¬ b @ τ

]
; idle” for the “else” branch. In this paper the

coercion primitives are defined to take no time to execute; this differs from earlier work
[13] but makes algebraic reasoning easier. Here additional idle commands are used to
represent the passage of time. The guard b is evaluated at the current time τ . Hence we
use the expression b @ τ in the definition; this stands for the expression b with every
occurrence of an external input or output, v, replaced by its value at time τ , i.e., v(τ).
In order to ensure that the evaluation of the guard is independent of the time taken to
evaluate the guard, we require that the guard expression is idle-stable, that is, its value
does not change with the passage of time, assuming that the program’s state variables
and outputs do not change. An expression b is idle-stable provided

[
b
]
; idle = idle;

[
b
]

(35)

In practice this means the guard b must be independent of the current time variable, τ ,
and of external inputs.

For an implementation on a particular target machine the guard evaluation will
take a particular (range of) time to execute. Because we are working with a machine-
independent language, we allow any finite execution time to allow for any conceivable
target machine. In order to guarantee that the program performs in a timely manner we
make use of a deadline command [7] of the form deadline d. In our context a deadline
command can be represented by a coercion of the form

[
τ ≤ d

]
, where τ represents

the current time. Like other coercions, a deadline command cannot be implemented in
isolation because it always guarantees to meet its deadline, even if executed at a time
later than its deadline.

We introduce a real-time specification command,

�x,�o:
[
Q

]
,

with a frame consisting of the vector of state variables �x and the vector of outputs �o,
and postcondition Q. The predicate Q is a relation, in the sense that it may refer to both
the initial value of a state variable v via v and its final value via v′. The specification
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command guarantees to establish Q and only change the variables in the frame and
the current time variable τ . Furthermore it guarantees that time does not go backward
(τ ≤ τ ′) and that it terminates (τ ′ <∞). Because outputs are traces over time, in order
to ensure that the value of an output, y, that is not in the frame does not change during
the execution of the command we introduce the predicate stable(y, S) to state that the
value of y is the same for all times in the set S,

stable(y, S) =̂ S �= ∅⇒ (∃ z • y(| S |) = {z}) (36)

where y(| S |) is the image of the set S through the function y. We allow stable to be
applied to a set of variables, in which case every variable in the vector is stable over S.

The specification command can be defined in terms of our existing constructs. We
assume that ρ is the environment consisting of all the variables in scope and that ρ.out
consists of all the outputs in scope and hence ρ.out \�o is the set of output variables that
are not in the frame.

�x,�o:
[
Q

]
=̂

(

⊔τ
′,�x′ •

[
Q ∧ τ ≤ τ ′ <∞ ∧

stable(ρ.out \ �o, [τ ... τ ′])

]
; τ,�x← τ ′,�x′

)
(37)

The specification nondeterministically chooses the final time, τ ′, and the final values
of the state variables in the frame, �x′, so that Q ∧ τ ≤ τ ′ < ∞ is satisfied. Q may
also refer to inputs and outputs, and hence the values of τ ′ and �x′ may be constrained
by this. Q may constrain the traces of outputs (usually over the execution time of the
command). See [13, 19] for more details. Those outputs that are not in the frame are
stable for the duration of the command.

Given a vector of state variables, �x; a vector of idle-stable expressions �e that are assignment
compatible with�x; an idle-stable, time-valued expression d that does not refer to τ ; a time-valued
variable t; a state variable v; an input i that is assignment compatible with v; an output o; and an
idle-stable expression f that is assignment compatible with o, then

idle =̂ ∅:
[
true

]
(38)

�x := �e =̂ idle; �x← �e (39)

delay until(d) =̂ idle;
[
d @ τ ≤ τ

]
(40)

t : gettime =̂ t:
[
τ ≤ t ≤ τ ′] (41)

v : read(i) =̂ v:
[
v′ ∈ i(| [τ ... τ ′] |)

]
(42)

o : write(f ) =̂ o:
[
o(τ ′) = f @ τ

]
(43)

Fig. 3. Real-time commands.

Other real-time commands can be defined using the constructs we have introduced
already (see Figure 3). The specification command ∅:

[
true

]
, where ∅ indicates an

empty frame, differs from the coercion
[
true

]
in that τ is implicitly in the frame of the

former and hence idle allows time to pass. The primitive assignment �x ← �e takes no
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time; hence an idle command is needed in the definition of the real-time assignment to
allow for the passage of time. In the real-time language the primitive assignment is only
used for auxiliary variables (see below).

analysis successful

Failed timing
analysis

Real−time specification

Refinement

Real−time program with deadlines

Timing constraint
analysis

Compilation for
target machine

execution−time
Worst−case

Timing verified program

+ timing constraints on paths
Machine code program

Fig. 4. Development process for real-time programs.

6 Timing Constraint Analysis

Deadline commands provide a mechanism for specifying timing constraints in
a machine-independent manner. Fig. 4 gives an overview of the program development
approach. A real-time specification is refined to a machine-independent real-time pro-
gram, which includes deadline commands to guarantee the timely operation of the pro-
gram. In order to show that a program compiled for a particular target machine im-
plements the machine-independent program, one must show that all deadlines in the
program are reached before their specified deadline. Showing that all deadlines are met
can be split into two phases:

timing constraint analysis a machine-independent phase that partitions the program
into a set of subpaths ending in deadlines, along with an execution-time constraint
on each path, and

execution-time analysis a machine-dependent phase that checks whether or not the
compiled code corresponding to each path meets its execution-time constraint.
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Here we concentrate on the first machine-independent phase and show how representing
programs as paths can facilitate the timing constraint analysis. We use an example of a
repetition containing a deadline.

do b→ s1;
[
τ ≤ d

]
; s2 od

Before manipulating this we note that, using (13), the predicate in the coercion can be
assumed after the coercion, and hence the above is equivalent to the following.

do b→ s1;
[
τ ≤ d

]
;

{
τ ≤ d

}
; s2 od (44)

In the real-time refinement calculus a repetition is defined in a manner similar to
(32), except that additional idle commands are included to allow for the time taken to
evaluate the guard of the repetition and for the branch back to the start of the repetition.

do b→ s od =̂ (
[
b
]
; idle; s; idle)∗;

[¬ b
]
; idle � (

[
b
]
; idle; s; idle)∞ (45)

Applying (45), our example (44) is equivalent to the following.

(
[
b
]
; idle; s1;

[
τ ≤ d

]
;

{
τ ≤ d

}
; s2; idle)∗;

[¬ b
]
; idle

� (
[
b
]
; idle; s1;

[
τ ≤ d

]
;

{
τ ≤ d

}
; s2; idle)∞

If we introduce the following abbreviations

t =̂
[
b
]
; idle; s1

u =̂
[
τ ≤ d

]

v =̂
{
τ ≤ d

}
; s2; idle

then the above can be rewritten as

(t; u; v)∗;
[¬ b

]
; idle � (t; u; v)∞

= unfolding the Kleene star (29) and using (27)

(skip � t; u; v; (t; u; v)∗);
[¬ b

]
; idle � t; u; (v; t; u)∞

= using the sliding law (30)

(skip � t; u; (v; t; u)∗; v);
[¬ b

]
; idle � t; u; (v; t; u)∞ (46)

Recalling that u stands for the deadline command, we have rewritten the program so
that the subpaths appearing in the program end with the deadline (u). We introduce a
new construct, s〈x〉, into the real-time language that allows one to specify an execution-
time limit, x, on a command s so that s〈x〉 is the same as s except that it guarantees to
execute in at most x time units. If one can show that there exist upper time limits x and
y such that

t; u  t〈x〉 (47)

v; t; u  (v; t)〈y〉 (48)

then (46) can be refined to

(skip � t〈x〉; ((v; t)〈y〉)∗; v);
[¬ b

]
; idle � t〈x〉; ((v; t)〈y〉)∞
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Expanding our abbreviations for t, u, and v, (47) and (48) become

[
b
]
; idle; s1;

[
τ ≤ d

]  (
[
b
]
; idle; s1)〈x〉

{
τ ≤ d

}
; s2; idle;

[
b
]
; idle; s1;

[
τ ≤ d

]  (
{
τ ≤ d

}
; s2; idle;

[
b
]
; idle; s1)〈y〉

What we have done is to replace the deadline commands by time limits on subpaths
in such a way the the result is a refinement of the original repetition. When the program
is compiled, the code corresponding to each time-limited subpath needs to be analyzed
to show that its worst-case execution time meets its time limit.

To make our example more concrete, consider the following simple program which
repeatedly reads a value from an input i and writes some function of the input to the
output o. Each cycle is limited to a time of D milliseconds. The variable T is an auxiliary
variable; no code needs to be generated for the commands involving auxiliary variables;
they are used only to express timing constraints [10].

T ← τ ;
do true→

x : read(i);
o : write(f (x));[
τ ≤ T + D

]
;

T ← τ
od

(49)

It is of a structure similar to (44). Using a decomposition similar to (46), the interesting
paths are

T ← τ ; [true]; idle; x : read(i); o : write(f (x));
[
τ ≤ T + D

]

and

T ← τ ; idle; [true]; idle; x : read(i); o : write(f (x));
[
τ ≤ T + D

]

For this simple example both paths can be refined by removing the deadlines and adding
an execution-time limit of D milliseconds. For example, the first path becomes:

(T ← τ ; [true]; idle; x : read(i); o : write(f (x)))〈D〉

The auxiliary variable T could also be eliminated at this stage because it no longer
serves a useful purpose. Note that it is not possible to introduce the execution-time
limit into the original program (49) expressed using a repetition. This is because the
paths do not correspond directly to subcomponents visible in the original program. The
first path starts before the repetition and finishes at the deadline in its body, and the
second path starts at the auxiliary assignment at the end of the repetition continues back
to the start of the repetition and finishes at the deadline. Only using the path-oriented
view of the program can we introduce the appropriate time limits that guarantee that the
deadlines will always be met.
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7 Conclusion

In the program analysis world, analyzing programs in terms of their control-flow graph,
including paths through the control-flow graph, is common place [9]. The approach
taken in this paper has been to decompose programs into their constituent paths that
are defined in terms of primitives derived from the refinement calculus, in particular,
nondeterministic choice, coercions and iteration.

Our use of a path-oriented view of programs is motivated by the need to consider
timing constraints on subpaths of a program that guarantee that all deadlines in the
program will be met. The path-oriented view allows us to manipulate the program into
a form suitable for imposing timing constraints. The manipulation makes use of the
algebraic properties of the primitives. For repetitions we make use of the Kleene star
operator which allows a simple definition of a repetition with nice algebraic properties
for manipulation of programs written in this form, e.g., the use of the sliding law.
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Abstract. Model based development languages, such as Simulink and UML, 
are increasing in popularity. Simulink is a de-facto standard in control systems 
engineering and UML is the subject of a significant standardisation effort. 
These “standardised” model based languages have commercial tool support, 
which primarily address the customer’s immediate demands. In this paper I 
shall discuss the trends that are leading to an opportunity for formal methods to 
deliver significant benefits to industrial software development. Insights are 
drawn from an industrial application of formal methods and an experiment that 
compares a formal and a conventional development. 

1   Introduction 

In this paper I shall refer to model-based design to mean a design environment that 
lets engineers use a single model of their entire system to work through data analysis, 
model visualization, testing and validation, and ultimately production deployment.  

1.1   The Potential of Model-Based Design  

Increasing processing power and memory at reduced costs have led to powerful de-
sign tools for software and system engineering. For example Simulink from The 
MathWorks allows the block diagram idiom that control law engineers have used on 
paper to be simulated and to facilitate computational analysis techniques. Several 
industries, especially the aerospace and automotive sectors, were early adopters of 
simulation technologies. 

Previously control law engineers would have written a Fortran or C program to 
simulate a specification. Software engineering issues of, for example, efficiency of 
execution would then become entangled with control engineering issues. The simula-
tion program would become the specification and much of the initial development 
work would be hard to maintain because it had been done in Fortran, Ada, or C. The 
design of algorithmic languages makes them good for developing efficient simula-
tions, but they are not ideal for a specification hence the rapid rise in popularity of a 
language like Simulink. UML is an analogous approach to Simulink for Software 
Engineering to separate the “what is required” from the “how to achieve the require-
ments”.  

Developing algorithms and software manually can be a time-consuming and error-
prone process. Processes based on paper specifications can lead to misinterpretation, 
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slow communication between groups, and difficulty in responding to changes in de-
sign and requirements. Model-based design addresses these issues, with executable 
specifications transferred in the form of, for example, Simulink and Stateflow mod-
els. By reducing errors from design ambiguities, running real-time simulations for 
rapid prototyping, hardware-in-the-loop testing, and generating production code from 
models, development time and costs can potentially be dramatically reduced. 

1.2   The Commercial Pressure for Model Based Code Generation 

Increasing processing power and memory has also led to an increase in the size and 
complexity of software applications. These software applications are growing in their 
pervasiveness leading to a greater dependence by society. This has also led to an 
increase in the criticality of software. For example automotive control systems for 
power management, traction control and engine control. In this case the criticality 
does not usually lie in safety, since they can be designed to be fail safe, but in the 
monetary issue of the manufacturers’ warranty. 

Due to the explosion in the pervasiveness of software there will be a shortage in 
skilled software engineers, this was experienced recently during the “.com” boom. At 
the same time the issues such as warranty have led to more rigorous and labour inten-
sive software development processes. As a consequence the costs and timescales for 
development of software intensive projects have increased significantly, or have 
failed to deliver. 

Automatic code generation from modeling languages such as Simulink is attractive 
if the code generation process can be trusted. However, because of commercial pres-
sures, the modelling languages and their support tools are constantly being upgraded 
requiring the constant evolution or complete re-work of the associated automatic code 
generators. The issue of trust in the validity of the models and in particular the fidel-
ity of the code generated from the models is the subject of this paper. In the next 
section I shall discuss the general issues of trust in automatic code generation. In 
section 3 I will give a brief overview of an experiment in formally verifying auto-
matically generated code and give preliminary results, the experiment and its final 
results will be the subject of a full paper in the future. Finally I will discuss the impli-
cations of the results of the experiment and how formal methods might be able to 
build on the approach taken to establishing the validity of models. 

2   Code Generation from Models 

In this section three broad approaches for establishing trust in automatic code genera-
tion are discussed and compared. 

2.1   Verified Automatic Code Generators 

There does not appear to be any reference in the literature to work on verification of 
conventional automatic code generators, except for compilers. The most significant 
work in the area of compiler verification is reported in the book by Susan Stepney 
[1]. The origins of this work go back to a study commissioned by QinetiQ (previously 
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DERA) Malvern into how to develop a trusted compiler for high integrity applica-
tions. 

In that study, the source language was SPARK [2], a subset of Ada designed for 
safety critical applications, and the target was Viper [3,4], a high integrity processor. 
Logica developed a mathematical technique for specifying a compiler and proving it 
correct, and developed a small proof of concept prototype [5]. 

This work was subsequently extended for another simple high integrity processor 
for a subset of Pascal [6]. A high integrity compiler was produced and is being in-
crementally extended to enlarge the subset of Pascal, to include for example separate 
compilation (without any sharing). 

It is important to appreciate the scope of the work that was required, in order to as-
sess verifying an automatic code generator. The development of a high integrity code 
generator, following the same approach, would involve the following steps: mathe-
matically specifying the generator; implementing this specification; providing a 
mathematical semantics for the input and target language; proof that the generator’s 
semantics are meaning preserving. 

The compiler specification consisted of an operational semantics of the source 
language in the form of a set of target language templates described in the formal 
language Z [7]. This is a rigorous version of the way many automatic code generators 
currently operate. The compiler was implemented by translating the Z description 
into Prolog that was then executed. Executing the semantics essentially provided a 
trusted compilation. 

The source and target languages were specified by providing a denotational se-
mantics for both the source and target language, again expressed in Z. The proof in Z 
consisted of demonstrating that the compiler’s operational semantics were equivalent 
to the source language’s denotational semantics. That is, the denotational meaning of 
a transformed source program, using templates, in the target language is equivalent to 
the denotational meaning of the source program. The compiler was shown to be 
meaning preserving and hence correct. 

For the particular project this high integrity compiler work has been a success and 
proved to be cost effective [6]. However the proofs, although undoubtedly useful, 
were carried out by hand. Furthermore no optimizations were performed on the gen-
erated target code. 

More recently there has been promising work being undertaken by the VERIFIX 
project [8]. The aim of the VERIFIX project is the construction of mathematically 
correct compilers, which includes both the development of formal methods for speci-
fication and implementation of a compiler, and also the implementation of concrete 
compilers and development tools. However it is unclear at this time whether they will 
be able to achieve their aims. The main problem is the rapid obsolescence of target 
processors. 

2.2   Correct by Construction 

The correct by construction approach works by transforming the description in the 
input language into the target. It is most associated with proof where proving a speci-
fication also constructs a program that is guaranteed to implement that specification. 



Model Based Code Verification      19 

A related approach is taken by techniques such as the B method [9]. A high level 
specification is refined towards a low-level design from which code is generated. The 
key point here is that the refinement is supported by proof and bridges the large gap 
between the high level specification and the low-level design. The automatic code 
generation introduces only a small gap with less risk of introducing errors. 

These approaches to code generation do not fit into the usual paradigm of auto-
matic code generation. However when high assurance is required, these approaches 
have the advantage that the verification effort also produces the required code. This is 
equivalent to the “automatically generate and verify” approach. 

The process can even be automated in some cases. For example using the proof-
planning paradigm recursive functional programs can be automatically generated 
[10]. Automated code generation becomes equivalent to automatic theorem proving. 
However the implementation languages tend to be constraint or functional program-
ming languages. 

2.3   Verifying the Generated Code 

The third approach to provide the necessary assurance for automatically generated 
safety critical code is to take the generated code and construct a proof of correctness. 
This involves constructing a proof that the observed behaviour of the code is a subset 
of the observed behaviour of the design. Like the other two approaches it requires a 
mathematical meaning for the input design and target language. 

Assessing the generated code for correctness is a reverse engineering exercise, as 
opposed to the top down synthesis approach. However a refinement approach, as 
practiced in the B method or refinement calculi [10,11], can also be used to underpin 
the reverse engineering approach. This particular approach, called “conjecture and 
verify”, fell out of favour but is suited for verifying automatically generated code. 

2.4   Comparing the Approaches 

The three broad approaches outlined in sections 2.1 to 2.3 cover how assurance for 
automated code generation might be achieved, but which one is the best? Of course 
there is no absolute “best approach”, it depends upon the timescale constraints and 
project circumstances. For example the high integrity compiler work of Stepney has 
proven to be the best approach for the particular project it was developed for. This is 
because the application is so critical it was worth the investment just for that particu-
lar project. Further the microprocessor design and fabrication, the software develop-
ment process and the compiler were all under the control of the same people.  

For the compiler work the specification of the compiler templates were approxi-
mately 100 pages of Z, with a further 20 pages to specify linking for separate compi-
lation. The Z specification of the Pascal subset was 150 pages, the specification of the 
target language was 50 pages. In comparison the static semantics for SPARK, that 
could be a target language, is 300 pages of Z and the dynamic semantics is 500 pages 
of Z. This indicates that verifying an automated code generator is at least at the edge 
of commercial viability. 
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The correct by construction approach suffers from the problem that it is still 
largely manual and requires a particular development process to be adopted by indus-
try. In the longer-term automatic code synthesis (i.e. code generation based upon 
constructing the code via a proof) promises much and has proven useful for control 
systems [12]. There is a lack of support for current mainstream languages, like C and 
Ada, however in the longer term this could become irrelevant. 

Automatic code synthesis based on automatic proof suffers from the problems of 
automated theorem proving. In general it is difficult to guarantee that a proof and 
hence code will be generated. However by constraining the problem space, which 
would happen quite naturally for domains such as control laws, automatic synthesis 
could be very effective [13]. By the same token automatic verification strategies, for 
code that has been generated by another tool, should be possible in such constrained 
domains. 

The soundness of the theorem prover is an issue because it is directly responsible 
for the generation of the code. The veracity of the proof for a verified automated code 
generator is also a problem. This moves the assurance problem elsewhere, but it 
might well be more appropriate to address it in the domain of theorem proving tools. 

Verification of the code that has been automatically generated is less of a problem. 
A view, which has been taken in UK safety clearance, is that it would be incredible if 
a flaw in post verification tool exactly masked a flaw in the software that was being 
assessed. Of course errors will be present, but they will either prevent verification or 
be so gross that they will reveal themselves. This is an appeal to software diversity 
between, for example, system control software and verification software. Although 
only limited quantitative evidence can be demonstrated there are very strong qualita-
tive arguments that can be made for independence of truly diverse software. 

If automated code generation of safety critical software is to become more wide-
spread then they will have to be commercial tools. The possible legal liabilities mean 
that claims made about the tool (that it is verified or is guaranteed to generate correct 
code) carry significant commercial risk. This makes the first two approaches to auto-
matic code generation, verification of the generator and “correctness by construc-
tion”, commercially unattractive.  

Verifying the code independently from the automated code generator moves the 
risk elsewhere. With this approach the code generator adds no assurance and is just a 
tool to reduce costs, of both development and verification. Where does the risk go? 
It goes to either the developer of the safety critical system, such as an aircraft manu-
facturer, or to the customer, such as the UK MOD, or is shared between both. 

In the next section I shall present some evidence in favour of independently 
verifying the automatic code generator. 

3   Verification of Automatically Generated Code 

The Systems Assurance Group at Malvern has applied verification techniques and 
tools to two previous versions of a control system. The specification of the control 
system is estimated to be of the order of 800 pages of A4 Simulink diagrams. It is 
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hierarchical and was transcribed from another representation. The transcription proc-
ess included a significant validation effort that takes advantage of Simulink’s simula-
tion capabilities. The specification in Simulink is suitable for review by independent 
control engineers, which the previous representation was not, although it could be 
executed. The implementation of the control system consisted of approximately 
18,000 lines of non-blank, non-comment code. The verification was conducted on an 
implementation of the control system that had already been subjected to a mature 
software verification and validation process. Further details of the results of the veri-
fication exercise can be found in [14]. 

Although the formal post-development verification was successful in providing ex-
tra evidence of the correctness of the implementation (as well as identifying a handful 
of minor issues and one major one) there was little justification for using the ap-
proach to replace parts of a development process. The techniques and tools did not 
have a stable baseline and time measurements for the various activities were not 
taken. As a result, it was not easy to assess the potential impact on any other project. 
For this reason an experiment was proposed and funded by the UK MOD’s Corporate 
Research Programme to provide evidence for deciding whether to use the QinetiQ 
tool set in development with respect to potential benefits, risks and costs. 

3.1   Aims of the Experiment 

The principal aims for the experiment were: 

1. Could automatic code generation be integrated with the existing verification tools 
to give a software development process that would pass the existing functional unit 
tests? 

2. Would the code be of sufficient quality to be flown, i.e. was it certifiable? 
3. What were the cost implications of adopting the process as part of a development 

lifecycle?  

In September 2002, QinetiQ agreed to run the experiment to replace a third of the 
functional modules of the latest verified version of the control system with auto-
generated, machine assisted formally proven SPARK Ada code. The experiment was 
conducted in conjunction with the company that had developed the original software. 
The selected modules represented various types of code including complexity, run-
time (both long and short), size and the applicability to a proprietary PowerPC 
benchmark. These modules represented approximately 8,500 lines of code of a total 
of approximately 18,000 lines of code (roughly 47% of the manually developed code 
and all non-blank and non-comment). Throughout the Malvern work, time measure-
ments were taken for each part of the process and compared to industry norms and the 
equivalent from the original work undertaken by the company. 

3.2   Results of the Experiment 

The functional unit testing revealed changes in the structure of the code and minor 
problems with instrumenting the code for testing with the legacy code. The most 
significant issue that functional unit testing showed was a small deviation from the 
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numerical accuracy required. Floating point numbers are represented within the 
QinetiQ verification approach as mathematical real numbers; hence numerical accu-
racy is not in the scope of our verification. This is no different from the use of, for 
example, the SPARK examiner and its associated verification tools. This means that 
the conventional testing for numerical accuracy is still required. However the use of 
retrenchment refinement techniques offers the promise of addressing this formally in 
the future [15].  

Of the autocoded functional modules analysed, when compared with the original 
hand code, 15 showed an improved Worst Case Run Time (WCRT), 12 had identical 
WCRT and 53 had greater WCRT. Overall approximately 28% more run-time was 
consumed by the autocode and approximately 30% more storage was required. 

The true WCRT figures are likely to be somewhat higher than those calculated, as 
the automatically generated code does not contain a specific optimisation for the 
target processor. Running the code without the optimisation typically causes instruc-
tion times to double. The optimisation is not required for the PowerPC microproces-
sor. 

The Worst Case Run Time analysis indicated that overall the one third of the func-
tional modules would not fit into the very stringent real time performance require-
ments. This is because of the severe limitations of the processor being used with re-
spect to the demands of the control system. For this reason 18 functional modules 
were selected as a sample to be compiled and executed on the Power PC (the MPC 
565 microprocessor) using the Green Hills compiler. 

Of the 18 functional modules that were timed: 9 had longer run-times to the origi-
nal hand code; 7 had shorter run-times; and 2 were identical. Of the 9 procedures that 
had longer run-times, 4 of these took roughly an additional 50% of the (manually 
developed code) execution time to execute, with one taking slightly more than double 
the time of the manually developed code. The remaining 5 procedures were on aver-
age around 11% slower. Those procedures that had shorter run-times were on average 
about 4% faster. The procedures that took 50% or longer than the manually devel-
oped code would bear further investigation into how the automatic code generator 
could produce more efficient code. 

In summary the results of the experiment demonstrated that the first two aims of 
the experiment were essentially positively satisfied, however more work needs to be 
done. In answer to the third question the broad comparison is that in terms of person 
hours the QinetiQ process is between 2 ½ and 4 ½ times faster in that part of the 
software development that includes Design, Implementation and Unit Tests. This is a 
significant impact on overall costs of a development, which can easily form over 50% 
of software project cost. No credit has been taken for further reductions of costs in the 
Design or Rig Tests.  

4   Conclusions 

There has always been tension between modelling and developer led processes. Typi-
cally modelling and development are separate processes carried out by different indi-
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viduals. The modeller produces specifications, but the developer treats them as broad 
guidelines rather than precise specifications, or misinterprets them. Platform consid-
erations often force developers to compromise good partitioning of functionality to 
achieve acceptable performance and integrity. Perfectly reasonable changes made to 
the implementation are not reflected back into the design or specification, rendering 
these not merely out of date, but dangerously inconsistent. 

Model-based design is vulnerable to these problems. For example in the prepara-
tion for the experiment it was necessary to significantly re-structure the Simulink 
specification for integration with the legacy software and architecture. This imple-
mentation oriented Simulink was then used to generate the software, however the 
original validated Simulink was still used as the specification. The formal verification 
not only detected errors in the automatic code generation process, but also errors in 
the Simulink re-structuring process. This means that the potential for divergence 
between modelling and development, that is not special to model-based design, can 
be managed and consistency enforced. 

The experiment has shown that the “conjecture and verify” approach is a means of 
reducing development and warranty costs within the model-based design paradigm. 
Although QinetiQ’s experience has been with Simulink there is no reason why it 
should not be possible to reap benefits from other model based languages. Indeed the 
Systems Assurance Group at QinetiQ Malvern is working on extending the approach 
to The MathWorks’ Stateflow language and aspects of the UML. Further the formal 
basis for code verification also provides a platform for applying formal techniques to 
validate a specification in a model-based language. 

To this end QinetiQ has sponsored research into symbolically reasoning about con-
trol laws in Simulink [16]. We are also working with our colleagues at QinetiQ Bed-
ford in joining our verification technology with their technology for assessing global 
stability properties of control laws using bifurcation analysis. There is related work 
on employing formal methods at SRI and York University for Simulink and Stateflow 
[17]. The UML is another candidate for reasoning about specifications for the pur-
pose of validation [18]. 

I believe that we have an opportunity to inject formal methods into mainstream 
software engineering via the model-based development paradigm. Rather than con-
tinuing to be regarded as “gold plating” technology affordable only within security or 
safety critical niches, we should aim to reduce the “cost” of applying formal methods 
and increase its ubiquity. The objective should be to be cheaper and more effective 
than conventional testing and to be more flexible and re-usable for requirements 
changes. 

Model-based design provides an opportunity because much of the formality can be 
made invisible and it has the potential for widespread acceptance by industry. Current 
acceptance practices do not have to be replaced suddenly, testing can still be used for 
acceptance. The costs can still be largely neutral over the lifecycle even with current 
testing, because of reduced iteration of testing and correction cycles as well as re-use 
of verification evidence due to changes in requirements. Significant cost reductions 
can then accrue from replacing conventional verification and validation leading to 
reduced manual effort, time and warranty issues. The experiment in verifying auto-
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matically generated code indicates that this is plausible. There are still significant 
commercial challenges and prejudices to be addressed, but the technical and eco-
nomic climate is such that the long promised impact of formal methods could occur 
in the next five years. 
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1 Introduction

Twenty years and more after the term ‘formal methods’ was introduced, their
use in industrial software engineering is still so limited that it raises the ques-
tion: is there indeed a ‘method’ to the use of formal theories in solving practi-
cal problems? In comparison, the practice of large-scale software development
abounds in methods, some requiring no more than the systematic use of pa-
perwork, some based on graphical notations with annotations and some tightly
wired into project management tools. None of these is a ‘formal’ method; equally,
no application of formal reasoning into the development process resembles a
‘method’ as known in software engineering.

Large-scale software development is being undertaken successfully today with
the use of semi-formal methods and tools. Likewise, formal modeling has been
used very effectively for critical and complex applications to identify and solve
problems that would otherwise have remained undiscovered. The difficulty is
that though the barriers to extending these successes towards each other have
moved slightly in the last few years, they now seem to have reached limits. The
kinds of applications where formal reasoning is used remain quite distinct. For
example, it would need the triumph of unbounded optimism over good sense
to propose to use formal specification for the software for a complete stock-
exchange trading system. (It would be no less unwise to propose the use of just
‘traditional’ software development methods for guaranteeing the correctness of
a safety-critical system.)

Critics of the use of formal reasoning cite the prevalence of too many different
complex notations without ways to link them to engineering practice, the lack
of automated tools and uncertainties about scalability as reasons for not using
formal methods in practical projects. There is very little inclination from prac-
tical software engineers towards changing that situation. The design notation in
most widespread use today, UML, does not have a well-defined semantics, and
plans for the radically enhanced UML 2.0 show that even that will have very
little by way of a formal semantic model.

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 26–33, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Adding Formalism to Methods 27

In this talk, I argue that there is a great deal more that formal reasoning
can do for software development. There are many problems in large-scale soft-
ware development where the existing methods are quite inadequate and any
contribution from formal reasoning would result in great improvement. Some of
these methods will benefit from the systematic use of lightweight formalisms,
others from the insights that can come from the kind of analysis that formal
reasoning makes possible (e.g. discovering ‘missing scenarios’). There may be no
obvious method to the use of formal reasoning itself in these cases, i.e. no ‘for-
mal method’, but instead there can be the addition of formal analysis to some
existing method.

I will first describe two systems built in the last few years. System One is
a cross-border trading system of considerable size and complexity which was
built using modern software development techniques and tools. System Two is
a safety critical system built for a highly automated freight railway network
using formal specification and an automated tool to develop the final software
system. I will then describe where formal reasoning could have played a role in
the development of the first system and how ‘standard’ software development
methods were used along with formal reasoning in the second.

2 System One

International trading in securities is still largely manual and lacks agreed stan-
dards. In practice, a number of system-level problems are caused by the use of
different protocols and incompatible platforms and these lead to various inte-
gration problems. Any system that will solve these problems must reduce the
end-to-end completion time for trades and do this in a framework in which there
are many different service providers, practices and standards.

System One is an example of such a trading system and it is probably among
the most complex systems built in recent times. Two major areas of work stand
out and were undoubtedly the most important.

a Requirements analysis: It took a team of 20-30 experienced people about
eight months to define the requirements and build the analysis models in
UML. This was a period when extensive discussions were needed before
commonly agreed requirements were defined in full detail.

b Software development: After the requirements analysis was completed, the
time left for the software development was another six months. The team
had 60 people with a range of abilities, from a few experts to people with
no previous experience of such work. As often happens, there were many
changes in this team of 60 during the six months.

Broadly, therefore, 40% of the effort on this project went into defining the
requirements and 60% into building and testing the software system. This dis-
tribution of effort deserves to be examined more closely. How complex was the
requirement and how large was the final software system? The following table
gives a summary of some of the details.
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Summary Details of System One

– 180K lines of operation specification
– 1200 classes
– 5M lines of C++ Code (for IBM S/390, using CICS and DB2) generated
– 1.5M lines of C++ code (for SUN Solaris/Windows NT and DB2) generated
– Average of 250 lines of C++ produced and tested per person per day

A period of three more months was spent for system and performance testing
and for final acceptance by the user.

It will be obvious that this level of programmer productivity was not achieved
using manual coding. A highly automated software development environment
was used to generate code from UML models. Unit-testing templates were also
generated automatically, so much of what usually takes manual effort and time
was reduced substantially.

3 System Two

In small railway networks, it is possible to use a high level of automation and
remote control of trains to achieve high throughput. There are several examples
of such networks in urban transport. System Two was developed for a small
freight railway transporting ore from the mine-head for loading into large freight
wagons for long-distance transport.

In a network of 8.5 miles of track, there were 9 driver-less trains to be con-
trolled, each with up to 20 wagons. Inputs from about 100 track sensors and
36 power sensors were used to control 24 switches. The system had to tolerate
failures of some sensors. In a tight 1-second cycle, control commands had to
be sent to all locomotives and inputs from all sensors read in order to prepare
the commands for the next cycle. One safety condition was that any locomotive
that failed to receive its regular 1-second cycle command would be stopped au-
tomatically. The task was to specify, design and develop a safety-critical checker
function that would ensure, with a specified level of confidence, that if the sys-
tem were initially in a safe state, the issuance and execution of the next set of
commands would leave the system in a safe state.

This is a system where formal techniques were used at several places in the
software development process.

a Requirements analysis: Roughly 6 person months were spend on analyzing
the requirements and building the prototypes. Specifications were written in
the Z notation and consisted of around 50 schema (or roughly 1000 lines of
Z).

b Prototyping: The Z specifications were validated by transcribing them into
a logic programming notation and executing them in this form. Prototyping
enabled the construction of possible operational scenarios and these were
used to develop the user’s acceptance test cases.
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c Review and analysis: There was an independent review by a consultant.
Fault-tree analysis was used to check for specific cases. This resulted in
some amendments to the specifications. An important part of the analysis
phase was to standardize the form of the Z schema structure, decide on
naming conventions, and plan the conversion of the specifications to design
specifications. This required further rework of the specifications and the
addition of design and implementation details. This phase took 4 person
months.

d Software construction: By the time the software construction began, there
were 70 schema (or about 2000 lines of Z). In addition, around 7000 lines
of C code were hand-written for various software and hardware interfaces.
This phase took 16 person months.

e Testing: The system was tested using standard unit-test, module-test and
system- test steps, finally using the test scenarios developed during the pro-
totyping phase. This required 4 person months.

Roughly 33% of the effort was spent on analyzing the requirements, prototyp-
ing and reviewing the specifications, with the remaining 66% spent on software
construction and testing.

There was a high degree of traceability between specifications and code. For
example, there was one C function for every ‘operation’ schema. Further, the pre-
defined schema structure allowed code to be hand written in a straightforward
way: preconditions and postconditions were converted into tests and quantifier
expressions into loops.

4 Comparison

System One is typical of many large commercial systems. These systems are
complex, have many internal and external interfaces and must be developed and
delivered following tight schedules. The ‘standard’ steps of software develop-
ment must be followed, if only to permit close and effective project management
(alignment to ISO 9000 and CMM Level-5 standards requires all of these and a
great deal more of detailed information). Given the high productivity that can
be achieved using a modern, automated software development environment, it
is clear that there is little that formalisms could have done to improve produc-
tivity. To take just one example, attempts to formally specify and verify the
complete program would be wasted here. By comparison, the relative time and
effort (40%) spent on requirements analysis do suggest that this is an area where
even a modest improvement could make a major contribution1.
1 Note that the software construction cycle was greatly accelerated in this case. Using

‘industry-standard’ norms, the development of software of this size would normally
require an effort that is an order of magnitude greater; the relative cost of the
requirements analysis would then reduce to less than 5%. This would not alter the
improvement that use of formalisms can make as errors are harder to detect and
correct in a manually built system.
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This is not an isolated example. Industry-wide experience shows that errors
in requirements analysis are widespread and the cause of a large proportion of the
‘bugs’ reported in the field. Automating requirements ‘capture’ using an easily
understood notation, and followed by analysis, would have quickly provided the
users with reports that otherwise took months and many meetings to generate.
It could also have led to the generation of some acceptance tests that would have
provided precise definitions of what the system had to achieve.

System Two is fairly typical of a different class of problem, and one that seems
to almost demand the use of formal methods. In this particular case, the user had
pre-ordained some choices, such as the use of Z for specification and C for the
program, so the formal approach had to be built using these choices. This meant
that automated proof assistance was hard to obtain, as indeed was automated
help for refinement of specifications into code. There were some experimental
tools available to do one or the other of these steps but none that had been tried
in an industrial-scale software development process (and given the risks, this was
not a project in which to attempt such use for the first time). Other requirements
were for full traceability between specifications and code, and for the C program
was to be documented and independently maintainable. Thus any automated
refinement method that may be demonstrably correct but which produced code
using intricate patterns could not be used2. The user was willing to ensure that
changes made in the code were always accompanied by corresponding changes
in the specification, and vice-versa.

Program Size

The generated program for System One had a code size of around twice that of
high quality hand code. This is less alarming than it sounds. Experience shows
that most programs of similar size have enormously varying internal quality;
while some parts may be said to be well written, there are invariably other parts
that are not and added to this, notably for legacy systems, is the dead code that
no longer serves any function. Moreover, System One did meet very demanding
performance requirements, so the code size did not affect the execution speed
in any substantial way The program for System Two was refined manually from
the specifications. The final code size (not counting the interface code) was
around 10,000 lines of C, or an average of around five lines of code per line of
specification. It is hard to see how this size could be reduced, given the need to
preserve traceability and simplicity of maintenance.

Bugs and Errors

Some of the complexity of System Two came from need to distribute the appli-
cation over two different platforms: OS/390 and Solaris. The early versions of
the program ran into difficulties with the way the interface was modeled, and
2 This requirement is fairly universal and is one that is not easy to meet with any

automated refinement method.
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tracking and correcting such errors was difficult. Once the interface had been cor-
rectly modeled, no further errors were observed during testing or subsequently.
The rest of the generated code was remarkably free of bugs and the testing
time was spent in systematically executing testing procedures, rather than in
correcting bugs.

In System Two, the use of formalisms to enhance the software development
method was very effective. The software system was tested under a simulator
using tests defined during the prototyping phase. Four errors only were discov-
ered, and these were easily corrected. Once again, the testing time was spent in
gaining assurance about the program and not in fixing problems.

Formalism and Method

There are some well-accepted steps in the development of a software system:

a Requirements analysis;
b Functional definition of software system (sometimes called ‘software specifi-

cation’);
c System design (high level and low level);
d Coding and review; and
e Testing (unit, module and system).

There are different methods for supporting each of these steps, either indi-
vidually or as part of a development process. Replacing any of these steps by a
formal ‘method’ will require demonstration of a capability that is beyond formal
techniques today. On the other hand, complementing a step with formal analy-
sis to improve the way it is performed, or the quality of what is achieved, is a
contribution that will have widespread acceptance.

There are few documented cases of complete programs that have been de-
veloped from mathematical specifications; most of these are small in size and
for safety-critical systems, where the increased costs for software development
are justified by the criticality of the application. Model checking has been used
to verify critical parts of programs, e.g. to detect the possibility of deadlock,
and there are compilers, e.g. from specifications to automata that allow other
properties to be checked. Once again, with few exceptions, these are usually for
small but undoubtedly complex applications.

It is now important to move formal techniques from the world of small pro-
grams into the far more encompassing world of large programs. There are some
good examples of where there can be a substantial payoff in using lightweight
formal techniques.

(i) Program review: While the use of automated code generation is increasing,
most programs today are still hand written and therefore subject to a wide
variety of clerical and coding errors. Programming standards have been de-
veloped (e.g. especially for Java and C) to reduce the possibility of many
such errors. However, checking compliance against standards is usually done
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after program development is over, and for programs of any size is limited
to manual inspection.
Static analysis of programs can be automated, thus checking rigorously
against programming standards and greatly reducing the amount of test-
ing that needs to be performed. Such analysis leads to detection of common
errors (ranging from the use of un-initialized variables to poor program struc-
ture) and can be used very effectively during development, and not in a ‘final
checkout’ step.
Evidence collected from the static analysis of programs that did not pass
through automated checking is testimony to the value of such a step. In one
case, subsequent automated analysis of an operational program identified
errors that were classified as 39% fatal errors, 49% weaknesses in program
structure and 12% other errors, all of which could have been detected before
the release of the program.

(ii) Use of assertions: There is increasing awareness of the value of using as-
sertions to specify expected program properties, e.g. in terms of pre- and
post-conditions to function or procedure calls. Automated validation of as-
sertions, at compile-time where possible and otherwise at run-time can add
greatly to the programmer’s understanding of actual program behaviour and
of course to the assurance about the quality of a program. Few compilers
will actually check assertions, either at compile-time or by generating the
appropriate code for a run-time check. However, it is possible to augment
the compilation process by using an analysis tool in a preceding pass to
interpret assertions and generate code where necessary.

(iii) Modelling requirements: One of the greatest contributions of formal tech-
niques would be in the area of requirements analysis, since errors in require-
ment specification are among the most common and most difficult errors to
remove. At the requirements level, some problems may be stated in a rea-
sonably abstract form and be of a size that is amenable to formal analysis.
For example, in a transaction processing system, from an analysis of the
requirements, some critical global properties were specified as invariants.
Each process step was specified separately as a pre- and post-condition pair.
These pre- and post-condition pairs must be shown to be consistent with the
global invariants and this was checked for using model checking. The results
helped to uncover several gaps in the requirements.

The challenge for formal methods today is to influence the way that main-
stream software engineering is done. There are a variety of techniques that can
be applied there leading to obvious and measurable improvements in software
quality and reliability.

5 Conclusions

Many of the barriers to extending the use of formalisms in software development
are attributed to limitations of capability (inability to scale-up, or to handle the
size of the state-space). This has led to the use of formal techniques in smaller
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applications where the additional cost is justified because of the criticality of
the application. There are many other areas where formal techniques can enrich
software development methods and these have often been ignored. The emphasis
on program specification, refinement and verification has meant that other forms
of specification have received less attention.

It is critical to move formal techniques out of the limited sphere in which they
have been confined and into the wider context of general software development.
This will require the application of formal techniques into non-formal methods.
In this talk, I have discussed a few areas where formal techniques can be used to
good effect in developing large programs and where they can make a qualitative
difference to the software development process.
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Abstract. One of the difficulties in testing concurrent systems comes
from the fact that executions with internal nondeterministic choices make
the testing procedure non-repeatable. A natural solution is to artificially
enforce and direct the execution to take the desired path so that a test
can be reproduced. With a reproducible testing technique, we use a set of
test scenarios which consist of pairs of test cases and path constraints,
the latter expressing the ordering among certain interesting events dur-
ing the execution. We consider the automated generation of significant
sets of path constraints with a given test case, and we are interested
in those sets of path constraints that reflect the possible serializations
upon synchronization events during the executions of different processes
in the program. Here we present our study on exploring formal engi-
neering methods to generate path constraints when the synchronization
events are governed by monitors.

Keywords: Reproducible Testing, Nondeterminism, Formal Engineer-
ing Method, Labelled Transition Systems.

1 Motivation

Concurrent systems have imposed a lot of new challenges on software testing.
In particular, due to the nondeterminism appeared in concurrent systems, the
behavior of the program is no more predictable even with the same input: with
given input, the system may still have many different paths depending on the
factors such as the different speeds of the process1, the interactions among dif-
ferent processes. As a consequence, testing turns out to be non-repeatable: If we
observed a certain erroneous phenomenon during a testing procedure, we may
not be able to see it again or check whether it is corrected during the regression
testing. A natural way to tackle this problem is to artificially enforce some of
the internal nondeterministic choices so as to direct the program executions with
each given input [1,2,5,6,7,14,18,17]. Then we are able to reproduce the same ob-
servations. Of course, we can realize such a control via debugging techniques, but

1 We use the term process in a general sense that subsumes thread in multithreaded
programs.
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that normally requires manual control of the executions. Another possible ap-
proach is via specification-based testing techniques that consider the automated
control over the orders of some predefined points of the internal execution of
each process. This is often called reproducible testing.

Obviously, for reproducible testing, we assume that we are given in a test
scenario, not only a test case but also a path constraint. The test case, as usual,
describes the external input and the expected observations. For simplicity, we do
not consider distributed applications now, so the test case to a program is just
a sequence of input and output. The additional path constraint describes some
further control information on the execution paths according to the given test
case. Such path constraint can be expressed as a partial or total order among
some internal events such as certain statements in the program, and actually we
can predefine in general, the events we are interested in controlling their time of
occurrences. Apparently, the path constraints are often designed to denote the
typical or representative scenarios in which possible errors or bugs may reside,
and the internal events that we are interested in here are the synchronization
events [6], such as to access a shared object, or to coordinate with another pro-
cess. Our interest is based on the observation that different outputs with same
inputs are very often concurrency-related: they are typically caused by the dif-
ferent orders of accesses to the shared objects by various processes, or by the co-
ordination among processes. As the input sequence may be used to feed multiple
processes, the timing of the input may effect the ordering of the synchronization
events. Thus, we will consider path constraints of both synchronization events
and input events.

As we discussed previously [5], given a test scenario, we can force the Program
Under Test (PUT) to take an execution path that satisfies both the given input
and the given path constraint. This can be achieved by introducing some control
mechanism into the system during the execution: the execution of the PUT is
augmented by additional communications between the control mechanism and all
the processes in the PUT. Such additional communications happen at the control
points which are, in our setting, right before and right after the synchronization
events, right before and right after input events.

In the present work, we consider the automated generation of significant sets
of path constraints with a given test case when the synchronization events are
governed by monitors. Each path constraint is a sequence of synchronization
events and input events. These events correspond to the control points in the
PUT and their ordering can be controlled by the test control mechanism. The
generation of these path constraints is accomplished by exploring formal engi-
neering methods to systematically and automatically generate control models
that contain paths of all possible serializations of the executions with respect to
the synchronization events and input events. We consider the PUTs of static set
of processes and we assume that the design abstract of the program is given in
terms of process terms [15]. We define structural operational semantics on the
processes in terms of labelled transition systems. The control model is obtained
from the above-derived labelled transition system constructed according to the
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Fig. 1. Reproducible testing architecture.

given test case, by removing irrelevant events according to trace equivalence [10],
leaving only those labels of the synchronization events and input events. A path
constraint then corresponds to a sequence of labels along a path in the control
model, and we can adopt various existing coverage criteria to generate significant
sets of path constraints from it.

The structure of this paper is as follows. We first give a brief overview of the
architecture of the reproducible testing and our existing test control mechanism.
Then we introduce the operational semantics for the construction of the labelled
transition systems. This is followed by the discussion on how to obtain the control
model and to generate significant sets of path constraints. Finally we conclude
the present work and compare it with other related ones.

2 Test Architecture

Our reproducible testing architecture is illustrated in Figure 1. We assume that
a design specification is given that describes the abstract behavior of the appli-
cation in terms of process algebras [3,9,15]. The PUT is actually the implemen-
tation of this design specification. It is executed under the control of the test
controller to check for its correctness with respect to a given test scenario. A test
scenario consists of test case, i.e. a sequence of inputs and expected outputs, and
a path constraint for this test case, which is, in current setting, a sequence of
synchronization events and input events. The former comes from the test user,
while the latter comes from the path constraint generator, which generates the
path constraints from the design specification and the given test case. The test
controller directs the execution according to the input part of the test case and
the path constraint, and compares the actual outputs with the expected ones
from the test case.

As we mentioned in the Introduction, during the execution of the PUT, there
will be communications between the PUT and the test controller at the control
points, and this enables the controller to realize the desired execution path. We
explain below how the control points for synchronization events are determined.

There are typically two kinds of concurrency control in existing programming
practice: one is to guarantee the mutual exclusion of the executions of a critical
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section of a concurrent program, and another is to realize the coordination and
cooperation among different processes. A monitor provides such functionality
generally as described below:

– The access to the critical sections is protected by the locks. Each monitor
maintains a lock queue of processes who wish to access the critical section
governed by this monitor.

– The coordination among processes is realized by the wait/notify2 mechanism.
Each monitor maintains a waiting queue of processes. A process currently
occupying the monitor lock may voluntarily execute wait to release the lock
and put itself into the waiting queue of this monitor. When a process notifies
a monitor, and the waiting queue of the monitor is nonempty, the first process
in the queue is removed and re-enabled for execution. The awakened process
will compete in the usual manner with any other processes that might be
actively competing for the lock on this monitor. When a process notifies a
monitor whose waiting queue is empty, the notification signal is simply dis-
carded. There exists in some existing programming languages the execution
of notifyAll that wakes up all instead of one of the waiting processes. We do
not consider this case here. If necessary, it can be analogous accommodated
into our discussion straightforwardly. As each monitor maintains a separate
waiting queue of processes, it can be used to realize the coordination and
cooperation among different groups of processes.

Consequently, our test controller can suspend the program execution at the
points (i) before and after a process obtains a monitor lock; (ii) before and after a
process executes wait; (iii) before and after a process executes notify; (iv) before
and after an external input to the program. Correspondingly, a path constraint
shows the desired ordering among four kinds of events: to obtain a monitor lock,
to execute wait, to execute notify, and to get an input from outside.

For details on how the test controller work, see [5]. In this paper, we explain
how the path constraint generator is built. As we mentioned in the Introduction,
the path constraints are generated from control models derived from the labelled
transition systems. In the next section, we define operational semantics which
can be used to construct the labelled transition systems from the given design
specification in terms of process terms [15]. In doing so, it is essential that a
path constraint is composed of the abovementioned four kinds of events that
correspond to the control points that existing test control tool can handle. This
is achieved by ignoring other irrelevant labels in the control model as denoted
by invisible action τ . We discuss this point in Section 4.

3 Operational Semantics

We define the operational semantics of the abstract behavior of the PUT in
terms of labelled transition systems. Basically, a labelled transition system is a
quadruple (State,Label,→,s0) where
2 With different names in various concurrent programming languages.
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– State is the set of possible states of the program computation;
– Label is a set of labels showing the information about the state changes;
– →⊆ State × Label × State is a transition relation that describes the system

evolution. (s, l, s′) ∈→ (also written as s
l−→ s′) expresses that the system

may evolve from state s to state s′ with the information of the state change
described in l.

– s0 ∈ State is the initial state.

A state contains all the information we are interested in for the computation.
Note, however, that such information will not be used in the path constraint: all
information we eventually need should be put into the labels. In our setting, a
state configuration is composed of the following elements:

– A sequence of input data derived from the given test case. As we mentioned,
the formal design abstract we derive is in regard of given input. With different
program input, we will obtain different control models. Thus, the program
input is an essential element in generating the abstract model. The input can
be easily derived from the given test case by ignoring the expected output.
In case the program is multi-tasked or multi-threaded, this sequence of input
data will be used to feed a set of processes.

– A set of states of shared variables. The processes share a set of variables.
Each variable state consists of a variable name and its corresponding value.

– A set of states of monitor locks and a set of states of monitor queues. A state
of a monitor lock expresses the current status of the lock of the monitor. A
state of a monitor queue expresses the current queue of processes waiting on
this monitor to be notified.

– A set of processes. A process consists of a process identifier and a process
term. We use pid : p to denote a process with identifier pid and process term
p. A process identifier is an integer that uniquely identifies the process in
the program. We need this information because the generated model should
contain the process identifier on the labels. A process term expresses the
state of the behavior of a sequential process, and the state of the behavior of
the entire system is expressed via a set of processes. The structure of process
terms will be explained in more details below.

Assume that we are given a set V of variables, MID ⊂ N as a set of monitor
identifiers, and PID ⊂ N as a set of process identifiers. Let x ∈ V , m, m1, m2 ∈
MID, pid ∈ PID. A process term p in the design specification can be constructed
by the following BNF:

p = stop | s; p

s = x := e | if c then q1 else q2 | while c do q | input(x) | lock(m, q)

| wait(m1, m2) | notify(m)

q = s | s; q
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where s is a statement3, q, q1, q2 are intermediate sequences of statements, e is
an arithmetic expression over V and c is a boolean expression over V .

– input(x) means to get the next input into variable x.
– lock(m,q) means to execute segment q using monitor m to realize the mutual

exclusion of the execution.
– wait(m1, m2) means to give up the current lock on m1 and wait on the

waiting queue of monitor m2.
– notify(m) means to notify the first process on the waiting queue of monitor

m.

Apart from the above statements, we also need to introduce some additional
internal statements for our computation:

– lock restart(m): to regain the lock on monitor m after being notified.
– lock end(m): to end a critical section governed by monitor m.
– waiting(m): to stay on waiting queue of monitor m.

These internal statements are essential to our computation to simulate the be-
havior of the system with respect to the monitors. In the following, a process
term is constructed on statements including these additional ones.

Our primary goal in constructing the control model is to generate path con-
straints as sequences of its labels. Consequently, the set of labels in the labelled
transition systems contains and only contains the synchronization events and
input events that we need to control. Precisely, the labels we consider can be
described as:

A = {(pid, lock, m), (pid, wait, m), (pid, notify, m), (pid, input)

| pid ∈ PID, m ∈ MID} ∪ {τ}
This set of labels corresponds to the set of events we mentioned in the previous
section, with one additional label τ which is used as an internal action for the
computation [15]. The use of τ facilitates the construction of the control model
and we will explain in the next section how it is eventually removed from the
model.

Let us use I to denote the set of input values as well as the set of variable val-
ues. I∗ thus represents the set of sequences of inputs. E ⊆ V → I represents the
mapping from variables to their values. L ⊆ MID → {true, false} represents
the set of locking status of the monitors. Q ⊆ MID → PID∗ represents the
mapping from the monitors to sequences of processes (waiting on the monitors).
Let P be the set of process terms over MID and V . PR ⊆ 2PID×P represents
the set of the status of the processes. Then the labelled transition system is a
quadruple 〈S, A,→, s0〉, where

3 Note that although we call them statements, the process terms built on top of them
represent design abstracts rather than program code.
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– S ⊆ I∗ × E × L × Q × PR
– s0 ∈ S is the initial state
– A ⊆ (PID × {lock, wait, notify} × MID) ∪ (PID × {input})

The transition relation −→ is defined as the least relation satisfying the
following twelve structural rules. For clarity, we split these rules into four groups.
All the structural rules have schema:

antecedent

consequent

which is interpreted logically as: ∀(antecedent −→ consequent), where
∀(. . .) stands for the universal closure of all free variables occurring in (. . .).
Observe that, typically, antecedent and consequent share free variables.
When antecedent is missing, they are interpreted as true.

We adopt the interleaving semantics. This is based on two facts: (i) it is
simple; (ii) the test control tool can only realize the sequential control: it cannot
enforce two events to occur simultaneously. Thus, the following structural rules
enjoy a common feature: the system moves from one state to another according
to the move of one of the processes, while the others remain unchanged. The
only exception is R11 and we will explain it later.

The evolution caused by the execution of an assignment, a choice statement,
or a while-loop statement of one of the processes is described in the first group
of structural rules (Figure 2). We use pid1 : p1 ‖ . . . ‖ pidn : pn for {pid1 :
p1, . . . , pidn : pn}. P ‖ pid : a; p (where a is an assignment, a choice statement,
or a while-loop statement) denotes a set of processes consisting of process term
a; p with process identifier pid and some other processes expressed in P . x, c
and e are as defined above. p, p1, p2 and p3 are process terms. pid is a process
identifier. We use Eval(E, e) and Eval(E, c) to denote the evaluation of e and
c in E respectively. E[x/v] denotes the status E of the variables with the value
of x replaced by v. All the moves caused by these structural rules are invisible,
as labelled by τ , because they do not contribute to the path constraints.

The evolution of the system states caused by the input action is reflected in
Rule R6 (Figure 3): The first input data in I is read into variable x in E. We use
first(I) to denote the first input data in I and rest(I) the input status obtained
from I by removing the first one.

Rules R7, R8 and R9 (Figure 4) simulates the execution of a process with
mutual exclusion. R7 is to start a critical section guarded by monitor m. This
move is possible only if m has not yet been locked by others (Eval(L, m) =
false). We use Eval(L, m) to denote the lock value of m in L, and L[m/v]
to denote the status L with the value of m replaced by v. Here process pid
needs to execute a critical section p1 followed by p2. Note that we have inserted
an additional statement lock end(m) right after the execution of p1. This is
necessary because we need to know for our computation when the lock is released.
The system move according to lock end(m) is given in Rule R9. Here, since
the lock end(m) is used only for the computation and we do not need such
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Rule R1 (Assignment)

(x, f) ∈ E

〈I, E, L, Q, P ‖ pid : (x := e); p〉 τ−→〈I, E[x/Eval(E, e)], L, Q, P ‖ pid : p〉

Rule R2 (Deterministic Choice - Condition True)

Eval(E, c) = true

〈I, E, L, Q, P ‖ pid : (if c then p1 else p2); p3〉 τ−→〈I, E, L, Q, P ‖ pid : p1; p3〉

Rule R3 (Deterministic Choice - Condition False)

Eval(E, c) = false

〈I, E, L, Q, P ‖ pid : (if c then p1 else p2); p3〉 τ−→〈I, E, L, Q, P ‖ pid : p2; p3〉

Rule R4 (Loop - Continue)

Eval(E, c) = true

〈I, E, L, Q, P ‖pid : (while c do p1); p2〉 τ−→〈I, E, L, Q, P ‖pid : p1; (while c do p1); p2〉

Rule R5 (Loop - End)

Eval(E, c) = false

〈I, E, L, Q, P ‖ pid : (while c do p1); p2〉 τ−→〈I, E, L, Q, P ‖ pid : p2〉

Fig. 2. Structural Rules: choice and loop.

Rule R6 (Receive Input)

I �= ∅
〈I, E, L, Q, P ‖ pid : input(x); p〉 (pid,input)−−−−−−−−→〈rest(I), E[x/first(I)], L, Q, P ‖ pid : p〉

Fig. 3. Structural Rules: input.

information in the path constraint, the transition is labelled as τ . Rule R8 is
for the regain of the monitor after being notified, and we will explain it later.
Again, the transition is labelled as τ because we do not need any information in
path constraints regarding this move.

Figure 5 shows the evolution of the system caused by the coordination among
processes via the use of set Q of waiting queues. We use (i) enqueue(Q,m,pid)
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Rule R7 (Lock Begin)

Eval(L, m) = false

〈I, E, L, Q, P ‖ pid : lock(m, p1); p2〉 (pid,lock,m)−−−−−−−−−→
〈I, E, L[m/true], Q, P ‖ pid : p1; lock end(m); p2〉

Rule R8 (Lock Restart)

Eval(L, m) = false

〈I, E, L, Q, P ‖ pid : lock restart(m); p〉 τ−→〈I, E, L[m/true], Q, P ‖ pid : p〉

Rule R9 (Lock End)

Eval(L, m) = true

〈I, E, L, Q, P ‖ pid : lock end(m); p〉 τ−→
〈I, E, L[m/false], Q, P ‖ pid : p〉

Fig. 4. Structural Rules: mutual exclusion.

Rule R10 (Wait)

〈I, E, L, Q, P ‖ pid : wait(m1, m2); p〉 (pid,wait,m2)−−−−−−−−−−→
〈I, E, L[m1/false], enqueue(Q, m2, pid), P ‖ pid : p′〉
where p′ = waiting(m2); lock restart(m1); p

Rule R11 (Notify with Nonempty Queue)

first(Q, m) = pid2

〈I, E, L, Q, P ‖ pid1 : notify(m); p1 ‖ pid2 : waiting(m); p2〉 (pid,notify,m)−−−−−−−−−−→
〈I, E, L, dequeue(Q, m), P ‖ pid1 : p1 ‖ pid2 : p2〉

Rule R12 (Notify with Empty Queue)

first(Q, m) = null

〈I, E, L, Q, P ‖ pid : notify(m); p〉 (pid,notify,m)−−−−−−−−−−→〈I, E, L, Q, P ‖ pid : p〉

Fig. 5. Structural Rules: coordination.
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to denote the set of waiting queues derived from Q by adding pid into the queue
of m; (ii) dequeue(Q,m) to denote the set of waiting queues derived from Q by
removing the first element from the queue of m; (iii) first(Q,m) to denote the
first process on the waiting queue of m in Q. In R10, process pid releases its lock
on m1 and puts itself into the waiting queue of m2. The next state of process pid
in the process term is changed into waiting(m2). This is to be executed together
with another process who can perform notify(m2), as expressed in Rules R11
and R12.

R11 expresses the rule to allow the system to evolve when one of the processes
pid1 performs notification to the waiting queue of monitor m and the later is
nonempty. In R11, if a process pid1 is capable of moving to its next state by
notifying the first process pid2 on the waiting queue of m, and process pid2 is
capable of performing a waiting statement, then the system can move into a
state where both processes pid1 and pid2 make a move to their next states, and
pid2 is removed from the waiting queue of m. This is the typical hand-shaking
mechanism where the system’s move comes from the movement of two synchro-
nizing processes. Note that the waiting(m) statement is artificially inserted: it
does not belong to the four kinds of events and we do not need to control it.
From the test user’s viewpoint, the system’s move is only made from the move
of the notifying process. Thus, this hand-shaking mechanism is consistent with
the test control mechanism in the sense that there are no two events in the label
to be controlled to happen at the same time.

R12 shows the rule analogous to R11 when the waiting queue to be notified
is empty, as denoted by first(Q, m) = null. The system can make a move to
the next one corresponding to the move of the notifying process without making
any effect to the global state.

Note that in R10, we have inserted a statement lock restart(m1) after the
waiting(m2) statement. This is for the waiting process to regain the lock on m1,
as expressed in R8.

Given an initial state, the above structural rules allow us to associate to it a
labelled transition system whose states are those reachable from the initial state,
via the transitions inferred by using these rules.

4 Test Case Generation

A labelled transition system may have infinite number of states or infinite num-
ber of transitions. Here we only consider finite-state labelled transition systems.
As the set of labels is finite, the finite-state model can also contain only finite
number of transitions.

The control of the test is over the serializations of the executions of different
processes based on the afore-mentioned four kinds of events. As we can see, apart
from these events, the labels also contain τ in the constructed model. Thus, the
derived labelled transition system needs to be further simplified by reducing the
τ -transitions. There are several equivalence notions in the literature, for example,
bisimilation [15], trace equivalence [10], testing equivalence [16]. Since the test
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control tool can recognize neither the program state, nor the set of possible next
actions (i.e. statements), our simplification is based on trace equivalence. That is,
whenever we have s1

τ−→ s2 (s1 
= s2) we can remove this transition and merge s1

and s2 into one state. In addition, τ -loop transitions, i.e. s
τ−→ s, can be removed.

We call the simplified labelled transition system the control model.
Now with the control model, we can generate various sets of possible paths

according to different criteria similar as those we have in the general test case
generation techniques according to given control flow diagrams. For example, we
can use state coverage criterion or edge coverage criterion to guarantee that in
the set of generated paths, each state or each transition is visited at least once.
There are two major differences between our control models and the control flow
diagrams:

– In the control flow diagrams, the choices (different edges going out from the
same state) is deterministic, in the sense that they correspond to the if-then-
else statement or case statement, and the choice depends on the external
input. In our setting, since the input to the program is given, there is no
state with deterministic choice. Instead, two different transitions from the
same state represent the internal nondeterministic choice of the execution of
the program.

– The control flow diagrams can be cyclic and the number of times a test case
passes a loop may depend on the input. In our setting, since the input is
given, the circles in the transition systems are due solely to the infinite loops
in the program.

These two major points however, make no difference in terms of adopting
the similar criteria for generating test cases or path constraints.

5 Related Work

Monitoring or controlling nondeterministic behavior of a system during soft-
ware testing has been studied extensively recently [1,2,5,6,7,8,11,12,13,14,18,17].
Many researchers have realized that for testing concurrent systems, we need to
consider both test data and the sequence of statements [1,2,5,6,7,8,14,18,17]. In
particular, we should consider sequences of statements related to the concurrency
control [1,2,5,6,7,14] and statements of remote method invocations [5,8,18,17].
Our present work also followed such lines and considered sequences of statements
with respect to concurrency control. There are mainly two issues here: one is to
generate the test scenarios, and the other is to realize the desired executions.
The focus of the present work is the former.

In the work of [7], it has been proposed a specification-base methodology
for testing concurrent programs. With this methodology, people use a set of
sequencing constraints to specify the restrictions on the allowed sequences on
synchronization events. Given a set of sequencing constraints in terms of CSPE
(Constraints on Succeeding and Preceding Events), it is discussed [12] how to
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generate a set of test sequences so that each sequencing constraint is covered at
least once. This coverage criterion is based on the fact that a CSPE constraint
expresses a temporal property and it is hard to browse the space of the test
sequences to find out all possible serializations of the synchronization events
that satisfy the given set of constraints. In our work, no such restrictions on the
allowed test sequences are assumed. The path constraints are derived directly
from the given design abstract from which we generate a labelled transition
system that contains all possible serializations of the synchronization events.

In [18,17], the authors have discussed the generation of the alternations of
remote method invocations in the execution of a PUT. However, different serial-
izations of executions based on synchronization events are not considered there,
and the work does not involve the study of formal engineering method.

Developing formal engineering method and integrate it into reproducible
testing is the most prominent feature in our work. Another example of em-
bedding formal methods into reproducible testing can be found in [8] where we
have developed a formal method in order to obtain deadlock-free test model for
middleware-based PUT.

Labelled transition systems are well defined models for concurrent systems.
Adopting labelled transition systems to conduct testing has been extensively
studied in the past decade. For example, a test derivation algorithm is given
[19] for conformance testing on labelled transition systems. For an annotated
bibliography, see [4]. Along this line of research, the labelled transition systems
are used to describe the allowed behavior of the system with possible inputs and
outputs. Correspondingly, the labels are assumed to be divided into input and
output ones. As the focus is on input and output, a classical complete testing
assumption is often used: after a sufficient number of executions of the same
test, all the paths according to this test in the implementation will be taken.
With reproducible testing, we gain control over the internal choice instead of
using the complete testing assumption. In our work, labelled transition system
is used to express the allowed behavior of given input, and rather than generating
test cases, we have discussed the generation of different ways of controlling the
internal choices.

6 Conclusion and Final Remarks

For reproducible testing, the generation of test scenarios means to generate not
only test cases but also path constraints. Our initial idea is to follow the principle
of divide-and-conquer and to consider test case generation and path constraint
generation separately. Based on this, we have focused here on the automated
generation of path constraints when a test case is given. The starting point is
that the significant sets of path constraints with respect to each given test case
can be fully determined if the design specification is available that describes the
abstract behavior of the system. Most importantly, the present work shows a
possible way to explore formal engineering method for test scenario generation
in software reproducible testing.
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The process language we used to describe the abstract behavior of the system
is very primitive: It only allows us to define the behavior of a static set of
processes. It is possible to extend this language to allow for dynamic process
creation, by modifying correspondingly the structural rules. However, since the
path constraint generation is based on test criteria defined on a finite model, the
generated labelled transition systems have to be finite.

The implementation of the path constraint generator is in progress and it will
be integrated into the toolset of our automated environment for reproducible
testing. A further extension of the present work is to consider generation of the
path constraints when the test control is not only over the synchronization events
but also over remote method invocation events in distributed applications.
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Abstract. The pressure to create a working System on Chip design as
early as possible leads designers to consider using a platform based de-
sign method. In this approach, designing an application is a matter of
selecting from a set of standard components with compatible specifica-
tions. Subsequently, a formal verification platform can be constructed.
The formal verification platform provides an environment to analysed the
combined properties of the design. In this paper, we present a methodol-
ogy to do formal System on Chip analysis by developing generic formal
components that can be integrated in a formal verification platform.
First, we develop reusable formal properties of standard components.
Second, we define a generic formal platform in which components of
System on Chip design can be integrated. The platform contains basic
components such as a standard bus protocol and a processor. Third, we
combine the properties of standard components and obtain a set of re-
fined properties of the system. We use these properties to develop the
required specifications of the remaining components.

1 Introduction

The effort to implement a single chip system from scratch is enormous and only
a few companies have the needed competency in all design areas. In most cases,
designers will have to use Intellectual Property (IP) blocks or Virtual Components
(VCs). IP blocks are predefined, large grained logic blocks, (such as processors,
memories, and peripherals) whose function has been precisely specified. They
can be developed in–house or originate from external vendors. When IP blocks
become widely available, the design focus will shift to reuse. Chip design is
becoming much more a matter of design composition than of design creation.

These compositional or reuse based design methodologies will be the issue
addressed by System on Chip (SoC) designers. A standard platform and applica-
tion specific architectural context will play a major role in achieving a plug and
play environment using reusable components. Such an integration environment
will typically be a design platform for a specific application domain. The IP
blocks will be the standard building blocks that can be easily integrated within
the application domain [6,16].

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 48–67, 2003.
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The verification of SoC design is arguably the biggest challenge for designers.
Complexity has made design validation the bottleneck in the completion of a de-
sign project. A new design and validation methodology is needed to address this
problem [4]. This must be capable of reducing the amount of analysis and de-
bugging that takes place in the early development stages. The new validation
methodology should emphasise reusing existing validation code. This reduces
the time needed in recreating the validation code. The use of an abstract repre-
sentation of IP models could help to speed up the validation process.

The limits of traditional validation methods have prompted the industrial
community to consider formal verification methodologies for verifying hardware
system specifications and models [19]. The inclusion of formal verification will
remove uncertainty, increasing confidence in the design, and reduce verification
time. Advances in design and validation methodologies for system level verifica-
tion will make changes to the current formal verification approach necessary.

In this paper, we present one methodology to do formal SoC verification. The
core of this methodology is in the development of reusable formal properties or
proofs that can be used in the development of an SoC design. The properties
contain the operational conditions for the system and specify its input/output
relations. These properties are used as the behavioural representations of the
components. We use these properties to define the requirements for each com-
ponents used in the design of an application. The methodology is based on
the combination of semiformal [1] and hybrid systems [5]. Tool support for the
methodology is constructed from a selection of formal tools.

The contents of the paper are as follows: In Section 2 we briefly describe
the integration platform approach for system on chip technology. In Section 3
we explain our idea of a verification platform, followed by a brief description of
the formal tools environment. The AMBA and ARM platform is described in
Section 4. In Section 5, we describe the specification development for an Ethernet
Switch system built on this platform. A summary and discussion of future work
is presented in Section 6.

2 Typical SoC Architecture

Cadence, Synopsys, and Mentor Graphics, three major providers of Electronics
Design Automation (EDA) tools, have proposed similar systems that support or
are based on the integration platform concept. A typical integration platform
[21] is presented in Figure 1. A simple general-purpose processor core is the basic
component. The platform is customisable with a collection of IP blocks which
can be either user-defined logic blocks or third party IP blocks. All the IP blocks
communicate through busses that also communicate with the processor.

Within this environment, two kinds of busses are introduced: the processor
local bus (PLB) and the on-chip peripheral bus (OPB). There will be only one
PLB but there may be more than one OPB. The OPB is connected to the PLB
through a module interface called the OPB bridge. The PLB arbiter controls
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Fig. 1. A Typical Integration Platform.

the PLB communications among the processor, memory and OPB bridge. The
OPB arbiter controls the OPB communications among the IP blocks.

Typically, an integration platform will come as a platform for a specific
application domain. The platform will consists of components such as a target
hardware and software architecture, a portfolio of VCs, and a design valida-
tion methodology. Its IP blocks are standard building blocks that can be easily
integrated together into a system in the platform.

The design validation methodology determines the kinds of test-benches
required for system level verification. These test-benches must be started early
in the design process to avoid the possibility having a working chip but a
failed system. The methodology determines which verification tools (event-driven
simulation, cycle-based simulation, emulation) can be used. This information is
very useful as each selected tool may have specific coding style requirements. Fi-
nally, the methodology defines a way to validate the system with an application
running on it.

3 A Verification Platform Approach to SoC

In parallel with the system integration platform described above, we suggest
that a formal verification platform is constructed. A formal verification platform
is a standardised platform where a verification engineer can easily integrate
various formal models in a single environment and perform formal validation of
the system [26]. In this, each of the building blocks is represented as a formal
specification model. There is a model for the processor core, for the bus and its
protocol, and for all IP blocks available. Then the different models are integrated
as a single system description in the verification platform.

Similar to validation, which commonly uses simulation, the formal verifica-
tion platform may apply a variety of verification techniques. For example, a
processor core formal model can be verified by symbolic simulation or by formal
proof [10]. A bus protocol formal model is normally verified using a property
checker [23]. The verification platform needs to accommodate all these various
verification techniques.
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There are two approaches to defining the formal models for these verifica-
tion methods. The first is to define them all in a single specification language
that has a complete set of verification techniques. HOL [8,9], PVS [24], ACL2
[14,15], and Forte [12] are the examples of this kind of verification environment.
Another approach is to use a mixture of available tools, PROSPER [7] being one
notable example of an environment designed for this. This approach enables the
verification platform to use the most appropriate tools without compromising
performance. But it has the drawback that a system might be formally modelled
in more than one specification language. It also raises the issue of integrating the
different tools used so that they can communicate. A logical connection among
the tools is required in which the formal models can be integrated as a single
system, using a kind of glue logic to connect them.

Our work uses the second approach, a mixed tools environment. We con-
struct a verification environment which has the capabilities of various formal
verification technologies, such as a theorem prover, a symbolic simulator, and
a model checker. The verification environment combines the HOL98 theorem
prover, the ACL2 theorem prover and the SMV model checker [17]. HOL98 is
the centre of the tools environment. ACL2 and SMV are connected to HOL98
through a layer of interfaces. Through these interfaces, users can send commands
from HOL98 to instruct ACL2 and SMV to perform formal proof. HOL98 also
accepts proved theorems and properties from ACL2 and SMV as theorems in its
own logic. Detailed descriptions of the system are given in the reminder of this
section.

3.1 Theorem Prover

The theorem prover is the central tool to perform an integrated system level
verification. Its command language is treated as the implementation language for
interfacing various formal tools in the platform. It also provides the environment
for orchestrating the proofs.

The theorem prover includes an integration interface that provides the com-
munication protocol for the verification tools. It consists of several parts: a
datatype for all logical and control data transferred between tools, a datatype
for the results of remote calls and support for installing and calling procedures,
and a low-level communication manager.

The verification environment uses HOL98, a modern descendent of HOL, as
the theorem prover component. HOL98 is a higher order logic theorem prover.
Its logic is built on the predicate calculus of ML style typed system. Higher
order logic is used as the glue logic to connect and integrate formal components.
HOL’s command language, ML, allows a developer to have a full programming
language available in which to develop custom verification procedures. The tools
integration interface library in HOL is provided by PROSPER.

3.2 Symbolic Simulator

The common design practice of validation by simulation has encouraged us to
choose the ACL2 theorem prover as a component for the verification environ-
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ment. ACL2 offers the capability of simulating test vectors and performing sym-
bolic simulation. An interface (ACL2PII [25]) for PROSPER has been developed
to allow results from ACL2 to be interpreted in HOL. ACL2PII is a dynamic
link for translating theorems between two live sessions of HOL and ACL2, with
communications going in both directions. The interface also allows a user to run
ACL2 from within HOL.

The ACL2 and HOL theorem provers use different languages and different
logics. ACL2 uses untyped s-expressions [27] to represent first order logics,
whereas the HOL system uses typed terms for higher order logic. The interface
implements a scheme for translating ACL2 s-expressions into HOL terms. A set
of basic translation has been implemented so that the appropriate s-expressions
can be automatically translated into booleans, natural numbers, integers, sim-
ple arithmetic expressions, characters, strings, lists and tuples. The interface
also provides an environment to extend and add new translation clauses for new
ACL2 theories.

Logically, ACL2 is being used as an axiom–server for facts about constants
that are uninterpreted in HOL but have definitions in ACL2. The consistency
of the axioms are assured by proofs being conducted in ACL2. This way of
connecting ACL2 and HOL is pragmatic, but sound for the purposes of our ap-
plication. The automatic transformation reduces the possibility of inconsistency
when importing definitions and theorems from ACL2 into HOL.

3.3 Model Checker

The HOL98 distribution includes an early version of McMillan’s SMV symbolic
model checker as part of the temporal logic library. The model checker is embed-
ded in HOL as one of the decision procedures for HOL’s tactic language. Using
this library, temporal properties specified in LTL notations can be validated in
two ways, either by proving the properties using HOL tactics or by using the
external model checker. When the model checker is used and the formula can be
verified then the result from the model checker is represented as a HOL theorem
using HOL’s oracle mechanism. If the model checker reports an error, then a
counterexample is provided. A detailed description of the embedding of LTL in
HOL is presented in [22]

We replace the SMV model checker with the latest version from Cadence.
This re–implementation of SMV uses LTL instead of CTL. Although for back-
ward compatibility it supports CTL, the developers suggest to use LTL to achieve
maximum performance. We extended the temporal library so that it is possible
to use the Cadence SMV model checker with LTL notations. We embed a subset
of SMVL in HOL using the deep embedding technique. In a deep embedding, the
semantics of the language is constructed and an interpretation of the language
is provided. This makes the system more modular. Previously, when we used
model checker we had to specify formal models and properties which are to be
verified in HOL. Now, we can define and verify the SMV model on its own and
then automatically import the proved properties as HOL theorems.
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4 Case Study: AMBA Bus Protocol
and ARM7 Processor Based Verification Platform

We use RAPIER to describe our experience in the development of a reusable
SoC verification platform. RAPIER is an integration platform architecture de-
veloped by the Institute for System Level Integration (ISLI) in Scotland [20]. It is
based on the ARM Advanced Microcontroller Bus Architecture (AMBA) [3]. The
platform contains an Advanced High–Performance Bus (AHB) and an Advanced
Peripheral Bus (APB), an external memory controller, two timers, a UART, an
Interrupt Controller, a System Controller, a system watchdog, a general purpose
I/O block, five AHB masters, four AHB slaves, and four APB slaves. The AHB
bus is the processor local bus (PLB) and the APB is the on–chip peripheral bus
(APB). The architectural block diagram of the RAPIER platform is shown in
Fig. 2.
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Fig. 2. Block diagram of RAPIER Platform.

4.1 AMBA Bus Protocol

AMBA is an on–chip bus specification that defines interconnection, communi-
cation, and management of functional blocks for SoC design. It is a technology
independent specification. This ensures that the modules are reusable across di-
verse IC processes and technologies. It encourages standardise modular system
design using a common bus protocol. This enhances the reuse design methodol-
ogy for the modules.

Typically, AMBA based SoC design contains a high performance bus system
such as the AHB. The bus is capable of handling high–bandwidth communication
with the external memory interface, processor, on–chip memory, Direct Memory
Access (DMA) module, and a bridge to the lower speed bus APB, where most
peripherals in the system are located. An SoC system can have one or more
masters. A typical system contains at least one processor. A DMA controller
or a Digital Signal Processor (DSP) are also standard bus master devices. The
external memory interfaces, on–chip memory, and APB bridge are typical AHB
slaves. Most of the peripherals can be part of the system as AHB slaves, but
more likely they are part of the AMBA APB.
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4.2 The Protocol

In this case study, we partition the RAPIER platform and use only the AHB
module. RAPIER’s AHB contains an arbiter with five master ports and one
slave port. We develop reusable properties for this module. The properties give
the operational conditions for the system and the input/output behavioural re-
lations.

The AMBA AHB process starts when a master asserts a bus request sig-
nal (req mi) to AHB arbiter. Then the AHB arbiter performs the arbitration
process to determine which master is granted (grant mi) the access to the bus.
The granted master starts the data transfer process by sending control signals
and an address. Control signals provide information about the transfer. One of
these control signals is the type of transfer (HTRANS). There are four types
of transfer: IDLE (msti idle), BUSY (msti busy), NONSEQ (msti nonseq), and
SEQ (msti seq). In an IDLE transfer, the active master does not perform any
data transfer. BUSY transfer is similar to IDLE, but it also indicates that the
active master is inserting an IDLE cycle in the middle of a BURST operation.
NONSEQ and SEQ signals indicate the control signal and address relation be-
tween current transfer and the previous one.

When the active master has started the transfer, the selected slave will
respond with information on the transfer using HREADY and HRESP signals.
Whenever slaves need to assert one or more wait states, the HREADY (slv ready)
signal is set to LOW. The HRESP signal is used to determine the status of
transfer. There are four possible HRESP responses: OKAY (slv ok), ERROR
(slv error), RETRY (slv retry), and SPLIT (slv split). The OKAY response in-
dicates the slave’s transfer is progressing without any problem. The ERROR
response indicates that an error has occurred during the transfer. The RETRY
response indicates that the transfer is not finished yet and the bus master has to
retry the transfer until it is completed. The SPLIT response indicates that the
transfer is not completed successfully; the bus master must retry the transfer
when it is next granted access to the bus. In a SPLIT condition, the slave takes
the responsibility to initiate a request to access the bus when the transfer can
be completed.

The arbiter manages the arbitration processes. It monitors requests to access
the bus from masters and to complete the split transfer from slaves. Then it
decides which master has the highest priority to be granted the access. The
arbiter is also responsible for ensuring that at any time there is only one master
is granted access to the bus.

SMV is used to verify the implementation of AHB bus protocol. SMV uses
the SMV Language (SMVL) and Verilog as its modelling languages. When the
source is in Verilog, it needs to be translated into SMVL before it is model
checked. The translation from Verilog to SMVL is done by using the translation
tool vl2smv. The tool comes as part of the Cadence SMV distribution.

RAPIER AHB is implemented in Verilog. We needed to slightly modify the
code to satisfy our system level verification methodology, which considers all
components are black box components. The black box approach does not al-
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low the use of any internal nodes or signals. One approach to overcoming this
requirement is by bringing all internal nodes needed in the verification to the
output interfaces. We also need to do abstractions to the data–bus and address–
bus of the bus protocol to eliminate one source of explosion in BDD sizes during
formal verification. The n-bit bus is replaced with a special scalar–set datatype
called num [11].

4.3 ARM7 Processor

ARM7 is a 32–bit microprocessor from Advanced RISC Machines (ARM) [2].
It is based on the Reduced Instruction Set Computer (RISC) architecture. The
processor features a three–stages pipeline architecture. Typically, in one cycle
one instruction is being executed while the next one is being decoded, and the
one after that is being fetched.

In our platform the formal model of the ARM7 processor is specified in LISP,
the programming language of ACL2. Implementing the processor in LISP enables
the model to be used in classical simulation test by executing the functional
model with input test vectors. In the ACL2 environment, the LISP model is
used as a formal model which enables user to perform symbolic simulation.

ARM7 is modelled as a finite state machine at the Micro–Architectural (MA)
level. The model is a clock–cycle accurate model of the pipeline machine im-
plementation. Every internal state transition corresponds to a hardware clock
cycle. The MA is modelled using a state function, which is a mapping of (f:
inputs → state → state) [18]. The inputs argument are the input interfaces of
the processor. The state defines the internal state of the processor at a given
time. It contains a list of all state–holding components of the processor, such
as the registers, and flags. Our processor model does not feature Thumb and
co–processor instructions.

The bus protocol and the processor are the core components of the verifica-
tion platform. The platform is used in the development of an application, the
Ethernet Switch. The system uses only two master modules.

5 Formal Properties

In this section, we explain the development of a verification platform for the sys-
tem just described. The platform is based on specifications for the AMBA AHB
bus protocol and the ARM7 processor. We then use these to develop platform
specifications for two AHB masters. We require that the resulting system should
have certain liveness properties.

The development stages are as follows: first, we establish generic properties
of the platform which are based only on RAPIER’s AMBA protocol proper-
ties. Second, we develop properties of the processor. Third, we integrate the bus
arbiter and the processor by combining their properties. The result of this com-
bination is used to define specifications for the remaining components. In effect,
these specifications are the test–benches to define components’ compatibilities
with the system.
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5.1 AMBA AHB Properties

Our verification platform is built around the AMBA bus protocol. In this first
stage mentioned above, we define the environmental constraints for the pro-
tocol. These constraints provide operational conditions whereby the expected
behaviours of the protocol are reached or proven correct. Conditions are proved
using the SMV model checker; then they are imported into HOL98 as theorems
(axioms).

All verification has been performed using a Linux machine with an Intel
Xeon 2.4GHz processor with 3G RAM. The time used to import theorems from
SMV into HOL is negligible compared to the time used to model check. Model
checking of Theorems 1, 2, and 3 took approximately 25 seconds, 25 seconds,
and 59 minutes of CPU time respectively.

From the documentation [13], we learn that the request from all masters
connected to the AMBA AHB can be activated or de–activated by setting the
clock blocking signals (clocken mi). When a master is de–activated, the clock
signal is blocked for that master. Consequently, its requests to access the bus
will be ignored and no grant signal can be assigned to it. To achieve maximum
coverage of all masters’ activities, all masters need to be activated. This is done
by setting off the blocking control for the input clock of each module (clocken mi)
with a HIGH signal.

One way to assure behavioural consistency of the system is by applying an
initialisation sequence. This is achieved by triggering the reset signal. The envi-
ronmental constraint express this by saying that the reset signal is active for at
least one cycle and no reset is applied afterwards. We only analyse the behaviour
of the model after the system is reset and all masters are active. This constraint
is defined in Assumption 1.

Assumption 1.
Reset ∧ XG ¬Reset ∧ G(

∧

1≤i≤5
clocken mi)

In SMV, Assumption 1 is declared as a fairness condition for the system. The
SMV code for this fairness condition is SMV Assumption1. The fairness proper-
ties are enforced by assuming them to be true, using the SMV assume construct.

SMV Assumption1:
assert (Reset & XG ∼Reset & G(clocken m1 &

clocken m2 & clocken m3 & clocken m4));
assume SMV Assumption1;

The AHB arbiter receives requests from up to five AHB masters. It then uses
a fixed priority rule to determine which master should be granted bus ownership.
Master m5 is assigned the highest priority and master m0 the lowest priority. If
no master is requesting the bus, then unless m1 is in the split mode [3], bus
ownership is granted to m1. If default master (m1) is in split mode, the bus
is granted to dummy master (m0). The AHB arbiter has the responsibility to
ensure that at any time only one master is being granted bus ownership. The
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arbiter also guarantees that at any time there is one master which is granted
the bus. This is shown in SMV Theorem1. The mutual exclusion properties are
described in SMV Theorem2.

SMV Theorem1:
assert G(grant m0 | grant m1 | grant m2 |

grant m3 | grant m4 | grant m5);
using SMV Assumption1 prove SMV Theorem1;

SMV Theorem2:
assert G(∼(grant m0 & grant m1) &

∼(grant m0 & grant m2) &
. . .
∼(grant m4 & grant m5));

using SMV Assumption1 prove SMV Theorem2;

SMV Theorem1 and SMV Theorem2 are proved using the fairness condition
SMV Assumption1. We instruct SMV to use the constraints by a using as-
sumptions prove theorems statement.

The interface between SMV and HOL enables users to automatically import
properties proved in SMV into HOL. The interface analyses the SMV code to
find relevant information about the properties being verified. It also gathers
which components or modules and assumptions are used in the verification.
The modules and assumptions become the antecedents and the properties being
proved as the conclusions of implications in HOL. For example, SMV Theorem1
is imported into the HOL environment by using the command get smv theorem.
The HOL theorem is:

HOL Theorem1:
(AHB ∧ Reset ∧ XG ¬Reset ∧

G(clocken m1 ∧ clocken m2 ∧ clocken m3 ∧ clocken m4))
→
(G(grant m0 ∨ grant m1 ∨ grant m2 ∨

grant m3 ∨ grant m4 ∨ grant m5) ∧
G(¬(grant m0 ∧ grant m1)∧

¬(grant m0 ∧ grant m2)∧
. . .
¬(grant m4 ∧ grant m5))

Another style of HOL Theorem1 is presented in Theorem 1. The theorem says
that when AHB is initialised with conditions described in Assumption 1, there
will be exactly one master being granted bus ownership.

Theorem 1.
(AHB ∧ Assumption(1)) → (G(

∨

0≤i,j≤5
grant mi) ∧

G(
∧

0≤i,j≤5,i�=j
¬(grant mi ∧ grant mj)))

For the reminder of Section 5.1, we use the notations employed in Assumption
1 to describe the SMV fairness constraints and Theorem 1 to describe SMV
theorems when they are imported into HOL.



58 Kong Woei Susanto and Tom Melham

After defining the initialisation process, we need to learn about the specific
behaviour of the system. The resources we have for this are the documentation
and the circuit itself. In most cases, however, the existing documentation is not
detailed enough to provide the specific information needed. Furthermore, the
system may come as a black box system where minimum information of the
circuitry are available. One approach that can be taken is by performing experi-
mental verifications using the documented specifications as the guidelines. In our
case, we use SMV to learn about our AHB system. When incorrect constraints
are used in the verification, SMV generates a counter example. We use the doc-
umentation and feedback from SMV to determine the operational conditions of
the system that can lead to the expected behaviours.

One of master’s behaviours is that it can request the arbiter to perform a
burst process or a lock process. When the arbiter allows the master to perform
those processes, the arbiter state machine goes into either burst mode or lock
mode state. In these states, the system goes into an internal loop and continues to
grant the bus to the active master until the process is finished. The only exception
is when the arbiter goes into a lock–split state, which forces the arbitration to
grant the bus to the dummy master until the split process is completed. Lock–
split state is a condition when the arbiter is serving active master lock request,
slave responds with a split signal. The arbiter starts a new arbitration when the
process in burst mode or lock mode is completed.

At this stage, we need to find the general conditions that ensure that all pro-
cess modes can be completed. When a master is granted the bus, the completion
of the process depends on the response from the slave. The slave informs the
arbiter and the master that the data is ready by emitting a slv ready signal. We
assume slaves have the fairness property of eventually responding to any request.
At the same time, the master must be able to acknowledge the slave response.
This requires a condition where if master mi is granted the bus then eventually
the active master is not in a busy mode and slave issues a ready signal. This
fairness constraint is described in Assumption 2.

Assumption 2.
GF slv ready ∧ G(

∧

1≤i,j≤5
grant mi → XF(¬msti busy ∧ slv ready))

The transition of the arbiter’s state machine into lock mode can be observed
from the response on grant and lock signals of each masters. When an active
master is sending a lock signal, then the arbiter will go to lock mode. We define
this condition as (

∨

1≤i≤5
(grant mi ∧ lock mi)) and abbreviate it as the lock req

signal. When lock req goes HIGH then the arbiter will be in the lock mode.
Whenever the system enters a lock mode, there is a possibility that the system
is trapped and has reached a deadlock condition. We prevent this condition by
stating that every master which asserts a lock signal will eventually de–assert it.

There is also a possibility that the lock mode operation goes into an alter-
nating sequence in which the master sends the lock/unlock signal and the slave
sends the split/retry-ok/error signal. For examples, everytime active master de–
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assert lock signal, slave responds with split/retry signal. This condition forces
arbiter to go back into lock or lock–split mode state. If this condition always
occurs, the system will be trapped in the lock mode. We choose to allow this
condition to happen and examine the possible sequences needed to break this
loop–trap. The requirement to exit from the loop–trap is described in Assump-
tion 3.

Assumption 3.
G (lock req → F ¬lock req) ∧
GF (lock mode → (¬grant m0 ∧ slv ok/slv error ∧ ¬lock req ∧

X(slv ready ∧ slv ok/slv error ∧ ¬lock req)))

The description of the above assumption is as follows: first, when the active
master asserts a lock signal, it will eventually de–assert it. Second, lock mode will
always be terminated after two cycles. In the first of these cycles, it is required
that the bus is not granted to m0. In the second cycle, the slave module has to
acknowledge that it is ready to complete the transfer. In both cycles, the master
has to be able to retract the lock signal (unlock), and the slave must not issue
a split or retry response.

A new arbitration is achieved when the system is in burst mode or able to exit
from the lock–trap while in lock mode. This condition is indicated by new cycle
signal. When HIGH output on this signal indicates that the arbiter is performing
a new arbiration process. The exit requirements are defined in Assumption 1,2,
and 3. Assuming the exit requirements are fair, we prove that the arbiter will
always eventually perform a new arbitration. The theorem is described below:

Theorem 2.
(AHB ∧ Assumption(1,2,3)) → GF new cycle

There is a possibility that a granted master is forced by a slave into split
mode. When this condition occurs, the arbiter memorises which master has
been split using the split mi signal. In this case, arbiter will ignore all incoming
requests from master mi until it receives un–split signal from the slave. The un–
split signal indicates that the data for the master is ready for transfer. To avoid
the scenario that a master remains in split mode indefinitely, we define a new
fairness condition described in Assumption 4.

Assumption 4.
G

∧

1≤i≤5
(split mi → F un–split mi)

Every clock cycle, the arbiter evaluates the latest input signals and de-
cides what action it will take. When a request send by a master module is
not granted, the module needs to keep requesting. This is because the arbiter
does not memorise any incoming signals. If the master retracts its request signal,
the arbiter will assume the corresponding master has cancelled its request.
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The arbiter uses a fixed priority scheme to decide which master is granted
access to the bus. The fixed priority scheme will always prevent any lower pri-
ority master being granted bus ownership. We need to create a situation where
the possibility of granting control to this master exists. A request from mi can
only be granted whenever no higher priority master is sending a request signal
or when the higher priority master is in split mode. The request constraints are
described in Assumption 5.

Assumption 5.
G

∧

1≤i≤5
((req mi ∧ X ¬grant mi) → X req mi) ∧

G
∧

1≤i≤4
(req mi → F (

∧

i<j≤5
(¬req mj ∨ split mj) ∧ X new cycle))

After we successfully create the general scenario for a new arbitration, we can
use it to obtain the requirements for the arbiter to grant every incoming master
request. The additional rules are described in Assumption 4 and 5. The general
request-grant theorem is described in Theorem 3. The theorem says that every
master request will eventually be granted, provided all requirements defined in
Assumption 1 through Assumption 5 are satisfied:

Theorem 3.
(AHB ∧ Assumption(1,2,3,4,5)) → G (

∧

1≤i,j≤5
req mi → F grant mi)

Theorem 3 defines only the liveness condition of every master’s request. In
order to guarantee liveness of the system, all constraints must be satisfied. This
means that all masters have to operate fairly so that every master has the chance
to access the bus. In Section 5.3, we describe how we refine Theorem 3 to con-
struct an application specific verification platform.

5.2 ARM7 Properties

ARM7 processor is the second core component of the verification platform. In
AMBA AHB, processor is defined as the default master and connected to the
ports of m1. The processor is modelled in ACL2 using functional modelling style.
In this style, the output signals of a component are given as a function of the
input signals.

ARM7execute is a single–step execution function for the ARM7 processor.
The function takes five arguments. The first is the input signal for reset. The
second is the signal from the arbiter to grant the access to the bus. The third
argument is the interrupt input signal. The fourth is the data–in from the AHB
bus. The last argument is the internal state function of the processor. Evaluating
ARM7execute will compute the updated initial internal state and return this
updated state.

Similar to the bus protocol, we also need to obtain properties of the pro-
cessor. They are obtained by proving facts using the ACL2 theorem prover. In
this paper, we describe three features of the processor that have been verified.
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All analysis was performed under the condition that no reset is applied to the
processor. The processor’s properties are as follows:

– A busy signal is emitted only when the processor is executing co–processor
instructions. Since our processor model does not implement co–processor in-
structions, it will never send a busy signal.

¬reset → (¬ Pbusy (ARM7execute 0 grant interrupts data Pstate))

– The processor will continue its evaluation only when it recieves a grant sig-
nal. If it does not, then it goes to an idle state and maintains its internal
state. This means that the processor holds its request signal whenever it is
not granted.

(¬reset ∧ ¬grant) → (ARM7execute 0 0 interrupts data Pstate) = Pstate.

– The ARM7 processor is capable of performing a lock sequence. We prove
that after at most three execution cycles, the processor will release the bus.

(P1 = (ARM7execute reset0 grant0 interrupts0 data0 P0) ∧
P2 = (ARM7execute reset1 grant1 interrupts1 data1 P1) ∧
P3 = (ARM7execute reset2 grant2 interrupts2 data2 P2)) →

((¬reset0 ∧ grant0) →
(¬Plock(P1) ∨ ((¬reset1 ∧ grant1) →

(¬Plock(P2) ∨ ((¬reset2 ∧ grant2) → ¬Plock(P3))))))

In our methodology, all components are combined and integrated in HOL.
They are specified as relational models in higher order logic by defining predi-
cates that state which combinations of values can appear on their external ports.
When a component is defined as a functional model, as is the case with our ACL2
model of ARM7, it needs to be transformed into a relational one. A wrapper is
created to bridge the functional model and the relational model.

The ACL2 processor function ARM7execute is transformed in HOL into the
relational model called ARM7. The relational model of the processor is defined
as follows:

ARM7 def
= (Pst0 = P0) ∧

(Pst(t+1) = ARM7execute reset grant interrupts data Pstt)

Pst is a function from time to the processor’s state. The index subscript to
Pst indicates the relative time at which the state occurs. Pst0 is the state of
the processor at time 0 and P0 is the initial state of the processor. As discussed
above, ACL2 theorems for the processor are automatically imported into HOL
as trusted axioms. A small amount of very simple theorem proving is needed
to simplify the HOL properties obtained from ACL2 theorems. The final HOL
theorem is as follows:
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Theorem 4.

(ARM7 ∧ (G ¬reset)) →
((G (¬mst1 busy) ∧

G (¬grant m1 → (Pst(t+1) = Pstt)) ∧
G (grant m1(t) → (¬Plock(Pst(t+1)) ∨ (grant m1(t+1) →

(¬Plock(Pst(t+2)) ∨ (grant m1(t+2) → ¬Plock(Pst(t+3)))))))

5.3 Application Specific Platform

RAPIER is an environment used in teaching at the ISLI. One application case
study was to build an Ethernet Switch using the platform. The Ethernet Switch
system uses two AHB masters: the ARM7 processor and a memory controller.
In this platform, all slaves are required to give an immediate response for any
master’s request. The slaves are not allowed to respond with a split or retry
signal. Our goal is to find the specifications or requirements for the memory
controller and the slaves so that all desired properties are satisfied.

Interconnection of the components in the verification platform is a straight-
forward step. The formal models are connected and integrated with logical con-
junction in higher order logic. The integration of the AHB bus protocol and the
ARM7 processor are just defined as (AHB ∧ ARM7).

We set our goal to have a system which has liveness properties. In this con-
dition, all requests are always granted. Theorem 3 shows the general rules or
constraints for granting master’s requests. We use these constraints to define the
specifications of a system which has the desired liveness properties.

The Ethernet Switch system uses only two masters. The other masters are
left inactive. This fact is the new constraint for the AHB bus. We use this
constraint to refine existing AHB properties. The refinement is performed either
using the model checker (SMV) or the theorem prover (HOL). In either case,
we use existing properties and simplify the constraints of the AHB bus protocol.
We do not need to re–model check the bus protocol from scratch for the system
with two masters. We choose to import all proofs about AHB into HOL where
we perform system level integration and verification.

The non–existence of m3 to m5 means that there is no request from any of
these modules. One of the implications of this is that no grant signals are ever
sent for these masters. The slave requirement of not allowing split or retry means
a slave can only respond with ok or error. Because a slave is never emitting a split
signal, no split condition will ever occur. In SMV we prove the system has these
properties. The properties are used as the refinement constraints to simplify the
generic properties of AMBA AHB. These constraints are defined as follows:

∧

3≤i≤5
(G¬req mi → G¬grant mi) ∧

(G slv split/slv retry) → G(
∧

1≤i≤5
¬split mi ∧ ¬grant m0 ∧ slv ok/slv error)

The constraints eliminate the need for Assumption 4. They also simplify Assump-
tion 1,3,5 with Assumption 6,7,8 respectively. The new assumptions eliminate
all properties related to m0, m3, m4, m5, and slave split/retry response.
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The clock enable signals in Assumption 1 are only needed when they are
used. If there is no master connected to the corresponding port, the condition
of these signals can be ignored or turned off. The new assumption is shown below:

Assumption 6.
Reset ∧ XG ¬Reset ∧ G(

∧

1≤i≤2
clocken mi)

The restriction on slave modules not allowing them to send split or retry
signals reduces Assumption 3 dramatically. It eliminates the need to include a
dummy master module. Furthermore, the exit constraints when the arbiter is
in lock mode depend only on the slave’s ready signal and master’s lock request
signal. The reduced fairness constraints are as follows:

Assumption 7.
G (lock req → F ¬lock req) ∧
GF (lock mode → (¬lock req ∧ X(slv ready ∧ ¬lock req)))

The properties of Assumption 5 are reduced to m1 and m2. In the specialized
platform, the system’s liveness constraints only depend on the fairness condition
of m2 not infinitely requesting the bus. Because m1 is the default master, when
m2 does not request the bus, arbiter will always grant the bus to the default
master. The simplified assumption is described in Assumption 8.

Assumption 8.
G

∧

1≤i≤2
((req mi ∧ X ¬grant mi) → X req mi) ∧

G (req m1 → F(¬req m2 ∧ X new cycle))

The behaviour of the ARM7 processor is given by Theorem 4. One of the
properties is that the processor never sends a busy signal. This fact eliminates
the dependency of Assumption 2 on the processor’s behaviour. The new con-
straints are given in Assumption 9.

Assumption 9.
GF slv ready ∧ G(grant m2 → XF(¬mst2 busy ∧ slv ready))

When the processor is in a wait state, it maintains all of its properties. This
means when the processor sends a request signal and the arbiter tells the pro-
cessor to wait, the processor will keep sending the request signal. This property
refines Assumption 8 into Assumption 10.

Assumption 10.
G ((req m2 ∧ X ¬grant m2) → X req m2) ∧
G (req m1 → F(¬req m2 ∧ X new cycle))

Theorem 4 also shows that when the processor is locking the bus, it will
eventually unlock it in at most three execution cycles. The arbiter also guarantees
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that in lock mode the active master always keeps the bus. These conditions refine
Assumption 7 to Assumption 11.

Assumption 11.
G((grant m2 ∧ lock m2) → F(grant m2 ∧ ¬lock m2)) ∧
GF (lock mode → (¬lock req ∧ X(slv ready ∧ ¬lock req)))

Finally, the Ethernet Switch platform is defined in Theorem 5. It says the
platform has two masters. It is constructed from the AHB bus protocol and the
ARM7 processor. When the system is initialised with the sequence described in
Assumption 6 and the constraints described in Assumption 9,10,11 are satisfied,
the system will always provide fair services for its two masters. Light weight
theorem proving is needed to prove Theorem 5.

Theorem 5.

(AHB ∧ ARM7 ∧ Assumption(6,9,10,11)) →
G (req m1 → F grant m1 ∧ req m2 → F grant m2)

Based on Theorem 5, we can analyse the requirements and define the specifica-
tions for each module. The second master (memory controller) has to satisfy the
following specifications:

– The module has to be capable in maintaining its request signal until it is
granted.

– The module has to be able to accept a response from a slave by not always
engaging in a busy mode.

– If the module is capable asserting a lock signal, it has to be able to de-assert
it until a new arbitration cycle is reached.

– In order to let a lower priority master access the bus, the module should
not infinitely request the bus. One way to achieve this is by introducing
one additional rule: every completed request sequence must be followed by
a sequence of idle states. In this way, the system can guarantee that all
requests can be served.

The slaves in this platform have to satisfy specifications as follows:

– By definition, all slaves are not allowed to send a retry or split signal.
– They have to be able to respond to all requests.
– To prevent any erratic behaviours of the slave, we define one additional rule

which controls the behaviour of the slave: when all input are stable, the
output of the slaves will eventually become stable. This means that when a
slave is ready to respond to a master’s request, afterwards the slave’s output
remains stable as long as the input does not change.

In this methodology, we obtain specialised specifications for both master and
slave modules. This specifications feature tighter requirements in comparison to
the standard ones. The specifications are geared to satisfy the application specific
requirements. Designing the modules under these specifications guarantee the
system to fulfil the application’s specific requirements.
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6 Conclusions and Future Work

We have presented a tool architecture and methodology to perform formal verifi-
cation for system on chip designs. The verification environment combines various
formal tools which enable verification engineers to perform symbolic simulation,
model checking, and theorem proving. The mechanism for sharing information
reduces the possibility of errors being made during the translation of theorems
from one formal tool to the other. It also allows each component to be modelled
in the most suitable formalism.

The methodology is based on the development of a generic formal verifi-
cation platform in which applications can be developed. The generic platform
behaviours are described as a set of formal properties. The generality of the prop-
erties make them reusable in the development of platform specific applications.
The properties can be used to develop the specifications of the components of
the platform. They can also be used to analyse the behaviour of the platform
with a set of components.

We have developed a standard integration platform containing the AMBA–
AHB bus protocol and a ARM7 processor. We described the development of
reusable formal properties for this platform. The properties define the generic
behaviour of the system. We used this platform to build an application. By
evaluating the platform’s properties with the application requirements, we obtain
the specification for the remaining components.

Our future research will build a more comprehensive verification platform on
top of our proof environment. The platform will be based on the full specification
of the AMBA bus protocol and the ARM7 processor. We are aiming for a ‘plug
and play’ verification environment, involving a collection of reusable proofs. The
verification platform will enable the possibility to be used as a workbench to
develop detailed specifications.
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Abstract. Errors in a requirements model have prolonged detrimental
effects on reliability, cost, and safety of a software system. It is very
costly to fix these errors in later phases of software development if they
cannot be corrected during requirements analysis and design. A use case
diagram, as a requirements model, plays an important role in giving
requirements for a software system. It provides a communication tool
between software requirements developers and prospective users to un-
derstand what requirements of a software system are. However most de-
scriptions of a use case diagram are written in some informal language,
leading to possible misunderstanding between developers and users. In
this paper, we propose a new rigorous review technique which can be ap-
plied to software requirements models. Using this new technique before a
software system is fully designed will help us find some potential errors in
a requirements model, resulting in reduced time, labor and expenditure
in software development.

1 Introduction

The Unified Modeling Language (UML) [12] has been proposed as a modeling
language which can be applied in software development from software require-
ments and specification to software code generation through model design un-
der the same framework. UML has become a standard modeling language in
software development. As the first step in software development, the quality of
requirements analysis is of great importance to the later phases of software de-
velopment. High quality of a requirements model can most likely reduce many
potential errors occurred in later phases of software development.

According to recent error investigation in software development, researchers
have found that more errors are introduced during requirements analysis and de-
sign than any other phase in software development. Furthermore, requirements
errors have prolonged effects on reliability, cost, and safety of a software sys-
tem [14,13]. Requirements errors are more costly to fix during later phases of
software development than during the requirements analysis and design phase [2].
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Central to software requirements analysis and design is a use case diagram. A
use case diagram has been proposed in UML as a notation to describe a software
system’s requirements and behavior. It has been served as a communication
tool between software developers and users. After talking with potential users
of a software system, software requirements developers should transform what
users expect in a software system into a requirements model given by use case
diagrams, representing what the system is expected to do from a perspective of
software developers.

Use case diagrams play an important role during software development. On
the one hand, software users can understand whether the software system sat-
isfies their need at the very beginning in software development when they see
use case diagrams. Their complaints about a system can be directly reported
to requirements developers and some necessary changes can be made in the re-
quirements model accordingly. Use case diagrams make it possible for users to
evaluate the system behavior before code is written. On the other hand, use case
diagrams can be used as blueprints during the whole software development. Be-
sides requirements developers, other software developers such as model designers
and testers can further design and test the software system based on these use
case diagrams.

Most requirements models given by a use case diagram consist of two parts.
One is a diagram part and the other is a textual description. The diagram
part gives the relationship among use cases and actors. The textual description
part informally presents the description for each use case. Most descriptions are
written in informal language such as English. Although UML accepts any level
of formality for use cases, we think a high level of formality for use cases can
reduce many confusion and misunderstanding between software developers and
users. The reduction of confusion and misunderstanding can be very helpful in
improving software quality.

Formalizing a requirements model has aroused some attention in software re-
search community [2,7,15,1,17]. Although most research works are based on some
UML diagrams except for use case diagrams, we find there are a few research
works about use case diagrams. Operation schemas [16] have been proposed to
formalize use cases based on the fact that use cases provide the informal descrip-
tion of interactions between a system and its actors, whereas operation schemas
precisely describe a particular system action which executes atomically. Since
operation schemas are more precise and formal than natural language, they of-
fer some rigorous basis which makes some reasoning possible. We also provided
a new formal language (High-level Constraint Langauge) [18] which can be used
to give the pre- and post- condition for a use case. We want to use some formal
language to describe some requirements model and ultimately to reduce some
confusion and ambiguity in software requirements description.

In spite of non-ambiguity in formal languages, many software practitioners
complain about the impracticality of many formal languages when the formal
verification has been applied in some industry applications. Due to this reason
we are looking for some new method, called “rigorous reviews”. Instead of some
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convincing formal proofs, required by most formal methods, to ensure some
correctness, rigorous reviews employ some sound and practical review technique
to ensure the correctness. Thus rigorous reviews can be done either by means
of systematic checking of specification manually or by execution of specification
with some tool support. Practitioners can easily learn these techniques without
some special training. Especially in this paper we propose a new rigorous reviews
technique which can be achieved by means of manual checking and some software
tool together, and so practitioners can observe the result directly.

Among the rigorous reviews techniques, testing and execution are the most
powerful methods because the behavior of a system can be tested and observed.
Execution is a powerful and direct mechanism to observe a system. When prac-
titioners execute a system and find some results which are not what they expect
in the system, it usually means that there are some errors in the system.

However one of the sapient differences between a requirements model and
an execution model is a requirements model presents what a system should do,
while an execution model presents how a system can do. Because of this differ-
ence, it is almost impossible to execute a requirements model during software
requirements analysis and design; therefore some requirements errors are really
hard to detect when they are first introduced, and they usually cannot be found
until the software system is tested. Even worse, some of them may not be found
after the software system is delivered.

Unfortunately we find there is almost no research work about really using
some rigorous reviews techniques to find some requirements errors during re-
quirements analysis and design based on use case diagrams. After observing the
lasting impact of requirements errors on software development, we proposed a
new language (High-level Constraint Language) (HCL) [18] to which a require-
ments model given by use case diagrams can be mapped. In that paper, we used
the “execution”, the most obvious rigorous reviews technique, to check whether
or not a high-level model based on a use case diagram satisfies users’ require-
ments. However, the execution techniques cannot be used to check all high-level
models because some specifications are not executable.

Fortunately testing, especially specification testing as a rigorous review tech-
nique, can be used to attack the weakness of the execution approach. By specifi-
cation testing, we mean presentation of inputs and outputs to a specification, and
evaluation to obtain a result—usually a truth value, as described in detail in the
second author’s previous publication [9]. As the post-condition of an operation
usually describes the relation between its inputs and outputs, an evaluation of
the post-condition needs both input and output values. This is slightly different
from program testing in the sense that program testing needs to run the program
with test cases only for input variables, while testing specifications (especially
for those written in terms of pre and post-conditions) require test cases for both
input and output variables, and there is no need to run any program but just to
evaluate the related predicate expressions (e.g., pre and post-conditions). When
testing an operation, it is necessary to treat the state variables before and after
the operation, for example, ←−x and x in VDM [6]; x and x′ in Z [3], and ˜x and
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x in SOFL [10,8], as inputs and outputs of the operation, respectively. This will
allow the evaluation of the post-condition of the operation and an examination
of whether the change of the state made by this operation is satisfactory in its
consistency.

The remainder of this paper is organized as follows. Section 2 gives the rig-
orous reviews techniques used in this paper. In section 3 we first introduce a use
case diagram and then a vending machine example is used to show the applica-
tion of our rigorous reviews techniques. Section 4 draws some conclusions and
suggests future work.

2 Rigorous Reviews Overview

After a requirements model is given by a use case diagram together with HCL
specification for each use case, we can use specification testing and execution to
find whether any errors exist in the requirements model. Specification testing
is used first to check whether there are some inconsistencies in a requirements
model. If no inconsistencies are found, then requirements model developers can
move to the second stage, i.e. execution of the requirements model.

Although a requirements model can pass specification testing, it cannot guar-
antee that the model totally satisfies users’ needs. One example is that one of
the plausible requirements in a vending machine example is the change returned
to a customer plus the price of a product the customer would like to buy times
the number of the product the customer buys should be equal to the amount of
money he pays to the machine. But according to this requirement, the machine
can always return all the coins the customer pays to the machine as change
when the product is still available. But this solution cannot be acceptable and
the specification testing may not find any error in this requirement. Thus, users
of the vending machine may not find the problem until they run the prototyping
system. Therefore only when users run a prototyping system do they find some
more subtle errors in a requirements model.

Therefore the rigorous reviews technique consists of two parts: test a require-
ments model and execute a requirements model. Fig. 1 gives a use case diagram
to show what our technique can do. From this diagram, we can know that soft-
ware developers are an actor who can get a result from use case Test a Req.
Model and Execute a Req. Model., while software users are another actor who
can observe the system behavior by use case Execute a Req. Model. Based on
the results, software developers can redesign a requirements model if necessary.

Fig. 2 is a state chart diagram which shows a software development process
to which our rigorous reviews can be applied. After designing a use case dia-
gram and giving a pre- and post- condition, software developers can use the
specification testing and execution proposed in this paper to find errors in a re-
quirements model. If an error is found, software developers can return to the first
state, redesigning the requirements model. If no error is found and the require-
ments model is executable, then the developers can execute the model to find
more potential errors. If no error is found and the model is non-executable, then
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Users

SE Developers

Testing A Req.
Model

Execute a Req.
Model

Rigorous Reviews

Fig. 1. A use case diagram representing the rigorous reviews presented in this paper.

Translate to HCL

Execute HCL
Specifcation

Test HCL 
Specification

Specification

Case Diag.
Design Use

[error not found and non−executable
and Want_Redesign]

[error not found and executable]

and Want_Redesign]
[error not found and non−executable

[error found]

Fig. 2. A state chart diagram showing how our rigorous reviews can be applied to
software requirements developement.

the developers can have two choices. One is they can further refine the model
to make the new model executable. In this case the developers return to the
first state. The second choice is that the developers can leave the requirements
analysis and design phase and go to the next phase to further develop the model.
Since software development process is iterative, the process shown in Fig. 2 can
always be repeated when a requirements model is designed.
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2.1 Requirements Model Testing

The specific approach to testing a requirements specification (representing a
model of the system) consists of two steps. The first step is to derive the proper-
ties from the specification as targets for testing. For example, the properties may
include the satisfiability of operations, consistency between invariants and opera-
tions, and the consistency between different operations when they are integrated.
The second step is to test the properties for their consistency. Similar to con-
ventional program testing [19], testing a target property also takes three steps:
(1) generate test cases; (2) evaluate the property with the test cases; and (3)
analyze the test results to determine whether faults are detected. For the testing
of internal consistency of the target properties, test cases are mainly generated
based on the structure of the specification. This is similar to structural testing
for programs where test cases are generated by examining the program struc-
ture. In this method, there is no need to provide expected test results, because
the nature of the test is interpreted based on the established criteria.

There are five strategies for testing predicate expressions with different ob-
jectives, each imposing a different constraint on the selection of test cases. Let
P ≡ P1∨P2∨· · ·∨Pn be a disjunctive normal form and Pi ≡ Q1

i ∧Q2
i ∧· · ·∧Qm

i be
a conjunction of relational expressions Qj

i which are atomic components, where
i = 1...n and j = 1...m. The first strategy requires that the entire disjunctive
normal form be evaluated as true and false, respectively, in order to allow the
examination of each case of all the possible evaluations of the expression. The
second strategy focuses further attention on each of the disjunctive clause of
the form and requires that each disjunctive clause Pi be evaluated as true and
false, respectively. Although each disjunctive clause is tested individually us-
ing this strategy, there is no guarantee of the independency of the testing due
to the possible inter-relation among the disjunctive clauses. Consider the form
x ≤ 20∨x > 10 as an example. When the relation x ≤ 20 evaluates with the test
case x = 15 as true, another relation x > 10 in the disjunction also evaluates as
true. Therefore, this test does not examine the case when the truth evaluation
of x ≤ 20 leads to the truth evaluation of the entire disjunctive normal form in-
dividually. To overcome this weakness, the third strategy can be adopted, which
requires that each disjunctive clause in the disjunctive normal form evaluate as
true while all the other clauses evaluate as false. The fourth and fifth strate-
gies give guidelines for the generating of test cases to examine the effectiveness
of each atomic expression in each conjunction of the disjunctive normal form,
with a little difference in emphasizing the independency of testing each atomic
expression.

2.2 Requirements Model Execution and Its Implementation

The next step following the specification testing is to execute the model. Even
though not all requirements models can be executable due to high-level speci-
fication, the execution of an executable model is important in find errors in a
requirements model. We will discuss the executable part in the following. Af-
ter passing the testing, we will execute the model, trying to find some subtle
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errors undetected during the specification testing. For those executable part of
requirements model, All HCL specifications used to give a requirements model
are mapped into AsmL specifications.

AsmL [11] is a formal language based on the theory of Abstract State Ma-
chines [5], which was first presented by Dr. Yuri Gurevich more than ten years
ago. An ASM is a state machine which computes a set of updates of the machine’s
variables by firing all possible updates based on the current state. The compu-
tation of a set of updates occurs at the same time and the result of computation
leads to a new state to be generated. AsmL itself is an executable language and
the control flow in AsmL includes many structures such as parallel, sequence,
loop, choice and exception. Due to the executability in AsmL, we use AsmL as
our target language to execute a use case diagram.

The translation from HCL into ASML consists of two steps. First, each use
specification is translated into a method in AsmL. The method body is imple-
mented based on the pre- and post- condition given by HCL. Each pre-condition
is translated into a require structure in AsmL, which means that the pre-
condition should be satisfied before the method is executed. All the definitions
given in the description parts in a requirements model are mapped into declara-
tions in AsmL specifications.

Second, the order of execution of use cases is implied by the inputs and
outputs given in a requirements model. Every input which is given in a pre-
condition and has no relation to other outputs for the rest of use cases is treated
as an input in a requirements model. A use case with a model input variable
should first be executed. Similarly, any output variable which occurs in a post-
condition of a use case but does not appear in any other use case’s pre-conditions
is regarded as a requirements model output. A use case with a model output
should be last executed. The other input and output variables are called internal
inputs and outputs respectively. A use case, say A, whose output variable is an
input of another use case B, then the use case A should be executed before the
use case B. Based on the above strategies, we translate a requirements model
into an AsmL specification and then execute the specification.

3 Use Case Diagrams and a Vending Machine Example

A requirements model as the first model designed by requirements developers
during software development is usually represented by a use case diagram. A use
case diagram usually consists of set of use cases, actors and their relationships.
An actor is an external user or another system who can initiate a business
represented by a use case diagram. A use case represents a sequence of actions
which can be performed due to some events triggered by an actor. A use case
in a use case diagram only describes one aspect of a software system without
presuming any specific design or implementation. A use case only describes what
it can do instead of how to do.

There are three relationships which can be defined in a use case diagram,
“extend”, “include” and “generalization”. These relationships try to direct soft-
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ware developers towards a more object-oriented view of the world so as to avoid
some duplicate work. But a use case diagram itself does not provide how a re-
quirements model should be structured. Therefore, the description for each use
case has become very important in a requirements model. Here we use pre- and
post- condition to represent the behavior of each use case. How to use give a
pre- and post- condition based on HCL can be found in [18].

In the following we use a vending machine example [4] to illustrate how to give
a requirements model by our rigorous reviews. A vending machine consists of a
money box, a change box, a keypad and a container containing all products to be
sold. The vending machine sells sodas, chips and sandwiches whose prices are 60
cents, 50 cents and 100 cents respectively in its container. The keypad provides a
mapping between a number and a product. We assume that 0 represents sodas,
1 represents chips and 2 represents sandwiches. We assume that the maximum
amounts of the money for the change box, which is used to return change to a
customer, and money box, which is used to keep a customer pay, are both 1000
cents. Every purchase only returns one product to a customer.

3.1 A High-Level Model

In the highest level we abstract the problem as follows: a customer can buy a
product from the vending machine if (s)he provides a number, which represents
the amount of money (coins) to be inserted, and the product code. Then the
vending machine can sell the product and return change to the customer if exists.
Therefore, the model involves only one actor, i.e. customer, and one use case, i.e.
Buy product. So the highest use case diagram for the vending machine is shown
in Fig. 3, where the stick figure represents the actor who can interact with the
system and the oval, named Buy product, represents the use case and provides
a service to the actor.

Buy_product

Fig. 3. The highest level model for the vending machine.

In order to give a complete requirements model, we need to give a pre- and
post- condition for each use case in the diagram. Before giving these conditions,
we need to find out the requirements of the use case Buy product. After a cus-
tomer inserts an amount of money and provides a product code, then the vending
machine can sell the product and return an integer which represents the amount
of change returned to the customer if exists. So the pre- and post- condition for
the above use case can be given by the HCL specification in Fig. 4.
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usecase VendingMachine1 ( in money, product,
out num product, changes)

pre: money in Integer, product in Indices(code)
where money > 0

post: (num product in RAN, changes in[0..1000]) |
num product * price(product) + changes = money

description:
PRODUCT = {soda, chip, sandiwich}
RAN = [0..1]
code: Integer → PRODUCT = {0→ soad,

1 → chip, 2 → sandwich}
price: PRODUCT → Integer = { soda → 60,
chip → 50, sandwich → 100}

Fig. 4. The highest requirements model for the vending machine.

The main requirement for this highest level model is that the price of the
product a customer buys plus the change if returned should be equal to the
amount of money (s)he pays to the vending machine. The other requirement
includes the number which represents an amount of money a customer provides
should be positive and the product code should be valid. Therefore the pre-
condition for the use case VendingMachine1 requires that the amount of money
a customer pays be a positive integer and the product (s)he chooses be a valid
product stored in the vending machine. The valid products stored in the vending
machine are defined by the set PRODUCT which is defined in the description
part. To ensure that a code input by a customer is valid, we use a built-in
function Indices(code) which represents the domain for the function code.

The post-condition for the use case VendingMachine1 gives a relation among
the amount of money a customer pays, the price of the product (s)he chooses
and the change returned to a customer if exists. This is usually what a user of
the vending machine expects.

The pre-condition and post-condition of a use case concentrate on some con-
straints on variables. In order to make the requirements model complete, we
use the description part to give all the necessary information missed in the pre-
condition and post-condition. Thus, we include the definitions for PRODUCT,
RAN, code and price in the description part.

Before we execute the requirements model, we can use specification testing
technique to find some inconsistency in the conditions of a use case. According
to the criteria mentioned in the previous section, we can automatically generate
some test data to check whether there is some inconsistency in the specification
for each use case. Table 1 gives a test generated by trying to use the second
strategy (i.e., evaluate each disjunctive clause as true and false, respectively)
from Fig. 4. The symbol nil in tables denotes undefined.
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Table 1. A test for VendingMachine1.

money product num product changes pre post pre => post
20 2 1 20 true nil nil
60 0 0 60 true nil nil
100 2 1 0 true nil nil
50 1 1 0 true nil nil

usecase VendingMachine2 (in money, product,
out num product, changes)

pre: money in Integer, product in Indices(code)
where money > 0

post: (num product in RAN, changes in [0..1000]) |
num product * price(code(product)) + changes = money

description:
PRODUCT = {soda, chip, sandiwich}
RAN = [0, 1]
code: Integer → PRODUCT = {0→ soad,

1 → chip, 2 → sandwich}
price: PRODUCT → Integer = { soda → 60,
chip → 50, sandwich → 100}

Fig. 5. The revised highest requirements model for the vending machine.

Because of the “strange” results when the pre-condition evaluates as true,
the post-condition is unable to evaluate as a truth value, we have quickly re-
alized that there must be something wrong in the post-condition. In fact, by
this test we have found a type-mismatching fault in the post-condition. In the
pre-condition, the variable product is defined as an index (natural number or
zero) in the set indices(code) (the domain of the function code {0, 1, 2}), but
in the post-condition the function price, whose domain is PRODUCT = {soda,
chip, sandwich} and range is the set of integers {60, 50, 100}, is applied to the
variable product whose value cannot be a member of the type PRODUCT.

3.2 A Revised Model

Based on the error we have found, we correct this mistake by replacing the
original function application price(product) with the new function application
price(code(product)) and redefine the use case VendingMachine1 shown in Fig. 5.

To ensure that the modified specification does not introduce new errors and
no other kinds of inconsistency problems remain in it, we generate another test
given in Table 2 for the modified specification VendingMachine2.

In this test the similar phenomena to the test given in table 1 appears again:
for the last three test cases in table 2 while the pre-condition evaluates as true
the post-condition becomes undefined. After analyzing the reason, we have found
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Table 2. A test for VendingMachine2.

money product num product changes pre post pre => post
20 2 0 20 true true true
30 1 1 0 true false false
60 0 1 0 true true true
50 1 1 0 true true true
0 0 0 0 false true true
200 2 1 100 true true true
1100 1 1 1050 true nil nil
1200 2 1 1100 true nil nil
1300 0 1 1240 true nil nil

that the problem is caused by neglecting that the amount of 1000 cents is the
maximum capacity for the money box. This problem can be resolved by imposing
the further restriction on the range of input variable money as money > 0 and
money <= 1000 in the pre-condition. Thus, the use case VendingMachine2 can
be modified into the following specification:

usecase VendingMachine3 (in money, product,
out num product, changes)

pre: money in Integer, product in Indices(code)
where money > 0 and money <= 1000

... /*the same as that of VendingMachine2 */

A consistent specification for a use case does not necessarily mean that the
specification really satisfies the requirements given by a user. Some design errors
in a requirements model cannot be found until users see the execution. Therefore,
after checking that a specification for a use case does not include inconsistency,
we can execute the specification by translating it into Asml specification. By
running the AsmL specification, a user of the system can interact with the pro-
totype system immediately, shown in Fig. 6. The system returns a solution set
after execution. Let us assume that a user chooses 0 (“soda”) and pays 76 cents.
For this given input, there are two solutions which can be observed by this cus-
tomer. One is to return 76 cents to this customer and the other is return one
“soda” and 16 cents as a change to the customer. Obviously, the first solution is
not really what a user expects from the vending machine system.

3.3 A Further Revised Model

When we return to the HCL requirements model, we find that there exists a
problem in the post-condition. The post-condition actually accepts one solution
which is that the change to be returned to a customer is equal to the money the
customer pays and no product the customer chooses is sold. In any case, this
solution should not be accepted. Therefore we should modify the post-condition
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Fig. 6. The result of running the first level model.

for the use case VendingMachine3 and the complete specification is shown in
Fig. 7.

In the revised HCL requirements model shown in Fig. 7, we include an exists
condition in the if statement in the post-condition part. The revised post-
condition says that if there exists a solution which can return a product to
a customer then the vending machine should perform this purchase instead of
returning all the money to the customer; otherwise the vending machine should
return all the money to the customer.

Before we execute the revised model, we need to check whether there is any
inconsistency in our specification. Again this specification can be tested based
on the same approach to testing use case VendingMachine2. Since giving the
specific test data does not add any value in helping explain the principle of our
rigorous reviews technique, the test data for testing use case VendingMachine4
in Fig. 7 are omitted. After the specification testing, we can execute the revised
HCL requirements model and find the solution is what a user of the vending
machine expects.

3.4 A Refined Model

After giving the highest model for the vending machine example, we can further
develop it by refining the diagram shown in Fig. 3. The refined model is presented
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usecase VendingMachine4( in money, product,
out num product, changes)

pre: money in Integer, product in Indices(code)
where money > 0 and money <= 1000

post: (num product in [0..1], changes in[0..1000]) |
if (exists (num in [0..1], ret in [0..1000] ) | num > 0

and num *price(code(product)) + ret = money) then
num product > 0 and num product * price(code(product))

+ changes = money
else

num product = 0 and changes = money
description:

PRODUCT = {soda, chip, sandiwich}
code: Integer → PRODUCT = {0→ soad,

1 → chip, 2 → sandwich}
price: PRODUCT → Integer = { soda → 60,
chip → 50, sandwich → 100}

Fig. 7. The revised HCL requirements model for the Vending Machine.

deal_order

ComputeChanges

GetProduct

GetMoney

ReturnChanges

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 8. The refined model for the Vending Machine.

by a use case diagram shown in Fig. 8. In the refined model, we concentrate on
how the model can support the input and output closer to the real vending
machine. Usually a customer first provides the code for a product, and then
inserts some coins into the machine. The machine figures out and then returns
the change to the customer if any according to the money the customer pays
and the price of the product.

According to UML, an include relationship between use cases means that
the base use case explicitly incorporates the behavior of another use case at a
location specified in the base. The included use case never stands alone, but is
only instantiated as part of some larger base that includes it. Thus we distribute
the responsibility of the use case deal order to its four including use cases. There-
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usecase GetMoney(in n1, n2, n3, out total)
pre: n1 in Integer, n2 in Integer, n3 in Integer where

n1 > 0 and n2 > 0 and n3 > 0
post: (total in [0..1000]) |

total = n1 * 5 + n2 * 10 + n3 * 25

usecase GetProduct(in choice, out product price)
pre: choice in Indices(code)
post: (product price in [0..100]) |

product price = price(code(choice))
description:

code: Integer → PRODUCT = {0→ soad,
1 → chip, 2 → sandwich}

price: PRODUCT → Integer =
{soda→60, chip→50, sandwich→100}

usecase ComputeChanges(in total, price, out changes)
pre: total in Integer, price in Integer where

total = GetMoney::total and
price = GetProduct::product price

post: ( num in [0..1], changes in [1..1000]) |
total = price + changes)

usecase ReturnChanges(in c, out o1, o2, o3)
pre: c in Integer where c = ComputeChanges::changes
post: (o1 in [0..10], o2 in [0..20], o3 in [0..30] |

o1 * 5 + o2 * 10 + o3 * 25 = c)

Fig. 9. The refined model for the Vending Machine.

fore the new requirements model consists of five different use cases, which are
use case deal order, GetMoney, use case GetProduct, use case ComputeChanges
and use case ReturnChanges; the latter four use cases are included in the use
case deal order. The HCL specification for each included use case in the refined
requirements model is shown in Fig. 9.

The input, i.e. money, to the highest level model has been replaced by a
set of numbers, representing a set of numbers of each denomination a customer
pays. We assume that the machine can only accept 5-cent coins, 10-cent coins
and 25-cent coins. The input parameter n1, n2 and n3 represent the number of
5-cent coins, 10-cent coins and 25-cent coins paid by a customer respectively.
These numbers have become inputs to the use case GetMoney as well as our
incremental model. We deliberately miss the restriction for use case GetMoney
on the number of coins whose total amount should not exceed 1000 cents. The
use case GetProduct whose input is a product choice is used to output the price
for the product which a customer chooses. Similarly the output changes to the
highest level model has been replaced by a set of integers, representing a number
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Table 3. A test for GetMoney.

n1 n2 n3 total pre post pre => post
5 10 15 450 true true true
10 100 5 1175 true nil nil
100 200 30 999 true false false
150 20 10 1200 true nil nil

Table 4. A test for GetProduct.

choice product price pre post pre => post
0 60 true true true
1 50 true true true
2 100 true true true

of each denomination (5-cent coins, 10-cent coins and 25-cent coins) returned to
the customer. This set of integers has become outputs in the use case Com-
puteChanges. Also we should follow the restriction on the maximum amount
(1000 cents) of money returned to a customer. Here we assume the maximum
capacities for 5-cent coins, 10-cent coins and 25-cent coins in the change box are
10, 20 and 30.

The use case ComputeChanges is the main part in the vending machine. It
accepts the amount of money paid by a customer, which is returned by the use
case GetProduct. The constraint total = GetMoney::total in the pre-condition
of the use case ComputeChanges asserts that total should be from the output
total in the use case GetProduct and so should p = GetProduct::product price.
This gives a potential order to execute the use cases when we want to execute
a requirements model. According to these inputs, the use case ComputeChanges
can have the post-condition shown in Fig. 9 to achieve the main requirements
for the vending machine.

The use case ReturnChanges computes the number of each denomination
which should be returned to a customer as change if exists. The pre-condition
shows that the input c comes from the use case ComputerChanges. Based on the
conditions for each use case, we can use specification testing to check whether
any inconsistency exists in these use cases.

Based on the conditions for each use case, we can use specification testing
to check whether any inconsistency exists in these use cases. Two tests for the
use cases GetMoney and GetProduct are given in Table 3 and 4, respectively,
and tests for another two use cases ComputeChanges and ReturnChanges are
omitted for brevity.

3.5 A Final Model
Since the post-condition evaluates as either nil or false while the pre-condition
evaluates as true for three test cases in which the value of the variable total is
beyond 1000, the test shows the possibility of involving an error in the post-
condition. After a careful analysis, we have realized that the specification is
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usecase GetMoney(in n1, n2, n3, out total)
pre: n1 in Integer, n2 in Integer, n3 in Integer where

n1 > 0 and n2 > 0 and n3 > 0 and n1 * 5 + n2 * 10 + n3 * 25 ≤ 1000
post: (total in [0..1000]) |

total = n1 * 5 + n2 * 10 + n3 * 25

Fig. 10. The revised HCL specification for use case GetMoney.

usecase ReturnChange2(in c, out n1, n2, n3)
pre: c in Integer where c = ComputeChanges::changes
post: (n1 in [0..10], n2 in [0..20], n3 in [0..30] ) | n1 * 5 +

n2 * 10 + n3 * 25 = c and
forall o1 in [0..10] holds
forall o2 in [0..20] holds
forall o3 in [0..30] holds
o1*5+o2*10+o3*25= c implies
n1+n2+n3 <= o1+o2+o3)

Fig. 11. The revised version for use case ReturnChanges.

not satisfiable because of the missing requirements for the maximum amount
of money which the machine can accepts. To make this specification satisfiable,
we add a further constraint on the pre-condition to ensure that no value of the
variable total can exceed 1000 according to the formula computing total in the
post-condition. The modified precondition of use case GetMoney is shown in
Fig. 10.

As far as the test in Table 4 is concerned, since the post-condition evaluates
as true while the pre-condition evaluates as true for all the test cases, there is no
indication of potential faults in the specification. After testing, we can further
execute the model. For brevity, we skip the execution result, and actually this
is a valid model.

The requirements model can be further refined. For brevity, we only refine
the use case ReturnChanges. In this case we consider more requirements in the
new refined model while not changing the inputs and outputs for the use case
ReturnChanges. In the refined use case, the refined requirement is to return the
fewest number of denominations to the customer; and therefore we rewrite the
post-condition to satisfy the fewest numbers of denominations returned to a
customer without changing any input and output in the previous use case. Fig.
11 gives the revised version for the use case ReturnChanges. After giving this
model, both developers and users can run the HCL specification and check the
solution set, which is omitted for brevity.

4 Conclusion

After observing the impact requirements errors on software development, we
propose a rigorous reviews technique, based on specification testing and execu-
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tion, attempting to find errors in a requirements model during the early phase
of software development. Based on our previous work about formalization of a
use case diagram, we present in this paper that a requirements model given by
a use case diagram together with a pre- and post- condition for each use case
can be first tested, trying to find whether there exists any kind of errors such
as inconsistency in a requirements model. In order to implement specification
testing, we proposed several strategies for these pre- and post- conditions for use
cases.

Furthermore, if the pre- and post- condition in a use case diagram are ex-
ecutable, then the requirements model can be executed and some undesirable
effects can be directly observed. We also outline the execution model based
Abstract State Machine Language. Due to the executability of a requirements
model, some necessary changes can be made accordingly. A vending machine
example has been illustrated to show how the rigorous reviews technique works.

Our rigorous review technique proposed in this paper can also be applied to
the later phases of software development, such as a software model design. A
design model given by a class diagram which includes a pre- and post- condi-
tion for each method defined in classes can also be tested. If the conditions are
executable, then the design model can be executed as well. On the other hand
we will look for some software development process to which our rigorous review
technique can be applied. Especially we will investigate some possibility to apply
this technique to some use case driven software development processes.

Furthermore, we will work on a tool based on the rigorous reviews technique,
which will be very crucial to software practitioners. Also, more examples, espe-
cially some industrial applications, will be studied to make our technique more
practical in software development in the near future.
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Abstract. Using service-based system descriptions simplifies the specification 
of complex reactive systems as found in the domain of web-services as well as 
embedded systems. To support a service-based development process applicable 
in safety-critical areas, a precise understanding of the notions service, compo-
nent and interface is introduced as well as methodical steps like composition, 
and consistency and completeness validation. The applicability of our defini-
tions is demonstrated in the context of tool-supported feature interaction detec-
tion.  
 
Keywords: Service, component, specification, behavior, partiality, consistency, 
completeness, implementation, interaction, formalization, application, tool-
support, model checking.  

1   Introduction 

Using services as basic concept eases the specification of reactive systems with a high 
degree of interaction with its environment as found, e.g., in the telecommunication or 
web services domain. This approach allows breaking up complex system functionality 
into smaller functional modules. This modularity supports a more manageable and 
comprehensible description of the functionality. This shift from a structural architec-
ture (using components as the main building blocks) to a behavioral architecture (us-
ing services instead) is, e.g., applied in the domain of web services. There, systems do 
not consist of a fixed set of components, but are dynamically composed from services. 
However, using a service-based engineering process is not only useful in the field of 
dynamic networks, but also in domains with static structure supplying complex inter-
acting functionalities. In the automotive domain, e.g., a large number of functional-
ities like ABS (anti-lock braking system) and ABC (active body control) are com-
bined, interacting with each other and resulting in a complex overall behavior 
requiring a high level of safety. Here, too, services can help to structure the behavior 
of the complete system and make those interactions more explicit, thus leading to 
improved safety.  

To enable a service-based engineering process, however, in both domains a precise 
definition of the notion of a service as well as the corresponding methodical steps 
(checking their compatibility, combining services into components) is required. In 
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Section 3 we will give such a definition, based on the preliminaries introduced in 
Section 2. Targeting service-based software engineering in general, we furthermore 
show the relationship between services and components in Section 4 including the 
implementation of a service (network) by a component (network). Since safety-related 
issues play an important role in embedded systems, in Section 5 we define methodical 
properties like completeness and consistency of services; issues more specific to dy-
namic networks (e.g., dynamic allocation of services) are not discussed here. For the 
practicability of the introduced concepts it is important to evaluate their applicability 
in a in a tool supported service-based development process. Therefore, in each section 
we apply the introduced definitions by translating them into a form suitable for a 
model checker for the relational µ calculus.  

The basic techniques introduced are not specific to the semantic model used here 
but can be easily transferred to others like I/O-Automata [LT89] or TLA [Lam93] as 
well as other tools like bounded model checking or CLP based approaches. The con-
tribution of the formalization therefore rather lies in the transfer of the formal tech-
niques than in the introduction of new formal concepts. Basic principles behind this 
formal model have been applied in a service-engineering environment [Sal02] and in 
a model-checking approach to detect feature interaction [Sch02].  

2   Preliminaries 

To relate our definition of service to other forms, we will first look at some defini-
tions found in other work, identifying the essential difference between services and 
components and the advantages of a service-based approach. Furthermore, we give a 
short introduction in the semantic model that is used to give a precise definition of the 
notions of service and component.  

2.1   Services vs. Components and Interfaces 

There are several different definitions of what a service is; generally more pragmati-
cally described than precisely defined. The web service definition language (WSDL) 
defines a service “as collections of network endpoints, or ports” [CCM+], basically 
corresponding to a typed interface or signature description. In the Open Systems In-
terconnection-Reference Model (OSI-RM) a service is defined as,  “a capability of a 
given layer, and the layers below it, that (a) is provided to the entities of the next 
higher layer and (b) for a given layer, is provided at the interface between the given 
layer and the next higher layer”. A very general definition is “A service is an abstract 
protocol” [BL01].  

While these definitions are quite diverse, all of the above-cited definitions have in 
common that they focus on interfaces and interactions but exclude structure. There-
fore, focusing on interface behavior instead of system structure is the fundamental 
difference between a component-based and a service-based development process.  
Components and services own interfaces in form of signatures defining the types of 
messages that flow via these interfaces (e.g., interfaces in Java or the interface of a 
hardware interfaces). Components are defined as reusable units of behavior and struc-
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ture [BS01,Müh96]. Structure is defined by assigning subcomponents including their 
behavior to a component. To reuse a component, it is structurally composed with 
other components, restricted only by structural compatibility conditions and support-
ing only a restricted form of behavioral combination (through communication). In 
contrast, a service represents a more abstract behavioral specification, its behavior 
depending on other services in the form of needed services. For reuse, services require 
a much stronger (behavioral) compatibility; however they also support a stronger 
form of (behavioral) combination. 

In a nutshell, a service is a clipping of the behavior of a component that is under-
specified concerning internal structure and – making assumptions about the environ-
ment – supports the definition of partial behavior. However, there is also a strong 
relation between services and components: both an abstract component as well as an 
abstract service can be realized by a network of communication components or ser-
vices, resp. And – most importantly - a service (or network of services) can be imple-
mented by a component (or network of components) making it an offered service of 
the component.   

2.2   Semantic Model: FOCUS 

In the following we use the model of stream-processing functions to introduce our 
definitions. However, the definitions are not specific to this model but directly carry 
over to other formalisms focusing on system interaction and supporting message-
asynchronous communication, concurrent input as well as output actions, and time-
ordered interactions1. Thus, TLA [Lam93] or Reactive Modules [AH99] are suitable 
models as well. Furthermore, when applying the concepts, we do not operate on the 
mathematical model itself. We rather use more structured and intuitive description 
techniques like state-transition or sequence diagrams as shown in Figure 2. Besides a 
more structured description, these techniques support reuse of modularized behavior, 
e.g., by encapsulating services in partial state-transition descriptions [HS99].  

Here, we use an adapted version of the general model introduced in [BS01]. Basi-
cally, the mathematical model of a component (or service) consists of its externally 
observable behavior, i.e. the messages received from the environment or sent to it. 
Messages are sent and received via channels. We use a timed model, splitting the 
observable behavior into time slots; during each time slot, an arbitrary (but finite) 
number of messages can be received or sent via each channel. The behavior of a com-
ponent or service can then be described by channel histories, assigning a sequence of 
messages to each channel and time slot. In the following, we introduce stream rela-
tions to model those forms of behaviors.  

For a given set of messages M, the set M* defines the set of finite sequences of 
messages including the empty sequence consisting of no messages. To model com-
plete interactions of exchanged messages, we use the set of infinite streams of finite 
sequences, with notation Mω. Those infinite streams of finite sequences can be identi-
fied with functions from the natural numbers Nat  to finite sequences M*, i.e. 
M ω ≡ Nat → M * . Thus, for a time slot t ∈ Nat , st  describes the finite message 

sequence assigned to time slot t of a stream s ∈ M ω . 

                                                           
1  See [KS03] for classification of models of reactive systems. 
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Fig. 1. Example of the POTS Interface and Description of an Observation 

To combine observation with channels, we introduce the notion of a channel his-
tory. Given a set C of channel identifiers, a channel history is a mapping from those 

identifiers to message streams M ω . The set of all channel histories for a given set of 

channel identifiers is described by ��
��

C , i.e., ��
��

C ≡ C → M ω . Furthermore, we define the 
restriction h ↑ C′  of a channel history h to subset C′ ⊆ C  by standard function restric-
tion. Restriction corresponds to the hiding of channels. Finally, using channel histo-
ries, we define the behavior of a component or service with a given interface by a 
relation of channel histories.  

For sets of input and output channels I ,O , a stream relation s over these input and 
output channels is defined as a (partial) function s :

��
I →℘(

��
O )  

2
.  For a stream relation 

over I ,O , we define its restriction s↑ (I′,O′)  to (I′,O′)  with I′ ⊆ I ,O′ ⊆ O  by 

s↑ (I′,O′) = {(i ↑ I′,o↑ O′) | (i,o) ∈ s}  
using restriction of channel histories.  

Note that – since we focus on the introduction of a service notion - in this short in-
troduction we did not impose additional requirements to be fulfilled by a stream func-
tion or relation to be realizable or implementable, e.g. a weak causality constraint or a 
strong realizabilty constraint as defined in [BS01]. In the following, we use the nota-
tion ��

��
I �℘(

��
O )  for total stream functions respecting those additional properties. Note 

that the properties defined in [BS01] are union stable, i.e. for functions 

��s1,s2 :
��
I �℘(

��
O ), also ��s1 ∪ s2 ∈

��
I �℘(

��
O ) . Therefore, for a partial function 

��s :
��
I →℘(

��
O )  we can define 

��

ˆ s ≡
c∈

��
I �℘(

��
O )∧c⊆s

�c as the most general causality re-

specting function implementing s .  

2.3   Application: Telecommunication Services 

Throughout the following sections, we illustrate our approach by applying it to the 
analysis of feature interaction, using automatic analysis by the symbolic model 
checker tool µcke [Bie97]. We illustrate our approach using an example from the 
telecom domain, because telecom services are more familiar to most readers than, 

                                                           
2  Instead of relational notation, we will use functional notation for this set-valued function for 

ease of reading. 
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e.g., automotive services; nevertheless they have a similar level of interactions be-
tween services, and require a similar safety level concerning completeness and consis-
tency of services without introducing additional aspects like hard real-time bounds.  
To simplify matters, we will use a more basic formal model as introduced in Section 
2.2 allowing only one (or no) message to be transported via a channel in a single time 
slot.  

The left side of Figure 2 shows the Chisel representation of a part of the basic tele-
phone service. Telecordia/BellCor introduced Chisel as a graphical notation to de-
scribe telecom features ([AG+98]). Informally, each diagram, as described in 
[GB+99], represents a behavior of the system as a decision tree, describing a possible 
course of actions. In following we show some tool-support for service-based specifi-
cations using Chisel diagrams. Note that this approach is not Chisel specific. It carries 
over to other notations describing a course of actions like, e.g., (high level) sequence 
diagrams or even state-based description of services. 

To describe a system with services enhancing the plain ordinary telephone system 
(POTS), a collection of Chisel diagrams is used. Each diagram describes an additional 
service by extending the original POTS diagram to describe features like Terminating 
Call Screening (TCSC) or Call Forward on Busy Line (CFBL): 

• Terminating Call Screening (TCSC): A subscribing user can prohibit calls from 
other users adding their terminals to a Screen List. Calls from screened terminals 
are not announced at the callee; the caller is informed by a corresponding message.  

• Call Forwarding on Busy Line (CFBL): A subscribing user can redirect calls to a 
third party if a call occurs while his terminal is busy.  

However, in general those services are not independent of each other. Thus, when 
combined to form a complete system description, they influence each other, resulting 
in feature interaction. In the worst case, the combined services may be incompatible, 
resulting in an inconsistent specification.  

3   Service Formalization 

In this section we present a formalization of the notions of service and component, 
based on the introduced FOCUS model.  Furthermore, we apply these notions to the 
POTS example using relational µ calculus. 

3.1   Interfaces, Behaviors, Components, and Services 

An interface of a system or a service consists of the access points (channels) that are 
used by the system or service to communicate with its environment. Those access 
points are directed (i.e., either input or output channels) and typed (i.e. have an asso-
ciated type describing what messages can be sent/received at this channel).  

Definition (Interface). An interface (I ,O)  consists of two disjoint sets of channels I, 
O that represents the directed input and output channels of the interface. Each channel 
(c,Mc) ∈ I ∪ O  consists of a channel identifier c  as well as a set M c ⊆ M  of mes-
sages that can flow via the channel.  

For reasons of simplicity, in the following we assume an interface has disjoint sets of 
input and output channel identifiers. Considering the example of the POTS system 
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depicted in the left half of Figure 1, the interface of the switch component contains a 
input channel with identifier AS and carrying the set of messages {OffHook, Dial A X,  
OnHook} to component A as well as an output channel with identifier SA carrying 
messages {DialTone, LineBusyTone, Ring X, …} from component A. To describe this 
interface information, the FOCUS CASE tool prototype AutoFOCUS [HSE97] uses a 
similar notation (including typing of channels) as shown in the left half of Figure 1. 
To assign behavior to interfaces, we introduce the notion of a channel history, basi-
cally corresponding to a complete observation of messages exchanged over a channel. 

Definition (Channel History, Execution, Behavior). Given a set of channel identifi-
ers as well as for each identifier c  its type Mc , a channel history is a (total) mapping 

from each identifier c  to a message stream Mc
∞. The set of all channel histories for 

a given set C  of channels is described by ��
��

C . A (system) execution e ∈ (I ∪O)  for a 
given interface (I ,O)  consists of a channel history for each channel identifier of the 
interface. A (system) behavior for a given interface (I ,O)  is a set of executions 

B ⊆ (I ∪O) . 

Since a behavior can also be interpreted as relation (or a set-valued function) between 
input and output channel histories, we will use the notation��B :

��
I →℘(

��
O ) in the fol-

lowing. Based on the definition of a behavior, we introduce the notion of a sys-
tem/component as well as a service. Since – as shown in Section 3.2 – a system can be 
broken up into components, we use the terms ‘system’ and ‘component’ synony-
mously.  

Of course, there are different forms of description of behavior. The right side of 
Figure 2 shows a (incomplete) state-transition-based description of a behavior using a 
similar notation as in AutoFOCUS [HSE97]. Using a state-based description including 
control state and data variables, e.g., the transition between the OffHook and the Ring 
state describes a step where 

• in the previous state the data variable BusyB has the value false, 
• on the input channel AS the signal DialB is received, 
• on the output channel SA the signal AudibleRingB and the output channel SB the 

signal RingA is sent, and 
• in the following state the data variable BusyB is set to true. 

To generate a behavior from such a state-transition-based description, sequences of 
such steps forming channel and variable assignments are constructed. 

A component communicates with its environment via its interface. A component 
has a completely specified behavior: for each behavior of the environment (presenting 
a history of input messages on the input channels of the component) its reaction (in 
terms of histories of messages of the output channels) is defined. More formally, this 
is defined as input completeness or totality, in the following definition.  

Definition (Component). A component c = ((I ,O)c,Bc)is defined by its interface 

(I ,O)c  as well as its behavior ��Bc :
��
I →℘(

��
O ) . The behavior is input complete, i.e. for 

each input i ∈ I  there exists (at least) one corresponding output o ∈ O:  

∀i ∈ I . ∃o ∈ O. o ∈ Bc (i)  
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Fig. 2. A Chisel Diagram and its State/Transition Representation 

Since the empty output set corresponds to undefined output behavior, input complete-
ness corresponds to the totality of the behavior function. Note that we do not require a 

component to be deterministic (i.e. ∀i ∈ I . ∃o ∈ O. o = Bc (i) ). While this is a reason-
able requirement for a component to be implemented, on a more abstract level, non-
determinism can be helpful when specifying a component.  

In contrast to a component, a service behavior needs not be totally defined. For a 
partial specification, it is possible to have a behavior of the environment where no 
behavior of the component is defined by the specification. From a formal point of 
view, we have two different possibilities to deal with those ‘undefined spots’ when 
constructing a behavior from such a partial specification: 
• “Underspecification = Non-determinism”: Using this approach, each reaction is 

considered legal for the ‘undefined spots’ since the specification does not restrict 
the behavior. As a result, the behavior of the component cannot be distinguished 
from completely non-deterministic behavior in these spots.  

•  “Underspecification = Partiality”:  Here, we explicitly state that no behavior has 
been defined. As a result, for these inputs from the environment, the empty set of 
outputs is assigned when constructing a behavior.  

Consequently, in the context of services we choose the second interpretation of under-
specification and obtain the following definition of a service:  

Definition (Service). A service s = ((I ,O)s ,Bs)  is defined by its interface (I ,O)s  as 

well as its behavior  ��Bs :
��
I →℘(

��
O ) . 

A service describes partial interaction behavior. By allowing arbitrary behavior (i.e. 
partiality), we can use services to describe only a partial behavior offered by a com-
ponent. This means there are some inputs of a service where the specification of the 
service does not make any assertion how the service behaves. According to these 
definitions a component is also a service, but not the other way round.  

Definition (Subinterface, Subinterface Behavior). A (service) interface (Is1
,Os1

)  is 

said to be a subinterface of an interface (Is2
,Os2

)  if Is1 ⊆ Is2
∧ Os1

⊆ Os2
,i.e. if the 

subinterface is a subset (of the channels) of the interface. The behavior 
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��
Bs1 :

��
I s1

→℘(
��

O s1 )  is the corresponding subinterface behavior of the service behavior 

��
Bs2

:
��
I s2

→℘(
��

O s2
)  with Bs1 = Bs2

↑ (Is1
,Os1

) . 

3.2   Application: Formalizing Services 

The first step of the tool support – besides the modeling of the interfaces and behav-
iors - consists in supplying a translation of a service description into the µ calculus. 
Additional information (system interface description, used variables) is needed for a 
translation as described in [HSE97]. The µ calculus-translator of AutoFocus/Quest 
[BL+00] can be used to translate the automaton representation of diagrams described 
by AutoFocus STDs to its µ calculus form. The µ calculus form of the state descrip-
tion is generated from SSD descriptions used by AutoFocus to describe the interface 
and the data state of a system or component. To formalize a service behavior in a 
state-based fashion as mentioned in Section 3.1, we use a relation typed according to 
the interface of the service. In case of the basic telephone service POTS for caller A 
and callee B, the interface is  

({(AS,In), (BS,In)}, {(SA,Out), (SB,Out})  

i.e., input channels with identifiers AS,BS  of type In  and output channels with identi-
fiers SA,SB  of type Out .  

Besides the channels, the state of the service is needed as additional argument of 
the relation. In case of the basic telephone service POTS (for callee B) the type of the 
control state is ��S = {OnHook State, OffHook State, Busy, Ring,�} and a data state 
consists of the Boolean variable BusyB. Thus this transition relation describing the 
behavior of the system for one time slot is typed 

RPOTS(A ,B )
⊆ S × Β × In⊥ × In⊥ × Out ⊥ × Out⊥ × Β × S  

with Β denoting Boolean values, In the input, and Out the output channel type3. In 
this simplified example we restrict sending and receiving to at most one message per 

time slot. Therefore, instead of In∗  (or Out∗ ) we only use In⊥  (or Out⊥ ) to de-
scribe the message sent/received during a transition4. Furthermore, since this feature 
considers two parties (initiating/called party), two input and two output lines are 
needed. 

To specify the behavior of a service, we use a notation described in [HSE97], as 
shown in the right half of Figure 2. To go from OffHookState to Ring  - when A is 
calling B with B being not busy – we obtain a transition with precondition (Not 
BusyB), input pattern (AS?Dial B; Dial B received on channel AS), output pattern 
(SA!AudibleRing B;SB!Ring A; AudibleRing B sent on channel SA while Ring B sent 
on channel SB), and postcondition (BusyB = True). While a diagram represents only 
one call, a system characterized by diagrams accepts an arbitrary sequence of such 
calls. Thus, the final states of the automaton are identified with initial states, allowing 

                                                           
3  Note that in the example all input channels carry the same messages as the output channels. 
4  The notation In⊥  is used to describe one-element messages as well as the empty message ⊥ , 

i.e. In⊥ = In ∪{⊥} . 
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a repetition of a service during system execution. Figure 2 shows an example of such 
a feedback loop triggered by the OnHook signal. 

A transition is formalized as the conjunction of pre- and postcondition as well as 
the channel predicates. Channel predicates are simply the equality between the chan-
nel variable and the value assigned to or read form the channel as described by the 
channel patterns. Thus, for the transition described above with a formal parameter list 
of 

State C;BusyB B; AS I;BS I;SA O;SB O;BusyB’B;State’C  

we obtain the formalization 

State = OffHook ∧ ¬BusyB ∧ AS = Dial B ∧
SA = AudibleRing B∧ SB = Ring A ∧ BusyB′ = True ∧ State′ = Busy

 

with State and State’ denoting the control state as well as BusyB and BusyB' the data 
state before and after the transition. The transition relation is constructed via the dis-
junction of the formalization of each transition. In a state-based description, addition-
ally, the initial state of the transition relation has to be described: 

InitPOTS(A ,B )
(State,BusyB) ≡ (State = OnHook ∧ BusyB = False)  

The behavior of a service describes as transition relation is constructed in the usual 
manner by generating an infinite sequence of transition steps and abstracting from the 
control and data space. Since in this section we only consider channels transporting at 
most a single value per time slot, channels and state variables can be treated alike.  
Thus the associated behavior of a the transition relation can be formalized as 

BPOTS(A ,B )
({AS,BS},{SA,SB}) ≡ ∃State,BusyB. InitPOTS(A,B )

(State0,BusyB0)∧

∀t. RPOTS(A,B )
(Statet ,BusyBt , ASt ,BSt ,SAt ,SBt ,BStatet+1,BusyBt+1)

 

4   Combination and Implementation 

In the previous section we discussed the differences between services and compo-
nents. For a service-based engineering process, however, we must relate services to 
components. Intuitively, a component providing a service reacts as the service on the 
channels and inputs taken into account by the service. Having introduced the basic 
notions of service and component, the following questions arise: 
• How are components (or services) combined to build composed components (or 

services)?  
• How are services implemented by components?  

4.1   Combining Networks 

For reasons of simplicity, in the following, we only define binary composition and 
combination of components or services, resp., which – of course – can be simply 
generalized to finite sets.  Composition of components corresponds to combining 
components by connecting their common channels; Figure 1 shows such a networks 
consisting of three receivers and a switch including their linking channels. 
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Definition (Composition). For components c1,c2 with interfaces (I1,O1)  
and (I2,O2) , resp., we define the composition c1 ⊗ c2  to be the stream relation with 
interface (I ,O) = (I1 ∪ I2 \ (O1 ∪O2),O1 ∪O2)  and behavior 

��
Bc1 ⊗c2

≡ {B ∈
��
I �℘(

��
O ) | B ↑ (I1,O1) ⊆ Bc1

∧ B ↑ (I2,O2) ⊆ Bc2
}�  

given the syntactic compatibility O1 ∩O2 = ∅. 

Note that the syntactic compatibility condition O1 ∩O2 = ∅ ensures that the combi-
nation of two components again is a component (i.e., a total function). For services, 
we can also define an analogue notion of a combination.  

Definition (Combination). For services s1,s2 with interfaces (I1,O1)  and (I2,O2) , 
resp., we define the combination s1 ⊕ s2  to be the stream relation with interface 
(I ,O) = (I1 ∪ I2 \ (O1 ∪O2),O1 ∪O2)  and service behavior 

��
Bs1 ⊕ s2

≡ {B ∈
��
I →℘(

��
O ) | B ↑ (I1,O1) ⊆ Bs1

∧ B ↑ (I2,O2) ⊆ Bs2
}� . 

Note that the composition of components is a special case of the combination of ser-
vices by restricting it to components (complete services) with disjoint output chan-
nels. Furthermore note that besides combining them in a network-like fashion, ser-
vices using the same output channels can also be combined. This form of combination 
is needed if services with a common subinterface are to be implemented by a single 
component. Table 1 shows a combination of eight services to be implemented by the 
switch component of Figure 1; here, e.g., the POTS service for subscriber B (with 
originator B and further party C) and for subscriber C (with originator C and further 
party  B) both have AS and BS as input channels and SA and SB as output channels.   

Combination is ‘strict’ in the sense that partial behavior of one service can ‘knock 
out’ defined behavior of the other service. This is reasonable from a methodical point 
of view, since we cannot rely on the undefined behavior.  

4.2   Implementing Behavior 

To implement an abstract component by a more concrete one, we use the notion of 
behavioral refinement. Basically, behavioral refinement is used to remove non-
determinism from a component specification: 

Definition (Behavioral Refinement). Given two components c1,c2 with the same 
interface, the behavior of c1 is said to refine the behavior of c2, written as Bc1

≤ Bc2
 

if c1 is more deterministic than c2. More formally, we require: 

  

��

Bc1
,Bc2

:
��
I �℘(

��
O )

Bc1
≤ Bc2

≡ ∀i ∈
��
I , o ∈

��
O . o ∈ Bc1

(i) ⇒ o ∈ Bc2
(i)

 

Analogously, c1 is said to refine c2 if the behavior of the former is a refinement of 
the latter.  
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The refinement relation orders components according to their degree of non-
determinism, with the top element being the completely nondeterministic component. 
Note that behavioral refinement requires respecting the limitations of a component 
like input closure or the causality restrictions.  

To relate components and services, we use the notion of implementation. Intui-
tively, this corresponds to behavioral refinement extended to services and requiring 
‘improved input behavior’: 

Definition (Implementation). Given two services s1,s2 with the same interface, the 
behavior of s1 is said to implement the behavior of s2 , written as 

��
Bs1 � Bs2

 if s1 is 

more deterministic and less partial than s2 . More formally, we require: 

  

��

Bs1 ,Bs2
:
��
I →℘(

��
O )

Bs1 � Bs2
≡ Bs1

≤ Bs2
∧ dom(Bs2

) ⊆ dom(Bs1 )
 

where 

��dom(BS ) ≡ {i | ∃o ∈
��
O . o ∈ BS (i)}  

Analogously, s1 is said to implement s2  if the behavior of the former is an imple-
mentation of the latter.  

Note that the implementation relation between components corresponds to a refine-
ment relation between them. For a more general version of the notion of implementa-
tion we can make use of the notion of subinterfaces. A service with interface 
(Is1

,Os1
)  and corresponding behavior 

��
Bs1 :

��
I s1

→℘(
��

O s1 )  implements a service with 

subinterface (Is2
,Os2

)  and behavior 
��
Bs2

:
��
I s2

→℘(
��

O s2
)  if 

��
Bs1 � (I s1

,Os1
) Bs2

 with 

 
��
Bs1 � (I s1

,Os1
) Bs2

≡ Bs1
≤ (Bs2

↑ (
��
I s1 ,

��
O s1

)) ∧ dom(Bs2
↑ (

��
I s1

,
��

O s1
)) ⊆ dom(Bs1

)  

Based on this notion of implementation we can define what it means for a component 
to offer or to require a service. 

Definition (Provided Service, Required Service). A service s1 (or component) is 
said to provide a service s2  if s2  is implemented by s1. A service s1 (or component) 

is said to require a service s2  if the complementary service s2  is implemented by s1. 

A complementary service s  of a service s = ((Is ,Os),Bs) is defined by 

s = ((Os ,Is),Bs )  and the behavior ��Bs :
��

O s →℘(
��
I s)  defined by  

��∀i ∈
��
I s ,o ∈

��
O s . i ∈ Bs (o) ⇐⇒ o ∈ Bs (i)  

If a component c provides and requires a set of services si ...s j , we demand that these 
services fulfill additional compatibility constraints. The simplest form of compatibil-
ity is called interface compatibility, defined by 

��∀m,n ∈ {i,�, j}.m ≠ n ⇒ (Im ∩ In = ∅∧ Om ∩On = ∅)   

This means that the input channels of the services as well as the output channels are 
pairwise disjoint. Further forms of compatibility are discussed in the following sec-
tion. Note that formally there is no difference whether a service is provided by an 
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atomic component or by a network of components, since the latter can be substituted 
by the combined component as defined in Section 4.1.  

4.3   Application: Combining Components and Services 

As described in Subsection 4.1, from the formal point of view it makes no difference 
whether we construct a network of components, combine services to create a more 
complex service, or construct a network of (needed and provided) services. Basically, 
components and service are combined alike by (interface-adjusted) conjunction of 
their behaviors. Since in this example services (or rather service schemes) are de-
scribed using parameters like caller, callee, or screen list, these must be instantiated 
prior to combination. To build a configuration of services, as shown in Table 1, ser-
vice instances are combined.  

As in the case of a single service, we define the specification of the combined ser-
vices by a transition relation for the complete system. Thus, the type of this relation is 
defined by the product of 

• all variables used by services for each instance (e.g., BusyA, BusyB and BusyC for 
the terminals A,B, and C), representing the system state prior to the transition 

• all input channel variables as defined by the system interface 
• all output channel variables as defined by the system interface 
• all variables used by services for each instance representing the state after the tran-

sition 

In a state-based approach, service are defined using input and output channels, and 
additionally using control and date states. While components can only be combined 
using communication and thus cannot share their local state space, service support a 
more general form of combination. Therefore, we additionally allow sharing the state 
space between services5. Thus, finally, the combination of service instances is simply 
formed by conjunction of the service transition relation instantiated with the necessary 
parameters (Screen List, e.g.) and applied to the corresponding elements of the system 
state and adjusted according to their interfaces. On the automaton level this is equiva-
lent to constructing the product automaton.  

                                                           
5  Note that in this example all service instances make only use of non-overlapping parts of the 

state space.  

Table 1. Service Instantiations for the TCSC/CFBL Interaction 

Subscriber Service Instance: Originator, further parties Parameters 
A TCSC B, A Screen List = {B} 
A TCSC C, A Screen List = {B} 
A CFBL B, A, C Forward = C 
A CFBL C, A, C Forward = C 
B POTS A, B - 
B POTS C, B - 
C POTS A, C,  - 
C POTS B, C - 
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5   Methodical Issues 

From a methodical point of view, the following questions remain when building a 
component specification from a collection of service specifications: 

• Which services are (reasonably) combinable?  
• What makes a service a component? 

In this section we investigate how the explicit representation of the domain of a ser-
vice helps in combining services and constructing complete component behavior. We 
introduce the notion of consistency of a collection of services (basically stating that a 
collection can be implemented by a component) as well as the notion of completeness 
of a service (stating that each action of the environment is accounted for by an reac-
tion of the service). Since completeness and consistency are essential prerequisites for 
the robustness and reliability of safety-critical systems, the validation of these proper-
ties is a decisive aspect of a service-based development process. 

5.1   Completeness 

Informally, a service is said to be complete, if its behavior is already detailed enough 
to define a component (ignoring some causality aspects).  

Definition (Completeness). A service s = ((I ,O)s ,Bs)  with interface (I ,O)s  as well 

as behavior ��Bs :
��
I →℘(

��
O )  is called complete, if ��dom(BS ) ≡

��
I . 

To form a component specification out of a (combined) service description, the ser-
vice description must be extended from a partial to a total specification. From a me-
thodical point of view, different forms of canonical completions ˆ s  are possible for a 
service s . Three prominent examples are: 

− Chaotic completion: If the service exhibits some undefined behavior at some time 
point, in the completion any behavior is possible afterwards. 

− Operational completion: If the service exhibits some undefined behavior at some 
time point, in the completion the empty output is produced at that time point.  

− Error completion: If the service exhibits some undefined behavior at some time 
point, it will produce an error message. 

Chaotic completion is associated with a loose interpretation of a specification. Basi-
cally, we use a kind of Assumption-Commitment scheme to construct components 
from services by chaotic completion (c.f. [SDW93]). The domain part of a service 
forms the assumption; the service specification forms the commitment part. However, 
since for a given service behavior ��Bs :

��
I →℘(

��
O ) , the total function defined by  

��
Bschaos

(i) ≡
Bs (i) ⇐ i ∈ dom(s)
��

O ⇐ i ∉ dom(s)

 
 
 

 

generally is not a causality-respecting function, a component for this service is de-
fined by the behavior ˆ B schaos

as defined in Section 2.2. 

Operational completion is associated with an operational interpretation; it is, e.g., 
used in [HS01]. As mentioned in the following subsection, completions can be sche-
matically constructed in the µ calculus.  
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5.2   Application: Detecting Incompleteness 

According to our definition of service, the formalization of a service makes explicit 
the part where no behavior is defined by the description of the service. This explicit 
representation of the domain of a service (or a combination of services) can be ex-
ploited when checking for completeness. When translating the definition of complete-
ness to our µ calculus based description of a service as shown in the previous subsec-
tion, a service is incomplete if it has a non-input closed relation. Checking for input-
enabledness requires the calculation of all reachable states of the transition. A service 
is not input enabled if either its initial states relation is unsatisfiable or its transition 
relation is not input-enabled. Using the above formalization, in the first case we have 

∀s,v.¬Init (s,v)  

stating that there is no defined initial (control or data) state, thus leading to the com-
pletely undefined behavior. In the second case, we have to check whether there is a 
reachable state that does not define an output or a successor (control or data) state for 
a given input. With the set of reachable states used to mark those trace positions iden-
tified by s, incompleteness of a transition relation in terms of the µ calculus for transi-
tion relation R is 

��

∃s,v.Reach(s,v)∧ ∃ i1,�im .∀o1,�on ,v′, t.
¬R(s,v,i1,�,im ,o1,�,on ,v′, t)

 

where Reach denotes the set of reachable states defined by 

��µ Reach(s ) ≡ Init(s) ∨∃i1,�im , o1,�on, t. Reach(t) ∧ R(t, i1,�im ,o1,�on , s)  

with µ denoting the least fixed point used as interpretation of this recursive definition 
and Init the set of initial states. 

Note that this definition does not exclude nondeterministic behavior if the nonde-
terministic behavior is explicitly stated by the service specification. In early phases 
nondeterminism is often introduced into service specifications by abstracting from 
internal aspects of a system: an ATM may seemingly nondeterministically provide a 
customer with cash if abstracting from the current balance of the account. Therefore, 
from a methodical point of view it is necessary to support both nondeterminism and 
underspecification but to distinguish between them. 

When applying the approach to the example of the POTS, the model checker can 
detect several incompletenesses. E.g., in the specification is not defined which reac-
tion of the system should occur if the callee picks up the phone in the same instance 
the caller dials his number. 

As mention in Section 5.1, an incomplete service specification can be transformed 
into a (complete) system behavior by adding a behavior for each possible input se-
quence to the set of executions of the service. This canonical transformation can also 
be carried out on the level of the transition relation: simply adding a transition with 
arbitrary output and successor state for each undefined input to the transition relation 
leads to a highly nondeterministic relation. To support a more operational interpreta-
tion for partial behavior, as, e.g., used in [HS01], undefined output is substituted by 
nil modeling that no signal is send; undefined successor control or data states are 
defined to remain unchanged. Again, such a canonical transformation can be easily 
defined on the level of the transition relation. 
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5.3   Consistency 

An important issue when dealing with the combination of services is the problem of 
service interaction. While each service exposes the intended behavior if used sepa-
rately, when combined unforeseen interaction patterns may show up.  

The combination of services is linked to the concept of compatibility of services: A 
compatible collection of services can be combined without exhibiting unwanted be-
havior. Therefore, a notion of compatibility of services is needed to combine services 
to form a component. In formal approaches dealing with the combination of features 
or services (e.g., [KB00] or [Sch02]), compatibility of services is defined in terms of 
consistency of the (specifications of) services. As usual, services are considered to be 
consistent if the specifications are not contradicting.  
Definition (Consistency). Two services s1,s2 with interfaces (I1,O1) , (I2,O2)  and 
dom(Bs1 ) ⊆ dom((Bs1

⊕ Bs1
)↑ (Is1

,Os1
))∧ dom(Bs2

) ⊆ dom((Bs1 ⊕ Bs1
)↑ (Is2

,Os2
))

 are called consistent. 
From a methodical point of view, consistency of services can be interpreted by the 
fact that the combined service is not more restricted than each of the services. The 
immediate methodical consequence is, that the combination of consistent services is 
an implementation of each service: 

��s1,s2 consistent ⇒ ((s1 ⊕ s2)↑ (I1,O1) � s1 ∧ (s1 ⊕ s2)↑ (I2,O2) � s2)  
In the development process this corresponds to the fact that a consistent service can 
safely be added to a system without leading to unexpected results. 

Consistency of services describes the most general intuitive form of compatibility, 
however rather sophisticated notion to be checked. For practical use, simpler forms of 
compatibility (ensuring consistency) are useful, e.g.: 
• Syntactic consistency: This form required the disjointness to the output channels of 

services. For services s1,s2 , their output interface has to be disjoint, i.e. 
Os1

∩Os2
= ∅.  While this form is very restricted, it has the advantage that com-

patibility is guaranteed by a design rule that can be check syntactically.  
• Pointwise consistency: If service behavior is described in a state-based fashion, 

consistency of services boils down to consistency of their transition relations. Sec-
tion 5.4 treats this form of consistency in more detail.  

Note that there is a simple relation between consistency of services and the complete-
ness of the combination of their chaos-completions: 

s 1 , s 2 consistent ⇐⇒ s 1 Chaos ⊕ s 2 Chaos complete  
This due to the fact that (completely) chaotic behavior is a ‘neutral element’ when 
combining services. 

5.4   Application: Detecting Inconsistency 

As introduced in Subsection 5.3, we define a service interaction problem to occur if 
the behavior defined by the combined services is inconsistent. Therefore, a service 
configuration is considered to expose a service interaction if the service instances are 
contradictory for at least one behavior of the environment. Therefore we have to 
check whether there exists an input channel history that has no behavior assigned by 
the combined services but has a behavior assigned by the services in isolation.  
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Instead of checking this property directly, we check for the completeness of the 
chaotic completion of the services of the configuration, as noted in Subsection 5.2. 
Thus, services exhibit an interaction problem if their chaotic completions have a non-
input closed relation. In the relational µ calculus, chaotic completion CR of a transi-
tion relation R can simply be constructed by 

��

CR(s,v,i1,�,im ,o1,�,on ,w, t) ≡
R(s,v,i1,�,im ,o1,�,on ,w, t)∨ ∀o1′,�on′,w′, t′.¬R(s,v,i1,�,im ,o1′,�on ′,w′, t′)

 

Using suitable blocking (starting with the input variables) and interleaving when or-
dering the argument variables, the corresponding OBDD representation of the chaotic 
completion is of the same complexity.  

If services are described using shared variables, a possible source of interaction is 
the assignment of values to variables. If two services assign different values to a 
shared variable, there is no interpretation for this assignment. Similar observations 
hold for communication actions, modeled by values assigned to channels. Note that 
feature interaction may as well occur combining two instantiations of the same feature 
(in case of the POTS specification, e.g., the service behaves differently if the initiator 
is being called prior to service start) as with the combination of two different features 
like call forwarding and call blocking. 

Since this example uses simple signals the system has a finite state space accessi-
ble to symbolic verification. Using a schematically generated variable order, OBDDs 
representing the transition relations can be kept sufficiently small to allow the genera-
tion of the set of reachable states. The check for an interaction problem is carried out 
using the relational µ calculus symbolic model checker µcke ([Bie97]). Here, all 
reachable states of the system transition starting from the initial state are checked for 
input actions missing an appropriate transition. Again, the µ calculus term can be 
generated schematically from interface and data space of the system. If such a missing 
transition is found, the counterexample component of µcke is used to generate execu-
tion traces leading to system states with conflicting feature requirements including the 
input actions that have no defined output actions. 

Combining TCSC and CFBL as described by Table we obtain a simple four-step 
execution trace leading to a feature interaction problem: If user A subscribes to both 
CFBL with Forward C and TCSC with a Screen List containing B, what happens if B 
calls A while A is busy? Should B be forwarded resulting in a ring tone played to B or 
screened resulting in a screening message played to B?  

µcke generates a counterexample given by assignments for the variables and chan-
nels of the system for each execution step starting from the initial state of the system 
and ending with the input action generating the conflict. However, µcke generates a µ 
calculus tableau representation. For a transparent use of this formalization, a different 
representation of the counterexample is needed, for example, in an MSC-like form. 
Figure 1 shows such a visualization of the counterexample for the TCSC/CFBL con-
flict. 

6   Conclusion 

In this article we introduced a formal definition of the notion service and related it to 
formal model of interacting components. Essential aspects of our service notion are its 
partiality and its separation between functionality and structure. The introduction of 
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different notions of compositionality and combination lays a first foundation for a 
methodical service-based development process. To support practical application, the 
formal model is used transparently to the engineer: for the specification of a service 
(or component) intuitive description techniques like state transition diagrams or se-
quence diagrams are used; for suitable systems, mechanized techniques like model 
checking are used to ensure consistency; finally, generic completion techniques are 
applied to transform the partial behavior of a service into a complete component be-
havior.  

6.1   Service-Based Development Process 

Besides defining services, their combination, and their implementation by a compo-
nent network, the main advantage of the formalization of services is that it enables the 
support of services as a specification technique in a development process. In the fol-
lowing we give a brief sketch out how a possible process could be structured and what 
advantages services would bring to the systematic development of software systems. 

Services allow modelling of the functionalities of the system without tailoring the 
structure of the system at the beginning of the development process.  They can be 
extracted from very abstract specifications of the system functionality, for example 
UML use cases, which do not narrow the later structure of the system either.  

After modelling the service functionality – using Sequence Diagrams or a state-
based description - the different services can be deployed to component networks by 
composing services into a component type. During this step, structural attributes are 
added to the system specification. Since a service specification can be realized by 
many component networks, different architectures are possible. 

As shown in the previous sections, certain aspects of such a deployment step (like 
checking from completeness or consistency) can be automated. Here, the precise 
notion of services and components and their composition helps to avoid problems like 
unwanted service interaction as described above. 

A service based development process makes use of the separation of functionality 
and structural architecture of a system using the following steps: 

1. Specification of use cases (i.e. UML) 
2. Encapsulation of services out of the use cases 
3. Modeling of the service architecture of the system (without defining a technical 

structure) 
4. Deployment of the services on a given set of components 
5. Choice of realization and alternatives. 

Note that until step four the system is specified without fixing its structure. The result 
of the deployment is a set of various possible realizations that offer the same func-
tionality but differ in the structure (e.g. which component provides which service). So 
structural issues can be delayed to latter steps in the development process that gives 
the development more flexibility and better applicability. 

6.2   Related Work 

As mentioned in Section 1, a precise as well as abstract definition of service has not 
been widely addressed so far; most work in this area is focused on implementational 
issues. However, several aspects of services and their methodical treatment have been 
addressed in other approaches. 
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The description of partial behavior is, e.g., addressed in the context of description 
techniques like Message Sequence Charts (MSC) [Krü00]. Here, however, rather the 
interpretation of sequence diagrams is discussed; the issue of combining partial de-
scriptions of a system is not in the main focus. 

As mentioned above, the combination of partial descriptions to form a complete 
specification is closely related to the problem of feature interaction. Since this prob-
lem has been studied carefully in the context of telecommunication, especially the 
issue of consistent specifications has been addressed there ([KB+98], [CM00]). How-
ever, besides being more complex, those approaches generally add implementation 
details or other restrictions. Furthermore, the issue of the incompleteness of combined 
service descriptions is treated here, which is generally not considered in the other 
approaches. 

6.3   Outlook 

Services allow modeling of the functionalities of the system without tailoring the 
structure of the system at the beginning of the development process.  They can be 
extracted from very abstract specifications of the system functionality, for example 
UML use cases combined with sequence diagrams, which do not narrow the later 
structure of the system either. After modeling the service functionality the different 
services can be deployed to component networks by composing services into a com-
ponent type, adding structural information to the system specification. Furthermore, 
services allow to structure complex functionalities of a system to modularize its speci-
fication. Using consistent composition, services can be used to support reuse on a 
behavioral rather than an architectural level, enabling a shift from component-based 
to service-based development. Validation of completeness and consistency makes this 
approach suitable even for safety-critical systems.  

However, several issues – specific to a service-based development process in cer-
tain application domains – were not addressed here, e.g.: 
− Dynamic networks: How is the dynamic change concerning an interface of a com-

ponent as well as the services implemented by a component described in the se-
mantic model? While [GS96] gives a general outline, more conceptual support is 
needed for an application of the approach in this domain. 

− Service properties: How are aspects concerning Quality of Service (e.g., response 
times, loss of signals) incorporated in the semantic model? While the basic model 
is capable of expressing such aspects like time constraints, special analysis tech-
niques for these properties like [KS01] can be supplied to reduce the complexity of 
the analysis. 

For other domains focusing on the issues of modular description of behavior and the 
related aspects of completeness and consistency (e.g., in the automotive domain), the 
results here supply a suitable basis for a methodical development process. Current 
research is directed on integrating this approach in a support tool for the development 
of embedded automotive software. 
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Abstract. The state diagram notation, a derivative of Harel’s State-
Charts, is an important component of the Unified Modeling Language
(UML). It is the primary means of describing object behaviour: by as-
sociating a state diagram with a particular class, a designer may specify
how objects of that class should perform sequences of actions in response
to incoming events.
This paper explains that, under the default interpretation, state dia-
grams are adequate only for designs in which: each object may admit at
most one thread of execution; different threads of execution could never
interfere; and it is impossible for an object to invoke an operation upon
itself. The paper argues that these limitations are unsatisfactory.
An alternative interpretation is then presented, in which separate dia-
grams are used to describe the object state and the transient, operation
state. The resulting separation of concerns – between control flow and
state abstraction – produces a simpler, more scalable approach to specifi-
cation, and one that is adequate for the precise description of concurrent
behaviour.

1 Introduction

The Unified Modeling Language (UML) is a de facto standard for object mod-
elling. It includes several different notations for the description of behaviour,
and one of these – the language of state diagrams – can be used to completely
characterise the behaviour of objects of a particular class. However, if the state
diagram language is used and interpreted in the obvious fashion, the resulting
models may not be adequate for the description of concurrent behaviour.

There are two potential sources of inadequacy. The first concerns the pos-
sibility of intra-object concurrency – the concurrent execution of multiple op-
erations upon a single object. A single state diagram cannot properly describe
this phenomenon. The second is a matter of complexity: even where operations
are executed in sequence, an attempt to incorporate their effects within a single
state diagram may result in a description that is difficult to complete.

In this paper, we show how the state diagram notation can be used to pro-
duce adequate models: by associating collections of diagrams with each class;
one diagram for the chosen state abstraction; and one diagram for each of the
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compound operations. We explain how the resulting descriptions may be given
a formal semantics – using the language of Communicating Sequential Processes
(CSP) – and analysed using the refinement-checking tool Failures–Divergences
Refinement (FDR).

The paper begins with an explanation of why it is important that an ob-
ject modelling language should allow for a precise description of the effects of
intra-object concurrency. This is followed by a review of the state diagram no-
tation, and an informal explanation of its semantics. In Section 4, we show how
the notation can be used to produce adequate descriptions of intra-object con-
currency; in Section 5, we show how these descriptions can be given a formal,
process semantics, and analysed using a notion of process refinement.

2 Intra-object Concurrency

Object-oriented designs are naturally concurrent: unless thread or control classes
are explicitly included, the assumption is that any combination of operations
might execute together. In the class diagram notation of UML, operations have
a concurrency attribute; an operation may be described as

– sequential : concurrent calls on the same object are forbidden;
– guarded : concurrent calls are permitted, but each execution will be blocked

until the previous call has completed;
– concurrent : concurrent execution is permitted, and the corresponding

sequences of transitions and actions may be arbitrarily interleaved.

That is, the concurrency attribute makes explicit the possibility of concurrent
execution of multiple operations upon a single object.

It is tempting to exclude this possibility, and insist instead that all opera-
tions are labelled sequential – the specification says nothing about the effect of
concurrent calls – or guarded – the specification says that calls will be sequen-
tialised. Either way, we can then ignore the problems of concurrent access to
the state of an object. However, there are two reasons why this course of action,
although appealing, is not appropriate:

1. most object-oriented designs, realised as object-oriented programs, would
not conform to this ideal;

2. the effect of calling an operation on the current object – a common practice
– needs to be considered as a special case.

The first results either from a compromise in design, or from the (sensible) use
of abstraction; the second is fundamental to object-oriented modelling.

2.1 Design and Abstraction

Intra-object concurrency can always be avoided by a wider distribution of the
state information. However, this increases the complexity of the design: in terms
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of the number of classes; in terms of the actions required to access or update the
information. In many cases, intra-object concurrency appears – to the designer,
or programmer – a reasonable compromise, and it seems unreasonable for our
modelling tools to refuse to address the consequences.

More importantly, the emerging Model-Driven Architecture (MDA) [5] ap-
proach to software development involves the definition or generation of a hier-
archy of models of the same system, at different levels of abstraction. It is likely
that a component described as a single class at one level will be realised as a
collection of classes at another: to be effective, the MDA approach requires a
language that supports intra-object concurrency.

Similarly, in the commonly-advocated practice of refactoring – restructuring
a design without introducing any new behaviour on the conceptual level [12] –
two operations that are members of the same class will often be distributed into
two separate classes: to afford a proper comparison between behaviours, the lan-
guage must admit the possibility of these operations being executed concurrently
– in both designs.

2.2 Calling the Current Object

It is common for the execution of an operation to require one or more calls upon
the current object: these may involve subsidiary functions, alternative versions of
the operation expecting different argument vectors, or even a recursive invocation
of the operation itself. At the implementation level, this does not require intra-
object concurrency: the current operation is suspended until the called operation
completes. At the modelling level, however, we might hope that the suspension
mechanism has been abstracted away.

If our modelling notation is unable to describe the effects of intra-object con-
currency, then it will be unable also to describe the effect of calling an operation
on the current object, unless this is made a special case. The ‘special case’ ap-
proach is particularly undesirable, as the target of an operation call, an object
reference, may be updated during the lifetime of an object.

2.3 Effects and Precision

It is important to note that we are concerned here with the description of effects.
A model written in UML may indicate that intra-object concurrency is possible,
by setting the concurrency attribute to concurrent for one or more of the op-
erations of a class. Furthermore, each operation may be completely specified in
terms of a sequence of actions: in a target programming language, or in a more
abstract notation.

However, the UML modelling language also includes dynamic modelling no-
tations, and with good reason. To communicate and analyse the essential prop-
erties of a design, we would wish to describe the intended effects of operations
executing together. The state diagram notation allows us to do this in terms of
an abstraction of the state space; executing operations may produce events that
trigger transitions from one abstract state to another.
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It is important also to note that we are concerned with precise descriptions:
sufficient to support automated analysis of behavioural properties. At present,
most applications of UML are imprecise, or even unfaithful: diagrams may in-
clude features or annotations that, if taken literally, would contradict the design
intention. The resulting models serve a valuable purpose in raising issues, ex-
plaining architectures, and communicating intentions.

However, where diagrams are intended as precise, faithful representations of
behaviour, we may apply model-checking and theorem-proving tools to establish
properties, or check the consistency, of object models; the benefits of formal engi-
neering techniques are then accessible within the context of the Unified Modeling
Language.

3 State Diagrams

A state diagram describes a pattern of behaviour in terms of transitions within
and between abstract states. Each transition may be labelled with a trigger
event, a guard, and a sequence of actions: each of these components is optional.
There are several different kinds of trigger event, but the most important are:
signal events, representing abstract communication between objects; and call
events, representing (the beginning of) operation execution.

In either case, if an event occurs, and there is a suitably-labelled transition
starting from the current state, then the guard on that transition is evaluated.
Should the guard prove to be true, based on the values of the object attributes,
and any attributes associated with the event itself, then the sequence of actions
will be performed. Should the guard prove to be false, then the event will be
discarded, and the object will remain in the current (source) state.

Some of the transitions in a diagram may have no trigger events: these are
called completion transitions. An enabled completion transition – one whose
guard is true – will be fired as soon as the sequence of actions leading to its
source state is complete. If a state has more than one completion transition
leading from it, then the resulting behaviour may be nondeterministic.

A key feature of the state diagram language, inherited from Harel’s State-
Charts notation [8], is the run-to-completion property : following the occurrence
of an event, no further events will be accepted until every action triggered by
that event, including those associated with any subsequently-enabled completion
transitions, has been performed.

3.1 Factorisation Mechanisms

The information contained within a state diagram may be factorised using a
variety of mechanisms: entry and exit actions, deferred event queues, composite
and history states. For example, if all the transitions leading from a particular
state begin with the same action, we may make this action an exit action for the
state, rather than prepending it to the action sequence of each transition.

One of these mechanisms deserves particular attention. A ‘concurrent com-
posite state’ is a state divided into a number of regions by a broken line – see
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Fig. 1. State diagram notation.

State U in Figure 1. When an object enters a concurrent composite state, more
than one transition may be triggered, and the resulting sequences of actions may
be arbitrarily interleaved.

A deferred event is held in a local queue – one that cannot be accessed outside
the current region of the state diagram – and will occur immediately after the
next transition. Each region has its own queue for deferred events, and this queue
is checked, and filtered, at each transition.

Figure 5 illustrates some of the features of the state diagram notation. In this
example, if an object is in State S when event3 occurs, and guard is true, then
the sequence of actions actionB ; action F will be performed, and the object will
enter State U : a composite state, describing a pattern of behaviour that may be
interrupted at any point by an occurrence of event5.

The use of entry and exit actions is convenient and helpful; use of the other
mechanisms, however, can easily result in diagrams whose semantics may be
quite different from that intended by the author, or those understood by the
readers. For this reason, we will focus our attention upon the core features of
the language: simple states and labelled transitions.

3.2 Actions and Events

A call action represents the invocation of an operation. This invocation may be
synchronous or asynchronous. In the first case, the action will not complete until
the operation has finished executing: there is an implicit return mechanism. In
the second, the action completes immediately; there is no return. The call action
t .op(args) produces a corresponding call event op(args), for operation op with
arguments args, at the target object t .
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A send action represents the sending of a UML signal. This is a more ab-
stract means of communication, used to indicate that the behaviour of one part
of a system can affect another. The send action send t .sig(args) produces a cor-
responding send event sig(args) at the target object t .

The events associated with objects of a particular class are introduced in the
class diagram for the model: the third component of a class box declares the
operations, and thus the call events, that objects of that class may process; the
fourth, optional compartment lists the set of signals that objects of that class
should be capable of receiving.

The transport mechanism that connects the performance of an action to the
reception of the corresponding event is left unspecified in UML: it is a seman-
tic variation point. However, the description of the run-to-completion property
makes it clear that received events can be stored for processing when the current
action sequence has been completed.

Other forms of action, whose effects are local to the current object, may be
described in a particular action language, chosen to suit the application domain.
In this paper, we will assume that the action language includes a notion of
assignment, and we will write a := E to indicate that the value of expression E
is assigned to the attribute a.

3.3 Concurrency

The run-to-completion property states that the state machine described by a
state diagram must complete all of the actions associated with one event before
it can process another. This means that a single state diagram cannot be used
to describe the effects of concurrent execution: each call event will be held until
the actions triggered by the previous call are complete.

Similarly, a single state diagram cannot be used to describe the effects of
self-invocation of an synchronous operation. A synchronous call action cannot
complete until the call event has been processed by the target, but – if the target
is the current object – then that call event cannot be processed until the call
action has been completed; the stated semantics suggests a deadly embrace.

Even if the operation is asynchronous, a single state diagram would provide
an unsatisfactory description of the effects: the actions resulting from the call
can begin only after the current sequence of actions has been completed, when
we might expect to find that this sequence could be interleaved with the actions
resulting from the call.

The concurrent composite state mechanism cannot be used to solve this prob-
lem, as – with the current semantics – the corresponding state machine cannot
process another event until activity in every concurrent region has ceased. An
alternative semantics, in which the run-to-completion property were relaxed,
would allow a fixed degree of intra-object concurrency. In the following section,
we present a more general solution.
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4 Operation Diagrams

An adequate description of the effects of concurrent execution can be obtained
if we describe the behaviour of objects of a particular class using a collection of
state diagrams. One of these diagrams, the object state diagram, will be used to
describe the chosen abstraction of the state space. The others, operation state
diagrams, will be used to describe the effects of operations.

This affords a clear separation of concerns: the object state diagram presents
only the state abstraction; the operation state diagrams explain the possible
flows of execution. Accordingly, the transitions in the object diagram will be
labelled only with send (or signal) events. Indeed, call events will appear only
as labels for the corresponding operation diagrams.

context

0..1
ModelElement

BehavioralFeatureClassifier

OperationClass

StateMachine
behavior

Fig. 2. Metamodel components.

The operation diagrams will have neither call nor send events: every transi-
tion will be a (possibly-guarded) completion transition. The same information
could be conveyed by an activity diagram, or even inferred from a sequence dia-
gram; the advantage of using state diagrams is that we have no need to introduce
a second, graphical notation.

Call and send actions can appear in either kind of diagram, as can other
kinds of action, such as assignment. The arguments supplied to these actions,
and any guards that appear, can refer to any of the object attributes, as well
as to the actual parameters of any call and send events processed within the
current diagram.

This approach to the description of behaviour is permitted by the UML
metamodel [7]. The relevant part of the metamodel is shown in Figure 2: a state
machine has an optional context, a model element. The following constraint,
included with the metamodel, insists that if this context is not null, then the
model element must be either a classifier or a behavioural feature:

self.context.notEmpty implies
(self.context.oclIsKindOf(BehavioralFeature) or
self.context.oclIsKindOf(Classifier))
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In this paper, we restrict our attention to classifiers that are instances of Class,
and behavioural features that represent Operations, but the same approach
could be adopted if the classifier were an actor or a use case, and if the be-
havioural feature were a (more concrete) method.

4.1 A Simple Example

As a simple example, consider how we might describe the behaviour of objects
of the class Counter, shown in the class diagram of Figure 3. Objects of this
class have two integer-valued attributes, a1 and a2, and three operations, m1(),
m2(b:int), and getTotal().

Counter

Listener

a1:int
a2:int

m1():void
m2(b:int):void
getTotal():int updated():void

s1
s2
s3

listener

1 1

counter

Fig. 3. A class diagram.

A Counter object can be in one of two abstract states: count, in which case
the value of a1 is non-zero, and may be repeatedly incremented; and hold, in
which case the value of a1 is unimportant, and a2 is used to hold the running
total (of increments). Transitions between these two states may be triggered by
signals s1, s2, and s3.

The effect of m1() is to increment the value of a1; if this is the first time that
m1() has been executed since the last ‘successful’ execution of m2(b:int), then
the value of a1 is set to zero before the increment takes place. It is this issue,
whether the last execution of m2 was ‘successful’ or not, that is reflected in our
abstraction of the state space.

The effect of m2(b:int) depends upon the result of comparing the value of
parameter b with the current value of a1. If a1 is greater than b, then the value
of a2 is increased by that of a1, and a listening object is informed that an update
has taken place; if not, then the operation simply terminates.

The third operation, getTotal(), can be used by a listening object to obtain
the current value of a2. Unlike the other two operations, this operation has a
return value.
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4.2 Using a Single State Diagram

If the concurrency attribute of each operation is set to sequential or guarded,
and we can be sure that an object of class Counter will never call an operation
upon itself, then we may obtain an adequate description of object behaviour
using a single state diagram.

m1()/a1:=a1+1

m2(b)[a1>b]/
a2:=a2+a1;a1:=0;
listener.updated()

countm1()/a1:=1

hold

Fig. 4. A single state diagram.

The state diagram of Figure 4 has two named states and three labelled tran-
sitions. Initially, the object is in state hold. In this state, if the call event m1()
is processed, then a1 is set to 1, and the object moves to state count. If the call
event m1() is processed while the object is in the state count, then the value of
a1 will be incremented, but no change of abstract state occurs.

In state diagrams, as in StateCharts, if an event is processed in a state
where there is no matching transition, then that event is simply discarded. Ac-
cordingly, if the call event m2(b) is processed when the abstract state of the
object is hold, no actions will be performed.

If m2(b) is processed in count, and a1 is greater than b, then a new total
is established in a2, the listener is informed, and the object returns to state
hold. If, however, the value of a1 is less than or equal to b, then no actions are
performed, and the object remains in state count.

For simplicity, we have omitted two self-transitions: the call event getTotal()
may be processed in either state, resulting in a single return action with the value
of a2 as an argument. As no change of state is involved, these transitions could
be declared as internal, and included within the two named state boxes.

4.3 A Combination of Diagrams

The state diagram of Figure 4 cannot be used to describe the effect of concur-
rent execution. The sequence of actions corresponding to a call event must be
completed before the next call event can be processed. To consider the effects
of concurrent execution of operations upon this object, we must describe each
operation as a separate diagram.
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These operation state diagrams may use signals s1, s2, and s3 to capture the
relationship between operation execution and the chosen state abstraction. The
assignment actions, and the call action listener.updated(), may be included
either in the operation diagrams, or in object state diagram.

Figure 5 shows an object state diagram for the Counter class, in which a
transition from hold to count is triggered by s1, and a transition from count
to hold is triggered by s2. These transitions have corresponding actions, assign-
ments to the object attributes. In addition, when the object is in state count,
an occurrence of the event s3 will increment the value of a1.

s3/a1:=a1+1

s2/a2:=a2+a1;a1:=0

s1/a1:=0

hold

count

hold

Fig. 5. An object state diagram.

Figure 6 presents a matching collection of operation state diagrams. The
first of these describes the effects of an execution of operation m1(). The object
state is updated in a way that corresponds to signal s1, and then in a way that
corresponds to signal s3. In each case, the target of the send action is self,
indicating the current object.

The second diagram explains the execution of operation m2(b:int). The
value of parameter b is compared with the current value of attribute a1 –
each of these state diagrams may refer to the values of attributes within the
current object. If a1 is greater than b, signal s2 is sent, and a call action
listener.updated() is performed to inform the listener of the expected change
in the value of a2. Otherwise, the execution terminates immediately.

The informal interpretation of state diagrams [7] is given in terms of state
machines: each diagram corresponds to sequential machine that accepts events
and performs actions. To address the issues of intra-object concurrency, it is
necessary to extend this interpretation: an operation state diagram corresponds
to a state machine factory ; each invocation of the operation may be given its
own state machine. This interpretation is formalised in Section 5.

The third diagram explains the execution of getTotal(); this operation does
nothing except return the current value of a2. Such a simple operation could
reasonably be regarded as atomic: we could have decided instead to include the
call event getTotal() in the object state diagram, and dispense with the state
diagram for the operation.
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m1():void

getTotal():int

m2(b:int):void

send self.s1

return(a2)

/

/

[a1>b]/send

send self.s3/

listener.updated()/

self.s2

[else]

Fig. 6. Operation state diagrams.

An analysis of this description reveals a behaviour that is not possible for
the single state diagram of Figure 4: in terms of actions and events,

< m1(), send self.s1, s1, a1:=0, send self.s3, s3, a1:=1,
m1(), send self.s1,
m2(0), send self.s2, s2, a2:=a2+a1; listener.updated(),
s1, send self.s3, s3 >

Here, the second execution of m1() is interleaved with an execution of m2(0). The
expected second increment of a1 never occurs; the final value of a2, accessible
through the getTotal() operation, is not 2, but 1.

If our intention was that any call of getTotal() immediately following a call
of m2(0) should return the total number of (m1()) increments performed thus
far, then this behaviour is unsatisfactory. It becomes clear that executions of
m1() and m2 should be mutually exclusive.

The single state diagram of Figure 5 would not admit such an analysis; it
cannot describe the effects of executing m1 and m2 concurrently. A model using
a single state diagram is adequate only for an analysis of sequential or guarded
operations.
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4.4 A Complete Separation

In Figures 5 and 6, actions were distributed between the state and operation
diagrams, and the relationship between the values of the object attributes and
the abstract state was made explicit. If we wish to focus instead upon the abstract
representation – the partitioning into count and hold – then the object state
diagram of Figure 7 may be more convenient.

s3

s2

s1

hold

count

hold

Fig. 7. Object state diagram without assignments.

Here, the transitions are labelled only with trigger events; the actions have
been included instead in the operation state diagrams of Figure 8. In this version
of the model, the diagram for operation m1() makes a reference to the abstract
state: the actions of sending s1, and setting a1 to zero, should be performed
only if the object is in a state corresponding to hold.

The send actions of Figure 6 have been composed with the assignments that
followed the corresponding send events in Figure 5. The resulting operation
state diagrams explain the effects of operation calls upon attribute values; the
object state diagram explains the effect of operation calls upon the abstract
representation of the state.

The reader might be wondering whether or not these two descriptions admit
the same range of behaviours. A careful analysis confirms the suspicion that,
indeed, they do not: for example, the behaviour

< m1(), send self.s1(),
m1(), send self.s1(), s1, s1,
s1:=0, send self.s3(), a1:=a1+1,
s1:=0, send self.s3(), a1:=a1+1 >

is admitted by the behavioural description of Figures 7 and 8, but not by that
of Figures 5 and 6. When the second m1() call event occurs, the object state is
still [hold]: the s1 signal from the first m1() call has yet to be processed. As a
result, the second call proceeds to set a1 to zero, and does so after the first call
has performed the increment.

That is, when the assignment actions are placed on the operation state dia-
grams, it is possible for two complete executions of m1() to leave the object in
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m1():void

getTotal():int

m2(b:int):void

send self.s1;

return(a2)

/

/

[a1>b]/send

a2:=a2+a1;a1:=0;
listener.updated()

/

self.s2

[else]

[else]

send self.s3;/
a1:=a1+1

[hold]

a1:=0

Fig. 8. Operation state diagrams with assignments.

a state in which attribute a1 has the value 1. When the assignment actions are
placed on the object state diagram, two complete executions of m1() will always
result in a state in which a1 has the value 2, assuming that operation m2 is not
executing at the same time.

By placing the assignment actions within the object state diagram, we im-
pose a degree of atomicity upon access to the shared state. For example, in the
diagram of Figure 5, nothing can happen between the processing of signal s1
and the assignment a1:=0; more importantly, in this case, no other event will
be accepted until the object is in state Count.

By placing all assignments with the operation state diagrams, we obtain a
model that admits the maximum degree of concurrency: a model that will reveal
every potential disadvantage of allowing more than one operation to execute
concurrently. In deciding where to place assignment actions, we can express
different assumptions about access to the shared, attribute state.
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5 Process Semantics

The example of the previous section, however artificial and simplistic it might
seem, should be enough to convince the reader that the effects of concurrent
execution upon shared state can be unpredictable. For this reason, we might
– as suggested in Section 2 – feel tempted to forbid it, and insist that every
operation is either sequential or guarded.

However, as Section 2 goes on to explain, this form of concurrent execution
is an essential ingredient of the Model-Driven Architecture approach to soft-
ware development, in which a single abstract class might later be replaced by a
collection of smaller, more concrete classes. It is also essential to the theory of
refactoring, and to a homogeneous treatment of self-invocation.

It is important, therefore, that our ability to describe concurrent execution
is properly complemented by an ability to analyse the consequences. Manual
analysis is costly and error-prone; if we wish to conduct comprehensive analy-
ses in an industrial context, we require highly-automated tool support. In this
section, we explain how such support might be obtained using machine-readable
CSP [11] and the refinement-checking tool FDR [6].

5.1 The Language of CSP

In the language of CSP, processes are defined in terms of the occurrence and
availability of abstract events: atomic, synchronous, communications. In the
machine-readable dialect, CSP events are introduced as elements of channels:
for example, the declaration

channel c : A . B

introduces a set of events, each of the form c.a.b, where a is drawn from the
set A and b is drawn from the set B. We may use the expression {| c |} to refer
to all of the events whose names start with the prefix c.

The process a -> P is ready to perform the event a; if this event is performed,
the future behaviour of this process is described by term P. The binary operator
[] represents an external choice of processes, and can be used to describe a menu
of possible interactions.

The input choice c?x -> P(x) represents an external choice in which every
alternative begins with an event from the channel set {| c |}. The correspond-
ing output c!v -> P is no choice at all: any variables appearing in the value
expression v must already have been declared.

Processes may be composed using a binary parallel operator, which specifies
the set of events to be shared between its two arguments: the set of events that
can occur only if performed simultaneously by both processes. The expression
P[|A|]Q denotes the parallel combination of two processes, P and Q, sharing
every event in the set A. If A is empty, we may write P|||Q instead.

The hiding operator is used to conceal sets of events: P \ A is a process that
behaves exactly as P, except that events from the set A are no longer visible,
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and do not require the cooperation of other processes. The let...within...
construct allows for the scoping of process names; definitions made between let
and within apply only for the term immediately following within.

5.2 Actions and Events

Each action or event in UML can be modelled as a separate abstract event in
CSP. As we wish to analyse the behaviour of concurrent operations over a shared
state, we must also introduce CSP events to represent the points at which these
operations read the values of shared attributes.

Each call action, call event, send action, or send event will be represented
as a CSP event of the form type_source_target_member.arguments, where
type is one of callAction, callEvent, sendAction, and sendEvent, source
and target are object references, member is the name of the operation or signal,
and arguments represents the values passed.

Assignment actions are represented by CSP events of the form set_a, where a
is the name of the attribute concerned. The implicit action of reading the current
value of the same attribute is represented a CSP event of the form get_a. In our
example, the process semantics involves the following channels.

The use of a separate channel for each UML action or event facilitates sub-
sequent analysis – the number of CSP events shared by each process is kept to a
minimum. Other measures adopted include the replacement of the infinite type
int with a finite set, and the imposition of bounds upon the number of simul-
taneous executions of each operation. In our example, Integer = {0..maxint}
and maxint = 4.

These other measures produce processes that are finite approximations to the
actual semantics, and additional reasoning may be required before the results
of analysis can be translated into properties of the original, object model. To
make this clear, an Error state is introduced, to indicate that the scope of the
current, finite approximation has been exceeded.

CSP events are used also to represent signal communication within an object.
In our example, we will use this representation to illustrate another means of
facilitating automated analysis: the abstraction of UML action–event pairs into
a single, synchronous CSP events: s1, s2, and s3. The resulting semantics is
adequate only for the analysis of models in which the occurrence of an action or
event between the sending of an internal signal and its subsequent processing is
either impossible, or immaterial.

5.3 Processes

We use a simple memory process, shown in Figure 9, to represent the attribute
state of an object: the last value received on a set channel will be available on
get. In our example, the integer attributes have been initialised to zero.

The process semantics of our first model, the one whose behaviour is defined
by the single state diagram of Figure 4, is given in Figure 10. The correspondence
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Attributes =
let
Attribute_a1 =
let Store(value) =

get_a1!value -> Store(value)
[]
set_a1?new -> Store(new)

within Store(0)
Attribute_a2 =
let Store(value) =

get_a2!value -> Store(value)
[]
set_a2?new -> Store(new)

within Store(0)
within
Attribute_a1
|||
Attribute_a2

Fig. 9. A memory process.

between this process and the state diagram is quite clear: the state names have
become the names of separate equations in the definition of ObjectState.

Each call event is followed by a sequence of other events; all of these must be
completed before the process returns to either the Hold or Count states – only
then can another call event be processed. If the process is in state Hold, and the
call event for m2 is performed, then the resulting sequence is empty: the process
returns immediately to Hold: this reflects the semantics of state diagrams; if
there is no suitable transition, events are simply discarded.

The process semantics of our second model, that of Figures 5 and 6, is given
in Figure 11. Again, the object state diagram corresponds to a process with
two defining equations, Hold and Count. This time, however there are no action
or signal events within the process definition; these appear instead within the
processes describing the operations.

Each operation process begins with a call event, and terminates successfully
as soon as its work is done. (Successful termination is denoted by the special pro-
cess SKIP; the future behaviour is then determined by whatever follows the next
semicolon). An idealised process semantics would employ an infinite interleaving
of these processes: for example,

||| i : 0 . . ∞ • Operation m1

However, such a process cannot be written in machine-readable CSP, and would
be poorly received by a model-checking tool.
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CounterObject_sequential =
let
ObjectState =
let Hold = callEvent_listener_counter_m1 -> set_a1!1 -> Count

[]
callEvent_listener_counter_m2?b -> Hold
[]
callEvent_listener_counter_getTotal ->
get_a2?a2 ->
returnAction_counter_listener_getTotal!a2 -> Hold

Count = callEvent_listener_counter_m1 ->
get_a1?a1 -> (if a1+1 > maxint then Error

else set_a1!a1+1 -> Count)
[]
callEvent_listener_counter_m2?b ->
get_a1?a1 ->
if (a1 > b) then
get_a2?a2 ->
( if (a1+a2 > maxint) then Error
else set_a2!(a1+a2) -> set_a1!0 ->

callAction_counter_listener_updated ->
Hold )

else
Count

[]
callEvent_listener_counter_getTotal ->
get_a2?a2 ->
returnAction_counter_listener_getTotal!a2 -> Count

within Hold
within
(ObjectState [| {| set_a1, set_a2, get_a1, get_a2 |} |] Attributes)
\ {| set_a1, set_a2, get_a1, get_a2 |}

Fig. 10. Sequential counter process.

Instead, we must place a finite bound upon the number of simultaneous
executions. For example, we might define

Operations =
let
Operations_m1 = Operation_m1 ; Operations_m1
...

within
Operations_m1 ||| Operations_m2 ||| Operations_getTotal

to produce a semantics in which no more than one copy of each operation may
be executing at any one time.
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CounterObject_concurrent =
let
ObjectState =
let Hold = s1 -> set_a1!0 -> Count

[]
s2 -> Hold
[]
s3 -> Hold
[]
stable -> Hold

Count = s1 -> Count
[]
s2 -> get_a1?a1 -> get_a2?a2 ->

if (a1+a2 > maxint) then Error
else set_a2!(a1+a2) -> set_a1!0 -> Hold

[]
s3 -> get_a1?a1 -> if a1+1 > maxint then Error

else set_a1!a1+1 -> Count
[]
stable -> Count

within Hold

Operation_m1 =
callEvent_listener_counter_m1 -> s1 -> s3 -> SKIP

Operation_m2 =
callEvent_listener_counter_m2?b -> get_a1?a1 ->

if (a1 > b) then
s2 -> callAction_counter_listener_updated -> SKIP

else SKIP

Operation_getTotal =
callEvent_listener_counter_getTotal -> get_a2?a2 ->
returnAction_counter_listener_getTotal!a2 -> SKIP

Operations =
( Operation_m1 [] Operation_m2 [] Operation_getTotal )
; stable -> Operations

within
( ( ( ObjectState [| {| s1, s2, s3, stable |} |] Operations ) \

{| s1, s2, s3, stable |} )
[| {| set_a1, set_a2, get_a1, get_a2 |} |] Attributes )

\ {| set_a1, set_a2, get_a1, get_a2 |}

Fig. 11. Concurrent counter process.
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The definition of Operations used in Figure 11 is quite restrictive. Oper-
ations may be called in any order, but each operation must terminate before
the next can begin execution. Moreover, all internal activity within the current
object must have ceased: a condition that is represented here by the availability
of the CSP event stable: observe that this event is blocked by the ObjectState
process during transitions; it is available only in states Hold and Count.

The point of this restriction is quite simple: if we compare the two pro-
cesses using failures–divergences refinement, the FDR tool confirms that they
are equivalent: that is,

CounterObject_sequential [FD= CounterObject_concurrent
CounterObject_concurrent [FD= CounterObject_sequential

By choosing a suitable definition for the Operations process, we may explore
the consequences of different levels of concurrent execution, and identify any
assumptions that may need to be made about the order in which the different
operations will be called.

6 Discussion

We have presented, in some detail, a novel approach to the specification of object
behaviour in UML. We have been able to develop and refine the observations
made in an earlier paper [1], clarifying the roles and composition of each kind of
diagram, introducing a suitable characterisation of attribute state, and present-
ing a more convincing, more representative example.

We have also been able to identify and explain the need for the approach,
and locate it within the UML metamodel. We have explored the consequences
of placing assignment actions in the object state diagram, and shown how the
abstract state representation of that diagram may be linked to the execution
patterns of the operations.

Finally, we have used the worked example to show how a precise UML model,
described as a combination of class and state diagrams, may be translated into
the process language of CSP. A tool has been written to automate this trans-
lation, taking UML models in XMI format to machine-readable CSP: however,
more sophisticated mechanisms are required – in particular, for namespaces and
dynamic binding – before this tool can be applied to models any more complex
than the example presented here.

As far as we are aware, no other author has proposed or investigated the
use of operation state diagrams. Most of the work on behavioural semantics of
UML models is inspired by that of Harel and Gery, in their paper Executable
Object Modeling with Statecharts [8]. As a result, none of the semantics offers an
adequate treatment of concurrent execution of more than one operation upon
the same object.

The issue of concurrent execution in UML is discussed by Ober and Stan [10],
who consider the notion of active and passive objects, and conclude that the se-
mantics suggested by the UML documentation [7] is inadequate with regard to
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concurrency. They recommend that that passive objects should not be associ-
ated with state machines, and that an explicit treatment of threading should be
included in the model; this is necessarily more concrete, and more restrictive,
than the approach adopted here

[2], [3], and [9] show how machine-readable CSP may be used to check consis-
tency in UML–RT [4]: although they consider neither operation invocation nor
concurrent execution, the approach taken – mapping UML models (or fragments)
into CSP, and then applying failures–divergences refinement – is the same as the
one employed here; again, a tool has been written to automate the translation
from UML to CSP.
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3. G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen. A methodology for
specifying and analyzing consistency of object-oriented behavioral models. In 8th
European Software Engineering Conference, and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 2001.

4. C. Fischer, E.-R. Olderog, and H. Wehrheim. A CSP view on UML-RT structure
diagrams. In H. Hussmann, editor, Fundamental Approaches to Software Engi-
neering, 4th International Conference, FASE 2001, volume 2029 of LNCS, pages
91–108. Springer, 2001.

5. D. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley, 2003.

6. FSEL – Formal Systems (Europe) Ltd. The FDR2 refinement checker.
http://www.fsel.com.

7. Object Management Group. UML 2.0 Superstructure Draft Adopted Specification.
http://www.omg.org/cgi-bin/doc?ptc/2003-07-06, 2003.

8. D. Harel and E. Gery. Executable object modeling with Statecharts. IEEE Com-
puter, 30(7):31–42, 1997.
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Abstract. This paper proposes a compositional operational semantics
for a nontrivial subset of Statecharts and defines an equivalence rela-
tion between Statecharts using bisimulation on configurations. An in-
put/response trace model is also investigated at the level of observable
behaviour.

1 Introduction

Statecharts is a visual synchronous specification language introduced by David
Harel originally in the early 1980s [4], which is an extension of the finite state
machine by hierarchy, concurrency and broadcasting communication. Quoting
the words of D.Harel [4],

Statecharts = state diagram + depth +
orthogonality + broadcast communication

Statecharts was invented originally for the development of the avionics system
for an Israeli aircraft, and has seen widespread use since then (e.g. [11]). It is
desirable to be a tool for specifying real-time, reactive and embedded systems.
Some development environments, such as STATEMATE [4,5], are developed to
support the specification of applications with Statecharts. The formalism acts
now also as one of the major components of UML [2].

Statecharts can be thought as an enrichment of finite-state transition sys-
tems. Here the states can have hierarchical structures and may consist of several
sub-states, in fact, sub-Statecharts. These sub-Statecharts can themselves have
embedded sub-Statecharts too. Statecharts may be composed sequentially or in
parallel to form Or-Statecharts or And-Statecharts respectively.

The execution of Statecharts is defined by the active states and transitions.
In a Statechart, there are usually several simultaneously active states (sub-
Statecharts) at a time instant, they communicate with each other via broad-
casting events in a global environment. The transitions defined determine the
� Supported by National Natural Science Foundation of China (No. 60173003)
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n1 n2

sc

t1 :

p2

p1

t2 :

p4

p3

d/ea,-b/c

Fig. 1. A simple Statechart.

transference of active states. Each of the transitions is labeled by a pair of sets of
events, where the first set of events is called the trigger of the transition which
may include both positive and negative events, and the second is referred to as
the action which can in turn act as triggers to fire other transitions. A transition
connects a pair of states, with the first one as its source state and the second
one as its target. Intuitively, if the source state of a transition is active, and all
positive events from its trigger are present while all negative ones are absent, the
transition is enabled and may be performed. When a transition is performed,
the events in its action will be generated, and the target state of the transition
becomes active afterward.

Fig. 1 shows a simple Statechart. It consists of only one And-Statechart
named sc. The Statechart sc is composed of two parallel sub-Statecharts named
n1 and n2. Both n1 and n2 are Or-Statecharts. Or-Statechart n1 is refined to
basic Statecharts p1 and p2, which are connected by transition t1 with trigger
{a,−b} (Here we use −b to indicate that event b is absent.) and action c. The
figure shows that, in the current situation, the active state of n1 is p1. When
event a occurs but b does not, t1 can be performed, thus the event c is generated
as the action of t1, and the active state will be transferred to p2. On the other
side, Or-Statechart n2 is composed of two basic Statecharts p3 and p4, which are
connected by transition t2. The active state of n2 is p4.

In literatures, there exist a number of different semantics for variants of
Statecharts. M. von der Beeck discussed about twenty variants of Statecharts
in [1], each of these variants can be regarded as a subset of the originally pro-
posed language. The version discussed in [5] for STATEMATE has a powerful
semantics. But the semantics defined in that paper is neither formal, nor com-
positional. The work presented in [12] gives a compositional semantics of State-
charts, whereas their version does not contain data states. In [16], M.Schettini,
A.Peron and S.Tini had a discussion about the equivalence of Statecharts. They
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presented a compositional semantics of Statecharts based on Labelled Transition
Systems(LTSs). They considered a hierarchy of LTSs equivalences and gave the
congruences to Statecharts operators.

In this paper, we present a semantics for Statecharts which is quite similar to
that proposed by Qin and Chin [15]. Both semantics have such features as being
compositional, adopting an asynchronous time model, reflecting the causality of
events, obeying local consistency and covering the data states. The only differ-
ence between ours and Qin and Chin’s is that in our semantics an active event
can be used many times within a macro-step. Based on this semantics, we build
a bisimulation between configurations of Statecharts. Borrowing the idea of [9]
and [7], we give a definition of the equivalence of Statecharts different from that
in [16]. It looks as if our definition were weaker. But actually, from this new
definition, we can get the same results as part of that in [16] in a much simpler
way. We will have a detailed discussion about this in Section 6. We also have a
brief discussion about the traces of Statecharts configurations on the macro-step
level.

The next section gives a brief description of term-based syntax of Statecharts.
In Section 3, we present our new semantics by a set of operational transition
rules. In Section 4, we define the equivalence of Statecharts and prove that
the definition is appropriate for getting the needed properties of equivalence.
Discussed in Section 5 are the definition and properties of traces of Statecharts
configurations. The related works are discussed in Section 6. Finally, Section 7
contains our conclusions and directions for future research.

2 Term-Based Syntax of Statecharts

To facilitate our discussion, we use the textual representation for Statecharts that
was also given in Qin and Chin [15]. The formal term-based syntax definition
for Statecharts is depicted in what follows.

Suppose we have the following sets:

– N : The set of names used to denote Statecharts. We assume that the set is
large enough for all the Statecharts.

– Πe: The set of all positive events.
– Πē: The set of all negative events, that is, Πē =def {ē|e ∈ Πe}. We assume

that ¯̄e = e.
– Πa: The set of all assignment actions. These actions have the form ν = exp.
– T : The set of all possible transitions, T ⊆ N × 2Πe∪Πē × 2Πe∪Πa × N , where

the first N denotes the source sub-state, the last N is the target sub-state,
2Πe∪Π̄e the trigger and 2Πe∪Πa the new events and assignments which were
generated and performed by the transition of T .

Definition 2.1. The set SC of Statecharts is defined inductively as follows:

1. Basic: N → SC:

Basic(n) =def [n]
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2. Or: N × 〈SC〉 × SC × 2T → SC:

Or(n, 〈P1, · · · , Pl, · · · , Pm〉, Pl, T ) =def [n, (P1, · · · , Pm), Pl, T ]

3. And: N × 2SC → SC:

And(n, {P1, · · · , Pm}) =def [n, (P1, · · · , Pm)]

Note that we use square brackets to enclose a Statechart, use 〈SC〉 to denote
all sequences of Statecharts of SC. Following are some explanations of the con-
structions of Statecharts.

• Basic(n) denotes a basic Statechart named n.
• Or(n, 〈P1, · · · , Pl, · · · , Pm〉, Pl, T ) denotes an Or-Statechart named n with a

sequence of sub-states 〈P1, · · · , Pm〉, where P1 is the default sub-state and Pl

is the active sub-state currently. Notice that the sub-states are defined as a
sequence rather than a set, to indicate that P1 is the default sub-state. The
order of other sub-states is arbitrary. T is the set composed of all possible
transitions among the sub-states of n.

• And(n, {P1, · · · , Pm}) denotes the And-Statechart named n, which contains
a number of parallel sub-states P1, · · · , Pm, where P1, · · · , Pm are basic Stat-
echarts or Or-Statecharts (but not And-Statecharts).

Example 2.1. The term-based syntax for the Statechart shown in Fig. 1 is
given below:

1. N = And(sc, {n1, n2}) = [sc, (n1, n2)];
2. n1 = Or(n1, 〈p1, p2〉, p1, {t1}) = [n1, (p1, p2), p1, {〈p1, {a, b̄}, {c}, p2〉}];
3. n2 = [n2, (p3, p4), p4, {〈p3, {d}, {e}, p4〉}];
4. Definition of p1, p2, p3, p4, etc.

Note that we use 〈pi, E, A, pj〉 to represent a transition from state pi to pj with
trigger set E and action set A. ��

It should be noticed that our version is a subset of Harel’s original definition.
We do not include timeout events, inter-level transitions and some other minor
features.

3 Operational Transition Rules

Before presenting the semantics for Statecharts, we define configurations of Stat-
echarts first. A configuration of Statecharts is defined as a triple 〈P, ν, E〉, where

• P is the syntax of the Statechart of interest.
• ν is a snapshot of data items (data state).
• E ⊆ Πe is a set of active events.
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The behavior of a Statechart is composed of a sequence of macro-steps, each
of which comprises a sequence of micro-steps which are triggered by the external
or internal events. A Statechart reacts to any stimulus from the environment at
the beginning of each macro-step by performing a sequence of transitions and
generating some internal events (by the actions of the transitions it performs),
which can in turn fire other state transitions and lead to a chain of micro-steps
without advancing time. During this chain of micro-steps, the Statechart does
not respond to any (potentially) further external stimulus. In case that no more
transitions, except for the clock tick, are enabled, the macro-step comes to the
end. The clock tick transition then occurs, which empties the set of currently
active events and advances time by one unit. Then, the Statechart is ready
again to accept another external stimuli and start off the next macro-step. The
relationship of macro-step and micro-step was discussed in details by G. Lüttgen,
M. von der Beeck and R. Cleaveland [12].

We explore the following transition rules, consisting of state transitions rules
and time advance transitions rules.

The first transition rule initiates a macro-step for a Statechart. It is the first
micro-step of a macro-step. It performs only when a set of events E arrives (due
to the environment) and the Statechart is ready to accept them.

Rule 3.1 (Initiate). 〈P, ν, φ〉 E−→ 〈P, ν, E〉 ��

In an Or-Statechart, if a transition between two immediate connected sub-
states is enabled, the transition can be performed.

Rule 3.2 (Or).Suppose P is an Or-Statechart and P = [n, (P1, · · · , Pm), Pl, T ],
τ ∈ En(P, E). Then we can have

〈P, ν, E〉 τ−→ 〈[n, (P1, · · · , Pm), a2d(tgt(τ)), T ], ν′, E ∪ acte(τ)〉

where

– En(P, E) =def {τ ∈ T |sre(τ) = Pl ∧ trig+(τ) ⊆ E ∧ trig−(τ) ∩ E = φ} is
the set of transitions enabled in current configuration on the “highest level”.

– sre(τ) and tgt(τ) are the source and target states of transition τ , respectively.
– acte(τ) denotes the set of events generated by transition τ .
– trig+(τ) and trig−(τ) are respectively the set of positive events and the set

of negative ones that form the trigger of the transition τ .
– The function a2d(P ) maps the sub-state p of P to its default sub-state

(recursively). Its definition is:

a2d([n]) =def [n]
a2d([n, (P1, · · · , Pm), Pl, T ]) =def [n, (P1, · · · , Pm), a2d(P1), T ]
a2d([n, (P1, · · · , Pm)]) =def [n, (a2d(P1), · · · , a2d(Pm))]

– ν′ denotes the new data states which might be updated by actions of τ . ��

If no transition among immediate sub-states of an Or-Statechart is enabled,
then the transitions in its active sub-state can be performed.
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Rule 3.3 (Or-Substate). Suppose P = [n, (P1, · · · , Pm), Pl, T ] is an Or-State-
chart, En(P, E) = φ, and 〈Pl, ν, E〉 τ−→ 〈P ′

l , ν
′, E′〉, then

〈P, ν, E〉 τ−→ 〈[n, (P1, · · · , Pm), P ′
l , T ], ν′, E′〉

��

From Rule 3.3 we know that, the enabled transitions of the higher level Stat-
echart will have the relative higher priority of being chosen, while simultaneously
enabled transitions of the embedded Statecharts will be discarded.

Notice that the transition τ in above rule may be the conjunction of a set of
transitions, because Pl can be an And-Statechart (See Rule 3.4 below). We use
also symbol τ to denote that case for convenience and shall follow this convention
when needed. On the other hand, the fired transition(s) τ is (are) definitely on
the highest possible level in Pl due to Rule 3.2 and Rule 3.3.

If each variable can be modified by only one transition of an And-Statechart,
then all enabled transitions of those sub-states can perform together. We use
WV (τi) to denotes the variables that can be modified by τi. Here we avoid the
racing conflicts only for simpleness. Adding it will not bring essential changes to
the main parts of this paper.

Rule 3.4 (And). Suppose P is an And-Statechart, P = [n, (P1, · · · , Pm)]. For
i = 1, 2, · · · , m, Pi is a Basic Statechart or Or-Statechart,

〈Pi, ν, E〉 τi−→ 〈P ′
i , ν

′
i, E ∪ acte(τi)〉

If En∗(Pi, E) = φ for some i, then the sub-configuration is considered as staying
the same. That is

〈Pi, ν, E〉 → 〈Pi, ν, E〉
where En∗ is defined as follows

En∗([n], E) =def φ
En∗(P = [n, (P1, · · · , Pm), Pl, T ], E) =def En(P, E) ∪ En∗(Pl, E)
En∗(P = [n, (P1, · · · , Pm)], E) =def

⋃m
i=1 En∗(Pi, E)

We have further condition that for all i �= j, WV (τi) ∩ WV (τj) = φ, we denote
ν′ =

⊕m
i=1 ν′

i the direct sum of all ν′
i, then we have

〈P, ν, E〉
∧m

i=1 τi−→ 〈[P, (P ′
1, · · · , P ′

m)], ν′, E ∪
m⋃

i=1

acte(τi)〉

��

If no transition is enabled in a Statechart and all of its embedded sub-states,
the current macro-step comes to the end. The Statechart will clear the set of
events and advance the time (Here σ is used to denote the clock tick transition),
and is ready to perform Rule 3.1 to start another macro-step.

Rule 3.5 (Empty and Time Advance). If En∗(P, E) = φ, then we have

〈P, ν, E〉 σ−→ 〈P, ν, φ〉
��
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Here is a simple example of how these operational rules work.

Example 3.1. In the Statechart of Fig. 1, the default configuration is

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, φ〉
When the external events set {a, d} appears. Rule 3.1 works.

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, φ〉
{a,d}−→ 〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, {a, d}〉

This is an And-Statechart. Following the Rule 3.4, we need to consider its sub-
Statecharts. According to Rule 3.2, the following two potential transitions are
ready to be fired:

〈[n1, (p1, p2), p1, t1], ν1, {a, d}〉 t1−→ 〈[n1, (p1, p2), p2, t1], ν′
1, {a, d, c}〉

〈[n2, (p3, p4), p3, t2], ν2, {a, d}〉 t2−→ 〈[n2, (p3, p4), p4, t2], ν′
2, {a, d, e}〉

The conditions of Rule 3.4 hold. Therefore,

〈[sc, ([n1, (p1, p2), p1, t1], [n2, (p3, p4), p3, t2])], ν, {a, d}〉
t1∧t2−→ 〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, {a, d, c, e}〉

where ν′ = ν′
1 ⊕ ν′

2.
Now the set En∗(sc, {a, c, d, e}) is empty, hence the Rule 3.5, that is,

〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, {a, d, c, e}〉
σ−→ 〈[sc, ([n1, (p1, p2), p2, t1], [n2, (p3, p4), p4, t2])], ν′, φ〉

A macro-step comes to the end. ��

4 Equivalence

For the sake of convenience, we will use the capital letter C (or Ci) to denote
the configuration 〈P, ν, E〉 and let C be the space of all possible configurations
of a set of Statecharts.

For the description of the set of events used in one micro-step to trigger the
transition, we give the following definition.

Definition 4.1. We use C
E−→ C ′ to denote that, the configuration C evolves

to C ′ in one micro-step by some fired transitions (There might be more than
one fired transitions because of Rule 3.4), and E is the set of all the positive
events of the triggers of all the transitions performed in this micro-step.

The following definition describes the configurations which will execute
micro-steps infinitely and, therefore, makes the Statecharts no chance to par-
ticipate further stimuli from the environment.

Definition 4.2 (Divergent). A configuration C is divergent if there is an in-
finite sequence of configurations {Cn}∞

n=1 such that C = C1 and Cn
En−→ Cn+1,

where En is the corresponding set of events. That is, there is an infinite sequence
of micro-steps started from C.
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In what follows we depict the relationship of two configurations to express
their equivalent property.

Definition 4.3 (Bisimulation). A binary relation S over a configuration
space C is a bisimulation iff it satisfies the following conditions:

1. S is an equivalence relation.
2. Given Ci = 〈Pi, νi, Ei〉, i = 1, 2. If C1SC2 then

(a) var(P1) = var(P2), where var() denotes the variable set
(b) ν1 = ν2
(c) E1 = E2
(d) if C1 is not divergent, For any set of events E, whenever there exists a

C ′
1 such that C1

E−→ C ′
1, then there exists C ′

2, such that
(C2

E−→ C ′
2) ∧ (C ′

1SC ′
2)

(e) If C1
σ−→ C ′

1 (Rule 3.5), then there exists C ′
2, such that

(C2
σ−→ C ′

2) ∧ (C ′
1SC ′

2)
��

In this definition, we do not mention the actions of the performed transitions.
However, from 2 (b), (c) and (d) we know that, the data states and sets of active
events of C ′

1 and C ′
2, i.e. ν′

1 and ν′
2, E′

1 and E′
2 (which reflect the effects of the

actions of the micro-step), are the same.

The following lemma shows our definition of bisimulation preserves normal
operations.

Lemma 4.4. If {Si} are bisimulations, then the following relations are also
bisimulations.

1.
⋃

i Si

2. Si ◦ Sj

Proof. The proof of 1 and 2 are similar. We prove 2 as an example.
What needs to be checked are the two conditions of Definition 4.3 in turn.

The condition 1 and (a), (b) and (c) of condition 2 are trivial, let’s see the
condition 2 (d).

If C1(Si ◦ Sj)C3, then there exists a configuration C2 such that

(C1SiC2) ∧ (C2SjC3)

So if there exists a configuration C ′
1 such that C1

E−→ C ′
1, then

∃C ′
2 · (C2

E−→ C ′
2) ∧ (C ′

1SiC
′
2)

For C2SjC3 and C2
E−→ C ′

2, we have

∃C ′
3 · (C3

E−→ C ′
3) ∧ (C ′

2SjC
′
3)

So we have C ′
1(Si ◦ Sj)C ′

3. Now we have proved that C1
E−→ C ′

1 implies

∃C ′
3 · (C3

E−→ C ′
3) ∧ (C ′

1(Si ◦ Sj)C ′
3)

In case of condition (e), it is similar to condition (d). ��
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Using Definition 4.3, we give the definition of the equivalence of two con-
figurations as follows.

Definition 4.5 (Configuration Equivalence). Two configurations C1 and
C2 are equivalent, denoted by C1 ∼ C2, iff there exists a bisimulation S such
that C1SC2.

Furthermore, we give the definition for the equivalence of two Statecharts as
follows. It seems that this definition is a little weak. In fact, this definition is
sufficient. The validity of this statement will be embodied by later theorems and
corollaries.

Definition 4.6 (Statechart Equivalence). Two Statecharts P and Q are
equivalent, denoted by P ∼ Q, iff D(P ) ∼ D(Q), where D(P ) denotes the
default configuration of P . That is, the configuration where the set of active
states is exactly the set of default states of P .

Example 4.1. [sc1, ([n11, (p1, p2), p1, t], [n12, (p3, p4), p3, t])] and
[sc2, ([n21, (p1, p3)], [n22, (p2, p4)]), n21, t] are two Statecharts, where p1, p2, p3,
p4 are their embedded Statecharts. Assuming var(sc1) = var(sc2), ν(D(sc1)) =
ν(D(sc2)) and E(D(sc1)) = E(D(sc2)), these two Statecharts are equivalent.

Fig. 2 and Fig.3 shows these two Statecharts. The only micro-step can be
fired of sc1 is to transfer p1, p3 to p2, p4 parallelly by Rule 3.4 and the only
micro-step can be fired of sc2 is to transfer n21 to n22 by Rule 3.2. It is easy
to check that their default configurations can bisimulate each other. ��

Lemma 4.7. ∼ on the Statechart space is an equivalence relation.
The proof of this lemma is trivial. ��

To illustrate the validity of our definition of the equivalence, we shall show
the result that for every possible configuration of a Statechart P , we can find a
configuration from a Statechart Q which is equivalent to P , these configurations
bisimulate each other. We give the following definition first.

Definition 4.8. Suppose tr = 〈E1, E2, · · ·〉, where Ei ⊆ Πe (Recall that Πe is
the set of all possible events) or Ei = {σ} is a sequence of sets of events. We
use C1

tr−→ C2 to denote the fact that the configuration C1 evolves into C2 by
performing micro-steps 〈step1, step2, · · ·〉 in turn and the set of positive events
out of triggers of the transitions fired in stepi is Ei.

Given two equivalent statecharts P and Q (P ∼ Q), the following theorem
states that, for any reachable configuration in a run of P (or Q respectively),
there exists a bisimular configuration in a run of Q (or P respectively).

Theorem 4.9. Suppose P ∼ Q. Let tr be any finite length sequence of sets of
events. If there exists a configuration Cp such that D(P ) tr−→ Cp, then there
exists a configuration Cq such that D(Q) tr−→ Cq and Cp ∼ Cq.
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n11 n12

sc1

t

p2

p1

t

p4

p3

Fig. 2. Statechart sc1.

sc2

t

p4

p2p1

p3

n21 n22

Fig. 3. Statechart sc2.

That is, we have the following commuting diagram:

D(P ) tr−−−−→ Cp

∼


�



�∼

D(Q) −−−−→
tr

Cq

Proof. By induction on n, the length of tr.
(1) n = 1. By Definition 4.5 and Definition 4.6, there exists a bisimulation
S such that

D(P ) S D(Q),

and we have

D(P ) E1−→ Cp

From 2.(d) and 2.(e) in Definition 4.3, we get that there exists Cq such that

(D(Q) E1−→ Cq) ∧ (CpSCq)

(2) Assume the result holds for n = k. We prove that it also holds for the case
of n = k + 1.
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Suppose tr = {E1, E2, · · · , Ek+1}. We denote tr′ = {E1, E2, · · · , Ek}. Then

there exists C ′
p such that D(P ) tr′

−→ C ′
p and C ′

p

Ek+1−→ Cp. Using the inductive

assumption, there exists a configuration C ′
q such that D(Q) tr′

−→ C ′
q and C ′

p ∼ C ′
q.

By Definition 4.5 and Definition 4.6, there exists a bisimulation S such that

(C ′
pSC ′

q) ∧ (C ′
p

Ek+1−→ Cp)

From 2.(d) and 2.(e) in Definition 4.3, we know that there exists Cq such
that

(C ′
q

Ek+1−→ Cq) ∧ (CpSCq)

That is

(D(Q) tr−→ Cq) ∧ (CpSCq)

Now with (1) and (2) done, we have come to the end of our proof. ��

From the above theorem we can prove the following property which expresses
the above mentioned idea easily.

Corollary 4.10. Suppose P ∼ Q. Then for each legal configuration Cp of P ,
there exists a configuration Cq of Q such that Cp ∼ Cq.

Proof. Consider the micro-step sequence 〈step1, · · · , stepk〉 which leads D(P ) to
Cp and the corresponding sequence of sets of events 〈E1, · · · , Ek〉. ��

The following theorem shows that the equivalence relation is preserved by
the constructors of Statecharts.

Theorem 4.11 (Congruence). Pi ∼ Qi (i = 1, · · · , m) implies

1. And(Np, {P1, · · · , Pm}) ∼ And(Nq, {Q1, · · · , Qm});
2. Or(Np, 〈P1, · · · , Pm〉, Pl, T ) ∼ Or(Nq, 〈Q1, · · · , Qm〉, Ql, T

′). where there ex-
ist a bijection f between T and T ′, such that for any τ ∈ T

(a) acte(τ) = acte(f(τ))
(b) trig+(τ) = trig+(f(τ)) ∧ trig−(τ) = trig−(f(τ))

(c) Pi
τ−→ Pj ⇐⇒ Qi

f(τ)−→ Qj

That is, we have following commuting diagram in which the symbol op denotes
the Statechart construction operators And or Or:

{P1, · · · , Pm} op−−−−→ Np

∼


�



�∼

{Q1, · · · , Qm} −−−−→
op

Nq
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Proof. 1. For Pi ∼ Qi, we have D(Pi) ∼ D(Qi), then ∃Si · D(Pi)SiD(Qi),
where Si is a bisimulation. So we have:
For any set of events E, whenever there exists a configuration (D(Pi))′ such
that

D(Pi)
E−→ (D(Pi))′,

there exists (D(Qi))′, such that

(D(Qi)
E−→ (D(Qi))′) ∧ ((D(Pi))′Si(D(Qi))′)

Now we define the relationship

S = {〈D(And(Np, {P1, · · · , Pm})), D(And(Nq, {Q1, · · · , Qm}))〉
where D(Pi)SiD(Qi)} ∪ Id

We prove that S is a bisimulation as follows.
It is trivial that S is an equivalence relation. (†)
Now we check the conditions 2(a) – 2(e) in Definition 4.3. 2(a), 2(b) and
2(c) are trivial. Since 2(e) is similar to 2(d), we check condition 2(d) in details
here.
Since our discussion is at the micro-step level, the actions of transitions in
D(Pi) do not have effect on D(Pj). Thus we have the following fact.

For any set of events E, whenever D(Np)
E−→ (D(Np))′,

there exists (D(Nq))′, such that

(D(Nq)
E−→ (D(Nq))′) ∧ ((D(Np))′S(D(Nq))′) (‡)

We then have Np ∼ Nq from (†) and (‡).

2. Similar to 1, we have ∃Si · D(Pi)SiD(Qi), where Si is a bisimulation, and
the following result:
For any set of events E, whenever there exists a configuration (D(Pi))′ such
that

D(Pi)
E−→ (D(Pi))′,

there exists a (D(Qi))′, such that

(D(Qi)
E−→ (D(Qi))′) ∧ ((D(Pi))′Si(D(Qi))′)

Now we define the relationship

S = {〈D(Or(Np, 〈P1, · · · , Pm〉, Pl, T )),
D(Or(Nq, 〈Q1, · · · , Qm〉, Ql, T

′))〉, where D(Pi)SiD(Qi)}
∪ Id

It is trivial that S is an equivalence relation. (∗)
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Analogically, to check condition 2 in Definition 4.3, we need a formula
similar to (‡). It can be divided into two cases:
(a) If the micro-step triggered by E is between the immediate sub-state Pl

and Pk, i.e.

D(Np)
E−→ (D(Np))′ = D(Or(N ′

p, 〈P1, · · · , Pm〉, Pk, T ))

Because of there is a bijection f between the transitions sets of Np and Nq

which satisfies the three conditions, we have

D(Nq)
E−→ (D(Nq))′ = D(Or(N ′

q, 〈Q1, · · · , Qm〉, Qk, T ′))

(b) If the micro-step triggered by E is in the active sub-state Pl, i.e.

Pl
E−→ P ′

l

For PlSlQl, we have there exits Q′
l, such that

(Ql
E−→ Q′

l) ∧ (P ′
l SlQ

′
l)

We take

(D(Nq))′ = D(Or(N ′
q, 〈Q1, · · · , Qm〉, Q′

l, T
′))

In both case (a) and case (b) it is trivial that

(D(Nq)
E−→ (D(Nq))′) ∧ ((D(Np))′S(D(Nq))′) (∗∗)

From (∗) and (∗∗), we obtain Np ∼ Nq. ��

5 Traces

As shown in the Definition 4.8, suppose tr = 〈E1, E2, · · ·〉 is a sequence of
sets of events. We use C1

tr−→ C2 to denote the fact that the configuration C1
evolves into C2 by performing micro-steps 〈step1, step2, · · ·〉 in turn and the set
of positive events from the triggers of the transitions fired in stepi is Ei. In this
section we investigate some properties on the level of macro-step.

Definition 5.1. We use Πex to denote all possible external events. Suppose
E ⊆ Πex and Ci = 〈Pi, νi, φ〉, i = 1, 2, we use C1

E=⇒ C2 to denote a macro-
step from C1 to C2 with the set of initial external events E by a sequence of
micro-steps, where only the last micro-step is the clock tick σ.

We use (2Πex)∗ to denote the set of all the possible finite-length sequences
of sets of external events. Suppose tr = 〈E1, E2, · · · , Em〉 ∈ (2Πex)∗. We use also
C1

tr=⇒ C2 to denote the fact that the configuration C1 can evolve into C2 by
performing a sequence of macro-steps 〈Mstep1,Mstep2, · · · ,Mstepm〉 in turn and
the set of events Ei is the set of initial events stimulating the Mstepi.
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When a finite sequence of sets of external events comes sequentially, a Stat-
echart starts to respond the first set of events from its current configuration. As
reactions to this finite sequence of stimuli, it may perform a sequence of tran-
sitions which are triggered by these stimuli directly or indirectly, go through a
number of macro-steps and reach another configuration eventually, or it may fall
into divergence in some macro-step on the way, and is not able to participate
the next macro-step. We address these issues in this section.

We give two definitions to formalize the aforementioned ideas.

Definition 5.2 (Trace). A trace tr ∈ (2Πex)∗ is a finite sequence of external
events in which a particular Statechart participates with its environment.

What follows is our definition of specific trace sets. We propose two type
of sets with respect to configurations. For a configuration CP , set Div(CP ) in-
cludes all the traces that may lead the configuration CP to divergence, while
the another set is Prg(CP ) which includes all traces which definitely lead config-
uration CP to a steady configuration. We use Prg to hint that the configuration
will progress normally while “consuming” a trace of Prg(CP ) and will be ready
to accept other external events.

Definition 5.3 (Trace Sets). Suppose P is a Statechart and CP is one of its
configurations with empty set of events, we define two sets of sequences of set of
events as follows:

Div(CP ) =def { tr ∈ (2Πex)∗|
∃s, C ′ · s ≺ tr ∧ (CP

s=⇒ C ′) ∧ div(C ′, tr(#s + 1))}
Prg(CP ) =def { tr ∈ (2Πex)∗|∃C ′ · (CP

tr=⇒ C ′)〉}

where s ≺ tr means s is a proper prefix of tr. We use div(C ′, E) to represent
that C ′ is divergent after receiving set of events E according to Rule 3.1. Note
that #s is the length of s, while tr(n) denotes the nth element of tr.

Form the definition we have the following property immediately.

Lemma 5.4. Suppose CP is a configuration of a Statechart P with empty set
of events, then

Prg(CP ) ∪ Div(CP ) = (2Πex)∗

Proof. By Definition 4.2, we have the fact that if a trace tr is not in Div(CP ),
then there exists a steady configuration C as the end configuration after pre-
forming all the macro-steps triggered by tr. From the transition Rule 3.1∼ 3.5,
we can see that only the configuration with the form 〈P, ν, φ〉 can be the end
configuration of a macro-step. Therefore tr lies in Prg(CP ). So we have

Prg(CP ) ∪ Div(CP ) = (2Πex)∗

��

Two equivalent configurations of Statecharts should have the same trace sets
Div and Prg as one may expect. The following theorem tells us the truth.
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Theorem 5.5 (Trace). Suppose P ∼ Q and Cp is the configuration of P with
empty set of events. If Cq is the configuration of Q which is equivalent to Cp.
Then

Div(Cp) = Div(Cq) and Prg(Cp) = Prg(Cq)

Proof. If tr ∈ Prg(Cp) is a trace, then there exists a configuration C ′
p such that

Cp
tr=⇒ C ′

p

Because a macro-step can be considered as a sequence of micro-steps, by The-
orem 4.9, we see that there exists a configuration C ′

q, such that

Cq
tr=⇒ C ′

q

So tr ∈ Prg(Cq), Then we have

Prg(Cp) ⊆ Prg(Cq)

For the same reason , we have

Prg(Cq) ⊆ Prg(Cp)

So we come to

Prg(Cp) = Prg(Cq)

From Lemma 5.4, we obtain Div(Cp) = Div(Cq). ��

We considered above the external traces or input traces, which are provided
by the environment. Now we take into account the responses of a statechart to
these stimuli from the environment, and introduce the response traces.

According to our definition of transition rules, before a clock tick transition,
all events generated by those transitions in one macro-step are accumulated in
the set of active events. This reflects the reaction of the statechart to environ-
mental stimuli arrived at the beginning of the macrostep. We use it to specify a
statechart’s response behaviour to the environment.

Definition 5.6 (Response). We use C
E/Ê
=⇒ C ′ to denote a macro-step from

C to C ′ with the set of initial external events E by a sequence of micro-steps,
where only the last micro-step is the clock tick σ, and the set of events in the
configuration before the clock tick is Ê. We call Ê the set of response events in
this macro-step.

Definition 5.7 (Response Trace). Suppose P is a Statechart and Cp is one
of its configuration with empty set of events. Suppose tr = 〈E1, E2, · · · , Em〉 ∈
(2Πex)∗ and there is a configuration C ′ such that C

tr=⇒ C ′. We collect the
sets of response events along the way, which form a sequence of sets of events
t̂r = 〈Ê1, Ê2, · · · , Êm〉 ∈ (2Π)∗, and call the sequence a response trace of tr with

respect to C and C ′, and denote the fact as C
tr/t̂r
=⇒ C ′.
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Obviously, due to possible non-determinism, for a certain C and a fixed tr,

there might be more than one pair of C ′ and t̂r such that C
tr/t̂r
=⇒ C ′.

In the remainder of this section, we shall prove that, if two configurations
are equivalent, C1 ∼ C2, or two Statecharts are equivalent, P ∼ Q, then for an
external event trace tr, they will generate the same set of response traces.

Lemma 5.8. Suppose P ∼ Q, Cp is a configuration of P with empty set of
events and Cq is a configuration of Q which is equivalent to Cp. Suppose E ∈ 2Πex

and Ê ∈ 2Π . Then we have that, if there exists a configuration C ′
p of P such

that Cp
E/Ê
=⇒ C ′

p, then there exists a configuration C ′
q of Q such that Cq

E/Ê
=⇒ C ′

q.
That is we have the following commuting diagram:

Cp

E/Ê
=⇒−−−−→ C ′

p

∼


�



�∼

Cq

E/Ê
=⇒−−−−→ C ′

q

Proof. A macro-step can be considered as a sequence of micro-steps, so if we

have ∃C ′
p · Cp

E/Ê
=⇒ C ′

p, then by Theorem 4.9, we see that

∃C ′
q · Cq

E=⇒ C ′
q (∗)

Suppose the macro-step from Cp to C ′
p is Mstepp = 〈step1, · · · , stepk−1, stepk〉,

the macro-step from Cq to C ′
q is Mstepq = 〈step′

1, · · · , step′
k−1, step

′
k〉, and the

configuration sequences with respect to these steps are 〈Cp,1, · · · , Cp,k−1, C
′
p〉 and

〈Cq,1, · · · , Cq,k−1, C
′
q〉 respectively, where stepi and step′

i (i = 1, · · · , k) are all
micro-steps. For Ê is the response set of Mstepp, from Definition 5.6, we know
that the set of events in Cp,k−1 is Ê. For Cp,k−1 ∼ Cq,k−1, from Definition
4.3,4.5 we get that the event set of Cq,k−1 is also Ê. So we have Ê is the
response set of Mstepq. Then from (∗) we have come to

∃C ′
q · Cq

E/Ê
=⇒ C ′

q

So there is

∃C ′
p · Cp

E/Ê
=⇒ C ′

p implies ∃C ′
q · Cq

E/Ê
=⇒ C ′

q

��

Theorem 5.9 (Response Trace). Suppose P ∼ Q, Cp is a configuration of P
with empty set of events and Cq is a configuration of Q which is equivalent to Cp.
Suppose tr ∈ (2Πex)∗ and t̂r ∈ (2Π)∗ is a sequence with the same length of tr.

Then we have that, if there exists a configuration C ′
p of P such that Cp

tr/t̂r
=⇒ C ′

p,

then there exists a configuration C ′
q of Q such that Cq

tr/t̂r
=⇒ C ′

q.
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Proof. Suppose tr = 〈E1, E2, · · · , Em〉 and tr = 〈Ê1, Ê2, · · · , Êm〉, By Lemma
5.8 and the following commuting diagram,

Cp

E1/Ê1=⇒−−−−→ Cp,1

E2/Ê2=⇒−−−−→ Cp,2

E3/Ê3=⇒−−−−→ · · ·
Em−1/Êm−1

=⇒−−−−−−−−→ Cp,m−1

Em/Êm=⇒−−−−−→ C ′
p

∼


� ∼



� ∼



� ∼



� ∼



� ∼



�

Cq

E1/Ê1=⇒−−−−→ Cq,1

E2/Ê2=⇒−−−−→ Cq,2

E3/Ê3=⇒−−−−→ · · ·
Em−1/Êm−1

=⇒−−−−−−−−→ Cq,m−1

Em/Êm=⇒−−−−−→ C ′
q

One can see the existence of C ′
q. ��

Corollary 5.10. Given a pair of configurations Cp, Cq with empty sets of events,
Cp ∼ Cq, tr is a sequence of sets of external events. Then the sets of all possible
response traces of Cp and Cq with respect to trace tr are the same.

Proof. Using the above theorem it is trivial. ��

Corollary 5.11. Given two Statecharts P and Q, P ∼ Q, tr is a sequence of
sets of external events. Then the sets of all possible response traces of D(P ) and
D(Q) with respect to trace tr are the same.

6 Related Work

The original Statecharts semantics is present by Harel et al. [6]. It obeys causality
and synchrony, but not compositionality. The synchrony implies that the system
is definitely faster than its environment, and can always finish computing its re-
sponse before the next stimulus from the environment arrives. In 1991, A.Pnueli
and M.Shalev [14] presented a way of defining the notion of step in the execu-
tion of Statecharts. This semantics maintains the synchrony hypothesis. They
defined the function En(τ) and used it to describe the synchrony, causality and
global consistency formally. They also gave a step-construction procedure to
compute En(τ) for a Statechart with respect to a certain environment. In 1996,
M. Schettini, A.Peron and S.Tini [16] gave a new definition which covered the
definition in [14] and included a new restriction named compatibility, such that
their step-construction procedure will not fail.

With regard to a semantics for Statecharts, it is very important whether it
is compositional or not. Because the compositionality ensures that the seman-
tics for a Statechart can be defined in terms of its component-charts. This is
important especially when only a few components of a large Statechart change,
a waste of resources by re-compiling the large Statechart will not take place.
Theoretical studies constructed by Huizing [10] showed that one cannot com-
bine the features of causality, synchrony hypothesis and compositionality with
a step semantics which labels transitions by sets of “input/output” events. G.
Lüttgen, M. von der Beeck and R. Cleaveland [12] presented an approach to
define Statecharts’ semantics. Their semantics achieved compositionality on the
explicit micro-step level and causality and synchrony on the implicit macro-step
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level. Our semantics is compositional. It adopts an asynchronous time model, in
which a macro-step is defined as a sequence of micro-steps taking place instan-
taneously. To be more intuitive, our semantics obeys local consistency rather
than global one. Furthermore, our semantics supports the data-states issues of
Statecharts, i.e. the actions in a transition can contain assignments.

In [16], the equivalences of Statecharts are investigated. The authors associ-
ated a Labeled Transition System (LTS) with each Statechart term in a syntax
directed way, and defined the semantics of Statecharts based on the LTS. They
defined a causal order over events to express the causality. Using these notions,
they defined four levels of equivalence of Statecharts and proved the properties
of congruence respectively. The main difference between our work and what pre-
sented in [16] is as follows. The first definition of equivalence in [16] needs a
bijection between all possible configurations of the two Statecharts whose equiv-
alence is under consideration. It causes much troublesome in proving the prop-
erty of congruence. Our concept of equivalence is similar to the second definition
of equivalence of [16]. We only need the bisimulation of the default states of
the Statecharts, which makes it much easier to prove the congruence property
(Theorem 4.11). It seems that our definition is weaker in comparison to the
first definition of equivalence in [16], but, in fact, it is not. As we have proved in
Theorem 4.9, our concept has all the expected properties of equivalence stated
in the first definition of equivalence in [16] and, at the same time, can get rid of
the redundant statements in proving the properties of congruence for that level
of equivalence, thus, getting the same results in a much simpler way.

C.A.R.Hoare [8] defined the trace notations of CSP. Many scholars defined
the trace notations for other languages, for instance [9,3,13,7], to describe ob-
servable behaviours of systems. Borrowing the ideas from these work we define
the trace notations for Statecharts as sequences of sets of external stimuli and
sequences of responses of the Statechart to these stimuli. Some properties with
respect to the trace model for Statecharts are also explored. We believe these
definitions can be valuable in further investigation of Statecharts’ properties at
behavioural level of traces.

7 Conclusions and Future Work

In this paper we have explored a set of transition rules so as to describe the
operational semantics of Statecharts. We introduced the bisimulation to illus-
trate the equivalence between Statecharts’ configurations. Ulteriorly we defined
the equivalence between Statecharts and studied congruence properties with re-
spect to the construction operators of Statecharts (And and Or constructions).
In the end we introduced the notions of traces of Statecharts. It is foreseeable
that we can describe the equivalence of Statecharts at the level of observable
traces. As part of future work, the trace model should be further refined to com-
prise more information on behaviours of Statecharts, like causal orders of events
generated in one instant, instantaneous updates of data state. The simulation
between Statecharts needs also to be investigated to describe the refinement of
Statecharts.
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Abstract. Interacting State Machines (ISMs) are used to model reactive
systems and to express and verify their properties. They can be seen both
as automata exchanging messages simultaneously on multiple buffered
ports and as communicating processes with explicit local state.

We introduce generic ISMs, extending the ISM formalism with global
state. We give a typical instantiation, namely support for dynamically
changing communication. Other instantiations, e.g. an implementation
of boxed mobile ambients, can be used alternatively or in combination,
which demonstrates the flexibility of the framework. As an application
example we model a simple multi-threaded client/server system.

ISMs and all their derivations are formally defined within the theorem
prover Isabelle/HOL. The development, textual documentation, and ver-
ification of their applications is supported by Isabelle as well, and graphi-
cal design and documentation is available via the CASE tool AutoFocus.

The conventional state-based approach, its expressiveness and flexibility,
and freely available multi-level tool support makes our framework well-
suited for practical formal system analysis even in an industrial setting.

Keywords: modeling, verification, composition, semantics, dynamic
communication, mobile ambients, Interacting State Machines, Isabelle/
HOL, AutoFocus.

1 Introduction

State-based approaches, e.g. [LT89,HLN+90,Spi92,HSSS96,Gur97,EHS97] have
turned out to be an adequate means to model and analyze properties of interest
in many of today’s IT systems, including communication networks, database sys-
tems, and industrial control systems. In particular, the authors have introduced
basic Interacting State Machines (ISMs) [OL02,Ohe02] and successfully applied
them to security analysis, ranging from the specification and validation of secu-
rity requirements with respect to very abstract system models to verification of
low-level protocols. ISMs can intuitively be seen as a variant of I/O automata
[LT89] offering high-level transitions allowing for simultaneous, buffered I/O on
multiple ports. The resulting concepts have proved to be adequate for supplying
formal security models for real-world smart card processor systems and health-
care applications. In particular, the recent version of the LKW security model

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 144–166, 2003.
� Springer-Verlag Berlin Heidelberg 2003
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for the Infineon SLE 66 smart card chip has been developed using ISMs and
their Isabelle [Pau94] tool support, see [OL02] for details.

However, ISMs as introduced so far lack expressiveness wrt. system dynam-
ics. These may occur in a variety of flavors, comprising varying communication
interfaces, the activation and deactivation of processes, and changes to the visi-
bility context or execution environment of a component. All of these aspects are
of practical relevance, e.g. in a middle-ware system where objects get to know
additional communication channels by requesting a directory object, a multi-
threaded system where the system components, along with their ports, are cre-
ated and terminated dynamically, or a mobile agent system where the current
execution environment determines the communication abilities of a hosted agent.

Driven by the above motivation, we generalize ISMs, introducing global state
and commands that generic ISMs can execute in order to change it. By instan-
tiating generic ISMs in a suitable way, one can handle dynamic communication
interfaces as well as dynamic component contexts. Such extensions may be hier-
archical or orthogonal, or they may combine other extensions while interrelating
features as appropriate. The global state may express e.g. port ownership and
the activation status of ports and ISMs, with the commands allowing to change
port ownership and to (de-)activate ISMs and ports. We thus arrive at dynamic
ISMs (dISMs). Alternatively, we may borrow the concepts of boxed ambients
[BCC01] to treat dynamic contexts. Doing so, the global state is given by an
ambient structure whose nodes refer to those ISMs that share the same ad-
ministrative domain and thus can interact with each other. Commands include
introducing and deleting contexts and moving them around. The resulting au-
tomata are called Ambient ISMs (AmbISMs). By combining the two concepts in
the appropriate way, we arrive at dynamic Ambient ISMs (dAmbISMs). Figure 1
shows how the just mentioned dynamic extensions relate. The advantage of this
“construction kit” approach is flexibility: the user may select either one of the
two styles of dynamics (if not both of them are required) or their combination.

Fig. 1.

Generic ISMs (and their descendants) are
supported by the same tools as basic ISMs:
in a typical application of our framework, the
user first specifies a system graphically with
the CASE tool AutoFocus [HSSS96], then trans-
lates the model to theories of the theorem
prover Isabelle/HOL [Pau94] using a tool pro-
gram [Nan02,ON02], and then uses the facilities
of Isabelle for conducting proofs and for textual
documentation.

In this paper, we define generic and dynamic
ISMs in detail and just introduce the concepts of
ambient and dynamic ambient ISMs. The formal definition of the latter is subject
of an accompanying paper [KO03]. The present paper is structured as follows. �2
formally defines generic ISMs and describes their representation with AutoFocus
and Isabelle/HOL. In �3, we informally describe the different extensions and lay

dAmbISMs

(generic) ISMs

dISMs AmbISMs
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out the foundations of their semantics. A full definition of dynamic ISMs is
given in �4. �5 contains a typical example of their use, namely a model of a
multi-threaded client-server system where threads are activated dynamically on
demand, and �6 comments on related and future work.

2 Generic Interacting State Machines (ISMs)

In �2.1 we introduce the notion of generic ISMs, which is a generalized (and
partially simplified) version of the original ISM notion [Ohe02]. �2.2 gives the
details of the semantics, which (as well as �4) may be safely skipped by readers
solely interested in ISM application. Next, we describe how ISMs are represented
as AutoFocus diagrams (in �2.3) and in Isabelle/HOL theories (in �2.4).

2.1 Concepts

An Interacting State Machine (ISM) is an automaton whose state transitions
may involve multiple input and output simultaneously on any number of ports.
As the name suggests, the key concepts of ISMs are states (and in particular
the transitions between them) and interaction. By interaction we mean explicit
buffered communication via named ports (which are also called connections),
where on each port, (typically) one receiver listens to possibly many senders.

Any number of ISMs may be composed in parallel by interleaving their tran-
sitions and forming I/O connections among peer ISMs. The local state of the
resulting ISM is essentially the Cartesian product of the local states of its compo-
nents. The top-level composition is called an ISM system. It may hold additional
global state, which may be affected by commands contained in the transitions of
any (sub-)component.

A configuration of an ISM consists of its input buffer state and local state. The
local state may have arbitrary structure but typically is the Cartesian product of
a control state which is of finite type and a data state which is a record of named
fields representing local variables. Each ISM has a single1 local initial state.

F i g. 2. ISM structure.

The input buffers of an ISM are a family of (unbounded) message FIFOs,
indexed by port names. The buffers are not actually part of an ISM but exist
1 If a non-singleton set of initial states is required, this may be simulated by nonde-

terministic spontaneous transitions from a single dummy initial state.

Local State:

Input Buffers:

Out

Control State Data State

In
T a  s  r  n
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merely as intermediate data structures within parallel composition during ISM
runs. Input buffers can (but in most applications should not) be shared among
ISMs, which leads to competition on the input without fairness constraints.

Message exchange is triggered by an output operation of any ISM within the
system. Input from the environment may be modeled with suitable ISMs. Inputs
cannot be blocked, i.e. they may occur at any time, appending the received value
to the corresponding FIFO. Values stored in the input buffers related to an ISM
are received and processed by the ISM when it is ready to do so.

The actions of ISMs are given as user-defined transitions, which may be
nondeterministic and can be specified in any relational style. Thus for each
transition the user has the choice to define it in an operational (i.e., executable)
or axiomatic (i.e., property-oriented) fashion or a mixture of the two. Transition
rules specify that – potentially under some precondition that typically includes
matching of messages in the input buffers – the ISM consumes some input, makes
a local state transition, issues a list of commands affecting the global state, and
produces some output. The output is appended to the respective input buffers
specified by port names. Direct or indirect feedback is possible. Multicast is not
directly supported but may be explicitly modeled easily.

A run of an ISM system is any prefix of the sequence of configurations reach-
able from the initial configuration. The length of a run is not bounded but finite.
Finiteness allows for a simple trace semantics, but on the other hand implies that
we cannot handle liveness properties. Yet we do not feel this as a real restriction
because most practically relevant properties are essentially safety properties: if
at all they involve guarantees about the existence of future events, these typically
involve timeouts.

Transitions of different ISMs that are composed in parallel cannot directly
interfere with each other but are related only by the causality wrt. the messages
interchanged, and by the effects of commands on the global state which may in
effect block certain transitions. Execution gets stuck (i.e., deadlocks) when there
is no component that can perform any step. As is typical for reactive systems,
there is no built-in notion of final or accepting states.

2.2 Semantics

This subsection gives the logical meaning of (generic) ISMs, which is both an
extension and a slight simplification of the definitions given in [Ohe02]. As the
modifications pervade all parts of the ISM definitions, and for self-containedness,
it appears mandatory to rephrase all of them.

First some general remarks on the presentation: all definitions and proofs
have been developed as a hierarchy of Isabelle/HOL theories and machine-
checked using this tool. One important effect of this approach is that many kinds
of mistakes like type mismatches can be ruled out. Using the LATEX documen-
tation feature of Isabelle would even preclude typographic slips in the presen-
tation but on the other hand would introduce some technicalities many readers
would not be familiar with. Therefore, we give the semantics in the traditional
“mathematical” style in order to enhance readability. We sometimes make use
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of λ-abstraction borrowed from the λ-calculus, but write (multi-argument) func-
tion application in the conventional form, e.g. f(a, b, c). Occasionally we make
use of partial application (aka. currying), such that, in the example just given,
f(a, b) is an intermediate function value that requires a third parameter to be
given before yielding the actual function result.

Message Families. Let M be the type of all messages potentially exchanged by
ISMs and P the type of port names. Then the message families, which are used
to denote both input2 buffers and input/output patterns, have type MSGs =
P → M∗ where M∗ is any finite sequence of elements of M. We will make use
of the following operations on message families:

– the term � denotes the empty message family λp. 〈〉 where 〈〉 denotes the
empty sequence

– the term mdom(m) abbreviates {p. m(p) �= 〈〉}, i.e. the domain of m
– the infix operation .@. concatenates two message families m and n pointwise:

(m .@. n)(p) = m(p) @ n(p)

States and Transitions. Let C be the type of commands. Then the set of ISM
transitions has type TRANS(C, Σ) = ℘((MSGs×Σ)×C × (MSGs×Σ)) where
the parameter Σ stands for the type of the local state and the two occurrences
of MSGs stand for input and output patterns, respectively. Each element has
the form ((i, σ), c, (o, σ′)) and means that the ISM can (nondeterministically)
perform a step from local state σ to σ′, consuming input i, executing command c,
and producing output o. Simultaneous input and/or output on multiple channels
can be specified because both i and o each denote whole message families. In
contrast to the original definition of ISMs [Ohe02], within a transition, input
is described by patterns of messages consumed in the given step — not by a
transition between the state of the input buffer before and after the transition.
This simplifies the definition of single ISMs and shifts the concept of input
buffering to the places where it is indispensable: at the definitions of parallel
composition and automata runs.

Elementary ISMs. An ISM is given as a quadruple3 a = (In(a),Out(a), σ0(a),
Trans(a)) of type ISM(C, Σ) = ℘(P)×℘(P)×Σ ×TRANS(C, Σ) where

– In(a) is the set of input port names
– Out(a) is the set of output port names
– σ0(a) is the initial local state
– Trans(a) is the transition relation

2 Recall that output buffers are not required.
3 The definition pattern x = (sel1(x), sel2(x), . . .) should not be understood as a

recursive definition of x but as a shorthand introducing a tuple with typical name x
and with selectors (i.e., projection functions) sel1, sel2, ...
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Such an ISM is well-formed iff all the port names actually used in the transitions
for input or output respect the I/O interface of the ISM, i.e. ipns(a) ⊆ In(a)
and opns(a) ⊆ Out(a) where

– ipns(a) =
⋃

t∈Trans(a) mdom((λ((i, σ), c, (o, σ′)). i)(t))
– opns(a) =

⋃
t∈Trans(a) mdom((λ((i, σ), c, (o, σ′)). o)(t))

Note that In(a) and Out(a) may overlap, which allows for direct feedback
within parallel composition.

Runs. Below we will define composite ISM runs, i.e. the parallel composition
and execution of a family of ISMs, directly in one step. Nevertheless, we first de-
fine the two notions of ISM runs and parallel composition independently. Defin-
ing parallel composition in isolation not only makes it easier to understand but
also enables hierarchical analysis and design.

The open runs of an ISM a, denoted by Runs(a) ∈ ℘(Σ∗), are finite sequences
of states that are inductively defined as

〈σ0(a)〉 ∈ Runs(a)

centering ss�σ ∈ Runs(a)
((i, σ), c, (o, σ′)) ∈ Trans(a)

ss�σ�σ′ ∈ Runs(a)

The operator � appends elements to a sequence. Commands c are ignored here
as we consider global state only for composite runs.

This form of runs is called open because in each step the environment pro-
vides arbitrary input to the ISM, and any output of the ISM is discarded. If
feedback from output to input is desired, one can achieve this by applying the
parallel composition operator to the singleton family of ISMs consisting just of
a, described next.

Parallel Composition. Any number of ISMs can be combined in parallel to
form a single composite ISM, which may be further combined with others, etc.

The parallel composition ‖i∈IAi of a family of ISMs A = (Ai)i∈I is an ISM of
type ISM(C,CONF(Πi∈IΣi)) where for any X , the type of an ISM configuration
CONF(X) is defined as MSGs×X . Here MSGs stands for the type of input
buffers. The composite ISM is defined as the quadruple (AllIn(A)\AllOut(A),
AllOut(A)\AllIn(A), (�, S0(A)), PTrans(A)) where

– AllIn(A) =
⋃

i∈I In(Ai)
– AllOut(A) =

⋃
i∈I Out(Ai)

– � denotes the initially empty input buffers, which are used to handle I/O
among peers as well as direct feedback

– S0(A) = Πi∈I(σ0(Ai)) is the Cartesian product of all initial local states
– PTrans(A) of type TRANS(C,CONF(Πi∈IΣi)) is the parallel composition

of their transition relations.
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Fig. 3. General pattern of feedback within parallel composition.

The pre- and post-states in the composed transition relation refer not only to
the Cartesian product of the local states involved but also to a message family b.
As already mentioned above for the initial state, the role of b is to buffer internal
I/O. Apart from this, the composed transition relation is defined simply as the
interleaving of the transitions of the component ISMs:

j ∈ I
((i, σ), c, (o, σ′)) ∈ Trans(Aj)

((i|AllOut(A), (i|AllOut(A) .@. b, S[j :=σ ])), c,
(o|AllIn(A), (b .@. o|AllIn(A), S[j :=σ′]))) ∈ PTrans(A)

where

– S[j :=σ] denotes the replacement of the j-th component of the tuple S by σ

– m|P denotes the restriction λp. if p ∈ P then m(p) else 〈〉 of the message
family m to the set of ports P

– o|AllIn(A) denotes those parts of the output o provided to any outer ISM

– o|AllIn(A) denotes the internal output to peer ISMs or direct feedback, which
is added to the current buffer contents b

Note that commands c are simply forwarded to the outer level of transitions.
A parallel composition is well-formed iff the inputs of the individual compo-

nents do not overlap: ∀i j. i �=j −→ In(Ai) ∩ In(Aj) = ∅. On the other hand,
outputs may overlap, which allows the outputs of different ISMs to interleave
nondeterministically.

A family A of ISMs is called closed iff AllIn(A) = AllOut(A), i.e. there is
no interaction with any outside ISMs. If a system is modeled with a closed ISM
family and input from the environment is important, this may be modeled with
an ISM that belongs to the family and does nothing but generating all possible
input patterns.

When composing ISMs, it is occasionally necessary to prevent name clashes
or to hide connections, which can be achieved by suitable renaming of ports.

Composite Runs. We define ISM runs not only for single (possibly composite)
ISMs but also directly for closed families of ISMs intended to run in parallel.
The below definition is generic wrt. ISM commands and the global state Γ , such

... ...
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that it may be used without further extension also for the specialized styles of
ISMs defined in the following sections. Since the above definition of parallel
composition is generic wrt. ISM commands as well, it may be used in combi-
nation with composite runs to describe inner (possibly nested) levels of parallel
composition.

For handling global state changes, composite runs have three parameters:
– a function As(γ) = (As(γ)i)i∈I(γ) yielding an ISM family for any global

state γ, which enables dynamic changes to the ISM system
– the initial global state γ0

– a transition relation gtrans(j) that takes as its parameter the index of the
ISM whose transition is currently performed and yields a transition between
the global pre-state γ, the command c, and the global post-state γ′

The set of all possible composite runs is denoted by CRuns(As, γ0, gtrans)
and has type ℘((CONF(Γ ×Πi∈IΣi))∗) corresponding to the generic ISM type
ISM(C, Γ ×Πi∈IΣi). Its elements are finite sequences of configurations, induc-
tively defined as

〈(�, (γ0, S0(As(γ0))))〉 ∈ CRuns(As, γ0, gtrans)

j ∈ I(γ)
cs�(i .@. b, (γ, S[j :=σ])) ∈ CRuns(As, γ0, gtrans)

((i, σ), c, (o, σ′)) ∈ Trans(As(γ)j)
mdom(i) ⊆ In(As(γ)j) ∩AllOut(As(γ))
mdom(o) ⊆ Out(As(γ)j) ∩AllIn(As(γ))

(γ, c, γ′) ∈ gtrans(j)
cs � (i .@. b, (γ, S[j :=σ])) � (b .@. o, (γ′, S[j :=σ′])) ∈ CRuns(As, γ0, gtrans)

Note that the changes to the local state σ and the global state γ are independent
of each other, except that the transition Trans(As(γ)j) may block gtrans(j) and
vice versa. The restrictions on the input and output domains are the dynamic
counterparts for the static well-formedness of the family components and the
closedness of the system. They ensure in particular that ISMs can use only ports
they are allowed to according to their I/O interface which may depend on the
current global state4. An ISM family function – together with the initial global
state and the global transition associated with it – that fulfills the restrictions on
the input and output domains already by its construction is called dynamically
closed.

Traces of composite runs have the form 〈(�,(γ0, S0(As(γ0)))), (b1,(γ1, S1)),
(b2,(γ2, S2)), . . . 〉 where each element of the sequence is a nested tuple of the
current input buffer contents, the current global state, and the Cartesian product
of all the currently relevant local states.
4 Note that this restriction is defined wrt. γ and not γ′ for both input and output,

which makes the definition technically slightly simpler. A viable alternative would
be to use instead γ′ for restricting the output, which would implement the idea that
the effects of the command c are already visible to the output operations.
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One can show that composite runs of any closed family As(γ) of well-formed
ISMs are equivalent to the runs of the parallel composition of the same family
if the global transition relation is the identity and the global state is projected
away from the traces:
wf isms(As(γ)) ∧ closed(As(γ)) −→ Runs(‖i∈I(γ)As(γ)i) =
{map(λ(b,γ,σ). (b,σ))(cs) | cs ∈ CRuns(As, γ, (λi. {(γ, c, γ′)| γ = γ′}))}

2.3 Graphical Representation

When designing and presenting system models, a graphical representation is very
helpful since it gives a good overview of the system structure and a quick intuition
about its behavior. This is particularly important in an industrial setting: models
are developed in collaboration with clients and documented for their further use,
where strong familiarity with formal notations cannot be assumed.

Unfortunately, we do not have a graphical tool available that could cover
the dynamic port connections and ambient structures described in the following
sections. Nevertheless, we have designed the structure of generic ISMs in a way
such that their basic features can be displayed using the CASE tool AutoFocus.

One may use AutoFocus as a graphical front-end to our Isabelle implemen-
tation of ISMs: the user first specifies ISMs using AutoFocus and translates
them into suitable Isabelle theory files, described in �2.4 below, utilizing a tool
program [Nan02,ON02]. ISM commands, which are not directly supported by
AutoFocus automata, may be simulated by output to special channels.

AutoFocus [HSSS96] is a freely available prototype CASE tool for specifica-
tion and simulation of distributed systems. Components and their behavior are
specified by a combination of System Structure Diagrams (SSDs), State Tran-
sition Diagrams (STDs) and auxiliary Data Type Definitions (DTDs). Their
execution is visualized using Extended Event Traces (EETs).

As an illustrating example, take a multi-threaded client/server architecture:
a server spawns a new working thread for each request received from a client.
The system structure diagram in Figure 4 shows one client, the server, and two
threads with their local variables and the named connections between them, all
including type information. The meaning of the diagram, i.e. the mapping to the
ISM semantics, should be obvious.

The state transition diagram in Figure 5 shows the three control states of a
Thread ISM and the transitions between them, which have the general format
precondition : inputs : outputs : assignments. Each input is given by a port name,
the ? symbol, and a message pattern, while each output is given by a port name,
the ! symbol, and a message value. The initial control state is marked with a black
bullet. The output to the special port cmd represents dynamic ISM commands
as described in �4. The example will be described in detail in �5.

The simulation, code generation and model checking capabilities of AutoFocus
cannot be used for (our extended versions of) ISMs because its underlying se-
mantics is clock-synchronous and does not deal with commands and global state.
Anyway, if one is interested mainly in the graphical capabilities of AutoFocus,
the AutoFocus syntax is general enough to cover most aspects of ISMs.
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Client

ServerThread Thread
th1:msg th2:msg

c1:msg

th2:msg

Server:msg

th1:msg

c2:msg

Local Variables:
  port myid  
  port sessid  

Local Variables:
  port nextT = th1

Local Variables:
  port myid  
  port sessid  

Fig. 4. Client/Server System Structure Diagram.

Init Ready Done

: Thread(t) ? Port(Client(c))
: Client(c) !  Port(Thread(t))
: myid := t, sessid := c

: Thread(myid)? Value(x)
: Client(sessid)! Value(server_function(x)),
  cmd! Disable(Thread(myid)),
  cmd! Stop(ISMId(Thread(myid))) :

Fig. 5. Client/Server State Transition Diagram: Thread

2.4 Isabelle/HOL Representation

When aiming at rigorous formal modeling or even system verification, tools per-
forming syntactic checks, type checks, and mechanized proofs are essential. We
employ the theorem proving system Isabelle/HOL because of excellent experi-
ence with this tool.

Isabelle [Pau94] is a generic interactive theorem prover that has been instan-
tiated to many logics, in particular the very practical Higher-Order Logic (HOL).
Despite of one nuisance5, we consider Isabelle/HOL the most flexible and ma-
ture modeling and verification environment available. Using it, system properties
can be expressed easily and adequately and can be verified using powerful proof
methods. Furthermore, Isabelle offers good facilities for textual presentation and
documentation.

ISMs can be defined in special sections of Isabelle theories. This abstract
representation has essentially a one-to-one correspondence to the AutoFocus
representation. The standard interpretation of these syntactical entities is the

5 The only drawback of Isabelle/HOL for applications like ours is the lack of dependent
types: for each system modeled there is a single type of message contents into which
all message data has to be injected, and the same holds for the local ISM states.
The alternative prover PVS supports dependent types, but on the other hand it is
less flexible, in particular, user-defined theory sections are not possible.
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meta theory described in �2.2. This theory is formalized as a hierarchy of Isabelle
theories, to which also the tool program [Nan02] refers.

An ISM section is introduced by the keyword ism and has the following
general structure6:

ism name =
ports pn type
inputs I pns
outputs O pns

messages msg type
[commands cmd type [default cmd expr’]]
states [state type]
[control cs type [init cs expr0]]
[data ds type [init ds expr0] [name ds name]]

[ transitions
(tr name [attrs]: [cs expr -> cs expr’]
[pre (bool expr)+]
[in (I pn I msgs)+]
[out (O pn O msgs)+]
[cmd cmd expr]
[post ((lvar name := expr)+ | ds expr’)]
)+

]

The meaning of the individual parts is as follows.
– The type expression pn type gives the Isabelle/HOL type of the port names,

while I pns and O pns denote the set of input and output port names, re-
spectively. If ports can be changed dynamically, like with dynamic ISMs, the
sets given here specify the initial or maximal interface.

– The type expression msg type gives the type of the messages, which is typi-
cally an algebraic datatype with a constructor for each kind of message.

– The optional cmd type specifies the type of ISM commands. It must be given
if commands are used in the transitions. The optional default command
cmd expr’, which typically is the empty list of commands, can be used to
shorten the specification of transitions that do not actually issue commands.

– The optional state type should be given if the current ISM forms part of a
parallel composition and the state types of the ISMs involved differ. In this
case, state type should be a free algebraic datatype with a constructor for
each state type of the ISMs involved.
The type expressions cs type and ds type give the types of the control and
data state, respectively, while the optional terms cs expr0 and ds expr0 spec-
ify their initial values — if not given, they default to some arbitrary value.
Either (i.e., not both) the control state or the data state may be absent.
The optional logical variable name ds name, which defaults to s, may be
used to refer to the whole data state within transition rules.

6 [. . . ] marks optional parts, (. . . )+ means one or more comma-delimited occurrences.
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Transitions are given via named rules where attrs is an optional list of attributes,
e.g. [intro]. The control states (if any) before and after the transition are
specified by the expressions7 cs expr and cs expr’.

Expressions within a rule may refer to the logical data state variable men-
tioned above. In particular, assuming that s is the name of the data state vari-
able, then the value of any local variable lvar of the ISM may be referred to by
lvar s. The scope of free variables appearing in a rule is the whole rule, i.e. free
variables are implicitly universally quantified (immediately) outside each rule.
All the following parts of a transition rule are optional:
– The pre part contains guard expressions bool expr, i.e. preconditions con-

straining the enabledness of a transition.
– The in part gives input port names I pn, each in conjunction with a list

I msgs of message patterns expected to be present in the corresponding input
buffer. When an ISM executes a transition, any free variables in message
patterns are bound to the actual values that have been input. Each port
name should be used at most once within each in part. Any input port not
explicitly mentioned is left untouched.

– The out part gives output port names O pns, each in conjunction with an
expression O msgs denoting a list of values designated for output to the
corresponding port. Each port name should be used at most once within
each out part. Any output port not mentioned does not obtain new output.

– The cmd part gives the ISM command cmd expr associated with the cur-
rent transition. Such a command can be given in each transition if the com-
mands subsection is present.

– The post part describes assignments of values expr to the local variables
lvar name of the data state. Variables not mentioned remain invariant. Al-
ternatively, an expression ds expr’ may be given that represents the entire
new data state after the transition. Assignments to the local variables suit an
operational style, whereas an axiomatic style can be achieved using ds expr’
(in conjunction with suitable constraints in the preconditions).

An ism theory section is translated to Isabelle/HOL concepts in a straight-
forward way using an extension to Isabelle, as described in [Nan02]. In particular,
each ISM section is translated to a record definition with the appropriate fields,
the most complex one being the transition relation, which is defined via an in-
ductive (but not actually recursive) definition.

The meta theory of ISMs that we have defined in Isabelle/HOL includes
all concepts mentioned in �2.2, in particular well-formedness, renaming, parallel
composition, runs, and composite runs. Further auxiliary concepts are intro-
duced as well, in particular reachability and induction schemes related to ISM
runs. The characteristic properties of these concepts, as required for system ver-
ification, are derived within Isabelle/HOL. All details of the meta theory may
be found in [ON02]. Example ism sections will be given in �5.
7 These need not be constant but may contain also variables, which is useful for

modeling generic transitions. In this case, one such transition has to be represented
by a set of transitions within AutoFocus.
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3 Extensions

In this section we give a conceptual overview of the instantiations of generic
ISMs available so far, namely by dynamic ports and running state of ISMs, by
ambient structures, and the combination of these features.

3.1 Dynamic ISMs

Dynamic ISMs (dISMs) are an instantiation of generic ISMs offering dynamic
creation, transfer, enabling and disabling of ports. They also offer activation and
deactivation of dISMs. This may be used to emulate ISM creation and deletion,
provided that all possible ISMs of the desired form are part of the system. Note
that “genuine” creation and deletion would not only be beyond the limits of the
underlying logic and its type system, but also less general: it would not give
the possibility to “reawaken” ISMs. These dynamic features show the power of
the generalization of ISMs. An application example that makes use of all these
features is given in �5.

A system of dynamic ISMs uses the global state to keep track of the currently
running dISMs, enabled ports, and port ownership. Changes to this state are
made by members of the system issuing suitable commands: a dynamic ISM may
request that a dISM not yet running is activated or a running dISM (including
itself) is stopped. Moreover, a dynamic ISM may create a new port and become
its initial owner. An owner of a port may receive input on the port, allow or
forbid others to output to it, or convey it to any other dISM. The facility to
enable or disable ports can be used to model e.g. flow control.

3.2 Ambient ISMs

An instantiation of generic ISMs quite different from dynamic ISMs are Ambient
ISMs (AmbISMs) [KO03]. They give a novel form of operational semantics to
the ambient calculus [CG98] where we extend the ability to communicate along
the lines of boxed ambients [BCC01]. Most importantly, by combining ambient
processes with ISMs, we introduce a concept of process state.

Ambients are nested administrative domains that contain processes which
(in our case) are ISMs. As usual, the ambient structure determines the ability
of the processes to communicate with each other. Ambients are mobile in the
sense that an ISM may move the ambient it belongs to, together with all ISMs
and sub-ambients contained in it, out of the parent ambient or into a sibling.
Moreover, an ambient may be deleted (“opened”) such that its contents are
poured into the surrounding ambient, or a new ambient may be created as a
child of the current one. Finally, (new) ISMs may be assigned to ambients.

All these operations are implemented by ISM commands manipulating a
particular instantiation of the global state, which is given by a tree structure
representing the ambient hierarchy.

In the ambient literature, ambient operations are called capabilities since
their “possession” can be seen as a qualification to perform the respective action.
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Semantically speaking, the qualification simply boils down to knowing the name
of the ambient involved.

3.3 Dynamic Ambient ISMs

As the name suggests, dynamic Ambient ISMs (dAmbISMs) [KO03] combine
dynamic ISMs and Ambient ISMs.

Dynamic Ambient ISMs inherit port handling and dAmbISM (de-)activation
from dynamic ISMs and ambients from Ambient ISMs. The concepts are mostly
orthogonal, except for one new feature: it is reasonable to offer the operations
that affect other dAmbISMs j (by activating or deactivating them or conveying
ports to them) only to dAmbISMs that are in the vicinity of j, by restricting the
respective dISM commands. We call this locality of dAmbISM manipulation.

We have taken care in designing dynamic ISMs and Ambient ISMs such that
their combination is painless both on implementation and application levels.

4 Semantics of Dynamic ISMs

In this section, we define the semantics of dynamic ISMs in detail and comment
on some of their properties. In doing so, we build immediately on the definitions
given in �2.2. Readers focusing on ISM application may just note the six dynamic
ISM commands (with their obvious parameters) and skip the details.

Dynamic State and Commands. The global state of dynamic ISMs has
the form δ = (running(δ), enabled(δ), owned(δ)), instantiating the generic global
state Γ to dSTATE = ℘(�)×℘(P)× (� → ℘(P)) where � is the type of dISM
identifiers. running(δ) is the set of dISMs currently active, enabled(δ) the set of
ports currently enabled, and owned(δ, i) the set of ports currently owned by the
dISM i.

The ISM type parameter C gets instantiated to dynamic ISM commands
dCMD∗ where dCMD = {Run(i)|i ∈ �} ∪ {Stop(i)|i ∈ �} ∪ {New(p)|p ∈ P}∪
{Convey(p, i)|p ∈ P ∧ i ∈ �}∪ {Enable(p)|p ∈ P} ∪ {Disable(p)|p ∈ P}.

Dynamic Transitions. Let i be the current dISM and js be the set of dISMs
that it is allowed to start or stop or convey ports to. The global transition relation

dTrans(js, i) is defined as {(δ, dcmds, δ′) | i ∈ running(δ) ∧ δ
i:js:dcmds−−−−−−−→

∗
δ′}

where the single-step command execution relation δ
i:js:dcmd−−−−−−→ δ′ means that the

command dcmd issued by i transfers the dynamic state δ to δ′, as defined by the
rules

j /∈ running(δ) ∧ j ∈ js

δ
i:js:Run(j)−−−−−−−→ δ(|running := running(δ) ∪ {j}|)

j ∈ running(δ) ∧ j ∈ js

δ
i:js:Stop(j)−−−−−−−→ δ(|running := running(δ) \ {j}|)
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p ∈ owned(δ, i) ∧ p /∈ enabled(δ)

δ
i:js:Enable(p)−−−−−−−−−→ δ(|enabled := enabled(δ) ∪ {p}|)

p ∈ owned(δ, i) ∧ p ∈ enabled(δ)

δ
i:js:Disable(p)−−−−−−−−−→ δ(|enabled := enabled(δ) \ {p}|)

p /∈ ⋃
i. owned(δ, i)

δ
i:js:New(p)−−−−−−−→ δ(|owned := ((owned(δ))[i := owned(δ, i) ∪ {p}]|)

p ∈ owned(δ, i) ∧ p /∈ owned(δ, j) ∧ j ∈ js

δ
i:js:Convey(p,j)−−−−−−−−−−→ δ(|owned := ((owned(δ))[j := owned(δ, j) ∪ {p},

i := owned(δ, i ) \ {p}])|)
where (| := |) is the component update operator on tuples.

Marking non-existing dISMs as running is possible but harmless. A dISM j
may be put into the running state only if it is not currently running and stopped
only if it is currently running. Ports may be conveyed also to dISMs not currently
running. Common to the Run(j), Stop(j), and Convey(p, j) commands is that
the range of ISMs j affected by them can be restricted by the set js. In the
definition of dCRuns below, js is instantiated to the universal set (implying no
restrictions), but in the definition of dynamic Ambient ISMs [KO03], js is used
to implement a locality constraint.

A port p may be enabled only if it is not currently enabled and disabled only
if it is currently enabled. Only a current owner may receive from, enable, disable,
and convey a port. Freshness of a new port is guaranteed by requiring that it
is not currently owned by any dISM. The definition of set In Out below implies
that input may be received also from ports not currently enabled, while output
may be sent only to enabled ports owned by currently running dISMs. The initial
input interface of an ISM determines its initial port ownership, whereas the initial
output interface serves as an upper limit of the output interface throughout the
life of the ISM.

Composite Runs. Finally, we instantiate the generic composite runs operator
for ISMs according to the needs of dynamic ISMs: for any dISM family A and
any set r ⊆ I of ISM identifiers describing those dISMs that shall be running
initially, dCRuns(A, r) gives the (set of traces of) composite runs of dynamic
ISMs. It has type ℘((CONF(dSTATE×Πi∈IΣi))∗), corresponding to the dISM
type ISM(dCMD∗, dSTATE×Πi∈IΣi)), and is defined as

dCRuns(A, r) ≡ CRuns((set In Out(A)), init dSTATE(A, r), (dTrans(∅)))
where

– ∅ is the complement of the empty set, i.e. the universal set.
– init dSTATE(A, r) = (r, ∅, (λi. if i ∈ I then In(Ai) else ∅)) yields the initial

dynamic state where the set of running dISMs is r, all ports (even those
not yet existing) are enabled, and port ownership is according to the input
interfaces of the members of A.
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– set In Out(A, δ) = (Ai(|In := owned(δ, i),Out := Out(Ai) ∩ enabled(δ) ∩⋃
j∈running(δ) owned(δ, j)|))i∈I transforms the initial ISM family A according

to the dynamic state δ by setting the input interface of each member i to the
ports it currently owns and the output interface to the subset of the initial
output ports that are currently enabled and owned by some running dISM j.

As a consequence of these definitions, and the generic definition of CRuns,
a family A of dISMs runs as follows. Initially, a subset r of the members of A
is active, all ports are enabled, and port ownership is determined by the corre-
sponding input interfaces. According to this initial dynamic state δ0 produced
by init dSTATE, a new dISM family A′ is determined by set In Out. When a
member of A′ performs a transition, the dynamic commands contained in the
transition transform the dynamic state to δ1, from which the next dISM family
A′′ is determined and used for the next transition, and so on.

Basic Properties. Since port ownership is used to defined the input interface
of the ISMs, the notion of well-formedness of parallel compositions introduced in
�2.2 means in the context of dynamic ISMs that port ownership is unique. This
nice property is preserved by the dynamic commands, as can be seen easily: in
the case of port creation, only one dISM becomes the owner of the new port, and
in the case of port transfer, port ownership is removed from the initial owner and
given to a single new owner. All other commands do not affect port ownership.

According to the definition of CRuns, the ports that a dynamic ISM is al-
lowed to use in its transitions are determined by the initial dynamic state of the
transition at hand. This implies for example that ports newly created by (the
commands part) of a transition can be communicated to peer dISMs immedi-
ately (i.e. in the same transition), but cannot immediately be used for sending
or receiving messages on it. Yet this is not a restriction of expressiveness because
the port will be available for I/O in any further transitions, and communicating
via a newly created port usually makes sense only if the port has already become
known to some peer ISM, which typically incurs some delay anyway.

5 Application Example

We present a typical application of dynamic ISMs for modeling dynamically com-
municating systems: the multi-threaded client/server architecture introduced
in �2.3. It demonstrates dISM activation and deactivation, port creation, port
transfer, and disabling of ports.

Our translation tool converts the AutoFocus diagrams to an Isabelle theory
as outlined in �2.4. Typically, the user then edits that theory file in order to en-
hance the presentation and augments it with commenting texts and proofs. We
reproduce here the complete textual documentation of the resulting Isabelle the-
ory, as automatically produced by the LATEX documentation facility of Isabelle.

theory ClientServer = ISM_package: — including dISM definitions
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The example consists of a client that concurrently opens two sessions with a
server. The sessions are identified by the reply ports provided by the client. The
server spawns a working thread for each connection request received, creates a
port for the thread, conveys the port to it, sends the client port to the new
thread port, and awaits any new requests. Each thread receives its own port
as well as the client port it is responsible for and sends the thread port to the
respective client. The client receives the thread port and uses it to send the value
it wants to be processed. The thread receives the value, computes the response
value, sends it to the client, disables its port, and stops itself. Finally, the client
collects the responses from the two server threads.

First we define the type of ports and dISM identifiers and a mapping between
the two. There is one server with one port, several threads with one port each,
and one client with several ports. The tags (i.e., datatype constructors used in
the definitions of port and id) help us to statically map ports to dISM identifiers,
which we do using the auxiliary function ISMId. Furthermore, we define a type
abbreviation cs_cmds for the instance of dynamic ISM commands used here.

typedecl sid — session identifier

typedecl tid — thread identifier

datatype port = Server | Thread tid | Client sid

datatype id = iServer | iThread tid | iClient

consts ISMId :: "port ⇒ id"

primrec "ISMId Server = iServer"

"ISMId (Thread t) = iThread t"

"ISMId (Client c) = iClient"

types cs_cmds = "(id, port) dcmd list"

The type of user data is called val. The server threads perform a function
(taking values to values) called server_function which is not further specified.
Messages sent within the system consist of either a port name or a value.

typedecl val — value

consts server_function :: "val ⇒ val"

datatype msg = Port port | Value val

The server has a data state holding the identity of the next thread to be
created. A thread may be in one of three control states and has two local variables
in its data state: the thread identifier and the client session identifier indicating
the session the thread is engaged in. Clients have a control state but no data
state. For technical reasons, namely the lack of dependent types in Isabelle/HOL,
we have to construct the union type state of all different local ISM states which
will be used in each ism section and the definition of the overall System below.

types Server_data = tid

datatype Thread_control = Init | Ready | Done

record Thread_data =

myid :: "tid"

sessid :: "sid"
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datatype Client_control = Open | Send | Close | Halt

datatype state = SS Server_data

| TS "Thread_control × Thread_data"

| CS Client_control

The server dISM, as well as all other dISMs, declares the type port for its
port interface, msg for the messages it sends and receives, and cs_cmds for the
dISM commands it issues. It listens only to the port Server but potentially talks
to all threads that may ever come into existence. The name of its data state is
nextT identifying the next thread to be dispatched, with the initial value th1.
We let the server pre-compute (and store for the next connection request) the
identity of the next thread because this saves us from defining two transitions
where in the first transition the server receives the client port, stores it and
creates a new thread as well as a new port, and in the second transition the
server sends the newly created port and the client port to the thread.

consts th1 :: tid

ism Server =

ports port

inputs "{Server}"

outputs "{Thread c |c. True}"

messages msg

commands cs_cmds

states state

data Server_data init "th1" name "nextT" — next thread to be created

transitions

dispatch:

pre "tp = Thread nextT" — just used as an abbreviation mechanism

in "Server" "[Port cl]"

out "Thread nextT" "[Port cl]"

cmd "[Convey tp (ISMId tp), Run (ISMId tp), New (Thread th’)]"

— the thread identifier th’ is fresh by the semantics of New

post "th’" — the new value of nextT is th’

The initial input interface of a thread is empty because the server supplies a
port to the thread dynamically. The output interface is the set of (potentially)
all clients ports. The thread holds its two local variables (with arbitrary initial
values) in the data state variable s and sets them according to the ports received
in its first transition. The definition of this transition does not give a cmd
subsection and thus makes implicit use of the default command, which is the
empty list here.

ism Thread =

ports port

inputs "{}" — the thread port will be supplied by the Server

outputs "{Thread c |c. True}"

messages msg

commands cs_cmds default "[]"
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states state

control Thread_control init "Init"

data Thread_data

transitions

"init":

Init → Ready

in "Thread t" "[Port (Client c)]"

— the thread identifier t (and thus the thread port) is implicitly learned here

— the input message pattern Port (Client c) guarantees to the thread that

the port received actually is a client port (where c identifies the session)

out "Client c" "[Port (Thread t)]"

post myid := "t", sessid := "c" work:

Ready → Done

in "Thread (myid s)" "[Value x]" — s denotes the current data state

out "Client (sessid s)" "[Value (server_function x)]"

cmd "[Disable (Thread (myid s)), Stop (ISMId (Thread (myid s)))]"

We declare two session identifiers used as the input interface of the client.
The client may output to the server and any threads. It sends the two connection
requests immediately one after the other to the server port, waits until it has
received the thread ports on its two ports, uses the two thread ports to concur-
rently send two (arbitrary) request values, and collects the two responses. Note
the use of the control state to serialize the I/O operations. This example client
synchronizes its two sessions. Of course, one could add further clients whose
(single or multiple) sessions do not interfere at all with the other sessions.

consts c1 :: sid

consts c2 :: sid

ism Client =

ports "port"

inputs "{Client c1, Client c2}"

outputs "{Server} ∪ {Thread c |c. True}"

messages msg

commands cs_cmds default "[]"

states state

control Client_control init "Open"

transitions

"open":

Open → Send

out Server "[Port (Client c1), Port (Client c2)]"

send:

Send → Close

in "Client c1" "[Port (Thread t1)]", "Client c2" "[Port (Thread t1)]"

out"Thread t1" "[Value x1] ", "Thread t2" "[Value x2]"

close:

Close → Halt

in "Client c1" "[Value y1]" , "Client c2" "[Value y2]"
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The overall system maps the dISM identifiers to the corresponding dISMs.
Note that the parallel composition already includes all the threads that may
become active at some time. When defining the composite runs of the system,
we specify that initially the client and the server, but no thread, is running.
constdefs

System :: "(id, (cs_cmds, port, msg, state) ism) family"

"System ≡ (λi. case i of iServer ⇒ Server.ism

| iThread tid ⇒ Thread.ism

| iClient ⇒ Client.ism,

{iServer, iClient} ∪ {iThread t |t. True})"

Runs :: "((port, msg, (id,port) dstate × (id ⇒ state)) conf list) set"

"Runs ≡ d_comp_runs System {iClient, iServer}"

The parallel composition of all dISMs in the system is (at least initially)
well-formed, i.e. their inputs do not overlap:

theorem wf_comp_System: "wf_comp System"

The proof of this property is routine and essentially automatic.
The system components are (statically) well-formed if the input interfaces

of the threads are not taken into account. The system is dynamically closed
because the server augments the input interface of each thread with the Convey

command before the thread is activated, the thread receives input only from the
port conveyed to it, and all input and output operations of all system components
have their counterparts within the system.

This ends our small application example. It should demonstrate that dynamic
ISMs are adequate means to describe dynamically changing communication pat-
terns and that the abstraction level of ISMs is high enough for focusing on the
essential aspects of reactive systems and low enough for making the transition
to the technical implementation straightforward.

6 Discussion

Since dynamic ISMs provide a stateful notion of both dynamic and reactive sys-
tems, it is interesting to compare them both with well-known notions of dynamic
systems and with state automata used for modeling reactive systems.

The π-calculus [MPW92] and its descendants have a built-in notion of com-
munication channels and handle dynamics by passing channel identifiers and in-
stantiating channel variables. Restricting the calculus to a small number of basic
concepts leads to a concise and very abstract formalism still bearing a rich meta-
theory. This makes the π-calculus particularly suited to study general concepts,
but lacks feature for adequately specifying complex industrial-scale systems. In
particular, state information is cumbersome to encode, as is local computation:
even basic data types like numbers and the operations on them, which naturally
occur within processes, have to be translated to auxiliary processes that need
to interact via extra channels — an utterly inadequate representation that ren-
ders practical applications incomprehensible. Moreover, communication is syn-
chronous via global channels without support for simultaneous multiple I/O
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and ownership restrictions like in dISMs. There is some basic tool support for
verification but not for graphical design and documentation of complex specifi-
cations, as offered by AutoFocus. We conclude that the quite abstract π-calculus
is well-suited for academic research, while the more operational-style dynamic
ISM approach with its rather concrete structure tailored for stateful reactive
systems makes practical system analysis easier to conduct and to understand.

In the area of state-based automata, there are approaches particularly ad-
dressing the complexity of industrial-scale systems like StateCharts, which are
supported by the CASE tool StateMate [HLN+90]. Statecharts offer rich struc-
turing notions like hierarchical states as well as a notion of time. On the other
hand, the communication facilities offered by are rather basic: messaging is
achieved via synchronous events that are distributed globally, i.e. in an undi-
rected (and uncontrollable) way. Though the advanced concepts of Statecharts
like hierarchical states could at least partially be encoded in the (dynamic) ISM
setting, Statecharts seem to be more adequate in the area of modeling non-
distributed systems. On the other hand, they do not offer asynchronous com-
munication with controlled dynamics that is desirable to model systems like the
one given in �5. Moreover, tool support for verification is very poor, which is
partially due to the fact that the precise semantics of Statecharts (intentionally)
had been left underspecified such that various interpretations exist.

Compared to dISMs, also most other state based automata approaches are
more basic with respect to communication. Recall that the development of the
ISM notion has been originally motivated by the need to extend I/O automata
[LT89] with more advanced communication concepts.

There is other related work addressing the extension of state based ap-
proaches with particular aspects of dynamic behavior, e.g., [GR95,HS97,Zap02],
however, we are not aware of any flexible approach, supported by CASE and
verification tools, that can handle several kinds of dynamics in combination.

The ISM instantiations with dynamic features introduced in this paper are
intended for modeling and analyzing security aspects of dynamic systems in-
cluding multi-threaded and mobile agent systems. When modeling such systems,
additional restrictions may apply with respect to the type of manipulation of the
global state that a single ISM can perform, or with respect to the structure of
the whole system, e.g., the existence of pre-defined components. Future work will
include the provision of d(Amb)ISM frameworks for particular application sce-
narios and system paradigms, leaving the analyst only with the task of specifying
those component ISMs that are specific for the application at hand.

As applications of generic ISMs evolve, new instantiations may turn out to
be useful and may be implemented by ourselves and/or third parties.

We plan to extend the proof support offered by our Isabelle implementation
of the ISM meta theory, as far as required by applications. Since our aim is
to prove security, which typically is a collection of safety (but not liveness)
properties, the most important next steps will be proof support for refinement
and compositionality, i.e. proof decomposition wrt. parallel composition.
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7 Conclusion

We have generalized Interacting State Machines, instantiated them with dynamic
features, and demonstrated how to employ them for system modeling.

The extension is based on the introduction of global state for a system of
ISMs. While generic ISMs do not further specify the structure of the global
state and the type of the commands, different instantiations supporting differ-
ent kinds of dynamics can be given. We have done so by defining dynamic ISMs
allowing for mutable communication interfaces and a form of creation and dele-
tion of components, as well as Ambient ISMs considering mutable contexts of
components and components moving between contexts. The latter variant gives
an operational semantics to the (boxed) ambient calculus. Furthermore, both
variants can be combined to form dynamic Ambient ISMs, thus giving a very
expressive and flexible approach to dynamic automata. We have defined generic
and dynamic ISMs fully and formally, while the formalization and use of Ambient
and dynamic Ambient ISMs is the subject of the companion paper [KO03].

By providing the concept of a global state appearing in different flavors, the
ISM approach can be tailored to the analysis task at hand. Each of the extensions
presented can be used on its own or be combined depending on the system that
is to be analyzed. This is seen as an important practical advantage, since it does
not leave users with the burden of additional structure if there is no need to,
but on the other hand gives high expressive power where required.

Since we have fully formalized generic ISMs and their descendants in Isabelle/
HOL, we both inherit its advanced interactive and semi-automatic proof support
features and achieve maximal reliability of the results. Experience already gained
with real-world application examples, e.g. [OL02,OWL03] using basic ISMs, in-
dicates that a high degree of proof automation can be achieved in this way, even
though typical reactive systems have infinite state space and transitions heavily
depend on message buffer contents and other (local and global) data.
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Abstract. We report on our experience with using the PVS theorem
prover as a verification tool for analyzing systems modelled in RSML-e

– a synchronous dataflow language. RSML-e is a formal specification
language particularly well-suited for specifying requirements of reactive
systems. We advocate a specification-centered approach to system devel-
opment, in which various development activities like prototyping, analy-
sis, verification, testing, and code-generation are based on a formal model
of the system requirements. To support the analysis and verification ac-
tivities, we developed a translator from RSML-e to PVS as part of our
toolset. We used these tools to successfully verify properties of the mode
logic of a flight-guidance system specified in RSML-e by our industrial
partner, Rockwell Collins Inc. The results from this exercise are encour-
aging. This paper describes our approach to formalizing RSML-e in PVS
and discusses briefly the strategies adopted in proving properties as well
as some experiences.

1 Introduction

Software development for critical control systems, such as the software control-
ling aeronautics applications and medical devices, is a costly and time consuming
process. Verification and validation of such systems must be an ongoing process
throughout the development life-cycle. Currently, inspections and testing are the
validation and verification methods used. We advocate that these methods be
complemented with model checking and theorem proving. Also, other early life-
cycle approaches like prototyping and specification simulation helps the analyst
to evaluate and address poorly understood aspects of the system behavior. We
advocate a specification-centered approach to development, in which a formal
model of the system requirements is used to drive these life-cycle activities.

To realize a concrete instantiation of this approach, we have constructed a
framework for developing tools to support specification-centered development
using RSML-e as the requirements specification language. RSML-e [15] is a for-
mal specification language particularly well-suited for specifying requirements
of reactive systems. The Nimbus toolset [14] provides the capability to execute
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RSML-e specifications. We have extended the analysis capabilities of the toolset
by constructing translators to various verification tools such as NuSMV [12] and
PVS [7]. Having the capacity to use different techniques like model-checking
and theorem-proving to analyze the same RSML-e model helps us leverage the
unique advantages of each of these techniques. We have conducted case-studies
using realistic industrial models to validate our approach.

In this report we present our formalization of RSML-e in PVS. We have
implemented a translator in the Nimbus tool and used Nimbus and PVS to
verify various interesting properties of the mode logic of a realistic flight guidance
system. Our motivation for the translation project and in general for using PVS
as a verification tool was to help us prove classes of properties we could not prove
using model-checking techniques. We also wanted to evaluate: (1) the feasibility
of using a theorem prover as an analysis back-end to a specification tool, (2)
the difficulty of constructing proofs, and (3) the scalability of the approach to
industrial size systems.

In constructing translators to different verification tools our goals for the
translation were driven by the specific capabilities of the tool and the expected
user-interaction with the tools. Thus, when translating to the model-checker [5],
we built in certain conservative abstractions that would make model-checking
feasible by sacrificing some accuracy and expressiveness of the original RSML-e

specification. This was an acceptable trade-off since model-checking, when fea-
sible, is completely automated and does not require any user interaction.

On the other hand, theorem-proving is essentially an interactive process.
Thus, readability of the translated output and maintaining a close correspon-
dence with the source specification were of importance. Further, there is no need
to abstract away details in the source specification. Thus, the requirements for
the translation were that it should fully capture the semantics of the source
language in an elegant way producing readable PVS specifications.

Our formalization of RSML-e in PVS is built around the concept of objects as
streams, an idea similar to that of [2]. All entities in the specification – such as,
variables, expressions and assignments – are viewed as state-indexed sequences
of values. The specification, taken in totality, is considered as a set of constraints
on the possible execution traces (histories) of the system. Verification, in this
context, is checking whether the set of possible histories as constrained by the
specification, satisfy a given predicate. Our formalization has the advantage of
retaining both the structure and the semantics of the RSML-e source specifi-
cation in the translated PVS output. With some carefully chosen syntax, this
makes the full power of the theorem prover available to the user at a level of
representation that is in direct correspondence with the source specification. In
our experience this has been of practical significance when constructing PVS
proofs.

Our experience so far has been encouraging. Currently, the proof construction
part is essentially a manual process. Even though the proofs are typically large,
they are straightforward to construct. The complexity of the proofs does not
seem to grow excessively with the increased complexity of the models. Where
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the model checking efforts increase exponentially, our experiences indicate that
the effort involved in constructing PVS proofs will exhibit a more linear growth
pattern. We are in the process of empirically testing our hypothesis about the
scalability of PVS proofs.

The rest of the paper is organized as follows. The next section briefly discusses
the related efforts in this area. Section 3 provides an overview of the formal
specification language RSML-e and the PVS theorem prover. Section 4 describes
our translation scheme in detail. Section 5 discusses our approach to proving
properties. We then conclude the paper with a brief discussion in Section 6.

2 Related Work

We briefly discuss some of the related works in the area of using theorem proving
for verifying reactive systems.

Owre et al. [13] discuss a systematic way to represent state-machine speci-
fications of reactive systems in PVS, such as specifications written in SCR [6].
Extending that approach to RSML-e, however, made reasoning with large sys-
tems a bit cumbersome. This was primarily due to the difficulty in understanding
the mechanically translated PVS output and relating it to the original RSML-e

specification, a task that was often required during proof construction.
Bensalem et al. [2] discuss a methodology for proving control systems spec-

ified in Lustre using PVS. Their approach involves representing Lustre ob-
jects as streams in PVS, similar to the one that we describe here. They present
a method for constructing provably correct control programs using Lustre and
PVS in combination. An advantage of this approach is that property specifica-
tion is not different from the specification of the system requirements.

TAME [1] is an interface for verifying properties of automata like, I/O au-
tomata, Lynch-Vaandrager timed automata and SCR. It provides a set of tem-
plates for specifying these automata and also a set of specializing strategies for
reasoning about these automata in PVS. An advantage of this approach is that
users can construct proofs using template strategies which are more meaningful
and intuitive in the context of automata verification, without having to under-
stand the underlying PVS steps. In our work, we only have a few hand-crafted
specialized strategies that are used in reasoning about RSML-e specifications.
But this has been adequate to construct proofs of non-trivial properties on fairly
complex models. We are currently working on constructing specialized strategies
and investigating auto-generation of model-specific strategies to speed-up the
proof construction process.

3 Framework

Figure 1 shows an overview of our verification framework. The user builds a
behavioral model of the system in the fully formal and executable specification
language RSML-e. The specification is then fed to the Nimbus simulator which
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Fig. 1. Verification Framework.

checks that the specification is well formed and type correct. After the specifica-
tion is checked, the user can translate the specification to the PVS or NuSMV
input languages. The specification can then be analyzed for various properties
using the theorem prover. The user can also input proof strategies to aid the
proof process.

3.1 Flight Guidance System

A Flight Guidance System (FGS)1 is a component of the overall Flight Control
System (FCS). It compares the measured state of an aircraft (position, speed,
and altitude) to the desired state and generates pitch and roll guidance com-
mands to minimize the difference between the measured and desired state. The
FGS can be broken down to mode logic, which determines which lateral and ver-
tical modes of operation are active and armed at any given time, and the flight
control laws that accept information about the aircraft’s current and desired
state and compute the pitch and roll guidance commands. We will be using a
scaled down version of FGS as a running example in these discussions, but the
equivalent properties to the examples in this paper have been proven on larger
FGS models.

Figure 2 illustrates a graphical view of a FGS in the Nimbus environment.
The figure shows the hierarchical and parallel state machines representing the
different modes in the FGS. The arrows represent the possible transitions be-
tween states. The primary modes of interest in the FGS are the horizontal and
vertical modes. The horizontal modes control the behavior of the aircraft about
the longitudinal, or roll, axis, while the vertical modes control the behavior of
the aircraft about the vertical, or pitch, axis. In addition, there are a number
of auxiliary modes, such as half-bank mode, that control other aspects of the
aircraft’s behavior.

1 We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins Inc. for the
information on flight control systems and for letting us use the RSML-e models they
have developed during our collaboration.
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Fig. 2. Flight Guidance System.

3.2 Overview of RSML-e

RSML-e stands for Requirements State Machine Language without Events. It is
based on the Statecharts [8] like language Requirements State Machine Language
(RSML) [11]. It is fully formal and a synchronous data-flow language without
any internal broadcast events, which have been found to be error-prone [10].

An RSML-e specification consists of a collection of input variables, state vari-
ables, input/output interfaces, functions, macros, and constants; input variables
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STATE_VARIABLE ROLL : Base_State
PARENT : Modes.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State
TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
TRANSITION UNDEFINED TO Selected IF Select_ROLL()
TRANSITION Cleared TO Selected IF Select_ROLL()
TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :
TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;
Modes = On : T;

END TABLE
END MACRO

MACRO Deselect_ROLL() :
TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;
When(Modes = Off) : * T;

END TABLE
END MACRO

Fig. 3. A small portion of the FGS specification in RSML-e .

are used to record the values observed in the environment, state variables are
organized in a hierarchical fashion and are used to model various states of the
control model, interfaces act as communication gateways to the external environ-
ment, and functions and macros encapsulate computations providing increased
readability and ease of use.

Figure 3 shows a specification fragment of an RSML-e specification of the
Flight Guidance System2. The figure shows the definition of a state variable,
ROLL. ROLL is the default lateral mode in the FGS mode logic. The state variable
ROLL is declared as a child state of Modes and is active when the variable Modes
has the value On – this notion of hierarchical variables provides the same ab-
stractions and structuring mechanism as the AND and OR states in Statecharts
, but the semantics is much simpler [15].

The conditions under which the state variable changes value are defined in
the TRANSITION clauses in the definition. The condition tables are encoded in
the macros, Select ROLL and Deselect ROLL. The use of macros not only im-
proves the readability of the specifications but also helps localize errors and
future changes. The conditions are represented in the AND-OR table format. The
tables are adopted from the original RSML notation – each column of truth
values represents a conjunction of the propositions in the leftmost column (a ‘*’
represents a “don’t care” condition). If a table contains several columns, we take
the disjunction of the columns; thus, the table is a way of expressing conditions
in a disjunctive normal form.

2 We use here the ASCII version of RSML-e since it is much more compact than the
more readable typeset version.
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Frequently we might need to refer to values of the variables at a certain point
in the variable history. RSML-e provides a construct for doing this, as shown in
the following example.

MACRO Were_Modes_Off() :
PREV_STEP(Modes) = Off

END MACRO

In the above example, PREV STEP(Modes) refers to the previous value of the
state variable Modes.

Data-Flow Semantics: RSML-e transitions are purely condition-based and free
of internal events – as soon as the guards in a variable definition can be evaluated,
it will take on its new value. The variables are partially ordered based on the data
dependency induced by the guard conditions – a similar semantics is adopted in
the programming language Lustre [2]. Data-flow semantics removes complex
issues caused by internal events, such as infinite triggering events or analysis of
micro-steps [4], from the language.

Use of Undefined Values: Startup behavior and behavior in the face of sensor
failures pose particular challenges when specifying control systems – under these
circumstances we simply do not know what the state of the environment might
be. RSML-e supports modeling of this uncertainty by providing the concept of
Undefinedness. One can explicitly specify the initial value of variables at startup
to be Undefined, such as ROLL=UNDEFINED in Figure 3. Also, when a parent
variable takes on a new value, each child variable of the parent value that was
just changed are no longer relevant and must not be used – these child variables
are Undefined. RSML-e supports both explicit and implicit Undefinedness.

3.3 Properties of Interest for Theorem Proving

Most of the FGS properties could be expressed as state invariants for verification.
State invariants are suitable for model checking and indeed around 290 FGS
properties have been successfully model checked for the largest FGS model [5].
However, there were also some other types of interesting properties, like the FGS
mode confusion properties [3], some of which cannot be model checked. As an
example, consider the following property:

Any two states that do not have the same modes, have different mode
annunciations.

This property compares two arbitrary states, with no particular values specified
for modes or mode annunciations, other than saying that the values are either
same or different [9]. This property cannot be expressed in the temporal logics
used by conventional model-checkers. Proving such mode confusion properties
was a motivation for the current work in exploring the application of a theorem
prover like PVS.
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3.4 Overview of PVS

PVS [7] (Prototype Verification System) provides an environment for effective
proof construction in addition to writing specifications. Its input language is
based on simply-typed higher-order logic with function, record and product types
and recursive type definitions. The language provides a powerful mechanism to
specify and use sub-types. The powerful type system means that type-checking a
PVS specification is in general an undecidable problem. Type-checking could re-
quire guidance to the theorem prover from the user in dismissing type correctness
conditions. PVS specifications are organized into theories that can be parame-
terized. The primitive proof steps are composed of efficient decision procedures,
rewriting rules and BDD based propositional simplifications.

4 Translating from RSML-e to PVS

We considered two competing approaches for representing RSML-e specifications
in PVS.

The first approach is to view the state-space as a cross product of the domains
of system variables. The specification is viewed as a collection of constraints de-
termining the set of possible initial states and the set of possible transitions
between states. Then, the transitive closure of the initial states under the tran-
sition relation constitutes the reachable state-space of the system. The system
will satisfy a certain property of interest if it can be established that every
reachable state satisfies this property. This view is usually adopted when one
is verifying state-based specifications using model-checkers like SMV or the µ-
calculus model-checker of PVS. Owre et al. [13] discuss such an approach to
translate requirement specifications written in SCR to PVS.

The second approach is to consider state as a point of observation of certain
quantities of interest in the system. The system variables represent quantities of
interest, i.e., they are mappings from states (the observation points) to values
of those quantities (at those observation points). When the system responds
to changes in its environment, it moves to a new observation point, i.e., to a
new state. So each state has an associated (finite) history of observations up
to that point. In this view, the system specification is a set of constraints on
the histories of observations at each state. If we think of constraints as Boolean
valued quantities constructed using system variables, then the specification lists
a set of such quantities that are given to be true in every state. Properties of
interest that one wants to prove are also similar to constraints but one has to
establish that these are true. Bensalem et al. [2] adopt such an approach for
proving properties of control system specified in Lustre using PVS.

In an earlier version of our translation we adopted the former approach to
translate RSML-e specifications to PVS. However, we found that it was difficult
to construct proof of properties in PVS for large systems using such an approach.
Part of the difficulty arose from the fact that one had to carry around the
complete state construct in proofs, even though, much of the reasoning and
proof steps involved only a few variables at any given time. Also, the translated
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output was quite difficult to comprehend. The latter approach, which we adopted
subsequently, overcomes these shortcomings.

In the current approach, objects defined in RSML-e are treated as sequences
of values over states in PVS, also called streams. Operations over values are
uniformly lifted to operations over streams by applying the operation to values
at each state. The resulting translation to PVS retains a close correspondence
with the original RSML-e specification making it easy to understand and follow.
In the next two subsections we discuss the translation scheme in detail.

4.1 Translation Foundation

As the first step to translation, we defined a library rsmlne.pvs containing def-
initions for various constructs of the RSML-e language in PVS. These RSML-e

constructs include the basic types, operations to lift RSML-e objects to streams,
RSML-e specific operations, and so on. This PVS library will then be imported
into every translated RSML-e specification, so that the basic definitions can be
reused across all specifications. Due to space constraints, we present only the
most relevant aspects of the translation scheme here.

Undefined and Defined Values: In RSML-e variables may be undefined in
certain configurations (global states) of the system. To capture this notion, we
uniformly lift all RSML-e types to include a null element. Defined values are
accessed using a C-like address/contents (&/* ) syntax:

rType[T: TYPE]: DATATYPE
BEGIN
null : undef?
&(*: T) : def?
END rType

A generic function ext extends operation on T-values to null-extended-T-
values by applying the operation to the contents when the value is defined and
otherwise returning null.

States and History States: As explained earlier, states are just points of
observations of quantities of interest in the system. The only properties that
we require of states are that: 1) There is some starting point for observations -
initial state, and 2) There is a unique history for each state - previous state. In
our theory, we define State as a natural number: the initial state being zero and
n being the predecessor of n + 1, and zero being the predecessor of itself.

State: TYPE = nat
init: State = 0

RSML-e specifications may use certain types of history operations on objects
like variables and interfaces. These operations may access values of variables at
certain points in their history (for example, when the value changed the second
previous time). To uniformly translate such expressions, we define a single history
operation on States called last. This is a higher order recursive function, which
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results in a state transformer, i.e., the result is a mapping from a state to a
(previous) state. It returns the zth last state at which the take function was
true.

prev(s: State): State = pred(s)
history?(s: State)(x: State):bool= x <= s
Filter: TYPE = [State -> bool]
last(take: Filter, z: posnat)(s:State): RECURSIVE (history?(s)) =

IF s = init OR (z = 1 AND take(s)) THEN s
ELSE last(take, IF take(s) THEN z - 1 ELSE z ENDIF) (prev(s))
ENDIF

MEASURE s

Objects as Streams: RSML-e objects are implemented as streams that map
State to (null-extended) values:

Object: TYPE = [State -> rType[T]]

In certain contexts, objects may have to be constrained to be defined (or
undefined) at every state. The predicates defined? and undefined? are used
for this purpose. The object UNDEFINED returns null at each state. The L operator
lifts the RSML-e constants to streams.

L(x: T): (constant?[T]) = LAMBDA s: &(x)

The RSML-e entities, state variables and input variables and the return types
of functions and macros, are simply objects of the appropriate type; constants
are constant objects of their respective types; and, conditions (such as those
guarding assignments to variables) are defined Boolean objects.

rSTVAR__: TYPE = Object[T]
rINVAR__: TYPE = Object[T]
rFUNCT__: TYPE = Object[T]
rMACRO__: TYPE = Object[bool]
rFIELD__: TYPE = (defined?[T])
rCONST__: TYPE = (constant?[T])
rCOND__ : TYPE = (defined?[bool])

Messages in RSML-e are data received and sent by the system at the inter-
faces and such data are always defined. We represent Messages from RSML-e as
records in PVS, with fields having rFIELD [T] type for the appropriate type T.

RSML-e Basic Types: The RSML-e types, BOOLEAN, REAL, INTEGER have
equivalent types in PVS. RSML-e type TIME is simply of type nonnegative real
in PVS. TIME is an intrinsic object in RSML-e that is always defined and is
monotonically increasing with respect to State.

RSML-e Specific Operations: Here we define a few RSML-e specific opera-
tions on objects. Equality comparison is a safe-operation even if one or both of
its operands are Undefined. That is its result will always be defined. We use the
symbolic operator == to distinguish it from the normal equality operator =.
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==(obj1, obj2: Object[T]): (defined?[bool]) =
LAMBDA (s: State): &(obj1(s) = obj2(s))

The unary operator PREV yields an object that gives the value of its operand
in the previous state:

PREV(obj: Object[T]): Object[T] = LAMBDA (s: State): obj(prev(s))

We require a binary BECAME? operation on objects, with the intuitive mean-
ing “did the first object’s value change to that of the second object in this
state?”. Also required is a unary CHANGED? that simply checks if the object’s
value changed in this state.

BECAME?(obj1, obj2: Object[T]): (defined?[bool]) =
LAMBDA s: &(obj1(s) /= PREV(obj1)(s) AND obj1(s) = obj2(s));

CHANGED?(obj: Object[T]): (defined?[bool]) =
LAMBDA (s: State): &(obj(s) /= PREV(obj)(s));

With this formulation, one could express SCR style operators like @T(expr),
@F(expr) and @C(expr) as BECAME?(expr, true), BECAME?(expr, false)
and CHANGED?(expr) respectively. Also note that these could be used to de-
termine history states in a general fashion, such as, the nth last time variable A
changed. The function PREV STATE takes an object representing a condition and
the step count to compute the appropriate history state:

PREV_STATE(c: Object[bool], z: posnat):[s:State -> (history?(s))] =
last(* o (c == L(TRUE)), z)

A Lustre style followed-by operator (->) is useful in expressing initial state
values for RSML-e entities. We overload the ANDTHEN infix operator in PVS for
this purpose, which conveys the intuitive meaning of followed-by:

ANDTHEN(obj1, obj2: Object[T]): Object[T] =
LAMBDA (s: State): IF s = init THEN obj1(s) ELSE obj2(s) ENDIF

Similarly, we also overload the WHEN infix operator in PVS to express parent
state constraint. The expression (A WHEN B) will have the value of A when the
condition B is true in a state and otherwise be undefined:

WHEN(obj: Object[T], p: (defined?[bool])): Object[T] =
LAMBDA (s: State): IF *(p(s)) THEN obj(s) ELSE UNDEFINED(s) ENDIF

Guards and Guarded Expressions: Computation in RSML-e specifications
is expressed in terms of guarded assignments to variables. An assignment is
triggered if its corresponding guard evaluates to true. Thus, for consistency (or
to avoid non-determinism), the guards of different assignments of a variable
must be disjoint at each state. Also, for completeness, the disjunction of the
guards of all assignments of a variable must be a tautology. The construct, COND
... ENDCOND in PVS, is typically used to capture such guarded expressions.
It is equivalent to a series of if-then-else expressions, except that it generates
disjointedness and completeness constraints as type-correctness obligations to be
proved by the user. One could lift this construct state-wise to streams (and thus
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to RSML-e objects) by evaluating the guard and the expressions at each state.
The RSML-e library for PVS defines operators [| |], >>, /\ and ELSE?, such
that,

[| ... >> ... /\ ... /\ ELSE? >> ... |]

is equivalent to lifting,

COND ... -> ... , ... , ELSE -> ... ENDCOND

to RSML-e objects, state-wise. The translator can be set to generate default
ELSE? cases that just stutter previous state values. This is useful when the
specification is written assuming the implicit behavior of “no change in value
when none of the guards are true”.

4.2 RSML-e to PVS Translation

On the basis of the translation foundation discussed above, we will now illustrate
the actual translation of various RSML-e constructs. The rsmlne.pvs library
will be imported into the translated PVS specification. The basic construct in
RSML-e is the variable and the transition relation defined on the variable – the
translation of these constructs is discussed in detail below.

Type Definitions: Basic RSML-e types are defined in the rsmlne.pvs library.
RSML-e enumerated types are defined in a straightforward way in PVS.

TYPE_DEF Base_State {Cleared, Selected}

translates to

Base_State: TYPE = {Cleared, Selected}

Variable Declarations: Input variable declarations create equivalent PVS def-
initions for the type, if necessary. The expected min and expected max specifi-
cations, if they exist, are not declared, but just translated as constants wherever
those are used. The unit and classification definitions are ignored since they are
primarily present for documentation purposes.

IN_VARIABLE FD_Switch: Switch
INITIAL_VALUE : UNDEFINED
CLASSIFICATION: MONITORED

END IN_VARIABLE

translates to

FD_Switch: rINVAR__[Switch]

The state variable declarations are handled in a similar way as the input
variables. The declaration for the state variable ROLL from figure 3 translates to

ROLL: rSTVAR__[Base_State]
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Functions and Macros: Functions and macros are both defined as functions,
with macros being functions returning Boolean values. The macro
Deselect ROLL from figure 3 translates to

Deselect_ROLL: rFUNCT__[BOOLEAN] =
When_Nonbasic_Lateral_Mode_Activated
OR
BECAME?((Modes == L(Off)), L(TRUE))

State Variable Assignments: The bulk of the computation in an RSML-e

specification is in the assignments and their guard conditions expressed as
AND/OR tables. While there could be no cycles in the dependency among vari-
able values at a given state in a correct RSML-e specification, assignment ex-
pressions and guards may frequently refer to one or more history state values of
any number of variables. Thus, variable histories are defined by a set of mutu-
ally recursive equations. This mutual recursion cannot be directly represented
in PVS. This problem is also addressed in the [2] as the feedback loop problem.
To handle the mutual recursion, we split the definitions for variables into three
parts:

– Declaration of the variable
– Defining equation for the variable
– Assertion that the variable is equal to the value given by its defining equation.

The declarations of variables is explained earlier. For the rest of the definition:
First the guard conditions are translated to individual condition objects. While
this is not necessary, it makes the translator output readable and easy to follow.
If the assignment is given as a transition from one state to another, it is internally
rewritten to an assignment form where the guard includes the previous state as
a constraint. As an example, the first guard condition for the ROLL state variable
from figure 3,

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()

translates to

ROLL__T1: rCOND =
(NOT Select_ROLL)
AND
(PREV(ROLL) == UNDEFINED)

The transition relation needs to consider the hierarchical relationship between
variables. The transition relation for child variables needs to check if the parent
variable has the right value. If the parent has the right value, the child variable
is relevant and its transition relation is evaluated normally. If the parent variable
has the wrong value, then the child will be undefined. This is captured using the
WHEN operator.
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The complete definition of the ROLL state variable is translated as,

ROLL__DEF: rFUNCT__[Base_State] =
(UNDEFINED
ANDTHEN ([| ROLL__T1 >> L(Cleared)

/\ ROLL__T2 >> L(Selected)
/\ ROLL__T3 >> L(Selected)
/\ ROLL__T4 >> L(Cleared)
/\ ELSE? >> PREV(ROLL)
|]
WHEN (Modes == L(On))))

ROLL__DECL: AXIOM ROLL = ROLL__DEF

Finally, an axiom is generated to assert that the variable is equivalent to the
value given by its defining equation. However, this axiom could seldom be used
as an auto-rewrite unconditionally, for this could easily cause rewrite loops. So,
two additional conditional equations - one for the initial state and one for the
non-initial states - are generated, which could be used as auto-rewrites in proof
strategies:

s: VAR State
ROLL__INIT: AXIOM (s = init) IMPLIES ROLL(s) = ROLL__DEF(s)
ROLL__NEXT: AXIOM (s /= init) IMPLIES ROLL(s) = ROLL__DEF(s)

While the indiscriminate use of axioms could lead to inconsistent specifica-
tions, the type-correctness of RSML-e specifications is sufficient to guarantee
that this is not the case with the translated PVS output. In particular, RSML-e

language disallows cyclic dependency among variables.
The input variable assignments are handled similar to the state variable

assignments. Although input variables have a different syntax and their assign-
ments appear under handlers for input interfaces, the PVS translation produced
is similar to that of state variables. In other words, input variables are treated
very much like top-level state variables in the PVS interpretation.

Messages, Interface Declarations and Handlers: The translator can be
set to skip interfaces altogether when one is interested in reasoning about the
specification independent of input and output. In that case the input variables
are all left unconstrained so that they may assume any value at each step.

Messages are declared to be of a record type in PVS. The interfaces are
declared to be constants of the type of the messages handled. The interface
message separation times are translated to constant objects wherever they are
used. The input interface handlers define the values of the input variables and
thus provide the transition conditions for the input variable assignments.

One-Input Interface Assumption: In RSML-e step computation is assumed
to take place when and only when an input is received by one of the input re-
ceivers. Also, it is assumed that two input receivers do not receive messages from
the environment at the same instant and that input values do not change before
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computation is completed. Thus, the trigger for computation of a step is receipt
of a single message. It is implicitly assumed that there is a system clock inter-
face, which periodically receives clock ticks, so that even if there are no other
receivers, computation still proceeds. To capture the one-input assumption when
there is more than one receiver, a system input variable INPUT? is declared,
whose possible range of values are the different input receivers in the specifica-
tion. Its value at each state is understood to be the receiver that triggered the
step computation for that state.

5 Proving Properties

Currently, the proof construction is essentially a manual process. The most com-
mon properties we encountered during the verification of the flight-guidance
mode logic were state invariants (p is true is always true) or transition invari-
ants (if p is true in the current state, p will be true in the next state). While
proofs for transition invariants begin with a CASE split for the init and next
states, those for state invariants begin with instantiation of a simple induction
schema over states. After the first steps, the proofs of the subgoals, follow a
similar pattern in both types of proofs, the details of which follow. The subgoals
that one has to address typically could involve the current (or previous) state
either in the init or the next state configuration. Most proofs do not require
reasoning beyond one previous state in the history. However, RSML-e allows
the use of state history of any bounded length, and, therefore, there could be
specifications for which proofs may require reasoning beyond one history state.
Below, we discuss briefly how to proceed with a proof after we have instantiated
an induction schema, so that we have two subgoals to dismiss: one to show that
the property holds in the initial state and one to show that is holds in the next
state.

Example Proof: Our motivation for using the theorem proving approach were
the mode confusion properties. Though they are really interesting properties,
they have rather involved proofs. For the purpose of illustration, we will consider
here a simple state invariant that we may wish to verify on a toy model of
the Flight Guidance System. Though this property is clearly suited for model
checking, we use it here as a simple example to explain the general proof process.
The proofs for the mode confusion properties [9] follow a similar pattern.

At_Least_One_Lateral_Mode_Active : THEOREM
verify(Mode_Annunciations_On IMPLIES

(Is_ROLL_Selected OR Is_HDG_Selected))

Informally, the property states, as the name implies, that whenever modes
are turned on, at least one lateral mode is active. In more realistic models, there
would be several of those modes, some classified as lateral and some classified as
vertical. The proof of this property for our much larger models, follows a similar
sequence of steps.

Invocation of basic auto-rewrite strategies (described later) followed by sim-
plification, reduces the goal to:
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|-------
{1} FORALL (s: State):

IMPLIES(*(Modes(s)) = On,
OR((ROLL(s) = &(Selected)),(HDG(s) = &(Selected))))

Since this is a state invariant, we decide to induct on state s. This yields two
subgoals: 1) s is an init state, and 2) s is a next state. The init branch can be
dismissed trivially by invoking Modes INIT which asserts that Modes = Off in
the init state. Since the left-hand-side of the implication is false, the subgoal will
be immediately dismissed.

The next state branch, after skolemization and simplification, becomes:

[-1] IMPLIES(*(Modes(j!1)) = On,
OR((ROLL(j!1) = &(Selected)),(HDG(j!1) = &(Selected))))

{-2} *(Modes(1 + j!1)) = On
|-------

{1} (ROLL(1 + j!1) = &(Selected))
{2} (HDG(1 + j!1) = &(Selected))

Note that [−1] formula in the antecedent is the induction hypothesis. State
(j!1) is the previous state and (1 + j!1) is the current state3 in the induc-
tion process. Proceeding with the proof, we may now instantiate the transition
relation for the ROLL (or, symmetrically, HDG) state variable assignments in the
current state and simplify to obtain:

{-1} ROLL(1 + j!1) =
IF *(ROLL__T1(1 + j!1)) THEN &(Cleared)
ELSE IF *(ROLL__T2(1 + j!1)) THEN &(Selected)

ELSE IF *(ROLL__T3(1 + j!1)) THEN &(Selected)
ELSE IF *(ROLL__T4(1 + j!1)) THEN &(Cleared)

ELSE ROLL(j!1)
ENDIF

ENDIF
ENDIF

ENDIF
[-2] IMPLIES(*(Modes(j!1)) = On,

OR((ROLL(j!1) = &(Selected)),(HDG(j!1) = &(Selected))))
[-3] *(Modes(1 + j!1)) = On
|-------

[1] (ROLL(1 + j!1) = &(Selected))
[2] (HDG(1 + j!1) = &(Selected))

Now, the value of ROLL in the current state depends on the guard conditions
satisfied. Dismissing the conditions one by one, CASE splitting as required,
would result in a sub-goal like the following:

3 For clarity of presentation we talk of previous/current states, instead of current/next
states to avoid confusing with init/next states.
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[-1] *(When_HDG_Switch_Pressed(1 + j!1))
{-2} *(ROLL(1 + j!1)) = Cleared
[-3] *(Modes(1 + j!1)) = On
|-------

[1] HDG(j!1) = &(Selected)
[2] *(ROLL(j!1)) = Cleared
[3] ROLL(j!1) = null
[4] (ROLL(1 + j!1) = &(Selected))
[5] (HDG(1 + j!1) = &(Selected))

Instantiation of the transition relation on ROLL led to the value of Cleared for
the variable in the current state. At this point, it is clear that more information
from the specification is necessary to proceed further with proof construction:
we have not yet reasoned with the value of HDG variable in the current state. We,
therefore, instantiate the transition relation for HDG in current state and intro-
duce it into the sequent. Dismissing the various guard conditions for HDG NEXT
and further simplification of the consequent formulas, yields HDG = Selected
for the current state, which is one of the consequents. This completes the outline
of the proof of the invariant.

As mentioned earlier, the most common properties we encountered during
the verification of the FGS were state and transition invariants. The proofs were
fairly straightforward, though long. Most proofs followed a structure similar to
the one explained above, where the analysis faces with two cases:

init State Invoke the StateVar INIT condition to dismiss the proof branch.
These sub-goals are trivial to dismiss.

next State Invoke the StateVar NEXT transition condition on one of the
State variables involved in the property. Since the transition condition is
composed of COND statement, each branch, corresponding to each transi-
tion would have to be dismissed to obtain the value assigned for the state
variable in the next state. If after simplification of the transition condition,
the proof is not yet complete, we may have to deal with one of the following
cases:
1. A subgoal is reached, whose consequent is provable but requires addi-

tional information to prove it. In this case, it may be necessary to invoke
new initial/transition conditions on some other relevant state variables
on which the value of the present state variable depends. We then repeat
the above process.

2. A subgoal is reached, in which one of the newly introduced antecedents
is false. This may again require introduction of more information into
the proof branch through the initial/transition conditions to discharge
the subgoal by contradiction.

3. A subgoal is reached, which is unprovable. This would typically point to
a scenario in which the property being analyzed is false. The counter-
example, could typically be easily gleaned from the formulas in the se-
quent. However, some familiarity with the system being verified may be
necessary to determine that a sub-goal is unprovable.
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The At Least One Lateral Mode Active example proof described above is
for a scaled down version of the FGS. This version of FGS is about 900 lines
of PVS code, when translated from the RSML-e specification. The complete
proof is 93 proof steps and runs in approximately 6 seconds on a 1.5 GHz Linux
workstation with 1.5 GB main memory. The largest FGS model that we have
worked on is about 3900 lines of translated PVS code. In this version of FGS,
there are five lateral modes instead of the two in our example property. The
At Least One Lateral Mode Active proof for this version of FGS is 380 proof
steps and runs in approximately 40 seconds on the same machine. We also con-
structed around six elaborate proofs analyzing the mode logic of the FGS. One
of those proofs, which is especially interesting, could not be verified using model
checking techniques.

One of the authors was involved in constructing these proofs manually. The
author had no prior experience in theorem proving before starting this exercise.
An interesting observation from this exercise is that the effort involved in con-
structing these proofs, although large, increases roughly linearly with the size of
the model. The experience so far has been very encouraging as we were successful
in constructing non-trivial proofs of useful properties of a critical system model
used in the avionics industry. We are cautiously optimistic that the theorem
proving approach may well scale up to much larger systems than what we can
handle using model-checking techniques.

6 Discussion

In our experience, the proofs we dealt with, have been typically long, but straight-
forward to understand. To make the translation specific details transparent to
the user and increase readability of the sub-goals, we invoke the RSML-e spe-
cific definitions from the library file as lazy, eager or macro auto-rewrites in
PVS. Those are automatically brought in whenever the ASSERT primitive is used
in the proof. To further reduce the tediousness of constructing proofs, we have
attempted to construct certain non-trivial strategies that are specific to proofs
of properties for RSML-e models, as well as, generating model-specific strate-
gies along with the translation. As a first step, we identified simple patterns of
rule invocations and encoded these patterns as strategies. For example, a simple
strategy EXPAND SIMP is frequently used in these proofs. This strategy expands
certain definitions and simplifies the result using a few other rewrite rules and
lemmas. Simple strategies, such as this, have helped greatly in reducing the
length of the proofs and remove the intermediate clutter while rendering the
proof more readable. Since extensive automation is the goal of all our analysis
work, the next step is to pursue construction of more powerful strategies that
are both language and model specific. In the example proof discussed earlier, it
is rather straightforward to determine that one has to introduce ROLL and HDG
transition relations to complete the proof. But generating this automatically
as a strategy from the specification is rather involved. It requires identifying
patterns in the sub-goal and invoking the right set of rules and lemmas, while
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at the same time, providing a fine-grained control to the user in choosing the
proof steps to apply. Experience from our preliminary work in this area seems
to suggest that such automated strategy generation is difficult. Manual proof
construction provides a certain level of flexibility that lets the user determine
the level of detail to which the specification must be drilled down during proof
construction on a per subgoal basis. This flexibility has been critical for keeping
the proofs readable and manageable. Construction of more powerful strategies
seem to trade-off some of this flexibility. Our current efforts are directed towards
finding the right balance between the two for typical proofs for RSML-e models.

In conclusion, in this paper we presented a method for formalizing a syn-
chronous dataflow language in PVS, based on which a mechanical translator
was implemented. A salient feature of the translation scheme is that it reflects
the structure and the semantics of the source specification, which has been useful
in proof construction. We have been successful in verifying non-trivial proper-
ties of the mode logic in a flight-guidance system. Some of these properties could
not be model-checked. We also observed that the proof complexity did not grow
exponentially with the size of the model.
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Abstract. System verification is one of the main topics of interest in formal
methods. In this paper, we especially focus on equivalence proofs between ab-
stract specification and more concrete ones. We propose an encoding into PVS of
an integrated specification language. This language integrates the CCS process
algebra extended to manage algebraic terms written from datatype definitions.
Such an integrated language is useful to specify large size systems and to cover
the different involved aspects. This encoding makes it possible the use of PVS for
verification of nontrivial systems.

Keywords: Formal Method Integration, Process Algebra, Algebraic Specifica-
tions, Embedding, PVS, Equivalence Proof.

1 Introduction

Complex systems are composed of several different aspects, mainly the data (or static)
aspects and the behaviour (or dynamic) aspects. It is interesting to allow the developer
to specify each aspect of the system with suitable formalisms. Algebraic specification
languages and process algebras are respectively appropriate to specify the static and the
dynamic aspects. The material of this paper is issued from a series of work concerning
integration of formal specification techniques [32–34]. These works aim at integrating
process algebras with algebraic specifications. Algebraic terms enhanced the process
algebra through the value passing. The global semantics is given in an operational way.
Alternative integration approaches exist, especially the one combining state oriented
languages (mainly Z and B) with process algebra, see [16, 15, 25, 36, 38] for instance.
Currently, we prefer an algebraic description of data since their translation to PVS, our
target proof environment, is easier than for state oriented languages.

We focus on the behavioural semantics of such integrated languages, that means the
axiomatisation which describes the bisimulation or observational equivalence of two
processes. This is essential if we aim to achieve equivalence proofs between processes.
That can be achieved using tools like PVS [12], HOL [19] or Isabelle [30]. We refer to
higher order theorem provers because classical ones such as the Larch Prover [17] lack
expressive input forms and automated proof capabilities. This automation, particularly
developed in PVS, guided our choice of this tool. Similarly, the existing model-checkers
are not sufficient as target tools. Indeed, most of them only take into account dynamic
aspects, but not data ones (algebraic terms in our framework). Though it is not the case
of the CADP toolbox [14], its limit is the state explosion problem.
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Our goal is to embed an integrated specification language into PVS so as to per-
form equivalence proofs. This kind of proof is necessary for different reasons such as
minimizing systems or refining them. Refinement means two versions of a same speci-
fication, one abstract and one more concrete, are proved to be equivalent. For this study,
we choose the axiomatisation for only one precise process algebra, CCS. However, our
approach could be considered as guidelines for the translation in PVS of other inte-
grated languages which have similar features (process algebra and abstract datatypes of
which LOTOS [6, 22] is another example).

In previous works, only partial verification was performed on the independent parts
of the specification. As far as the dynamic part is concerned, specifications obtained
using our approach may be animated or verified using model-checking. They may be
translated in specific tools – such as CWB-NC [11] – input languages abstracting away
from the datatypes. As far as the static part is concerned, one may use theorem provers
or toolboxes dedicated to the static languages that are being used within the integration
(e.g. CATS1 for CASL, Larch Prover for Larch). We also have developed a tool, ISA [2],
dedicated to the animation of specifications combining CCS with abstract datatypes.
In this paper, we show that equivalence proofs on the global specification could be
performed in an homogeneous context such as the PVS one. The algebraic specification
part will be expressed using the PVS abstract datatypes. About the dynamic part, we
choose the CCS process algebra and we take as a starting point of our formalisation
some existing works [3, 29].

The organization of this paper is as follows. Section 2 introduces the formal foun-
dations underlying our proposal: the integrated specification technique, its behavioural
semantics, the PVS theorem prover and the embedding techniques. Section 3 deals with
the embedding of the language into PVS. Then, we show in Section 4 how abstract spec-
ifications could be written and proved to be equivalent to more concrete ones. Finally,
Section 5 makes the assessment of our approach.

2 Formal Foundations Underlying Our Proposal

2.1 The Integrated Formal Specification Language

We present our formalism which combines CCS and algebraic specifications. More
comprehensive presentations are reported in [32, 34].

Syntax. CCS is a process algebra introduced by Milner [27]. It permits to describe
communicating systems called processes or agents. Each CCS process is defined by a
behaviour made of actions composed using operators. CCS has operators for prefixing
(.), nondeterministic choice (+), parallel composition (|), restriction to enforce synchro-
nization (\) and if structure. Relabeling and extended sum are not taken into account
in our proposal for sake of conciseness. CCS allows synchronous, binary and oriented
communication. We emphasize that our approach is control driven and CCS is called
the main formalism because it gives the behaviour of the full specification. Concern-
ing algebraic specifications, different concrete language could be considered such as

1 http://www.tzi.de/cofi/Tools/CATS.html
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Larch [18] or CASL [1]. Interactions between algebraic terms and CCS agents are lo-
cated at five levels: the parameterized agent declarations and calls, the input and output
parameterized actions, and the condition of the if operator.

Let us now present an example of a CCS agent including algebraic data terms. It
describes a process called Agent0 parameterized by a natural number. If the number
is greater or equal to 5, the process outputs it (an overlined action indicates an output,
otherwise it is an input) and recursively behaves as itself with a decreasing of the x
value.

Agent0(x : Nat)
def
= if x ≥ 5 then send(x).Agent0(x − 1)

Semantics. The global operational semantics of our formalism is defined following
an approach similar to Galloway’s one for ZCCS [16]. The precise meaning of the
different CCS constructions with algebraic value passing is given using inference rules.
The environmentE is a context storing various informations used to define the inference
rules. E is a tuple composed of the rewrite rules R deduced from the axioms of the
algebraic part and of a set of tuples CCSE for CCS agents. This set is built from the
full specification (i.e. both algebraic sorts and CCS agents).

E � < R,CCSE >

The semantics of the independent algebraic specifications is as described initially
for each language (e.g see [18] for Larch). However, the meaning of algebraic terms
appearing in the CCS agents is given by term rewriting. This choice is justified since
it is suitable to an operational semantics. The rewriting is performed using a set R of
rewrite rules deduced from the datatype definitions. As an example, rewriting of Larch
terms can be achieved using the Larch Prover [17].

The set CCSE contains informations recorded during the agent declaration. More
precisely, for each agent declaration, we store in this set a tuple containing the agent
name (or agent constant) AC, its whole behaviour H and the list of the agent parameters
(identifiers) AP .

CCSE � {< AC1,H1,AP1 >,. . . ,< ACn,Hn,APn >}

These three values, associated with each agent, are useful in presence of agent call.
In such a case, the agent constant is substituted by the behaviour corresponding to this
call. Moreover, for a parameterized agent, the identifiers stored during the declaration
are substituted in the whole behaviour by the terms used as parameter.

There are two groups of inference rules in our operational semantics. The first group
corresponds to the construction of the E environment from the agent definitions and
the algebraic specification part. The E environment, after being completely built, is
never modified. The second group gives the meaning for each (possibly extended) CCS
operator. For this second group, the global specification is seen as a Labelled Transition
System (LTS) which evolves by the application of the inference rules. For instance, the
next rules give the meaning of the parallel composition.
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BEHAVIOUR ::= BEHAVIOUR|BEHAVIOUR
F

α→ F ′

F |G α→ F ′|G

F
a→ F ′

G
a→ G′

F |G τ→ F ′|G′

F
a(x1:S1,...,xn:Sn)−−−−−−−−−−−→ F ′

G
a(t1,...,tn)−−−−−−−→ G′

F |G τ→ F ′[
R

↓ t1/x1, . . . ,
R

↓ tn/xn]|G′

The reading of the last rule is: if a behaviour F evolves in F ′ after the firing of an
input parameterized action, and if a behaviour G evolves in G′ by an output parameter-
ized action, then F |G evolves in F ′|G′ by τ . The input variables xi are substituted in
the behaviour F ′ by the terms ti received during the synchronization. These terms are
rewritten in their normal forms (when possible) thanks to the R rewrite rules.

2.2 Axiomatisation

We recall here the material we need to support rewriting of CCS processes. Equiva-
lence relations were introduced by Milner [27] and Hennessy and Milner [23]. Equiv-
alences are formalised using axiomatic rules. Equivalences between behaviours are
proved through rewriting of behaviours with respect to equalities defining a precise
equivalence relation. Observational semantics is given through equivalence relations.
Examples of such a semantics are strong equivalence, observation equivalence / con-
gruence, trace / testing equivalences and branching bisimulation.

Now, we give an axiomatisation describing an observational semantics for CCS. To
prove the equivalence between two agents, we will apply the next laws following the
principle of substituting equals for equals. This is only possible if the equivalence is a
congruence [29] (relation preserved by all CCS operators). Laws for observation con-
gruence (written = in the following) are shown below. These laws have been proved
correct and complete [23, 27]. We start with the basic laws for choice, tau (τ ), parallel
composition and restriction. As an illustration, the first four axioms below are defined
for the nondeterministic choice and respectively mean the commutativity, the associa-
tivity and two reduction rules.

P + Q = Q + P
P + (Q + R) = (P + Q) + R
P + P = P
P + 0 = P
α.τ.P = α.P
P + τ.P = τ.P
α.(P + τ.Q) + α.Q = α.(P + τ.Q)
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P |Q = Q|P
P |(Q|R) = (P |Q)|R
P |0 = P

0\L = 0
(X + Y )\L = X\L + Y \L
(α.X)\L = α.(X\L) if α �∈ L
(α.X)\L = 0 if α ∈ L

The expansion law was initially introduced by Milner [27]. This law formalises the
possible evolutions of processes combined with the parallel composition and the restric-
tion operators. One evolution step is either an independent evolution of one behaviour
or a binary synchronization of two behaviours. Other formulations of the expansion law
exist [29, 21]. The difference in formulation is worthy of interest because Milner con-
siders parallel composition and restriction in the same rule (that seems rather convenient
for communication in CCS) whereas the others deal with them separately.

if P ≡ (u1.P1|...|un.Pn)\L then
P =

∑{ui.(u1.P1|...|Pi|...|un.Pn)\L : ui, ui �∈ L}+∑{τ.(u1.P1|...|P ′
i |...|P ′

j |...|un.Pn)\L : ui = uj}
Note that these axioms allow only equational reasoning on simple CCS agents. In

the current work, CCS is extended with data expressions. Nevertheless, that is the same
equivalence relation which is enhanced with an equality relation on terms similar to the
common equalities of the algebraic specifications rewriting.

2.3 The PVS Theorem Prover

PVS2 is a verification system that is an interactive environment for writing formal spec-
ifications and checking formal proofs. PVS provides an expressive specification lan-
guage that enhances classical higher order logic with a sophisticated type system con-
taining predicate subtypes and dependent types. It also proposes parameterized theories
and a mechanism for defining and using abstract datatypes. The PVS typechecker is
undecidable due to the combination of the previous features. It copes with this unde-
cidability by generating proof obligations (TCC, Type-Correctness Conditions) for the
PVS theorem prover (that are discharged automatically for most of them). PVS has a
powerful interactive theorem prover / proof checker. User-defined proof strategies can
be used to enhance the automation of the proof checker. Model-checking capabilities
used for automatically verifying temporal properties of finite-state systems have re-
cently been integrated in PVS. An input PVS specification is a collection of theories
containing types, functions, lemma and theorems.

2.4 Embedding Techniques

An embedding [7] is an encoding or a translation of a specification language into an-
other one, especially to reuse existing tools of the target language. Embeddings are

2 http://pvs.csl.sri.com/
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also useful to combine strengths of formal methods and verification systems. Two main
kinds of embedding are distinguished. The shallow embedding is a syntactic translation
of the formal specification in semantically equivalent objects in the language of the ver-
ification system. The deep embedding encapsulates the language and its semantics as an
object in the logic of the target system. The latter approach is rather dedicated to prove
meta-theoretical properties (that are proofs on the encoded language) of the embedded
method whereas the shallow approach favours the reasoning on particular applications.
Other kinds of embeddings exist such as the structural embedding [28] which mixes
both previous approaches. Our proposal aims to encode the integrated specification lan-
guage following the shallow embedding approach which must be augmented with the
axiomatisation encoding.

3 Embedding of One Integrated Language into PVS

We focus in this section on the different steps of our embedding into the PVS logic.
We remind that we chose a shallow embedding. This choice is justified because we
focus on a mechanical support oriented towards verification of concrete applications.
Nevertheless, proofs of meta-theoretical properties are possible too since we add the
encoding of a behavioural axiomatisation formalising the meaning of the operators.

The main guidelines we perform to reach the encoding of the integrated specifi-
cation language and proofs of concrete specifications are the following. First, actions,
CCS operators and their axioms are expressed using the PVS logic. We start the em-
bedding with a small set of operators (possibly without value passing) and then we
enhance this initial set of constructions (addition of operators and corresponding ax-
ioms). Afterwards, we implement the extended CCS version, particularly the algebraic
value passing and the substitution of variables by real terms in behaviours. A transverse
work is the abstract datatype definitions in PVS and the term rewriting in this context.

3.1 Basic Actions

In a first step, we introduce the theory BasicA corresponding to the encoding of basic
actions, i.e. actions without value passing. Two types are defined, Name and Action,
representing the action name and the action in general (possibly with value passing in
the sequel). At this level, a constant and two functions describe respectively the tau
action, an input action and an output action. Three additional functions (the_name,
eq_action, eq_name) are implemented to respectively recover the name of a global
action, to test the equality of two actions and to test the equality of two action names.
Some axioms formalise the meaning of these functions. In this work, we choose to spec-
ify functions using an axiomatic style and not a definitional one (which could be used
too). In our opinion, axiomatic style is more suitable to perform behavioural rewriting.
Indeed, rewriting could be handled step by step in a more manageable way.
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BasicA: THEORY
BEGIN

Name: TYPE+
Action: TYPE+
tau: Action
input: [ Name -> Action ]
output: [ Name -> Action ]
the_name: [ Action -> Name ]
eq_action: [ Action, Action -> bool]
eq_name: [Name, Name -> bool]
m, m1, m2: VAR Name
tn1: AXIOM the_name(input(m)) = m
tn2: AXIOM the_name(output(m)) = m
eq1: AXIOM eq_action(tau,tau) = true
eq2: AXIOM eq_action(tau,input(m)) = false
eq3: AXIOM eq_action(tau,output(m)) = false
eq4: AXIOM eq_action(input(m),tau) = false
eq5: AXIOM eq_action(input(m1),input(m2)) = eq_name(m1,m2)
eq6: AXIOM eq_action(input(m1),output(m2)) = false
...

END BasicA

3.2 Value Passing Actions

The VpA theory completes the previous one with value passing actions. This theory is
parameterized by the type of the parameter bound to the action. This typing is required
by the PVS typechecker. Consequently, actions (in a general sense) are labelled by the
type of data that one action can send or receive. New functions for input and output

are defined and overload the previous ones. Axioms for the the_name and eq_action
functions are enhanced with respect to the new declarations.

VpA [T: TYPE]: THEORY
BEGIN

IMPORTING BasicA
input: [ Name, T -> Action ]
output: [ Name, T -> Action ]
n, n1, n2: VAR Name
x, x1, x2: VAR T
tn3: AXIOM the_name(input(n,x)) = n
tn4: AXIOM the_name(output(n,x)) = n
eq10: AXIOM eq_action(tau,input(n,x)) = false
eq11: AXIOM eq_action(tau,output(n,x)) = false
...

END VpA

3.3 Basic Process Algebra

The BasicPA1 theory embeds the basic process algebra into the PVS logic. The value
passing extension is dealt with in the next subsection. First of all, we note the use of a
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datatype describing generic sets (see [35] for its definition). This datatype is needed to
describe the set of restricted actions. Generic sets also exist in the PVS prelude, but we
prefer a datatype parameterized by an explicit equality function (and not just to use a
syntactic one). A set is made of two constructors empty and add. A function member

is defined to test the membership of an element in a set.
The type Behaviour is now defined. The nil behaviour is declared as well as the

CCS operators: the nondeterministic choice +, the prefixing o, the parallel composition
/, the ifthen structure and the restriction res. The bhv function makes implicitly
the conversion of action in behaviour. Some variables have also to be declared for the
forthcoming definition of axioms.

BasicPA1: THEORY
BEGIN

IMPORTING BasicA
IMPORTING Set_op[Name,eq_name]
Behaviour: TYPE
nil: Behaviour
bhv: [ Action -> Behaviour ] CONVERSION bhv
+, o, /: [ Behaviour, Behaviour -> Behaviour ]
ifthen: [ bool, Behaviour -> Behaviour ]
res: [ Behaviour, Set[Name,eq_name] -> Behaviour ]
a, b: VAR Action
F, G, H, I: VAR Behaviour
b: VAR bool
L: VAR Set[Name,eq_name]
n1, n2: VAR Name

...

Afterwards, axioms defining the behavioural semantics are encoded into PVS. They
correspond to the rules introduced in subsection 2.2 (axioms B1 to B15b). Some axioms
are added to deal with the parenthesizing (not included here). Finally, the expansion law
is encoded using different axioms to depict the possible cases (axioms BM16 to BM63).
Below, the BM16 axiom denotes the synchronization between two agents on the same
action name. The BM63 axiom is devoted to an interleaving case between two parallel
output actions where just one is possible (the other pertaining to the restriction set).
Agent call is not straightforwardly implemented in the theory but is expressed during the
concrete agent writing (see Section 4). Furthermore, the embedding of a CCS notation
into PVS could be simply generalized to any kind of process algebra following a similar
approach.

B1: AXIOM F + G = G + F
B2: AXIOM F + (G + H) = (F + G) + H
B3: AXIOM F + F = F
B4: AXIOM F + nil = F
B5: AXIOM a o (tau o F) = a o F
B6: AXIOM F + tau o F = tau o F
B7: AXIOM a o (F + tau o G) + a o G = a o (F + tau o G)
B8: AXIOM F / G = G / F
B9: AXIOM F / (G / H) = (F / G) / H
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B10: AXIOM F / nil = F
B11: AXIOM ifthen(b,G) = IF b THEN G ELSE nil ENDIF
B12: AXIOM res(nil, L) = nil
B13: AXIOM res(F + G, L) = res(F, L) + res(G, L)
B14: AXIOM F = res(a o G, L) AND NOT eq_action(a,tau)
AND not member(the_name(a), L) IMPLIES F = a o res(G, L)

B15: AXIOM F = res(a o G, L) AND NOT eq_action(a,tau)
AND member(the_name(a), L) IMPLIES F = nil

B15b: AXIOM F = res(tau o G, L) IMPLIES F = tau o res(G,L)
BM16: AXIOM eq_name(n1,n2) AND F = input(n1) o H
AND G = output(n2) o I
IMPLIES res(F / G, L) = tau o (H / I)

...
BM63: AXIOM F = output(n1) o H AND G = output(n2) o I
AND not member(n1, L) AND member(n2, L)
IMPLIES res(F / G, L) = output(n1) o res(H / G, L)

END BasicPA1

Let us show an example of a basic agent described in CCS and then encoded into
PVS using our theory.

Agent1
def
= n.(m.0 + p.Agent1)

Agent1 = input(n) o (output(m) o nil + output(p) o Agent1)

3.4 Value Passing Process Algebra

We start with the description of a theory encoding the substitution of a variable by a
term in a whole behaviour. As illustration, we show a piece of behaviour with value
passing. In this example, we rewrite the behaviour using the Milner’s expansion law.
We stress that, after communication on the action name n, the variable x is substituted
in the remaining of the behaviour (x + 3 � 2 + 3) and then rewritten as 5.

(n(x).(m(x + 3).0)/n(2).0)\{n} = τ.(m(5).0)\{n}

Now, we describe the dynsubst function performing the substitution. This function
substitutes a term by another with the same typing in a behaviour. It is defined induc-
tively on the different operators of the embedded process algebra as written in the ax-
ioms identified by DSij in the PVS theories. We highlight that this function depends on
another substitution function concerning the static part. Indeed, the statsubst func-
tion performs the substitution of a variable by a value in a term (for instance substitut-
ing x with 2 in x + 3). This function is needed because this kind of substitution is not
achieved by the PVS equational reasoning capabilities.

The statsubst function is a tedious task to be faced during this embedding be-
cause this kind of function have to be defined by the user for each new datatype. More-
over, in our encoding we only take into account a simple static substitution case in
which the substitution is achieved in an expression with the same type as the variable
to be substituted, whereas in real cases it seems also natural to replace for instance a
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natural number in a boolean expression (e.g. x+3 < 5). This disadvantage is discussed
in more details in Section 5.

The axiom DS11 expresses that the substitution of x by the term t in the process
τ.F is equal to the process F, in which the previous substitution has to be performed,
prefixed by τ . The axioms DS12 and DS13 denote the absence of effective substitution
for input and output actions without parameter. DS21 and DS22 depict the appropriate
application of the statsubst function for parameterized actions, and so on.

DynSubst [T: TYPE, statsubst: [T, T, T-> T]]: THEORY
BEGIN

IMPORTING BasicPA1
IMPORTING VpA[T]
dynsubst: [Behaviour, T, T -> Behaviour]
n: VAR Name
x, x1, x2, t: VAR T
F, G, H, I: VAR Behaviour
L: VAR Set[Name,eq_name]
b: VAR bool
DS11: AXIOM dynsubst(tau o F, x, t) =

tau o dynsubst(F, x, t)
DS12: AXIOM dynsubst(input(n) o F, x, t) =

input(n) o dynsubst(F, x, t)
DS13: AXIOM dynsubst(output(n) o F, x, t) =

output(n) o dynsubst(F, x, t)
DS21: AXIOM dynsubst(input[T](n, x1) o F, x2, t) =

input[T](n, statsubst(x1, x2, t)) o dynsubst(F, x2, t)
DS22: AXIOM dynsubst(output[T](n, x1) o F, x2, t) =

output[T](n, statsubst(x1, x2, t)) o dynsubst(F, x2, t)
DS31: AXIOM dynsubst(nil, x, t) = nil
DS32: AXIOM dynsubst(F+G, x, t) =

dynsubst(F, x, t) + dynsubst(G, x, t)
...

END DynSubst

The value passing process algebra theory mainly contains the supplementary axioms
to cope with the expansion law in case of parameterized actions. Thus, we enumerate the
possible cases of behaviours rewriting using the definition of subsection 2.2 extended
with data management. In the expansion law, the parallel composition and restriction
operators are considered at the same time. Therefore, synchronization and interleaving
cases are not split in a different set of rules. That is illustrated below with the axioms for
T actions. As far as the communication is concerned, the dynsubst function is called
so as to perform the substitution in the remainder of the behaviour. Parenthesizing rules
are added too in order to simplify parenthesized behaviours. The VpPA1 theory is pa-
rameterized by two types and two possible static substitution functions. This double
typing is needed to make it possible the interleaving of different type parameterized ac-
tions. We only permit single parameterized action in this work because it is sufficiently
expressive. The multi-parameterized case could be expressed in the simpler one, so it is
not fundamentally necessary.
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The VPM1 and VPM2 axioms below denote the synchronization between two agents.
The VMP3i axioms express the three possible interleaving cases depending on the per-
taining (or not) of the action name to the restriction set. The VPM4i axioms are the same
but considering the reverse sense between input and output.

VpPA1 [T, T1: TYPE, statsubst: [T, T, T -> T],
statsubst1: [T1, T1, T1 -> T1]]: THEORY

BEGIN
IMPORTING DynSubst[T,statsubst]
IMPORTING DynSubst[T1,statsubst1]
n, n1, n2: VAR Name
x, y, t, r: VAR T
x1, y1, t1, r1: VAR T1
F, G, H, I: VAR Behaviour
L: VAR Set[Name,eq_name]

VPM1: AXIOM eq_name(n1,n2) AND F = input[T](n1,x) o H
AND G = output[T](n2,t) o I

IMPLIES res(F / G, L) = tau o res(dynsubst(H,x,t) / I, L)
VPM2: AXIOM eq_name(n1,n2) AND F = output[T](n1,t) o H

AND G = input[T](n2,x) o I
IMPLIES res(F / G, L) = tau o res(H / dynsubst(I,x,t), L)

VPM31: AXIOM NOT eq_name(n1,n2) AND F = input[T](n1,x) o H
AND G = output[T](n2,t) o I

AND not member(n1, L) AND not member(n2, L) IMPLIES
res(F / G, L) = input[T](n1,x) o res(H / G, L)

+ output[T](n2,t) o res(F / I, L)
VPM32: AXIOM NOT eq_name(n1,n2) AND F = input[T](n1,x) o H

AND G = output[T](n2,t) o I
AND member(n1, L) AND not member(n2, L) IMPLIES

res(F / G, L) = output[T](n2,t) o res(F / I, L)
VPM33: AXIOM NOT eq_name(n1,n2) AND F = input[T](n1,x) o H

AND G = output[T](n2,t) o I
AND not member(n1, L) AND member(n2, L) IMPLIES

res(F / G, L) = input[T](n1,x) o res(H / G, L)
VPM41: AXIOM NOT eq_name(n1,n2) AND F = output[T](n1,t) o H

AND G = input[T](n2,x) o I
AND not member(n1, L) AND not member(n2, L) IMPLIES

res(F / G, L) = output[T](n1,t) o res(H / G, L)
+ input[T](n2,x) o res(F / I, L)

...

END VpPA1

Let us illustrate on an example of a value passing behaviour described in CCS and
then encoded into PVS.

Agent2
def
= n(x). if x = 2 then p(x + 1).Agent2

Agent2 = input[Nat](n,x) o (ifthen(egal(x,succ(succ(zero))),

output[Nat](p,plus(x,succ(zero))) o Agent2))
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3.5 Datatype Definitions and Rewriting

The integrated specification language uses algebraic specifications for the modelling of
static aspects. Our shallow embedding of data aspects is straightforward thanks to the
datatype possibilities of the PVS input logic. As a well-known example, consider the
Nat and Nat_op theories. The first one only contains the constructors zero and succ.
The operations on natural numbers are the usual ones such as plus or minus. PVS also
generates a theory from the Nat datatype containing several axioms and definitions.
We stress that the definition of the natural number substitution (replacing one natural by
another in a natural number expression) is defined inductively on the different operators
of the datatype.

Nat_op: THEORY
BEGIN

IMPORTING Nat
plus: [Nat, Nat -> Nat]
minus: [Nat, Nat -> Nat]
...
natsubst: [Nat, Nat, Nat -> Nat]
x, y, z, t, x1, x2: VAR Nat
plus1: AXIOM plus(x,zero) = x;
plus2: AXIOM plus(x,succ(y)) = succ(plus(x,y));
...
SS1: AXIOM natsubst(zero,x,t) = zero
SS2: AXIOM natsubst(succ(y),x,t) = succ(natsubst(y,x,t))
SS3: AXIOM natsubst(plus(x1,x2),x,t) =

plus(natsubst(x1,x,t),natsubst(x2,x,t))
SS4: AXIOM natsubst(minus(x1,x2),x,t) =

minus(natsubst(x1,x,t),natsubst(x2,x,t))
SS5: AXIOM x1=x2 IMPLIES natsubst(x1,x2,t) = t
...

END Nat_op

Real-size examples have also been specified using the PVS datatypes, for example a
stock of drink with its available quantity. Concerning the rewriting of algebraic terms, it
could be performed either manually or automatically (using one of the auto-rewrite
command) thanks to the rewrite capabilities of PVS. Theorems could be proved on
this part using the PVS prover. The reader may refer to [35] for a comprehensive PVS
specification of a vending machine and for examples of theorems on this data part.

4 Concrete Specification and Equivalence Proof

In this section, we illustrate how our embedded language may be used to specify and
refine concrete systems. We focus on the specification of a small but realistic example:
the coupling of an adder with a multiplier. This system is refined using the axiomatic
definitions introduced in Section 3.

Specification. The current system is made of two communicating parts. Each involved
process manages natural terms as value passing. We do not manage more complex
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commreceive sendMultAgentAddAgent

Fig. 1. Adder/Multiplier.

datatypes for sake of readability and comprehension of the system specification and
proof steps. The first agent is an adder that receives a value (x) and adds to this value
another one (u, parameter of the agent). The second part is a multiplier which receives a
value (plus(x,u)) from the adder and multiplies this value by another one (v). Figure
1 schematizes the general idea of this simple system. The specification is then written
in the source integrated specification language.

AddAgent(u : Nat)
def
= receive(x : Nat).(comm(x + u).AddAgent(u))

MultAgent(v : Nat)
def
= comm(y).(send(y ∗ v).MultAgent(v))

We introduce now the PVS specification written using the theories presented previ-
ously. In the agent definitions, axiomatic specifications make it possible the agent call
avoiding the use of recursive function and measure function to ensure termination. The
Nat_op theory is imported in order to use its contents and especially the natsubst

function. The VpPA1 theory is also imported with the parameters Nat and natsubst.
The action names are defined as well as the variables used to write the agent behaviours.
Afterwards, agents are declared. Inputs and outputs are explicitly typed using Nat.

EXAMPLE: THEORY
BEGIN

IMPORTING Nat_op
IMPORTING VpPA1[Nat,Nat,natsubst,natsubst]
receive, send, comm: Name
x, y: VAR Nat

u: VAR Nat
AddAgent: [Nat -> Behaviour]
defAddAgent: AXIOM AddAgent(u) =

input[Nat](receive,x) o
(output[Nat](comm,plus(x,u)) o AddAgent(u))

v: VAR Nat
MultAgent: [Nat -> Behaviour]
defMultAgent: AXIOM MultAgent(v) =

input[Nat](comm,y) o
(output[Nat](send,mult(y,v)) o MultAgent(v))

...

Equivalence Proof. We show how one equivalence between a behaviour and its refined
form could be proved by rewriting one to the other. We write below the theorem ThM

to be proved. An intermediate lemma is used. The goal is to prove the equivalence
between an abstract specification (the AddAgent and MultAgent parallel composition
communicating on the comm name) and a more concrete one where the communication
is hidden and the parallel composition expanded. In the proof, we replace the agent



200 Gwen Salaün and Christian Attiogbé

call by a termination behaviour to simplify the proof steps to a finite case. This issue is
discussed in Section 5.

LM: LEMMA
AddAgent(u) / MultAgent(v) =

input[Nat](receive,x) o
(output[Nat](comm,plus(x,u)) o nil) /

input[Nat](comm,y) o
(output[Nat](send,mult(y,v)) o nil)

ThM: THEOREM
res(input[Nat](receive,x) o

(output[Nat](comm,plus(x,u)) o nil) /
input[Nat](comm,y) o

(output[Nat](send,mult(y,v)) o nil), add(comm, empty)) =
input[Nat](receive,x) o

(output[Nat](send,mult(plus(x,u),v)) o nil)

The above LM lemma is proved using the agent definitions and the grind strategy.
Then, the theorem ThM (and some alternative formulations) is proved as follows. After
running the skosimp command, we apply one rule of Milner’s expansion law (VPM53)
and instantiate this rule with adequate concrete parameters. Rewritings on the member
function are performed to simplify the active antecedent and this formula is replaced in
the consequent. The VPM2 axiom expresses the synchronization between both agents.
Dynamic and static substitution rewritings are performed. Several simplifications of the
antecedent are done with the B5, B10, B14, B12 axioms on one hand and the eq_name,
the_name, eq_action and member axioms on the other hand. The detailed proof steps
are reported in [35].

Several variants of this theorem have been proved too. For instance, we work with
more concrete parameters of behaviours: AddAgent(succ(zero)) / MultAgent(su
cc(succ(zero))). In such a case, rewriting of terms may be done. That is made
using the axioms defining the datatype operations. Nevertheless, we cannot make proofs
with a generic action (input[T](...)). Indeed, the statsubst function needs to be
instantiated. Then, meta-theoretical proofs are possible but limited to the use of this
function. To end, we highlight that debugging steps are performed in the PVS context
and not in the specification input language. Accordingly, expertise of the specifier is
needed at this level.

5 Discussion

In this paper, we advocate an embedding of an integrated specification language (the
CCS process algebra and algebraic specifications) into PVS. The encoding follows a
shallow embedding accompanied with an encoding of the axiomatisation to be used
for equivalence proofs. That results in some PVS theories. Specifications can be writ-
ten using the implemented theories. Equivalence proofs on these specifications can be
achieved thanks to behavioural rewriting. Besides, meta-theoretical proofs are possible
too but in a limited way due to the extension of the process algebra to manage data
terms (and especially due to the underlying static substitution). Our proposal can be
viewed as guidelines to embed other (extended or not) process algebra into PVS.
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Concerning existing works related to mixed bisimulation (i.e. bisimulation involv-
ing a static and a dynamic part), Calder et al. [10, 9] propose a symbolic semantics and
bisimulation for Full LOTOS. This work is strongly related to ours but we do not com-
pletely follow their formalisation (e.g. the management of free and bound variables).
As [24], our work could be viewed as an instantiation of this theoretical proposal.

Nesi [29] proposes a formalisation of Milner’s value passing calculus in the HOL
proof assistant in order to describe and reason about communicating systems. The re-
sulting formalisation supports both meta-theoretic reasoning and verification strategies
for CCS specifications. Compared to our, her work only deals with simple data and the
proof steps are more tedious than using PVS. These two works also share common is-
sues such as the recursion encoding. A work similar to the Nesi’s one is [26]. This paper
proposes a mechanized formal theory of the π-calculus in higher order logic using the
HOL theorem prover.

Another work, strongly related to ours, is the one of Basten and Hooman [3]. The
idea is to apply equational reasoning to ACP-style processes. Two alternatives for the
modelling of process algebra in PVS are investigated in this paper. First, mechanical
support is proposed for the verification of concrete applications (verifying that an im-
plementation satisfies a specification). Secondly, mechanical support is suggested for
the proof of theoretical properties of a process algebra (meta-reasoning). Two differ-
ent features of the PVS logic are used to reach both previous mechanizations: process
terms as uninterpreted types or as abstract datatypes. In comparison, our input language
is more expressive, but consequently makes more difficult the meta-theoretical proper-
ties.

Van de Pol et al. [37] propose a specification of requirements using invariants on
state for data, temporal assertions for behaviours and a simple glue between views. The
support of this approach is developed and implemented in PVS. We may also note the
proposal of Dutertre and Schneider [13]. They provide an effective mechanical support
to the modelling and analysis of authentication protocols using PVS. They develop a
general proof strategy for verifying authentication properties. This approach is quite
different because close to a precise application domain. Brooke’s work [8] takes inspi-
ration in the previous one, but deals with timed-CSP as input language.

Bodeveix et al. [5, 4] formalise an embedding of the B abstract machine notation
into Coq and PVS. Rather than translating the notation in PVS (the prover considered
for concrete experiment), they add the notation as a layer over the PVS language. This
embedding has been fully implemented in a front-end tool called PBS. Another similar
work is the one of Pratten [31]. Gravell and Pratten [20] automate the embedding of Z
specifications into the PVS and HOL theorem provers using the JavaLIL tool.

Our contribution with reference to the previous ones is the expressiveness of the
integrated language we embed into PVS. This expressiveness makes it possible the
specification of the different aspects involved in complex systems. We also show that
verification (especially equivalence proof here) of such systems is tractable.

The mechanical support presented in this paper enables us to point out some issues
faced during the encoding into PVS. A first drawback is the static substitution. The
specifier have to implement for each new datatype the corresponding variable substi-
tution function (because this substitution is strongly linked to the datatype definition).



202 Gwen Salaün and Christian Attiogbé

In fact, this encoding is rather restricting. As an example, if we consider a datatype T
which is a set of tuple, each tuple containing three values of type T_1, T_2, T_3, then
there exist several possible variable substitution functions:

1. statsubst_1: T, T_1, T_1 -> T
2. statsubst_1: T, T_2, T_2 -> T
3. statsubst_1: T, T_3, T_3 -> T

In the case of more complex datatype, the number of possible functions increases.
There are also possible nested calls of other static substitution functions. Moreover, the
definition of such a function is systematic but error-prone and becomes harder with the
number of static operations. The substitution function is not yet satisfactory. It would
be better to define a higher order substitution function which use both terms and types
as parameters. That is also a bolt to achieve meta-theoretic proofs because they need
implementations of this function to complete the proof.

Another issue met during proof steps is the redundant problem of variable equality.
Indeed, the inequality between variables cannot be proved with the PVS prover. Thus,
to finish one proof and avoids these blocking steps, axioms have to be added in the
suitable theories (for example eqn1 and eqn2 in the BasicA theory). This kind of
axioms is essential but error-prone if badly used (the eqn2 axiom may also matched
with equal values).

eqn1: AXIOM eq_name(m,m) = true

eqn2: AXIOM eq_name(m1,m2) = false

Next, proving theorems involving recursive agents is limited. A solution could be
the one of Dutertre and Schneider [13]. In the context of their mechanical support for
CSP, they implement a (generic) least fixed point operator. This operator allows one to
define recursive processes and need induction rules for reasoning about such processes.

Finally, we emphasize that proving nontrivial examples of equivalence theorems
could be reached with limited efforts, but efforts for complex system equivalence proofs
are really time-consuming. Indeed, automated rewritings are rather problematic in PVS
because the prover regularly faces difficulties on nontrivial proofs to resolve substitu-
tions.

Many directions are interesting for future work. A first perspective is the scalability,
i.e. we wish to improve our proposal and to have at our disposal a complete framework
making it possible specifications and equivalence proofs of real size systems. The dif-
ferent drawbacks discussed above have to be think about to enhance the expressiveness
and ease of use of our mechanized support. Besides, an alternative idea may be to ex-
periment a deep (or semantic) embedding of the objects to be reasoned about. Another
direction for future work is the increasing of the proof automation. That would simplify
the restricting steps of behavioural rewriting. The main idea is to develop tactics which
could be systematically applied and therefore could enhance the automation.
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Abstract. SystemC is a new C-based system level design language
whose ultimate objective is to enable System-on-a-Chip (SoC) design
and verification. Fixed-point design based on the SystemC data types is
rapidly becoming the standard for optimizing DSP systems. In this pa-
per, we propose to create a formalization of SystemC fixed-point arith-
metic in the HOL theorem proving environment. The SystemC fixed-
point number representation which contains a new generalized format
and different rounding and overflow modes is described, and then it is
formalized in higher-order logic. This formalization is then compared
with the formalization of IEEE standard based floating-point arithmetic
in HOL. A set of theorems are proved to bound the error in fixed-point
rounding and to verify the fixed-point arithmetic operations against their
abstract mathematical counterparts. Finally, we show by an example
how this formalization can be used in verification of the translation from
floating-point and fixed-point algorithmic, down to register transfer and
netlist gate levels in the design flow of SoC systems.

1 Introduction

High complexity of modern digital signal processing systems versus increasing
demand for a short time-to-market are current challenges of today’s VLSI de-
signers. With improvements in silicon technology and the increase in the number
of logic gates that can be implemented on a single chip, various functionalities
such as memories, logic gates, analogue blocks, CPU and digital signal process-
ing (DSP) cores can be integrated into a single silicon chip. These functionalities
are implemented by using System-on-a-Chip (SoC) [7] solutions that generally
integrate diverse hardware and software. On the other hand, the use of inex-
pensive, high speed, and low power DSPs is on the rise. For DSP the problem
is to decide whether a fixed-point or a floating-point math unit should be used
[17]. Several factors should be taken into account in this regard. An important
first step is to gain an understanding of how the hardware representations differ
and how they affect precision and range. Also needed is a grasp of the types
of applications to which particular chips are best suited and which hardware
vendors provide these chips. Performance is also a driving factor behind the
use of DSPs for which cost, speed, and power consumption are key ingredients.
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The final consideration is the availability of development tools and the program-
ming paradigms they support. Recently, significant effort has gone into building
high level languages for both fixed- and floating-point DSPs. The most popular
language has been C. Since C has a built-in type for floating-point, this is an
attractive solution for those chips. The standard ANSI C language, however,
does not support fixed-point data types, thus forcing programmers to write in
assembly language and to deal with complicated and error-prone scaling issues.
A significant breakthrough to allow a systematic approach for fixed-point design
has been achieved by the Open SystemC Initiative. Fixed-point design based on
the SystemC [31] data types is rapidly becoming the standard for optimizing
DSP systems, and Electronic Design Automation (EDA) tools supporting this
design flow are available today.

With ever increasing complexity of the design of digital systems the role of
design verification has gained a lot of importance. Design errors can cause seri-
ous failures, resulting in the loss of time and money. It takes a very large amount
of time and effort to correct the error, especially when the error is discovered
late in the process. For these reasons, we need approaches that enable us to
discover errors and validate designs as early as possible. Verification is defined
as the validation of the circuit for its correctness. The verification of floating-
point hardware has always been an important part of processor verification.
The importance of arithmetic circuit verification was illustrated by the famous
floating-point division bug in Intel’s Pentium processor [18]. Floating-point al-
gorithms are usually very complicated. They are composed of many modules
where the smallest flaw in the design or the implementation can cause a very
hard-to-discover bug, as occurred in Intel’s case. Traditional approaches for ver-
ifying floating-point circuits are based on simulation. However, these approaches
cannot exhaustively cover the input space of the circuits. Therefore, new meth-
ods are needed for the economical and reliable verification of digital systems.
Formal verification [19] have recently paved a path, showing the utility of find-
ing bugs early in the design cycle. Formal verification techniques are usually
classified in two categories: interactive theorem proving and automatic decision
diagram based model checking and equivalence checking. Theorem proving con-
sists in expressing the specification and implementation in a formal logic. Their
relationship, stated as equivalence or implication, is regarded as a theorem to be
proven within the logic system, using axioms and inference rules. Powerful math-
ematical techniques such as induction and abstraction are strengths of theorem
proving and make it a very flexible verification technique. In model checking, one
checks if the design satisfies some properties (formal specification). With equiv-
alence checking, we check if two designs exhibit the same behavior. The latter
techniques have been successfully applied to real industrial designs. However,
since most of the tools are based on Binary Decision Diagrams (BDDs), they
require the design to be described at the Boolean level. In practice, they often
fail to verify a large-scale design because of the so-called state space explosion.

There exist several related works in the open literature on the formalization
and verification of floating-point arithmetic. For instance, Barett [3] specified
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parts of the IEEE-754 [15] standard in Z, and Miner [25] formalized the IEEE-
854 [16] floating-point standard in PVS. Carreno [6] formalized the same IEEE-
854 standard in HOL. Harrison [12] defined and formalized real numbers using
HOL. He then developed a generic floating-point library [14] to define and verify
the most fundamental terms and lemmas of the IEEE-754 standard. This former
library was used by him to formalize and verify floating-point algorithms such
as the square root and the exponential function [13] against their behavioral
specification.

Moore et al. [26] have verified the AMD-K5 floating-point division algorithm
using the ACL2 theorem prover. Also, Russinoff [28] has developed a library for
ACL2 prover and applied it successfully to verify the K5 square root, and the
Athlon multiplication, division, square root, and addition algorithms. Daumas
et al. [10] have presented a generic library for reasoning about floating-point
numbers within the Coq system. Berg et al. [4] have formally verified a theory of
IEEE rounding presented in [27] using the theorem prover PVS, and then used
the theory to prove the correctness of a fully IEEE compliant floating-point unit
used in the VAMP processor.

Aagaard and Seger [1] combined BDD based methods and theorem proving
techniques to verify a floating-point multiplier. Chen and Bryant [9] used word-
level SMV to verify a floating-point adder. Miner and Leathrum [24] verified a
general class of subtractive division algorithms with respect to the IEEE-754
standard in PVS. Leeser et al. [20] verified a radix-2 square root algorithm and
its hardware implementation using theorem proving methods. Cornea-Hasegan
[8] used iterative approaches and mathematical proofs to verify the correctness of
the IEEE floating-point square root, division and remainder algorithms. O’Leary
et al. [21] reported on the verification of the Intel’s floating-point unit at the gate
level using a combination of model-checking and theorem proving.

While the above works are concerned with floating-point representation and
arithmetic, in [2] we proposed the first machine-checked formal development on
properties of fixed-point arithmetic according to Cadence SPW (Signal Process-
ing WorkSystem) tool. Unlike floating-point arithmetic which is standardized in
IEEE-754 [15] and IEEE-854 [16], current fixed-point arithmetic does not follow
any particular standard and depends on the tool and the language used to design
the DSP chip. Based on higher-order logic, we proposed to encode a fixed-point
number by a pair composed of a boolean word, and a triple indicating the word
length, the length of the integer portion and the sign format. Then, we formalized
the concepts of valuation and rounding as functions that convert respectively a
fixed-point number to a real number and vice versa, taking into account different
rounding and overflow modes. Fixed-point arithmetic operations are formalized
as functions performing operations on the real numbers corresponding to the
fixed-point operands and then applying the rounding on the real number result.
We supported three kinds of exceptions, two overflow modes and five rounding
modes as described in SPW documentation. Finally, we proved different lemmas
regarding the error analysis of the fixed-point quantization and correctness of
the basic operations like addition, multiplication, and division. The formaliza-
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tion of the fixed-point arithmetic has been inspired mostly by the work done by
Harrison [13]. Indeed we followed similar steps as in formalization of floating-
point arithmetic for modeling fixed-point arithmetic, and used an analogous set
of lemmas to his work to check the validity of operation results and to carry out
the error analysis of the fixed-point rounding.

In this paper, we significantly extend this work to the SystemC fixed point
description. In comparison to SPW, SystemC represents the numbers in a dif-
ferent more comprehensive format. SystemC also covers a more complete set
of overflow, rounding, and exception handling parameters. SystemC supports
seven rounding modes, of which four correspond exactly to the rounding modes
of SPW. The other three modes are specific to SystemC and are not supported
by the other tools. SystemC supports five overflow modes covering those of SPW.
These features motivated EDA companies, including Cadence, to adapt SystemC
for fixed-point design and verification1. In the new fixed-point theory, we have
included the parameters representing the overflow, rounding mode, and the num-
ber of saturation bits which have been introduced in SPW theory in the definition
of arithmetic operations, directly in the format to make a generalized SystemC
fixed-point attributes. Also new enumerated data types are defined to cover the
SystemC rounding and overflow modes. Specific functions are then defined to
handle the overflow in SystemC wrap around modes. Finally new theorems are
proved to bound the error in SystemC special rounding modes. The modularity
of SPW theory has facilitated the extension process. This is of great importance
since the design of modular and reusable theories remains a big challenge in the
theorem proving era.

The organization of this paper is as follows: Section 2 describes the SystemC
fixed-point arithmetic including the format of the fixed-point numbers, and over-
flow and quantization modes. Section 3 describes in detail their formalization in
HOL in parallel with the formalization of IEEE-754 based floating-point arith-
metic in HOL. In Section 4, we discuss the rounding error analysis and the
verification of the SystemC fixed-point arithmetic operations. Section 5 presents
an illustrative example on how this formalization can be used through the mod-
eling and verification of a Notch filter algorithm. Finally, Section 6 concludes
the paper.

2 Fixed-Point Types in SystemC

In this section we describe SystemC based fixed-point arithmetic. SystemC is a
C++ based modeling platform supporting design abstractions at the register-
transfer, behavioral, and system levels. Consisting of a class library and a simu-
lation kernel, the language is an attempt at standardization of a C/C++ design
methodology, and is supported by the Open SystemC Initiative (OSCI), a con-
sortium of a wide range of system houses, semiconductor companies, intellectual
property (IP) providers, embedded software developers, and design automation
1 In fact the latest release of the Cadence SPW tool supports both the old SPW

fixed-point arithmetic as well as the SystemC one.
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tool vendors. The advantages of SystemC include the establishment of a com-
mon design environment consisting of C++ libraries, models and tools, thereby
setting up a foundation for hardware-software co-design; the ability to exchange
IP easily and efficiently; and the ability to reuse test benches across different
levels of modeling abstraction. An important element of SystemC is the sup-
port for fixed-point data-types, which is essential for the refinement of complex
algorithms to a hardware or software implementation.

The SystemC fixed-point library contains basic types for both unconstrained,
constrained, signed and unsigned fixed-point data types [30]. Constrained data
types use static arguments to specify the functionality of the type while uncon-
strained data types can use argument types that are nonstatic. Static arguments
must be known at compile time, while nonstatic arguments can be variables. In
addition to the standard fixed-point types which use arbitrary precision in calcu-
lations, SystemC also provides limited precision fixed-point types to speed sim-
ulation when limited precision is all that is required. With standard fixed-point
types the mantissa can be virtually any size. With limited precision fixed-point
types the mantissa is limited to 53 bits. Limited precision fixed-point types are
implemented with double precision floating-point values. The fixed-point format
used by the fixed-point data types consists of the following parameters:

– wl: Total word length, used for fixed-point representation. Equivalent to the
total number of bits used in the type. Word length must be greater than 0.

– iwl: Integer word length, specifies the number of bits that are to the left
of the binary point (.) in a fixed-point number. Integer word length can
be positive or negative, and larger than the word length. If this number is
negative, repeated leading sign bits or zeros are added to the object. If this
number is greater than the total number of bits, trailing zeros are added to
generate the equivalent binary value.

– q mode: Quantization mode, determines the behavior of the fixed point type
when the result of an operation generates more precision in the least signifi-
cant bits (LSB) than is available as specified by the word length and integer
word length parameters.

– o mode: Overflow mode, determines what happens when the result of an
operation generates more bits on the most significant bits (MSB) side than
are available for representation.

– n bits: Number of saturated bits, only used for overflow mode and specifies
how many bits will be saturated if a saturation behavior is specified and an
overflow occurs.

In comparison with the fixed-point format defined in SPW [29], the param-
eters wl and iw in SystemC correspond to parameters #bits and #integer bits
in SPW fixed-point attributes. The parameters q mode and o mode which have
been used in SPW during the definition of arithmetic operations, are inserted
directly in the format to make a generalized fixed-point attributes for SystemC.
Also the argument n bits is not used by SPW and is specific to SystemC. In
SPW the type of the fixed-point numbers as signed or unsigned are defined by
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the parameter sign format in the attributes; however, in SystemC there is not
such a parameter in the format and separate types are defined for signed and
unsigned fixed-point numbers.

Operations performed on fixed-point data types are done using arbitrary and
full precision. After the operation is complete, the resulting operand is cast to fit
the fixed-point data type object. The casting operation applies the quantization
behavior of the target object to the new value and assigns the new value to the
target object. Then, the appropriate overflow behavior is applied to the result
of the process which gives the final value.

Quantization effects are used to determine what happens to the LSBs (Least
Significant Bits) of a fixed-point type when more bits of precision are required
than are available. The quantization modes available in SystemC are shown in
Table 1:

Table 1. SystemC Quantization Modes

Quantization Mode Name
Rounding to plus infinity SC RND

Rounding to zero SC RND ZERO
Rounding to minus infinity SC RND MIN INF

Rounding to infinity SC RND INF
Convergent Rounding SC RND CONV

Truncation SC TRN
Truncation to zero SC TRN ZERO

Figure 1 shows the behavior of each quantization mode. The diagonal line
represents the ideal number representation given infinite bits. The small hori-
zontal lines show the effect of the rounding. Any value of the X axis within the
range of the line will be converted to the value of the Y axis. The symbol q in
the figure refers to the quantization step, that is, the resolution of the data type.
As shown in this figure modes SC RND, SC RND ZERO, SC RND MIN INF,
SC RND INF, and SC RND CONV will round the value to the closest rep-
resentable number if the two nearest representable numbers are not an equal
distance apart. Otherwise, rounding towards plus infinity, to zero, towards mi-
nus infinity, towards plus infinity if positive or minus infinity if negative, and
towards nearest even will be performed respectively (Figure 1 (a-e)). SC TRN
mode is the default for fixed-point types and will be used if no other value is
specified. The result is always rounded towards minus infinity (Figure 1 (f)). In
other words, the result value is the first representable number lower than the
original value. Finally, for SC TRN ZERO the result is the nearest representable
value towards zero (Figure 1 (g)). Rounding modes SC RND, SC RND CONV,
SC TRN, and SC TRN ZERO in SystemC correspond exactly to Round, Con-
vergent Round, Truncate, and Round To Zero loss of precision modes in SPW,
respectively. The other three rounding modes are specific to SystemC and are
not supported by SPW.
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Fig. 1. The Behavior of SystemC Quantization Modes

In addition to quantization modes, we can use overflow modes to approximate
a higher range for fixed-point operations. Usually, overflow occurs when the result
of an operation is too large or too small for the available bit range. Specific
overflow modes can then be implemented to reduce the loss of data. Overflow
modes are specified by the o mode and n bits parameters to a fixed point type.
The supported overflow modes are listed in the Table 2.

Table 2. SystemC Overflow Modes

Overflow Mode Name
Saturation SC SAT

Saturation to zero SC SAT ZERO
Symmetrical Saturation SC SAT SYM

Wrap-around SC WRAP
Sign magnitude wrap-around SC WRAP SM

Figure 2 shows the behavior of each overflow mode for a 3 bit type. The
diagonal line represents the ideal value if infinite bits are available for represen-
tation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this figure it can be seen that MAX = 3
and MIN = −4 for a 3 bit type. SC SAT mode will convert the specified value
to MAX for an overflow or MIN for an underflow condition (Figure 2 (a)).
SC SAT ZERO mode will set the result to 0 for any input value that is outside
the representable range of the fixed point type. If the result value is greater than
MAX or smaller than MIN the result will be 0 (Figure 2 (b)). In SC SAT SYM
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Fig. 2. The Behavior of SystemC Overflow Modes

mode, positive overflow will generate MAX and negative overflow will generate
−MAX for signed numbers or MIN for unsigned numbers (Figure 2 (c)). With
SC WRAP mode the value of an arithmetic operand will wrap around from
MAX to MIN as MAX is reached. There are two different cases within this
mode. The first is with the n bits parameter set to 0 or having a default value
of 0. All bits except for the deleted bits are copied to the result number (Figure
2 (d)). The second is when the n bits parameter is a nonzero value. In this case
the specified number of most significant bits of the result number are saturated
with preservation of the original sign, the other bits are simply copied. Posi-
tive numbers remain positive and negative numbers remain negative. A graph
showing this behavior with n bits = 1 is shown in Figure 2 (e). Notice that
positive numbers wrap around to 0 while negative values wrap around to −1.
The SC WRAP SM overflow mode uses sign magnitude wrapping. This overflow
mode behaves in two different styles depending on the value of parameter n bits.
When n bits is 0 no bits are saturated. This mode will first delete any MSB bits
that are outside the result word length. The sign bit of the result is set to the
value of the least significant deleted bit. If the most significant remaining bit is
different from the original MSB then all the remaining bits are inverted. If MSBs
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are the same, the other bits are copied from the original value to the result value.
A graph showing the result of this overflow mode is shown in Figure 2 (f). As the
value of X increases, the value of Y increases to MAX and then slowly starts
to decrease until MIN is reached. The result is a sawtooth like waveform. With
n bits greater than 0, n bits MSB bits are saturated to 1. A graph showing this
behavior with n bits = 1 is shown in Figure 2 (g). Notice that while the graph
looks somewhat like a sawtooth waveform, positive numbers do not dip below 0
and negative numbers do not cross −1. Overflow modes SC SAT and SC Wrap
in SystemC cover the two overflow modes Clip and Wrap in SPW. The other
three overflow modes are not supported by SPW and are specific to SystemC.

3 Modeling SystemC Fixed-Point Arithmetic in HOL

In this section, we present the formalization of SystemC based fixed-point arith-
metic in higher-order logic, based on the general purpose HOL theorem prover
[11]. HOL’s basic types include the natural numbers and booleans. It also in-
cludes other specific extensions like John Harrison’s reals library [12] which
proved to be essential for our fixed-point arithmetic formalization.

Fixed point numbers are modeled in HOL as a pair of elements composed
of a bit string (string) and a set of attributes (attrib). The bit string is rep-
resented by a boolean word and the set of attributes is itself a combination
of six elements representing the word length (wordlength), integer word length
(integerwordlength), sign type (signtype), rounding mode (roundmode), overflow
mode (overflowmode), and the number of saturation bits (satbits), respectively.
In comparison to the SPW formalization we have included three extra param-
eters to define a generalized fixed-point format. The fixed-point numbers are
then partitioned using special predicates into signed (is signed) and un-signed
(is unsigned) numbers. The validity of a fixed-point number (is valid) and a
set of attributes (validAttr) is defined using special predicates. In a valid set
of attributes the word length is in the range of 1 and 53 corresponding to fast
fixed-point data types, in comparison to 256 in SPW. Also, the sign type in a
valid set of attributes is either 0 or 1, and the number of saturation bits is less
than the word length. The fixed-point data types are defined in bijection with
the appropriate subset of boolword × N

3 × roundingmode × overflowmode × N

using functions Fxp and deFxp. Then, we defined the valuation function (value)
to specify a real value to fixed-point numbers using separate formulas for signed
and unsigned numbers. The constants for the smallest (bottomfxp) and largest
(topfxp) fixed-point numbers for a given format together with their correspond-
ing real values (MIN,MAX ) are also defined using specific functions. Then, we
defined enumerated data types for seven rounding modes and five overflow modes
in SystemC fixed-point arithmetic. The rounding function (fxp round) is then
defined case by case on the rounding modes and special functions are defined to
handle the overflow in Wrap-around (WRAP) and Sign magnitude wrap-around
(WRAP SM ) modes. Then, we defined the operations on fixed-point numbers
(fxpAdd,fxpSub,fxpMul,fxpDiv) which are performed using the arbitrary preci-
sion in real domain and then the result is casted to the output format.
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Our effort in formalization of fixed-point arithmetic can be compared to
the formalization of IEEE standard based floating-point arithmetic in HOL [13]
which is performed as in the following steps:

– Floating Point Numbers: A floating-point number is modeled as a triple
of natural numbers interpreted as a sign, an exponent, and a fraction. The ex-
ponent is usually added to a constant (bias) to make the biased exponent’s
range nonnegative. The floating-point numbers are partitioned into not a
numbers (NaN), infinities, normalized numbers, denormalized but nonzero
numbers, and zeros as specified in IEEE-754 standard. Predicates for testing
the validity and finiteness of a triple for a given format are defined. Also
extractors for the three fields of a floating-point number together with con-
stants for convenient values such as largest representable positive number
and the most negative number in a format are defined.

– Format Parameters: The floating-point format for single, double preci-
sion, and extended numbers is defined as a pair of two natural numbers
representing the width in bits of the exponent field, and the width in bits of
the significand field. From these parameters three other characteristic num-
bers are defined for the total word length, the maximum exponent value,
and the bias in the exponent.

– Representation and Valuation: The next step in formalization of
floating-point numbers is the definition of the concrete representation of the
numbers as the fields are laid out with the sign as the most significant bit,
the exponent in the middle and the fraction in the bottom. Then, a real value
is specified to non exceptional numbers. The valuation is meaningless when
applied to infinities and NaNs. The denormalized numbers and normalized
numbers are treated separately. Then, a few significant real values such as
the real value of the largest representable number, the overflow threshold,
and the notion of the unit in the last place for a given floating-point number
are defined.

– Rounding: The definition of the valuation function is fundamental of the
definition of the inverse operation of rounding which coerces a real number
into a given floating-point format. The rounding is controlled by a rounding
mode, specifying whether a real number is to be mapped to the nearest
floating-point number (using round to even to choose a unique number if
necessary), towards zero, or towards positive or negative infinity. The modes
are represented in HOL via an enumerated type definition.

– Arithmetic Operations: Then, the arithmetic operations are defined
where they first deal with the exceptional cases, either where the arguments
involve a NaN or infinity, or are invalid for other reasons (e.g. ∞ − ∞) and
generate a NaN. Apart from that, they basically just take the values of the
arguments, perform the mathematical operations and then round the result
according to the desired rounding mode.

– Float and Double Types: Finally, the above considerations are speci-
fied to actual HOL type of single precision and double precision numbers
called float and double. These types are defined to be in bijection with the
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appropriate subset of N
3, with the bijections written in HOL as float and

defloat. The operations are defined by mapping out of the type, performing
the operations, and mapping back.

4 Verification of SystemC Arithmetic Operations

The correctness of fixed-point operations can be specified by comparing the
operation’s output with the true mathematical result. Since the operations are
defined as if they first performed using infinite precision and then the result is
rounded to fit in the destination format, the verification of operations is closely
related to bounding the error in rounding function. On the other hand, the
analysis of error in fixed-point rounding is very similar to the error analysis in
floating-point rounding. In the following discussion, we first explain the details
of floating-point rounding error analysis and then describe how similar steps are
followed and analogous theorems are proved to bound the error in fixed-point
rounding and to verify the fixed-point arithmetic operations.

4.1 Floating-Point Verification

The steps in analysis of floating-point rounding error in HOL [13] are as follows2:

– Lemmas for Analyzing the Rounding Operation: In the first step,
prove some lemmas about the properties of the approximating a real num-
ber with a floating-point number. First, prove a theorem that ensures the
existence of the best approximation to a given real number in a finite non
empty set of floating-point numbers. Then, prove that the chosen best ap-
proximation to a real number satisfying a property p from a finite and non
empty set of floating-point numbers is unique and is itself a member of the
set and is itself the best approximation of the real number. Then, prove that
the set of all valid and finite floating-point numbers are finite and non empty.
Then, prove that the chosen best approximation to a real number satisfying
a property p from the set of all finite floating-point numbers is a finite and
valid floating-point number. Finally, prove that the result of rounding a real
number to a floating-point number is valid.

– Preliminary Theorems about Rounding Error: In the second step,
define the error as the difference between a real number and the value of its
rounding result for rounding to nearest even. Then, prove that if the absolute
value of a real number is less than the threshold value of a given floating-point
format, then the rounding result is the nearest value to the real number and
the corresponding error is minimum comparing to the other floating-point
numbers. Also, if for a given real number we can find a floating-point number
with equal value then the rounding-error is zero.

– General Error Bound Theorems: Next, prove two main theorems quan-
tifying the error. In the first theorem, prove that if the absolute value of a real

2 This analysis is performed using the HOL Light theorem prover which is an older
version of the tool. The code is recently ported by the first author from HOL Light
to HOL4 which is the latest version of HOL tool.
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number is in the representable range of normalized floating-point numbers
and located in the j’th binade, i.e. its absolute value is less than 2j+1/2126

and greater than or equal to 2j/2126, then the absolute value of error is
less than or equal to 2j/2150. In the second theorem, prove that if the real
number is in the denormal range, i.e. its absolute value is less than 2−126,
then the error is less than or equal to 2−150. To prove these main theorems,
a set of eight lemmas and four theorems about general rounding error are
established.
The error bounding theorems can be explained as follows. The single preci-
sion format in IEEE standard for binary floating-point numbers is 32 bits
wide and has an 8 bit exponent field with the exponent bias of 127 and has
a 23 bit significand considering the hidden bit which is always 1. The single
precision floating-point numbers are distributed on the real axis as shown in
Figure 3. Figure 3(a) shows the number distribution pattern and the various
subranges in this format. Figure 3(b) illustrates the relative magnitudes of
normalized and denormalized numbers. In the context of numbers of a spe-
cific precision, it is useful to speak of rounding in terms of units in the last
place (ulp). A ulp is naturally understood as the magnitude of the least sig-
nificant digit, or in the other words, the distance between the floating point
number a and the next floating point number of greater magnitude. For ex-
ample, one ulp of the denormalized region in the single precision format of
IEEE standard is 2−149, and one ulp for the j ’th binade in the normalized
region is equal to 2j+1/2150 as shown in Figure 3(b). The rounding error can
be easily bounded in term of ulps. For rounding to nearest the absolute value
of error is less than or equal to half a ulp. This means that the absolute value
of error is less than or equal to 2−150 for denormalized region, and less than
or equal to 2j/2150 for the j ’th binade in the normalizerd region as stated
in the last two main theorems mentioned before.

– Rounding Error in Arithmetic Operations: At the end, prove theorems
that relate the arithmetic operations such as addition, subtraction, multipli-
cation, division, reminder, square root, negation and absolute value to their
abstract mathematical counterparts according to the corresponding errors.
The theorems are composed of two parts. In the first part which is about
the finiteness of the floating-point operation output prove that for each pair
of finite floating-point numbers, if the real result is less than the overflow
threshold value then the output result is also finite. In the second part of
the theorems, prove that the value of the floating-point result is equal to the
value of the real result plus an error which is already quantified using the
previous error bound theorems.

4.2 Fixed-Point Verification

Similar steps are followed for the error analysis of fixed-point rounding:

– Lemmas for Analyzing the Fixed-Point Rounding Operation: We
first proved lemmas concerning with the approximation of a real number
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Fig. 3. Single Precision Floating-Point Numbers on the Real Number Line

with a fixed-point number. We proved (FXP IS CLOSEST EXISTS ) that
in a finite nonempty set of fixed-point numbers we can find the best ap-
proximation to a real number based on a given valuation function. Then,
we proved that the chosen best approximation to a real number satisfy-
ing a property p from a finite and non empty set of fixed-point numbers is
unique (FXP CLOSEST IS EVERYTHING) and is itself a member of the
set (FXP CLOSEST IN SET ) and is itself the best approximation of the real
number (FXP CLOSEST IS CLOSEST ). Finally, we proved (FXP IS VAL
ID CLOSEST ) that the chosen best approximation to a real number satis-
fying a property p from the set of all valid fixed-point numbers with a given
attributes is itself a valid fixed-point number. Since in the definition of fixed-
point rounding we have used the same approximating functions (is closest,
closest) as in floating-point case, the proof of these theorems are very close
to their corresponding floating-point lemmas. Then, we proved that the
set of all valid fixed-point numbers with a given attributes is finite (FI-
NITE VALID ATTRIB). We also proved (FXP IS VALID NONEMPTY )
that the set of all valid fixed-point numbers is nonempty. The proof of
the first lemma is a bit complicated. For this purpose we made use of
some built-in theorems about the finite sets in HOL pred sets library [22].
Among these are the two fundamental theorems FINITE EMPTY and FI-
NITE INSERT, which state that the empty set is indeed finite and the inser-
tion of an element to a finite set constructs a finite set. Other theorems state
that the union of two finite sets (FINITE UNION ), the image of a func-
tion on a finite set (IMAGE FINITE ), a singleton set3 (FINITE SING),
the cross combination of two finite sets (FINITE CROSS ), and any subset
of a finite set (SUBSET FINITE ) is itself a finite set. Using these theo-

3 a set that contains precisely one element
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rems together with the definition of a valid fixed-point number helped us
to break down the proof of the finiteness of all valid fixed-point numbers
to the proof of finiteness of the set of all boolean words with a given word
length (WORD FINITE ) and the set of all natural numbers less than a
given value (FINITE COUNT ). The last theorems are proved by induc-
tion on the word length of the boolean word and the maximum limit of
the natural numbers, respectively. For SystemC fixed-point, we also need
to prove that the set of all elements of type roundmode and overflowmode
are finite (FINITE ROUNDMODE, FINITE OVERFLOWMODE ). This is
obvious since these sets contain only seven and five elements, respectively.
Finally, we proved (FXP IS VALID ROUND) that the result of rounding a
real number which is in the range representable by a given valid attributes
is a valid fixed-point number.

– Rounding Error in Fixed-Point Arithmetic Operations: Then, we
defined the error resulting from rounding a real number to a fixed-point value
(fxperror). Then, we established the first main theorems (FXP ADD THM,
FXP SUB THM, FXP MUL THM, FXP DIV THM ) on the correctness of
fixed-point arithmetic operations. According to these theorems, if the input
fixed-point operands and the output attributes are valid then the result of
fixed-point operations is valid. Also the result of the operations is related to
the real result considering the error.

– General Fixed-Point Error Bound Theorem: In the next step, we es-
tablished the second main theorem on fixed-point rounding error analysis
which concerns bounding the error. The error is absolutely quantified as in
the theorem FXP ERROR BOUND THM. According to this theorem, the
error in rounding a real number which is in the range representable by a
given set of attributes X is less than the quantity 1/2fracbits(X). To explain
the theorem, we consider the following fact which relates the definition of the
fixed-point numbers to the rationals. An N-bit binary word, when interpreted
as an unsigned fixed-point number, can take on values from a subset P of
rationals of the form p/2b in which p is an integer in the range 0 ≤ p ≤ 2N −1
for unsigned, and −2N−1 ≤ p ≤ 2N−1 − 1 for signed numbers, respectively.
Note that P contains 2N elements and b represents the fractional bits in
each case. Based on this fact, we can depict the range of values covered by
each case as shown by Figure 4. Thereafter, the representable range of fixed-
point numbers is divided into 2N equispaced quantization steps with the
distance between two successive steps equal to 1/2b. Suppose that x ∈ R

is approximated by a fixed-point number a. The position of these values are
labeled in the figure. The error | x − a | is hence less than the length of
one interval, or 1/2b, as mentioned in the second theorem. In comparison to
floating-point case, the fixed-point representation leads to equal spacing in
the set of representable numbers. Thus the maximum absolute error is the
same throughout (ulp with truncation and ulp/2 with rounding).

– Lemmas about General Fixed-Point Rounding Error: To prove the
general fixed-point error bound theorem, a set of five lemmas is established.
We first proved that the rounding result is the nearest value to a real number
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(FXP BOUND AT WORST LEMMA) and the corresponding error is min-
imum (FXP ERROR AT WORST LEMMA) comparing to the other fixed-
point numbers. Then, we proved (FXP ERROR BOUND LEMMA1 ) that
each representable real value x can be surrounded by two successive ratio-
nal numbers. Also we proved (FXP ERROR BOUND LEMMA2 ) that the
difference between the real number and the surrounding rationals is less
than 1/2fracbits(X). Finally, we proved (FXP ERROR BOUND LEMMA3 )
that for each real value we can find a fixed-point number with the re-
quired error characteristics. Since the rounding produces the minimum er-
ror as stated in FXP ERROR AT WORST LEMMA, the proof of the sec-
ond main theorem (FXP ERROR BOUND THM ) is a direct consequence
of FXP ERROR BOUND LEMMA3. In these proofs, we have treated the
case of signed and unsigned numbers separately since they have different
definitions for MAX, MIN, and value functions. For signed numbers special
attention needs also to be paid to dealing with the negative numbers.

MAX

a)  Unsigned

   

b)  Signed

0

MIN

1 / 2 p / 2 (2  - 2) / 2 (2  - 1) / 2

x a

2 / 2

0 (2    -   2) / 2 (2    -  1) / 2p / 22 / 21 / 2(- 2    +  1) / 2- 2       / 2

x aMIN MAX

NN

N-1N-1bbbN-1 N-1b b b b

b b b bb

Fig. 4. Fixed-Point Values on the Real Axis

– SystemC Fixed-Point Error Bound Theorem: The theorem FXP ERR
OR BOUND THM is a general theorem for bounding the error in fixed-
point rounding which is valid for all rounding modes. This theorem can
then be extended to prove new theorems for different rounding modes in
SystemC fixed-point arithmetic. For instance, for SC TRN, SC RND ZERO,
SC RND MIN INF,SC RND INF and SC RND CONV modes which round
to nearest representable values, the error is less than ulp/2. For these modes
the error is bounded to 1/2fracbits(X)+1. This fact is proved as in theorem
SYSTEMC FXP ERROR BOUND THM.

5 The Notch Filter Example

In this section we demonstrate how to apply the formalization of SystemC fixed-
point arithmetic presented in the previous sections for the verification of DSP
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systems. We have chosen CoCentric Fixed-Point Designer [33] as the application
tool and the case of a second order 60 Hz Notch Filter as an example circuit
(Figure 5). The filter is first designed and simulated using floating-point oper-
ations and parameters (Figure 5(a)). The design is composed of Add (adder),
Gain (multiply by a constant), and Delay blocks together with signal source
and sink elements. The design is then converted to a fixed-point design (Figure
5(b)) in which each block is replaced with the corresponding fixed-point block.
Fixed-point blocks are shown by double circles and squares to distinguish from
floating-point blocks. The attributes of all fixed-point block outputs are set to
< 64, 31, t > to ensure that overflows and quantization do not affect the system
operation. This means that we have used sixty four bits to represent the signal
values, the numbers are in two’s complement format in which the most signifi-
cant bit is the sign bit, and the binary point is fixed at the thirty first position
following the sign bit.
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SIGNAL
SOURCE
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-1 -1
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S6 S7 S9S8 OUT
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Fig. 5. A Second Order Notch Filter
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Figure 6 shows the proposed verification methodology. Based on this method-
ology, we first modeled the design in different abstraction levels such as floating-
point and fixed-point levels as predicates in higher order logic (NOTCH
FILTER FLOAT IMP,NOTCH FILTER FXP IMP). The process of specifying
a hardware description language in higher-order logic is commonly known as
semantic embedding. There are two main approaches [5]: deep embedding and
shallow embedding. In deep embedding, the abstract syntax of a design descrip-
tion is represented by terms, which are then interpreted by semantic functions
defined in the logic that assign meaning to the design. With this method, it
is possible to reason about classes of designs, since one can quantify over the
syntactic structures. However, setting up HOL types of abstract syntax and se-
mantic functions can be very tedious. In a shallow embedding on the other hand,
the design is modeled directly by a formal specification of its functional behavior.
This eliminates the effort of defining abstract syntax and semantic functions, but
it also limits the proofs to functional properties. In this example, since our main
concern is to check the correctness of the design based on its functionality, we
propose shallow embedding: translate the intended meaning of the design blocks
into HOL and then complete the formal proof in HOL theorem prover. Primitive
blocks are defined using the corresponding functions in floating-point and fixed-
point theories in HOL. The whole filter is then implemented as a conjunction of
these blocks.
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Fig. 6. Verification Methodology

In the next step, separately and independently from the actual implementa-
tions, we described the designs as a difference equation relating the input and
output samples (NOTCH FILTER FLOAT SPEC,NOTCH FILTER FXP SPE
C ). Then, we established lemmas that ensure the implementation at each level
satisfies the corresponding specification (NOTCH FILTER FLOAT IMP SPEC,
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NOTCH FILTER FXP IMP SPEC ). For the error analysis of transition from
floating-point to fixed-point levels, and based on the theorems FXP ADD THM,
FXP MUL THM, and the corresponding ones in floating-point theory, we proved
a theorem (NOTCH FILTER FXP TO FLOAT THM ) that states the error be-
tween the real values of the floating and fixed-point precision output samples.
According to this theorem, for a valid and finite set of input and output sequences
at times n - 1 and n - 2, we will have finite and valid outputs at time n. Also, the
difference between the output real values at each sample time can be expressed as
the difference in input and output values at previous sample times multiplied by
the corresponding coefficients, taking into account the effects of finite precision
in coefficients and arithmetic operations. Proper assumptions are set for both
floating-point and fixed-point designs to guarantee the validity of output sam-
ples. Based on this theorem, three sources of error can be distinguished: errors
due to the quantization of input samples, errors due to the rounding in arith-
metic operations, and errors due to quantization of coefficients. The errors are
already quantified using the theorem SYSTEMC FXP ERROR BOUND THM
and the corresponding theorems for error analysis in floating-point case.

Next, we generated with CoCentric System Studio [32] the VHDL code corre-
sponding to the Filter design, and used Synopsys to synthesize the code to reach
to the logic gate level netlist. At this point, we used the well known formal tech-
niques to model the design in each of these levels in higher-order logic within the
HOL environment (NOTCH FILTER RTL IMP, NOTCH FILTER NETLIST
IMP). The next step is to verify these different levels using a classical hi-
erarchical proof approach in HOL [23]. Our final goal is to prove that the
gate level implementation implies the floating-point algorithmic design con-
sidering the errors (NOTCH FILTER NETLIST TO FLOAT THM ). This goal
cannot be reached directly, due to the very high abstraction gap between the
gate and floating-point algorithmic levels. The proof scheme need hence to
be changed to hierarchically prove that the gate level implies the more ab-
stract RTL (NOTCH FILTER NETLIST TO RTL THM ). The latter is used
to imply the high level fixed-point algorithmic specification (NOTCH FILTER
RTL TO FXP THM ) which has already been related to the floating-point de-
scription through the error analysis. This can be formalized in HOL using float
and Fxp data abstraction functions which map binary words to floating-point
and fixed-point numbers, respectively. In the proof of these theorems we used the
regular and modular behavior of the design, so that we proved separate lemmas
for different primitive modules such as adder, multiplier, and delay and then
used these lemmas in the proof of the original theorems.

6 Conclusions

As system-on-a-chip (SoC) designs become a driving force in electronics systems,
current verification techniques are falling behind at an increasing rate. Verifica-
tion of today’s SoCs occurs at low levels of abstraction, typically RTL. As the
complexity of SoCs grows, it is important to move the verification to higher levels
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of abstraction. In this paper, we proposed the formalization of SystemC based
fixed-point arithmetic in the HOL theorem prover as a basis for modeling and
verification of SoC designs at floating-point and fixed-point algorithmic levels
against the implementations in RTL and netlist gate levels. The formalization
presented in this paper is an extension to the previous work on formalization of
IEEE standard based floating-point arithmetic and Cadence SPW based fixed-
point arithmetic. We modeled the generalized SystemC fixed-point data types
and extended the verification to cover the different rounding and overflow modes
in SystemC fixed-point arithmetic. Finally, we used our formalization for mod-
eling and verification of a second order Notch filter system.
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Abstract. Action refinement is an essential operation in the hierarchi-
cal design of concurrent systems, stochastic or not. In this paper we
develop techniques of action refinement in a stochastic true concurrency
causality based setting, stochastic bundle event structures. A stochastic
LOTOS-like process algebra is used as the specification language, where
the corresponding syntactic operation of action refinement is carried out.
We show that the behaviour of the refined system can be inferred com-
positionally from the behaviour of the original system and from the be-
haviour of the systems substituted for actions with explicitly represented
start points, that the stochastic versions of pomset trace equivalence and
history preserving bisimulation equivalence are both congruences under
the refinement, and that the semantic and syntactic action refinements
coincide under these equivalence relations with respect to a cpo-based de-
notational semantics. Therefore, our refinement operations behave well.
They meet the commonly expected properties.

1 Introduction

We consider the design of concurrent systems in the framework of approaches
where the basic building blocks are actions. By an action we understand here
any activity which is considered as a conceptual entity on a chosen level of
abstraction.

Concentrating on functional issues of systems, traditional concurrency mod-
els have no performance information associated. To control the complexity of
system specification, a well-founded theory of composition and a well-founded
theory of hierarchy for traditional concurrent systems have both been signifi-
cantly established. The former is usually realized by means of modular tech-
niques, which are indeed the main features of process algebras [29], while the
latter by action refinement [10], which allows the representation of systems in a
hierarchical way, changing the level of abstraction by interpreting actions on a
higher level by more complicated processes on a lower level until the implemen-
tation level is reached.

Traditional concurrency models lack the capability of performance evaluation
that describes, analyses and optimises dynamic behaviour of the systems [12,3].
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A lot of effort has been put into the stochastic extensions of formal methods to
solve this problem. Prominent examples are various stochastic process calculi in
which time and probability are integrated by considering delays of a continuous
probabilistic nature [11,16,18,2,19].

A theory of composition has been successfully established for stochastic con-
current systems [4,16,18,14,13]. But how can a theory of hierarchy be achieved
for such systems? Until so far we are unaware of any work in this regard. We be-
lieve that introducing action refinement is again a right way to reach a solution.
This paper focuses on this topic. The main practical benefit from our work is
that action refinement approach for stochastic concurrent systems is developed
such that hierarchical specification of such systems is now possible.

The models of concurrency can be distinguished in two groups: interleaving
models, in which the independent execution of two processes is modelled by
specifying the possible interleaving of their actions, and true concurrency models,
in which the causal relations between actions are represented explicitly.

Without further restrictions, even for traditional concurrency models most
of the commonly used equivalence relations are not preserved under action re-
finement in the interleaving approach. These equivalence relations, however, are
often used to establish the correctness of the implementation with respect to
the system specification. In particular, stochastic interleaving models have to be
restricted to the use of exponential distributions [3]. The interleaving of causally
independent actions complicates the use of more general distributions consider-
ably. But exponential distributions are not realistic for modelling many phenom-
ena in an adequate way. These problems can be circumvented by moving to true
concurrency models [11,18,9,19]. Moreover, in the system design phase the local
causal dependencies between actions are important. Interleaving with actions
of other parts of the system burdens the design. True concurrency models are
considered to be much more appropriate here. In addition, a true concurrency
setting does not suffer from the state explosion problem.

We study action refinement for stochastic true concurrent systems, where
action occurrences are subject to a delay that is governed by a random variable.
Our aim is to achieve system correctness with respect not only to functional
aspects but also to performance issues.

A well accepted true concurrency model is event structures. We use stochastic
bundle event structures [20,21,18] as the system model. Bundle event structures
have been shown to adequately deal with e.g. parallel composition, and the
method to equip performance information allows for more general distributions.
A stochastic version of a LOTOS-like process algebra proposed in [4,18,5] is used
as the specification language, which is a synthesis of CCS [25] and CSP [17].

There are essentially two interpretations of action refinement. One is called
syntactic and the other semantic. Syntactic action refinement, where actions in a
process are replaced by more complicated processes, yields a more detailed pro-
cess description [1,10]. Due to its definitional clarity, syntactic action refinement
can be easily used without too much insight on the semantics. Semantic action
refinement is carried out in the semantic domain. It may avoid a confusion of
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the abstraction levels, which is possible in syntactic refinement and may result
in undesirable situations [9,10].

We define both syntactic and semantic action refinements, and discuss three
common issues of interest: safety, congruence and coincidence problems.

A refinement operation should be safe, that is, the behaviour of the refined
system is the refinement of the behaviour of the original system, and the re-
finement of the behaviour of the original system is the behaviour of the refined
system. Here, please do not confuse the safety notion with the usual one e.g.
things like deadlock-freeness. Since equivalence relations are often used to cap-
ture when two systems are considered to exhibit the same behaviour, we have
to try to find such equivalences which are congruences under the refinement.
The result that syntactic and semantic refinements coincide gives a clear un-
derstanding of the concept of action refinement, and has important applications
in system verifications [22]: the refined syntactic specification can be modelled
by semantic refinement, and the refined semantic model can be specified by
syntactic refinement.

We adopt the methodology to model action refinement as an operator. Our
work is a further development of the work of [9,23,24]. In [9] action refinement
approaches for traditional event structures were proposed, whereas in [23,24] ac-
tion refinement for concurrent systems with deterministic real-time was studied.
The main contributions of this paper are:
– the action refinement techniques in stochastic event structures and a stochas-

tic process algebra;
– the verification of safety of refinement;
– the congruence result about pomset trace and history preserving bisimula-

tion equivalences; and
– the coincidence result of semantic refinement with syntactic refinement.

The paper is structured as follows: We present some necessary notions and
results in stochastic processes in Section 2. In Section 3, we extend stochastic
event structures with action durations, and define on such a model some use-
ful compositional operators and equivalences. An action refinement technique for
stochastic event structures is developed in Section 4, where the refinement safety
and the congruence result about pomset trace equivalence are also declared and
given. In Section 5, we describe a stochastic LOTOS-like process algebra and de-
fine a cpo-based denotational semantics on which our coincidence result is based.
An action refinement approach in the stochastic process algebra is proposed in
Section 6, where we also demonstrate the coincidence result under pomset trace
equivalence. Proofs of results are given in Section 7. Section 8 contains a brief
discussion on synchronization as well as the congruence and coincidence results
when history preserving bisimulation equivalence is taken.

2 Notations

We assume the reader to be familiar with the notions of random variables and
their (probability) distribution functions [28]. In the following, we always use FU

to denote the distribution function of a random variable U .
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If U and V are random variables, then so are max(U, V ) and pU ± qV . Here,
p, q ∈ IR+ and IR+ denotes the set of non-negative reals.

Let RV0 be a set of independent random variables whose values are in IR+

and characterized by their distribution functions, and RV be a set of random
variables containing RV0 and satisfying the conditions that if U, V ∈ RV then

(1) pU ∈ RV for p ∈ IR+,
(2) max(U, V ) ∈ RV .

Conditions (1) and (2) indicate that RV is closed under the number-multiple
and maximum operation on random variables. Note that the distribution func-
tion of a random variable in RV can be obtained from the distribution functions
of the random variables in RV0, and 0 is in RV . Since max(U, 0) = U holds for
any U ∈ RV , 0 is the identity element of RV for the maximum operation.

Examples of such a set of random variables are the case where RV0 consists
of independent random variables of phase-type distributions [26,15] and the case
where RV0 consists of independent random variables of exponential polynomial
form distributions [30]. In the first case, all the random variables in RV are
phase-type distributed. In the second case, all the random variables in RV are
of exponential polynomial form distributions.

3 System Model: Stochastic Event Structures

Assume a given set Θ of observable actions and an invisible internal silent action
τ (τ �∈ Θ). Action

√
(
√ �∈ Θ ∪ {τ}) indicates the successful termination of

a process. Let Act = Θ ∪ {τ,
√}. Unlike e.g. [4,18,5], actions are no longer

instantaneous, they are viewed as compound happenings having durations, and
the duration of an action is determined by a random variable. Let the duration
function k : Θ → RV assign random variables to observable actions. Moreover,
we suppose k(τ) = 0 and k(

√
) = 0, namely the durations of actions τ and

√
are assumed to be zero. This assumption is reasonable: Action

√
is used only

to indicate the successful termination of a process, it is instantaneous and costs
no time. A time interval in which the system is silent can be modelled by a run
where one τ -action is put at the start and one at the end point of the interval,
and the run executes τ -actions inside this interval.

3.1 What Are Stochastic Event Structures

We employ bundle event structures [20,21] with stochastic information associ-
ated as the system model. Bundle event structures consist of events labelled
with actions, together with relations of causality and conflict between events.
Symmetric conflict is a binary relation, denoted �, between events, and the in-
tended meaning of e�e′ is that e and e′ cannot both occur in a single system run.
Causality is represented by a binary relation, the bundle relation denoted �→.
For an event e and a set X of events that are pairwise in conflict, X �→ e means



230 Mila Majster-Cederbaum and Jinzhao Wu

that if e happens in a system run, then exactly one event in X has happened
before and caused e. X is called a bundle-set. Note that X can be empty.

Event and bundle delay functions Ed and Bd are assumed to associate ran-
dom variables to events and bundles, respectively [4,18,5]. The intuitive inter-
pretation of an event e equipped with a random variable Ed(e) = U is that U
may determine the minimal time at which e is enabled, i.e. the probability that
this minimal time is within time t is FU (t). For a bundle X �→ e equipped with
a random variable Bd(X, e) = V , V may determine the minimal time elapse
between the enabling of e and the end of its causal predecessor in X, that is, the
probability that this minimal time elapse is within time t is FV (t). Here, “may
determine” means “determines in case e is enabled”.

Let EVENT be a universe of events, such that ∗ �∈ EV ENT and (e, ∗), (∗, e),
(e, e′) ∈ EVENT for e, e′ ∈ EVENT. The introduction of pair events is for
conveniently defining refinement and other compositional operators on stochastic
event structures. Formally, a stochastic event structure (abbr. ses) E is a tuple
(E, �, �→, l, Ed, Bd) with

E ⊆ EVENT, a set of events,
� ⊆ E × E, the irreflexive and symmetric conflict relation,
�→⊆ 2E × E, the bundle relation,
l : E → Act, the action labelling function,
Ed : E → RV , the event delay function, and
Bd :�→→ RV , the bundle delay function,
such that for any bundle-set X ⊆ E, (X × X) \ IdE ⊆ �.

Here 2E denotes the power-set of E, IdE = {(e, e) | e ∈ E}, and RV the set of
random variables defined in Section 2. The constraint in the definition requires
all events in a bundle-set to be mutually in conflict. This enables us to uniquely
define a causal ordering between the events in a system run. Action durations
are not made part of the tuple, this is because actions exist independently of
any individual ses’s. However, system runs of a ses rely heavily upon action
durations. Also, the event delay function is not redundant with respect to the
bundle delay function and action duration function. See the following description
of system runs.

A ses is depicted as follows: Events are denoted by nodes. The action label is
given inside or near the node. e�e′ is indicated by a dotted line between events
e and e′. A bundle X �→ e is indicated by an arrow to e and to this arrow
each event in X is connected via a line. Random variables belonging to events
and bundles are depicted near the events and bundles, respectively. Delays 0 are
usually omitted, and we identify events with their action labels if no confusion
arises.

Example 3.1.1 E in Figure 1 is a ses. It models a message sender, where actions
a, b and c can be understood as sending the message, returning the message and
informing the user, respectively. The τ -events indicate the system becomes silent
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after executing the action of sending or returning the message and then informs
the user. The random variables U1, U2, V1, V2, V3 ∈ RV have the following mean-
ing that e.g. the event labelled with action a (send the message) is equipped
with random variable U1: the minimal time when the sending begins to happen
is determined by U1, namely the probability that this minimal time is within t
is FU1(t). The bundle equipped with e.g. random variable V1 has the meaning
that the minimal transition delay between the end of sending and the enabling of
the silent action is determined by V1, namely the probability that this minimal
delay is not more than t is FV1(t). It is assumed that the duration of sending the
message is W , i.e. k(a) = W , where W ∈ RV .

a τU1
1

τ

ε  = 

U2 V2
b

c

V

V3

Fig. 1. An example ses

By SES we denote the set of all ses’s. Elements of SES are denoted by E , Ei,
where E = (E, �, �→, l, Ed, Bd), Ei = (Ei, �i, �→i, li, Edi, Bdi). When necessary, we
also use EE , �E , �→E , lE , EdE and BdE to represent the components of E . init(E)
denotes the set of initial events of E , and exit(E) its set of successful termination
events, i.e.

init(E) = {e ∈ E | ¬(∃X ⊆ E : X �→ e)}, and exit(E) = {e ∈ E | l(e) =
√}.

The positive events of E are those events that are annotated with non-zero
random variables, namely pos(E) = {e ∈ E | Ed(e) �= 0}. Let pin(E) = pos(E) ∪
init(E).

A system run of a ses is modelled by a sequence of random events, where each
event ei is associated with a random variable Ui that uniquely determines the
minimal enabling time of this event. A random event (of E) is formally defined
as a pair (e, U), where e ∈ E and U is a random variable.

Let γ be a finite sequence (e1, U1), · · · , (en, Un) of random events, where ei

and ej are distinct whenever i �= j. We denote by E(γ) the set of all events
appearing in γ, and RV (γ, ei) the random variable associated with event ei.
That is, E(γ) = {e1, · · · , en} and RV (γ, ei) = Ui. Note that E(γ) and RV (γ, ei)
can be similarly defined when γ is a set of random events. Suppose γi−1 =
(e1, U1), · · · , (ei−1, Ui−1) is the (i − 1)-th prefix of γ (i = 1, · · · , n).

In a system run, (i) any two events that occur should not be in conflict,
and (ii) predecessors should be closed with respect to the causality on events.
To meet these two requirements, we first figure out the events enabled after a
sub-sequence of random events. We say that an event is enabled after γi−1 if
it is not disabled by one of the events in γi−1 and some event in an arbitrary
bundle-set pointing to it occurs in γi−1. Let
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en(γi−1) = {e ∈ E \ E(γi−1) | (∀ej ∈ E(γi−1) : e ��ej)∧
(∀X �→ e : X ∩ E(γi−1) �= ∅)}.

en(γi−1) is then the set of events enabled after γi−1.
The random variable Ui is determined by the random variable in E annotated

to ei, the duration of the action labelled to ei, the random variables linked to all
bundles pointing to ei and the random variables Uj associated with the causal
predecessors of ei in the system run. We use the following simple ses, say E , as an
example to illustrate our basic philosophy about the requirements on the random
variable annotations in system runs, where a and b are the actions labelled to
events, and U, V and W random variables from RV :

U a◦ V−→ ◦b W

Assume the sequence (a, U1), (b, U2) is a system run of E . Then U1 and U2 are
explained as the random variables that determine the minimal time instants at
which a and b begin to happen in this run, respectively. Since U determines, as
aforementioned, the minimal time at which a is enabled, we require U1 = U .
Also, because the minimal time at which a starts to happen is determined by
U and the execution period of a is determined by the random variable k(a), the
time at which a finishes should not be less than U + k(a). However, since V
determines the minimal transition delay from the end of a to the start of b, b
should start to happen at time not less than U + k(a) + V . On the other hand,
b has to start to happen at time not less than W . It is thus required that the
minimal time at which b starts to happen is determined by max(W, U+k(a)+V ),
namely we require that (iii) U2 = max(W, U + k(a) + V ).

Bearing this in mind, one can easily understand the definition of configura-
tions below, which are actually the underlying random event sets of system runs.
Remark that the causality relations in the runs will be reflected in the notion of
isomorphic configurations for convenience.

Let the sequence γ of random events satisfy the conditions that for 1 ≤ i ≤ n,

(1) ei ∈ en(γi−1), and (2) Ui = max({Ed(ei)} ∪ Bi) where Bi =
{Ed(ej) + k(l(ej)) + Bd(X, ei) | ∃X ⊆ E : X �→ ei ∧ X ∩ E(γi−1) = {ej}}.

Then the set of random events occurring in γ is called a (random) configuration
of E .

The first condition takes care of the requirements (i) and (ii), and the second
takes care of (iii). Note that the random variable Ui may not be in RV . It is
a composition of the random variables in RV by the addition and maximum
operations. By C(E) we denote the set of all the configurations of E .

A configuration σ of E successfully terminates if there exists e ∈ E(σ) such
that e is labelled with the successful termination action

√
. E is called well-

labelled if E(σ) ∩ exit(E) is empty or a singleton for each configuration σ of it.
Let T (E) = {U | ∃σ ∈ C(E) : ∃(e, U) ∈ σ : l(e) =

√}. T (E) consists of all the
random variables determining the minimal time instants at which the system
runs successfully terminate.
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3.2 Compositional Operators on SES’s

Here we only describe action prefix “aU .”, parallel composition “‖A” and ab-
straction “\A” in detail. For other operators such as sequential composition “;”,
choice “+” as well as relabelling “[λ]”, we refer the reader to [4,18,5]. Notice also
that in the definition of action prefix, we suppose event e is uniquely determined
[31] to guarantee that it is really a function from SES to SES.

Action prefix: aU .E1 = (E1 ∪{e}, �1, �→, l1 ∪{(e, a)}, Ed, Bd) for a ∈ Θ∪{τ} and
U ∈ RV , where e ∈ EVENT \ E1 and

�→=�→1 ∪({{e}} × pin(E1)),
Ed = {(e, U)} ∪ (E1 × {0}),
Bd = Bd1 ∪ {(({e}, e1), Ed1(e1)) | e1 ∈ pin(E1)}.

Parallel composition: For A ⊆ Θ, E1 ‖A E2 = (E, �, �→, l, Ed, Bd), where

E = (Ef
1 × {∗}) ∪ ({∗} × Ef

2 ) ∪ {(e1, e2) ∈ Es
1 × Es

2 | l1(e1) = l2(e2)} where
Es

i = {e ∈ Ei | li(e) ∈ A ∪ {√}} and Ef
i = Ei \ Es

i (i = 1, 2),
(e1, e2)�(e′

1, e
′
2) iff (e1�1e

′
1) ∨ (e2�2e

′
2)∨

(e1 = e′
1 �= ∗ ∧ e2 �= e′

2) ∨ (e2 = e′
2 �= ∗ ∧ e1 �= e′

1),
X �→ (e1, e2) iff (∃X1 : X1 �→1 e1 ∧ X = {(e, e′) ∈ E | e ∈ X1}) ∨

(∃X2 : X2 �→1 e2 ∧ X = {(e, e′) ∈ E | e′ ∈ X2}),
l((e1, e2)) = if e1 = ∗ then l2(e2) else l1(e1),
Ed((e1, e2)) = max(Ed1(e1), Ed2(e2)) with Ed1(∗) = Ed2(∗) = 0,
Bd((X, (e1, e2))) = max(Bd1((pr1(X), e1)), Bd2((pr2(X), e2)))
with Bd1((∅, e1)) = Bd2((∅, e2)) = 0 where

pr1(X) = {X1 ⊆ E1 | X1 �→1 e1 ∧ X = {(e, e′) ∈ E | e ∈ X1}},
pr2(X) = {X2 ⊆ E2 | X2 �→2 e2 ∧ X = {(e, e′) ∈ E | e′ ∈ X2}}.

For more explanations of these operators, we refer the reader to [18]. Also,
we can see from these two definitions why RV is required to be closed under the
maximum operation and to contain the identity element 0 for this operation.

Since actions are no longer instantaneous, the abstraction operator proposed
in [4,18,5] has to be modified. In fact, both relabelling and abstraction can be
viewed as certain action refinements for the system. Our idea to abstract an
observable action a is that we insert two τ -events, one at the time when a starts
and the other at the time when a finishes. We suggest to the reader to come
back to the following definition after reading the next section.

Abstraction: E1\A = f(E1), the refinement of E1, where Act0 = Act \ A, and for
a ∈ A, f(a) = ({e√}, ∅, ∅, {(e√,

√
)}, {(e√, k(a))}, ∅), namely the ses ◦√{k(a)}.

By our Theorem 4.1.1 in the next section, E1\A is a ses. The definition
of ses’s is independent of the assumption that actions have durations. As has
been proved in [18], all the other operators mentioned are also well defined, i.e.
◦E1(◦ ∈ {aT ., [λ]}) and E1 ◦ E2(◦ ∈ {; , +, ‖A}) are all ses’s.
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3.3 Equivalences

The behaviour of a system may be described by equivalence classes of partially
ordered multisets of actions (pomsets). We define in this section a linear-time
equivalence, termed pomset trace equivalence, on ses’s. A branching-time equiv-
alence, termed history preserving bisimulation equivalence, can be similarly de-
fined to further record where choices are made [9]. Here we only describe the
former in detail. The latter is briefly discussed in the discussion part. For linear-
time and branching-time equivalences the reader is referred to [8].

Assume that σ is a configuration of E and ei, ej ∈ E(σ). By ej �→ ei we mean
that there exists a bundle-set X such that ej ∈ X and X �→ ei. We use → |σ
to represent the reflexive and transitive closure of this relation, which is in fact
the causality relation in σ. We also use l|σ as the restriction of l on E(σ), i.e.
l|σ(e) = l(e) for e ∈ E(σ). In addition, ej ∈ E(σ) is said to be maximal in σ, if
there does not exist ei ∈ E(σ) such that ej �→ ei.

A configuration σ1 of E1 and a configuration σ2 of E2 are said to be isomor-
phic, denoted σ1 ≈ σ2, if there exists a bijection h : E(σ1) → E(σ2), such that
for arbitrary e, e′ ∈ E(σ1),

(1) RV (σ1, e) = RV (σ2, h(e)),
(2) l1|σ1(e) = l2|σ2(h(e)), and
(3) e →1 |σ1e

′ iff h(e) →2 |σ2h(e′).

The bijection h is called an isomorphism between σ1 and σ2. Constraint (1)
requires the minimal time instants at which the two corresponding events in
isomorphic configurations start to happen to be determined by the same random
variable. Therefore the probabilities that the minimal time instants are within
a given time are the same. Constraints (2) and (3) require the action labels of
the corresponding events and the causality relations of the events in isomorphic
configurations to be the same.

By C(E1) ≈ C(E2) we denote that any configuration of E1 has an isomorphic
correspondence in E2, and vice versa. E1 and E2 are said to be pomset trace
equivalent, denoted E1 ∼=p E2, if C(E1) ≈ C(E2).

4 Semantic Action Refinement for SES’s

For our purpose, we have first to re-arrange the ses’s used to substitute actions.
Given a random variable U ∈ RV , we call τU .E , denoted r(E , U), the rooted ses
of E with start random variable U . In r(E , U), the new event corresponding to
the prefix τ is called the start event of E (or r(E , U)) and denoted by or(E,U).
This new event resembles the specially introduced events utilized in [23,7,24],
and can be viewed as the start point of system. It executes the internal silent
action and the earliest time to be triggered is determined by U .

Example 4.1 Let Ea be the ses given in the left hand of Figure 2, where action
a′ can be understood as sending the message by channel 1, and action a′′ sending
the message by channel 2. r(Ea, U) is the ses depicted in the right hand of Figure
2. We suppose k(a′) = 1

5W and k(a′′) = 3
10W .
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a’

a’’

εa =

a’’

a’

τε

(1/5)W
(3/5)W

(1/2)W
(1/5)W

(1/5)W

(1/5)W

(3/5)W

(1/2)W
Ur( εa , U) =

Fig. 2. A ses and its rooted ses with start random variable U

4.1 Refining a SES

A refinement of an observable action a, say Ea, should be a ses. Since action√
only represents the successful termination of a process, a system run should

contain at most one
√

-event. So we require Ea to be well-labelled. Our require-
ment on the random variable annotations is that the “duration” of a successful
termination system run of Ea is the duration of action a. We thus require the
minimal termination time points of the successful termination runs of Ea to be
determined by the random variable k(a).

Let Act0 be a subset of Act, representing the set of actions that need not or
cannot be refined, and {τ,

√} ⊆ Act0. A function f : Act\Act0 → SES is called
a refinement function if for any action a ∈ Act \ Act0, the following conditions
hold:

(1) f(a) is well-labelled,
(2) T (f(a)) = {k(a)}.

We call f(a) the refinement of action a (with respect to f). Note that the
properties of RV described in its definition ensure the existence of refinement of
an action. Additionally, in practice it is reasonable to require that f(a) is finite.
If so and if the relations between the random variables annotated to events and
bundles in f(a) and the duration k(a) of action a are clear, Constraints (1) and
(2) can be checked and easily enforced.

Let f be a refinement function. Our basic idea to use f to refine a ses E is,
if event e is annotated with random variable U and labelled with action a in E
then e is “replaced” by the rooted ses of f(a) with start random variable U . For
simplicity we use rfl(e) or rf(a) in the following to abbreviate the rooted ses of
f(a) with an already fixed start random variable. Without loss of generality we
suppose that E ∩ Erf(a) = ∅ for any a ∈ Act \ Act0.

Definition 4.1.1 (Refinement of a ses) The refinement of ses E is defined as
f(E) = (Ef , �f , �→f , lf , Edf , Bdf ), where

• Ef = {(e, e′) | (e ∈ E) ∧ (l(e) �∈ Act0) ∧ (e′ ∈ Erfl(e))}∪
{(e, e) | (e ∈ E) ∧ (l(e) ∈ Act0)};

• for any (e1, e2), (e′
1, e

′
2) ∈ Ef , (e1, e2)�f (e′

1, e
′
2) iff

if (e1 = e′
1) then (e2�rfl(e1)e

′
2) ∨ (e2, e

′
2 ∈ exit(rfl(e1)) ∧ e2 �= e′

2),
if (e1 �= e′

1) then
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if (e2 = e1) ∧ (e′
2 = e′

1) then (e1�e
′
1),

if (e2 �= e1) ∧ (e′
2 = e′

1) then (e1�e
′
1) ∧ (e2 ∈ {orfl(e1)} ∪ exit(rfl(e1))),

if (e2 = e1) ∧ (e′
2 �= e′

1) then (e1�e
′
1) ∧ (e′

2 ∈ {orfl(e′
1)} ∪ exit(rfl(e′

1))),
if (e2 �= e1) ∧ (e′

2 �= e′
1) then (e1�e

′
1) ∧ (e2 ∈ {orfl(e1)} ∪ exit(rfl(e1)))∧

(e′
2 ∈ {orfl(e′

1)} ∪ exit(rfl(e′
1)));

• for any X ⊆ Ef and (e1, e2) ∈ Ef , X �→f (e1, e2) iff
if (e2 �= e1) ∧ (e2 ∈ Erfl(e1) \ {orfl(e1)}) then

(π1(X) = {e1}) ∧ (π2(X) �→rfl(e1) e2),
if ((e2 �= e1) ∧ (e2 = orfl(e1))) ∨ (e2 = e1) then (π1(X) �→ e1)∧

(π2(X) = ∪e∈π1(X),l(e)�∈Act0exit(rfl(e)) ∪ (∪e∈π1(X),l(e)∈Act0{e}));

• for any (e1, e2) ∈ Ef , if (e2 �= e1) then
if (e2 �∈ exit(rfl(e1))) then (lf ((e1, e2)) = lrfl(e1)(e2)),
if (e2 ∈ exit(rfl(e1))) then (lf ((e1, e2)) = τ),
if (e2 = e1) then (lf ((e1, e2)) = l(e1));

• for any (e1, e2) ∈ Ef , if (e2 = e1) then Edf ((e1, e2)) = Ed(e1),
if (e2 �= e1) then

if (e2 = orfl(e1)) then Edf ((e1, e2)) = Ed(e1),
if (e2 �= orfl(e1)) then Edf ((e1, e2)) = 0;

• for any X ⊆ Ef and (e1, e2) ∈ Ef , if (X �→f (e1, e2)) then
if (e2 �= e1) ∧ (e2 ∈ Erfl(e1) \ {orfl(e1)}) ∧ (π1(X) = {e1}) then

Bdf (X, (e1, e2)) = Bdrfl(e1)(π2(X), e2),
if (e2 �= e1) ∧ (e2 = orfl(e1)) then Bdf (X, (e1, e2)) = Bd(π1(X), e1),
if (e2 = e1) then Bdf (X, (e1, e2)) = Bd(π1(X), e1).

Here π1(X) = {e | (e, e′) ∈ X} and π2(X) = {e′ | (e, e′) ∈ X}.

Figure 3 demonstrates intuitively how f(E) is obtained. In the original ses,
a, b and c are “replaced” by rf(a), rf(b) and rf(c) respectively. The event set
of the refined ses consists of all the events of rf(a), rf(b) and rf(c). In the
original ses, a and b are in conflict with each other, therefore in the refined ses
a dotted line, namely a conflict relation, is introduced between the start-events
of rf(a) and rf(b). In the original ses, a and b form a bundle-set pointing to c,
thus in the refined ses all the successful termination events of rf(a) and rf(b),
i.e. exit(rf(a)) ∪ exit(rf(b)), form a bundle-set pointing to the start-event of
rf(c). For this all the events in this bundle-set are relabelled with action τ and
dotted lines, i.e. conflict relations, are introduced pairwise between them. In
order to guarantee that events in a bundle-set have to be pairwise in conflict for
the case when for example action a is not allowed to be refined, dotted lines,
namely conflict relations, between the events of exit(rf(a)) [exit(rf(b))] and
the start-event of rf(b) [resp. rf(a)] are introduced. Except that the successful
termination events of rf(a), rf(b) and rf(c) are relabelled with τ -actions, the



Adding Action Refinement to Stochastic True Concurrency Models 237

other events in the refined ses are labelled with the same actions as they are
in rf(a), rf(b) and rf(c). In the original ses, since random variable U3 may
determine the minimal time at which c starts to happen, the start event of rf(c)
is annotated with U3 in the refined ses. In the original ses, random variable V
determines the minimal delay from the end of a or b to the start of c. Therefore
in the refined ses V is annotated to the bundle from the end events of rf(a) and
rf(b) pointing to the start event of rf(c). The random variables annotated to
the start events of rf(a) and rf(b) can be explained analogously.
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Fig. 3. Illustration of the refinement of a ses
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Fig. 4. The refined ses

Theorem 4.1.1 Suppose that E ∈ SES, and f is a refinement function. Then
f(E) ∈ SES.

Example 4.1.1 Assume Act0 = Act \ {a}, and E the ses of Example 3.1.1 (Fig-
ure 1). The ses Ea defined in Example 4.1 (Figure 2) satisfies the two conditions
in the definition of f(a). Let f(a) = Ea. That means sending the message is re-
quired to be decomposed into the left-hand system of Figure 2 so that the sending
can be done by channel 1 or channel 2 satisfying the performance information
associated. The refinement f(E) of E is then the ses depicted in Figure 4.

4.2 Safety and Congruence Result

Let σ be a configuration of E , e ∈ E(σ) with l(e) �∈ Act0, and σe a configuration of
rfl(e). We further assume that rfl(e) satisfies the condition that σe successfully
terminates if event e is not maximal in σ. Let
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σf = {((e, ej), Uj) | e ∈ E(σ) and if l(e) ∈ Act0 then ej = e, Uj = RV (σ, e)
otherwise ej ∈ E(σe), Uj = RV (σ, e) + RV (σe, ej) − RV (σe, orfl(e))}.

We call σf a refinement of configuration σ. It is derived by replacing each random
event (e, U) with l(e) �∈ Act0 in configuration σ by a configuration σe of rfl(e),
where the accompanying random variables of events are adjusted according to
the random variable U associated to event e.

Theorem 4.2.1 (Safety) Suppose that f is a refinement function, and E ∈ SES.
Then C(f(E)) = {σf | σf is a refinement of σ ∈ C(E)}.

Remark that all the constraints in the definition of refinement functions are
needed for the correctness of this theorem.

It is natural to use the rooted ses rfl(e) rather than f(l(e)) to substitute
action l(e) in E . The start event introduced is the recognizer of the start of
system. If necessary, it can be neglected by considering the observable behaviour
of the system, i.e. abstracting the system away from the internal τ -events.

Also, it is straightforward to see that the causality relations in each σe are
respected in the corresponding refinement of σ. The causality relations in σ are
respected as well in the meaning that if e causes e′ in σ then the successful
termination event of σe causes the start event of σe′ .

The behaviour of the refined ses can thus be inferred compositionally from
the behaviour of the original ses and from the behaviour of those substituted for
actions. Our refinement is safe when defining safety in this sense.

Theorem 4.2.2 (Congruence result) Suppose that E1, E2 are two ses’s such that
E1 ∼=p E2, and f1, f2: Act \ Act0 → SES are two refinement functions such that
f1(a) ∼=p f2(a) for any a ∈ Act \ Act0. Then f1(E1) ∼=p f2(E2).

This theorem indicates that pomset trace equivalence is a congruence under
the refinement. Our concept of action refinement is thus well-defined with respect
to this equivalence relation.

5 A Stochastic Process Algebra

Let a ∈ Θ∪{τ}, A ⊆ Θ, and λ: Θ → Θ a relabelling function. dom(λ) = {a ∈ Θ |
λ(a) �= a} represents the set of actions really relabelled by λ. We further assume
that an action a can only be relabelled by an action with the same duration,
i.e., k(λ(a)) = k(a). Let x ∈ V ar, where V ar is a set of process variables, and
U ∈ RV .

5.1 Syntax

We use the stochastic version of a LOTOS-like process calculus. The set of
(random) expressions is generated by the following grammar:
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P ::= 0 | 1U | aU .P | P ; P | P + P | P ‖A P | P\A | P [λ] | x | µx.P

The operators have the following intuitive meaning: 0 denotes inaction. 1U

represents the process that terminates successfully, and its minimal termination
time is determined by U , i.e. the probability that this minimal termination time
is no more than t is FU (t). In the stochastic process algebra defined in [4,18,5],
the successful termination processes are always equipped with random variable
0. Now we need to label them with arbitrary random variables from RV , since
actions are no longer instantaneous, and the minimal time at which an action
may be enabled has thus to be specified.

aU .P denotes the prefix of action a before P where the minimal time when a
starts to happen is determined by U , i.e. the probability that this minimal time
is no more than t is FU (t). P [λ] denotes the relabelling of P according to λ. P\A
behaves as P , except that the actions in A are abstracted to be τ -actions.

P1; P2 denotes the sequential composition of P1 and P2, where the control is
passed to P2 by the successful termination of P1. P1 + P2 indicates the choice
between the behaviours described by P1 and P2. P1 ‖A P2 denotes the parallel
composition of P1 and P2, where P1 and P2 must perform any actions in A∪{√}
simultaneously, while the other actions are executed independently from each
other.

Recursive behaviour is described by µx.P . It can be understood through
x := P , where x ∈ V ar may occur in the body P .

By SPA we denote the set of all the expressions of our language, and AP ⊆
Θ the set of all observable actions occurring in an expression P . The random
variable attachments of actions, if they are 0, are omitted in an expression.

Example 5.1.1 The following P and Pa are expressions:
P = (aU1 .1V1 + bU2 .1V2); (cV3 .0) ,
Pa = a′

1
5 W

.1 3
5 W + a′′

1
5 W

.1 1
2 W .

We will see later that P and Pa specify the ses of Figures 1 and the left-hand
ses of Figure 2, respectively.

5.2 Denotational Semantics

An expression is said to be closed, if any process variable x that occurs has to
be in the scope of a µx-operator. Let s be the cpo-based denotational semantics
defined in [6], which is an improvement of [18,5]. Basically, the semantic model
of a closed expression is a ses, which is derived as follows:

s(0) = (∅, ∅, ∅, ∅, ∅, ∅);
s(1U ) = ({e√}, ∅, ∅, {(e√,

√
)}, {(e√, U)}, ∅);

s(◦P ) = ◦s(P ) for ◦ ∈ {aU ., \A, [λ]};
s(P1 ◦ P2) = s(P1) ◦ s(P2) for ◦ ∈ {; , +, ‖A}; and

the semantic model of recursion is defined as the least upper bound of a set of
ses’s with a complete partial order (cpo):

s(µx.P ) = (∪iEi,∪i�i, �→,∪ili,∪iEdi, Bd), where
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⊥ = (∅, ∅, ∅, ∅, ∅, ∅), vP (vi−1
P (⊥)) = vi

P (⊥) = (Ei, �i, �→i, li, Edi, Bdi),
�→= {(∪iXi, e) | ∀i : (e ∈ Ei ⇒ Xi �→i e) ∧ (Xi+1 ∩ Ei = Xi)},
Bd = {((∪iXi, e), Ui) | ∀i : (e ∈ Ei ⇒ Bdi(Xi, e) = Ui) ∧ (Xi+1 ∩ Ei = Xi)},
and vP is defined as the function that substitutes a ses for each occurrence of x
in P , interpreting all operators in P as operators on ses’s.

Remark that s(1U ) is a modification of s(1) defined in [18,5]. In the sequel,
when the context depends upon s(P ) we always suppose that expression P is
closed.

Example 5.2.1 Let E and Ea be the ses’s given in Example 3.1.1 (Figure 1)
and Example 4.1 (Figure 2, left-hand), and P and Pa be the expressions given
in Example 5.1.1. Then s(P ) = E , and s(Pa) = Ea.

6 Syntactic Action Refinement in Stochastic Processes

In this section, we define the syntactic refinement of a closed expression P ∈
SPA. For this we have to sort out some actions occurring in P that may not
be refined. For a given expression P , Sort(P ) is defined as the smallest set of
actions containing A [A, dom(λ)] if the abstraction operator “\A” [resp. parallel
composition “‖A”, relabelling “[λ]”] occurs in P . All actions in Sort(P ) are
not allowed to be refined, since otherwise it may lead to a confusion of the
communication levels like in the traditional case [10]. Remark that the restriction
on synchronization actions in the parallel composition can actually be relaxed.
Some details about this is given in the discussion part. Here we exclude such
actions for clarity.

6.1 Refining an Expression

Let Act0 ⊆ Act, representing the set of actions that need not or cannot be
refined such that Sort(P ) ∪ {τ,

√} ⊆ Act0, and let g : Act \ Act0 → SPA be a
function. For convenience, we also use Ag(a) to denote the action singleton {a}
when a ∈ Θ ∩ Act0. It is defined as follows that g is a refinement function for
expression P :

g is a refinement function for 0, 1 and x;
g is a refinement function for aU .P1 iff g is a refinement function for P1;
g is a refinement function for P1 ◦P2 iff g is a refinement function for P1 and
P2, where ◦ ∈ {; , +};
g is a refinement function for P1 ‖A P2 iff g is a refinement function for P1
and P2, and for any a ∈ Act \ Act0, Ag(a) ∩ Sort(P ) = ∅;
g is a refinement function for ◦P1 iff g is a refinement function for P1, and
for any a ∈ Act \ Act0, Ag(a) ∩ Sort(P ) = ∅, where ◦ ∈ {\A, [λ]};
g is a refinement function for µx.P1 iff g is a refinement function for P1.

We forbid the actions in Sort(P ) to occur in g(a). Usually, like in the tradi-
tional case such constraints cannot be avoided for refinement on syntactic level.
Otherwise a confusion of the communication levels may happen [10].
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Hereafter, let g be a refinement function for expression P . We proceed to
consider how g can be applied to P to obtain the refinement of P . Our basic
idea is that the refinement of aU .P1, where a �∈ Act0, is defined as the sequential
composition of τU .g(a) and the refinement of P1.

Similarly, the prefix τ can be viewed as the start point of the process. Since
the random variable U determines the minimal time when action a starts to
happen in aU .P1, the minimal time at which the start point begins to happen
in the refined expression should be determined by U .

Definition 6.1.1 (Refinement of expression P ) The refinement g(P ) of expres-
sion P is defined as follows:

g(0) = 0; g(1U ) = 1U ; g(x) = x;

g(aU .P1) =

{
aU .g(P1) if a ∈ Act0;
(τU .g(a)); g(P1) otherwise;

g(◦P1) = ◦g(P1), where ◦ ∈ {\A, [λ]};
g(P1 ◦ P2) = g(P1) ◦ g(P2), where ◦ ∈ {; , +, ‖A};
g(µx.P1) = µx.g(P1).

Theorem 6.1.1 Suppose that P ∈ SPA, and g is a refinement function for P .
Then g(P ) ∈ SPA.

Example 6.1.1 Assume Act \ Act0 = {a}, and P and Pa are the expressions
given in Example 5.1.1. Let g(a) = Pa. Then

g(P ) = (τU1 .(a
′
1
5 W

.1 3
5 W + a′′

1
5 W

.1 1
2 W ); 1V1 + bU2 .1V2); (cV3 .0) .

The refinement g(P ) is obviously closed if P is closed. In addition, our re-
finement operation is simultaneous, not step-wise.

6.2 Coincidence Result

Assume g : Act \ Act0 → SPA is a syntactic refinement function for a given
expression P as defined in Section 6.1 such that g(a) is closed. We associate
with g a semantic refinement function f : a �→ s(g(a)) (a ∈ Act \ Act0) as
defined in Section 4.1. Notice that s(g(a)) is naturally well-labelled. Moreover,
a syntactic characterization of s(g(a)) with property T (s(g(a))) = {k(a)} is
possible if s(g(a)) satisfies the similar finite variability property [27].

Theorem 6.2.1 (Coincidence result) Suppose that P ∈ SPA, g : Act \ Act0 →
SPA is a refinement function for P , and f : Act \ Act0 → SES, f(a) = s(g(a))
for a ∈ Act \ Act0 is a refinement function. Then f(s(P )) ∼=p s(g(P )).

This theorem demonstrates that with respect to the cpo-based denotational
semantics our syntactic and semantic refinement operations coincide up to pom-
set trace equivalence. Due to this result, under pomset trace equivalence and
under the cpo-based denotational semantics we do not need to distinguish f
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from g. Note that P should be closed and the constraint that actions in Sort(P )
are not allowed to be refined and to occur in the refinement of some actions is
necessary for this theorem to hold.

Example 6.2.1 The semantic model s(g(P )) of g(P ), where g(P ) is the refine-
ment of expression P described in Example 6.1.1, is pomset trace equivalent to
the ses f(E), the refinement of ses E given in Example 4.1.1 (Figure 4). Note
that E = s(P ) and Ea = s(Pa) as shown in Example 5.2.1.

7 Proofs

We sketch proofs of the theorems presented in the previous sections. Theorems
4.1.1 and 6.1.1 follow directly from the definitions of ses’s, expressions and the
corresponding refinement operations. We hereby focus on the remaining results.

Lemma 7.1 Suppose E1 ∼=p E2, E3 ∼=p E4. Then
◦E1 ∼=p ◦E2 (◦ ∈ {aU ., \A, [λ]}),
E1 ◦ E3 ∼=p E2 ◦ E4 (◦ ∈ {; , +, ‖A}).

Lemma 7.1 indicates that pomset trace equivalence is a congruence under
the standard compositional operators on ses’s.

Lemma 7.2 below shows that the rooted ses of a well-labelled ses remains
well-labelled, the “duration” of this rooted ses remains invariant, and the rooted
ses’s of two pomset trace equivalent ses’s with the same start random variables
remain pomset trace equivalent.

Lemma 7.2 (1) E is well-labelled iff r(E , U) is well-labelled;
(2) {U + V | V ∈ T (E)} = T (r(E , U));
(3) If E1 ∼=p E2 then r(E1, U) ∼=p r(E2, U).

Now suppose that σf is a configuration of f(E). Let

π1(σf ) = {(e, W ) | there exists (e, ej) ∈ E(σf ) and if l(e) �∈ Act0
then W = RV (σf , (e, orfl(e))) otherwise W = RV (σf , (e, e))}.

For e ∈ E(π1(σf )) with l(e) �∈ Act0, let

π2(σf , e) = {(ej , Wj) | (e, ej) ∈ E(σf ) and
Wj = RV (σf , (e, ej)) − RV (σf , (e, orfl(e)) + U}.

Here rfl(e) stands for r(f(l(e)), U). π1(σf ) is actually the projection of σf on
E , and π2(σf , e) the projection of σf on rfl(e), where the random variables
attached to events are adjusted according to the random variable attached to
the start-event of each f(l(e)) in σf .

From Lemma 7.2, we have the following

Lemma 7.3 (1) π1(σf ) is a configuration of E ; (2) π2(σf , e) is a configuration
of rfl(e), and it successfully terminates if e is not maximal in E(π1(σf )).
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Lemma 7.4 C(f(aU .s(P1))) = C(aU .f(s(P1))), if a ∈ Act0;
C(f(aU .s(P1))) = C((τU .f(a)); f(s(P1))), if a �∈ Act0;
C(f(◦s(P1))) = C(◦f(s(P1))), ◦ ∈ {\A, [λ]};
C(f(s(P1) ◦ s(P2))) = C(f(s(P1)) ◦ f(s(P1))), ◦ ∈ {; , +, ‖A}.

Lemma 7.4 follows from Lemma 7.3 and the constraint that the actions in-
volved with the abstraction, relabelling and the parallel composition operators
are not allowed to be refined and to occur in the refinement of actions.

In Lemma 7.4, if the ses appearing in the left-hand side of an equality is
denoted by Ef and the ses in the corresponding right-hand side by Eg, then
for any configuration σ of Ef , →f |σ =→g |σ and lf |σ = lg|σ. Thus, trivially
C(Ef ) ≈ C(Eg) and so Ef

∼=p Eg.
Theorem 4.2.1 follows from Lemma 7.2(1)(2) and Lemma 7.3. Theorem 4.2.2

follows from Lemma 7.2(3), Lemma 7.3 and Theorem 4.2.1. Theorem 6.2.1 fol-
lows from Lemmas 7.1 and 7.4, where the result for recursion follows from the
fact that f(vi

P (⊥)) ∼=p vi
f(P )(⊥) for i ≥ 0. This fact can be proved by means of

the results for the other operators.

8 Discussions
In this paper, we introduced the notions of action refinement on stochastic event
structures and a stochastic LOTOS-like process algebra. We have demonstrated
that the refinement is safe, and so far pomset trace equivalence is a congruence
under the refinement. We have also shown that the syntactic refinement and the
semantic refinement coincide up to pomset trace equivalence with respect to a
cpo-based denotational semantics.

8.1 Synchronization
In general Theorem 6.2.1 no longer holds if synchronization actions are allowed
to be refined. The main reason is that it is impossible to require the newly
introduced τ -events to be executed simultaneously. This problem can be solved
by abstracting the system from the internal τ -events:

• Omitting the random τ -events that occur, we define as usual the concepts
of observational configurations and observational pomset trace equivalence;

• The ses used to refine an observable action is required to be observable
too. That is, any an observational configuration of it that terminates successfully
contains at least an event labelled with an observable action;

• In the definition of g being a refinement function for expression P1 ‖A P2, we
further require that Ag(a1) ∩ Ag(a2) = ∅ for any two distinct a1 ∈ A and a2 ∈ Θ.
Without this constraint, a confusion of communication levels may occur. Finally,
we define g(P1 ‖A P2) = g(P1) ‖g(A) g(P2), where g(A) = ∪a∈AAg(a).

Under these conditions, Theorem 6.2.1 holds again for observational pomset
trace equivalence.

8.2 History Preserving Bisimulation Equivalence
For an action a, a random variable U and two configuration σ and σ′ of E such
that σ ⊆ σ′, we say σ

a,U−→ σ′ if σ′\σ = {(e, U)} with l(e) = a. As usual, a relation



244 Mila Majster-Cederbaum and Jinzhao Wu

H ⊆ C(E1)×C(E2)×2(E1×E2) is called a history preserving bisimulation between
E1 and E2, if (∅, ∅, ∅) ∈ H and when (σ1, σ2, h) ∈ H then

(1) h is an isomorphism between E(σ1) and E(σ2),

(2) σ1
a,U−→1 σ′

1 ⇒ ∃σ′
2, h

′ : σ2
a,U−→2 σ′

2, (σ
′
1, σ

′
2, h

′) ∈ H and h′|σ1 = h,

(3) σ2
a,U−→2 σ′

2 ⇒ ∃σ′
1, h

′ : σ1
a,U−→1 σ′

1, (σ
′
1, σ

′
2, h

′) ∈ H and h′|σ1 = h.

Here h′|σ1 denotes the restriction of h′ on E(σ1).
E1 and E2 are said to be history preserving bisimulation equivalent, denoted

E1 ∼=b E2, if there is a history preserving bisimulation between E1 and E2.
Theorem 4.2.2 holds for history preserving bisimulation equivalence. Theorem

6.2.1 holds under history preserving bisimulation equivalence when no synchro-
nization on observable actions occurs. Proofs are analogous and omitted.
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Abstract. Data refinements are refinement steps in which a program’s
local data structures are changed. Data refinement proof obligations re-
quire the software designer to find an abstraction relation that relates
the states of the original and new program. In this paper we describe
an algorithm that helps a designer find an abstraction relation for a pro-
posed refinement. Given sufficient time and space, the algorithm can find
a minimal abstraction relation, and thus show that the refinement holds.
As it executes, the algorithm displays mappings that cannot be in any
abstraction relation. When the algorithm is not given sufficient resources
to terminate, these mappings can help the designer find a suitable ab-
straction relation. The same algorithm can be used to test an abstraction
relation supplied by the designer.

1 Introduction

Refinement is the process of deriving verifiably-correct software from its speci-
fication. Data refinement is concerned with refinement steps in which the pro-
gram’s local data structures are changed. Data refinement steps can be complex
and difficult to prove correct. It is possible within a data refinement step to to-
tally change the structure of the program, providing it is not possible to detect
a change in the program’s external behaviour.

Typically, in a data refinement, the designer may wish to replace an abstract
data type, e.g., a set, with a more concrete one, e.g., an array. In some cases,
given an abstraction relation that expresses the desired relationship between
the two data types, the designer can calculate the least refined system from the
abstract system and the abstraction relation [9].

In most cases however, the designer proposes a concrete system, expecting
it to be a refinement of the abstract system. In order to prove this, the designer
then needs to find a suitable abstraction relation — one that is sufficient to
discharge the proof obligations. It is this case that we address in this paper.

The proof obligations for data refinement are in the form

∃R • p

where R is an abstraction relation between states of the concrete system and
states of the abstract system and p is the particular obligation to be proven.

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 246–265, 2003.
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Usually, every reachable concrete state must be in the domain of the abstraction
relation — that is, R must be total.

It is often very hard to find a suitable abstraction relation. In previous work
[10,12], we showed published examples where abstraction relations were incor-
rect. Other authors, e.g., Butler [6], have also recognised this problem, and have
proposed approaches to save time when looking for abstraction relations.

In a previous paper [11], we described an algorithm for finding the weakest
abstraction relation for a proposed refinement. That algorithm worked at the
semantic level, and required the construction of the complete transition rela-
tions for the abstract and concrete systems before it could be applied. In this
paper we describe an algorithm that can find minimal abstraction relations. This
algorithm works directly on the syntactic specifications, and is incremental in
the sense that it builds the transition relations as it executes, and can produce
useful intermediate output. Whilst time and space limitations may prevent the
algorithm from finding an abstraction relation, the intermediate output from the
algorithm can nevertheless help the designer find a suitable abstraction relation.
In such cases, we anticipate the algorithm being useful as an aid to proving
refinements with a theorem prover.

The same algorithm can also be used to test a supplied abstraction relation.
If it is not a suitable abstraction relation, then the algorithm can find incorrect
mappings in the relation. If the supplied relation is too weak, the algorithm
can still use it to help find a minimal abstraction relation. An intelligent choice
of a candidate abstraction relation can significantly cut down the search space.
In this way a designer can use their insight into the refinement to improve the
performance of the algorithm.

Our aim in this paper is to present the concept of how to derive abstraction
relations. We use the action system formalism [2], since this is a comprehensive
approach which deals with most of the issues that arise in data refinement within
other formalisms.

2 Comparison with Previous Work

Butler [6] considers the problem of iteratively deriving and checking abstraction
relations for data refinement. He observes that, typically, an abstraction relation
is “invented”, and then, using that relation, the proof obligations are checked.
Often, the abstraction relation is found to be too weak, and so needs to be
strengthened. Butler’s work is aimed at reducing the “tedium” of rechecking all
the proof obligations in this scenario. He shows that, in some cases, it is only
necessary for the designer to recheck a subset of the proof obligations when the
abstraction relation has been strengthened. This is different to our aims in this
paper, although Butler’s method would certainly complement our approach. We
are more concerned with helping the designer “invent” the abstraction relation.

Doche and Gravell [7] consider the same problem that we address. Their
work is based on the Csp2B approach, in which the CSP and B formalisms are
used together in order to model both concurrency and state-changing operations.
The CSP part of the specification deals with the ordering and synchronisation of



248 Neil J. Robinson

events, and the B part deals with the specification of operations. Their method
supports the conversion of the CSP part into B, and they use the B toolkit to
discharge the data refinement proof obligations. They show how the refinement
of the CSP part of the specification can also be model checked using the FDR
tool. FDR constructs Labelled Transition Systems, which they can then use to
automatically derive an abstraction relation for the CSP part of the specification.
The derived relation is in the form of a set of mappings between individual states
of the two specifications, i.e., it is not in predicate form. The method requires
the designer to manually provide the abstraction relation for the B part of the
specification. Together, the two parts of the abstraction relation are used to
discharge the data refinement proof obligations in the B toolkit. Parts of the
proof are discharged automatically, but parts must be carried out by hand.
Doche and Gravell’s results are clearly limited in that they only deal with the
CSP part of the specification. Basically this covers the “guard enabledness” parts
of the data refinement proof obligations that we use in this paper. Our aim is to
derive the whole abstraction relation.

Bensalem et al. describe an approach designed to make model checking fea-
sible for infinite state systems [5]. Given a concrete system and an abstraction
function, they show how to compute an abstract system such that the concrete
system simulates the abstract system. This is the same as Back and von Wright’s
concept of decoding [4]. Bensalem et al.’s work is relevant because it makes use
of an elimination method based on simulation, which is similar in concept to the
algorithm we define in this paper. Their method begins by defining the abstract
system as the universal relation (one which relates every abstract state to every
abstract state). Transitions are then deleted from the abstract system so as to
preserve the simulation relation between the abstract and concrete systems. The
method presented by Bensalem et al. is set in a different context to our work —
it uses Hoare triples and a simple form of functional data refinement. However
the main difference from our work is that their aim is to find an abstract system
given a concrete system and an abstraction function, whereas our aim is to find
an abstraction relation given an abstract system and a concrete system.

3 Background

3.1 Action Systems

Action systems [2] use Guarded Command Language notation to define an inter-
leaving, state-machine simulation of concurrent behaviours. Each action appears
as a (multiple) assignment protected by a Boolean guard. An outermost do...od
loop nondeterministically selects actions with true guards until none remain.

An action system is defined by its local, or internal variables, the initial
values of its local variables, its global, or externally visible variables, and its
actions, where each action

Ai
def
= gAi → sAi

consists of a guard gAi and a statement sAi [1].
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A simple action system, Salvador’s Bakery, is shown in Figure 1. This models
a bakery in which customers do not queue. The observable part of the state is
the global variable out representing the set of customers outside the bakery. The
internal part of the state consists of the local variables sb in, representing the
customers waiting inside the bakery and sb th representing customers who are
saying thank you. The local variables are declared within the var construct and
the global variables are listed at the end of the do..od loop. The initial value of
the local variables are defined by the init construct. There are four actions in
the example, labelled SB1 to SB4, separated by the � symbol which represents
nondeterministic choice. Action SB1 models a customer entering the bakery,
moving from outside the shop to inside. We use a multiple nondeterministic
assignment in the form x1, x2 := y1, y2 • p, where y1 and y2 are expressions,
and p is a predicate that must hold for the assignments to succeed. Action SB2
models a customer being served and saying thank you. Action SB3 models a
customer being served and leaving the shop without saying thank you, and thus
moving from inside the shop to outside. Finally, action SB4 models the customer
who has said thank you leaving the bakery, and thus moving from inside the shop
to outside.

var sb in, sb th : P Cust
init sb in = {} ∧ sb th = {}
do
(� out �= {} → sb in, out := sb in ∪ {c}, out \ {c} • c ∈ out ) [SB1]
(� sb in �= {} ∧

sb th = {} → sb in, sb th := sb in \ {c}, {c} • c ∈ sb in ) [SB2]
(� sb in �= {} ∧

sb th = {} → sb in, out := sb in \ {c}, out ∪ {c} • c ∈ sb in ) [SB3]
(� sb th �= {} → sb th, out := {}, out ∪ sb th ) [SB4]
od : out : P Cust

Fig. 1. Salvador’s Bakery action system specification SB.

We model action systems using a relational model, based on Back and von
Wright’s semantics [2], but with a simplified treatment of stuttering actions.
Stuttering actions are those which are guaranteed not to change the observable
part of the state, for example action SB2 in Salvador’s Bakery. Change actions are
those which may change the observable part of the state, for example action SB3
in Salvador’s Bakery.

An action system A is modelled by a sextuple

(S ,T , initial , terminating , aborting , infstutter)

where:

– S is a set of states. Each state in S consists of a pair (a, b) in which the first
element a represents the internal state, and the second element b represents
the observable (or global) state.
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– T is the transition (or next-state) relation over S , derived from the system’s
actions. Each transition in T represents a change of state of the action system
of the form (a, b) �→ (a ′, b′). When constructing a transition relation from
a syntactic action system, actions are chosen demonically. So if one of the
enabled actions aborts, then the whole action system aborts, and there is
no next state in the transition relation. Reachable states are those states
which can be reached by starting from an initial state and then applying the
transition relation zero or more times.

– initial , terminating , and aborting are subsets of S representing the initial,
terminating and aborting states of the action system. These can be obtained
from a syntactic action system as follows:

• The initial states are all the states reachable by performing the init
statement.

• The terminating states are the states in which all of the guards of the
action system are false.

• The aborting states are the states (a, b) in which one of the guards is
true but there is no next state (a ′, b′) (as defined by T ).

– infstutter is a subset of S , representing the states from which there may be
infinite stuttering. It contains the states from which it is possible to take
stuttering transitions of T , i.e., transitions of the form (a, b) �→ (a ′, b), an
infinite number of times.

sb_th={1}
sb_in={}

sb_in={}
sb_th={2}
out={1}

sb_in={1}
sb_th={2}
out={}

sb_in={2}
sb_th={}
out={1}

out={2}
sb_th={}
sb_in={1}

sb_th={}
sb_in={1,2}

out={}

sb_in={2}
sb_th={1}
out={}

out={2}

initial

sb_in={}
sb_th={}
out={1,2}

Fig. 2. Salvador’s Bakery digraph, with initial value of observable variable out = {1, 2}.

We use digraphs to pictorially represent such systems, e.g., Figure 2 repre-
sents Salvador’s Bakery action system in the case in which the initial value of
the observable variable out is {1, 2}. The states are represented by vertices of
the graph within which the values of the each of the state variables are shown.
Possible transitions between states are shown by the edges of the graph.
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Following Back and von Wright [2], the behaviours, beh(T ) of an action sys-
tem, are all the possible sequences of system states, as defined by the initial
states and the transition relation T . All behaviours begin in an initial state.
Subsequent states in a behaviour are obtained by performing iterations of the
loop. A behaviour can be:

– terminating, when its last element is a terminating state,
– aborting, when its last element is an aborting state, or
– infinite, when it has no last element.

A trace, tr(s) of a behaviour s is obtained by removing the internal states and
removing finite repetitions of observable states. The traces of a system represent
all its possible observable behaviours.

3.2 Action System Refinement

Following Back and von Wright [2], we define refinement as follows:
Let ‘�’ be an approximation relation on behaviours. Behaviour s approximates t ,
denoted s � t if and only if:

– either s is aborting and tr(s) is a prefix of tr(t), or
– neither s nor t is aborting, and tr(s) = tr(t).

Let ‘�’ be the refinement relation for action systems. Action system C is
a refinement of action system A if every behaviour of C has an approximating
behaviour in A:

A � C def
= ∀ t ∈ beh(C) • (∃ s ∈ beh(A) • s � t)

4 Checking Refinements

Proof methods for data refinement allow refinements to be checked without ex-
plicitly considering all possible behaviours. These proof methods are based on
the idea of simulation. If system A is refined by system C , then we can visualise
their behaviours with a commuting diagram. An example is shown in Figure 3.
Corresponding states of the two systems are related via an abstraction rela-
tion R, represented by the dashed arrows. The basic idea is that if we start in a
concrete state, c, and take a transition of the concrete system, to nc, then move
to an abstract state, say na2, via the relation R, then it must always be possible
to reach the same abstract state na2 by starting in the same concrete state c,
moving to an abstract state via R, and taking a transition of the abstract system.
This form of simulation is called a forward simulation. In certain situations, for
example when non-determinism in the abstract specification is postponed in the
concrete specification, backward simulation is required to prove the refinement.
We do not consider backward simulation in this paper.

Note that refinement steps usually involve a reduction in nondeterminism.
Simulation based proof obligations reflect this, and only require a single matching
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R

ncc

R

na2

na1

a

Fig. 3. Commuting diagram.

abstract transition for each concrete transition. Hence the abstract transition
from state a to state na1 in Figure 3, is not necessary for the simulation to
succeed.

4.1 Simulation Conditions for Action Systems

For action systems, Back and von Wright give a general definition of simulation
using abstraction statements (predicate transformers), rather than abstraction
relations. They then develop this into two more practical sets of proof obligations,
using abstraction relations, for forward simulation and backward simulation.
Their definitions make use of the explicit separation of an action system into
stuttering and change actions, and can deal with changes in the amount of
stuttering between the two action systems [2].

We do not follow Back and von Wright’s approach to dealing with stuttering
actions. This is because our algorithm relies on there being a continuous forward
simulation from initial states onwards, whereas their approach allows for breaks
in the forward simulation within sequences of stuttering concrete actions. For
further details and an example see our previous paper [11].

We also limit our work to refinements in which there is the same or more
stuttering in the concrete system as in the abstract system. This is not too severe
a limitation, since in most cases we expect refinements to increase the number
of stuttering steps, for example through decomposition of actions.

The approach we take is to transform the abstract action system so that, in
the context of a simulation, it allows for additional stuttering in the concrete
system. The abstract action system is thus transformed to make its transition
relation reflexive, as follows:

(S ,T , initial , terminating , aborting , infstutter)� def
=

(S , (T ∪ id(domT ∪ ranT ∪ initial)),
initial , terminating , aborting , infstutter)

In terms of a syntactic action system, this is the same as adding a ‘true →
SKIP ’ action to the action system, where SKIP is a transition of the action
system in which the state does not change. When performing a simulation, these
additional transitions allow the abstract system to stay in the same state while
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the concrete system performs stuttering actions. Von Wright uses a similar idea
in an earlier paper on action system refinement [13]. As stated there, the traces
of action system A� are precisely the same as the traces obtained by adding
arbitrary amounts of stuttering to action system A. He notes that a problem with
this approach is that it prevents detection of infinite stuttering in the concrete
system. In our transformation, we ensure that it is still possible to identify the
states from which there is infinite stuttering, by using the previously defined set
infstutter , thus distinguishing the newly-introduced stuttering transitions from
those that already existed.

Thus, to check a refinement between action systems A and C, we check for-
ward simulation between A� and C.

Concrete action system C is a refinement of abstract action system A if there
exists an abstraction relation R from the concrete states C.S to the abstract
states A.S , such that the following conditions are satisfied:

(c, u) ∈ C.initial ⇒
(∃ a • (a, u) ∈ A�.initial ∧ (c, u) �→ (a, u) ∈ R) [F1]

(c, u) �→ (a, u) ∈ R ∧ (c, u) �→ (c′, u ′) ∈ C.T ⇒
(a, u) ∈ A�.aborting ∨
(∃ a ′ • (a, u) �→ (a ′, u ′) ∈ A�.T ∧

(c′, u ′) �→ (a ′, u ′) ∈ R) [F2]
(c, u) �→ (a, u) ∈ R ∧ (c, u) ∈ C.aborting ⇒

(a, u) ∈ A�.aborting [F3]
(c, u) �→ (a, u) ∈ R ∧ (c, u) ∈ C.terminating ⇒

(a, u) ∈ A�.aborting ∨ (a, u) ∈ A�.terminating [F4]
(c, u) �→ (a, u) ∈ R ∧ (c, u) ∈ C.infstutter ⇒

(a, u) ∈ A�.aborting ∨ (a, u) ∈ A�.infstutter [F5]

As a consequence of proof obligations F1 and F2, except when there are aborting
states in the abstract system, abstraction relations for forward simulation need
to be total.

Proof obligation F1 deals with initialisation. It requires that every concrete
initial state is mapped, via the abstraction relation R, to at least one abstract
initial state.

Proof obligation F2 is the main forward simulation condition. It requires that
if a concrete state (c, u) is mapped to an abstract state (a, u) via the abstraction
relation R, then either the abstract state it is mapped to via R is aborting, or
every concrete state (c′, u ′) reachable from (c, u) must be reachable from (a, u)
via an abstract transition and a mapping in the abstraction relation.

Proof obligation F3 requires that every concrete aborting state is only
mapped to abstract aborting states. Proof obligation F4 requires that concrete
terminating states must only be mapped to abstract terminating states, or to
abstract aborting states. Finally, proof obligation F5 requires that any concrete
state from which there is infinite stuttering is only mapped to either abstract
aborting states or abstract states from which there is infinite stuttering.

In practice, for ease of use with syntactic action systems, action system proof
obligations are rewritten in a form that allows the designer to perform proofs by
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matching up single actions of the concrete system with single, or small groups
of actions of the abstract system [2].

Forward simulation is not complete. Thus, even if there is no abstraction
relation for which these proof obligations hold, there may still be a refinement
by backward simulation [2].

4.2 Sets of Abstraction Relations

Assume concrete action system C is a refinement of abstract action system A.

Definition 1. The set of abstraction relations −→� for forward simulation
contains only the relations, from C.S to A.S, mapping observably identical states,
for which conditions F1 to F5 are true.

By definition, if the refinement is a forward simulation then −→� will be non-empty.
The structure (−→� ,⊆) is a poset. In the following sections, when we refer to

minimal, maximal, least and greatest elements of −→� , it is with reference to this
poset. Also when we refer to abstraction relations in the following sections, we
are referring to members of −→� , i.e., abstraction relations for forward simulation
only.

Since (−→� ,⊆) is a poset, it has at least one maximal element and at least
one minimal element. In previous work [11] we showed that there is only one
maximal element, i.e., there is a greatest element of the poset. However there
may be many minimal elements. For example, if an abstract system has two
possible behaviours, both of which produce the same trace, then this can be
refined to a concrete system which has one possible behaviour which produces
this trace. In such a case, there would be a choice of two minimal abstraction
relations. This means that the existence of a least (or strongest) abstraction
relation is not guaranteed.

5 A Monolithic Algorithm
for Finding Abstraction Relations

When performing data refinement proofs for forward simulations, it is necessary
to find an abstraction relation for which the above conditions hold.

In earlier work [11], we presented a monolithic algorithm for finding abstrac-
tion relations. This algorithm works by examining the complete descriptions of
the abstract and concrete action systems, including their transition relations. It
populates a candidate abstraction relation that, if any abstraction relation exists,
is guaranteed to contain all possible abstraction relations. The algorithm then
deletes mappings from the candidate abstraction relation until either no further
deletions can be made, in which case the resulting relation is the weakest ab-
straction relation, or a deletion is made which makes the proof obligations false,
in which case there is no abstraction relation. We showed that the algorithm is
sound and complete, and by construction, showed that, if an abstraction relation
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exists, then there is always a weakest abstraction relation. For convenience, we
repeat the relevant propositions and definitions below. The proofs are provided
in our earlier paper [11].

Proposition 1 The set of relations −→� has a unique greatest element.

Definition 2. The weakest abstraction relation for forward simulation,−→R, is the greatest element in −→� .

Proposition 2 The weakest abstraction relation for forward simulation −→R ex-
ists if and only if C is a refinement of A by forward simulation.

6 Incrementally Finding Abstraction Relations

In this section we define an incremental algorithm for finding an abstraction
relation, given an abstract and a concrete syntactic action system. First we
define the steps of the algorithm, and provide an explanation of its operation.
We show a simple example application of the algorithm to illustrate its action
when it is possible to run it to completion. We then explain how the algorithm
relates to the monolithic algorithm we presented in our previous paper [11].

The algorithm tries to find a forward simulation between the two systems.
As the simulation proceeds, the algorithm visits pairs of concrete and abstract
states. For convenience, we refer to these pairs of states as positions.

6.1 Inputs to the Algorithm and Interpretation of Its Outputs

The algorithm uses the following inputs:

– The abstract syntactic action system A
– The concrete syntactic action system C
– A candidate abstraction relation R. This can be thought of as containing

matching positions.

On termination, it supplies an answer “Yes” or “No”. If the answer is “Yes”
then this means there is a forward simulation, and in this case the algorithm
also produces a minimal abstraction relation MR. As the algorithm executes it
can delete pairs of states from R. These pairs are also printed as intermediate
output.

If no candidate relation is supplied, the algorithm is called with a relation R
that contains all the mappings from concrete to abstract states in which the
global variables are identical, i.e., R = {(c, g) �→ (a, g)}, where values for c are
drawn from possible values of the local part of a concrete state, a from the local
part of an abstract state and g from the global part of the states. This relation
is guaranteed to contain all other abstraction relations [11] (if there are any).

Cases in which a candidate abstraction relation is supplied are discussed in
Section 7.
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6.2 Steps of the Algorithm

The algorithm is defined in three parts. The first part defines the initialisation of
the algorithm. The second part of the algorithm generates all the concrete initial
states and initiates a search on each of them. The third part of the algorithm is
the definition of the subroutine VISIT , which performs a depth-first search on
a position.

The steps of the algorithm are as follows:

Setting up

1. Transform the abstract specification, as described in Section 4.1.
2. Initialise relation MR to empty.

Checking Initial States

3. Generate the concrete initial states C .initial
4. If C .initial is empty then this is a special case of a forward simulation. Exit

with answer “Yes”.
5. For each concrete initial state ci in C .initial

(a) if there is an abstract initial state ai such that (ci , ai) is in both R
and MR then go to next concrete state at step 5.

(b) Find an abstract initial state ai such that (ci , ai) is in R
(c) If there is such a state then

i. if VISIT (ci , ai) = explored , then go to next concrete state at step 5.
ii. Otherwise, go back to step 5b

(d) Otherwise, there is a concrete initial state with no matching abstract
initial state. Exit with answer “No”.

6. All the initial concrete states have been explored, so there is a forward sim-
ulation. Exit with answer “Yes”, and print relation MR.

Subroutine VISIT(c, a) : Explored | failed .

7. Update relation MR := MR ∪ {c �→ a}
8. Find the concrete and abstract actions enabled from the current state,

C enabled and A enabled
9. If one of the actions in A enabled aborts (i.e., has no next state), then

Return(explored).
10. If one of the actions in C enabled aborts, then go to step 14.
11. If C enabled is empty then

(a) If A enabled contains only true → SKIP , as added at step 1, then
Return(explored).

(b) Otherwise, the concrete system has terminated early, so go to step 14.
12. For each concrete state nc reachable from c via an action in C enabled

(a) if there is an abstract state na reachable from a via an action in
A enabled , such that (nc,na) is in both R and MR then go to next
concrete state at step 12.
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(b) Find an abstract state na reachable from a via an action in A enabled ,
such that (nc,na) is in R

(c) If there is such a state then
i. If VISIT (nc,na) = explored then go to next concrete state at step 12.
ii. Otherwise, go back to step 12b

(d) Otherwise, go to step 14
13. All the next concrete states have been explored, so Return(explored)
14. Relation R is inconsistent with the current pair of states, so print map-

ping (c, a), remove it from R and MR, and Return(failed).

6.3 Explanation of the Algorithm

The algorithm looks for a forward simulation between the two action systems,
using the input relation R. The algorithm first generates the initial concrete
states. It then tries to find a matching abstract initial state for each of them.
For each potential match, the algorithm performs a depth-first search from that
position using a call to subroutine VISIT . This subroutine is recursive and pro-
ceeds depth-first. The depth-first search can return either explored meaning that
the position was successfully explored, or failed meaning that the relation R was
inconsistent with the position. Failure can occur if either there is a concrete
aborting state not matched by an abstract aborting state, or the concrete sys-
tem terminates early, or if a reachable concrete state cannot be matched by a
reachable abstract state. Note that to check termination of system A, we check
that the only enabled action in A� is the true → SKIP action added during the
transformation in step 1.

If the search is successful then the algorithm moves on to the next concrete
initial state. If the search is unsuccessful, then this results in a reduction in po-
tential choices of abstract state, through positions being deleted from relation R.
The algorithm will then, using the updated relation R, try to find an alternative
matching abstract initial state, and initiate a new search. If there is one concrete
initial state without a match then this shows the input relation R cannot be an
abstraction relation. If, however, a match can be found for every concrete ini-
tial state, then there is a forward simulation. The searches will have resulted in
relation MR being populated with all those states visited by the search but not
deleted from relation R. This forms a minimal abstraction relation. Note that,
since the algorithm only looks for one successful match for each concrete state,
it is nondeterministic in its operation.

We anticipate the algorithm being used to check refinements, and to assist
designers who are trying to prove data refinement steps. When the algorithm ter-
minates with a “Yes”, this confirms that the refinement holds, and the minimal
abstraction relation produced gives the designer insight into how the refinement
works. Model checkers do not provide such insight. A common complaint with
model checking is that, when a check succeeds, it does not give any assurance
that the check performed was correct [8]. With our algorithm, the designer can
examine the minimal abstraction relation to confirm that the check was as in-
tended.
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When the algorithm terminates with a “No”, with the default relation R, as
defined in Section 6.1, then this confirms that there is no forward simulation.
The intermediate mappings printed by the algorithm show which states caused
the simulation to fail, and thus provide justification of the failure to the designer.

If the algorithm does not terminate, and the supplied relation R was the
default, then the intermediate mappings printed by the algorithm cannot be in
any abstraction relation. These can be used to test any proposed abstraction
relation, i.e., if any of those mappings are in the relation, then the relation is
wrong.

6.4 An Example Application of the Algorithm

We illustrate the operation of the algorithm on a simple case, where the algo-
rithm can terminate successfully. Figure 4 shows Elena’s Bakery action system,
which is intended to be a refinement of Salvador’s Bakery. This models a bak-
ery in which the customers queue in an orderly fashion, and always say thank
you before leaving the shop. The local variable sb in from Salvador’s Bakery
has been replaced by a queue eb in, and there is no equivalent to action SB3.
Action EB1 models a customer entering the bakery and joining the end of the
queue. Stuttering action EB2 models a customer being served and saying thank
you. Finally action EB3 models the customer that said thank you leaving the
shop.

var eb in : seqCust ; eb th : P Cust
init eb in = 〈〉 ∧ eb th = {}
do
(� out �= {} → eb in, out := eb in ++ 〈c〉, out \ {c} • c ∈ out ) [EB1]
(� eb in �= 〈〉 ∧

eb th = {} → eb in, eb th := tail(eb in), {head(eb in)} ) [EB2]
(� eb th �= {} → eb th, out := {}, out ∪ eb th ) [EB3]
od : out : P Cust

Fig. 4. Elena’s Bakery action system specification EB.

We now illustrate the operation of the algorithm by finding an abstraction
relation that connects the states of Elena’s Bakery action system with the states
of Salvador’s Bakery. For brevity, we restrict the type Cust to {1, 2}, and we
only show the search for the concrete initial state in which out is {1, 2}.

We call the algorithm with the default value of the candidate abstraction
relation R, as defined in Section 6.1. This contains all the mappings between the
concrete and abstract states in which the value of the observable variable out is
the same.

Figure 5 shows the first steps in the application of the algorithm to Salvador’s
and Elena’s bakery example. Each step is labelled in bold, with the first number
providing the order of the steps, and the subsequent number in brackets referring
to a particular labelled step of the algorithm, as shown in Section 6.2.
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EB1EB1

EB2EB1

SB1 SB1 SB2

EB2 EB3

ELENA’S BAKERY

SALVADOR’S BAKERY
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3. (7) add to MR

4. (12)

6. (7)

7. (12)

9. (7)
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no match possible

15. (14) delete from

5. (10(c)i) call VISIT
2. (5(c)i) call VISIT 8. (12(c)i) call VISIT 11. (12(c)i) call VISIT

eb_in=<>
eb_th={}
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sb_th={1}

10. (12) 13. (12)

 R and MR, display
this mapping, and
Return(failed)

Fig. 5. First steps of the algorithm for Salvador’s and Elena’s bakeries.

The first step selects a concrete initial state. Step 2 selects a matching ab-
stract initial state and initiates a search on the new position by calling sub-
routine VISIT . In step 3, a pair of initial states is added to the relation MR.
Step 4 generates the next concrete states. The diagram shows the selection of
one of these states. In step 5, the abstract system matches the concrete state
and initiates another search on the new position. This causes the current pair
of states to be added to relation MR in step 6. This pattern continues in a sim-
ilar fashion until step 14, in which it is not possible for the abstract system to
match the current concrete state. This is because, although in step 10 customer
2 was served in Elena’s Bakery, in step 11 customer 1 was served in Salvador’s
Bakery. This results in customer 2 leaving Elena’s Bakery in step 13, an action
which cannot be matched by Salvador’s Bakery. So, in step 15, the current pair
of states

EB .state = ((eb in = 〈1〉, eb th = {2}), out = {})
SB .state = ((sb in = {2}, sb th = {1}), out = {})

is deleted from the relations R and MR, and printed. The algorithm then back-
tracks to try an alternative to step 11.

Figure 6 shows the continued application of the algorithm after the failure.
In step 16, the algorithm has to match concrete state eb in = 〈1〉, eb th = {2},
out = {} with a Salvador’s Bakery action from abstract state sb in = {1, 2},
sb th = {}, out = {}. From here the algorithm can either choose action SB2, but
this time serving customer 2, instead of 1, or it can choose to use the additional
action true → SKIP . For this example, we choose the SKIP action. Salvador’s
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EB2

SKIP

EB3

SB3 SKIP SB3

EB2

EB1

EB3

EB2

already in MRalternative match

26. Continue at
step 5(a) for
next concrete
state17. (7) add to MR 20. (7)

SALVADOR’S BAKERY

18. (12)

eb_in=<1,2>
eb_th={}
out={}

21. (12)

ELENA’S BAKERY

24. (12)
out={1,2}

eb_in=<>
eb_th={}

out={}

eb_in=<2>
eb_th={1}

sb_th={}
sb_in={}

out={1,2}
sb_th={}
sb_in={1,2}

out={}
sb_th={}
sb_in={1,2}

out={}

sb_th={}
sb_in={1}

out={2}

sb_th={}
sb_in={1}

out={2}

out={2}

eb_in=<>
eb_th={1}eb_th={}

eb_in=<1>

out={2}

eb_in=<1>

out={}
eb_th={2}eb_th={}

eb_in=<2,1>

out={}

19. (12(c)i) call VISIT
22. (12(c)i) call VISIT

25. (12(a))

23. (7)

16. (12(b)) find

and (12(c)i) call VISIT

Fig. 6. Continued steps of the algorithm for Salvador’s and Elena’s bakeries.

Bakery can then match Elena’s Bakery’s next action with SB3, in which the
customer leaves the shop without saying thank you. The algorithm continues the
exploration until, in step 25, it finds a position which is already in relation MR
(in fact it is the initial position). This means there is no need to explore further
in that direction. The algorithm now continues to explore the remaining concrete
states.

In the remaining steps of the search on the selected concrete initial state, the
algorithm consistently matches action EB2 with a SKIP in Salvador’s Bakery.
This generates three more mappings in relation MR, and no further failures.
It is then necessary to search on the other concrete initial states. These steps
generate seven further mappings in relation MR. The algorithm exits with “Yes”,
and the minimal abstraction relation shown in Figure 7. The relation is shown
as a table of mappings between concrete and abstract states. The first part of
the table shows the mappings that were generated when exploring the concrete
initial state in which out = {1, 2}. Subsequent parts of the table, separated by
horizontal lines, show the mappings generated from exploring the other concrete
initial states, in which out is {1}, {2} and {} respectively.

As stated earlier, the operation of the algorithm is nondeterministic. The
application of the algorithm to this particular problem can produce many dif-
ferent minimal abstraction relations. In Elena’s Bakery, customers always say
thank you, via action EB2. Salvador’s Bakery can simulate action EB2 either
by performing action SB2, in which a customer says thank you, or by doing
nothing (using the true → SKIP action). In our example above, the algorithm
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Concrete (EB) state Abstract (SB) state
eb in eb th out sb in sb th out
〈〉 {} {1, 2} {} {} {1, 2}
〈2〉 {} {1} {2} {} {1}
〈2, 1〉 {} {} {1, 2} {} {}
〈1〉 {2} {} {1, 2} {} {}
〈1〉 {} {2} {1} {} {2}
〈〉 {1} {2} {1} {} {2}
〈2〉 {1} {} {1, 2} {} {}
〈1, 2〉 {} {} {1, 2} {} {}
〈〉 {2} {1} {2} {} {1}
〈〉 {} {1} {} {} {1}
〈1〉 {} {} {1} {} {}
〈〉 {1} {} {1} {} {}
〈〉 {} {2} {} {} {2}
〈2〉 {} {} {2} {} {}
〈〉 {2} {} {2} {} {}
〈〉 {} {} {} {} {}

Fig. 7. The resulting minimal abstraction relation.

consistently chose the SKIP action (except in step 11 in Figure 5 which led to
a failure in the search, and the subsequent deletion of the resulting mapping).

In practice, when performing data refinement proofs, designers make deci-
sions in their choice of abstraction relation, based on how they wish to split up
the proof of the main simulation proof obligation F2. For example, with our
abstraction relation above, proof obligation F2 can be split into separate proofs
that action EB1 implements SB1, action EB2 implements true → SKIP , and
action EB3 implements action SB3.

There is clearly an alternative minimal abstraction relation in which ac-
tion EB2 is always simulated by action SB2, i.e., each time a customer says
thank you in Elena’s Bakery, the same customer says thank you in Salvador’s
Bakery. There are also other alternative minimal abstraction relations in which
inconsistent choices of Salvador’s Bakery action are made during the simula-
tion. Such relations would make it difficult for a designer to perform the data
refinement proofs in the usual way.

6.5 Comparison with the Monolithic Algorithm

In this section we only consider the case in which the algorithm is called with
the default relation R, as defined in Section 6.1.

The incremental algorithm described here is derived from the monolithic
algorithm, which has been shown to be sound, and complete to the same extent
Back and von Wright’s proof obligations, except in the case of a reduction in
stuttering in the concrete system [11]. However, the algorithm presented here is
limited in that it does not deal with backward simulation and does not detect
infinite stuttering — these are areas for future work.
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A key difference in the operation of the algorithm in this paper is that it
checks proof obligation F3 and F4 on the fly, as it incrementally explores the
simulation. The monolithic algorithm checks these proof obligations before be-
ginning to eliminate mappings from the relation R.

The monolithic algorithm is able to examine the complete transition relations
and all mappings in the candidate abstraction relation. The incremental algo-
rithm however can only check mappings in the candidate abstraction relation
that are reachable through the simulation. Therefore it cannot generally reduce
relation R to the weakest abstraction relation. Instead it uses the relation R to
“steer” through the simulation. When it finds a failure, i.e., a case where a map-
ping in R causes the simulation to fail, it eliminates the inconsistent mapping
from R, and thus closes off that path to the subsequent search. As the algorithm
progresses, relation R gradually approaches −→R, but generally will not reach it.

If the incremental algorithm terminates with a “Yes”, then the record of
positions that have been successfully explored in relation MR forms a minimal
abstraction relation, and is thus of interest to the designer. However the final
value of R is of less interest — it is sufficient to steer a simulation, but when it is
weaker than relation −→R it will not be sufficient to make the forward simulation
proof obligations true.

7 Starting with a Proposed Abstraction Relation

As stated earlier, the designer can supply a candidate abstraction relation, and
use the algorithm to “test” it.

In such cases, when the algorithm terminates with a “No”, this confirms
that the supplied candidate abstraction relation is unsuitable. The intermediate
mappings printed by the algorithm show which states in the input relation caused
the simulation to fail, and so can provide the designer insight into why the
supplied relation is incorrect.

If the algorithm does not terminate, and the designer supplied the candidate
abstraction relation, then intermediate outputs are mappings that should not
be in the supplied relation, so the designer can try to strengthen the relation to
eliminate those mappings.

Considering the Bakery example, the designer could choose to call the algo-
rithm with the relation R defined below.

R = {((eb in, eb th), out) �→ ((sb in, sb th), out)) | sb th = {}}
This would reduce the choices available to the algorithm whenever it tries to
match the concrete action EB2. It would not be able to use abstract action SB2,
since this causes customers in Salvador’s Bakery to say thank you, and so makes
variable sb th non-empty. By supply this abstraction relation, the designer can
make the algorithm avoid the potential failures in the simulation that can happen
when the algorithm is called with the default value of R.

Alternatively, the designer could use the relation below.

R = {((eb in, eb th), out) �→ ((sb in, sb th), out)) | eb th = sb th}



Incremental Derivation of Abstraction Relations for Data Refinement 263

Again, this relation cuts down choices available to the algorithm. It prevents the
algorithm matching concrete action EB 2 with a SKIP in the abstract system,
and it also prevents the potential failures in the simulation when the wrong
customer is served in Salvador’s Bakery. This choice of relation R will result in
a different minimal abstraction relation to that shown in Figure 7.

Both the above suggestions help the operation of the algorithm in that they
cut down choices. In general, an intelligent choice of supplied relation can im-
prove the chances of the algorithm terminating. However, when the designer
proposes an abstraction relation, a “Yes” answer does not mean that the pro-
posed abstraction relation is an abstraction relation. As stated in Section 6.5,
the proposed relation could contain mappings which are not reachable by sim-
ulation, but which could cause the proof obligations to fail. Such mappings are
not tested by the algorithm.

When a designer proposes an abstraction relation that is wrong, a “No”
answer only relates to the suitability of the proposed relation. For example, the
designer could propose relation R3 as follows.

R = {((eb in, eb th), out) �→ ((sb in, sb th), out)) | eb th �= sb th}

This would cause the algorithm to exit with answer “No” (e.g., one of the con-
crete initial states cannot be matched), but we already know there is a forward
simulation.

8 Discussion

We anticipate the intermediate mappings printed by the algorithm being useful
to a designer, as explained in Section 6. However, we are also considering whether
the record of actions used and states visited would be useful to the designer in
cases when the algorithm does not terminate. This is the subject of ongoing
work.

The abstraction relations that are usually used in data refinement proofs are
expressed symbolically, i.e., as predicates. At present, our algorithm generates
outputs expressed as mappings between individual states of the two systems.
We have used a specification animation tool to prototype parts of the algorithm.
This allows the candidate abstraction relation to be expressed as a predicate,
but outputs from the algorithm are still in the form of mappings between in-
dividual states. Whilst it is possible, with tool support, to use such relations
in proofs [7], it would be preferable if the outputs from the algorithm were ex-
pressed as predicates. Our next task is to investigate a symbolic approach to the
same problem.

The algorithm presented in this paper does not detect infinite stuttering. It is
clearly possible to extend the algorithm to detect infinite stuttering which results
in a return to a previous state. However, we expect it will not be possible to
detect infinite stuttering which results in an infinite series of different states. The
algorithm also cannot check backward simulations. The monolithic algorithm we
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presented in our previous paper [11] provides a basis for dealing with these issues,
and we intend to address them as part of our future work.

Lange and Stirling recently described an approach to model checking that
makes use of game theory [8]. They describe how a game can be played by two
players on the model and the properties to be checked. They show how a question
about the properties being fulfilled is equivalent to finding a winning strategy
for one of the players. Once such a strategy is found it can be used to enable an
interactive play between a tool and the user [8]. Their work addresses some of the
same issues as ours. For example, their approach can provide justification to the
designer of a “Yes” answer from the model checker. Whereas our work is based
on Back and von Wright’s action system semantics [2], theirs is based on game
theory and branching time logics. There may be parallels between the winning
strategy their approach can identify in the case of a positive result from the
model checker, and the minimal abstraction relation our algorithm can produce.
It would be interesting to investigate such questions, and also to investigate
whether we could make use of optimisations that they suggest. Work by Back
and von Wright that examines the notion of games and their use in refinement
theory [3] may also help with the interpretation of Lange and Stirling’s results
in our context.

9 Conclusion

We have presented an algorithm that can incrementally derive abstraction re-
lations for data refinements. When time and space limitations prevent the al-
gorithm from terminating, its intermediate output can nevertheless be useful to
a designer when trying to prove the refinement step. The algorithm can also
be used to test an abstraction relation supplied by the designer. An intelligent
choice of this relation can cut down the search space for the algorithm, and thus
improve the likelihood of it terminating. In future work we intend to investi-
gate a symbolic version of the algorithm in which its outputs are expressed as
a predicates, instead of sets of mappings between individual states of the two
systems.
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Abstract. From what point of view is it reasonable, or possible, to re-
fine a one place buffer into a two place buffer? In order to answer this
question we characterise refinement based on substitution in restricted
contexts. We see that data refinement (specifically in Z) and process re-
finement give differing answers to the original question, and we compare
the precise circumstances which give rise to this difference by translating
programs and processes into labelled transition systems, so providing a
common basis upon which to make the comparison. We also look at the
closely related area of sub-typing of objects. Along the way we see how
all these sorts of computational construct are related as far as refinement
is concerned, and discover and characterise some (as far as we can tell)
new sorts of refinement.

Keywords: data refinement, process refinement, labelled transition sys-
tems, Z, sub-typing.

1 Introduction

When considering just the process view, R. van Glabbeek [1] surveys 155 differ-
ent testing semantics, each with an accompanying definition of refinement. One
reason for this interest is that by understanding how a process interacts with
its environment it is possible to select the corresponding testing semantics and
hence select a definition of refinement. With the advent of both the International
Standard on Open Distributed Processing [2] and aspect-oriented programming
[3], there has been increasing interest in using different formalisms to specify
different views or aspects of the same system. By considering more than one
view the selection of an appropriate refinement relation is made much harder.

One multi-view approach is to keep the different views/formalisms separate
in the development, i.e. refinement, of an abstract specification into a concrete
implementation and ensure the separate views are consistent [4]. Another ap-
proach is to use formalisms to define different components, with another to
“glue” the components together. A good first step, for either approach, is to
define a common semantics for the different views/formalisms.

Operational semantics, using labelled transition systems (LTSs), have been
defined for processes [5,6], abstract data types (ADTs) and objects [7,8,9]. Also,
we can use process operators defined directly on LTSs [5,10] to compose different
components regardless of the views/formalisms from which they originate.
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Unfortunately, state-based refinement and process-based refinement are de-
fined in different styles and justifiably are not the same, hence the different an-
swers to the question “is a two place buffer a refinement of a one place buffer?”.
The important point here is that the very meaning of a specification is given by
(or is at least highly bound-up in) what it can be refined into. Consequently,
the same LTS specification has different meanings depending upon the view
(state/process) it originates from.

To develop the multi-view approach we clearly need a good understanding
of the relationship between refinement as defined in different views and different
styles.

The key observation of [8] is that different kinds of things can be placed
in differing contexts. For example, in [8] ADTs can only be placed in contexts
that are traces (i.e. sequences) of (calls to) operations, i.e. programs, whereas
processes can be placed in contexts modelled by branching transition systems
[11]. Using this observation we construct two general definitions of refinement of
LTS that are parameterized on the contexts in which the LTS can be placed. One
definition is in the style of process refinement. The other refinement is more in a
state-based style. We then show when the two general definitions are equivalent.

The general definition of refinement can be applied to different kinds of
things. That is to say, the general definition of refinement is made more con-
crete by fixing the contexts in which the things are to be placed. Doing this we
find that our notion of refinement of processes, placed in all process contexts,
is equivalent to failure refinement [11] and our notion of refinement of ADTs,
placed in all ADT contexts, is equivalent to singleton failure refinement [8].
These are the results we would expect.

The actions of an ADT are passive and only occur when a program calls them.
Consequently for ADT refinement, A � C (read “A is refined by C”), C is only
placed in contexts “where A is expected”. This is formalised by restricting the
contexts in our general definition. This definition of refinement permits feature
addition i.e. some traces of C are not traces of A, as in state-based refinement.
In contrast the more restrictive, process view of refinement is the “reduction of
non-determinism”, feature addition being called extension [12], and both feature
addition and reduction of non-determinism being called conformance [12]. So,
here we use the word refinement in same way as the state-based approach does.

Although the process view is that refinement is the reduction of non- deter-
minism this does not mean that all reduction of non-determinism is refinement.
There are indeed well known definitions of process “refinement” such as testing
refinement [13] and extension [14] which preserve the trace semantics.

We restrict contexts to “where A is expected” in the general setting and then,
when we select a universe of contexts for ADTs and then again for processes, we
have definitions of:

ADT refinement related to, but not equivalent to, LOTOS’s ext [14],

process refinement equivalent to a definition of object-oriented behavioural
sub-typing given in [15].
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Although our approach is intentionally general (even abstract) we have been
able to replace the questions: one - “what style do you want refinement to be
specified in?” and two - “which of the very very many definitions of refinement
do you wish to use?” by the less abstract question “how does this component
interact with its context?”.

We define the notation for labelled transition systems in Section 2 and review
some definitions of refinement of processes from the literature in Section 2.1. We
introduce our items of interest in Section 3 and then we define two formalisations,
both parameterized by sets of contexts, of what we mean in general by refinement
in Section 4.

In Section 5 we use Z to define data types and subsequently define the op-
erational semantics for them based on the guarded interpretation (which models
most closely what is usual in processes, as opposed to the more usual Z inter-
pretation of chaos outside of preconditions).

In Section 6 we define the contexts in which we can place ADTs and use this
and the definition of Section 4 to define ADT refinement. Similarly in Section 7
we define the contexts in which we can place processes and use this and the
definition of Section 4 to define process refinement. In Section 8 we give pointers
to prior work and in our conclusions in Section 9 we summarise our categorisation
and our discoveries.

2 Labelled Transition Systems

In this section we define the notation we will use. It is a combination of notation
from ACP [5] and Z [16]. We assume a universe of observable action names Act ,
from which we build Act def= {a | a ∈ Act}, and then Actτ def= Act ∪ {τ}. We
are interested in finite but cyclic labelled transition systems.

Definition 1 Labelled transition systems (LTS)
A def= (NodesA,TranA, sA) where sA ∈ NodesA and TranA ⊆ {(n, a,m) | n,m ∈
NodesA ∧ a ∈ Actτ} and both NodesA and TranA are finite.

We write lts for the set of labelled transition systems. We lift “−” to sets of
transitions, to A ∈ lts and lts in the obvious way. Any single labelled transition
system will either have transitions labelled from Act ∪{τ} or transitions labelled
from Act ∪ {τ} (which are used as contexts).

Let a ∈ Act and ρ ∈ Act∗. We write ρ |n for the nth element of ρ and ρ �n
for the first n elements of ρ. We write ρ � X for the sequence ρ with all elements
not in set X removed, so prefix (ρ) def= {ρ �n | n <| ρ |}.

Where A is obvious from context, we write: n a−→m for (n, a,m) ∈ TranA,
n a−→ for ∃m .(n, a,m) ∈ TranA, m1

ρ−→ for ∃m1... .(m1, ρ |1,m2), . . . ∈ TranA and
m1

ρ−→mi+1 for ∃m1...mi
.(m1, ρ |1,m2), . . . (mi , ρ |i ,mi+1) ∈ TranA ∧| ρ |= i .

α(A) def= {a | n a−→m ∈ TranA}, π(s) def= {a | s a−→}
The traces of A are Tr(A) def= {ρ | sA

ρ−→} and the complete traces of A are
Trc(A) def= {ρ | (sA

ρ−→n ∧ π(n) = ∅) ∨ (sA
ρ−→ ∧| ρ |=∞)}.
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(A)δX
def= (NodesA,Tran(A)δX , sA) where Tran(A)δX

def= {n a−→m | n a−→m ∈
TranA ∧ a 
∈ X }.
(A)τX

def= (NodesA,Tran(A)τX , sA) where Tran(A)τX

def= Tran(A)δX ∪ {n τ−→m |
n a−→m ∈ TranA ∧ a ∈ X }.

We treat the synchronisation of x and x as giving the observable x. In order
to do this, and allow the deletion of unsynchronised x actions, we first (see
Figure 1) map them to xo (so γS contains (x, x) �→ xo for x ∈ S ) then delete x
via δS and then rename xo to x via RenS . All this is brought together in the
following definition (which we say more about in Section 3):

‖S def= (( ‖γS )δS )RenS

P = a!1b?xc!2 ‖γ{a,c} a?yc?x Q = (P)δ{a,c} R = (Q)Ren{a,c}δAct
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Fig. 1. a!1b?xc!2 ‖{a,c} a?yc?x .

Finally we have refusal sets: Ref (ρ, C) def= {X | sC
ρ−→s ∧ X ⊆ Act − π(s)}

and singleton refusal sets: Refs(ρ, C) def= {{a} | sC
ρ−→s ∧ a ∈ Act − π(s)}.

2.1 Some Known Refinement Relations for Process-Based Systems

Hennessy’s “may and must” testing refinement [13] �test is the most constrained
form of refinement we consider. A relaxation is LOTOS’s extensional refinement
�ext [14] which allows feature addition in the form of both alphabet exten-
sion α+ and the addition of new traces Tr+ over the original alphabet. We
define �pro , that only introduces alphabet extension α+, from which we have
�test⇒�pro⇒�ext .

Each of these can be relaxed by adding the ability to prune non-deterministic
traces (note A � B in Figure 2). Adding this ability to �test forms �Ftest (failure
refinement [11], which is known to be equivalent to must testing refinement [13])
and �Fpro , which is shown (Lemma 1) to be equivalent to “weak sub-typing”
[15] and �Fext , which is conf [12].

Definition 2 Process refinements. Let New = (α(C)− α(A)):
(A �test C)⇔ Tr(A) = Tr(C) ∧ ∀ ρ.Ref (ρ, C) ⊆ Ref (ρ, A).
(A �pro C)⇔ Tr(A) = Tr(CδNew ) ∧ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A).
(A �ext C)⇔ Tr(A) ⊆ Tr(C) ∧ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A).

(A �Ftest C)⇔ ∀ ρ.Ref (ρ, C) ⊆ Ref (ρ, A).
(A �Fpro C)⇔ Tr(A) ⊇ Tr(CδNew ) ∧ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A)
(A �Fext C)⇔ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A).



270 Steve Reeves and David Streader

� Æ � ��
Æ

�

����

�����

�

��
�

���
��

Æ � ��
Æ

� Æ � ��
Æ

�

����

�����
� Æ

� � ��
Æ

����

�����

�

��
�

���
��

Æ

� Æ � ��
Æ

�

�����

�����

�
���

�

���
���

� ��
Æ � ��

Æ � ��
Æ

� Æ � ��

�

��
�

���
��

Æ

�

�����

�����

�

���
�

���
���

Æ

Æ � ��
Æ

Prune α+ Tr+

[13] test × × ×
pro × √ ×

[14] ext × √ √
[11] Ftest

√ × ×
[15] Fpro

√ √ ×
[12] Fext

√ √ √
A � B D E

Fig. 2. A �F .... B A �test C A �pro C, D A �ext C, D, E.

All the above are based on refusals Ref (ρ,X ). From [8,17] we see that ADTs
are more appropriately based on singleton refusals Refs(ρ,X ). Consequently by
replacing Ref (ρ,X ) with Refs(ρ,X ) in the above we have a whole new set of
refinement relations �s

X tailored for ADTs.
We find (as we shall see) that our definition of ADT refinement corresponds

to a singleton version of �Fext i.e. �s
Fext .

A �Ftest CδNew has been used in weak sub-typing in [15] where they take as a
requirement of behavioural sub-typing that if New = ∅ then refinement should
be failure refinement. A consequence of this decision, as we shall see, is that a
one place buffer cannot be refined into a two place buffer.

Lemma 1 A �Fpro C⇔ A �Ftest CδNew

3 Things and Contexts of Interest

Our ‘things’ could be abstract data types, processes or even objects, all of which
we introduce and consider later. Both things and the contexts in which we place
them are given a labelled transition system semantics. Different kinds of things
can be placed in different contexts. The use of different contexts for different
kinds of thing can be seen in [8,15].

Placing ‘thing’ T in a context built from thing X is written [T]X and must
model the synchronisation between actions of things such as method m and
actions of contexts such as calling method m, i.e. m.

The resulting synchronised actions may be private, i.e. τ actions. Any action
of the context that is not private is observable by an “independent observer”. A
consequence of this is that although communication between thing and context
may be unobserved (τ) it is easy to amend any context by adding actions that
make observable any of the unobservable synchronisations. Consequently, we will
treat the synchronisation of x and x as giving the observable x. In order to allow
the deletion of unsynchronised x actions we use ‖S def= ( ‖γS )δS )RenS
(see Section 2 above).
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We assume that all observable actions of T require synchronisation with
some other thing in order to be performed. We can only view our things via
their synchronisation with the context and we can view all synchronisation with
the context. Hence, no observable action of T can be performed on its own
(formalised by ( )δAct). So, placing ‘thing’ T in a context built from X is:

[T]X
def= (T ‖α(T) X )δAct

Further, we assume that we can wait long enough so that if something ob-
servable will eventually happen we do see it. This amounts to an observation
being a complete trace (the set of observable traces is not prefix closed). Hence:

Obs([T]X ) def= Trc([T]X ).

Assumption 1 (a) Things and their contexts can be given a LTS semantics. (b)
The kind of a thing can be characterised by the set of contexts it can be placed in.
(c) A thing’s actions can only be executed in synchronisation with actions from
the context. (d) All synchronisations of a thing with actions from the context are
observed. (e)All that we can observe are the complete traces of context.

4 Refinement, Observation and Contexts

Refinement is a step in the construction of an implementation from a specifica-
tion. The refinement of A (something abstract) into C (something more concrete)
will be written A � C. We allow the C to have new operations not found in A,
New def= α(C)− α(A). We will formalise refinement in two related styles:

Process-based style where the observation of an execution of [A]X is inter-
preted as success or failure and refinement is based on a pre-order represent-
ing improvement.

State-based style refinement based on “substitutability”, C being a refine-
ment of A when the substitution of A, in a context where A was expected, by
C, cannot be observed.

The first style is a small modification of Hennessy’s [13], and when applied
to processes it gives the same refinements as Hennessy’s. This style generates
different refinements depending on the pre-order used.

The second style appears [18,19,9,20,15] as behavioural sub-typing and hence
could be thought of as object refinement. The “not being able to tell” will be
formalised as subset of observations. In the case when the contexts are programs
this becomes equivalent to the definition of data refinement as subset of the re-
lational semantics of programs as found in [21,22,23]. For data refinement where
operations are undefined (and so can have any behaviour, sometimes referred
to as chaos) outside pre-conditions the restriction of programs to those where A
was expected is redundant, but for data refinement where operations are guarded
it is this restriction that permits feature addition.

Because of the links between the two styles of definitions we will apply the
notion of “where A was expected” to the first style, thereby introducing the
feature addition permitted by the second style. When applied to ADTs this will
result in a refinement weaker than LOTOS’s ext refinement.
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4.1 Process-Based Refinement

A single observation of [T]X is a complete trace of T in context X and will be
interpreted as � (success) if and only if it is also a complete trace of the context
X . What can be observed of [T]X is the set of single observations Trc([T]X ). Such
observations are given one of the following three interpretations: {�}—always
succeed; {�,⊥}—may succeed or may fail; and {⊥}—always fail.

There are three powerdomains on the two point lattice � > ⊥ (see Figure 3).
We are only interested in two of them: we will ignore the Hoare powerdomain1

and use the other two powerdomains to impose a pre-order on the observations.
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Fig. 3. Powerdomains.

Definition 3 Obs([A]X ) def= Trc([A]X )
� ∈ I ([A]X )⇔ ∃ρ∈Obs([A]X ) .ρ ∈ Trc(X )
⊥ ∈ I ([A]X )⇔ ∃ρ∈Obs([A]X ) .ρ ∈ prefix (Trc(X ))and nothing else is in I ([A]X ).

Obs([C]X ) � Obs([A]X ) def= I ([C]X x ) > I ([A]X ) ∨ (I ([A]X ) = I ([C]X ) ∧
Obs([A]X ) ⊇ Obs([C]X ))

A � C def= ∀[ ]X ∈[ ] .Obs([C]X ) � Obs([A]X ). •
This definition of refinement depends on :

1. the set of contexts used [ ]
2. and what pre-order > we apply to our interpretations I ([ ]X )

Hennessy [13] uses a “success state” approach in which tests formalise the
notion of observation. A special action ω is introduced and used to decorate the
success states {s ω−→ | s ∈ Succ}. Then a test (an execution of a process in a
context) is interpreted as being a success when it reaches a success state (when
ω is observed).

Here end states (π(n) = ∅) can be viewed as our success states, but whereas
Hennessy allows only ω to be visible, we allow the observation of the whole trace
of executed actions. These two treatments can be shown (see Lemma 6 later)
to result in the same refinement relation when applied to processes. But, as we
now demonstrate, the two treatments define different refinements when applied
to ADTs.

Applying the “success state” approach to ADTs (where contexts are traces)
we interpret a test as being a success if the context reaches a success state.
1 The Hoare powerdomain has been used [13] to define ‘may’ testing, which is equiv-

alent to trace refinement. Here we can achieve the same results by restricting the
LTS used to represent both things and contexts.
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Clearly this is equivalent to restricting contexts to ρω and treating only ω as
visible, ObsH ( ) def= Obs( )τ(Act−{ω}). Using this definition of observation we
can see that A and C in Figure 4 are observationally equivalent. But they are
not observationally equivalent using our definition of observation as completed
traces.
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Fig. 4. Obs(A) �= Obs(C) but ObsH (A) = ObsH (C).

Although the “success state” approach seems a perfectly reasonable way to
define refinement we do not pursue this here.

4.2 Contexts Where A Is Expected

Our state-based notion of refinement is going to be based upon “substituting”
A with C in contexts where A was expected. Here we will formalise this idea and
apply it to our action-based definition of refinement.

Definition 4 A � C iff C may be used in any context where A was expected,
without the client being able to tell.

Our contexts for things T are [T]X
def= (T ‖α(T) X )δAct . Note the context

synchronises on actions of T and then all unsynchronised actions get deleted
(δAct).

Assumption 2 Contexts where A is expected can only synchronise with (call)
actions of A

Consequently: [ ]A ⊆ {( ‖α(A) X )δAct | X ∈ lts}.
Assumption 3 “contexts where A is expected” are not contexts where A must
fail.

Definition 5 “contexts where A is expected”
[ ]A def= {( ‖α(A) X )δAct | X ∈ lts ∧ I (( ‖α(A) X )δAct) 
= {⊥}} .

Definition 6 A �A C def= ∀[ ]a∈[ ]A .Obs([C]a) � Obs([A]a).

Prior to restricting the contexts, our two definitions of refinement, applied
to processes, will be the same as two of Hennessy’s testing refinements. When
we apply this definition, with restricted contexts, to ADTs and processes we will
find that our definitions of refinement are very similar to that of LOTOS’s ext
refinement.
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4.3 State-Based Refinement

Early work [21] defines refinement as subset on the relational semantics and
quantifies over all contexts (programs). This can be rephrased as: for all inputs
(contexts), we must have a subset of outputs (what can be observed). In a similar
fashion we define refinement by explicitly defining contexts [ ]A or [ ] and use
subsets of observations.

Definition 7 A �State C def= ∀[ ]a∈[ ] .Obs([C]a) ⊆ Obs([A]a).

A �A
State C def= ∀[ ]a∈[ ]A .Obs([C]a) ⊆ Obs([A]a).

[[P]]R
def= {〈[ ]x , o〉 | o ∈ Obs([P]x ), [ ]x ∈ [ ]} A �R C def= [[C]]R ⊆ [[A]]R

[[P]]AR
def= {〈[ ]x , o〉 | o ∈ Obs([P]x ), [ ]x ∈ [ ]A} A �A

R C def= [[C]]AR ⊆ [[A]]AR ◦

Clearly A �State C ⇔ A �R C and A �A
State C ⇔ A �A

R C. Definition 7 is, by
design, closely related to Z data refinement [8].

It is easy to see that if we assume the Smyth powerdomain and use the
previously computed contexts then the above definitions are a characterisation
of our previously defined process-based refinements.

Once we have restricted the contexts to contexts where A is expected, as

in Definition 6, then
�←−{⊥} is redundant. Consequently using the restricted

relations in Figure 5 will have the same effect as using the powerdomains.
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Fig. 5. Restrictions of powerdomains.

Lemma 2 Assume the Smyth powerdomain
A �A C⇔ A �A

State C⇔ A �A
R C.

A � C⇔ A �State⇔ A �R C.

Thus refinements based on both the Smyth powerdomain and the Egli-Milner
powerdomain reduce non-determinism, but refinements based on the Egli-Milner
powerdomain (which will be a restriction of refinements based on the Smyth
powerdomain) will also increase the likelihood of success.

An advantage of Definition 7 is that it is based on subsets of observations
and not a more abstract interpretation of the observations and an (�) improve
relation. On the other hand, starting from a definition of � we find that: 1—
[ ]A the set contexts where A is expected can, based on stated assumptions, be
computed; and 2—we have not excluded the Egli-Milner powerdomain. Hence we
have not excluded testing refinement �test [13] nor have we excluded LOTOS’s
extensional refinement �ext [14].
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Summary. Our process-based definition of refinement � depends upon:

1. what set of contexts [ ] we use
2. what powerdomain we use—Smyth or Egli-Milner

The set of contexts [ ] we use defines what kind of thing we model e.g.
ADTs, processes etc. If we use the Smyth powerdomain then we can characterise
refinement as a subset of observations. Based on the stated assumptions we can
compute the contexts “where A is expected” ([ ]A). If we restrict ourselves to
these contexts we have refinement �A which permits “feature addition”.

Our relational or state-based refinement �State starts with a definition of the
contexts “where A is expected” ([ ]A). If we choose the same set as those com-
puted in the process-based style then, by Lemma 2, our state-based refinement
has been proven to be the same as the process-based refinement with the Smyth
powerdomain.

5 Using Z to Define Data Types

We might refer to a one place buffer as a data type, whether the buffer was
empty or not. As an alternative we will follow the convention from the world of
processes and regard a data type to define both its operational behaviour and
an initial state. Thus, for us, strictly speaking, an empty one place buffer is a
different data type from a full one place buffer.

5.1 Z Abstract Data Types

The state-and-operations style of Z specification can be interpreted as an ADT-
specification style, but Z offers no structuring mechanisms to formalise this.
Consequently we informally use the notation of [23] to group schemas.

Data types consist of a single state schema, an initialising operation schema
and a set of operation schemas A def= (StateA, initA,OpA).

5.2 Z-ADT Relational Semantics

The normal interpretation of Z operation schemas is that they are undefined (i.e.
specify arbitrary behaviour) outside their preconditions [22]. We use another
interpretation (variously called behavioural, abortive or guarded) which is given
a relational semantics [[ ]]R in [8]. A detailed comparison of refinement of both
interpretations of Z operations can be found in [24].

As is well known, each operation schema a can be given a partial relation
[[a]]R ⊆ (State × input)× (State × output). From this we define:

[[A]]R
def= 〈StateA, initA, {〈a, [[a]]R〉 | a ∈ nameA}〉
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Opb

in
∆State

st = s ∧ st ′ = e

out
∆State

st = e ∧ st ′ = s

Tpb

in
∆State

st = s ∧ st ′ = s1
∨ (st = s1 ∧ st ′ = e)

out
∆State

st = e ∧ st ′ = s1
∨ (st = s1 ∧ st ′ = s)

We assume State def= [st : T ] and init def= [st : T | st = s] are in all Z ADTs.

Fig. 6. Z ADT Opb and Tpb.

5.3 Z-ADT Operational Semantics

We can assume the guarded semantics for a Z ADT A giving the LTS [[A]]g , the
semantics from [25,26,27] simplified by not having value passing.

[[A]]g
def= 〈StateA, initA, {x n−→y | (n ∈ OpA) ∧ x ∈ StateA ∧ n ∧ y ∈ State ′

A}〉
Note in above schema n is used, as with Z, to represent its predicate.

The relation between [[A]]R and [[A]]g is straightforward. The nodes of [[A]]g and
the states of [[A]]R are Z bindings. The meaning of an operation a is a relation [[a]]R
between evaluations, labelled with a, which hence defines a set of a transitions
of [[A]]g . The initialisation schema is restricted to a unique evaluation/node.

g [[[[A]]g ]]R
def= 〈StateA, initA,g [[[[OpA]]g ]]R〉

g [[[[OpA]]g ]]R
def= {〈a, 〈〈x , 〉, 〈y , 〉〉〉 | x a−→ y}

R[[ ]]g
def= (g [[ ]]R)−1

Lemma 3 R[[[[A]]R]]g = [[A]]g and g [[[[A]]g ]]R = [[A]]R

5.4 Z Relational Semantics and Data Refinement

Data refinement, forward simulation and backward simulation are defined in [21].
Later on, Z data refinement [16] is defined and in [22] shown to be equivalent
to forward simulation of [21]. We use data refinement as defined in [21,22,23]
and think of forward and backward simulation to be techniques to compute
refinement.

Data refinement of A is defined on programs, i.e. sequences ρ of ‘calls’ of
operations. Each operation a is given a relational semantics [[a]]R and the se-
mantics of the programs ρ

def= a1 a2 . . . on a data type is constructed from the
relational semantics plus an initialisation and finalisation relation. Where op-
erations cannot perform input and output the construction is simply relational
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composition, i.e. [[Aρ]]Z = init ◦ [[a1]]R ◦ [[a2]]R . . . ◦ final . What can be observed
of any program is defined by the finalising operation. Slightly different ways to
define the relational semantics of programs (that use operations with input and
output) can be found in the literature. For details see [22,23,8].

Having defined the semantics of a program, [[Aρ]]Z , refinement is defined:

A �Z C def= ∀ρ∈Prog .[[[C ]ρ]]Z ⊆ [[[A]ρ]]Z .
For us there are two important questions: 1—what is the set of programs

Prog?; and 2—what does finalising make observable?
When a program terminates finalising, as in [22,23,8], returns the output

sequence of values (where blank is returned where no value is output by an
operation). This contrasts with the approach taken in [28] where the refusal set
is taken as observable.

But in [8], for programs that do not terminate final returns a sequence of the
same length as the sequence of operations that did terminate. We write [[[A]ρ]]Zg
for the relational semantics, defined in [8], of program ρ using data type A.

6 Sequential Data Types

An informal and common argument exists that a two place buffer Tpb is a
refinement of a one place buffer Opb because “replacing a one place buffer with
a two place buffer cannot be noticed”. Similarly Opbdel Figure 7 can be seen
as Opb with a delete feature added and hence we would like Opbdel to be a
refinement of Opb. We consider these arguments further below.
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Fig. 7. Opb �s
Fext Tpb Opb �s

Fext Opbdel.

ADT Refinement. In order to apply our approach from Section 4 we need to
define the contexts in which ADTs can be placed.

[ ] def= {( ‖α( ) ρ))δAct | ρ ∈ Act
∗}.

We use these contexts throughout (see Section 6) and apply Definition 5 to
compute “contexts where A is expected” to be:

[ ]A = {( ‖α(A) ρ))δAct | ρ � α(A) ∈ Tr(A)}
Now we can define ADT refinement as:

A �DT C def= A � C and A �DTA C def= A �A C
Assuming the Smyth powerdomain then from Lemma 2 we have:

A �DT C⇔ ∀[ ]a∈[ ] .Obs([C]a) ⊆ Obs([A]a).
A �DTA C⇔ ∀[ ]a∈[ ]A .Obs([C]a) ⊆ Obs([A]a).

Data Refinements on Z. The semantic mapping [[ ]]g defines the operational
semantics of a Z ADT on which we can apply our definitions of refinement. By
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restricting the programs under consideration we have a definition of refinement
that permits feature addition.

A �ZA C def= ∀ρ∈{ρ|( ‖α(A)ρ))δAct∈[ ]A} .[[[C]ρ]]Z ⊆ [[[A]ρ]]Z .

Lemma 4 A �Z C = [[A]]g �DT [[C]]g and A �ZA C = [[A]]g �DTA [[C]]g

Although Opb 
�DT Tpb and Opb 
�DT Opbdel, the restriction on contexts
with �DTA prevents Z [[Opb]]g being placed in contexts (programs) such as in;in
and in;del . So, we have our desired results: Opb �DTA Tpb and Opb �DTA

Opbdel.

Lemma 5 A �DT C⇔ A �s
F C A �DTA C⇔ A �s

Fext C

Z Refinement. In [8] they establish A �Z C⇔ A �s
F C.

7 Processes in Sequential Branching Contexts

Processes in general can be placed in either branching or concurrent contexts.
We are going to consider only sequential branching contexts.

A process can prevent a context from starting to execute an operation (ac-
tion), whereas ADTs cannot prevent a context (program) from calling an oper-
ation, but it may be that the called operation will not terminate.

Because processes can be placed in more contexts than ADTs, we should
expect process refinement to be different from ADT refinement (Test in Figure 8
is not an ADT context).

Consequently, from the process view, we find a two place buffer not to be a
refinement of a one place buffer.
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Fig. 8. Opb �ext Tpb but Obs([Tpb]Test) �⊆ Obs([Opb]Test).

Refinement of Process in Sequential Contexts on LTS. In order to apply
our approach from Section 4 we need to define the contexts in which processes
can be placed.

[ ] def= {( ‖α( ) p)δAct | p ∈ lts}
We use these contexts throughout Section 7 and apply Definition 5 to compute
“contexts where A is expected” to be:

[ ]A = {( ‖α(A) p)δAct | Trc(p) ∩ Tr(A) 
= ∅}
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It can easily be seen (see Lemma 17) that we could have used {( ‖α(A) p)δAct |
true} without affecting the refinement relation. This means that for processes,
i.e. branching contexts, Assumption 3 has no effect on the definition of refine-
ment. This is not very surprising as Assumption 3 originated from the state-based
intuition of refinement and its relevance to process refinement is tenuous.

A �P C def= A � C and A �PA C def= A �A C
Assuming the Smyth powerdomain then from Lemma 2 we have:

A �P C⇔ ∀[ ]a∈[ ] .Obs([C]a) ⊆ Obs([A]a).
A �PA C⇔ ∀[ ]a∈[ ]A .Obs([C]a) ⊆ Obs([A]a).

Lemma 6 A �P C⇔ A �Ftest C and A �PA C⇔ A �Fpro C

8 Refinement in the Literature

The weakest precondition refinement can be formulated to coincide with failure
divergence refinement [29,30] and provides a semantics for Circus [31]. In this pa-
per it is Z’s single predicate semantics and process refinement on an operational,
not denotational, semantics that are compared. For a survey on the unification
of Z with process algebras see [32].

Initially it was thought that Z data refinement and failure refinement were
the same [33]. Then this was shown not be the case, i.e. that �Z 
=�Ftest , and
singleton failures refinement �s

Ftest was defined ([8]) and shown equivalent to
�Z .

Data refinement, described in [22, page 241], uses the restricted contexts “ev-
ery program of P(A)”. Because the semantics mean an operation is undefined
outside of its precondition, this restriction is redundant. Data refinement, de-
scribed in [23], uses all contexts (programs). As their semantics says an operation
is not undefined outside of its precondition the restriction of the contexts would
not be redundant. Of the two definitions only refinement of [22] permits feature
addition.

Using the data refinement of [23] a two place buffer is not a refinement of a one
place buffer. This corresponds to the usual process notion of refinement. But for
data types, where actions (methods) can only be executed when a program calls
them, this is unnecessarily restrictive. As any program that works successfully
with a one place buffer will work with the one place buffer replaced by a two
place buffer.

For us the important insight of [8] was that data types could only be placed
in sequential contexts. Here we have extended their work by permitting “feature
addition” as is usual in the state-based approach.

When we are considering the refinement not of individual operations but
of the whole ADT/process then non-determinism may still be unwanted, i.e.
we may wish it to be designed away, yet the pruning of traces may not be
desirable. Definitions of refinement that reflect this are testing refinement [13]
and LOTOS’s extension refinement [14]. These forms of refinement reduce non-
determinism and the set of contexts in which the process will not terminate.



280 Steve Reeves and David Streader

The definition of refinement found in [9] does not restrict the “contexts where
A is expected” to α(A), consequently a feature (action) addition like a + b 
�
a + b + c is not a refinement, whereas in ours and the definition in [19] it is.

In [9] they say “we’d like the two place buffer to be a subtype of a one place
buffer” and they place their buffers in branching contexts. Like them we find this
problematic. The solution suggested in [9] is that actions that are “not offered”
are given an undefined semantics not a guarded semantics. Here we define data
types that cannot be placed in branching contexts and for which a two place
buffer is a refinement of a one place buffer. We give a separate definition of
processes that can be placed in branching contexts and for which a two place
buffer is not a refinement of a one place buffer.

Nierstasz [19] defines sub-typing in an equivalent way to extension refinement
and obtains the result: Sequential clients (contexts), satisfied by an abstract ob-
ject, will be satisfied by a subtype (refinement) of it. For concurrent (branching)
contexts this result does not follow, whereas we restrict the contexts in which
our processes can be placed.

In [15] several refinement definitions are given on the denotational semantics.
Weak sub-typing, for not-shared objects, is equivalent to our �PA . But if we
assume that not-shared objects can only be placed in sequential contexts then
we would choose �DTA=�s

Fext as our definition of behavioural sub-typing. Their
other definitions safe, optimal and optimistic sub-typing are for shared objects
and extend weak sub-typing by treating actions, of the sharing object, as (τ)
internal actions (other versions can be found in [23,18]).

9 Conclusion

We have provided a common framework in which to compare some of the many
definitions of refinement/sub-typing. Using this we have shown that the state-
based definition of data refinement more closely relates to process conformance
than process refinement.

Data refinement defined on Z [22], where actions are undefined outside of
preconditions, permit feature addition, whereas data refinement defined where
actions are guarded outside of precondition [8] do not. From our general frame-
work it is easy to see that the reason for the lack of feature addition is not the
fact that actions are guarded but the fact that the contexts are not restricted to
“where A is expected”. Hence it is easy to see that a small amendment to the def-
inition of Z refinement in [8] suffices for this state-based version of refinement to
correspond to �s

Fext (singleton conformance) and to consequently permit feature
addition similarly to the original Z data refinement of [22].
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A Proofs

Lemma 7 A �Fpro C⇔ A �Ftest CδNew

Proof Step 1. A �Fpro C⇒ A �Ftest CδNew . Assume A �Fpro C.

A �Fpro C def= Tr(A) ⊇ Tr(CδNew ) ∧ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A).
1. ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A) ⇒ ∀ ρ ∈ Tr(A).Ref (ρ, CδNew ) ⊆

Ref (ρ, A).
As Tr(A) ⊇ Tr(CδNew ) if ρ 
∈ Tr(A) then ρ 
∈ Tr(CδNew ). Hence 2. if ρ 
∈

Tr(A) then Ref (ρ, CδNew ) ⊆ Ref (ρ, A).
From 1 and 2. ∀ ρ.Ref (ρ, CδNew ) ⊆ Ref (ρ, A) def= (A �Ftest CδNew ).
Step 2. A �Ftest C⇒ δNewA �Fpro C . Assume A �Ftest C.

(A �Ftest CδNew ) def= ∀ ρ.Ref (ρ, CδNew ) ⊆ Ref (ρ, A).
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1. ∀ ρ.Ref (ρ, CδNew ) ⊆ Ref (ρ, A)⇒ Tr(A) ⊇ Tr(CδNew ) .
2. ∀ ρ.Ref (ρ, CδNew ) ⊆ Ref (ρ, A) ⇒ ∀ ρ ∈ Tr(A).Ref (ρ, CδNew ) ⊆ Ref (ρ, A).

As New = (α(C) − α(A)) then Ref (ρ, CδNew ) ⊆ Ref (ρ, A) ⇒ Ref (ρ, C) ⊆
Ref (ρ, A). Hence ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A). Hence from 1. and 2.

Tr(A) ⊇ Tr(CδNew ) ∧ ∀ ρ ∈ Tr(A).Ref (ρ, C) ⊆ Ref (ρ, A) def= A �Fpro C.
•

Lemma 8 Assume the Smyth powerdomain
A �A C⇔ A �A

State C⇔ A �A
R C.

Proof Second equivalence is obvious. For first equivalence:
1. By definition if Obs([C]a) � Obs([A]a) then I ([C]a) > I ([A]a) ∨ (I ([A]a) =

I ([C]a) ∧ Obs([A]a) ⊇ Obs([C]a)). As if I ([C]a) > I ([A]a) then from Figure 5
Obs([C]a) ⊆ Obs([A]a). Consequently if Obs([C]a) � Obs([A]a) then Obs([C]a) ⊆
Obs([A]a).
∀[ ]a∈[ ]A .Obs([C]a) � Obs([A]a)⇒ Obs([C]a) ⊆ Obs([A]a)
2. Similarly ∀[ ]a∈[ ]A .Obs([C]a) ⊆ Obs([A]a)⇒ Obs([C]a) � Obs([A]a)
From 1. and 2.
∀[ ]a∈[ ]A .Obs([C]a) � Obs([A]a)⇔ Obs([C]a) ⊆ Obs([A]a)
A �A C⇔ ∀[ ]a∈[ ]A .Obs([C]a) ⊆ Obs([A]a) •
Because what can be observed in one context may restrict what can be ob-

served in other “similar” contexts, and because refinement quantifies over a
universe of contexts, we can show that, even without restricting the contexts,
some of the powerdomain is redundant.

Lemma 9 If I (A]ρ) = {⊥} ∧ I ([C]ρ) 
= {⊥} I ([C]ρ)
�−→I ([A]ρ) then

Obs([A]ρa) 
� Obs([C]ρa)

Proof
As I ([A]ρ) = {⊥} then ρ 
∈ Obs([A]ρ) and as I ([C]ρ) 
= {⊥} then ρ ∈

Obs([C]ρ). Hence Obs([C]ρ) 
⊆ Obs([A]ρ) i.e. Trc([C]ρ) 
⊆ Trc([A]ρ). Select an
a such that ρa 
∈ Trc([C]ρa) hence Trc([C]ρa) = Trc([C]ρ). As I ([A]ρa) = {⊥} =
I ([C]ρa) and Obs([A]ρa) 
⊇ Obs([C]ρa) we have Obs([A]ρa) 
� Obs([C]ρa).

•
Lemma 10 Assume the Smyth powerdomain

A � C⇔ A �State⇔ A �R C.

Proof From Lemma 8 and Lemma 9 •
Lemma 11 A �Z C = [[A]]g �DT [[C]]g and A �ZA C = [[A]]g �DTA [[C]]g

Proof It is clear to see that knowing the program (trace) ρ and how many
actions terminated is to know exactly the complete trace of an ADT run with
context program ρ. •
Lemma 12 A �DT C⇔ A �s

F C
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Proof A �DT C def= ∀[ ]a∈[ ] .Obs([C]a) ⊆ Obs([A]a)
1. ∀[ ]a∈[ ] .Obs([C]a) ⊆ Obs([A]a)⇐ A �s

F C:

Let [ ]a
def= ( ‖α(C ) ρ)δAct and ρ̂

def= ρ � α(C) and o ∈ Obs([C]a).
If ρ̂ = o then o ∈ Tr(C) and from A �s

F C we have o ∈ Tr(C)⇒ o ∈ Tr(A).
hence we know that o ∈ Obs([A]a)

else if ρ̂ �n= o then 〈ρ̂ �n , {ρ̂ |n+1}〉 ∈ Refs(C).
hence 〈ρ �n , {ρ̂ |n+1}〉 ∈ Refs(A) and o ∈ Obs([A]a).
2. A �DT C ⇒ A �s

F C: If 〈ρ, {a}〉 ∈ Refs(C) then ρ ∈ Obs([C]ρa) and
ρ ∈ Obs([A]ρa) so 〈ρ, {a}〉 ∈ Refs(A) •
Lemma 13 A �DTA C⇔ A �s

Fext C

Proof The difference between this and Lemma 12 is that both sides of the
equivalence are restricted to traces of A. Hence if ρ ∈ Tr(A) the above proof
holds and if ρ 
∈ Tr(A) there is nothing to show. •
Lemma 14 A �Zg C⇔ A �s

F C

Proof [8] •
Lemma 15 ∀ρ .[[[C]ρ]]Zg ⊆ [[[A]ρ]]Zg ⇔ Obs([C]a) ⊆ Obs([A]a)

Proof In context ρ, final from [8] returns n blanks when n operations have
terminated. Clearly this is true if and only if ρ |n will have been observed in our
formalisation. •

Because of the very close relation between �DTg and �Zg (see Lemma 15)
we know how to amend the definition of �Zg so as to permit feature addition
with the guarded semantics.

A �A
Zg C def= ∀[ ]ρ∈[ ]A .[[[C]ρ]]Z ⊆ [[[A]ρ]]Z

From Lemma 15 and definitions we can conclude A �A
Zg C⇔ A �DTgA C.

Lemma 16 A �Zg C⇔ A �DTg C.

Proof From Lemma 12 and Lemma 14 or Lemma 15 and definitions. •
Lemma 17 [ ]A = {( ‖α(A) p)δAct | Trc(p) ∩ Tr(A) 
= ∅} is a core set of
contexts for [ ]A

+
= {( ‖α(A) p)δAct | true}

Proof We need to show that if [ ]x ∈ [ ]A
+ − [ ]A then we can infer what

Obs([ ]x ) would be from the observations of [ ]A. To do this we build a context
x + a where “+” is choice2. sx+a

def= sx and Tranx+a
def= Tranx ∪ {(sx, a, x ) |

{(sa, a, x )} = Trana}.
Let a ∈ π(A) then a 
∈ Obs([A]x ), Obs([A]a) def= {a}

and [A]a ∈ [A]A ∧ [A]x+a ∈ [A]A. As Obs([A]x+a) = Obs([A]x ) ∪ Obs([A]a) and
Obs([A]x ) ∩Obs([A]a) = ∅ we know Obs([A]x ) = Obs([A]x+a)−Obs([A]a). •
2 Although we could have used choice from ACP we, for brevity of definition, use that

from [10].
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Lemma 18 A �P C⇔ A �Ftest C

Proof A �P C ⇒ A �Ftest C follows from the observation that Hennessy’s
“essential tests” [13] are all contained in our process contexts [ ].

A �P C ⇐ A �Ftest C follows directly from folklore monotonicity of failure
refinement with respect to the basic process operators ([6,13]).

•

Lemma 19 A �PA C⇔ A �Fpro C

Proof Part 1. A �PA C ⇒ A �Fpro C Let ρ; (ΣX ) be the smallest context

such that s
ρ−→s1 ∧ ∀x∈X .s1 x−→ (or use ACP’s sequential composition “;” and

choice “+”).
We need to prove 1. A � C⇒ ∀σ ∈ Tr(A).Ref (C, σ) ⊆ Ref (A, σ)
Using contexts ρ; (ΣX ) where ρ ∈ Tr(CδNew ) ∧ X ⊆ α(CδNew ) we can

see that ρ ∈ Obs(C) ⇒ ρ ∈ Obs(A) hence ∀σ ∈ Tr(CδNew ).Ref (CδNew , σ) ⊆
Ref (A, σ).

and 2. A � C⇒ Tr(A) = Tr(CδNew )
As failure refinement implies trace refinement ([13,11]) from Lemma 18 above

we have: A � C⇒ Tr(A) ⊆ Tr(CδNew )
Finally we prove: A � C⇒ Tr(A) ⊇ Tr(CδNew )
Use contexts ρ where ρ ∈ Tr(CδNew ) ρ ∈ Obs([C]ρ) and by assumption

ρ ∈ Obs([A]ρ) hence ρ ∈ Tr(A)
Part 2. A �Fpro C⇒ A �Pa C

From Lemma 7 A �Fpro C⇔ A �Ftest CδNew .
From Lemma 18 A �Ftest CδNew ⇔ A �P CδNew .
From Lemma 17 the only difference between the contexts used in the defini-

tion of �P and those in the definition of �Pa is that one can synchronise with
actions that do not appear in either A or CδNew . Consequently A �P CδNew ⇔
A �Pa CδNew

As Obs([CδNew ]Aρ ) def= Obs((CδNew ‖α(A) p)δAct) and because New∩α(A) =
∅ we know: Obs((CδNew ‖α(A) p)δAct) = Obs((C ‖α(A) p)δAct)

Hence from definition A �Pa CδNew ⇔ A �Pa C
From Part 1 and 2 we have the result. •
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Abstract. In this paper we extend the conventional framework of pro-
gram refinement down to the assembler level. We describe an extension
to the Refinement Calculus that supports the refinement of programs in
the Guarded Command Language to programs in .NET assembler. This
is illustrated by a small example.

1 Introduction

Program compilation is among the oldest and most well-explored aspects of
computing technology. Nevertheless, modern optimising compilers are large and
complex, and bugs are still found in well-used compilers. Consequently, pro-
grammers of mission and safety-critical systems are significantly distracted by
concerns about compiler correctness. For instance, certification authorities for
safety-critical systems require that program compilers are verified or, at least,
rigorously validated [1]. Verifying the correctness of an industrial-size compiler
has long been recognised as impractical with current proof technology [2, p. 146].

In this paper we approach this problem from the viewpoint of program refine-
ment [3, 4]. A characteristic of the refinement approach is that it is done within
a ‘wide-spectrum’ framework, using a single language that can express both
specifications and programming constructs. In our case the language includes
both high-level and assembler-level languages. Rather than develop a verified
stand-alone compiler, the code generation phase is encoded in the repertoire of
refinement laws that generate the assembler code. These laws are all verified in
the semantic framework of the refinement theory. Just as the language is ‘wide-
spectrum’ so is the refinement framework, and it supports the formal refinement
of a program from its specification right down to executable code.

This concept is not new [5–7]. However, earlier work tended to focus on the
principles of the approach and to use a highly simplified assembler. Here we seek
to place earlier work [6, 8] in a more practical setting by targeting a realistic
assembler language. We address such ‘practical’ compilation issues as:

– using runtime data structures rather than a flat address space,
– handling multiple variants of the basic instructions, and
– managing different addressing modes.
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This is one step towards the goal of using this framework with a real assembler
language. In this paper we target a limited subset of Microsoft’s Common In-
terface Language (CIL [9]), which is part of the .NET framework [10, 11]. We
propose a set of data structures that support a workable system of data refine-
ment between the high-level language and assembler-level CIL constructs.

The paper takes the form of an example, which illustrates the approach that
we are taking, followed by an assessment of the results. Section 2 discusses related
work. Section 3 describes the refinement language used, and Section 4 describes
its semantics in terms of the runtime data structures. Section 5 describes the
compilation by refinement strategy and Section 6 gives an example of the proof
of one of the refinement laws. Finally, the worked example is given in Section 7
and an assessment of the method and conclusions in Section 8.

2 Related Work

There is a large literature on the principles of the verification and certification of
compilers [12, 5, 13–16]. Applications of these methods to larger-scale practical
systems include the ESPRIT ProCoS project [17, 18] and work on the formal
verification of Java Virtual Machine bytecode verifier [19, 20].

This paper focuses on using refinement as a compilation model, and continues
earlier work by Sampaio [5] and Fidge and Lermer [6, 8] by applying the frame-
work developed by the latter to a concrete example. Although our approach
was motivated from the refinement framework, in practice it adopts the same
philosophy as that of Müller-Olm [7] and the ProCoS project, in that it uses a
layered approach to the semantic issues of compilation. However, whereas that
work focused on verifying the compiler itself, the work presented here regards
compilation as a phase in the total refinement process (from specification to
machine code).

3 The Language

3.1 Specifications and the High-Level Language

The process of compilation by refinement is an incremental one — an initial spec-
ification is first refined to an implementable program in a high-level language,
and this is then refined to an assembler program. This is all done in this a sin-
gle ‘wide-spectrum’ language. We use the specification statement [4] to initially
specify programs at an abstract level. The specification −→w : [A, B] achieves a
state satisfying predicate B starting from a state that satisfies predicate A while
changing only variables that appear in the list −→w (the frame).

Since our target is assembler code the high-level language is just an inter-
mediate stage between the specification and the code. We can therefore use an
idealised high-level language, introducing only the features necessary to support
the refinement process. We use a version of Dijkstra’s Guarded Command Lan-
guage (GCL) [21] for this purpose. This language is simple, well known and
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expressive. Programs in this language can readily be rewritten in traditional
block-structured programming languages.

Skip skip
Sequential composition C1; C2

Multiple assignment X1, X2 · · · := E1, E2 . . .
Invariant |[ inv I • C ]|
Iteration do G1 → C1

...
� Gm → Cm

od

Alternation if G1 → C1

...
� Gn → Cn

fi

Constant declaration |[ con c : T • C ]|
Variable declaration |[ var v : T • C ]|
Procedure declaration |[ proc P (X) = C1 • C2 ]|
Procedure call call P (X)
Assertion {P}
Coercion [P ]

Fig. 1. The High-Level Language.

The full set of constructs in our high-level language is shown in Figure 1. We
include some non-implementable constructs which are used both to annotate
refinements and to model assembler instructions (Section 4.2). An assertion {P}
records that the predicate P is true at that point in the program (if it is false
the program aborts), while the coercion [P ] makes the predicate P true at that
point in the program. In general the coercion [P ] may achieve P miraculously,
but coercions are used in our modelling framework in such a way that this never
occurs. The local invariant construct inv defines an predicate that is expected to
be invariant throughout its block [22]. The remaining constructs are all familiar
executable ones [21, 4].

3.2 Assembler Language

The assembler used was chosen on the basis of a number of criteria. Since we were
addressing ‘practical’ issues it should be a subset of a real assembler language,
and its formalisation be based on the published definition of that language.
For this pilot study the language should be quite small, sufficient to support
a basic imperative language such as GCL. We also decided that it should be
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stack-based, since a register-machine semantics had been used in earlier work [7,
23], and issues such as register allocation were not directly relevant to our main
purpose.

The assembler language that we chose is based on a fragment of the CIL
language from the .NET framework. This is defined as part of the Microsoft sub-
mission [9] to the ‘Common Language Infrastructure’ (ECMA TC39/TG3)[24]
and provides us with an up-to-date stack-based assembler-like notation and a
well-defined, and machine-independent, set of assembler-level data structures.
The subset used included only basic instructions, such as loads, stores, tests and
branches. CIL has the additional advantage that verification of its typing system
has been considered elsewhere by Gordon and Syme [25].

A full, but informal, description of the CIL language can be found in the
ECMA standard [9]. A typical instruction definition is the following (adapted
from [9, Part III,2.38]).

ldarg num - load argument onto the stack.
Description:
The ldarg num instruction pushes the incoming argument numbered
num onto the evaluation stack. The ldarg instruction can be used to
load a value type or a primitive value onto the stack by copying it from
an incoming argument. The type of the value is the same as the type of
the argument, as specified by the current method’s signature.
Stack Transition: . . . �→ . . . , value

The ldarg instruction, and the others in the subset of CIL instructions used,
are included in our wide-spectrum language. Their semantics is described below
in Section 4.3.

By compiling to CIL we are not compiling down to a machine-code level, since
a CIL assembler language program undergoes two further stages before it is ex-
ecuted. Obviously programs produced in his way cannot be considered as ‘fully
verified’, since if they were run they would depend on a unverified interpreter.
However we are using CIL simply as a convenient vehicle for exploring the fun-
damental compilation-by-refinement framework in a more realistic setting. Our
focus is on the method not the resultant code (and in a wider context our focus
is on high-level compilation strategies, which can be studied satisfactorily in the
framework presented here).

4 Semantics

In the refinement calculus, specifications and commands are given a semantics
in terms of predicate transformers [4, Chap. 21]. To give a semantics to the
assembler instructions we adopt the strategy, described by Lermer and Fidge
[8], of interpreting these instructions in terms of high-level commands acting on
runtime data structures. This enables the language to be extended to include
assembler instructions without changing the underlying semantics.
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4.1 The CIL Runtime Data Structures

In previous work Lermer and Fidge [8] targeted an idealised register machine,
but in this paper we use the stack-based language CIL which has a different set
of runtime data structures, namely an instruction pointer, an evaluation stack,
a local-variable array and a parameter array. There is also a heap, but this is
not required for the particular example.

Modelling these machine-level data structures involves addressing the repre-
sentation of variable values in memory. There are many approaches to modelling
memory [5, 26, 16, 27, 28]. One approach is to model it as an unstructured col-
lection of words [28]. However, in .NET memory slots are allocated per variable,
with a size that depends on the type. Slots are addressed on this basis, and
individual words cannot be addressed directly. We therefore model the stack
and arrays as sequences of polymorphic values, whose representation in terms of
word-size is hidden.

In this paper we shall model the items on the stack as elements of the set
V alues. For simplicity we restrict types to just those used in the example of
Section 7, so we define V alues by:

V alues = int32 ∪ seq int32 ∪ Addr

(Where int32 is the type of CIL’s 32-bit integers.) That is, it includes the in-
tegers (int32), arrays of integers (seq int32) and the address type (Addr) (to
handle reference parameters). The high-level language variables are modelled
as functions of type: identifier �→ V alues\Addr, i.e., from identifiers to actual
values, but not addresses. For example the variable X will be the tuple (X, v)
where v is the value of X .

Our model of the CIL runtime data structures has four components.

1. An instruction pointer IP , which ranges over the instruction addresses. We
model these by symbolic labels (See Section 5.2).

2. A local evaluation stack S, which we model by the partial function type
N1 �→ V alues from positive numbers to values. S has an associated stack
pointer SP which ranges over the natural numbers. On entry to a subroutine
the stack is initialised to be empty – SP = 0.

3. A local-variable array L, which is of type identifier �→ V alues.
4. A parameter array P of type identifier �→ V alues. Indirectly addressed pa-

rameters are supported, since elements of P may be of type Addr. In this
case we define the functions
– val of type Addr �→ V alues\Addr which retrieves the value of an indi-

rectly addressed item, and which may only be evaluated on the right-
hand side of an assignment.

– loc of type Addr �→ (identifier �→ V alues\Addr) which retrieves the
identity of an indirectly addressed item, and which may only be evaluated
on the left-hand side of an assignment. We have that loc(P [x̂]) = x, if
Ind(P̂ [x̂], ), i.e. if P [x̂] contains an address.
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Note that we index the L and P arrays associatively, using the name of the high-
level language variable as the index. We use the notation x̂ to denote the name
of the high-level variable x. For example, high-level local variable i corresponds
to assembler array element L[ î ] of the array L.

4.2 Control Flow at the Assembler Level

In an assembler program there is no facility for large-scale control structuring.
Instead control flow is determined by the behaviour of the runtime instruction
pointer. As commands are executed this pointer moves sequentially through
the program store, except when re-directed to a specific address by a jump or
branch instruction. To handle this we introduce an explicit control emulation
mechanism encoded in GCL, modelling the instruction pointer by IP [13, 29, 5,
8]. Specifically, the operation of the flow of control is emulated by embedding
labelled commands in a do loop, the most general form of which is:

do IP ∈ L1 → C1; [IP ∈ L′
1]

� IP ∈ L2 → C2; [IP ∈ L′
2]

...
od

Here IP is the instruction pointer, L is a set of labels, and C is either a high-level
command or an assembler instruction. Sequencing is controlled by the coercions
which follow each command, which constrain the label values that IP may take
after completion of the command. The rules for generating the labels ensure that
any actual iteration of this loop is deterministic.

In this paper, for compactness of presentation, we make use of the notation:

l1, . . . , ln : C|y1,...,yk
x

as a shorthand for:

IP ∈ {l1, . . . , ln} → C; [IP ∈ {x, y1, . . . , yk}]
where x is the label of the next sequential instruction in the program store (if
this is one of the possible values for IP after C is executed) and y1, . . . , yk

are any other possible values for IP . A vertically-displayed list of such labelled
statements is interpreted as residing in the context of an outer do loop as shown
above.

We label all assembler instructions, and in the model there is no distinction
between proceeding to an implicit ‘next’ instruction and an explicit jump or
branch to a label elsewhere in the program. Both are handled by the loop mech-
anism. However the sequencing of instructions is explicit in the refinement laws
which generate the assembler code, and it is convenient to retain the identity of
the next sequential instruction, as in the notation used here, rather than lose it.

The following code fragment illustrates this notation.

a : X := E|b
b : brfalse X |pc
c : jmp |q
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The first instruction, labelled a, will always be followed by the next, labelled
b. The third instruction is an unconditional jump to a label q elsewhere in the
program, while the middle instruction may direct execution to either the next
instruction c or to the label p.

4.3 Instruction Semantics

Assembler instructions are modelled in GCL within a do loop of labelled in-
structions, as described in Section 4.2, and with CIL runtime data structures
declared, as described in Section 4.1. For example, the ldarg instruction, whose
informal definition was given in Section 3.2, is modelled by the following multiple
assignment.

p : ldarg X |Nxt
def
=
net

p : S, SP, IP :=(S ⊕ (SP + 1 �→ P [X ])), SP + 1,Nxt

provided that Par(X)

This definition formalises the description of ldarg given in Section 3.2. It
increments the stack pointer SP , and assigns the value of the parameter X to
the new slot, by extending the stack S. IP is set to the label Nxt of the next
instruction. The proviso ensures that it is applied in the correct context — that
is, when X is a subroutine parameter.

Note that we use the function override notation ⊕ [30] in assignments to array
elements. Thus, rather than A[i] := E, we write A := A ⊕ (i �→ E). This makes
the calculation of substitutions applied to array assignments more transparent.

All assembler instructions are modelled in this way. A jump instruction such
as ‘br’ is simply modelled by an assignment of a label to IP . Ultimately the
correctness of the compiler depends on the correctness of this formalisation,
however, in the absence of a full formal definition of CIL, this can only be
checked informally.

5 Compilation by Refinement

Refinement of a high-level program to assembler code is performed by the ap-
plication of refinement laws which refine high-level statements to sequences of
assembler instructions. Coping with a practical assembler language like CIL in-
troduces the need for a large collection of refinement laws.

5.1 Refinement Laws

The refinement laws are parameterised by the variables and expressions that oc-
cur in the abstract syntax of the high-level commands. (Appendix A lists the laws
used in this paper.) The generation of the assembler code for a program requires
a recursive application of the laws to the components of compound commands
and expressions. To incrementally compile expressions we use ‘intermediate-level’
instructions Eval and Op in the definitions of the laws that refer to expressions
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[6]. For example, Law L.2 in Appendix A. These must be further refined to ex-
ecutable assembler instructions by the application of other laws. The semantics
of Eval (X) is just X , since X is a high-level variable.

An important feature of the assembler is the handling of variables. At the
high level a variable is simply referred to by name, but at the assembler level such
references are implemented by explicit loads and stores, and the instructions for
these have many variants. Instructions differ depending on whether the variable
is a local variable or parameter, and whether it is addressed directly or indirectly.
For example, ldarg loads a parameter value, but ldloc must be used for a local
variable. In addition CIL store instructions, and some loads, must specify, by a
suffix, the type of the variable being stored. In the current paper we are only
considering variables of type int32, so only the suffix .i4 is used.

This situation has the potential to lead to an explosion in the number of
refinement laws if, for each high-level language statement, there is a separate
law for every possible sequence of assembler language instructions that it may
compile to. We solve this by using the Load and Store intermediate language
instructions to factor out the handling of variable characteristics into a separate
‘layer’ of laws. The semantics of the intermediate instruction Store X is just
X, SP := S[SP ], SP −1 and of Load X is S, SP := S⊕ (SP +1 �→ X), SP +1.

The situation whereby a single high-level command, such as an assignment,
may be compiled by a number of variants of assembler code depending on the
circumstances requires that many refinement laws are conditional. In such cases,
each individual law handles one situation and in combination they cover all
possibilities. An example is the two Store laws mentioned above, where L.12
handles the case where the variable is local, and L.13 the case where it is a
directly addressed parameter (indirect addressing requires a different assembler
‘template’ and is handled differently — see Laws L.2 and L.3).

A refinement step is performed in a context which includes the current in-
variant. This contains type information and an indication of how each variable
is stored at the assembler level. For clarity we use the following boolean-valued
functions, which summarise the different possibilities for variables.

– Par(x) is true if x is a parameter (x = P [x̂]).
– Loc(x) is true if x is local (x = L[x̂]).
– Ind(x, t) is true if x is addressed indirectly and is of type t. That is, if

x = val(P [x̂]) and val(P [x̂]) : t (and by implication, P [x̂] : Addr).
– Ref(x̂, array) is true if x is a reference to an array.

Conditions on rules are not limited to those listed above. For instance Law
L.11 includes the condition I ∈ 0 . . . size(A) − 1, which ensures that the array
element used is within bounds. The conditions could also be extended to include
checks such as for integer overflow (for example, by a special conditional form
of Law L.16 for arithmetic operators).

The set of refinement laws that we use for compilation is such that at most
one law is applicable in any particular context. The compilation of a high-level
program by the application of a set of code-generation refinement laws with this
characteristic is an algorithmic process that can be done automatically.
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5.2 Labelling

In the refinement by compilation formalism all instructions are labelled, and
all sequencing of instructions is managed by labelling (via setting IP and the
operation of the outer do loop). This differs from traditional assembler practice,
where sequential control is implicit in the ordering of instructions, and labels are
only used as the targets of jumps. Our mechanism is more akin to using code
locations at the machine-code level, but code locations can only be determined
after all the instructions have been generated.

Our symbolic labels are derived from a set (lab) of sequences on a base set.
Set lab is constructed so that it has both a complete ordering of its elements
and a hierarchical structure which allows the insertion of fresh labels. A formal
description of this structure, and of the insertion construction, is given elsewhere
[8]. There, labels are sequences of integers, written in the form: n1.n2. . . . , e.g.,
2.1.12.19. However we base our label sequences on the set a . . . z, which restricts
the number of sequences available, but is sufficient for the small example in
Section 7. This also allows the label sequences to be represented by concatenation
without ambiguity, e.g., acd rather than a.c.d. So our labels are just alphabetic
strings.

The labelling mechanism allows us to either generate a set of children for
a given label, e.g., you can add acea, aceb, etc. after ace, or, given a sequence
of labels, you can add a sibling, e.g., given aba, abb, abc you can add abd. In
refinements and the refinement laws this labelling system is presented using the
following notational conventions:

– The variable p∗ has, as its value, the first child of label p at the next level
down in the hierarchy.

– The variable p′ has as value the successor of label p at the same level in the
hierarchy.

The mechanism that generates labels must ensure that labels are unique
throughout the refinement. Labels are generated by the refinement laws, and it
can be shown that the protocol used in these laws satisfies this requirement.

Technically, each labelling introduces a new local block with the fresh labels
as local constants. However, such blocks can always be moved outwards to the
maximum scope of the refinement, which will then introduce all the labels used
in the emulation. For clarity we omit this level of detail in our presentation.

5.3 Justification of the Refinement Laws

Stepwise refinement is a process that guarantees that the resultant program (in
this case the assembler code) is a valid refinement of the original specification,
provided the refinement laws are sound and applied correctly. To justify our
compilation strategy we must therefore justify the refinement laws that we use.

Overall the compilation of a GCL program is an application of data refine-
ment. The process is initialised by the introduction of the runtime data structures
described in Section 4 (including the do-loop which emulates control flow). The
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high-level program constructs are then refined in this context to sequences of as-
sembler instructions using the laws listed in Appendix A. Thus the compilation
refinement laws are only used in this context, and the justification of these laws
assumes it.

We may divide the refinement laws into two groups. The first group of laws
are those that set up and manipulate the basic compilation machinery. These
laws are independent of the CIL-specific runtime data structures. Examples are
the law to initially introduce the new data structures (which we do not show
explicitly in this paper), and Law L.0 which labels a sequence of high-level com-
mands. Similarly laws that just manipulate control flow, such as those which
convert high-level iterations and alternations to assembler level instruction tem-
plates, refer only to branch instructions, which, although part of CIL, manipulate
only IP . Examples are Laws L.4, L.5 and L.6. Such laws may be proven by ex-
ploiting the characteristics of the outer do loop which handles the instruction
pointer. Proofs of these laws can be found in earlier work [8]. These proofs use
techniques based on Back’s method of refining action systems [31].

The second group of laws are those that refer to the details of the CIL runtime
environment, and give effect to the data refinement from high-level variables to
the CIL data structures. The left-hand side of such laws will normally be a
high-level assignment statement. This aspect of compilation is not discussed by
Fidge and Lermer [6], but Sampaio [5] handles it comprehensively, although in
a different manner than is done here.

We justify such laws by showing that the high-level language statement has
the same effect on high-level variables as the compiled assembler has on the
corresponding low-level ones. The laws assume the emulation context and the
mapping of high-level to low-level variables implied by the conditions on the law,
for example, x = P [x̂] ∧ i = L[ î ] if x and i are a parameter and a local variable
respectively. The definitions of the assembler instructions in terms of high-level
multiple assignments, described in Section 4.3, enable assembler instructions on
the right-hand sides of laws to be eliminated in favour of multiple assignments
involving the runtime data structures. Proving such a refinement is then an exer-
cise in conventional data refinement, and can be done for the data manipulation
laws in Appendix A. An example is given in Section 6.

6 An Example of the Justification of a Refinement Law

6.1 Proof Strategy

In this section we sketch the proof of Law L.3.
As was described in Section 5.3, for data manipulation commands (which do

not involve branching), it is convenient to simplify sequences of stack manip-
ulations before applying data refinement. This allows some of the complexity
to be removed in a simpler semantic framework, with the more complex data
refinement being applied only to the simplified form.
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This type of refinement law often has the form:

p . . . q : C|x �
net

p . . . q, r1 : Y1 |r2 (A)

r2 : Y2 |r3

...
rk : Yk |x

where C is a high-level command and Y an assembler instruction.
We simplify the right-hand side of this law in a number of stages. First, the

list of assembler instructions is converted to a single compound statement using
Law C2 of [8]. This states that a sequence of assembler instructions with no
branching is equivalent to a sequential composition. That is, where the Yi are
simple commands, and the qi are fresh labels, we have the equivalence:

p : Y1|q2 ≡ p : Y1; Y2; . . . ; Yk|x
q2 : Y2|q3

...
qk : Yk|x

Applying this law gives a single compound statement, which is a sequential
composition of the assembler instructions, rather than an iteration over a set of
guarded commands implicitly sequenced by the value of the program counter.

The second step in the simplification is to replace all the assembler instruc-
tions by their definitions as assignments referring to the runtime data structures.
The third step is to simplify this sequential composition of assignments, by com-
bining them into a single multiple assignment.

All three of these operations are equivalences. So, if p . . . r : Z|x is the result
of applying them to Law A above, then a proof of:

p . . . q : C|x �
net

p . . . r : Z|x

is also a proof of the original Law A. This still leaves a data refinement from
the abstract data of the high-level level to the concrete data of the runtime
structures, but this is simpler than proving the original refinement law, since it
only involves a single multiple assignment.

6.2 An Example of Simplification

As an illustration we show the simplification of the refinement law for X := E,
where X is addressed indirectly via a parameter to the subroutine. This is law
L.3 in Appendix A, namely:
p . . . q : X := E|x �

net
p . . . q∗ : ldarg X̂|q∗′

q∗′ : Eval E|q∗′′

q∗′′ : stind.i4 |x
provided Par(X̂) ∧ Ind(X̂, int32)
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Here the surrounding do loop, and the introduction of the label constants,
is implicit.

Since this law does not contain any jumps or other changes of the flow of
control, we apply the process described above. We first convert the right-hand
side to the equivalent sequential composition:

p . . . q∗ : ldarg X̂ |q∗′ ;Eval E|q∗′′ ; stind.i4 |x
provided Par(X̂) ∧ Ind(X̂, int32)

The next step is to substitute the definitions of the assembler instructions.
To do this we need translations for all the assembler instructions that appear in
the law. The interpretation for ldarg was given above. The translation for Eval
is:

Eval E|Nxt
def
=
net

S, SP, IP :=S ⊕ (SP + 1 �→ E), SP + 1, Nxt

and for stind.i4 is:

stind.i4 |Nxt
def
=
net

loc(S[SP − 1]), SP, IP :=S[SP ], SP − 2, Nxt

Applying these definitions gives the right-hand side of the law in the following
form.

p . . . q∗ : S, SP, IP :=S ⊕ (SP + 1 �→ P [X̂]), SP + 1, q∗′ ;
S, SP, IP :=S ⊕ (SP + 1 �→ E), SP + 1, q∗′′ ;
loc(S[SP − 1]), SP, IP :=S[SP ], SP − 2, x

This is subject to the provisos, Par(X̂) and Ind(X̂, int32).
Two sequential assignments can be combined by applying the substitution

implied by the first to the second. (We use the notation T[A\B] to denote the
term obtained from T by substituting the expression B for the variable A.) So
we combine the first two assignments, and eliminate ineffective substitutions, to
give:

p . . . q∗ : S, SP, IP :=
(S ⊕ (SP + 1 �→ E))[S,SP\S⊕(SP+1�→P [X̂]),SP+1], SP[SP\SP+1] + 1, q∗′′;

loc(S[SP − 1]), SP, IP :=S[SP ], SP − 2, x

Combining the result with the third assignment gives:

p . . . q∗ : loc((S[SP − 1])[S,SP\S⊕(SP+1�→P [X̂])⊕(SP+2�→E),SP+2]), SP, IP :=
(S[SP ])[S,SP\S⊕(SP+1�→P [X̂])⊕(SP+2�→E),SP+2], SP − 2[SP\SP+2], x

Applying the substitutions, and simplifying, gives:

p . . . q∗ : loc(P [X̂]), SP, IP := E, SP, x

We can omit the assignment of SP to SP since this does nothing. (That the
value of the stack pointer SP is unchanged by the sequence of assembler instruc-
tions is a check on the validity of the refinement, since the stack is not visible
at the high level. Note, however, that the stack contents have been modified by
the sequence of operations, and so it retains a partial history of the low-level
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operations.) Expressing the result using the ‘|’ notation for the next address
gives Law L.3 in the following form.

p . . . q : X := E|x �
net

p . . . q ∗ : loc(P [X̂]) := E|x

Under the assumptions Par(X̂) and Ind(X̂, int32) and in the context of the
runtime data structures, we can apply the identity loc(P [X̂]) = X to the left-
hand side of the assignment on the right-hand side of the refinement, and in
this simplified form the rule can readily be seen to be correct. Other refinement
laws in Appendix A which do not alter the flow-of-control, can be handled in a
similar way.

7 A Compilation Example

In this section we demonstrate the compilation technique which we have de-
scribed. The example is necessarily small, and uses a handful of CIL instructions
only. All the variables used are signed 32-bit integers, which are are represented
in CIL by the type int32, and which are handled by instructions of type i4.

The example program finds the largest value in the first n elements of an
array m of positive integers. It can be specified by the specification statement:

r : [true, (n ≤ size(m) ∧ r = max{m(j)|0 ≤ j < n}) ∨ (n > size(m) ∧ r = −1)]

This specifies a final value for r that is is either the maximum value in the array
m, or the value −1 if n exceeds the size of the array (which is zero-based — the
.NET default). The frame only shows the variables that may be altered by the
program, namely r. We assume that this specification is within a context that
defines r, n and m with types integer, natural number and sequence of natural
numbers, respectively.

We assume that this original specification has been refined, using conven-
tional refinement techniques [4], to a call to the GCL procedure MaxN shown
in Figure 2, and we will use the method of compilation by refinement to compile
the body of MaxN . For simplicity we consider compilation of the subroutine
MaxN in isolation. We assume the existence of the appropriate runtime data
structures (which will have been introduced by the calling sequence). The initial-
isation also introduces the coupling invariant between the GCL and assembler
level parameters to MaxN , which is expressed by the following symbol table-like
invariant.

|[ inv m = P [m̂] ∧ P [m̂] : seq int32∧
n = P [n̂] ∧ P [n̂] : int32∧
r = val(P [r̂]) ∧ P [r̂] : Addr∧
val(P [r̂]) : int32 • . . .

]|
This invariant implies the following condition, used to select the applicable re-
finement laws.
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|[proc MaxN ( value m : seq N1,
value n : N1,
result r : Z )=

|[var i : N •
i := 0;
r := 0;
if n > size(m) → r := −1
� n ≤ size(m) →

do i < n →
if m[i] > r →r := m[i]
� m[i] ≤ r → skip
fi ;
i := i + 1

od
fi

]| • . . .
]|

Fig. 2. The subroutine MaxN .

Par(m̂) ∧ Ref(m̂, array) ∧ Par(n̂) ∧ Par(r̂) ∧ Ind(r̂, int32)

We confine our discussion to the compilation of the body of MaxN , so the
example starts with the subprogram body initialised to:

IP = a;
do

a : Body|z
z : ret

od

Here Body is the body of the procedure MaxN in Figure 2, and a and z are fresh
labels. Label a marks the body of the subroutine, while z is the ‘exit’ label for
the subroutine. In the full compilation system, this structure will be generated
by the compilation of MaxN ’s declarative block.

In the rest of this section we outline the process of transforming the body of
MaxN from high-level language to assembler, using the repertoire of transfor-
mation rules given in Appendix A.

The first step is the introduction of the local variable in Body. This is done
by law L.1 (Appendix A) which generates a .locals .NET directive, and adds
the local variables to the invariant. (We adopt the convention of annotating the
refinement step with the law(s) used above the refinement symbol �.)

a : |[var i : N • Cmds]| |z
L.1�
net

# .locals init (int32 i)

a : |[inv i = L[ î ] ∧ L[ î ] : int32 • Cmds|z ]|
Compiler directives, which do not correspond to executable commands, are

represented by comments (indicated by ‘# . . . ’) in the compiled program. The
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statement Cmds is a sequential composition, so before we can proceed to refine
its components, we must convert it to a list of labelled statements using law L.0
[6, Law 3]1.

a:( i := 0;
L.0�
net

a : i := 0|ab

r := 0; ab: r := 0|ac

if . . . ac: if . . .
fi )|z fi |z

Note that the sequential processing of the three commands, which was initially
defined by the sequential composition operator, is now controlled by the do
loop of the emulator. Law L.0 labels the first component with the original label,
and generates fresh labels, which are children of the original label, for the other
components. The other laws handle labels in a similar fashion.

We now proceed to refine each of the three sequential commands in turn.
Variable i is a local variable with a direct address. It is initialised using law L.2.

a : i := 0|ab

L.2�
net

a : Eval 0|aab

aab : Store i|ab

To evaluate an integer constant we use law L.15.

a : Eval 0|aab

L.15�
net

a : Load 0|aab

and since 0 ∈ int32 we can apply law L.7:

a : Load 0|aab

L.7�
net

a : ldc.i4 0|aab

this compiles the Eval to code. The next instruction is a Store (labelled aab).
There are two refinement laws in Appendix A that compile the Store instruc-
tions — laws L.12 and L.13. These are conditional, and the appropriate law is
determined by checking which is applicable in the current situation. Since Loc( î )
is true, law L.12 is applicable (and since Par( î ) is false, law L.13 is not), so we
use law L.12.

aab : Store i|ab

L.12�
net

aab : stloc î |ab

This completes the initialisation i := 0. Applying a similar procedure for the
initialisation r := 0, gives the assembler code for the initial part of MaxN as:

# .locals init ( int32 î )
a : ldc.i4 0 |aab

aab : stloc î |ab

ab : ldarg r̂ |abb

abb : ldc.i4 0 |abc

abc : stind.i4 |ac

1 We simplify the labelling by only showing the first label in a list. The omitted labels
only contribute to label housekeeping, and are never the targets of jumps.
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.locals init ( int32 i )
a : ldc.i4 0 acebaaac : ldelem.i4
aab : stloc i acebaab : ldarg r
ab : ldarg r acebaabb : ldind.i4
abb : ldc.i4 0 acebaac : cgt
abc : stind.i4 acebab : brfalse acebb
ac : ldarg n acebac : ldarg r
acab : ldarg m acebacb : ldarg m
acabb : ldlen acebacbb : ldloc i
acabc : conv.i4 acebacbc : ldelem.i4
acac : cgt acebacc : stind.i4
acb : brfalse ace acebb : ldloc i
acc : ldarg r acebbb : ldc.i4 1
accb : ldc.i4 -1 acebbc : add
accc : stind.i4 acebbd : stloc i
acd : br z acec : ldloc i
ace : br acec acecb : ldarg n
aceb : ldarg m acecc : clt
acebaaab : ldloc i aced : brtrue aceb

Fig. 3. Final Assembler Code.

The main part of MaxN is an iteration embedded in an alternation. We refine
the latter using law L.6:

ac : if . . .
L.6�
net

ac : Eval n > size(m)|acb

� ¬ . . . acb : brfalse ace|ace
acc

fi |z acc : r := −1|acd

acd : br z|z
ace : do . . .od |z

The test is compiled using law L.16.

ac : Eval n > size(m)|acb

L.16�
net

ac : Eval n|acab

acab : Eval size(m)|acac

acac : Op > |acb

The rest of the code can be handled in a similar fashion to give a final assem-
bler program, which is shown in Figure 3. The generated assembler code is valid
input to Microsoft’s ilasm assembler program, which generates an executable
file. The executable was successfully tested using a test harness written in the
C� language [32].

8 Conclusions

In this paper we have demonstrated how an assembler-level program can be de-
rived from a high-level program using the mechanism of program refinement. We
have indicated how the refinement laws used can be justified using a modelling
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of the assembler instructions into GCL. Unlike previous work, we have placed
our model in the context of a ‘practical’ assembler-level language — a very
restricted subset of .NET’s CIL. To achieve this we were forced to extend the
existing compilation-as-refinement frameworks with: intermediate instructions
and conditional laws, to allow the large number of refinement steps to be man-
aged effectively; and context invariants, to maintain essential scoping and typing
information normally stored in the compiler’s symbol table.

Traditionally program refinement starts from a specification and generates
high-level code. Supplementing this with the compilation mechanism described
here gives a methodology for the complete formal derivation of executable assem-
bler code from a specification. The work to date shows that this is an achievable
goal, but much is left to be done. In particular using a ‘real world’ assembler has
greatly expanded the number of instructions and consequently in the number of
laws that must be formulated and proven. The frameworks previously used in
the literature are not ideal for this work.

Here we have only presented a very simple example, for instance we have
limited data types to just the integers. The handling of more complex types
raises a number of issues. Obviously it increases the number of laws, which will
be conditional on the types of their operands. Also, where there is no longer
a direct mapping of high-level data items to assembler-level ones, the simple
scheme for the justification of data manipulation rules, described in Section 6,
must be extended by a non-trivial data refinement step after the simplification
has been carried out.

Even within the confines of the integers, we have presented a simplified pic-
ture. For instance, CIL has ‘short’ forms of some instructions for use when re-
ferring to small integers, but here we have always compiled to the general form.
However, the identification of such instances is more efficiently left to post-
compilation optimisation rather than extending the rule-set with special cases.
Also we have only alluded to the issue of integer overflow, indicating how this
might be done in Section 5.1. (Checking for stack overflow is another issue.
Although it would be simple to ensure that, whenever the stack pointer is incre-
mented there was a condition stating that the result must be in range, checking
that this was satisfied would not be generally possible at compile-time.)

Existing approaches to compilation-by-refinement, including that presented
here, have some drawbacks. One is the necessity to label every single instruc-
tion (see Figure 3!). Another is the difficulty of reasoning about the assembler
code. Using the do loop emulation means that, although an assembler program
might be compiled from a structured high-level program, all the structure has
been hidden, and must be reconstructed if required. Even the normal instruction
sequencing of an assembler program is hidden in the same way (although it is
easier to retrieve this). This causes complications, for example, when construct-
ing arguments to justify optimising transformations.

Finally the application of this type of detailed refinement requires tool sup-
port. Work has been done to adapt an existing tool to handle the compilation
framework described here [33].



Compilation by Refinement for a Practical Assembly Language 303

References

1. Ould, M. A. (1990) Software development under Def Stan 00-55: A guide. Infor-
mation and Software Technology , 32, 170–175.

2. Bowen, J. (ed.) (1994) Towards Verified Systems, vol. 2 of Real-Time Safety Critical
Systems. Elsevier.

3. Back, R.-J. and von Wright, J. (1998) Refinement Calculus: A Systematic Intro-
duction. Springer-Verlag.

4. Morgan, C. (1994) Programming from Specifications. Prentice-Hall, second edn.
5. Sampaio, A. (1997) An Algebraic Approach to Compiler Design, vol. 4 of AMAST

Series in Computing . World Scientific.
6. Fidge, C. J. (1997) Modelling program compilation in the refinement calculus.

Duke, D. J. and Evans, A. S. (eds.), 2nd BCS-FACS Northern Formal Methods
Workshop, Electronic Workshops in Computing, Springer-Verlag,
http://www.bcs.org/ewic/.

7. Müller-Olm, M. (1997) Modular Compiler Verification: A Refinement-Algebraic
Approach Advocating Stepwise Abstraction, vol. 1283 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag.

8. Lermer, K. and Fidge, C. J. (1997) Compilation as refinement. Groves, L. and
Reeves, S. (eds.), Formal Methods Pacific ’97 , pp. 142–164, Springer.

9. ECMA standardization - original submission.
Web: http://msdn.microsoft.com/net/ecma/OctoberSubmission.asp, accessed 1
Nov. 2002.

10. Lam, H. and Thai, T. (2001) .NET Framework Essentials. O’Reilly & Associates.
11. Platt, D. S. (2001) Introducing Microsoft .NET . Microsoft Press.
12. Jones, C. B. (1989) Systematic Software Development Using VDM . Prentice-Hall

International Series in Computer Science, Prentice-Hall International, second edn.
13. Hoare, C. A. R. (1990) Refinement algebra proves correctness of compiling spec-

ifications. Morgan, C. and Woodcock, J. (eds.), 3rd Refinement Workshop, pp.
33–48, Springer-Verlag.

14. Hoare, C. A. R. and He Jifeng (1990) Refinement algebra proves correctness
of a compiler. Lecture Notes of International Summer School at Marktoberdorf ,
Springer-Verlag.
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A GCL to CIL Refinement Rules

These are the compilation laws used to compile the example in Section 7. Here
X is a high-level variable (with name X̂), N is an integer constant, A is an array,
E is an expression, B is a boolean-valued expression, I is an array-index-valued
expression, O is a binary operator and C is a command, and p and q are labels.

L.0 p . . . q : C1; C2|x �
net

p . . . q∗ : C1|q∗′

q∗′ : C2|x
L.1 p . . . q : |[var X1, · · · : Z • C]| |x �

net

# .locals init (int32 X̂1, . . .

p . . . q : |[ inv X1 = L[X̂1] ∧ . . . •
C|x]|

L.2 p . . . q : X := E|x �
net

p . . . q∗ : Eval E|q∗′ prov.¬Ind(X̂, )

q∗′ : Store X |x
L.3 p . . . q : X := E|x �

net

p . . . q∗ : ldarg X̂ |q∗′ prov. Par(X̂) ∧
q∗′ : Eval E|q∗′′ Ind(X̂, int32)
q∗′′ : stind.i4 |x

L.4 p . . . q : do B → C od |x �
net

p . . . q : br q ∗′′ |q∗′′

q∗′ : C|q∗′′

q∗′′ : Eval B|q∗′′′

q∗′′′ : brtrue q ∗′ |q∗′
x
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L.5 p . . . q : if B → C fi |x �
net

p . . . q∗ : Eval B|q∗′

q∗′ : brfalse x|xq∗′′

q∗′′ : C|x
L.6 p . . . q : if B → C1 �

net

p . . . q∗ : Eval B|q∗′

� ¬B → C2 q∗′ : brfalse q ∗′′′′ |q∗′′′′
q∗′′

fi |x q∗′′ : C1|q∗′′′

q∗′′′ : br x|x
q∗′′′′ : C2|x

L.7 p . . . q : Load N |x �
net

p . . . q : ldc.i4 N |x prov. N ∈ int32

L.8 p . . . q : Load X |x �
net

p . . . q : ldloc X̂|x prov. Loc(X̂)

L.9 p . . . q : Load X |x �
net

p . . . q : ldarg X̂|x prov. Par(X̂) ∧ ¬Ind(X̂, )

L.10 p . . . q : Load X |x �
net

p . . . q : ldarg X̂ |q∗ prov. Par(X̂)∧
q∗ : ldind.i4 |x Ind(X̂, int32)

L.11 p . . . q : Load A[I]|x �
net

p . . . q∗ : Load A|q∗′ prov. Ref(Â, array)∧
q∗′ : Eval I|q∗′′ I ∈ 0 . . . size(A) − 1
q∗′′ : ldelem.i4 |x

L.12 p . . . q : Store X |x �
net

p . . . q : stloc X̂ |x prov. Loc(X̂)

L.13 p . . . q : Store X |x �
net

p . . . q : starg X̂|x prov. Par(X̂) ∧ ¬Ind(X̂, )

L.14 p . . . q : Eval X |x �
net

p . . . q : Load X |x prov. Par(X̂)∨
Loc(X̂) ∨ Ref(X̂, array)

L.15 p . . . q : Eval N |x �
net

p . . . q : Load N |x prov. N ∈ int32

L.16 p . . . q : Eval E1 O E2|x �
net

p . . . q∗ :Eval E1|q∗′

q∗′ : Eval E2|q∗′′

q∗′′ : Op O|x
L.17 p . . . q : Op > |x �

net

p . . . q : cgt |x
L.18 p . . . q : Op < |x �

net

p . . . q : clt |x
L.19 p . . . q : Op + |x �

net

p . . . q : add |x
L.20 p . . . q : Eval size(A)|x �

net

p . . . q∗ : Load A|q∗′ prov. Ref(Â, array)

q∗′ : ldlen |q∗′′

q∗′′ : conv.i4 |x
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Abstract. The French BOM1 (B with Optimised Memory) project has
analysed issues related to code generation from B specifications. This
analysis was built upon the shortcoming of the existing translators,
and led to proposals to generate optimised code suitable for embedding
in highly memory-constrained devices, such as smart cards. Two code
translators have been developed: one targetting C, suitable for system
or virtual machine development; the second targetting object oriented
languages. This second translator enables the writing of Java Card2 ap-
plications. This paper presents results of the BOM project related to the
Open-Source Java/Java Card translator.

1 Introduction

As smart cards are usually used to provide security to information systems,
their security requirements are very strong. With the advent of the new open
cards such as Java Card [8][13], which allow downloading new applications to
the card during its life cycle, the complexity of the security mechanisms has
greatly increased. This motivated the use of formal modelling, in order to prove
the correctness of those mechanisms as well as to provide correct implementa-
tions of those mechanisms. However, as applications are developed and those
cards become increasingly used, it also becomes necessary to be able to formally
ensure the correctness of the applications executed on those platforms. Such an
assurance would even be required in the case of an applet certification at a high
level.

The B method has already been used to specify and implement some smart
card operating system components. Although the code generated by the current
version (3.6) of Atelier B 3 is not suitable for embedding, using a dedicated
1 http://lifc.univ-fcomte.fr/˜tatibouet/WEBBOM.
2 Java and Java Card are trademarks of SUN Microsystems, Inc.
3 http://www.clearsy.com.
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converter already allowed embedding B code for parts of the virtual machine [2].
Therefore, as it has shown its usefulness for verifying the underlying platform,
the B method could allow formal development of smart card applications. The
platform targeted for those applications is Java Card.

However, Java Card virtual machines remain platforms with stringent con-
straints, due to the limited memory size and computing power of smart card
(The chips used are usually 16-bit chips, and smart card memory rarely exceeds
64 kilobytes of ROM, 64 kilobytes of EEPROM, and 4 kilobytes of RAM), but
also to the subset of the Java language supported. Thus, a converter meant
to produce Java code embeddable in a smart card from B specifications would
require both performing optimisations on the class produced and taking into
account the Java subset supported by Java Card.

This paper presents a work aiming to provide such an optimising code trans-
lator, by converting B specifications to Java code. This work is a part of the
BOM project whose objectives are to:

– Improve the B0 implementation language (similar to classical languages).
– Develop a reliable and memory-optimising code translator from B0 to C and

Java
– Provide an Open Source code translator
– Validate the correctness of the designed optimisations (with a view to certi-

fying the translator).
– Apply the B method on the Java Card architecture

Whereas the BOM project aims to develop both a C converter suitable for
low-level development using B [6], and a Java converter for application devel-
opment, this paper focuses to the Java translator. After a short presentation of
the B development process, we present the general conversion scheme from B
to Java. Then, a sample example is introduced, the translation in Java code is
presented and the generation of a Java Card applet is discussed.

2 The B Development Process

The B method is a model oriented formal method based on first order logic, set
theory and generalised guarded substitutions. It is fully described in [1] and in-
troduced in [3][12][7]. This method encompasses the whole development process,
from the specification down to the implementation (Figure 1). The B-method is
supported by industrial tools such as Atelier B of ClearSy.

An important point with the B method is that every design step can and
should be proved. Each specification has an associated set of proof obligations
that correspond to the proofs that must be completed in order to ensure the
consistency of the specification. The primary component of the B method is the
abstract machine. A B specification consists of one or more abstract machines.
An abstract machine encapsulates data, properties and operations that manipu-
late those data. In that way, abstract machines are a concept similar to modules,
packages or classes.
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Specification

Refinements
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C/Java Code

Proofs

Proofs

Automatic
Code

Generation

Fig. 1. B method process.

An abstract machine is gradually turned into an implementation using the
refinement mechanism. Refinements allow transforming an abstract machine into
a less abstract one, by adding implementation details to the specification. Infor-
mally, refining an abstract machine consists in replacing the machine by another
machine that has the same interface and that preserves the meaning of the ab-
straction.

An implementation corresponds to the last refinement of an abstract ma-
chine, and can be used to generate executable code. It has to be expressed in
a subset of the B language called B0. The B0 language matches a subset of
imperative languages such as C or Pascal. Contrary to abstract machines, im-
plementations have to be deterministic, parallel substitutions must have been
replaced by sequencing, and all the variables must be concrete ones and have an
implementable type.

Finally, an important point with the B method is that it clearly distinguishes
the part of the specification that are needed for the implementation from the
parts only used for specification purpose. This makes it well suited for realistic
code generation [4].

3 Conversion Scheme

3.1 Followed Strategy

In the approach that we follow, we aim at a strategy in which:

– The translation of a machine by a class allows the generation of a compre-
hensible and reusable source code by the designer/developer.

– Low-level optimisations (replacement of the literal constants by the values,..)
are left to the compiler of the target language.
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– Optimisations dependent on the architecture of the B project are handled
by the translator.

– The mechanisms of the object-oriented language are used to provide support
for creation of instances and namespaces.

The reasonable use of the possibilities offered by the object-oriented lan-
guages makes it possible not to be confronted with constraints justifying the
implementation of complex and thus unreliable translators.

3.2 Conversion Scheme of Machines

A natural scheme of conversion consists in representing each B implementation
by a class. In this case, the concrete variables of the B machines are translated
into instance variables of the class and operations into methods. The default
constructor (or the mechanism allowing initialization at the moment of instanti-
ation) allows to translate the INITIALISATION clause. This translation scheme
has the advantage of proposing a simple management of machine instances, the
complexity of this management being delegated to the object oriented language.

Conversion towards an object oriented language can benefit from a conversion
scheme dedicated to machines which are not instantiated multiple times. In the
case of machines that are instanciated only once in a project, the overhead
associated to using instance variables and methods can be suppressed by using
class variables and methods. In that case, the default constructor cannot be
used for translating the INITIALISATION clause anymore. For Java, the static
initialisation could be used for this purpose, but as this is unsuported by Java
Card, a special class method is used instead. This class method will be called by
the implementation which imports this machine.

3.3 Proposal for a Translation in Java

The Representation of a B Project. With each B implementation a class will
be associated. As previously seen, if there is only one instance of the machine
within the project, this class will only contain class method and variables. In
order not to have to manage the access modifiers (public, private, protected,
package) for methods and class variables, a package being used as namespace
will be defined and each generated class belonging to the B project will be defined
in this package. The access rights to the translated entities will be set to package.

B Machines and Java Translation Schemes. The use of another machine
is done by IMPORTS clause. In a general way, the IMPORTS clause allows
creating new instances of the imported machines. The concept of instance in B
is similar to that of the object-oriented languages. A machine instance has data
and operations which are defined in this machine and its refinements.
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The characteristics of B are as follows:

– It is possible in B not to give a name to an instance, if there is only one
instance of this type. For example, if an implementation M1 instantiates
once and only once the machine M2, and if the machine M2 has an operation
f, then the use in the M1 implementation of f is not ambiguous.

– It is necessary in B to give a name to the instances if there is in addition
to one. Indeed if M1 instantiates twice the machine M2, the use of f is
ambiguous: what is the corresponding instance of M2 ? The solution is to
name the instances, for example i1 and i2, and to prefix the call of the
function by the name of the calling instance such as for example: i1.f.

Thus the general outline is to associate each B instance with an instance of a
Java class. However, with the aim of optimization, a B machine which would not
be instantiated more than once will be represented by a class and class variables.
To carry out this optimization, information concerning the number of instances
will have to be determined by the translator.

Two problems arise:

– The imported machine is named but there is only one instance: in the gen-
eration of code, this name disappears to leave only the name of the corre-
sponding Java class.

– The machine is imported several times but one of the instances is not named:
in the code generation, it will be necessary to choose a name for this machine.
The selected name will reveal the name of the class and the fact that it is
about an anonymous instance: anonymous<NameOfClass>.

Each Java class will include a function INITIALIZATION. This function
will be preceded by the static modifier in the case of a class which will never be
instantiated. This function will allow:

– the creation of machine instances in Java via the operator new: this operator
calls the class constructor which calls the function INITIALIZATION of the
instance,

– the initialization of variables (class or instance).

4 An Electronic Wallet Example
4.1 Presentation
This section illustrates the previously described translation schema by a simple
applet corresponding to an electronic wallet. After a brief description of its func-
tionalities, we present the associated B machines, as well as the corresponding
generated code.

4.2 The Electronic Wallet

The wallet example is a Java applet corresponding to a simple electronic wal-
let application. This wallet stores electronic money by maintaining the current
amount it contains, and supports the following three operations:
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– credit, allowing adding electronic money to the wallet,
– debit, allowing to remove money from the wallet, and
– check balance, allowing to read the current balance of the wallet.

Those operations allow the user to add money to the wallet (credit), make pur-
chase or withdrawals (debit), and inquire about the current available balance.
The wallet has predefined limits on the maximum amount that it can contain,
as well as on its maximum transaction amount.

4.3 The Associated B Machines

The B project is divided in two abstract machines and their implementations.
One machine corresponds to the electronic wallet itself, and the second one to a
sample user of the wallet. Figure 2 presents the BWallet abstract machine and
his implementation. As the implementation of the BWallet is very close to the
abstract machine, only the value of the constants is shown. Figure 3 presents
the implementation of the UsingBWallet machine.

4.4 Corresponding Java Translation

The Java code translation (Figure 4) generates as many classes as B implemen-
tations. Those classes are defined in a dedicated package: wallet corresponding
to the B project. A Java implementation of the BT IO basic machine for in-
put/output is automatically added to the project. As there is only one instance
of the electronic wallet in the B specification, the optimisation allowing trans-
lating the variables and operations to static variables and methods is used: the
electronic wallet is represented by a class with only static fields and methods.

5 Java Card Code Generation

5.1 Presentation

This section discusses the specificities of the Java Card code generation. It first
describes the main differences between Java and Java Card. A possible Java
Card implementation of the previous Wallet example is then presented.

5.2 Specificities of the Java Card Platform

As Java Cards are highly constrained devices, the Java Card standard [8] defines
a simplified version of Java, more suitable for smart cards. This simplified version
corresponds to a subset of Java that keeps the main object-oriented features of
Java, but still introduces noticeable limitations impacting the design of a code
converter. Among those differences, we can list the following ones:

– No dynamic class loading: all the classes used by an application must already
be loaded in the card when the application is loaded.
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MACHINE
BWallet

CONSTANTS
MAX_BALANCE, MAX_TRANSACTION_AMOUNT, DEFAULT_BALANCE

PROPERTIES
MAX_BALANCE : NAT & MAX_BALANCE < 50000 &
MAX_TRANSACTION_AMOUNT : NAT & DEFAULT_BALANCE : NAT &
DEFAULT_BALANCE <= MAX_BALANCE

CONCRETE_VARIABLES
balance

INVARIANT
balance : 0..MAX_BALANCE

INITIALISATION
balance := DEFAULT_BALANCE

OPERATIONS
...
credit (creditAmount) =
PRE
creditAmount : NAT & (creditAmount >= 0 ) &
(creditAmount <= MAX_TRANSACTION_AMOUNT) &
((balance + creditAmount) <= MAX_BALANCE)

THEN
balance := balance + creditAmount

END
END

IMPLEMENTATION
BWallet_imp
...
VALUES
MAX_BALANCE = 10000 ;
MAX_TRANSACTION_AMOUNT = 100 ;
DEFAULT_BALANCE = 0

...
END

Fig. 2. B specification for the wallet example.

– Static initialisation is only supported for constant values. So, it cannot be
used to translate the B initialisation clause

– No garbage collection: the memory used by objects dynamically allocated
cannot be reclaimed. Thus, allocating new objects should not be performed
lightly. Especially, such allocations should not be introduced by the converter
for temporary objects.

– The primitive types allowed are byte (8 bits), short (16 bits) and boolean.
The int type is optional.

– Multidimensional arrays are not supported: only arrays of dimension 1 can
be created.
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IMPLEMENTATION
UsingBWallet_imp

REFINES
UsingBWallet

IMPORTS
BWallet, BT_IO

OPERATIONS
main =
VAR balanceAmount, creditAmount, balanceFuture IN
balanceAmount <-- getBalance ;
INT_WRITE (balanceAmount) ;
creditAmount := 100 ;
balanceFuture := balanceAmount + creditAmount ;
IF (creditAmount >= 0) & (creditAmount <= MAX_TRANSACTION_AMOUNT) &

(balanceFuture <= MAX_BALANCE)
THEN
credit (creditAmount)

END ;
balanceAmount <-- getBalance ;
INT_WRITE (balanceAmount)

END
END

Fig. 3. B specification for the sample user of the wallet.

– Multithreading is not supported.
– The security policy is incorporated in the virtual machine.
– Java Card applets use a dedicated framework: a class must inherit from the

Applet class and implement the install method (called when the applet is
installed in a smart card), as well as the process method (called for process-
ing commands). A transaction mechanism is provided, as well as an object
sharing mechanism between applets.

Although Java Cards can appear as quite limited platforms, it must be kept
in mind that Java Card is a fast evolving standard, and that those restrictions
are usually reduced as technology increases and new specifications are developed.

5.3 The Java Card Wallet Application

This example is inspired from the classical wallet applet [13]. We can see in
Figure 5 that the Wallet class inherits from the Applet class. After the applet
is installed the applet can be selected and handle commands using the process
method. This method receives data packets (APDU) sent by the terminal. Those
APDU are then decoded before handling the real command. Part of the class
containing the credit operation is provided on Figure 5.
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/**** class BWallet.java * generated on 20 fvr. 2003 19:06:28 ****/
package wallet;
class BWallet {

static final int MAX_BALANCE = 10000;
static final int MAX_TRANSACTION_AMOUNT = 100;
static final int DEFAULT_BALANCE = 0;
static int balance;
static void INITIALISATION() {

balance = 0;
}
public static void setBalance (int balanceInit) {

balance = balanceInit;
}
public static void debit (int debitAmount) {

balance = balance - debitAmount;
}
public static void credit (int creditAmount) {

balance = balance + creditAmount;
}
public static int getBalance () {

int amount = 0;
amount = balance;
return amount;

}
}
/*** class UsingBWallet.java * generated on 20 fvr. 2003 19:06:28 ****/
package wallet;
class UsingBWallet {

static void INITIALISATION() {
BWallet.INITIALISATION();
BT_IO.INITIALISATION();

}
public static void main (String Args[]) {

INITIALISATION();
int balanceAmount;
int creditAmount;
int balanceFuture;
balanceAmount = BWallet.getBalance();
BT_IO.writeInteger(balanceAmount);
creditAmount = 100;
balanceFuture = balanceAmount + creditAmount;
if (creditAmount >= 0

&& creditAmount <= BWallet.MAX_TRANSACTION_AMOUNT
&& balanceFuture <= BWallet.MAX_BALANCE) {

BWallet.credit(creditAmount);
}
balanceAmount = BWallet.getBalance();
BT_IO.writeInteger(balanceAmount);

}
}

Fig. 4. Java code generated for the Wallet example.
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package wallet ;
import javacard.framework.* ;
public class Wallet extends Applet {
...
final static byte WALLET = 0xAA;
// codes of INS byte in the command APDU header
final static byte GET = 0x01;
final static byte CREDIT = 0x02;
final static byte DEBIT = 0x03;
final static short MAX_BALANCE = 10000 ;
final static short MAX_TRANSACTION_AMOUNT = 100;
private short balance;
public Wallet() { balance = 0; register(); }
public static void install( APDU apdu ) { new Wallet(); }
public void process( APDU apdu ) {
byte[] buffer = apdu.getBuffer();
if ( buffer[ISO.OFFSET_CLA] != WALLET )
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

switch (buffer[ ISO.OFFSET_INS]) {
case GET : getBalance(buffer) ; break ;
case CREDIT : credit(buffer); break ;
case DEBIT : debit(buffer) ; break ;
default: ISOException.throwIt(ISO.SW_INS_NOT_SUPPORTED);

}
}
void credit(Byte[] buffer) {
byte byteRead = (byte) apdu.setIncomingAndReceive();
if (byteRead != 1) ISOException. throwIt( ISO.SW_WRONG_LENGTH);
short creditAmount = (buffer[ISO.OFFSET_CDATA]<< 8)

| buffer[ISO.OFFSET_CDATA+1] ;
// process data
if ((creditAmount > MAX_TRANSACTION_AMOUNT)||(creditAmount < 0 ))
ISOException.throwIt (INVALID_TRANSACTION_AMOUNT);

// check the new balance
if ((balance - creditAmount) < MAX_BALANCE)
ISOException.throwIt(EXCEED_MAXIMUM_BALANCE);

balance = balance - creditAmount;
}

}

Fig. 5. The Java Card electronic wallet.

5.4 B and the Previous Example

Through the previous example, we can easily see that fully specifying those
applications with B would be a very complex task: the applet handles the low-
level protocol with the terminal as well as the application logic. Moreover, a large
amount of code is tied to the current technology, and so can evolve rapidly. This
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is why we suggest that a B development of this application should be written
using two separate classes:

– A first class defining the application logic: BWallet. This class should be
specified and proved with B, and its code should be automatically generated
using the converter.

– A second class handling the communication: Wallet. This class would handle
the communication protocol with the terminal and is tied to the current
Java Card technology. This class could be written manually and call the B
generated code. In that case, it would however be necessary to check that
the preconditions of the B operations are met when they are called.

This corresponds to the case where the B project is not self contained, but is
used like a library. So, the code generator cannot determine whether a particular
machine will be instantiated once or multiple times. This implies that the user
has to manually decide which kind of conversion should be used by the converter.
The default behaviour is to generate Java code allowing multiple instances of
machines, corresponding to a safe, but potentially less efficient choice. The Java
implementation of the Wallet class is given Figure 6.

package wallet ;
import javacard.framework.* ;
public class Wallet extends Applet {
...

BWallet bw ;
public Wallet() { bw = new BWallet() ; register(); }
public static void install( APDU apdu ) { new Wallet(); }
public void process( APDU apdu ) {
...

}
void credit(Byte[] buffer) {
...
bw.credit(creditAmount) ;

}
}

Fig. 6. Java implementation of the Wallet class.

6 Conclusions and Future Prospects

This work is a part of the BOM Project. The BOM Project is a precompetitive
project over two years which finished in March, 2003. Many documents describing
the reflexions, the approaches chosen, the processes of translation are available
from the BOM site pages.

In this work we studied and developed an optimized code generator to trans-
late B proved formal specifications into Java/Java Card language. The main part
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of the Java/Java Card code generator development is ended at the moment. It is
publicly available since January 2003. It is based on the jBTools4 [9][11] which is
a B platform under the GPL license developed at the Laboratoire d’Informatique
de Franche-Comté (LIFC).

The main characteristics of the translation chain are as follows:

– It is currently based on the syntax of B and B0 supported by Atelier B.
– It supports the multi-instances of a B machines and is able to optimize the

code if there is only one instance.
– It rather allows the passage of the arrays in parameter of the functions by

reference than by copy under certain constraints. The validity proof of this
possibility is detailed in [5].

– It allows to choose the type of basic integer for the target platform (short
on the Java Card platform). This possibility should be used with precaution
because the proof with a tool as Atelier B is done for integers on 32 bits.

The first results seem promising and we shall continue to improve the transla-
tor by using it on two more complex case studies in order to definitively validate
the selected approach. We hope that this work will make it possible to formally
develop safe and reliable applications for smart cards.
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Abstract. The sweep-line method deletes states on-the-fly during state
space exploration to reduce peak memory usage. This deletion of states
prohibits the immediate generation of, e.g., an error-trace when the vio-
lation of a safety property is detected. We address this problem by com-
bining the sweep-line method with storing a spanning tree of the explored
state space in external storage on a magnetic disk. We show how this
allows us to easily obtain paths in the state space, such as error-traces.
A key property of the proposed technique is that it avoids searching in
external storage during the state space exploration and gives the same re-
duction in peak memory usage as the stand-alone sweep-line method. We
evaluate the proposed technique on a number of example systems, and
compare its performance to a related technique. These practical exper-
iments demonstrate how the suggested technique complements existing
techniques based on using external storage.

1 Introduction

State space methods [6, 17] are based on calculating all reachable states and
state changes of a finite-state system and representing these as a directed graph.
One advantage of state space methods is that they allow most of the underlying
mathematics to be encapsulated and hidden inside supporting computer tools.
This makes state space methods highly automatic and easy to use. A second
advantage of state space methods is that they can provide the analyst with
constructive debugging information when an error in the system is detected.
Debugging information can often be provided as an error-trace, which is a path
in the state space leading from the initial state to a state violating a desired safety
property. Recently, state space methods and path finding for timed automata [2]
have been used for the synthesis of schedules in real-time control systems [3,10].
Generation of error-traces and synthesis of schedules can both be formulated as
the problem of finding a path from the initial state leading to a state satisfying
a certain state predicate. Supporting such path finding is hence an important
requirement to state space methods.

The main disadvantage of state space methods is the inherent state explosion
problem [39] which, for certain systems, implies that one rapidly runs out of
� Supported by the Danish Natural Science Research Council.
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memory, thereby prohibiting state space analysis. A multitude of state space
reduction methods have been developed to alleviate this problem (see [39] for a
survey). Of particular relevance in the context of this paper are methods such
as the state space caching method [20,13,15,23], the pseudo-root technique [29],
hash compaction [41,32,34], and bit-state hashing [16,18]. These methods delete
state information on-the-fly during state space exploration and support path
finding by relying on a depth-first exploration of the state space. In depth-first
exploration, a path from the initial state to a state currently being examined is
always available on the depth-first stack. Other methods of relevance are methods
exploiting external storage [35, 33] such as magnetic disks for storage of the
state space. With these methods, states are written to disk during state space
exploration to free up main memory. The key problem with using disk storage is
that searching for states on disk is time expensive. Hence, the number of searches
for states stored on disk must be reduced to make the use of external storage
applicable in practice.

The sweep-line method [5, 25, 26] is aimed at the verification of safety prop-
erties. It belongs to the family of state space methods which deletes informa-
tion about states during state space exploration. It uses the notion of progress
measures as a heuristic to delete states. The original sweep-line method was
developed in [5] and later generalised in [25] to deal with reactive systems. The
sweep-line method guarantees full coverage of the state space, but may explore
states several times. The sweep-line method has been applied in practice on some
example systems in [5, 25, 26], and on the WAP Transaction Protocol in [14].
The case studies have demonstrated that the sweep-line method provides a good
trade-off between space reduction and time usage. It was shown in [26] how
progress measures can be derived fully automatically for systems modelled in a
compositional framework.

A main problem with the sweep-line method not addressed in any of the
papers [5, 25, 26] is path finding. The sweep-line method inherently relies on
exploration of the states according to the progress measure. Together with the
deletion of states, this has the effect that when a path to a state currently being
examined is desired, states on a path leading to this state cannot be assumed to
be in memory. This prohibits the immediate generation of a path.

The first contribution of this paper is a technique which uses external storage
on a disk to support path finding with the sweep-line method. The idea is to
write a spanning tree for the explored states on disk during sweep-line state space
exploration. The proposed technique avoids any searches for states in external
storage during the state space exploration, and gives the same reduction in peak
memory usage as the stand-alone sweep-line method. Subsequent path finding
can be conducted by making a seek in the external storage for each state on
the path. The second contribution is experiments with an implementation of the
path finding technique comparing it to a related disk-based technique [35]. These
experiments demonstrate that the overhead incurred by additionally writing
states to disk is insignificant, and that the path finding technique complements
existing techniques.
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This paper is organised as follows. Section 2 introduces the notation for la-
belled transition systems and gives the necessary background on the sweep-line
method. Section 3 introduces the path finding technique and presents the as-
sociated algorithms. The correctness of the algorithms is established in Sect. 4.
Section 5 presents some variants of the path finding technique. In Sect. 6 we
report on some experimental results obtained with an implementation of the
algorithms. Finally, in Sect. 7 we draw the conclusions and give a further discus-
sion of related work. The reader is assumed to be familiar with the basic ideas
of state space methods.

2 The Sweep-Line Method

To make our presentation independent of any concrete modelling language, we
formulate our results in the context of (finite) labelled transition systems.

Definition 1 (Labelled Transition System). A labelled transition system
(LTS) is a tuple L = (S,Σ,∆, ι), where S is a finite set of states, Σ is a finite
set of transition labels, ∆ ⊆ S ×Σ × S is the transition relation, and ι ∈ S is
the initial state. ��
We will use the notation s a−→ s′ to mean (s, a, s′) ∈ ∆ and when not concerned
with the label, we will write s → s′ for ∃a ∈ Σ : s a−→ s′. We will also write
s1

a1−→ s2
a2−→ s3 . . . sn−1

an−1−−−→ sn for s1
a1−→ s2 ∧ s2 a2−→ s3 ∧ · · · ∧ sn−1

an−1−−−→ sn

and use →∗ for the transitive and reflexive closure of ∆, i.e., s →∗ s′ if there
exists a sequence s1 → s2 → s3 · · · → sn with s = s1 and s′ = sn. In particular
s →∗ s for all s ∈ S. We say that s′ is reachable from s if and only if s →∗ s′,
and we let reach(s) denote the set of states reachable from s, i.e., reach(s) =
{ s′ ∈ S | s →∗ s′ }.

In the following we are concerned with exploring the state space of a labelled
transition system, by which we mean the set of states, reach(ι), reachable from
the initial state. We will call this set the set of reachable states.

The sweep-line method reduces peak memory usage by deleting states when
these are guaranteed not to be reached again during the exploration [5], or
when they are unlikely to be reached again [25]. The sweep-line method is based
on the notion of progress measures. A progress measure provides an ordering
of the states of the transition system and can be seen as an approximation
of the reachability relation. The reader is referred to [26] for a description of
how to compute a progress measure in a compositional framework prior to state
space exploration. Other sources of progress measures are sequence numbers and
retransmission counters in communication protocols, control flow in processes,
and time in certain formalisms with time [21].

Definition 2 (Progress Measure [25]). A progress measure on an LTS L =
(S,Σ,∆, ι) is a tuple P = (O,�, ψ) such that (O,�) is a total order and ψ :
S → O is a progress mapping from states into a set of progress values O. A
monotonic progress measure is a progress measure satisfying: ∀s, s′ ∈ reach(ι) :
s →∗ s′ ⇒ ψ(s) � ψ(s′). ��
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A monotonic progress measure provides a conservative estimate of reachabil-
ity relation →∗ in that if ψ(s) � ψ(s′) for s, s′ ∈ S, then it is impossible to reach
s from s′. Conventional state space exploration keeps the set of explored states
in memory to recognise already visited states. For a system with a monotonic
progress measure it is safe to delete states from memory with a progress measure
strictly smaller than the minimal progress value among the set of unprocessed
states. Deleting such states is the basic idea of the sweep-line method. When
the progress measure is not monotonic (which can be detected on-the-fly dur-
ing state space exploration) the method still deletes states with a progress value
smaller than the minimal progress among the unprocessed states. However, when
a regress edge (s, a, s′) violating monotonicity is encountered, i.e., ψ(s) � ψ(s′),
the state s′ is marked as persistent preventing it from being deleted again.

The sweep-line method is illustrated in Fig. 1 (based on [25]) which shows
three snapshots from a state space exploration. To simplify the figures we have
omitted labels on the edges. The states are ordered left to right according to
their progress value. In Fig. 1 (a) we have explored the states ι and s1. Both of
these states have been deleted from memory again since they have a progress
measure which is smaller than the current minimal progress value among the
unprocessed states s2, s3, and s4. The conceptual sweep-line (the vertical dashed
line) is immediately to the left of the unprocessed states.

The sweep-line method explores states in a least-progress-first order. Hence,
either s2 or s3 will be selected for processing next. When both have been ex-
plored, the sweep-line moves to the right, s2 and s3 are deleted from memory,
and the situation shown in Fig. 1 (b) is obtained. The states s5, s6, and s4 will
now be explored and eventually the situation depicted in Fig. 1 (c) is obtained.
Now s8 will be explored, and the unexplored state s9 and the deleted state s6
are discovered as successor states of s8. The edges s8 → s6 and s8 → s9 are both
regress-edges and the states s6 and s9 are marked as persistent. This ensures
that they will not be deleted in subsequent sweeps. States s6 and s9 are also set
aside as roots for the next sweep. When the current sweep terminates (which
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Fig. 1. Snapshots of sweep-line state space exploration.
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will happen when s8 has been explored), the algorithm initiates a new sweep
using s6 and s9 as starting points (roots). When the regress-edge s8 → s6 is
rediscovered in this sweep, s6 will not have been deleted since it was marked as
persistent in the previous sweep. Similarly for the regress-edge from s8 to s9.
Multiple sweeps are needed, since we cannot distinguish a regress-edge leading
to a previously explored state (e.g., s6) from a regress-edge leading to a state
not explored in a previous sweep (e.g., s9). For further details on the sweep-line
method see [5, 25].

3 Path Finding with the Sweep-Line Method

It follows from Fig. 1 that path finding with the sweep-line method is problematic
because of the least-progress-first exploration, and the way states are deleted.
Suppose that we are interested in finding a path from the initial state to each of
the terminal states of the system (i.e., states without outgoing arcs). When the
terminal state s10 of Fig. 1 is discovered in the beginning of the second sweep,
only the persistent states s6 and s9 will be stored in memory.

The basic idea in our path finding technique is to write a directed tree to
a file on disk during state space exploration. This tree is rooted in the initial
state ι. An edge from s to s′ in the tree is represented by associating an index
(file position) with s′ which points to the index (file position) where the parent
(predecessor) s is stored. Figure 2 illustrates how the tree is stored in a file.
Figures 2 (a–c) correspond to the snapshots shown in Figs. 1 (a–c). Figure 2 (d)
depicts the situation when s10 is discovered at the end of the second sweep. The
parent index of a state is drawn as an arc. In the figures we have only indicated
the storage of states. In the algorithm to be presented next, both labels and
states will be written to disk.

In Fig. 2 (a) (corresponding to Fig. 1 (a)), states ι, and s1, . . . , s4 have been
written to disk. States s2 and s3 have a parent index pointing to the location of
state ι. This corresponds to (ι, s2) and (ι, s3) being edges in the tree. Similarly,
s4 has a parent index pointing to s1 which in turn has a parent index pointing
to ι. If s2 is processed before s3, we obtain the situation in Fig. 2 (b). In this
case s2 will be the parent of s5. When s10 is discovered in the second sweep, the
tree depicted in Fig. 2 (d) is stored on disk. Now a path leading from ι to s10
can be obtained by recursively following the parent index associated with each
state starting from s10. From s10 we obtain the index for s9 and from s9 we can
obtain the index for s8. This gives the (reverse) path (s10, s9, s8, s5, s2, ι). Note
that s6 is stored twice since it is discovered the first time from s4, and once again
(in the second sweep) from s8 after it has been deleted, but before it is made
persistent.

We now present the path finding algorithm introduced informally above. The
state space exploration algorithm is shown in Fig. 3, and has been derived from
the sweep-line state space exploration algorithm in [25] with the addition of
writing a tree to external storage during state space exploration, and terminat-
ing the state space exploration when a state is encountered satisfying a given
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predicate φ on states. We assume a linear external storage (e.g., a file) in which
data written is appended to the end.

The algorithm operates on four sets: N is the set of states (nodes) currently
stored in memory, R is the set of nodes to be used as roots for the next sweep, P
is the set of persistent states, and U is the set of unprocessed states, i.e., states
for which successor states have not yet been calculated. The algorithm starts
by writing the initial state ι to external storage using the procedure Write
(line 5). The Write procedure takes the label and state provided as second and
third argument, and write them to external storage together with the parent
index provided as first argument. The Write procedure returns the index in
external storage at which the state, label, and parent index were written. The
initial state is (by convention) written at index 0 with parent index 0, and a no
label (indicated by ⊥ �∈ Σ).

The algorithm then performs a number of sweeps (procedure Sweep in lines
12–44), newly discovered states are written to external storage (line 26) with the
appropriate parent index. In each sweep regress-edges are identified (line 30), and
the destination states of regress-edges are marked as persistent and are used as
root states (lines 31–32) in the next sweep. Once a node has been marked as
persistent, it is not deleted in line 41. If a state s′ is found satisfying the state
predicate φ, the index where s′ is stored in external storage is returned. In lines 6,

s2 s3 s4s1ι

(a)

s1 s2 s3 s4 s5ι

(b)

s1 s2 s3 s4 s5 s6 s7 s8ι

(c)

s1 s2 s3 s4 s5 s6 s7 s6 s10s8 s9ι

(d)

Fig. 2. Snapshots of disk storage.
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1 R := {ι} // the initial state is root in first sweep
2 N := {ι} // create a node for the initial state
3 P := ∅ // initially there are no persistent states
4
5 index(ι) := Write(0,⊥,ι) // write ι to disk with index 0
6 if φ(ι) return index(ι)
7
8 while R �= ∅ do
9 Sweep(R,N, P)
10 end while
11
12 where proc Sweep(R,N, P) is
13 U := R // mark all root states for this sweep unprocessed.
14 R := ∅
15 while U �= ∅
16 // select s minimal wrt. ψ and � in U
17 select s ∈ U such that ∀ s′ ∈ U : ψ(s) � ψ(s′)
18
19 // explore successors of s
20 forall (a, s′) such that s

a−→ s′

21 if s′ �∈ N
22 N := N ∪ {s′}
23
24 // s

a−→ s′ is an edge in the spanning tree
25 // write s′ with index of s as parent index
26 index(s′) := Write(index(s),a,s′)
27
28 if φ(s′) return index(s′)
29
30 if ψ(s) � ψ(s′)
31 P := P ∪ {s′} // s

a−→ s′ is a regress-edge
32 R := R ∪ {s′} // make s′ a root for the next sweep.
33 else
34 U := U ∪ {s′} // mark s′ as unprocessed
35 end if
36 end if
37 end for
38
39 U := U − {s}
40 // delete non-persistent states from N
41 N := {s ∈ N | ∃ s′ ∈ U : ψ(s′) � ψ(s)} ∪ P
42
43 end while
44 end proc Sweep

Fig. 3. The sweep-line exploration algorithm for storing paths on disk.
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1 proc FindPath(i)
2
3 path : dynamic array of states
4 j := 0
5
6 do
7 (i, a, s) := Read(i) // read item stored at index i
8 path[j] := (a, s)
9 j := j + 1
10 until (a = ⊥)
11
12 return path

Fig. 4. Reading a path from external storage.

26, and 28 we use index to obtain the index in external storage at which the
state provided as argument is stored. Also, in lines 5 and 26 we record the index
at which a given state is stored.

From the above it follows that we only need to remember the index of states
currently stored in main memory. The index of a state s is therefore stored
together with the state itself, and deleted when the state is deleted in line 41.
This ensures that we only keep the index of states that are currently stored in
main memory.

If a state satisfying φ is found, the index returned by the algorithm can
then be used as argument to the procedure FindPath shown in Fig. 4. The
procedure FindPath uses the tree stored in external storage to obtain the path.
The procedure FindPath uses another procedure, Read, to fetch states from
external storage. Provided with an index in external storage, Read returns the
state s and label a stored at that index, and the parent index i associated with
the label and state. The procedure FindPath requires a seek in external storage
for each state on the path, but no searches.

4 Correctness of the Path Finding Technique

The algorithm in Fig. 3 differs from the sweep-line state space exploration al-
gorithm in [25] only in the use of Write for storing the labels, states, and
parent index in external storage. The theorem from [25] concerning coverage
and termination of the sweep-line method therefore remains valid.

Theorem 1 ( [25]). The sweep-line algorithm in Fig. 3 terminates after having
explored at most (|D| + 1) · |reach(ι)| states, where D denotes the destinations of
regress-edges: D = { s′ ∈ reach(ι) | s → s′ ∧ ψ(s′) � ψ(s) }. Upon termination
all states reachable from ι have been explored at least once. ��
In addition, we prove the following theorem regarding paths stored in external
storage and extracted by the algorithm in Fig. 4. The theorem states that the
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path obtained for given state is finite and leads to the initial state, i.e., the
reverse path is a path in the state space leading from the initial state to the
given state.

Theorem 2. Let (a, s) be the label and state in external storage at index i.
The sequence (aj , sj) of states sj and labels aj obtained by following the stored
indices backwards is finite. Furthermore, let s0, a0, s1, a1, . . . an−1, sn be the finite
sequence, with s = s0 and a = a0, then: sn = ι and sj

aj−1−−−→ sj−1 ∈ ∆ for
j = 1, . . . , n. ��
Proof. The theorem follows from the following invariant, which holds at any
time in procedure Sweep:

For all s ∈ U ∪R, s is in external storage and s has the property stated
by the theorem.

The invariant clearly holds initially since R = {ι}, U = ∅, and ι has been
written to external storage, where the empty sequence from ι to ι demon-
strating the required property. The invariant is also preserved by line 13–14
when updating R and U . When s′ is added to R in line 32 or U in line 34
it has previously been written to external storage in line 26. When writing
s′ to external storage we store (index(s), a, s′) at index(s′). Since s ∈ U we
have by the invariant that following the indices backwards yields a sequence:
s = s1, a = a1, s2, a2, . . . an−1, sn = ι. Following the indices backwards from s′

hence yields the sequence: s′ = s0, a = a0, s = s1, a = a1, s2, a2, . . . an−1, sn = ι.
Since from line 20: s a−→ s′ ∈ ∆ we have sj

aj−1−−−→ sj−1 ∈ ∆ for j = 1, . . . , n. The
state s′ therefore satisfies the property expressed by the invariant. ��

The fact that a path can be obtained to any reachable state follows from the
observation that the sweep-line method according to Thm. 1 explores all states.
Hence if there exists a reachable state satisfying the state predicate φ, such a
state will be in U at some point.

An important measure of the quality of paths is length: for error-traces
shorter paths are preferred since they make it easier to identity the source of the
error. The sweep-line method explores states in a least progress-first order which
is done to move the sweep-line as soon as possible, and hence promote deletion
of states in line 41. Since least-progress-first traversal (in general) is different
from breadth-first traversal, a shortest path leading to a state satisfying φ is not
necessarily obtained. For monotone progress measures regress-edges exist and
only a single sweep is conducted. In this case, we obtain a path to the state with
minimal progress value that satisfies φ (if such a state exists). If the progress
value of a state is related to the number of transitions required to reach the state
(which intuitively and in practice is often the case), then we can expect to get
reasonably short paths.

The sweep-line algorithm generally conducts multiple sweeps, and it termi-
nates in the earliest sweep at which a state s is found satisfying φ. The number
of sweeps conducted therefore equals the minimal number of regress-edges re-
quired to reach a state satisfying φ with the sweep-line algorithm. Moreover, the
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state obtained has a minimal progress value among the states explored in that
sweep since states are processed in a least-progress first order. Let for a path
σ, RE(σ) denotes the number of regress edges on σ, then we have the following
proposition regarding the quality of paths obtained with the sweep-line path
finding technique.

Proposition 1. Let σφ = (ι = s0, a0, s1, a1, . . . , an−1, sn) denote the path lead-
ing to a state satisfying the state predicate φ obtained via the sweep-line algorithm
in Fig. 3. Let σ′

φ = (ι = s′
0, a

′
0, s

′
1, a

′
1, . . . , a

′
n−1, s

′
n) be any path in the state space

leading from the initial state to a state satisfying the state predicate φ. Then:
RE(σφ) ≤ RE(σ′

φ) and if RE(σφ) = RE(σ′
φ) then ψ(sn) � ψ(s′

n). ��

5 Variants of Sweep-Line Path Finding

The algorithm in Fig. 3 stores both states and labels in external storage. It is,
however, sufficient to store the states. The labels can be reconstructed after-
wards by computing for each state, si, on the path ι = s0, s1, . . . , sn, the set
of enabled transitions and selecting a transition which leads to si+1. For mod-
elling languages where transitions are deterministic, it suffices to store the labels
in external storage. When a path a0, a1, . . . an−1 leading to s is obtained, the
intermediate states can be determined uniquely since transitions are determin-
istic, i.e., for a given intermediate state, si, the transition label, ai, determines
a unique successor state, si+1. Petri nets [31] is an example of a modelling lan-
guage where transitions are deterministic. Transitions in process algebra [28]
may become nondeterministic due to renaming or hiding.

Both of the above variants which either stores states or transitions reduce
the amount of information written to external storage, and hence will both save
space in external storage and also time during state space exploration.

The use of external storage to achieve memory savings was also considered
in [35]. The approach in [35] is based on breadth-first exploration of the state
space. To reduce the run-time overhead when searching in external storage, all
states in a given breadth-first level are generated before the external storage is
linearly searched to filter out previously visited states. The run-time overhead
incurred by the sweep-line method due to multiple exploration of states could be
reduced by using a variant of the technique suggested in [35]: whenever a sweep
has been conducted, the external storage is linearly searched for the root states,
i.e., states which were at the end of regress-edges. Root states which have been
seen before can then be eliminated in line 13 of the algorithm in Fig. 3 from
the set of states used as roots in the sweep. This search could be optimised by
storing states in external storage according to their progress value. We compare
our path finding technique and the disk-based state space exploration method
of [35] on a number of example systems in the next section.

6 Experiments

In this section we apply the path finding technique to a number of example
systems and compare the results obtained to those that can be obtained with the
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closely related disk-based technique described in [35]. The results were obtained
using an implementation in the Design/CPN tool [1], a tool for constructing
and analysing Coloured Petri nets (CPN) [21]. The prototype is implemented
in the Standard ML (SML) programming language [36]. The user provides a
progress measure to the tool by writing an SML function mapping a state into
an integer. The ordering on progress values is the usual total ordering on integers.
Predicates are provided as SML functions mapping states into boolean values.
The experiments were conducted on a 1Ghz Pentium III Linux PC with 1Gb
of memory. We have implemented the path finding technique such that only
transition labels are written to external storage since the modelling language
used for the example systems is Petri nets. The reduction in peak memory usage
reported below for the sweep-line method is better than the corresponding results
in [5,25,14]. The reason is that the implementation uses the approach described
in [26] when deleting states from memory.

Database Replication Protocol. The first example we consider is a database repli-
cation protocol [21]. The protocol describes the communication between a set of
database managers for maintaining consistent copies of a distributed database.
When a database manager updates its local copy of the database it broadcasts
an update request to all other database managers. The other database man-
agers then perform the update on their local copies and then acknowledge that
the update has been performed. The progress measure for the protocol is based
on the control flow of the database managers and an ordering on the database
managers. See [25] for details.

The performance results obtained for full state space exploration, sweep-line
exploration, and the disk-based breadth-first exploration of [35] is given in Ta-
ble 1. Experiments were conducted for different numbers of database managers,
shown in the |D| column. The two Full columns show the total number of reach-
able states and the time it took to generate the full state space. The time is
shown in the form h:mm:ss or mm:ss, where h denotes hours, mm denotes min-
utes, and ss seconds. The Sweep-Line Method columns show the Total number
of states explored by the sweep-line method, and the peak (Pk) number of states
stored during the exploration. The Basic column gives the time used to explore
the state space using the basic sweep-line method from [25], i.e., without writing
to external storage. The Path column gives the time used to explore the state
space when writing to external storage, i.e., using the algorithm in Fig. 3. The
difference between the Basic column and the Path column is hence the overhead
added by writing to external storage.

For the protocol, we are interested in finding a path to a state where all
the other database managers have performed the update. The column L gives
the length of the path leading to such a state as obtained by the sweep-line
path finding technique. The Breadth-first Disk columns show the performance
of the disk-based breadth-first exploration from [35]. The Pk column gives in this
case the widest breadth-first level encountered during state space exploration.
The Time column gives the time for corresponding state space exploration. The
L column gives (for this method) the length of a shortest path leading to a
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Table 1. Database Replication Protocol.

Full Sweep-Line Method Breadth-first Disk

|D| States Time Total Pk Basic Path L Pk Time L

7 5,105 0:00:03 10,209 251 0:00:06 0:00:07 14 987 00:07 14
8 17,498 0:00:15 34,995 738 0:00:27 0:00:34 16 3,144 00:31 16
9 59,051 0:01:01 118,101 2,197 0:01:57 0:02:28 18 9,963 02:07 18
10 196,832 0:04:34 393,663 6,572 0:08:27 0:10:16 20 31,390 08:41 20
11 649,541 1:32:55 1,299,081 19,695 0:37:01 0:41:17 22 98,483 36:08 22
12 — –:–:– 4,251,531 59,062 2:22:31 2:47:58 24 — –:– —

state where all the other database managers have performed their update. The
number of states explored by the disk-based breadth-first exploration is equal to
the number of states in the full state space.

The sweep-line method explores twice as many states as the full state space
exploration. This is due to the fact that after an update has been completed
the system returns to its initial state. The initial state is thus a destination of
a regress edge (and in fact the only destination of regress edges in this system).
This results in two sweeps of the entire state space. Since the sweep-line method
explores twice as many states as the full exploration it is not surprising that it
takes about twice as long to complete the sweep-line method compared to full
state space exploration. We notice, however, that very little additional overhead
is added by the path finding technique. The time used by the path finding
technique is similar to the time used by the disk-based breadth-first exploration.
The sweep-line method however achieves much better reduction in terms of peak
number of states stored, and it also gives paths of the same length as the disk-
based breadth-first exploration. Because of memory constraints, we were not able
to generate the full state space for 12 database managers. For the disk-based
breadth-first exploration with 12 database managers, state space generation was
terminated after 10 hours.

The case for 11 database managers demonstrates that the sweep-line method
can be faster than standard state space exploration. The reason for this is that
with the sweep-line method there are fewer states to compare with, when de-
termining whether a newly generated state has been visited before. For con-
figurations up to 11 database managers, the sweep-line path finding technique
outperforms the disk-based breadth-first exploration since the exploration time
is essentially the same for the two methods, but the sweep-line method has a
smaller peak memory usage and still gives a shortest path to the desired state.
Only the sweep-line method was able to provide a result in reasonable time for
12 database managers.

Stop and Wait Communication Protocol. The second example is a stop-and-
wait communication protocol [24]. One variant of the protocol is parameterised
with the number of packets to be sent and the sequence numbers associated
with packets are unbounded. In this case, we can use the number of packets
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Table 2. Stop and Wait Communication Protocol.

Full Sweep-Line Method Breadth-first Disk

P States Time Total Pk Basic Path L Pk Time L

200 54,066 02:06 54,066 287 02:19 02:38 4,384 87 0:32:50 1,398
400 108,266 04:12 108,266 287 04:39 05:18 8,784 87 2:04:44 2,798
800 216,666 08:44 216,666 287 09:14 10:37 17,584 87 8:07:38 5,598
1000 270,866 10:44 270,866 287 11:33 13:15 21,984 — –:–:– —
2000 541,866 22:06 541,866 287 23:02 27:04 43,984 — –:–:– —
3000 812,866 33:18 812,866 287 34:19 40:20 65,984 — –:–:– —
4000 — –:– 1,083,866 287 45:52 54:08 87,984 — –:–:– —

successfully transmitted as a monotonic progress measure [5]. For this system,
we have obtained a path leading to a state where all packets have been received.

The performance is shown in Table 2 for different number of packets P sent
from the sender to the receiver. It is worth noticing that the peak memory usage
for the sweep-line method does not increase for larger configurations. Hence,
main memory is no longer the bottleneck. The time overhead when using the
disk-based sweep-line method is similar to what we observed for the database
replication protocol.

The disk-based breadth-first exploration from [35] gives a better reduction in
peak number of states for this system. Its performance in terms of exploration
time is however much worse than the sweep-line method. The disk-based breadth-
first exploration for 1, 000 packets was terminated after 10 hours. The excessive
use of time by the disk-based breadth-first exploration for this example is caused
by the time expensive search for states on disk. The sweep-line path finding
technique avoids these expensive searches altogether and is hence able to produce
paths for large configurations of this system.

Another variation of the stop-and-wait protocol abstracts away from the
actual packets to be sent and already transmitted, and uses a wrapping sequence
number on packets. In this system we can use the sequence number as a non-
monotonic progress measure. This system is parameterised with the bound on
sequence numbers. The performance for this system is shown in Table 3 for
the different values of the maximum sequence number S. As for the database
replication protocol, the regress edges lead to re-processing roughly twice as
many states when using the sweep-line method with the inevitable additional
time overhead. The sweep-line method however performs much better in terms of
exploration time than the disk-based breadth-first exploration because it avoid
any searches for states on disk. For this system, we have obtained a path leading
to a state where the sequence number wraps.

Wireless Transaction Protocol (WTP). This third example is taken from [14]
where Coloured Petri Nets were used to model and verify the WTP [11]. WTP
constitutes the transaction layer in the Wireless Application Protocol (WAP)
architecture [12]. The progress measure used is based on the transaction control
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Table 3. Stop and Wait Communication Protocol – with wrapping sequence numbers.

Full Sweep-Line Method Breadth-first Disk

S States Time Total Pk Basic Path L Pk Time L

200 54,201 02:26 108,202 335 04:32 05:20 3,184 87 0:29:59 1,393
300 81,301 03:36 162,402 335 06:47 08:00 4,784 87 1:06:14 2,093
400 108,401 04:59 216,602 335 09:05 10:45 6,384 87 1:56:42 2,793
500 135,501 06:12 270,802 335 11:25 13:26 7,984 87 3:02:47 3,493
800 216,801 10:04 433,402 335 18:10 21:26 12,784 — –:–:– —
1000 271,001 13:02 541,802 335 23:07 27:03 15,984 — –:–:– —
1500 406,501 18:31 812,802 335 34:22 40:32 23,984 — –:–:– —
2000 542,001 25:07 1,083,802 335 46:04 53:20 31,984 — –:–:– —

flow of the two protocol entities in WTP and the re-transmission counters used
in the protocol. See [14] for details on the progress measure. The experimental
results obtained for this system is given in Table 4. Configurations (Conf) are
written in the form X-Y where X specifies the maximum value of the retrans-
mission counters, and Y specifies whether user acknowledgement is on (T) or
off (F). The WTP specification [11] suggests 4 as the maximum retransmission
value for GSM networks and 8 as the maximum value for IP networks. For this
system, we have obtained a path leading to a state where both protocol entities
are in their terminating state. The sweep-line method performs slightly better
in time than the disk-based breadth-first exploration. The breadth-first explo-
ration, however, achieves slightly better memory reduction. The path obtained
with the sweep-line method is only one longer than a shortest path.

This example shows that with sufficient memory, the full state space explo-
ration can outperform both of the disk-based techniques. If sufficient memory is
not available, the two disk-based are comparable in performance, with the sweep-
line method performing slightly better in time and the breadth-first exploration
performing slightly better in memory reduction.

7 Conclusions

We have presented a technique based on the use of external storage to support
path finding with the sweep-line method. The missing support for path finding
has until now been the main shortcoming of the sweep-line method. Our tech-
nique, due to the notion of progress, avoids costly search in external storage,
but at the cost of possibly exploring the states several times. The practical ex-
periments conducted have shown that writing the required path information to
external storage adds a relatively small overhead of 10–20% in run-time. We
have also shown a theoretical result quantifying the length of the paths obtained
with the proposed technique.

We have compared the performance of the suggested technique with the
performance of the closely related disk-based breadth-first exploration of [35].
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Table 4. Wireless Transaction Protocol (WTP).

Full Sweep-Line Method Breadth-first Disk

Conf States Time Total Pk Basic Path L Pk Time L

1-T 1,838 0:00:04 1,838 677 0:00:04 0:00:05 6 570 0:00:06 5
2-T 10,333 0:00:36 10,333 2,780 0:00:50 0:00:54 6 2,679 0:01:04 5
3-T 30,978 0:02:31 30,978 7,052 0:03:53 0:03:52 6 6,668 0:04:41 5
4-T 65,873 0:06:17 65,873 12,417 0:09:14 0:09:59 6 11,882 0:11:58 5
5-T 113,343 0:11:32 113,343 18,660 0:17:15 0:19:04 6 17,283 0:22:21 5
6-T 172,657 0:18:07 172,657 26,068 0:27:42 0:31:06 6 22,697 0:35:54 5
7-T 243,765 0:27:03 243,765 34,742 0:40:25 0:44:10 6 28,111 0:52:44 5
8-T 326,667 0:36:35 326,667 44,690 0:55:37 1:00:05 6 33,525 1:12:38 5
1-F 4,232 0:00:15 4,232 1,658 0:00:19 0:00:20 6 1,324 0:00:23 5
2-F 24,905 0:02:51 24,905 7,195 0:04:40 0:04:37 6 6,713 0:05:27 5
3-F 74,017 0:11:41 74,017 17,111 0:18:55 0:20:24 6 16,633 0:23:43 5
4-F 154,231 0:28:59 154,231 29,157 0:46:41 0:51:25 6 28,813 0:57:11 5
5-F 262,442 0:54:32 262,442 42,964 1:26:54 1:35:11 6 41,390 1:45:24 5
6-F 397,583 1:25:58 397,583 59,323 2:19:11 2:30:10 6 53,990 2:49:45 5
7-F 559,604 2:07:58 559,604 78,404 3:22:57 3:39:49 6 66,590 4:06:18 5
8-F 748,505 2:52:29 748,505 100,215 4:39:02 5:01:38 6 79,190 5:37:42 5

These experiments have shown that the sweep-line method seems to have a better
run-time profile than the method of [35], and in some cases gives better reduction
results at the same time. The reason for this is that the sweep-line path finding
technique avoids costly searches in external storage. The technique in [35] on
the other hand obtains shortest paths whereas our technique obtain shortest
paths subject to least-progress-first exploration. As our examples indicate, the
least-progress-first exploration seems to give reasonably short paths in practice,
and in some cases even a shortest path.

A general observation can be made about the relative performance of the
sweep-line method and the disk-based breadth-first exploration of [35]. The disk-
based breadth-first exploration performs well with respect to memory reduction
when the breadth-first width of the state space is small. However, when the
“width” of the state space is small, few states are generated at each breadth-
first level. This is turn leads to many linear searches on disk, thereby making the
run-time unacceptable. The sweep-line method seems to cope better with such
narrow and long state spaces.

The run-time overhead for accessing disk was further reduced in [35] by
using hash compaction. The use of hash compaction reduces run-time at the
risk of not getting full coverage of the state space. The use of hash compaction
however reduces the amount of information than must be written to disk, but the
expensive linear searches still need to be conducted. An advantage of the sweep-
line method is therefore that it guarantees full coverage of the state space. In
conclusion, we have demonstrated that with path finding added the sweep-line
method is a powerful alternative to other disk-based state space exploration
methods such as [35].
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The state space caching method [20,13,15] can also be used for path finding.
Since state space caching is based on depth-first exploration, it has the advantage
that a path from the initial state to the current state is always present on the
depth-first search stack. The peak number of states with the state space caching
method will be at least equal to the length of the shortest path leading to the
state of interest. Our experiments with, e.g., the stop-and-wait protocol reported
on in this paper show that the peak number of states stored with the sweep-line
method can be far less than the length of a shortest path. This means that there
will be systems, where the sweep-line path finding technique will outperform
state space caching in terms of peak memory usage.

An interesting topic of future work is the combination of the sweep-line
method with other state space reduction methods. State space reduction meth-
ods often exploit a certain characteristic of the system under consideration. Ex-
amples of this are the symmetry method [22, 19, 9, 7] and partial order meth-
ods [30,37]. The symmetry method exploits that systems are often composed of
components whose identities are interchangeable. Exploiting symmetry makes
it possible to construct a condensed state space where each node represents
an equivalence class of symmetric states, and each arc represents an equivalence
class of symmetric actions. The condensed state space is typically orders of mag-
nitude smaller than the ordinary full state space, and verification of properties
can be done directly on the condensed state space, i.e., by considering only a
representative from each equivalence class. Partial order methods are based on
the observation that a key contributer to state explosion is the representation of
all possible interleavings of independent actions. For verification of many proper-
ties it suffices to consider only some interleavings and hence it suffices to explore
only a subset of the full state space.

It was shown in [38, 8] how the symmetry method and partial order meth-
ods could be combined and that the state space reduction obtained when using
the methods simultaneously was better than when either method was used in
isolation. The reason for this is that symmetry (as exploited by the symme-
try method) and independence between actions (as exploited by partial order
methods) are orthogonal properties of the system. The progress exploited by
the sweep-line method seems intuitively to be orthogonal to both symmetry and
independence, making it attractive to pursue the combination of the sweep-line
method and these other two reduction methods. It could also be considered to
attempt to combine the sweep-line method with symbolic model checking tech-
niques based on Binary Decision Diagram (BDDs) [27,4]. However, since there is
no general correlation between the size of a set of states and the size of the BDD
representing the set, it might be counter productive to combine BDDs with the
sweep-line method.

Another topic of future work is to extend the properties of systems that
can be verified with the sweep-line method. Currently, the sweep-line method
can be used for the verification of safety properties. It would be of interest to
investigate whether the sweep-line method could be used for, e.g., LTL and
CTL model checking [6]. LTL model checking [40] is based on the detection of
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certain cycles in the state space. Hence, it should be possible to conduct LTL
model checking for monotonic progress measures which have the property that
all states on a given cycle will have the same progress value and hence be stored
in memory simultaneously. It is currently an open question whether a variant of
the generalised sweep-line method with non-monotonic progress measures can
be developed to support full CTL and LTL model checking.
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Abstract. In mobile computing environments, logging systems are of-
ten used to record updates during device disconnection and logs are used
in data synchronization on reconnection. Portable devices often have re-
source constraints and log truncation must be used to avoid log overflow.
However, this method makes data synchronization vulnerable, due to in-
formation loss in truncating log files. Characteristic-entry logs record
merely the most recent data access of each operation type per data item.
They capture the minimum information needed to semantically resolve
conflicting updates. They have been implemented in the MemorySafe sys-
tem of Philips, a prototype distributed system supporting disconnected
updates. In this paper, we present a formal model of characteristic-entry
logs and investigate the relation between normal logs and characteristic-
entry logs. We rigorously prove that characteristic-entry logs can be used
in data synchronization, effectively in the same way as normal logs.

Keywords: Disconnected Updates, Consistency, Logs, Data Synchro-
nization, Formal Methods, Z.

1 Introduction

As network technologies advance, it is becoming technically feasible to connect
all consumer electronic devices to home networks and the Internet. Consequently,
people will be able to access their data anytime and anywhere. This was an im-
portant requirement in the design of the MemorySafe system [1], a distributed
data management system for future home environments. Portable devices and
smart objects containing personal information, such as digital photos, can be
used both at home and on the move [2]. In reality, however, devices will of-
ten be temporarily disconnected from the network, which is called intermittent
connectivity [3] or disconnected operation [4]. This can be due to cost reasons,
various technical limitations, administrative restrictions, human factors, or tech-
nical failures. The result is that data can be temporarily unavailable.

To overcome this unavailability, it is common practice to replicate data onto
several reliable sites and/or onto the mobile devices that people carry. Data and
their replicas can be updated independently when devices are disconnected. Such
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updates are called disconnected updates. Without precautions, data inconsisten-
cies can occur. Data synchronization is the process of resolving inconsistencies
of disconnected updates.

File synchronizers are user-level programs dealing with disconnected updates
on hierarchical file systems. One example is the Unison File Synchronization [5].
In a formal model [6] of Unison, filenames are modelled as mappings between
pathnames and contents. Predicate calculus is used to specify the behavior of
Unison. Derived from this, filesystem algebra [7] provides options to combine
several conflict-resolution policies into the specification of a file synchronizer.

Different from file synchronizers, distributed systems take advantage of access
histories recorded in log files to resolve data inconsistencies. In this approach, the
states of replicas are rolled back to a consistent state, the recorded disconnected
updates are serialized, and the serialized updates are replayed in replicas. In the
Coda system [8], resolution logs keep track of adding, removing, and updating
activities on replicated directories. In the Ficus replicated file system [9,10],
each file replica has its own version vector that records the history of updates
to the file [11]. Conflicts are detected by comparing version vectors from two file
replicas. In resolving inconsistencies of replicated data, both Coda and Ficus use
semantic rules to resolve inconsistencies of replicated files. In database systems,
system states can be rolled back and, then, uncommitted transactions recorded
in logs are serialized and applied to all data copies [12]. The Bayou system [13]
conducts application-specific conflict resolution.

When using logging mechanisms, log sizes are often determined by system
administrators. Any realistic estimate of log size has to be derived from empirical
data. With wrong estimations, logs may overflow due to frequent access during
disconnection, which is especially the case for mobile devices with limited stor-
age capacity. Truncating log files may cause information loss, making inconsis-
tency resolution vulnerable. In the MemorySafe system [1], characteristic-entry
logs [14] have been designed to address this problem. Such logs record merely
the most recent data access of each operation type per data item.

So far log truncation and log-based data synchronization have been studied
in empirical ways. Various log truncation methods are proposed and several
semantic rules are applied in data synchronization, without rigorous definitions
and proofs. In this paper, we present a formal model of characteristic-entry logs,
formalize semantic rules, and present a correctness proof of using characteristic-
entry logs in data synchronization. This formal model has played an essential
role in conceiving the characteristic-entry log concept and in its implementation.

The rest of the paper is organized as follows. In Sect. 2, we give motivation of
using characteristic-entry logs. In Sect. 3, we present an informal model of discon-
nected updates. In Sect. 4, we formalize both normal logs and characteristic-entry
logs and present commutability between normal logs and characteristic-entry
logs. The soundness of using characteristic-entry logs in data synchronization is
presented in Sect. 5. Finally, we conclude this paper in Sect. 6.
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2 Motivation

In most logging mechanisms, log length is restricted due to storage constraints.
Sometimes it can also be the case that log length is purposely limited by sys-
tem administrators. A log file grows linearly with the amount of data accesses
performed. When the length of a log file reaches its limitation, any new data
access will cause log overflow. This is especially the case for mobile computing
devices with memory and storage constraints. To solve the problem of log over-
flow, system administrators, in practice, will be notified of such events and will
take measures, such as manually compressing logs or deleting logs entries.

Alternatively, one solution is to discard new entries when log files reach their
size limits. When using this approach, logs contain only the oldest accesses.
Another solution to log overflow is to discard the oldest entries in logs when
logs reach their limitation. In this approach, logs contain only the most recent
accesses. In both cases, useful information can be lost when discarding log entries.

For example, suppose a storage device S and a data item x . S can be a
personal digital assistant and x can be a file. The data item x can be added to S
and, furthermore, can be accessed, modified, or deleted. We use A, W , R, and D
for add, write, read, and delete accesses, respectively. Thus, A(x ) reads “add x to
S”. W (x )1 reads “write the value 1 to x” and the value is 1. R(x )1 reads “read
the value of x and the value is 1”. D(x ) reads “delete x from S”. Let a log file l
record all data accesses on the device S . For simplicity, timestamps are omitted
in log entries. Assume that the length of l should never exceed 4, meaning that
at most four accesses can be recorded. Suppose the following sequence of accesses
will be consecutively performed on S , from left to right.

A(x ),W (x )1,R(x )1,W (x )2,R(x )2,R(x )2,R(x )2,R(x )2.

Using the approach of discarding new entries in case of log overflow, the log
l looks as follows, after the completion of the last access of the access sequence.

l = 〈A(x ),W (x )1,R(x )1,W (x )2〉.

This log does not show the last time x was read. Read accesses can be of relevance
in synchronizing data copies. For instance, suppose that another copy of x was
deleted from the device T , right after the W (x )2 access and before the first
R(x )2 access on the device S . If the user expects that the most recent operation
will be applied to all copies of x in synchronization, the deletion should be
ignored. Because l does not reveal the four read accesses that occurred after the
deletion, the deletion will be applied to S in this case, which introduces data
loss. Therefore, a read access on a data item could not be replaced simply by
the most recent write access on the same data item.

When using the method of discarding the oldest entries in case of log overflow,
the log l looks as follows, after the completion of the access sequence.

l = 〈R(x )2,R(x )2,R(x )2,R(x )2〉.
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A(x) W(x)1 R(x)1 W(x)1 W(x)2 R(x)2
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Charateristic-entry log

Fig. 1. Normal logs and characteristic-entry logs.

Obviously, this log does not tell when x was added and when x was modified.
In both cases, the discarded log entries contain useful information that may be
used in data synchronization.

Moreover, logs with length limits may contain only accesses of the most-
frequently-visited data items while less-frequently-used data become “history-
less”. In other words, log spaces are not evenly distributed according to data
items. Suppose that the following sequence of accesses will be applied on S .
Again, assume the length limit of l is 4.

A(x ),W (x )1,R(x )1,A(y),W (y)2,R(y)2,D(y).

Thus after the completion of the last access, the log l looks as follow, using the
method of discarding the oldest entries in case of log overflow.

l = 〈A(y),W (y)2,R(y)2,D(y)〉.
In this case, l contains only access information of y . It has no information about
x at all, which makes it difficult to synchronize x with its copies.

The above-mentioned examples make it clear that length limits of log files
are of great importance in recording access information. Truncating logs may
bring trouble in data synchronization. It is also shown that log spaces are not
evenly distributed, which may introduce difficulties in data synchronization as
well. Thus, in practice, length limits are often set as large as possible and are
usually only constrained by storage capacities of devices. In mobile computing
systems, however, this approach is not applicable, due to storage capacity limits
of mobile hand-held devices. Setting realistic log limits is an empirical task. With
wrong estimations, information loss in logs is inevitable.

Characteristic-entry logs record only the most recent add, read, write and
delete accesses for each data item [14]. In this way, log length is not determined
by the number of accesses any more, but by the number of data items and the
number of access types. Therefore, log lengths become predicable and manage-
able. Moreover, log space is evenly distributed to all data items. Fig. 1 illustrates
an example. In the figure, a sequence of accesses on the device S is shown hori-
zontally, with a time line running from left to right. Each access is specified by
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its operation type and the value of the accessed data item. The normal log and
the characteristic-entry logs of S are illustrated.

3 Disconnected Updates

A system supporting disconnected updates, called a DU system, consists of a
collection of data spaces. Data spaces represent storage devices. For example,
the DU system SDU has three component data spaces.

SDU = {S1,S2,S3}.

A data space contains a collection of data items. Each data item has a name
part and a value part, called key and value respectively. A data item is uniquely
identified by its key in a data space. Moreover, the key part of a data item is
immutable while its value part can be modified. For example, the data space S1
has three data items. x , y and z denote keys of data items. For simplicity, the
values of data items are assumed to be natural numbers in this paper.

S1 = {(x , 1), (y , 2), (z , 3)}.

Definition 1. A DU system is a triple (S, K, V, Store). S, K and V are
arbitrary sets. Store : S × K �→ V is a partial function which describes where
current values of data items are stored.

In a DU system, read, write, add, delete are operations that can be performed
on data spaces. All the four operations involve only one data space in the system
and are assumed to be atomic.

Definition 2. In a DU system, the following operations are allowed.

– read, read data from a data space.
– write, update the value of a data item in a data space.
– add, add a data item to a data space.
– delete, remove a data item from a data space.

A data item can have copies in a DU system. Each copy is stored in one data
space. A data item and its copies have a common key. A data item, or any of its
copies, can be updated individually, as if its storing data space is disconnected
from the other data spaces in the system.

Definition 3 (Disconnected update). An operation is a disconnected up-
date, if it changes the current value of a data item in a data space, independent
of the other copies in other data spaces.

Due to disconnected updates, a key may have different values in data spaces.
For example, x has different values in S1 and S2.

S1 = {(x , 1), (y , 2), (z , 3)}
S2 = {(x , 4), (y , 2)}
S3 = {(x , 4), (u, 4), (v , 5)}
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Definition 4 (Data consistency). Given a key x and two data spaces S1 and
S2 of a DU system, x is consistent in S1 and S2, if x has the same value both
in S1 and in S2 when both S1 and S2 have a data item with x as the key part.

For example, x is not consistent in the data spaces S1 and S2, since it has different
values in S1 and S2. z is considered to be consistent in S1 and S2, since z is not
defined in S2.

Definition 5 (System consistency). A DU system is consistent, if given any
key x and any two data spaces S1 and S2 of the DU system, x is consistent in
S1 and S2.

For example, the DU system SDU is not consistent, due to the fact that x is
not consistent in S1 and S2.

In order to resolve inconsistency, logs are introduced to record access histo-
ries of data spaces and a synchronization operation, sync (an abbreviation of
“synchronize”), is introduced to bring the system into a consistent state.

Each data space of a DU system is associated with a log. A log is a sequence
of log entries. A log entry contains information about the time, the operation,
the accessed data item of an access. A log entry also keeps record of the values
of the operated data item, before and after the access. For example, l is a log of
a data space.

l = 〈A(x ),W (x )1,R(x )1,A(y),W (y)2,D(x )〉.

We assume that system clocks of data spaces are synchronized. Thus timestamps
in log entries are reliable.

Definition 6 (Synchronization). Given any key x and any two data spaces
S1 and S2 of a DU system, x will become consistent in S1 and S2 after performing
the sync operation.

For example, after performing the sync operation on the key x of the data space
S1 and S2, x should have the same value in both S1 and S2. This is a rather
loose specification of synchronization. What the eventual value should be and
how the value is chosen are not specified at all. In data synchronization, semantic
rules are often used. One semantic rule says that the value of x after the most
recent update should be propagated to all copies of x , which is known as no loss
update semantics in [9]. In this case, logs of S1 and S2 can be used to retrieve
the most recent modification made on x . Later, the sync operation becomes an
algorithmic specification to determine what operation should be applied to data
spaces, based on the logs of the data spaces.

In models of distributed databases and file systems [15], there are logical
data items and physical data items. Compared with those models, the concept
of data items in the model of DU systems is close to that of physical data items
in those models. The notion of logical data items is discarded for the following
reasons. Firstly, the property of location-transparency is applicable in traditional
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distributed systems with reliable network connection, but not in living environ-
ments with dynamic network connection. Secondly, users conceptually associate
data with locations (devices) and tend to have data copies stored in different
locations (devices). Thus, data are also logically distributed. Thirdly, this treat-
ment allows to focus on resolving inconsistencies of data copies, instead of on
the mapping between logical data and physical data.

The objective of the next two sections is to prove that characteristic-entry
logs can be used in data synchronization, effectively in the same way as normal
logs. To achieve our goal, we firstly model normal logs and characteristic-entry
logs. Then, we show that normal logs can be transformed to characteristic-entry
ones. We formalize semantic rules that are used in data synchronization. Finally,
we show that when applying the semantic rules on normal logs, the result is the
same as the result obtained by applying the same rules on the transformed
characteristic-entry logs of the normal logs. As usual in this kind of study, it is
less the construction of the proofs as the choice of conjecture that is of interest.

4 Characteristic-Entry Logs

As mentioned in the previous section, each data space has a log that records
performed data accesses. In this section, it is shown how characteristic-entry
logs can be formally constructed. It is also shown that characteristic-entry logs
can be generated from normal logs. Z-notation [16,17] is used in formalizing
characteristic-entry logs.

4.1 Normal Logs

For the purpose of specification, two basic types are introduced. KEY denotes
the set of keys of data items. VAL denotes the set of values of the keys.

[KEY ,VAL].

Additionally, OP defines a set of values that can be used for indicating op-
eration types of log entries.

OP ::= add | read | write | delete.

add indicates an add operation. read indicates a read operation. write indicates
a write operation. delete indicates a delete operation.

The type TIME is also introduced. The elements of TIME are used in log-
ging the moments when accesses are performed. For simplicity, we assume the
elements of TIME to be natural numbers, as in practical systems.

TIME == N.

Logs consist of log entries. A log entry records information of an access. It
contains the execution time, the performed operation, the key of the accessed
data item, the value of the data item before the execution, and the value after
the execution. Log entries can be formally defined as follows.



Formal Development of a Distributed Logging Mechanism 345

LogEntry == (((TIME × OP) × KEY ) × VAL) × VAL.

Three projection functions, time, op and key , are defined for retrieving in-
formation from a log entry. Similar functions can be defined for retrieving pre-
and post-value of a log entry.

time : LogEntry → TIME

∀ e : LogEntry • time(e) = first(first(first(first(e))))

op : LogEntry → OP

∀ e : LogEntry • op(e) = second(first(first(first(e))))

key : LogEntry → KEY

∀ e : LogEntry • key(e) = second(first(first(e)))

Logs can be modelled as sequences of log entries that are ordered by time1.

Log == {l : seqLogEntry | isOrdered(l)}.

The predicate isOrdered checks whether the entries of a sequence of log entries
are ordered by time2.

isOrdered : P(seqLogEntry)

λ l : seqLogEntry • isOrdered(l) ⇔
∀ i , j : dom l • i < j ⇒ time(l(i)) < time(l(j ))

It requires that there may not be two entries in a log having the same timestamp.
Recording an access is usually implemented by appending a log entry to the end
of a log file. In practice, it is easy to guarantee that any two appending operations
on the same log file are always sequentially executed.

One basic operation on a log is the append operation. When appending a
entry to a log, it should be ensured that the timestamp of the log entry is larger
than that of the last log entry of the log. In this way, the entries of the result
log still preserve time order. To this end, the function isAfterLast is defined.
1 One alternative model of a log would be a mapping (partial function), l : TIME �→

(((OP × KEY ) × VAL) × VAL). In this way, the ordering could still be retrieved
from the mapping. In our model, log entries can be ordered by their timestamps and
they also preserve the time ordering in a log. The introduction of this redundancy is
largely because this model is close to the data structure in implementation. Moreover,
the most recent operation is often used in data synchronization, to be explained in
Sect.5.2. In our model, this information can be easily retrieved from a log, since the
last element of a log is the most recent access.

2 The predicate is defined in terms of a set of objects that satisfy it. It is convenient
to treat the name of the set as a unary operator. In this case, the definition includes
an underscore to indicate the position of the argument.
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isAfterLast : P(seqLogEntry × TIME )

λ l : seqLogEntry ; t : TIME • isAfterLast(l , t) ⇔
if l = 〈〉 then true else time(last(l)) < t

The append function is defined as follows.

append : Log × LogEntry → seqLogEntry

append = λ l : Log ; e : LogEntry •
if isAfterLast(l , time(e)) then l � 〈e〉 else l

Without difficulties, the following theorem can be proved. It says that the
result of applying append on a log and a log entry is still a log.

Theorem 1. Given any log, l : Log, and any log entry, e : LogEntry,
append(l , e) is still a log.

4.2 Characteristic-Entry Logs

A characteristic-entry log records merely the last access of each operation type
on a key. In other words, given a key and an operation type, there exists at most
one log entry with the key and the operation type in a characteristic-entry log.
This property is specified by the predicate isCEL.

isCEL : P(seqLogEntry)

λ l : seqLogEntry • isCEL(l) ⇔
∀ i , j : dom l • (i �= j ∧ key(l(i)) = key(l(j ))) ⇒ op(l(i)) �= op(l(j ))

Thus, characteristic-entry logs can be formally specified as follows.

CELog == {l : Log | isCEL(l)}.

Note that this definition does not say that a recorded access is the last one of
this sort. This “most recentness” property is ensured by the appending function
of characteristic-entry logs.

Before appending a log entry to a characteristic-entry log, the log is checked
whether it already contains an element, which has the same key and operation
type as that of the log entry to be appended. If so, the element should be removed
from the log. The delete function achieves this goal.

delete : CELog × OP × KEY → seqLogEntry

delete = λ l : CELog ; o : OP ; k : KEY •
if l = 〈〉 then 〈〉
else if op(last(l)) = o ∧ key(last(l)) = k then front(l)

else delete(front(l), o, k) � 〈last(l)〉
Using delete, the function concat is defined for appending a log entry to a

characteristic-entry log.
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concat : CELog × LogEntry → seqLogEntry

concat = λ l : CELog ; e : LogEntry •
if isAfterLast(l , time(e)) then delete(l , op(e), key(e)) � 〈e〉 else l

For example, let l be the characteristic-entry log shown in Fig. 1, l =
〈A(x ),W (x )2,R(x )2〉. Suppose that we append a log entry e, where op(e) = W ,
key(e) = x , and isAfterLast(l , time(e)) hold. First, we apply the function delete.
Then, we apply the function concat .

delete(l , op(e), key(e))

= delete(front(l), op(e), key(e)) � 〈last(l)〉
= delete(〈A(x ),W (x )2〉, op(e), key(e)) � 〈R(x )2〉
= front(〈A(x ),W (x )2〉) � 〈R(x )2〉
= 〈A(x ),R(x )2〉

concat(l , e)

= delete(l , op(e), key(e)) � 〈e〉
= 〈A(x ),R(x )2〉 � 〈e〉
= 〈A(x ),R(x )2, e〉

The function delete has the non-creation, effectiveness, no-time-shift, and
order-preservation properties.
Lemma 1 (Non-creation). The result of the delete function contains no en-
tries that were not present in the original log. Formally, given l : CELog, k :
KEY and o : OP, ∀ i : dom delete(l , o, k) • ∃ j : dom l • delete(l , o, k)(i) = l(j ).

Lemma 2 (Effectiveness). The result of the delete function contains no en-
tries matching the specified operation and key3. Formally, given l : CELog,
k : KEY and o : OP, ∀ i : dom delete(l , o, k) • op(delete(l , o, k)(i)) �= o ∨
key(delete(l , o, k)(i)) �= k.

Lemma 3 (No-time-shift). The result of the delete function does not violate
the timing of the original log. Formally, given l : CELog, k : KEY , o : OP and
t : Time, isAfterLast(l , t) ⇒ isAfterLast(delete(l , o, k), t).

Lemma 4 (Order-preservation). The result of the delete function preserves
the order of the original log. Given l : seqLogEntry, k : KEY and o : OP,

l ∈ Log ⇒ delete(l , o, k) ∈ Log,
l ∈ CELog ⇒ delete(l , o, k) ∈ CELog.

These lemmas can be proved using structural induction on sequences of log
entries. With help of these lemmas, the following theorem can be proven. It says
that using concat to concatenate a characteristic-entry log and a log entry, the
result is still a characteristic-entry log.
3 When applying delete on a characteristic-entry log l , an operation o and a key

k , the result sequence delete(l , o, k) should have the following property, ¬ ∃ i :
dom delete(l , o, k) • op(delete(l , o, k)(i)) = o ∧ key(delete(l , o, k)(i)) = k . This
property is equivalent to the formal definition of Effectiveness.
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Theorem 2. Given any characteristic-entry log, l : CELog, and any log entry,
e : LogEntry, concat(l , e) is still a characteristic-entry log.

4.3 Converting Normal Logs to Characteristic-Entries Log

Characteristic-entry logs can be generated from normal logs. To do so, the ce
function is defined.

ce : CELog → seqLogEntry

ce = λ l : Log • if l = 〈〉 then 〈〉 else concat(ce(front(l)), last(l))

Take the normal log in Fig. 1 as an example. Let l = 〈A,W1,R1,W1,W2,R2〉.
In this example, we omit x in log entries and keep the values as subscripts, for
simplicity. Thus A stands for A(x ), W1 stands for W (x )1, and so on.

ce(l)
= concat(ce(front(l)), last(l))
= concat(ce(〈A,W1,R1,W1,W2〉),R2)
= concat(concat(ce(〈A,W1,R1,W1〉),W2),R2)
= concat(concat(concat(ce(〈A,W1,R1〉),W1),W2),R2)
= concat(concat(concat(concat(ce(〈A,W1〉),R1),W1),W2),R2)
= concat(concat(concat(concat(concat(ce(〈A〉),W1),R1),W1),W2),R2)
= concat(concat(concat(concat(concat(concat(ce(〈〉),A),W1),R1),W1),W2),R2)
= concat(concat(concat(concat(concat(concat(〈〉,A),W1),R1),W1),W2),R2)
= concat(concat(concat(concat(concat(〈A〉,W1),R1),W1),W2),R2)
= concat(concat(concat(concat(〈A,W1〉,R1),W1),W2),R2)
= concat(concat(concat(〈A,W1,R1〉,W1),W2),R2)
= concat(concat(〈A,R1,W1〉,W2),R2)
= concat(〈A,R1,W2〉,R2)
= 〈A,W2,R2〉

Thus, applying ce on l has the result of 〈A,W2,R2〉, that’s 〈A(x ),W (x )2, 〉
〈R(x )2〉, which is exactly the characteristic-entry log of S in Fig. 1.

Formally, it can be proved that log sequences obtained by applying ce on
characteristic-entry logs are still characteristic-entry logs. The proof format fol-
lows the one proposed by W.H.J. Feijen [18]. A justification is inserted between
consecutive proof steps.

Theorem 3. Given a log, l : Log, ce(l) is a characteristic-entry log.

Proof. The proof is done using structural induction4 of l . Base case Trivial.
Inductive step It should be proven that ce(l � 〈e〉) is a characteristic-entry
4 There are several versions of structural induction on sequences, as described in [19].

One version is that in order to show that some property P(l) holds for all sequences
l : seqX , it should be proven that (1) P(〈〉) holds. (2) If P(l) holds for any sequence
l , then so does P(l � 〈x 〉). Formally, ∀ x : X ; l : seqX • P(l) ⇒ P(l � 〈x 〉). Because
the delete function is recursively defined by checking the last element of a sequence,
this version of structural induction on sequences is chosen to ease the proof.
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Log CELog

CELogLog

append( ., e) concat( .,e)

ce

ce

Fig. 2. The relations between logs and characteristic-entry logs.

log, on the assumption that ce(l) is a characteristic entry log and that both l
and l � 〈e〉 are logs.

ce(l � 〈e〉)
≡ {Definition of ce}

concat(ce(front(l � 〈e〉)), last(l � 〈e〉))
≡ {Definitions of front and ce}

concat(ce(l), e)

Because of the induction hypothesis that ce(l) is a characteristic entry log,
concat(ce(l), e) is a characteristic entry log according to Theorem 2. This es-
tablishes the inductive step. By structural induction, the theorem is proven. ��

Similar to the delete function, the ce function has the property of non-
creation as well. Moreover, the result log of the ce function and the original
log end with the same log entry.

Lemma 5 (Non-creation). The result of the ce function contains no entries
that were not present in the original log. Formally, given l : Log,
∀ i : dom ce(l) • ∃ j : dom l • ce(l)(i) = l(j ).

Lemma 6 (Latest-equivalence). Given any log, l : Log, and t : Time,
isAfterLast(l , t) = isAfterLast(ce(l), t).

It can be proven that the construction of a characteristic-entry log can be
done on the fly and thus the long normal logs can be replaced by the compact
characteristic-entry logs, as illustrated in Fig. 2.

Theorem 4 (Commutability). Given any log, l : Log, and any log entry,
e : LogEntry, ce(append(l , e)) = concat(ce(l), e).

Proof. Let LHS be ce(append(l , e)) and RHS be concat(ce(l), e). The proof of
the theorem is divided into three cases. (1) If l = 〈〉, trivial. (2) If l �= 〈〉 and
isAfterLast(l , time(e)) = true, isAfterLast((ce(l), time(e)) holds as well accord-
ing to Lemma 6.
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LHS
≡ {isAfterLast(l , time(e)) = true, Definition of append}

ce(l � 〈e〉)
≡ {Definition of ce}

concat(ce(l), e)
≡ RHS

Therefore, it is proven that

isAfterLast(l , time(e)) = true ⇒ ce(append(l , e)) = concat(ce(l), e).

(3) If l �= 〈〉 and isAfterLast(l , time(e)) = false, isAfterLast((ce(l), time(e))
does not hold either by Lemma 6.

LHS
≡ {isAfterLast(l , time(e)) = false, Definition of append }

ce(l)
≡ {isAfterLast(ce(l), time(e) = false), Definition of concat }

RHS

Thus, it is proven that

isAfterLast(l , time(e)) = false ⇒ ce(append(l , e)) = concat(ce(l), e)

In summary, the theorem holds for all l . ��

5 Data Synchronization Using Characteristic-Entry Logs

Disconnected updates may introduce inconsistencies to a DU system. In this
section, it is rigorously proven that characteristic-entry log can be used in data
synchronization in the same way as normal logs.

5.1 Semantic Rules

In data synchronization, basically, there are two ways of using logs.

– Serialization. In this approach, systems are rolled back to an initial consistent
state. Then entries of logs of data spaces are serialized according to their
timestamps. The serialized log entries are applied on all data spaces, after
which the system state becomes consistent.

– Semantic synchronization. In this approach, semantic rules are defined to
resolve inconsistencies, such as “propagating the latest update”.
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A(x) W(x)1 R(x)1 W(x)2 D(x)

A(x) W(x)1 R(x)1 W(x)3

Log

Log

S1

S2

t1

Time
t8

t7t6

t5t4

t3

t2

t9

Fig. 3. Update loss when applying the up-to-date rule.

Serialization makes full use of information in logs. In this approach, however, roll-
back and applying serialized logs are expensive operations in terms of computing
resources, especially to mobile devices. Semantic synchronization can incorpo-
rate user knowledge in data synchronization and provides flexibility of defining
consistency. In this approach, however, only small portion of information stored
in logs is used. There is much redundancy in logs. Characteristic-entry logs can
be used in the same way as normal logs in semantic data synchronization while
avoiding redundancy.

In semantic data synchronization, the up-to-date rule is often used for its
simplicity, especially in file synchronization tools.

Definition 7 (Up-to-date). When synchronizing a data item and its copies,
the most recent operation will be propagated to all copies.

Fig. 3 illustrates an example. The most recent operation on x at S2 was
W (x )3. After that, there was a D(x ) operation at S1. According to the rule, the
deletion is chosen for propagation. Thus x is deleted from both S1 and S2 after
synchronization.

Using the up-to-date rule carelessly might result in unexpected data loss.
Imagine the following scenario. A user modified a file at one computer. After
that, he deleted a copy of the file at another computer, just in order to clean up
local storage space. When synchronizing the two computers, the file is removed
from both computers according to the up-to-date rule, since the deletion was
performed most recently. This is not the user’s initial intention. To avoid such
data loss, Ficus introduced “no lost update” semantics [9].

Definition 8 (No-update-loss). When synchronizing a data item and its
copies, the most recent modification will be propagated to all copies.

Take the example in Fig. 3. W (x )3 is chosen for propagation in synchroniza-
tion, according to the no-update-loss rule. In this way, the latest modification
made on S2 become available on S1, even though x was deleted already.

More subtle rules are used in semantic data synchronization, such as weak-
no-update-loss and read-delete-safety in [14]. It can be rigorously proven that
when applying the above-mentioned rules in semantic data synchronization,
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characteristic-entry logs can be used in the same way as normal logs. In the
subsequent two sections, we use the up-to-date rule as an example to show how
the soundness proof of using characteristic-entry logs is carried out. To do so,
semantic rules need be to formalized.

5.2 Formalizing Semantic Rules

In DU systems, it is assumed that there is no dependency between data items. In
such system, typically examples of data items are files. A file is usually accessed
independent of the others. Moreover, in DU systems, there is no access depen-
dency either. Data accesses are regarded as atomic and isolated events. These
treatments make DU systems different from database systems, such as banking
systems and flight reservation systems. In those systems, data-dependency and
access-dependency exist widely.

By leaving those dependencies out of our model, we can obtain a better
understanding of semantic rules. In future studies, we can extend our model to
specify data dependency and access dependency. In this section, thus, we focus
on a special type of logs, the logs whose entries are associated to the same key.

OneKeyLog == {l : Log | onekey(l)}

where

onekey : P(seqLogEntry)

λ l : seqLogEntry • onekey(l) ⇔ ∀ i , j : dom l • key(l(i)) = key(l(j ))

Semantic rules can be modelled as partial functions. The following abbrevi-
ation is introduced.

RULE == OneKeyLog × OneKeyLog �→ seqLogEntry × seqLogEntry

Such a function takes a pair of logs and computes what operations should be
chosen for propagation. The results are captured in a pair of sequences of log
entries, which should be applied to the data spaces that the logs are associated
with, in a component-wise manner. Such a function is totally defined if it can be
applied to any logs.

Moreover, a new data type OPε is introduced, which is an extension of the
basic data type OP . OPε has an extra element ε, denoting an empty operation.

OPε ::= OP ∪ {ε}

The function lastε is also introduced, which returns the last operation of a se-
quence of log entries.

lastε : seqLogEntry → OPε

lastε = λ l : seqLogEntry • if l = 〈〉 then ε else op(last(l))
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When specifying a semantic rule, the operation of the most recent access is often
needed. To obtain such information, using op(last(l)) would cause undefineness,
where l is a sequence of log entries. This is because last is a partial function
on sequences in Z. The introduction of the empty operation ε and the lastε
function helps to simplify specifications, as illustrated below in the definition of
the domain of up¬ε.

When describing semantic rules, specification might become incomprehensi-
ble. Thus a compositional approach is devised. A semantic rule is decomposed
into small pieces, which are modelled in terms of partial functions. A full spec-
ification of the given semantic rule can be built up by composing the partial
functions. The composed function, a specification of the semantic rule, should
be totally defined.

Using this compositional approach, the up-to-date rule can be specified by
the following partial functions. up¬ε is a partial function, which takes pairs of
non-ε logs as arguments. The domain of up¬ε is restricted by the function, dom.
upε is a partial function, whose arguments involve at least one empty log.

up¬ε : RULE

dom up¬ε = {(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧
lastε(l1) �= ε ∧ lastε(l2) �= ε}

up¬ε = λ l1, l2 : OneKeyLog •
if time(last(l1)) < time(last(l2)) then (〈last(l2)〉, 〈〉)
else if time(last(l2)) < time(last(l1)) then (〈〉, 〈last(l1)〉)

else (〈〉, 〈〉)

upε : RULE

dom upε = {(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧
(lastε(l1) = ε ∨ lastε(l2) = ε)}

upε = λ l1, l2 : OneKeyLog •
if lastε(l1) �= ε then (〈〉, 〈last(l1)〉)
else if lastε(l2) �= ε then (〈last(l2)〉, 〈〉)

else (〈〉, 〈〉)

In the definitions, the predicate endwithR verifies whether either of given two
logs ends with a read access.

endwithR : P(OneKeyLog × OneKeyLog)

λ l1, l2 : OneKeyLog • endwithR(l1, l2) ⇔
(lastε(l1) = read ∨ lastε(l2) = read)

In semantic data synchronization, read accesses are usually not taken into
account, which is modelled by the upr function. The upr function takes two logs
as arguments. If either of the logs ends with a read access, the access is ignored
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and the rest of the log is used in synchronization. Thus, the full specification of
the up-to-date rule is the integration of upε, up¬ε and upr

5.

up =̂ up¬ε ⊕ upε ⊕ upr

where

upr : RULE

dom upr = {(l1, l2) : OneKeyLog × OneKeyLog | endwithR(l1, l2)}
upr = λ l1, l2 : OneKeyLog •

if lastε(l1) = read ∧ lastε(l2) = read then up(front(l1), front(l2))
else if lastε(l1) = read then up(front(l1), l2)

else up(l1, front(l2))

To illustrate how to use up in data synchronization, we take the example in
Fig. 3. Let l1 and l2 be the logs of the data spaces S1 and S2 in Fig. 3, respectively.

l1 = 〈A(x )1,W (x )11,R(x )11,W (x )21,D(x )1〉
l2 = 〈A(x )2,W (x )12,R(x )12,W (x )32〉

Synchronization can be carried out by applying the function up to l1 and l2.

up(l1, l2)
= up¬ε(l1, l2)
= (〈〉, 〈last(l1)〉)
= (〈〉, 〈D(x )1〉)

Thus D(x ) should be applied to S2 in synchronization.
To show that the function up can be used for synchronizing any two logs, it

must be proven that given any two logs, l1, l2 : OneKeyLog , up(l1, l2) is defined.

Theorem 5 (Totality). up is a total function.

Proof. It is sufficient to show that

dom up = OneKeyLog × OneKeyLog ,

in order to prove that up is a total function.

dom up
= {Definition of ⊕. }

dom up¬ε ∪ dom upε ∪ dom upr

= {Definitions of up¬ε and upε.}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧

5 The overriding operation is used here, instead of the union operation. The union
operation can be used, only if two functions have disjoint domains. The disjointness
of the domains of up¬ε, upε, and upr is proved in Theorem 6.
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lastε(l1) �= ε ∧ lastε(l2) �= ε} ∪
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧

(lastε(l1) = ε ∨ lastε(l2) = ε)} ∪ dom upr

= {Set theory. Predicate logic.}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2)} ∪ dom upr

= {Definitions of upr .}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2)} ∪
{(l1, l2) : OneKeyLog × OneKeyLog | endwithR(l1, l2)}

= {Set theory. Predicate logic.}
{(l1, l2) : OneKeyLog × OneKeyLog | true}

= OneKeyLog × OneKeyLog ��

Moreover, our compositional approach of defining up makes sense only if the
domains of its component functions disjoin from each other.

Theorem 6 (Disjointness). The domains of up¬ε, upε and upr are disjoint.

Proof. In order to prove the disjointness, it is sufficient to prove

dom upε ⊆ dom up \ dom upr (1)
dom up¬ε ⊆ (dom up \ dom upr ) \ dom upε (2)

The proof of (1).

dom up \ dom upr

= {Definition of up and upr . Totality of up. Definition of \.}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2)}

⊇ {Predicate logic.}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧

(lastε(l1) = ε ∨ lastε(l2) = ε)}
= {Definition of upε.}

dom upε

The proof of (2).

(dom up \ dom upr ) \ dom upε

= {Definition of upε. Definition of \.}
{(l1, l2) : OneKeyLog × OneKeyLog | ¬endwithR(l1, l2) ∧

lastε(l1) �= ε ∧ lastε(l2) �= ε}
= {Definition of up¬ε.}

up¬ε ��
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5.3 Soundness of Using Characteristic-Entry Logs

When applying the formally specified up-to-date rule, characteristic-entry logs
can be used in the same way as normal logs. To prove this, two lemmas are
needed here.

Lemma 7. Given any log, l : OneKeyLog, lastε(l) = lastε(ce(l)).

Lemma 8. Given any two logs, l1, l2 : OneKeyLog,
endwithR(l1, l2) = endwithR(ce(l1), ce(l2)).

The soundness of using characteristic-entry logs for the up-to-date rule is
proven in the following theorem.

Theorem 7 (Soundness). Given any two logs, l1, l2 : OneKeyLog,
up(l1, l2) = up(ce(l1), ce(l2)).

Proof. up is defined in a compositional way. Its domain consists of the domains of
up¬ε, upε and upr , which are disjoint. Thus the proof of this theorem can be done
case by case. Case up¬ε. In this case, none of l1 and l2 is empty. According to
Lemma 7 and Lemma 8, it can be easily verified that (ce(l1), ce(l2)) ∈ dom up¬ε.
According to the definition of up¬ε, the most recent one of last(l1) and last(l2)
is chosen for propagation, which is the most recent one of last(ce(l1)) and
last(ce(l2)). Thus up¬ε(l1, l2) = up¬ε(ce(l1), (l2)). Case upε. In a similar way,
the case of upε can be proven. Case upr . upr filters out read accesses in logs
and applies up to the rest of the log entries. When applying up to the rest of the
log entries, up¬ε and upε are used. Due to the fact the cases of upε and up¬ε have
been proven, it can be easily proven that upr (l1, l2) = upr (ce(l1), ce(l2)). ��

6 Conclusion

This work has been carried out in the Phenom project [2] of Philips Research
Laboratories. One of Phenom’s research topics is the design of a distributed
data management system for future home environments. Our work is a direct
contribution to producing a working research prototype. When the prototype
is ready to be transferred to product divisions of Philips, either the author’s
code could become product code, or, at least, it will be used as a reference
implementation. Moreover, the formal specification of data synchronization can
be used in system testing and verification.

So far there have not been many applications of formal methods in studying
disconnected updates. Semantic rules are expressed in an informal way and,
thus, data synchronization is rather vulnerable. In our work, semantic rules are
formally specified and synchronization is carried out in a rigorous way, which is
helpful to researchers on data synchronization to improve their understanding
on semantic rules and data synchronization.

In our project, we used Z-notation in formalization and proof. We exten-
sively used axiomatic definitions of Z and purposely avoid using schemas and
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schema calculus, to make the specification and proof tasks easier. To manage
the complexity of specifications and proofs, we used a compositional approach
to define complex functions, namely using the built-in overriding operation of
Z to compose partially defined functions. This practice turns out to be rather
effective. Specifications of complex functions become comprehensible. Z-notation
proves to be a powerful tool in modelling logs and semantic rules and in proving
correctness of data synchronization. The mathematical machinery of Z is suffi-
cient for our project. Our proofs are carried out as rigorously as possible. In the
future, it would be nice to check them using theorem provers. This paper is an
example of formal development work on a problem that is relevant in practice.
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Abstract. The verification of safety-critical systems has become an area
of increasing importance in computer science. The notion of reactive sys-
tem has emerged to concentrate on problems related to the control of in-
teraction and response-time in mission-critical systems. Synchronous lan-
guages have proved to be well-adapted to the verification of reactive sys-
tems. It is nonetheless commonly argued that real-life systems often do
not satisfy the strong hypotheses assumed by the synchronous approach:
they are not synchronous. Protocols have however been proposed (e.g. in
[1]) to provide an abstract synchronous specification on top of real-time
architectures (e.g. loosely time-triggered architectures or LTTA). This
abstract model is designed so as to satisfy the synchronous hypothe-
ses and meet the implementation architecture constraints. It makes it
possible to design, specify and verify reactive systems in the context of
the synchronous approach. In this aim, the present article formalizes the
LTTA protocol in the theorem prover Coq and proves its correctness.

1 Introduction

The Synchronous Approach. The verification of safety-critical systems has be-
come an area of increasing importance in computer science because of the con-
stant progression of software developments in sensitive fields like medicine, com-
munication, transportation and (nuclear) energy. The notion of reactive system
has emerged to concentrate on problems related to the control of interaction and
response-time in mission-critical systems. These strong requirements lead to the
development of specific programming languages and related verification tools for
reactive systems. The verification of a reactive system can be done by elaborat-
ing a discrete model of the system (i.e. as a finite-state machine) specified in
a dedicated language (e.g. a synchronous programming language) and then by
checking a property against the model (i.e. model checking). Model checking has
been used at an industrial scale.

The Coq Proof-Assistant. When a property involves parameters or non-linear
numerical terms, its verification by model checking is not straightforward and
can sometimes be tedious. Another possibility to verify a reactive system is the
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use of a theorem prover such as Coq [9]. For instance, the semantics of the
synchronous language Signal [8] has been formalized in Coq and the correctness
of a steam-boiler implemented in Signal has been proved [6]. Coq [9] is a proof-
assistant for higher-order logic. It allows the development of computer programs
that are consistent with their formal specification. The logical language used
in Coq is a variety of type theory, the Calculus of Inductive Constructions [10].
Due to the high expressive capability of this logic, proofs in Coq requires human-
interaction to direct the strategy. The prover can nonetheless automate its most
tedious and mechanical parts. Indeed, decisions procedures are implemented.

Synchronous languages (e.g. Esterel [3], Lustre [5], Signal [2]) have proved
to be well adapted to the verification of reactive systems. Unfortunately, real
systems often do not satisfy the strong hypotheses assumed by the synchronous
approach: they are not synchronous.

Loosely Time-Triggered Architectures. A distributed real-time control system
has a time-triggered nature just because the physical system for control is bound
to physics. A loosely time-triggered architecture (LTTA) is one in which:

– Bus access is quasi-periodic and non-blocking
– Read and write operations are independent
– Values are sustained by the bus and periodically refreshed.

The clock rates at which data are, written to, updated by, read from the bus
are not synchronous: a LTTA is a multi-clocked control system in which clocks
are moreover bound to physical time and deviate one from each others. Here,
the term polychronous refers to this multi-clocked feature. The LTTA has been
extensively investigated in [4] and used in several major industries.

Logical Clocks on Top of LTTAs. That is why a protocol is proposed in [1] which
provides an abstract level on top of an LTTA. This abstract level is such that the
the synchronous hypotheses are satisfied. It is then possible to design, specify
and verify reactive systems in the context of the synchronous approach.

Outline. In Section 2, we describe the protocol. Section 3 is devoted to previous
work, especially partial proofs of the protocol by model checking. In Section 4, we
explain our formalization in Coq, and we show in section 5 how this approach can
be used as a generic formal framework to prove other implementations. Finally,
we conclude in Section 6.

2 Description of the Protocol

The LTTA is composed of three devices, a writer, a bus, and a reader. Each
device d is activated by its own, approximately periodic, clock (denoted by a
function td).
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Writer. At the nth clock tick (time tw(n)), the writer generates the value xw(n)
and an alternating flag bw(n) s.t.:

bw(n) =
{

false if n = 0
not bw(n− 1) otherwise

Both values are stored in its output buffer, denoted by yw. At any time t, the
writer’s output buffer yw contains the last value that was written into it:

yw(t) = (xw(n), bw(n)) , where n = sup{n′ | tw(n′) < t} (1)

(xw(0), bw(0)) (xw(1), bw(1)) (xw(2), bw(2)) (xw(n), bw(n))

. . .

yw yw ywyw

tw(1) tw(2)tw(0) tw(n)

Bus. At tb(n), the bus bus fetches yw to store in the input buffer of the reader,
denoted by yb. Thus, at any time t, the reader input buffer is defined by:

yb(t) = yw(tb(n)) , where n = sup{n′ | tb(n′) < t} (2)

tb(n+ 1) tb(n+ 2)tb(n) tb(p)

yw(tb(n)) yw(tb(n+ 1)) yw(tb(n+ 2)) yw(tb(p))

. . .

yb yb ybyb

Reader. At tr(n), the reader loads the input buffer yb into the variables x(n)
and b(n):

yr = (x(n), b(n)) = yb(tr(n)) (3)

Then, in a similar manner as for an alternating bit protocol, the reader extracts
x(n) iff b(n) has changed. This is by the sequence m of ticks where b changes:

m(0) = 0 , m(n) = inf{k > m(n− 1) | b(k) �= b(k − 1)}
xr(k) = x(m(k)) (4)

. . .tr(n+ 1)tr(n) tr(p)

yr(n) = yb(tr(n)) yr(p) = yb(tr(p))yr(n+1) = yb(tr(n+1))
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writer reader

� �

� �

· sustain yb � ·bus

xw

tw

yw = (xw, bw)

xr = x

tr

yr = (x, b)

tb

Example. We illustrate the protocol by the following picture. Notice the role of
the flag b: if the writer sends the same value along xw twice, the boolean flag
switch ensures that this value will be read twice on xr. On the opposite, if the
value is sent once along xw and read twice along xr, the boolean flag samples
the excess of reading.

writer

bus

reader

� �

� � �

xw xw

xr xr

bw

xw

Flag switches are detected by the reader by a non predictable but bounded
delay according to physical time: perfect physical synchrony is lost.

Correctness of the Protocol. We define here the expected behavior. In any exe-
cution of the protocol, the sequences xw and xr must coincide, i.e.,

∀n · xr(n) = xw(n) (5)

In order to prove the correctness of the protocol, we need to prove that, under
some hypotheses on the clocks, the property (5) is true.

3 Previous Work

In [1], the following theorem is proved by hand.

Theorem 1 (sampling theorem). The LTTA protocol satisfies the property
(5) if the following conditions hold:

w ≥ b , and
⌊w
b

⌋
≥ r

b
, (6)
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where w, b and r are the respective periods of the clocks of the writer, the bus
and the reader, and where, for x ∈ R, �x� denotes the largest integer less or
equal to x.

Since w ≥ b then w/2b < �w/b�. Also note that, if w/b is large then �w/b� ≤
w/b and �w/b� ∼ w/b. Hence, if b ∼ 0 (i.e. the bus is fast), then the conditions
of theorem 1 reduce to:

w 	 b , w > r.

In [1], it was shown using symbolic model-checking that a discrete SIGNAL
model of the LTTA protocol (i.e. a finite-state approximation of the actual pro-
tocol) satisfied the desirable requirement of ensuring a coherent distribution of
clocks. However, the assumptions ensuring correctness of the actual LTTA pro-
tocol are quantitative in nature (tolerance bounds for the relative periods, and
time variations, of the different clocks). For the protocol to be correct, the clocks
must be quasi-periodic (periods can vary within certain specified bounds), and
must relate to each other within some specified bounds.

In order to allow for standard model checking techniques to be used, two
kinds of abstractions of the protocol are necessary:

– It is clear that this protocol and the property to be verified are data-
independent w.r.t. the type X of data which is transmitted. Therefore, it
is sufficient to verify this protocol with a finite set of finite instantiations of
the type X. It is then possible to deduce the correctness of the protocol for
any instantiation of the type X, by applying theorems proved in [7]. How-
ever,in [1], only the instantiation of X by the type of booleans is considered.
It is not proved and not evident that the correctness of the protocol for this
instantiation is sufficient to prove the correctness of the protocol for any
instantiation of X.

– Conditions (6) are abstraction by conditions on ordering between events.
The first condition, w ≥ b, is abstracted by the predicate:

w ≥ b ↔ never two tw between two tb. (7)

The abstraction of the second condition, �w/b� ≥ r/b requires the following
definition of the first instant (of the bus) τb(n) where the bus can fetch the
nth writing:

τb(n) = min{ tb(p) | tb(p) > tw(n) }

The second condition is then restated as the requirement (8) that no two
successive τb can occur between two successive tr:⌊w

b

⌋
≥ r

b
↔ never two τb between two successive tr. (8)

This verification has been done twice: with Lustre and its model checker Lesar;
and with Signal and its model checker Sigali.
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4 Abstraction and Formalization in Coq

We investigate the use of the theorem prover Coq as a general formal framework
for any implementation of the protocol for LTTAs. In this section we describe
our formalization in Coq. The translation of the specification is quite straight-
forward. We introduce some syntactical elements of Coq to illustrate this point.

4.1 Data, Time and Clocks

Data. The type of data is seen as an abstract data type D (Data in Coq). We
do not need any relation or hypothesis on this type. It was not the case in the
proof by model checking [1] where D was supposed to be the type of booleans.

Parameter Data : Set.

Physical Time. Physical time is also seen as an abstract data type i.e., a type T
(Time in Coq), a binary predicate ≤ (time le in Coq) and the assumption that
≤ is reflexive, transitive and total. We do not assume time is discrete. These are
the only hypotheses on physical time we need for our proof.

∀t ∈ T , t ≤ t
∀t1, t2, t3 ∈ T , t1 ≤ t2 ≤ t3 ⇒ t1 ≤ t3

∀t1, t2 ∈ T , t1 ≤ t2 ∨ t2 ≤ t1

In Coq, it is written

Variable Time : Type.
Variable time le : Time->Time->Prop.
Hypothesis time le reflexive :
(t:Time)(time le t t).
Hypothesis time le transitive :
(t1,t2,t3:Time)(time le t1 t2)->(time le t2 t3)->(time le t1 t3).

Hypothesis time le total :
(t1,t2:Time)(time le t1 t2)(time le t2 t1).

The keywords Variable and Hypothesis mean that it will be possible to instan-
tiate those type (for example, by the type of reals available in Coq), relation and
hypotheses in order to obtain specializations of the proved theorems. We will
then be able to prove stronger theorems depending on particular instantiations.

Clocks. A clock c is modeled by two (possibly partial) functions. The first one,
tc (time in Coq), maps any natural number n in its domain to the instant t ∈ T
when nth sampling tick occurs. The only assumption on this function is that it
is strictly monotonic (monotonicity in Coq). The second function, lc (lTick in
Coq), maps any time t ∈ T to the number of the occurrence of the tick which
immediately precedes the instant t. It is defined relationally by its characteristic
property (current tick in Coq):

∀n ∈ N · ∀x ∈ T · tc(n) < x ≤ tc(n+ 1) ⇔ n = lc(x)
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This function enables to access the value carried by the writer or by the bus at
the last tick of its clock.

tc(n) tc(n+ 1)

x1 x2

lc(x1) = n lc(x2) = n

For instance, if tc stands for tb, then lc(x) (noted lb(x) in this case) correspond
to sup{n′ | tb(n′) < x}. Thus, we have:

yb(x) = yw(tb(n)) , where n = sup{n′ | tb(n′) < x}
= yw(lb(x))

A clock c is defined by the functions tc and lc. In Coq the type of clock is
defined by a structure which embeds time (tc), lTick (lc) and two characteristic
properties of tc and lc, namely monotonicity and current tick.

Record Clock : Type := {
time :> nat->Time;
monotonicity : (n,n’:nat)(lt n n’)->(time lt (time n) (time n’));
lTick : Time->nat;
current tick :
(n:nat; t:Time)
(time lt (time n) t)/\(time le t (time (S n))) <-> n=(lTick t)

}.
The character “>” is used for the convenient mechanism of implicit coercion
provided by Coq. Suppose that c is of type Clock. c is a record and not a
function. Anyway we can apply it and Coq will instead apply the field time f
the record c. It means we can simply write c n instead of time c n. It improves
the readability.

Some useful results about monotonicity follow from the definition of clocks:

∀c,∀n,∀n′ (tc(n) < tc(n′)) ⇒ (n < n′)
∀c,∀n,∀n′ (n ≤ n′) ⇒ (tc(n) ≤ tc(n′))

They are stated and proved in Coq:

Lemma monotonicity inv :
(c:Clock; n,n’:nat)
(time lt (c n) (c n’))->(lt n n’).

Lemma monotonicity le :
(c:Clock; n,n’:nat)
(le n n’)->(time le (c n) (c n’)).

The following lemma is a fundamental property of lc (lTick in Coq). It
follows from its characteristic property. It guarantees that at any time t, lc(t)
actually occurs after (or at the same time as) any tick n which itself occurs
before t: ∀c,∀n,∀t, (tc(n) < t) ⇒ (tc(n) ≤ tc(lc(t))).
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Lemma following ticks :
(c:Clock; n:nat;t:Time)
(time lt (c n) t) -> (time le (c n) (c (lTick c t))).

4.2 Writer, Bus and Reader

Following strictly definitions from [1], the three devices are formalized as follows:

Variable tw : Clock.
Variable xw : nat->Data.
Fixpoint bw [n:nat] : bool :=
Cases n of
O => false

| (S p) => (negb (bw p))
end.

Definition yw x [t:Time] : Data := (xw (lTick tw t)).
Definition yw b [t:Time] : bool := (bw (lTick tw t)).

We assume a clock tw for the writer and a sequence of values it writes xw.
bw is the sequence of alternating booleans. It is used in order to implement the
alternating bit protocol. yw x (respectively, yw b) maps a time t ∈ T to the last
written value of xw (respectively, bw) at this time t.

We assume a clock tb for the bus. We define yb x (respectively, yb b) which
maps a time t ∈ T to the last value (respectively, boolean) received by the bus
at the time t.

Variable tb : Clock.
Definition yb x [t:Time] : Data := (yw x (tb (lTick tb t))).
Definition yb b [t:Time] : bool := (yw b (tb (lTick tb t))).

We assume a clock tr for the reader. We define x (respectively, y) to be the
nth received value (respectively, boolean) by the reader.

Variable tr : Clock.
Definition x [n:nat] : Data := (yb x (tr n)).
Definition b [n:nat] : bool := (yb b (tr n)).

4.3 Abstraction

Two kinds of abstractions are needed for the automatic proofs of the protocol.
The carried data are restricted to finitely enumerated types, and the quantitative
assumptions (6) are abstracted into event ordering assumptions (7 and 8). In our
approach, the first abstraction is avoided (thanks to the generic type D), but we
deliberately keep the second one. It appears to be more general than the initial
statement. Indeed, whatever the respective quasi-periods of the writer, the bus
and the reader (w, b and r) may be, it ensure all written values are actually
fetched by the bus, and then read by the reader. Moreover, we aim at defining
in Coq a kind of meta-model for data-flow encodings (like the Lustre and Signal
ones proposed in [1]).
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In order to be more general, and for more legibility, we did not introduce
either the counter of bit alternations detected by the reader, nor the sequence
xr of validated values. Actually, b must be specified only for automatic proofs
of the protocol. In this case, the written values and the read values are related,
hence the necessity to implement a mechanism for values discrimination on the
reader’s side. Here, we aim at validating the protocol whatever the mechanism
b for discrimination may be. In Coq, we can relate the instants when a value
is written with the instants when a value is read. We suppose a part of the
transmitted values enables the reader to sample correctly the received values.
This is the case with b. Then, the correctness property (5) which handles values
follows.

We define a function called read index which maps to a given reading tick
k the writing tick read index(k) corresponding to the instant (on the writer’s
clock) when the writer emitted the value that can be read at the instant k (on
the reader’s clock). The following figure illustrates this function:

tw(n) tw(n+1)

tb tb tb tb tb tb tb tb tb tb tb

tr(k) tr(k + 1) tr(k + 2)

read index(k)=read index(k+1)=n read index(k+2)=n+1

This function is defined as follows:

read index :
∣∣∣∣N → N

k �→ lw(tb(lb(tr(k))))

The moment of the kth reading tick is tr(k). The last tick on the bus at this time
(lb(tr(k))) occurs at tb(lb(tr(k))). The carried value at that time corresponds
to the value sent by the writer at its previous tick: lw(tb(lb(tr(k)))). According
to the protocol statement, we actually have the following relation:

∀k ∈ N, (x(k), b(k))
= yb(tr(k))
= yw(tb(lb(tr(k))))
=

(
xw(lw(tb(lb(tr(k))))) , bw(lw(tb(lb(tr(k)))))

)
= (xw(read index(k)), bw(read index(k)))

Now, we focus on read index, which relates the instants when a value is written
with the instants when a value is read. To prove the correctness of the protocol,
we only have to prove that read index is increasing, and that it covers N (so
that all written values are actually read):

∀k1, k2 ∈ N, k1 < k2 ⇒ read index(k1) ≤ read index(k2)
∀n ∈ N, ∃k ∈ N st. n = read index(k)
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Thus, all written values are actually read (and possibly more than once) in a
correct order. Whatever the mechanism b for discrimination may be, it is possible
to validate x(0) and each x(k+1) such that b(k+1) and b(k) are different.

∀n ∈ N, ∃k ∈ N, st. xw(n) = x(k) ∧ bw(n) = b(k)

The property (5) follows when ∀k ∈ N, bw(k+1) �= bw(k). It is actually the case
with the alternating bit protocol.

4.4 Correctness of the Protocol

This result holds under the specific conditions (7) and (8). We state them in
Coq with the unique following assumption:

∀n ∈ N, ∃k ∈ N, st. τb(n) < tr(k) ≤ τb(n+1)

It guarantees that all written values are actually fetched by the bus (τb(n)
always exists, and τb(n+1) �= τb(n) since there is at least one instant tr(k)
which occurs in between them), and all fetched values are actually read by the
reader (τb(n) < tr(k) ≤ τb(n+1)). This assumption is illustrated by the following
picture:

tw(n) tw(n+1)

tb(p)

τb(n)

reading of the nth value

tb(p′)

τb(n+1)

tr(k)

To state this condition, we formally define τb as follows:

∀n ∈ N, ∃k ∈ N, st.




τb(n) = tb(k)
∧ tw(n) < tb(k)
∧ ∀k′ ∈ N, k′ < k ⇒ tb(k′) ≤ tw(n)

(9)

5 A Formal Framework for Any Implementation

Principles. The Coq encoding of the protocol for LTTAs we described in the
previous section can be seen as a high level abstracted implementation. It is
founded on the smallest set of physical requirements (e.g. time is an abstract
domain which only comes with a reflexive, transitive and total relation) and
logical requirements (e.g. no two successive writing ticks can occur without a
bus tick in between them). Thus, any other implementation must provide at
least these requirements. Its correctness then follows.
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We can refine this approach by adding an intermediate level between Coq
and the analyzed implementation. This interface details the expected form of
the time domain (variable T in Coq) and its order (time le in Coq), and the
data domain (variable D in Coq). It must also make explicit the clocks, and the
first instant τb(n) where the bus can fetch the nth writing. Then the hypotheses
concerning the time domain must be proved, and the assumptions concerning
the correctness must be restated. To prove the correctness of any implementation
built upon the model denoted by the intermediate level, we only have to prove
its specification implies the assumptions of its interface.

Examples. Consider the manual proof of theorem 1 in [1]. It is built upon the
explicit periods w, b and r (respectively of the writer, the bus and the reader)
and the phases ψ and ϕ (respectively of the writer and the reader). The time
domain (continuous) is denoted by R. The logical statement of τb (9) in Coq is
implied by the functional statement τb(n) = �(n+ ψ)w� + 1. In this approach,
the correctness of the protocol comes from:

w ≥ b , and
⌊w
b

⌋
≥ r

b
⇒ ∀n ∈ N, ∃k ∈ N, st. τb(n) < tr(k) ≤ τb(n+1)

Now, in [1], another theorem is stated in order to take into account approximately
periodic clocks. tw, tb and tr are restated including jitter terms δw and δr which
denote the variations within a certain bound of w and b during execution. In this
approach, the time domain and its order, the data domain and the clocks have
the same nature as in the first approach without jitter. All we have to prove is
the following property:

w(1 − 2δw) ≥ 1 , and �w(1 − 2δw)� ≥ r(1 + 2δr)
⇒ ∀n ∈ N, ∃k ∈ N, st. τb(n) < tr(k) ≤ τb(n+1)

The following picture illustrates the use of the Coq approach as a generic formal
framework to prove these two implementations:

LTTA with time : R

w, r, b, ψ, ϕ, δw, δrw, r, b, ψ, ϕ

LTTA in Coq

implies the conditions of correctness
instantiates Clock

implies hypotheses on Time
instantiates Time

5.1 LTTA in Signal

We illustrate here the same principle for the Signal solution suggested in [1]. We
first define the intermediate level of any synchronous data-flow approach. Then,
we show how proving the Signal implementation matches these requirements.
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To any device d of a LTTA is associated a clock which provides the sampling
instants. It is possible to access a value at any time thanks to the function
ld associated to the device d which enables to access the value carried at the
previous tick:

time (continuous)

time (continuous)

time (continuous)

fd(t) fd(t′) fd(t′′)

d(ld(t)) d(ld(t′′))

ld ld ld

fetched values fd

clock td

carried values d

Data-Flow Synchronous Approaches. In these approaches, the time continuum
is abstracted. Only the notions of precedence and simultaneity are relevant. It
is therefore very simple to abstract the time domain using the sampling events.
In synchronous data-flow approaches, the clock td only defines the ordered set
of sampling instants, and the carried values d are represented by a signal syn-
chronized with td. In order to make it possible to fetch the carried values at any
time, we introduce a signal fd whose clock1 (noted f̂d) is completely free. For
that purpose, we use the cell construct of Signal. It enables to memorize the last
value carried by a given signal. fd can be simply defined as follows:

fd := (d cell f̂d) when f̂d

The following picture illustrates this abstraction:

fd fd fd

fetched values fd

clock td

carried values d events order

events order

events order
(free clock)

cell
cell cell

dd

This abstraction can be encoded in Coq using the translation scheme detailed
in [8].
1 In a data-flow synchronous approach, by clock we mean the ordered set of instants

where a signal is present.
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LTTA in Signal. In the last step, we prove the specification suggested in [1]
guarantees that no two successive writing ticks can occur without a bus tick in
between them, and that no two successive τb can occur without a reading tick
in between them. This implies the condition for correctness, i.e. ∀n ∈ N, ∃k ∈
N, st. τb(n) < tr(k) ≤ τb(n+1). It can be easily proved using the Propo-
sitional Linear Temporal Logic (PLTL) also encoded in Coq [8]. This property
comes from the shift 2 process. It introduces an interleaving constraint upon the
reader and the writer clocks. The following picture illustrates this approach and
underlines the use of Coq as a general formal framework to prove de correctness:

instantiates Time
implies hypotheses on Time

instantiates Clock
implies the conditions of correctness

LTTA in Coq

LTTA with time : discrete

LTTA in Signal

6 Conclusions and Future Work

We gave a formal proof of the correctness of a protocol for loosely time-triggered
architectures using the Coq proof-assistant. Unlike [1], we did not have to re-
strict the model of the protocol to that of a finite-state system: we introduced a
minimal set of assumptions about physical time. Since any other implementation
of the LTTA protocol must at least guarantee these minimal requirements, our
Coq model can be used as a generic formal proof framework. We illustrated this
aspect by considering the Signal implementation of [1].

Directions of further studies comprise the specialization of our theorems by
instantiating the abstract data type for time by the type for reals provided in
Coq. Using the library of theorems and the decision procedures for reals, we
could prove the numerical property from [1]. Another direction is to consider
the verification of the synchronous data-flow implementation of the protocol. It
could be done using the formalization of Signal in Coq and its library of theorem
[8]. Finally, an attractive aspect of the use of Coq is the extraction of a reference
implementation of the protocol. The only difficulty is that this protocol involves
partial function that are difficult to deal with in Coq2.
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A Model of the LTTA Protocol in SIGNAL

An Overview of SIGNAL. In SIGNAL, a process P consists of simultaneous
equations over signals. A signal x describes a possibly infinite flow of discretely-
timed values v. An equation x = fy denotes a relation between a sequence of
operands y and a sequence of results x by an operator f . Synchronous com-
position P ||Q consists of the simultaneous solution of the equations P and Q
in time. SIGNAL requires three primitive operators: pre references the previous
value of a signal in time (the equation x = pre y or x = y$1 init v initially defines
x by v and then by the previous value of y in time), when samples a signal (the
equation x = ywhen z defines x by y when z is true) and default merges two
signals (the equation x = y default z defines x by y when y is present and by z
otherwise).

P ::= x := f y | P ||Q | P/x f ∈ F ⊇ {prev | v ∈ V } ∪ {when, default, . . .}

As an example, we consider the definition of a counter: Count. It accepts an
input event rst and delivers the integer output val. A local variable cnt, initialized
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to 0, stores the previous value of val (equation cnt := val$1 init 0). When the
event rst occurs, val is reset to 0 (i.e. 0 when rst). Otherwise, cnt is incremented
(i.e. (cnt + 1)). The activity of Count is governed by the clock of its output val
which differs from that of its input rst.

process Count = (? event rst ! integer val)
(| cnt := val$1 init 0
| val := (0 when rst) default (cnt + 1)
|) where integer cnt end;

time t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
rst tt tt tt tt
val 1 0 1 2 3 4 0 1 2 3 0 0
cnt 0 1 0 1 2 3 4 0 1 2 3 0

SIGNAL Implementation of the LTTA. The methodology used in SIGNAL to
implement the LTTA consists of the progressive and compositional refinement of
the requirement expressed by theorem 1: xr(n) = xw(n),∀n ≥ 0 that preserves
the property of flow equivalence: xr and xw hold the same successive values. This
yields the process ltta.
process ltta = (? boolean xw; event cw, cb, cr ! boolean xr, i, zi)

( || (xb, bb, sbw) := bus (xw, writer(xw, cw), cb)
|| (xr, br, sbb) := reader (xb, bb, cr)
|| (i, zi) := prove (sbb, br, cr)
|| objective (sbw, sbb, cb, cr)
|| ) where boolean bw, xb, bb, sbw, sbb, br;

The process ltta is decomposed into its three components reader, bus and
writer connected by one-place buffers. The writer accepts an input xw and defines
the boolean flag bw that will be carried along with it over the bus. The bus
forward its inputs xw and bw to the reader as the result xb and bb of a one-place
buffer. The reader loads its inputs xb and bb from the bus and samples xr from
xb upon a switch of bb. Each of the processes reader, bus and writer operate at
independent (input) clocks cw, cb and cr.
process writer = (? boolean xw; event cw ! boolean bw)

( || bw ˆ= xw ˆ= cw || bw := not (bw$1 init true) || );
process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)

( || (xb, bb, sbw) := buffer (xw, bw, cb) || );
process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)

( || (yr, br, sbb) := buffer (xb, bb, cr) || xr := yr when switch (br) || )
where boolean yr;

end;

The key switch process emits an output signal c iff two successive occurrences
zb and b of the boolean flag differ (notice the importance of the initial condition:
zb must be initialized to true).
process switch = (? boolean b ! event c)

( || zb := b$1 init true || c := (when b when not zb) default (when not b when zb) || )
where boolean zb;

end;

We now detail the definition of the desynchronizing one-place buffer which
simulates asynchrony. The process buffer alternates between the receipt of an
input (x, b) and the emission of an output (bx, bb). The alternate process makes
these operations exclusive by using a boolean flip-flop signal b (notice, again, the
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importance of the initial condition: zb must be initialized to false for receive to
precede send). The process current sustains its input signals (wx,wb) and allows
to retrieve them at a given clock c.
process buffer = (? boolean x, b ; event c ! boolean bx, bb, sb)

( || (sx, sb) := shift (x, b) || (bx, bb) := current (sx, sb, c) || )
where boolean sx;

process alternate = (? boolean x, sx ! )
( || x ˆ= when b || sx ˆ= when not b || b := not (b$1 init false) || )

where boolean b; end;
process shift = (? boolean x, b ! boolean sx, sb)

( || (sx, sb) := current (x, b, ˆsb) || alternate (x, sx) || );
end;
process current = (? boolean wx, wb; event c ! boolean rx, rb)

( || rx := (wx cell c init false) when c || rb := (wb cell c init true) when c || );
The process buffer introduces an unspecified delay (materialized by the input

clock c), hence we can synchronize it with the output of the protocol xr without
affecting the bus or the writer, and check whether they are equal.
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Abstract. Security protocols preserve essential properties, such as con-
fidentiality and authentication, of electronically transmitted data. How-
ever, such properties cannot be directly expressed or verified in contem-
porary formal methods. Via a detailed example, we describe the phases
needed to formalise and verify the correctness of a security protocol in
the state-oriented Z formalism.

1 Introduction

Security protocols enable confidential and authenticated electronic transmission
of sensitive data. Unfortunately, several such protocols thought to be secure have
later been found susceptible to attacks [8], so formal proofs of their correctness
are essential.

Security protocols are usually described informally using a ‘standard no-
tation’ [7]. However, this notation provides no semantics or reasoning princi-
ples, and can be ambiguous when interpreted in isolation. In contrast, ‘formal
methods’ allow for rigorous specification and verification of computer systems
in order to verify system correctness. Therefore, several ‘formal methods’ have
been promoted for verifying the correctness of security protocols [18]. However,
non-functional security concepts such as ‘confidentiality’ and ‘authentication’
[23,15,21] have been found difficult to specify and analyse. Furthermore, for-
malising security protocols can seem quite intimidating to security practitioners
with little or no formal methods experience.

In this paper we present an intuitive Z [25] based approach for formalising and
verifying the correctness of the Needham-Schroeder Public Key Protocol [20],
from its informal description, thus demonstrating the essential phases required
to achieve such a proof.

2 Previous Work

Many formal methods have been proposed for the verification of security proto-
cols [18,16]. This section provides an overview of the methods closely related to
our research.
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Work already done in formal verification of security protocols is dominated by
event-based methods, such as the spi calculus [1] and CSP [22], and logics [21,2,9],
including specialised logics such as the BAN logic [5,26]. Other more popular
methods include use of a new concept called strand spaces [27], and the purpose-
built NRL Protocol Analyzer [17]. However, state-based methods such as B,
Z, and VDM have seldom been used and we are interested in promoting the
application of such methods since their rich data structures enable accurate
modelling of message contents.

Previously, Kemmerer [13] used the Ina Jo formalism to analyse crypto-
graphic protocols. The approach focussed on the assumptions and requirements
pertaining to the operation of the cryptographic functions used for constructing
cryptographic protocol messages.

Boyd [3] presented a formal design for describing secure communication ar-
chitectures based on the concepts of ‘confidentiality’ and ‘authentication’ using
Z. Here, the communication channel enabled the concept of message exchange
between users. His approach was not for the purpose of any protocol in particu-
lar but a more general model that may be useful before particular protocols are
considered.

Boyd and Kearney [4] explored protocol animation using Z for fair exchange
protocols. For the purpose of modelling fair exchange protocols, each agent con-
siders the other to be the intruder. Therefore, the possibility of an external
attacker was ignored. Furthermore, the detailed structure of messages used in
communication was not defined, thus making it difficult to model attacks made
by clever manipulation of protocol messages.

Butler [6] used the B method to formally specify the Needham-Schroeder
Protocol, incorporating event-based methodologies such as that of CSP into his
model by defining possible event traces. Messages were modelled in some detail,
however, an encrypted message was represented informally, merely by including
the identity [6] of the agent to whom the key belonged as part of the message.

Inspired by this previous work, our goal is to show how the Z formalism can
be used, without modification, to specify and verify security properties merely
by careful design and application of appropriate data structures and operations.

3 The Needham-Schroeder Public Key Protocol

Needham and Schroeder [20] explain how public-key cryptography [11] can be
used to distribute encryption keys to agents via a trusted third party. This
protocol has become a classic example in the literature. Three of the seven steps
from the protocol are concerned with authentication between two of the parties
and are represented by the commonly used ‘standard notation’ [7] below.

1. A −→ B : {NA,A}KB

2. B −→ A : {NA,NB}KA

3. A −→ B : {NB}KB

Firstly, agent Antonio sends a message (step 1) to Ben consisting of a nonce
NA (a unique datum used for only one protocol run) [12] and his identity A
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encrypted with the public key of the receiver (in this case Ben’s public key KB ).
This message indicates that someone claiming to be Antonio wishes to establish
communication with Ben. At this point Ben does not know that Antonio actually
created the message because an intruder could have forged it.

Ben replies by sending a message (step 2) consisting of the nonce received,
and also a new nonce NB generated by him, and encrypts both with the public
key of the agent whose identity was part of the received message (in this case
Antonio’s public key KA).

If the nonce that Antonio sent as part of the initial message in step 1 is in
the message sent in step 2, Antonio knows that Ben received and decrypted the
initial message because Ben is the only agent that can decrypt a message that
has been encrypted with key KB , and we assume that it is impossible for any
other agent to forge the nonce NA. (An agent’s public key is known by everyone
— messages encrypted with it can be decrypted only by the agent’s secret private
key [11].) However, Antonio can authenticate Ben as the creator of the message
only if Antonio trusts that Ben will not reveal Antonio’s nonce to any other
agent. This requirement forms part of an invariant on the system that we will
discuss in Section 7.

Antonio sends Ben’s nonce back to him encrypted with Ben’s public key
(step 3). Ben then knows that Antonio received and decrypted the message sent
in step 2. Again, Ben can authenticate the creator of the message only if he
trusts that Antonio will not reveal Ben’s nonce to any other agent. By receiving
this message Ben can also assume that the initial message was from Antonio.

4 Formalising the Protocol

Based on the informal description above, we now illustrate the phases needed to
accurately model this protocol in the Z notation [25], via its rich set of mathe-
matical operators.

4.1 Define a Suitable Set of Data Types

The first phase in formalising the protocol is to define a suitable set of data
structures that capture the types of data used in the standard notation descrip-
tion. We note that the left-hand side of the standard notation displays the agents
whom the messages are being sent between, and the right-hand side displays the
messages.

We define AGENT to be the set of all agents in the network, including
Antonio (A), Ben (B), Colin (C ) and a special symbol ‘⊥’ to represent ‘no
agent’.

AGENT ::= A | B | C | ⊥

The protocol messages are constructed from several data items. Therefore we
assume the set of all such items as a given type.
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[ITEM ]

Given the set of all items, the set of all messages MSG is the set of all possible
sequences of items.

MSG == seq ITEM

In the protocol, there are nonce, key, and address items. These can be en-
crypted individually, or in combination with one or more other items, producing
a single encrypted item. To allow for these different types of data, we declare
the following four subsets of ITEM as an ‘axiomatic’, global Z definition.

NON : P ITEM
KEY : P ITEM
ADR : P ITEM
ENC : P ITEM

disjoint〈NON ,KEY ,ADR,ENC 〉
NON ∪ KEY ∪ ADR ∪ ENC = ITEM

Z’s ‘disjoint’ operator is used to ensure that the sets are pairwise disjoint, i.e.,
each element within a set is not an element of any other set. For completeness
we also specify that each element in ITEM must be in one of the newly declared
sets.

4.2 Define Supporting Functions

The second phase in formalising the protocol is to define operations on the
components of messages. The method of encryption used in the protocol is public
key encryption [11]. Therefore we introduce subsets of public and private keys
from the set KEY of all keys.

PUB : P KEY
PRV : P KEY
pair : KEY �→ KEY

disjoint〈PUB ,PRV 〉
PUB ∪ PRV = KEY
pair = pair∼

∀ k : KEY • k ∈ PRV ⇔ pair(k) ∈ PUB

The set PUB is the set of public keys, and PRV is the set of private keys. The
first two predicates in the schema above state that the sets are pairwise disjoint
and that every key may only be a public, or a private key. The total bijective
function pair is introduced to define a one-to-one symmetric correspondence
between keys. Symmetry is ensured by the predicate pair = pair∼ (that is, pair
is identical to its inverse). Thus if the pair (k1, k2) exists in the pair function, then
the pair (k2, k1) also exists in the pair function. The last predicate specifies that
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each private key corresponds to a public key and vice versa. Such a predicate,
in combination with the symmetry of the pair function, ensures that each pair
of keys in the pair function consists of one private key and one public key.

With these definitions, we now model important properties of the encrypt
function enc and decrypt function dec. The encrypt function maps a key and a
message to a unique encrypted item. The decrypt function maps a key k and
a message m (that may contain encrypted items) to a message containing all
items from m that are either non-encrypted or encrypted using a key other than
k , plus items extracted from all encrypted items in m using k .

enc : (KEY × MSG) � ENC
dec : (KEY × MSG) � MSG

∀ k , � : KEY ; m,m ′,m ′′ : MSG ; s : ITEM •
dec(k , 〈 〉) = 〈 〉 ∧ [1]
((m = 〈s〉 � m ′ ∧ s 
∈ ENC ) ⇒ [2]

dec(k ,m) = 〈s〉 � dec(k ,m ′)) ∧
((m = 〈s〉 � m ′ ∧ s = enc(�,m ′′) ∧ � 
= pair(k)) ⇒ [3]

dec(k ,m) = 〈s〉 � dec(k ,m ′)) ∧
(m = 〈enc(pair(k),m ′′)〉 � m ′ ⇒ [4]

dec(k ,m) = dec(k ,m ′′) � dec(k ,m ′))

The use of total injective functions ensure uniqueness and that all combinations
of keys and messages have a mapping associated with them. Since the enc func-
tion maps an entire message (sequence of items) to a single encrypted item,
arbitrary nesting of encrypted messages is allowed.

The predicates define the recursive nature of the decryption function. Given a
message m and a key k , there are four possible cases depending on the structure
of message m. Firstly, if the message is empty, then the result of the decryption
is an empty message (conjunct 1). If the first item s in the given message is not
an encrypted item (conjunct 2) or if the first item was encrypted using a key
� that does not correspond to the given key k (conjunct 3), then the item is
unchanged and the result of the decryption is sequence 〈s〉 concatenated with
the decryption of the remainder m ′ of the message. Lastly, if the first item of
the given message is an encrypted item that was created using the key that
corresponds (via function pair) to the given key (conjunct 4), then the result is
the decryption of the secret message m ′′ from the encrypted item, concatenated
with the decryption of the remainder of the message.

The use of the encrypt and decrypt functions together with the pair function
allow:

– encryption using a public key (pair(k) ∈ PUB) and decryption using the
corresponding private key (k ∈ PRV ); and

– encryption using a private key (pair(k) ∈ PRV ) and decryption using the
corresponding public key (k ∈ PUB).
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In the protocol, Antonio makes use of his address, Antonio and Ben make use
of their nonces, and all three agents make use of their keys. For simplification,
we can thus assume that each agent possesses one of each of these items. The
declarations below include four total functions that map each agent1 to a unique
public key, private key, nonce and address. The predicate ensures that the pair
of keys associated with each agent G are a matching pair in the pair function.

pub : AGENT � KEY
prv : AGENT � KEY
non : AGENT � NON
adr : AGENT � ADR

∀G : AGENT • pub(G) = pair(prv(G))

4.3 Define the Global State

The third phase in formalising the protocol is to define its state space. The
InTransit Z state schema below contains the content of the communications
medium. It is often assumed in security analysis that protocol instances are
independent, so modelling one instance is sufficient. Furthermore, we can also
assume that one message only is in transit at a time for this protocol. The to and
from variables represent whom the message is to and whom the message is from,
respectively. (We use the ‘no agent’ value ⊥ as the to address to indicate that no
message is in transit.) These variables hold the agent identifiers corresponding
to those on the left-hand side of the standard notation steps. The msg variable
represents the content of the message, if any, corresponding to the message value
in the standard notation steps.

InTransit
to : AGENT
from : AGENT
msg : MSG

To initialise the protocol, we merely need to state that no message is in
transit, by setting the destination address to ‘⊥’, in the following Z operation
schema. An operation schema consists of a declaration part, above the line, and
a predicate part, below. In this case the declaration part inherits the three global
variable declarations from the InTransit state schema.

Init
InTransit

to = ⊥

1 To ensure that all predicates are well-defined, ‘no agent’ ⊥ has dummy keys and a
nonce, but these are never used.
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ASendB A −→ B

BReply B −→ A

AAckB A −→ B
�

�

�

�

�

�

BCheck

Fig. 1. Grouping of Needham-Schroeder protocol steps.

4.4 Specify the Agents’ Operations

The fourth phase in formalising the protocol is to model its dynamic behaviour
as a set of Z operations. A direct interpretation of the standard notation de-
scription above would urge us to model this protocol as three atomic operations
corresponding to the three steps modelled by the standard notation: one for
Antonio sending the first message to Ben, another for Ben’s acknowledgement,
and a final operation for Antonio’s reply. However, we want to allow for the
modelling of intrusions made whilst a message is in transit, and this particular
partitioning would make it difficult to interpose an intrusion between a mes-
sage’s transmission and its subsequent receipt. Alternatively, the protocol could
be broken into six operations — three sending operations and three receiving
operations. However, assuming that an intruder cannot interfere with an agent’s
internal operations, we can more concisely model an agent’s receipt and response
to a message as part of a single ‘atomic’ operation [10,24]. Therefore we group
the operations such that Ben receives and then sends his message within one op-
eration, and also so that Antonio receives and acknowledges Ben’s reply within
one operation (see Fig. 1). Consequently, we can adequately model the whole
protocol as four operations in Z: ASendB , BReply , AAckB , and BCheck .

Antonio Sends the First Message to Ben. We have defined the first oper-
ation specifically for Antonio sending the initial message to Ben. The message
consists of Antonio’s nonce non(A) and his address adr(A), and is encrypted
using Ben’s public key pub(B) 2. This operation is modelled in Z as follows:

ASendB
∆InTransit

to = ⊥ ∧ to′ = B ∧ from ′ = A
msg ′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉

2 We assume that all public keys are known to all agents.
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In the declaration part, Z’s ‘∆’ annotation is used to state that the variables in
schema InTransit may change value by this operation. The undecorated (pre-
state) variables specify the value of variables before the operation. The primed
(post-state) variables specify the value of the variables after the operation. We
want this operation to be applied only if there is no message in transit. This
is checked by stating that the ‘to’ address in the pre-state is no agent ‘⊥’. The
post-state variables to′ and from ′ are set to indicate that after the operation the
message in transit is to Ben and from Antonio. The post-state value msg ′ of the
message contains an encrypted item made from the appropriate structure of the
message sent in step 1 of the protocol. The encrypted item is inside Z’s sequence
brackets ‘〈· · ·〉’ because a message always consists of a sequence of items, even
though it contains only one item in this case. After this operation, Antonio is
waiting for a reply message.

Ben Replies to the Message. The operation BReply is a generalised operation
where Ben receives a message msg from an unknown agent X and replies to this
agent. The reply message msg ′ contains the nonce N received and Ben’s nonce.
As the recipient of the message, Ben cannot control who it will come from, and
thus accepts a message from any valid agent X. Similarly, Ben does not know
the value of the incoming nonce and so uses an abitrary nonce N for this value.

BReply
∆InTransit

to = B ∧ from ′ = B
(∃X : AGENT ; N : NON • to′ = X ∧

msg = 〈enc(pub(B), 〈N , adr(X )〉)〉 ∧
msg ′ = 〈enc(pub(X ), 〈N ,non(B)〉)〉)

The implicit precondition of the operation states that there is a message for Ben,
the message is encrypted with Ben’s public key (in other words Ben can decrypt
it), and that the secret content of the message consists of a nonce N and an
address adr(X ). Ben uses the arbitrary identity X as his way of identifying the
unknown sender. Hence, the reply message, consisting of the nonce N and Ben’s
nonce non(B), is encrypted using X’s public key pub(X ).

Antonio Acknowledges the Message. In the next operation Antonio au-
thenticates Ben’s identity and sends the newly received nonce back to Ben in
order to be authenticated by him.

AAckB
∆InTransit

to = A ∧ to′ = B ∧ from ′ = A
(∃N : NON • msg = 〈enc(pub(A), 〈non(A),N 〉)〉 ∧

msg ′ = 〈enc(pub(B), 〈N 〉)〉)
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After sending the initial message, Antonio expects a message of a particular form
from Ben. He knows that the message should contain the nonce that he sent in
the initial message and another nonce N , which Antonio assumes to belong to
Ben. This is checked as part of the implicit precondition. Antonio replies to this
message by sending a reply back to Ben with the nonce assumed to be Ben’s,
N , and encrypts the message using Ben’s public key, pub(B). The fact that
Antonio assumes that the nonce is from Ben is the weakness of this protocol and
is demonstrated when the intruder’s operations are introduced in Section 5.

Ben Checks the Message. Ben is now expecting a message of a particular
form. Again this is implicitly checked as part of the required pre-state of the
following operation which ensures that Ben’s nonce is part of the incoming mes-
sage, therefore allowing Ben to authenticate the identity of the agent he believes
he is communicating with.

BCheck
∆InTransit

to = B ∧ to′ = ⊥ ∧ msg = 〈enc(pub(B), 〈non(B)〉)〉

Ben’s receipt of the final message is modelled by setting the to variable in the
post-state to ‘no agent’, allowing the protocol to start again.

5 An Attack on the Protocol

Lowe [14] identified an intrusion on this protocol whereby Antonio honestly
communicates with Colin C (the intruder) not knowing that he has malicious
intentions. Colin is able to masquerade as Antonio by sending modified messages
to Ben.

1. A −→ C : {NA,A}KC

2. CA −→ B : {NA,A}KB

3. B −→ CA : {NA,NB}KA

4. C −→ A : {NA,NB}KA

5. A −→ C : {NB}KC

6. CA −→ B : {NB}KB

When Ben receives the message from Colin in step 2, he believes that Antonio
is initiating an instance of the protocol because Antonio’s identity is in the
message. He returns the message (step 3) to Antonio, following the protocol by
encrypting the message with the key KA of the agent whose identity was in the
message. At this point Colin intercepts the message, but as he can’t decrypt it,
he merely forwards the message (step 4) to Antonio. Antonio believes that the
nonce in the message belongs to Colin so he sends it back (step 5) to Colin for
authentication. As Antonio sends Ben’s nonce to Colin, Ben should not have



384 Benjamin W. Long, Colin J. Fidge, and Antonio Cerone

ASendC A −→ C

CSendB CA −→ B

B −→ CA

BReply

C −→ A

AAckC A −→ C

CSendB CA −→ B
�

�

�

�

�

�

BCheck

�

��

�

Fig. 2. Grouping of protocol steps with the intrusion.

trusted Antonio. Now Colin can decrypt the message to gain access to Ben’s
nonce. Colin then sends Ben’s nonce (step 6) to Ben to complete the protocol
and to hide the intrusion.

6 Formalising the Attack

The fifth phase in analysing the protocol is to model the attacker’s behaviour
and any other operations required to enable the intruder’s involvement in the
protocol.

We explained above that Colin intercepts the message in step 3 but is unable
to gain anything from it in its encrypted form. As he forwards the message with-
out modification to Antonio in step 4, there is no change to the state. Therefore,
we choose to ignore this operation in the sequence of protocol steps for the in-
trusion in our Z model. With this in mind we group the standard notation steps
to create six Z operation schemas for modelling the intrusion as shown in Figure
2. Fortunately, we do not need to redefine Ben’s operations as they are general
enough for interaction with any agent.

The first operation needed to model the intrusion is ASendC which is similar
to the ASendB operation, but where Antonio sends the initial message to Colin
instead of Ben.

ASendC
∆InTransit

to = ⊥ ∧ to′ = C ∧ from ′ = A
msg ′ = 〈enc(pub(C ), 〈non(A), adr(A)〉)〉
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The next operation is new and models Colin taking the message sent to him,
encrypting it with Ben’s public key, and sending it to Ben. This generic operation
is used in both steps 2 and 6 when Colin sends a message M to Ben.

CSendB
∆InTransit

to = C ∧ to′ = B ∧ from ′ = C
(∃M : MSG • msg = 〈enc(pub(C ),M )〉 ∧ msg ′ = 〈enc(pub(B),M )〉)

Finally, we also need to define the operation AAckC , which is similar to
AAckB except that Antonio is interacting with Colin instead of Ben.

AAckC
∆InTransit

to = A ∧ to′ = C ∧ from ′ = A
(∃N : NON • msg = 〈enc(pub(A), 〈non(A),N 〉)〉 ∧

msg ′ = 〈enc(pub(C ), 〈N 〉)〉)

7 Verification of the Protocol

7.1 Specify Desired Property

The sixth phase in analysing the protocol is to specify properties that must be
preserved for the protocol to operate securely. Previously, Butler [6] incorpo-
rated a variable containing nonces that are critical into his model. He specifies a
property (invariant) stating that any critical nonces are to remain secret. With
a run of the original flawed Needham-Schroeder Protocol in the presence of an
intruder, this clause no longer holds, because at the end of the protocol, the
protocol’s critical nonce is no longer secret. Hence, the protocol is proven to be
insecure.

We suggest that a simple property similar to Butler’s should apply to nonces
contained within a message to ensure confidentiality in authentication protocols.
Each honest agent must be able to trust other honest agents to use nonces
securely. Given this fact, our property is that each honest agent must not reveal
a nonce to another agent unless it belongs to either the sender or the receiver.
If it belongs to the sender then we may assume that the sender wants it to
become a secret between the sender and the other agent, and if it belongs to
the receiver, there is no harm in sending it to him. We restrict the invariant
to honest agents only, because we know that an intruder can always choose to
violate security properties, but we want to ensure that each honest agent always
aims to maintain such a property. (An intruder should not be able to force
an honest agent to violate security properties either.) The advantage of our
invariant is that no extra variable containing critical nonces such as in Butler’s
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model is required. For the Needham-Schroeder Protocol, it can be expressed by
the following invariant.

Inv
InTransit

(to 
= ⊥ ∧ from ∈ {A,B}) ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}

The invariant states that if there is a message in transit, which is sent from an
honest agent (Antonio or Ben), and the recipient can decrypt it to reveal the
secret content, then all ‘decryptable’ nonces in the message either belong to the
sender or the recipient. Z’s ‘in’ operator checks that the value on its left is in
the sequence on its right [25].

7.2 Formal Proof

The seventh and final phase is to verify that the invariant is preserved by the
protocol. This could be done by separately analysing each operation and proving
that, in isolation, it preserves the invariant. However, this is an unnecessarily
strong goal because it requires us to show that the operations preserve the in-
variant even from unreachable states. Instead, we show that the operations pre-
serve the invariant when sequentially composed in their intended ordering, thus
proving the weaker, but sufficient, goal that they preserve the invariant in their
intended context.

In the flawed version of the protocol described above, after the execution of
AAckC , the invariant does not hold because there is a message from Antonio
to Colin that is decrypted by Colin and contains Ben’s nonce, which does not
belong to either the sender or the receiver. To formally prove that the invariant
does not hold at this point, we use Z’s schema calculus [25]. We construct a
schema from the composition of ASendC , CSendB , BReply , and AAckC , and
prove that this sequence of operations contradicts the invariant.

Given two schemas S and T , the composition ‘S o
9 T ’ of these schemas is

the conjunction of the two where there exists an intermediate state which sat-
isfies both the post-state of S and the pre-state of T [25]. This angelic form
of composition provides a suitable basis for exploring the security implications
of potential sequences of protocol steps. (We are not attempting to prove that
the sequence of steps can be performed successfully, in which case a demonic
composition operator would be needed.)

After initialisation, only ASendC is enabled because to = ⊥. In fact, it is easy
to check that only one operation is enabled at any stage of the protocol sequence
in our model. As CSendB is the enabled operation after ASendC has been per-
formed, we construct this particular sequence. Using the schema composition
operator, the composition of schemas ASendC and CSendB is as follows.
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ASendC o
9 CSendB

∆InTransit

to = ⊥ ∧ to′ = B ∧ from ′ = C
(∃ InTransit ′′ • to′′ = C ∧ from ′′ = A ∧

msg ′′ = 〈enc(pub(C ), 〈non(A), adr(A)〉)〉 ∧
(∃M : MSG • msg ′′ = 〈enc(pub(C ),M )〉 ∧

msg ′ = 〈enc(pub(B),M )〉))

To simplify this complicated schema, the nested quantifier can be removed by ap-
plication of the one-point law [19] because we know that M must be 〈non(A),A〉.

ASendC o
9 CSendB

∆InTransit

to = ⊥ ∧ to′ = B ∧ from ′ = C
msg ′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉
(∃ InTransit ′′ • to′′ = C ∧ from ′′ = A ∧

msg ′′ = 〈enc(pub(C ), 〈non(A), adr(A)〉)〉)

Now that none of the pre or post-state variables depend on the doubly primed
variables, we can also remove these variables and the remaining quantifier.

ASendC o
9 CSendB

∆InTransit

to = ⊥ ∧ to′ = B ∧ from ′ = C
msg ′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉

Next we compose this schema with BReply .

ASendC o
9 CSendB o

9 BReply
∆InTransit

to = ⊥ ∧ from ′ = B
(∃ InTransit ′′ • from ′′ = C ∧ to′′ = B ∧

msg ′′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉 ∧
(∃X : AGENT ; N : NON • to′ = X ∧

msg ′′ = 〈enc(pub(B), 〈N , adr(X )〉)〉 ∧
msg ′ = 〈enc(pub(X ), 〈N ,non(B)〉)〉))

By application of the one-point law we can simplify the schema because we know
that agent X must be A, and nonce N must be non(A).
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ASendC o
9 CSendB o

9 BReply
∆InTransit

to = ⊥ ∧ to′ = A ∧ from ′ = B
msg ′ = 〈enc(pub(A), 〈non(A),non(B)〉)〉
(∃ InTransit ′′ • from ′′ = C ∧ to′′ = B ∧

msg ′′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉)

The remaining quantifier and doubly primed variables can be removed since the
existence of such values is obvious.

ASendC o
9 CSendB o

9 BReply
∆InTransit

to = ⊥ ∧ to′ = A ∧ from ′ = B
msg ′ = 〈enc(pub(A), 〈non(A),non(B)〉)〉

Finally we compose this schema with AAckC .

ASendC o
9 CSendB o

9 BReply o
9 AAckC

∆InTransit

to = ⊥ ∧ to′ = C ∧ from ′ = A
(∃ InTransit ′′ • to′′ = A ∧ from ′′ = B ∧

msg ′′ = 〈enc(pub(A), 〈non(A),non(B)〉)〉 ∧
(∃N : NON • msg ′′ = 〈enc(pub(A), 〈non(A),N 〉)〉 ∧

msg ′ = 〈enc(pub(C ), 〈N 〉)〉))

Once again we can simplify the schema because we know that nonce N is non(B).

ASendC o
9 CSendB o

9 BReply o
9 AAckC

∆InTransit

to = ⊥ ∧ to′ = C ∧ from ′ = A ∧ msg ′ = 〈enc(pub(C ), 〈non(B)〉)〉

Using this schema, we will prove that this sequence of operations does not
maintain the invariant. To do this we show that, assuming the invariant holds
before the operations, the invariant does not hold afterwards. This is expressed
by the following schema.

Inv ∧ ASendC o
9 CSendB o

9 BReply o
9 AAckC ⇒ ¬ Inv ′

∆InTransit

(((to 
= ⊥ ∧ from ∈ {A,B} ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}) ∧

to = ⊥ ∧ to′ = C ∧ from ′ = A ∧ msg ′ = 〈enc(pub(C ), 〈non(B)〉)〉)
⇒
¬((to′ 
= ⊥ ∧ from ′ ∈ {A,B}) ⇒

{n : NON | n in dec(prv(to′),msg ′)} ⊆ {non(from ′),non(to′)})
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We simplify this schema by eliminating the negation in the consequent of the
schema.

Inv ∧ ASendC o
9 CSendB o

9 BReply o
9 AAckC ⇒ ¬ Inv ′

∆InTransit

(((to 
= ⊥ ∧ from ∈ {A,B}) ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}) ∧

to = ⊥ ∧ to′ = C ∧ from ′ = A ∧ msg ′ = 〈enc(pub(C ), 〈non(B)〉)〉)
⇒
((to′ 
= ⊥ ∧ from ′ ∈ {A,B}) ∧
{n : NON | n in dec(prv(to′),msg ′)} 
⊆ {non(from ′),non(to′)})

We distinguish two cases.

– If to 
= ⊥, then the overall antecedent (the first three lines of the predicate
above) is false and the whole schema is trivially true.

– If to = ⊥, then the overall antecedent is simplified as follows:

to = ⊥ ∧ to′ = C ∧ from ′ = A ∧ msg ′ = 〈enc(pub(C ),non(B)〉 (1)

We distinguish two subcases.
• If predicate 1 is false, then the whole schema is trivially true.
• If predicate 1 is true, then both to′ 
= ⊥ and from ′ ∈ {A,B} hold and

the overall consequent (last two lines) can be simplified, in the context
of predicate 1, as follows:

{n : NON | n in dec(prv(to′),msg ′)} 
⊆ {non(from ′),non(to′)} (2)

Since we have assumed that predicate 1 is true, we can evaluate pred-
icate 2 by replacing from ′ with A and to′ with C and applying the
decrypt function to the private key prv(C ) and the message in transit
msg ′ = 〈enc(pub(C ),non(B)〉.
Predicate 2 is then further simplified as follows:

{non(B)} 
⊆ {non(A),non(C )} (3)

Predicate 3 holds trivially and therefore the whole schema is true.

This completes the proof that the invariant is not maintained and the pro-
tocol is not secure. The proof relies on basic predicate logic only, and could be
performed easily using a theorem prover.

8 The Fixed Needham-Schroeder Protocol

It is suggested by Lowe [14] that the protocol will operate securely if Ben’s
identity is included in the message he sends back to Antonio, i.e., if the message
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in Ben’s reply is {NA,NB ,B}KA . Then Antonio will be able to check the identity
of the agent that created the message, which should be the agent with whom
he is communicating. There can be no deception by an intruder modifying a
message and claiming that it belongs to him. Furthermore, since the message is
encrypted with Antonio’s key, the intruder cannot insert his own address into
the message.

To confirm this, we can repeat the phases above using the new version of
the protocol, starting with the fourth phase. The operations that change to
incorporate the new message structure are BReply and AAckC . Both play an
important part in fixing the original protocol. The only difference in the new
operation BReply� is that B adds his identity to msg ′ to conform to the new
protocol.

BReply�

∆InTransit

to = B ∧ from ′ = B
(∃X : AGENT ; N : NON • to′ = X ∧

msg = 〈enc(pub(B), 〈N , adr(X )〉)〉 ∧
msg ′ = 〈enc(pub(X ), 〈N ,non(B), adr(B)〉)〉)

Now that the responding agent’s identity is part of the message, Antonio
has the opportunity to check that this identity corresponds to the agent he is
communicating with. So part of the pre-state for AAckC � is that Colin’s identity
is in the message.

AAckC �

∆InTransit

to = A ∧ to′ = C ∧ from ′ = A
(∃N : NON • msg = 〈enc(pub(A), 〈non(A),N , adr(C )〉)〉 ∧

msg ′ = 〈enc(pub(C ), 〈N 〉)〉)

Repeating the seventh phase in the analysis, we now show that each sequence
of operations before AAckC � maintains the invariant and that the precondition
of AAckC � is violated after BReply�, therefore indicating that AAckC � must
not be performed. Firstly we show that ASendC maintains the invariant.

Inv ∧ ASendC ⇒ Inv ′

∆InTransit

(((to 
= ⊥ ∧ from ∈ {A,B}) ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}) ∧

to = ⊥ ∧ to′ = C ∧ from ′ = A ∧
msg ′ = 〈enc(pub(C ), 〈non(A), adr(A)〉)〉)
⇒
((to′ 
= ⊥ ∧ from ′ ∈ {A,B}) ⇒

{n : NON | n in dec(prv(to′),msg ′)} ⊆ {non(from ′),non(to′)})
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If to 
= ⊥, then the overall antecedent is false and the whole schema is true.
If to = ⊥, the first conjunct is trivially true. The schema can be simplified by
application of the one-point rule and the decrypt function.

Inv ∧ ASendC ⇒ Inv ′

∆InTransit

(to = ⊥ ∧ to′ = C ∧ from ′ = A ∧
msg ′ = 〈enc(pub(C ), 〈non(A), adr(A)〉)〉)
⇒
{non(A)} ⊆ {non(A),non(C )}

As the consequent is true, the whole schema is trivially true thus confirming
that the invariant is maintained. In other words, honest agent Antonio respects
the invariant.

Using ASendB o
9 CSendB calculated in Section 7, we prove that the sequence

of these two operations maintains the invariant.

Inv ∧ ASendC o
9 CSendB ⇒ Inv ′

∆InTransit

(((to 
= ⊥ ∧ from ∈ {A,B}) ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}) ∧

to = ⊥ ∧ to′ = B ∧ from ′ = C ∧
msg ′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉)
⇒
((to′ 
= ⊥ ∧ from ′ ∈ {A,B}) ⇒

{n : NON | n in dec(prv(to′),msg ′)} ⊆ {non(from ′),non(to′)})

When the overall antecedent is false, the whole schema is trivially true. When
the overall antecedent (the first four lines of the predicate above) is true, then
from ′ = C , and therefore the antecedent of the implication in the overall conse-
quent is false which makes the whole schema true. More simply, this just means
that the invariant is satisfied because it places no constraint on the behaviour
of dishonest agent Colin.

For the next test we firstly calculate ASendC o
9 CSendB o

9 BReply�.

ASendC o
9 CSendB o

9 BReply�

∆InTransit

to = ⊥ ∧ from ′ = B
(∃ InTransit ′′ • to′′ = B ∧ from ′′ = C ∧

msg ′′ = 〈enc(pub(B), 〈non(A), adr(A)〉)〉 ∧
(∃X : AGENT ; N : NON • to′ = X ∧

msg ′′ = 〈enc(pub(B), 〈N , adr(X )〉)〉 ∧
msg ′ = 〈enc(pub(X ), 〈N ,non(B), adr(B)〉)〉))
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Using the one-point rule we can simplify the schema because we know that X
must be A and that N must be non(A). Therefore, we can remove the remaining
quantifier and doubly primed variables.

ASendC o
9 CSendB o

9 BReply�

∆InTransit

to = ⊥ ∧ to′ = A ∧ from ′ = B
msg ′ = 〈enc(pub(A), 〈non(A),non(B), adr(B)〉)〉

Using this schema we can prove that this sequence of operations also main-
tains the invariant.

Inv ∧ ASendC o
9 CSendB o

9 BReply� ⇒ Inv ′

∆InTransit

((to 
= ⊥ ∧ from ∈ {A,B}) ⇒
{n : NON | n in dec(prv(to),msg)} ⊆ {non(from),non(to)}) ∧

to = ⊥ ∧ to′ = A ∧ from ′ = B ∧
msg ′ = 〈enc(pub(A), 〈non(A),non(B), adr(B)〉)〉)
⇒
((to′ 
= ⊥ ∧ from ′ ∈ {A,B}) ⇒

{n : NON | n in dec(prv(to′),msg ′)} ⊆ {non(from ′),non(to′)})

If to 
= ⊥, then the overall antecedent is false and the whole schema is trivially
true. Otherwise, if to = ⊥, the first conjunct is trivially true and the remaining
predicates can be simplified by application of the one-point rule and the decrypt
function.

Inv ∧ ASendC o
9 CSendB o

9 BReply� ⇒ Inv ′

∆InTransit

(to = ⊥ ∧ to′ = A ∧ from ′ = B ∧
msg ′ = 〈enc(pub(A), 〈non(A),non(B), adr(B)〉)〉)
⇒
{non(A),non(B)} ⊆ {non(A),non(B)}

As the consequent is true, we know that the schema is true. This is expected
because honest agent Ben obeys the invariant.

It is at this point that AAckC was enabled in the flawed protocol. We now
show that the precondition of the new operation AAckC � is false at this point and
hence not enabled. The precondition of an operation is calculated by assuming
the existence of a final state in the operation [25].
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preAAckC �

InTransit

∃ InTransit ′ •
to = A ∧ to′ = C ∧ from ′ = A ∧
(∃N : NON • msg = 〈enc(pub(A), 〈non(A),N , adr(C )〉)〉 ∧

msg ′ = 〈enc(pub(C ), 〈N 〉)〉)

We know that such a post-state exists, so we can simplify the schema by removing
the quantified post-state variables.

preAAckC �

InTransit

to = A ∧ (∃N : NON • msg = 〈enc(pub(A), 〈non(A),N , adr(C )〉)〉)

To prove that the precondition of AAckC � is not enabled, we prove that the
sequence of operations leading up to AAckC � in the fixed protocol imply the
negation of the precondition of AAckC �. Z’s ‘pre’ operator returns the implicit
precondition of an operation schema by existentially quantifying the post-state
variables.

ASendC o
9 CSendB o

9 BReply� ⇒ ¬(preAAckC �)′

∆InTransit

(to = ⊥ ∧ to′ = A ∧ from ′ = B ∧
msg ′ = 〈enc(pub(A), 〈non(A),non(B), adr(B)〉)〉)
⇒
(to′ 
= A ∨ (�N : NON • msg ′ = 〈enc(pub(A), 〈non(A),N , adr(C )〉)〉))

If the antecedent is false, the whole schema is trivially true. If the antecedent is
true, then there does not exist a message of the form specified in the consequent,
which requires address C to be in the message, and hence the whole schema is
true. Therefore, operation AAckC � is not applicable at this point in the fixed
protocol. Again, this formal proof matches our intuition. Operation AAckC �

expects Colin’s address to be in the message but the sequence of operations
leading up to this point put Ben’s address in the message instead.

Note that if AAckC � were performed, the invariant would be violated. We can
therefore conclude that our invariant Inv is a desired property of the Needham-
Schroeder Protocol, capable of formally distinguishing between successful and
unsuccessful attacks.

9 Conclusion

Analysing security protocols is awkward because the security properties of in-
terest are not directly expressible in typical formal methods. Although some re-
searchers have attempted to remedy this by devising new, unfamiliar formalisms,
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we instead prefer an approach which reuses widely-used methods. In this paper
we demonstrated, via a worked example, that the Z notation is suitable, without
change, for modelling and analysing a security protocol. This was done by sys-
tematically translating the protocol’s informal ‘standard notation’ description
into a Z model that accurately captured all essential features of the protocol.
We then showed that Z’s schema calculus provides a sound basis for formally
reasoning about the protocol’s correctness.
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Abstract. Recently, a refinement calculus called ZRC has been pro-
posed for Z; it follows the style and conventions of the Z notation and is
completely formalised. As any other formal technique, however, it needs
tool support to be of practical use. In this paper, we present such a tool,
which we call ZRC-Refine. It is an interactive tool, whose design makes
it distinctively user-friendly. We believe that ZRC-Refine is a significant
encouragement to the extended application of ZRC and of Z itself.

Keywords: program development, calculation, ZRC.

1 Introduction

Since its original design, Z has significantly evolved; it is now a widely-accepted
notation for specification and design [24, 29]. It has been applied in industry
and an international standard is now available [1]. In spite of all this, Z does not
include a well-defined formal technique for developing programs. This is in direct
contrast to B [2], whose success owes much to the availability of commercial tools
that cover the entire development life cycle.

Recently, a refinement calculus in the style of Morgan’s work [21] has been
proposed for Z. This calculus, which is called ZRC [11], builds up on existing
work [19, 28, 29], but is distinctive in a few important points: it follows the styles
and conventions of Z to avoid any notation translation, and is completely for-
malised. In [10], a weakest precondition semantics for Z is presented, which is
calculated from its standard relational semantics. With basis on this semantics,
the soundness of all refinement laws of ZRC have been proved. More than just
a refinement calculus, ZRC is a theory of refinement for Z.

As with any other technique, however, a tool to support its application is es-
sential for practical use. Many tools that support the application of a refinement
calculus are available [16, 27, 23, 15]. As far as we know, none of them supports
ZRC, or is in any way concerned with calculational refinement of Z specifications.
Many are extensions of existing theorem provers [4, 30, 31, 6, 17, 5, 15].

In this paper, we present ZRC-Refine, an interactive user-friendly tool that
supports the use of ZRC. Its design and implementation was motivated by the
need to support teaching of ZRC. A major goal is to allow the development of
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programs in much the same way as it is done on paper. The ZRC-Refine design
is based on another tool, Refine, which we have developed to support the appli-
cation of Morgan’s refinement calculus [12]. Refine has been used successfully in
teaching for almost three years now.

ZRC-Refine is also useful as a development tool. We have used it in an indus-
trial application, which we present here. Details of this work and of ZRC-Refine
itself can be found in http://www.cin.ufpe.br/~aff/ZRC-Refine. We believe
that ZRC-Refine is an incentive to the detailed application of ZRC and Z itself.

In an effort to conform to current trends, we have adopted the Z Standard
syntax; we have also used Java as an implementation language. We hope to
contribute to the CZT initiative: a project of the Z community to build a core
for integration of Z tools and plug-in tools. ZRC-Refine is open-source and freely
available. The design of ZRC-Refine encourages reusability and extendability.
In fact, the implementation of ZRC-Refine has successfully reused the code of
Refine; this is evidence of the good quality of the design of both tools.

In the next section we present ZRC. In Section 3, we present ZRC-Refine; we
give an overview of its interface and the services it provides. Section 4 discusses
one of our case studies: an Airbus cabin-illumination system [18]. Finally, in
Section 5 we summarise related and future work.

2 ZRC

The Z Refinement Calculus (ZRC) is concerned with the derivation of code from
a concrete Z specification, which is typically obtained by data refining an initial
abstract specification. A development in ZRC considers each of the operations
of the system independently; an implementation is developed for each of them.

The language of ZRC is called ZRC-L [11, 7]; it includes Z, the guarded com-
mand language [13], and extra constructs to handle procedures and recursion [8].
This is a uniform language of specification, design, and programming.

As with all refinement calculi, developments in ZRC are stepwise: typically,
we gradually refine a schema that specifies an operation until we obtain an imple-
mentation. The target programming language is the idealised Dijkstra’s language
of guarded commands; translating the result programs to a real programming
language syntax is a simple matter.

The specifications, the intermediary programs generated during stepwise re-
finement, which mix constructs of programming and specification, and the im-
plementations are all written in ZRC-L. They are considered as programs and,
in this more general sense, refinement is a relation between programs.

An important information in the refinement of an operation is its precondi-
tion. A specification using a Z schema includes this information, but it is not
distinguished. ZRC-L includes specification statements w : [pre, post ]. In such
a construct, w , the frame, is a list of variables, and pre and post are Z pred-
icates: the precondition and the postcondition. Such an operation can change
only the variables in w and, when executed in a state and with inputs that
satisfy pre, terminates in a state and with outputs that satisfy post .
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When refining an operation, the first step is to transform the schema into a
ZRC-L construct more appropriate for refinement. In the simplest case, the tar-
get is a specification statement; in other situations, it is sequences, conditionals,
or even procedures. ZRC includes laws to transform schema conjunctions and se-
quential compositions into sequences, and schema disjunctions into conditionals.
We have also a law to structure the implementations of specifications defined
using promotion in terms of procedures. In these cases, we take advantage of
the structuring of the specification achieved with the schema calculus. These
transformations are the object of a set of laws that we call conversion laws.

A program development is accomplished by the repeated application of re-
finement laws to an initial specification. Usually, the first step is the application
of a conversion law, which is itself a refinement law. From then on, refinement
laws similar to those of Morgan’s calculus, but adapted to comply with the Z
notation and style, are used. In Appendix A we present the ZRC refinement laws
that we use throughout this paper. An extensive set can be found in [7].

3 ZRC-Refine

ZRC-Refine provides an interface composed by four windows; Figure 1 depicts
this interface. The first window, named Refinement, shows the initial specifi-
cation and all the steps carried out during the refinement process. In Figure 1,
an operation specification has already been chosen for refinement.

The specifications are presented in the LaTeX markup that is part of the Z
Standard. For example, in Figure 1 we have the following schema.

\begin{schema}{FindBirthday1}
\Xi BirthdayBook1 \\
name?: NAME \\
date!: DATE
\where
\exists i: 1 \upto hwm @ name? = names i \land date! = dates i
\end{schema}

This is LaTeX markup for the schema below.

FindBirthday1
ΞBirthdayBook1
name? : NAME
date! : DATE

∃ i : 1 . . hwm • name? = names i ∧ date! = dates i

This is an operation of the concrete specification of the well-known birthday book
presented in [24]. The use of the LaTeX markup is certainly not as satisfactory
as the use of the usual graphical Z notation. Adding support for this notation,
however, is a small matter, which we plan for the next version of ZRC-Refine.
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Fig. 1. ZRC-Refine interface

Our main concern, at this stage, is with the main design ideas of ZRC-Refine,
which we discuss here. Many tool builders have chosen to delegate a graphical
interface to later stages of development, and we adopt the same approach. As the
case study presented in the next section show, ZRC-Refine is already usable as it
is; while a graphical presentation of programs can certainly be of great benefit,
its absence does not prevent us from considering even industrial application, and
explore the several other facets of ZRC-Refine.

The second window in the interface of ZRC-Refine, Laws, contains a list
of the laws of ZRC. The third, Proofs, shows the proof-obligations generated.
And finally, the fourth window, Code, shows the resulting code of the refinement
after each development step.

Our tool also has a main menu, through which the user can manage files that
hold specifications and developments, and access the main services provided. The
menu also offers a help to guide the users who are not familiar with the tool or
ZRC itself; a documentation of the laws of ZRC is provided.

To start a development, a file that contains a Z specification should be loaded.
The specification is checked for syntactic and typing errors, which, if found, are
reported in a separate window. If the specification is correct, the schemas that
specify operations and are, therefore, possible starting points for a refinement,
are listed. These are the schemas whose signature includes only a dashed compo-
nent for each undashed component there, and input and output variables, which
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are decorated with ? and !. For example, FindBirthday1 above specifies an opera-
tion, because its signature includes names, dates, and hwm, and names ′, dates ′,
and hwm ′, which are included through ΞBirthdayBook1, and name? and date!.
If FindBirthday1, had an extra undecorated component, it would not be listed.

With this filtering, we help the user to navigate through the specification,
since all the operations that need to be refined are identified. Schemas used to
specify states and types are left out. We do not rule out, however, auxiliary
operation definitions that are used to define the main operations of the system.
For example, in defining an operation Op in Z, it is usual to define the normal
behaviour of the operation using a schema OpNormal , for instance, the error
case using another schema OpError , and a third schema Success that specifies a
success message. The definition of Op itself is (OpNormal ∧ Success) ∨ OpError ,
where the conjunction and the disjunction are schema calculus operators. In
such a situation, ZRC-Refine identifies Op, OpNormal , OpError , and Success as
operations, even though the system operation is Op.

This is not a problem, since the user may choose to refine OpNormal , Success,
and OpError separately. It may be convenient to use conversion laws to refine Op
to a conditional in which OpNormal ∧ Success and OpError appear as programs,
and afterwards refine OpNormal ∧ Success to the sequence OpNormal ; Success,
where the semi-colon is not the schema calculus operator, but the program op-
erator of sequential composition. In summary, Op is refined to a conditional in
which OpNormal , Success, and OpError all apear as programs. At this stage, if
they have already been refined to code, the development is concluded.

Alternatively, if the structure used in the specification is not convenient for
the implementation, the user may decide to consider only Op itself for refinement.
The fact that OpNormal , Success, and OpError are listed does not imply that
the user has to refine them.

After the operations are listed, the user can then choose one to be refined,
which is shown in the Refinement window. To apply a law, we select a (part
of a) program, and, in the Law window, the law we want to apply. Finally, we
press the button APPLY. We cannot apply a law to an already refined program.
If we choose a program to which a law has already been applied, the tool gives
an error message when we press the button APPLY.

Some laws require parameters. For example, one of the simplest refinement
laws is assigI (assignment introduction), which we present in Figure 2. This
law transforms a specification statement into a possibly multiple assignment. Its
application requires two parameters: the list of variables to be assigned, and the
corresponding list of assigning expression. When such a law is applied, ZRC-
Refine opens a window where we must type the parameters.

ZRC-Refine checks parameters for syntactic and typing errors, and produces
appropriate messages if necessary. Moreover, ZRC-Refine checks all implicit and
explicit syntactic restrictions of a law before applying it. For example, assigI can
only be applied to specification statements whose frame includes the variables
as parameters; these restrictions are implicit in the definition of the law. On the
other hand, there is a number of explicit syntactic restrictions that are listed in
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Law assigI Assignment introduction
w , vl : [pre, post ]

� assigI
vl := el

provided pre ⇒ post [el/vl ′][ /′]
Syntactic Restriction vl contains no duplicated variables; vl and el have
the same length; el is well-scoped and well-typed; el has no free dashed
variables; the corresponding variables of vl and expressions of el have the
same type.

Fig. 2. Law assigI: assignment introduction

the definition of assigI ; they guarantee that the assignment resulting from its
application is well-formed and well-typed.

The provisos of the laws, if present, give rise to proof obligation when they
are applied. These proof obligations are shown in the third window of the ZRC-
Refine interface. Our tool does not provide assistance for theorem proving, but
if an invalid proof obligation is generated, the user can undo the offending law
application using the undo facility of ZRC-Refine. In the future, we plan to
integrate ZRC-Refine with a theorem prover.

As the refinement progresses, the collected code is shown in the Code win-
dow. When the derivation ends up, this window contains the complete code that
implements the original specification.

ZRC-Refine provides some facilities to help the user in the management of the
refinement process. These include services as: possibility of undoing and redoing
development steps; inclusion of comments associated the programs generated in
the Refinement window; and printing and navigation facilities.

The possibility of undoing and redoing development steps is very useful.
With this service, the user does not need to restart a development in the case of
a wrong step. It is, of course, also possible to save the development at any stage,
which is clearly useful in the refinement of large programs.

The refinement of programs is usually a long process, in which we manipulate
large and, sometimes, complex formulas. It is fundamental to have explanations
in parts of the refinement, to provide better understandability. ZRC-Refine offers
the possibility to include comments associated to programs in the Refinement
window. This can be done by clicking with the right button on the program.
The tool opens a window where we include or edit comments. They are usually
hidden; it is only when the user requests that the comments are shown.

ZRC-Refine allows the printing of the refinement steps, proof-obligation, com-
ments, and collected code. The refinement steps are printed with the names of
the applied laws. The lines are numbered, and each comment and proof obliga-
tion refers to the line of the program which generated it. It is also possible for
the user to choose which parts (development, proofs or code) should be printed.
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Fig. 3. Command Panel of the Illumination System

Another facility of ZRC-Refine is navigation between refinement and proof-
obligations: by double-clicking in a proof-obligation in the Proofs window, the
law application in the Refinement window that generated it is shown. This is
very important when we have large developments, as that in the next section.

4 Case Study: Airbus Cabin-Illumination System

We describe how ZRC-Refine can be used in the refinement of an Airbus cabin-
illumination system. Its specification, presented in [18], has been intentionally
written at a concrete level, so that data refinement is not necessary. The Airbus
cabin is divided into three zones and two entry areas. The illumination system
provides separate control for each of these parts of the cabin. Figure 3, which has
been extracted from [18], presents the panel used to command the system; a light
indicator is associated with each of its buttons. The lights have three illumination
levels; additionally, the cabin zones may have an extra set of special night lights.

The free types ZONES and EA contain constants to identify the cabin zones
(z1, z2, and z3) and the entry areas (fwd and aft). The set DIM0 contains
constants that represent the light indicators of a particular cabin zone or entry
area (dim1, dim2, bright , off ). They are elements of the free type DIM .

The BRIGHT, DIM1, and DIM2 buttons are used to switch on and off and
to adjust the brightness of the lights in the cabin zones and entry areas. The
function of the NIGHT buttons is determined by the global variable CNLAUTO .
If the value of CNLAUTO is enabled , then the night lights and their indicators
in the command panel are automatically switched on (off) when the ordinary
lights are switched off (on) and the NIGHT button is used only to switch off the
night lights. If CNLAUTO is equal to disabled , then the NIGHT buttons control
the night lights. When a NIGHT button is pressed, the corresponding night light
indicator is turned on, and the night light service is activated.
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The schema ZONEINDstate below specifies part of the illumination system
state. The component zoneInd represents the light indicators associated with
the BRIGHT, DIM1, and DIM2 buttons that control cabin zone lights. For a zone
z , zoneInd z is the light indicator that is on in that zone, or takes the value
off when none of them is on. The component nlInd represents the night light
indicators. It is a function from ZONES to SWITCH , a free type containing the
constants active and passive; nlInd z is either active or passive depending on
whether the NIGHT indicator of zone z is on or off.

ZONEINDstate
zoneInd : ZONES → DIM0
nlInd : ZONES → SWITCH

∀ z : ZONES • nlInd z = active ⇒
(zoneInd z = off ∨ CNLAUTO = disabled)

The invariant establishes that, in all zones, if the NIGHT indicator is on, then
either the ordinary lights in the zone are off, or the night light autoservice is
disabled: the NIGHT button has been pressed to pre-select the night light service.

The indicators of the entry areas are represented by the component eaInd .

EAINDstate
eaInd : EA → DIM0

The lights are identified by addresses in a bus: numbers in the interval from 1
to maxad . The addresses of the lights in each of the zones and entry areas are
identified by tables: partial functions from 1 . . maxad to ZONES or EA.

CCAB : 1 . . maxad �→ ZONES ; CEA : 1 . . maxad �→ EA
CNL1 : 1 . . maxad �→ ZONES ; CNL2 : 1 . . maxad �→ ZONES

CNL1 ⊆ CCAB
domCCAB ∩ (domCEA ∪ domCNL2) = ∅

domCEA ∩ domCNL2 = ∅

The addresses in the table CCAB are those of the ordinary lights in the cabin
zones; if the address a is in CCAB , it identifies a light in the zone CCAB a.
Similarly, CEA contains the addresses of the lights in the entry areas. If the
cabin zones have special night lights, then their addresses are recorded in CNL2.
Otherwise, CNL1 singles out ordinary lights used in the night light service.

The component ill represents the cabin zone, entry area, and night lights.

ILLstate
ill : 1 . . maxad → DIM

∀ a : 1 . . maxad • ill a = onNl2 ⇒ a �∈ (domCCAB ∪ domCEA)

The constant onNl2 represents the on state of a special night light. The invariant
asserts that, for every a, if ill a is onNl2, then a is not an ordinary light.
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The operation EAop controls the illumination of the entry areas; it is acti-
vated by pressing the DIM1, DIM2, or BRIGHT buttons. The input variables ea?
and dim? determine the entry area and brightness level; DIM1, is the subset of
DIM containing dim1, dim2, and bright . The behaviour of EAop depends on
the state of the light indicator associated with the button pressed. If it is on,
the lights are at the brightness level chosen and are turned off, as is the light
indicator. If it is off, then it is turned on and the lights are switched to the chosen
brightness level. The effect on the light indicator is specified by EAINDop.

EAINDop
∆EAINDstate
ΞZONEINDstate
ea? : EA; dim? : DIM1

eaInd(ea?) = dim? ⇒ eaInd ′ = eaInd ⊕ {ea? �→ off }
eaInd(ea?) �= dim? ⇒ eaInd ′ = eaInd ⊕ {ea? �→ dim?}

EAILLopPassive defines the effect of EAop on ill if the light indicator is on.

EAILLopPassive
∆ILLstate
EAINDstate
ea? : EA; dim? : DIM1

eaInd(ea?) = dim? ∧ ill ′ = ill ⊕ { x : dom(CEA � {ea?}) • x �→ off }

The effect of EAop on ill when the indicator is off is specified by EAILLopActive.
If the cockpit door is open and the oil pressure is high, then there is an engine
running, and the illumination of the fwd entry area cannot be changed arbi-
trarily to avoid blinding the cockpit personnel. The table CEAD establishes the
maximum brightness to which the fwd entry areas lights can be switched.

CEAD : 1 . . maxad �→ {off , dim1, dim2}
domCEAD ⊆ dom(CEA � {fwd})

The state of the door (open or closed) and the oil pressure (high or low) are
determined by the global variables cockDoor and oilPres, respectively.

EAILLopActive
∆ILLstate
EAINDstate
ea? : EA; dim? : DIM1

eaInd(ea?) �= dim?
ill ′ = ill ⊕ if ea? = fwd ∧ cockDoor = open ∧ oilPres = high

then { x : dom(CEA � {ea?}) • x �→ dim? } ⊕
{ x : domCEAD | CEAD x <dim dim? • x �→ CEAD x }

else { x : dom(CEA � {ea?}) • x �→ dim? }

The operator <dim defines an order for the brightness levels.
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Law bC Basic conversion (operations that do not modify some state compo-
nents)

〈∆S ; ΞT ; di?; do! | p〉
� bC

αdS , αdo! :







invS
invT
∃ d ′

S ; do! • (inv ′
S ∧ p)[αdT/αd ′

T ]


 , (inv ′

S ∧ p)[αdT/αd ′
T ]




where S =̂ 〈T ; dS | invS 〉 and T =̂ 〈dT | invT 〉

Fig. 4. Law bC : basic conversion

The definition of EAop is as follows. Its precondition is true.

EAop =̂ EAINDop ∧ (EAILLopActive ∨ EAILLopPassive)

In this example, the structure of the specification is not reflected in the in-
tended implementation, which acts on the global system state: the conjunction
of ZONEINDstate, EAINDstate, and ILLstate. For this reason, we start the re-
finement of EAop with an application of the bC law presented in Figure 4, which
can be used to derive a specification statement, taking advantage of the fact that
it does not modify zoneInd .

The law bC applies to a schema 〈∆S ; ΞT ; di?; do! | p〉, which specifies an
operation. The state is S , which includes T . The operation modifies the state,
but not the components of T . Therefore, the specification statement does not
include them in its frame and does not enforce the maintenance of the state in-
variant of T . The predicate ∃ d ′

S ; do! • (inv ′
S ∧ p)[αdT/αd ′

T ] is the precondition
of 〈∆S ; ΞT ; di?; do! | p〉.

The application of bC to EAop yields the specification below.

eaInd ,
ill :




ZONEINDstate ∧ ILLstate,


ILLstate ′

eaInd(ea?) = dim? ⇒ eaInd ′ = eaInd ⊕ {ea? �→ off }
eaInd(ea?) �= dim? ⇒ eaInd ′ = eaInd ⊕ {ea? �→ dim?}(
eaInd(ea?) = dim?
ill ′ = ill ⊕ { x : dom(CEA � {ea?}) • x �→ off }

)
∨




eaInd(ea?) �= dim?
ill ′ = ill ⊕ if ea? = fwd ∧ cockDoor = open ∧ oilPres = high

then { x : dom(CEA � {ea?}) • x �→ dim? } ⊕
{ x : domCEAD | CEAD x <dim dim? •

x �→ CEAD x }
else { x : dom(CEA � {ea?}) • x �→ dim? }










We implement this program with an alternation that distinguishes the cases
eaInd = dim? and eaInd �= dim?. Before we introduce it, however, we use the
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law prcI (procedure introduction) to declare the procedure updILL presented
below, which is used later on to update ill . The procedure block introduced by
prcI has the specification statement above as its main program.

updILL =̂ (val set : F(1 . . maxad); dim : DIM •
ill : [ill ′ = ill ⊕ { a : set • a �→ dim }] )

The procedure updILL has two value parameters: set and dim. It updates ill
by setting to dim the brightness level of the lights whose addresses are in set .
The specification statement in the body of updILL can be implemented using an
iteration. Its refinement is not difficult and, for conciseness, is omitted.

As far as we know, ZRC-Refine is one of the very few refinement tools to
support the use of procedures. The tools reported in [25, 20] support the use
of procedures in the context of a refinement calculus. They do not, however,
support the calculational approach adopted in ZRC, in which parameters and
procedures are introduced and treated independently.

Procedures are fundamental to the development of real systems, in which the
control of the size of the code and of the refinement is essential. With a procedure
construct, we can give a name to a specification, refine it, and introduce a call
every time the specification is found in the main program. As well as adding
structure to the code, we save refinement effort.

Procedures also allow us to preserve the structure of specifications that make
use of the Z promotion technique. In this technique, we first define a local state
with its corresponding operations. Afterwards, we define the global state of the
system as a function from some index set to elements of the local state. The
main advantage is the possibility of defining the operations of the global state
in terms of, or rather, by promoting, the operations of the local state using
the schema calculus. ZRC-Refine implements a conversion law that allows us to
define procedures that correspond to the local state operations, and call such
procedures to implement the global state operations.

To proceed, we apply altI (alternation introduction), and then sP (strengthen
postcondition) and wP (weaken precondition) to simplify the specification state-
ments in the branches of the alternation; we get the program below.

if eaInd = dim? →
eaInd ,
ill :

[(
eaInd ′ = eaInd ⊕ {ea? �→ off }
ill ′ = ill ⊕ { x : dom(CEA � {ea?}) • x �→ off }

)]

eaInd �= dim? →

eaInd ,
ill :







eaInd ′ = eaInd ⊕ {ea? �→ dim?}
ill ′ = ill ⊕ if ea? = fwd ∧ cockDoor = open ∧ oilPres = high

then { x : dom(CEA � {ea?}) • x �→ dim? } ⊕
{ x : domCEAD | CEAD x <dim dim? •

x �→ CEAD x }
else { x : dom(CEA � {ea?}) • x �→ dim? }







fi

We refine the second specification statement; the refinement of the first is similar.
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Applying fassigI in order to introduce an assignment to eaInd , and cfR (con-
tract frame) in order to simplify the remaining specification statement, we derive
the following program.

ill :



ill ′ = ill ⊕ if ea? = fwd ∧ cockDoor = open ∧ oilPres = high

then { x : dom(CEA � {ea?}) • x �→ dim? } ⊕
{ x : domCEAD |CEAD x <dim dim? • x �→ CEAD x }

else { x : dom(CEA � {ea?}) • x �→ dim? }


;

eaInd := eaInd ⊕ {ea? �→ dim?}

The form of the postcondition of the above specification statement suggests the
introduction of a conditional. With this purpose, we apply the law altI (alter-
nation introduction) and, following the application of the laws sP (strengthen
postcondition) and wP (weaken precondition) to the branches of the resulting
alternation, we get to the program below.

if ea? = fwd ∧ cockDoor = open ∧ oilPres = high →
ill :

[
ill ′ = ill ⊕ { x : dom(CEA � {ea?}) • x �→ dim? } ⊕

{ x : domCEAD | CEAD x <dim dim? • x �→ CEAD x }
]

¬ (ea? = fwd ∧ cockDoor = open ∧ oilPres = high) →
ill : [ill ′ = ill ⊕ { x : dom(CEA � {ea?}) • x �→ dim? }]

fi

Using the laws vS (value specification) and pcallI (procedure call introduction),
we can transform the second specification statement into a call to updILL with
parameters dom(CEA � {ea?}) and dim?.

The application of the law pcallI requires that we collect the code refined
until now, because this law is applied to a procedure block that includes a pro-
cedure declaration and the main program. We collect the code by clicking the
right button of the mouse on the Refinement window and choosing the option
Collect Code. This inserts in the window all the code refined so far, which can
be a starting point of refinement. We select the procedure block and choose the
law pcallI . ZRC-Refine searches for programs in the main program that match
the body of the procedure, and replaces them with the procedure’s name. The
approach is based on the work in [8], where procedure bodies are parametrised
commands in the style of Back [3].

As to the first specification statement above, since it does not switch lights to
a common brightness level, we would rather implement it without using updILL.
This development poses no difficulties and is not discussed here. The complete
program is shown in Figure 5. This collected code is presented to the user by
ZRC-Refine in the Code window.

When the Airbus is on the ground, the cabin illumination can be con-
trolled from a MAIN button. Its indicator is represented by the state component
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if eaInd = dim? →
updILL(dom(CEA � {ea?}), off ) ; eaInd := eaInd ⊕ {ea? �→ off }

eaInd �= dim? →
if ea? = fwd ∧ cockDoor = open ∧ oilPres = high →

|[var i : 1 . . maxad + 1 •
i := 1 ;
do i �= maxad + 1 →

if i ∈ dom(CEA � {ea?}) →
if i ∈ domCEAD ∧ CEAD i <dim dim? →

ill := ill ⊕ {i �→ CEAD i}
¬ (i ∈ domCEAD ∧ CEAD i <dim dim?) →

ill := ill ⊕ {i �→ dim?}
fi

i �∈ dom(CEA � {ea?}) → skip
fi ;
i := i + 1

od
]|

¬ (ea? = fwd ∧ cockDoor = open ∧ oilPres = high) →
updILL(dom(CEA � {ea?}), dim?)

fi ;
eaInd := eaInd ⊕ {ea? �→ dim?}

fi

Fig. 5. Collected code of EAOp

mainInd , which is introduced by the schema MAININDstate that follows.

MAININDstate
ZONEINDstate
EAINDstate
mainInd : SWITCH

mainInd = passive ⇔
rannlInd = {passive} ∧ ran zoneInd = {off } ∧ ran eaInd = {off }

If mainInd is equal to passive, the MAIN indicator is off and so are all other
indicators.

The operation MAINop is triggered by pressing the MAIN button. It has
no effect if the Airbus is not on the ground. The global constant LGEARst
determines the current state of the landing gear: downCompressed , downLocked ,
or upLocked . The Airbus is in the air when the landing gear is either downLocked
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or upLocked . This situation is characterised by the schema MAINisBlocked .

MAINisBlocked =̂ [ LGEARst ∈ {downLocked , upLocked} ]

In this case, MAINop does not change the state: it behaves like NOop below.

NOop =̂ ΞZONEINDstate ∧ ΞEAINDstate ∧
ΞMAININDstate ∧ ΞILLstate

If the Airbus is on the ground, the effect of MAINop depends on whether the
MAIN indicator is on or off. If it is on, it is turned off, and so are all the other
light indicators.

MAININDopPassive
∆MAININDstate

mainInd = active ∧ mainInd ′ = passive

The lights themselves are turned off as well. Also, if the MAIN indicator is turned
off, then MAINop reinitialises the system. The MAIN indicator is turned on.

MAINILLopPassive =̂ [ ∆ILLstate | ill ′ = { a : 1 . . maxad • a �→ off } ]

MAININDINITop =̂ [ MAININDstate ′ | mainInd ′ = active ]

The BRIGHT indicators are turned on and the NIGHT indicators are turned off.
This is specified by the schemas ZONEINDINITop and EAINDINITop.

ZONEINDINITop
ZONEINDstate ′

zoneInd ′ = { z : ZONES • z �→ bright }
nlInd ′ = { z : ZONES • z �→ passive }

EAINDINITop =̂ [ EAINDstate ′ | eaInd ′ = { z : EA • z �→ bright } ]

Finally, the ordinary lights are switched to bright and the special night lights,
switched off.

ILLINITop
ILLstate ′

{ a : (domCCAB ∪ domCEA) • a �→ bright } ∪
{ a : domCNL2 • a �→ off } ⊆ ill ′

The initialisation operation is defined as the conjunction of the last four schemas
presented above.

INITop =̂ ZONEINDINITop ∧ EAINDINITop ∧
MAININDINITop ∧ ILLINITop
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Law sdisjC Schema disjunction conversion

Op1 ∨ Op2

� sdisjC

if pre1 → Op1 pre2 → Op2 fi

where preOp1 ≡ pre1 ∧ inv ∧ t ; preOp2 ≡ pre2 ∧ inv ∧ t ; inv is the state
invariant; and t is the restriction that is introduced by the declarations of
the state components and input variables.
Syntactic Restriction Op1 and Op2 act over the same state and have the
same input and output variables.

Fig. 6. Law sdisjC : schema disjunction conversion

This is used in the definition of the MAINop operation, which is specified by a
disjunction, as shown below.

MAINop =̂ (MAINisBlocked ∧ NOop) ∨
(¬ MAINisBlocked ∧
(MAINILLopPassive ∧ MAININDopPassive ∨
[MAININDstate | mainInd = passive] ∧ INITop))

The outer structure of the specification is carried out to the implementation.
ZRC-Refine implements a conversion law sdisjC (schema disjunction conver-
sion), which we present in Figure 6. It transforms a disjunction Op1 ∨ Op2 into
a conditional, in which, if the precondition of Op1 holds, then Op1 is executed,
and if the precondition of Op2 holds, then Op2 is executed. If both preconditions
hold, then Op1 and Op2 are nondeterministically chosen for execution.

For the application of sdisjC , it would not be necessary any parameters be-
cause the preconditions of the schemas can be calculated by ZRC-Refine. This,
however, would generate long predicates, possibly involving existential quantifi-
cations. So, we take the preconditions as parameters. The requirement that the
input predicates correspond to the preconditions of the operations is left as a
proof obligation.

Applying sdisjC to MAINop, we can obtain the following conditional. The
precondition of the first disjunct, MAINisBlocked ∧ NOop, can be expressed as
LGEARst = downLocked ∨ LGEARst = upLocked ; the precondition of the sec-
ond disjunct is LGEARst = downCompressed .

if LGEARst = downLocked ∨ LGEARst = upLocked →
MAINisBlocked ∧ NOop

LGEARst = downCompressed →
¬ MAINisBlocked ∧
(MAINILLopPassive ∧ MAININDopPassive ∨
[MAININDstate | mainInd = passive] ∧ INITop)

fi
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Law seqcI Sequential composition introduction

w , x : [pre, post ]
� seqcI

w : [pre,mid [w ′/w ] ] ; w , x : [mid , post ]

Syntactic Restriction mid is well-scoped and well-typed; mid has no free
dashed variables; and no free variable of post is in w .

Fig. 7. Law seqcI : sequential composition introduction

The development of the schemas in the branches of the conditional follows in
much the same way as we have already illustrated, using the procedure updILL.

Our case studies give us confidence in the usability of our tool. The develop-
ments we tackled had been carried out by hand before. The use of ZRC-Refine
revealed mistakes and points in which it would be beneficial to provide extra
versions of the existing refinement laws. For example, one of the formulations
of the law that introduces a sequential composition in ZRC is as presented in
Figure 7. It does not deal with output variables explicitly; the requirement that
the postcondition does not have free variables that are also in the frame makes
it impossible to use this law if there is an output variable in the frame, which,
typically, is also in the postcondition. A generalised version of this law is imple-
mented in ZRC-Refine.

We also observed the need to provide support for transformations based on
the schema calculus laws. In our developments, when a schema expression did
not have the form required to apply a conversion law, we had to modify the
specification to include an equivalent schema expression which was appropriate.
For this reason, in the implementation of the laws, it was important to avoid
unnecessary constraints in terms of the particular form of schema expressions.
In most cases, however, simple properties of the schema calculus are useful to
perform the necessary transformations.

5 Conclusions

We have presented ZRC-Refine, a tool to support a refinement calculus for Z in
the style of Morgan; we have presented its main features and discussed an indus-
trial case study. ZRC-Refine is still an academic exercise, but a very promising
one, we believe.

ZRC-Refine is available in http://www.cin.ufpe.br/~aff/ZRC-Refine. It
was developed using Java, and amounts to about 84000 lines of code, in 420
classes. In the site, we can also find UML documentation of the design, a tutorial,
and example developments, including the complete refinement of the Airbus
Cabin Illumination System presented here.
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The design of ZRC-Refine is based on that of another tool that we developed
to support Morgan’s refinement calculus. The quality of the design has been
confirmed by our ability to reuse code.

Several tools are reported in the literature. To the best of our knowledge,
none of them is related to the development of programs from Z specifications,
or to ZRC. Another distinguishing feature of ZRC-Refine is the treatment of
procedures as illustrated in our case study. Due to the results presented in [9, 8],
ZRC adopts Backs’s approach to procedures [3], and includes some novel laws.

We drew many ideas from the design of the tools reported in [16, 27]. These
are both interactive tools whose operation tries to mimic the way in which pro-
grams are developed on paper. The Proxac system is a transformation editor [23]
driven by theory definitions; a refinement calculus tool was obtained with the
definition of a theory based on the refinement calculus laws. The works described
in [4, 30, 31, 6, 17, 5] are uses of a theorem prover, more specifically, HOL [14] and
Ergo [26], to encode the refinement calculus theory. Except for the tool presented
in [5], the interfaces provided are not adapted to the application of the refine-
ment calculus supported. The B approach to refinement supported by its tools
is based on verification rather than calculation: implementations are proposed
and proof-obligations arise as a consequence.

We plan to further develop ZRC-Refine: inclusion of a graphical editor for Z
and integration of a theorem prover are examples of tasks in our plans. We will
also invest in extra facilities to support the management of the developments.
We intend to include support for the definition and application of refinement
tactics, in the style proposed in [22]. In that work, a refinement tactic language
is presented; a tool that supports its use has already been integrated to Refine.
Integrating this tool to ZRC-Refine as well is not a complex task.

A more substantial piece of future work is the addition of support for data
refinement in Z, in the form of a proof-obligation calculator. Our plan is to
produce a robust refinement calculator.

Acknowledgments

We would like to thank Ian Toyn for his Z grammar, and Fernanda Santos and
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A Laws

Law altI Alternation introduction
w : [pre, post ]

� altI

if i • gi → w : [gi ∧ pre, post ] fi

provided pre ⇒ (
∨

i • gi)
Syntactic Restriction Each gi is a well-scoped predicate; no gi has free
dashed variables; {i • gi} is non-empty.

Law cfR Contract frame
w , x : [pre, post ]

� cfR
x : [pre, post [w/w ′] ]

Syntactic Restriction The variables of w are not in x .

Law fassigI Following assignment introduction
w , vl : [pre, post ]

� fassigI
w , vl : [pre, post [el [w ′, vl ′/w , vl ]/vl ′] ] ; vl := el

Syntactic Restriction vl contains no duplicated variables; vl and el have
the same length; el is well-scoped and well-typed; el has no free dashed
variables; the corresponding variables of vl and expressions of el have the
same type.



A Refinement Tool for Z 415

Law pcallI Call to a non-recursive procedure introduction
|[proc pn =̂ (fpd • p1) • p2[(fpd • p1)] ]|

= pcallI
|[proc pn =̂ (fpd • p1) • p2[pn] ]|

Syntactic Restriction pn is not recursive.

Law prcI Procedure introduction
p2

= prcI
|[proc pn =̂ (fpd • p1) • p2 ]|

Syntactic Restriction pn is not free in p2; (fpd • p1) is well-scoped and
well-typed.

Law sP Strengthen postcondition
w : [pre, post ]

� sP
w : [pre,npost ]

provided pre ∧ npost ⇒ post
Syntactic Restriction npost is well-scoped and well-typed.

Law vS Value specification
w : [pre[el/vl ], post [el , el ′/vl , vl ′] ]

= vS
(val dvl • w : [pre, post ])(el)

where dvl declares the variables of vl .

Syntactic Restriction The variables of vl are not in w and are not dashed;
the variables of w are not free in el ; el has no free dashed variables.

Law wP Weaken precondition
w : [pre, post ]

� wP
w : [npre, post ]

provided pre ⇒ npre
Syntactic Restriction npre is well-scoped and well-typed.
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Abstract. The most striking aspect of XML specifications released by
W3C is their mutual interdependence. At the time of this writing,
XSLT2.0, XPath2.0 and XQuery1.0 are all W3C working drafts. Stan-
dardizing each specification will be a major challenge. The formal se-
mantics will be helpful to the standardization of languages. The key idea
of this paper is to model common semantic constructs of these languages
as Object-Z classes. The purpose is to reuse these semantic constructs to
specify the semantics of XML family languages and to understand the
common and difference between those languages.

1 Introduction

Extensible Markup Language(XML) [5] supports the standard formats for the
exchange of information among various applications on the Internet. As the im-
portance of XML has increased, a series of lengthy specifications on various XML
languages appeared. The most striking aspect of XML specifications released
by World Wide Web Consortium (W3C)[1] is their mutual interdependence.
XSLT2.0[7], XPath2.0[2] and XQuery1.0[4] are all based on the type system of
XML Schema[14, 19, 3], and share same data model [15]. XSLT uses XPath ex-
pressions as a sublanguage, and XQuery is defined as a superset of XPath. The
numbers of dependencies between specifications have been expressed concern by
some members of XML-DEV [9]. At the time of this writing, XSLT2.0, XPath2.0
and XQuery1.0 are all W3C working draft. Standardizing each specification will
be a major challenge.

The development of formal semantics for these languages will bring any ambi-
guities about the language specifications to the fore so that they can be addressed
and resolved. There are some recent works in the research of the semantics of
XML related technologies. For instance, Wadler [21] presents a formal seman-
tics of the patterns using traditional denotation semantics, Wadler [16] describes
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the formalization of XML Schema, and a formal semantics of the path expres-
sions using judgments and inference rules are also defined in [20, 12]. We are
interested in describing the mutual interdependence of XML family languages.
In this paper, Object-Z [13, 17] is used as the meta language for presenting se-
mantics. All common constructs of XML family languages, such as data types,
data model and expressions, are specified as Object-Z classes. As example, we
describes the dynamic semantics of partial XQuery by reusing these common
semantic constructs. This object-oriented presentation of semantics will make
sure all specifications fit together and make coherent sense. It not only leads to
concise specification, but also to extensibility and reusability.

The remainder of this paper is organized as follows: Section 2 introduces XML
family languages. Section 3 specifies the common semantic constructs of XML
family languages. Section 4 presents the dynamic semantics of partial XQuery
by reusing the common semantic constructs. Section 5 concludes the paper.

2 XML Family Languages Overview

XML is a simple, very flexible text format derived from SGML. Over the past few
years, XML has rapidly gained popularity as a formatting language for exchang-
ing information. XML family languages are a series of technologies proposed by
W3C, which both develops and promotes standard technologies for the Web.

XML Schema is an XML based alternative to Document Type Definition
(DTD). An XML schema defines the structure of elements and attributes that
can appear in an XML document. It also defines data types for elements and
attributes. XPath is a language for addressing parts of an XML document. XPath
operates on the abstract, logical structure of an XML document. This logical
structure is known as the Data Model, which is the data model of XSLT, XQuery,
and any other specifications that reference it. The model treats XML documents
as trees of nodes. Every value handled by the data model is a sequence of zero
or more items. An item is either a node or a simple typed value, which is defined
by the XML Schema data types. XPath uses path expressions to identify nodes
in an XML document. XPath was designed to be used by XSLT, XQuery and
other related XML languages.

XQuery is a query language that lets you retrieve data items from XML-
formatted documents. XQuery1.0 is a superset of XPath2.0 in the sense that any
valid XPath2.0 expression is also a valid XQuery1.0 expression and will return
the same results. XQuery provides FLWR expressions for iterating over groups
of nodes and for binding variables to intermediate results. XQuery uses element
constructors to create elements that appear in the output or intermediate results
of an expression.

XSLT is a language for transforming XML documents into other XML doc-
uments. The transformation is achieved by a set of template rules. A template
rule associates a pattern, which matches nodes in the source document, with a
content constructor, which can be evaluated to produce part of a result tree. A
natural subset of XPath has been used in XSLT for matching (testing whether
or not a node matches a pattern).
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3 The Common Semantic Constructs

This section models the common semantic constructs of XML family languages.
These constructs include the data types of XML Schema, the data model of
XML document, and the expressions of XPath.

3.1 Data Types

XML Schema is a large and complex standard. In this section, we attempt to
model only the most essential features. These include: atomic, list and union
simple types; and derivation by restriction and by extension.

The class Datatype is modeled as a class union.

Datatype =̂ atomicType ∪ listType ∪ unionType ∪ derivedType

The atomic types are the nineteen primitive types of schema, such as xs:string
and xs:integer, and the types derived from them.

atomicType ::=
String | QName | Bool | Int | Decimal | Float | Double | · · ·

The common attributes of all datatypes are modeled as class baseType, which
contains attributes: type name, name, and set of values, val .

The type Value represents a set of values.

Value

baseType

name : QName
val : P Value

The class unionType is defined by inheriting class baseType. In addition, a
set of members, members. The value space is the union of value spaces of their
member data types. The class listType is defined by inheriting class baseType.
In addition, a sequence of items, items. The value space of list type is composed
of finite-length sequences of values from the value space of the item type.

unionType
baseType

members : P Datatype

val = ∪{∀m : Datatype |
m ∈ members • m.val}

listType
baseType

items : seq atomicType ∪ unionType

val = ran items
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A type derivation either restricts an atomic type, or restricts a named type
to a given type, or extends a named type by a given type. The class derivedType
is defined as class union.

derivedType =̂ res1Type ∪ res2Type ∪ extType

The definition of the class res1Type need define type consFacets, which is
a set of constrains of data types, and function satisfy , which checks if a set of
values satisfy a set of constrains.

consFacets == {length,minLength,maxLength, pattern, enumeration,
whiteSpace,maxInclusive,maxExclusive,minExclusive,
minInclusive, totalDigits, fractionDigits}

satisfy : P Value × P consFacets → B

The class res1Type is defined by inheriting class baseType. In addition, it
contains attributes: a type, base, and a set of consfacets, cons. The class res2Type
is defined by inheriting class baseType. In addition, it contains attributes: a type,
base, and a given type, tp.

res1Type
baseType

base : atomicType
cons : P consFacets

satisfy(val , cons)
∀ v : Value • v ∈ val ⇒ v ∈ base.val

res2Type
baseType

base : Datatype
tp : Datatype

val = tp.val
∀ v : Value • v ∈ val ⇒ v ∈ base.val

The class extType is defined by inheriting class baseType. In addition, it
contains attributes: a type, base, and given type, tp.

The function cat is defined to concatenate two values.

cat : Value × Value → Value

extType
baseType

base : Datatype
tp : Datatype

∀ v : Value • v ∈ val ⇒
∃ v1, v2 : Value • v1 ∈ base.val ∧ v2 ∈ tp.val ∧ v = cat(v1, v2)
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3.2 Data Model

This section presents the data model of an XML document. The data model is
based on the XML Information Set [8], which specifies what information in the
documents is accessible.

The basic data type is Node. Each node is one of seven kinds: document,
element, attribute, text, comment, processing instruction, namespace. The node
type is defined as Z free type definition.

nodeType ::= docType | elemType | attrType
| textType | commType | piType | nmType

The type ID is defined as a set of node identities.

ID

Node

type : nodeType
name : QName
value : String
parent : Node
children, attribute,namespace : seqNode
id : Node → ID
∆
doc : Node
descend , ancestor : seqNode

A Node object contains a node type, type, a node name, name, a node value,
value, a node parent, parent , a sequence of children nodes, children, a sequence of
attribute nodes, attribute, a sequence of namespace nodes, namespace, a unique
identity, id . In addition, the secondary attribute doc is a document node. descend
is a sequence of descendant nodes. ancestor is a sequence of ancestor nodes.

3.3 Expressions

This section presents the dynamic semantics of XPath2.0 expressions. An expres-
sion is either a path expression, a sequence expression, an arithmetic expression,
a comparison expression, a logic expression, a conditional expression or a quan-
tified expression. The expression class Exp is defined as class union.

Exp =̂
pathExp ∪ seqExp ∪ arithExp ∪ compExp ∪ logicExp ∪ condExp ∪ quanExp

The value of an expression is always a sequence of items, which is either an
atomic value or a node. There is no distinction between an item and a sequence
of length one. The types itemType and seqType are defined as following:
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itemType ::= atomicType | Node
seqType == seq itemType

The type of expressions are defined as scalar types scalType.

scalType ::= itemType | seqType

The set of scalar values is defined using the free-value construct.

scalVal ::= atomicVal〈〈atomicType〉〉 | nodeVal〈〈Node〉〉 | seqVal〈〈seqType〉〉
The function type of returns the type of an expression value.

type of : scalVal → scalType

∀ a : atomicType; n : Node; s : seqType •
type of (atomicVal(a)) = atomicType ∧ type of (nodeVal(n)) = Node ∧

type of (seqVal(s)) = seqType

The common properties of all expressions are specified as class baseExp. The
context item context is an object of class Node.

baseExp

type : scalType
∆
context : Node
val : scalVal

type of (val) = type

outVal
val ! : scalVal

val ! = val

A path expression can be used to locate nodes within a XML document tree.
The path expression class pathExp requires the definition of the class Step, which
represents step expressions.

Firstly, the type Axis is defined as a free type definition

Axis ::= child | desc | attr | self | desOrself | followSib |
follow | nmsp | parent | ance | preSib | preced | ancOrself

The type Test is defined as a free type definition

Test ::= text | comm | pi | nd | qnm〈〈QName〉〉
The type Pred is simply defined as Exp type.

Pred == Exp

A step expression consists of an axis to express the relationship between the
context node and the nodes to be selected, a node test, to actually specifies what
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is to be selected, and optionally, predicates, which filters the nodes selected by
the node test. A step expression is defined as an object of class Step. A path
expression contains a sequence of step expressions. It is defined as an object of
class pathExp.

The function evalStep is defined to evaluate a step expression. Function
evalPath is defined to evaluate a path expression.

evalStep : Node × Axis × Test × Pred → seqNode
evalPath : Node × seqStep → seqNode

Step
baseExp

axis : Axis
test : Test
pred : Pred

type = seqNode
val = evalStep(context , axis, test , pred)

pathExp
baseExp

steps : seqStep

type = seqNode
val = evalPath(context , steps)

A sequence expression is either a comma expression, a range expression or a
combine expression. The class seqExp is defined as class union.

seqExp =̂ commaExp ∪ rangeExp ∪ combExp

The class commaExp contains a sequence of expressions exps. A comma ex-
pression object evaluates each of its operands and concatenates the resulting
value into a single result sequence. The class rangeExp contains two integer
operands left and right . The result sequence is constructed containing the two
integers operands and every integer between the two operands. A combine ex-
pression is either an union expression, an intersect expression or an except ex-
pression. The class combExp contains two node sequences operands left and
right , and a combine operator op, which is defined as Z free type definition.

combOp ::= union | intersect | except

The function catExpVal is specified to concatenate the value of sequence of
expressions, to form a single sequence.

catExpVal : seqExp → seq atomicType ∪ Node
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commaExp
baseExp

exps : seqExp

type = seqType
val = catExpVal(exps)

rangeExp
baseExp

left : Exp
right : Exp

type = seq Int
left .type = Int
right .type = Int
∀n ∈ ran val ⇒ n ∈ Int
∧ n ≥ left .val ∧ n ≤ right .val

combExp
baseExp

left : Exp
op : combOp
right : Exp

type = seqNode
left .type = seqNode
right .type = seqNode
op = union ⇒

val = left .val � right .val
op = intersect ⇒
∀n : Node • n ∈ ran val ⇒
n ∈ (ran left .val ∩ ran right .val)
op = except ⇒
∀n : Node • n ∈ ran val ⇒
n ∈ ran left .val ∧ n ∈ ran right .val

arithExp
baseExp

lf : Exp
op : arithOp
rg : Exp

rg .type = lf .type
op = add ∧ lf .type = nmType ⇒ val = lf .val + rg .val ∧ type = lf .type
op = sub ∧ lf .type = nmType ⇒ val = lf .val − rg .val ∧ type = lf .type
op = mul ∧ lf .type = nmType ⇒ val = lf .val ∗ rg .val ∧ type = lf .type
op = mod ∧ lf .type = nmType ⇒ val = lf .val mod rg .val ∧ type =

lf .type
op = div ∧ lf .type = Int ⇒ val = lf .val div rg .val ∧ type = Decimal
op = div ∧ lf .type ∈ {Decimal ,Float ,Double} ⇒

val = lf .val div rg .val ∧ type = lf .type

XPath provides the usual arithmetic operators: +,−, ∗, div and mod , which
are defined on the values of numeric type nmType. An arithmetic expression is
defined as an object of class arithExp, which contains two expressions operands
lf and rg , and an arithmetic operator op, which is defined as type arithOp.

nmType ::= Int | Decimal | Float | Double
arithOp ::= add | sub | mul | mod | div

XPath provides four kinds of comparison expressions, called value compar-
isons, general comparisons, node comparisons and order comparisons. The result
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of a comparison expression is always true or false. The class compExp is defined
as class union.

compExp =̂ valExp ∪ genExp ∪ nodeExp ∪ orderExp

The common attributes of comparison expressions are defined as the class
baseCompExp. Other class can be defined by inheriting this class.

baseCompExp
baseExp

left : Exp
right : Exp

left .type = right .type ∧ type = B

The value comparison operators type valOp, general comparison operators
type genOp, node comparison operators type nodeOp, and order comparison
operators type orderOp are defined as

valOp ::= eq | ne | lt | le | gt | ge
genOp ::= eq ′ | ne ′ | lt ′ | le ′ | gt ′ | ge ′

nodeOp ::= is | isnot
orderOp ::= less | great

The value comparison expression class valExp and node comparison expres-
sion class nodeExp are defined as

nodeExp

baseCompExp

op : nodeOp

left .type = Node
op = is ⇒ val =

(left .val .id = right .val .id)
op = isnot ⇒ val =

(left .val .id �= right .val .id)

valExp

baseCompExp

op : valOp

left .type = itemType
op = eq ⇒ val = (left .val = right .val)
op = ne ⇒ val = (left .val �= right .val)
op = lt ⇒ val = (left .val < right .val)
op = le ⇒ val = (left .val ≤ right .val)
op = gt ⇒ val = (left .val > right .val)
op = ge ⇒ val = (left .val ≥ right .val)

Each of the value comparison operators has a corresponding general com-
parison operator that is defined by adding existential semantics to the value
comparison operator. The operands of a general comparison may be sequences
of any length.
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genExp
baseCompExp

op : genOp

left .type = seqType
op = eq ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val = right .val)
op = ne ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val = right .val)
op = lt ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val < right .val)
op = le ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val ≤ right .val)
op = gt ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val > right .val)
op = ge ′ ⇒ val = (∃ x , y : itemType •

x ∈ ran left .val ∧ y ∈ ran right .val ∧ left .val ≥ right .val)

The order comparison expression uses operators ‘�’ and ‘�’ to compare
the positions of two nodes. For instance, the ‘�’ operator returns true if the
first operand node is earlier than the second operand node in document order;
otherwise, it returns false. The function docOrder defines the document order of
a node in a document.

docOrder : Node → Z

orderExp
baseCompExp

op : orderOp

left .type = Node
op = less ⇒ val = docOrder(left .val) < docOrder(right .val)
op = great ⇒ val = docOrder(left .val) > docOrder(right .val)

A logical expression is either an and-expression or an or-expression. The logic
operators are define as

logicOp ::= and | or

A logical expression is defined as an object of class logicExp.
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logicExp
baseExp

left : Exp
op : logicOp
right : Exp

left .type = B

right .type = B ∧ type = B

op = and ⇒
val = left .val ∧ right .val

op = or ⇒
val = left .val ∨ right .val

condExp
baseExp

test : Exp
then : Exp
else : Exp

test .type = B

test .val ⇒
type = then.type ∧ val = then.val

¬ test .val ⇒
type = else.type ∧ val = else.val

A conditional expression contains three sub-expressions: a test expression, a
then-expression, an else-expression. It is defined as an object of class condExp.

Quantified expressions support existential and universal quantification. The
quantified expression class quanExp requires the definition of variable reference
class VaRef , which requires the definition of variable location class VarLoc.

VarLoc

type : scalType
cont : scalVal

type of (cont) = type

Init
type = itemType ⇒

cont = itemVal(NIL)
type = seqType ⇒ cont = 〈 〉

Assign
∆(cont)
val? : scalVal

cont ′ = val?

Where NIL represents an initial item value.

VaRef
baseExp

nm : QName
vl : VarLoc

type = vl .type ∧ val = vl .cont

Assign =̂ vl .Assign

The quantified operators are defined as

quanOp ::= some | all
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A quantified expression is modelled as an object of class quanExp, which
contains an operator, op, a variable name, nm, an expression, ep, and a test
expression, ts. In addition, a secondary attribute: a variable reference, ref .

quanExp
baseExp

op : quanOp
nm : String
ep : Exp
ts : Exp
∆
ref : VaRef

type = B ∧ ts.type = B ∧ ep.type = seqType ∧ ref .nm = nm
op = all ⇒ val = ∀ i : 1 . . #ep.val • ref .val = ep(i).val ∧ ts.val =

true
op = some ⇒ val = ∃ i : 1 . . #ep.val • ref .val = ep(i).val ∧ ts.val =

true

4 The Semantics of XQuery by Reusing

This section presents the dynamic semantics of partial XQuery by reusing the
constructs in section 3. XQuery has several kinds of expressions. Except the
expressions specified in section 3.3, there are FLWR expressions and constructors
expressions. The expressions class xqExp is defined as class union.

xqExp =̂ xqpathExp ∪ xqseqExp ∪ xqarithExp ∪ xqcompExp∪
xqlogicExp ∪ xqcondExp ∪ xqquanExp ∪ xqflwrExp ∪ xqconsExp

In XQuery, sequence expressions, arithmetic expressions, comparison expres-
sions, logic expressions, conditional expressions and quantified expressions are
all same with corresponding expressions in XPath.

xqseqExp == seqExp
xqarithExp == arithExp
xqcompExp == compExp
xqlogicExp == logicExp
xqcondExp == condExp
xqquanExp == quanExp

The path expressions in XQuery have little difference with ones in XPath.
XQuery supports the following axes: child , descendent , attribute, self ,
descendent or self and parent , the type xqAxis is defined as

xqAxis ::= child | desc | attr | self | desOrself | parent
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The XQuery step expressions class xqStep is defined by replacing type Axis
with type xqAxis in the class Step.

xqStep
Step[xqAxis/Axis]

The XQuery path expressions class xqpathExp is defined by replacing class
Step with class xqStep in class pathExp.

xqpathExp
pathExp[xqStep/Step]

A FLWR expression includes for , let , where and return clauses. The for and
let clauses generate a sequence of variable references tuples. The where clause
serves to filter the tuples, retaining some tuples and discarding others. The return
clause constructs the result of the FLWR expression.

A for clause may contain multiple variables, each with an associated ex-
pression. The for clause iterates each variable over the items that result from
evaluating its expression. The class For contains a sequence of variable name
nms, a sequence of expressions exps, and a secondary attribute refs, which is a
sequence of variable references.

For

nms : seqString
exps : seqExp
∆
refs : seqVaRef

#nms = #exps = #refs
∀ i : 1 . . #nms •

refs(i).nm = nms(i) ∧
refs(i).val ∈ ran exps(i).val

Let

nms : seqString
exps : seqExp
∆
refs : seqVaRef

#nms = #exps = #refs
∀ i : 1 . . #nms •

refs(i).nm = nms(i) ∧
refs(i).val = exps(i).val

A let clause may also contain one or more variables, each with an associated
expression. Unlike a for clause, however, a let clause binds each variable to the
result of its associated expression, without iteration.

The class xqflwrExp need the defination of some auxiliary types and functions.
The type Binds defines a sequence of variable binding tuples.

Binds == seq seqVaRef

The function binding is defined to construct a sequence of variable binding
tuples.

binding : For × Let → Binds
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The function evalSingle is defined to evaluate a FLWR expression which
includes single variable binding tuple.

evalSingle : seqVaRef × Exp × Exp → seqVal

The function evalflwr is defined to evaluate a FLWR expression.

evalflwr : Binds × Exp × Exp → seqVal

∀ b : Binds; wh : Exp; re : Exp; val : seqVal •
#b = 1 ⇒ val = evalSingle(b(1),wh, re)
#b > 1 ⇒ val = evalSingle(b(1),wh, re) � evalFLWR(tail b,wh, re)

The class xqflwrExp includes attributes: a for expression, a let expression,
a where expression and a return expression. In addition, secondary attributes:
a sequence of variable reference tuples refs, and vscope. The predicate pred1
specifies that the whole access scope of a FLWR expression is the scope of
variables in for and let clauses.

xqflwrExp
baseExp

for : For
let : Let
wh : Exp
re : Exp
∆
refs : Binds
vscope : QName �� VarLoc

type = seqType
val = evalflwr(binding(for , let),wh, re)
vscope = {vr : ran for .refs • vr .nm �→ vr .vl}∪

{vr : ran let .refs • vr .nm �→ vr .vl} [pred1]

XQuery provides constructors that can create XML structures within a query.
A special form of constructor called a computed constructor that can be used
to create an element or attribute with a computed name.

The XQuery constructors class xqConsExp is defined as class union.

xqconsExp =̂ compElemCons ∪ compAttrCons

A computed element constructor expression contains attributes: a name ex-
pression, nm, which is evaluated to produce the name of created element node;
a content constructor expression, cont , which is evaluated to produce a sequence
of children nodes of created element node.

A computed attribute constructor expression contains attributes: a name
expression, nm, which is evaluated to produce the name of created attribute
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node; a content constructor expression, cont , which is evaluated to produce the
value of created attribute node.

The function create is defined to create a new element node based on the given
name and content. The function catStr is defined to concatenate a sequence of
strings to form a single string.

create : QName × seqNode → Node
catStr : seqString → String

compElemCons
baseExp

nm : Exp
cont : Exp

type = Node
nm.type = QName
cont .type = seqNode
val .type = elemType
val = create(nm.val , cont .val)

compAttrCons
baseExp

nm : Exp
cont : Exp

type = Node
nm.type = QName
cont .type = seqString
val .type = attrType
val .name = nm.val
val .value = catStr(cont .val)

5 Conclusion

In this paper, the common semantic constructs of XML family languages have
been modeled as a semantic library based on object-oriented views of program-
ming language semantics [10, 11]. The dynamic semantics of partial XQuery lan-
guage has been specified by reusing this library. This highly structured approach
will not only lead to an incremental and compact semantic models but also gain
the extensibility and reusability.

One research direction will be to reuse this library to specify the seman-
tics of all those XML related languages. For instance, Web Services Description
Language(WSDL) [6] uses basic data type defined in [3] to define operations as
typed message exchanges, so it is convenient to reuse the data type components
in the semantic library to define the messages of this language.

One interesting aspect is that Object-Z itself has an XML environment [18]
which supports automatic expansion of Object-Z inheritance and generation of
UML diagrams. With this tool, the formal semantic model for XML family
languages can be studied and understood more readily and visually.
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Abstract. A large class of real-world systems can be modelled as Petri
nets, and complex systems are more conveniently modelled as object
Petri nets. Ensuring that Petri net models avoid forbidden states has
attracted much research effort. The work presented addresses the forbid-
den state problem for object Petri nets, through a method for controller
synthesis. A simple illustrative example is given as well as an illustration
in a flexible manufacturing system. The concept of place invariants plays
an important role in Petri net theory. For the first time, place invariants
are defined for object Petri nets.

1 Introduction

Petri nets [Pet66] are a type of discrete event system [HKG97] in which tokens
represent objects moving through a net. A Petri net represents the dynamics of
the system that it models. The most basic type of Petri net is the place/transition
net (“P/T net”) which has only black tokens. Coloured Petri nets (“CPN”s)
are an extension of P/T nets in which values (“colours”) are bound to tokens.
Object Petri nets are a further extension in which nets can themselves be tokens
of a net. An object Petri net is used to make a model of a complex system
more understandable by breaking up the flat (P/T net or CPN) model and
grouping components that belong together semantically. The result is a model
comprising modules in the form of the token nets (“object nets”). These represent
meaningful sub-parts of the system being modelled, while the overall system is
represented by a higher level net called the system net. Conveniently, those
modules are largely autonomous in their action and so each can be individually
studied. Deeper nesting is appropriate when further modularization of object
net modules delivers benefits in comprehensibility.

Petri nets are used to model real-world discrete event systems including
telecommunications, manufacturing, business, biological, and chemical systems
[LWC01,VG03,FMGV02,J03,Red94,Yam91]. Systems in these application do-
mains are often forbidden from entering particular states. The problem of how
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to guarantee that constraints of a system are satisfied by a model is termed the
forbidden state problem. The synthesis of supervisors or controllers for discrete
event systems, and in particular for various classes of Petri nets, has been an
active area of study. Only some of the work in this area will be mentioned, as
space limits do not allow a comprehensive survey.

The work presented in this paper moves beyond CPNs to a richer Petri
net formalism. In particular, the forbidden state problem is addressed for ob-
ject Petri nets by introducing a method of controller synthesis for object Petri
nets. The growing importance of object Petri nets motivates this research aim
[LLKM95,Lak97,Val01,VG03,ADR01]. The benefits of object-based modelling
have led to its central importance in modelling processes such as flexible manu-
facturing systems, though the complexity of Petri net analysis is not necessarily
decreased by the object-based approach.

Ramadge and Wonham developed a theory [RW89] for modelling supervised
discrete event systems and for synthesizing controllers for discrete event systems.
Sreenivas [Sre97] showed how to use supervisory control to enforce liveness in
discrete event systems that are modelled by Petri nets. Takai et al gave a neces-
sary and sufficient condition for the existence of a unique maximally permissive
feedback in Petri nets with external input places [TUK94]. Makungu et al de-
veloped a supervisory control theory and a method for supervisor synthesis for
a class of CPNs [MBSD99].

Makungu et al also identified two main approaches to controller synthesis:

1. In the first, a discrete event system is described using a controlled Petri net
[Kro97,IH88]. A controlled Petri net is an extension of a standard Petri net
in which external control inputs can influence the enabling of transitions.
Holloway and Krogh formulated the forbidden state problem for controlled
Petri nets [HK91]. Boel et al addressed the forbidden state problem for a class
of controlled Petri nets [BBNB95].

2. The second imposes control by synchronizing the main Petri net, also vari-
ously called the process Petri net and plant Petri net, with a controller which
may be a P/T net.

The method of controller synthesis for Petri nets by Yamalidou et al [YMLA96]
is essentially an example of the second approach identified by Makungu. The
method of Yamalidou is based on place invariants and has the benefit that it
is not limited to cyclic nets. In extending the approach of Yamalidou to object
Petri nets, it will not be necessary to explicitly address the evolution of object
nets except in the case of synchronization between an object net and the system
net. At the same time, it certainly is critical to ensure that synchronization is
accommodated. Given these factors, the authors favour the method of Yamali-
dou. Thus, the method will be extended below to address the forbidden state
problem for object Petri nets.

In Section 2, object Petri nets are introduced, and the linear algebra-based
calculus for P/T nets is extended to allow calculations on evolution of object
Petri nets, as a foundation for the subsequent section. In particular, it will be
shown how the new calculus accommodates the expression of synchronization.
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In Section 3, the place invariant method for synthesizing controls for object
Petri nets is explained. In Section 4, the method is illustrated using an example.
Conclusions and and future research directions are given in Section 5.

2 Object Petri Nets

A variety of different high-level Petri nets are used for systems engineering (cf.
[VG03]), all of which extend the basic formalism of place/transition nets or “P/T
nets”. Kis et al’s Chameleon nets [KNX97] and Valk’s object systems [Val01]
are two formalisms using the nets-within-nets paradigm of object Petri nets.
A synchronization relation is commonly used in order to allow communication
between objects (nets) at different levels of an object Petri net.

The definitions in Sections 2.1, 2.2 and 2.3 are from previous work [FM03,
FM02], while novel concepts are presented and discussed in the sequel.

2.1 Basic Definitions

The definition of P/T nets is first recalled for reference.

Definition 1 (P/T net). A P/T net is a tuple (P, T, F, W ) with disjoint sets
of places P and transitions T ; the function F ⊆ (P × T ) ∪ (T × P ) defines the
flow relation; and the function W : (P × T ) ∪ (T × P ) → N with W (x, y) = 0 if
and only if (x, y) �∈ F defines the arc weights.

A marked P/T net or P/T net system is a tuple (P, T, F, W, m0) where
(P, T, F, W ) is a P/T net and m0 : P → N is the initial marking. The marking
of place p is denoted m(p).

Below, a subscript of 0 will be used to denote initial net markings. An arc
with weight zero has the same practical effect as an arc that does not exist, and
so these notions are regarded as equivalent. In the following, a P/T net is called
an ordinary Petri net if ∀(x, y) ∈ F.W (x, y) = 1 is true for that P/T net.

Definition 2 (system net). A system net is a tuple

SN = (Σ, P, T, F, C, V, E)

where the following hold:

(i) Σ is the set of types or colours with a subtype relation � that is reflexive
and transitive.

(ii) P is the set of system net places and T is the set of system net transitions
such that P ∩ T = ∅.

(iii) F ⊆ (P × T ) ∪ (T × P ) is the flow relation, also called the set of arcs.
(iv) C : P → Σ is a total function, called the typing function or colouring

function of the system places.
(v) V is the set of variable symbols and to every v ∈ V there is associated a

type type(v) ∈ Σ.
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Fig. 1. An object Petri net with a system net and an object (token) net.

(vi) E : F → Multisets(V ) is the arc labelling function.
(vii) The set of variables on the incoming arcs of transition t is denoted Vt

and, for every variable v on an outgoing arc, v ∈ Vt is true. of t. The set
V =

⋃
t∈T Vt is the set of variables of SN.

In Definition 3 an object net is defined to be a P/T net. As with the system
net from Definition 2 the marking is omitted and introduced in the respective
net system. Object nets are also referred to as “token nets” since object nets are
represented by tokens moving through a system net.

Definition 3 (object net or token net). An object net ON = (P, T, F, W )
is a P/T net.

Remark 1. It is assumed that different object nets have pairwise disjoint sets of
places and transitions, and that the names of system net places and transitions
are pairwise disjoint from the transitions and places of all object nets.

Informally, an object Petri net is a CPN with tokens which are P/T nets.
The definitions given in this section are partly based on those of chameleon nets
[KNX97] and object systems [Val98,Val01]. The following definition of an object
Petri net refers to a synchronization relation, which is given in Definition 8. The
other components of an object Petri net are a system net (Definition 2) and a
set of object nets (Definition 3).

Definition 4 (object Petri net). An object Petri net (“OPN”) is a triple
OPN = (SN, {ON i}i∈I , S) where SN is a system net, for each i ∈ I an indexing
set ON i is an object net, and S is a synchronization relation.

An OPN is essentially a system net with an associated set of object net tokens
and a synchronization relation between transitions of the system net and object
nets. Throughout this paper, only two-level nesting of nets is allowed. Figure 1
portrays a simple example of an object Petri net.

Definition 5 (OPN marking). A marking m of an OPN

(SN, {ON i}i∈I , S)

is a function

m : P → Multisets({(ON i, m) | m : Pi → N}i∈I),

such that ∀p ∈ P.∀(x, m) ∈ m(p).type(x) � C(p).
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Recall that an object Petri net does not include reference to a marking.
When an object Petri net marking is associated with an object Petri net, then
something new is derived: an object Petri net system. The marking of place p in
an object Petri net system is denoted m(p).

2.2 Synchronization in Object Petri Nets

The synchronization relation from earlier work on object Petri nets was previ-
ously generalized [FM03] when synchronization expressions were introduced for
each transition of the system net. This reflects the view that the system net may
invoke a synchronization in several different ways. That is, the synchronization
may require a finite set of object net transitions to occur simultaneously with its
own firing. This more general approach to synchronization admits the standard
binary synchronization as a special case.

Synchronization expressions from Definition 6 are used as a rule for synchro-
nization of a transition t of a given net with other transitions of a (not necessarily
distinct) net or nets. When reading Definition 6 the reader should be aware that:

(a) it assumes that the sets of transition labels for all nets in the object Petri
net are pairwise disjoint, and

(b) it defines synchronization expressions in disjunctive normal form (“DNF”).

These requirements are for convenience and are not onerous: (a) is a matter of
relabelling and, for (b), it is clear that every formula containing only conjunctions
and disjunctions can be transformed into DNF.
Definition 6 (synchronization expression). Let OS = (SN, {ON i}i∈I , S)
be an object Petri net with system net SN = (P, T, F ) and object nets ON i =
(Pi, Ti, Fi). Denote the set of object net transitions by T̂ :=

⊎
i∈I Ti and define

a context-free grammar G = (VN , VT , R, D) where VN = {A, C, D}, VT = T̂ 

{(, ), ∧, ∨}, D is the initial symbol, and R comprises the following rules:

D → D ∨ (C) | C

C → C ∧ A | A

A → u for all u ∈ T̂ .

The language generated by the grammar G is denoted L(G). The synchronization
expression of system net transition t is a pair (t, EG) where EG ∈ L(G).

Definition 7 (synchronization evaluation). The expression EG ∈ L(G)
from Definition 6 is true if it is mapped to  under the evaluation function
and is otherwise false. The evaluation function is given by:

L(G) → B

u �→  if and only if u can fire in its net1

EG1 ∧ EG2 �→  if and only if EG1 and EG2 are simultaneously true
EG1 ∨ EG2 �→  if and only if EG1 or EG2 (or both) are true.

1 For this definition the object net is viewed as an isolated ordinary net system.
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The semantics of synchronization expressions is given by the synchronization
evaluation function:

T × L(G) → B

(t, EG) �→  if and only if t is enabled in the system net2and EG is true.

A transition appearing in an interaction expression can fire if and only if the
interaction expression evaluates to true. Only transitions of the system net or
the object nets that do not appear in any synchronization expression of S may
fire autonomously.

In Definition 6 the first component of a synchronization expression is a tran-
sition in T , i.e. from the system net. This portrays the view of the system net
controlling the object Petri net and reflects locality conditions that should also
be taken into account for the generalised case of multi-level object Petri nets.
In restricting synchronizations to take place only between adjacent levels a lo-
cality condition is imposed. Object-object synchronization is prohibited in the
present model. Object nets can synchronise among each other only indirectly by
synchronizing with a net that takes the rôle of the system net.

If u ∈ T̂ is not synchronised with a particular transition t, then this could be
seen in the fact that u does not appear in the expression EG(t).

The following definition uses the notation of Definition 6.

Definition 8 (synchronization relation). A synchronization relation for
a system net with set of transitions T is given by:

{(
t, EG(t)

) | t ∈ T ∧ EG(t) ∈ L(G)
}
.

To give an intuitive feel for synchronization expressions, if the synchroniza-
tion expression for t were (t, u1 ∧ u2) then both transitions u1 and u2 of the
object net must simultaneously be able to fire in order that transition t of the
system net be enabled. Thus enabled, transition t can fire, so changing the mark-
ing of the system net and the marking of the object net according to the firing
of transitions u1 and u2 in the object net. If (t, u1 ∨ u2) were the element of
the synchronization relation involving t, then it would be sufficient for either
transition u1 or u2 of the object net to be enabled in order that transition t be
enabled in the system net.

The simplest kind of synchronization is where t a system net transition is
synchronised with u an object net transition, so that (t, u) is the synchroniza-
tion expression. This is called binary synchronization and is sufficient for many
purposes. The binary synchonization (t, u) is denoted in diagrams by labelling
both t and u with a symbol < n > for some n value. Where several such syn-
chronizations are indicated, they are distinguished by different n values. This
notation is used in Section 4.

2 Enablement and transition firing in the system net is discussed below.
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2.3 Transition Firing in Object Petri Nets

While synchronization is defined in terms of transition firing, enablement is a
prerequisite to firing. Figure 2 illustrates how enablement of transitions varies
under different synchronization relations.

t
u2

u1

��� � �� ������	 
�	�� ��� ��� ������
��	 ��� �� � ����

t
u2

u1

��� � �� ������	 
�	�� ��� �� � ��� �

�� 
�	�� ��� �� � ����

t

��� � �� �� ������	 
�	�� ��� ����
����������� ��������

t
u2

u1

�	� � �� ������	 �����	���� �� �������
��� �� �� �� �� ���� � 	��� �� ���
���� �� ��� �������������� ���� ���
�� �������������� ���������

Fig. 2. Enablement of t varies with synchronization expression.

A variety of different firing rules have been discussed in earlier literature
and the main differences are characterised by the proposed semantics of the
respective approaches. Two main directions are noteworthy: reference semantics
and value semantics (cf. [Far99], [Val99], [Val100]). The former views an object
net as an integral item that cannot be locally modified without the knowledge
of this being transferred to all referring instances. By contrast, the latter takes
the viewpoint that local copies can act individually.

Having formally introduced synchronization, the OPN occurrence rule can
now be given.

Definition 9 (OPN occurrence rule). Consider (OPN, m) an OPNS with
system net SN = (Σ, P, T, F, C, V, E). Then transition t of the system net is
enabled if and only if
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(i) EG is true, where (t, EG) is the synchronization expression of t from Def-
inition 6, and

(ii) there exists a variable binding function

βt : Vt →
⋃

Σ with ∀x ∈ E(p, t).βt(x) ∈ type(x)

such that image(f) ⊆ m(p).

The successor marking is given by:

m′(p) =






m(p) − βt(E(p, t)) + βt(E(t, p)) if (p, t), (t, p) ∈ F
m(p) − βt(E(p, t)) if (p, t) ∈ F and (t, p) /∈ F
m(p) + βt(E(t, p)) if (t, p) ∈ F and (p, t) /∈ F.

Object net transitions that are not subject to any synchronization require-
ments can occur autonomously according to the usual occurrence rule for P/T
nets. Similarly, a system net transition t can occur autonomously if it is not sub-
ject to any synchronization requirement. An autonomous system net occurrence
effectively moves the (unchanged) marked object nets bound to the respective
variables of Vt from the input places to the output place of t according to βt the
binding.

2.4 Calculus for Object Petri Net Evolution
A notation and calculus is needed to describe and analyze evolution of object
Petri nets. The necessity of this will become clear in Section 3 when the method
is introduced.

Calculating the evolution of the system net is straightforward if the marking
of any place of the system net is regarded as a multiset of object nets. However,
it is necessary to ensure that whatever notation is used does not break down
when applied to evolution of the object nets. The method that will be extended
for synthesizing Petri net controllers relies on the transition matrix (also called
the incidence matrix or change matrix). Thus, it would be convenient if there
was an analogue of the P/T net transition matrix [Mur89] for object Petri nets.

The extended notation for object Petri nets is introduced using the example
in Figure 1. System net places are ordered to allow a vectorial representation of
any marking of the system net.
Definition 10. A marked object net representation is a pair (ON, v) where
ON is the name of the object net and v is the marking vector of the object net.

Definition 11 (OPN marking vector). The marking vector of an OPN is
a column vector whose dimension equals the number of places in the system
net of the OPN. Each entry of the vector is the multiset of marked object net
representations corresponding to the marking of each place of the system net.

The symbol m which is used to denote OPN marking is also used to denote the
OPN marking vector. When dealing with multisets of object nets, the multiset
brackets are sometimes omitted for ease of reading.
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The object Petri net in Figure 1 has marking









(
ON ,




0
0
0




)

0









. The transition

matrix of the object net is
[−1 −1 1

1 1 −1

]

while the transition matrix of the system

net is
[−(ON , mx) (ON , mx)

(ON , my) −(ON , my)

]

. The notation (ON , mx) means that there

is a token in place x and in place x only of ON.
The only information that need be included about the marking of the object

net ON in the system net’s transition matrix is that the marking is unchanged
when the transition of the system net fires. Of course, this would not necessarily
be the case if there was some synchronization between the system net transition
and an object net transition.

Now, suppose the object net in Figure 1 is marked, with a token in the two

leftmost places. Then the object Petri net has marking







(
ON ,




1
1
0




)

0





. The

only possible evolution of the object net can be calculated by:








(
ON ,




1
1
0



 +
[−1 −1 1

1 1 −1

]′ [1
0

]
)

0









=









(
ON ,




0
0
1




)

0









.

A prime denotes matrix transpose. For the matrix N the symbol N ′ denotes
the tranpose of N . In this paper, the usual notation NT for the transpose of N
might cause confusion with T the set of transitions.

The only possible evolution of the system net is calculated by:









(
ON ,




0
0
1




)

0









+
[−(ON , mx) (ON , mx)

(ON , my) −(ON , my)

]′ [1
0

]

=







0

(
ON ,




0
0
1




)





 .

This calculus is nothing but a nesting, in the marking vector of the system
net, of the widely-used linear algebraic calculus for P/T net evolution [Mur89].
Thus, the method of Yamalidou et al can directly be applied to object nets since,
with two-level nesting, object nets are P/T nets.

It will be seen later that the above vector notation for object Petri nets is
convenient for calculations on object Petri net evolution. The above notation is
certainly adequate for calculations on system net evolution and this is what will
be required below.
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3 Place Invariants and Feedback Control for OPNs

The method of controller synthesis using place invariants for object Petri nets
will be described, borrowing heavily from Yamalidou et al though important
differences will be clear when the extension is applied.

Definition 12. The token count vector of an OPN is an integer vector with the
same dimension as the marking vector of that OPN. Each entry is the size of
the multiset in the corresponding entry of the marking vector of the OPN.

If the marking vector of an OPN is m then m denotes the token count vector
of the same OPN.

Suppose a system must satisfy nc constraints with jth constraint of the form:

kj1m(pj1) + · · · + kjnj
m(pjnj

) ∈ Mj (1)

where kj ∈ N and kji ∈ N for each 1 ≤ i ≤ nj , and m(pj1), . . . , m(pjnj
) are

the markings of the places pj1 , . . . , pjnj
whose markings are to be constrained,

and Mj is a set of multisets of marked object nets. This is the most basic kind
of constraint and is the object Petri net analogue of the most basic form of
constraint for P/T nets:

kj1m(pj1) + · · · + kjnj
m(pjnj

) < kj

where each kji and kj ∈ N.
The nc constraints in (1) can be combined into a single expression

L · mp ∈ b (2)

where L is a nc × n matrix whose jth row comprises the coefficients of each
place in the jth constraint and n is the number of places of the system net,

and mp =






m(p1)
...

m(pn)




, and b is the vector






M1
...

Mnc




. The symbol “∈” is used in

the context of vectors as referring to inclusion in each corresponding row of the
vector.

In mp the subscript p refers to the original net or the “process” net, whereas
the subscript c refers to the augmentation of the net or the “controller”. This
notation is borrowed from Yamalidou et al.

The constraints (2) can be expressed as an equality by introducing the vector
for the marking of the nc control places:

L · mp + mc = b.

A place invariant is a set of places whose token count is constant, regardless
of transition firing [Mur89] and are formally defined as follows.
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Definition 13 (place invariant [YMLA96]). A place invariant for a P/T
net is an integer vector X which satisfies X ′ · ∆ = 0 for ∆ the transition matrix
of the P/T net.

Definition 14 (OPN place invariant). A place invariant for an OPN is an
OPN token count vector X which satisfies X ′ ·∆ = 0 for ∆ the transition matrix
of the OPN.

For such X as in Definition 14,

m · X = m0 · X

for all reachable markings m where m0 is the initial marking of the net. referring
to the marking of a single place p, whereas m(A) is a column vector representing
the marking of a set A of places of the system net.

The place invariant is to be the left-hand side of the constraint equations
augmented to X ′ =

[
L I

]
where I is the identity matrix. The transition matrix

of the net augmented with the control place is required. This is given by

∆ =
[

∆p

∆c

]

where ∆p is the transition matrix of the original net and ∆c that of the aug-
mentation to the net for the controller.

Now X ′ · ∆ = 0, (3)

so
[
L I

] ·
[

∆p

∆c

]

= 0 (4)

or L · ∆p + ∆c = 0 (5)
or ∆c = −L · ∆p (6)

Thus, the arcs connecting the control place to the existing transitions are
specified. To find the initial marking of the control place c use:

L · mp + mc = b

which implies m0(pc) = b − L · mp0 .

The initial marking then becomes m0 =
[

mp0

m0(pc)

]

.

The method just presented can be understood by considering the occurrence
graph of the system. The forbidden states are isolated making it impossible
for the system to enter those states. This is a result of additional restrictions
being imposed on the firing of transitions which, in the original net, would allow
the forbidden states to be entered. In the first example of Yamalidou et al the
original net has the occurrence graph given in Figure 3. All states in the lower
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Fig. 3. Occurrence graph of original net in Yamalidou et al.
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Fig. 4. Occurrence graph of controlled net in Yamalidou et al.

system net
transition

unconstrained
object net

unconstrained
object net

constrained
object net

constrained
object net

system net
transition

Fig. 5. Constraining object nets in some places of system net.

left square are forbidden, because the places b and c have more than one token
between them. The occurrence graph of the controlled net is given in Figure 4
in which the forbidden states are no longer reachable.

If constraints are imposed on an individual object net using the methodology
of Yamalidou et al, then the augmented object net is controlled wherever it may
be in the system net. That is, there is no apparent practical method for ensuring
that an object net is constrained when it is in one place while unconstrained when
in another place, since to constrain an object net is to modify its structure.

An extended class of object Petri nets can be considered by slightly modifying
the definition of object Petri nets. Marked object nets could be used as arc
inscriptions so that transition firings modify the constraints to which an object
net is subject depending on the place of the system net which the object net
occupies. This is illustrated in Figure 5. The question of modifying properties of
object nets brings into relief some benefits of linear logic Petri nets (“LLPN”s).
An LLPN is obtained from an object Petri net by converting the object nets
to linear logic formulae. Linear logic semantics can then be used to change the
structure of object nets. Thus, intepreting an object Petri net as an LLPN,
desirable properties can be forced onto the object Petri net. This line of research
is currently being pursued [FM03].

Finally, if any object net were unbounded then, if a constraint such as that
in expression (1) involves that unbounded object net, then the right-hand side
Mj could be selected to be an infinite multiset. This would present difficulties
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<2>
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Fig. 6. System net with only one object net allowed in dotted region.
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Fig. 7. Object net tokens of system net in Figure 6.

for computation of whether the constraint is satisfied. It would cause the control
place to generally contain an infinite number of tokens, which does not lend itself
to practical interpretation. In addition, there is no Petri net formalism allowing
an infinite number of tokens to appear in a net. For these reasons, the treatment
in this paper is restricted to bounded object nets.

4 Case Study: Feedback Controller Synthesis

A case study is presented using the object Petri net with system net in Figure 6
and object nets in Figure 7. This case study purports to model some character-
istics of industrial processes, rather than to mimic an entire industrial process.
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Fig. 8. Infinite subgraph of the occurrence graph of the net in Figure 6.

The system net has a restricted zone indicated by the dotted rectangle in
Figure 6. The tokens that are collectively permitted in this zone—that is, in
places p3 and p4—will be constrained. A controller will be constructed to ensure
that the constraint is satisfied using the method presented in Section 3. Finally,
the net in Figure 6 will be augmented with the controller.

The object Petri net in Figures 6 and 7 represents an infinite state system.
The occurrence graph contains the graph shown in Figure 8 as a subgraph. In
Figure 8 the object nets present in the places of the system net are not mentioned
as these are evident by referring to Figure 6. The occurrence graph shows that
the number of tokens will multiply without bound unless a controller is built for
the net.

The tokens (i.e. marked object nets) that are available are:

(ON 1, m
1
1), (ON 1, m

2
1) and

(ON 2, m
1
2), (ON 2, m

2
2), (ON 2, m

3
2), (ON 2, m

4
2)

The symbol mi
1 is a marking of ON 1 with one token in place qi and no other

tokens, and mj
2 is a marking of ON 2 with a token in place rj and no other tokens.

A condensed notation is used for arc labels of the system net. Considering
Figure 6, an object net denotation (i.e. ON 1, ON 2 or ON 1+ON 2) on an arc label
means an arc variable whose type comprises the object net paired with every
possible marking. So ON 1 is shorthand for a variable of type {(ON 1, m

1
1), (ON 1,

m2
1)} while ON 2 is shorthand for a variable of type {(ON 2, m

1
2), . . . , (ON 2, m

4
2)}.

The arc marking ON 1 + ON 2 is a variable whose type comprises every multiset
of size two containing marked object nets (ON 1, m

i
1) and (ON 2, m

j
2).

Let M := {∅, {|(ON 1, m
i
1)|}i∈{1,2}, {|(ON 2, m

j
2)|}j∈{1,2,3,4}}. (7)

Now suppose the constraint is:

m(p3) + m(p4) ∈ M. (8)
Then m(p3) + m(p4) + m(pc) (9)

=
⊎

i∈{1,2}
{|(ON 1, m

i
1)|} +

⊎

j∈{1,2,3,4}
{|(ON 2, m

j
2)|}. (10)
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Note that if m0(p3) = ∅ and m0(p4) = ∅ then m0(pc) = M .
The constraint demands that two object nets of the same kind not be in the

marked zone at any moment. This has many possible parallels in real manufac-
turing processes. For example, there may be sufficient machinery in the marked
zone to process one fibreglass job and one aluminium job at any moment, but no
more than one of each. In addition, it was mentioned above that the number of
tokens can increase without bound if left unchecked. The constraint protects the
marked zone from being forced to accommodate an unlimited number of tokens.

When a marked object net appears with a particular marking in a cell of
a transition matrix, then that cell represents a synchronised transition. Such
a marking can be specified only because the object nets used in this example
are simple, so there is only one possible marking that could enable any given
transition in ON 1 or ON 2. In a general object Petri net with synchronization,
there are many possible object net markings which will enable a synchronised
object net transition.

Now L =
[
0 0 1 1 0 0

]
, since the coefficients of m(p3) and of m(p4) are 1 in

the constraint equation while the coefficient of each m(pi) for i ∈ {1, 2, 5, 6} is
zero. In order to determine how the control place is connected to the existing
transitions, just as in (6), the following can be used:

∆c = −L · ∆p (11)
= − [

0 0 1 1 0 0
] · ∆p (12)

where ∆p =

Applying (12) gives ∆c equal to the following row vector:

[
0 (ON 1, m

x
1) (ON 1, m

1
1) − (ON 1, m

2
1) −(ON 1, m

y
1) . . .

. . . −(ON 1, m
x
1) (ON 1, m

x
1) + (ON 2, m

y
2) 0

]

which yields ∆ using ∆ =
[

∆p

∆c

]

. For the initial marking of the control place,
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m0(pc) = N − L · m0(p) where N ∈ M

= N −

L











(ON 1, m
1
1) + (ON 1, m

1
1) + (ON 2, m

1
2) + (ON 2, m

1
2)

0
0
0
0
0











= N − ∅
m0(pc) = N where N ∈ M.

The system net equipped with the control place is shown in Figure 9. Ob-
ject nets with indeterminate markings (represented in the transition matrix by
(ON1, m

x
1) and (ON2, m

y
2)) have been omitted from Figure 9 for clarity.
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Fig. 9. System net augmented with control place pc.

Figure 9 displays the system net in Figure 6 with the control place pc added
and with control arcs (shown with dotted lines) inserted between pc and the t4,
t5 and t6 transitions. The multiset sum of the tokens in places p3, p4 and pc is
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constant at m(p3)+m(p4)+m(pc) from (10) as a result of the consruction of the
control arcs. Thus, the constraint (8) is always satisfied.

In a case such as this the power of the method for synthesizing controllers for
object Petri nets becomes apparent. For the standard Petri net by Yamalidou
et al [YMLA96], it was shown in Figure 3 that the occurrence graph is quite
simple. By contrast, the occurrence graph of the relatively simple object Petri
net in Figures 6 and 7 has over 100 states in its finite, non-repeating subgraph,
though the entire occurrence graph is infinite.

The case study presented was constructed by the authors. A second case
study was developed and will appear in the third author’s PhD thesis to illustrate
controller synthesis for object Petri nets in a more pragmatic setting. The second
case study is based on an object Petri net extension of the flexible manufacturing
system modelled by Holloway and Krogh [HK91].

5 Conclusion and Outlook

Nearly all real-world systems have restrictions on their functioning. Thus, in
order to faithfully model such systems, Petri nets (or, in the case of complex
systems, object Petri nets) need to be augmented with some mechanism to en-
sure that undesired or forbidden states are avoided. Without a solution to the
forbidden state problem, object Petri nets are limited in their usefuless for mod-
elling practical systems. A relatively straightforward method has been presented
for synthesizing a controller for an object Petri net in order to ensure that for-
bidden states are avoided.

The following three main contributions are made in this work:
1. A method for controller synthesis is given for object Petri net models, so

addressing the forbidden state problem for object Petri nets.
2. For the first time, place invariants are defined for object Petri nets.
3. A linear-algebraic calculus is defined for object Petri net evolution.

The method for computing object Petri net controllers was illustrated in a
simple system modelled by an object Petri net equipped with synchronization.

The work of Yamalidou et al using place invariants for controller synthesis
for P/T nets was extended to object Petri nets. This motivated the second
contribution. It was necessary to have a definition for place invariants for object
Petri nets in order to extend the work of Yamalidou.

In turn, the third contribution was motivated by the second. That is, it was
necessary to introduce a new calculus for object Petri net evolution so that a
suitable notation was available for defining place invariants. The calculus pre-
sented is essentially linear-algebraic and so lends itself to implementation in
linear algebra software packages. Thus, calculations on evolution of object Petri
nets can be made as tractable as those for P/T nets.

Other restrictions in the method presented are that object net markings must
be bounded and that the constraint expressions are limited to the form given in
(1) which is recalled here:

kj1m(pj1) + · · · + kjnj
m(pjnj

) ∈ Mj
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Requiring that object nets are bounded is not an onerous restriction as prac-
tical applications are generally finite. Restricting constraints, however, does limit
the range of specifications of forbidden states which could be accommodated. In
particular, not all constraints take the form in (1). For example, consider:

k1m(p1) + · · · + knm(pn) ∈ M1 ∨ · · · ∨ Mj . (13)

Therefore, future work should extend the new method to object Petri net con-
straints obtained by generalizing the expression (1). Generalizing to the kind of
constraint in (13) would be straightforward. Howwever, the problem quickly be-
comes complex when combining several constraints each involving parentheses,
conjunction and disjunction (represented by asterisks) in the following way:

k11m(p1) + · · · + k1nm(pn) ∈ ∗11m
1
1 · · · ∗1n1 M1n1 ∗1n1+1

...
knc1m(p1) + · · · + kncnm(pn) ∈ ∗nc1Mnc1 · · · ∗ncnnc

Mncnnc
∗ncnnc+1 .

Nonetheless, such generalization would be invaluable in catering for the complex-
ity that is possible in flexible manufacturing systems as well as other processes
that could be modelled by object Petri nets.

Future work should also extend the method given for controller synthesis
to more general synchronization expressions, as defined in Section 2.2. It might
also be worthwhile extending the method to object Petri nets which have nesting
deeper than two levels, as such object Petri nets provide the modularization and
comprehensibility benefits of object Petri nets to a greater extent. In particular,
using object nets which are themselves object Petri nets is beneficial when a
standard object net is so large or complex that greater clarity will be gained
by re-expressing it as an object Petri net. A prerequisite to achieving either
of these is to extend the calculus in Section 2.4 to accommodate more general
synchronizations and deeper nesting.
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Abstract. The purpose of this paper is to provide the designers of cooperative 
workflows with a formalism that has a high expressive power and a strong 
theoretical basis. The existing techniques for correctness analysis of real-time 
cooperative systems, however, are not suitable to representing passing value 
indeterminacy and batch data processing function. Moreover, the correct 
behaviors of cooperative systems depend on not only the logical correctness of 
the results obtained but also the time of producing them before critical dead-
lines. To deal with previous problems, logical time Petri nets (LTPN) are first 
introduced based on time Petri nets and temporal logic. It can reduce the state 
explosion problem to a certain extent. Then logical time workflow nets 
(LTWN) and interorganizational LTWNs (ILTWN) are presented for specify-
ing and verifying real-time cooperative systems. Their soundness properties are 
formally defined and analyzed. A rigorous approach for correctness analysis of 
ILTWNs is given based only on their static net structures. The use of our con-
cepts and techniques is illustrated with a example of modeling and analysis of 
an offer-order–deliver-pay system. 

1   Introduction 

Due to the enhancement of reliability and safety of communication networks, the 
number of entities, and the heterogeneity of real-time cooperative systems are un-
precedented and require new approaches to model and verify their correctness and 
temporal properties. It is inspiring that today’s workflow management systems sup-
port business processes of complex real-time systems via electronic networks, and are 
widely used by organizations to coordinate the execution of various applications 
representing their day-to-day tasks. A workflow is a representation of a given process 
that consists of well-defined set of activities, referred to as tasks. Each of the tasks in 
the process represented by a workflow serves a given function, and has some infor-
mation input requirements and may also generate information as a part of its output. 
The tasks in a workflow are usually related and dependent on one another. These task 
dependencies are called intra-workflow dependencies. Task dependencies may also 
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exist across workflows where multiple organizations are involved in shared business 
processes, such task dependencies are referred to as inter-workflow dependencies. In 
general, task dependencies are divided into three types: control dependencies, value 
dependencies and external dependencies. 

It is very important to use an established framework for modeling and analyzing 
workflow processes [1,9], since processes are a main factor in workflow management 
systems. Petri nets [10] have been used to model and analyze all kinds of workflow 
processes, and provide a perfect framework [1]. Therefore, many previous formal 
approaches and tools of workflows based on Petri nets are given and developed 
[1,2,4,5,8]. However, existing techniques on Petri nets and workflow are not suitable 
to representing passing value indeterminacy and batch data processing function, since 
they focus on using traditional Petri nets or high-level Petri nets and associated tools 
to analyze the properties of workflows. Moreover, the correct behaviors of coopera-
tive workflow systems depend on not only the logical correctness of the results ob-
tained by running workflows but also the time of producing these results before criti-
cal deadlines. Thereby, in this paper, we introduce a new formalism for modeling and 
analyzing real-time cooperative systems based on Logical Time Petri Nets (LTPN) 
and Logical Time Workflow Nets (LTWN), which are the abstraction and extension 
of traditional time Petri nets (TPN) [12] and high-level time Petri nets (HLTPN) [4]. 
It is of abstract and succinct representation, and can mitigate the problem of state 
space explosion to a certain extent. This paper focuses on cooperative workflows, i.e., 
there exist external dependencies between the entities in a cooperative system, and 
each entity has a local workflow process related to the workflow processes of the 
other entities. We add hard deadlines to certain individual tasks of the workflow, so 
that one can guarantee the tasks being completed before the given deadlines. LTWNs 
can process data in batch and describe the passing value indeterminacy between or-
ganizations in real-time cooperative systems. For a class of OR-restricted LTWNs, we 
discuss how they are combined to ensure that their interorganizational logical time 
workflow net (ILTWN) is sound. Our results can be more expediently used by the 
designers of cooperative workflows, when compared with the analyzing approach of 
interorganizational workflows based on message sequence charts [2,3]. Because the 
static logical sequence of the cooperative tasks between two related workflows is only 
analyzed, this method can reduce consumedly the analysis complexity of ILTWNs. 
The use of our concepts and techniques is illustrated with a useful example of a sim-
ple offer-order-deliver-pay system.  

The rest of this paper is organized as follows. In Section 2, we present the formal 
definition of logical time Petri nets, and give their temporal formula semantics and 
equivalent representations in TPNs and HLTPNs. In Section 3, we define formally 
LTWNs, and propose their constructing algorithm. Section 4 introduces the formal 
definition of ILTWNs. The properties of ILTWNs are analyzed in Section 5. Also, we 
illustrate the application of these techniques to verification of the LTWN and ILTWN 
models of an offer-order-deliver-pay system. Section 6 concludes this paper. 
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2   Logical Time Petri Nets 

In this section, we first show a brief introduction to TPNs [12] and define their tem-
poral formula semantics. We then introduce formally logical time Petri nets and dis-
cuss functionally their equivalent representations in TPNs and HLTPNs. 

2.1   Time Petri Nets   

For TN=(P,T,B,F,A,SI), a tuple TPN=(TN,M0) is a time Petri net if and only if [12] 
P is a finite nonempty set of places; 
T is a finite nonempty set of transitions, and P∩T=∅; 
B: P×T→N is the backward incidence function, where N is a set of natural num-

bers; 
F: T×P→N is the forward incidence function; 
M0: P→N∪{0} is the initial marking; (P,T,B,F and M0 together define a Petri net.) 
A⊆P×T is a set of inhibitor arcs; 
SI is a mapping called static interval. ∀t∈T, SI(t)=[SEFT(t),SLFT(t)], where 

SEFT(t) and SLFT(t) are the static earliest and latest firing time, respectively. 
In the graphic representation, places are drawn as circles, transitions as bars, and 

inhibitor arcs as roundlet-terminated arcs. The flow relations between the nodes (i.e. 
places and transitions) are represented as directed arcs, and the tokens of the making 
as dots inside places. Incidence functions B and F are annotated close to their corre-
sponding directed arcs and static firing intervals close to their corresponding transi-
tions. But ∀t∈T, p∈P, if B(p,t)=1 or F(t,p)=1, B or F is graphically omitted for the 
sake of concision. We use the following symbols for the pre-set and post-set of a node 
x∈P∪T: •x={y| (y,x) ∈( P×T) ∪( T×P)}, x•={y| (x,y) ∈( P×T) ∪( T×P)}. 

The state of a TPN is made up of a marking M and a dynamic firing interval FI as-
sociating each transition with an earliest and a latest dynamic firing time: state 
=(M,FI), where M∈R(M0) is a marking reachable from M0, ∀t∈T, FI(t)=[EFT(t), 
LFT(t)], and FI(t) is the relative-time firing interval of t. EFT(t) is the enabled delay 
time from the moment that t is enabled. (M,FI) ∈R((M0,SI)) means that (M,FI) is a 
state reachable from (M0,SI). 

A transition t is enabled if each p∈•t contains B(p,t) tokens at least and none of the 
places connected to it through an inhibitor arc contains any token. t is firable at time τ 
if t is enabled and τ is neither lower than the earliest firing time EFT(t), or longer than 
the latest firing time LFT(t′) of any other enabled transition t′, i.e., EFT(t)≤τ≤LFT(t′). 

When t fires at time τ, the marking of the net is changed from the current marking 
M to next reachable marking M′, i.e. (M,FI)[(t,τ)>(M′, FI′), and the values associated 
with the dynamic firing intervals of enabled transitions are also changed, where when 
p∈ •t∩t•, M′(p)=M(p)-B(p,t)+F(t,p); when p∈ t•-•t, M′(p)=M(p)+F(t,p); when p∈•t-
t•, M′(p)=M(p)-B(p,t); otherwise M′(p)=M(p). Also, firing interval FI′ here is updated 
by means of the following rules. The enabled transitions are divided into two groups: 
inherited enabled transitions that were enabled before M′ is reached and newly en-
abled transitions that were enabled after M′ is reached. For any inherited enabled 
transition t′≠t, its firing interval is replaced with EFT(t′)=max{0, EFT(t′)-τ}and 
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LFT(t′)=max{0, LFT(t′)-τ}; for any newly enabled transition t′ (including t), its firing 
interval is reset to the value of its static firing interval. 

2.2   Temporal Formula Semantics of TPNs  

To analyze the temporal properties of logical time workflow nets, in the following, the 
temporal formula semantics of TPNs is defined in terms of temporal logic [6]. 

Given any reachable state (M,FI) in a TPN, S* represents a set of its all finite firing 
sequences at (M,FI), including the empty sequence λ; Sω represents a set of its all 
infinite firing sequences at (M,FI). S∞=Sω∪S∗. |α| is the length of α∈S*. αβ denotes 
the concatenation of sequences α and β. If α∈Sω, the length of α is denoted by sym-
bol ω and i<ω for any integer i. For α∈Sω and each i:0≤i≤|α|, suppose that βi and γi 
are the firing sequences where |βi |=i and α=βiγi, βi is the prefix of α with length i, and 
γi is the postfix of α excluding βi. Let f be a TPN formula, <(M,FI), α>= f means that 
f is satisfied by the pair of (M,FI) and α. 

Definition 1. Let (M,FI) be a reachable state from (M0,SI) in a TPN, α a firing se-
quence at (M,FI), f and g TPN formulae, then TPN formulae are defined recursively 
as follows: 
(1) <(M,FI), α>=p iff there are B(p,t) tokens at least in place p at (M,FI), where 

(p,t) ∈ P×T; 
(2) <(M,FI), α>= (t,τ)fir iff  transition t is firable at time τ and (M,FI); 
(3) <(M,FI), α>= (t,τ)  iff  transition t fires at time τ and (M,FI); 
(4) <(M,FI), α>= f ∨g  iff  <(M,FI), α>=f  or <(M,FI), α>=g; 
(5) <(M,FI), α>= f∧g  iff  <(M,FI), α>= f and <(M,FI), α>=g; 
(6) <(M,FI), α>= ¬f  iff  not <(M,FI), α>= f; 
(7) <(M,FI), α>= f⇒g  iff  <(M,FI), α>= f  implies <(M,FI), α>=g; 
(8) <(M,FI), α>= !f  iff  α≠λ and <(M1,FI1),γ1>= f; 
(9) <(M,FI), α>= □f  iff <(Mi,FIi),γi>= f for each i:0≤ i ≤α; 
(10) <(M,FI), α>= ◊f  iff <(Mi,FIi),γi>= f  for some i:0≤ i ≤α; 
(11) <(M,FI), α>= f ∆g  iff  if <(M,FI), α>= f and <(M,FI), α>=g, then symbol ∆ 

is replaced with ∧, else with ∨. 
Here, symbols ¬, ∧,∨ and ⇒ are the Boolean connectives. Formula !f (next) 

means that f becomes true in the next state reachable from (M,FI). Formula □f (hence-
forth) means that f becomes true in each state reachable from (M,FI). Formula ◊f 
(eventually) means that f becomes true at some state reachable from (M,FI). Symbol 
∆ is a substitutive operator. If f and g become true at (M,FI), then f ∆ g is equivalent 
to f∧g, otherwise it is equivalent to f ∨g. In this paper, •T• or 1 is used to represent 
logical true in logical expressions. For instance, 1∆1=1∧1. 

2.3   Logical Time Petri Nets (LTPN) 

Logical time Petri nets (LTPN) are the extension and abstraction of TPNs and high-
level time Petri nets (HLTPN) on batch data processing function and passing value 
indeterminacy. In LTPNs, there are two kinds of logical transitions, logical input and 
output transitions. The input places of a logical input transition t1 and the output 
places of a logical output transition t2 are restricted by logical expressions fI(t1) and 
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fO(t2), respectively. The logical expressions describe efficiently the passing value 
indeterminacy in real-time systems, such as the indeterminacy of arrival purchasing 
orders or actual trading volume in the runtime of a trading system in electronic com-
merce. This indeterminacy cannot be expressed by the variable symbol sums in 
HLTPNs, since they indicate clearly the types of passing or generating values. 

In LTPNs, we need usually to convert a logical input/output expression fI(t) /fO(t) 
into a disjunctive normal form, such that each of its disjunctive clauses is a conjunct in 
which each conjunctive clause contains only a place name. If the input places of a 
logical input transition t satisfy fI(t) at time τ, this means that a conjunct at least be-
comes true at τ in its disjunctive normal form. When two or more conjuncts of fI(t) 
become true at τ, it corresponds with the conditional routing construction in workflow 
nets and here one of the conjuncts is only selected to fire t at τ. However, which con-
junct of fO(t) is satisfied by the output places of a logical output transition t at τ de-
pends on the newly generating values after firing t. 

Definition 2.  For LTN=(P,T,B,F,SI,I,O), LTPN=(LTN,M0) is a logical time Petri net 
iff  
(1)  P is a finite set of places; 
(2)  T=TG∪TI∪TO is a finite set of transitions, T∪P≠∅, ∀t∈TI∪TO: •t∩t•=∅, and 

sets P, TG, TI and TO are disjunct each other, where 
(a) TG denotes a set of general time transitions in T; 
(b) TI denotes a set of logical input transitions in T, and ∀t∈TI, all input places 

of t are restrained by a logical input expression fI(t); 
(c) TO denotes a set of logical output transitions in T, and ∀t∈TO, all output 

places of t are restrained by a logical output expression fO(t); 
(3)  Definitions of symbols B, F, SI and M0 are the same as in Section 2.1;  
(4)  I is a logical restriction input function, and ∀t∈TI, I(t)=fI(t) is a logical input 

expression;  
(5)  O is a logical restriction output function, and ∀t∈TO, O(t)=fO(t) is a logical out-

put expression;  
(6)  Transition firing rules:  

(a) ∀t∈TG, the firing rules of t are the same as in TPNs;  
(b) ∀t∈TI, I(t)= fI(t), t is enabled if fI(t)M= •T•, i.e., all input places of t satisfy 

the logical input expression fI(t) at the current marking M. t is firable at 
time τ if t is enabled and τ is neither lower than EFT(t), or longer than 
LFT(t′), where t′≠t and t′ is enabled. After t fires at τ, the current marking 
M of the LTPN and the dynamic firing interval of enabled transitions are 
changed. Let M′ be a new marking generated by firing t, then for ∀p∈•t, if 
p is contained in a conjunctive clause of fI(t), where fI(t) becomes true,  
then M′(p)=M(p)-B(p,t), else M′(p)=M(p); ∀p∈t•: M′(p)=M(p)+F(t,p); 
∀p∉•t∪t•: M′(p)=M(p). The computation rules of the new dynamic firing 
interval are the same as in Section 2.1;  

(c) ∀t∈To, O(t)=fO(t), the enabled and firable conditions of t, and the algorithm 
of the new dynamic firing interval are the same as in Section 2.1. But after t 
fires at τ and (M,FI), the new generated marking M′ must satisfy fO(t), i.e, 
fO(t)M′= •T•, and ∀p∈•t: M′(p)=M(p)-B(p,t); ∀p∉t•∪•t: M′(p)=M(p). 
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(a) Input 

p1 

p2 

p3

t1 [τ1,τ2]

fI =p1∧(1∆(p2∆p3))

p4

p5

p6

t2 [5,10]

fO=p4∧(1∆(p5∆p6))

(b) Output
 

Fig. 1. Representations of logical input/output transitions in LTPNs 

 
In the graphic representation of LTPNs, logical input and output transitions are 

drawn as the rectangles in which the symbols “I” and “O” are embedded respectively, 
and logical input or output expression is marked close to the corresponding rectangle 
(see Fig.1). Logical input transition t1 is enabled at M if fI(t)M= •T•, where M(p1)=1, 
and M(p2)=1∧ M(p3)=1 or M(p2)=1∨ M(p3)=1 in Fig.1(a). If τ1≤τ≤τ2, t1 is firable 
at τ. After firing t1, there is no token in p1, p2 and p3. In Fig.1 (b), p4 generates one 
token, and one token is included in one or each of p5 and p6 in terms of newly 
generating values by firing t2 at τ∈[5,10]. 

In this definition, we assume that all input and output place sets of each transition in 
TI∪TO are disjunct, in order to mainly apply logical input and output transitions to the 
modeling of receiving and sending actions, respectively, in cooperative systems. 

2.4   Equivalent Representations of LTPNs in TPNs and HLTPNs 

As mentioned in Introduction, LTPNs are the abstraction and extension of TPNs and 
HLTPNs. In fact, each LTPN exists an equivalent representation in TPNs or 
HLTPNs. Table 1 reports that two building blocks of LTPNs are represented func-
tionally by their equivalent forms in TPNs and HLTPNs, respectively.  

In Table 1, x is a variable of token colors, <x>+<y> a variable symbol sum in 
HLTPNs. Place pijk denotes that it deposits the tokens of places pi, pj and pk in 
LTPNs. n, m and l are three positive integer variables. But the value of the variable 
annotating an input arc of a transition t must be determined when t fires at time τ and 
(M,FI), and it is equal to the number of the current tokens (same color tokens in 
HLTPNs) in the related place of the arc. For instance, B(p,t)=n<p1>+m<p2> means 
that firing t consumes n tokens with color p1 and m tokens with color p2 in p. Table 1 
shows that the building block of a logical input (output) transition may be represented 
functionally by two or more transition building blocks in TPNs and HLTPNs respec-
tively. Therefore, LTPNs can compress the net structure of a modeled system, and 
some properties of the system can be easily analyzed at a conceptual level. Thereby, 
the modeling and analysis of cooperative systems based on LTPNs can mitigate the 
problem of state space explosion to a certain extent. 
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Table 1. Illustration of LTPN’s equivalent expressions in TPNs and HLTPNs 
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3   Logical Time Workflow Nets  

In this section, we first define formally logical time workflow nets (LTWN) within an 
organization according to LTPNs and workflow techniques. Then the constructing 
algorithm of LTWNs is given, which is an important guidance for the designers of 
cooperative workflows. Finally, we introduce and analyze the correctness of LTWNs. 

3.1   Formal Definition  

In real-time cooperative systems, we focus on analyzing the relations between coop-
erative organizations. Thus, value dependencies and external dependencies together 
are called passing value dependencies, since the value dependencies within an organi-
zation are usually omitted to model and analyze cooperative systems at a conceptual 
level. That is, passing value dependencies describe the task dependencies crossing 
organizational boundaries. Therefore, two types of places are introduced in LTWNs, 
control places and data places. Control places are used to deposit control tokens, data 
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places to deposit data tokens. Data places are also called interface places according to 
the previous discussion in this paper.  

A Petri net is strongly connected if and only if for every pair of nodes x and y, there 
is a path leading from x to y.  

Definition 3. For LTN=(P,T,B,F,SI,I,O), an LTPN=(LTN,M0) is called an LTWN iff  

(1) The LTPN has two disjunct subsets, PC and PI, and P=PC∪PI, where PC is a set of 
control places, PI a set of interface places, and ∀p∈PI: |(•p∪p•)∩T|=1; 

(2) PC includes two special places: i and o. Place i is a source place: •i=∅. Place o is 
a sink place: o•=∅; 

(3) ∀t∈T, •t and t• include one control place at least, respectively; 
(4) If we add a transition t* to the LTPN which connects place o with i (i.e. •t*={o} 

and t*•={i}), then its inner logical net ILN=(IP, IT,IB,IF,SI,I,O) is strongly 
connected, where IP=PC, IT=T∪{t*}, IB:IP×IT→N and IF: IT×IP→N are the 
backward and forward incidence functions, respectively.  

In LTWNs, task dependencies are depicted based on control dependencies or both 
control dependencies and passing value dependencies. Thereby, a whole run of an 
LTWN means that a control token flows from a source place i to a sink place o. In 
workflow processes, there are four kinds of basic routing constructions: sequential 
routing, parallel routing, conditional routing and iterative routing [1]. To model paral-
lel routing and conditional routing constructions, we need two pairs of basic building 
blocks: AND-split and AND-join, OR-split and OR-join. Fig.2 shows two kinds of 
equivalent LTWN representations in each building block. One is represented by a 
transition in TG, the other by a logical transition. Note that there is a same graphical 
representation between building blocks AND-split and OR-split or between building 
blocks AND-join and OR-join. However, they have different logical expressions. 

3.2   Constructing Algorithm of LTWNs  

Suppose that the task set of an entity and the requirements specifications of all kinds 
of task dependencies are given, in this subsection, we show how workflow designers 
construct the LTWN model of the entity. 

 

Fig.2. Basic building blocks in LTWNs 
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Algorithm 1. Construct the LTWN model of an entity 

(1) Model each task in the given task set based on the corresponding building block 
of a transition t, and guarantee that •t and t• include one control place at least re-
spectively; 

(2) Order all building blocks according to the control dependencies among the 
tasks; 

(3) If the input places of a transition t contain one or more interface places, then it is 
modeled by a logical input transition and its static firing time interval [SEFT(t), 
SLFT(t)] satisfies the condition 0<SEFT(t)<SLFT(t); 

(4) Add a source place i to the input places of the first transition (task), a sink place 
o to the output places of the latest transition (task); 

(5) Add a transition t* to the net which connects place o with i such that •t*={o} 
and t*•={i}. 

In Algorithm 1, the preference relation of all tasks will be arranged based only on 
the control dependencies among them within an entity. If a task is responsible for 
receiving messages from the other entities, it is represented by a logical input transi-
tion in step (3), and the time difference SLFT(t)-SEFT(t) is positive, in order to fulfil 
batch data processing function and to avoid waiting for a long time to accept the mes-
sages. That is, a logical input transition t can fire at enabled delay time τ when τ 
≥EFT(t). However, during the enabled delay time of t, the new messages from the 
other entities can arrive in its interface places, and t will continue to be enabled. This 
means that more data can be processed when t fires. An additional transition t* is 
used to run the LTWN repeatedly in step (4). 

3.3   Properties Analysis of LTWNs 

In the following, we focus on the properties analysis of LTWNs within an organiza-
tion. The correctness, effectiveness and efficiency of the real-time cooperative system 
supported by a workflow management system are vital to an organization. Thus, one 
of main aims in our formalism is to verify whether the static structure and dynamic 
behavior of a given LTWN are consistent with the requirements specification of the 
modeled entity, and to test whether the LTWN can terminate in an acceptable state. 
For this purpose, we will first define the correctness property of LTWNs, called 
soundness property. Then we concentrate on analyzing how to establish a sound 
LTWN based on its static net structure, Petri net analysis techniques and temporal 
logic. 

Definition 4. Let X be a finite alphabet, Y⊆X. ΓX→Y is a projection mapping from X 
to Y if for ΓX→Y: X

*→Y*, ∀σ∈X*, ΓX→Y(σ) represents the rest part of σ after deleting 
the characters in X-Y. Specially, for Z⊆X, ΓX→Y(Z) denotes the alphabet consisting of 
the rest characters of Z excluding the characters in Z -Y. 

In an LTWN, we should ensure that a control token in place i arrives eventually in 
place o via a firing transition sequence after a whole and correct run. And when place 
o has one control token, ∀p∈Pc-{o}, p is empty. Let M0 be the initial marking of an 
LTWN and M0(i)=1, then ΓP→IP(M0)=IM0 is an initial marking of its ILN and IM0(i)=1.  



Towards a Workflow Model of Real-Time Cooperative Systems      461 

 

Definitions 5. An LTWN is sound iff in (ILN,IM0) 

(1) ∀(IM,FI)∈R((IM0,SI)), there exist a firing sequence α, a firing interval FI0 and 
firing time τ such that <(IM,FI),α>= ◊(o∧((t*,τ)⇒!(IM0,FI0))); 

(2) ∀t∈IT, ∃(IM,FI)∈R((IM0,SI)), there exist a firing sequence α and firing time τ 
such that <(IM,FI),α>= ◊(t,τ). 

In the above definition, requirement (1) means that there is a firing sequence α such 
that (IM1,FI1)[α>(IM2,FI2), IM2(o)=1 and ∀p∈IP-{o}:IM2(p)=0. Here t* is enabled 
and firable, and the next marking reachable from (IM2,FI2) is the initial marking IM0 
after firing t*. However, requirement (2) means that there is no dead transition in the 
inner logical marking net (ILN,IM0) of the LTWN, i.e., ∀t∈IT, 
∃(IM,FI)∈R((IM0,SI)), t is firable at τ and (IM,FI). Since the interface places and 
their related arcs are omitted in an ILN, we can think of net (ILN,IM0) as its private 
workflow process, i.e., the corresponding organization has full control over the local 
part of the LTWN.  
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Fig.3 models the behavior of a seller S in a simple offer-order-deliver-pay system 
[7], which consists of two buyers (B1 and B2) and a seller (S). Some private and 
cooperative tasks within an entity are omitted for the sake of simplicity in this exam-

Fig. 3.  LTWNs modeling  the behaviors of a seller S
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ple, such as preparation for goods, request for offer. Here, S has five tasks related to 
buyers B1 and B2: send offer (s_off), receive refuse (r_ref), receive order (r_ord), 
send result (goods) (s_res) and receive money (r_mon). PC={ps1,ps2,…, ps6,is,os},  
PI={bi_off, bi_ord, bi_ref, bi_res, bi_mon, i=1,2}, IM0(is)= M0(is)=1, ∀p∈PC∪PI-{is}: 
M0(p)=0 and ∀p∈Pc-{is}: IM0(p)=0. ts is added to perform a parallel routing structure. 
It is proved easily that the two requirements in Definition 5 are satisfied in LTWNs. 
Accordingly, it is sound. 

We give below a sufficient and necessary condition satisfied by sound LTWNs. 

Theorem 1. An LTWN is sound if and only if (ILN,IM0) is live and bounded. 

Proof: The necessity is proved via a reduction to absurdity. If it is not live, there are 
two cases. Case l: ∀(IM,FI)∈R((IM0,SI)), ∃t∈IT, for any firing sequence α, there 
exist a state (IM′,FI′) reachable from (IM,FI) and firing time τ such that 
(IM,FI)[α>(IM′,FI′)∧ ¬((IM′,FI′)[(t,τ)>). This is in contradiction with the require-
ment (2) of Definition 5. Case 2: ∃(IM,FI)∈R((IM0,SI)), ∀t∈IT, for any firing se-
quence α and any time τ, ∃(IM′,FI′)∈R((IM0,SI)) such that (IM,FI)[α>(IM′,FI′)∧ 
¬((IM′,FI′)[(t,τ)>). Here IM′(o)=0 in terms of Algorithm l, i.e., ∀(IM′,FI′)∈ 
R((IM0,SI)), IM′(o)=0. This contradicts the requirement (1) in Definition 5. 

If (ILN,IM0) is not bounded, then for ∀k∈N, ∃(IM,FI)∈R((IM0,SI)), p∈IP: 
IM(p)>k. Thus ∃t∈p•, t may fire at IM twice successively. By Definition 3, ∀k∈N, 
∃p′∈IP∩t•, there are τ1 and τ2 such that (IM,FI)[(t, τ1)(t, τ2)>(IM′,FI′)∧IM′(p′)>k. If 
the previous process is done repeatedly, then for ∀(IM′,FI′)∈R((IM,FI)), 
∃p∈IP∧IM′(p)>k. Hence there exists a firing sequence α at IM such that 
(IM,FI)[α>(IM′,FI′)∧IM′(o)>k. This contradicts that there are τ and FI0 such that 
(t*,τ)⇒!(IM0,FI0). Therefore, the (ILN,IM0) is live and bounded . 

The sufficiency is proved as follows. Suppose (ILN,IM0) is live, the requirement (2) 
in Definition 5 is satisfied apparently. The requirement (1) will be verified below. 
Actually, only place i has a control token at IM0, i.e. IM0(i)=1 and ∀p∈IP-
{i}:IM0(p)=0. Thus, ∀(IM,FI)∈R((IM0,SI)), there is a firing sequence α such that 
<(IM,FI), α>=◊o. 

Here t* is firable at time τ based on the structure of the ILN, and ∃(IM′,FI′)∈ 
R((IM0,SI)), (IM,FI) [(t*,τ)>(IM′,FI′)∧IM′(i)=1. If ∃p∈IP-{i}: IM′(p)>0, then ∃t∈•p 
such that F(t,p) tokens are added in p after firing α again. This results in contradiction 
with the boundedness of (ILN,IM0). Thereby, <(IM,FI),α>=◊( (t*,τ)⇒!(IM0,FI0)) 
and the requirement (1) is satisfied. Therefore, the LTWN is sound.                           ■ 

Since it is easily verified that the (ILN,IM0) in Fig.3 is live and bounded, LTWNs is 
sound in terms of Theorem 1. 

Definition 6. Let TPN be a time Petri net. C is a path leading from a node n1 to a node 
nk iff there is a node sequence <n1,n2,…,nk> in the TPN such that 
(ni,ni+1)∈(T×P)∪(P×T), i=1,2,…,k-1. Assume that &(C) denotes the alphabet of a path 
C, i.e. &(C)={n1,n2,…,nk}. C is an elementary path iff ∀ ni, nj∈&(C), if i≠j, then ni≠nj. 

Node nj is an inheritor of node ni in C (notation ni Cp nj) iff there are nodes ni, ni+1,…, 

nj∈&(C) such that (ni,ni+1), (ni+1,ni+2),…,(nj-1,nj)∈ (T×P)∪(P×T). 

The concept of well-structured LTWNs is introduced in the following, in order to 
analyze the relations between the static structure of an LTWN and soundness. Build-
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ing blocks AND/OR-splits and AND/OR-joins must be well paired in a well-
structured LTWN, respectively. 

Definition 7. A TPN is well-structured iff for any pair of nodes x and y (one is a 
place, the other a transition), if there exist two elementary paths C1 and C2 leading 
from x to y such that &(C1)∩&(C2)={x,y}, then C1=C2. An LTWN is well-structured 
iff its ILN is well-structured. 

According to the above definition, any two of the parallel routing and conditional 
routing structures cannot intersect in a well-structured LTWN, but one can be embed-
ded in the other. A well-structured LTWN can be verified for soundness in polyno-
mial time [1]. We assume that all LTWNs are well-structured in the rest of this paper. 

4   Interorganizational Logical Time Workflow Nets 

In the previous section, we model and analyze the workflows within an organization 
on the basis of LTPNs. In this section, we consider how to construct the cooperative 
workflow net of the LTWNs modeling all organizations in a real-time cooperative 
system, called an interorganizational logical time workflow net (ILTWN). In fact, 
each cooperative entity has itself private workflow process and can full control over 
the control flows in its LTWN. However, there exist the passing value dependencies 
between some tasks belonging cooperative entities in a real-time cooperative system. 
There are two interaction ways: synchronous communication and asynchronous 
communication. But for a number of real-time cooperative systems, only asynchro-
nous communication is usually performed, such as electronic contracts [7] and 
heterogeneous purchase processes [11] in electronic commerce. Therefore, 
asynchronous communication between organizations is only considered in this paper.  

Since the interface places in LTWNs are used to fulfil message exchange, their 
ILTWN can be achieved based on the interface places between the related LTWNs. 

Definition 8. Let LTWNj=(Pj ,Tj, Bj, Fj, SIj, Ij, Oj, M0j) be an LTWN of the jth coopera-
tive entity, j=1,2,…,n. ILTWN=(P,T,B,F,SI,I,O, M0) is an interorgnizational logical 
time workflow net iff 
(1) P=∪j∈{1,2,…,n}Pj; T=∪j∈{1,2,…,n}Tj; 
(2) ∀p∈Pj , ∀t∈Tj, B(p,t)=Bj(p,t), j=1,2,…,n; 
(3) ∀p∈Pj , ∀t∈Tj,  F(t,p)=Fj(t,p), j=1,2,…,n; 
(4) ∀t∈Tj, SI(t)=SIj(t), j=1,2,…,n; 
(5) ∀t∈TIj, I(t)=Ij(t), and ∀t∈Toj, O(t)=Oj(t), where TIj is a set of logical input transi-

tions in Tj, TOj a set of logical output transitions in Tj, j=1,2,…,n; 
(6) M0 is the initial marking, and ∀p∈Pj : M0(p)=M0j(p), j=1,2, …,n; 
(7) Transition firing rules. The transition firing rules in ILTWNs are the same as in 

Definition 2. 
Based on the above definition, if the workflow processes of each cooperative or-

ganization are modeled by an LTWN in a real-time cooperative system, an ILTWN 
can be obtained through superposing the interface places between the related LTWNs. 
However, the correctness of an ILTWN may be destroyed, since the passing values in 
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an asynchronous communication may be subjected to order errors. We can use Theo-
rem 1 to prove the two logical time workflow nets in Fig.4 are correct, i.e., LTWN1 
and LTWN2 are sound. Nevertheless, their ILTWN is not live, because t11, t12, t21 
and t22 are dead transitions. But if the order of a receiving action and a sending action 
is exchanged in one of two LTWNs, the ILTWN is live. For instance, if (p2,t21) and 
(t22,p1) are replaced with (p2,t22) and (t21,p1), respectively, the ILTWN becomes 
live in Fig.4. 
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5   Verification of Interorganizational Logical Time Workflow Nets 

Given all LTWNs in a real-time cooperative system, we can construct their ILTWN in 
terms of Definition 8. However, the ILTWN may be not live even though every 
LTWN is sound (see Fig.4). In the following, therefore, we first introduce formally 
the soundness of ILTWNs based on the soundness of LTWNs. Then we discuss how 
to verify the soundness of an ILTWN by means of its static structure.  

Definition 9. Let PI= ∪j∈{1,2,…,n}PIj, where PIj  is a set of the interface places in Pj. r: 
T→T is a renaming function if ∀p∈PI, ∀t∈T, j∈{1,2,…,n}: 

(1) t∈p•∩Tj, r(t)=rj(p), i.e., rj(p) denotes the output transition of p in Tj; 
(2) t∈•p∩Tj, r(t)=sj(p), i.e., sj(p) denotes the input transition of p in Tj; 
(3) t∉(•p∪p•)∩Tj, r(t)=t. 

In the above definition, the transitions connecting with the interface places are only 
renamed by a renaming function, in order to analyze the soundness of ILTWNs. Since 
the soundness of an LTWN implies its correctness, if all LTWNs in an ILTWN are 
sound, the correctness of the ILTWN depends on the liveness of the transitions re-
lated to the places in PI and their precedence order in every local workflow process. 
Based on Definition 8, however, the order cannot be updated when an ILTWN is 
constructed, i.e. the structural order of the transitions in every LTWN is the same as 
in the ILTWN. Consequently, when all LTWNs are sound in an ILTWN, if the 
ILTWN is not live, this means that the incorrect order of the transitions related to the 
interface places in some LTWNs leads to some dead ones in the ILTWN. 

Fig. 4. An ILTWN composed of two LTWNs.
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Definition 10. An ILTWN is sound iff 

(1) Each of its LTWNs is sound; 
(2) ∀p∈PI, ∀rj(p)∈p•, rj(p) is live. 

In Fig.4, PI={p1, p2}, since there are transitions r1(p1)=t11∈p1•, r2(p2)=t21∈p2• 
such that ∀(M,FI)∈R((M0,SI)), ∀τ1, τ2∈[2,4], r1(p1) at time τ1 and r2(p2) at time τ2 
are not firable at (M,FI), the ILTWN is not sound in terms of Definition 10. Actually, 
soundness is related to the dynamic behavior of a real-time cooperative system. To 
verify the soundness of an ILTWN based on its static structure, we consider the rela-
tions between soundness and the elementary paths in its LTWNs. In fact, the sound-
ness of ILTWNs can be decided for arbitrary interorganizational logical time work-
flow nets, but it is EXPSPACE-hard [2]. Thereby, we analyze the soundness of 
ILTWNs only for some interesting subclasses in this paper. Therefore, we restrict 
analysis of soundness to the ILTWNs in which none of sending and receiving actions 
between collaborative organizations is included in any conditional routing (OR-
split/join) construction.  

Definition 11. An LTWN is OR-restricted iff for any p1, p2∈PC, if there exist two 
elementary paths C1 and C2 (C1 ≠ C2) leading from p1 to p2, and &(C1)∩&(C2)={p1,p2}, 
then for ∀t∈T∩(•PI∪PI•): t∉&(C1)∪&(C2). An ILTWN is OR-restricted iff each of its 
LTWNs is OR-restricted. 

According to the above definition, LTWNs in Fig.3 is OR-restricted. In the follow-
ing, we first discuss the soundness of a simple ILTWN consisting of two LTWNs.  

Theorem 2. Let ILTWN be an OR-restricted interorganizational logical time work-
flow net composed of two sound LTWNs: LTWN1 and LTWN2. ILTWN is sound if 
for any elementary path Cj leading from ij to oj in LTWNj, j=1,2, and l∈{0,1}, there 

exists no pair of interface places p and q such that rl+1(p)
1+lCp sl+1(q) and r2-l(q) 

lC −2
p s2-l(p) become true simultaneously. 

Proof: Since LTWN1 and LTWN2 are sound and OR-restricted, each of their ILNs is 
live and bounded, and any t∈T∩(•PI∪PI•) is not in conditional routing structures. By 
Definition 10, we need only to prove that each t∈T∩(•PI∪PI•) is live and that each 

p∈PI is bounded. We use notation CIj to represent •∪•→∪Γ
IIjj PPPT (Cj), j=1,2. For 

j∈{1,2}, if CIj =φ, then 
jjj TPT →∪Γ (Cj) is a firing sequence of the ILTWN, as each 

transition in it is not concerned in external dependencies. Thus, we assume below that 
CIj ≠φ, j=1,2, and the liveness of each t∈T∩(•PI∪PI•) will be proved in terms of the 
following two cases. 

Case 1: If (•(&CI1)∪(&CI1)•)∩(•(&CI2)∪(&CI2)•)=PI, this means that the sending and 
receiving actions between LTWN1 and LTWN2 are only in sequential routing in 
LTWN1 and LTWN2, respectively. By means of the conditions of the theorem, ∀p, q∈ 

PI, rl+1(p)
1+lCp sl+1(q) and r2-l(q) 

lC −2
p s2-l(p) are not satisfied simultaneously, l∈{0,1}, 

i.e., there exists no time τ such that LTWNl+1 waits to receive the data to be not sent by 
LTWN2-l at τ in p and LTWN2-l waits to receive the data to be not sent by LTWNl+1 at τ 
in q. Thereby, each transition in CI1 and CI2 is live in the ILTWN. 
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Case 2: For l∈{1,2}, because LTWNl is OR-restricted, if •(&CIl)∪( &CIl)•≠PI, then 

there are kl elementary paths Cl

(1), …, lk
lC (kl∈N) leading from il to ol such that 

∪j∈{0,1,…,kl} •(&CIl

(j))∪ (&CIl

(j))• =PI (let CIl= CIl

(0)), &(CIl) ≠&(CIl

(j)), &(CIl

(j))- 

&(CIl)∩&(CIl

(j)) ≠ φ, and 
)&()&()&( )( j

IlIlIlll CCCPT ∩−→∪
Γ (Cl) and   

)&()&()&( )()( j
IlIl

j
Illl CCCPT ∩−→∪

Γ (Cl

(j)) are in the same parallel routing structures, j=1,...,kl. 

Therefore, for any whole and correct running and any t∈&(CI1)∪ &(CI2), t must fire 
only once. For l∈{0,1}, if there exists p∈PI such that rl+1(p)∈r(&(CI(l+1))), then there is 
j∈{0,1,...,kl+1} such that s2-l(p)∈r(&(CI(2-l)

(j))). Since CI(l+1)

(u)

 and CI(l+1)

(v) (u≠v, 0≤u,v≤kl+1) 
fire concurrently and there is a synchronization at t∈&(CI(l+1)

(u))∩&(CI(l+1)

(v)) in 
LTWNl+1, if for any j∈{0,1,...,k2-l}, (•(&CI(l+1)

(j))∪ (&CI(l+1)

(j))•)∩ (•(&CI(2-l)

 (j))∪( &CI(2-l)

 

(j))•)≠ φ, then we can assert that CI(l+1) is live through doing the analysis similar to that 
in Case 1. 

Consequently, ∀t∈ T∩(•PI∪PI•), t is live. Because for any p∈PI, if there is 
j∈{0,1,...,kl+1} such that rl+1(p) ∈r(&(CI(l+1)

 (j))), then there must exist j∈{0,1,...,k2-l} such 
that s2-l(p)∈ r(&(CI(2-l)

(j))), and rl+1(p) and s2-l(p) must fire in each complete running. 
Thereby, for ∀p∈PI, p is explicitly bounded.                                                               ■ 

According to Theorem 2, we obtain below a general result on the ILTWN com-
posed of n (n≥2) LTWNs. In this case, an LTWN may communicate asynchronously 
with more than one other LTWNs. 

Theorem 3. Let ILTWN be an OR-restricted interorganizational logical time work-
flow net composed of n sound LTWNs: LTWN1, …, LTWNn. ILTWN is sound if for 
any u,v∈{1,...,n}, u≠v, PIu∩ PIv ≠ φ, and any two elementary paths Cu and Cv leading 
from a source place to a sink place in LTWNu and LTWNv, respectively, there exists 
no pair of interface places p and q in PIu∩PIv such that for k,l∈{u,v} and k≠l, relations 

rk(p) 
kCp sk(q) and rl(q) 

lCp sl(p) are true simultaneously.  

Proof:  If u,v∈{1,...,n}, u≠v and PIu∩PIv≠ φ, then there exists asynchronous communi-
cation between LTWNu and LTWNv, and they can be combined in terms of Definition 
8. Here we think of the net composed of them as a new logical time workflow net of 
the ILTWN, represented by notation LTWNuv. Thus, the ILTWN is consist of n-1 
LTWNs: LTWNuv and LTWNj, j=1,…, n, j∉{u,v}. The interface place set of LTWNuv 
is PIuv= PIu∪PIv -PIu∩PIv. Since ILNu and ILNv are live and bounded, the inner logical 

net ILNuv of LTWNuv is also live and bounded at 
Iuvvu PPPP −∪→Γ (M0) based on Theo-

rem 2, i.e., LTWNuv is sound, where M0 is the initial marking of the ILTWN. If the 
above procedure is done repeatedly for the n-1 LTWNs, then the ILTWN made up of 
LTWN1, LTWN2, …, and LTWNn is live and bounded. ILTWN is sound by Defini-
tion 10.                                                                                                                         ■ 

According to Theorem 3, although that the correctness of a real-time cooperative 
system is concerned in its dynamic behavior, it may be verified efficiently by its static 
net structure, when the system can be modeled by an OR-restricted ILTWN. That is, 
Theorem 3 means that we can verify the soundness of an OR-restricted ILTWN only 
through checking the preference relation of the transitions related to the interface 
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places on each elementary path of the two related LTWNs in terms of their static net 
structures. 

We continue to analyze the offer-order-deliver-pay system presented in Section 3.3. 
We depict the LTWN models of a buyer Bj (1≤ j ≤2) and the communication system 
(see Fig.5 and Fig.6). Fig.5 models the behaviors of a buyer Bj (j∈{1,2}). Since buyer 
Bj purchases goods only from one seller S, we can use a traditional time Petri net to 
construct its LTWN model LTWNbj. In LTWNbj, its interface place set PIbj consists of 
places bj_s_off, bj_s_ref, bj_s_ord, bj_s_res and bj_s_mon. Task set Tbj contains five 
tasks: receive offer (r_offer), send offer refuse (s_refuse), send order (s_order), re-
ceive result (goods) (r_result) and send money (s_money). ILNbj= (IPbj,ITbj, IBbj,IFbj, 
Ibj, Obj) can be easily verified for liveness and boundedness properties. Therefore, 
LTWNbj is sound on the basis of Theorem 1. 

To demonstrate the function of the communication system in this example, it is also 
modeled as an organization (see Fig.6). It works such that each message sent by an 
organization is delivered to the other organizations. We assume here that it is safe, 
i.e., that the message sent is bound to the result in its receipt on the other side and that 
receiving a message is bound to be a result of sending it by the other side. Its LTWN 
model LTWNc is shown in Fig.6. Its interface place set PIc is the union of the interface 
place sets in LTWNs, LTWNb1 and LTWNb2, i.e. PIc=PIs∪PIb1∪PIb2. It is easily verified 
that ILNc is live and bounded. Thus, LTWNc is sound according to Theorem 1. 

In the following, we consider the soundness property of their cooperative workflow 
net ILTWN (notation ILTWNsb). Because three sets PIs, PIb1 and PIb2 are disjunct each 
other, there exists only asynchronous com-
munication between LTWNc and each of 
LTWNs, LTWNb1 and LTWNb2. Therefore, 
ILTWNsb can be built through overlapping 
the interface places in PIs to combine LTWNc 
with LTWNs, and the places in PIbi to com-
bine LTWNc with LTWNbi, i=1,2, based on 
Definition 8. However, ILTWNsb will be 
omitted to save space. 

Since each LTWN is sound and OR-
restricted, according to Theorem 3, we only 
need to verify whether the preference rela-
tions of the transitions, which connect with 
the common interface places in each pair of 
related LTWNs, satisfy the condition of 
Theorem 3 in any pair of elementary paths 
leading from source places to sink places to 
prove that ILTWNsb is sound. 

We now analyze the combination of 
LTWNc and LTWNb1. Their common inter-
face places are the places in  PIb1={b1_s_off ,  

Fig. 5. LTWNbj modeling the behaviors 
of  a buyer Bj (j=1,2) 
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Fig.6. LTWNc modeling the behaviors of the communication system 
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b1_s_ref, b1_s_ord, b1_s_res, b1_s_mon}, while the transitions related to them are 
all transitions in LTWNb1 and the transitions: d_offer, a_refuse, a_order, d_result and 
a_money in LTWNc (see Fig.5 and Fig.6). In LTWNb1, there are only two elementary 
paths from ib1 to ob1, i.e., Cb1= ib1→r_offer→p11→s_refuse→ob1 and C′b1= 
ib1→r_offer→p11→ s_order→ p21→ r_result→p31→s_money→ob1. ΓTb1∪Pb1→Tb1(Cb1)= 
r_offer→s_refuse, ΓTb1∪Pb1→Tb1(C′b1) = r_offer→s_order→r_result→ s_money. By the 
definition of renaming function r, r(ΓTb1∪Pb1→Tb1 (Cb1))=rb1(b1_s_off)→sb1(b1_s_ref), 
r(ΓTb1∪Pb1→Tb1(C′b1))=rb1(b1_s_off) → sb1(b1_s_ord)→ rb1(b1_s_res)→ sb1(b1_s_mon). 

In LTWNc, there are also only two elementary paths Cc and Cc′ from ic to oc. 
r(ΓTc∪Pc→Tc(Cc))=a_offer→sc(b1_s_off)→rc(b1_s_ref)→d_refuse→t, r(ΓTc∪Pc→Tc(Cc′) 
=a_offer→sc(b1_s_off)→rc(b1_s_ord)→d_order→a_result→sc(b1_s_res)→rc(b1_s_m
on)→d_money→t. Therefore, for ∀C1∈{Cb1, Cb1′}, C2∈{Cc,Cc′}, ∀p,q∈PIb1, then C1, 
C2, p and q satisfy the condition in Theorem 3. Similarly, we can verify the composite 
net between LTWNc and one of LTWNs and LTWNb2 satisfies also the condition. 
Consequently, ILTWNsb is sound. 

In LTWNc, the batch data processing function and passing value indeterminacy are 
explicitly represented in Fig.6. For instance, fI(a_order)=p3∧(1 (b1_s_ord   
b2_s_ord)), if p3 and b1_s_ord contain one token respectively, and b2_s_ord is 
empty, then transition a_order is enabled because fI(a_order)= •T•. But even if 
b2_s_ord is empty, a_order can fire, when its enabled delay time τ ≥τ3. However, a 
data token sent by buyer B2 may arrive in b2_s_ord among the enabled delay time, 
and the data can be processed together by communication system LTWNc when 
a_order fires. 

6   Conclusion 

In real-time cooperative systems, it is very important that the messages between the 
organizations are exchanged successfully. Thus, this paper focuses on cooperative 
workflows, i.e., a number of cooperative organizations are involved in shared work-
flow processes. The objective of this paper is to provide the designers of cooperative 
workflows with a formalism that on one hand has a high expressive power and on the 
other hand has a strong theoretical basis. In interorganizational workflows, each co-
operative organization has own private workflow processes and control-flows. An 
interorganizational workflow consists of local workflows, whereas the exchange of 
messages between the cooperative organizations is implemented through passing 
value dependencies. In order to model the passing value indeterminacy and batch 
processing function, Logical Time Petri Nets are first introduced in this paper. It can 
mitigate the problem of state explosion to a certain extent. Then we present the con-
cept of logical time workflow nets based on LTPNs and workflow techniques, and 
construct formally the LTWN model of a real-time cooperative system, Interorganiza-
tional Logical Time Workflow Net. For a class of OR-restricted LTWNs, the inherit-
able conditions of the soundness are obtained. By means of our concepts and tech-
niques, therefore, the designers of cooperative workflows can verify easily the 
soundness property of an ILTWN only from its net structure. The use of the methods 
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and techniques has been demonstrated through analyzing the example of an offer-
order-deliver-pay system.  

Further research work will be to formally verify soundness of the ILTWNs that are 
not OR-restricted. Also, we intend to develop a tool for the modeling and analysis of 
ILTWN models. 
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Abstract. Petri nets are useful for modelling complex concurrent sys-
tems. While modelling using Petri nets focusses on local states and ac-
tions, the analysis methods are concerned with global states and their
transitions. Unfortunately generation of the complete state space suffers
from the well-known state space explosion problem. This paper presents
a method to overcome the state-space explosion problem for a class of
Generalised Stochastic Petri Nets (GSPNs). Large complex GSPN mod-
els are transformed into smaller, less complex ones with smaller state
spaces than the original models. This transformation is called aggrega-
tion. The aim of aggregation is to reduce the state space while preserving
the desired behaviour of the original model. In this paper we investigate
the aggregation of GSPNs preserving time dependent behaviour by using
recent [5,6] and newly developed transformation rules. These rules are
used to merge several single timed transitions into one merged transition.
The firing rate of the merged transition turns out to be dependent on
the marking of the net. Beside the introduction of a new method for the
aggregation of exponential transitions with fixed firing rates, new for-
mulae to aggregate transitions with marking-dependent firing rates are
presented. Successive aggregation becomes possible to transform very
complex models into models in which either a closed-form computation
of the stationary state distribution is available or which has a very small
state space. A prototype implementation is used to demonstrate both
the drastically reduced state space for suitable models and the general
limits of the method.

1 Introduction

A suitable formal method to model and analyse complex concurrent systems are
Petri nets [13]. Generalised Stochastic Petri Nets (GSPN) [9] extend Petri nets
to handle the time- and stochastic-dependent behaviour of systems. Most analy-
sis methods are based on generating the complete state space of the investigated
model. Due to their large state spaces, many practical systems cannot be anal-
ysed. Overcoming this limitation is an important topic in discrete event system
analysis. Replacing large, complex model structures by smaller, less complex ones
is known as aggregation, an important class of reduction techniques [7,10,12]. To
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Fig. 1. A GSPN example with three different structures.

be useful these techniques must preserve the desired properties of the original
model.

This paper presents an aggregation technique that preserves the station-
ary token distribution [9,14] for a special class [2,4] of GSPN models. Recently
developed formulae [5,6] are presented that compute marking-dependent firing
rates of aggregated transitions. Moreover, formulae to aggregate transitions with
marking-dependent firing rates are presented in this paper for the first time.
Three different fundamental structures of Petri nets are investigated: sequential,
alternative and parallel. Figure 1 shows a Petri net example with these three
structures.

The method proposed in [5,6] is restricted in that transitions with marking-
dependent firing rates cannot be aggregated. Hence, multi-step aggregation is
impossible. This paper presents new formulae to overcome this restriction. This
allows transitions to be aggregated independently of whether their firing rates
are marking-dependent or fixed.

Using our formulae for the special class of Product-Form Petri nets [2], mod-
els with huge numbers of states are analysable. We discuss the capabilities and
limitations of our closed-form aggregation method using examples throughout
the paper. It is shown that, as opposed to sequential and alternative structures,
there is no aggregation for parallel structures that preserves the stationary token
distribution of the environment [5].

Most of the known aggregation techniques yield approximate results [8,10,12].
They are based on an iterative computation involving several aggregated nets
derived from the original net. In contrast, we present a closed-form computation
of the firing rates of merged transitions used in the aggregated model, thus
an iterative computation is avoided. For the presented class of Petri nets the
aggregation technique yields exact results.

The paper is organized as follows. Section 2 presents an introduction to
GSPNs and their analysis methods. In Sections 3 and 4 the formulae for the
aggregation of sequential and alternative structures, respectively are introduced.
Section 5 summarises the paper and suggests areas of future work.

2 GSPNs

Assuming that the reader is familiar with the basic concepts of Petri nets [13] we
briefly introduce GSPNs. GSPNs consist of places (depicted as circles) and tran-
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sitions (depicted as rectangles and bars) with directed arcs connecting elements
of these two disjoint sets. A number of tokens are associated with places (de-
picted as dots or numbers). If there are one or more tokens in a place, the place
is marked. Considering all the places of the GSPN, the marking, M , of each place
gives the current state in a distributed fashion (as opposed to Markov chains).
It is exactly this feature that makes Petri nets ideally suited to modelling com-
plex concurrent systems. Considering the model in Figure 1, the current state is
described by the marking M(P2) = N, M(P5) = 1, M(P7) = 1, M(P10) = 1 and
M(p) = 0 for p ∈ {P1, P3, P4, P8, P9}.

A transition is enabled if each of its input places contains one or more to-
kens. The marking in Figure 1 enables three transitions: T2, T5, T7. An enabled
transition may occur. When it occurs, one token is removed from each of its
input places and one token is added to each of its output places. This happens
in an atomic step. In GSPNs there are two different types of transitions: timed
(depicted as unfilled rectangles) and immediate (depicted as black bars). If a
timed transition is enabled, it may fire after a delay governed by the exponential
distribution. The firing itself does not use any time. The (probability density
function of the) exponential distribution function (for an introduction see e.g.
[16]) is given by:

fX(x) =
{

λ · e−λx x > 0
0 x ≤ 0

The exponential distribution is uniquely specified by the firing rate λ (in terms
of GSPNs the reciprocal value λ−1, called the delay, is also used).

As opposed to exponential transitions, immediate transitions do not consume
any time between enabling and firing. If there is a state in which both exponential
and immediate transitions are enabled, always the immediate transitions may
fire and the exponential ones do not. Thus immediate transitions have priority
over the exponential transitions. These two types of transitions lead to two types
of states. In vanishing states, at least one immediate transition is enabled, while
in tangible states only exponential transitions can fire. The probability that the
modelled system is in a vanishing state is zero, while the probability that the
system is in one of the tangible states is nonzero.

2.1 Reduced Reachability Graph

Figure 2 shows the reachability graph of the GSPN of Figure 1, with just one
token in P1 as the given initial marking. The ellipses with solid lines represent
tangible markings and the dashed ellipses stand for vanishing states. If a place
name is included in an ellipse, then this means that the place has one token in
it. The absence of a place indicates it has no tokens in it.

A firing probability (weight) is associated with each immediate transition. It
is used if two or more immediate transitions are enabled at the same time. If
there are two immediate transitions t1 and t2, with firing weights w1 and w2
respectively, enabled at the same time, then t1 fires with probability w1/(w1 +
w2) while t2 fires with the probability w2/(w1 + w2).
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Fig. 2. The reachability graph of the GSPN of Figure 1 with only one circulating token.
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Fig. 3. The reduced reachability graph of the reachability graph of Figure 2.
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Fig. 4. The directed state graph – isomorphic to a continuous time Markov chain.

To analyse the modelled system it is necessary to generate the reduced reach-
ability graph (RRG), which is obtained by removing the vanishing states from
the reachability graph while preserving the firing probabilities of all enabled
immediate transitions.

Figure 3 shows the reduced reachability graph of the GSPN of Figure 1 with
only one circulating token. r1 and r2 represent the relative firing probabilities
of transitions t1 and t2 respectively. The firing probability of t3 and t4 is each
one and hence is omitted.

2.2 Generator Matrix Q

The reduced reachability graph is isomorphic to a continuous time Markov chain
(CTMC) [9]. A CTMC can be described either by a directed state transition
graph or by its equivalent state transition matrix G. Figure 4 shows the directed
state graph and Figure 5 its corresponding state transition matrix.

λl in Figure 4 stands for the firing rate of transition Tl. The left column in
Figure 5 represents the source states and the top row represents the destination
states of the transitions. Hence, an entry gab in the ath row and the bth column
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P1 P2 P4 P5 P7P8 P8P9 P7P10
P1 λ1

P2 λ2 ∗ r1 λ2 ∗ r2

P4 λ4

P5 λ5

P7P8 λ7 λ8

P8P9 λ8

P7P10 λ7

Fig. 5. The state transition matrix G – isomorphic to a continuous time Markov chain.

P1 P2 P4 P5 P7P8 P8P9 P7P10
P1 −λ1 λ1

P2 −(λ2 ∗ r1 + λ2 ∗ r2) λ2 ∗ r1 λ2 ∗ r2

P4 -λ4 λ4

P5 -λ5 λ5

P7P8 −(λ7 + λ8) λ7 λ8

P8P9 λ8 −λ8

P7P10 λ7 −λ7

Fig. 6. The generator matrix Q – derived from G in Figure 5.

represents the transition from state a to b. If there is no transition from state a
to state b, the entry gab in G is zero. In Figure 5 all zeros are omitted.

The state transition matrix is used to obtain the so-called infinitesimal gen-
erator matrix [14] Q (see Figure 6), which differs from the state transition matrix
only in the diagonal. Let n be the number of (tangible) states of the model, then
the state transition matrix G and the generator matrix Q are of dimension n×n.
Then for all a ∈ {1, . . . , n}, qaa = −∑1≤b≤n gab while for all a, b ∈ {1, . . . , n}
and a �= b, qab = gab.

2.3 Stationary State Probabilities

Using Q, the vector π = (π1, π2, . . . , πn) of state probabilities can be derived [14].
πi is the probability that the modelled system is in state i for all i ∈ {1, . . . , n}.
The values for π are computed by πQ = 0 and

∑
i πi = 1.

Accordingly, the stationary analysis of GSPNs consists of three steps:

1. generation of the reduced reachability graph
2. generation of the generator matrix Q
3. finding normalized solutions for the equation system πQ = 0

For our example (Figure 1) we assume that the firing rates λ1 = 1
1 , λ2 = 1

2 ,
λ4 = 1

4 , λ5 = 1
5 , λ7 = 1

7 , λ8 = 1
8 are the firing rates associated with the

exponential transitions T1, T2, T4, T5, T7, T8 respectively and the firing weights
of t1 and t2 are 1 and 2 respectively. The resulting values of π are πP1 = 0.052817,
πP2 = 0.105634, πP4 = 0.070423, πP5 = 0.176056, πP7P8 = 0.197183, πP7P10 =
0.172535, πP8P9 = 0.225352. That means e.g. that the probability that the system
is in the state P8P9 is four times the probability that the system is in state P1.
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2.4 Stationary Token Distribution

Using the state probabilities important performance measures of the model can
be determined, e.g. the mean value (expected value) of the number of tokens in
a place P: E{M(P)} =

∑
M∈[M0〉 M(P) · πM or the probability that exactly x

tokens are in place P: P{M(P) = x} =
∑

M∈[M0〉:M(P)=x πM where [M0〉 stands
for the set of markings reachable from the initial marking M0.

Obviously, one requirement for stationary analysis of GSPNs is that the
state space is finite. This requires bounded (k-bounded) GSPNs. A Petri net
is k-bounded, if there are at most k tokens in any place of the net for every
reachable state (marking). For all x ∈ {0, ..., k} P{M(P) = x} is called the sta-
tionary token distribution of the GSPN. In GSPNs modelling and evaluation,
the state probabilities are only computed to derive the stationary token distri-
bution. Examples of the importance of the probability that exactly x tokens are
in a place are the probability that a buffer is full, a channel has a certain number
of messages or the system is idle or busy.

The mean value E{M(P)} then can be computed by E{M(P)} =
∑

x x ·
P{M(P) = x}. Mean values are important to answer questions like: What is the
mean number of items in a buffer? What is the average number of messages in
a channel? On average how many processors are idle or busy?

We show the computation of the token distribution for our example (Figure 1)
for place P7 only: P{M(P7) = 1} = πP7P8 + πP7P10 = 0.369718 while P{M(P7) =
0} = 1 − P{M(P7) = 1} = 1 − (πP7P8 + πP7P10) = 0.630282.

As described, the stationary analysis of GSPNs is a state space based method.
The size of the state space depends on the number of places and the initial
numbers of tokens in the GSPN and may grow exponentially. The size of the
state space and thus the dimension of the generator matrix is the main limitation
concerning numerical analysis of GSPNs. Realistic models with more than a
million states become intractable.

We can reduce the size of the state space by aggregating parts of the GSPN
[6,8,10,12]. Our new aggregation method is the subject of the following sections.

3 Aggregation of Sequential Structures

A Petri net model consists of a number of basic structures. The three most
common ones are displayed in Figure 1. Our aggregation method transforms
these simple elementary structures into one single transition each preserving the
stochastic behaviour of the structure’s environment.

3.1 General Considerations

This section describes the aggregation of a structure in which transitions and
places are arranged sequentially. The only known approach (for an introduction
see e.g. [1,16]) to aggregate a simple sequential structure into a single transition
is to associate a special phase-type distribution of order n (if n sequentially or-
dered exponential transitions are aggregated) with the aggregated transition. If
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all exponential transitions have identical firing rates, the Erlang-n distribution
becomes applicable [16]. However, the derived stochastic Petri net does not be-
long to the class of GSPNs and thus does not contribute to reducing the size of
the state space nor to providing easier to handle analysis algorithms. Hence, we
define the following two requirements for our aggregation method:

– The aggregation of parts of a GSPN leads to another GSPN.
– The term ‘stochastic equivalent behaviour’ is relaxed in the sense that the

stationary token distribution in places of the non-aggregated environment is
preserved by aggregation.

Note that the stochastic equivalence considered here is restricted to the to-
ken distribution of the remaining non-aggregated environment. Higher moments
like variance of the dwelling times of single tokens in the environment are differ-
ent in the original and in the aggregated model. However, the main important
performance measures of investigated systems like throughput, mean values, or
probabilities of buffer fill levels are computable using the stationary token dis-
tribution.

To illustrate the main concept let us consider a very simple GSPN model
shown in Figure 7.

P2

T2

T1

P1

T0

P0

T0

P0 Tm

Pm

NN

Fig. 7. Aggregation of a sequence: reference model.

In Figure 7, the original model is displayed on the left. Observing the above
requirements, the aggregation of T1, P1 and T2 into a single transition Tm must
ensure that the firing time is exponentially distributed and that the stationary
token distribution is preserved in place P0. Additionally, the firing rate of Tm
must be independent of the environment T0. To satisfy all these requirements
so-called marking-dependent firing rates [3] are associated with Tm. That means
that the firing rate of the exponential transition Tm depends on the number of
tokens (M(Pm)) in the place Pm in the preset of the transition Tm.
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3.2 Formulae for the Firing Rate of the Aggregated Transition

To present the general idea of deriving the formula for the computation of λm

the state transition graphs of the original model (left side) and of the aggregated
one (right side) are displayed in Figure 8.
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λ0 λ0
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...
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Fig. 8. State transition graphs of the reference model and its aggregation.

The top row above the state transition graph of the original model indicates
the number of tokens in place P1 and the right column represents the number
of tokens in P0. The states of the aggregated model’s state transition graph are
labelled with the number of tokens in P0. λk=N

m stands for the marking-dependent
firing rate λm of transition Tm if there are N tokens in Pm (note the place-invariant
M(P0) + M(Pm) = N of the aggregated model and the labelling for P0 in the
state transition graph). Each original state in the state transition graph is unique
identified by its place in the state transition graph. If it is in the rth row in the
sth column, then the state is described by the marking in which M(P0) = r and
M(P1) = s. From the place-invariant M(P0)+M(P1)+M(P2) = N follows that
then M(P2) = N − r − s where r, s ≥ 0, r + s ≤ N . Stationary probabilities are
denoted by πr,N−r for the aggregated model and by πr,s,N−r−s for the original
model. Hence e.g. π1,2,3 is the probability that the original model of Figure 7 is
in the state in which exactly one token is in place P0, two tokens are in P1 and
three tokens are in P2. π1,2 describe the probability that the aggregated model
is in a state in which there is one token in P0 and there are two tokens in Pm.
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To derive the formula for λm we compute πN,0,0 and πN,0 symbolic, using the
system of linear equations πQ = 0,

∑
i πi = 1. After obtaining πN,0,0 and πN,0

we equate them in order to derive the marking-dependent rates of the aggregated
transition Tm.

1. πN,0,0 of the original model
2. πN,0 of the aggregated model
3. πN,0,0 = πN,0 in order to derive λk=N

m .

We start (and show it only for) with N = 2. The solution of πQ = 0,
∑

i πi = 1
yields (step 1):

π2,0,0 λ0 = π1,0,1 λ2 ⇒ π1,0,1 =
λ0

λ2
π2,0,0

π1,1,0 λ1 = π2,0,0 λ0 ⇒ π1,1,0 =
λ0

λ1
π2,0,0

π1,0,1 λ2 = π1,1,0 λ1 ⇒ (not used)

π1,0,1 λ0 = π0,0,2 λ2 ⇒ π0,0,2 =
λ0

λ2
π1,0,1 =

(
λ0

λ2

)2

π2,0,0

π0,1,1 λ1 = π1,0,1 λ0 ⇒ π0,1,1 =
λ0

λ1
π1,0,1 =

λ2
0

λ1λ2
π2,0,0

π0,0,2 λ2 = π0,1,1 λ1 ⇒ (not used)

π1,1,0 λ0 = π0,1,1 λ2 ⇒ (not used)

π0,2,0 λ1 = π1,1,0 λ0 ⇒ π0,2,0 =
λ0

λ1
π1,1,0 =

(
λ0

λ1

)2

π2,0,0

π0,1,1 λ2 = π0,2,0 λ1 ⇒ (not used)

Normalization yields:

1 =
2∑

r=0

2−r∑
s=0

πr,s,2−r−s = π2,0,0

(
1 +

λ0

λ2
+

λ0

λ1
+
(

λ0

λ2

)2

+
λ2

0

λ1λ2
+
(

λ0

λ1

)2
)

⇒ π2,0,0 =
1

1 + λ0

(
1
λ1

+ 1
λ2

)
+ λ2

0

(
1
λ2

1
+ 1

λ1λ2
+ 1

λ2
2

)

which is the probability π2,0,0 that exactly two tokens are in place P0 of the
original reference model.

The (local balance) equations of the corresponding aggregated GSPN are
given by (step 2):

π2,0 λ0 = π1,1 λk=1
m ⇒ π1,1 =

λ0

λk=1
m

π2,0

π1,1 λ0 = π0,2 λk=2
m ⇒ π0,2 =

λ0

λk=2
m

π1,1 =
λ2

0

λk=1
m λk=2

m

π2,0
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With normalization:

1 =
2∑

r=0

πr,2−r = π2,0

(
1 +

λ0

λk=1
m

+
λ2

0

λk=1
m λk=2

m

)

⇒ π2,0 =
1

1 + λ0
1

λk=1
m

+ λ2
0

1
λk=1

m λk=2
m

.

Equating π2,0,0 to π2,0 (step 3) we obtain:

(π2,0,0 = π2,0)

1 + λ0

(
1
λ1

+
1
λ2

)
+ λ2

0

(
1
λ2

1
+

1
λ1λ2

+
1
λ2

2

)
= 1 + λ0

1
λk=1

m

+ λ2
0

1
λk=1

m λk=2
m

(1)

⇒ λk=1
m =

1
1
λ1

+ 1
λ2

= λ1
1

1 + λ1
λ2

⇒ λk=2
m =

1

λk=1
m

(
1
λ2

1
+ 1

λ1λ2
+ 1

λ2
2

) =
1
λ1

+ 1
λ2

1
λ2

1
+ 1

λ1λ2
+ 1

λ2
2

= λ1
1 + λ1

λ2

1 + λ1
λ2

+
(

λ1
λ2

)2

because Equation (1) is true for all λ0 ≥ 0 if the coefficients of the quadratic
polynomials are equal.

Note that λk=N
m is independent of λ0 (from the aggregation environment) for

the reference model. Moreover, the induction for arbitrary N yields [5]:

λk=3
m = λ1

1 + λ1
λ2

+
(

λ1
λ2

)2

1 + λ1
λ2

+
(

λ1
λ2

)2
+
(

λ1
λ2

)3 =
1

λk=1
m λk=2

m

(
1
λ3

1
+ 1

λ2
1λ2

+ 1
λ1λ2

2
+ 1

λ3
2

)

...

λk=x
m = λ1

x−1∑
i=0

(
λ1

λ2

)i

x∑
i=0

(
λ1

λ2

)i
=

∑
i,j≥0

i+j=x−1

(
1
λ1

)i( 1
λ2

)j

∑
i,j≥0
i+j=x

(
1
λ1

)i( 1
λ2

)j
(2)

A further generalization [5] of that formula is the aggregation of not only two
but n sequential ordered transitions:

λk=x
m =

∑
i1,i2,...,in≥0

i1+i2+...+in=x−1

1
λi1

1 λi2
2 . . . λin

n

∑
i1,i2,...,in≥0

i1+i2+...+in=x

1
λi1

1 λi2
2 . . . λin

n

(3)
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Fig. 9. Sequence aggregation in a complex environment.

3.3 Example of Aggregating Sequential Transitions
with Fixed Firing Rates

Figure 9 shows a simple manufacturing system with a sequential assembly line at
the right side of the original model. The sequence consists of 10 exponential tran-
sitions T1. . . T10, associated with a firing rate λl = 1/l for l ∈ {1, . . . , 10}. These
10 transitions are aggregated into one single transition Tm in the aggregated
model. The transition T0 models the delivery of finished work pieces. Hence, we
are interested in the throughput of transition T0 (TP = E{M(P0)} · λ0) where
λ0 = 1/5 is the firing rate of transition T0 and in the probability that there is
no token in P0 (P{M(P0) = 0}) to determine the workload of the system.

Table 1 shows the marking-dependent firing rates λk=x
m and their reciprocal

values (delays) of the aggregated transition Tm computed using Equation (3). x
stands for the number of tokens in Pm.

Table 1. Values of rates λk=x
m /mean delays 1

λk=x
m

in the example of Figure 9.

x λk=x
m

1
λk=x

m
x λk=x

m
1

λk=x
m

1 0.01818182 55 6 0.06535393 15.30129870
2 0.03225807 31 7 0.07024348 14.23619670
3 0.04335664 23.06451613 8 0.07432426 13.45455691
4 0.05224164 19.14181818 9 0.07775486 12.86093251
5 0.05944664 16.82180851 10 0.08065740 12.39811804

The numerical analysis of the model for N = 10 takes almost 4 days (323.278
sec) on a Pentium-III PC with 512 MB main memory using the software tool
TimeNET [17]. Achieving identical results, the performance evaluation of the
aggregated model takes only 0.683 sec! An analysis of the original model for
N > 10 is impossible, because the number of states for N = 10 is already



482 Jörn Freiheit and Jonathan Billington

λ1

λ2
λ0 λ0

λ0

λ0

λ2
λ0 λ0

λ0 λ0λ2

λ2

λ2

λ2

λ0 λ0λ2 λ2

λ2 λ2λ2λ2
λ0 λ0 λ0 λ0

λ0

λ0

λ0

λm
k=N−1

λm
k=1

λ0 λm
k=N−2

λ0 λm
k=2

λ1 λ1 λ1 λ

λ1 λ1

λ0

λ1

1

1

λ1λ1

λ1λ1

N N−1 1 0N−2

...

...

...

...... ...
0

1

2

N−1

N

...

λ

0

1

2

N−1

N

λm
k=N

k=N k=N−1 k=N−2 k=2 k=1

k=N−1 k=N−2

k=N−2

k=2

k=2

k=1

k=1

k=1

k=N

k=N−1

k=N−2

k=2

k=1

k=2

k=N−2

k=N−1k=N−1k=N−1

k=Nk=Nk=N

Fig. 10. State transition graphs of the reference model and its aggregation (marking-
dependent).

1.066.546. With firing rates set equal to 1
5 for each of the transitions T11. . .T14,

the throughput of transition T0 is 0.31 and the probability that no token is in
place P0 is 0.3399.

3.4 Aggregation of Sequential Marking-Dependent Transitions

If different structures of a GSPN are aggregated in a first step using the formulae
to compute marking-dependent firing rates from transitions with a fixed firing
rate it is often desirable to aggregate the model further. However, a further
aggregation was not possible before, because there were no formulae to handle
the aggregation of transitions with marking-dependent firing rates. In this section
we present newly developed formulae to close this gap.

Let us consider Figure 7 again and assume, that T1 and T2 have associated
marking-dependent firing rates λk=x

1 and λk=y
2 where x, y ∈ {1, 2, . . . N}. Apply-

ing the same derivation of the formula as above (see Figure 10) the
marking-dependent firing rates for Tm are:

λk=1
m =

1
1

λk=1
1

+ 1
λk=1

2

λk=2
m =

1

λk=1
m

(
1

λk=1
1 λk=2

1
+ 1

λk=1
1 λk=1

2
+ 1

λk=1
2 λk=2

2

)
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=
1

λk=1
m

1
λk=1

1 λk=2
1

+ 1
λk=1

1 λk=1
2

+ 1
λk=1

2 λk=2
2

=
1

λk=1
1

+ 1
λk=1

2
1

λk=1
1 λk=2

1
+ 1

λk=1
1 λk=1

2
+ 1

λk=1
2 λk=2

2

λk=3
m =

1

λk=1
m λk=2

m

(
1

λk=1
1 λk=2

1 λk=3
1

+ 1
λk=1

1 λk=2
1 λk=1

2
+ 1

λk=1
1 λk=1

2 λk=2
2

+ 1
λk=1

2 λk=2
2 λk=3

2

)

=
1

λk=1
1 λk=2

1
+ 1

λk=1
1 λk=1

2
+ 1

λk=1
2 λk=2

2
1

λk=1
1 λk=2

1 λk=3
1

+ 1
λk=1

1 λk=2
1 λk=1

2
+ 1

λk=1
1 λk=1

2 λk=2
2

+ 1
λk=1

2 λk=2
2 λk=3

2

...

λk=x
m =

∑
i,j≥0

i+j=x−1

1
λ→i

1 λ→j
2

∑
i,j≥0
i+j=x

1
λ→i

1 λ→j
2

where λ→i means λk=1λk=2 . . . λk=i.
The following formula generalises the formula above in that not only two but

n sequentially ordered transitions with marking-dependent firing rates can be
aggregated.

λk=x
m (λ1, λ2) =

∑
i1,i2≥0

i1+i2=x−1

1
λ→i1

1 λ→i2
2

∑
i1,i2≥0
i1+i2=x

1
λ→i1

1 λ→i2
2

λk=x
m (λ1, λ2, λ3) =

∑
i1,i2,i3≥0

i1+i2+i3=x−1

1
λ→i1

1 λ→i2
2 λ→i3

3

∑
i1,i2,i3≥0

i1+i2+i3=x

1
λ→i1

1 λ→i2
2 λ→i3

3

...

λk=x
m (λ1, λ2, . . . , λn) =

∑
i1,i2,...,in≥0

i1+i2+...+in=x−1

1
λ→i1

1 λ→i2
2 . . . λ→in

n

∑
i1,i2,...,in≥0

i1+i2+...+i3=x

1
λ→i1

1 λ→i2
2 . . . λ→in

n

(4)

where λ→i means λk=1λk=2 . . . λk=i.
Please note the strong similarity to Equation (3). Hence, if a sequence is

aggregated containing both transitions with fixed and transitions with marking-
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P0N

t1 t2

P1 P2

T1 T2

T0

P0
Tm

N

Pm

tm

P

Fig. 11. Aggregation of an alternative structure: reference model.

dependent rates, Equation (4) is used where λ→i means λk=1λk=2 . . . λk=i for
the marking-dependent rates and λ→i means λi for the fixed firing rates.

We show an example that applies formula (4) at the end of the next section.

4 Aggregation of Alternative Structures

In the first stochastic Petri net approaches [11,15] there were no immediate
transitions. However, it turned out that conflict situations could not be handled
adequately with timed transitions. Therefore immediate transitions, with asso-
ciated weights, were introduced to handle a conflict situation in an appropriate
way. Figure 11 shows such a model of a stochastic decision. If P is marked, either
t1 or t2 fires. Assume both transitions are associated with weights w1 and w2
respectively, t1 fires with probability w1/(w1+w2) while t2 has the firing proba-
bility w2/(w1 +w2) (see also Section 2). Figure 11 shows the simplest alternative
structure of a GSPN, which we use as a reference model for the aggregation of
alternative structures. Note that the immediate transition on the right-hand side
aggregated model is redundant, as the model has the same behaviour without P
and tm. However, to make the formula we are presenting applicable in a general
environment, we also observe the weight of the aggregated immediate transitions.
Although the original model in Figure 11 has only two alternatives (n = 2) again
we are interested in a general formula for both an arbitrary n and an arbitrary
number N of circulating tokens.

4.1 Formulae for the Firing Rate of the Aggregated Transition

Please recall that we are looking for a formula which keeps the token distribu-
tion for the remaining environment (in the reference model: P0) unchanged. As
discussed, that requirement is weaker than ‘stochastic equivalence’, because we
do not preserve higher moments. However, the only known distribution of Tm
for which an aggregation is applicable is the hyperexponential distribution, but
only for the case N = 1 [1,16].
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Fhyp(t) =
n∑

i=1

wi
n∑

i=1

wi

(
1 − e−λit

)
= 1 − 1

n∑
i=1

wi

n∑
i=1

(
wie

−λit
)

with expectation 1/
∑n

i=1 wi · (
∑n

i=1 wi/λi). Parameter wi is the weight of im-
mediate transition ti, while λi is the rate of exponential transition Ti for all
i ∈ {1, . . . , n}.

Due to the space limitations and because the way of obtaining the formulae
is as same as the one presented before, we do not derive the formulae in detail.
We note that there is a strong similarity to Equation (2) for sequentially ordered
transitions (λl replaced by λl

w1+w2
wl

for l = 1, 2):

λk=x
m =

w1 + w2

w1
λ1

x−1∑
i=0

(
λ1

λ2

w2

w1

)i

x∑
i=0

(
λ1

λ2

w2

w1

)i
=

∑
i,j≥0

i+j=x−1

(
w1

λ1

)i(
w2

λ2

)j

∑
i,j≥0
i+j=x

(
w1

λ1

)i(
w2

λ2

)j
· (w1 + w2)

As mentioned above, in the reference model of Figure 11, the immediate transi-
tion is redundant, but for the required case in conflict settings in more complex
environments a computation of the weight wm of the transition tm is given:

wm =
n∑

i=1

wi

A further generalization concerning the number of alternatives, n, gives the
following formula:

λk=x
m =

∑
i1,i2,...,in≥0

i1+i2+...+in=x−1

(
w1

λ1

)i1 (w2

λ2

)i2

. . .

(
wn

λn

)in

∑
i1,i2,...,in≥0

i1+i2+...+in=x

(
w1

λ1

)i1 (w2

λ2

)i2

. . .

(
wn

λn

)in
·

n∑
i=1

wi

4.2 Aggregation of Alternative Marking-Dependent Transitions

In the same way that there was no formula for sequentially ordered transitions,
there was no formula to aggregate transitions with marking-dependent firing
rates for alternatives before. Bridging that gap, now it is possible for instance to
aggregate sequential or alternative ordered structures of sequences and alterna-
tives by aggregating the sequences and alternatives first, and then aggregating
the marking-dependent transitions. In the example at the end of this section
this method is presented using the following formula for the aggregation of n al-
ternative ordered transitions T1, T2, . . . Tn with marking-dependent firing rates
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A2

S1
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S1 S1 S1

A3

P0T0

N

Fig. 12. Successive aggregation – original model.

λk=x
1 , λk=x

2 , . . . , λk=x
n , respectively with up to N tokens in the preset of the tran-

sitions, each.

λk=x
m =

∑
i1,i2,...,in≥0

i1+i2+...+in=x−1

(
w1

λ1

)→i1 (w2

λ2

)→i2

. . .

(
wn

λn

)→in

∑
i1,i2,...,in≥0

i1+i2+...+in=x

(
w1

λ1

)→i1 (w2

λ2

)→i2

. . .

(
wn

λn

)→in
·

n∑
i=1

wi

where
(

wi

λi

)→j

means wj
i

λk=1
i λk=2

i ...λk=j
i

.

4.3 Example of Successive Aggregating Transitions

In this section we apply our formulae successively. Figure 12 shows a GSPN
model of a manufacturing system containing different assembly lines, test sta-
tions, repair stations etc. The model consists of several sequential and alternative
structures. The inner basic structures are aggregated first. The dashed rectan-
gles labelled by A1 highlight the inner alternatives while the dotted rectangles
labelled with S1 cover the inner sequences. These structures are aggregated in
the first step using the formulae to aggregate sequential and alternative ordered
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transitions with fixed firing rates. In a second step the obtained alternative and
sequential structures (highlighted by the A2 and S2 labelled dashed and dotted
rectangles respectively) are aggregated using the formulae for the aggregation of
alternative and sequential transitions with marking-dependent firing rates. In a
third step the alternative A3 is aggregated applying the formula for the aggre-
gation of alternative ordered transitions with marking-dependent firing rates. In
the last step the obtained sequence is aggregated.

The aggregated GSPN is simply a circle of two transitions T0 and Tm and
two places P0 and Pm (see e.g. the aggregated model of Figure 7). Considering
all firing rates of the exponential transitions are set to one and all weights of the
immediate transitions are set to one too, the marking-dependent firing rates of
the aggregated transition Tm are presented in Table 2.

Table 2. Values of rates λk=x
m /mean delays 1

λk=x
m

in example of Figure 12.

x λk=x
m

1
λk=x

m
x λk=x

m
1

λk=x
m

1 0.077922 12.833327 6 0.371009 2.695356
2 0.148523 6.732953 7 0.414421 2.413006
3 0.212520 4.705434 8 0.453877 2.203239
4 0.270556 3.696086 9 0.489765 2.041794
5 0.323211 3.093949 10 0.522436 1.914108

Table 3 shows a comparison both of the number of states and the duration of
computation of the entire numerical analysis of the original and the aggregated
model for a variable number N of initial tokens in P0. For N > 5 an analysis of
the original model is impossible because the state space is too large. For N > 6
even the state space is too large to generate the reachability graph of the model.
Opposed to the original model, the number of states of the aggregated model
is only N + 1. Note the dramatic speedup of processing times with no loss in
accuracy.

The simple structure of the aggregated model allows a closed-form solution
to be obtained without generating the state space of the model. The stationary
state probabilities of the aggregated model (see e.g. right-hand side of Figure 7)
are computed by

πr,N−r =

Πr
j=1λ

k=N−j+1
m
λr

0

N∑
l=0

Π l
j=1λ

k=N−j+1
m

λl
0

where πr,N−r describes the probability of being in a state in which r tokens are
in P0 and N − r are in Pm. Hence, for N = 3, the probability that no token is in
P0 is computed by

π0,3 =
1

1 + λk=3
m

λ0
+ λk=3

m

λ0

λk=2
m

λ0
+ λk=3

m

λ0

λk=2
m

λ0

λk=1
m

λ0

= 0.802217
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Table 3. Comparison performance evaluation of original and aggregated model (Fig-
ure 12).

N number of states of duration of number of states of duration of
original model computation aggregated model computation

1 32 0.15 sec 2 0.007 sec
2 528 0.36 sec 3 0.007 sec
3 5.984 259.1 sec 4 0.007 sec
4 52.360 ≈ 13 hours 5 0.007 sec
5 376.992 ≈ 3.5 days 6 0.008 sec
6 2.324.784 - 7 0.008 sec
7 ≈ 12.500.000 - 8 0.008 sec
8 ≈ 72.000.000 - 9 0.009 sec
9 ≈ 350.000.000 - 10 0.009 sec

10 ≈ 1.600.000.000 - 11 0.010 sec

which is exactly the same result as achieved by analysis of the original model or
of the aggregated model.

The example shows that with the new formulae we are able to handle very
large and complex GSPNs in an exact way. The computation of the marking-
dependent rates requires only simple additions and multiplications, so that com-
putational overhead is low. As shown, for models containing only sequences and
alternatives, the application of the new formulae lead to aggregated models,
that are so simple, that even a closed-form computation of the stationary state
distribution is possible.

5 Conclusions

Aggregation is one of the main methods to overcome the state space explosion
problem. Net-level based aggregation can allow the state space of the original
model to be reduced drastically. The most important known aggregation meth-
ods either obtain approximate results or are based on iterative algorithms with
large computational overhead. This paper presents formulae to aggregate basic
structures of Petri nets into single transitions, which preserve the stationary
token distribution of the non-aggregated environment. The derived aggregated
Petri nets are still GSPNs and therefore numerical analysis techniques are appli-
cable. When a GSPN is reduced, sequential and alternative subnets are replaced
by transitions that have marking-dependent firing rates. Additionally, we present
newly developed formulae that aggregate structures consisting of transitions with
marking-dependent firing rates. Hence, successive or multi-step aggregation be-
comes possible. The inner basic structures are aggregated first and step-by-step
the outer structures are aggregated. Using this technique we are able to aggregate
large complex models into models for which either closed-form computation of
the stationary state distribution is possible, without generating the state space,
or the state space is drastically reduced.
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Our aggregation techniques not only reveal exact quantitative properties re-
lated to stationary state distributions, but also can be used efficiently in a mod-
ular and non-iterative fashion.

The power of the aggregation method presented in this paper is shown by sev-
eral examples using a prototype implementation of the technique in combination
with the stochastic Petri net modelling and analysis tool, TimeNET [17].

There are no formulae applicable for parallel structures that preserve the
stationary token distribution exactly [5]. Nevertheless, in many cases, parallel
structures can be retained with still a huge decrease in the size of the state space
or an approximate aggregation of parallel structures can be used with reasonable
results [5].

As discussed, the formulae yield exact results for stationary token distri-
butions for the class of so-called Product-Form Petri nets [4]. An unproven,
but experimentally validated condition related to independent subnets [2] char-
acterises the environments in which the aggregation steps can be applied. An
important future task is to find net-level based properties to identify the Petri
net class for which the aggregation yields exact results.
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Systémes Informatiques. Dissertation, Conservatoire National des Arts et Metiers
(CNAM), Paris, 1980.
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Abstract. The key step to guarantee termination of reachability analysis for
timed automata is the normalisation algorithms for clock constraints i.e. zones
represented as DBM’s (Difference Bound Matrices). It transforms DBM’s which
may contain arbitrarily large integers (the source of non-termination) into their
equivalent according to the maximal constants of clocks appearing in the input
timed automaton to be analysed. Surprisingly, though the zones of a timed au-
tomaton are essentially difference constraints in the form of x − y ∼ n 1, as
shown in this paper, it is a non-trivial task to normalise the zones of timed au-
tomata that allows difference constraints in the enabling conditions (i.e. guards)
on transitions. In fact, the existing normalisation algorithms implemented in tools
such as Kronos and UPPAAL 2 can only handle timed automata (as input) allowing
simple constraints in the form of x ∼ n. For a long time, this has been a seri-
ous restriction for the existing tools. Difference constraints are indeed needed in
many applications e.g. in solving scheduling problems. In this paper, we present
a normalisation algorithm to remove the limitation, that based on splitting, trans-
forms DBM’s according to not only maximal constants of clocks but also the
set of difference constraints appearing in an input automaton. The algorithm has
been implemented and integrated in the UPPAAL tool, demonstrating that little
run-time overhead is needed though the worst case complexity is the same as in
the construction of region automata.

1 Introduction

Following the work of Alur and Dill on timed automata [AD94], a number of model
checkers have been developed for modelling and verification of timed systems with
timed automata as the core of their input languages [DOTY95,Yov97,LPY97,ABB+01]
based on reachability analysis. The foundation for decidability of reachability prob-
lems for timed automata is Alur and Dill’s region technique, by which the infinite state
space of a timed automaton due to the density of time, may be partitioned into finitely
many equivalence classes i.e. according to regions in such a way that states within each
class will always evolve to states within the same classes. However, analysis based on
the region technique is practically infeasible due to the large number of equivalence

1 Where x is a clock, ∼∈ {≤, <, =, >,≥}, and n is a natural number.
2 For example, the current released version of UPPAAL can only provide an inconclusive answer

in verifying automata containing difference constraints.

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 491–503, 2003.
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classes [LPY95], which is highly exponential in the number of clocks and their maxi-
mal constants.

One of the major advances in the area after the pioneering work of Alur and Dill is
the symbolic technique [Dil89,YL93,HNSY94,YPD94,LPY95], which transforms the
reachability problem to that of solving simple constraints. It adopts the idea from sym-
bolic model checking for untimed systems, which uses logical formulas to represent set
of states and operations on formulas to represent state transitions. It is proven that the
infinite state-space of timed automata can be finitely partitioned into symbolic states
which are represented and manipulated using a class of linear constraints known as
zones and represented as Difference Bound Matrices (DBM) [Bel57,Dil89]. The reach-
ability relation over symbolic states can be represented and computed by a few efficient
operations on zones. From now on, we shall not distinguish the terms: constraint, zone
and DBM.

The technique can be simply formulated in an abstract reachability algorithm3 as
shown in Algorithm 1. The algorithm is to check whether a timed automaton may reach
a final location lf . It explores the state space of the automaton in terms of symbolic
states in the form (l, D) where l is a location and D is a zone (represented as a DBM).

Algorithm 1 Symbolic reachability analysis.
PASSED = ∅, WAIT = {〈l0, D0〉}
while WAIT �= ∅ do

take 〈l, D〉 from WAIT

if l = lf then return “YES”
if D �⊆ D′ for all 〈l, D′〉 ∈ PASSED then

add 〈l, D〉 to PASSED

for all 〈l′, D′〉 such that 〈l, D〉 � 〈l′, D′〉 do
add 〈l′, D′〉 to WAIT

end for
end if

end while
return “NO”

Having a closer look at the algorithm, one will realize that termination is not guar-
anteed unless the number of constraints generated is finite or the constraints form a well
quasi-ordering with respects to set-inclusion (over solution sets for clock constraints)
[Hig52]. There have been several normalisation algorithms for clock constraints rep-
resented as DBMs (e.g. [Rok93,Pet99]) that are the key step to guarantee termination
for the existing tools. They transform DBMs which may contain arbitrary constants
into their equivalent with respect to maximal constants appearing in clock constraints.
The transformation respects region equivalence and therefore the number of DBMs ex-
plored is finite. However a restriction of the existing normalisation algorithms is that
clock constraints in the syntax of timed automata must be in the form [AD94] of x ∼ n

3 Several verification tools for timed systems (e.g. UPPAAL [BLL+96]) have been implemented
based on this algorithm.
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where x is a clock variable, ∼ is a relational operator and n is a natural number. It was
discovered recently that the existing tools were either providing incorrect answers or
not terminating when they are used to verify automata containing difference constraints
of the form: x − y ∼ n (that are indeed needed in many applications e.g. in solving
scheduling problems).

A normalisation algorithm based on region equivalence treats clock values above a
certain constant as equivalent. This is correct only when no guard of the form: x−y ∼ n
is allowed in an automaton. Otherwise the normalisation operation may enlarge a zone
so that the guard (a difference constraint) labelled on a transition is made true and
thus incorrectly enables the transition. For automata containing difference constraints as
guards, we need a finer partitioning, since the difference constraints introduce diagonal
lines that split the entire clock space, even above the maximum constants for clocks.
The partitioning and related normalisation operation based on region construction is
too crude.

We demonstrate this by an example. Consider the automaton shown in Fig. 1. The
final location of the automaton is not reachable according to the semantics. This is
because in location s2, the clock zone is (x − y > 2 and x > 2) where the guard is
(x − z < 1 and z − y < 1) which is equivalent to (x − z < 1 and z − y < 1 and
x− y < 2) can never be true and thus disables the last transition. However, because the
maximal constants for clock x is 1 (and 2 for y), the zone in location s2: (x−y > 2 and
x > 2) will be normalised to (x − y > 1 and x > 1) by the maximal constant 1 for x,
which enables the guard (x − z < 1 and z − y < 1) leading to the final location. Thus
the symbolic reachability analysis based on a standard normalisation algorithm would
incorrectly conclude that the last location is reachable.

S0 S1 S2 S3

z:=0

y>2

y:=0
x<z+1, z<y+1

Fig. 1. A counter example.

In [BDGP98], it has been proved that a timed automaton with constraints on clock
differences can be transformed to an equivalent automaton without constraints on differ-
ences. However, it is impractical to implement this approach in tools that support debug-
ging of models since the transformation change the syntax of the original automaton. In
this paper, we present a normalisation algorithm that allows not only clock comparison
with naturals but also comparison between clocks i.e. constraints on clock differences.
The algorithm transforms DBMs according to not only the maximal constants of clocks
but also difference constraints appearing in an automaton. To our knowledge, this is
the first published normalisation algorithms for timed automata containing difference
constraints. The algorithm has been implemented in UPPAAL. Our experiments demon-
strate that almost no extra overhead is added to deal with difference constraints.

The paper is organised as follows: Section 2 reviews timed automata and reachabil-
ity analysis. Section 3 introduces the problem in normalising symbolic states for timed
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automata with constraints over clock differences. Section 4 presents the new normali-
sation algorithm. Section 5 concludes the paper.

2 Preliminaries

In this section we briefly review the notation for timed automata and its semantics. More
extensive descriptions can be found in e.g. [AD94,Yov98,Pet99].

2.1 Timed Automata Model

Let Σ be a finite set of labels, ranged over by a, b etc. A timed automaton is a finite
state automaton over alphabet Σ extended with a set of real valued clocks, to model
time dependent behaviour. Let C denote a set of clocks, ranged over by x, y, z, and
define B(C) as the set of conjunctions of atomic constraints of the form x ∼ n and
x − y ∼ n for ∼∈ {≤, <, =, >,≥} and n ∈ N. We use Bdf(C) for the subset of B(C)
where all atomic constraints are of the form x ∼ n and let g range over this set.

Definition 1 (Timed Automaton). A timed automaton A is a tuple 〈N, l0,→, I〉 where
N is a set of control nodes, l0 ∈ N is the initial node, →∈ N ×Bdf(C)×Σ×2C×N is
the set of edges and I : N −→ B(C) assign invariants to locations. As a simplification
we will use l

g,a,r−−−→ l′ to denote 〈l, g, a, r, l′〉 ∈→.

The clocks values are formally represented as functions, called clock assignments,
mapping C to the non-negative reals �+. We let u, v denote such functions, and use
u ∈ g to denote that the clock assignment u satisfy the formula g. For d ∈ �+ we use
u + d for the clock assignment that maps all clocks x in C to the value u(x) + d, and
for r ⊆ C we let [r]u denote the clock assignment that maps all clocks, x, in r to 0 and
agree with u for the other clocks in C.

The semantics of a timed automaton is a timed transition-system where the states
are pairs 〈l, u〉, with two types of transitions, corresponding to delay transitions and
discrete action transitions respectively:

– 〈l, u〉 ε(t)−−→ 〈l, u + t〉 if u + t′ ∈ I(l) for all t′ ∈ [0, t]
– 〈l, u〉 a−→ 〈l′, u′〉 if l

g,a,r−−−→ l′, u ∈ g, u′ = [r]u and u′ ∈ I(l′)

It is easy to see that the state space for such a transition system is infinite and
thus not adequate for algorithmic verification. However, efficient algorithms may be
obtained using a symbolic semantics based on symbolic states of the form 〈l, D〉, where
D ∈ B(C) [HNSY92,YPD94]. The symbolic counterpart of the transitions are given
by:

– 〈l, D〉 � 〈
l, D↑ ∧ I(l)

〉

– 〈l, D〉 � 〈l′, r(D ∧ g) ∧ I(l′)〉 if l
g,a,r−−−→ l′
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where D↑ = {u + d | u ∈ D ∧ d ∈ �+} and r(D) = {[r]u | u ∈ D}. It can be shown
that the set of constraint systems is closed under these operations, in the sense that the
result of the operations can be expressed by elements of B(C).

Moreover the symbolic semantics corresponds closely to the standard semantics in
the sense that if 〈l, D〉 � 〈l′, D′〉 then, for all u′ ∈ D′ there is u ∈ D such that
〈l, u〉 → 〈l′, u′〉.

2.2 Reachability Analysis

Given a timed automaton with symbolic initial-state 〈l0, D0〉 and a symbolic state
〈l, D〉, 〈l, D〉 is said to be reachable if 〈l0, D0〉 �∗ 〈l, Dn〉 and D ∩ Dn �= ∅ for
some Dn. This problem may be solved using a standard reachability algorithm for
graphs. However the unbounded clock values may render an infinite zone graph and
thus might the reachability algorithm not terminate. The solution to this problem is to
obtain a finite symbolic semantics by normalising the states with respect to the max-
imum constant each clock is compared to in the automaton. For details we refer the
reader to [Pet99,Rok93] but the main fact and the intuition behind it is described here.
In order to do this we first have to introduce the notion of closed constraint systems. We
say that a constraint system D ∈ B(C) is closed under entailment or just closed, for
short, if no constraint in D can be strengthened without reducing the solution set.

Proposition 1. For each constraint system D ∈ B(C) there is a unique constraint
system D′ ∈ B(C) such that D and D′ have exactly the same solution set and D′ is
closed under entailment.

From this proposition we conclude that a closed constraint system can be used as a
canonical representation of a zone.

Given a zone D and a set of maximal constants k = {kx, ky, . . .} where kx de-
notes the maximal constant for clock x, the normalisation of D, denoted normk(D), is
computed from the closed representation of D by

1. Removing all constraints of the form x < m, x ≤ m, x − y < m and x − y ≤ m
where m > kx,

2. Replacing all constraints of the form x > m, x ≥ m, y − x > m and y − x ≥ m
where m > kx with x > kx and y − x > kx respectively.

This can then be used to define a notion of normalised symbolic transitions (�k) by
modifying the transitions of the standard symbolic semantics to preserve normalisation.
The discrete action transition already preserves this so there is no need to modify it, but
the delay transition should be modified to 〈l, D〉 �k

〈
l, normk(D↑ ∧ I(l))

〉
.

Proposition 2. Assume a timed automaton A with initial-state 〈l0, D0〉 and let k be
the set of maximal constants used to compare with respective clocks in A. Then l is
reachable from 〈l0, D0〉 if and only if there is a sequence of normalised transitions
〈l0, D′

0〉 �∗
k 〈l, D′

n〉, where D′
0 = normk(D0).

Using this we get a finite symbolic state-space where we can apply a standard reach-
ability algorithm for graphs, such as the one in Algorithm 1 with the symbolic transition
relation � being replaced with the normalised version �k.
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3 Constraints on Clock Differences and Normalisation

It is well known how to extend timed automata to allow guards where the difference
between two clocks is compared, i.e. allowing the guards to be taken from the full set
B(C), not only from Bdf(C). It has also been shown that this extension do not give more
expressive power; there exists algorithms (e.g. in [BDGP98]) that transforms a timed
automaton with difference constraints into an equivalent automaton without difference
constraints.

We note that for diagonal-free timed automata the normalisation algorithm de-
scribed earlier is based on the so called region equivalence.

Definition 2 (Region Equivalence). For a clock x ∈ C, let kx be a constant (the ceiling
of clock x). For a real number t, let {t} denote the fractional part of t, and t� denote
its integer part. Two clock assignments u, v are region-equivalent, denoted u

.∼ v, iff

1. for each clock x, either u(x)� = v(x)� or (u(x) > kx and v(x) > kx), and
2. for all clocks x, y if u(x) ≤ kx and u(y) ≤ ky then

(a) {u(x)} = 0 iff {v(x)} = 0 and
(b) {u(x)} ≤ {u(y)} iff {v(x)} ≤ {v(y)}
For the extended version we need a finer partitioning, since the difference con-

straints in the guards introduce diagonal lines that split the entire clock space, even
above the maximum constants for the clocks. The partitioning used for diagonal-free
automata, and the connected normalisation operation normk is too crude. We demon-
strate this by studying the zones explored when exploring the state-space of the counter
example in Fig. 1. The zones are shown, in canonical form, in Fig. 2. The implicit
constraints that all clocks are non-negative are not shown.

We note that for S0 and S1 the normalised and unnormalised zones are identical.
The automaton may idle in location S0 and then, after performing the first action step,
reach location S1. In location S1 the automaton will stay until the clock y is at least
greater than two before it takes the step to location S2. This will introduce constraints in
the DBM that are above the maximum constant for x. In the normalised semantics these
bounds will then be lowered to the maximum constant for x, which will, erroneously,
add time assignments satisfying both of the guards on the transition to S3, and thus make
S3 reachable. The conclusion is that the normalisation procedure has to be adapted to
handle timed automata with difference constraints.

4 New Normalisation Algorithm

In this section we will present how to normalise the symbolic states for a timed automa-
ton with difference constraints. The key issue for the extended normalisation algorithm
is to honour the equivalence classes that are introduced by difference constraints in the
guards. We note that difference constraints in the guards may introduce equivalence
classes in the clock space that reach beyond any maximum constant. Thus we need to
refine the region equivalence from Definition 2 to take the difference constraints into
account.
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S0 :






x − y = 0
y − z = 0
z − x = 0

S1 :






x − y = 0
z − x ≤ 0
z − y ≤ 0

S2 :






y − x < −2
y − z ≤ 0
z − x ≤ 0
0 − x < −2

S0 :






x − y = 0
y − z = 0
z − x = 0

S1 :






x − y = 0
z − x ≤ 0
z − y ≤ 0

S2 :






y − x < −1
y − z ≤ 0
z − x ≤ 0
0 − x < −1

S3 :






y − x < −1
y − z < 0
z − x < 0
0 − x < −1
0 − z < 0
x − z < 1
z − y < 1
x − y < 2

(a) Without normalisation (b) Normalised with normk

Fig. 2. Zones for the counter example in Fig. 1.

Definition 3 (Refined Region Equivalence). Let G be a finite set of constraints of the
form x − y ∼ n for x, y ∈ C, ∼∈ {≤, <, =, >,≥} and n ∈ N. Two clock assignments
u, v are equivalent, u

.≈ v iff u
.∼ v and ∀g ∈ G : u ∈ g ⇔ v ∈ g

We note that since the number of regions defined by
.∼ is finite and there are only

finitely many constraints in G this refined region equivalence will define finitely many
regions.

4.1 The Core of Normalisation

We can now use the refined region equivalence from Definition 3 to obtain the core of a
normalisation algorithm. From the region equivalence we get the need to ensure that if
a difference constraint is not satisfied by any point in the unnormalised zone, D, then it
should not be satisfied by any point in the normalised zone, normd(D), and if all points
in D satisfy a difference constraint then so should all points in normd(D). This leads
to a core normalisation algorithm consisting of three stages:

1. Collect all difference constraints from A that are not satisfied by any point in the
zone and the negation of all difference constraints that are satisfied by all points in
the zone.

2. Perform normalisation with respect to the maximum constants of A.
3. Apply the negation of all the collected constraints to the normalised zone to make

sure that none of the collected constraints are satisfied after normalisation.

In Algorithm 2 this core normalisation is given as pseudo code. The set Gd referred
to in the algorithm is the set of difference constraints in A and the operation normk

refers to normalisation with respect to the maximum constants of A.
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Algorithm 2 Core normalisation algorithm (normd(D)).
Gunsat := ∅
for all g ∈ Gd do

if D ∧ g = ∅ then
Gunsat := Gunsat ∪ {g}

end if
if D ∧ ¬g = ∅ then

Gunsat := Gunsat ∪ {¬g}
end if

end for
D := normk(D)
for all g ∈ Gunsat do

D := D ∧ ¬g
end for
return D

However, there are cases where this algorithm is incorrect with respect to the equiv-
alence classes. For some cases when a difference constraint split the zone to be nor-
malised, the ideal normalisation may not be represented using a single zone. This prob-
lem only occurs when a difference constraint divides the unnormalised zone, i.e. some
of the time assignments in the zone satisfy the difference constraint and some do not.
Thus, if all such zones are split along dividing difference constraints before normalisa-
tion, e.g. using Algorithm 3, the problem can be avoided.

Algorithm 3 Zone splitting algorithm (split(D)).
Q := {D}, Q′ := ∅
for all g ∈ Gd do

for all D′ ∈ Q do
if D′ ∧ g and D′ ∧ ¬g then

Q′ := Q′ ∪ {D′ ∧ g, D′ ∧ ¬g}
else

Q′ := Q′ ∪ {D′}
end if

end for
Q := Q′, Q′ := ∅

end for
return Q

The complete normalisation procedure is presented in Algorithm 4. The splitting,
denoted by split in the description, is used as a preprocessing step and then the basic
normalisation algorithm, normd, is applied to all the resulting zones. We use Normd

to denote this normalisation operation and we use this operation to define a normalised
symbolic transition relation.

Definition 4. Let A be a timed automaton with the symbolic semantics �. The s-
normalised version of � (�s) for A is defined by: whenever 〈l, D〉 � 〈l′, D′′〉 then
〈l, D〉 �s 〈l′, D′〉 for all D′ ∈ Normd(D′′).
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Algorithm 4 Normalisation algorithm.
Q := ∅
for all D′ ∈ split(D) do

Q := Q ∪ {normd(D
′)}

end for
return Q

To demonstrate the normalisation procedure we apply it to the zone for location S2

in our counter example. The difference constraints in the example are g1 = x − z < 1
and g2 = z − y < 1. The initial zone contains both time assignments satisfying g1 and
assignments satisfying its negation, and thus we have to split the zone with respect to
this constraint prior to normalisation, giving the zones below.






y − x < −2
y − z < −1
z − x ≤ 0
0 − x < −2
0 − z < −1
x − z < 1






y − x < −2
y − z ≤ 0
0 − x < −2
z − x ≤ −1

(a) satisfying g1 (b) satisfying ¬g1

Zone (a) above does not contain any time assignments satisfying g2 and thus it will
not be split further. Zone (b) however needs to be split into assignments satisfying g2

and assignments satisfying ¬g2. This gives us the following zones to normalise.






y − x < −2
y − z < −1
z − x ≤ 0
0 − x < −2
0 − z < −1
x − z < 1






y − x < −2
y − z ≤ 0
0 − x < −2
z − x ≤ −1






y − x < −2
y − z ≤ −1
z − x ≤ −1
0 − x < −2
0 − z ≤ −1

(a) g1 and ¬g2 (b) ¬g1 and g2 (c) ¬g1 and ¬g2

After splitting we can apply the Normd algorithm. The set of unsatisfied differ-
ence constraints for the different zones are: G

(a)
unsat = {¬g1, g2}, G

(b)
unsat = {g1,¬g2},

G
(c)
unsat = {g1, g2}. After collecting this information we are ready to apply normk to

the zones, giving:






y − x < −1
y − z < −1
z − x ≤ 0
0 − x < −1
0 − z < −1
x − z < 1






y − x < −1
y − z ≤ 0
0 − x < −1
x − z ≥ 1






y − x < −1
y − z ≤ −1
z − x ≤ −1
0 − x < −1
0 − z ≤ −1

(a) g1 and ¬g2 (b) ¬g1 and g2 (c) ¬g1 and ¬g2
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Since applying normk to the parts of the split zone does not enable any constraint
in Gunsat, we do not have to conjunct the corresponding difference constraints to the
zones. We note that, as the unnormalised zone, none of the normalised zones include
time assignments satisfying both g1 and g2; the transition from S2 to S3 is not erro-
neously enabled by the normalisation procedure.

Before proving the correctness of the s-normalised transition relation, we need to
establish some properties of the Normd operator.

Lemma 1. Assume a timed automaton A, with associated Normd operator. For any
zone D the following holds.

(1) For all constraints g mentioned in A, Normd(D ∧ g) = {D′∧g |D′ ∈ Normd(D)}
(2) Normd(D↑) = {(D′)↑ | D′ ∈ Normd(D)}
(3) D′ ∈ Normd(D) ⇒ Normd(r(D′)) ⊆ Normd(r(D))

Proof. (sketch) These properties are proved by reasoning about how the ∧, ↑ and r
operations modify the zones with respect to the two types of constraints that effect nor-
malisation, i.e. non-difference constraints with bounds above the maximum constants
and difference constraints.

(1) Adding a guard of the form xi − xj ∼ n will cut the zone along one of the nor-
malisation split lines. If this is done before normalisation the result will be that
normalisation produce a subset of the zones that it would originally have produced.
If the guard is added after normalisation a number of entire zones from the normal-
isation will be removed giving the same final result.
Adding a guard of the form xi ∼ n will cut away a part of the zone that is not
affected by the normalisation since, by definition, n ≤ ki

(2) Difference constraints are not effected at all by the ↑ operation. Further ↑ do not
introduce any new non-difference constraints.

(3) r(D) operations are projections of a D on a hyperplane defined by r. This projec-
tion has the property that points that were added by normalisation are mapped to
other that would be added by renormalisation.

Finally we prove that the s-normalised transition relation is correct.

Theorem 1. Let A be a timed automaton and for each clock xi ∈ C let ki be the largest
number xi is compared to in A.

– (Soundness) whenever 〈l0, {u0}〉 �∗
s 〈lf , Df 〉 then 〈l0, u0〉 →∗ 〈lf , uf〉 for some

uf ∈ Df

– (Completeness) whenever 〈l0, u0〉 →∗ 〈lf , uf〉 then 〈l0, {u0}〉 �∗
s 〈lf , Df〉 for

some Df such that uf ∈ Df

Proof. Both soundness and completeness are proven by induction on the length of the
transition sequences.

(Soundness) As induction hypothesis, assume 〈l0, {u0}〉 �n
s 〈ln, Ds

n〉 ⇒ ∃Dn such
that 〈l0, {u0}〉 �n 〈ln, Dn〉 and Ds

n ∈ Normd(Dn). Further assume 〈ln, Ds
n〉 �s〈

ln+1, D
s
n+1

〉
. We now need to prove that ∃Dn such that Ds

n ∈ Normd(Dn),
〈ln, Dn〉 � 〈ln+1, Dn+1〉 and Ds

n+1 ∈ Normd(Dn+1). We have two cases: delay
transitions and action transitions.
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– (Delay) By the assumption 〈ln, Ds
n〉 �s

〈
ln, Ds

n+1

〉
by delay, and the definition

of �s we get Ds
n+1 ∈ Normd(Ds↑

n ∧ I(ln)). Combining this with Lemma 1 (1+2)
gives Ds

n+1 ∈ Normd({D∧I(ln) | {(D′)↑ |D′ ∈ Normd(Ds
n)}}), and since Ds

n is
already normalised we get Ds

n+1 ∈ {Ds↑
n ∧ I(ln)}, i.e. Ds

n+1 = Ds↑
n ∧ I(ln). Now

assume that for all Di
n such that Ds

n ∈ Normd(Di
n) and 〈ln, Dn〉 � 〈ln, Dn+1〉

by delay, Ds
n+1 �∈ Normd(Dn+1). By the definition of � we have Dn+1 =

Di↑
n ∧ I(ln), which gives Normd(Dn+1) = Normd(Di↑

n ∧ I(ln)). Expansion us-
ing Lemma 1 (1+2) yields Normd(Dn+1) = {D ∧ I(ln) | D ∈ {(D′)↑ | D′ ∈
Normd(Di

n)}}. By our assumption, Ds
n ∈ Normd(Di

n) and Ds
n+1 �∈

Normd(Dn+1), for all Di
n, but this lead to a contradiction.

– (Action) By assumption we know that 〈ln, Ds
n〉 �s

〈
ln+1, D

s
n+1

〉
by ln

gar−−→
ln+1. From the definitions of Normd and � we can derive that for all Di

n such
that Ds

n ∈ Normd(Di
n),

〈
ln, Di

n

〉 � 〈ln+1, Dn+1〉 by ln
gar−−→ ln+1 Now we

need to prove that ∃Dn+1 such that Ds
n+1 ∈ Normd(Dn+1). By the definition of�, Normd(Dn+1) = Normd(r(Di

n ∧ g) ∧ I(ln+1)). Expansion by Lemma 1(1)
gives Normd(Dn+1) = {D ∧ I(ln+1) | D ∈ Normd(r(Di

n ∧ g))}. According to
Lemma 1(1+3) and Ds

n ∈ Normd(Di
n) we have Normd(r(Ds

n ∧ g)) ⊆
Normd(r(Di

n ∧ g)). And since we know, by the definition of �, that Ds
n+1 ∈

Normd(r(Di
n ∧ g)) we conclude that Ds

n+1 ∈ Normd(Dn+1).

(Completeness) As induction hypothesis, assume 〈l0, u0〉 →n 〈ln, un〉 ⇒ ∃Dn such
that 〈l0, {u0}〉 �n

s 〈ln, Dn〉 and un ∈ Dn. Further assume 〈ln, un〉 α−→ 〈ln+1, un+1〉.
We need to prove that ∃Di

n such that un ∈ Di
n,

〈
ln, Di

n

〉 �s 〈ln+1, Dn+1〉 and un+1 ∈
Dn+1. There are two cases, α = ε(d) or α ∈ Σ.

– (α = ε(d)) By the assumption 〈ln, un〉 ε(d)−−→ 〈ln, un + d〉 we know (un + d) ∈
I(ln), i.e. ∃un : un ∈ Di

n ∧ un + d ∈ I(ln). From the definition of �s we have
〈ln, Dn〉 �s 〈ln, Dn+1〉 by delay, if Dn+1 ∈ Normd(D↑

n ∧ I(ln)). Expansion by
the definition of ↑ yields Dn+1 ∈ Normd({u + d | u ∈ Dn ∧ u + d ∈ I(ln)}). By
the definition of Normd we know that for all zones D, D ⇒ ∧

D′∈Normd(D) D′.
Thus there is a zone Dn+1 ∈ Normd(D↑

n ∧ I(ln)) such that un+1 ∈ Dn+1

– (α ∈ Σ) By the assumption 〈ln, un〉 α−→ 〈ln+1, [r]un〉 we know ln
g,α,r−−−→ ln+1,

un ∈ g, [r]un ∈ I(ln+1). From the definition of �s we have
〈
ln, Di

n

〉 �s

〈ln+1, Dn+1〉 by ln
g,α,r−−−→ ln+1 if Dn+1 ∈ Normd(r(Dn ∧ g) ∧ I(ln+1)). Ex-

panding this by the definition of the r-operation yields
Dn+1 ∈ normk({[r]u | u ∈ Di

n ∧ u ∈ g ∧ [r]u ∈ I(ln+1)}). By the definition of
Normd we know that for all zones D, D ⇒ ∧

D′∈Normd(D) D′. Thus there is a zone
Dn+1 ∈ Normd(r(Dn ∧ g) ∧ I(ln+1)) such that un+1 ∈ Dn+1.

5 Conclusion

In modelling and verifying timed systems, using timed automata, constraints over clock
differences are useful and needed in many applications e.g. solving scheduling prob-
lems. In this paper, we have reported a problem in the existing (published) symbolic
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reachability algorithms for timed automata. The problem is that the existing normalisa-
tion algorithms (implemented by several verification tools for timed automata e.g. UP-
PAAL) for clock constraints based on region equivalence are incorrect in the sense that
they may provide wrong answers in verifying timed automata containing constraints on
clock differences. The reason is that the normalisation operations may enlarge a zone
such that the guard (a difference constraint) labelled on a transition is made true and
therefore incorrectly enables the transition. Thus the normalisation operation should be
based on a finer equivalence relation than region equivalence. We propose to use the
region equivalence which is further refined by difference constraints. Based on this, we
have developed a normalisation algorithm that allow not only clock comparison with
naturals but also comparison between clocks i.e. constraints on clock differences. The
algorithm transforms DBMs according to not only the maximal constants of clocks but
also difference constraints appearing in an automaton. To our knowledge, this is the
first published normalisation algorithm for timed automata containing difference con-
straints. The algorithm have been implemented in UPPAAL showing that almost no extra
overhead is added to deal with difference constraints4.
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Abstract. An existing distributed lift system was analyzed using the
process algebraic language µCRL [7]. Four problems were found, three
of which were also found independently by the developers in the testing
phase. They solved these problems in an ad hoc manner, because the
causes of the problems were unclear. The analysis in [7] revealed the
reasons for those problems, and proposed solutions.
In this paper, we checked the developers’ solutions using Uppaal. We
show that the solutions of the developers do not solve these problems
completely, while a refined version of our solution proposed in [7] does.

1 Introduction

As is well known, distributed algorithms form a major aspect of system de-
sign. Verifying the correctness of the protocols that regulate the behavior of dis-
tributed systems is usually a formidable task, as even simple behaviors become
wildly complicated when they are carried out in parallel. Formal verification is
a suitable approach to check whether a system meets its requirements.

In a formal model of a real-life system, details irrelevant to the requirements
under scrutiny can be abstracted away. With the formal model at hand, one is
able to reason about the system in a systematic and automatic way, using for
example a model checker or a theorem prover. This formal reasoning can detect
errors and suggest ways in which the system can be improved or optimized. A
model is never completely equal to the original system, because it describes the
system at a certain level of abstraction. This means that we can never be hundred
percent sure that the system is correct with respect to the checked requirements.
To achieve more confidence with the verified system, the model can be refined
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by adding more details. In this paper, we report some experience related to this
topic by analyzing the redesign of a distributed lift system.

This lift system is used in real life for lifting lorries, railway carriages, buses
etc. A system consists of a number of lifts: each wheel is supported by one lift
and each lift has its own micro controller. This system has been designed and
implemented by a small Dutch company (for commercial reasons we are not at
liberty to reveal the company name). A special protocol has been developed to
let the lifts operate synchronously. When testing their implementation the de-
velopers found three problems, but the causes of two of them were unclear. They
solved these problems in an ad hoc manner. In order to explain the reasons and
to make sure there are no more errors, the lift system was specified and verified
in µCRL [8] and its toolset [5] in close cooperation with the developers. The
three problems that were found by the developers were also found in the µCRL
model. This indicated that the specification is actually close to the implementa-
tion. Another new problem was found in the model, which is indeed present in
the system. The causes for the problems were detected, and solutions were pro-
posed and included in the µCRL specification. The modified µCRL specification
was shown to satisfy all the requirements by model checking. However, this hap-
pened independently of the developers, who decided not to wait for the results
of the formal analysis and to redesign their implementation based on their own
solutions. To distinguish between the two lift systems in this paper, we call the
first lift system ‘original design’ and the one with the solutions of the developers
‘redesign’.

The developers experienced a new problem in the redesign. Again the reason
was unclear. Since the error traces displayed a regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reason for this problem.
In the µCRL specification, time is abstracted away. We could extend the µCRL
model with exact timing information, but there is no automated verification
toolset for timed process algebras. Therefore it was decided to use Uppaal [11],
which is a toolset for validation and model checking of real time systems.

The Uppaal model of the redesign is achieved in several steps. First the
µCRL model is translated into Uppaal. Then the Uppaal model is refined to
move it closer to the real system; each lift is split into two components, where
one component communicates with the other lifts and the other component can
receive input from the environment. The developers’ solutions for the aforemen-
tioned problems are adopted. After discussions with the developers, exact timing
information is added. The requirements for the lift system are formulated in Up-
paal, using its requirement specification language and test automata, and model
checked. Using the graphic simulation tool in Uppaal, we detect the reason for
the new problem, which the developers encountered in the redesign. We propose
a new solution, which is based on the solution that was already put forward in
[7]. The Uppaal model with the new solution satisfies all the requirements.

The developers acknowledge the efficiency and usefulness of formal verifi-
cation for their redesign. Our solution will be implemented in the new release
of the lift system; they are now more confident in the correct functioning of
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the redesigned lift system. The developers stress that formal methods should be
applied in the early design phases to save testing effort and cost.

2 The Lift System

2.1 Layout of the Lift System

The lift system consists of an arbitrary number of lifts. Each lift supports one
wheel of a vehicle. Different lift systems may have a different number of lifts,
but this has no influence on the analysis, since this network should operate in
the same way regardless how many lifts are connected.

Every lift has its own buttons. Three buttons are taken into account in the
model: up, down and setref. If an up or down button on a certain lift is
pressed, all lifts in the system should move up or down. Pressing a setref
button on a lift is the only way a run of the system can start.

The movement of a lift system is controlled by means of a micro controller.
Each lift has its own micro controller, called station. The stations can adopt four
different states: startup, standby, up and down. The state of a lift can change
in two ways: when a button on the lift is pressed, or by receiving a message from
the network.

In the lift system, the data field of the messages transferred over the bus
can contain two pieces of information: the position of the sender station, and
the type of the message. There are two types of messages: sync messages and
state messages. State messages broadcast the state of the sending station to the
other stations. sync messages initiate physical movement. In response to a sync
message, each station will immediately transfer its state to the motor of the lift,
which causes movement. If the station is in up, the lift will move up a fixed
distance; if it is in down, the lift will move down.

All the stations are connected to a can (Controller Area Network) bus [6].
The can bus is a simple, low-cost, multi-master serial bus with error detection
capabilities. The bus transmits messages to the stations. Whenever a station
wants to send a message, it is said to claim the bus. Stations can receive messages
at any moment, but when a station wants to send a message it has to wait until
it is its turn to use the bus. In the can bus, all stations can claim the bus at each
cycle and several stations can claim the bus simultaneously. A non-destructive
arbitration mechanism is used to determine which station may send its message.
The resulting usage of the bus is ordered, and the stations take fixed turns to
send their messages. To achieve this orderly usage of the bus, before the real use
of the lift system we call ‘normal operation’, a start-up phase has been designed.
In this phase each station finds out its position in the network and the total
number of lifts in the network. When each station has been assigned a unique
position, a virtual token can pass among the stations in the same order cycle
after cycle. A station knows whether it is its turn to use the bus by checking
the position of the sender station in the received message. The orderly usage
of the bus during normal operation plays a crucial role in the analysis of the
requirements and in the problems the lift system faces.
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Control of the Lift: Start-Up. The start-up phase has two functions. First
it assigns a unique position to each lift in the network. This position works as
an identity. When each lift has got its own position, an orderly usage of the bus
is possible. To assure that all lifts move simultaneously in the same direction,
the station initiating a certain movement must verify whether all stations are in
the appropriate state before it sends the sync message. In order to do this, each
station must know how many stations there are in the network.

There is a relay between every pair of adjacent stations and each relay is
controlled by the station at its left side. When the system is switched on all the
relays are open.

The start-up phase is initialized by the station where the setref button
is pressed. This station will behave differently from the other stations in the
network. It will act as follows (chronological order):

1. it stores that it has position 1,
2. it adopts the startup state,
3. it closes its relay,
4. it broadcasts a startup message,
5. it opens its relay,
6. it waits for a startup message,
7. it stores the position of the sender of that message as the number of stations

in the network,
8. it adopts the standby state,
9. it broadcasts this state.

The other stations receive a startup message from another station. The first
time a station receives a startup message, it will act as follows:

1. it adds 1 to the position of the sender of that message and stores this as its
own position,

2. it stores its own position as the number of stations in the network,
3. it adopts the startup state,
4. it closes its relay,
5. it sends a startup message,
6. – if it receives another startup message, it stores the position of the

sender of that message as the number of stations in the network,
– if it receives a standby message, it adopts the standby state (if the

station has position 2 it will in addition initiate normal operation by
broadcasting its state).

Assume that in the left part of Fig. 1, the setref button of station B is
pressed. The end result is that all stations are connected in the manner pictured
in the right part of Fig. 1. All stations know their position and all stations know
that there are four lifts in the network. More explanation about the start-up
phase can be found in [7].
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Fig. 1. State of the relays before (left) and after (right) initialization.

Control of the Lift: Normal Operation. When the start-up phase is finished,
all the stations are in standby. During the normal operation phase, the first
station broadcasts its state, then the next station broadcasts its state and so
on, until the last station has broadcast its state, after which the first station
starts again. The state of a lift is changed if its up or down button is pressed.
The station where this happens is called an active station. The active station
will send an up or down message, according to the button that was pressed
at the station. Passive stations change their state according to the messages
they receive, and when it is their turn to use the bus they broadcast a message
according to their state. These messages are received by all the other stations,
and the active station is the only one that will count them. When it counts
enough state messages, the active station will send a sync message, after which
all the lifts move. The ordered sending of messages makes sure that the active
station counts no more than one message from each station. In contrast to the
passive stations, the state of the active station can only change if the pressed
button is released again. In that case its state changes to standby and the
station becomes passive again. More details about this phase, including what
happens when two up or down buttons at different lifts are pressed at the same
time, will be discussed in Section 3.

2.2 Requirements

The desired behavior of the system is formulated in five requirements it has to
fulfill. These requirements are listed below:

1. Deadlock freeness: The system never ends up in a state where it cannot
perform any action.

2. Liveness I: It is always possible for the system to get to a state in which
pressing up or down will yield the appropriate response.

3. Liveness II: If exactly one up or exactly one down button is pressed and
not released, then all the lifts will eventually move up or down.

4. Safety I: If one of the lifts moves, all the other lifts should simultaneously
move in the same direction.
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5. Safety II: If the lifts move, an appropriate button was pressed. The lifts will
not move if no one has pressed an up or down button.

The two liveness requirements make sure that buttons can always be pressed
and in response the lifts will always move. The two safety requirements make
sure that the system will move properly. In Section 3, we present four problems
in the original lift system. If the lift system satisfies the five requirements above,
those four problems are guaranteed to be resolved.

3 UPPAAL Model of the Redesign

Uppaal [11] is a toolset for validation and model checking of real time systems,
which are modeled as networks of timed automata [2] extended with global
shared variables. It consists of a number of tools including a graphic editor for
system description, a simulator and a model checker. The idea of the Uppaal
toolset is to model a system using timed automata, simulate it and then verify
properties of the system. During the design phase, the graphic simulator is used
intensively to validate the dynamic behavior of each design sketch, in particular
for fault detection, and later on for debugging the generated diagnostic traces.
The verifier mainly checks for invariants and reachability properties. It does so
by exploring the state space of a system using ‘on the fly’ searching techniques.
It uses symbolic techniques to reduce the verification of modal logic formulas
to solving simple reachability constraints. Some notable recent case studies with
Uppaal are [9,12,3].

The Uppaal model presented in this section is the result of a few steps.
First the µCRL model of the original design is translated into Uppaal. This
model is then changed into a representation of the redesign by adding the de-
velopers’ solutions to the problems, that were found in the original design. The
Uppaal model of the redesign is also more specific, since interactions between
the environment and the lift system are added that were abstracted away in the
µCRL model of the original design. Furthermore, the model is extended with
exact timing information. With respect to the explanation of the original design
in Section 2, the redesign can be viewed as a refinement of the µCRL model.
However, the desired behavior of the lift is basically the same as explained in
Section 2. The redesign should therefore meet the same requirements as the
original design.

The Uppaal model contains four components. They are automata: Station,
Bus, Interface and Timer. In Uppaal, an automaton can be instantiated an
arbitrary number of times. As explained in Section 2, the lift system consists of
one bus and an arbitrary number of lifts. The automaton Bus models the can
bus. For each lift in the system, we create two automata: Station and Interface.
The automaton Station models the micro controller. In automaton Interface, the
pressing and releasing of buttons on the lift is modeled. The automaton Timer is
used to model time delay. In this section we will walk through the model. Due to
space limitation, pictures of these automata are presented with only superficial
explanation. Detailed information can be found in [10].
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3.1 Transforming the µCRL Model

The original lift system has been analyzed in µCRL [8], which combines the
process algebra ACP [4] with equational abstract data types. To analyze the
redesign of this system, first we transform the µCRL model into Uppaal. In
this section, we discuss some model choices that have been made.

Value Passing. The µCRL specification of a process is constructed from action
names, recursion variables and process algebraic operators. Actions and recur-
sion variables carry zero or more data parameters. Parallel composition p ‖ q
interleaves the actions of processes p and q; moreover, actions from p and q
may also synchronize to a communication action, when this is explicitly allowed
by a predefined communication function. Two actions can only synchronize if
they occur at the same time, and if their data parameters are semantically the
same, which means that communication can be used to represent data transfer
from one process to another. The communication function was used heavily in
the µCRL specification in [7] to model the communications between the bus and
stations. However in Uppaal, data transfer (or value passing) between processes
(or automata) cannot be modeled in this way.

We define two channels between the bus and stations: bustolift and liftto-
bus, and declare several global variables for data transfer when communication
happens. When a station wants to send a message to the bus, it has to instan-
tiate the values for some global variables in the message, for instance the state
and the sender’s position. When communication takes place, the values of those
global variables are saved to the variables used by the bus. After communica-
tion, those global variables are provided with default values. In a similar fashion,
messages are sent from the bus to stations. Detailed information can be found
in the automata Station and Bus (see Fig. 2, Fig. 4 and Fig. 5).

Messages Broadcasting. In µCRL, summation
∑

d:D p(d) provides the pos-
sibly infinite choice over a data type D. In the µCRL specification of the bus,
when the bus gets a message from a station, it can compute the set of stations
who can get this message via closed relays. Then the bus can choose one station
from the set nondeterministically, and send it the message. By this way, we can
model the broadcasting of a message. In Uppaal, the summation operator is
absent. We set a kind of fix order for the bus to broadcast a message. The relay
controlled by a station is modeled as a flag. When the relay is closed, the flag is
set to 1; otherwise it is 0. When a bus broadcasts a message, it starts to check
the flag at the position of the message sender. If the flag is 1, it sends a message
to the station connected by this relay, and continues to check the flag of this
station. As soon as it reaches a flag with value 0, it continues at the station
preceding the message sender. If the flag at this station is 1, the message is sent
to the station, and the bus continues to check the flag at the preceding station.
This procedure moves on until the bus reaches another flag with value 0. Recall
that in both phases of the lift system, there is at least one open relay, which
guarantees that the broadcasting procedure terminates. In the automaton Bus
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Fig. 2. The automaton Bus.

(see Fig. 2), when a bus gets a message at the ‘initial’ node, it starts broadcast-
ing the message from the left part of the picture, then continues at the right
part, and finally goes back to the ‘initial’ node.

One SETREF Button Pressed. In [7], the second problem of the original
design was found during the start-up phase. It occurs if the setref buttons
at two lifts are pressed. The result of the problem is that after the start-up
phase there will be two lift systems instead of one. The situation may lead to
the violation of all the requirements. Given the chosen bus it seems impossible
to solve this problem satisfactorily. The developers chose to emphasize in the
manual that it is important to make sure that in the start-up phase the setref
button of only one lift is pressed. We also take this assumption into our analysis
of the redesign.

In the Uppaal model it is impossible to press another setref button af-
ter one is pressed. We use guards on transitions to block pressing of setref
buttons after one setref button has been pressed. In the automaton Inter-
face (see Fig. 3), a variable onesetref is used as a guard on both transitions
from the initial state. Initially the variable is zero, so one Interface can take
the transition with the guard ‘onesetref==0’, if the setref button on the lift
is pressed. The variable onesetref is now set to 1. In order to leave their initial
state, the other Interface automata have to take the other transition with the
guard ‘onesetref>0’. Therefore it is simply made impossible to press more than
one setref button in our Uppaal model.

3.2 Adding the Solutions

In the automaton Station, the two phases of the lift system as explained in
Section 2 are clearly distinguishable.
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Fig. 3. The automaton Interface.

Start-Up. Until all the stations have reached the node ‘normaloperation’, it is
in the start-up phase. The main role of the start-up phase is to find out which
position a lift has in the network and how many lifts there are in the network. The
variables position and number are assigned to each lift to store this information.

The station where the setref button is pressed will move clockwise in Fig. 4
from the ‘initial’ node. It gets position 1, closes its relay, and sends a startup
message to the bus. After that it opens its relay and waits for a startup message.
When it gets the startup message, it adopts the value of the variable number
in this message; this way it gets to know how many lifts there are in the system.
Then, it sends a standby message and reaches the ‘normaloperation’ node. The
other stations will move anti-clockwise in Fig. 4 from the ‘initial’ node. They
first get a startup message, increase the sender of the message by one, and save
it as their own position. They close their own relay and send a startup message.
There is a small loop in Fig. 4, to indicate that the stations keep getting startup
messages and changing the knowledge of the number of lifts in the system. In
the end, they will get a standby message, and end up in the ‘normaloperation’
node. When all the stations have reached the ‘normaloperation’ node, all the
stations are standby. They all have a unique value for position, and the value
of number of all the lifts is equal to the total number of lifts in the network.

Some time delays are added into the start-up phase to solve one problem
found during testing. The timing information will be discussed in Section 3.3.

Normal Operation. At node ‘normaloperation’, a station enters the normal
operation phase, which is depicted in Fig. 5. In the normal operation phase,
a distinction is made between two loops which a station can perform. One is
the ‘main loop’, which takes place at the node ‘normaloperation’ in Fig. 5; and
the other one we will call ‘internal loop’, which is the other part of Fig. 5. The
difference between the main loop and the internal loop can be stated as follows:
in a main loop the station receives state messages from its Interface and can
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Fig. 4. The automaton Station: Start-up phase.

change its state accordingly, and in an internal loop the station exchanges state
messages with Bus and changes its state accordingly.

The main loop is a short loop in which the automaton Station synchronizes
with its Interface. Executing the main loop is the only way the station can get
information about which button on the lift (if any) is pressed or released. This
main loop takes place after a fixed number of internal loops, which is modeled
as a constant CYCLES in the Uppaal model. And a counter cyclecounter is
used to record the number of internal loops that have happened after the last
main loop. When ‘cyclecounter==CYCLES’, the main loop takes place and cy-
clecounter is reset to 0. If the station detects a difference between its current
state (modeled by variable currentstate) and the state of the Interface (modeled
by variable buttonstate), the station may change its state and adopt the one
from the Interface. The main loop is also part of the original design, but it was
abstracted away in the µCRL model in [7]. In the Uppaal model of the redesign
it could not be left out, because as we will see the solutions from the developers
interact in a critical way with the main loop.

In an internal loop, a station can do several things. First a station can get
messages from the bus. Second, a station can send a message to the other sta-
tions, if it gets the turn to use the bus. Third, the active station can count state
messages and initiate a movement of the whole system. In that case the active
station will enter the node ‘activemovement’, while the other stations get a sync
message and enter the node ‘passivemovement’. A variable move is associated
to each station to indicate the direction of the current movement.
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==position[myid]?0:ECHO[myid])

currentstate[myid]:=
(ECHO[myid]==1?currentstate[myid]:messagestate),
CAN[myid]:=(ECHO[myid]==1?currentstate[myid]:1)

t10!

(lastsender[myid]+1)==position[myid]

(lastsender[myid]+1)!=position[myid]

lifttobus! t10! t15!

t20!

lifttobus!

t10!

Fig. 5. The automaton Station: Normal operation.

Flags. Problem three and four found in [7] occur in the normal operation phase.
The third problem happens when an up or down button is pressed and released
at an inappropriate moment. The lift system will end up in the situation that
all stations are in up or down state, but there is no active station. This means
that all the lifts will remain in that state until the system is shut down. This
problem violates property Liveness II in Section 2.2. The reason for this problem
is that in the original system a station becomes passive as soon as the pressed
button on this lift is released. This problem was discovered by the developers
when testing the system, and they solved it by means of flags.

The fourth problem occurs when two up or down buttons on different lifts are
pressed at the same time and one of them is released at an inappropriate moment.
As a result, some lifts will move, and one lift (where the button is released)
remains at the same height. This violates property Safety I in Section 2.2. The
reason for this problem is that a station becomes active as soon as a button on
this lift is pressed. This problem was unknown to the developers and found its
way into the final implementation of the original system. The detailed description
of each problem can be found in [7]. We proposed to solve this problem by
allowing a station to decide to be active or passive only when it is its turn to use
the bus. In this paper, we focus on the solutions from the developers, and explain
how they fail to solve the problems in Section 4. Furthermore, in Section 5 we
refine our solution from [7], and show that it does solve the problems.

The developers attempted to solve the third problem with flags. When they
are set their value is 1, and when they are reset their value is 0. The flags serve as
blocks: they can prevent state changes when they are set. Two type of flags are
used in the redesign, i.e. Can, Echo. Every station has its own flags. Initially all
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flags are 0. The Can flag is set when a station receives a state message from the
bus. An exception is the standby message. If a station receives this message, the
opposite happens: Can is reset, but only when the current state of the station is
also standby; otherwise Can is left unchanged. The idea of the developers was
to use the Can flag to block state changes by the main loop. If Can is set, the
main loop cannot change the state of the station. In Fig. 5, we have two main
loops with different guards. One is ‘CAN==1’, and the other ‘CAN==0’. If
‘CAN==0’ the main loop is taken. The current state of the station is compared
with the Interface. In Fig. 3, Interface can communicate with Station when it is
in the nodes ‘inUp’ (the up button is pressed), ‘inDown’ (the down button is
pressed) or ‘inSby’ (no button is pressed). If ‘CAN==1’, some counters such as
cyclecounter are reset, but nothing else happens.

The Echo flag can only be set via the main loop with guard ‘CAN==0’.
When the station detects a difference between its current state and the state
of the button, Echo is set. When Echo is set, the state of the station cannot
change by messages it receives from the bus. Like Can, Echo can only be reset
when the state of the station is standby and a standby message is received
from the bus. But for Echo, there is an extra requirement that has to be fulfilled
before it can be reset: it has to be the station’s turn to use the bus.

3.3 Adding Timing Information

The time model in Uppaal is continuous or dense. Clocks are used to capture
time in Uppaal. They can be associated with a transition or a node. In a
transition, clock variables can be reset or used as a guard. In a node, clock
variables can be used as a hold up to let the process stay in that node for a
certain amount of time. Such nodes are said to be labeled with an invariant.

The way we modeled the time information of the lift system is influenced by
the developers’ solution to solve one problem found in the start-up phase. It is
also influenced by the fact that during normal operation the stations take fixed
turns to use the bus. During the start-up phase there is no such order. This
difference has led to a different treatment of the timing information in the two
phases. We first discuss the start-up phase and then normal operation.

Start-Up. The first problem found in [7] occurs in the start-up phase. It has to
do with the re-opening of the relay between the first and second lift at the wrong
moment. Consider Fig. 1 in Section 2 again. The setref button is pressed on
station B, which closes its relay and sends a startup message to station C.
If station C sends a startup message before the relay between station B and
station C is opened, this message is received by station B, which draws the
incorrect conclusion that there are only two lifts in the network.

The solution to this problem is to let station C (or in general the station with
position 2) wait until the relay between the first station and the second station
is opened, before sending the startup message. The developers added delays to
the original design to make sure this happens.
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k==20

k:=0

endofST==N

k:=0

Fig. 6. The automaton Timer.

In the redesign, during the start-up phase, a local clock ‘x’ is assigned to each
station. The local clock is reset when a station gets a startup message, or a
setref button is pressed. This is used to capture the moment when the stations
join the network. Receiving a message from the bus or sending a message to the
bus costs 1 millisecond. The opening and closing of a relay cost 5 milliseconds.
There is a delay of 24 milliseconds before sending a startup message. This is
all the timing information in the start-up phase.

Normal Operation. During normal operation, the local clocks used during
the start-up phase are not used anymore. Instead we use one global. We create
an extra automaton Timer depicted in Fig. 6.

Transitions normally don’t take time in Uppaal, but this does happen in the
lift system. Each main loop consumes 1 millisecond. After each main loop, the
station waits 0.5 millisecond to get messages from the bus. During the internal
loop, the receiving and sending messages take 1 millisecond. Before sending a
sync message, stations delay 1.5 milliseconds. Before sending a state message,
stations delay 2 milliseconds. This is all the timing information in the normal
operation phase. We use Timer to express time consumption by transitions; this
idea is borrowed from [9]. The guard ‘endofST==N’ makes sure that the Timer
is only used in normal operation, where N is the number of lifts in the system. In
node ‘go’, time is constrained to not progress at all. This means that in order for
time to progress, one of the edges ‘tn?’ must be taken; where n ∈ {5, 10, 15, 20}
expresses the amount time of delay. These edges then lead to nodes where time
can progress with the corresponding number of time units, where after control
returns immediately to the ‘go’ node.
Concluding, the four problems in the original system are:

1. The relay between the first and second lift is re-opened at the wrong moment;
2. The setref buttons at two lifts are pressed in the start-up phase;
3. An up or down button is pressed and released at an inappropriate moment;
4. Two up or down buttons at different lifts are pressed at the same time, and

one is released at an inappropriate moment.
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4 Analysis of the Redesign

Since the redesign does not change the desired external behavior of lifts, the
Uppaal model of the redesign should satisfy all the requirements in Section 2.2.
We formulate those requirements in the Uppaal requirement specification lan-
guage, and verify them, sometimes with the help of test automata, to check
whether the redesign solves problems 3 and 4. We do not give the definition and
explanation of the Uppaal requirement specification language [11]; we expect
that the formulas in this section can be understood without difficulties.

4.1 Expressing the Requirements

We first check deadlock freeness. This can be translated into the Uppaal re-
quirement specification language directly:

– A[] not deadlock

The redesign satisfies this property, which indicates that the solution from the
developers solves the first problem found in [7]. In the implementation of the lift
system, the delay for each startup message is 24 milliseconds. In the Uppaal
model, a delay of 6 milliseconds for each startup message is already enough to
solve this problem.

Liveness I says that buttons on a lift can be pressed and released whenever
the user wants, and that the system will respond to this. After implementing the
main loop in the Uppaal model, it is always possible to press or release buttons.
So for the redesign, Liveness I becomes trivial.

Liveness II says that if an up or down button is pressed and not released
and no other button is pressed, all lifts will move. In the Uppaal requirement
specification language, it is impossible to express this property. Fortunately,
according to [1], we can transform this property into a test automaton, in which
an approach is developed to model-checking of timed automata via reachability
testing. The idea is to create a ‘bad’ state in the test automaton and let the
verifier check whether the system can reach this state. If it does, the system
violates a certain property.

The test automaton may need some extra ‘decorations’ for the verification
purpose. In principle, with the test automaton we can express all scenarios we
want to check. As this would lead to a possibly infinite state space, some scenarios
which are not interesting can be abstracted away. For example, in the lift system,
the buttons can be pressed and released many times. We consider only those
scenarios where a button on one lift is pressed and released at most once. The
automaton for the Liveness II requirement is depicted in Fig. 7.

We add new synchronizations between the Interface automata and the test
automaton via press and release channels, to model the number of pressing and
releasing actions. In the test automaton only one pressing and releasing per
lift can take place. nomore is a variable that is used to block more pressing
and releasing actions. This test automaton is used to express that if a button
is pressed and not released any more, after some period of time (modeled by
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initial wait2 badwait1

wait3

endofST==N
visitmovement<N, 
enoughcycles==NCYCLE

press?

visitmovement:=0, 
enoughtcycles:=0

nomore<NOMORE release? nomore:=nomore+1

nomore<NOMORE

press?
release?

nomore:=nomore+1

Fig. 7. The test automaton for Liveness II.

initial wait

bad

go?

enoughcycles:=0
visitmovement!=N,
enoughcycles==NCYLES

Fig. 8. The test automaton for Safety I.

variable enoughcycles) all the lifts will move. We now check whether the test
automaton can reach the node ‘bad’. If the test automaton reaches the node
‘bad’, it means that not all the lifts have moved and the system violates property
Liveness II.

– A[] not testautomaton.bad

Test automata are also used to model and check the other two safety prop-
erties.

With Liveness II, we could check that if one button is pressed, all the lifts
reach their ‘activemovement’ or ‘passivemovement’ node within a certain amount
of time. What we do not check is whether they move in the same direction. Safety
I demands that whenever a lift moves, all the other lifts move simultaneously
in the same direction. The corresponding test automaton is depicted in Fig. 8.
This test automaton waits for one lift to reach the ‘activemovement’ node, which
is detected by a synchronization on channel ‘go?’ between Station and this test
automaton. The test automaton then checks whether the other lifts move in the
same direction (modeled by guard ‘visitmovement!=N’) within a certain amount
of time (modeled by ‘enoughcycles==NCYCLES’).

Safety II states that there will be no movement when no button has been
pressed. The corresponding test automaton is depicted in Fig. 9. The variable
noupdown (meaning no up or down button pressed) is used to block all pressings
of buttons in the Interfaces. Now we can check whether it is still possible for the
lifts to reach movement nodes (modeled by ‘visitmovement≥0’).

The redesign satisfies requirement Safety II, and violates requirements Live-
ness II and Safety I. We will discuss the diagnostic traces and the reasons in the
next section.
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initial wait

bad

noupdown==0
visitmovement>=1

Fig. 9. The test automaton for Safety II.

4.2 Problems

The developers invented flags to solve the third problem found in [7]. These
flags seem to solve the error scenario described in [7]. But during the testing
phase, the developers encountered a new error; again the cause for this error
was not clear to them. We have built a Uppaal model (see Section 3) for the
redesign and checked it. Liveness II turns out to be violated. We first investigate
the diagnostic trace generated by the model checker in Uppaal, and then give
the reason why the solution from the developers fails. The generated diagnostic
trace contains 256 transitions; we used the graphic simulation tool in Uppaal
to analyze it.

Initially all the flags are 0. When an up button is pressed on one station (A),
Echo will be set and the state of station A will change to up. Station A sends an
up message. The other stations will set the Can flag and change their state to
up. Suppose the button is released again. The flag of station A does not change,
but its state will change to standby (see the main loop in Fig. 5). Station A will
send a standby message which the others will adopt. When they have adopted
this state, and if they receive another standby message, the Can flags of the
other stations will be reset. After a short while all Can flags in the network
are 0, Echo of station A is 1, and all the states of the stations are standby.
Suppose now that an up button of another station (B) is pressed. Station B
will send an up message. Station A will receive this but cannot change its state
because Echo is set. When it is station A’s turn to use the bus it will therefore
send a standby message. Station B will receive this standby message, and it
will not count enough up messages. The whole counting procedure has to start
over again. Station B will send an up message. The other stations will adopt
this state and send a up message. But when it is station A’s turn, again since
Echo is set, it will send a standby message and station B will again not count
enough up messages. It is clear that the Echo of station A should be reset to
get out of this situation, but that can only happen when the state of the station
is standby, a standby message is received, and it is this station’s turn to use
the bus. For station A this never happens. As a result, the whole system will
never move, even when an up button is pressed.

The test automaton detects this problem. Even though the solution of the
developers has some virtue, they seem not to have taken into account that the
main reason for the third problem lies in the fact that the active station immedi-
ately changes its state to standby after a button is released. Their solution was
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directed to block state changes to the active station after its state has changed
to standby. This is not the heart of the problem and therefore the problem
remains in the redesign.

The fourth problem found in [7] is also still in the redesign. The redesign
violates Safety I property. The reason resembles what is already explained in
[7]. This is not very surprising, since the fourth problem was unknown to the
developers at the time of the redesign.

5 A New Solution

In this section, we refine the solution proposed in [7] in such a way that it
corresponds with Uppaal and resemble to the solution from the developers.
The key point why our solution differs from the flags added into the redesign is
that our solution creates a link between the state change of a station and the
turn of the station to use the bus. This idea was already mentioned in the µCRL
model [7], but it was not further specified. With the more exact model of the
redesign, including the main loop, and using the idea of the flags the developers
came up with, now we work out the idea in detail.

The new flags are called Change and Active. They are assigned to each
station. Can and Echo are no longer a part of the new solution. When Active is
1, the corresponding station is active; otherwise, the station is passive. Change
of a station is set when there is a button pressed or released at this station
(through the main loop). This is used to remember that the Active flag at
this station must change from active to passive, or vice versa. Only when the
station gets its turn to use the bus, this change will actually happen. If one
station wants to become active, it has to make sure that there are no other
active stations in the system, by checking whether the state of the message from
the bus is standby. If the Change of a station is set, this station does not
change its state until it is its turn to use the bus to make a decision. Change
is reset together with a setting or resetting of Active.

Changing the new flags has no effect on the automata Interface, Bus and
Timer. They are exactly the same as in the redesign. Only the automaton Station
has undergone crucial changes. We will not explain the new Station automaton
in detail, more information can be found in [10]. All requirements have been
checked successfully on the model with this new solution. In particular, problem
three and four are resolved.

6 Concluding Remarks

In this paper, we have reported an industrial case study on applying formal
techniques for the design and analysis of a distributed system for lifting trucks.
Our work can be considered as one piece of evidence that formal verification
techniques are mature enough to be applied in industrial projects.

The lift system has been analyzed in the process algebraic language µCRL
[7]. Four problems were found. Three of them were also found by the developers
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during the testing phase. They proposed solutions and made a redesign. But they
faced a new problem. The redesign was then modeled in Uppaal. The analysis
in Section 4 has produced some interesting results. The first is that the redesign
does not satisfy all the requirements. Second, the redesign does not solve all
the problems with the original design. Only one problem is solved by adding
time delays. The third problem, for which those flags were developed, and the
fourth problem are not solved. Third, our solution in [7] was refined, and will be
implemented in the new release of the lift system.

Since more details of the lift system are taken into account in the Uppaal
model, the state space of the redesign increases dramatically. In [7], we could an-
alyze the µCRL model with up to five lifts. With the current version of the µCRL
toolset, we can get up to seven lifts on a cluster at CWI, owing to a distributed
state space generation algorithm. For the Uppaal model of the redesign, we
could only manage the analysis for systems with three lifts. The requirements
were checked on a 1.4 GHz AMD AlthlonTM Processor with 512 Mb memory.
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Abstract. One of the main challenges of the design of object-based Dis-
tributed Multimedia Systems is to address the performance related issues
such as the Quality of Service (QoS). The specification of QoS is a cru-
cial part of architectural object-based methods such as Open Distributed
Processing (ODP). In the ODP, a QoS property assigned to an object is
modelled via two clauses of required and provided QoS statements, which
specify the level of QoS required/provided by an object from/to its envi-
ronment, respectively. An over-demanding QoS statement can be beyond
the physical limitation of the system and might result in inconsistencies.
In particular, to produce a correct design, it is crucial to study the effect
of QoS statements of components on the overall behaviour of the system
in earlier stages of the design.
This paper develops a theory for the verification of Timeliness QoS prop-
erties such as Jitter, Throughput and Latency. The approach adopted is
based on the idea of Test Automata. We shall present a formal defini-
tion of Timeliness QoS properties, which is used for the creation of Test
Automata. Such Test Automata, which we shall refer to as QoS Timed
Automata, can be used to verify the corresponding QoS Timeliness prop-
erty. The method is illustrated by the verification of Throughput in a
Video Player systems via the model checker UPPAAL.

Keywords: QoS, Network of Timed Automata, Real-time System, Ver-
ification, Model checker UPPAAL

1 Introduction

Since modern Distributed Multimedia systems are object-based, functional be-
haviour of such systems is encapsulated within multiple components. Quality of
Service (QoS) properties, which can be seen as a set of contracts on the system,
are end-to-end issues, i.e. a QoS requirement is related to the systems as a whole.
As a result, a major challenge of the integration of QoS in the design process
of object-based distributed systems is to specify suitable QoS characteristics for
each component of the system such that; if the QoS characteristics of compo-
nents are satisfied, then the QoS requirement of the whole system is satisfied. In
particular, it is important to ensure that under the specification of the functional
behaviour of the system the QoS is achievable.
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The current paper builds on earlier works [1, 11, 12], which present a method
of specification of QoS in ODP [21] design of Distributed Multimedia Systems.
Our aim is to present a method of verification of Timeliness QoS statements
such a Jitter, Throughput and Latency, which are boolean functions on the set
of sequences of time of occurrence of events. The adopted approach is based
on the idea of Test Automata [2–4, 16]. Assume that the functional behaviour
of the system is modelled via (a network of) Timed Automata [5, 9] A . Start-
ing from a Timeliness property φ related to the time of occurrence of exter-
nal event e1, . . . , eK of A , we shall present a network of Timed Automata
QTA(φ, e1, . . . , eK), called QoS Timed Automata, which will be used to ver-
ify the property φ on A . The QoS Timed Automata is such that A satisfies
the property φ if and only if QTA(φ, e1, . . . , eK) || A does not reach to a global
state with a coordinate failure, where the location failure of QTA(φ, e1, . . . , eK)
represents the violation of φ. In practice, using QTA transfers the problem of
verifying a QoS statement of a distributed system into a reachability analysis in
a network of Timed Automata, which can be carried out via model checkers. In
this paper, we shall use UPPAAL [6, 9], which has been successfully applied to
the verification of real-time systems [8, 14, 18].

The paper is organised as follows. Section 2 presents a brief introduction to
Timed Automata and UPPAAL. Section 3, presents a formal definition for QoS
Timeliness properties and QoS Timed Automata (QTA). Theorem 1, the main
result of the paper, proves that a QTA is a Test Automata [2–4, 16]. Section 4
applies our approach to the verification of throughput in an example of a Video
Player system. Section 5 presents a proof for Theorem 1. The final two sections
discuss some related works and draw a conclusion.

2 Timed Automata with Data Variables and UPPAAL

In this section, we shall review a variation of Timed Automata model proposed by
Alur and Dill [5], which is used in UPPAAL [6, 9, 16, 17], a tool for the verification
of behavioural properties of real-time systems.

Consider a set of Completed Actions, denoted by CA, which specify inter-
nal actions of a component of the system modelled via Timed Automata. In
the UPPAAL model, Timed Automata (components) communicate via simple
CCS [20] style point-to-point communication. As a result, consider a set of Half
Actions, HA = {x?, x! | x ∈ CA}. Let A denotes the set of all actions of the
system consist of all half actions and complete actions, i.e. A = HA ∪ CA.
x ∈ CA. Underlying actions are defined via the function ↓: A → A defined by
↓ (x!) =↓ (x?) =↓ (x) = x for all x ∈ CA. If there is no fear of confusion, we shall
sometimes drop parentheses and write ↓ x!, ↓ x? or ↓ x. Moreover, for A ⊂ A ,
↓ A = {↓ y | y ∈ A}.

Suppose that C is a set of clock variables, with values in R
≥0 and D is a

set of data variables, with integer values. Let c(C ∪D) denotes the conjunction
of boolean expressions over atomic formulae of the form x ∼ q or x − y ∼ q
or i ∼ n, where x, y ∈ C , i ∈ D , q is a rational number, n ∈ N = {0, 1, . . .} a



Verification of Timeliness QoS Properties in Multimedia Systems 525

natural number and ∼∈ {≤,≥, =, <, >}. In what follows the term variable refers
to both data and clock variables.

A valuation (variable assignment) is a map v : c(C ∪ D) → R
≥0 ∪ N, which

assigns to each clock a non-negative real-number and to a data variable a natural
number. For a valuation v, a delay d ∈ R≥0, which is denoted by v+d, is defined
as (v+d)(x) = v(x)+d, if x is a clock and (v+d)(i) = v(i), if i is a data variable.
In other words, all clocks operate with the same speed and data variables are
time-insensitive. If A 	= ∅ is a set of variables, i.e. A ⊂ C ∪ D , the set of
valuations on A is denoted by V (A). For nonempty sets of variables A, B and
valuations v1 ∈ V (A) and v2 ∈ V (B) if v1(x) = v2(x) for all x ∈ A ∩ B, we
define v1 ∪ v2 ∈ V (A ∪B) by v1 ∪ v2(x) = v1(x) if x ∈ A and v1 ∪ v2(y) = v2(y)
if y ∈ B.

The value of clock or data variable can be reset. A reset statement is of the
form x := e, where x is a clock or a data variable and e is an expression. In the
current version of UPPAAL, for a clock, e must be a natural number, and for
a data variable, e must be in the form of cy + c′, where c and c′ are constant
integer and y is a data variable. A set of reset statements is called a reset-set or
reset if each variable is assigned at most once. The result of applying a reset r
to a valuation v is denoted by the valuation r(v). If a variable x is such that no
assignment of r changes its value then v(x) = r(v)(x). Let R denotes the set of
all resets. If r1, r2 ∈ R, then r1 ∪ r2 ∈ R, if r1 ∪ r2 assigns at most one value to
each variable. A Timed Automaton A is a 6-tuple (L, l0, T, I, C, D, A) such that

– L is a finite set of locations and l0 ∈ L is a designated location called the
initial location.

– C ⊂ C , D ⊂ D and A ⊂ A are finite sets of clock variables, data variables
and actions, respectively.

– T ⊂ L×A× c(C ∪D)×R ×L is a transition relation. An element of T is of
the form of (l1, a, g, r, l2), where l1, l2 ∈ L are locations of Timed Automaton,
a ∈ A is an action, g ∈ c(C ∪D) is called a guard, and r ∈ R is a set of reset
statement. We sometimes write l1

e,g,r−→ l2 to depict that A evolves from a
location l1 to a new location l2, if the guard g is evaluated true, the action
a is performed and clocks and data variables are reset according to r.

– I : L → c(C ∪ D) is a function that assigns to each location an invariant.
Intuitively, a timed automata can stay in a location while its invariants are
satisfied. The default invariant for a location is true (x ≥ 0).

For each Timed Automaton A , we shall write Location(A ), Clock(A ),
Data(A ) and Act(A ) to denote the set of locations, clocks, data variables and
actions of A , respectively.

The semantics of Timed Automata can be interpreted over transition sys-
tems, i.e. triple (S, s0,⇒), where

– S ⊂ L × V is the set of states, i.e. each state is a pair (l, v), where l is a
location and v is a valuation

– s0 ∈ S is an initial state, and
– ⇒⊂ S × (Act(A ) ∪ R≥0) × S is a transition relation.
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A transitions can be either a discrete transitions, e.g. (s1, e, s2), where e ∈
Act(A ) or a time transitions, e.g. (s1, d, s2), where d ∈ R>0 and denotes the
passage of d time units. Transitions are written: s1

e⇒ s2 and s1
d⇒ s2, respec-

tively, and are defined according of the following inference rules:

l1
e,g,r−→ l′1, g(v)

(l1, v) e⇒ (l2, r(v))

∀d′ ≤ d I(l)(v + d′)

(l, v) d⇒ (l, v + d)

A direct results of the above definition is the Time Additivity Axiom [23].

Time Additivity Axiom: For every s1, s2 ∈ S and d1, d2 ∈ R≥0, s1
d1+d2⇒ s2

if and only if there is a state s3 such that s1
d1⇒ s3 and s3

d2⇒ s2.
To model concurrency and synchronisation between Timed Automaton, CCS

[20] style parallel composition operators are introduced, which synchronise over
half actions. Suppose that A1, . . . , An are Timed Automata, the parallel compo-
sition A := A1 || A2 || · · · || An is referred to as a network of Timed Automata
[6, 9, 16, 17]. The semantics of a network of Timed Automata can be expressed
via a transition system (S, s0,⇒). A state s ∈ S is of the form s = (l, v)
where l = (l1, . . . , ln), in which each li is location of Ai and v is a valuation
on ∪i(Clock(Ai)∪Data(Ai)). s0 = (l0, v0) is the initial location, where l0 is the
vector of initial location of the components and v0 is the a valuation compatible
with the initial valuation of the components, i.e. u0 |Clock(Ai)∪Data(Ai) is the
initial valuation of the i-th component.

Let for a vector of location l = (l1, . . . , ln), l[l′i/li] denotes the vector of
location created by replacing li with l′i, then ⇒ is defined via the following
inference rules:

– For a completed action a which belongs to a component Ai, i.e. a ∈ Act(Ai)∩
CA, (l, v) a⇒ (l[l′i/li], ri(v)), if li

a,gi,ri−→ l′i and gi(v) 1

– Suppose that x! and x? are half actions of Ai and Aj where i 	= j. (l, v) x⇒
(l[l′i/li, l

′
j/lj], ri∪rj(v)), if li

x!,gi,ri−→ l′i, lj
x?,gj ,rj−→ l′j , gi(v), gj(v) and ri∪rj ∈

R.
– For d ∈ R≥0, (l, v) d⇒ (l, v + d), if I(li)(v + d′) for all i, and all d′ ≤ d.

Presence of urgent channels and committed locations may overrule the above
transitions as follows. In a state where two components may synchronise of an
urgent channel, no further delay is allowed. If in a state, one of the components
is in a location labelled as being committed, no delay is allowed to occur and
any discrete transition must invoke. In this paper, we shall not use any urgent
action or committed state.

Assume that A is a network of Timed Automata. A run σ of A is a fi-
nite/infinite sequence of transitions of the form s0

λ1⇒ s1
λ2⇒ s2 · · · where s0 is

the initial state and λi ∈ Act(A ) ∪ R
≥0. For each state sj of the run σ, define

1 Note that gi is a function defined on valuations of the a component timed automata
Ai. As a result, gi(v) is an abbreviation for gi(v |Clock(Ai)∪Data(Ai)).
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T imeStamp(σ, sj) =
∑j−1

i=1 {λi | λi ∈ R≥0}. Similarly, for an action λj define
T imeStamp(σ, λj) := T imeStamp(σ, sj), which denotes the time of occurrence
of λj . We shall denote the set of all runs of A with Run(A ). Assume that σ1 and

σ2 ∈ Run(A ) are such that σ1 := s1
0

λ1⇒ s1
1

λ2⇒ s1
2 · · · and σ2 := s2

0
µ1⇒ s2

1
µ2⇒ s2

2 · · · .
We say σ1 and σ2 are identical if they have the same length, i.e. either both
are infinite length or both have the same length, and for each i, s1

i = s2
i and

λi = µi. However, by Time Additivity Axiom, two runs σ1 := s0

1
2⇒ s1

1
2⇒ s2

and σ2 := s0
1⇒ s2, although not identical, are equal. In this paper, two runs are

called equal, if they are equal up to Time Additivity Axiom, i.e. applying Time
Additivity Axiom to one of them results in an identical run with the other. If l
is a location of A , we say a run σ ∈ Run(A ) meets the location l, if there is a
state si = (l, v) in σ.

3 Verification of QoS Timeliness Properties

Assume that e is an action of the system, a Timeliness property for e is defined
to be a property related to the time of occurrence of e [10]. For example, if
the action e marks the dispatch of frames from a communication channel, the
throughput of 25 frames per sec. can be seen as a property of the time sequence
{t1, t2, . . .} of the time of the occurrence of e such that

∀n | tn+25 − tn |< 1000, (1)

where time is measured in msec.
In general, the sequence of time of occurrence of events are finite or infinite

sequences of non-decreasing, non-negative real numbers.

Definition 1. For n ∈ N, let Γ n = {{ti}n
i=1 | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn}.

Let Γ =
⋃∞

n=1 Γ n ∪ {∅}, where ∅ is the empty set.

Suppose that A is a a network of Timed Automata and σ = s0
λ1⇒ · · · λn⇒

sn · · · is a finite/infinite run of A , where for each i, si is a state and λi ∈
act(A ) ∪ R≥0.

Definition 2. For each action e ∈ Act(A ), if e is an event occurring as {λi},
let Time(σ, e, n) denotes the time of n-th occurrence of e in the run σ, i.e.
T ime(σ, e, n) = T imeStamp(σ, sj) =

∑j−1
i=1 {λi | λi ∈ R≥0}. Let the sequence

T ime(σ, e) := {T ime(σ, e, n) | n ∈ N}.
Clearly, for each run σ and each action e ∈ A , T ime(σ, e) ∈ Γ . In particular,

if e does not appear in σ, then T ime(σ, e) = ∅(∈ Γ ) is the empty sequence. Now,
we shall present a formal definition of Timeliness properties as boolean functions
on the set of time sequences.

Definition 3. A Timeliness property of degree K ≥ 1, is a function φ : Γ K −→

{T,F}, where Γ K =

K
︷ ︸︸ ︷
Γ × Γ × · · · × Γ .
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Example 1. The throughput of 25 frames per sec. for e can be expressed via the
Timeliness property φ of degree 1, defined by

φ(t) =
{

T ∀n | tn+25 − tn |< 1000
F otherwise .

As a result, throughput is a Timeliness property of degree 1. It can be seen
QoS statements such as various types of Jitter [13] are Timeliness properties of
degree 1, whereas latency is a Timeliness property of degree 2. In general, it
seems that, any property related to the relative time of occurrence of K events
can be evaluated via a Timeliness property function of degree K. Assume that the
functional behaviour of system is modelled via a network of Timed Automata.
For a property to satisfy, it must satisfy for all runs of the network of Timed
Automata.

Definition 4. Assume that B is a Timed Automaton such that e1, . . . , eK ∈
Act(B). Suppose that φ is a Timeliness property of the degree K. B satisfies φ
for e1, . . . , eK iff for each run σ of B, φ(Time(σ, e1), . . . , Time(σ, eK)) = T. In
this case, we say σ satisfies φ.

The main focus of this paper is on Timeliness properties which express QoS
statements. The outline of our approach is as follows. We start from a Timeliness
statement φ and create a network of Timed Automata such that all its runs that
do not meet a state called failure, satisfy φ. Moreover, all runs of the network
of Timed Automata that meet failure violate φ. This ensures that the network
of Timed Automata fully represents the property φ.

Definition 5. Assume that φ is a Timeliness properties of degree K express-
ing a QoS statement on the set of actions e1, e2, . . . , eK. A QoS Timed Au-
tomaton corresponding to φ and e1, . . . , eK is a network of Timed Automaton
A = QTA(φ, e1, e2, . . . , eK) such that

1. A contains a distinct location failure;
2. for each run σ of A , if σ does not meet a failure state, i.e. a vector of

locations with at least one co-ordinate failure, σ satisfies φ.
3. for sequences, t1, t2, . . . .tK ∈ Γ that satisfy φ, there is a run σ of A such

that
(a) σ does not meet failure; and
(b) for each i Time(σ, ei) = ti;

4. for finite sequences t1, t2, . . . , tK ∈ Γ, if φ does not satisfy t1, t2, . . . , tK , then
there is a finite run σ of A such that σ ends in failure and ti = Time(σ, ei).

It poses as a question that which Timeliness properties correspond to QoS
Timed Automata (QTA). Since Timeliness properties are boolean functions on
Γ K , the cardinality of the set of Timeliness properties is ≥ 22ℵ0 . Notice, the
cardinality of Γ K is the same as the cardinality of Γ , which is ≥ 2ℵ0 . The cardi-
nality of the set of timed automata is 2ℵ0 the majority of Timeliness properties
are not in correspondence with any QTA. The question of characterisation of
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all timeliness properties which can be translated to QTA is highly nontrivial.
[2–4] adapts a Temporal logic approach to characterise all properties which are
testable via timed automata. However, considering that the Timed Automata
model of [2–4] does not include data variables, further research is required to
characterise all Timeliness properties corresponding to QTA.

A Timeliness property φ deals with the time of occurrence of external events
e1, . . . eK . Since actions are atomic, two consecutive external actions in a run σ
have identical Timestamps. As a result, the order of occurrence of such events
has no effect on “σ satisfies φ,” when φ is of degree ≥ 2, i.e. the property φ
can not differentiate between two runs which are identical except the order of
consecutive actions with the same Timestamp. Consequently, it is important for
a QTA to include all permutations of such actions.

Definition 6. Suppose that A is a QTA corresponding to a Timeliness property
φ and events e1, . . . eK . A is called a Complete QTA if for each run σ := s0

λ1⇒
s1

λ2⇒ s2 · · · λn⇒ sn of A with consecutive actions λi, λi+1 ∈ Act(A )∩{e1, . . . eK},
the run σ′ := s0

λ1⇒ s1
λ2⇒ s2 · · · si

λi+1⇒ s′ λi⇒ si+1 · · · λn⇒ sn, which is created from
changing the order of occurrence of λi and λi+1, is also a run of A .

The next theorem which is the main result of the paper, uses parallel compo-
sition of a QTA and the network of Timed Automata representing the functional
behaviour of the system to verify Timeliness properties. In effect, the next the-
orem states that each QTA is a Test Automata [2–4].

Theorem 1. Assume that B is a network of Timed Automaton such that
e1, . . . , eK ∈ Act(B). Suppose that φ is a Timeliness property of the degree K,
for which a complete QTA A exists. B satisfies φ for e1, . . . , eK if and only if
no run of A ′ || B′ meet the state failure, where A ′ = QTA(φ, e1, e2, . . . , eK)
[e1?/e1, . . . , eK?/eK ] and B′ = B[e1!/e1, . . . eK !/eK ], created from A and B,
respectively, by replacing e1, . . . , eK with half actions.

Proof: See section 5.

4 Verification of QoS for a Video Player System

In this section, we shall apply our results to verification of Timeliness QoS state-
ments on a model of a Video Player system. Fig. 1 depicts a process oriented
view of a Video Player system. The system consists of four components Video
Source, Buffer, Decoder and QoS Controller that can be explained as follows.
Video Source: models the application that produces streams of video packets.
The dispatch of each video packet is abstracted as the emission of a signal packet!.
Fig. 2 depicts the behaviour of the Video Source as a Timed Automaton, which
dispatches packet! signals with the periods T0. The variable RP , which models
the rate of the creation of the packets, is used by the QoS controller.
Buffer: (in Fig. 3) receives packet? signals and emits o packet! signals in periods
of T0. The number of packet? in the buffer is denoted by c. If c is equal to L,
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Fig. 1. A Process Oriented View of the Video Player System.

the length of the buffer, the buffer is full and the next signal causes an overflow
of the buffer, which results an Exception being thrown. One of the objectives of
the design of functional behaviour is to avoid an overflow of the buffer.
Decoder: (in Fig. 5) is used to convert arriving packets into video frames. For
the purpose of simplicity, we assume that each frame consists of a single packet.
On creation of a frame a half action frame! is emitted, which can be used to
synchronise with the display driver. It takes at most T1 unit of time and at
least T0 unit time to generate a frame from an arriving packet. The Decoder
also generates drop! signals, which mark failure of generation of a frame. The
emission of a drop! signal is controlled by two local variables r and p, and a
global variable P . The value of variable P represents the drop rate ratio. For
example for the drop rate of 1

5 , the value of P is equal to five, which denotes that
one out of five frames are dropped. In this case the Timed Automaton creates
one drop! in every five output signals.

The value of a global variable Rc, which shows the current rate of performance
of Decoder, is incremented to mark the creation of a frame. The value is also
periodically reset by QoS controller.
QoS Controller: (in Fig. 4) controls the drop rate P of the Decoder. To syn-
thesise the controller, within each unit time, the current rate of the system
performance Rp and Rc are compared. If Rp − Rc > θ0, the value of P is incre-
mented. If Rc − Rp > θ1, the value of P is decremented. θ0 and θ1 are constant
threshold values.

One of the outputs of the above Video Player example is a signal frame!
representing the creation of a single frame. This signal is used to synchronise the
Video Player with a display drive. For a display drive to present a high quality
pictures, it is required that signals frame! are dispatched with a suitable through-
put. In general, the QoS characteristic throughput of an event e is referred to as
a lower bound or an upper bound time on the number of occurrences of the event
e [10]. For the rest of the current section, we shall demonstrate our approach by
an example of verification of the QoS Throughput. Formally, a Throughput of
k ∈ N\{0} within T0 and T1 unit of time (T0 < T ) is defined by

∀n T0 ≤ τ(e?, n + K) − τ(e?, n) ≤ T, (2)
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s0

t <= T

t == T

packet !

t:=0, 
R_p := R_p + 1packet !

t:=0

Fig. 2. Video Source represented in TA.

s0 s1

t <= T0

Inter

packet ?
c := c +1

c < L
packet ?
c := c + 1

c > 0, t == T0
o_packet !
c := c - 1, t := 0

c == L, t == T0

packet ?

Fig. 3. RBuff represented in TA.

s0

t <= unit

R_p - R_c > threshold0, 
t == unit
t := 0, 
R_c := 0, R_p := 0,
P := P - 1

R_p - R_c <= threshold0,
R_c - R_p <= threshold1,
t == unit
t := 0, R_c := 0, R_p := 0

R_c - R_p > threshold1,
t == unit
t := 0, 
R_c := 0, R_p := 0,
P := P + 1

Fig. 4. QoS controller represented in TA.

s0 s1

t <= T0

o_packet ?
t := 0

r == P, p == 0
drop !
r := 0

r < P, p == 0
drop !
r:= r + 1, p := p + 1

r < P
frame !
R_c := R_c + 1,
r := r + 1

r == P, p > 0
frame !
R_c := R_c + 1,
r := 0, p := 0

Fig. 5. Decoder represented in TA.

where τ(e?, n) denotes the time of the n-th occurrence of the event e? in the
system.

Example 1 expresses the throughput of 25 frames per sec. as a Timeliness
property. Similarly, the general form of throughput, equation (2), can be written
as a Timeliness property of degree 1. Our next aim is to present a QTA A
corresponding to throughput that satisfies the definition 5. The first requirement
is that all runs of A should be such that the time for the occurrence of e satisfies
the equation 2. A solution is to create k clocks t0, t1, . . . , tk−1 and use each clock
ti to measure the time difference between the j-th and i + k-th occurrence of e,
in a periodic form.

Fig. 6 represents a Timed Automata that checks if two consecutive occur-
rences of a signal e? are within T0 and T1 units of each other. In order to check the
Throughput, we require k parallel composition copies of the Timed Automata of
Fig. 6. Each such copy of the Timed Automata of Fig. 6 has an index, denoted
by i, which acts as an identifier. There is a global variable c, which determines
which copy can fire an action e?. For example, in location active, if c == i
and e? occurs within the period of [T0, T ], a transition fires which sets the value
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sleep active failure
c == i
e ?
t := 0,
c := c + K

t >= T0, t <= T, c == i
e ?
t := 0, c := c + K

t > T

t < T0, c == i
e ?

Fig. 6. QTA to measure time difference between corresponding events e.

sleep active failure
c == 0
e ?
t0 := 0,
c := c + 1

t0 >= 0, t0 <= T, c == 0
e ?
t0 := 0, c := c + 1

t0 > T

t0 < 0, c == 0
e ?

sleep active failure
c == 1
e ?
t1 := 0,
c := c + 1

t1 >= 0, t1 <= T, c == 1
e ?
t1 := 0, c := c + 1

t1 > T

t1 < 0, c == 1
e ?

sleep active failure
c == 2
e ?
t2 := 0,
c := c - 2

t2 >= 0, t2 <= T, c == 2
e ?
t2 := 0, c := c - 2

t2 > T

t2 < 0, c == 2
e ?

Fig. 7. QTA for the Throughput with K = 3.

of c to c + K. This means that, if the condition T0 ≤ t ≤ T is satisfied, only
the copy of the Timed Automata of Fig. 6 with the index i + K can fire. For
example, the QTA for the Throughput of at least K = 3 within L unit of time,
i.e., ∀n 0 ≤ τ(e, n + 2) − τ(e?, n) ≤ T can be modelled via the network of
Timed Automata depicted in Fig. 7.

The QTA of Fig. 7 works as follows. At first the value of the counter c
is 0, therefore, if an action e? occurs, then the Left Hand Side (LHS) Timed
Automata changes its location to active, because condition c == 0 holds. Thus,
LHS Timed Automata increments counter c by 1 resetting its own clock t0. At
this moment, if another action e? occurs, then the Timed Automata in the middle
changes its location due to active. It also increments the counter c by 1. Finally,
the Right Hand Side Timed Automata changes its location on arriving the third
action e?, because condition c == 2 holds. At this point, since c := c − 2, the
value of c is set to 0. Now, if the fourth action e occurs within the period [0, T ],
LHS Timed Automata again fires and c is again incremented from 0 to 1.

It can easily be seen that the network of Timed Automata of Fig. 7 satisfies
the definition 5 and hence is the QTA for the throughput.

The rest of the current section demonstrates our method for the verification
of Throughput of frame? signals in the Video Player system. In what follows, we
have used UPPAAL (ver. 3.2.13) on SUN WS (Ultra SPARC Memory:4G) with
the parameters specified in Table 1.

One of the requirements of the design is to ensure that the Buffer never
overflows, i.e. the location Inter of the Buffer of Fig. 3 is not reachable. This
has been verified checking the deadlock-freeness of the model.
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Table 1. Video Player Parameters.

sub-system parameter value details

Video Source T0 40 period of emission of packets

Decoder T0 30 Lower bound of time to generate a frame

Decoder T1 40 Upper bound of time to generate a frame

Decoder P 5 The initial value of the drop-rate of the frames

Qos Controller unit 1000 period of control

Qos Controller θ0, θ1 5 Control Thresholds

Buffer T0 40 fixed period for the dispatch of packets

Buffer L 5 length of the Buffer

Table 2. Result of the Verification of Throughput.

Number of Duration time Result of verification CPU time
frame? signals (sec.)

1 130 valid 15

1 129 not valid

2 170 valid 30

2 169 not valid

3 210 valid 120

3 209 not valid

5 250 valid 60

5 249 not valid

6 290 valid 100

6 289 not valid

7 330 valid 600

7 329 not valid

Checking the Throughput of K frame? signals per T msec. is straight forward.
We only need to include K parallel composition copies of the Timed Automata
of Fig. 6 and check for deadlock-freeness. Since, we have already verified that
the buffer will not overflow, the only likely deadlock can occur from reaching a
global state with a coordinate failure. But, how can we calculate K and T ?

In general, estimating the Throughput of a given system is non-trivial. Here,
we can see that the system produces at most K frame? signals every T = 130+
(K − 1) × 40 msec. To see, this noticing that the system has a drop rate of
one in five, we need to look for the worst possible delay between frame? signals.
The worst scenario happens when two consecutive o packets are dropped. For
example, consider the case that the 3-rd frame? signal is created in the possible
time, i.e. 30 msec. after the arrival of the corresponding buffered packet. The
5-th and 6-th frame? signals are dropped and the 7-th is created at the latest
possible time, i.e. 40 msec. after the arrival of the corresponding buffered packet.
In this case, the time difference between the 4-th and 7-th frame? is equal to
130 = 3 × 40 + 10.
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Table 2 depicts the result of the verification. It can be seen that Throughput
of 1 frames in 130 msec., 2 frames in 170 msec., . . . are verified, while the
Throughput of 1 frames in 129 msec., 2 frames in 169 msec., . . . are not valid.
We have also included the CPU time for each experiment, which indicates an
exponential increase in time. As a result, there is a clear scope in the research
for finding faster method of verification of QoS Timeliness properties.

Of course UPPAAL itself is not a system development tool. However, in the
early stages of the system design, it can be a strong tool for detecting time
related design errors in the specification. For example, often choosing a wrong
value for a constant or using < instead of ≤ may creates a dead-lock. Such system
errors can be easily detected using UPPAAL. When the designer developes an
implementation as an executable code or a hardware logic design, it is hard to
detect such errors.

5 Proof of Theorem 1

The aim of this section is to present a proof of the Theorem 1. Our first result
establishes the relationship between runs of the parallel composition of two net-
works of Timed Automata with runs of each component. The idea is to project
each run of the parallel composition to a run of the components. We shall start
with the definition of a projection map.

Definition 7. Suppose that A and B are two network of Timed Automata that
share actions e1, e2, . . . , eK . Let πA : Act(A || B) ∪ R

≥0 −→ Act(A ) ∪ R
≥0

πA (λ) =






λ λ ∈ R
≥0

0 λ ∈ Act(B)\Act(A )
λ λ ∈ Act(A )\Act(B)

↓ λ λ ∈ Act(A ) ∩ Act(B)

.

It can be seen that the projection function πA maps all actions λ 	∈ Act(A )
to 0. This can be interpreted by considering that the occurrence of such λ has
no effect on the dynamics of A and takes zero-time. The projection map πB can
be defined similarly.

If s = (l, v) is a state of A || B, then the vector of location l consists of
coordinates representing locations in both A and B. Also, the valuation is a
map on the set of clock variables and data variables belonging to both A and
B.

Definition 8. Suppose that s = (l, v) is a state of A || B, define prA (s),
called the projection of the state s to A , as a pair (lA , vA ) such that lA is
the restriction of l to the set of coordinates of locations in A and vA is the
restriction of v to the clocks and data variables in A .

The next lemma states that the projection of each run of A || B to A is a
run of A . Assume that A and B are networks of Timed Automata with shared
actions {e1, e2, . . . , eK}.
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Lemma 1. If σ := s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn · · · is a finite/infinite of A || B, then

prA (s0)
πA (λ1)⇒ prA (s1)

πA (λ2)⇒ · · · πA (λn)⇒ prA (sn) · · · , which we shall denote
with proj(σ, A ), is a run of A ′ = A [↓ e1/e1, . . . , ↓ eK/eK ] created from A by
replacing each half action with its complete form.

Proof. The proof is by induction on n. We must show that if sn
λn+1⇒ sn+1 then

prA (sn)
πA (λn+1)⇒ prA (sn+1). Let sn = (ln, vn) and sn+1 = (ln+1, vn+1).

Case 1: λn+1 ∈ R≥0, is trivial. As sn
λn+1⇒ sn+1 implies that for each coordinate

li of the vector of locations ln, I(li)(v+d′) for all d′ ≤ λn+1. This is true specially
for the coordinates li of A .

Case 2: λn+1 ∈ Act(B)\Act(A ) i.e. λn+1 is an internal action of B and occur-
rence of λn+1 has no effect on A . Consequently, none of the locations, valuation
of clocks or data variable of A is changed i. e. prA (sn) = prA (sn+1) and we
can write prA (sn) 0⇒ prA (sn+1).

Case 3: λn+1 ∈ Act(A )\Act(B), then there is a location li ∈ Location(A )

such that li
λn+1,gi,ri−→ l′i. As a result, ln+1 = l[l′i/li], vn+1 = r(vn), and gi(v) =

gi(v |Clock(Ai)∪Data(Ai)), prA (sn) λi⇒ prA (sn+1).

Case 4: ↓ λn+1 ∈↓ Act(A )∩ ↓ Act(B). In this case, λn+1 is a shared action and

there is an en(1 ≤ n ≤ K), such that λn+1 =↓ en. For example, li
en?,gi,ri−→ l′i and

li
en!,gj ,rj−→ l′i in A and B, respectively. Moreover, gi(vn), gj(vn) and ri ∪ rj ∈ R.

As a result, replacing en? with ↓ en(=↓ λn) , we have li
en?,gi,ri−→ l′i, gi(vn), ri ∈ R.

Hence, prA (sn) λi⇒ prA (sn+1). �

The converse of the above lemma is not valid. In other word, it is not possible
to start with any two runs σ1 ∈ A and σ2 ∈ B and merge them to create a run of
the parallel composition. For σ1 and σ2 to synchronise, one of the requirements
is that the order of the occurrence of the shared actions to be identical.

Definition 9. Assume that A and B are two networks of Timed Automata
with shared actions e1, . . . , eK . Assume that σ1 and σ2 are finite runs of A and
B, respectively. σ1 and σ2 are called Shared Action Compatible if the order of
the occurrence of shared actions in them are identical. i.e. if {µ1

1, µ
1
2, . . . , µ

1
n}

and if {µ2
1, µ

2
2, . . . , µ

2
m} are ordered sequences of shared actions in σ1 and σ2,

respectively, then n = m and for each i, µ1
i and µ2

i are half actions of the same
complete action, i.e. . ↓ µ1

i =↓ µ2
i .

The following Lemma studies a special case under which it is possible to
merge a run σ1 of A and a run σ2 of B. For σ1 and σ2 to merge into a run of
the the parallel composition A || B, they must have the same time sequences,
for the corresponding shared actions and the order of the occurrence of shared
actions with equal Timestamps must be identical.
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Lemma 2. Assume that A and B are network of Timed Automata with shared
actions e1, e2, . . . eK. Assume that A and B have no shared clocks or data vari-
ables. Suppose that σ1 and σ2 are finite runs of A and B that

1. σ1 and σ2 are Shared Action Compatible and;
2. for each i, T ime(σ1, ei) = T ime(σ2, ei),

then there is σ ∈ Run(A || B) such that proj(σ, A ) = σ1 and proj(σ, B) = σ2.

Sketch of the Proof: suppose that σ1 = s1
0

α1⇒ s1
1

α2⇒ · · · αN⇒ s1
N and σ2 = s2

0
β1⇒

s2
1

β2⇒ · · · βM⇒ s2
M , where for each i, αi ∈ Act(A ) ∪ R≥0 and βi ∈ Act(B) ∪ R≥0.

Let us assume that Timestamp(σ1, S1
N) ≤ Timestamp (σ2, S2

M ); the symmet-
ric case of Timestamp(σ1, S1

N ) ≥ Timestamp (σ2, S2
M ) can be treated similarly.

Also, without any loss of generality, we can assume that the set of all Times-
tamps of all states σ1 and the Timestamps of the states of σ2 that occurs before
the Timestamp of the last state of σ1 are identical, i.e.

{T imestamp(σ1, s1
j) | 0 ≤ j ≤ N} = {T imestamp(σ2, s2

j) |
T imestamp(σ2, s2

j) ≤ T imestamp(σ1, s1
N )}. (3)

The above can be achieved by using Time Additive Axiom to modify a run and
adding extra states. The proof of the lemma is by induction, we shall use the
following notations in the rest of the proof:

– for 0 ≤ p ≤ N , let σ1,p := s1
0

α1⇒ s1
1

α2⇒ · · · αp⇒ s1
p,

– for 0 ≤ q ≤ M , let σ2,q := s2
0

β1⇒ s2
1

β2⇒ · · · βq⇒ s2
q,

– also assume that for 0 ≤ n, σn := s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn donates a run of
A || B.

Since the induction base is trivial, we only need to prove the following claim,
which implies the induction step.
CLAIM: for p+q < M+N , if proj(σn, A ) = σ1,p and proj(σn, B) = σ2,q, there
is σn+1 ∈ Run(A || B) such that proj(σn+1, A ) = σ1,p′

and proj(σn+1, B) =
σ2,q′

, where p ≤ p′ ≤ N, q ≤ q′ ≤ M and p + q < p′ + q′.
Proof of the CLAIM: The proof of above claim involves a number of cases.
Let s1

p = (l1, v1), s2
q = (l2, v2) and sn = (l, v), where l consists of coordinates of

l1 and l2 and v = v1 ∪ v2.
Case I: αp+1 = 0 or βq+1 = 0 is trivial. For example if αp+1 = 0 then s1

p = s1
q+1.

In this case, the sequence σn+1 = s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn
αp+1⇒ sn+1 is such that

proj(σn+1, A ) = σ1,p+1 and proj(σn+1, B) = σ2,q. We see that p′ = p + 1 and
q′ = q + 1.

Case II: αp+1 and βq+1 are both nonnegative real numbers. Using equation 3

we can show that αp+1 = βq+1 = d. Now, if σn+1 := s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn
d⇒

sn+1, we can see that proj(σn+1, A ) = σ1,p+1 and proj(σn+1, B) = σ2,q+1.
Consequently, p′ = p + 1 and q′ = q + 1.
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Case III: One of αp+1 or βq+1 is a completed action. For example, if αp+1

is a completed action and enabled under sn, αp+1 is enabled under s1
p. Hence,

if σn+1 := s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn
αp+1⇒ sn+1 then proj(σn+1, A ) = σ1,p+1 and

proj(σn+1, B) = σ2,q. In this case, p′ = p + 1 and q′ = q.

Case IV: Both αp+1 and βq+1 are half actions. By the Shared Action Compati-
bility, αp+1 and βq+1 are half actions of the same actions, i.e., there is i such that

↓ αp+1 =↓ βq+1 = ei for 1 ≤ i ≤ K. Then let σn+1 := s0
λ1⇒ s1

λ2⇒ · · · λn⇒ sn
ei⇒

sn+1. We can see that proj(σn+1, A ) = σ1,p+1 and proj(σn+1, B) = σ2,q+1.
Notice that p′ = p + 1 and q′ = q + 1.
Case V: One of αp+1 or βq+1 is a half action and other is in R

≥0. Let αp+1 ∈ HA
and βq+1 ∈ R≥0. By the Shared Action Compatibility, there is r > q+1, such that
βr and αp+1 are half actions of the same actions, i.e., ↓ αp+1 =↓ βr = ei. This
implies that βq+1 = 0, since βq+1 ≤Timestamp(σ2, s2

r−1)− Timestamp(σ1, s1
p) =

0. Using case I, there is nothing to prove. �

We shall end this section with the proof of Theorem 1.
Proof of Theorem 1 ⇒ : We shall prove by contradiction. Suppose that B
satisfies the property φ but there is a run σ of A ′ || B′ ending in failure.
Then by Lemma 1 σA = proj(σ, A ) is a run of A ending in a failure state of
A , i.e. a state of A with a failure coordinate. As a result, φ(Time(σA , e1), . . . ,
Time(σA , eK)) = F. Now, consider σB = proj(σ, B) which is a run of B. Since,
Time(σA , ei) = Time(σB, ei), for each i,
φ(T ime(σB′ , e1), . . . , T ime(σB′ , eK)) = F. Consequently, by definition 5, σB

does not satisfy φ, which is a contradiction.
Conversely: The proof of this case is also by contradiction. Assume that no run
of the parallel composition meets any failure state, but B does not satisfy φ.
Then there is a run σ2 of B such that φ(Time(σ2, e1), . . . , Time(σ2, eK)) = F.
Suppose that t1 = Time(σ2, e1) , . . . , tK = Time(σ2, eK). Since φ(t1, . . . , tK) =
F by Definition 5. There is a finite run σ1 of A such that σ1 ends in failure
and t1 = Time(σ1, e1),. . ., tK = Time(σ1, eK). Moreover, since A is a Complete
QTA, σ1 can be chosen such that σ1 and σ2 are Shared Action Compatible.
Now, using σ1, σ2 and Lemma 2, we can conclude that there is a run of A ′ || B′

ending in failure. This is a contradiction. �

6 Related Works

Formal specification of QoS in a distributed system via modelling languages such
as Unified Modelling Language (UML) is an active area of research [22, 7, 15, 1,
11, 12]. In particular, the idea of specifying the QoS requirements as contracts
[19] on the behaviour of the system is proposed [15] as a part of Model Driven Ar-
chitecture, the new initiative by the Object Management Group (www.omg.org).
However, the current research mainly deals with the issue of verifying of QoS
property via Test Automata. The question that, which properties can be anal-
ysed by Test Automata is discussed in details in [2–4]. In particular, [3] presents
a property language, called SBLL which is suitable for expressing safety and
liveness properties of the real-time systems. SBLL is a testable language, in the



Fig. 8. QTA for checking Throughput of K occurrence of e? in T unit of time.

sense that [4] presents an algorithm for the translation of SBLL formulae to Test
Automata. SBLL has the following grammar:

φ ::= ff | φ1 ∧ φ2 | g ∨ φ | ∀∀φ | [a]φ | 〈a〉tt(a ∈ U ) | x in φ | X | max(X, φ),
where ff and tt stand for false and true, respectively. g is a guard expression on
the clocks, x in φ stands for resetting a clock x before evaluating φ, max(X, φ)
is the maximal fixed point solution on X in φ, U is a set of urgent actions and
∀∀φ stands for φ holds forever.

The following formula represents the Throughput as an SBLL formula

φ = t1 in [e?](t1 ≥ T ∨ (t2 in [e?]t1 ≥ T ∨ t2 ≥ T ∨ (· · · (t1 ≥ T ∨ · · · tK−1 ≥ T

∨tK−1 in [e?](φ′′)) · · · )))

φ′(X) =

t1 ≥ T ∨ t1( in [e?](t2 ≥ T ∨ t2 in [e?](· · · tK−1 ≥ T ∨ tK−1 in [e?](X) · · · )))

φ′′ = max(X, φ′).

Fig. 8 depicts the Test Automaton for the Throughput for K = 3, created via
the algorithm [4], in which all redundant transitions are omitted. Fig. 7 depicts
the equivalent QTA created earlier. It can be seen that the QTA of Fig. 7 has
the advantage of being scalable, i.e. the Test Automaton for the throughput of
K signals e? in T units of time can be created from the parallel composition of
K copies of the QTA of Fig. 6. The reason behind scalability of our model is
that, unlike SBLL, our model of Timed Automata includes data variables. There
is a clear scope for research to extended the SBLL to include data variables. In
particular, since L∀s, an extension of SBLL, completely characterises testable
properties [2–4], an extension of SBLL to include data variables will enable to
characterize the Timeliness properties which are testable.
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failure

t1 := 0

e ?

e ?

e ?
e ?

t1 := 0

t1 > T

t1 > T, t2 > T

t1 > T, t2 > T, t3 > T

e ?

t2 := 0

e ?

t3 := 0

t1 > T
t2 > T

t3 > T
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7 Conclusion

This paper presents a formal approach to the verification of Timeliness QoS
properties, such as Throughput, Jitter and Latency, in object-based models of
Distributed Multimedia Systems. For each Timeliness property φ, we define a
QoS Timed Automata (QTA) such that all its runs that do not meet a failure
location, satisfy φ. Moreover, all runs of the QTA that meet a failure location
violate φ. The main result of the paper proves that a QTA is a Test Automata,
i.e. it can be used to verify the property φ over a network of Timed Automata
via parallel composition. We have demonstrated our approach by the verification
of Throughput in a Video Player system.
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Abstract We propose an algebraic calculus for set-based program de-
velopment. First, we reconstruct a fragment of set theory via atomic dis-
tributive lattices (ADL). Semantically, ADL extends boolean reasoning
about sets by element-wise reasoning; it avoids presupposing a universal
set. Operationally, ADL yields abstract, concise, elegant proofs from few
elementary principles. Second, we develop a focused automated proof-
search procedure for ADL with simple deduction and powerful reduction
and simplification rules. Proof-search is guided by rewriting techniques.
The procedure decides several subclasses. Main application is the proof-
support for formal methods like B or Z.

1 Introduction

Intuitive or naive set theory is both an official mathematical ontology and a
universal mathematical tool. In computer science, it is the basis of popular and
successful formal methods like Z [17] and B [1]. Therefore, the integration of intu-
itive set-theoretic reasoning into efficient focused automated deduction systems
is an important question. There are a few systems that implement axiomatic set
theory (e.g. [7,16,14,15]), but these are either interactive or designed for founda-
tions rather than applications as automated formal methods. Hines [10] proposes
a resolution calculus for restricted reasoning with some set-theoretic operations,
but the problems of characterizing the underlying fragment of set theory and
proving completeness of his calculus are now open for more than a decade. So
the apparent lack of answer to the above question indicates an interesting gap
both in the field of formal methods and in automated deduction.

We propose a calculus to close this gap. Besides, it solves the longstanding
open problem related to [10]. Our first main contribution is a core calculus for
set theory as used in formal methods. The second one is the integration of this
calculus into a focused resolution-based automated deduction procedure.

In opposition to the usual logical approaches, our core calculus is algebraic.
It is the calculus of atomic distributive lattices (ADL). Appropriateness of ADL
for reasoning with sets follows from the representation theorem for this class.
Accordingly, every atomic distributive lattice can be isomorphically embedded
into a field of sets; the zero of the lattice represented by the empty set, join and
meet by union and intersection, the lattice order by set inclusion. But reasoning
with ADL differs from boolean reasoning about sets: The ontological commitment

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 541–559, 2003.
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to a universal set is avoided, since there need not be a maximal element. Set-
difference can nevertheless be expressed, since ADL has unique sectional comple-
ments. More important, ADL supports element-wise reasoning: elements of sets
are in one-to-one correspondence with singleton sets, which represent atoms.
Using techniques from the representation theorem we also show that atomicity
of the lattice expresses precisely extensionality of the set theory. Our approach
shares the usual benefits of other algebraic calculi for reasoning about programs
(c.f. [6,11,13]): Economy of axioms, support of abstract, concise, elegant calcula-
tions from few elementary principle and relation to standard algebraic decision
procedures. It is therefore particularly suited for automation.

We also propose a focused ordered resolution calculus (ADC) for ADL. Fo-
cusing means integrating mathematical and procedural knowledge, here via spe-
cific inference rules, rewriting techniques, ordering constraints and simplifica-
tion techniques. The inference rules are specific ordered chaining rules (c.f. [3])
for ADL that extend a Knuth-Bendix completion procedure for distributive lat-
tices [18]. They are restricted to manipulations with maximal terms in maximal
atoms. Focusing seems indispensable for structures like ADL. Axiomatic reason-
ing would lead to an explosion of the search space. Our term-oriented ordering
constraints, for instance, control the proliferation by theory unifications that
would otherwise arise for joins and meets. We develop ADC with the derivation
method from [19]. Its main idea is to internalize axioms into inference rules by
establishing a separation property on axioms in refutations by ordered resolution
and then internalizing the axioms into derived inference rules by inspecting their
proof-patterns with non-theory clauses. Completeness of the resulting focused
calculus then follows from faithfulness of the construction. Fortunately, since
the derivation method is modular with respect to extensions, the development
of ADC need not be done from scratch: we can base it on a focused calculus for
distributive lattices [20]. By carefully choosing an appropriate representation of
ADL, all inference rules of ADC are restrictions of those for distributive lattices.
Using a variant of extensionality for eliminating all negative literals, the most
prolific rules of the previous calculus even disappear. Moreover, the ADL-axioms
dealing with atoms are entirely casted into simplification and reduction rules.
Part of the efficiency of ADC is also due to the fact that atoms are only lazily
introduced instead of boiling down the whole structure. Intuitively, new atoms
are only used to witness that two sets are different. This feature also causes the
specialization of ADC to decision procedures for certain subclasses, in particular
finite structures.

Forgetting the ordering constraints, the inference rules of ADC are essentially
those of [10]. We can also transfer the two main simplification techniques of [10]
to the ordered resolution framework and to ADL. However, the ordering con-
straints give restrictions on certain inferences on variables for free that would
otherwise be difficult to verify; the simplification rules of ADL can be justified
using the standard generic notion of redundancy [2].

In this extended abstract, we can only outline the main ideas of our approach.
Formal details can be found in technical reports [21,22].
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2 Lattices

A lattice [4,9] is a partially ordered set (L,≤) closed under least upper bounds
or joins (denoted by �) and under greatest lower bound or meets (denoted by
�) for all pairs of elements. Formally, for all a, b, c ∈ L,

a ≤ c ∧ b ≤ c ⇔ a � b ≤ c, (1)
c ≤ a ∧ c ≤ b ⇔ c ≤ a � b. (2)

The dual of a statement about lattices is obtained by interchanging joins and
meets and converting the ordering. Thus (1) and (2) are dual statements. L is
distributive, if

a � (b � c) ≤ (a � b) � (a � c)
holds for all a, b, c ∈ L or its dual and therewith both.

We denote the minimal and the maximal elements with respect to ≤ of L, if
they exist, by 0 and 1. A lattice with 0 and 1 is called bounded. Formally, for all
a ∈ L,

0 ≤ a. (3)

The class of lattices is denoted by L, the class of distributive lattices by DL.
If K is a class of lattices, then K0 denotes the subclass that has a zero, K1 the
subclass that has a one and K01 the subclass that is bounded.

We consider lattices as orderings. Alternatively, the class can also be axiom-
atized equationally. The translation between the two classes is given by

a ≤ b ⇔ a � b = b ⇔ a � b = a. (4)

In the equational definition, joins and meets are associative, commutative, idem-
potent (a�a = a = a�a) and absorptive (a�(a�b) = a = a�(a�b) operations.
Experience shows that order-based reasoning with lattices is more natural than
equational reasoning.

Let L1, L2 ∈ L. A mapping h : L1 → L2 preserves joins, if h(a � b) =
h(a) � h(b) for all a, b ∈ L1. It preserves meets, if h(a � b) = h(a) � h(b) for
all a, b ∈ L1. A lattice-homomorphism (or homomorphism) preserves joins and
meets. We also require h(0) = 0 and h(1) = 1, if present. An injective lattice
homomorphism is called a (lattice-)embedding, a surjective lattice embedding a
(lattice-)isomorphism. Every join or meet preserving mapping is monotone, that
is a ≤ b implies h(a) ≤ h(b) for all a, b ∈ L1.

Example 1.

(i) A family of subsets of some set is called ring of sets, if it is closed under
(set-theoretic) union and intersection. Every ring of sets is a distributive
lattice. A finite lattice is distributive iff it is isomorphic to a ring of sets.

(ii) Every chain (for example the chain of natural numbers) is a distributive
lattice.
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3 Complements

Let L ∈ L01. A complement of an element a ∈ L is an element b ∈ L such that
a � b = 1 and a � b = 0. L is complemented, if every element has a complement.
A boolean lattice is a complemented distributive lattice. The class of boolean
lattices is denoted by BL.

Our main interest are lattices with a weaker notion of complementation. Let
L ∈ L0 and consider the sublattice L|a = {b ∈ L : b ≤ a}. L is sectionally
complemented, if L|a is complemented for every a ∈ L.

In DL, sectional complements and complements are uniquely determined (if
they exist). In DL0, we write b−a for the sectional complement of a in L|(a� b).
In DL01, we write a′ for the complement of a. Every complemented distributive
lattice is sectionally complemented with b−a = a′ � (a�b) and a′ = 1−a. Every
sectionally complemented distributive lattice with 1 is boolean. In Section 5 we
will see that sectional complementation is very natural for atomic distributive
lattices. Also in the context of intuitive set theory, sectional complements are
natural concepts. There, the empty set corresponds to the zero, but we would
like to avoid assuming the existence of a one, that is a universal set.

Example 2.

(i) In a ring of sets, s1 − s2 denotes set-difference, that is s1 − s2 is the set of
all elements of s1 that are not elements of s2.

(ii) A ring of set is called field of sets, if it closed under set-difference. Every
field of sets is a sectionally complemented distributive lattice.

We now present laws for computing with sectional complements. First, we in-
troduce some identities for simplifying expressions with sectional complements.
Then we generalize some standard laws for complements to sectional comple-
ments: de Morgan laws, monotonicity laws and shunting laws. Some of them
can be found in the literature [9,5]. Most of the laws are based on the following
property of sectional complements, which is immediate from the definition.

a = b− c ⇔ a � c = b � c ∧ a � c = 0.

– Simplification of sectional complement expressions.

(a− b) � b = a � b, (5)
(a− b) � b = 0, (6)
a � (a− b) = a− b, (7)
a � (a− b) = a, (8)

a− a = 0, (9)
a− (b− c) = (a− b) � (a � c), (10)
a− (a− b) = a � b. (11)
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– Generalized de Morgan laws.

a− (b � c) = (a− b) � (a− c), (12)
a− (b � c) = (a− b) � (a− c), (13)
(a � b) − c = (a− c) � (b− c), (14)
(a � b) − c = (a− c) � (b− c). (15)

– Generalized monotonicity laws.

a ≤ b ⇒ a− c ≤ b− c, (16)
a ≤ b ⇒ c− b ≤ c− a. (17)

– Generalized shunting laws.

(a− b) ≤ c ⇔ a ≤ b � c, (18)
a � (c− b) ≤ d ⇔ a � c ≤ b � d, (19)
a ≤ (c− b) � d ⇔ a ≤ c � d ∧ a � b ≤ d, (20)

a ≤ c− b ⇔ a ≤ c ∧ a � b ≤ 0. (21)

(7) is very useful in the form a − b ≤ a. Each of these laws can be proven in a
few lines of lattice calculus. The usual laws for complements are recovered by
setting a′ = 1 − a.

The laws (5)–(21) are interesting for two reasons. First, they are used in the
normal form computations of our focused calculus in Section 9. There they allow
us to completely eliminate sectional complements. Second, they support abstract
algebraic reasoning with sets, for instance in set-based program development
methods like Z and B.

4 Atoms

Intuitively, an atom of a lattice with zero is an element that lies immediately
above (hence covers) the zero. Formally, let L ∈ L0. Then α ∈ L is an atom of
L, if for all b ∈ L,

α 	≤ 0, (22)
b ≤ α ⇒ α ≤ b ∨ b ≤ 0. (23)

Simple lattice calculus shows that (23) is equivalent to

α ≤ a � b ⇔ α ≤ a ∨ α ≤ b, (24)

if L is also distributive and sectionally complemented. A(L) denotes the set of
atoms of L.

(24) relates atoms with join-irreducible elements. An element a in a lattice L
is join-irreducible, if for all b, c ∈ L, a = b � c implies a = b or a = c. All atoms
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of a lattice are join-irreducible and all join-irreducible elements of a distributive
sectionally complemented lattice with zero are atoms. Example 3 (ii) presents a
finite distributive lattice with join-irreducible elements that are not atoms.

The following properties are helpful as rewrite rules for eliminating certain
negative inequalities.

Lemma 1. Let L ∈ L0. For all α, β ∈ A(L) and a, b ∈ L,

α 	≤ b ⇔ α � b ≤ 0, (25)
α � β 	≤ 0 ⇔ α = β, (26)
α � a ≤ b ⇔ α � a ≤ 0 ∨ α ≤ b, (27)
α � a 	≤ b ⇔ α � b ≤ 0. (28)

Example 3.

(i) In a field of sets, the atoms are precisely the singleton sets.
(ii) In the interval [0, n] of natural numbers, all elements except 0 are join-

irreducible. 1 is the only atom.
(iii) Consider the finite boolean lattice Ln generated by a1, . . . , an. The atoms

of Ln are the elements c1 � . . . � cn, where ci is one of ai and a′
i. By

distributivity, every element s ∈ Ln is equivalent to some t ∈ Ln which is
a join of meets of ai and a′

i. If the join contains at least two elements, then
t has at least two lower covers and is not join-irreducible. If the join has
only one element, then t = c1 � . . . � ck, where ci is one of ai and a′

i and
k ≤ n. If k = n, then t is an atom, hence join-irreducible. If k < n, then
t � ak+1 and t � a′

k+1 are lower covers of t. Thus t is not join-irreducible.
Consequently, the join-irreducible elements of Ln are precisely the atoms.

5 Atomicity
A lattice L ∈ L0 is atomic, if for each non-zero a ∈ L there is a nonempty
T ⊆ A(L) such that a =

⊔
T . For a class K of lattices, the subclass of atomic

lattices is denoted by AK. We also define a mapping η : L → 2A(l) that associates
with each element a ∈ L the set of atoms below it.

η(a) = {α ∈ A(L) : α ≤ a}. (29)

L is η-stable, iff a =
⊔
η(a) holds for all a ∈ L.

It is easy to show that a lattice with zero is atomic iff it is η-stable. Using
(24) is also easy to show that η is a homomorphism, if L ∈ DL. If L is is non-
distributive, η preserves zero and joins, but not necessarily meets.
Lemma 2. Let L be a lattice with at least two elements. If η is injective, then
η(a) 	= ∅ for all a ∈ L, a 	= 0.

Proof. If L has at least two elements, then A(L) 	= ∅, since these elements have
different images under η by injectivity. Moreover, 0 ∈ L, since the definition of
atoms presupposes a zero. Since η(0) = ∅, η(a) must, for all a 	= 0 contain at
least one atom. ��
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We now present an alternative characterization of atomicity. L ∈ L0 is exten-
sional, if for all a, b ∈ L,

a ≤ b ⇔ ∀α ∈ A(L).(α ≤ a ⇒ α ≤ b). (30)

By (25) and first-order logic, (30) is equivalent to

a 	≤ b ⇔ ∃α ∈ A(L).(α ≤ a ∧ α � b ≤ 0). (atomic)

Theorem 1. A lattice with zero (and at least two elements) is atomic iff it is
extensional.

Proof. (Sketch) The key is to show the following claim: Lattice L is atomic iff

a ≤ b ⇔ η(a) ⊆ η(b) (31)

for all a, b ∈ L, which is equivalent to

a = b ⇔ η(a) = η(b), (32)

since η preserves meets. To establish the claim, we first remember that atomicity
is equivalent to η-stability. So let L be η-stable. Then

η(a) ⊆ η(b) ⇒
⊔
η(a) ≤

⊔
η(b) ⇔ a ≤ b.

The other direction of (31) is just monotonicity of η.
We now show the converse direction of the claim, that (32) implies η-stability.

First, by Lemma 2, we know that η(a) and η(b) are non-empty.
We verify that a is a least upper bound of η(a). Since η is an embedding of L

into some subsemilattice of 2A(L) (η preserves meets), we can carry out the proof
entirely on the set-side. Obviously, a is an upper bound of η(a). To show that it
is a least upper bound, assume, by reductio ad absurdum, another upper bound
b of η(a) such that a 	≤ b. Thus η(a) 	⊆ η(b) by (31) and by boolean reasoning
η(a) ∩ (A(L) − η(b)) 	= ∅. So there is some atom α ∈ η(a) ∩ (A(L) − η(b)).
Consequently, α ∈ η(a) and α ∈ A(L) − η(b), hence on the one hand α 	∈ η(b).
On the other hand, α ∈ η(a) implies α ∈ η(b), a contradiction. This proves our
claim.

It now remains to show that (32) is equivalent to extensionality. But

a ≤ b ⇔ η(a) ⊆ η(b) ⇔ ∀α ∈ A(L).(α ≤ a ⇒ α ≤ b)

��
Note that there is a finite L ∈ DL with η(a) 	= ∅ for all a 	= 0 that is not
extensional and therefore not atomic (c.f [21]).

We can restate Theorem 1 as follows. Define the relation ∼ for all a, b ∈ L
by

a ∼ b ⇔ ∀α ∈ A(L).(α ≤ a ⇔ α ≤ b). (33)
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∼ is a congruence on sectionally complemented distributive lattices and L ∈ L
is atomic iff a = b ⇔ a ∼ b holds for all a, b ∈ L. This congruence is interesting
in its own right. For non-atomic lattices, it yields a notion of observational
equivalence induced by measurements of lattice properties via atoms.

Algebraically, (30) expresses an extensionality principle: two elements of an
atomic lattice are equal, iff they are built from the same atoms. Similarly,
(atomic) expresses a separability principle: two elements of an atomic lattice
are different, iff they can be distinguished by an atom.

Operationally, (30) allows the transition between atom-free and atom-wise
reasoning. Moreover, in Section 9, (30) and (atomic) are important for normal
form computations with our focused calculi. (atomic) allows us to replace all
negative inequalities by positive ones.

The following statement shows that atoms of distributive lattices induce sec-
tional complements.

Lemma 3. Every atomic distributive lattice is sectionally complemented. For
L ∈ ADL and a, b ∈ L, a ≤ b,

⊔
(η(b) − η(a)) is the sectional complement of a in

L|b.
Proof. First, we show that b � c = 0. Since η(b) and η(a) − η(b) are disjoint,
(
⊔
η(b)) � (

⊔
(η(a) − η(b))) = 0, using Lemma 1 (ii). Therefore, b � c = 0.

Now we show that b � c = a.

b � c = (
⊔
η(b)) � (

⊔
(η(a) − η(b)))

=
⊔

(η(b) ∪ (η(a) − η(b)))

=
⊔
η(a)

= a.

Thus c is a sectional complement of b with respect to a. By distributivity of the
lattice, this complement is unique. ��
Consequently, we can use (24) instead of (23) in ADL and we need no special
axioms for sectional complements.

Example 4.

(i) The set of all subsets of some set is an atomic boolean lattice.
(ii) In every field of sets, the singleton sets are precisely the atoms. Hence

instead of the set-theoretic expression a ∈ s we can write {a} ⊆ s according
to set theory and more abstractly αa ≤ s in AL. Existence of this atom
is guaranteed by atomicity. Conversely, in a field of sets, we can write
a ∈ s ⇒ a ∈ t instead of αa ≤ s ⇒ αa ≤ t. Then (30) is equivalent to the
standard axiom of extensionality of set theory,

a = b ⇔ ∀x.(x ∈ a ⇔ x ∈ b).

Conversely again, we can introduce the ∈-relation as syntactic sugar for
L ∈ AL, defining α ∈ s ⇔ α ≤ s for all α ∈ A(L) and a ∈ L.
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(iii) In Example 2 (i) we have stated that in a field of sets, s1 − s2 denotes the
set of all elements of s1 that are not in s2. This can be easily verified in
ADL. First, we replace every statement of the form a ∈ s by αa ≤ s, using
atomicity. Then, it remains to show that α ≤ s1 − s2 iff α ≤ s1 ∧ α 	≤ s2.
This follows immediately from (21) and (25).

6 Representation

The techniques of Theorem 1 usually serve for proving the well-known repre-
sentation theorems for atomic lattices, which are variants of Stone’s theorem
(c.f [4]). The following facts are proven in [21] for L ∈ L.

– If L is finite, then η(a) 	= ∅ for every non-zero a ∈ L.
– If η(a) 	= ∅ for every non-zero a ∈ L and L is sectionally complemented, then
L is atomic.

– L is distributive iff all sectional complements are unique.

It follows that every finite sectionally complemented lattice is atomic and dis-
tributive and therefore boolean. Moreover, every finite boolean lattice is atomic.

Theorem 2.

(i) Every atomic distributive lattice and every atomic boolean lattice L can be
embedded into the field of sets 2A(L).

(ii) Every finite atomic distributive lattice and every finite boolean lattice is iso-
morphic with the field of sets 2A(L).

Our previous examples show that ADL has at least sets as models. The rep-
resentation theorem shows that it has at most these models. Thus first-order
reasoning about fields of sets is precisely first-order reasoning about ADL. But
this is more than boolean reasoning. It is stronger, since via atoms, we are able to
reason element-wise and it is weaker, since we avoid the ontological commitment
to a universal set.

Given the representation theorems and the standard translation between
objects of of set theory and those of ADL, we can prove all statements of Section 3
to Section 5 entirely at the set-side.

Finally, well-known size bounds for finite lattices follow immediately from the
representation theorems. The free boolean lattice with n generators, for instance,
has 2n atoms (c.f Example 3 (iii)) and therefore 22n

elements.

7 Ordered Resolution and Redundancy

We now come to the second part of our abstract, the discussion of the focused
calculus for ADL. Ordered resolution is not only one of its main ingredients, it
is also used as a metaprocedure for its development. We first recall some basic
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facts about ordered resolution and redundancy elimination (c.f. [2]). Ordered
resolution calculi are among the most powerful and successful automated deduc-
tion procedures. Particular benefits are their potential to decide many problem
classes and to integrate theory-specific reasoning facilities.

Let TΣ(X) be a set of terms with signature Σ and variables in X. A term is
ground, if it contains no variables. An atomic formula is an expression
p(t1, . . . , tn), where p is an n-ary predicate symbol and t1, . . . , tm ∈ TΣ(X).
A literal is an atomic formula φ (positive literal) or its negation ¬φ (negative
literal). A clause is a finite multiset of literals. A Horn clause contains at most
one positive literal. A clause set is a set of clauses. If Γ is a clause and φ a literal,
we write Γ, φ instead of Γ ∪ {φ}.

We consider calculi constrained by syntactic orderings. This may considerably
narrow the search space. A term and a literal ordering ≺ is a well-founded
total ordering on the respective ground expressions. ≺ is lifted to non-ground
expressions by stipulating e1 ≺ e2 iff e1σ ≺ e2σ for all ground substitutions σ. A
literal l is maximal with respect to a multiset Γ of literals, if l 	≺ l′ for all l′ ∈ Γ .
It is strictly maximal with respect to Γ , if l 	� l′ for all l′ ∈ Γ . The non-ground
orderings are still well-founded, but need no longer be total.

Literal orderings are extended to clauses, measuring clauses as multisets of
literals and comparing them via the multiset extension of the literal ordering.
A literal is assigned greater weight when it is negative than when it is positive.
See Section 10 for more details. A clause ordering inherits totality and well-
foundedness from the literal ordering. Again, the non-ground extension need not
be total. We usually denote all syntactic orderings by ≺.

Definition 1. Let ≺ be a literal ordering. The ordered resolution calculus OR
consists of the deduction inference rules

Γ, φ ∆,¬ψ
Γσ,∆σ

, (Res)
Γ, φ, ψ

Γσ, φσ
. (Fact)

– In the ordered resolution rule (Res), σ is a most general unifier of φ and ψ,
φσ is strictly maximal with respect to Γσ and maximal with respect to ∆σ.

– In the ordered factoring rule (Fact), σ is a most general unifier of φ and
ψ and φσ is strictly maximal with respect to the set of positive literals and
maximal with respect to the set of negative literals in Γσ.

In all inference rules, side formulas are the parts of clauses denoted by capi-
tal Greek letters. Literals occurring explicitly in the premises are called minor
formulas, those in the conclusion principal formulas.

Let S be a clause set and ≺ a clause ordering. A clause Γ is ≺-redundant
or simply redundant in S, if it is a semantic consequence of instances from S
which are all smaller than Γ with respect to ≺. A ground inference is redundant
in S, if either the maximal premise is redundant or else its conclusion is a se-
mantic consequence of instances from S which are all smaller than the maximal
premise with respect to ≺. An inference is redundant, if all its ground instances
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are. Closing S under OR up to redundant inferences and eliminating redundant
clauses on the fly transforms S in the limit into an ordered resolution basis (an
orb).

As usually, an OR-proof is defined inductively as a finite tree whose nodes
are labeled by clauses and whose edges are determined by OR-inferences. An
OR-refutation from a clause set S is an OR-proof with all leaves in S and with
the empty clause as root.

Proposition 1.

(i) Orbs of inconsistent clause sets contain the empty clause.
(ii) Fair OR-implementations refute inconsistent clause sets in finite time.
(iii) For every inconsistent clauses set containing an orb there is a refutation

in which no OR-inference has both premises from the orb.

8 The Derivation Method

We now briefly sketch the main ideas of the derivation method for focused cal-
culi. At the clause level, our intention is the internalization of axioms into fo-
cused, that is theory-specific, inference rules. At the term level, we would like to
integrate theory-specific simplification rules, rewriting techniques and decision
procedures. The method has a syntactic and a semantic side.

At the syntactic side, consider a set T of theory clauses and a set S of non-
theory clauses that is disjoint from T such that S ∪ T is inconsistent. We intend
to internalize T into a set of derived inference rules in refutations. The (ground)
chaining rule

Γ, a ≤ b ∆, b ≤ c

Γ,∆, a ≤ c
, (34)

for instance, internalizes the instance a 	≤ b, b 	≤ c, a ≤ c of the transitivity law
in the resolution proof

Γ, a ≤ b a 	≤ b, b 	≤ c, a ≤ c

Γ, b 	≤ c, a ≤ c ∆, b ≤ c

Γ,∆, a ≤ c

With appropriate ordering constraints, (34) is an extension of a critical pair
computation of a Knuth-Bendix completion procedure for transitive relations to
the clausal level (c.f. [19]). Chaining calculi are resolution-based calculi that use
(34) and similar focused inference rules for reasoning about transitivity. It is a
well-known fact that such focused inference rules are operationally superior to
plain axiom-based reasoning. Ordered resolution inferences with two instances of
the transitivity law, for instance, would eagerly introduce fresh variables into the
theorem-proving process, which may lead to search-space explosion. See [19] for
a discussion of the advantage of focusing and its relation to traditional theorem-
proving strategies.

In general, the above internalization is possible, if there exists an OR- refu-
tation of S ∪ T with the following properties.
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– The refutation is T -separable: For every premise Γ ∈ T with k literals, the
following k − 1 inferences do not have another premise from T .

– The refutation is T -serial : For every premise Γ ∈ T with k literals, the
following k − 1 inferences have one minor formula that is an instance of a
literal of Γ .

Intuitively, T -separability guarantees that there is enough distance between
premises from T to partition a refutation into subproofs that consume all but one
literal from each premise from T separately. T -seriality guarantees that this con-
sumption is not interrupted by inferences with minor formulas from non-theory
clauses.

In our application, theory clauses have at most three literals. Thus only
subproofs of size at most 2 must be inspected with respect to separability and
seriality and, by Proposition 1 (iii), only subproofs of size at least 2, if T is an
orb. This suggests the following three-step scenario. Let T be an input theory.

1. Construct an orb of T .
2. Establish separability and seriality for the ground case; extract inference

rules.
3. Lift the inference rules to the non-ground case.

The derivation method is modular. When a set T of axioms is added to an orb B
and the changes of the syntactic ordering do not affect B, then only inferences
between B and T must be inspected for extending B. Also separability and
seriality need only be checked with respect to T . In particular, if B is a subset
of the orb of B and T and the second step succeeds, then the inference rules for
B will at most be restricted in the extension.

At the semantic side, we use three ways to integrate declarative and proce-
dural background knowledge. The first way is the selection of an appropriate
theory specification. Our axioms for sectional complements and atoms in Sec-
tion 3 to Section 5 are equivalences that act as clausal simplification rules. The
second way is the extension of related procedures. In Section 11 we will extend a
chaining calculus DC for DL [20]. The third way is the adaptation of the syntactic
orderings ≺. We will reuse that of DC.

9 Reduction of Lattice Inequalities

Let L = {�,�,−, α, 0} be a signature for ADL. In particular, the unary function
α denotes that some element is an atom. For the sake of simplicity, we flatten
terms, that is we consider join and meet as operation symbols of polyadic arity.
We also consider terms modulo associativity and commutativity (AC). Let Σ be
a signature of free functions disjoint from L. As usually, we identify terms with
trees. A term t ∈ TΣ∪L(X) is pure, if for all subterms t′ of t, if the root of t′ has
a label from Σ, then t′ ∈ TΣ(x). A literal, clause or clause set is pure, if all terms
that occur in it are pure. A lattice term is a pure term whose root is labeled by
a lattice operation symbol. A term is elementary, if it is pure and the label of
its root is neither �, � or −.
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An inequality s ≤ t is reduced if s is a (polyadic) join and t a (polyadic) meet
of elementary terms. We write

s1 . . . sm ≤ t1 . . . tm

instead of s1 � . . .� sm ≤ t1 � . . .� tm. A clause or clause set is reduced if all the
inequalities it contains are reduced. A formula is in reduced clause normal form
(in RCNF ), if it is in clause normal form (CNF ) and every clause is reduced.
A clause set is in positive reduced clause normal form (in RCNF+), if it is in
RCNF and all literals are positive.

We now present an equivalence transformation ν from CNF to RCNF+ for
ADL. Since the transformation has more than 20 rules, we only discuss its main
features. Details can be found in [22]. The rules of ν purify terms, eliminate
negative lattice inequalities, split certain terms containing atoms, eliminate sec-
tional complements, split with respect to joins and meets, discard literals and
clauses and simplify lattice terms.

1. Purification. If in clause Γ, l the literal l contains an impure term t, then its
subterm t′ whose root is labeled by L is replaced by a fresh variable x in
t and the clause Γ, l is replaced by Γ, x 	≤ t′, t′ 	≤ x, l[x]. This renaming is
justified, since in first-order logic

φ(s) ⇔ ∀x.(x = s ⇒ φ(x)),
φ(s) ⇔ ∃x.(x = s ∧ φ(x)).

2. Elimination of negative inequalities. If in Γ, s 	≤ t the term s does not contain
an atom symbol, then the clause is replaced by the clauses Γ, α(f(x)) ≤ s
and Γ, α(f(x))� t ≤ 0, where f is a fresh Skolem function and x denotes the
free variables in s and t. This is justified by (atomic). If s contains an atom
term α, the replacement is based on (28) and (25); α is reused1.

3. Atom-based splitting. A clause Γ, α ≤ t1 � t2 is replaced by Γ, α ≤ t1, α ≤ t2.
This is justified by (24).

4. Elimination of sectional complements. These rules, for positive and negative
literals, are justified by the generalized shunting rules (18)–(20). Γ, s 	≤ r �
(t1 − t2), for instance, is replaced by Γ, s 	≤ r � t1, s � t2 	≤ r.

5. Join- and meet-based splitting. These rules, for positive and negative literals,
are justified by (1), (2) and distributivity. Γ, r � (s1 � s2) 	≤ t, for instance,
is replaced by Γ, r � s1 	≤ t, r � s2 	≤ t.

6. Clause simplification. These rules, for positive and negative literals, are jus-
tified by reflexivity of ≤, (3) and (22). A clause Γ, 0 ≤ s, for instance, is
discarded; a clause Γ, α ≤ 0 is replaced by Γ .

7. Term simplification. Subterms s� s, s� s, s− 0 and s� 0 are replaced by s;
0 − s and s � 0 by 0.

1 Remember that according to the conventions of this section, α is now a unary func-
tion symbol.



554 Georg Struth

Note that also positive inequalities can be further reduced by (30). This is dis-
cussed in [22]. One can also use the generalized de Morgan laws and the simpli-
fication rules for sectional complements for further reduction.

All concrete rules of ν are so designed that they produce clauses. All axioms
of ADL that deal with atoms are used in ν. In the elimination of negative in-
equalities, the introduction of new atoms is restricted as far as possible. The
respective rule can be applied only finitely many times. It can be shown that ν
terminates. By induction on the structure of lattice terms it is easy to see that
some rule of ν is applicable, whenever a clause set is not in RCNF+.

Finally, ν is not optimized. In several rules, lattice terms and clauses are
copied. This could be avoided by renaming subterms, using an extension of the
purification rule together with a Tseitin transformation at the clause level [24].

10 A Focused Calculus for DL

In this section we sketch the ordered chaining calculus DC for distributive lattices
from [20] and further motivate the semantic side of the derivation method.

We first consider the orb D for DL. First, using the rules in ν for purification,
join- and meet-based splitting and the appropriate clause and term simplifiction
rules, we may assume that all clauses are reduced. Therefore, D can be restricted
to axiomatize the reduced clausal theory of DL. Here, we may use D as a black-
box. There are only two important points. First, D supposes normalization with
respect to idempotence. This has been integrated into ν. Second, D uses the rule

x1 	≤ y1z, x2z 	≤ y2, x1x2 ≤ y1y2 (cut)

for characterizing distributivity. This may be understood as a lattice-theoretic
variant of (Res). With appropriate ordering constraints, (cut) is a critical pair
computation of a Knuth-Bendix completion procedure for DL (c.f. [18]). Exten-
sion to the clause level yields the focused ground inference rules

Γ, s1 ≤ a Γ ′, [s2]a ≤ t2
(Γ, Γ ′, s1[s2] ≤ t2)ν

(Cut)

Γ, s ≤ t1a, s ≤ t1t2
(Γ, [s]a 	≤ t2, s ≤ t1t2)ν

(DF)

– In (Cut), the terms containing a are strictly maximal in the minor formu-
las. The minor formulas are strictly maximal wrt. the side formulas in the
premises.

– In (DF), a is an elementary term, either t1 is strictly maximal in the minor
formulas or s is strictly maximal in the minor formulas and s is removed
in the antecedent of the conclusion. The leftmost minor formula is strictly
maximal with respect to the side formulas and the rightmost minor formula.

The brackets in the rules denote that an expression [r]s ≤ t can be read either
as s ≤ t or as rs ≤ t. Brackets in premises and conclusions are synchronized.
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The inference rule (Cut) is derived by a two-step OR-proof with inference rule
(Res) and axiom (cut) that characterizes distributivity, just like the chaining rule
(34) has been derived by a two-step proof with the transitivity law in Section 8.
In particular, (34) arises as a special case of (Cut) when setting s2 to 0. In this
sense, (Cut) is a chaining rule that has been refined to distributive lattices.

Similarly, the inference rule (DF) is derived by a two-step OR-proof with
axiom (cut), in which the first step uses (Res) and the second step uses (Fact).

In addition, there is a dual rule to (DF). There are also several rules that
resolve with negative literals. We do not mention these rules here, since for ADL,
we may assume RCNF+, such that these rules are not applicable.

The construction of the syntactic ordering ≺ on terms and literals again fol-
lows our intention to model (cut) as a lattice-theoretic variant of (Res) and (Cut)
as an extension of (34). To this end we compare joins and meets of elementary
terms as multisets in the term ordering. Elementary terms are compared with
respect to some standard term ordering. The literal ordering compares inequal-
ities lexicographically with respect to the tuple (tν , p, s, tµ). Here, tν denotes
the maximal term in the inequality: tµ the minimal term. p assigns to nega-
tive inequalities greater weight than to positive ones. s assigns greater weight
to inequalities in which the maximal term occurs at the left-hand side. See [20]
for a formal definition and a discussion. All these orderings are well-founded by
construction; terms which are equal modulo associativity and commutativity are
assigned the same measure. All these orderings are extended to the non-ground
level and the clause level according to Section 7.

11 A Focused Calculus for ADL

We now extend DC to an ordered chaining calculus for finite atomic distributive
lattices. In the finite case, all non-theory clauses are ground, since existential
and universal quantification can be replaced by joins and meets. The extension
to the non-ground case is discussed in Section 12. We use the bracket notation
introduced in Section 10.

We reuse the syntactic ordering for DC with one moderate local modification
that has no impact on completeness of DC. In the term ordering, we also force
atom terms to be smaller than all other terms, for example using a pair (a, g),
such that a = 1 if the respective term denotes an atom and otherwise a = 0. g
is the usual measure for a term.

Definition 2. Let � be the atom and clause ordering defined above. Let all
clauses be in RCNF+. Let ν be the transformation defined in Section 9. The
ordered chaining calculus for finite atomic distributive lattices ADC consists of
the deductive inference rules and the redundancy elimination rules of OR 2 and
the focused inference rules (Cut), (DF) and the rule dual to (DF). The calculus
is meant modulo associativity and commutativity at the lattice level.
2 Section 7 only defines a semantic notion of redundancy. Every set of inference rules

implementing this notion is admitted. Many such rules have already been encoded
into ν′.
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Comparing ADC with DC, it turns out that addition of mathematical structure
has simplified the calculus. The elimination of negative inequalities by (atomic) is
very beneficial, since the negative chaining rules are the most prolific rules of DC
(c.f. [20] for a discussion). Moreover, the entire impact of sectional complements,
atoms and atomicity could be integrated into the simplification rules of ν. This
justifies the mathematical efforts from Section 3 and 5.

We now sketch the soundness and completeness proofs of ADC. Soundness is
obvious relative to soundness of DC (c.f. [20]) and correctness of ν (c.f Section 9).
Completeness is shown using the derivation method relative to previous results
for DC according to our remarks at the end of Section 8. Complete proofs can
be found in [22].

Lemma 4. Every ordered resolution inference with a clausal variant of (3),
(22), (24) and (atomic) is redundant.

Proof. (Sketch) Inspection with respect to ≺ show that every such inference
yields a clause set that is smaller than and equivalent to the premise clause. ��
Lemma 4 and the fact that our black box D is already an orb for distributive
lattices immediately imply the following result, which yields the first step of our
derivation method from Section 8, the construction of an orb.

Proposition 2. Let AD be the set D extended with clausal variants of (3), (22),
(24) and (atomic). AD is an orb for the reduced clausal theory of ADL.

Remember that by definition all inferences among members of an orb are redun-
dant.

We now proceed to the second step of the derivation method, the derivation
of the focused inference rules.

Lemma 5. For every set S in RCNF+ such that S ∪AD is inconsistent, there
exists an AD-separable and AD-serial OR-refutation.

Proof. Completeness of DC provides the focused inference rules for DL. Lemma 4
prohibits all interferences of (3), (22), (24) and (atomic) inside of the macros
corresponding to DC-inference rules and among these axioms. This establishes
AD-separability. In [18], existence of T -serial OR-refutations has been shown
for arbitrary T (In fact, T -seriality is shown only relative to local violations of
the ordering constraints, which are, however, all inside of macros and therefore
disappear in the derived rules.). ��
The main idea of the generic proof of T -seriality is that the needed good ordered
resolution inference on a literal from the theory clause can be permuted up in
the refutation tree, whereas the bad ordered resolution inference on a non-theory
literal prescribed by the ordering constraints can be permuted down. This yields
a new refutation with the desired macro inference at the appropriate place. Due
to factoring it may be the case that some subtrees of the proof tree must be
copied. This construction is iterated on the proof tree. The proof immediately
applies to the present case.

We are now prepared for our main theorem.
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Theorem 3. Let all clauses be in RCNF+. The ground ordered chaining cal-
culus ADC is refutationally complete for finite atomic distributive lattices: For
every ground reduced clause set that is inconsistent in the first-order theory of
finite atomic distributive lattices, there exists a refutation in ADC.

Proof. DC is refutationally complete for DL, but only the rules (Cut) and (DF)
apply to clauses in RCNF+. By Lemma 4 and Lemma 5, the axioms (3), (22),
(24) and (atomic) do not interfere with these derived rules; they can be com-
pletely internalized into ν.

Conclusions of (Cut) must possibly be normalized by ν with respect to idem-
potence and negative inequalities must be eliminated by ν from conclusions of
(DF). This explains the integration of ν into the inference rules. ��

12 Discussion

In this section we briefly discuss further results that are formally proven in [22].

– We have developed an alternative proof-search procedure to ADC in which,
using (30), reduced terms can be further atomized to the form either α ≤ s
for s elementary or αs ≤ 0.

– The ordering constraints on (Cut) can be strengthened such that a is strictly
maximal in the respective inequalities. This is shown by a proof transforma-
tion by induction on the structure of refutations. This restriction is very
important for pruning the search space. We do not know a similar restric-
tion for DC.

– ADC can be easily extended to a calculus for finite boolean lattices, thus
improving a result from [20]. It can be immediately used as a calculus for
finite sectionally complemented lattices (c.f Section 6).

– ADC (and its extension) decide the reduced clausal theories of finite ADL,
finite BL, the universal theories of ADL and ABL and solve the uniform word
problems for ADL and ABL. This follows from inspection of the rules in ν
that eliminate negative inequalities. In fact, ν has been designed especially
for this purpose. Since for the above problems, the input specification is
ground, Skolemization does not introduce non-ground terms. Since Skolem-
ization is needed only for negative inequalities with atom-free left-hand sides,
the number of Skolemizations is bounded by the number of subterms that
appear in the specification. Moreover, the ADC-inferences neither add any
new symbols, nor do they shuffle atoms from left-hand to right-hand sides.
Therefore only finitely many inferences lead to irredundant conclusions. The
resulting orb contains the empty clause if and only if the initial clause set was
inconsistent. It seems very interesting to extend these decision procedures
to further classes, for instance by integrating more simplification rules into
ADC. The elementary theory of distributive lattices, for instance, is undecid-
able [8], while the elementary theory of boolean lattices and atomic boolean
lattices is decidable [23,12].
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– We have extended ADC to the non-ground case, using standard lifting tech-
niques. Now, some rules from ν are no longer simplifications. Idempotence
of join and meet, for instance, must be taken out of ν, new deduction rules
must be added to ADC. These are ordered factoring rules at the level of
lattice terms. Moreover, also (Cut) inferences that cut out variables must be
considered. Although such inferences can to a certain extent be restricted by
the ordering constraints and circumvented by further simplification and re-
dundancy elimination techniques, it is open whether they can be completely
avoided.

– Hines [10], in his related calculus, has presented two simplification tech-
niques. One is based on chainless sets. In ADL, these are atoms that appear
only at left-hand sides of inequalities. Since ν and the inference rules of
ADL are designed such that atoms are never shuffled from left-hand sides
of inequalities to right-hand sides, the atoms introduced by elimination of
negative inequalities are chainless. It is easy to show that the chainless set
technique integrates in the redundancy elimination framework. The other
technique depends on an axiom that excludes a universal set. It allows the
elimination of certain inequalities with variables that could otherwise lead
to prolific (cut) inferences. We show that this technique also works in ADC.

13 Conclusion

We have proposed atomic distributive lattices as an algebraic core calculus for
reasoning about sets in program development methods like B or Z. We have
developed an axiomatization that supports the effective reduction and simpli-
fication of terms, inequalities and clauses and yields a modular extension of a
focused ordered resolution calculus for distributive lattices. In particular, this ex-
tension simplifies its predecessor. This nicely mirrors the fact that atomic lattices
are mathematically simpler than non-atomic ones. We do not know of any other
theory of comparable complexity that has been integrated into an automated
proof-search procedure so far.

We envision the following further work. First the calculus and the associated
proof-search method should be implemented and integrated into an applicable
formal method. Second, more structure should be added, for instance, types for
sets, pairs, comprehension, infinite sets, a choice function (c.f. [1]). Third, the
transformation ν should be optimized, further simplification techniques should
be developed. The theoretical results in this paper then open the way for practi-
cal automated reasoning about sets in the context of industrial-strength formal
methods.
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Abstract. With the development of ASIC designs, simulation cannot cover all 
the corner cases in a complicated design. Model checking is a fully automatic 
approach to verify a finite state machine against its temporal specifications. 
However, its application is limited by the size of the system to be verified. 
Compositional verification and model reduction are two possible methods to 
tackle this problem. In this paper, we propose a verification framework based 
on assume-guarantee compositional model checking, where we can apply 
model checking to do exhaustive verification at the module level and conduct 
global properties via compositional reasoning. In this framework, temporal 
specifications are synthesized into Verilog modules. In case a module under 
verification is beyond the capability of model checking, the proposed model re-
duction algorithm is used. We implemented the framework on top of the VIS 
tool and applied it on an ATM switch fabric from Nortel Networks.  

1   Introduction 

With the development of ASIC designs, simulation cannot cover all the corner cases 
in a complicated design. Model checking [6] is a fully automatic approach to verify a 
finite state machine against its temporal specifications. However, its application is 
limited by the size of the system to be verified. Current model checking tools [2,13,3] 
are limited to several hundred Boolean state variables due to state space explosion. 
There are two main methods to tackle this problem: compositional verification and 
model reduction. Compositional verification is to verify each partition in the system 
separately and then derive the system specification from the partial proofs. Model 
reduction is to reduce the size of the system such that it can be handled by a verifica-
tion tool. One active research area is on how to introduce model checking into the 
verification flow of a complicated design. 

In this paper, we propose a framework to perform model checking by integrating 
compositional reasoning and model reduction. To illustrate our approach, we used a 
Nortel ATM (Asynchronous Transfer Mode) switch fabric as a real case study. Using 
this framework, we succeed to verify the switch fabric whose size is beyond the capa-
bility of current model checking tools. Our main contributions in this paper are to 
integrate two novel techniques: environment (stimulus) synthesis [14] and syntactic 
model reduction [17] into the framework, and make the verification by conducting 
global properties from module level local properties [18].   
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In the compositional verification [18], properties are only true under certain envi-
ronments. One of the problems in the compositional reasoning approach is to generate 
the environment assumption, i.e., stimulus for the module (partition) under verifica-
tion. In our approach, we provide the environment assumptions as temporal logic 
formulas in ACTL [7] and then synthesize the formulas into Verilog modules [14]. 
We then compose this environment module with the RTL block under verification 
and feed it into a model-checking tool (here VIS [2]). However, in case the size of the 
composed module is still beyond the capability of model checking, we use a new 
syntactic model reduction algorithm based on cone of influence reduction and which 
analyzes the (Verilog) source code and removes the redundant variables and values 
[17].  

The rest of paper is structured as follows. Section 2 introduces the verification flow 
we adopt. Section 3 describes the compositional verification and the environment 
synthesis. Section 4 presents the model reduction method. Section 5 introduces the 
ATM Switch Fabric case study and discusses its modeling and verification. In Sec-
tion 5, we compare the experimental results obtained using our framework with those 
using the FormalCheck [3] tool. Finally Section 6 concludes the paper.    

2   Verification Flow 

Traditionally, outgoing from the requirement specification of a product, a design 
group starts to implement the RTL design, while verification groups develop a behav-
ioral model and a test suite by using either HDLs such as Verilog and VHDL or 
HVLs such C, e, and OpenVera. The test suite endeavors to cover all test cases. The 
behavioral model is written at a higher level and cannot be synthesized, but only 
simulated, which can be developed much quicker than the RTL model. Test benches 
generate test vectors for both behavior and RTL models, and thus after simulation, 
their outputs can be compared. The test benches are tested using the behavioral 
model. Because of the increasing complexity of modern ASIC chips, this verification 
methodology cannot discover all the bugs and takes too long. Moreover, the behav-
ioral model itself can be bug-proned.  

As a complementary approach to simulation, formal methods, in particular model 
checking, have proven to be very useful in design verification coverage. However, the 
size of the blocks that can be actually verified is very limited. In this paper, we pro-
pose a model-checking framework based on an assume-guarantee [19] compositional 
reasoning and model reduction. In this framework, temporal specifications are synthe-
sized into Verilog modules acting as “test benches” in module level model checking 
[14], and then module level local properties are composed into global properties by 
using compositional reasoning [18]. In case the module under model-checking is 
beyond the capability of model checking, syntactic model reduction is used [17]. The 
proposed verification flow is illustrated in Figure 1. 

1. Given an RTL design and global properties derived from the specification. If the 
size of the RTL design, even after the reduction, is beyond the capability of model 
checking, then we will do the following compositional verification steps.  

2. Partition the RTL design into modules. 
3. Obtain local properties with respect to each RTL module (this is derived from  the 

RTL design and the global property).   
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Fig. 1. Compositional Verificatioin Frameworks 

4. Derive the environment assumptions (stimulus in temporal logic ACTL formulas) 
with respect to each RTL module, and then synthesize the formulas into Verilog 
environment modules as illustrated in [14]. Later, compose the RTL block and the 
Verilog environment module.  

5. In case the size of the composed code is beyond the capability of the model-
checking tool, apply the syntactic model reduction in [17] with respect to the local 
properties, and get the reduced composed model.  

6. Verify the reduced composed model against the corresponding local properties 
using model checking, respectively.  

7. Deduce the satisfaction of the global properties on the RTL design from these local 
properties using compositional reasoning rules illustrated in [18].    

For our framework, we have chosen the model checker VIS [2] as our evaluation 
tool because it provides neither compositional reasoning nor model reduction options. 
Furthermore, VIS has a Verilog front-end such that we can feed our design into the 
tool directly. Throughout the compositional verification, the global properties are 
correct if and only if all the local properties are correct. For now, in terms of verifica-
tion, partitioning the RTL design, deriving environment assumption formulas and 
local properties have to be done manually. Once we have the local properties and the 
corresponding environment assumptions, the following verification steps, i.e., the 
environment synthesis, the syntactic model reduction, and model checking, then are 
executed automatically. Another advantage of this framework is that the composi-
tional reasoning allows us to do design verification at the system level even before the 
RTL modules are implemented since we can replace the missing modules by their 
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temporal assumptions. Moreover, module verification facilitates debugging more than 
chip level verification does. We have applied the above verification flow on a 4*4 
ATM switch fabric from Nortel Networks [20].   

3   Compositional Verification and Environment Synthesis 

Compositional verification has been proposed for some time as an efficient way to 
address the state space explosion problem in model checking. Given P and Q two 
modules (partitions) of a system under verification, and ϕ a system property to be 
verified, a classical compositional reasoning can be illustrated as follows [7]  
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where P||Q means the parallel composition of module P and Q; P|=ϕp means that the 
module P satisfies the ACTL specification ϕp; (ϕp,Q)|= ϕ means model Q  satisfies 
formula ϕ  under the environment given by ϕp. In our approach, we propose to replace 
(ϕp,Q)|= ϕ) by the composition of the synthesized Verilog module of the tableau of ϕp 
and module Q, where a tableau is a Kripke structure to represent ϕp. The composed 
system then can be fed into a model checker like VIS. 

The environment synthesis is implemented using a tableau construction approach. 
Given a formula ϕ, the tableau construction of ϕ builds a Kripke structure (state tran-
sition graph) K  consisting of states labeled by atomic propositions derived from ϕ 
and transitions between states, such that every model of ϕ is represented as an infinite 
path in K .   

As is often the case with tableaus for temporal logics, e.g., [7,12], a state of the tab-
leau consists of a set of formulas that are supposed to hold along all paths leaving the 
state. We propose therefore to define a reduced tableau of ACTL formulas consisting 
of less states and transitions but accepting precisely the models of the formulas. Here, 
the formulas in the states are interpreted over a formula or its negation, or none of 
them. If the latter occurs, it reflects a don’t care situation, and we call this state a 
dummy state. 

In [6], E. M. Clarke et al. proposed the method of constructing concurrent pro-
grams from CTL formulas. The result program covers one, but not all, behavior of the 
formulas. A. Arora et al. [1] used the same approach for real-time applications. In 
[11,7], D. Long et al. proposed a tableau construction approach to connect the simula-
tion relation and the satisfaction of an ACTL formula. However their tableau size is 
exponential to the size of the formula. In [16], C. S. Pasareanu et al. proposed an 
environment synthesis approach for LTL formulas in the context of software model 
checking using the same tableau construction approach as that in SPIN [8].    

Our work distinguishes itself from the above through the following facts: (1) We 
are constructing the tableau for the full range of ACTL formulas; (2) We obtain a 
smaller tableau by interpreting states over a three-valued domain; (3) We apply re-
writing rules to reduce the tableau size further more; (4) We describe the fairness 
constraint by generalized Buchi conditions; (5) We synthesize the tableau into Verilog 
code. In [14], we have proved the following theorem:   
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Given a simulation relation ≤ and an ACTL formula ϕ, for every structure K’ϕ, K’ϕ 
|= ϕ iff K’ϕ≤ Kϕ, where Kϕ is the reduced tableau of ϕ. 

Based on the above ideas, we implemented in Java a tableau construction and Ver-
ilog synthesis for the model checker VIS [2]. We hence support here the Verilog sub-
set of VIS.  

An overview of the proposed approach is depicted in Figure 2, where “Rewriting 
formulas” is a pre-processor to remove the redundancy in the input ACTL formulas 
[14].  

 

 

Fig. 2. Reduced tableau construction and Verilog synthesis 

4   Syntactic Model Reduction 

Beyond compositional approaches, model reduction is the most important technique 
for solving the state explosion problem. Model reduction is a general approach [5,4], 
which allows to reduce a concrete system (M) under verification to a more abstract 
and smaller one (M’). Both systems M and M’ are connected by an abstraction relation 
which is safe with respect to a given property ϕ, namely it preserves the property. 
This means if the property holds for the abstract system, it holds for the concrete one 
as well. More formally, the property ϕ is either weakly preserved if M’ |=ϕ ⇒  M|=ϕ, 
or strongly preserved if M’|=ϕ ≡ M|=ϕ. It should be intuitively clear that the more 
weakly the property is preserved, the more reduction can be achieved.      

One popular abstraction technique is the cone of influence reduction (COI) [10]. 
This method decreases the size of the concrete system by focusing on the variables of 
the concrete system that are referred to in the property and eliminating variables that 
do not influence the variables of interest in the property. In this way, the property 
satisfaction is preserved, while the size of the model that needs to be verified is 
smaller. However, sometimes, there are still lots of redundant information in the COI 
reduced model.  We can easily find a case in practice where a variable A depends on 
variable B, but the value of variable B does not affect the value of variable A. For 
example, a two-input AND gate, if one of the inputs is set to zero, then no matter 
what value the other input takes, the output of the gate is always at zero. 

Based on the above observation, we give a refined dependency definition by exam-
ining the values of the variables that influence the truth of the property. In this ap-
proach, a system under verification is considered as a program, which syntactic and 
semantic structure will be analyzed. Throughout the analysis, the value domains of 
the state variables are extracted based on the control flow diagram (CFD), and the 
values of state variables in the program are partitioned into active values, and deactive 
values according to their dependency in the property. The deactive values then can be 
replaced by a typical abstract value, and thus the value domains of the variables are 
much smaller than the original ones. Accordingly, we can have a reduced program 
with respect to the abstracted variables. After the above procedures, the state space of 
the reduced program is smaller than that of the original one, while the correctness of 
the properties are preserved. In [17], we have proved the following theorem.  
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There is a simulation relation between the models K P and K P^ where P and P^ are 
the concrete model and the reduced model, respectively.  Namely K P ≤. K P^ 

In [5], abstract interpretation is a classical static program analysis approach. It has 
been used intensively in formal verification and model reduction [4,9]. Our proposed 
approach distinguishes itself from the above through the fact that the abstract domain 
of a variable is generated throughout the analysis of the program, which makes the 
reduction automatic. In [21], K. Yorav proposed ways to use the high level descrip-
tion (program text) of a system in order to improve the model checking process by 
reduction. The approaches are based on program static analysis, and analyze the con-
trol flow graph of a program to reveal runtime information of the program, without 
actually running it. This approach reduces the state space by analyzing the path be-
tween breakpoints where a breakpoint is a state that influence the specification. 
Hence, the states between these breakpoints are removed. In a similar way, we iden-
tify the breakpoints but our approach is focused on the dependency between values 
that influence the specification. In [15], K. S. Namjoshi et. al. proposed a reduction 
approach which translates a variable with large value domain, for example an integer, 
into a set of predicates. These predicates are determined by the automated syntactic 
analysis of the program under verification.  Our reduction is different from this ap-
proach since we work on the finite domain, and will not generate predicates but ab-
stract domains. Moreover, we keep only one value in the abstract domain. Our ap-
proach is also related to other works on cone-of-influence reduction [10]. However, 
our method is more efficient because we analyze the dependency between the values 
of variables in addition to the dependency between variables, thus the dependency 
relation is more accurate.   

 

 

Fig. 3. ATM switch fabric 

5   Case Study: Nortel ATM Switch Fabric 

The basic purpose of an ATM (Asynchronous Transfer Mode) switch fabric is to 
transport valid (i.e., uncorrupted) ATM cells arriving at its ingress ports to the desig-
nated egress ports as shown in Figure 3where cell 6 is a corrupted cell. Invalid ATM 
cells are to be discarded. Besides valid and invalid ATM cells, ATM cell streams may 
also contain idle cells, which serve to adapt the cell streams to the transmission bit 
rates employed. Cell type identification and cell switching is based on the contents of 
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ATM cells. More precisely, an ATM cell is a fixed-length cell consisting of a 5 octet 
header field and a 48 octet payload field. The payload field is available for actual user 
information. The header field carries the information for identification and transporta-
tion of the cell. The header of an ATM cell is further decomposed into subfields as 
illustrated in Figure 4.  

 

 

Fig. 4. ATM cell header 

The virtual path identifier (VPI) and the virtual channel identifier (VCI) together 
constitute the routing fields of the cell head. The payload type identifier (PTI) and cell 
loss priority (CLP) fields are not used explicitly for cell switching purposes. The last 
octet of the cell header contains the header error check (HEC) sequence used to check 
the integrity of the other header subfields. ATM cell switching can now be described 
in brief as follows. After receiving a cell at one of its ingress ports, an ATM switch 
fabric determines whether the cell is a corrupted or idle cell. A corrupted cell is a cell 
with an incorrect HEC sequence. An idle cell is a cell with its VPI, VCI and PTI bits 
all set to 0 and its CLP bit set to 1, and with a correct HEC sequence. If the ingress 
ATM cell is not corrupt or idle, an attempt is made to translate the value of the 
VPI/VCI field into a new VPI/VCI value and an egress port number by means of a 
VPI/VCI routing table. If the routing table contains an enabled entry for the VPI/VCI 
value of the ingress cell, this value is replaced by the new VPI/VCI value and a new 
correct HEC sequence is generated. The resulting cell (i.e., with the new VPI/VCI 
value and HEC sequence) is then placed in the cell queue and switched onto the des-
ignated egress port.  

5.1   Modeling the Switch Fabric 

There are mainly four modules in the Nortel ATM switch fabric at hand, ATM_ 
SWITCH, ATM_MON, FIFO_QUEUE, and ATM_GEN as shown in Figure 5.  
ATM_SWITCH is the root module, which includes the ATM cell routing functions. 
ATM_MON is the ingress part of the fabric, which includes the ATM cell monitor and 
detection functions. FIFO_QUEUE is the queuing module. ATM_GEN is the egress 
part of the fabric, which includes the ATM cell restructure functions.   

The major property of such an ATM switch fabric is that “Valid cells (with good 
HEC and matching VPI/VCI) are switched correctly”. Trying to prove this property 
directly using model checking will fail because of state space explosion, even after 
model reduction. In order to prove this property, compositional verification is neces-
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sary.  Here, since all the cells are queued in the FIFO_QUEUE module, we specify 
the ingress part and the egress part separately and extract the local properties respec-
tively. Namely, in the ingress part, valid cells (with good HEC and matching 
VPI/VCI) are switched into the queue, and in the egress part, cells in the queue are 
restructured and sent.  

 

 

Fig. 5. Nortel ATM switch fabric structure 

 

Fig. 6. The ingress part 

In order to verify the ingress part, we decompose the ingress part as shown in Fig-
ure 6 where we can see that the system is partitioned into some blocks, namely De-
tect_head, Unpack_cell, Pack_cell, and so on. Hence, we can check the local proper-
ties of these blocks to derive the global property. For example, in order to check block 
Translate_head, we put the local property as  
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Ingressϕ: AF (((VPI_VCI_IN[27:4] = 0)  AND  (MATCH_FOUND = 1))) 

where VPI_VCI_IN is the VPI/VCI of incoming cells. The incoming cell can find a 
match VPI/VCI (MATCH_FOUND = 1) when VPI_VCI_IN[27:4] = 0.  In order to 
verify the egress part, we partition it as shown in Figure 7. For example, in order to 
check block Restruct_cell, we put the local property as 

Ingress : AG ((RESTRUCTED_CELL[0] = FLATTENED_CELL[7:0]) AND  
(RESTRUCTED_CELL[53] = FLATTENED_CELL [423:416])) 

where FLATTENED_CELL is the cell from the queue and RESTRUCTED_CELL is 
the restructed cell.The detailed properties of the blocks in the ingress and egress parts 
are in Appendix B.  

 

 

Fig. 7. The egress part 

5.2   Verification of the Switch Fabric 

We need to verify that the blocks in the ingress part, i.e., Detect_head, Eva_head, 
Translate_head, etc., and the blocks in the egress part, i.e., FIFO_status, De_queue, 
etc., satisfy their local properties given a cell coming in. Here in this section, we only 
show how to prove a sample local property Ingressϕ. The other properties can be 
proved in a similar way.  
In the verification of Ingressϕ, what we want to check is that the correct VPI_VCI of 

the incoming cell can find a match in the routing table, while the corrupted VPI_VCI 
of the incoming cell cannot find a match. Hence, the environment assumption is the 
value of the VPI_VCI of incoming cell, i.e., VPI_VCI_IN. Since in the switch fabric, 
only those VPI_VCI_IN with bit 27 to 4 being 0 can find a match, the corresponding 
environment ACTL formula is:  

AF (VPI_VCI_IN [27:4] = 0) 

This assumption is discharged if the blocks before “Translate_head” can be proved. 
We construct the reduced tableau of this assumption shown in Figure 8, where “p” 
menas “(VPI_VCI_IN [27:4] = 0)” and “0” mean Buchi states. The states with double 
circles are initial states and the state without prepositional label (p or ~p) means that 
“p” can be either true or false in this state. As we proved in [14], this tableau contains 
less states than a normal tableau, but covers every possible model of the formula. 
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Fig. 8. Reduced tableau of the assumption 

This above reduced tableau then can be synthesized into Verilog behavior code (see 
Appendix A). This code then can be composed with the block under verification, i.e., 
Translate_head. However, since the routing table is involved in the verification, and 
the size of the routing table is 1024*58-bit, no model checking tool can accept such a 
large model. We have to apply syntactic model reduction [17] with respect to the 
properties.  
In order to make the model reduction, we construct the control flow diagram of mod-
ule Translate_head as shown as follows. 
 

 

Fig. 9. Control flow diagram of Translate_head 

By observing property Ingressϕ, we find that we are just verifying the behavior of 
variable MATCH_FOUND. The value of MATCH_FOUND is changed in node “L2” 
in the above diagram, which we call “key node”. According to the model reduction 
approach proposed in [17], we traverse the diagram and find those values that do not 
affect MATCH_FOUND, namely those values from which node “L2” is not reachable. 
Then those values can be abstracted using one typical value. In the diagram, only the 
first item in the routing table with bit 27 to 4 equaling to 0 can change the value of 
MATCH_FOUND, so this value is kept as active values, while all other values in the 
routing table, which do not affect the behavior of MATCH_FOUND can be removed. 
So, we can keep only two items in the routing table and remove the other 1022 items. 
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In this way, the model under verification is reduced. Then we can compose the re-
duced model and its environment, and check it against the local property using VIS.  

The verification results of sample properties are shown in the Table 1, where the 
CPU time reported is the real time; the BDD size in the table represents those states of 
the system that satisfy the formula. 

Table 1. Verification Results of Sample Properties in VIS 

Model Checking Properties Status 

CPU(S) Memory(MB) BDD nodes 
Ingress_P

1
 Verified 19.5 0.908 42722 

Ingress_P
2
 Verified 272.4 1.908 18446 

Ingress_P
3
 Verified 1.4 1.308 15073 

Ingress_P
4
 Verified 3.8 9.9 7130 

Ingress_P
5
 Verified 11.3 8.54 164033 

Ingress_P
6
 Verified 11.6 8.54 383969 

Ingress_P
7
 Verified 3.7 9.918 7104 

Ingress_P
8
 Failed - - - 

Ingress_P
9
 Verified 15.1 100.6 490923 

Egress_P
1
 Verified 2.5 1.44 15764 

Egress_P
2
 Verified 16.5 112.3 632434 

Egress_P
3
 Failed - - - 

Egress_P
4
 Verified 6.7 12.2 137724 

Table 2. Verification Results of Sample Properties in FormalCheck 

Properties Status CPU(S) Memory(MB) States 
Ingress_P

1
 Failed - - - 

Ingress_P
2
 Verified 1036 29.64 2.02e+03 

Ingress_P
3
 Verified 4 3.121 4 

Ingress_P
4
 Verified 22 6.71 1.02e+03 

Ingress_P
5
 Non-terminated - - - 

Ingress_P
6
 Non-terminated - - - 

Ingress_P
7
 Verified 32 13.75 3.36e+07 

Ingress_P
8
 Verified 8 3.69 1.31e+05 

Ingress_P
9
 Non-terminated - - - 

Egress_P
1
 Verified 365 0.55 2.62e+05 

Egress_P
2
 Non-terminated - -  

Egress_P
3
 Verified 605 115.07 6.67e+02 

Egress_P
4
 Failed - - - 

 

The verification is performed using the VIS model checker on a SUN Enterprise 
server with 6GB memory.  Through out the model checking, we set VIS with the 
options: implicit clocking and advanced ordering. In the Table, “-”means that VIS 
does not accept the model because of VIS internal bugs. In this case, we conducted 
the particular property verification in another tool (here FormalCheck) to make sure 
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that it is really sound. Also, for the purpose of comparison, we verified the same 
models in FormalCheck on the same machine. However, this time, we do not do the 
reduction using our model reduction approach. The verification results are shown in 
Table 2. The reduction algorithm selected in FormalCheck is iterated with empty 
reduction seed because there are no constraints on the primary inputs, and the run 
option is symbolic BDD because it allows a more efficient model checking. The CPU 
time in the table is the real time and “States” are the states reachable. 

In the Table, “Non-terminated” means that the verification failed due to state space 
explosion. The reason for this is either that the property under verification involves so 
many variables in the program that the reduction algorithms in FormalCheck are of no 
help (in this case, FormalCheck gives an internal bug report), or the model under 
verification is too large to be even complied by the tool (in this case, the tool will stay 
in a dead lock state until all the memory is consumed).  

The “Failed” in the table means that the property cannot be verified by this tool 
because the environment assumptions could not be specified. We can translate the 
environment assumption into FormalCheck format by dropping ‘A’ operator.  

Overall, since the verification in VIS is based on the reduced model while the veri-
fication in FormalCheck is based on the concrete model, the former is efficient with 
respect to CPU time and memory because the latter has to do the reduction work by 
itself.  
Through out the verification, we also found some bugs in the design.  
For example, a statement in the Translate_head block  

while (!MATCH_FOUND && i <= MAX_CONNECTIONS) 
   if (LOOKUP_TABLE[i].VPI_VCI_IN == VPI_VCI_IN ) begin 
     MATCH_FOUND = 1;�
…… 

is mistaken as 

while (!MATCH_FOUND && i <= MAX_CONNECTIONS) 
   if (LOOKUP_TABLE[i].VPI_VCI_IN == VPI_VCI_IN & 
28’hFF7FFFF) begin 
     MATCH_FOUND = 1;�
…… 

where MAX_CONNECTIONS is the number of items in the LOOKUP_TABLE and 28 
is the length of VPI_VCI_IN. In this case, cells with VPI_VCI equaling to 008000 are 
matched, but should not, since according to the specification, only the cells with 
VPI_VCI equaling to 000000 can be matched. This bug actually is difficult to be 
found using simulation because one has to simulate that all the cells with VPI_VCI 
not equaling to 000000 cannot be matched. With formal verification, one can easily 
detect this bug using property Ingress_P6. According to this property, every state in 
the state space should be (VPI_VCI_IN != 000000) AND (MATCH_FOUND = 0), 
provided that the incoming VPI_VCI_IN does not equal to 000000. This bug is also 
corrected by simply removing 28’hFF7FFFF in the while loop.  

After the above verification, we actually proved that every block satisfies its local 
properties, given certain environment assumptions. Moreover, because these envi-
ronment assumptions are the outputs of the blocks in the system, they are discharged 
in the verification of the local properties. We apply the compositional rule as follows. 
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Where Tϕ means the synthesized Verilog module of formula ϕ, Actually, the global 
property: “Valid cells  (with good HEC and matching VPI/VCI) are switched cor-
rectly” is given by assuming Pvalid_cells and deducing Egress_P4 (correct switch).  This 
way, we are checking the satisfaction of the global property against the whole design. 
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6   Conclusion 

In this paper, we proposed a compositional verification framework including envi-
ronment synthesis and model reduction techniques. Using this framework, we verified 
an ATM switch fabric from Nortel Networks, which cannot be verified by plain 
model checking due to state space explosion. Here, we use VIS as target model 
checker, however, we can still use some other alternatives, such as SMV [13]. 
Through out the verification, we found bugs in the design, which were not caught 
through simulation.  Because of the advantages in the environment synthesis and the 
model reduction, this framework is efficient in the verification with respect to the 
CPU time and memory resources. The framework is implemented in Java running on 
SUN Solaris OS.  

Reference 

1. A.Arora, P.C. Attie, and E.A. Emerson. Synthesis of fault-tolerant concurrent programs. In 
Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing, 
pages 173--182, Puerto Vallarta, Mexico, June 1998. 

2. R.K. Brayton et al.VIS: A system for verification and synthesis. In T.Henzinger and 
R.Alur, editors, Computer-aided Verification’96, volume 1102 of Lecture Notes in Com-
puter Science, pages 428--432. Springer Verlag, Rutgers University, NY, USA, July 1996. 

3. Cadence Design Systems. Technical manual of FormalCheck, v2.3 edition, 1987-1999. 



Compositional Verification of a Switch Fabric from Nortel Networks      573 

4. E.M. Clarke, O.Grumberg, and D.Long. Model checking and abstraction. ACM Transac-
tions on Programming Languages and Systems, Vol.16(No. 5):1512--1542, Sept 1994. 

5. P.Cousot and R.Cousot. Abstract interpretation: a unified lattice model for static analysis 
of programs by construction or approximation of fixpoints. Conference Record of the 
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 238--252, Los Angeles, California, USA, 1977. 

6. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize 
synchronization skeletons. Science of Computer Programming, 2(3):241--266, 1982. 

7. O.Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions 
on Programming Languages and Systems, 16(3):843--871, May 1994. 

8. G.J. Holzmann. Design and validation of computer protocols. Prentice hall, 1991. 
9. Y.Kesten and A.Pnueli. Modularization and abstraction: the key to practical formal  verifi-

cation. 23rd Int. Symp. Mathematical Foundations of Computer Science, Brno, Czech 
Republic, 1998. 

10. R.P. Kurshan. Computer-aided verification of coordinating processes. Princeton Univer-
sity Press, 1994. 

11. D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD thesis, 
CMU, 1993. 

12. Z.Manna and A.Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Safety. 
Springer-Verlag, New York, 1991. 

13. K.L. McMillan. Symbolic M}odel Checking. Kluwer, 1993. 
14. H.Peng, Y.Mokhtari, and S.Tahar. Environment synthesis for compositional model check-

ing. In Proceeding of IEEE International Conference on Computer  Design, Freiburg, Ger-
many, September 2002. IEEE computer society Press. 

15. K.S. Namjoshi and R.P. Kurshan. Syntactic program transformations for automatic ab-
straction. In E.Allen Emerson and A.Prasad Sistla, editors, Computer-aided Verifica-
tion’00, volume 1855 of Lecture Notes in Computer Science, pages 433--449, Chicago, IL, 
USA, July 2000. Springer Verlag. 

16. C.S. Pasareanu, M.B. Dwyer, and M.Huth. Assume-guarantee model checking of soft-
ware: A comparative case study. SPIN Workshop 1999, pages 168--183, Trento, Italy, 
June 1999. 

17. H.Peng, Y.Mokhtari, and S.Tahar. Model reduction based on value dependency. In  Pro-
ceeding of IEEE International ASIC/SOC Conference, Washigton, DC, USA, September 
2001. 

18. H.Peng and S.Tahar. Compositional verification of IP based designs. In Proceedings of 
IFIP International Workshop on IP Based  Synthesis and System Design, Grenoble, 
France, December 1999. 

19. A.Pnueli. In transition for global to modular temporal reasoning about programs. In K.R. 
Kurshan, editor, Logics and Models of Concurrent Systems, volume 13 of NATO ASI 
series. Series F. Springer Verlag, 1984. 

20. Northern Telecom. Specification of a 4*4 ATM switch, November 1998. 
21. K.Yorav. Exploiting syntactic structure for automatic verification. PhD thesis, Israel insti-

tute of technology, June 2000. 

A   Synthesized Environment of Ingress_  

The ACTL environment assumption of properties Ingress_  is “AF(VPI_VCI_IN 
[27:4] = 0)”. The synthesized Verilog code (Verilog subset acceptable in VIS model 
checker) of this assumption is shown as follows. Lines 0 to 5 are comments. 
VPI_VCI_IN[27:4] is set as an output of the module tableau. Lines 9 to 12 are to 
declare the variables. Lines 14 to 18 are to set the initial states, where S_INIT_W 
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indicates the initial states and S_INIT_W_TMP is a temporary variable. In Lines 19 to 
25, wire variables Sx_NEXT_W describe the transitions of the states, i.e., what is the 
next state of current state Sx. Sx_NEXT_W_TMP are the temporary variables. Lines 
26 to 49 are the non-deterministic assignment of VPI_VCI_IN[27:4]. Lines 50 to 70 
are the behaviors of this environment.      

 
L0: //‘define TRUE 1 

L1: //‘define FALSE 0 

L2: //‘define S0 0 

L3: //‘define S1 1 

L4: //‘define S2 2 

L5: //‘define S3 3 

L6: module tableau(VPI_VCI_IN); 

L7: output[27:4] VPI_VCI_IN; 

L8: //Variable declaration 

L9: reg [27:4] VPI_VCI_IN; 

L10: wire [27:4] VPI_VCI_INND_W; 

L11: reg [1:0] STATE; 

L12: wire [1:0] S_INIT_W_TMP, S_INIT_W,  

                S0_NEXT_W, S1_NEXT_W,  

                S2_NEXT_W, S3_NEXT_W; 

L13: //Initialiazation 

L14: assign S_INIT_W_TMP = $ND(0, 1, 2, 3);//$  

L15: assign S_INIT_W = ((S_INIT_W_TMP == 3)) ?  

            2 : S_INIT_W_TMP;  

L16: initial begin  

L17:     STATE = S_INIT_W;  

L18: end // Initial  

 

L19: //Combinational part  

L20: assign S2_NEXT_W = 3;  

L21: assign S3_NEXT_W = 3;  

L22: assign S1_NEXT_W = 1;  

L23: wire [1:0] S0_NEXT_W_TMP;  

L24: assign S0_NEXT_W_TMP = $ND (0,1,2,3);//$  

L25: assign S0_NEXT_W = ((S0_NEXT_W_TMP == 1)  

     || (S0_NEXT_W_TMP == 3)) ?  

        2 : S0_NEXT_W_TMP; 

L26: assign VPI_VCI_INND_W[4] = $ND( 0, 1); 
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L27: assign VPI_VCI_INND_W[5] = $ND( 0, 1); 

L28: assign VPI_VCI_INND_W[6] = $ND( 0, 1); 

L29: assign VPI_VCI_INND_W[7] = $ND( 0, 1); 

L30: assign VPI_VCI_INND_W[8] = $ND( 0, 1); 

L31: assign VPI_VCI_INND_W[9] = $ND( 0, 1); 

L32: assign VPI_VCI_INND_W[10] = $ND( 0, 1); 

L33: assign VPI_VCI_INND_W[11] = $ND( 0, 1); 

L34: assign VPI_VCI_INND_W[12] = $ND( 0, 1); 

L35: assign VPI_VCI_INND_W[13] = $ND( 0, 1); 

L36: assign VPI_VCI_INND_W[14] = $ND( 0, 1); 

L37: assign VPI_VCI_INND_W[15] = $ND( 0, 1); 

L38: assign VPI_VCI_INND_W[16] = $ND( 0, 1); 

L39: assign VPI_VCI_INND_W[17] = $ND( 0, 1); 

L40: assign VPI_VCI_INND_W[18] = $ND( 0, 1); 

L41: assign VPI_VCI_INND_W[19] = $ND( 0, 1); 

L42: assign VPI_VCI_INND_W[20] = $ND( 0, 1); 

L43: assign VPI_VCI_INND_W[21] = $ND( 0, 1); 

L44: assign VPI_VCI_INND_W[22] = $ND( 0, 1); 

L45: assign VPI_VCI_INND_W[23] = $ND( 0, 1); 

L46: assign VPI_VCI_INND_W[24] = $ND( 0, 1); 

L47: assign VPI_VCI_INND_W[25] = $ND( 0, 1); 

L48: assign VPI_VCI_INND_W[26] = $ND( 0, 1); 

L49: assign VPI_VCI_INND_W[27] = $ND( 0, 1); 

L50: //Sequential part  

L51: always begin  

L52:    case (STATE)  

L53:    0: begin  

 

L54:        VPI_VCI_IN[27:4] = 1;  

L55:        STATE = S0_NEXT_W;  

L56:       end  

L57:    1: begin  

L58:        VPI_VCI_IN[27:4] = 1;  

L59:        STATE = S1_NEXT_W;  

L60:       end  

L61:    2: begin  

L62:        VPI_VCI_IN[27:4] = 0;  



576      Hong Peng, Sofiène Tahar, and Yassine Mokhtari 

 

L63:        STATE = S2_NEXT_W;  

L64:       end  

L65:    3: begin  

L66:        VPI_VCI_IN = VPI_VCI_INND_W;  

L67:        STATE = S3_NEXT_W;  

L68:       end  

L69:    endcase // case (STATE)  

L70: end // always begin  

L71: endmodule // tableau 

The fairness constraint file is shown as follows, namely one of the following states 
has to be asserted infinitely often.  

 (tableau.STATE = 1  

 || tableau.STATE = 2  

 || tableau.STATE = 3  

);  

B   Ingress and Egress Properties 

Ingress_P1 
In this property, we require that the ingress port will receive a cell if a cell is coming 
into the port.Formally,  

AF (New_cell_recieved = 1) 
Where New_cell_recieved is set when a cell with integral structure is received.  

Ingress_P2 
In this property, we check the HEC detection mechanism in the ingress part, given 
there is a cell ready. Namely,  

AG (HEC_OK = 1) 
where HEC_OK is set if the cell under test has a good HEC value.  

Ingress_P3 

In this property, we check the IDLE detection mechanism in the ingress part, given 
there is a cell ready. Formally,  

AG(( WORD[0]=0) AND (WORD[1] =0) AND (WORD[2] = 0) AND 
(WORD[3][7:1] = 0) AND (WORD[3][0] = 1)  (IS_IDLE = 1)) 

meaning that when the byte stream (WORD) in a cell satisfying the above format (all 
0 except the last bit), then this cell is judged to be an idle cell. 

Ingress_P4 

In this property, we check that a cell is unpacked correctly. Formally,  
AG ((VPI[11:4] = WORD[0]) AND (VCI[11:4] = WORD[2]) AND (VPI[3:0] = 

WORD[1][7:4]) AND (VCI[15:12] = WORD[1][3:0]) AND (VCI[3:0] = 
WORD[3][7:4]) AND (PTI[2:0]=WORD[3][3:1]) AND (CLP = WORD[3][1])) 

where WORD is the input byte stream and VPI, VCI, CLP, PTI are the formatted cell 
headers.   
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Ingress_P5 

In this property, we check that if the incoming VPI_VCI satisfies our specification (bit 
27 to 4 are 0), then it will find a match in the routing table. Formally,  

AF (((VPI_VCI_IN[27:4] = 0) AND (MATCH_FOUND = 1)))) 
where VPI_VCI_IN is the VPI_VCI value of the input cell. MATCH_FOUND is set 
when VPI_VCI_IN can find a match in the routing table.  

Ingress_P6 

In this property, we check that all incoming VPI_VCI that do not satisfy our specifica-
tion cannot find a match in the routing table. Formally,  

AG ((NOT(VPI_VCI_IN[27:4] = 0))  (MATCH_FOUND = 0))) 
This is a safety property of the routing table, which has the similar form as  In-
gress_P5. 

Ingress_P7 

In this property, we check that the cell is packed correctly. Formally,  
AG ((VPI[11:4] = WORD[0]) AND (VCI[11:4] = WORD[2]) AND (VPI[3:0] = 

WORD[1][7:4]) AND (VCI[15:12] = WORD[1][3:0]) AND (VCI[3:0] = 
WORD[3][7:4]) AND (PTI[2:0]=WORD[3][3:1]) AND (CLP = WORD[3][1])) 

This property is similar with  Ingress_P4. 

Ingress_P8 

In this property, we check that the cell is flattened correctly, namely the word struc-
ture of a cell can be correctly flattened into a bit stream. Formally,  

AG((FLATTENED_CELL[7:0] = WORD[0]) AND (FLATTENED_CELL[15:8] = 
WORD[1]) ) 

where FLATTENED_CELL is the corresponding bit stream of the cell.   

Ingress_P9 
In this property, we check that the flattened cell can be enqueued correctly, namely 
the flattened cell is put into the queue and the pointer of the queue is changed accord-
ingly. Formally,  
AG( NOT IS_FULL  AF ((Queue.HEAD = FLATTENED_CELL) AND (HEAD = 

HEAD + 1))) 
 Where IS_FULL is set when the queue is full; the property means that if the queue is 
not full, then the cell will find a place in the queue.  

Egress_P1 

In this property, we check that the status of the queue is empty if the head pointer 
equals to the tail pointer. Formally, 

AG ((HEAD = TAIL)  (EMPTY = 1)) 
where EMPTY is set when the queue is empty. 

Egress_P2 

In this property, we check that the flattened bit stream cell can be restructured into a 
word format cell. Formally,  

AG ((RESTRUCTED_CELL[0] = FLATTENED_CELL[7:0]) AND 
(RESTRUCTED_CELL[53] = FLATTENED_CELL [423:416])) 

meaning that the dequeued cell (FLATTENED_CELL) can be restructured into a for-
matted cell (RESTRUCTED_CELL);  



578      Hong Peng, Sofiène Tahar, and Yassine Mokhtari 

Egress_P3 

In this property, we check that the flattened bit stream cell can be restructured into a 
word format cell. Formally, 

AG ((RESTRUCTED_CELL[0] = FLATTENED_CELL[7:0]) AND 
(RESTRUCTED_CELL[53] = FLATTENED_CELL [423:416])) 

meaning that the dequeued cell (FLATTENED_CELL) can be restructured into a for-
matted cell (RESTRUCTED_CELL);  

Egress_P4 

In this property, we check that the de-queued cell can be sent out to the egress port. 
Formally,  

AF (NEWCELL_READY = 1) 
where NEWCELL_READY is set when a cell has been sent out successfully. 
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Abstract. Data-independent systems are an important class of infinite-
state systems which can be subject to model checking by first building
finite-state property-preserving abstractions. Exploiting data indepen-
dence in practice involves user guidance, either in terms of the abstrac-
tion itself or in terms of symmetry properties of the system. In this paper
we present a constraint-based verification technique that automatically
handles data-independent systems. Our technique introduces a unified,
automata-based model for infinite-state systems and LTL formulas. The
technique can be seen as a generalization of explicit state model checker
for reachability and LTL properties. We have implemented our tech-
nique using logic programming with tabulation and constraints. We also
describe an extension to the automata model that permits verification of
a richer class of systems. We show its power by analyzing configuration
(security) vulnerabilities in a computer system.

1 Introduction

Many real-world systems and designs are naturally modeled as systems with in-
finite state space. Systems that have a finite number of control locations (anal-
ogous to program counter values) but manipulate data ranging over arbitrary
unbounded domains are used to model software artifacts and control systems
such as communication protocols or hardware controllers. Such systems can be
modeled as extended finite automata (EFA) where each control location has a
set of local variables and the transitions have (i) a guard that tests the val-
uation of variables in the source location and (ii) a relation that maps values
of variables in the source location to the variables in the destination location.
For instance, Figure 1 shows an EFA model for a two-place FIFO buffer. Many
infinite-state systems use only operations such as input, output and copy that
do not inspect the individual values themselves. Notice for instance, that input
values to the buffer in Figure 1 do not affect the system’s observable behavior
except for the corresponding changes to the output values. Such infinite-state
systems are called data-independent [27].
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s0 s1(x)
out !x

in?x x := x
in?y

x := y
out !x

s2(x, y)

Fig. 1. Example EFA for 2-place FIFO buffer.

t1(x) t3(x)

¬out !x

t2(x, y)t0

in?x in?y out !y
y �= x

¬out !x

Fig. 2. Automaton representing a run with “out of order” message delivery.

The State of the Art: Since the control behavior of data-independent systems
does not depend on the actual values of the data, such systems can be verified us-
ing traditional model checking techniques as follows. First, temporal properties of
such systems can be specified using only data values drawn from a finite domain.
Then a data-independent system can be abstracted to a finite-state system by re-
stricting the data variables to take values only over this finite data domain. The
crucial problem in verifying data-independent systems is, then, to identify the
appropriate (finite) data domain that makes the abstraction property-preserving.
In the seminal work of [27], this abstraction is performed manually. Since then,
several techniques [12,10,13,18] for identifying the appropriate abstraction have
been developed. However, existing techniques either require user guidance or
expect the temporal properties to be solely about the control behavior of the
system. (These issues are explored in more detail in Section 7.)

Summary of Our Approach: We model data-independent systems, as well as their
temporal properties, as extended finite automata. For instance, Figure 2 shows
an EFA representing runs that deliver messages “out-of-order”, i.e. where there
are two data objects, x and y, such that x is read before y, but y is written out
before x. The structure of EFAs is such that a product of two such automata is
also an EFA. Following the automata-based approach we can verify properties of
systems by looking for particular runs in their product EFAs: safety and liveness
can be verified using reachability analysis, while LTL properties can be checked
by good cycles detection.

We represent EFAs as constraint logic programs; analyzing the runs can
be then posed as query evaluation over these programs. Note that, resolution,
the widely-used query evaluation mechanism, ensures that the variables in the
EFA are bound only to the extent necessary to answer the query. This follows
our earlier approaches to constructing model checkers of finite and infinite-state
systems based on query evaluation over (constraint) logic programs. Moreover,
the EFA product construction itself can be encoded as a constraint logic pro-
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gram, meaning that the product automaton itself is constructed on demand:
only portions of the product automaton needed to answer the particular query
are materialized. Finally, interpreting the query over a domain of equalities and
negated equalities (commonly referred to as disequalities, see e.g. [24]) ensures
that we can verify temporal properties of data-independent systems without at-
tempting to enumerate specific valuations of the data variables. This approach
can be used to automatically verify the data-independent systems that have been
reported in the literature [27,10,13] without needing any user intervention or an-
notations. Our approach can also automatically verify correctness properties of
cache-memory systems which have not been amenable for automatic treatment
using the existing techniques (see Section 4).

Extensions and Applications: We initially define EFAs such that they manipulate
only equality and disequality constraints (Section 3). Even these relatively simple
models are expressive enough to represent data-independent systems as defined
in [27], as well as their extensions [13]. We describe the verification of cache-
memory systems using such EFAs in Section 4. We further extend EFAs to
use membership constraints (e.g. x ∈ y) in order to represent a richer class of
systems (Section 5). With these constraints, the model checking problem is no
longer decidable. We hence devise abstractions that ensure termination of the
analysis but with very little loss of information in practice. We use this technique
to verify properties of a generalized cache-memory system, as well as to detect
vulnerabilities in computer system configurations (Section 6).

The technique presented in this paper provides a way for direct and auto-
matic verification of data-independent systems. The system models may in fact
be specified in a familiar process algebraic notation that can be automatically
translated to the underlying EFAs. This enables direct application of our tech-
nique on system models constructed for use in finite-state model checkers such
as XMC [23]. The systems handled by the model checker include those that
compare data variables using equality (e.g. x = y where x and y are data vari-
ables) and disequality (e.g., x �= y) tests. The temporal properties can naturally
express both data and control behaviors of these systems. Furthermore, our im-
plementation of this technique can be seen as an extension to an explicit-state
model checker for LTL properties [2,21].

2 Preliminaries

We assume the standard notion of variables, function symbols, predicates, terms,
substitutions, and unification [16]. Variables range over an enumerable set V; we
use x, y, . . . to denote variables. Function symbols range over F ; 0-ary function
symbols are called constants (denoted by the set C). We use T to denote the set
of all terms constructed from V and F ; σ, θ to denote substitutions; and mgu to
denote the most general unifier of a set of terms. A term t under a substitution
σ is denoted by tσ. By σ[t/x] we denote a substitution σ′ that maps x to t and
is identical to σ everywhere else.
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Constraints, Constraint Languages and Assertions: A formal definition of ex-
tended finite automata (see Section 3) is based on a language of constraints.
Constraint languages are parameterized with respect to a set of primitive con-
straints PC . For instance, equality and disequality constraints are defined using
the following set of primitive constraints:

PC{=} = {v1 = v2, v1 �= v2}

where v1, v2 ∈ V ∪ C. A constraint language L defined with respect to PC is
built using the constraints in PC , Boolean connectives ∧ and ∨, and existential
quantification ∃ over variables. Elements of L are also called assertions and are
denoted by ϕ (possibly primed and/or subscripted). Formally, Ls, the language
of constraints defined over PCs is the smallest set such that (i) PC s ⊆ Ls; (ii)
ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∈ Ls if ϕ1, ϕ2 ∈ Ls; and (iii) ∃v. ϕ ∈ Ls if ϕ ∈ Ls and v ∈ V.
As PC {◦i} includes negations of constraints formed by each ◦i, we do not have
an explicit connective for negation.

The set of variables in an assertion ϕ is denoted by vars(ϕ). We use the
standard notion of bound and free variables (due to quantifiers) in assertions.
The set of bound variables in an assertion ϕ is denoted by bv(ϕ) and the set of
free variables by fv(ϕ). We also use the standard notion of meaning of assertions
in L{=}, by interpreting them over the data domain C. With each assertion ϕ we
associate a set [[ϕ]] of substitutions mapping fv(ϕ) to C. Note that we define the
meaning by substituting only the free variables of an assertion. Each substitution
σ in [[ϕ]] is said to “satisfy” ϕ (written as σ |= ϕ).

In the first part of the paper, we use only equality and disequality constraints,
since they suffice to describe and analyze data-independent systems. We subse-
quently expand our techniques to analyze systems whose control behaviors are
dependent on certain infinite-domain values. We model such systems using an
expanded constraint language L{=,∈} which considers two distinguished set
constants, {} (empty set) and U (the universal set) in C, and has the following
set of primitive constraints:

PC{=,∈} = {v1 = v2, v1 �= v2, v1 ∈ v2, v1 �∈ v2}

where v1, v2 ∈ V ∪ C. Assertions in L{=,∈} are interpreted by first classifying
variables into many sorts: base variables that take values over C, first-order set
variables that take values over 2C , etc.

Expressions and Assignments: Given a substitution that associates values with
variables, expressions compute new values. For data-independent systems, we
consider the constraint language L{=} and the set of expressions E{=} = V ∪C.
When considering the constraint language L{=,∈}, we will use a richer expres-
sion language E{=,∈} which is the smallest set such that (i) V ∪ C ⊆ E{=,∈};

(ii) 2V ∪ 2C ⊆ E{=,∈}; and (iii) if e1, e2 ∈ E{=,∈} then e1 ∪ e2, e1 ∩ e2, e1 − e2
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are all in E{=,∈}. The value of an expression e with respect to a substitution σ

is denoted by eσ.
Assignments are written as x := e where x ∈ V and e ∈ E . The meaning of

an assignment x := e can be captured as a binary relation between substitutions
such that (σ, σ′) ∈ [[x := e]] iff σ′ = σ[eσ/x]. Simultaneous assignments are de-
noted by V̄ := Ē where V̄ and Ē are (equal-length) sequences of variables and
expressions respectively. An assignment can also be seen as transforming asser-
tions: from one that is satisfied before the assignment to another that is satisfied
after the assignment. This assertion mapping corresponding to an assignment ρ
is denoted by Ξρ.

Standard Forms and Equivalence: We say that two assertions are identical if
they differ only in the names of bound variables. Two assertions are equivalent
if and only if they are satisfied by the same set of substitutions. Note that while
identical assertions will be equivalent, the converse does not always hold: e.g.
ϕ1 = (x = y ∧ y = z) and ϕ2 = (x = y ∧ x = z) are equivalent but not identical.

When processing assertions, it is often useful to reduce them to equivalent
standard form, defined as follows:

Definition 1 [Standard Form of Assertions] An assertion ϕ ∈ L{=} is said to
be in standard form if the following hold:

– Structure: ϕ is in disjunctive normal form, i.e., is of the form ϕ1 ∨ ϕ2 · · ·ϕn

such that each ϕi itself is of the form ∃V.ϕi,1 ∧ ϕi,2 ∧ · · · ∧ ϕi,ki where
ϕi,j ∈ PC{=}; the assertions ϕi are called the disjuncts of ϕ.

– Non-redundancy: A primitive constraint occurs at most once in any disjunct
in ϕ.

– Naming: bv(ϕ) ∩ fv(ϕ) = {};
– Order: For each disjunct ϕi in ϕ, if x = y occurs in ϕi then there are no

primitive constraints of the form y = z, z = y, y �= z or z �= y in ϕi for any
variable z. �

Given a conjunction ϕ of primitive constraints over PC{=}, it is easy to
see that we can group its variables in several equivalence classes (x = y in ϕ
means that x and y belong to the same class). Moreover, ϕ is satisfiable (when
interpreted over an infinite data domain) if and only if whenever x �= y occurs
in ϕ, x and y belong to different classes. These observations immediately yield
a procedure to convert every assertion into an equivalent standard form.

Proposition 1 For every satisfiable assertion ϕ ∈ L{=} there is an equivalent
assertion ϕ′ such that ϕ′ is in standard form.

An assertion ϕ in standard form is said to be quantifier-free if it has no bound
variables. For any disjunct ∃V. ϕ let ∃V. ϕ′ be an equivalent standard form such
that for every x = y in ϕ′, x ∈ V implies y ∈ V . Let ϕ′′ be the assertion obtained
by dropping from ϕ′ every primitive constraint that contains a variable in V .
It can then be shown that ϕ′′ is equivalent to ∃V ϕ whenever the assertions are
interpreted over an infinite domain of constants.
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Example 1 Consider ϕ : ∃y.x = y ∧ y �= z ∧ z �= w ∧ y �= w.

– The assertion ϕ1 : ∃y.x = y ∧ x �= z ∧ z �= w ∧ x �= w is in standard form,
and is equivalent to ϕ.

– Shrinking the scope of the quantifier yields the assertion ϕ2 : (∃y.x = y)∧x �=
z ∧ z �= w ∧ x �= w which is equivalent to ϕ1 and hence ϕ.

– Since (∃y.x = y) is satisfiable (under interpretation over any domain), the
assertion ϕ3 : x �= z ∧ z �= w ∧ x �= w, and ϕ2 are equivalent. �

In the above example, the assertion (∃y. x = y) is always satisfiable and hence
the final quantifier-free form ϕ3 is always equivalent to the initial assertion ϕ.
In general, however, the dropped assertion may be satisfiable only over domains
that are sufficiently large. For instance, ∃y, z. x �= y ∧x �= z ∧ y �= z is satisfiable
only when the data domain has at least two elements. However, the dropped
assertions are always satisfiable when interpreted over an infinite data domain.
Hence we have:

Proposition 2 For every satisfiable assertion ϕ ∈ L{=} there is assertion
ϕ′ such that ϕ and ϕ′ are equivalent over infinite data domains and ϕ′ is in
quantifier-free standard form.

Quantifier-free standard forms are important since they allow us to finitely
represent all possible assertions over a finite set of free variables.

Proposition 3 Let V be a set of variables and Φ ⊆ L{=} be the set of all
assertions in quantifier-free standard form such that fv(ϕ) = V for all ϕ ∈ Φ.
Then the set Φ is finite.

3 Extended Finite Automata

We now describe an automata-based model to specify infinite-state systems with
finite number of control locations. The automaton’s behavior can be observed
based on the labels, called actions, on the transitions taken by the automaton.
We distinguish between input actions (denoted by c?x), output actions (denoted
by c!e) and internal actions (denoted by special symbol τ) where c ∈ C, x ∈ V,
and e ∈ V ∪ C. The set of actions is denoted as Act ; we use α to range over
actions. We refer to the sets of free and bound variables involved in an action α
as fv(α) and bv(α), respectively. These sets are defined as follows: fv(c?x) = ∅,
bv(c?x) = {x}, fv(c!e) = vars(e), bv(c!e) = ∅.

Definition 2 [Extended Finite Automaton (EFA)] An extended finite automa-
ton over the constraint language L{=} is defined by the sextuple A =
〈L, δ, ι, �0, �,F〉 where:

– L is a finite set of (control) locations;
– δ = L × 2V , the variable map, is a function that maps each location �i to a

finite set of variables local to �i;



Constraint-Based Model Checking of Data-Independent Systems 585

– ι is a function that maps each location to an assertion (invariant) such that
ι(�i) ∈ L{=} and ι(�i) must be satisfied by δ(�i) whenever �i is reached;

– �0 ∈ L is the initial location;
– � is the transition relation such that for all (�i, �j , 〈γ, α, ρ〉) ∈ �,

• �i, �j ∈ L are the source and destination locations of the transition,
respectively

• 〈γ, α, ρ〉 is the label on the transition consisting of:
∗ γ ∈ L{=}, the enabling condition: an assertion over δ(�i) which

specifies the condition under which the transition may be taken
∗ α ∈ Act , the action associated with the transition, such that bv(α)∩

δ(�i) = ∅
∗ ρ, the update relation: a set of simultaneous assignments defining the

values assumed by the variables δ(�j) of the destination location in
terms of values of variables δ(�i) in the source location;

– F ⊆ L is the set of final locations. �

Example 2 The 2-place FIFO buffer shown in Figure 1 is formally represented
as the EFA S = 〈L, δ, ι, �0, �,F〉 where L = {s0, s1, s2}, the variable map
δ(s0) = ∅, δ(s1) = {x} and δ(s2) = {x, y}; the invariants ι(s0) = ι(s1) =
ι(s2) = true, the initial location �0 = s0, the transition relation is defined as � =
{(s0, s1, 〈true, in?x, {}〉), (s1, s0, 〈true, out !x, {}〉), (s1, s2, 〈true, in?y, {x := x}〉),
(s2, s1, 〈true, out !x, {x := y}〉)}, and the set of final locations F = ∅. �

Behaviors of an EFA: Note that an EFA is analogous to a program: control
locations correspond to program counter values (program points) and the local
variables correspond to the data variables live at each program point. We call
q = 〈�, θ〉 a concrete state of an automaton if � is a location and θ is a ground
substitution of variables in δ(�) defined over a data domain D. We can define
behaviors of an EFA with respect to specific valuations of its variables, as follows.

Definition 3 [Concrete run of an EFA] A concrete run ωD of A is a (possibly in-
finite) sequence of alternating concrete states and actions 〈�0, θ0〉 α0 〈�1, θ1〉 α1 . . .
such that:

– �0 is the initial location of A and θ0 is a ground substitution of variables in
δ(�0) to D such that θ0 |= ι(�0)

– for all i (�i, �i+1, 〈γ, α, ρ〉) ∈ � such that:
• Transition is enabled: θi |= γ
• Input Value is bound: θ′

i is a ground extension of θi to vars(α) such that
αi = α[θ′

i]
• Data is transferred from source to destination: (θi, θ

′′
i ) ∈ [[ρ]]

• Input value is transferred: θ′
i+1 = θ′′

i ◦σ where σ is such that θ′
i = θi ◦σ,

and
• Destination invariant holds: θi+1 |= ι(�i+1). �
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reach(A, Ls,Ss, Ld,Sd) :-
gtrans(A, Ls,Ss, Act, Ld,Sd).

reach(A, Ls,Ss, Ld,Sd) :-
gtrans(A, Ls,Ss, Act, Lm,Sm),
reach(A, Lm,Sm, Ld,Sd).

gtrans(A, Ls,Ss, Act, Ld,Sd) :-
inv(A, Ls,Ss),
trans(A, Ls,Ss, Act, Ld,Sd),
ground(Act),
inv(A, Ld,Sd).

Fig. 3. Relation describing the reachability of concrete states in an EFA.

EFA as a Logic Program: An EFA can be readily represented as a set of Prolog
rules. The following relations specify an EFA A:

– init(A, L): a relation with a single tuple, specifying the initial location L.
– inv(A, L,V): a relation specifying the invariants at each location.
– trans(A, Ls,Vs, Act, Ld,Vd): a relation defining transitions from source

location Ls, with the list Vs representing Ls’s variables, to destination loca-
tion Ld, with variables Vd. Act denotes the action taken by the automaton.
The body of each rule corresponds to transition’s enabling condition γ (i.e.
facts imply γ = true). Finally, the update relation is specified either by uni-
fying corresponding variables in Vs and Vd or using additional predicates in
the body of the rule.

– final(A, L): a relation specifying the final locations.

Example 3 The EFA S = 〈L, δ, ι, �0, �,F〉 from Example 2 can be represented
as the following logic program:

init(S, s0).

inv(S, s0,[]).
inv(S, s1,[X]).
inv(S, s2,[X,Y]).

trans(S, s0,[], in(X), s1,[X]).
trans(S, s1,[X], out(X), s0,[]).
trans(S, s1,[X], in(Y), s2,[X,Y]).
trans(S, s2,[X,Y], out(X), s1,[Y]).

�

The reachability of a concrete state of an EFA can be computed using the
transitive closure relation reach over the transitions of A shown in Figure 3. In
the figure, the relation gtrans nondeterministically selects an applicable tran-
sition and binds any variables in its action (i.e. if Act is an input action, binds
the input variable to some value in the data domain), and ensures that the in-
variants at the source and destination states hold. The relation reach admits
a state (Ld,Sd) reachable from (Ls,Ss) whenever there exists a transition from
(Ls,Ss) to (Ld,Sd) (the first clause), or if (Ls,Ss) has a transition to some state
(Lm,Sm), from which (Ld,Sd) can be reached (the second clause). The set of all
concrete states of an automaton A that are reachable from a given concrete state
〈�, θ〉 can be computed as answers to the query reach(A, �,δ(�)θ, Ld,Sd) over
the concrete reachability program. It can be easily shown that evaluating the
above query using resolution is step-wise equivalent to computing concrete runs
using Definition 3.

A run that reaches a concrete state can be easily computed based on the
resolution steps needed to establish the reachability of the state using the above
program (e.g. using the notion of justification of a logic programming proof [25]).
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Abstracting the Behaviors of an EFA: To ensure that behaviors of an EFA can
be analyzed even when it has an infinite number of concrete states, we use an
alternative representation of the behaviors. For this, we introduce the notion of
an abstract state: a pair 〈�, ϕ〉 where � is a control location and ϕ ∈ L{=} is an
assertion (representing constraints on the valuations of the local variables at �)
such that fv(ϕ) ⊆ δ(�).

Definition 4 [Abstract run of an EFA] An abstract run ω of A is a (possibly infi-
nite) sequence of alternating abstract states and actions 〈�0, ϕ0〉 α0 〈�1, ϕ1〉 α1 . . .
such that:

– �0 is the initial location of A and ϕ0 = ι(�0).
– for all i (�i, �i+1, 〈γ, α, ρ〉) ∈ � such that:

• Transition is enabled: ϕi ∧ γ is satisfiable
• Constraint is transferred to destination: ϕ′

i = Ξρ(ϕi) and ϕi+1 =
(∃V ϕ′

i) ∧ ι(�i+1) where V = vars(ϕ′
i) − δ(�i+1) �

An abstract state q = 〈�, ϕ〉 of an EFA corresponds to a (possibly infinite)
set S of concrete states over value domain D such that ∀〈�, θ〉 ∈ S.θ |= ϕ; in
other words, ϕ cannot distinguish between the valuations of the concrete states
in S. We say that each element 〈�, θ〉 of S is a concretization of q, and q is an
abstraction of S.

Given the relationship between abstract and concrete states, we can construct
an abstract run from a concrete run and vice versa. The close correspondence
between abstract and concrete states is formalized by the following theorem:

Theorem 4 A concrete state 〈�n, θn〉 is reachable in a concrete run ωD of an
extended finite automaton, iff there exists an abstract state 〈�n, ϕn〉 which is
reachable in an abstract run ω such that θn |=D ϕn.

Finiteness: Two abstract states 〈�, ϕ〉, 〈�′, ϕ′〉 are equivalent iff � = �′ and ϕ and
ϕ′ are equivalent. Since all assertions at location � can be written in quantifier-
free standard form with free variables from δ(�), from Proposition 3 we know
that there are only finite number of abstract states involving �. This immediately
leads to the following result:

Proposition 5 Reachability of any abstract state of an EFA is decidable.

From Theorem 4 and Proposition 5 we have:

Corollary 6 Reachability of a concrete state of an EFA is decidable.

Data Domain Size: Note that the finiteness results above used quantifier-free
standard forms for assertions, and hence are valid when we interpret EFAs over
infinite data domains. These results also carry over to finite domains that are
“large enough”. A domain size above which the results always hold can be es-
timated as follows. Consider all the quantifier elimination steps applied while
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reach(A, Ls,Ss, Ld,Sd) :-
atrans(A, Ls,Ss, Act, Ld,Sd).

reach(A, Ls,Ss, Ld,Sd) :-
atrans(A, Ls,Ss, Act, Lm,Sm),
reach(A, Lm,Sm, Ld,Sd).

atrans(A, Ls,Ss, Act, Ld,Sd) :-
inv(A, Ls,Ss),
trans(A, Ls,Ss, Act, Ld,Sd),
inv(A, Ld,Sd).

Fig. 4. Abstract reachability relation for EFAs.

computing an abstract run. At each step, say to eliminate the quantifier in ∃V ϕ,
let ϕ be in standard form, and let ND be the number of variables of V in dis-
equality constraints. Then the quantifier-free form is equivalent to the original
assertion for all domains of size ND or greater. Thus the above correctness re-
sults hold for domains of size N or greater, where N is the largest ND among
all quantifier elimination steps used in computing the run.

Query Evaluation for Abstract State Reachability: Reachability of abstract states
can be computed using the reachability relation shown in Figure 4. The rela-
tion atrans in the figure selects an applicable transition and ensures that the
invariants at source and destination states hold. However, in order to ensure
that query evaluation using resolution w.r.t. the abstract reachability program
is equivalent to computing abstract runs using Definition 4, we need to first
augment the evaluation mechanism with constraint solving. Traditional logic
programming systems resolve queries by keeping track of substitutions. When
a subgoal such as x �= y is encountered, these mechanisms will fail if x and y
are not already bound to specific values in the data domain. Constraint Logic
Programming (CLP)[11] provides a very expressive framework to resolve such
queries by generalizing substitutions to assertions in a constraint language. We
can check for reachability of abstract states by resolving queries w.r.t. the reach-
ability program in a CLP system that handles constraints over L{=}. Tabled
resolution [26] can be used to ensure the termination of query evaluation. We
built such a query evaluation system as a tabled constraint meta-interpreter that
handles constraints over L{=}.

Verification Using EFAs

For EFAs that model systems to be verified, we are typically interested in all-
possible runs. Hence all locations in an EFA representing system models will be
final locations. Such automata can be seen as equivalent to Symbolic Transition
Systems (STS [3]) and generalizations of Symbolic Transition Graphs (STGs [9])
and STGs with Assignments (STGAs [14]).

Property Specification Using EFAs: Liveness properties and negations of safety
properties can be simply encoded as EFAs.

Example 4 Consider the “ordered message delivery” property which states that
for any two messages x, y such that x is read before y, x will be written out before
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Fig. 5. Relations describing the product of two EFAs.

y. Note that this is a safety property and hence has to hold throughout a run.
The negation of this property, called “out-of-order delivery” is expressed by the
nondeterministic EFA in Figure 2. Note that “out-of-order delivery” is a liveness
property that is satisfied on a run if it is satisfied at some point in the run (a
live-guarantee property according to [17]). Properties of this kind can be simply
verified by checking for reachability of final states. �

When an EFA is interpreted as an automaton over finite words, a (con-
crete/abstract) run of an EFA is said to be accepting if it is finite and ends in
a final state. Using this interpretation, we can verify safety and liveness proper-
ties of EFA models. We can easily expand this framework to verify linear-time
properties with data values, by using the Büchi acceptance condition: a run is
accepting only if it is infinite and visits a final state infinitely often. We call
EFAs with Büchi acceptance condition as constraint Büchi automata (CBA).
Language detection in case of a CBA proceeds as for non-value-passing Büchi
automata, i.e. by first constructing a corresponding state graph, and then check-
ing it for strongly connected components containing final (accepting) states that
are reachable from the initial state.

The definition of CBA is apparently similar to Pnueli’s Büchi Automaton
with Data (BAD) [20], differing mainly by treating data variables as local to a
control location. Moreover, a CBA allows finite number of data variables to be
introduced (new or temporary locals) into states during system execution. Data
variables in a CBA have the following properties:

– they may be generated in the states or introduced by the transitions: for any
�i, �j ∈ L such that (�i, �j , 〈γ, α, ρ〉) ∈ �, δ(�j) ⊆ δ(�i) ∪ vars(α);

– whenever a variable x is introduced to �, it overwrites the value of x pre-
viously assigned to �; another way to say this is that the interpretation of
x is different upon every visit to a location containing x (this in particular
applies to self loops);

– initial location �0 may contain a non-empty, finite set of variables.

Product Construction: Automata-based model checkers pose the verification
problem in terms of checking whether the intersection of two automata’s lan-
guages is empty. Critical to this formulation is the construction of a product
automaton A = (A1 × A2) whose language corresponds to the intersection of
the languages of A1 and A2. We can construct the product of two EFAs such
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that the result is also an EFA. In fact, given two EFAs A1 and A2 represented as
logic programs, the product EFA (A1, A2) can be computed using a logic program
given in Figure 5. Each location in the product automaton is defined as a pair
(L1, L2) consisting of the locations of the component automata. The non-trivial
part of the encoding is the handling of action labels: the label on a transition in
the product automaton is obtained by unifying the action labels the two com-
ponent automata. This ensures that every transition in the product represents
matching transitions in the two components, and the source and destination lo-
cations of the product transitions result from combining respective locations of
the components. Moreover, the variable sets of component automata are merged
(with action variables being unified) into corresponding sets of variables of the
product. It is easy to show that two automata A1 and A2 have a common run
if and only if their product has a run.

Example 5 Consider instance of the FIFO buffer from Figure 1 with all loca-
tions considered final, and the “out-of-order delivery” property from Figure 2.
From the rules in Figure 5, it is easy to see that the following sequence is a run
of a product of these two EFAs.

〈(s0,t0),tt〉 in(X) 〈(s1,t1),tt〉 in(Y) 〈(s2,t2),tt〉

Note that the above run does not reach any final location of the product
EFA ((s0,t3), (s1,t3) or (s2,t3)), nor it can be extended to do so. In fact,
the automaton has no successful runs, which means that the FIFO buffer never
satisfies the error condition. �

4 Example: Verifying a Write-Back Cache

Below we describe an EFA model of a memory system with a write-back cache.
We use this model to verify that a memory read at an arbitrary but specific ad-
dress retrieves the value previously written to that address. The model captures
the behavior of a memory system with potentially infinite memory addresses
and an infinite domain of data values. We first build a model for a system with
a single-line cache: exactly one address-value pair is stored in the cache. We
generalize this model to cache with an arbitrary size in Section 5.

The data state of a single-line cache is denoted as a triple (CA,CV,CD) rep-
resenting the address CA in the cache, a current data value CV at that address,
and a “dirty bit” CD that is 1 if the value in the cache has been modified (and
hence possibly different from the value in the main memory) and 0 otherwise.
The cache services read and write requests received from the processor.

Upon a request write?(A,V) to write value V to address A, if A is in the
cache (i.e. A = CA), then the value in the cache is replaced with V (i.e. CV :=
V) and CD is set to 1. Otherwise, the current cache entry is flushed to memory
if CD is 1, and the data state of the cache is set to (A,V,1). Read requests are
processed similarly (flushing the current cache contents to memory on a cache
miss); details are omitted.
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% receive request to write value V to address A
trans(cm, c0,[CA,CV,CD, MA,MV], write?(A,V), c1,[CA,CV,CD, MA,MV, A,V]).

% A is in cache: update cache value to V and set dirty bit to 1
trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c0,[CA,V,1, MA,MV]) :-

A = CA.

% A is not in cache, but either cache value has not been modified,
% or cache address is different from that in the memory:
% replace cache contents with the tuple (A,V,1)
trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c0,[A,V,1, MA,MV]) :-

A �= CA, (CD �= 1; CA �= MA).

% A is not in cache, cache value has been modified,
% and cache address is the same as the address in the memory:
% update value in the memory to current cache value
trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c2,[CA,CV,CD, MA,CV, A,V]) :-

A �= CA, CD = 1, CA = MA.

% write new tuple, with dirty bit set to 1, to the cache
trans(cm, c2,[CA,CV,CD, MA,MV, A,V], tau, c0,[A,V,1, MA,MV]).

Fig. 6. Transition rules for handling writes in the cache-memory system.

Note that we are interested in verifying whether a read to a specific memory
address returns the previously written value. This enables us to model a memory
of arbitrary capacity by a single memory cell with a distinguished address. The
data state of the memory is represented by a tuple (MA,MV). The memory re-
sponds to read and write requests from the cache. A write to (A,V) changes the
data state to (MA,V) if A = MA, and leaves the data state unchanged otherwise.
A read request to address A returns MV if A = MA; otherwise the read returns an
arbitrary value.

The cache-memory system can be readily modeled as an EFA; Figure 6 shows
the a fragment of a logic program that represents the transition relation of the
EFA model (more specifically, the portion of the relation that pertains to write
requests). Note that all locations in the EFA for the system model are final
locations.

The correctness condition for the cache-memory system is that after a read
from an arbitrary address A will return V where V is most recent value written
to address A. We represent the negation of this safety property by the EFA in
Figure 7.

To verify whether the cache-memory system observes the correctness condi-
tion, we check whether a final location in the product of the system EFA and
the property EFA is reachable. This check is done using the query

reach( (cm,p), (c0,t0),[CA,CV,CD, MA,MV, PA], ( ,t3), ), MA=PA.
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read addr?A

t2(A, V )

write?(A, V )

t1(A, V )

¬write?(A, V ′)

t0(A) t3(A)
V ′ �= V

read val !V ′

τ

Fig. 7. EFA for the correctness condition of cache-memory system.

over a program consisting of the abstract reachability relation (Figure 4), the
product construction relations (Figure 5) and the relations representing the sys-
tem and property EFAs. In the query, PA is the address of interest to the property.
Note that the unification MA=PA in the query ensures that the address of interest
to the property is same as the address maintained by the memory. From the
results of Section 3, we know that the above query evaluation will terminate and
hence we can verify the given correctness property of the cache-memory model.

Comparison with Other Work: It should be noted that the verification of the
cache-memory system as described above is not possible with any of the methods
of [27,12,10,13,15]. Specifically, the definition of data independence in [27,12]
does not admit any comparisons between data objects, so neither of them can
handle a problem that requires equality tests.

The cache can be modeled in the scalarset-based approach of [10] as an array
storing data values and indexed by the memory addresses. However, since they
are used as array indices, the domain of memory addresses themselves cannot
be reduced to a small, finite set of elements required for automatic verification.

The method of [13] is applicable to the problem only after a series of man-
ual transformations of its specification that reduce memory addresses and data
values to range over finite domains.

Finally, the system as specified above cannot be directly encoded as a sym-
bolic transition graph with assignments [15], as STGAs require all variables in
output transitions from a state to be present in the source state; note that the
behavior of a memory cell upon receiving a read request needs the ability to
output arbitrary values.

5 EFAs: Beyond Equalities

EFAs have been defined only using the constraint language L{=}. This choice
turns out to be crucial in being able to accurately verify systems and properties
specified as EFAs. However, this choice also restricts the class of systems that
can be modeled using DFAs. Below we describe the consequences of augmenting
EFAs with richer constraint languages such as L{=,∈}.

Computational Aspects of Using Assertions over L{=,∈}: The ability to finitely
represent the potentially infinite set of assertions using quantifier-free stan-
dard forms in L{=} is a key factor that makes the verification problem of
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EFAs decidable. Assertions over L{=,∈}, in contrast, do not have equivalent
quantifier-free representations in general. For example, consider the assertion
ϕ = ∃x. x �= y ∧ x ∈ z ∧ y ∈ z which states that y ∈ z and there is another
element distinct from y that is also in z. This assertion cannot be expressed
using only variables y and z without bound variables. The assertion y ∈ z is an
approximation of ϕ but fails to capture the fact that z has at least two elements.

This example illustrates that one can maintain counts (as number of elements
in a set) in L{=,∈} and hence there is no finite representation of assertions in
L{=,∈}. For instance, consider the assignment z := z ∪{x} evaluated under the
constraint x �∈ z. This assignment increases the cardinality of the set represented
by z and hence simulates counting.

A classic approach to deal with problems due to counts is to approximate the
counts: for instance, a widely-used approach is to maintain counts using the finite
domain {0, 1,many}. This abstraction corresponds to representing assertions in
L{=,∈} using at most one bound variable. We call assertions with a fixed ceiling
on the number of bound variables as assertions in limited quantifier form. We can
represent every ϕ ∈ L{=,∈} by an assertion ϕ� in limited quantifier form such

that ϕ =⇒ ϕ� (i.e. by “relaxing” the meaning of the assertion). The direction
of the approximation ensures that for every concrete run in an EFA there is
an abstract run, but the converse may not hold. Consequently, identifying an
accepting abstract run during verification simply means that the property “may”
hold; conversely, failure to find an an accepting abstract run means that the
property “definitely” does not hold.

Extended Data Types: As the primitive constraints of L{=} involve only vari-
ables and constants, all data elements we have been considering so far are taken
from V ∪C. When modeling systems with membership constraints and sets, it is
useful to consider non-recursive compound terms (e.g. tuples) to represent data
records. This improves the expressiveness without unduly complicating its formal
framework. Therefore, in the following, we assume that constraints in L{=,∈}
are built over variables, constants, and shallow, non-recursive compound terms.
Such structures are used in both examples presented below.

Application: Mutli-line Cache: We augment the EFA model of cache-memory
system (Section 4) to handle cache with an arbitrary number of cache lines.
The contents of the cache are now represented as a set Cs of tuples (CA, CV, CD)
each corresponding to one cache line, where CA, CV and CD are address, value
and dirty bit of that cache line. There are several modifications necessary for
the transition rules to accommodate the extended specification. Checking for a
presence of a tuple in the cache will now use membership constraints rather than
equality. Upon cache miss, the line to be flushed to memory is chosen from the
set nondeterministically (again using membership constraints). Finally, updating
value in the cache upon a write hit requires first locating the appropriate cache
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line (using a membership constraint), and then updating its data value and dirty
bit (using set difference and union operations, and equality constraints).

6 Example: Detecting Vulnerabilities
in Computer Systems

A computer system consists of concurrent, interacting processes and services and
users. Unexpected interactions between these entities often lead to subtle vul-
nerabilities that can be exploited to compromise system security. For example,
comsat is a mail notification program, which prints the initial lines of incoming
mails on a user’s terminal. It obtains the user’s terminal information from a
system file /etc/utmp (containing terminal information stored as records). Mis-
configuration of this file may permit any system user to obtain root privileges
as follows. If records in /etc/utmp can be changed by a user, then an attacker
can replace their terminal in the file with ‘/etc/passwd’. The attacker can then
send mail to self, thereby overwriting the password file. By choosing the mail
message appropriately, the user can obtain root privileges.

In [22] we presented a model of this system in a value-passing process algebra
with four processes: a user, the mailer service, comsat, and the file system fs.
The first three processes interact via the file system. The model of the file system,
thus, is central and most interesting. There are several distinct infinite-domain
data types involved in this model: names of files and users, contents of files, etc.
Some of the components of the system, such as the mailer and comsat are data-
independent (in the type of message contents) in the sense of [27]. Similarly, the
file system’s control behavior is independent of the contents of the files. Below
we describe an EFA model of the file system using assertions from L{=,∈}.

Figure 8 shows a logic program encoding the transition relation of an EFA
model of the file system. In the model, the variable FS holds the current state
of the file system — the files and their contents. Its value is represented as a set
of triples (FN ,FPerm,FCont), each triple expressing the state of a particular
file with name FN , permissions FPerm, and contents FCont . File’s permissions,
in turn, are given by a set of pairs (U, P ), denoting that user U has permission
P (P ∈ {w, r}). The contents of a file are defined as a set of data records.

The program in Figure 8 uses several predicates representing the following
assertions:

– exists(FS , N) checks for existence of file named N in the file system FS :

∃P, C . (N, P, C) ∈ FS

– access(FS , U, N, T ) verifies that user U has access of type T to file named
N in the file system:

∃P, C . (N, P, C) ∈ FS ∧ (U, T ) ∈ P

– r rec(FS , U, N, R) extracts record R from file named N in the file system:

∃P, C . (N, P, C) ∈ FS ∧ (U, r) ∈ P ∧ R ∈ C
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trans(fs, s0,[FS], read?(U,N), s1,[FS,U,N]).
trans(fs, s1,[FS,U,N], tau, s0,[FS]) :-

not(exists(FS,N), access(FS,U,N,r)).
trans(fs, s1,[FS,U,N], tau, s2,[FS,U,R]) :-

exists(FS,N), access(FS,U,N,r), r rec(FS,U,N,R).
trans(fs, s2,[FS,U,R], read return!(U,R), s0,[FS]).

trans(fs, s0,[FS], write?(U,N,D), s3,[FS,U,N,D]).
trans(fs, s3,[FS,U,N,D], tau, s0,[FS]) :-

not(access(FS,U,N,w)).
trans(fs, s3,[FS,U,N,D], tau, s0,[FS’]) :-

access(FS,U,N,w), add rec(FS,U,N,D,FS’).

Fig. 8. Transition relation for an EFA model of a file system.

– add rec(FS , U, N, D,FS ′) adds record D to file named N in the file system
FS , giving the modified file system in FS ′:

∃P, C, C ′ . (N, P, C) ∈ FS ∧ (U, w) ∈ P ∧ C ′ = C ∪ {D}
∧ FS ′ = FS − {(N, P, C)} ∪ {(N, P, C ′)}

One of the simplest safety properties expected to hold in a model of a com-
puter system is that there are no unauthorized writes to /etc/passwd. We be-
gin by checking a straightforward reachability property: whether there are any
writes to /etc/passwd in the above EFA model. The analysis shows that writes
to /etc/passwd are indeed possible, but many of the runs that are witnesses to
this property show “normal” behavior that does not reveal the vulnerability.
For instance, one of the runs corresponds to root issuing an explicit write to
/etc/passwd. Hence we refine the property to rule out expected runs (called
the “intentions model” [22]). We then observe writes to /etc/passwd using a
sequence of operations — overwriting /etc/utmp and then sending mail — that
exploit the vulnerability described earlier.

Note that the EFA model uses assertions over L{=,∈} and hence abstract
runs may not have corresponding concrete runs. Thus a detected vulnerability
may not, in general, actually exist in the model. However, given an abstract run,
we can estimate whether or not the abstract states represent approximations;
for instance, loss of accuracy in manipulating assertions in L{=,∈} occurs when
we eliminate bound variables to derive assertions in limited quantifier form. We
can therefore modify the order in which transitions are taken during reachabil-
ity analysis, preferring transitions that involve no loss of information. Abstract
runs composed solely of transitions whose effects are computed losslessly always
have corresponding concrete runs. Using this heuristic, we can isolate vulnera-
bilities that exist in the model despite using an expressive constraint language.
With the presence of an approximation our verification is conservative, i.e. if no
vulnerability is reported for the abstraction, there cannot be one in the original
system, but if a vulnerability in the abstracted system is found, the result for the
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original system is unknown. This heuristic is not limited to reachability analysis
alone and can be readily extended to good cycle detection in CBA.

7 Related Work and Discussion

In this paper we presented an automata-based approach to the analysis of behav-
ior of infinite-state systems. We used EFAs as a unified model for infinite-state
systems and their properties. Our technique can be used to automatically verify
properties of data-independent systems, and can be extended to analyze more
general infinite-state systems as well.

Considerable research has been done on generating a finite-state, property-
preserving abstraction of data-independent systems. The method of [27] relies
on the user to identify a data-independent program and manually transform its
specification. A similar method was suggested in [1] to verify the alternating bit
protocol. An automatic abstraction is proposed in [12] where a special countable
set of values, called schematic names are used to bind data variables. However,
this method is applicable only to programs that do not have tests on the values
of data variables. A similar set of “symbolic values” is used in [15] which gives an
algorithm for model checking data-independent value-passing processes. Because
of working on process variables rather than inventing an extra set of values, we
can claim our approach more directly implementable than the one presented
in this work. Data independence is considered as a form of symmetry in [10]
where a method is given to reduce the size of the data domain. The reduction is
automatic once the user identifies a data-independent program and specifically
annotates data-independent types (“data scalarsets”). Moreover, the approach
works only for safety properties.

In [13], algorithms for refinement checking among data-independent systems
are developed. They are based on the notion of threshold collections: finite col-
lections of data types such that if the refinement holds for each of these types
substituted for the data domain of the processes, it holds for an arbitrary data
domain. The threshold collections must be identified manually before applying
the appropriate refinement algorithms. Finally, an automatic method to abstract
a large class of systems including data-independent systems is developed in [18].
That method is analogous to predicate abstraction [8] and constructs a finite-
state system by introducing Boolean variables for every predicate in the original
system. It is shown that for data-independent systems the method will termi-
nate, producing a finite Boolean program which simulates the original system
(with respect to control behaviors).

Our technique is most closely related to the abstraction method of [18]: the
constraints in our case correspond to the Boolean variables introduced by [18].
However, note that [18] abstracts only the system and preserves only control flow
properties. Thus, given an arbitrary property ϕ of a data-independent system
S, one must first construct a product system S′ and pose the verification of ϕ
in S in terms of an appropriate control flow property of S′. In contrast, our
technique constructs the product space, performs the necessary abstraction, and
verifies the appropriate property on the product system, all in one phase. Such
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“on demand” abstraction is especially advantageous when the properties can be
proved without constructing the entire abstract state space of the system.

There have been several works on constraint-based model checking and the
use of constraint (logic) programming for verification of infinite-state systems
(e.g. [5,4,6]). We have developed verification techniques for infinite-state systems
based on tabled resolution and constraint processing: for timed systems [7,19],
systems with mobility [28], and for symbolic bisimulation of systems [3]; each of
those techniques can be seen as a conservative extension to our finite state model
checker, XMC [23]. This paper presents a model checker for data-independent
systems using a similar approach, but uses an LTL-based logic to specify proper-
ties. We are currently investigating easy-to-implement tableau-based techniques
to verify a general class of value passing systems (to model mobility as well as
data independence). Our current work also includes modeling other security-
related problems to further the application and development of infinite-state
verification techniques.
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Subsystem of the Linux Kernel
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Abstract. A formal model of the block-device subsystem of the Linux
operating system kernel is set out here, as an introduction to the kernel
for formal methods people and a preliminary to further formal methods
work. The model is abstract, but executable, and it is faithful to the
detail of the real Linux kernel code. The model is used here to analyse
kernel behavior. It is proved of the model that the kernel block device
system cannot deadlock.

1 Introduction

The several releases of the Linux 2.4 kernel source code in 2002-3 each contained
about 3.5 million lines of C code. This article provides a formal model of a small
but important part of that code – the block subsystem that driver writers deal
with when they write for a device that does its read/write transfers in blocks,
that is to say in groups of 1024 bytes or more at a time, instead of byte per byte.
The aim of this article is to succinctly describe to a formal methods audience how
that part of the kernel works, because while many theoreticians could write this
article if they already knew how the kernel worked, they presently do not know.
Moreover, the C code of the kernel is (intentionally) the only authoratative design
document for it, and the intrinsic difficulty of interpreting the code cannot be
overemphasized. The kernel code is complex beyond the capacity all but the very
best C coders, who also have to be experts in many aspects of operating system
design and implementation. Even those qualifications are not enough, because
much hands-on experience in the Linux kernel itself is additionally required in
order to understand the appropriate context for each (individually opaque) piece
of kernel code.

The real experience of kernel code development is in practice possessed by a
small elite, perhaps a few hundred strong. But only a core few, perhaps forty or
fifty in number, possess a full picture of the current design for important parts of
the kernel. The rest of us scrabble for an imperfect and belated understanding of
the parts of the kernel that concern us at any moment. This article describes the
content of the block device kernel subsystem code, at a level of abstraction that
reveals the architectural design behind it, and at the same time is faithful to the
real kernel code itself, down to the details of function names and the low-level
separation of tasks into different functions.

Most new kernel code authors do firstly attempt to obtain some understand-
ing of the generic kernel mechanisms that pertain to their task. Rubini’s book [5],
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in particular, has been helpful in providing insight as well as detail to many pro-
grammers. There are other well-known sources of information: for example, the
block commenting at the head of functions in the kernel code has lately become
much more extensive and regular in form, with argument and usage information
being included for the first time. There are also several “hacker’s guides” avail-
able on the web, but their contents have dated quickly, even though they have
usually been written by the kernel code author directly responsible for a subsys-
tem. The kernel is a moving target! But between the very few books published
over the last decade, the ageing and sketchy guides, and the block commentary
in the code itself, the sources of documentation about exhaust themselves.

As a primary source of information, new authors tend first to read other
authors work, abstracting out general patterns of use. The simpler and more
unsophisticated driver codes are the most helpful in this regard, because they
are the most transparant. But even the simpler drivers leave open questions that
cannot be settled by “peephole” examination of the code. Many kernel mecha-
nisms arise through calls through function pointers held in one structure, and
intialized to a default value in one place and reset in another. Such a design,
while flexible in programming practice, inadvertently makes understanding dif-
ficult to obtain via examination of the code. The more sophisticated drivers,
which use such techniques by design, thus appear very obscure to those who
lack the basic information on what the intent of each piece of code is and when
and how it will be used.

The value of the model described in this article lies principally in the un-
derstanding that it imparts. It reduces a complex design to a simple, regular
abstraction. But the abstraction can then itself be used to attack some impor-
tant questions about the kernel design. Is the kernel design fundamentally flawed,
for example? Is it capable of “deadlock by design”? Is the kernel “real-time” in
some sense? The model will be used to demonstrate in particular that the por-
tion of the kernel considered is not capable of deadlock by design. Whether the
conclusion is accurate for some version of the kernel code is not so important –
the code at any moment expresses an underlying design but changes at a great
rate in response to bug reports, pressures from efficiency concerns, and in re-
sponse to desires for more maintainability or legibility or flexibility. Design is
the only relative constant in the kernel.

The structure of this article is as follows: Section 2 describes how drivers
and core kernel work together at a high level, without entering into implementa-
tional detail. It derives simple results on the behavior of the composite of driver
and kernel given reasonable hypotheses on the behavior of the two components,
including the key result that the composite system described is deadlock-free,
and a guarrantee that user requests and system responses correspond, overall,
albeit not in a 1-1 way. Section 3 describes the core kernel block-device system
and also supplies the support required in Section 2. Section 4 provides examples
produced by simulation of the model described. Section 5 generalises the simple
model analysed to the case of multiple device drivers, and derives equivalent
results to those achieved in Section 2. Section 6 shows that a simplified model
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of the virtual memory system may be added without incurring excessive compli-
cation illustrating the compositional nature of the model and the analysis that
it is intended to support. With the virtual memory system in place, the kernel
can now deadlock under certain conditions.

Notation

Type declarations are written x :: τ , where τ is the type being declared for object
x. We write [τ ] for the type of (finite) lists of elements of type τ , and 〈τ〉 for
the type of infinite lists, or streams. Both kinds of lists may be written (x : xs),
where x is the head element, and xs is the remainder of the list. Written out
element by element, a finite list is [x1, . . . , xn], and a stream is 〈x1, x2, . . .〉. Lists
(or streams) may be generated by expressions of the form [b|x← a], which means
[b[x1/x], b[x2/x], . . .] where a = [x1, x2, . . .] is an enumeration of the list a.

Function types will be written τ1 → τ2. Functional application is indicated
by juxtaposition, thus: f x. Tuple types are written (τ1, τ2), (τ1, τ2, τ3), etc., and
their elements are written (x1, x2), (x1, x2, x3), etc., respectively. Abstract types
will be named with a leading capital and declared Name ::= . . .. Their abstract
structures will be written Name(v1, . . . , vn), where the name usually coincides
with that of the type and the v1,. . . ,vn are the field values.

The refinement relation on a domain is written x � y, and the bottom element
of the domain is ⊥ such that ⊥ � x, for any x.

2 Outline

A goal of the model in this article is to separate driver and core kernel concerns.
On the one hand, a driver writer is usually not an expert in other parts of the
kernel code and therefore wishes to treat the rest of the kernel as only a black
box that does a well-defined job. The core kernel authors, on the other hand, also
wish to treat driver codes as black boxes, because they really do know nothing
particular about them! The driver may not yet have been written when the core
kernel authors wrote their code. Thus the aim of separating driver concerns from
core kernel concerns reflects a real-world schism in approaches, code, authors,
attitudes, areas of competence, and knowledge about internal state.

The interaction between the core kernel and a driver will be pictured as
involving two distinct and disjoint states: (i) the state of the kernel, incorpo-
rating counts of available kernel buffers, pending kernel requests, values for key
behavior-determining parameters, and so on, and (ii) the state of the device that
the driver is driving, which only the driver knows about. Type names Kernel and
Device will be assigned to the two state spaces, without here going into detail
about their internal structure:

Kernel ::= . . .
Device ::= . . .
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The kernel behavior affects only a Kernel structure, while the driver behavior
affects only a Device structure.

How does a device driver author see the kernel? The author of a block-device
driver, at least, knows only that the kernel will from time to time call a driver
method known as the request function for the device, and the driver code has
to be written to expect that the request function will be called whenever the
kernel has work for the device to do. At each call of this function, the kernel will
have readied a linked list of kernel requests at a designated location. The request
function must unlink the requests immediately, process them in an appropriate
way, and return control to the kernel. Some time later the driver will signal to
the kernel that it is finished with each request in turn by running a special end
request function on it. Drivers with fast devices can run end request during the
call from the kernel to the request function, thereby avoiding having to call back
later.

The driver’s request function is modelled here as taking as input a list of pend-
ing kernel requests, and returning as output a list of driver responses reflecting
the results of processing those requests. Statuses reported in the responses will
later be used in the end request processing, so, if end processing of a request is
delayed, then the list of responses from the request function may well be shorter
than the list of requests presented to it at that time. The remainder will be
stored internally in the driver until they can be treated. The driver may deal
with kernel requests in any order, but it is normal to deal with them in order of
arrival. As it processes a request the driver may change the internal state of the
device. Thus the request function semantics is that of a side-effecting function
on the devices internal state, taking a list of pending kernel requests as its single
input, and producing a list of driver responses as its single output. That type will
be written as follows, where Req is the type of kernel requests, Res is the type
of the driver responses, and Device is the type of the statespace of the device:

request fn :: [Req]→ S Device [Res]

The S type notation here means a “side-effecting function with argument a list
of requests, acting on the state Device and returning as result a list of status
reports”:

S Device [Res] = Device→ (Device, [Res])

So the request function takes the device state as an extra “hidden” parameter,
and returns the altered state as an extra hidden result.

The driver itself looks to the kernel like a continuous sequence of calls to
the request function. Thus it has the action of a series of repeats of the request
function side-effect. Each call transforms a list of kernel requests to a list of
status reports, and the driver therefore transforms a stream (i.e., an infinite list)
of lists of kernel requests to a stream of lists of status reports, changing the
device state as it goes:

driver :: 〈[Req]〉 → S Device 〈[Res]〉
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The stream of inputs represents successive states of the kernel pending request
queue at each successive call to the driver request function by the kernel. The
following is the driver semantics: it receives as input a stream of lists of requests;
designate the first list rqs and the future lists rqss, so the input stream is (rqs :
rqss). It produces as output a stream of lists of responses; designate the first list
res and the future lists ress, so the output stream is (res : ress). The driver passes
the first list rqs of requests to its request function, which causes a change of state
in the device from dev to dev′, and receives back the first list res of responses.
The driver emits this first list of responses res on its output stream, and then
repeats forever, emitting the rest ress of the output stream in the fullness of
time, and “finishing up” with the device in state dev′′. That is:

driver (rqs : rqss) dev = (dev′′, res : ress) (1)
(dev′, res) = request fn rqs dev

(dev′′, ress) = driver rqss dev′

Note that one element in the input stream gives rise to one element in the output
stream, where “an element” is respectively a list of kernel requests and a list of
driver responses. This is a causal property:

Proposition 1. The generic block-device driver described in (1) is causal in its
stream of inputs and outputs. That is, it needs no knowledge of the future inputs
to produce the present output.

The proof depends on Axiom 1 below on driver request function behavior:

Axiom 1 The driver request function does not block – it always constructs a
fully formed list of responses from a fully formed list of requests.

A point on notation: the driver semantics (1) can be written much more neatly
in terms of the request function using the “monadic” notation from Gofer [3] for
composing the abstract side-effecting functions in a fully formally defined way,
but giving the appearance of an ordinary imperative programming language
construct:

driver :: 〈[Req]〉 → S Device 〈[Res]〉
driver (rqs : rqss) = do {

res ← request fn rqs;
ress←driver rqss;
result (res : ress)
}

or, in terms of process algebra:

driver = rqs? request fn(rqs)! driver

The formal semantics given for the notation in Figure 1 makes the driver code
above equal in semantics to that expressed directly in equation (1).

What does a kernel look like to a driver? The kernel feeds it a request, and
receives a report back from the driver. To the driver, the kernel’s input-output



604 Peter T. Breuer

a :: S τ τx & x :: τx⇒ b[x] :: S τ τy ⇒ do { x←a; b[x] } :: S τ τy

x :: τx ⇒ result x :: S τ τx

[[do { x← a; b[x] }]] = λs.[[b[x]]] s′ where (s′, x) = [[a]] s
[[result x]] = λs.(s, x)

Fig. 1. Notation – type laws, side-effecting semantics of the do and result syntax.

directionality looks exactly the reverse of its own. This might be impossible to
represent as a function, but it is not. Enough information is included in the
response that the driver sends to the kernel to be able to (re)construct from it
what request the kernel must have sent the driver. So the relation response to
request across the kernel is functional. Formalising it in the anti-causal direction
simplifies the description of the composition of kernel and driver given below.

The kernel is also sensitive to a stream of external events: user read and write
requests, timer clocks, and so on. These drive the kernel to produce the requests
that the driver sees. The Linux kernel has to be given the following type:

kernel :: 〈Event〉 → 〈[Res]〉 → S Kernel 〈[Req]〉
and then driver and kernel functions can be placed in parallel, with the kernel
feeding the driver with a stream of requests, and consuming the driver’s stream
of responses, and vice versa, the combined unit being driven by a stream of
external events.

The communicating parallelism – each component’s outputs connected to the
other component’s inputs – described above is set out formally in Figure 2. Note
that we choose to expose the internal communication in the output from the
combinator. Then we can define the complete operating system, linux, as the
communicating parallel composition of kernel and driver, as follows:

linux :: 〈Event〉 → S (Kernel, Device) (〈[Req]〉, 〈[Res]〉) (2)
linux evs = kernel evs �� driver

Note that the equation (2) always results in streams of well defined outputs pro-
vided that at least one of the two components is capable of generating “some-
thing from nothing” – an output without having to first look at its input. In the
case of equation (2), the contributor is the kernel component, because it receives
external events which cause it to generate requests for the driver without yet
having read the driver’s response to those requests. The kernel does need to read
the driver’s response eventually, but not until just before it prepares the next
request to send out.

Proposition 2. The linux kernel and driver combination defined in (2) never
blocks – that is, it generates an infinite sequence of outputs – if

1. the incoming stream of external events contains an infinite number of
DiskTQ commands,
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Fig. 2. The side-effecting communicating parallelism construct, in which internal com-
munications are exported, and the linux operating system expressed as a side-effecting
communicating parallel composite of kernel core and driver.

2. the kernel component, when it receives a DiskTQ command, always generates
a list (possibly empty) of kernel requests to be treated by the driver,

3. the driver’s request function does not block.

The proof is by the lemma below and Proposition 1.

Lemma 3. The communicating parallel composition of two side-effecting stream
filters as in (2) generates a well defined infinite output stream provided, for each
n, at least one of the components satisfies (i) below, and the other satisfies (ii):

i. (y′
1, z1 : . . . : zn+1 : ⊥) � f (x1 : x2 : . . . : xn : ⊥) y1

ii. (y′
2, x1 : . . . : xn : ⊥) � g (z1 : z2 : . . . : zn : ⊥) y2

The lemma is proved by considering the length of approximants to solutions
for (2).

This proposition answers the question posed at the outset: is the kernel ca-
pable of “deadlock by design”? No, it is not.

Note that the proposition does not say that the kernel does not block user
space, but only that the kernel continues to work. It is quite possible that the
kernel may not be able to flush existing requests to the driver, and then further
user space requests to the device will be blocked, possibly forever. This happens
often in running computers, particularly in connection with failed network file
system mounts.

In order to give concrete examples, the types Event, Req and Res will now be
detailed. Events are either (3) user requests to read (or write) from the device,
at given offsets and with given dimension, to (or from) a byte buffer; these are
prefixed with the command UserReq, or are (4) the single command DiskTQ
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struct request {
struct list head queue;

int elevator sequence;

volatile int rq status;

kdev t rq dev;

int cmd; /* READ or WRITE */

...

request queue t *q;

};

struct buffer head {
struct buffer head *b next;

unsigned long b blocknr;

unsigned short b size;

unsigned short b list;

kdev t b dev;

...

unsigned long b rsector;

wait queue head t b wait;

struct inode * b inode;

struct list head b inode buffers;

};

Fig. 3. The real Linux kernel’s request and buffer head structs (C code).

(“Disk Task Queue”), which instructs the kernel to pass to the i/o execution
context and execute the driver request function.

Event ::= UserReq(o, s, t, b), o←Offset, s← Size, t←Type, b←Buffer (3)
| DiskTQ (4)

Offset = Int, Size = Int, Type ::= R | W
Buffer = [c0, . . . , cn], ci←Byte

Kernel requests delivered to the device driver have a two-tier structure. Each
request specifies the offset and dimension of the read/write request, and its type.
But instead of a byte buffer, the request contains a linked list of buffer heads.
These are byte buffers plus extra information. The extra information consists
of the buffers intended offset and dimension, and whether it is a read or write
buffer.

Req ::= Request(o, s, t, [h0, . . . , hn])
BH ::= BH(o, s, t, b), o←Offset, s← Size, t←Type, hi←BH, b←Buffer

In the kernel code, both requests and buffer heads are C structs with consider-
ably more fields (see Figure 3) than modelled above. The Offset field corresponds
to the sector field in the kernel request struct, except that the count here is
in bytes, and the kernel count is in sectors. The Size field corresponds to the
kernel’s nr sectors field, with the count again being in bytes against sectors.
The other fields in the C code struct are mostly concerned with aspects of ker-
nel accounting and state, and request and buffer accounting in particular. Each
request details in full its target device, the number of contiguous segments it
contains, which kernel queue it came from, whether it is locked, dirty, etc. Each
buffer head likewise also contains a number of flags and counters that serve to
allow the kernel to manage it correctly. But a device driver will normally not
concern itself with these.
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Responses returned by the driver to the kernel are simply kernel requests,
with an error code appended. The error code zero indicates success.

Res ::= EndReq(rq, e), rq←Req, e←Error (5)
Error = Int

Now an example can be given. Consider the sequence of events consisting of a
write request of 8 bytes “abcdefgh” at the beginning of the device, then a read
request for the same range (in this case, the buffer is empty, or null, and will be
filled by the driver), then a command to run the driver request function, then
the halt command to finish the emulation:

UserReq(0, 8, W, “abcdefgh”), UserReq(0, 8, R, [ ]), DiskTQ

Both user requests will be converted to kernel requests and placed on the driver’s
request queue by the kernel, then, when the request function is called, they will
be resolved and acknowledged, in the order that they were queued. Supposing
the driver to react inmediately, a single run of the request function will return
two responses indicating tha the two have been treated. Both responses here
carry error code zero. The return for the read request contains the data written
in the preceding write.

��� ���

0 �������(0, 8,�, [��(0, 8,�, 	
�������)]) �����(�������(0, 8,�, [��(0, 8,�, 	
�������)]), 0)
1 �������(0, 8, �, [��(0, 8, �, [ ]) �����(�������(0, 8, �, [��(0, 8, �, 	
�������)]), 0)

Adding an extra DiskTQ between the two user requests only changes the timing
of the results. Instead of a single input list and a single output list, there will
be two input and two output lists, one for each request function call, each a
singleton.

The example above illustrates that the kernel plus driver satisfies a delicate
progress requirement: each user request that enters is responded to with an
EndReq call, eventually. In principle, the driver responds once for each request
and maintains the original request order, but that it does so may be masked
by “request merging”. To phrase the idea formally, let f , g, h be functions (h
partial) that discard the actual buffers from the kernel requests, driver responses
and user requests, respectively, leaving only an indication of where they went or
came from:

f, g :: Req→ (Offset, Size, Type)
f (Request(o, s, t, bhs)) = (o, s, t)
g (EndReq(rq, e)) = f rq

h :: Event→ (Offset, Size, Type)
h (UserReq(o, s, t, b)) = (o, s, t)

The kernel, should not be expected to precisely emit one kernel request for each
user request that arrives, or to maintain the order, because it reorders and/or
aggregates requests in order to optimise the head-travel on hard disk devices,
for example. However, the disorder introduced is always only local. Overall there
is still a relation between user requests entering and kernel requests leaving the
kernel.
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Definition 4. Say that the sequence (oi, si, ti) of user requests is covered by
the sequence (o′i, s

′
i, t

′
i) of kernel requests if there is a (computable) surjection

p : Int → Int with the following properties. Call the user requests i such that
p(i) = p the p’th group of user requests, then the properties are:

1. the group is finite and the types of the user requests in the group are all the
same and the same as the type of the p’th kernel request,

2. the address spaces of the user requests in the group exactly cover the address
spaces of the p’th kernel request,

3. the address spaces of the user requests in the group are all disjoint.

Then, letting kernel0 be the initial state of the kernel, the kernel’s behavior
is described by the following condition – user requests entering the kernel are
covered by the kernel requests emitted to the driver:

[h es0, . . .] is covered by [f rq | rq← rqs0 ++ . . .] (6)
where ( , [rqs0, . . .]) = kernel [ev0, . . .] [rss0, . . .] kernel0

and identifying rssm, rqsm across (6), as they are combined in the linux operating
system equation (2), under the mappings induced by f , g, the two infinite se-
quences are identical, and indeed cover the sequence of user requests as mapped
by h. So:

Proposition 5. The linux kernel and driver combination defined in (2) produces
responses EndReq corresponding to every user request UserReq, not necessarily
1-1 or in the same order, but in such a manner that the user requests are covered
by the responses (if the conditions of Proposition 2 are satisfied).

This result follows from the preceding remarks and the following axiom of driver
behavior, and a lemma, which will be proved later.

Axiom 2 The driver eventually produces one EndReq response for every kernel
request that it receives, and maintains their order.

Lemma 6. The kernel component eventually produces kernel requests corre-
sponding to every user request that it receives, not necessarily 1-1 or in the same
order, but in such a manner that the user requests are covered by the kernel
requests.

3 The Kernel

The abstraction here of the kernel and its internal structures is approximate.
Its important trait is that the kernel has a limited number of request structures
available for use by a given driver. This imposes a bound on the number of
outstanding user requests that can be converted into kernel requests at one go.
Further user requests must wait upon the processing of some of the pending
kernel requests by the driver.
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The number of unallocated request structures available will be represented by
a counter of type NFreeRQ in the kernel data structyre. Typically this number
is initially 128 per device in a real kernel. The request structures allocated out
and queued for the device driver will be represented by a linked list.

Kernel ::= Kernel(nfrq, [rq0, . . . , rqn]), nfrq←NFreeRQ, rqi,←Req
NFreeRQ = Int

A kernel feature that will be ignored until Section 6 is that the kernel is also
limited in the number of buffers that it can supply for buffer head structures.
The limit is enforced by the amount of available physical memory, at least. It
is unusual that the limit will be reached in practice under standard operating
conditions, however.

When the kernel receives a new user request, it tries to merge the contents
of the request at the beginning or end of an existing pending kernel request.
Only if it fails will it call for a new kernel request. Then it will fail if there are
no kernel requests available, and in that case the kernel must wait for a kernel
request to become free, blocking user space in the meantime. Adding or merging
a user request into the queue of pending kernel requests is handled by the make
request function, which calls for an elevator merge. This leaves the queue requests
ordered according to their offset on the device itself. This allows disk heads to
sweep in only one direction across the disk at a time, like an elevator delivering
passengers to their floors.

The model has make request returning a failure notification in case there is
no merge possible and no request free. There is then nothing to do but wait
for something else to free a request. In the model, there is nothing else but
the kernel and the driver, so a DiskTQ command is pushed on to the front of
the event sequence, simulating the postponement of the treatment of the user
request. In case the user request is successfully incorporated into the pending
queue by make request, the kernel is allowed to continue processing.

kernel :: 〈Event〉 → 〈[Res]〉 → S Kernel 〈[Req]〉
kernel (UserReq(o, s, t, b) : evs) rsss = do{ (7)

v←make request (BH(o, s, t, b));
if v then kernel evs rsss
else kernel (DiskTQ : UserReq(o, s, t, b) : evs) rsss
}

Or, in terms of process algebra:

kernel = UserReq(o, s, t, b)? if (make request (BH(o, s, t, b)) then kernel
| DiskTQ? . . . kernel

where the precise action on a DiskTQ event will be detailed below.
The make request function itself is only a wrapper for the function that

does the elevator merge. In the kernel code, it passes a pointer to the front of
the pending requests queue, so that the elevator merge function may move the
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pointer through the queue, looking for places to merge a new entry. In the model
here, we pass an extra empty queue as parameter, and go through the kernel
queue taking requests off that queue and onto the extra queue. When a place to
merge is found, we reassemble the kernel queue from the two parts.

make request :: BH→ S Kernel Bool (8)
make request bh = elevator merge bh [ ]

The aim of the elevator merge function is to slip the new buffer head contiguously
onto one end of an existing queued request, or if that is impossible, to place a new
request containing the buffer between two existing requests, in order. Thus, if the
requests in the kernel queue are already ordered the elevator merge maintains
that order. Details are omitted here.

Requests are resolved early in the kernel virtual memory system so that never,
for example, do two writes to the same address range fall through to the block
device queue. The writes will be performed in a kernel buffer and the last write
alone will eventually fall through to the queue. Thus write (or read) requests
reaching the devices kernel queue are necessarily all disjoint from each other.

Unloading the pending requests to the device driver is called unplugging the
kernel device queue. The queue is normally plugged, and when it is plugged the
kernel’s make request function uses the elevator merge function to merge new
requests into existing ones on the queue.

In the real kernel code, a scheduled task periodically unplugs the queue and
runs the driver’s request function (see Figure 4). Correspondingly, the model
here calls the unplug function whenever it receives DiskTQ. The driver treats
those requests and, in the kernel C code, the driver then helps finish off by calling
the generic end request function. But in the model we call do end request from
the kernel code and it then calls the end request function for each request. So
the end request function has changed places between the real C code and the
model. Migrating it across the boundary between driver and kernel here allows
it to be located with the data that it affects – the kernel buffer counts and free
lists. This is the only structural difference between the model and the real kernel
code.

kernel :: 〈Event〉 → 〈[Res]〉 → S Kernel 〈[Req]〉
kernel (DiskTQ : evs) rsss = do {

rqs← unplug;
( , rsss′)← do end request rsss;
rqss← kernel evs rsss′;
result (rqs : rqss)

}
unplug :: S Kernel [Req] (9)

unplug (Kernel(nfrq, krqs)) = (Kernel(nfrq, [ ]), krqs)
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static inline void generic unplug device(request queue t *q) {
if (q->plugged) {

q->plugged = 0;

if (!list empty(&q->queue head))

q->request fn(q);

}
}

Fig. 4. The real kernel code for the unplug function. Note the request function call.

Or, in terms of process algebra, referring to the list of requests aimed at the
device and pending in the kernel by kernel.rqs:

kernel = . . . | DiskTQ? unplug; do end request; kernel

unplug = kernel.rqs! kernel.rqs := [ ]

The do end request operation is responsible for absorbing further driver re-
sponses to requests from the kernel, converting them into individual EndIO
actions on individual buffers. For the moment, we can discard the EndIO out-
puts, since they will only be used for accounting elsewhere in the kernel. The
following process expression references the number of free requests remaining in
the kernel as kernel.nfrq:

do end request = [EndReq(rq1, e1), . . . , EndReq(rqn, en)]? kernel.nfrq+=n

The kernel can now be seen to satisfy the third of the conditions of Propo-
sition 2, namely that a DiskTQ event always causes the kernel to emit a list
of requests rqs. The unplug function cannot block, which is sufficient to pro-
duce the single output corresponding to the DiskTQ event. Can the kernel block
between DiskTQ events? On receiving a user request it runs the make request
function, which will either return success, moving the kernel on to treat more
events without emitting anything, or failure, which will cause a DiskTQ event.
So the only way that the kernel can block between DiskTQ events is to receive
an infinite number of user requests, all of which it treats successfully. And it
cannot receive an infinite number of user requests between two DiskTQ events.
So Proposition 2 now gives rise to:

Corollary 7. The linux kernel and driver combination defined in (2) and the
kernel and driver described here and in the previous section never blocks – that
is, it generates an infinite sequence of outputs – if

1. the incoming stream of external events contains an infinite number of
DiskTQ commands,

2. the driver’s request function does not block.

The requests that are produced are the result of merging incoming user requests
using the elevator algorithm. Each kernel request is the agglomeration of sev-
eral disjoint, contiguous, user requests, and the user requests cannot have been
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delayed more that nr requests∗max sectors elements with respect to the sequen-
tialization, as plugging will not endure beyond nr requests requests, and each
request will not grow beyond max sectors in size. Thus Lemma 6 is now satisfied.

4 Simple Examples

Suppose that the driver initial state consists of a zeroed memory area of defined
size, and its size denominator, the size in KB (blk size) times 1024:

device0 :: Device

device0 = Device(n, [

n
︷ ︸︸ ︷

000, . . . , 000])
where n = blk size ∗ 1024

The kernel initial state is determined by the number of free requests structures
to be made available to the driver. To make problems visible, we set the number
at 4, although 128 is the number in the real kernel.

nr requests :: NFreeRQ
nr requests = 4

kernel0 :: Kernel
kernel0 = Kernel(nr requests, [ ])

Consider an event sequence of several interleaved read and write events, none of
them contiguous, so they will not be merged by the elevator algorithm:

UserReq(0, 8, W, “abcdefgh”), UserReq(0, 8, R, [ ]),
UserReq(16, 8, W, “ijklmnop”), UserReq(16, 8, R, [ ]),
UserReq(32, 8, W, “qrstuvwx”), UserReq(32, 8, R, [ ]),
DiskTQ

This sequence overflows the kernel’s number of free requests after four kernel
requests have been issued, and before the single DiskTQ. Therefore the kernel
issues an extra DiskTQ in order to free up some requests, and emulation shows
not one firing of the driver’s request function, but two, grouped as four plus two
requests and responses, as shown in the table below.

��� ���

� ����������	�
������	�
�������������� ����������������� 	�
������	�
����������������

� ����������	��������	���� ���� �����������������	��������	������������������

� �����������	�
�������	�
���� !"�#$��� ������������������	�
�������	�
���� !"�#$������

% �����������	���������	���� ���� ������������������	���������	������ !"�#$������

& ��������%��	�
����%��	�
���'���()*��� ���������������%��	�
����%��	�
���'���()*������

+ ��������%��	������%��	���� ���� ���������������%��	������%��	�����'���()*������

To see that the kernel is vulnerable to driver faults, we may observe what hap-
pens if the driver code is changed so that it goes into an infinite loop on being
requested a read at offset 16. The result is shown in the table below:
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The entire kernel locks after treating three requests in this case. The real kernel
code makes no attempt to time out driver responses, and is vulnerable to such
bugs.

More subtle lock-ups are also possible. A driver may not block, but may fail
to run end request, perhaps due to an untrapped error condition. In that case,
eventually there will be no free requests left for the kernel to allocate in the make
request function, and the make request function will postpone actions past the
next DiskTQ event continuously. The result is livelock. The kernel is alive and
the driver is dead.

5 Multiple Drivers

Incorporating multiple drivers in the kernel model implies a small modification
of the request and buffer head structures to include a major number, indicating
which driver the request or buffer is aimed at. It corresponds to (part of) the
rq dev and b dev fields in the corresponding C structs (see Figure 3). User
requests also have to be elaborated to match.

Req ::= Request(m, o, s, t, [h0, . . . , hn])
BH ::= BH(m, o, s, t, b)

Event ::= UserReq(m, o, s, t, b) | DiskTQ
m←Major, o←Offset, s← Size, t←Type, hi←BH, b←Buffer

Major = Int

The real kernel counts request structures for different majors separately, and
maintains different free lists for them, and different device queues. This means
that the model here can be made to support two drivers by placing two copies of
the model for one driver in parallel, and directing incoming user requests to one
or the other as appropriate. Support for n drivers is not more complicated. The
parameter defining the number of supported block-device majors is max blkdev,
and it is 255 in the real kernel (this number will rise in the future, but there
are currently only 8 bits available for the major number), but it will be set to 2
here, for purposes of illustration.

max blkdev = 2

So the n-kernel model runs n = max blkdev unit copies of the simple kernel
core block-device unit in parallel (see Figure 7). The copies share no state, as
the only state is the count and list of free request structures available for the
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〈| , . . . , |〉 :: S x1 y1 → . . .→ S xn yn → S (x1, . . . , xn) (y1, . . . , yn)

〈| k1, . . . , kn |〉 (x1, . . . , xn) = ((x′
1, . . . , x

′
n), (y1, . . . , yn))

where (x′
m, ym) = km xm

Fig. 5. Disjoint parallelism.

void generic make request (int rw, struct buffer head * bh) {
...

do {
q = blk get queue(bh->b rdev);

if (!q) {
printk(KERN ERR ...);

buffer IO error(bh);

break;

}
} while (q->make request fn(q, rw, bh));

}

Fig. 6. The real kernel’s front-end to the make request function, showing the deferral
to a device-registered replacement at the end.

device major, and the kernel does not (in kernel version 2.4) share these free lists
between majors. Each unit in the n-kernel receives those input events relevant to
its major, plus all incoming EndIO commands. The events are filtered from the
incoming event stream and directed to the individual unit majors by the demux
function described below:

demux :: 〈Event〉 → 〈Event〉n (10)
demux evs = (evs1, . . . , evsn)

where evsm = 〈ev | ev← evs, pm(ev)〉
pm (UserReq(m′, o, s, t, b)) = (m = m′)
pm = True

The n-kernel’s construction can be expressed in terms of an n-ary disjoint paral-
lelism operator, shown in Figure 5. The operator leaves all inputs and outputs of
its n component units visible and internally unconnected, available for external
connections:

nkernel :: 〈Event〉 → 〈[Res]〉n → S Kerneln 〈[Req]〉n(11)
nkernel evs (rss1, . . . , rssn) = 〈| kernel evs1 rss1, . . . , kernel evsn rssn |〉

where (evs1, . . . , evsn) = demux evs

The real kernel does the job of selecting which requests go where at the point
where it runs the generic make request function, which finishes by placing a
kernel request on the appropriate driver queue. So in the real kernel, target
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Fig. 7. A multi-driver Linux system can either be viewed as the communicating com-
position (thick dotted lines) of two disjointly parallel agglomerates (thick full lines),
left, or as the agglomeration of several communicating compositions, right.

selection occurs inside a single generic make request function, and in the model
here it occurs just prior to that point, and is then passed to a make request
function particular to the device. The kernel’s generic make request function
sleeps when it cannot get a request structure, which allows other threads to
clear any logjam, and never returns with error. In contrast, in the model, make
request may return a failure code, and in that case the model itself emits an
extra DiskTQ event, which emulates exactly what happens when make request
sleeps in the real kernel.

Now the multi-driver linux kernel can be expressed as the combination of the
n-kernel and the various block-drivers (see Figure 7):

nlinux :: 〈Event〉 → S (Kerneln, Devicen) (〈[Req]〉n, 〈[Res]〉n) (12)
nlinux evs = nkernel evs �� λ(rqs1, . . . , rqsn). 〈| driver1 rqs1, . . . , drivern rqsn |〉

This is the same, up to a reformatting isomorphism, as combining the simple
kernel core block-device unit with the individual driver, then compounding the
pairs:

nlinux′ :: 〈Event〉 → S (Kernel, Device)n (〈[Req]〉, 〈[Res]〉)n (13)
nlinux′ evs = 〈| kernel evs1 �� driver1, . . . , kernel evsn �� drivern |〉

where (evs1, . . . , evsn) = demux evs

Proposition 8. The two constructions of the multi-driver linux kernel shown
in (12) and (13) above are isomorphic.

The natural 1-1 and onto functions f :: (un, vn) → (u, v)n reformat appropri-
ately:

(λ(s, x).(f s, f x)) ◦nlinux evs = nlinux′ evs ◦ f
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Corollary 9. The n-kernel plus drivers combination defined in (12) never blocks
– that is, it generates an infinite sequence of outputs – if

1. the incoming stream of external events contains an infinite number of
DiskTQ commands,

2. none of the drivers’ request functions block.

The corollary clearly holds of the function nlinux′, because it is composed via
the independent composition in parallel of simple kernel core plus driver units
which have the property asserted, according to Corollary 7. And the proposition
asserts that the function is isomorphic to the nlinux function, so that proves the
corollary.

Proposition 5 on the relation between user requests and kernel requests ex-
tends:

Corollary 10. The n-kernel plus drivers combination defined in (12) responds
to user requests with EndReq responses in such a way that the subsequence of
user requests for each device is covered by the corresponding stream of EndReq
responses.

This means that the stream of responses may be locally disordered with respect
to the incoming order, and that a single response may correspond to several
merged user requests. In the absence of elevator-merging, the streams will cor-
respond 1-1.

Now consider the example sequence of user requests examined before, three
pairs of write then read requests. Let the first two pairs be directed at major 0
and the third pair be directed at major 1, followed by a DiskTQ event. Suppose
that the drivers for both the majors 0 and 1 are instances of the same simple
storage driver:

UserReq(0, 0, 8, W, “abcdefgh”), UserReq(0, 0, 8, R, [ ]),
UserReq(0, 16, 8, W, “ijklmnop”), UserReq(0, 16, 8, R, [ ]),
UserReq(1, 32, 8, W, “qrstuvwx”), UserReq(1, 32, 8, R, [ ]),
DiskTQ

This time the sequence does not overflow the number of free requests available
at any point, as there are four available in the kernel per device. So all the
requests are serviced at the single DiskTQ event, albeit by two different drivers.
The time-wise order in which they are treated between the drivers is not defined.
The specification here assigns requests for different major’s drivers to different
streams, and the order of evaluation between streams is purely a function of the
printout order chosen, since there is no communication between devices.

��� ���

� ������������	�
��������	�
�������������� ������������������� 	�
��������	�
����������������

� ������������	����������	���� ���� �������������������	����������	������������������

� �������������	�
���������	�
���� !"�#$��� ��������������������	�
���������	�
���� !"�#$������

% �������������	�����������	���� ���� ��������������������	�����������	������ !"�#$������

& ����������%��	�
������%��	�
���'���()*��� �����������������%��	�
������%��	�
���'���()*������

+ ����������%��	��������%��	���� ���� �����������������%��	��������%��	�����'���()*������



A Formal Model for the Block Device Subsystem of the Linux Kernel 617

The situation would be different if one device talked to another, or if other
parts of the kernel intervened in the operation of the devices – an example
would be when a block device used the kernel’s TCP/IP networking layer as its
transmission medium. Then causal dependencies may lead to subtle deadlocks.

6 The Virtual Memory System

Briefly, the virtual memory system (VMS) is responsible for managing the ran-
dom access memory and any “swap space” on disk. Importantly, the VMS al-
locates out the buffers that are referenced within buffer heads within kernel
requests. Buffers represent an important physical resource limitation. A fast
process writing to a slow device may fill the VMS with dirty buffers that have to
be flushed to the target device before they can be reclaimed for other uses. This
is potentially a deadlock situation, and the VMS must manage it appropriately.

The VMS was changed at version 2.4.10 of the kernel, and the new VMS is
still being tuned and debugged (at time of writing, we are at version 2.4.19 and
2.5.17 of the kernel). Some interesting memory deadlock conditions have only
recently been discovered, and may require further changes. The VMS exerts a
limiting influence only under conditions of extreme memory pressure.

By the time user requests arrive at the block-device subsystem, they already
have their buffers attached to them, having passed through the VMS. The VMS
acts as a cache: user processes trying to read from a block device may be satisfied
directly from the VMS if the data to be read is cached there, either because it
has just been written, or because it has already been read. Only if the data is
not cached will the requests fall through to the kernel block-device layer below.
Writes also lodge in the VMS initially, and only fall through to the kernel’s
block-device layer when the buffer ages sufficiently, which it normally does after
about thirty seconds.

We cannot model the VMS in detail here, it is too complex. We can give a
type for it, however: the VMS acts as a stateful two-way filter, letting user events
through if it cannot satisfy them itself, and receiving the kernel’s acknowledge-
ments and passing them on to the user as necessary (see Figure 8). The kernel’s
acknowledgements come in separate streams, one emanating from each device.
So the type is as follows:

vms :: 〈Event〉 → 〈EndIO〉n → S VMS (〈Event〉, 〈EndIO〉)
How does a VMS affect the analysis given? It is now possible to block the

kernel if a driver requests memory from within its request function. If there are
no buffers free then the VMS system will block the allocation, and the request
function will block. With the request function blocked, other drivers will continue
running and may release memory, which will unblock the system. But what if
the driver is the only driver receiving i/o? I.e. VMS has been filled with dirty
buffers aimed at the driver, and then the driver blocks asking for more memory?

In that situation, there is no way out – the kernel is deadlocked. Can the
model described here exhibit that condition? No, it cannot. Drivers have been
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Fig. 8. The virtual memory system fits on the front of the block-device layers.

modelled as only reacting to kernel requests, not also interacting with other
subsystems. This is true of the vast majority of real kernel drivers. In order
to allow deadlock, it is firt necessary to extend the driver model. That would
also require a more detailed model of the VMS and its distinct layers. However,
the real kernel can deadlock this way in some drivers. For example, the NBD
(Network Block Device) driver does call for memory while running its request
function! It does so indirectly, by calling for a TCP network transfer, but TCP
requires buffers, so the driver is able to block the kernel by the mechanism above.
Some other drivers which need memory manage their own pools, obtained at
driver startup.

To avoid the NBD/TCP deadlock, the kernel briefly raises the priority with
which the kernel process involved with NBD calls for memory just before doing
TCP. Then it cannot be deadlocked by priority inversion, where the high priority
i/o process writing to NBD is blocked by the lower priority of the NBD kernel
process. But it can be blocked by pure memory deadlock, when the only process
doing i/o is the one writing to NBD. If memory fills up with its dirty buffers,
then the NBD kernel process cannot get yet more buffers to do the TCP that
would flush them. The NBD driver cannot avoid this deadlock unless memory
is reserved for the use of its TCP socket, at all times, and there is currently
no facility in the kernel VMS. So it seems likely that Linux will have to evolve
some mechanisms for reserving memory in association with processes or other
objects. However, the deadlock being discussed here has only very recently been
discovered, and it is not clear how significant it is.
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Summary

This article has set out a formal model of part of the Linux operating system
kernel, featuring the block-device subsystem and drivers. The analysis is suffi-
cient to have permitted gross features of the kernel’s behavior to be understood.
In particular, the block device section of the model here has been proven to
be deadlock-free, and a firm correspondence between user requests and kernel
replies has been established. Adding the virtual memory system into the picture
does not introduce any kernel deadlocks. If block driver request functions were
to make memory allocation requests, however, then that would be another story
– and it is currently possible to exercise this option in the real Linux kernel.
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Abstract. Safecharts is a variant of Statecharts intended exclusively
for safety critical systems design. Its specific features include an explicit
representation of risks posed by different hazardous states, a separation
of functional and safety concerns, a representation of component failures
and characterisation of transitions based on the nature of their risk. This
paper presents a rigorous mathematical framework for enabling greater
clarity and accuracy in Safecharts. It contains a study of the represen-
tation chosen for risks and associated concepts such as risk graphs and
safety oriented classification of transitions. The step semantics is also
defined in relation to Safecharts. As lower level abstractions of states are
brought into focus, a way of constructing risk graphs for and states is
suggested. As a case study, the use of Safecharts in the domain of security
is illustrated, in particular in modelling the Role-Based Access Control.

Keywords: Safety, Security, Statecharts, Step Semantics, rbac

1 Introduction

Statecharts, introduced by Harel [6] and extensively studied by others, is widely
used for modelling reactive systems. Safecharts [2] is a variant of Statecharts
developed originally for exclusive use in the safety critical domain, namely, in
relation to systems design. The objectives of this paper are two–fold. On the
one hand, the paper aims at providing a mathematical exposition of Safecharts
that matches the level of rigour and clarity sought in critical domains such as
safety. On the other hand, it attempts to place Safecharts on a new, more gen-
eral, footing so that it can serve system design with respect to safety, as well
as other critical system attributes such as security broadly in a similar manner.
This generality is an important goal in itself. It allows the transfer of method-
ological experience, as well as the associated human expertise, from one domain
to another easily, thus mutually enriching the practices of domains concerned in
the long run. Despite this generalisation being sought, this paper continues to
use, generally, a single ‘safety attribute’ to mean whatever the critical system at-
tribute under study, whether it is safety, security, or any other system attribute,
unless where a reference to a specific system attribute is required.

The basic ideas of Safecharts have been discussed in [2,12], with illustrations
of concepts and usage using case studies. Safecharts aspires to the same goals
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as Statecharts: visual appeal, ease of abstraction, modular and hierarchical rep-
resentation of systems, mathematical rigour, etc. In addition, Safecharts aspires
to fulfil the needs specific to safety critical systems design; these include repre-
sentation of risks posed by system states and equipment failures, provision of
additional safeguards against them, a systematic, rigorous and disciplined ap-
proach to design, and so on. These attributes are central to the design philosophy
adopted in Safecharts.

For achieving a systematic, rigorous and disciplined approach, Safecharts
adopts a twin–track strategy. On the one hand, Safecharts uses as its foundation
Statecharts – a formalism with an appealing mathematical basis. On the other
hand, it separates the aspects of the safety from those of the function, in order to
allow the designers to focus on critical and functional features independently and
in a systematic manner, and the reviewers to concentrate on safety without being
distracted by functional issues. The separation of function and safety is achieved
by having two ‘layers’ in Safecharts representations. The purpose is, on the one
hand, to disambiguate between requirements and features devoted to safety and
function and, on the other, to highlight the interdependencies between the two.
The functional layer is devoted to functional issues and utilises Statecharts as
used conventionally. The safety layer is devoted exclusively to safety issues and
deals with issues such as equipment failures, risks posed by hazardous states,
representation of safety features and mechanisms and reduction of unpredictable
patterns of behaviour due to any non-determinism in a safe manner. In the case
of security, safety layer deals with security risks posed by system states and with
security mechanisms.

A key feature in realising the above is an ordering of system states according
to risks posed by them relative to one another. Mathematically, this corresponds
to a risk ordering relation on states. As a matter or prudence, Safecharts does
not permit transitions between states of unknown risk levels. Recognising the
possibility of such a situation arising from omissions, inaccuracies and incon-
sistencies in the risk ordering relation, for example, due to human error or the
lack of knowledge, Safecharts imposes an additional clustering of states into risk
bands and constructs a risk graph of these states. In doing so, any state with
a possible inadequate consideration of risk is placed conservatively in a higher
risk band by default, alerting the designer to reconsider its risk nature if such
an interpretation is undesirable. A classification of transitions into safe, unsafe
and neutral transitions based on the risk graph provides a sound basis for calling
for additional safeguards against unsafe transitions and prompt enforcement of
safe transitions. It also provides a safety-oriented resolution of non-determinism
between any conflicting transitions favouring transitions that are more likely to
bring the system down to a safer level. Representation of equipment failures and
subsequent repair fits in neatly with the proposed framework and allows the in-
corporation of fail–soft features in functioning equipment in response to failures
elsewhere and fail–safe mechanisms in extreme cases.

Correct interpretation of Safecharts requires a sound understanding of several
important aspects of its semantics. This paper extends previous work [2,12] on
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Safecharts, firstly, by formulating a mathematical framework for dealing with the
above issues and, secondly, enriching it with a unique step semantics appropriate
to the needs of Safecharts and a set of more refined rules for resolving non-
determinism between conflicting transitions. As a new contribution, the papers
makes an advance to the security domain by demonstrating the applicability of
Safecharts to modelling of Role Based Access Control [14].

The paper has the following structure. Section 2 introduces basic concepts of
Statecharts and the notation used here in relation to Statecharts. Section 3 pre-
pares the ground for the subsequent discussion, introducing the key concepts of
Safecharts related only to risks posed by hazardous states. Section 4 presents an
integral mathematical view of Safecharts, including its step semantics. Section 5
presents a case study drawn from the domain of security both to illustrate the
general use of Safecharts and to point out how it can be used in the security
context, while Section 6 concludes the paper.

2 Statecharts

Primary purpose of this section is to place Statecharts in the setting of the
mathematical framework used later for defining Safecharts. It is not intended as a
formalisation of Statecharts, for which there are widely known other sources. Our
formalisation, however, introduces certain restrictions to Statecharts, without
greatly inhibiting its generality and yet serving the clarity or simplifications
sought in Safecharts. Below is a brief informal introduction to Statecharts.

2.1 Statecharts in Brief

Statecharts is a visual specification formalism introduced by David Harel [6] for
modelling the behaviour of complex reactive systems. Statecharts is an extension
of finite-state machines with enhanced capabilities such as hierarchical decom-
position of system’s states, explicit representation of concurrency and broadcast
communication. Statecharts is a kind of directed graph, with nodes denoting
states and arrows denoting labelled transitions. Labels of transitions take the
form e[c]/a, e being the triggering event of the transition, c a guarding condi-
tion and a an action generated precisely if and when the transition takes place.
For a transition to take place, its source state must be an active state. Once
generated, the action a is broadcasted to the whole Statechart, triggering, if ap-
plicable, other transitions in the diagram. In Statecharts, there are three types of
states: and, or and basic states. Similar to states in state–transition diagrams,
basic states are non–decomposable. Both and and or states consist of a number
of substates. Being in an or state means being in exactly one of its substates
while being in an and state means being in all of its substates simultaneously.
The substates of an and state are indicated by a dashed line and are known as
orthogonal states.

For example, in Figure 1(a), state S is an and state with two (orthogonal)
substates a and b, each being of type or. Being in S means being in a and
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b simultaneously. States d, e, f, g, j and k are basic states that cannot be
decomposed into further substates. The default state, pointed by a dangling
arrow, is a substate of an or state to be entered if a transition arriving at the
or state does not have an explicit entry state. In Figure 1(a), states c and g
are the default states of a and b respectively. At initialisation, state S is in its
default configuration, namely {j, g}. If the event e occurs, the transition j�k
takes place. As a consequence, the state j is exited, the state k is entered and the
event a is generated and broadcasted throughout the Statecharts. Consequently,
the action a triggers transition g�f, and hence moving to state f inside state
b. As a result, a new configuration of state S is realised, namely {k, f}.

2.2 The Basic Structure of States in Statecharts

As with any state–based formalism, fundamental to any definition of semantics
of Statecharts are the notions of state and transition. This approach allows a
compositional view of the structure of states at any given level of abstraction,
ignoring the internal details of their substates at lower levels of abstraction.

Given an application, let S denote the set of all relevant states as understood
in Statecharts, T the set of all possible transitions, E the set of all events, Θ
the set of possible types of states in Statecharts, that is, Θ = {or,and,basic},
SN a set of names used for labelling states, and Φ the set of (logical) formulae
consisting of variables, logical operators and relational operators. When it stands
in for an element of a set, let λ be a null value, standing in for an unspecified
component, or a component irrelevant to a given specification, belonging to that
set. Let S be an arbitrary state in S. It has the general form:

S = (id , θ,C , d ,A, α,T , �,E ) (1)

where
id – id ∈ SN is a name uniquely identifying S .
θ – the type of the state S ; θ ∈ Θ.
C – a finite set of direct substates of S , referred to as child states of S .
d – d ∈ C and is referred to as the default state of S .

It applies only to or states.
A – a finite set of currently active child states.
α – a status flag indicating whether or not S is active; α ∈ {active, inactive}.
T – a finite subset of S × S, referred to as explicitly specified transitions of S .
� – a function T → E × Φ × F E , labelling each and every specified transition

in T with a triple, F E denoting the set of all finite subsets of E .
E – the finite set of events relevant to the specified transitions of S ; E ⊆ E

When dealing with several states simultaneously, various components of a given
state Si are referred to using the form Si .C ,Si .T , etc. When it makes no confu-
sion, we will denote these components simply as θ, C , etc. Intuitively, an active
basic state S has the structure

S = (id ,basic, ∅, λ, ∅, active,T , �,E ) (2)
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Fig. 1. An Example of Statecharts and invalid transitions.

Components in (1) have various interdependencies; their formal definitions and
interrelationships are beyond the scope of this paper but are given in [3]. Due
to the existence of many different variants of Statecharts (see [15] for a review)
transitions have been introduced and interpreted differently. Hence, it is impor-
tant here to clarify what are valid transitions of Statecharts as understood in
Safecharts. Given a transition t ∈ T, its label is denoted by �(t) = (e, c, a), writ-
ten conventionally as e[a]/a. e, c and a in the latter, denoted also as trg(t) = e,
con(t) = c, and gen(t) = a, represent respectively the triggering event, the
guarding condition and the set of generated actions. Note that since the elements
of the label are optional, these functions may return λ to signify the absence of
a particular element of the label. The source state of a transition t is denoted by
sc(t) while its target state is denoted by tg(t). When it is more appropriate, a
transition will be represented by a pair containing its source and target states,
and is indicated as an arrow in the form sc(t) � tg(t). For a transition t ∈ T to
be a valid transition, the following conditions must be satisfied: (i) t has only
one unique source state and one unique target state. In other words, unlike many
statecharts variants, e.g. [7,9], t cannot have multiple source states or multiple
target states, (ii) t does not span between substates of an and states which is a
common ancestor state of its source and target states, and (iii) the source state
and the target state of t must not be ancestrally related. For example, according
to the above conditions, all transitions in Figure 1(b) are invalid transitions in
Safecharts.

3 Risk Frame

Turning to the subject matter of this paper, that is, the safety critical systems
design, Safecharts treats the hazardous states and the risks posed by them as a
fundamentally important issue. In this respect, this section lays the foundation
for our subsequent discussion by examining separately several key concepts re-
lated to risks posed by states. In the context of a state S , risk frame is a 5-tuple
and can be defined as:

F = (�,n,B, β,�β) (3)
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The key element in F is �, which is a risk ordering relation defined on S × S.
Strictly speaking, S refers here not to the states in Statecharts but to those
in Safecharts. The relation � expresses risks posed by states in comparison to
one another. Other components of the risk frame are actually derived from,
or supplement, � and form the subject of this section. Risk ordering being an
outcome of risk assessment, a process conducted by domain experts potentially
carrying a degree of human error or misjudgement, the relation � is prone to
gaps, inaccuracies and inconsistencies. Risk band is a concept introduced for the
purpose of tackling this drawback by placing states conservatively into distinct
bands, or clusters, with some numerical indexing for comparative purposes. n in
(3) represents the total number of risk bands of a given state. B and β are two
related functions, the former from N to P S and the latter from S to N. Given
a risk band i and a state s, B(i) gives the set of states in the ith risk band,
while β(s) gives the risk band index of the state s . �β in (3) is a binary relation
on N

k
1 , with N1 = N − { 0} and k = #S .C . It is a subsidiary relation for risk

ordering in and states only and is defined using risk band indices of their child
states.

3.1 Risk Ordering Relation

Given a state S , its risk ordering relation is denoted by �S , or simply by � where
it causes no confusion. Given that S is an or state and the states s1, s2 ∈ S .C ,
the risk ordering relation of S is defined such that s1 � s2 is true if and only
if the risk level of s1 is known to be less than, or equal to, the risk level of
s2. The relation � may consist of pairs of states which are known to be either
of two distinct risk levels or of an identical risk level. This can be represented
mathematically by decomposing � into two relations: a partial order relation and
an equivalence relation, denoted by � and ≈ respectively. The interpretation of
this notation is such that, given two distinct states s1 and s2,
s1 � s2 – the risk level of s1 is known to be strictly lower than that of s2.
s1 ≈ s2 – the risk levels of s1 and s2 are known to be identical.
The relation � is reflexive and transitive. However, � may not necessarily be
symmetric or antisymmetric. This is because there can be symmetrical pairs in
�, denoting states which are at the same risk level.

However, in the case of S being an and state, it is impossible to define the
risk ordering relation � on its parallel child states in C . Alternatively, the risk
ordering relation � is defined on the set C ′ containing the child states of the
equivalent flattened or state of S , namely S ′, as mentioned in Section (3.2). The
risk ordering relation can be represented as a graph; see Figure 2(a). In order
to reduce the clutter in its visual presentations, arcs in graphs � and � are
assumed to run implicitly upwards and loops at nodes corresponding to reflexive
terms are not shown.

3.2 The Risk Graph of or and and States

The risk graph of an or-state S , denoted by G(S ) is constructed on the basis
of the risk ordering relation �S . However, in G(S ), each state is placed in a
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unique risk band. As an example, Figure 2(b) shows the risk graph of a set of
states defined by the relation � depicted in Figure 2(a). The concept of risk
band and its formal definition is given in [3,12]. Two states s and s ′ are said to
be risk–comparable if and only if they are comparable by ≈ (i.e. s ≈ s ′) or they
lie in different risk bands. Otherwise, they are said to be risk–noncomparable.
Note that risk–comparable states in the risk graph may be noncomparable by
the relation �.
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Fig. 2. (a) Risk ordering relation (b) Risk graph (c) Risk distances of transitions.

In general, risk ordering of an and state can be quite complicated and may not
be a viable option in practice when dealing potentially with a large number of
orthogonal child states. This is because risk ordering in an individual orthogonal
child or state would no longer make sense unless due attention is paid to risk
ordering in the adjoining child or states. However, this difficulty can be over-
come by flattening the and state, that is, by converting the and state into its
equivalent or state. In doing so, the risk ordering relation can be applied to the
resulting or state and, hence, the risk graph can be constructed in the usual
manner.

An and state S , with a set of direct substates C , can be flattened into an
equivalent or state S ′ whose C ′ consists of tuples drawn from the unordered
Cartesian product of all orthogonal states in C . Each such tuple consists of a
number of parallel states, equal to the number of orthogonal states in C and
corresponds to a conventional state. The transitions associated with the equiv-
alent or state can be derived using the canonical mapping approach of [5]. For
example, Figure 3(a) shows an and state with two orthogonal substates m and
n, while Figure 3(b) shows the equivalent or state as well as its interpreted
transitions.

When flattening an and state, the number of interpreted transitions rises
rapidly, especially if the and state consists of many orthogonal states. This is
a well–known problem of state–transitions diagrams – a problem that led to
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the very invention of Statecharts in the first place. Statecharts achieved this
through the notions of depth and abstraction. In this context, flattening and
state amounts to the reverse process but is necessitated by the need to consider
the risks posed by possible combinations of states – a requirement peculiar to
critical systems.

Depending on the performance of the domain expert, the risk graph of an
and state can be specified either: (i) directly, or (ii) indirectly. In (i), the risk
ordering relation � can be applied to the or state obtained by flattening the
and state. Hence, the risk graph can be constructed in the usual manner. In
(ii), risk ordering can be done using an irreflexive subsidiary risk ordering rela-
tion �β defined in terms of the risk band indices of individual orthogonal risk
graphs. Thus, (ii) does not require flattening the and state for the purpose of
specification of �. A formal definition of the direct and indirect approaches is
given in [3].

3.3 Node Replacement in the Risk Graph

The hierarchical structure of states in Statecharts, achieved by the and and or
composition, is also reflected in risk graphs. Analogous to a state in Statecharts
being composed of a number of other child states, a node in a risk graph may
in turn consist of a risk graph corresponding to the structure of the state rep-
resented by that node. When dealing with the system under consideration at a
lower level of abstraction, there may be a need to expand the risk graph to the
same level of abstraction. In this case, it is necessary to replace the node con-
cerned with the risk graph it represents. This section outlines how to perform
such node replacement. Given that x is a non basic state and x ∈ S .C , the
node corresponding to x in G(S ) can be replaced by its risk graph G(x ) in the
following manner. Let G′(S ) denote the revised risk graph of S after the node
replacement. Nodes in the highest risk band of a risk graph are referred to as its
‘highest nodes’ while its ‘lowest nodes’ are those nodes in the lowest risk band:

(a) The node x , as well as arcs incident on it, are removed from G(S ).
(b) The highest node(s) in G(x ) are connected to immediate successor nodes of

x in G(S ), if any.
(c) The lowest node(s) in G(x ) are connected to immediate predecessor nodes

of x in G(S ), if any.
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(d) If there exists a node representing a state x ′ in G(S ) such that x ′ ≈ x
(i) if x ′ is a basic state then the lowest node(s) of G(x ) are connected to

x ′ by the ≈ relation,
(ii) if x ′ is a non-basic state then the lowest node(s) of G(x ) are connected

to the lowest node(s) of x ′, by the ≈ relation.
(e) In the event of x having no direct successor in G(S ) but there being a node

x ′ in G(S ) such that βS (x ′) = βS (x )+1 in G(S ), highest node(s) of G(x ) are
to be placed in G′(S ) at least one risk band lower than that of x ′ in G′(S ).

(f) In the event of x having no direct predecessor in G(S ) but there being a
node x ′ in G(S ) such that βS (x ′) = βS (x ) − 1 in G(S ), lowest node(s) of
G(x ) are to be placed in G′(S ) at least one risk band higher than that of x ′

in G′(S ).

The risk graph G(x ) intended to replace the node x is obtained depending on
the nature of the node x such that: (i) if x denotes an and or an or state then
G(x ) is obtained as described in Section (3.2), or (ii) if x denotes a tuple then
G(x ) is obtained analogous to the risk graph of an and state. This is achieved
by considering x as being an and state and the elements of the tuple as being
its orthogonal states. However, in contrast to our definition of and states, in
this case, the set x .C (the elements in the tuple) might contain one, or more
basic state(s). In this case, the risk graph G(x ), is constructed as follows: (a)
all basic states in the tuple x are to be excluded and a risk graph G(x ′) of the
remaining non-basic states is to be conventionally constructed, and (b) every
excluded basic states is to be attached to every node in G(x ′). In the case where
all the elements in x are basic states then no node replacement takes place.

In the interest of maintaining an identical level of abstraction, it makes sense
to perform any node replacement on all non-basic nodes at a given level of the
state hierarchy simultaneously. This is in line with maintaining the degree of
the depth and abstraction obtained by the Safecharts diagram. As an example,
Figure 4(a) shows the risk graph of S with node d to be replaced by its risk
graph, that is by G(d). The revised risk graph of S , that is G′(S ), obtained after
the node replacement is shown in Figure 4(b).



A Mathematical Framework for Safecharts 629

4 Safecharts

Safecharts was introduced in [2] as a safety-oriented variant of Statecharts de-
veloped especially for the specification and design of safety-critical systems. One
of its unique features is the maintenance of two separate layers of representa-
tion: a functional layer and a safety layer. The aim of the former is to capture
system’s transformational behaviour purely from a functional point of view, by
using Statecharts in the conventional sense, while that of the latter is to capture
the risk involved in such behaviour. The safety layer contains a risk graph of
the states of the system under description and a safety annotation associated
with transitions between these states. The concept of risk graph is based on our
discussion in Section 3.

4.1 States in Safecharts

In dealing with failures in safety–critical systems, each component is represented
in the form of an or state with two distinguished substates, denoted generically
by in and out, meaning respectively that the component is functioning correctly
or has failed. The nature of these two states are such that in is strictly safer than
out (in � out). Associated with these states are also two generic events: a non-
deterministic event ε signifying a failure, and an event µ signifying a maintenance
or repair action which returns the component back to service. A component may
have more than one failure mode, in which case out may itself be an or state
with a distinct substate for each of the failure modes, possibly with further
transitions to model failure propagation.

Let us refer to the notation introduced in Section 2.2 in relation to
Statecharts using the subscript stc, and to the notation introduced here in rela-
tion to Safecharts using the subscript sfc. First let us define a predicate sys on
Sstc such that sys(S ) is true of S exactly if it models the state of a system, or
the state of an item of equipment. For each such state in Sstc , let there be a cor-
responding state Ssfc with three further states sysS , inS and outS . Informally,
sysS denotes the state of an extended failure-prone version of S . The Ssfc , and
likewise the Esfc , can be extended as follows:

Ssfc = Sstc ∪ {sysS , inS ,outS | S ∈ Sstc ∧ sys(S )} (4)
Esfc = Estc ∪ {εS , µS | S ∈ Sstc ∧ sys(S )} (5)

where inS ,outs , εS and µS are as introduced above. Where it causes no con-
fusion, the subscripts in these new elements will be dropped. The states in
Safecharts have an extended structure and include, in addition to what was dis-
cussed in section 2.2, the components of the risk frame as well as the associated
relations � and ≈ . The extended structure has the form

S = (id ,or,C , d ,A, α,T , �s ,Es ,�,n,B, β, λ) (6)
S = (id ,and,C , λ,A, α,T , �s ,Es ,� n,B, β,�β) (7)
S = (id ,basic, ∅, λ, ∅, α,T , �S ,ES , λ, λ, λ, λ, λ) (8)
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where Es ∈ Esfc and every component is defined using the sets (4) and (5) with
extended versions defined above. When dealing with the two special states in
and out, let us separate the functional and safety requirements concerning the
state S as follows:

in = Sf ++Ss (9)
Sf = (id , θ,C , λ,A, α,Tf , �f , Estc , λ, λ, λ, λ) (10)
Ss = (id , θ, λ, d , λ, α,Ts , �s , Esfc , λ,�,n, β,�β) (11)

Sf and Ss being two partially completed templates of state specifications in
Safecharts. The operator ++ which ‘glues’ the two templates together, is in-
tended to have the following effect: θin = θSf = θSs , Cin = CSf , din = dSs ,
Ain = ASf , Tin = TSf ∪ TSs , Ein = Ef ∪ Es and �in = {(t , �f (t) � �s(t)) |
t ∈ Tin}. The risk frame components in state in are identical to those in Ss .
If necessary, state out may also be defined as an or state for modelling failure
propagation from one mode to another. The extended failure–prone version sys
for a given state S ∈ Sstc is an or state that can be defined as follows:

sys = (id ,or, {in,out}, in,A, α, {(in,out), (out, in)},

�s , {ε, µ}, {(in ≺ out)}, 2, {(in, 1), (out, 2)}, λ}) (12)

Features sys (12), in (9) and Ss (11) represent the contents of the safety layer,
whereas Sf (10) represents the content of the functional layer. It is clear that Sf
in (10) is based purely on Statecharts as understood conventionally. Thus, its
non-null values are identical to the corresponding ones given in (1) for dealing
with functional requirements. The default state d in Ss (11) is defined such that
β(d) = 1 and is referred to as the safe default state of in, which is itself being the
default state of sys (12). This forms a safe initialisation feature in Safecharts.

4.2 Transitions in Safecharts

A transition t ∈ T in Safecharts is a legal transition if and only if sc(t) and tg(t)
are risk-comparable states in a common risk graph. Based on the risk graph,
Safecharts classifies transitions according to the nature of risks they carry and,
accordingly, extends the specification (labelling) of transitions with additional
guards and enforcement conditions. Transitions belong to three categories: safe
(hi-to-lo risk), unsafe (lo-to-hi risk) and neutral (between states of the same
risk level). In terms of the function β, introduced informally in Section 3, this
classification can be made as: a transition t is considered safe if β(tg(t)) <
β(sc(t)), unsafe if β(tg(t)) > β(sc(t)), and neutral if β(tg(t)) = β(sc(t)). Thus,
ε introduced in Section 4.1 triggers an unsafe transition, while µ triggers a safe
transition.

Transition labelling in Safecharts has the general form e [c]/a [l , u) Ψ [G ], with
e, c and a remaining the same as in Section 2 and certain components being
mandatory depending on the risk classification of the transition concerned. [l , u)
is a right-open time interval from time l to time u. Ψ is a safety enforcement
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pattern specified using two alternative symbols: � and �, and [G ] is a safety
clause. t � [G ] is mandatory for unsafe transitions and means that the transition
t is forbidden to execute as long as G holds. t [l , u) � [G ] is mandatory for safe
transitions and means that the transition t is forced to execute within [l , u) from
whenever G begins to hold irrespective of the occurrence of its triggering event.

The risk distance of a transition t ∈ TS is the number of band boundaries
between the source and target states of t in G(S ). Denoting it by D(t), it can be
defined as: D(t) = β(sc(t))−β(tg(t)), the positive and negative signs of D(t) thus
signifying respectively an increasing, or decreasing, risk; see Figure 2(c). The risk
nature of transitions plays an important role in determining their safety enabling
conditions. For a neutral transition to be enabled, it must be functionally enabled,
that is, its source state is active, its triggering event e has occurred and its
guarding condition c, if any, is true. However, for an unsafe transition to be
enabled, it must be both functionally enabled and its safety clause G must be
false. Likewise, for a safe transition to be enabled, it must be either functionally
enabled or its safety clause G is true.

The enabling time of a transition t , denoted by EnTime(t), is defined as the
earliest time when t becomes safety enabled, as defined above. The time interval
[l , u) associated with safe transitions, introduced above, is a real-time constraint
on t and imposes the condition that t does not execute until at least l time
units have elapsed since it most recently became safety enabled, that is, since
EnTime(t), and must execute before u time units since EnTime(t). If l and
u have not been specified explicitly then t is assumed to be spontaneous with
an open-ended [0, 1) time interval. This implies that t executes as soon as it is
enabled by G , in other words, as soon as EnTime(t) is realised. In Safecharts,
a transition t is executed if and only if it is safety enabled within its associated
time interval and, either t is not in conflict with any other enabled transition or
t has the highest priority among its conflicting transitions.

In Safecharts, two transitions t1 and t2 are said to be in conflict if sc(t1) =
sc(t2) and they become functionally enabled simultaneously. In Safecharts, non-
deterministic choice between two, or more, conflicting transitions can be resolved
by giving higher priority to the transition with the shortest risk distance. This
approach is different from other approaches, for example in [13], where priori-
ties are given according to the scope1 of the conflicting transitions while in [4]
priorities are given according to the hierarchy of their source states.

Let conflict(t) be the set of all possible transitions which are in conflict
with transition t . In the case of transitions with equal risk distances, prioritisa-
tion is based on the cumulative risk distances of future transitions of conflicting
transitions. A transition t ′ is said to be a future transition of the transition
t if the source state of t ′ is the target state of t . The set of future transi-
tions of t can be defined as future(t) = {t ′ | sc(t ′) = tg(t)}. There is a
greater likelihood of a future transition t ′ being executed if its source state
becomes active as a result of the execution of a transition t among those in

1 The scope of a transition t is the lowest common or ancestor state containing both
sc(t) and tg(t).
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conflict, and its triggering event was generated by the execution of t . We re-
fer to such transitions as expected future transitions and introduce the set:
expected(t) = {t ′ | t ′ ∈ future(t) ∧ trg(t ′) ∈ gen(t)}.

Any nondeterminism between two, or more, conflicting transitions can now be
resolved by giving highest priority to the competing transition with the smallest
cumulative risk distance. The way cumulative risk distances of competing tran-
sitions are calculated is as follows: ∀ x ∈ (conflict(t) ∪ {t})
(1) if expected(x ) �= ∅ then select any transition y from the set {y | y ∈
expected(x ) ∧ ∀ y ′ ∈ expected(x ) ⇒ D(y) ≤ D(y ′)}
(2) if expected(x ) = ∅ ∧ future(x ) �= ∅ then select any transition y from the set
{y | y ∈ future(x ) ∧ ∀ y ′ ∈ future(x ) ⇒ D(y) ≥ D(y ′)}
(3) In both above cases, resolve the non-determinism on the basis of D(x )+D(y),
otherwise on D(x ) alone.

Nevertheless, non-determinism may still continue to persist even after con-
sidering the future transitions as shown above, for example, if all, or some, tran-
sitions in conflict(t) have equal accumulative risk distances. However, this kind
of non-determinism is considered a safe non-determinism since all outcomes are
identical in terms of the risks involved.

4.3 The Step Semantics of Safecharts

There exists many different semantics for Statecharts, centering mostly around
the concept of step. The step semantics has been a much debated issue, pri-
marily because of the anomalous and counter–intuitive behavioural patterns of
Statecharts resulting from some of the interpretations. These debates concern
the central issue as to whether the changes, such as the generated actions or
updating values of data items that occur in a given step, should take effect in
the current step or in the next step. The reader is referred to [15,10,11,13] for
more details about the different step semantics and the problems associated with
their definitions.

In defining the step semantics of Safecharts, our aim here is to adopt the most
appropriate standpoint in relation to the sole concern of Safecharts, namely the
design of critical systems from whatever the perspective, whether it is from
safety, security or any other system attribute. The step semantics of Safecharts
retains certain characteristics of the conventional step semantics such as the syn-
chronous hypothesis, while at the same time maintaining an intuitive relationship
between external and internal events so that it corresponds to the operational
reality of reactive systems. It is based on the treatment of external and internal
events in an identical manner, but it also requires the introduction of the concept
of postponed transitions and two separate notions of time, namely a synchronous
time metric and a real time metric. The step semantics in Safecharts is based
on the synchronous time model of statemate [7]. The system evolves from one
step to the next after considering a set of input events at consecutive intervals
separated by a granularity of ∆ time units, referred to as ∆-interval. The syn-
chronous time model has the advantage of avoiding infinite loop of triggering
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transitions enabled by infinitely generated internal events, and preventing the
occurrence of racing conditions.

The set of input events at the end of the current ∆-interval consists of the
external events sent by the environment during the current interval as well as
the internal events generated by the execution of the previous step. Input events
last only for the duration of a single ∆-interval. Once the step has been taken,
all input events are consumed and the set of input events becomes empty. In
its initial state (initial configuration), the system waits for the environment to
produce external events. At the end of the first ∆-interval, the input events
consist of only the external events sent by the environment and are sensed and
reacted to by executing the initial step. As a result of the initial step, the system
moves to a new configuration, provided that the step is a ‘status step’ (in the
sense discussed later), the generated internal events, if any, are added to the
set of input events of the next step, and the clock is incremented by ∆-interval.
The set of input events of the next step consists of the internal events, if any,
generated by the initial step together with the external events, if any, received
by the environment during the following ∆-interval. In the example shown in
Figure 5, the set of input events of step1 consists of the internal event e1 as well
as the external events e2 and e3. At the end of the ∆-interval, step1 is executed
and all the input events are consumed. This process continues in each step.
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Fig. 5. The step semantics of Safecharts.

In the cases where there are no external events generated by the environment
during the ∆-interval prior to the step, the set of input events comprises only
the internal events generated in the previous step. In this case, the step is taken
by consuming all input events and triggering relevant transitions. Consequently,
internal events are possibly generated again for the next step, leading to a new
configuration. In the case where there are neither external nor internal events
from the previous step, that is, where the set of input events is empty, after
∆-interval the step is taken anyway without executing any transition and, con-
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sequently, with no change in the configuration of the system. For the system
to move to a new configuration, the environment has to produce a new set of
external events during the subsequent ∆-intervals. In this connection, our step
semantics distinguishes two types of steps, namely status steps and neutral steps,
the former causing a material change in the configuration of the system while
the latter causing no change.

Analogous to several other definitions of step semantics, the step semantics
of Safecharts eliminates many undesirable features, for example, negated events
and instantaneous states. Safecharts also maintains a clear causality ordering
and global consistency. Similar to the semantics of Statecharts introduced by
[7] and adopted by many variants, the execution of a step in Safecharts takes
zero time unit, and thus transitions triggered by input events are taken instan-
taneously once the step is taken. However, as stated in [8], the synchronous
hypothesis does not reflect the intuitive operational reality of reactive systems,
where transformations between the states of the system usually take some real
time, during which the environment can send some external events. In order to
reconcile the mismatch between the synchronous hypothesis and the reality of
transformational behaviour of real-time reactive systems, we propose two no-
tions of time metrics: a synchronous-time metric and a real-time metric. In the
synchronous-time metric, the duration of the step, denoted by σ, is always taken
to be zero (in other words, σ is too fine to be detected), while in the real-time
metric σ is either zero in the case of the step being neutral step, or a non-zero
constant in the case of the step being a status step.

With reference to the real-time metric, the assumption underlying the adop-
tion of the synchronous hypothesis is that, once a step is taken at the end of a
∆-interval, any external events sent by the environment during the σ time unit
are postponed until the elapse of σ interval. Due to their importance in modelling
the safety aspects of the system’s behaviour, it is a feature in Safecharts that
generic events, namely ε and µ, must be taken as soon as they occur. Thus, in
this context, generic events are treated differently from other input events, and
are considered as interrupt events. Once they occur and are added to the set of
input events, the step does not wait until the end-time of the current ∆-interval,
but rather executes immediately consuming all input events gathered so far. The
∆-interval during which generic events occur is called an irregular interval, and
denoted by ∆′. The step that follows ∆′ is called an interrupt step. For example,
in Figure 5, step5 and step7 are two episodic steps executed as a result of the
occurrence of events ε and µ respectively.

5 Case Study: Safecharts in the Security Domain

Alongside availability and reliability, safety and security are two closely related
properties of dependable systems. The design of dependable systems is often
required to satisfy several of these critical properties simultaneously. There is
a growing interest in the degree to which techniques from one domain could
complement, or conflict with, those from another. In this section, we investigate
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the applicability of Safecharts and its various safety-oriented techniques and
mechanisms for dealing with security issues. More specifically, we examine the
use of the concept of risk graph, and the various safety enforcement applied to
transitions, in the field of security.

5.1 rbac and Its Modelling in Safecharts

In computer security, access control is the concept of managing authorisations,
by which resources (objects) are accessed by individuals (subjects) with a specific
set of operations. Role Base Access Control (rbac) is a well-established approach
in computer security for controlling access by users to various resources; see [14].
It is increasingly relevant to modern commercial, business and other domains.
Our approach to modelling rbac, however, is applicable to systems where se-
curity requirements are predominantly dependent on the state of the system.
An exemplar of such systems is reactive systems which Statecharts and, hence,
Safecharts are intended for. rbac is based on the concept of role – a representa-
tion of job functions performed by individuals in an organisation [1]. Unlike in
traditional access control mechanisms, such as those used in operating systems,
rbac assigns access rights to the roles rather than to the individuals directly. In
other words, the subjects are able to access objects only by virtue of their roles.
A subject can be associated with more than one role and a role can be assigned
to many subjects.

Permitted access rights of different roles to objects are maintained in an
Access Control List (acl) against which requests by subjects to perform various
operations or tasks (e.g a write operation) on an object are checked. If a role
authorising the access of the object concerned by the required operation is found,
then the access right associated with this role is granted, otherwise, denied. The
model of rbac permits the temporary delegation of access rights by one party to
another in order to perform one or more specific functions. Figure 6(a) depicts
such a scenario in the context of an engineering organisation, where a manager
A delegates some, or all, of his tasks (access rights) to a subordinate engineer
Q , enabling Q to perform A’s tasks on his behalf. This mechanism is vulnerable
to potential security risks as acl makes no distinction as to whether a subject
requesting a certain mode of access is doing so in the capacity of his own role,
for example, as originally assigned by the security officer, or in the capacity of a
role acquired through a delegation.

As presented in [14], rbac may be treated as a hierarchy of four models:
rbac0 (flat model), rbac1 (hierarchical model), rbac2 (constrained model)
and rbac3 (symmetric model). rbac0 is a model depicting simply various per-
missions allocated to various roles and, thereby, to different users. rbac1, on
the other hand, depicts a seniority relation on roles, whereby senior roles auto-
matically inherits the rights permitted to more junior roles to perform various
tasks, reflecting the lines of authority or responsibility in a given organisation.
Going further, rbac2 enforces separation of duties and rbac3 introduces the
capability to review assignment of permission with changing circumstances.
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In this work, we consider only the models, rbac0 and rbac1. rbac involves
generally three types of entities: users U , roles R and permissions P . Assignment
of permissions (allocation of tasks) to roles is given by a function α ∈ R → P P
so that, for any r ∈ R, α(r) gives the set of permissions assigned to the role r .
Likewise, assignment of users to roles may be given by a function from U to P R,
though its detailed elaborartion is not required in this particular work. Since no
restrictions are imposed on these functions, their representations are all that is
required in rbac0. Turning to rbac1, in addition to its conventional features,
our model considers here the relative risks associated with situations when users
belonging to different roles performs different tasks. This is represented by risk
ordering relations � and � on R × P with the same meaning as that given in
Section 3.1. For example, the interpretation of � is such that for any r1, r2 ∈ R
and p1, p2 ∈ P , (r1, p1) � (r2, p2) is true if and only if the security risk level
associated with a user in role r1 performing the task p1 is known to be strictly
lower than that of with a user in role r2 performing a task p2, unless r1 and
r2, and p1 and p2, each denote the same entity. Let � denote the hierarchical
ordering on R such that, for any r1, r2 ∈ R, r1 � r2 is true if and only if the role
r1 is of a lower, or an identical, hierarchy compared to the role r2. In our model,
r1 � r2 if and only if

α(r1) ⊆ α(r2) ∧ (∀ p ∈ P • p /∈ α(r1) ∧ p ∈ α(r2) ⇒ (r2, p) � (r1, p)) (13)

In other words, each role of any given higher hierarchy consists of some specific
tasks not permitted by the roles of the lower hierarchies on security grounds, for
example, based on criteria such as trustworthiness, required competence level
and so forth. The above thus expresses in our model a principle of permission
assignment to roles. This is a capability not found in the formal representation of
conventional rbac1 [14]. In fact, classification of role hierarchies has to be based
on some sort of risk assessment and, in this respect, the concept of risk graph
in Safecharts provides a formal basis for achieving this. In the remainder of this
section, we illustrate the use of Safecharts in modelling temporary delegation
of a higher rank role to a user of a lower rank role in rbac and the use of the
principle (13) in establishing assignment of permissions to roles and, hence, the
determination of enforcement conditions appearing in certain transition labels.
Figure 6(a) shows the example being considered – a scenario involving just two
users, a manager A in role M and an engineer Q in role E , accessing a partic-
ular object O , for example, a file or a database. The following operations are
permitted: read (read only), write (both read and write), priv writing (privilege
writing from a read–only mode). The two roles are such that E � M , though
the actual role–permission relation shown in the figure is to be established later.
Figure 6(b) shows a Safecharts model for part of it, depicting how the two users
access Object1, modelled as an and state, via their respective roles. Substates of
Object1 are two or states: Status showing possible states the object can be in,
and User signifying that the object can be accessed by the two users in an ex-
clusive mode. The order in which the states are placed vertically in the diagram
of any or state corresponds to an implicit risk ordering. For example, the object
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Fig. 6. An example of delegation in rbac and the safety layer.

being in the state free is considered safer (more secure) than being in the state
reading , while being in the state reading safer than being in the states writing or
priv writing . In contrast, states writing and priv writing are assumed to be risk
non-comparable. In other words, a risk ordering of the form (free � reading),
(reading � writing) and (reading � pre writing) is assumed in Status. Similarly,
for the state Q , a risk ordering of the form (original � delegated) is assumed,
indicating that the user Q accessing the object in his original role is safer than
accessing the same object in a delegated capacity. Accordingly, the transition
original�delegated , signifying the delegation of a role, is an unsafe (unsecure)
transition, whereas the transition delegated�original , signifying revocation of
the role delegation, is a safe (secure) transition.

Though the risk ordering described above has some significance in an isolated
context, it is not adequate for describing the risks involved in access control. This
is because the interdependencies of risks, depending on the roles of the users in-
volved and the operations being performed by them, need to be considered. In
other words, we need to consider risks posed by different combinations of states.
Technically speaking, this amounts to flattening of the and state Object1 into an
equivalent or state and developing a risk graph for the flattened state. As was
mentioned in Section 3.2, the required risk graph can be constructed either di-
rectly or indirectly; in this example, we follow the former. The set of sub-states of
the resulting equivalent or state and, hence, the nodes of the resulting risk graph,
consists of eight (pairs of) states: (Q ,writing), (Q , prev writing), (Q , reading),
(Q , free), (A,writing), (A, prev writing), (A, reading), (A, free). Furthermore,
since Q is itself an or state, each node involving Q in the risk graph needs
to be refined and replaced by its risk graph, that is G(Q). As a result, the
node (Q ,writing), for example, must be replaced by a risk graph consisting of
two nodes, possibly, with a risk ordering of the form (Q .delegated ,writing) �
(Q .original ,writing). Hence, the resulting risk graph will consist of a total twelve
nodes.

The direct approach adopted here to construct the risk graph for the flat-
tened state provides an opportunity to review the risks involved, ideally, based
on a proper security analysis of the problem concerned. For illustrative pur-
poses, we have assumed that (A, priv writing) ≺ (Q .original , priv writing);
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no other distinctions are being made otherwise between A and Q when Q is
acting in his original role. For reasons of space, we have also chosen to con-
centrate here only on the behaviour of Q and, thus limiting ourselves to the
risk graph shown in Figure 7(a) giving risk ordering related to Q only. Note
that the states (Q .original ,writing) and (Q .delegated ,writing) are treated as
non-comparable by � with many other states (nodes). As a precaution against
this being possibly due to an inadequacy of the risk assessment process, the
banded risk graph in Figure 7(b) has placed these states conservatively in the
highest risk band. This is to be taken as a flag, alerting the designer to re-
consider the risk levels of these states if the circumstances do not warrant
such an interpretation. Due to the positions of their source and target states
in the risk graph, transitions such as (Q .original , free)�(Q .original ,writing),
(Q .original , free)�(Q .delegated ,writing) and (Q .original , free)�(Q .delegated ,
prev writing) have equal risk distances. An implication of this is that in the
event of a conflict, selecting either of these transitions is considered as a safe
non-determinism. If this is unacceptable on security grounds, then the designer
needs to verify the security policy and/or the relative risk levels of their tar-
get states, namely (Q .original ,writing), (Q .delegated ,writing) and (Q .delegated ,
prev writing).

Turning to the permission assignment, the two roles can now be distin-
guished in accordance with the principle (13). It can be seen, for example, that
α(E ) = {read ,write} and α(M ) = {read ,write, priv writing} satisfies (13). As
a result, a user belonging to the role E will no longer have access to the op-
eration priv writing in his original capacity. However, this can be allowed in
a delegated capacity provided that he satisfies a suitably specified condition
G2 expressing, perhaps, that additional measures have been taken to ensure
his temporary security credentials, for example, that he has been given addi-
tional training. Hence, the prohibition condition (¬ G2) appearing in the label
of the transition original�delegated and the enforcement condition G1 appear-
ing in that of delegated�original , G1 being identical to G2 or being a timeout.
Likewise, a pair of prohibition and enforcement conditions involving a predi-
cate G3, G3 being defined as in(Q .original), have been added to the labels of
the transitions reading�prev writing and priv writing�free respectively. Thus,
role classification arrived above allows us to deal with temporary delegation of



A Mathematical Framework for Safecharts 639

tasks of senior roles to individuals of more junior roles. The above is a systematic
approach for avoiding problems such as the one mentioned earlier in relation to
the conventional implementation of ACL.

6 Conclusion

Correct interpretation of Safecharts requires a sound understanding of several
important aspects of its semantics. The objective of this paper has been to
present a mathematical framework for Safecharts, with the primary aim of giv-
ing greater clarity and accuracy to key concepts used in Safecharts. These include
separation of function and safety, risk ordering, the risk graph, failures, risk na-
ture of transitions and resolution of non-determinism. In extending the notion
of risk ordering to include composite or and and states, the paper also extends
previous work by showing how to deal with interdependencies of risk at lower
levels of abstraction; this involves flattening and states and node replacement
in risk graphs. In this paper, the step semantics of Safecharts has been defined
and the mismatch between the synchronous hypothesis and the reality of trans-
formational behaviour of real-time reactive systems has been reconciled. Rules
on resolution of non-determinism between any conflicting transitions have also
been refined to include triggering events of transitions. Although Safecharts was
originally developed explicitly for safety-critical systems design, its various fea-
tures and mechanisms used to ensure safety are found to be equally valid in the
security domain. This has been demonstrated in this paper using, for illustrative
purposes, a simple but realistic example of delegation of roles as understood in
Role Based Access Control (rbac) in security. On–going work investigates sit-
uational events – a special kind of events which calls for alteration to the risk
ordering relation dynamically to account for unfolding scenarios brought about
by a chain of failure events.
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Abstract. This paper is towards the development of a methodology for object-
oriented software development. The intention is to support effective use of a for-
mal model for specifying and reasoning during the requirements analysis and
design of a software development process. The overall purpose is to enhance the
application of the Unified Modelling Language (UML) with a formal semantics in
the Rational Unified Software Development Process (RUP). The semantic frame-
work defines the meaning of some UML submodels. It identifies both the static
and dynamic relationships among these submodels. Thus, the focus of this paper
is the development of a semantic model to consistently combine a use-case model
and a conceptual class diagram to form a system specification.

Keywords: Object-orientation, UML, use-cases, conceptual models, requirement
specification

1 Introduction

Object orientation is now a popular approach in the software industries. UML [11]
is the de-facto standard modelling language for the development of software with a
broad range of applications, covering the early development stages of requirements
analysis and specification and with strong support for design and implementation [16,
5]. Driven by this trend, computer scientists are now intensifying the research to help
better understanding and use of OO methods and UML, e.g. [18, 10, 2, 12, 26, 17].

A main feature of UML is that different modelling diagrams are used to represent a
system from various views at different levels of abstraction. This however gives rise to
the questions of whether different models used in a system development are consistent
and how they are related. In [7], problems concerning consistency among the models
for different views are classified as horizontal consistency, and those about models at
different levels of abstraction as vertical consistency. Furthermore, consistency of each
kind is divided into syntactical consistency and semantic consistency.
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Conditions of syntactical consistency are expressed in UML in terms of the well-
formedness rules of OCL (Object Constraint Language) [28]. Obviously semantic con-
sistency requires syntactical consistency. Article [7] studies a particular kind of be-
havioral consistency among different statecharts of a system by translating them into
Hoare’s CSP. The work in [6] deals with automated checking of horizontal syntactical
consistency between a design class diagram and a sequence diagrams of a system at the
design level.

In this paper, we provide a unified framework for formal specification for the mod-
els used in different activities in RUP [16, 19]. The framework enables us to identify the
distinguishable features of different models and to relate and manipulate them as well.
These models are UML requirement models including use-case models and class dia-
grams, and the design models that are interaction diagrams and design class diagrams.
Our long term aim is to support formal use of UML in requirement specification and
analysis, and transformation of requirement models to design models. When it is used
within the incremental and iterative RUP, the method allows stepwise refinement and
supports object-oriented and component-based software development. We believe this
will help to change today’s situation that OO software development in practice is usu-
ally done in a non-scientific manner based on pragmatics and heuristics. On the other
hand, with the incorporation of our model into the incremental and iterative RUP, we
hope to improve the use of formal methods in the development of large scale systems.

Our formalization follows the Unifying Theories of Programming of Hoare and He
[15] and is based on the relational model for object-oriented programming in [13]. It
uses a simple set theory and predicate logic, rather than a particular formal specification
language, such as Z or VDM.

In this paper, we focus on only conceptual aspects of object orientation. Most syn-
tactical and semantic consistency conditions defined in this paper have straightforward
algorithms for checking and hence support from necessary automated tools. We have
started our effort to build such as tool [22].

In the rest of this paper, Section 2 briefly discusses the activities and models in RUP
that we intend to formalize. Section 3 introduces a computational model that is similar
to the notation of action systems in [25]. Section 4 defines a syntax and a semantics for
a conceptual model. Section 5 defines a syntax for use-case model using the relational
model developed in [13]. Section 6 gives a semantics for a use case and a canonical form
of system specification. It shows how a use case behaves in the context of a conceptual
model, and captures the consistency between the two models. Finally conclusions and
discussion are given in Section 7. Simple examples are used to illustrate the ideas and
formalization.

2 Models in Rational Development Process

Requirements capture, analysis, design and modelling are the main technical activities
in the early stage of a RUP cycle. Requirements analysis mainly involves the creation
and analysis of use-case models and conceptual models [16, 20, 5].

A use-case model consists of a set of use-case diagrams, and a family of use-case
descriptions in text, each describing one use case. Each use-case description specifies
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a required functional service that the system is expected to provide for certain kinds of
users called actors. It describes a use case in terms of a pattern of interactions between
the actors and the system. The use-case diagrams do not provide much semantic infor-
mation. They only illustrate which actors use which use cases and which use cases are
included as parts of a use case. Therefore, a use-case model specifies the systems’s re-
quired functional services, the users of these services, and the dependency relationships
among these services. A library system, for example, has use cases to, Borrow a copy,
Make a Reservation and Validate User Identification for the actor called User. Both
Borrow a Copy and Make a Reservation includes Validate User Identification.

A conceptual model for an application is a class diagram consisting of classes (also
called concepts), and associations between classes. A class represents a set of concep-
tual objects and an association determines how the objects in the associated classes are
related (or linked).

For example, the library system has User, Loan, Publication and Copy. They are
associated so that a user takes (currently) a number of loans and a loan borrows a
copy of a publication. Different library systems have different conceptual models and
provide different services. A “small” library does not allow a user to make a reservation,
while a “big” library may provide this service. A conceptual class diagram is given
in Figure 1. In addition to associations between concepts, a concept may have some

User

Reservation Publication Copy

Loan

IsOn

Has1 *

takes

Makes

1

*

1 * 1

Borrows

1

*

*

IsHeldFor

IsAvailable

IsLendable

*

*

1 0..1
1 1

Fig. 1. A conceptual class diagram.

properties represented by attributes. For example, User has a name as an attribute, and
Loan has a date as an attribute.

We say a class diagram is conceptual at this level because it is not concerned with
what an object does, how it behaves, or how an attribute is represented. The decision
on these issues will be made during design when the responsibilities of a use case are
decomposed and assigned to appropriate objects. Use case decomposition is carried out
according to the knowledge that the objects maintain. What an object can do depends on
what it knows, though an object does not have to do all that it can do. What an object
knows is determined by its attributes and associations with other objects. Only when
the responsibilities of the objects are decided in the design, can the directions of the
associations (i.e. navigation and visibility from one object to another) be determined.
This indicates that an association at the conceptual level are simply sets of pairs of
objects and has no direction or equivalently two directions. Therefore, a conceptual
model is a static model of the structure of the application domain.
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The relationship between a use-case model and a conceptual model is that the con-
ceptual model specifies the environment, i.e. the state space, under which the use cases
are to be carried out. A state is an object diagram that consists of a set of objects and
a set of links between these objects. Each object and each link in a state must be re-
spectively an instance of a class and an association declared in the conceptual model.
An execution step in a use case transforms a state into another. A conceptual model
is consistent with a use-case model if it is adequate to realize the functional services
required by the use-case model.

In system design, a requirement specification is realized by a design specification
consisting of a design class diagram and a family of interaction diagrams. The design
class diagram models the software structure that realizes the conceptual model of the
requirement specification. The interaction diagrams (i.e. collaboration diagrams or a
sequence diagrams) model the interactions between objects and realize the use cases
of the requirement specification. The creation and manipulation of these design models
mainly involve use case decomposition and assignment of responsibilities to objects.
The interaction diagrams must meet the requirements. This can be proved by showing
that the use cases are indeed correctly realized by the interactions between objects.
Experience [20] shows that once a design class diagram is obtained, code can be easily
produced from it. It is possible to develop a tool to help in transforming a design into a
code of implementation.

3 Computational Model

We use a notation similar to a transition or action system [25] to combine the two
models together to model a system. A system is defined by a tuple (α, Φ, Θ, P ) where

– α denotes the set of program variables known to the program.
– P is a set of operations, each of which is a predicate that relates the initial values

of program variables. The predicate is of the form p(x) � R(x, x′) (called a design
in [15]):

p(x) � R(x, x′)
def
= ok ∧ p(x) ⇒ ok′ ∧ R(x, x′)

where x and x′ represent the initial and final values of x respectively; ok asserting
that the operation is started well and ok′ means that the operation terminated; p(x)
is called the precondition, and R(x, x′) the post-condition or the transition relation.

– Θ is a predicate over α, called the initial condition and defines the initial state(s) of
the system.

– Φ is a predicate over α, called the invariant. It must be true in any initial state and
preserved by each operation in P .

An action only changes a subset of variables declared in α. The normal form of a design
is thus a framed design of the form V : (p � R), that denotes p � R∧ (w′ = w), where
V and w are subsets of α, and w = α − V . When there is no confusion, we will omit
the frame in a design by assuming that a variable x can be changed by a design only if
its primed version x′ occurs in the design.
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The above model has to take into account the following OO aspects.

1. A use case is composed from a number of operations, while a conceptual model
determines the following variables on which a use case operates:

– for every concept, a class variable that takes values of sets of objects of the
concept;

– for every object of a concept, a variable for each attribute of the concept;
– for every association, an association variable that take values of sets of links

(i.e. pairs) between objects of the associated concepts.
2. Due to the inheritance mechanism, the effect of a use case on a variable depends on

its current type during execution, rather than its originally declared type.
3. As in imperative languages, a state of a variable is its current value. An object is

represented as a finite tuple that records its identity, current type, and the values of
its attributes. As an object has no attributes of object types in a conceptual model,
there is no recursive nesting needed here. Association variables are used to repre-
sent links between objects, which may be realized as object attributes in the later
design and implementation.

In summary, a model of an OO requirement is a system S = (α, Φ, Θ, P ) where

– P consists of a set of use cases.
– α identifies the variables on which the use cases in P operate and it is determined

by the conceptual class diagram and the input and output variables of the program.
– The invariant Φ formally models the invariant constraint. The pair (α, Φ) thus gives

the formalization of the conceptual model.
– Θ is a condition to be established when starting up the system.

In the following sections, we formulate these four components of a system specification.

4 Conceptual Model

A conceptual model is a pair CM = (D, Φ), where D is a class diagram and Φ is the
state constraint on the classes and associations enforced by D.

4.1 Conceptual Class Diagram

A conceptual class diagram D of an application identifies the environment in which the
use cases operate. This environment consists of four parts:

1. The first part provides the static information on classes and their inheritance rela-
tionships:

– CN: the finite set of classes identified in the diagram. We use bold capital letters
to represent arbitrary classes and types.

– super: the partial function which maps a class to its direct superclass, i.e.
super(C) = D if D is the direct superclass of C.
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2. The second part describes the structure of each class and for C ∈ CN, it includes
attr(C): the set of {< a1 : T1 >, . . . , < am : Tm >} attributes of C, where Ti

stands for the type of attribute ai of class C, and will be referred by type(C.ai).
As in [1], the type of an attribute is assumed to be a built-in simple data type, such
as the natural numbers Nat. We use DT to denote the set of these assumed data
types. Each class C defines a type, also denoted by C. We allow the construction
of a type from the direct product of two types, and the power set P(T) of a type T.

3. The third part identifies the relationships among the classes:
AVar: the finite set of associations captured in the diagram and declared as associ-
ation variables

{A1 : P(C11 × C12), . . . , Am : P(Cm1 × Cm2)}
The type of each Ai, referred by type(Ai), is the powerset P(Ci1 × Ci2). We use
AN to denote the list A1, . . . , Am of the association names in AVar. The separa-
tion of the treatments of attributes and associations supports a more flexible design
of the interactions or connection between objects [8, 12, 1]. For simplicity, we only
deal with binary associations. General relations among classes can be modelled in
the same way.

4. For each class name C ∈ CN, there is one state variable, denoted by C, whose
value records the objects of class C currently existing in the system:

CVar
def
= {C : P(C)|C ∈ CN}

The type of C, denoted by type(C), is P(C).

The multiplicities of the roles of an association will be specified in the invariant of the
conceptual model.
Example The formalization of class diagram in Figure 1 is given as follows, where ev-
ery class is a subclass of class Object and we omit attr(C) when C has no attributes:

CN = {User,Loan,Copy,Publ,Resv}
super(C) = Object, for all C ∈ CN

attr(User) = {< Id : String, name : String >}
attr(Loan) = {< date : Date >}

AVar = {Takes : P(User× Loan), Borrows : P(Loan × Copy),
IsAvailable : P(Copy × User),
IsLendable : P(Publ × User), Has : P(Publ × Copy),
IsHeldFor : P(Copy × Resv), Makes : P(User × Resv)}

CVar = {User : P(User), Copy : P(Copy), Loan : P(Loan),
Publ : P(Publ), Resv : P(Resv)}

A refinement of the model allows us to add more details, such as attributes and associ-
ations [14].

4.2 Inheritance and Well-Formedness Conditions

Every attribute of a class in a conceptual model is inherited by its subclasses. Formally
speaking, we require

super(C) = D ⇒ attr(C) ⊇ attr(D)
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Thus, when drawing or describing a class diagram, we do not repeat the attributes of a
class in its subclasses.

A class diagram is well-formed when following conditions are met:

1. The function super does not cause circularity:

NoCirc
def
= super+ ∩ Id = ∅

where we abuse the notation by treating super as a binary relation, with Id denot-
ing the identity relation and the definition using relation composition “;”.

super+ def
=

⋃
n≥1 supern, super1 def

= super

supern+1 def
= supern; super

We use N < M to denote that N is a subclass of M.
2. An association only relate classes in the diagram, i.e.:

WFAsso
def
= ∀(A : P(C1 × C2)) ∈ AVar• (C1 ∈ CN ∧C2 ∈ CN)

3. The association names are all distinct:

DistAssoName
def
= dist(AN)

4. Classes should not be related by attributes, i.e. the type of an attribute should not
be a class:

AssoDistAttr
def
= ∀C ∈ CN, a ∈ attr(C) • type(C.a) ∈ DT

5. The attribute names of a class are distinct:

DistAttrName
def
= ∀C ∈ CN • dist(π1(attr(C)))

where π1 returns the list of the attribute names in attr(C), and dist is true if the
elements in the list are distinct.

Let W (D)
def
= NoCirc ∧ WFAsso ∧ DistAssoName ∧ AssoDistAttr

∧DistAttrName and it defines the well-formedness condition for a class diagrams
D.

4.3 Object Diagrams as System States

An object diagram of a class diagram is a state over the CVar∪AVar, i.e. a well typed
mapping from CVar ∪ AVar to P(Object) ∪ P(Object × Object).

For an association A : P(C1 ×C2) and an object oi ∈ Ci, i = 1, 2, let A(oi) be the
set of objects in the class that is associated with Ci. Formally,

A(oi)
def
= {oi⊕1 |oi⊕1 ∈ Ci⊕1 ∧ (o1, o2) ∈ A}

A(Ci)
def
=

⋃
o∈Ci

A(o)
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where 1 ⊕ 1 = 2 and 2 ⊕ 1 = 1. The multiplicities of the roles of an association can
now be defined as a state property. Let M1 and M2 be subsets of Int. We assign M1

and M2 as respectively the multiplicities of C1 and C2 to the association A to enforce
the following state property:

Multiplicity(A)
def
=

∧

i=1,2

∀oi ∈ Ci • (|A(oi)| ∈ Mi⊕)

asserting that the number of objects in C1 (or C2 resp.) linked to an object in C2 (or C1)
is bounded by the range of M1 (or M2). We use A : (M1,C1,C2, M2) to represent an
association between C1 and C2 with multiplicities M1 and M2.

It is also required that an association A only links objects that currently exist in the
state: for every association A : P(C1 × C2) in D,

LinkObjects(A)
def
= A(C1) ⊆ C1 ∧ A(C2) ⊆ C2

A state of a class diagram is valid if each association A of the class diagram satis-
fies both condition Multiplicity(A) and condition LinkObjects(A). In subsequent
discussion, we use the term state to refer to a valid state when there is no confusion.

Conditions Multiplicity(A) and LinkObjects(A) define the precise meaning of
an association A and the multiplicities of its roles depicted in a UML class diagram.
However, only classes, associations, and their multiplicities are not enough to express
all the constraints required by an application. In particular, multiplicity restrictions do
not allow relationships between associations to be expressed. For example, the library
application requires that a copy c that “is held” for a reservation r be a copy of the
publication p reserved by the reservation r. UML uses a OCL statement to describes
such as constraints. Because OCL is not expressive enough to specify the semantics
of use cases, this paper uses a relational logic to specify state assertions. The above
constraint in the library application can be described as the state assertion:

∀c ∈ Copy, r ∈ Resv, p ∈ Publ • IsHeldFor(c, r) ∧ IsOn(r, p) ⇒ Has(p, c)

where R(a, b) iff < a, b >∈ R. Furthermore, this constraint can be equivalently written
in terms of the algebra of relations

IsHeldFor ◦ IsOn ⊆ Has−1

where “◦” is the composition operation of relations, and Has−1 is the inverse of Has.

4.4 Conceptual Model

A conceptual model can now be formally defined as a pair CM = (D, Φ) where D is a
class diagram formalized above, and Φ is a state constraint on the states of D. We can
use the following Java-like format to specify a conceptual model as follows.
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Conceptual Model CM
Class C11 Extends C12 {T11 x1; . . . ;T1m xm}

. . . . . .
Class Cn1 Extends Cn2 {Tn1 y1; . . . ;Tnk yk}
Association (M1

1 ,C1
1,C

2
1, M

2
1 ) A1; . . . ; (M1

j ,C1
j ,C

2
j , M

2
j ) Aj

Invariant Φ
End CM

where C1 Extends C2 denotes that super(C1) = C2. M1
i and M2

i are sets of natural
numbers and represent the multiplicities of the roles C1

i and C2
i of association Ai,

i = 1, . . . , j.
The following syntax can be followed when we write the specification of a concep-

tual class diagram ccdec:

ccdec ::= empty|cdec|adec|ccdec; ccdec

where empty denotes the empty diagram, cdec a class declaration, and adec an associ-
ation declaration. From such a specification of a diagram D, we can easily calculate the
categories of the formal model. An alternative format would be to declare associations
as classes with two attributes of the types as the associated classes.

Although we cannot present the formal UML syntax of a class diagram in this paper
because of the space limit, the translation between a class diagram to its formalization
is straightforward and can be automated. Relating the graphic presentation and the for-
mal specification of a model in this way allows the user to obtain the later without
necessarily knowing the detailed formality of the specification language.

For a state constraint Ψ , we write CM � Ψ iff Φ ⇒ Ψ , meaning that Ψ can be
proven from Φ in the relational calculus. This allows us to reason about properties of a
conceptual model and relationships between two conceptual models. For example, we
can define transformations between conceptual diagrams that have to preserve a state
constraint.

4.5 Special Classes and Associations

We also use state constraints or invariants to specify some special classes and associa-
tions.

Abstract Classes. In a conceptual class diagram D, a class C is called an abstract
class, if C = C1 ∪ C2 ∪ . . . ∪ Ck is an invariant of the system, where C1, . . . ,Ck are
all the direct subclasses of C and k ≥ 2. This means an object in the abstract class can
only be created as an instance of one of its direct subclasses.

Association Classes. UML allows association classes to represent associations that
have data properties too. An example is shown in Diagram (a) of Figure 2.
JobContract is about the association Employs. This fact can be modelled by de-
composing the association into two associations as shown in Diagram (b) of Figure 2.
Notice the multiplicities of Company in the association Has and People in the as-
sociation IsFor are both 1 to ensure that an instance of JobContract only relates
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Company People
Employs

JobContract

salary

Diagram (a)

Company
JobContract

salary
People

1

Has IsFor

Diagram (b)

M1 M2

1 M2 M1

Fig. 2. Example of an association class.

one company and one person. However, we relate the association Employs with the
two newly introduced associations by the constraint

Has ◦ IsFor = Employs

In general, we model an association class AClass for an association A : (M1,C1,C2,
M2) by introducing two fresh associations

A1 : ({1},C1,AClass, M2) and A2 : (M1,AClass,C2, {1})
such that A1 ◦A2 = A. The decomposition also changes the many-to-many association
into one-to-many associations that are much easier to realize in the later design. This
treatment of association classes can be also used in applications where an association
class relates a number of classes.

Aggregations. An aggregation can be safely treated as a general association. Its special
properties, such as the visibility of the whole class to its part classes, are more relevant
in the design and implementation and thus should be deferred till the time when we
deal with the design. However, the property that a part of a composite whole exists if
and only when the whole itself exists, i.e. parts are created or destroyed when the whole
is created or destroyed, can be specified as a state invariant. Assume Composite and
Part1, . . . ,Partn are classes, and IsParti : ({mi},Parti,Composite, {1}) are
associations in a conceptual class diagram. We say that Composite is composite ag-
gregation of Parti, i = 1, . . . , n, if the following state invariants are true

HasParts
def
=

∀c ∈ Composite ⇒ ∃o11 . . . o1m1 ∈ Part1, . . . on1, . . . onmn ∈ Partn•
IsPart1(o11, c) ∧ . . . ∧ IsPart1(o1m1 , c)

∧ . . .
∧ IsPartn(on1, c) ∧ . . . ∧ IsPartn(onmn , c)

HasWhole
def
=

n∨

i=1

∃o ∈ Parti ⇒ ∃c ∈ Composite • IsParti(o, c)
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NoShare
def
=

n∧

i=1

(∀c1, c2 ∈ Composite, o ∈ Parti • IsParti(o, c1) ∧ Parti(o, c2) ⇒ c1 = c2)

And these invariants indicates a decision later in design and implementation that the
whole should the visibility to the parts and parts are realized as attributes of the whole
class.

Please note that there are many discussions about the meaning of an aggregation,
particular on the pUML mailing list (see www.puml.org). Here we have provided a way
of formally defining the semantics rather than fixing it by the above three invariants.
One can of course have different constraints if they fit in the application better. If one
wants to avoid any confusion, we suggest the use of a general association and specify
the constraints as required.

5 Use-Case Model

A use case model consists of a use-case diagram and a textual description of each use
case in the use case diagram. As said earlier, a use-case diagram provides only static
information about the use cases. The dynamic semantic aspects are described in the
textual descriptions of the use cases as sequences of interactions between actors and
the system. Therefore, for a formal design it is more important to formalize the textual
description.

An actor of a use case can be any entity external to the system. It interacts with the
system by calling a system operation to request a service of the system. The system
may also require services from actors to carry out a requested service. A UML system
sequence diagram is used to describe the order of the interaction between the actors
of in a use case and the system treated as a black box, but it does not describe the
change of the system state caused by such an interaction. It is important to note that a
system sequence diagram does not and should not provide information about interaction
among objects inside the system [5, 20]. The main task in the system design is in fact
to realize the use cases by interactions among objects inside the system. This is done
by decomposing the responsibilities of the use cases and assigning them to objects as
methods.

5.1 System Operations

When an actor calls a system operation to carry out a step of a use case, the execution of
the called operation changes the system state, by creating new objects, deleting existing
objects; forming or breaking links between objects; modifying attributes of objects. We
therefore treat the system under consideration as a component and a system operation a
provided method of the component [3]. We model this component as a use-case handler
class [20] that encapsulates the classes in the conceptual model:
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Class Use-Case-Name-Handler {
Attr : x : T;

Method : op1(val x1 : T11, res y1 : T21){c1};
. . . ;

Method : opn(val xn : T1n, res yn : T2n){cn}
}

where the attributes x may include state control variables so that the use case can be
defined by a state machine; and for each method opi(val xi : T1i, res yi : T2i) {ci},
val xi is a list of value parameters and res yi a list of result parameters. The command
ci in an operation allows us to specify the effect of the operation at different levels of
abstractions and is in one of the following forms:

c ::= d| x := e | c; c
| var x : T | end x variable declaration and undeclaration
| c � b � c conditional
| b ∗ c iteration
| c � c non-deterministic choice
|Actor.m a call to a required method of an actor Actor
| o.a(y) | o.a(e) reading and resetting attribute

where d is a framed design, b is a Boolean expression and e is an expression. In general,
an expression can be in one of the following forms:

e ::= x|null|new C|self |e.a|f(e)

We use a command var x : T to introduce local variables in a block, and a command
end x to end the variable block. A set of program variables, denoted by locvar, is
needed to record the set of local variables in scope in a state. The value of locvar is of
the form {v1 : T1, . . . , vm : Tm}.

5.2 Actors

An actor of a use case calls system operations in the use case controller. However, some
actors provide services to the system too. We thus can treat an actor as a component
which may provide services as well as to request services. As we are only required to
design the system under consideration, we only specify an actor’s services required by
the system in terms of methods in the actor class.

Class Actor {
Attr : x : T;
Method m1(val x1 : T11, res y:T12){c1};

...;
Method mk(val xk : Tk1, res yk : Tk2){ck};

}
where attributes x : T may include control state variables; mi is a method that can be
called by the system, but the command ci in such a method is only a framed design to
avoid infinite recursive method calls.
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5.3 System Specification

To specify a use case H , we specify its handler H-Handler and actors Actor1, . . . ,
Actorm. Putting these together we have a specification Spec(H). Suppose that for
the design of a system S we have identified the use cases H1, . . . , H� and constructed a
conceptual model CM . We combine the specification of the conceptual model CM , the
use-case handlers and the actors CM ; Spec(H1); . . . ; Spec(H�) to form the structural
specification of the system, i.e. the conceptual model, the use-handlers, and its environ-
ment that consists of the actors classes. This specification can be illustrated graphically
in the diagram in Figure 3.

User

Publication Copy

Loan
1 *Takes 1

1

Borrow

1 *Has
Reservation

IsOn* 1

1 0..1

IsHeldFor

1

*

Makes
IsAvailable

IsLendable

LibrarySystem

.................;

................

Class Actor_m;

Class Actor_1;

 H_1−Handeler;

H_k−Handler

Fig. 3. A system specification.

Each scenario or instance of a use case is an execution sequence of calls (by actors)
to methods in the use-case handler with given input values to the val parameters. To
describe all possible scenarios of all use cases, we introduce a set IN of variables for the
input values and a set OUT of variables for the output values. Let L be a set of control
variables that are used to control the order of the execution of the use case actions
(that will be formally defined soon). In general, scenarios of a use case can be executed
concurrently and this needs multiple instances of the use-case handler class.

Let the system state variables be those declared in the conceptual model CVar,
that now includes the use-case handler and the actor classes, AVar that now includes
an association between a use-case handler and an actor if the use-case handler requires
services from the actor.

Now define α
def
= AVar ∪CVar ∪ IN ∪OUT ∪ L. Let Φ be the state constraint

of the conceptual model conjoining with the condition that each actor class has a single
instance. We use a predicate Θ to specify the initial states for starting up the system. Θ
has to imply some instances of each use-case handler class H-Handler, and the instance
of each actor class Actor, denoted by Actor, have already been created.
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A use case action is a guarded command g −→ c, where g is a boolean expression
over IN ∪ OUT ∪ L and c is a command on IN ∪ OUT ∪ L to process the input
and output values, or a call h.op to a method op of an instance of a use-case handler
H-Handler. A use case is a set Uh of use case actions that contains calls to the same use-
case handler instance h. Let P be a set of use cases, a system requirement specification
S is then of the canonical form

Spec(S)
def
= CM ; Spec(H1); . . . ; Spec(H�) • P

We thus have obtained the transition system model (α, Φ, Θ, P ) for the system S.
In the case for sequential programs, only one instance h of a use-case handler H-

Handler is needed and h.op is simply written as op. Then each use case UH is a piece
of sequential program, and whole program P is an iterative deterministic choice among
the use cases:

¬stop ∗ (read(service); if {service = H −→ UH} fi; read(stop))

where read(x)
def
= true � x′ ∈ type(x).

A call to a system operation m(val x, res y) can also be written as a CSP-like
process

m?x −→ m(x, y); m!y

Then use case H as a whole can be written as a CSP process UH and the program P in
the canonical system specification can be specified as an iterative process
(UH1 [] · · · []UH�

)∗.

Therefore our methodology is:

– For a sequential software development, after the system operations are identified
and specified in the use-case handler classes, writing the formal specification of
the use cases becomes writing a specification of the main method P of the object-
oriented software.

– For a concurrent system, writing the formal specification of the use cases is to write
the specification of the run methods of the concurrent actors that requires services
from the system.

– However, as suggested in RUP and UML, the development takes a sequential view
first and treats concurrency in the implementation stage by using activity diagrams.
Then the design and implementation of the system is mainly to design and imple-
ment the system operations by decomposing them into interactions between objects
of the system.

This is a typical top-down development, but the use cases and system operations can be
taken in turns in an iterative process.

Example. For the library application, use case BorrowCopy is about how an actor
Borrower can borrow a copy of a publication. Obviously, its pre-conditions are: an user
and the copy are currently known to the system, the publication of the copy is lendable
to the user, and the copy is currently available. The effect of the use case is to create a
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loan to record the fact that the user has taken this loan on the copy, and the copy not
available anymore. The system has to record the date of the loan. For this, the system
needs to interact with the system clock to get the date. Therefore this use case has
another actor, and we call it Clock that is partially specified here as follows

Class Clock {
Attr : Date date, Time time;
Method : getDate(res out : Date){true � out′ = date}

}
The use-case handler can be given below

Class BorrowCopy-Handler {
Method BorrowCopy(val String Cid, String Uid){
Pre ∃c ∈ Copy, u ∈ User • c.Id = Cid ∧ u.Id = Uid∧

IsLendableT o(Has(c), u)∧ IsAvailable(c, u);
var Loan �; � := New Loan();
var Date date; Clock.getDate(date); �.(date); end date;
Loan := Loan ∪ {�};
Borrow := Borrow ∪ {< �, c >}; Takes := takes ∪ {< u, � >};
IsAvailable := IsAvailable/

⋃
u∈User{< c, u >}

end �
}

}
Strictly speaking, use case BorrowCopy is not well-formed regarding to the given
conceptual model in Section 4.1, as class Copy has no attribute Id declared. However,
if we refine (following a refinement rule in [14]) the conceptual model by adding this
attribute to class Copy. The specification becomes well-formed.

Introducing input variables Uid and Cid and assuming BorrowCopy-Handler is the
instance of the given use-case handler class already created, use case BorrowCopy is
programmed by the following statement:

read(Uid, Cid); BorrowCopy(Cid, Uid)

This corresponds to a system sequence diagram in which actor Borrower calls method
BorrowCopy of the system and the system calls getDate() method of the clock.

Suppose we declare in the use-case handler class three operations FindU() that
finds the user for a given user identifier, FindC() that finds the copy for an input copy
identifier, and RecordL() that checks whether a loan can be made and records it if so.
The BorrowCopy use case can be refined to or zoomed in [5] the following use cases

read(Uid, Cid); Find(Uid, u); FindC(Cid, cp);
RecordL(u, cp) � (u �= null ∧ cp �= null) � ⊥

The system calls the getDate() method of the clock in RecordL(). Thus the above
program corresponds to the system sequence diagram in which actor Borrower calls
method FindUser(), then FindC() and then RecordL() of the system, after receiving
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the call of RecordL(), the system calls getDate() of actor Clock. This sequence dia-
gram is a refinement of the earlier one. This refinement is carried out without changing
the underlying conceptual model.

Another dimension of refinement is to refine the conceptual model together with the
use cases. For example, the association Isavailable can be realized by a boolean at-
tribute IsA of class Copy such that for every copy c and every user u, Isavailable(c, u)
iff IsA = true. Then checking the availability off a copy becomes simply checking this
variable. This kind of refinement corresponds the traditional data refinement. Both re-
finements we have just discussed are not involved with allocation of parts of the compu-
tation of a system operation to internal objects of the system [14]. We have a delegation
rule in [14] to deal with delegating part of a method of an object to an object in another
class. Formal transformation of a use-case model into a UML object sequence diagrams
is out of the scope of this paper.

6 Semantics

This section defines a semantics of a system specification. We start with showing how
to validate an expression and determine its value.

6.1 Expressions

To validate an expression e, we introduce a predicate W (e) which is true just in those
circumstances in which e can be successfully evaluated.

A state binds variables in α to their values. A variables of type DT simply takes a
value of that type. However, a variable of a class C takes an object of C as it value. An
object is defined in terms of its identity, values of its attributes, and its current type:

{identity �→ id} ∪ {class �→ C} ∪ {a �→ value|a ∈ attr(C)}
For the identities of objects, we require that o1(identity) = o2(identity) iff o1 = o2.
W (e), type(e), and the value of e are defined as follows:

– x is well-formed if it is known in the environment of the use case: W (x)
def
= x ∈ α.

– W (null)
def
= true, and type(null)

def
= NULL. NULL is a reserved class name

and a subclass of all classes. The identity of null is undefined and null is the only
object without an identity.

– The variable self is only used as local variable when defining o.a(y) and o.a(e):

W (self)
def
= self ∈ locvar

– new C is well-formed if N is declared:

W (new C)
def
= C ∈ CN type(new C)

def
= C

new C(class)
def
= C

new C(identity) �∈ {id|∃o ∈ C• o(identity) = id}
newC(identity) is fresh and this will be also specified by newC �∈ C.
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– e.a is well formed if e is an object, and a is a declared attribute of the class of e:

W (e.a)
def
= W (e) ∧ type(e) ∈ CN ∧ a ∈ attr(type(e))

type(e.a)
def
= type(type(e).a)

e.a
def
= e(a)

– Well-formedness of built-in expressions f(e) is defined by the building rules. For
example, for two association variables Ai : (Mi1,Ci1,Ci2, Mi2), i = 1, 2,

W (A1 ◦ A2)
def
= W (A1) ∧ W (A2) ∧ C21 ≤ C12

This means if we want to derive a composition association from two given associ-
ations A1 and A2 the target class C12 of A1 should be the source class A21 or a
superclass of it.

6.2 Commands

Each command c is defined as a predicate of the form W (c) ⇒ D(c). W (c) is true
when the command is well-formed in the initial state and captures the consistency of
the conceptual model with the command. D(c) is of the form a framed design V :
p(x) � R(x, x′) and captures the dynamic behavior of the command c. This integrates
syntactic consistency and semantic consistency check mechanism with the traditional

specification-oriented semantics. Let skip
def
= ∅ : (true � true) be the command that

does nothing and terminates successfully, and the command chaos
def
= ∅ : (false �

true) that has unpredictable behaviour:

Let P and Q be designs. The notation P � b�Q describes a design which behaves like
P if b is true in the initial state, and like Q otherwise.

P � b � Q
def
= W (b) ∧ (type(b) = B) ⇒ (P ∧ b ∨ Q ∧ ¬b)

We use the condition Pre b
def
= (skip � b � chaos) to represent a Floyd assertion,

which behaves like chaos if the initial value of b is false, otherwise it has no effect.
This is useful when we specify the precondition of a use case.

Let {Pi|1 ≤ i ≤ n} be a family of designs. The multiple conditional choice

if {(bi → Pi)|1 ≤ i ≤ n} fi

selects Pi to execute if its guard bi is true. When all the guards are false it behaves like
chaos:

if {(bi → Pi)|1 ≤ i ≤ n} fi
def
=∧

i:1...n(W (bi) ∧ type(bi) = B) ⇒ (
∨

i:1...n(bi ∧ Pi) ∨ ¬(
∨

i:1...n bi) ∧ chaos)

For the non-determinism, let P and Q be designs. P � Q
def
= P ∨ Q stating that it

behaves either like P or Q.
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The command P ; Q is executed by first executing P followed by executing Q when
P terminates. The final state of P is passed on as the initial state of Q.

P (x, x′); Q(x, x′)
def
= ∃m • P (x, m) ∧ Q(m, x′)

If b is a condition, the iteration b ∗P repeats P as long as b is true before each iteration:

b ∗ P
def
= µX • (P ; X) � b � skip

where µX•F (X) denotes the weakest fixed point of the recursive equation X = F (X).
The semantics of an assignment is defined by the following design:

x := e
def
= W (x) ∧ W (e) ∧ (type(e) ≤ type(x)) ⇒ {x} : (true � (x′ = e))

Declaration var x : T introduces a new program variable x to allow x of type T
to be used in the portion of the program that follows it. The complementary command
takes the form end x. It terminates the region of allowable use of x:

var x : T
def
= x �∈ α ⇒ locvar : (true � locvar′ = locvar ∪ {x : T})

end x
def
= x ∈ locvar ⇒ locvar : (true � locvar′ = {x} � locvar)

where {x}�locvar denotes the set locvar after removing variable x. For convenience,
we allow variables to be declared together in a list var x1 : T1, . . . , xk : Tk as the short
hand of var x1 : T1; . . . ; var xk : Tk.

To avoid direct access to object attributes in order for further implementation, we
use an attribute reading command to get the value of an object’s attribute, and an at-
tribute resetting command to update an object’s attribute. This is important for further
refinement. The behavior of these two commands are defined as follows.

o.a(y)
def
= (W (o) ∧ W (y) ∧ type(o) ∈ CN ∧ a ∈ attr(o(class))) ⇒

if {(o(class) = C) →



var z : T, self : C; self := o;
{z} : (T = type(C.a) � z′ = self .a);
y := z; end z, self





| C ∈ CN} fi

o.a(e)
def
= (W (o) ∧ W (e) ∧ type(o) ∈ CN ∧ a ∈ attr(o(class))) ⇒

if { (o(class) = C) →



var z : T, self : C; z := e; self := o;
{self.a} : (T = type(C.a) � self ′.a = z);
o := self ; end z, self





| C ∈ CN} fi

6.3 Declarations

In Section 4.4, a syntax of the specification of a conceptual model was given, which is
composed from class declarations and association declarations. We treat the semantics
of a declaration in the same way as treating a command, i.e. we define its semantics as
a design.
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A class declaration Calass C1 Extends C2 {T1 a1; . . . ;Tm am} modifies the
logic variables Cvar, super and Attr according to the following design




C1,C2 ∈ CN

∧ C2 ∈ CVar
∧ ∧m

i+1 ai �∈ Attr(C2)



 �







CVar′ = CVar ∪ {C1 : PC1}
∧ super′ = super ∪ {C1 �→ C2}
∧ Attr′ = Attr∪
{C1 �→ {ai : Ti|1 ≤ i ≤ m} ∪ Atrr(C2)}







This design says that the declaration declares a new class C1 as a subclass of C2 and
the newly added attributes of C1.

Similarly, an association declaration Association (M1,C1,C2, M2) A adds a
new association to AVar and the state constraints on this association into the set
Invariant:

C1, C2 ∈ CVar ∧ A �∈ AVar �



AVar′ = AVar ∪ {A : P(C1 × C2)}

∧ Invariant′ = Invariant
∧Multiplicity(A)∧ LinkObjects(A)





A declaration of an actor or a use-case handler introduces methods as well as class
variables and attributes. For this, we introduce a logic variable Meth that is a function
from CN to the set of method definitions of the form

op(var x : T1, res y : T2){c}
Now, given a declaration of an actor or a use-case handler class

Class A {
Attr : x : T;
Method m1(val x1 : T11, res y1 : T12){c1};

...;
Method mk(val xk : Tk1, res yk : Tk2){ck};

}
Its semantics is defined by the design

A ∈ CN �



CVar′ = CVar ∪ {A}

∧ Attr′ = Attr ∪ {A �→ x : T}
∧ Meth′ = Meth ∪ {A �→ {midef | 1 ≤ i ≤ k}}





where midef is mi(var xi : T1i, res yi : T2i){ci}.
According to the semantics of sequential definition given in the previous subsection,

the semantics of the structural specification of a system CM ; Spec(H1); . . . ; Spec(H�)
given in Section 5.3 is now well defined and calculates the alphabet α and the state
invariant Φ of the transition system S = (α, Φ, Θ, P ).

6.4 Call to a Required Method

Let vale and rese be lists of expressions. A call Actor.m(vale, rese) to a method of
an actor assigns the values of the actual parameters vale to the formal value parameters
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val x of the declared method m. After it terminates, the values of the result parameters
res y of op are passed back to the actual value parameters rese.

Actor.m(vale, rese)
def
= m ∈ Meth(type(Actor)) ⇒







var x : T1, y : T2;
x := vale; y := rese;
type(Actor).m;
rese := y; end x, y







where

– Meth(type(Actor)) is the set of methods declared in the class of Actor.
– x, y are the value and result parameters of the method m.
– type(Actor).m stands for the design associated with the command of m defined in

the actor class type(Actor).

Notice that type(Actor) = Actor.

6.5 System Specification

An action of a use case that is a call to a method of a use-case handler h.op(val, res) is
defined similar to a call to a method of an actor by a use-case handler:

op ∈ Meth(type(h)) ⇒



var x : T1, y : T2;
x := vale; y := rese; type(type(h)).op;
rese := y; end x, y





The semantics of a guarded action g −→ c is W (g) ⇒ g ∧ c, where W (g) is true g is a
Boolean expression over IN ∪ OUT ∪ L.

We define the semantics of a system S = (α, Ψ, Θ, P ) be the set of infinite state
sequences

[[S]]
def
= {σ0, σ1 . . . , | σi ∈ Σα}

such that

– Σα is the set of states over α.
– σ0 satisfies the initial condition Θ and each state transition (σi−1, σi) is carried out

by an enabled call to a method in the use-case handler, i.e. there an action U ∈ P
such that (σi−1, σi) |= U .

– Ψ is a proof obligation that each action U ∈ P preserves this invariant in the sense
that (g ∧ Pre(U) ∧ Ψ) ⇒ (Post(U) ⇒ Ψ ′), where g is the guard of action U ,
Pre(U) is the precondition and Post(U) the post-condition of design U , and Ψ ′

is the predicate obtained from Ψ by replacing each free variable x with it primed
version x′.

A refinement of a system can be carried out by refining a method in a use-case handler.
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7 Conclusion and Related Work

7.1 Conclusion

We have given a relational model for UML conceptual diagrams and use cases. The
conceptual model of a system declares the system variables, and its object diagrams
form the system state space. We formally define a use-case model of a system to de-
scribe the interactions between the system and its external environment that consists of
the actors of the use cases. Both the actors and the system are treated as components
that have required services as well as provided services. The execution of a call to a
system service by an actor will cause a change of the system state with some new ob-
jects created, some existing objects deleted, some new links between object established,
some existing links between objects removed, and values of some object attributes mod-
ified. It enhances RUP for OO software development with a formal method roughly as
follows: we first write a use case informally; then construct a conceptual model based
on the use case; then draw a system sequence diagram and identify the methods of the
use-case handler class; transform the conceptual model into a formal specification and
formally specify these methods are in the notation provided in this paper; then check
the consistency of these methods with the conceptual model with the method provided
in this paper; refine the conceptual model and the use-case specification if they are not
consistency; for an executable specification1, test it by running it for some input values;
finally we can take this specification into the design, implementation, and testing. This
completes a cycle. Then new use cases can then be specified, analyzed, and the existing
conceptual model is refined to support the newly added use cases. During the design of
a new use case, one can reuse the methods of classes that have already been designed.
For more details about the integration of the formal method in this paper with RUP can
be found in [23].

The formalism is based on the design calculus in Hoare and He’s Unifying Theories
of Programming [15]. Some of the mathematics may seem rather theoretical at first,
but the approach is quite practical. For example, the choice of a java-like syntax for
the specification language is a pragmatic solution to the problems of representing name
spaces and (the consequences of) inheritance in a notation such as CSP.

7.2 Related Work

Instead of taking a process view, such as that in [9, 4], we keep an object-oriented and
state-based approach and the specification in a java-like style. We specify consistency
between the models in the preconditions in terms of well-formedness conditions of use
cases.

Our work [24] establishes the soundness and (implicity) the completeness of the
action systems for both conceptual and use-case modelling. This paper, extend that work
with a formal notation for the specification. Our related work [21] demonstrates that
our method supports stepwise refinement and reflects the informal way of using UML

1 If the program specification is not executable but realizable, refine it into an executable speci-
fication.
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for requirement analysis. Use-case refinement can be carried out using the traditional
refinement calculus of imperative programs, and can be done by refining the methods
provided in the use case-case handlers one by one [14].

We take a similar schema of the semantics of UML proposed in [26], where differ-
ent kinds of diagrams of a UML model are given individual semantics and then such
semantics are composed to get the semantics of the overall model. However, unlike [26]
that uses an universal algebraic approach, we use a simple predicate theory to define a
specification language with a syntax similar to Java programming language. We believe
that this feature makes the method more accessible to people who are familiar to the
general theory of programming languages. The main difference between our work and
that in [7, 6] is that we study formal semantic relationships between different models of
UML, rather than only formalization of individual diagrams. The paper [12] also treats
a class as a set of objects and an association as a relation between objects, but it does
not consider use cases. This model of associations can also be used in the specification
of connectors in architecture models [8, 27, 1]. Our work also shares some common
ideas with [2] in the treatment of use cases. However, our treatment of use cases is
at the system interface level without referring to the design details about how inter-
nal objects of the system behave, or what methods that a class of the system provides.
We believe our model is simpler and addresses the tight relationships among different
models more clearly. Also in our model, actors are not only users of the system but
also service providers. We will carry out the design of the system by decomposing the
methods in the use-case handlers, in turns one by one, and assign the decomposed re-
sponsibilities to classes of the conceptual model. This is the main task in the creation of
UML interaction diagrams, i.e. object sequence diagrams or collaboration diagrams.
The formalization of such a design within our framework in [14] is given in [23]. The
main difference between our work and most of the work of the precise UML consor-
tium (see www.puml.org) is that, rather than trying to formalize individual views of
UML, we aim to tightly combine different views in a unified formal language, and our
formal language provided built-in facilities to naturally capture the object-oriented fea-
tures of UML, rather than using a traditional formalism which were not designed for
object-oriented systems to derive the definitions of classes, objects, inheritance, etc.

In this paper, we have focused on only conceptual aspects of object orientation. The
transformation of a UML conceptual model into a formal specification can be easily
automated. We can refine a use case specified in our notation to executable specification
without the need the the details of inter-object interaction or the internal behavior of
objects. We can thus execute the use case to generate the post state (i.e. the post object
diagrams) from the pre-state (i.e. pre-object diagram) of the use case to validate the
use case and to check the consistency between the use case and the conceptual model.
Then based on the generated object-diagrams and our work on the refinement calculus
for object systems [14], we can decompose the use cases by “zooming them in” [5]. In
[22], we have developed a method for automatic generation of a prototype from a formal
specification of a UML requirement model. A prototype generated that way can be used
for the validation of a use-case model and a conceptual model, as well as to check the
state invariants and the consistency between a use-case model and a conceptual model.
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Abstract. Raising complexity of hardware devices being developed and
increasing time-to-market constraints has scaled up the risk of designing
bug-affected devices augmenting the interest into formal design tech-
niques. This approach considerably improves early error detection, giv-
ing good guaranties on the effectiveness of the devices produced. To
deploy the design some techniques must be provided to synthesise the
device preserving its features. The proposed technique defines an hard-
ware translation of LOTOS specifications into a Register Transfer Level
language. To preserve LOTOS synchronisation semantics an handshake
protocol is defined.

Keywords: Hardware Design, Synthesis, Rapid System Prototyping

1 Introduction

Until a few years ago hardware systems were designed using CAD tools, mainly
based on graphic editors, which enabled designers to define the electrical scheme
of the connections between the various components, and programs whereby it was
possible to extract a certain amount of information from them. This information
was used to test and simulate the behaviour of the device. Interpretation of
the results depended on the ability of designers who used their experience to
guarantee the correctness of the design.

Recent technologies allow the development of very complex hardware devices.
This complexity, together with increasing time-to-market constraints, has scaled
up the risk of designing bug-affected devices. In fact, they can cause serious
damage and also do harm in the case of critical safety devices.

For this reason the need has been felt, in the last few decades to update
design techniques in order to use formal techniques. This approach consider-
ably improves early error detection, giving good guarantees on the effectiveness
of the devices produced. A widely used design path starts with a requirement
specification and validation step devoted to formalising and verifying the device
requirements. Formal techniques allows us to perform device validation with
mathematical techniques rather then simulation-based techniques. This valida-
tion step is followed by device synthesis that allows to map the formal specifi-
cation onto the device implementation.

J.S. Dong and J. Woodcock (Eds.): ICFEM 2003, LNCS 2885, pp. 665–681, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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In [1] we proposed a direct-synthesis approach of a formal specification. The
proposed approach used a Formal Description Technique (FDT) named Lan-
guage Of Temporal Ordering Specification (LOTOS [2]). LOTOS is successfully
used for hardware specification as illustrated by [3][4]. Our approach starts with
the LOTOS specification of the device, then it is validated (by means of model
checking or theorem proving) and finally, the specification of the device is syn-
thesised into a Register Transfer Level (RTL) Language. The synthesis algorithm
proposed is a syntax-direct one, that is for each LOTOS operator a correspond-
ing hardware implementation is defined. In this paper we describe the translation
into RTL of the basic LOTOS operators. In LOTOS, it is possible to describe
several synchronisation mechanisms featuring the presence of one or more pro-
cesses that can transmit or receive information. Translation of the synchronisa-
tion mechanisms from LOTOS to RTL is accomplished only in the presence of a
single transmitter and one or more receivers. The other LOTOS synchronisation
mechanisms are not taken into account, because they are of little interest in
hardware applications. Translation of the complex LOTOS synchronisation into
RTL requires the use of several signals to guarantee the semantic correctness of
the translation. The need for two signals for synchronisation is due to the fact
that communication in LOTOS is a rendez-vous between events.

In literature there exist other examples of synthesis of LOTOS specifications
into hardware devices. In [5] a technique to transform a LOTOS specifications
into a VHDL specification is presented, but it is restricted to two-way syn-
chronisation. In [6] a LOTOS synthesis algorithm that uses an EFSM model
of a LOTOS specification is presented. This approach implements the multi-
way synchronisation among processes using a rendezvous table that models the
synchronisation mechanism.

Section 2 introduces LOTOS peculiarities. Section 3 discusses the implemen-
tation model of the synchronisation. Section 6 describes the synthesis algorithm
and in section 7 a case study is shown.

2 LOTOS

LOTOS basic idea is that the behaviour of a system can be described by observ-
ing from the outside the temporal order in which events occur. In practise, the
system is seen as a black-box which interacts with the environment by means of
events, the occurrence of which is described by LOTOS behaviour expressions.

The language has two components: the first is the description of the behaviour
of processes and their interaction, and is mainly based on the CCS[7] and CSP[8];
the second is the description of the data structure and expressions, and is based
on ACT ONE[9].

In LOTOS distributed systems are described in terms of processes; the system
as a whole is represented as a process, but it may consist of a hierarchy of
processes (often called subprocesses) which interact with each other and the
environment. LOTOS models a process by its interaction with the environment.
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The atomic forms of interaction take the name of events. The definition of a
process in LOTOS is:

process <proc-id> <par-list> := <behaviour-expression>
endproc
where: <proc-id> is the name to be assigned to the process;

<par-list> is the list of gates with which the
process can interact with the environment;

<behaviour-expression>s are the LOTOS expressions which define the be-
haviour of the process The recursive occurrence of a process-identifier in a be-
haviour expression makes it possible to define infinite behaviour (both auto- and
mutual recursion are possible). A completely inactive process, i.e. one which
cannot execute any event, is represented by stop. In the following we describe
the basic operators by which it is possible to describe any system.

The action prefix represents the basic synchronisation. This operator pro-
duces a new behaviour expression from an existing one, prefixing it with the
name of an event. If B is a behaviour expression and a is the name of an event,
the expression a;B indicates that the process containing it first takes part in the
event a and then behaves as indicated by the expression B.

The choice operator models the nondeterministic behaviours which takes
place when two (or more) event are available. If B1 and B2 are two behaviour
expressions, then B1 [] B2 denotes a process which can behave either B1 or B2.
Choice between the two forms of behaviour is made by the environment.

To simplify the description of the system being specified a lot of derived
operator are present in LOTOS. They can be easily rewritten in term of the
basic one but the resulting specification is longer and difficult to understand.
Some of the derived operators are described in the following.

The arbitrary interleaving represents the independent composition of two
processes, B1 and B2 and is indicated as B1 ||| B2. If the two processes have
some event in common, B1 ||| B2 indicates their capacity to synchronise with
the environment but not with each other.

The parallel operator is indicated as B1 || B2 and it means that the two
processes have to synchronise with each other in all events. B1 || B2 can take
part in an event if and only if both B1 and B2 can participate. The general
parallel composition is a general, way of expressing the the parallel composition
of several events and is denoted with the expression B1 |[a1,...,an]| B2.

The sequential composition of two processes, B1 and B2, is indicated as
B1>>B2 and model the fact that when the execution of B1 terminates successfully
B2 is executed (“>>” is also known as an enabling operator). To mark successful
termination, there is a special LOTOS process called exit.

Every LOTOS behaviour expression can be preceded by a Boolean condition,
called guard, which determines whether the expression is to be executed or not.

The introduction of types makes it possible to describe structured events.
They consist of a label or gate name which identifies the point of interaction,
or gate (i.e. an event), and a finite list of attributes. Two types of attributes
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Table 1. Type of interactions among processes.

process B1 process B2 sync condition int. sort effect
g!E1 g!E2 value(E1) = value(E2) matching synchronisation
g!E g?x : t value(E) ∈ domain(t) passing after synch. x = value(E)
g?x : t g?y : u t = u generation after synchronisation

x = y = v, ∀v ∈domain(t)

are possible: value declaration and variable declaration. Table 1 presents the
permitted interactions.

3 Implementation Model of Synchronisation

In this section the model of the complex LOTOS synchronisation mechanism is
illustrated. As discussed in section 2, the synchronisation among LOTOS pro-
cesses takes place through interaction points named gate. Three kind of synchro-
nisation can be modelled in LOTOS:

1. synchronisation with no data exchange;
2. value declaration g!x, in which a gate is ready to synchronise itself offering

a data x. In this case we refer to the gate as transmitter;
3. variable declaration g?y, in which a gate is ready to synchronise itself ac-

cepting a data that will be stored in y. In this case we refer to the gate as
receiver;

In this paper we discuss about synchronisation model under the hypothesis
that in each randez-vous mechanism are involved no more than a transmitter
(with the same name), whereas, can be involved several receiver. Synchronisation
in which are involved only receivers or with more than one transmitter are out
of scope of this paper, in fact in describing hardware device these cases are not
remarkable.

LOTOS choice operator describes the nondeterminism among the occurrence
a set of events. The synthesis algorithm solve the nondeterministic choice with
a policy discussed in 6.1.

Each gate involved in an event is modelled with four signals (ready, ack,
enable, data enable) used to implement the multi-way rendezvous. These
signals take up different sense according to whether gate is a transmitter or a
receiver.

Receiver
Let ai, a gate, refer to:

– [ai]r an output signal through gate ai (ready signal). When it is raised
denotes to the transmitter, the receiver availability to take part in the syn-
chronisation.

– [ai]a an input signal through gate ai (ack signal). When it is raised denotes
the transmitter availability to take part in the synchronisation.
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– [ai]e an output signal (enable signal). It is meaningful only in the case of
nondeterminism in a choice This signal is used to select one among several
events offered.

– [ai]v an output signal through ai (data enable signal). It enables data
storing in xi.

Transmitter
Let ai, a gate, refer to:

– [ai]r an input signal through gate ai (ready signal), it notifies to ai the
availability of all receiver to take part in the synchronisation. It is the result
of the logic AND among all ready signals emitted by the receivers.

– [ai]a an output signal through gate ai (ack signal). It became high to notify
receivers transmitter availability to take part in the synchronisation. This
signal is emitted after the ready signal reception from all receivers involved.

– [ai]e an input signal through gate ai (enable signal). It is meaningful only in
the case of nondeterministic choice. It is the result of the logic AND among
all enable signals emitted by the receivers.

– [ai]v an output signal through ai (data enable signal). It enables the data
reading of xi.

[a]v [a]v [a]v [a]v

transmitter receiver receiver1 2 .  .  .
a!x a?y a?y a?y

receiver n

[a]

[a]
[a]

r
r

r

[a]a

[a]
[a]

[a]e
e

eENABLE

ACK

READY

DATA ENABLE

1 2 n

Fig. 1. Interactions among transmitter and receivers.

Now, we discuss our approach in the more general case, that is the one-to-many
synchronisation, in which are involved one transmitter and n receivers. The
synchronisation it is solved in four phases (see figure 1):

1. all the receivers set high the ready signal to notify their availability to
take part in synchronisation. The transmitter ready signal is equal to the
logic AND of all receivers ready signals. The ready signal is raised, the
transmitter will be certain that all receiver are ready to synchronise.
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2. In this phase the transmitter raises the ack signal to notify the receiver of
the rendezvous starting.

3. In this phase each receiver raises his enable signal. Whereas the enable
signal of the transmitter is the logic AND of all receiver enable signals. As
said above, this signal is used to manage the selection among all the possible
synchronisation event.

4. Each gate (both transmitter or receiver) that take part in synchronisation
raises its data enable signal to allow the data transfer.

4 Notation

Each LOTOS behaviour-expression can be expresses in term of a set of choice-
expressions. For this reason, the synthesis algorithm is based on direct synthesis
of a generic choice expression. In this section, we introduce several useful nota-
tion.

Given a choice expression:

– let be N the total number of branches;
– let be M the branches guarded by an event;
– let be K the branches being transmitter (!) and M − K being receivers (?);
– let be A the finite set of atomic actions;
– let be P the finite set of LOTOS processes names (included stop and exit).

Definition

1. we denote T RANS as the ordered set (with signature K) of 4-uple
(ai, Bi, xi, condi) for i = 1..K | [condi] → ai!xi; Bi is a transmitter branch
of choice, where:
– ai ∈ A denotes the event if the i − th branch;
– Bi denotes the behaviour expression following action ai;
– !xi denotes the value offering by variable xi thought gate ai;
– condi denoted the boolean guard of i − th branches;

In the following we denote with Ti each 4-uple ∈ T RANS.
2. we denote RECVS as the ordered set (with signature M − K) of 5-uple

(ai, Bi, xi, typei, condi) for i = K + 1..M | [condi] → ai?xi : typei; Bi is a
receiver branch of the choice where:
– ai ∈ A denotes the event if the i − th branch;
– Bi denotes the behaviour expression following action ai;
– ?xi : typei denotes a variable offering of the variable xi of type typei

– condi denotes the boolean guard of i − th branches;
In the following we denote with Ri each 5-uple ∈ RECVS.

3. we denote PROCS as the ordered set (with signature N − M) of 2-uple
(Pi, condi) for i = M + 1..N | [condi] → Pi is the branch of the choice with
process Pi instantiation, where:
– condi denotes the boolean guard of i − th branch;
– Pi ∈ P denotes the instantiation of a process.
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In the following we denote with PRi the 2-uple ∈ PROCS.

Using the above notation, a generic choice can be written as follows (where
we use

∑
instead of [ ]):

choice(T RANS, RECV, PROCS) =
∑

Ti∈T RANS
[condi] → ai!xi; Bi+

∑

Ri∈RECVS
[condi] → ai?xi : typei; Bi+

∑

PRi∈PROCS
[condi] → Pi (1)

Definition

– Given a 4-uple Ti ∈ T RANS, we define a function Sk
T which returns the

l’kth element of Ti with k = 1..4.
– Given a 5-uple Ri ∈ RECVS, we define a function Sk

R which return the l’kth
element of Ri with k = 1..5.

– Given a 2-uple PRi ∈ PROCS, we define a function Sk
PR which return the

kth element of PRi with k = 1..2.

Using the previous notation, each choice can be modelled using (1).

Value Offering
A behaviour expression in which a gate a offers a value x and then behaves like
process B (that is a!x; B) is a sub-cases of generic choice and can be obtained
by (1) with the following parameters :

choice({(a, B, x, true)}, {}, {})

Variable Offering
A behaviour expression in which a gate a able to accept a value x of type type
and then behaves like process B (that is a?x : type; B) is a sub-cases of generic
choice and can be obtained by (1) with the following parameters:

choice({}, {(a, B, x, type, true)}, {})

Example
The following choice expression:

[guard1] -> a1!x1;B1
[]
[guard2] -> a2?x2:type2;B2
[]
[guard3] -> P1

can be expressed by (1) with the following parameters:

choice({(a1, B1, x1, guard1)}, {(a2, B2, x2, type2, guard2)}, {(P1, guard3)})
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5 The Target RTL Language

The RTL language used throughout this paper is a language which can define
the structure of a generic digital system. Any digital system is modelled by using
a functional block which receives information from the external environment by
using signals and processes them producing output signals (the response to the
environment). Each functional block is implemented by the control unit and the
processing unit. The first unit provides the signal to synchronise the operations
performed by the second. The full system is based on a single clock which provides
the synchronisation. The basic hypothesis is that the circuit must be stable before
the clock cycle finishes. The RTL module is defined by the following sections:

– components: it contains the declaration of the components which make up
the processing unit.

– control sequence: it defines the internal command sequence which must be
emitted by the control unit.

– permanent assignment: it defines an operation which must be repeated every
clock cycle.

The control sequence is made up of steps; each one is numbered and must be
executed in a single clock unit. Each step is made up of one or more commands
which are executed in parallel. All the commands belonging to a step are sepa-
rated by ;. Therefore the control sequence has the following form:

i: op1; op2; op3
j: op4; op5

where i and j are the generic step i and step j and opi are the commands.
The main constructs of the language are the assignment and the conditional.

The first represents the transfer of a value between two registers. The right hand
side of the operation can contain any Boolean operation. The two operators are
represented as follows:

i: targetRegister := sourceRegister
j: targetRegister := sourceRegister_1 and sourceRegister_2 or...
k: if( c1; c2 ) then (op1; op2)
h: if( c3; c4 ) goto (n; m)

To describe a direct connection between elements, the language allows us to
describe the assignment of a value to a line; in this case the assignment is only
valid for one clock cycle. It is described by the operator “=” and it is also used
to describe the assignment to output lines.

The exit( < parameter > ) construct denotes the termination of the module;
this is signalled on the wire called < parameter > setting it high.
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6 Synthesis Algorithm

6.1 Restrictions

In this paragraph we present some of the hypothesis on which the synthesis
process is based, and in particular which restrictions we impose in the use of
LOTOS.

The basic element of LOTOS is the event, which consists of the interaction
between processes based on a rendez-vous mechanism. As said in section 2 three
different types of interaction are present in LOTOS: value matching, value gen-
eration and value passing. The only one which is meaningful for our application
is value passing because it has a correspondence with the physical reality of
devices, thus it is the only one we have taken into account.

The instantiation of processes in LOTOS plays a fundamental role in the
specification of systems; some situations which are syntactically correct cannot
be used due to the static nature of hardware. The main limit imposed on the use
of processes lies in the use of recursion and in the form of the gate list. Recursion
requires the use of the same gate list for any instantiation of the process.

Mutual recursion must be avoided because it can generate a dynamic struc-
ture and therefore it has no correspondence in hardware. Moreover, self- instan-
tiation is only allowed if the gate list is not modified.

In the implementation of the choice operator we have to solve the nonde-
terminism typical of this operator because it cannot be easily implemented in
either hardware or software.

Moreover in a choice all the guards related to a process instantiation must
be mutually exclusive with respect to all other guards (we consider all branches
without guards as they are guarded by TRUE). More formally:

∀ i, j, l where i = 1..K, j = K + 1..M, l = M + 1..N

valueOf(S2
PR(PRl)) �= valueOf(S4

T (Ti))

AND

valueOf(S2
PR(PRl)) �= valueOf(S5

R(Rj))

Where function valueOf(arg) returns the value of the expression arg.
We are working on discarding some of the above limitations.

6.2 Translation of Choice into RTL

In this section the synthesis of a generic LOTOS choice and some simple ex-
amples are presented. The proposed technique is valid under the restrictions
discussed in section 6.1.

The following RTL module is the synthesis of a generic choice, parametrised
with respect to the number and types of branches.

RTL instruction labelled by 1 implements the first phase of synchronisation
(see section 3). In this phase the selection among synchronisation that can take
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place is performed. Depending on the selected branch (transmitter or receiver
or process instantiation) one of next blocks will be executed. In particular, first
block (beginning from line (3i − 1) for i = 1 . . . K) implements the i-th trans-
mitter, second block (beginning from line (K + 2i) for i = (K + 1) . . . M)
implements the i-th receiver and third block (beginning from line (M + K + i + 1)
for i = (M + 1) . . . N) implements the i-th process instantiation branch.

choice(T RANS, RECVS, PROCS)RT L =

1 :
M⋃

i=K+1
[S1

RRi)]r = 1;

if

(
not

( K∨

i=1
([S1

T (Ti)]r and S
4
T (Ri)) or

M∨

i=K+1
([S1

R(Ri)]a and S
5
R(Ri)) or

N∨

i=M+1
(S

2
PR(PRi))

)
;

K⋃

i=1

(
([S1

T (Ti)]r and S
4
T (Ti)) and

i−1∧

j=1
not ([S1

T (Tj)]r and S
4
T (Tj))

)
;

M⋃

i=K+1

(
([S1

R(Ri)]a and S
5
R(Ri)) and

K∧

j=1
not([S1

T (Tj)]
r

and S
4
T (Tj))

and
i−1∧

j=K+1
not([S1

R(Rj)]
a

and S
5
R(Rj))

)
;

N⋃

i=M+1

(
((S

2
PR(PRi)) and

K∧

j=1
not([S1

T (Tj)]r and S
4
T (Tj))

and
M∧

j=K+1
not([S1

R(Rj)]a and S
5
R(Rj)) and

i−1∧

j=M+1
not(S

2
PR(PRj))

)
;

)

goto
(
1;

K⋃

i=1
(2 + 3(i − 1));

M⋃

i=K+1
((2 + 3K) + 2(i − (K + 1)));

N⋃

i=M+1
((2M + K + 2) + (i − (M + 1)));

)

for i = 1 . . . K

(3i − 1) : [S1
T (Ti)]a = 1

(3i − 1) + 1 : if (not[S1
T (Ti)]e; [S1

T (Ti)]e) goto(1; (3i − 1) + 2)

(3i − 1) + 2 : [S1
T (Ti)]v = S

3
T (Ti); exit(i)

. . .

for i = (K + 1) . . . M

(K + 2i) : [S1
R(Ri)]e = 1

(K + 2i) + 1 : S
3
R(Ri) := [S1

R(Ri)]v ; exit(i)

. . .

for i = (M + 1) . . . N

(M + K + i + 1) : exit(i)

In the following the above formula is used to produce the RTL description of the
simple examples presented in section 4.
Value Offering

choice({(a, B, x, true)}, {}, {})RTL =
1 : if (not (ar and true) ; ar and true) goto (1; 2)
2 : aa = 1
3 : if (not ae; ae) goto (1; 4)
4 : av = x; exit(1)
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Variable Offering

choice({}, {(a, B, x, type, true)}, {})RTL =

1 : ar = 1; if (not (aa and true) ; aa and true) goto (1; 2)
2 : ae = 1
3 : x := av; exit(1)

Example

choice({a1, B1, x1, guard1}, {(a2, B2, x2, type2, guard2)}, {P1, guard3})RTL =
1 : a1r = 1;

if
(

not ((a1r and guard1) or (a2a and guard2) or ((guard3)) ;
(a1r and guard1) ;
((a2a and guard2) and not (a1r and guard1)) ;
((guard3) and not (a2a and guard2) and not (a1r and guard1)) ;

)
goto (1; 2; 5; 7)

2 : a1a = 1
3 : if (not a1e; a1e) goto (1; 4)
4 : a1v = x1; exit(1)
5 : a2e = 1
6 : x2 := a2v; exit(2)
7 : exit(3)

6.3 Graphic Layout

RTL being a representation of actual devices, it is possible to draw a netlist using
proper blocks. Each block represents a choice operator, the unique difference lies
in number of input/output terminals which actually depends on the number of
branches.

Figure 2 shows the generic choice block, the signals are grouped as follows:

– transmitter. For each gate (ai) needs five signals to implement the synchro-
nisation model of transmitters: [ai]r, [ai]a, [ai]e, [ai]v, condi;

– receiver. For each gate (ai) needs five signals: [ai]r, [ai]a, [ai]e, [ai]v, condi;
– processes/guards. These groups collects all the signals needed to implement

the synchronisation of branch where a process instantiation is present. Only
one signal is needed and it is condi;

– control. This group collects signals needed to drive the block:
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Fig. 2. Generic choice Block.

• IN. When it is raised the choice starts, usually it is connected to the exit
signal of another block;

• EXIT. When it is raised active choice has finished and is going to activate
the next. They are equal to the number of branches;

• RST. It resets the block;
• CLK. The clock.

7 Case Study

In order to show the applicability of the methodology, we will use the example
of the traffic light controller [10] (see figure 3).

The problem consists of the creation of a device for controlling the traffic
lights of a crossroad between a small farm road and a big highway road, in order
to maximise the time during which the green signal remains on the highway.
This device must operate in order to keep the traffic light of the highway with
the green signal for at least a time equal to “long”. At any moment after “long”,
if there are cars waiting on the farm road, the traffic light on the farm road must
switch to the green signal. This condition must persist until there are still some
cars on the farm road, or until a time equal to “long” has passed.

In both traffic lights the yellow signal must persist for a time equal to “short”.
The system consists of 5 modules:

1. block that generates the times “short” and “long” (Clock);
2. farm road traffic light;
3. highway road traffic light;
4. sensor that communicates, through signals “CP” and “CnP”, whether cars

are present or not on the farm road;
5. traffic light controller.
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Fig. 3. Traffic light controller schema.

The block Clock, after receiving the reset (Rst) signal, emits a “TS” signal af-
ter a time equal to “short”, and then emits a “TL” signal after a time equal to
“long”. Let us assume that the traffic light in the farm road is at the beginning in
the red state, while the one in the highway road is in the green state. The Traffic
Light Controller manages the synchronization between the two traffic lights and
the sensor. The traffic light on the highway is kept in the green state for at least
a time equal to “long”. Da modificare It then remains green while no cars are
in the farm road; otherwise, it switches to yellow, and remains in that state for a
time equal to “short”, and it then becomes red. The traffic light in the farm road
becomes green when the one in the highway becomes red. It remains green until
there are still some cars, or until a time equal to “long” passes. Then it switches
to yellow for a time equal to “short” and becomes red again, enabling the traffic
light in the highway road at the same time. Let us assume that modules Clock,
Sensor and the two traffic lights already exist. The module TLC must be syn-
thetized according to what has been informally specified before.
In figure 4 the LOTOS TLC specification is shown. It is divided in two main
blocks: Timer and Controller, each one subdivided into other subprocesses. The
Timer works as an interface between the external Clock and the module Con-
troller. The module Controller implements the control functions of traffic lights,
by interfacing with the module Timer and with the external Sensor module.
The Controller consists of four other modules, each representing a state of the
system. For the sake of semplicity we discuss the synthesis of the process Far-
mGreen only. As can be seen in figure 4 the process FarmGreen is a four-way
choice:
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Fig. 4. Traffic light controller specification.

1. synchronizes on CP and behaves as FarmGreen;

2. synchronizes on LG and behaves as FarmYellow;

3. synchronizes on SH and behaves as FarmGreen;

4. synchronizes on CnP and behaves as FarmYellow.

Therefore the process FarmGreen is synthetised by two blocks: the former is
RTL translation of the four-way choice, the latter is the FarmYellow process
implementation. RTL translation of the four-way choice is as follow:
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choice( {},

{ (CP, FarmGreen, null, void, true),

(LG, FarmY ellow, null, void, true),

(SH, FarmGreen, null, void, true),

(CnP, FarmY ellow, null, void, true)},

{} )RTL =

1 : [CP ]r = 1; [LG]r = 1; [SH]r = 1; [CnP ]r = 1;

if (

not([CP ]a or [LG]a or [SH]a or [CnP ]a);

([CP ]a);

([LG]a and not [CP ]a);

([SH]a and not [LG]a and not [CP ]a);

([CnP ]a and not [SH]a and not [LG]a and not [CP ]a);

) goto(1; 2; 4; 6; 8)

2 : [CP ]e = 1

3 : null; exit(1)

4 : [LG]e = 1

5 : null; exit(2)

6 : [SH]e = 1

7 : null; exit(3)

8 : [CnP ]e = 1

9 : null; exit(4)

The label null in the above RTL code means that no value is exchanged during
synchronizations, according to LOTOS specification of the process FarmGreen.
Actually this label is a dummy operation then it can be removed. Figure 5 shows
the schematic of the synthetised FarmGreen. As can be seen, signals exit(1) and
exit(3) are directly connected to the input of the choice because firing either CP
or SH leads to the re-instantiation of the same process. This fact is equivalent to
substitute exit(1) and exit(3) with goto(1). Instead exit(2) and exit(4) jumps to
the first instruction of the module FarmYellow. Figure 5 show the HW synthesis
of all other modules that form the TLC.

8 Conclusions

Designing hardware devices is an hard task due to the complexity of the system,
strictly time-to-market constraints and risk linked to safety application. Using
formal techniques to help designer to develop error-free devices represents a good
solution but several tools are needed to make comfortable this approach.

In this paper we focus on the synthesis of the specification starting from LO-
TOS. First, we describe the structure of the hardware device implementing the
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Fig. 5. Hw implementation of TLC.

LOTOS choice operator, than, thanks to the LOTOS features, the specification
of the device being implemented is transformed in order to use only choices op-
erators. Choice translation is described by a parametric RTL expression which
covers all possible type of synchronisation. Finally, an example of application of
the proposed synthesis technique is presented.

Currently a prototype implementation of the synthesis algorithm is under
testing in order to develope a full design tool.

Further study needs to optimise resulting devices in order to reduce either
wire or flip-flop number.
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