
Lecture Notes in Computer Science 6921
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Luís Soares Barbosa Markus Lumpe (Eds.)

Formal Aspects of
Component Software

7th International Workshop, FACS 2010
Guimarães, Portugal, October 14-16, 2010
Revised Selected Papers

13

Volume Editors

Luís Soares Barbosa
Universidade do Minho
HASLab (High Assurance Software Laboratory)
and Dept. of Informatics
Campus de Gualtar, 4700-320 Braga, Portugal
E-mail: lsb@di.uminho.pt

Markus Lumpe
Swinburne University of Technology
Faculty of Information and Communication Technologies
P.O. Box 218, Hawthorn, VIC 3122, Australia
E-mail: mlumpe@ict.swin.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-27268-4 e-ISBN 978-3-642-27269-1
DOI 10.1007/978-3-642-27269-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011943630

CR Subject Classification (1998): D.2, F.3, D.3, D.2.4, F.4.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the Organizing Committee we are pleased to present the proceedings
of the 7th International Workshop on Formal Aspects of Component Software
(FACS 2010) organized by the University of Minho and held in Guimarães,
Portugal during October 14–16, 2010.

The objective of FACS is to bring together researchers and practitioners in
the areas of component software and formal methods in order to promote a
deeper understanding of the component-based software development paradigm
and its applications. The workshop seeks to develop a better understanding
of how formal methods can or should be used to make component-based soft-
ware development succeed. Formal methods consist of mathematically based
techniques for the specification, development, and verification of software and
hardware systems. They have shown their great utility in providing the formal
foundations of component-based software and working out challenging issues
such as mathematical models for components, composition and adaptation, or
rigorous approaches to verification, deployment, testing, and certification.

FACS 2010 was the seventh event in a series of workshops, founded by the
International Institute for Software Technology of the United Nations Univer-
sity (UNU-IIST). The first FACS workshop was co-located with FM 2003 (Pisa,
Italy, September 2003). The following FACS workshops were organized as stan-
dalone events, at UNU-IIST in Macau (October 2005), at Charles University in
Prague (September 2006), at INRIA in Sophia-Antipolis (September 2007), and
at University of Málaga in Spain (September 2008). FACS 2009 was part of the
Formal Methods Week in Eindhoven (October 2009).

The FACS 2010 program consisted of two keynotes given by Sanjit Seshia
from the University of California, Berkeley, USA, and Lúıs Caires from the New
University of Lisbon, Portugal, a panel discussion on service-oriented comput-
ing, and technical paper presentations (13 full papers and 6 Doctoral Track
extended abstracts). The technical papers were carefully selected from a total
of 37 submissions originating from 19 countries. Each paper was reviewed by
at least three Program Committee members. The entire reviewing process was
supported by the EasyChair Conference System. This LNCS volume contains
the revised versions of the papers accepted for publication in the FACS 2010
proceedings.

We would like to express our gratitude to to all the researchers who submitted
their work to the workshop and to all colleagues who served on the Program
Committee and helped us prepare a high-quality workshop program. We are also
grateful to the invited speakers, Sanjit Seshia from the University of California,
Berkeley, USA, and Lúıs Caires from the New University of Lisbon, Portugal,
for the willingness to present their research and perspectives on formal methods
for component-based software at the workshop. And last but not least, we would

VI Preface

like to thank the panel members Marjan Sirjan, Zhiming Liu, Carlos Canal, and
Farhad Arbab for their valuable and inspiring contributions to a successful panel
discussion that helped clarify the differences between the component-based and
service-oriented paradigms.

FACS 2010 was financially supported by FCT, the Portuguese Foundation for
Science and Technology, the School of Engineering of the University of Minho,
and the CCTC Research Center. The active support of the International Institute
for Software Technology of the United Nations University (UNU-IIST), at all
stages of the workshop organization, is also deeply acknowledged.

A special word of gratitude is due to our colleagues at Minho who made
this event possible: Sara Fernandes, Nuno Rodrigues, Nuno Oliveira and Hugo
Macedo.

July 2011 Markus Lumpe
Lúıs S. Barbosa

Organization

Program Chairs

Lúıs S. Barbosa Universidade do Minho, Portugal
Markus Lumpe Swinburne University of Technology, Australia

Program Committee

Farhad Arbab CWI, The Netherlands
Marco Autili L’Aquila University, Italy
Lúıs S. Barbosa Universidade do Minho, Portugal
Andreas Bauer Australian National University, Australia
Frank S. de Boer CWI, The Netherlands
Christiano Braga Universidad Complutense de Madrid, Spain
Carlos Canal Universidad de Málaga, Spain
Rolf Hennicker LMU Munich, Germany
Einar Broch Johnsen Universitetet i Oslo, Norway
Zhiming Liu IIST UNU, Macau, China
Ying Liu IBM China Research, China
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine INRIA, Centre Sophia Antipolis, France
Sun Meng CWI, The Netherlands
Corina Pasareanu NASA Ames, USA
Patrizio Pelliccione L’Aquila University, Italy
Frantisek Plasil Charles University, Czech Republic
Anders Ravn Aalborg University, Denmark
Nuno Rodrigues IPCA, Portugal
Bernhard Schätz Technical University of Munich, Germany
Marjan Sirjan University of Tehran, Iran
Volker Stolz UNU-IIST, Macau, China
Carolyn Talcott SRI International, USA
Dang Van Hung Vietnam National University, Vietnam
Naijun Zhan IOS, China

Steering Committee

Zhiming Liu IIST UNU, Macau, China, Coordinator
Farhad Arbab CWI, The Netherlands
Lúıs S. Barbosa Universidade do Minho, Portugal
Carlos Canal University of Málaga, Spain
Markus Lumpe Swinburne University of Technology, Australia

VIII Organization

Eric Madelaine INRIA, Sophia-Antipolis, France
Corina Pasareanu NASA Ames Research Center, USA
Sun Meng CWI, The Netherlands
Bernhard Schätz Technical University of Munich, Germany

Local Organizing Committee

Hugo Macedo Universidade do Minho, Portugal
Nuno Oliveira Universidade do Minho, Portugal
Nuno Rodrigues Polytechnic Institute of Cávado and Ave,

Portugal
Sara Fernandes Universidade do Minho, Portugal

External Referees

Ludwig Adam
Sebastian Bauer
Cristiano Bertolini
Jan Olaf Blech
Marcello M. Bonsangue
Michel Chaudron
Ludovic Henrio
Pavel Jezek
Narges Khakpour
Ehsan Khamespanah
Ramtin Khosravi
Martin Martin Schäf
Charles Morisset
Christian Pfaller
Tomas Poch

Tomas Pop
Hamideh Sabouri
Rudolf Schlatte
Ondrej Sery
Alexandra Silva
Silvia Lizeth Tapia Tarifa
Van Khanh To
Hoang Truong
Hieu Vo
Sebastian Voss
Shuling Wang
Ming Xu
Shaofa Yang
Liang Zhao

Sponsoring Institutions

FCT - Science and Technology Foundation, Portugal
CCTC - Centro de Ciências e Tecnologias de Computação, Portugal
EEUM - School of Engineering of Minho University, Portugal
UNU-IIST - International Institute of Software Technology, United Nations

University, Macau, China

Table of Contents

Quantitative Analysis of Software: Challenges and Recent Advances
(Invited Lecture) . 1

Sanjit A. Seshia

Analysis of Service Oriented Software Systems with the Conversation
Calculus (Invited Lecture) . 6

Lúıs Caires and Hugo Torres Vieira

QoS Contract-Aware Reconfiguration of Component Architectures
Using E-Graphs . 34

Gabriel Tamura, Rubby Casallas, Anthony Cleve, and
Laurence Duchien

Monitoring Method Call Sequences Using Annotations 53
B. Nobakht, M.M. Bonsangue, F.S. de Boer, and S. de Gouw

An Introduction to Pervasive Interface Automata . 71
M. Calder, P. Gray, A. Miller, and C. Unsworth

A Separation Logic for OO Programs . 88
Liu Yijing and Qiu Zongyan

Model Checking Adaptive Multilevel Service Compositions 106
Sabina Rossi

Distributed Adaption of Dining Philosophers . 125
S. Andova, L.P.J. Groenewegen, and E.P. de Vink

Component Service Promotion: Contracts, Mechanisms and Safety 145
Pascal André, Gilles Ardourel, and Mohamed Messabihi

Systems-Theoretic View of Component-Based Software Development . . . 163
Daniel Côté, Michel Embe Jiague, and Richard St-Denis

Aspect Weaving in UML Activity Diagrams: A Semantic and
Algorithmic Framework . 182

Djedjiga Mouheb, Dima Alhadidi, Mariam Nouh, Mourad Debbabi,
Lingyu Wang, and Makan Pourzandi

Using Temporal Logic for Dynamic Reconfigurations of Components 200
Julien Dormoy, Olga Kouchnarenko, and Arnaud Lanoix

X Table of Contents

Modular Termination Analysis of Java Bytecode and Its Application to
phoneME Core Libraries . 218

D. Ramı́rez-Deantes, J. Correas, and G. Puebla

Decomposition of Constraint Automata . 237
Bahman Pourvatan, Marjan Sirjani, Farhad Arbab, and
Marcello M. Bonsangue

Graph Representation of Sessions and Pipelines for Structured Service
Programming . 259

Roberto Bruni, Zhiming Liu, and Liang Zhao

Will the Real Service Oriented Computing Please Stand Up?
(Panel Discussion) . 277

Farhad Arbab

Performance Verification in Complex Enterprise-Level Component
Systems . 286

Ludwig Adam

Runtime Programming through Model-Preserving, Scalable Runtime
Patches . 290

Christoph M. Kirsch, Lúıs Lopes, Eduardo R.B. Marques, and
Ana Sokolova

Steps on the Road to Component Evolvability . 295
Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and
Gianluigi Zavattaro

Towards Linear Algebras of Components . 300
Hugo Daniel Macedo and José Nuno Oliveira

Author Index . 305

Quantitative Analysis of Software:
Challenges and Recent Advances

Sanjit A. Seshia

EECS Department, UC Berkeley
sseshia@eecs.berkeley.edu

Abstract. Even with impressive advances in formal methods over the last few
decades, some problems in automatic verification remain challenging. Central
amongst these is the verification of quantitative properties of software such as
execution time or energy usage. This paper discusses the main challenges for
quantitative analysis of software in cyber-physical systems. It also presents a new
approach to this problem based on the combination of inductive inference with
deductive reasoning. The approach has been implemented for timing analysis in
a system called GAMETIME.

1 Introduction

Cyber-physical systems tightly integrate computation with the physical world. Conse-
quently, the behavior of software controllers of such systems has a major effect on
physical properties of such systems. These properties are quantitative, encoding spec-
ifications on physical quantities such as time, energy, position, and acceleration. The
verification of such quantitative properties of cyber-physical software systems requires
modeling not only the software program but also the relevant aspects of the program’s
environment. In contrast with traditional “Boolean” verification of software, environ-
ment models must be more precise — for example, one cannot liberally employ non-
determinism in modeling the environment, and one cannot abstract away the hardware
or the network. This challenge of accurate modeling is one of the major reasons why
the progress on quantitative software verification has lagged behind that on Boolean
software verification.

Consider, for example, the area of timing analysis of software. Several kinds of tim-
ing analysis problems arise in practice. First, for hard real-time systems, a classic prob-
lem is to estimate the worst-case execution time (WCET) of a terminating software task.
Such an estimate is relevant for verifying if deadlines or timing constraints are met as
well as for use in scheduling strategies. Second, for soft real-time systems, it can be use-
ful to estimate the distribution of execution times exhibitable by a task. Third, it can be
very useful to find a test case on which the program exhibits anomalous timing behav-
ior; e.g., a test case causing a task to miss its deadline. Finally, in “software-in-the-loop”
simulation, the software implementation of a controller is simulated along with a model
of the continuous plant it controls, with the simulations connected using execution time
estimates. For scalability, such simulation must be performed on a workstation, not on
the target embedded platform. Consequently, during the workstation-based simulation,
it is necessary to predict the timing of the program along a particular execution path

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 1–5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 S.A. Seshia

on the target platform. All of these problems are instances of predicting a particular
execution time property of a terminating software task.

In particular, the problem of WCET estimation has been the subject of significant
research efforts over the last 20 years (e.g. [3,4]). Significant progress has been made
on this problem, especially in the computation of bounds on loops in tasks, in modeling
the dependencies amongst program fragments using (linear) constraints, and modeling
some aspects of processor behavior. However, as pointed out in recent papers (e.g.,
Lee [2]), it is becoming increasingly difficult to precisely model the complexities of the
underlying hardware platform (e.g., out-of-order processors with deep pipelines, branch
prediction, multi-level caches, parallelism) as well as the software environment. This
results in timing estimates that are either too pessimistic (due to conservative platform
modeling) or too optimistic (due to unmodeled features of the platform). Due to the
difficulty of platform modeling, industry practice typically involves making random,
unguided measurements to obtain timing estimates, but these provide no guarantees.

In Section 2, we elaborate on the challenge of environment modeling. Techniques
for automatically inferring an adequate environment model are required to address this
challenge. In Section 3, we present the first steps towards such solution, implemented
in the timing analysis tool GAMETIME. We conclude in Section 4 with directions for
future research.

2 Challenge: Environment Modeling

We discuss the challenge of environment modeling using timing analysis as an example.
The complexity of the timing analysis arises from two dimensions of the problem: the

flag != 0

flag != 0

flag=1; (*x)++;

(b) CFG unrolled to a DAG

*x += 2;

while(!flag)
{

flag = 1;
(*x)++;

}
*x += 2;

flag == 0

(a) Original Program

Fig. 1. Simple Illustrative Example

path dimension, where one must find
the worst-case computation path for the
task, and the state dimension, where
one must find the right (starting) en-
vironment state to run the task from.
Moreover, these two dimensions interact
closely; for example, the choice of path
can affect the impact of the starting en-
vironment state.

Consider the toy C program in
Fig. 2(a). It contains a loop, which ex-
ecutes at most once. Thus, the control-
flow graph (CFG) of the program can
be unrolled into a directed acyclic graph

(DAG), as shown in Fig. 2(b). Suppose we execute this program on a simple processor
with an in-order pipeline and a data cache. Consider executing this program from the
state where the cache is empty. The final statement of the program, *x += 2, contains
a load, a store, and an arithmetic operation. If the left-hand path is taken, the load will
suffer a cache miss; however, if the right-hand path is taken, there is a cache hit. The
difference in timing between a cache hit and a miss can be an order of magnitude. Thus,
the time taken by this statement depends on the program path taken. However, if the

Quantitative Analysis of Software: Challenges and Recent Advances 3

program were executed from a state with the data in the cache, there will be a cache hit
even if the left-hand path is taken.

Thus, even with this toy program and a simple processor, one can observe that a tim-
ing analysis tool must explore the space of all possible program paths – a potentially
exponentially large search space. If the starting environment state is known, a composi-
tional timing tool that seeks to predict path timing by measuring timing of basic blocks
must (i) model the platform precisely to predict timing at basic block boundaries, and
(ii) search an exponentially-large environment state space at these boundaries. If the
starting environment state is unknown, the problem is even harder.

Current state-of-the-art tools for timing analysis rely heavily on manually-constructed
abstract timing models to achieve the right balance of precision and scalability. Manual
modeling can be extremely tedious and error-prone, requiring several man-months of
effort to design a timing model correctly even for a simple microcontroller. The chal-
lenge of keeping up with today’s advances in microarchitecture are really daunting.

3 Automatic Model Inference: The GAMETIME Approach

Automatic inductive inference of models offers a way to mitigate the challenge of en-
vironment modeling. In this approach, a program-specific timing model of the platform
is inferred from carefully chosen observations of the program’s timing. The program-
specificity is an important difference from traditional approaches, which seek to manu-
ally construct a timing model that works for all programs one might run on the platform.
The latter is a very hard problem and perhaps not one we need to necessarily solve! An
accurate model for the programs of interest should suffice.

This approach has been implemented for timing analysis in a toolkit called GAME-
TIME [7,6,5]. In GAMETIME, the platform is viewed as an adversary that controls the
choice and evolution of the environment state, while the tool has control of the program

PROGRAM CONTROL-FLOW
GRAPH (DAG)

i1

i2
i3

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution, etc.)

LEARNING
ALGORITHM

i1

i2

i3

…

42
75

101

…

online

Generate Control-Flow
Graph, Unroll Loops, Inline

Functions, etc.

Extract FEASIBLE
BASIS PATHS with

corresponding Test Cases

SMT SOLVER

Compile Program
for Platform

TEST
SUITE

Measure timing on
Test Suite directed by

Learning Algorithm

Fig. 2. GAMETIME overview

path space. The analysis problem is
then a game between the tool and the
platform. In contrast with most ex-
isting tools for timing analysis (see,
e.g., [4]), GAMETIME can predict not
only extreme-case behavior, but also
certain execution time statistics (e.g.,
the distribution) as well as a program’s
timing along particular execution paths.
Additionally, it only requires one to run
end-to-end measurements on the target
platform, making it easy to port to new
platforms. The GAMETIME approach,
along with an exposition of theoreti-
cal and experimental results, including

comparisons with other methods, is described in existing papers [7,6,5]. We provide
only a brief overview of the approach taken by GAMETIME here.

Figure 2 depicts the operation of GAMETIME. As shown in the top-left corner, the
process begins with the generation of the control-flow graph (CFG) corresponding to

4 S.A. Seshia

the program, where all loops have been unrolled to a maximum iteration bound, and
all function calls have been inlined into the top-level function. The CFG is assumed
to have a single source node (entry point) and a single sink node (exit point); if not,
dummy source and sink nodes are added. The next step is a critical one, where a subset
of program paths, called basis paths are extracted. These basis paths are those that
form a basis for the set of all paths, in the standard linear algebra sense of a basis.
A satisfiability modulo theories (SMT) solver — a deductive engine — is invoked to
ensure that the generated basis paths are feasible. For each feasible basis path generated,
the SMT solver generates a test case that drives program execution down that path. Thus
a set of feasible basis paths is generated that spans the entire space of feasible program
paths, along with the corresponding test cases.

The program is then compiled for the target platform, and executed on these test cases.
In the basic GAMETIME algorithm (described in [7,6]), the sequence of tests is random-
ized, with basis paths being chosen uniformly at random to be executed. The overall
execution time of the program is recorded for each test case. From these end-to-end
execution time measurements, GAMETIME’s learning algorithm generates a weighted
graph model that is used to make predictions about timing properties of interest. The pre-
dictions hold with high probability under certain assumptions; see the previous papers
on GAMETIME [7,6] for details. Experimental results indicate that in practice GAME-
TIME can accurately predict not only the worst-case path (and thus WCET) but also the
distribution of execution times of a task from various starting environment states.

4 Looking Ahead

GAMETIME is only a first step and much remains to be done in the area of quantita-
tive verification of software. First, the GAMETIME approach can be further refined to
strengthen the theoretical guarantees and improve scalability, e.g., through composi-
tional reasoning. Second, we need to understand what kind of support from platform
designers (e.g., [1]) can make the quantitative verification problem easier. Third, many
other quantitative verification problems, such as verifying bounds on energy consump-
tion, remain to be fully explored. Finally, some of the fundamental ideas behind GAME-
TIME, such as the generation of feasible basis paths and the combination of inductive and
deductive reasoning apply more generally beyond the area of cyber-physical systems.

Acknowledgments. This work was supported in part by NSF grants CNS-0644436,
CNS-0627734, and CNS-1035672, an Alfred P. Sloan Research Fellowship, and the
Multiscale Systems Center (MuSyC), one of six research centers funded under the Fo-
cus Center Research Program (FCRP), a Semiconductor Research Corporation entity.

References

1. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In: Design Au-
tomation Conference (DAC), pp. 264–265 (2007)

2. Lee, E.A.: Computing foundations and practice for cyber-physical systems: A preliminary
report. Technical Report UCB/EECS-2007-72, UC Berkeley (May 2007)

Quantitative Analysis of Software: Challenges and Recent Advances 5

3. Li, Y.-T.S., Malik, S.: Performance Analysis of Real-Time Embedded Software. Kluwer Aca-
demic, Dordrecht (1999)

4. Wilhelm, R., et al.: The Determination of Worst-Case Execution Times—Overview of the
Methods and Survey of Tools. In: ACM Transactions on Embedded Computing Systems,
TECS (2007)

5. Seshia, S.A., Kotker, J.: GameTime: A toolkit for timing analysis of software. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 388–392. Springer, Heidelberg
(2011)

6. Seshia, S.A., Rakhlin, A.: Quantitative analysis of systems using game-theoretic learning.
ACM Transactions on Embedded Computing Systems (TECS) (to appear)

7. Seshia, S.A., Rakhlin, A.: Game-theoretic timing analysis. In: Proc. IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 575–582 (2008)

Analysis of Service Oriented Software Systems

with the Conversation Calculus

Lúıs Caires and Hugo Torres Vieira

CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

Abstract. We overview some perspectives on the concept of service-
based computing, and discuss the motivation of a small set of modeling
abstractions for expressing and analyzing service based systems, which
have led to the design of the Conversation Calculus. Distinguishing as-
pects of the Conversation Calculus are the adoption of a very simple, con-
text sensitive, local message-passing communication mechanism, natural
support for modeling multi-party conversations, and a novel mechanism
for handling exceptional behavior. In this paper, written in a tutorial
style, we review some Conversation Calculus based analysis techniques
for reasoning about properties of service-based systems, mainly by going
through a sequence of illustrating examples.

1 Introduction

Web and service-based systems have emerged mainly as a toolkit of technological
and methodological solutions for building open-ended collaborative applications
on the internet, leading to the recent trend towards the SaaS (Software as a
Service) distribution model. Many concepts frequently advanced as particular to
service-oriented computing systems, namely, interface-oriented distributed pro-
gramming, long duration transactions and compensations, separation of work-
flow from service instances, late binding and discovery of functionalities, are not
new. However, it must be acknowledged that the idea of service based computing
is definitely contributing to physically realize an emerging model of computa-
tion, which is global (encompassing the internet as a whole), interaction-based
(subsystems communicate via message passing), and loosely coupled (connec-
tions are established dynamically, and on demand). It is then very important to
better understand in what sense service orientation may be exploited as a new
paradigm to build and reason about distributed systems.

Of course, the global computing infrastructure is bound to remain highly het-
erogeneous and dynamic, so it does not seem reasonable to foresee the premature
emergence of comprehensive theories and technological artifacts, well suited for
everyone and every application. This suggests that one should focus not only on
particular systems and theories themselves, but also on general systems, their
properties, and their interfaces. In a recent line of work, mainly developed in the
context of the EU IP project Sensoria [21] and extended in the context of the

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 6–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis of Service Oriented Software Systems 7

CMU-PT INTERFACES project [15], we have proposed a new model for service-
oriented computation, based on a process calculus, with the aim of providing a
foundation for rigorous modeling, analysis and verification. Our starting point
was an attempt to isolate the essential characteristics of the service-oriented
model of computation, in order to propose a motivation from “first principles”
of a reduced set of general abstractions for expressing and analyzing service
based systems. To focus on a set of independent primitives, we have developed
our model by modularly adapting the synchronous π-calculus as follows

– introducing the general notion of conversation context ;
– replacing channel communication by labeled message-passing primitives;
– adding a canonical exception handling mechanism

We have striven to keep our realization fairly general, so to achieve simplic-
ity and clarity, and to ensure orthogonality and semantic independence of the
chosen primitives. The proposed model, the Conversation Calculus, is a minimal-
istic, yet very expressive formalism, able to express and support reasoning about
complex, dynamic, multiparty service based conversations, where partners may
dynamically join and leave interactions, as we often find in“real-world” service
based systems.

In this paper, we show how the Conversation Calculus can be used to reason
about properties of service-based systems. In the spirit of a tutorial, no really new
concepts are introduced, instead the focus is on a more detailed discussion of the
underlying principles that guided the development of the language, accompanied
by new examples that illustrate its expressiveness, and the kind of analyses that
may be performed in the framework.

2 Aspects of Services

In this section, we attempt to identify some essential characteristics of the
service-oriented model of computation, in order to justify a motivation from
“first principles” of a reduced set of general abstractions for expressing and
analyzing service based systems. Following [26], we identify as main features
distribution, communication and context sensitiveness, and loose coupling.

2.1 Distribution

The purpose of a service relationship is to allow the incorporation of extra activ-
ities in a software system, without having to engage local resources and capabil-
ities to support such activities. By delegating activities to an external provider,
which will perform them using their remote resources and capabilities, a com-
puting system may concentrate on those tasks for which it may autonomously
provide adequate solutions. Thus, the notion of service makes particular sense
when the service provider and the service client are separate entities, with ac-
cess to separate resources and capabilities. This notion of the service relationship
between provider and client assumes an underlying distributed computational

8 L. Caires and H.T. Vieira

model, where client and server are located at least in distinct (operating system)
processes, more frequently in distinct network sites.

The invocation of a service by a client results in the creation of a new ser-
vice instance. Initially, a service instance is composed by a pair of endpoints,
one endpoint located in the server site, where the service is defined, the other
endpoint in the client site, where the request for instantiation took place. From
the viewpoint of each partner, the respective endpoint acts as a local process,
with potential direct access to local resources and capabilities. Thus, for us an
endpoint is not a name, a port address, or channel, but an interactive process.
Endpoints work together in a tightly coordinated way, by exchanging data and
control information through a dedicated communication medium. In general, a
service relationship may be initiated by a pair of remote endpoints, but may
later on be enlarged with extra endpoints, located in other sites, developing a
multiparty conversation.

2.2 Communication, Contexts, and Context Sensitiveness

The invocation of a service by an initiator client causes the creation of a new com-
munication medium to host the interactions of the particular service instance.
The service client (initiator) and client (responder) are immediately given access
to this freshly created communication medium (see Figure 1), which will host
a new conversation, and which might later on be joined in by other parties. To
interact in the conversation medium the client establishes an endpoint or ac-
cess point to the medium in its local context, and the process located in the
endpoint is able to interact remotely in the service medium and locally in the
client context. Likewise, the service responder establishes an endpoint to interact
in the service conversation, and the process located in the endpoint is able to
communicate with the server context (e.g., to access server resources).

For example, consider the scenario where the endpoint realizing an archiving
functionality in the client context communicates with the other subsystems of
the client, e.g., to receive document archiving requests and document retrieval
requests, while the remote endpoint in the server site communicates with other
subsystems in the service provider context, e.g., the database, the indexing in-
frastructure, and other resources needed for the provider task.

Access to a conversation may be shared with other parties. In particular, ac-
cess may be given to other service providers that may then contribute to ongoing
service tasks. At any moment, any party may then interact with any other party
that shares access to the same conversation, as depicted in Figure 2 for the
case of three parties. It is important to notice that in general, the distinction
client/server may get blurred in a multiparty conversation, and we essentially
need to host a delimited conversation between several symmetric partners.

For instance, in the archiving example, the server may decide to share its
work load with other providers, allowing each one to establish an endpoint of
the shared medium. In such way, a request to store data may be picked up by
any of the service providers listening on the shared communication medium.

Analysis of Service Oriented Software Systems 9

Fig. 1. Conversation initiation

Fig. 2. Ongoing Conversation

We understand an endpoint just as a particular case of a delimited context or
scope of interaction. More generally, a context is a delimited space were compu-
tation and communication happens. A context may have a spatial meaning, e.g.,
as a site in a distributed system, but also a behavioral meaning, e.g., as context
of conversation, or a session, between two or more partners. For example, the
same message may appear in two different contexts, with different meanings (web
services technology has introduced artifacts such as “correlation” to determine
the appropriate context for otherwise indistinguishable messages).

Thus, the notion of conversation as a medium of communication which may
be accessed from anywhere in the system and shared between several parties
seems to be a convenient abstraction mechanism to structure the several service
interactions in a service-oriented system.

The description above suggests two forms of communication capabilities. First,
processes may interact if they are located in the same endpoint or in two end-
points of the same conversation. Second, interaction may occur between imme-
diately nested endpoints. Endpoints as the one described may be nested at many
levels, corresponding to subsidiary service instances, processes, etc. Notice that
we do not expect communication to happen between arbitrary contexts, but

10 L. Caires and H.T. Vieira

Fig. 3. Contexts and Communication Pathways

rather to always fall in one of the two special cases described above: interac-
tion inside a given conversation, and external interaction (with the immediately
external context). In Figure 3 we illustrate our intended context dependent com-
munication model, and the various forms of interaction it admits.

A context is also a natural abstraction to group and publish together closely
related services, including when such services are provided by several sites. Typ-
ically, services published by the same entity are expected to share common re-
sources; we notice that such sharing is common at several scales of granularity.
Extreme examples are an object, where the service definitions are the methods
and the shared context is the object internal state, and an entity such as, e.g.,
Amazon, that publishes several services for many different purposes; such ser-
vices certainly share many internal resources of the Amazon context, such as
databases, payment gateways, and so on.

Delimited contexts are also natural candidates for typing, in terms of the mes-
sages interchange patterns that may happen at its border. We would thus expect
types (or logical formulas) specifying various properties of interfaces, of service
contracts, of endpoint session protocols, of security policies, of resource usage,
and of service level agreements, to be in general assigned to context boundaries.
Enforcing boundaries between subsystems is also instrumental to achieve loose
coupling of systems.

2.3 Loose Coupling

A service task may rely on several subsidiary services, where each one may in-
volve a number of collaborating partners, and some local processes that control
(orchestrate) the several subsidiary tasks and carry out some local functionality.
Crucially to the service-oriented design, the several pieces that form the service
implementation should be composed in a loosely coupled way, so as to support
aimed features of service-oriented systems such as dynamic binding and dynamic
discovery of partner service providers. For instance, an orchestration describing
a “business process”, should be specified in a quite independent way of the par-
ticular subsidiary service instances used. In the orchestration language WSBPEL

[2], loose coupling to external services is enforced to some extent by the separate
declaration of “partner links” and “partner roles” in processes. In the model-
ing language SRML [18] (inspired by the Service Component Architecture [4]),

Analysis of Service Oriented Software Systems 11

the binding between service providers and clients is mediated by “wires”, which
describe plugging constraints between otherwise hard to match interfaces.

To support loose coupling, the specific details of a given service implementa-
tion should not be visible to external processes, so there must be a boundary
between service instances and processes using them. Such boundary may be im-
posed by mediating processes that adapt the (implementation specific) service
communication protocols to the abstract behavioral interface expected by the
external context. It is then instrumental to encapsulate all computational enti-
ties cooperating in a service task in a conversation context, and allow them to
communicate between themselves and the outer context only via some general
message passing mechanism.

2.4 Other Aspects

There are many other aspects that must be addressed in a general model of
service-oriented computation. The most obvious ones include failure handling
and resource disposal, security (in particular access control, authentication and
secrecy), time awareness, and a clean mechanism of inter-operation. This last as-
pect seems particularly relevant, and certainly suggests an important evaluation
criteria for any service-oriented computation model.

3 The Conversation Calculus

In this section, we motivate and present in detail the primitives of our calcu-
lus. After that, we present the syntax of our calculus, and formally define its
operational semantics, by means of a labeled transition system.

Conversation Context. A conversation context is a medium where related
interactions can take place. A conversation context can be distributed in many
pieces, and processes inside any piece can seamlessly talk to any other piece of
the same context. Each context has a unique name (cf., a URI). We use the
conversation access construct

n � [P]

to say that the process P is interacting in conversation n. Potentially, each
conversation access will be placed at a different enclosing context. On the other
hand, any such conversation access will necessarily be placed at a single enclosing
context. The relationship between the enclosing context and such an access point
may be seen as a caller/callee relationship, but where both entities may interact
continuously.

Context Awareness. A process running inside a given context should be able
to dynamically become aware of the identity of the former. This capability may
be realized by the construct

this(x).P

12 L. Caires and H.T. Vieira

The variable x will be replaced inside the process P by the name n of the current
context. The computation will proceed as P{x�n}. For instance the process
c � [this(x).P] evolves in one computation step to c � [P{x�c}]. Our context
awareness primitive bears some similarity with the self or this of object-oriented
languages, although of course it has a different semantics.

3.1 Communication

Communication between subsystems is realized by message passing. We denote
the input/output of messages from/to the current context by the constructs

label�?(x1, . . . , xn).P
label�!(v1, . . . , vn).P

Messages are labeled. In the output case (!), the terms vi represent message
arguments, that is, values to be sent, as expected. In the input case (?), the
variables xi represent the message parameters and are bound in P , as expected.
The target symbol � (read “here”) says that the corresponding communication
actions must interact in the current conversation conversation context, where
the messages are being sent. Second, we denote the input/output of messages
from/to the outer context by the constructs

label�?(x1, . . . , xn).P
label�!(v1, . . . , vn).P

The target symbol � (read “up”) says that the corresponding communication
actions must interact in the (uniquely determined) outer context, where “outer”
is understood relatively to the context where the process exercising the action
is running.

3.2 Service Oriented Idioms

Although we do not introduce them natively in the language, we present some
service-oriented idioms which capture typical service-oriented interaction: service
definition, service instantiation and service join.

A context (a.k.a. a site) may publish one or more service definitions. Ser-
vice definitions are stateless entities, pretty much as function definitions in a
functional programming language. A service definition may be expressed by

def ServiceName ⇒ ServiceBody

where ServiceName is the service name, and ServiceBody is the process that
should be executed at the service endpoint for each service instance, in other
words the service body. In order to be published, such a definition must be
inserted into a context, e.g.,

ServiceProvider � [def ServiceName ⇒ ServiceBody · · ·]

Analysis of Service Oriented Software Systems 13

Such a published service may be instantiated by means of a instantiation idiom

new n · ServiceName ⇐ ClientProtocol

where n identifies the conversation where the service is published. For instance,
the service defined above may be instantiated by

new ServiceProvider · ServiceName ⇐ ClientProtocol

The ClientProtocol describes the process that will run inside the endpoint held
by the client. The outcome of a service instantiation is the creation of a new
globally fresh context identity (a hidden name), and the creation of two access
pieces of a context named by this fresh identity. One will contain the ServiceBody
process and will be located inside the ServiceProvider context. The other will
contain the ClientProtocol process and will be located in the same context as
the instance expression that requested the service instantiation.

In our model conversation identifiers may be manipulated by processes if
needed (accessed via the this(x).P), passed around in messages and subject to
scope extrusion: this allows us to model collaboration between multiple parties
in a single service conversation, realized by the progressive access of dynamically
determined partners to an ongoing conversation. Joining of another partner to an
ongoing conversation is a frequent programming idiom, that may be abstracted
by:

join ServiceProvider · ServiceName⇐ ContinuationProcess

The join and the new expression are implemented in a similar way, both rely-
ing on name passing. The key difference is that while new creates a fresh new
conversation, join allows a service ServiceName defined at ServiceProvider to
join in the current conversation, while the calling party continues interacting
in the current conversation as specified by ContinuationProcess . So, even if the
new and join are represented in a similar way, the abstract notion they realize
is actually very different: new is used to start a fresh conversation between two
parties (e.g., used by a client that instantiates a service) while the join is used
to allow another service provider to join an ongoing conversation (e.g., used by
a participant in a service collaboration to dynamically delegate a task to some
remote partner). At a very high level of description the two primitives can be
unified as primitives that support the dynamic delegation of tasks (either in a
unary conversation or in a n-ary conversation).

3.3 Exception Handling

We introduce two primitives to model exceptional behavior, in particular fault
signaling, fault detection, and resource disposal, these aspects are certainly or-
thogonal to the previously introduced communication mechanisms. We adapt
the classical try− catch− and throw− to a concurrent setting. The primitive to
raise an exception is

throw.Exception

14 L. Caires and H.T. Vieira

This construct throws an exception with continuation the process Exception ,
and has the effect of forcing the termination of all other processes running in
all enclosing contexts, up to the point where a try − catch block is found (if
any). The continuation Exception will be activated when (and if) the exception
is caught by such an exception handler. The exception handler construct

try P catch Handler

allows a process P to execute normally until some exception is thrown inside
P . At that moment, all of P is terminated, and the Handler handler process,
which is guarded by try−catch, is activated, concurrently with the continuation
Exception of the throw.Exception that originated the exception, in the context
of a given try − catch− block. By exploiting the interaction of the Handler
and Exception processes, it is possible to represent many recovery and resource
disposal protocols, including compensable transactions [12].

3.4 Syntax and Semantics of the Calculus

We may now formally introduce the syntax and semantics of the conversation
calculus. We assume given an infinite set of names Λ, an infinite set of variables
V , and an infinite set of labels L. We abbreviate a1, . . . , ak by ã. We use d for
communication directions, α for action prefixes and P,Q for processes. Notice
that message and service identifiers (from L) are plain labels, not subject to
restriction or binding. The syntax of the calculus is given in Figure 4.

The static core of our language is derived from the π-calculus [24]. We thus
have 0 for the inactive process, P | Q for the parallel composition, (νa)P for
name restriction, and recX .P and X for recursion. The prefix guarded choice
Σi∈I αi.Pi specifies a process which may exhibit any one of the αi actions and
evolve to the respective continuation Pi. Processes also specify conversation ac-
cesses: n � [P] represents a process that is accessing conversation n and inter-
acting in it according to what P specifies.

Context-oriented actions prefixes include the output ld !(ñ) — send names ñ in
a message labeled l, to either the current or enclosing conversation (depending
on d); the input ld?(x̃) — receive names and instantiate variables x̃ in a message
labeled l from either the current or enclosing conversation (d); and the context
awareness primitive this(x) which allows a process to dynamically gain access
to the identity of its “current” (�) conversation.

The Conversation Calculus includes two primitives for exception handling: the
try P catch Q and the throw.P . The throw.P signals an exception and causes
the termination of every process up to an enclosing try P catch Q, in which
case P is activated. The try P catch Q behaves as process P up to the point an
exception is thrown (if any), in which case process Q is activated.

The distinguished occurrences of a, x̃, and x are binding occurrences in (νa)P ,
ld?(x̃).P , and this(x).P , respectively. The sets of free (fn(P)) and bound (bn(P))
names and variables in a process P are defined as usual, and we implicitly identify
α-equivalent processes.

Analysis of Service Oriented Software Systems 15

a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, v, . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)

d ::= � | � (Directions)

α ::= ld !(ñ) (Output)

| ld?(x̃) (Input)
| this(x) (Context awareness)

P,Q ::= 0 (Inaction)
| P | Q (Parallel)
| (νa)P (Restriction)
| recX .P (Recursion)
| X (Variable)
| Σi∈I αi.Pi (Prefix Guarded Choice)
| n � [P] (Conversation Access)
| try P catch Q (Try-catch)
| throw.P (Throw)

Fig. 4. The Conversation Calculus

We define the semantics of the conversation calculus via a labeled transition
system. We introduce transition labels λ and actions act :

act ::= τ | ld !(ã) | ld?(ã) | thisd | throw (Actions)
λ ::= c act | act | (νa)λ (Transitions)

Actions capture internal actions τ , message outputs ld !(ã) and inputs ld?(ã),
context identity accesses thisd and exception signals throw. Transition labels
tag actions with the conversation identifier they respect to c act and with bound
names which are emitted in the action (νa)λ. In (νa)λ the distinguished occur-
rence of a is bound with scope λ (cf., the π-calculus bound output and bound
input actions). A transition label containing c act is said to be located at c (or
just located), otherwise is said to be unlocated. We write (νã) to abbreviate a
(possibly empty) sequence (νa1) . . . (νak), where the order is not important.

We adopt a few conventions and notations. We note by λd a transition label
λd containing the direction d (�, �). Then we denote by λd

′
the label obtained

by replacing d by d ′ in λd . Given an unlocated label λ, we represent by c ·λ the
label obtained by locating λ at c, so that e.g., c · (νã)act = (νã)c act. We assert
unloc(λ) if λ is not located and is either an input or an output, and loc(λ) if λ
is located and is either an input or an output. We define out(λ) as follows:

out((νã)b ld!(c̃)) � c̃ \ (ã ∪ {b}) out((νã)ld!(c̃)) � c̃ \ (ã)
and out(λ) = ∅ otherwise. We use n(λ) and bn(λ) to denote (respectively) all
names and the bound names of a transition label.

16 L. Caires and H.T. Vieira

The labeled transition system relies on a synchronization algebra which we
now introduce. Essentially, the synchronization algebra describes how two par-
allel processes may synchronize, specifying how any pair of transitions may be
combined and what is the result of such combination. Since not all pairs of tran-
sitions represent a valid synchronization we use the ◦ as the result of an invalid
synchronization. We then denote by λ1•λ2 the result of combining λ1 and λ2 via
function •, resulting in either a transition (in case λ1 and λ2 may synchronize)
or ◦ (otherwise). • is defined such that λ1 • λ2 = λ2 • λ1 and:

l�!(ã) • l�?(ã) � τ

l�!(ã) • l�?(ã) � τ

c l�!(ã) • c l�?(ã) � τ

l�!(ã) • l�?(ã) � this�

l�!(ã) • c l�?(ã) � c this�

l�!(ã) • c l�?(ã) � c this�

l�?(ã) • l�!(ã) � this�

l�?(ã) • c l�!(ã) � c this�

l�?(ã) • c l�!(ã) � c this�

for some l, ã, c, and λ1•λ2 = ◦ otherwise. Function • resolves direct synchroniza-
tions (e.g., c l�?(ã)•c l�!(ã)) in an internal action τ . However, since messages are
context dependent, synchronizations of unlocated transitions require contextual
information. So, for instance, transition labels l�!(ã) and c l�?(ã) may synchro-
nize, provided the current conversation is c — the resulting label c this� will
read the identity of the current conversation, and progress only if the identity
is c. Intuitively, label c this� captures a silent action of a process which may
occur provided the process is placed in conversation c. Labels l�?(ã) and l�!(ã)
synchronize, provided the current and enclosing conversations have the same
identity — tested via label this�. Also, labels c l�?(ã) and l�!(ã) synchronize
provided the enclosing conversation has identity c — checked via label c this�.

We may now present the labeled transition system. In Figs. 5, 6 and 7 we
present the labeled transition system for the calculus. The rules presented in
Figure 5 closely follow the π-calculus labeled transition system (see [25]). We
omit the rules symmetric to (Par) and (Close).

We briefly review the rules presented in Fig. 6: in rule (Here), after going
through a context boundary, an � message becomes �; in (Loc) an unlocated �

message gets located at the context identity in which it originates; in (Through) a
non-this located label transparently crosses the context boundary, and likewise
in (Internal) for a τ label; in (ThisHere) a this label reads the identity of the
enclosing context (and matches it with the current conversation identity); in
(ThisLoc) a c this label matches the enclosing context; in (This) a this label
reads the current conversation identity.

As for the rules in Figure 7: in (Throw) an exception is signaled; in (ThrowPar)
and (ThrowConv) enclosing computations are terminated; in (Try) a non-throw
transition crosses the handler block; in (Catch) an exception is caught by the
handler block, activating (in parallel) the continuation process and the handler.

Analysis of Service Oriented Software Systems 17

ld !(ã).P
ld !(ã)−→ P (Out) ld?(x̃).P

ld ?(ã)−→ P{x̃�ã} (In)

αj .Pj
λ−→ Q (j ∈ I)

Σi∈I αi.Pi
λ−→ Q

(Sum)
P{X�rec X .P} λ−→ Q

rec X .P λ−→ Q
(Rec)

P
λ−→ Q (a �∈ n(λ))

(νa)P
λ−→ (νa)Q

(Res)
P

λ−→ Q (a ∈ out(λ))

(νa)P
(νa)λ−→ Q

(Open)

P
λ−→ Q (λ �= throw)

P | R λ−→ Q | R
(Par)

P
λ1−→ P ′ Q

λ2−→ Q′ (λ1 • λ2 �= ◦)
P | Q λ1•λ2−→ P ′ | Q′

(Com)

P
(νã)λ1−→ P ′ Q

λ2−→ Q′ (ã ∩ fn(P | Q) = ∅, λ1 • λ2 �= ◦)
P | Q λ1•λ2−→ (νã)(P ′ | Q′)

(Close)

Fig. 5. Transition Rules for Basic Operators

P
λ�−→ Q (c �∈ bn(λ))

c � [P]
λ�−→ c � [Q]

(Here)
P

λ−→ Q (unloc(λ))

c � [P]
c·λ−→ c � [Q]

(Loc)

P
λ−→ Q (loc(λ), c �∈ bn(λ))

c � [P]
λ−→ c � [Q]

(Through)
P

τ−→ Q

c � [P]
τ−→ c � [Q]

(Internal)

P
this�−→ Q

c � [P]
c this�−→ c � [Q]

(ThisHere)
P

c this�−→ Q

c � [P]
τ−→ c � [Q]

(ThisLoc)

this(x).P
c this�−→ P{x�c} (This)

Fig. 6. Transition Rules for Conversation Operators

throw.P
throw−→ P (Throw)

P
throw−→ R

P | Q throw−→ R
(ThrowPar)

P
throw−→ R

n � [P]
throw−→ R

(ThrowConv)
P

throw−→ R

try P catch Q
τ−→ Q | R (Catch)

P
λ−→ Q λ �= throw

try P catch R
λ−→ try Q catch R

(Try)

Fig. 7. Transition Rules for Exception Handling Operators

18 L. Caires and H.T. Vieira

def s⇒ P � s�?(x).x � [P]

new n · s⇐ Q � (νc)(n �
[

s�!(c)
] | c � [Q])

join n · s⇐ Q � this(x).(n �
[

s�!(x)
] | Q)

�def s⇒ P � recX .s�?(x).(X | x � [P])

Fig. 8. Service Idioms

Notice that the presentation of the transition system is fully modular: the
rules for each operator are independent, so that one may easily consider several
fragments of the calculus (e.g., without exception handling primitives). The oper-
ational semantics of closed systems, usually represented by a reduction relation,
is here specified by

τ−→.

3.5 Representing Service-Oriented Idioms

Our core model focuses on the fundamental notions of conversation context
and message-based communication. From these basic mechanisms, useful pro-
gramming abstractions for service-oriented systems may be idiomatically de-
fined, namely service definition and instantiation constructs (defined as prim-
itives in [26]), and the conversation join construct (introduced in [13]). These
constructs may be embedded in a simple way in the minimal calculus, without
hindering the flexibility of modeling and analysis.

The service-oriented idioms along with their translation in lower level com-
munication primitives is shown in Fig. 8. We specify the service definition idiom
by def s ⇒ P , which publishes a service named s in the current conversation.
Process P specifies the code that will run in the service conversation, upon ser-
vice instantiation, implementing the service provider role in the conversation.
The service definition is implemented in basic communication primitives as:

def s⇒ P � s�?(x).x � [P] (x �∈ fv(P))

Essentially, the service definition specifies a message — labeled by the name of
the service s — is received, carrying the identity of the service conversation.
Then, code P will run in such received conversation. Service definitions must
be placed in appropriate conversation contexts (cf., methods in objects). For
instance, to specify BuyService is published in the Seller context we write:

Seller � [def BuyService⇒ SellerCode]

Typically, services once published are persistent in the sense they can be instan-
tiated several times. To model such persistent services we introduce the recursive
variant of service definition.

	def s⇒ P � recX .s�?(x).(X | x � [P]) (x �∈ fv(P))

Analysis of Service Oriented Software Systems 19

Persistent service definitions are specified so as to always be ready to receive a
service instantiation request, handling each request in the conversation received
in each service instantiation message.

The idiom that supports the instantiation of a published service is noted by
new n · s ⇐ Q. The new idiom specifies the conversation where the service is
published at (n), the name of the service (s) and the code that will run on the
service client side (Q). A service instantiation resulting from a synchronization
from a published service def and an instantiation new results in the creation of
a fresh conversation that is shared between service provider and service caller.
We translate the new idiom in the basic primitives of the CC as follows:

new n · s⇐ Q � (νc)(n �
[

s�!(c)
] | c � [Q]) (c �∈ (fn(Q) ∪ {n}))

The service instantiation is then realized by means of a message exchange in
conversation n, where the service is published at, being the message labeled by
the name of the service s and carrying a newly created name c that identifies
the conversation where the service interaction is to take place. In parallel to the
message output that instantiates the service, we find the code of the client role
Q, running in the freshly created conversation c. Notice that Q is already active,
although it has to wait for the server side to pick up the service conversation
identity to start interacting in conversation c, by means of � directed messages.
Notice also that process Q can interact in the conversation where the service
instantiation request lies, using � directed messages.

The join idiom is implemented using the core CC primitives as follows:

join n · s⇐ Q � this(x).(n �
[

s�!(x)
] | Q) (x �∈ (fv(Q) ∪ {n}))

The current conversation identity is accessed via the this primitive, and passed
along in service message s exchanged in the conversation n where s is published
at. Process Q continues to interact in the current conversation (the same that
was accessed in the this).

4 A Sequence of Examples

In this section, we illustrate the expressiveness of our calculus through a sequence
of examples. For the sake of commodity, we informally extend the language with
some auxiliary primitives, e.g., if − then − else, etc. We also use replication !,
which may be simulated using recursion, anonymous contexts, defined as [P] �
(νa)(a � [P]) (where a is fresh) to isolate communication, and we omit � message
directions (e.g., read?() abbreviates read�?()).

4.1 Memory Cell

We discuss some simple examples of stateful service definition and invocation
patterns, using memory cell implementations. Consider the following implemen-
tation of a memory cell service.

20 L. Caires and H.T. Vieira

def Cell⇒ (
!(read?().next!()
+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?())

Intuitively, each time a value is written in the cell, a process that stores the value
is spawned. This process is ready to repeatedly emit the value upon request
(message next), or to stop giving out the value. To read the cell value, a request
for the next emission of the value is sent to the memory process. To write a new
value, the installed memory process is stopped, and another process which stores
the new value is spawned (notice that since the first write does not have to stop
any memory process, the respective stop message is collected separately).

We show how to instantiate the Cell service so to create a delegate cell
process in the current context. The delegate accepts put and get messages from
the client context, and replies to each get message with a reply message to
the context. It provides the memory cell functionality delegation to the remote
service FreeCellsInc � Cell.

new FreeCellsInc · Cell⇐ (
!(put�?(x).write!(x)
+
get�?().read!().value?(x).reply�!(x)))

A process in the context may then use the created service instance as follows:

put!(value).get!().reply?(x).proceed!(x)

To show how the system evolves, let us consider the composition of the Cell

service provider and user, placing the provider in the FreeCellsInc context:

FreeCellsInc � [
def Cell⇒ (!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]

|
new FreeCellsInc · Cell⇐ (!(put�?(x).write!(x)

+
get�?().read!().value?(x).reply�!(x)))

|
put!(value).get!().reply?(x).proceed!(x)

Analysis of Service Oriented Software Systems 21

By translating the service idioms into their lower level representation we obtain:

FreeCellsInc � [
Cell?(y).y � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
(νc)(FreeCellsInc � [Cell!(c)]
|
c � [!(put�?(x).write!(x)

+
get�?().read!().value?(x).reply�!(x))])

|
put!(value).get!().reply?(x).proceed!(x)

Service provider and client may synchronize in the Cell service message, being
(fresh) name c passed in the message which allows the service provider to gain
access to the conversation.

(νc)(FreeCellsInc � [
c � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
c � [!(put�?(x).write!(x)

+
get�?().read!().value?(x).reply�!(x))])

|
put!(value).get!().reply?(x).proceed!(x)

The service client instance and the process using it interact in message put

(notice the � direction), activating a cell write.

(νc)(FreeCellsInc � [
c � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
stop?()]]

|
c � [!(put�?(x).write!(x) + get�?().read!().value?(x).reply�!(x))

|
write!(value)])

|
get!().reply?(x).proceed!(x)

22 L. Caires and H.T. Vieira

At this point, service provider and client instances exchange message write in
the service conversation c, after which message stop is exchanged.

(νc)(FreeCellsInc � [
c � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
recX .(stop?() + next?().value!(value).X)]]

|
c � [!(put�?(x).write!(x)

+
get�?().read!().value?(x).reply�!(x))])

|
get!().reply?(x).proceed!(x)

Then, the get message is exchanged between service client instance and its user
process, activating a cell read.

(νc)(FreeCellsInc � [
c � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
recX .(stop?() + next?().value!(value).X)]]

|
c � [!(put�?(x).write!(x) + get�?().read!().value?(x).reply�!(x))

|
read!().value?(x).reply�!(x))])

|
reply?(x).proceed!(x)

At this point, service provider and client exchange message read, after which
message next is exchanged and the value emission is activated.

(νc)(FreeCellsInc � [
c � [!(read?().next!()

+
write?(x).stop!().recX .(stop?() + next?().value!(x).X)
|
value!(value).recX .(stop?() + next?().value!(value).X)]]

|
c � [!(put�?(x).write!(x)

+
get�?().read!().value?(x).reply�!(x))
|
value?(x).reply�!(x))])

|
reply?(x).proceed!(x)

Analysis of Service Oriented Software Systems 23

Now, the value message is exchanged, after which message reply carrying the
initially written value is picked up by the user process allowing it to proceed.

4.2 Dictionary

In the next example, we use a toy dictionary service to discuss the possible need
of correlating messages belonging to different interaction contexts. A possible
instantiation of such a service may be expressed thus:

new FreeBagsCo · Dict⇐ (
!(put�?(key , x).store!(key , x)
+
get�?(key).get!(key).value?(x).reply�!(x)

)

If the generated instance is to be solicited by several concurrent get requests,
some form of correlation may be needed, in order to route the associated reply

answers to the appropriate contexts. In this case, we set the get message to
play the role of an initiator message, now receiving also a reference r to the
context of interaction (associated to getting the dictionary entry associated to
the indicated key).

new FreeBagsCo · Dict⇐ (
!(put�?(key , x).store!(key , x)
+
get�?(r, key).get!(key).value?(x).r � [reply!(x)]

)

Now, the reply message is sent inside the appropriate conversation context r,
the one that relates to the initial get. A process in the context may then use
the service instance by following the appropriate intended protocol, e.g.:

put!(key , value).(νr)(get(r, key).r � [reply?(x).proceed�!(x)])

Here, we are essentially in presence of a familiar form of continuation passing.
In this case, we have generated a new special context r in order to carry out the

appropriate conversation. In many situations we would like just to correlate the
subsidiary conversation with the current context, without having to introduce a
new special context. In this case, we may write the (perhaps more natural) code,
that will have the same effect as the code above:

put!(key , value).this(currentC).get(currentC , key).reply?(x).proceed!(x)

Remember that the this(x).P (context-awareness) primitive binds x in P to the
identity of the current context.

24 L. Caires and H.T. Vieira

4.3 Service Provider Factory

We revisit the memory cell example, and provide a different realization. In this
case, we would like to represent each cell as a specific service provider, such that
the Read and Write operations are now services, rather than operations of a
particular service as shown above. A cell (named n) may be be represented by
the context:

Cell (n) � n � [def Read⇒ value�?(x).value!(x) |
def Write⇒ value?(x).value�!(x)]

We may now specify a memory cell factory service.

CellFactoryService � def NewCell⇒ (νa)(Cell (a) | replyCell!(a))
To instantiate the cell factory service, and drop a theCell message with a fresh
cell reference (c) in the current context, we may write:

new FreeCellsInc · NewCell⇐ replyCell?(x).theCell�!(x)

The newly allocated cell service provider is allocated in the FreeCellsInc context,
as expected. To use the cell one may then write, e.g.,

theCell(c).(
· · ·
new c · Read ⇐ · · ·
| · · ·
new c ·Write ⇐ · · ·
· · ·)

This usage pattern for services, where service instantiation corresponds to some
form of task delegation rather that process delegation, is closer to a distributed
object model than to a service-oriented model. In any case, it is interesting to
be able to accommodate this usage pattern as a special case, not only for the
sake of abstract generality, but also because it will certainly turn out useful in
appropriate scenarios.

4.4 Exceptions

We illustrate a few usage idioms for our exception handling primitives. In the
first example, the service Service is instantiated on site Server, and repeatedly
re-launched on each failure – failure will be signaled by exception throwing within
the local protocol ClientProto, possibly as a result of a remote message.

rec Restart.
try

new Server · Service⇐ ClientProto
catch Restart

Analysis of Service Oriented Software Systems 25

A possible scenario of remote exception throwing is illustrated below.

Server � [
def Interruptible⇒
stop?().urgentStop!().throw |
. . .ServiceProto . . .]

new Server · Interruptible⇐
urgentStop?().throw |
. . .ClientProto . . .

Here, any remote endpoint instance of the Interruptible service may be inter-
rupted by the service protocol ServiceProto by dropping a message stop inside
the endpoint context. In this example, such a message causes the endpoint to
send an urgentStopmessage to the client side, and then throwing an exception,
which will cause abortion of the service endpoint. On the other hand, the service
invocation protocol will throw an exception at the client endpoint upon recep-
tion of urgentStop. Notice that this behavior will happen concurrently with
ongoing interactions between ServiceProto and ClientProto. In this example,
the exception issued in the server and client endpoints will have to be managed
by appropriate handlers in both sites. In the next example, no exception will be
propagated to the service site, but only to the remote client endpoint, and as a
result of any exception thrown in the service protocol ServiceProto.

Server � [
def Interruptible⇒
try

ServiceProto
catch urgentStop!().throw]

In the examples discussed above, the decision to terminate the ongoing remote
interactions is triggered by the service code. In the next example, we show a
simple variation of the idioms above, where the decision to kill the ongoing
service instance is responsibility of the service context. Here, any instance of the
Interruptible service may be terminated by the service provider by means of
dropping a message killRequest in the endpoint external context.

Server � [
def Interruptible⇒
try

killRequest�?().throw | ServiceProto
catch urgentStop().throw]

A simple example of a similar pattern in our last example on exceptions.

Server � [
def TimeBound⇒

timeAllowed�?(delay).wait(delay).throw |
ServiceProto]

26 L. Caires and H.T. Vieira

Here, any invocation of the TimeBound service will be allocated no more than
delay time units before being interrupted, where delay is a dynamic parameter
value read from the current server side context (we assume some extension of
our sample language with a wait(t) primitive, with the expected semantics).

4.5 Programming a Finance Portal

In this section we show the implementation of a Finance portal (inspired in a
Sensoria Project [21] case study) which illustrates how the several primitives
and idioms of the language can be combined, allowing to model complex in-
teraction patterns in a rather simple way. We model a credit request scenario,
where a bank client, a bank clerk and a bank manager participate, mediated
through a bank portal. The client starts by invoking a service available in the
bank portal and places the credit request, providing his identification and the
desired amount. The implementation of such client in CC is then:

Client � [ClientTerminal
|
new BankPortal · CreditRequest⇐

request!(myId , amount).
(requestApproved?().transferDate!(date).approved�!()
+
requestDenied?().denied�!())]

The client code for the service instantiation specifies the messages that are to
be exchanged in the service conversation by using � messages. First a message
request is sent, after which one of two messages (either requestApproved or
requestDenied) informing on the decision is received. Only after receiving one
of such messages is the ClientTerminal informed (correspondingly) of the final
decision. Notice that the service code interacts with the ClientTerminal process
by means of � messages approved or denied. In fact, from the point of view of
ClientTerminal the external interface of the service instance can be characterized
by the process approved!() + denied!().

Next we show the code of the CreditRequest service published in conversa-
tion BankPortal , and persistently available (as indicated by the 	 annotation).

BankPortal � [def CreditRequest⇒
request?(uid , amount).
join Clerk · RiskAssessment⇐

assessRisk!(uid , amount).
riskVal?(risk).
if risk = HIGH then requestDenied!()
else this(clientC).

new Manager · CreditApproval⇐
requestApproval!(clientC , uid , amount , risk)]

The server code specifies that, in each CreditRequest service conversation, a
message request is received, then message assessRisk is sent and then message

Analysis of Service Oriented Software Systems 27

riskVal is received. The first will be exchanged with the service client, while
the latter two will be exchanged with the clerk, that is asked to join the ongo-
ing conversation through service RiskAssessment. After that, depending on the
risk rate the clerk determined for the request, the bank portal is either able to
automatically reject the request, in which case it informs the client of such deci-
sion by sending message requestDenied, or it has to consult the bank manager,
creating a new instance of the CreditApproval service to that end — notice
that a new instance is created in this case. However, since the bank manager will
reply directly back to the client, the name of the client service conversation is
accessed, via the this(clientC), and passed along to the manager (in the first
argument of message requestApproval). This pattern is similar to a join: the
name of the current conversation is sent to the remote service provider, allowing
for it to join in the conversation. The difference with respect to a join is that the
remote service will only join the client conversation to reply back to the client. In
some sense, it is as if we only delegate a basic fragment of the client conversation
(e.g., the final reply), instead of incorporating the whole functionality provided
by CreditApproval in the CreditRequest service collaboration.

We now show the code for the CreditApproval service, assuming there is a
ManagerTerminal process able to interact with the manager, similarly to the
ClientTerminal process.

Manager � [ManagerTerminal
|
	 def CreditApproval⇒

requestApproval?(clientC , uid , amount , risk).
this(managerC).
showRequest�!(managerC , uid , amount , risk).

(reject?().clientC � [requestDenied!()]
+
accept?().clientC � [requestApproved!().

join BankATM · CreditTransfer⇐
orderTransfer!(uid , amount)]]

The CreditApproval server code specifies the reception of a requestApproval

message, carrying the name of the conversation where the final answer is to
be given in, after which the identity of the current conversation is accessed,
and passed along to ManagerTerminal in message showRequest in conversation
Manager . This allows ManagerTerminal to reply directly to the “right” con-
versation, since several copies of the CreditApproval service may be running
in parallel, and therefore several showRequest messages may have to be con-
currently handled and replied to by the ManagerTerminal: if the replies were
to be placed in the Manager conversation then they would also compete and
be at risk of being picked up by the wrong (unrelated) service instance. The
ManagerTerminal thus replies in the CreditApproval service conversation with
either a reject message or an accept message. After that the credit request
client is notified accordingly in the respective conversation. Also, in the case that
the credit is approved, the manager asks service CreditTransfer published at

28 L. Caires and H.T. Vieira

BankATM to join the client conversation (the current conversation for the join

is the client conversation), so as to place the transfer order.
We now specify the code for the CreditTransfer service.

BankATM � [
BankATMProcess
|
	 def CreditTransfer⇒

orderTransfer?(uid , amount).
transferDate?(date).
scheduleTransfer�!(uid , amount , date)]

The CreditTransfer service code specifies the reception of the transfer order
and of the desired date of the transfer, after which forwards the information
to a local BankATMProcess , which will then schedule the necessary procedure.
Notice that the BankATM party is only asked to join in the conversation under
some circumstances, in such case interacting with the bank manager in message
orderTransfer and with the credit request client in message transferDate,
while otherwise it does not participate at all in the service collaboration.

The system obtained by composing the described processes captures an in-
teresting scenario where, not only the set of multiple participants in the col-
laboration is dynamically determined, but also the actual maximum number of
participants depends on a runtime condition.

5 Analysis Techniques

In several works, we have studied the dynamic and static semantics of the CC,
and illustrated their use to the analysis of service-based systems. Namely, we
have investigated behavioral equivalences, and type systems for conversation
fidelity and deadlock absence. In this tutorial note, we focus on basic results of
the observational semantics; in Section 6, we give further pointers to the type
based analysis.

We define a compositional behavioral semantics of the conversation calculus
by means of the standard notion of strong bisimulation. We prove that strong
and weak bisimilarity are congruences for all the primitives of our calculus.
This further ensures that our syntactically defined constructions induce properly
defined behavioral operators at the semantic level.

Definition 1. A (strong) bisimulation is a symmetric binary relation R on pro-
cesses such that, for all processes P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) ∩ fn(P | Q) = ∅ then there is a process Q′ such that

Q
λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Strong bisimilarity is an equivalence relation. We also have:

Analysis of Service Oriented Software Systems 29

Theorem 1. Strong bisimilarity is a congruence.

We consider weak bisimilarity defined as usual, denoted by ≈.
Theorem 2. Weak bisimilarity is a congruence.

Notice Theorem 2 is not a direct consequence of Theorem 1. In fact, there are
other languages where the latter holds while the former does not. Informally, the
usual counter-example is given by processes τ.α.P and α.P which are weakly
bisimilar. Put in a summation context with process R we obtain τ.α.P +R and
α.P + R which are not weakly bisimilar (the former can do a silent action and
lose the ability to do R and the latter cannot mimic such action).

We also prove other interesting behavioral equations, for instance, the follow-
ing equations hold up to strong bisimilarity:

1. n � [P] | n � [Q] ∼ n � [P | Q].
2. m � [n � [o � [P]]] ∼ n � [o � [P]].

(1) captures the local character of message-based communication in our model,
while (2) illustrates the idea that processes located in different access pieces of
the same conversation interact as if they where located in the same access piece.
Using such behavioral identities, in [26] we show that processes admit a flat
representation, where the nesting level of any active communication prefix is at
most two.

As an example of the sort of specifications captured by our type analysis
consider the CreditApproval service shown in Section 4.5. After being noti-
fied by of the credit approval decision, the CreditApproval service instance
forwards the notification to the client and, in case of approval, asks service
CreditTransfer to join the ongoing conversation. The type that captures the
role of the CreditApproval service instance in the client conversation is char-
acterized by the following type (assuming some basic types T1, . . .):

managerR �
⊕{! requestApproved().τ orderTransfer(T1, T2).? transferDate(T4);

! requestDenied()}

Type managerR specifies a choice (⊕) between two outputs (!): either the out-
put of message requestApproved or of message requestDenied. In the case
of the requestApproved choice, the type specifies that the process proceeds
by internally exchanging (τ) message orderTransfer and by receiving message
transferDate. This behavior results from the combination of the rest of the
manager role in the client conversation (the output of message orderTransfer,
typed ! orderTransfer(T1, T2)) with the type of the CreditTransfer service:

creditTransferB � ? orderTransfer(T1, T2).? transferDate(T4)

where the synchronization in message orderTransfer between the manager and
the bank is recorded in managerR, using the τ annotation. Such flexibility in

30 L. Caires and H.T. Vieira

combining behavioral types is crucial to capture conversations between several
parties, including scenarios where parties dynamically join and leave conversa-
tions, which is the case of the CreditTransfer service.

The CreditApproval service is then characterized by the type:

creditApprovalB �
? requestApproval(managerR, T1, T2, T3).⊕ {τ reject(); τ accept()}

which specifies the reception of a requestApprovalmessage, carrying a conver-
sation identifier in which the manager behaves as specified by managerR, after
which proceeding as the internal choice between messages reject and accept.

The type of the manager process exposes the required and provided services:

ManagerProcess ::
Manager : [? CreditApproval(creditApprovalB)
|
BankATM : [! CreditTransfer(creditTransferB)]

service CreditApproval is published (?) in conversation Manager , and service
CreditTransfer is expected (!) in conversation BankATM .

6 Further Reading and Closing Remarks

The Conversation Calculus was first introduced in [26], where we also presented a
basic study of its behavioral semantics. In [13,14] we introduced the conversation
type theory, which provides analysis techniques for conversation fidelity and
deadlock absence, while addressing challenging scenarios involving dynamically
established conversations between several partners. Analysis techniques based on
the CC where mainly developed by Hugo Vieira in his PhD thesis [27]. Several
aspects of the Conversation Calculus have also been reported in several chapters
of the book which collects the key results of IP Sensoria Project [1,3,11,17,22].
More recently, in the context of the CMU-PT INTERFACES project [15], we
have been using the Conversation Calculus/Types suite to model and analyze
role based multiparty interactions in the setting of web business applications.

Our development of the concept of conversation was initially motivated by
the concept of binary session [19]; most session-based approaches to service in-
teractions only support binary interactions (simple client-server). Only recently
proposals have appeared to support multiparty interaction [5,6,16,20,28]. To sup-
port multiparty interaction, [20] considers multiple session channels, while [5]
considers indexed session channels, both resorting to multiple communication
pathways. Our model follows an essentially different design, by letting a sin-
gle medium of interaction support concurrent multiparty interaction via labeled
messages. We base our approach on the notion of conversation context, and on
plain message-passing communication, which allows us to introduce the con-
versation initiation and conversation join constructs as idioms. This contrasts
with other session-based proposals for session and service-oriented models where

Analysis of Service Oriented Software Systems 31

we find primitive service instantiation operations constructs (see, e.g., [7,8,23]).
Comparing with such models, the Conversation Calculus seems to be the simplest
extension to the pure π-calculus for modeling and analyzing complex multi-party
service based systems.

Ad hoc primitives to deal with exceptional behavior are present in several
service calculi. Perhaps surprisingly, our exception mechanism, although clearly
based on the canonical construct for functional languages, does not seem to have
been explored before us in process calculi (more recently, a similar mechanism
is explored in [9]). In [12] we showed how a transactional model supporting
compensations (the compensating CSP [10]) can be encoded in the Conversation
Calculus by means of its exception mechanism.

In our discussion on the underlying principles of the service-oriented compu-
tational model, we left out some interesting features of distributed systems that
we view as fairly alien to this setting. Forms of code migration (weak mobility)
seem to require an homogeneous execution support infrastructure, and thus to
run against the aim to get loose coupling, openness and independent evolution
of subsystems. In general, any mechanism relying on centralized control or au-
thority mechanisms, or that require a substantial degree on homogeneity in the
runtime infrastructure (e.g., strong mobility) also seem hard to accommodate.

To summarize, we have reviewed the Conversation Calculus, a core model for
service-oriented computation. The design of the Conversation Calculus, building
on the identification and analysis of general aspects of service-based systems, was
also discussed and justified in considerable detail. By means of a series of sim-
ple, yet hopefully illuminating examples, we have illustrated how our model may
express many service-oriented idioms, and complex multi-party service based
systems in a very natural way. Properties such as behavioral equivalence, con-
versation fidelity and deadlock absence may be verified on Conversation Calculus
models by means of several available techniques. The aim of providing simpler,
more expressive, and usable techniques for complex software systems is certainly
a good justification for introducing yet another core model or language, in par-
ticular if such model is expressed as a tiny layer on top of a purest foundational
model; the π calculus. We leave for others to judge the extent to which such aim
was achieved by the Conversation Calculus and related techniques.

Acknowledgments. We thank IP Sensoria EU IST FP6 - 2005-2010 and
Carnegie Mellon|PT INTERFACES 44-2009-12.We also thank Lúıs Barbosa and
Markus Lumpe for inviting us for the FACS’10 keynote, on which this tutorial
is based.

References

1. Acciai, L., Bodei, C., Boreale, M., Bruni, R., Vieira, H.: Static analysis tech-
niques for session-oriented calculi. In: Hölzl, M. (ed.) SENSORIA Project. LNCS,
vol. 6582, pp. 214–231. Springer, Heidelberg (2011)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2006)

32 L. Caires and H.T. Vieira

3. Bartoletti, M., Caires, L., Lanese, I., Mazzanti, F., Sangiorgi, D., Vieira, H., Zunino,
R.: Tools and verification. In: Hölzl, M. (ed.) SENSORIA Project. LNCS, vol. 6582,
pp. 408–427. Springer, Heidelberg (2011)

4. Beisiegel, M., et al.: Service Component Architecture: Building Systems using a
Service-Oriented Architecture, version 0.9. Technical report, BEA, IBM, Inter-
face21, IONA, Oracle, SAP, Siebel, Sybase Joint Whitepaper (2005)

5. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433.
Springer, Heidelberg (2008)

6. Bonelli, E., Compagnoni, A.: Multipoint Session Types for a Distributed Calcu-
lus. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256.
Springer, Heidelberg (2008)

7. Boreale, M., Bruni, R., Caires, L., Nicola, R.D., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC:
a Service Centered Calculus. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

8. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Struc-
tured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

9. Bravetti, M., Zavattaro, G.: On the Expressive Power of Process Interruption
and Compensation. Mathematical Structures in Computer Science 19(3), 565–599
(2009)

10. Butler, M., Ferreira, C.: A Process Compensation Language. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 61–76. Springer,
Heidelberg (2000)

11. Caires, L., De Nicola, R., Pugliese, R., Vasconcelos, V., Zavattaro, G.: Core Calculi
for Service-Oriented Computing. In: Hölzl, M. (ed.) SENSORIA Project. LNCS,
vol. 6582, pp. 153–188. Springer, Heidelberg (2011)

12. Caires, L., Ferreira, C., Vieira, H.: A Process Calculus Analysis of Compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

13. Caires, L., Vieira, H.: Conversation Types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

14. Caires, L., Vieira, H.: Conversation Types. Theoretical Computer Science 411(51-
52), 4399–4440 (2010)

15. CMU-PT INTERFACES Project. Website,
http://ctp.di.fct.unl.pt/interfaces/

16. Deniélou, P.-M., Yoshida, N.: Dynamic Multirole Session Types. In: Ball, T., Sa-
giv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, pp. 435–446. ACM, New York
(2011)

17. Ferreira, C., Lanese, I., Ravara, A., Vieira, H., Zavattaro, G.: Advanced Mecha-
nisms for Service Combination and Transactions. In: Hölzl, M. (ed.) SENSORIA
Project. LNCS, vol. 6582, pp. 302–325. Springer, Heidelberg (2011)

18. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component
Architecture. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 193–213. Springer, Heidelberg (2006)

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

http://ctp.di.fct.unl.pt/interfaces/

Analysis of Service Oriented Software Systems 33

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
Necula, G., Wadler, P. (eds.) Proceedings of the, 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 273–284.
ACM Press, New York (2008)

21. IP Sensoria Project Website: http://www.sensoria-ist.eu/
22. Lanese, I., Ravara, A., Vieira, H.: Behavioral Theory for Session-Oriented Calculi.

In: Hölzl, M. (ed.) SENSORIA Project. LNCS, vol. 6582, pp. 189–213. Springer,
Heidelberg (2011)

23. Lanese, I., Vasconcelos, V.T., Martins, F., Ravara, A.: Disciplining Orchestration
and Conversation in Service-Oriented Computing. In: 5th International Confer-
ence on Software Engineering and Formal Methods, pp. 305–314. IEEE Computer
Society Press, Los Alamitos (2007)

24. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I + II.
Information and Computation 100(1), 1–77 (1992)

25. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

26. Vieira, H., Caires, L., Seco, J.: The Conversation Calculus: A Model of Service-
Oriented Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 269–283. Springer, Heidelberg (2008)

27. Vieira, H.T.: A Calculus for Modeling and Analyzing Conversations in Service-
Oriented Computing. PhD thesis, Universidade Nova de Lisboa (2010)

28. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised Multiparty Session
Types. In: Ong, C.-H.L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145.
Springer, Heidelberg (2010)

http://www.sensoria-ist.eu/

QoS Contract-Aware Reconfiguration of
Component Architectures Using E-Graphs

Gabriel Tamura1,2, Rubby Casallas1, Anthony Cleve2, and Laurence Duchien2

1 University of Los Andes, TICSw Group, Cra. 1 N◦ 18A-10, Bogotá, Colombia
2 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022, University of Lille 1, France

{gabriel.tamura,anthony.cleve,laurence.duchien}@inria.fr,
rcasalla@uniandes.edu.co

Abstract. In this paper we focus on the formalization of component-
based architecture self-reconfiguration as an action associated to quality-
of-service (QoS) contracts violation. With this, we aim to develop on the
vision of the component-based software engineering (CBSE) as a gener-
ator of software artifacts responsible for QoS contracts. This formaliza-
tion, together with a definition of a QoS contract, forms the basis of the
framework we propose to enable a system to preserve its QoS contracts.
Our approach is built on a theory of extended graph (e-graph) rewriting
as a formalism to represent QoS contracts, component-based architec-
tural structures and architecture reconfiguration. We use a rule-based
strategy for the extensible part of our framework. The reconfiguration
rules are expressed as e-graph rewriting rules whose left and right hand
sides can be used to encode design patterns for addressing QoS proper-
ties. These rules, given by a QoS property domain expert, are checked
as safe, i.e., terminating and confluent, before its application by graph
pattern-matching over the runtime representation of the system.

1 Introduction

In the last ten years, Component-based Software Engineering (CBSE) has evolved
based on a fundamental vision of the components as a contract or obligations-
responsible software artifacts [1]. On this vision, CBSE has been used as a fun-
damental approach for engineering software systems in a wide variety of forms.
These forms include the building of systems from contract-compliant components
to abstracting reflection mechanisms at the component-level (i.e., composite, com-
ponent, port, connection) to support self-adaptive systems. Even though a lot of
research has been conducted on how to make components guarantee contracts on
individual functionality, making component-based systems to be QoS contracts-
aware is another important part of the same research question: this kind of con-
tracts constitute the base to differentiate and negotiate the quality of the service
or provided functionality at the user level.

Nonetheless, providing a component-based software system with reconfigura-
tion capabilities to preserve its QoS contracts presents several difficulties: (i)
the expression of the QoS contract itself, given that it must specify the different

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 34–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

QoS Contract-Aware Reconfiguration of Component Architectures 35

contextual conditions on the contracted QoS property, and the corresponding
guaranteeing actions to be performed in case of the QoS contract disruption
[13,15]; (ii) in contraposition to functional contracts, which can be checked stat-
ically, QoS contracts are affected by global and extra-functional behaviour that
must be evaluated at runtime. This evaluation requires also dynamic monitoring
schemes, different to the static ones usually found in current systems [7]; (iii)
several reconfiguration strategies can be used to address each desirable condition
on a QoS property. These strategies are provided by different disciplines (e.g.,
those related to performance, reliability, availability and security), and consti-
tute a rich knowledge base to be exploited. Nonetheless, due to their diversity of
presentation in syntax and semantics, it is difficult to manage them uniformly,
thus existing approaches use them as fixed subsets [2]; (iv) the reconfiguration
process is required to guarantee both, the preservation of the system integrity as
a component-based software system, and the correct and safe application of the
reconfiguration strategy. This requirement is specially challenging if the strate-
gies are parametrized, for instance, by using rules, still being a research issue in
self-reconfiguring approaches [12].

On the treatment of software contracts several works have been proposed.
Notably among them, the design by contract specification of the Eiffel program-
ming language [16] and the Web Service Level Agreement (WSLA) initiative [15].
The design by contract theory, one of the most inspiring in the object-oriented
programming paradigm, makes routines self-monitoring at compile-time by us-
ing assertions as integral parts of the source code to be checked at runtime. The
violation of an assertion, such as a class invariant, is automatically managed by
standard mechanisms like the rescue clause. The programmer must handle it
appropriately to restore a consistent state. This idea was later generalized by
Beugnard et al. to four types of software contracts, including those based on
QoS, though not fully developed [3]. On the other side, WSLA specifies QoS
contracts independent from the source code, thus involving conditions based on
the actual context of execution. The WSLA includes a guaranteeing action in
response to disrupted SLAs, but the semantics of this action is limited to op-
erations such as event notification [15]. However, despite these and other many
advances, the development of a well-founded theory to manage QoS contracts in
component-based systems is still a challenging question.

Our goal in this paper is to formally model the architecture reconfiguration of
a component-based (CB) system as an action performed by itself. These actions
are performed in response to the disruption of QoS contracts, in the spirit of
the Eiffel’s rescue clause in object-oriented programming. By doing this, we aim
to develop on the vision of the CBSE as a sound base to produce software sys-
tems enabled to automatically and safely reconfigure themselves by reconfiguring
their abstract (reflection) architectures at runtime. For such structural reconfig-
urations, a system architect may reuse design patterns from other disciplines
with the purpose of restoring QoS contracts, thus preserving them.

Our approach is built on the theory of extended graph (e-graph) rewriting
proposed in [10], as a formalism to represent QoS contracts, component-based

36 G. Tamura et al.

architectural structures and architecture reconfiguration. For the self-
reconfiguration, we use a parametrized, rule-based strategy. That is, the recon-
figuration possibilities are expressed as e-graph rewriting rules whose left and
right hand sides can be used to encode variations of design patterns for address-
ing QoS properties. These rules are applied by graph pattern-matching over the
system runtime e-graph representation when it is notified with events related to
the violation of the corresponding properties.

The contribution of this paper is twofold. We provide (i) formal definitions
for QoS contracts, CB system reflection and reconfiguration rules, in a unified
framework (i.e., syntax and semantics). This allows the verification of CB struc-
tural rules of formation to be checked; and (ii) a well-founded basis for a system
to manage its own reconfigurations to address the disruption of its associated
QoS contracts. Once parametrized with a specific set of rules, the system can
be checked as terminating (the process of rule application is guaranteed to end)
and confluent (the rule application order is irrelevant and always produce the
same result).

This paper is organized as follows. Section 2 presents our motivation and
proposal scope. Section 3 introduces a reliable video-conference system as an
example scenario to illustrate our proposal. Section 4 presents our formaliza-
tion for QoS contracts-ware system reconfiguration by using e-graphs. Section 5
analyze the properties of our reconfiguration system as a result of its formaliza-
tion. Section 6 compares our approach with similar proposals. Finally, Section 7
concludes the paper and anticipates future work.

2 Motivation and Scope

As defined by Oreizy et al., self-adaptive software evaluates its own behaviour
at runtime and modifies itself whenever it can determine that it is not satisfying
its requirements [17,20]. In their proposal, they defined the system adaptation
as a cycle of four phases: (i) monitoring of context changes; (ii) analysis of these
changes to decide the adaptation; (iii) planning responsive modifications over the
running system; and (iv) deploying the modifications. In our proposal, we focus
on the planning phase considering self-reconfiguration at the component level,
triggered by sensible changes in context that affect the fulfillment of contractual
QoS properties. Other component-based proposals such as COSMOS [9] and
MUSIC [18] can be used for more general functionalities of context monitoring
and analysis phases, meanwhile those like Fractal [4] and OSGi [21] for the
component management at the deployment and execution phases.

Our motivation in this paper is to define a safe, rule-based framework to ad-
dress QoS contracts violation in CB systems through the reconfiguration of the
components-architecture, meaning: (i) (rule-based reconfiguration) the addition
or removal of software components and connectors at runtime, as specified by
parametrized rules given by a QoS property domain expert or a software QoS ar-
chitect; (ii) (safe-1) these rules can be checked to be terminating and confluent,
i.e., their application can be guaranteed to finish the production of the reconfig-
uration actions in a deterministically way. This verification is done despite the

QoS Contract-Aware Reconfiguration of Component Architectures 37

rules given being whether or not pertinent for the QoS property preservation,
but correct in their definition; (iii) (safe-2) the QoS property domain expert is
concerned only with rule specification, not with the specific procedure to ap-
ply it; (iv) (safe-3) once executed the reconfiguration actions into the runtime
system, its CB-structural conformance can be verified.

3 Running Example

We illustrate the requirements for dynamic reconfiguration with a simplified ver-
sion of a reliable mobile video-conference system (RVCS). To the user, the service
is provided through a video-conference client subject to a QoS contract on its re-
liability. Thus, software clients are expected to be responsible for maintaining the
service to the user in a “smart” way, as illustrated in Fig. 1. Note that addressing
these requirements statically (e.g., with if-then clauses on context conditions)
would not be satisfactory: as the video-conference requires bi-directionality, this
would introduce synchronization issues between the client’s and server’s condi-
tions, being their respective contexts not necessarily the same.

In this example, reliability is interpreted following [2], i.e., to ensure the con-
tinued availability of the video-conferencing service hosted by a corporate net-
work. The corporate network requires all clients to access the intranet through
connections guaranteeing confidentiality. Thus, even though the contract is on

User

<<extend>>
(FromIntranet)

<<extend>>
(FromExtranet)

<<extend>>
(LowBwidth)

<<extend>>
(HoldCall)

<<extend>>
(LowBwidth)

VideoConf-Intra

Extension Points:
- LowBwidth

VideoConf-Extra

Extension Points:
- LowBwidth

QoS Reliability
Management

<<include>>

VoiceConf

VideoConf
Hold

VideoConf

Extension Points:
- FromIntranet
- FromExtranet

- HoldCall

Fig. 1. Use case diagram for the requirements of the RVCS example. Connections from
the intranet are considered secure, thus clear communication channels can be used.
From the extranet, confidential channels are required to be configured. In case of no
connection, the call must be put on hold. If the user goes into a low-bandwidth area,
the system must reconfigure itself to drop the bi-directional video signals. The QoS
Reliability Management has the responsibility of reconfiguring the system architecture
to address the QoS contract violation in each case (taking into account the system’s
actual state) in a transparent way.

38 G. Tamura et al.

Table 1. QoS contractual conditions and corresponding service level objectives for the
confidentiality property (based on access to corporate network)

Contextual Condition Service Level Objective
CC1: Connection from Intranet Clear Channel
CC2: Connection from Extranet Confidential Channel
CC3: No Network Connection Call on Hold

the QoS property of reliability, it involves two sub-properties, confidentiality
and availability. On these two sub-properties, the contractual interest is on
establishing the minimum levels for service acceptability (service level objec-
tives), under the possible contextual conditions of system execution (cf. Tables 1
and 2).

Initially, assume the mobile user joins a video conference from her office at the
corporate building, e.g., from an intranet WiFi access-point. In this state, as the
contractual condition CC1 in Table 1 requires a clear-channel communications
configuration, the system is expected to configure itself to satisfy that condi-
tion. A second system state is reached when she moves from her office to outside
of the company building thus connecting through any of the available extranet
wireless access-points, such as GSM or UMTS. This context change, signaled by
a new contextual condition, disrupts the confidentiality contract that was being
fulfilled by the actual system configuration. In this new state, according to con-
dition CC2, a confidential-channel configuration on the mobile is required. The
expected system behaviour is then to reconfigure itself in response to this change,
in a transparent way, adopting, for instance, one of the strategies for secure mul-
timedia transport like those defined in [23,19], thus restoring the contract. The
corresponding contrary reconfiguration would apply whenever she moves back
to an access-point covered by the intranet. If there are several available network
access-points, a cost function should be used to choose the cheapest. Finally,
whenever there is no network connection by any access-point, the call must be
put on hold awaiting for automatic reconnection, just expressing that this is
preferable to the alternative of dropping the service.

For illustration purposes, Table 2 establishes the minimum expected service,
according to the network bandwidth, independent of the network access-point
location.

Table 2. QoS contractual conditions and corresponding service level objectives for the
availability property (based on network bandwidth in kbit/s)

Contextual Condition Service Level Objective
CC4: BandWidth ≤ 12 Call on Hold
CC5: 12 < BandWidth ≤ 128 Voice Call
CC6: 128 < BandWidth Voice and Video Call

QoS Contract-Aware Reconfiguration of Component Architectures 39

4 E-Graph Modeling of QoS Contracts-Based System
Reconfiguration

Given that QoS properties are dependent on system architecture, we build our
proposal for making CBSE systems to be QoS contracts-responsible on a formal
modeling for component-based architecture self-reconfiguration. This formaliza-
tion is built on the extended theory of graph transformation given in [10].

For a CBSE system to be QoS contracts-responsible in an autonomous way,
it requires (i) to have a structural representation of itself at the component level
(i.e., to be reflective) [8]; (ii) to have a representation of its QoS contracts: the
service level objectives for each of the contractual QoS properties, under the
different contextual conditions; (iii) to be self-monitoring, that is, to identify
and notify events on the contractual QoS properties violation; and (iv) to apply
the architecture reconfiguration to restore the violated QoS property condition,
as specified in the QoS contracts.

In Sect. 4.1 we recall the base definitions of e-graphs given in [10]; then, we use
these definitions in sections 4.2 and 4.3 as a unified formalism to represent re-
flection structures for component-based systems and QoS contracts respectively.
Finally, in Sect. 4.4 we present our proposal for architecture reconfiguration
based on e-graph rewriting rules, illustrating how these defined constructs give
support for reflective, autonomous and QoS contracts-based self-reconfiguring
systems.

4.1 Extended Graphs: Base Definitions

Definition 1 (E-Graph). An E-Graph is a tuple (V1, V2, E1, E2, E3, (sourcei,
targeti)i=1,2,3), where

– V1, V2 are sets of graph and data nodes, respectively;
– E1, E2, E3 are sets of edges (graph, node attribution and edge attribution,

respectively);
– source1 : E1 → V1; source2 : E2 → V1; source3 : E3 → E1 are the source

functions for the edges; and
– target1 : E1 → V1; target2 : E2 → V2; target3 : E3 → V2 are the target

functions for the edges, as depicted in Fig. 2.

Definition 2 (E-Graph morphism). An e-graph morphism f between e-graphs
G and H, f : G → H, is a tuple (fV1 , fV2 , fE1 , fE2 , fE3) where fVi : GVi → HVi

and fEj : GEj → HEj for i = 1, 2, j = 1, 2, 3, such that f commutes with all
source and target functions2 (cf. Fig. 3).

2 Note that E-Graphs combined with E-Graph morphisms form the category EGraphs.
See [10] for more details on this topic.

40 G. Tamura et al.

V1

E1

E2

E3

V2

source2

source1 target1

target2

target3
source3

Fig. 2. E-Graph definition. An e-graph extends the usual definition of a base graph,
(V1, E1, source1, target1), with (i) V2, the set of attribution nodes; (ii) E2 and E3, the
sets of attribution edges; and (iii) the corresponding source and target functions for
E2 and E3, used to associate the attributes for V1 and E1, respectively, to V2

V1

E1

E2

E3

V2

source2

source1 target1

target2

target3

source3

V1

E1

E2

E3

V2

source2

source1 target1

target2

target3

source3

f
V1

f
V2

f
E2

f
E1

f
E3

E-Graph
H

E-Graph
G

Fig. 3. E-Graph morphism illustration example f between e-graphs G and H , f : G →
H . E-graph morphisms are used as typing relationships between e-graphs.

4.2 System Reflection

For a system to self-reconfigure at runtime, it is required to be reflective. That
is, it must be able to identify and keep track of the individual elements that
are to be involved in reconfiguration operations [8]. In our case, the reflection
structure is defined on a component-based structure that comprises the CBSE
component, port, port type and connector elements. Composites are abstracted
as components, as we address structural reconfiguration at the system level.

Definition 3 (Component-Based Structure - CBS). The component-based
structure, CBS, is the tuple (G, DSig), where

– DSig is a data signature over the disjoint union String + PortRole and
PortRole = {Provided, Required}, with the usual CBSE interpretations;

– G is the e-graph (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such that V1 =
{SReflection, Component, Port, PortT ype, Connector}; each of the data
nodes is named after its corresponding sort in DSig, V2 = String+PortRole;
E1 = {component, port, provided, required, type}, E2 = {cname, pname,
ptype, role, c.QoSProvision, p.QoSProvision, ct.QoSProvision}, E3 = {};
and the functions (sourcei, targeti)i=1,2,3 are defined as depicted in Fig. 4.

QoS Contract-Aware Reconfiguration of Component Architectures 41

Component
Port Connector

String

PortRole

port

type

provided

required

cname

ptype
pname

role

SReflection

components

c.QoSProvision

ct.QoSProvision

p.QoSProvision PortType

Fig. 4. The Component-Based Structure, CBS, is defined as an e-graph where each of
the graph nodes represents each of the CBSE elements. The graph edges correspond
to the relationships among these elements, meanwhile the data edges, to their cor-
responding attributes; QoSProvision is a special attribute for components, ports and
connectors to express that they warrant a particular QoS condition, such as providing a
secure connection to a network. The data nodes represent the types of these attributes.

Definition 4 (Component-Based System Reflection). Given S the com-
putational state of a running component-based system, its corresponding reflec-
tion state, RS, is defined as RS = (G, fS , t), where G is the e-graph that rep-
resents S through the one-to-one function fS : S → G, and t is an e-graph
morphism t : G→ CBS.

That is, S represents the state of each of the system components, ports and
connectors as maintained in a component platform such as FRACTAL or OSGi.
The feasibility of fS results from Def. 3 (CBS) and the e-graph morphism t.
RS .Component denotes the set of components in RS , i.e., RS .Component =
{c|c ∈ GV 1 ∧ tV 1(c) = Component} (analogously for the other CBS elements).
The purpose of fS is to map the system architecture into the e-graphs domain,
in which the architecture reconfiguration is operated. Once reconfigured, we use
f−1

S to perform the reconfiguration back in the actual runtime component-based
system.

Example 1 (Video Conference System). Figures 5 and 6 illustrate, respectively,
the runtime component-based system structure of our video-conference example
and its corresponding system reflection state, when configured to be connected
from the intranet (i.e., with a clear-channel connection).

vccComp

vcsComp

netComp

receive

send

send

receive

Fig. 5. Runtime system structure for Ex. 1 with a clear channel connection

42 G. Tamura et al.

vccComp

vccP1

con1
provided

port

provided

required

role

vccP2

port

receive pname

required

role

send

pname

vcsComp

vcsP1
required

port

role

vcsP2

port

send

pname

provided

role

receive
pname

con2

required

provided

cliP1

cliP2

netComp

con3provided

required

con4

required

provided

port

port

netP1

netP2

port

port

clearChannel

c.QoSProvision

Fig. 6. Runtime system reflection structure, in e-graph notation, for the runtime system
of Fig. 5 (i.e., when connected from the intranet). The netComp component, providing
a network connection, is responsible for maintaining a clearChannel connection, as
expressed by its c.QoSProvision attribute. Further details omitted for space.

The components of Fig. 5 are represented in Fig. 6 as exactly the video confer-
ence client with its network connection (vccComp and netComp) and the server
(vcsComp). The other elements in represent their ports (vccP1, vccP2 and so
on), and these port’s actual connections (con1, con2 and so on).

4.3 QoS Contracts

A QoS contract is a specification of the guarantees on QoS properties under
specific conditions for a given functionality, as offered by a system or service
provider to any of its potential clients [14,3]. In this sense, a QoS contract is
an invariant that a system must preserve, for instance, by restoring it in case
of its violation. The evaluation of the invariant validity must be performed at
runtime, given that it depends on measurements from the actual context of
execution, such as response time, throughput, and security level on network
access location; therefore, the QoS property condition must be monitored and
the system must act upon its violation in order to have the possibility of restoring
it opportunely.

For a system to address its QoS contracts’ violation, it must incorporate and
manage these contracts internally. Given our formal modeling of a component-
based system as a realization of system reflection, we use the same formal frame-
work to define QoS contracts as a manageable part of the system.

Definition 5 (QoS Contract). Given QoSDSig the usual data signature over
the disjoint union String + Boolean, a QoS contract is a tuple (C, ct), where

– C is an e-graph representing the contract instance;
– ct is an e-graph morphism ct : C → Q, where Q is the e-graph reference def-

inition for QoS contracts, (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such

QoS Contract-Aware Reconfiguration of Component Architectures 43

that V1 = {QoSContract, QoSProperty, QoSMonitor, QoSGuarantor,
SLOObligation, QoSRule}; each of the data nodes is named after its corre-
sponding sort in QoSDSig, V2 = String + Boolean; E1 = {property,
obligation, monitor, guarantor, ruleSet}, E2 = {gname, pname, mname,
rname, SLOPredicate, contextCondition, isActive}, E3 = {}; and the func-
tions (sourcei, targeti)i=1,2,3 are defined as depicted in Fig. 7.

QoSContract

QoS
Guarantor

QoS
RuleSet

SLO
Obligation

String

Boolean

obligation
property

rnamegname

QoS
Property

ruleSet

pname

isActive

contextCondition
SLOPredicate

guarantor

QoS
Monitor

mname

monitor

Fig. 7. E-graph reference definition for QoS contracts. Following [22] and [13], we de-
fine a QoS contract on QoS properties (QoSProperty). For each property, a set of
service level objective obligations (SLOObligation) is specified. An SLO obligation es-
tablishes (i) the possible context conditions (contextCondition) of system execution;
(ii) the SLO to be fulfilled (SLOPredicate) under these conditions; and (iii) a guaran-
teeing reconfiguration rule set (QoSRuleSet) to be applied in case of SLO violation.
The QoSGuarantor refers to the system element that should provide the contracted
functionality under the specified SLO obligations. The identification and notification
of context changes and of SLOs violations is a responsibility of the QoSMonitor.

Example 2 (QoS Contract on Confidentiality). Table 3 illustrates the contract
on the QoS property of confidentiality for our video-conference system example.
The corresponding e-graph representation is given in Fig. 8.

Table 3. QoS contract example on confidentiality for the video-conference system

System Obligations
Context Condition Service Level Objective Guaranteeing Rule Set

1: conn_from_intranet clearChannel R.clearChannel
2: conn_from_extranet confidentChannel R.confidentChannel
3: no_network_conn localCache R.localCache

Responsibilities
- System Guarantor: System.netCompa

- Context Monitor: System.netComp_AccessPointProbeb

a The system component providing the network connection under the required QoS
conditions.

b The designated component to check changes on the system network connection’s
access points and corresponding confidentiality violations.

44 G. Tamura et al.

QoSContract

QoS
Monitor

SLO
Obligation

true

obligation

property

mname

QoS
Property

monitor

pname isActive

contextCondition SLOPredicate

QoS
RuleSet

SLO
Obligation

false

isActive

Confidentiality

obligation

contextCondition
SLOPredicate

confidentChannelfromExtranet

clearChannel
fromIntraNet

R.confident
Channel

rname

rname

R.clear
Channel

QoS
RuleSet

ruleSet

ruleSet

SLO
Obligation

false

isActive

contextCondition
SLOPredicate

localCachenoNetworkConn

R.local
Cache

rname
QoS

RuleSet

ruleSet

obligation
QoS

Guarantor

gname

netComp

guarantor

netComp_
AccessPointProbe

Fig. 8. QoS Contract, in e-graph notation, for the video-conference example. This
contract specifies the netComp component (cf. Fig. 6) as the QoSGuarantor, and an
AccessPointProbe on this component as the QoSMonitor for the confidentiality QoS
property. This monitor is used by the system to continually check the changes in the
context conditions and violations of the actual SLO. In our example, the initial context
condition is a connection fromIntranet, and the corresponding SLO is to maintain a
clearChannel. A context change in connection fromIntranet to fromExtranet triggers
the application of the respective reconfiguration rule set, R.confidentChannel. Then,
the new context condition would be activated (connection fromExtranet). (cf. Tab. 3).

4.4 Component-Based Architecture Reconfiguration Modeling

Having formalized the structural parts of a system in terms of e-graphs, we define
the runtime software architecture reconfiguration as an e-graph transformation
system. The definition of this reconfiguration system is based on a definition of
a reconfiguration rule.

Definition 6 (Reconfiguration Rule). A reconfiguration rule, p, is a tuple
(L, K, R, l, r, lt, kt, rt), where L (left hand side), K (left-right gluing), and R
(right hand side) are e-graphs, and l, r, lt, kt, rt are graph morphisms, abbrevi-
ated, p = (L l←− K

r−→ R), and lt : L→ CBS, kt : K → CBS and rt : R→ CBS.
p is said to reconfigure L into R.

Conceptually, a reconfiguration rule specifies a strategy to address conditions
on QoS properties. Thus, for each guaranteeing rule set specified in the QoS
contract, associated to a context condition on a given QoS property, the user
can encode architectural patterns that address that condition in the left and
right hand sides of the rules. Different left hand sides for a similar right hand
side in a rule set for a given condition are possible, since the system structures

QoS Contract-Aware Reconfiguration of Component Architectures 45

depend on the different context conditions. All left-hand sides of rules in a rule-
set are named after that rule-set name. In the scenario of our example, for
instance, it is possible to change to a connection from the extranet by moving
either from the intranet or from a state with no network connection. Each of
these two conditions requires its own system structure, namely, a clear-channel
or a local-cache structure, respectively.

Example 3 (Reconfiguration rule). The QoS contract on confidentiality for our
video-conference example specifies a guaranteeing set of reconfiguration rules,
R.confidentChannel, to address the context change when the user moves to the
extranet and the contract is violated. Figure 9 illustrates the rule (in that set)
that applies when the user is moving from the intranet.

netComp

conn1

provided

conn2

required

netP1

netP2

port

port

nCliP1

nCliP2

tunnelComp

port

port

nNetP3

nNetP4

port

port

nCon1provided
required

nCon2

required

provided

netComp

netP1

netP2

port

port

clearChannel

c.QoSProvision

conn1
provided

conn2

required

confidentChannel

c.QoSProvision

Fig. 9. The R.confidentChannel reconfiguration rule, in e-graph notation, that ap-
plies when moving from an intranet network connection to an extranet connection.
The left-hand side (LHS) of the rule is used by a pattern-matching algorithm to find
a component netComp in the system, such that it supports a clearChannel as SLO
obligation (by the c.QoSProvision attribute). The right-hand side (RHS) specifies that
(i) the matched components by the LHS must be kept with their corresponding con-
nectors, except those for conn1 and conn2; (ii) the dark elements must be configured
and deployed to provide a tunneled (i.e., confident) channel for the data; (iii) the new
ports nCon1, nCon2 must be connected to the previously existing ports netP1, netP2,
and conn1, conn2 reconnected to the new ports nNetP3, nNetP4, respectively; and
(iv) the c.QoSProvision attribute of netComp must be updated as provisioning a con-
fidentChannel. For clarity, the left-right gluing K and graph morphisms l, r, lt, kt, rt
are omitted in this figure; K, l, r would correlate each of the corresponding non-dark
elements in the RHS with their LHS’s counterparts.

Definition 7 (Reconfiguration System). A component-based reconfiguration
system is a tuple (DSig, CBS, S, C, P), where DSig is a suitable data type signa-
ture for component-based systems, CBS the component-based structure definition
(Def. 3), and S the structure of the system to reconfigure in its initial state, C a
QoS contract, and P a set of reconfiguration rules (with S, C and P according
to Def. 4, 5 and 6, respectively) in which:

46 G. Tamura et al.

1. (When to reconfigure) A system reconfiguration is triggered whenever the QoS-
Monitor specified in the contract C, C.monitor, notifies of an event that
violates the actual SLO (C.property.obligation.SLOPredicate). This event
signals that a new context condition, related to another C.property.obligation.
contextCondition, is currently in force. Associated to this new context condi-
tion, the contract specifies the corresponding SLO and guaranteeing reconfig-
uration rule set P = C.property.obligation.ruleSet.

2. (How, Where and What to reconfigure) The identified rule set P is applied
to the system reflection structure RS of S. That is, for each reconfiguration
rule p = (L l←− K

r−→ R) in P , and morphism m : L→ G (called a match of
the left-hand side of p, L, in G), we identify a direct reconfiguration G

p,m⇒ H
as an e-graph transformation of G into H, as specified by the reconfiguration
rule p, of L into R, according to Def. 6.

3. A one-step system reconfiguration is a sequence of direct transformations
G0 ⇒ G1 ⇒ . . . ⇒ Gn, written G0

∗⇒ Gn, until no more rules in P can be
applied.

4. The system reconfiguration finishes with a new e-graph reflection system
structure, R′

S . The list of actions to reconfigure RS into R′
S can then be

applied to the actual runtime system through f−1
S , according to Def. 4.

Example 4 (System reconfiguration). Figure 10 illustrates the reconfigured run-
time system structure having applied the reconfiguration rule of Example 3
(to be used when the network connection changes from the intranet to the
extranet).

vccComp

vccP1

con1

port

provided

required

role

vccP2

port

pname

role

pname

vcsComp

vcsP1

port

role

vcsP2

port

pname

role

send

pname
con2

required

provided

cliP1

cliP2

netComp

con3provided

required

con4required
provided

port

port

port

port

QoSProvision

netP1

netP2

nCliP1

nCliP2

tNetComp

port

port

nNetP3

nNetP4

nCon1

nCon2

provided

required

required

provided

port

port

receive send

receiveconfidentChannel

provided

required

required

provided

Fig. 10. Reconfigured system architecture in e-graph notation. This new system struc-
ture fulfills the SLO (confidentChannel) for the new context condition (network con-
nection fromExtranet), as specified in the contract illustrated in Fig. 8. The added
components are highlighted (shaded). Further details omitted for clarity.

5 QoS Contracts-Based Reconfiguration Properties

In this section we analyze the properties of our proposed reconfiguration system
as a result of the formalization presented in the previous section.

QoS Contract-Aware Reconfiguration of Component Architectures 47

5.1 Component-Based Structural Compliance

Definition 8 (Full CB-Structural Compliance). A runtime system reflec-
tion structure, RS, is full CB-structural compliant if it is a component-based
structure (i.e., if there exists a graph morphism t : RS → CBS), and the fol-
lowing conditions hold 1:

1. ∀c(c ∈ RS.Connector =⇒ ∃p, q(p, q ∈ RS.Port =⇒ c.provided =
p ∧ c.required = q ∧ c.provided 	= c.required)): the ports referenced by the
provided and required attributes must be different in every connector.

2. ∀p((p ∈ RS.Port ∧ p.role = Required) =⇒
∃c(c ∈ RS.Connector(c.required = p))): all required ports must be con-
nected.

3. ∀c1, c2(c1, c2 ∈ RS.Connector =⇒ ((c1.name = c2.name ∧ c1.provided =
c2.provided ∧ c1.required = c2.required) =⇒ c1 = c2): every connector
must connect different elements.

The verifiability of full CB-structural compliance obviously results from the
structural definitions 3 and 4 of our reconfiguration system proposal. Even
though it would be desirable to statically check that reconfiguration rules pro-
duce only full CB-structural compliant systems, this would require more con-
straints on the reconfiguration rules.

Example 5 (Full CB-structural compliance). The system reflection structures of
Fig. 6 and Fig. 10 are full CB-structural compliant, as it is straightforward to
verify that the corresponding conditions hold on them.

5.2 Termination and Confluence of the System Reconfiguration

In [10] the Local Church-Rosser, Parallelism and Concurrency theorems, which
hold for graph rewriting, are proved as valid also for typed attributed graph
transformation systems. In this section, we show that the one-step system re-
configuration (i.e., G0

∗⇒ Gn in Def. 7) of our component-based reconfiguration
system is reducible to a typed attributed graph transformation system. There-
fore, those theorems are also valid for our reconfiguration system.

Theorem 1 (Reducibility of One-Step System Reconfiguration). Let
CBR be a component-based reconfiguration system. A one-step component-based
(CB) system reconfiguration, CBSR, in CBR, is reducible to a typed attributed
graph transformation system, TAGTS.

Proof. According to Def. 7, a component-based reconfiguration system is a tu-
ple (DSig, CBS, S, C, P). Of these elements, for one-step system reconfiguration
(i.e., G0

∗⇒ Gn), the data signature, DSig, the component-based structure defi-
nition, CBS, and the QoS contract, C, are unchanged. Therefore, in a one-step
system reconfiguration these elements can be omitted, depending only on the
system reflection structure, S, and the set of reconfiguration rules, P . Given
that
1 Multiplicity constraints, as defined as usual in CBSE, are omitted for space.

48 G. Tamura et al.

1. a CB system reflection structure is a tuple (G, fS , t), where G is the e-
graph that represents a system S through the one-to-one function fS : S →
G, and t is an e-graph morphism t : G → CBS. In the one-step system
reconfiguration, fS also is unchanged and CBS is a type e-graph for G, G
attributed with the data signature DSig;

2. a typed attributed graph is a tuple (AG, u), where AG is an attributed graph
over a data signature TAGDSig, and u is an attributed graph morphism,
u : AG→ ATG, where ATG is a type graph:

3. a CB reconfiguration rule, p, is a tuple (L, K, R, l, r, lt, kt, rt), p = (L l←−
K

r−→ R), and lt : L→ CBS, kt : K → CBS and rt : R→ CBS;
4. the typed attributed graph transformation rules are graph rewriting produc-

tions q = (X x←− Y
y−→ Z), X, Y, Z graphs; and

5. both, the system reflection structure and the typed attributed graph are
based on the same e-graph definition,

a one-step system reconfiguration, CBSR, can be reduced to a typed attributed
graph transformation system, TAGTS, by making TAGDSIG = DSig, AG =
G and ATG = CBS. The TAGTS set of transformation rules can be defined
as the set of CB reconfiguration rules without the lt, kt, rt morphisms, given
that, once defined the CB reconfiguration rules, these morphisms are no longer
required.
�
As a result, the Local Church-Rosser, Parallelism and Concurrency theorems
can then be used with critical pair checking in a particular set of reconfiguration
rules, and determine if the one-step system reconfigurations in our reconfigura-
tion system is terminating and confluent. This verification ensures the reliability
of the reconfiguration process and frees a system architect of being aware of (i)
rule dependencies that may cause deadlocks in the reconfiguration; and of (ii) the
rule application order and the specific procedure to perform the reconfiguration
itself.

5.3 Stabilization and Exception in the Reconfiguration Process

Given that the reconfiguration rules in our proposal are specified by the user, our
reconfiguration system must also consider exceptional cases. These cases corre-
spond to two contract-unfulfilled states, namely the unstable and the exception.
The unstable state is reached when a plausible reconfiguration rule has been
found and applied in the system reflection structure, but its effect has not been
enough to restore the contract validity. Operationally, in this state the user must
be notified about the inefficacy of the rules specified in the contract, after apply-
ing the rules a given number of times. On the other side, the state of exception
is reached when the reconfiguration system has not been able to find a matching
rule to apply in the running system reflection structure. In this case, the user
must be notified about the context condition under which the system reflection
structure has no corresponding reconfiguration rule, as specified in the contract.

QoS Contract-Aware Reconfiguration of Component Architectures 49

6 Related Work

Software contracts can be seen as a form of property preservation, being this
is a recurrent problem in computer science. This problem has been addressed
by different communities with different approaches, being a fundamental char-
acteristic of mature engineering disciplines [1]. Our work has been inspired by
the general framework approach of some of these proposals, addressing QoS con-
tracts violation through system reconfiguration in component-based systems.

At least in abstract, many of these proposals follow the rescue clause idea of
the Eiffel’s design by contract theory [16]. For example, even though not on the
CBSE nor addressing QoS contracts, but on the formal-based self-healing prop-
erties preservation side, in [11] Ehrig et al. used algebraic graph transformations
for the static analysis and verification of specific properties. Their proposal use
a fixed set of particular transformation rules to be applied in response to sys-
tem failures, thus the self-healing properties are proven with them. Our proposal
differs to theirs in that we want to provide a general framework, in the context
of component-based software engineering, to be parametrized with reconfigura-
tion rules given by the user; this means that they can prove specific properties,
meanwhile we provide tools to the user for checking general properties. Another
approach, yet non-formal, aiming at preserving system structural properties in
software reconfiguration is the proposed by Hnětynka and Plášil in [12]. Their
approach limit the system reconfigurations to those matching three specific re-
configuration patterns in order to avoid the dynamic reconfiguration to introduce
system architecture inconsistencies.

On the treatment of contracts, in [6] Chang and Collet focuses on the problem
of combining low-level properties of individual components to obtain system-level
properties as a support for contract negotiation. Their approach identifies then
compositional patterns for non-functional properties. On another side, Cansado
et al. propose in [5] a formal framework for component-based structural reconfig-
uration and gives a formal definition of behavioural contract. Their approach is
based on a labeled transition system as a formalism to unify behavioural adap-
tation and determine if a reconfiguration can be performed. Our proposal, even
though also address system-level contracts as the two above mentioned, differs to
those in that we are interested in the related problems of system architecture and
the dependencies on the execution context, meanwhile those deal with more low-
level component problems of property composability and interface adaptability,
respectively.

7 Conclusions

The main challenge we face in this paper is how to make component-based
systems QoS-contracts responsible under varying conditions of context system
execution.

In order to face this challenge, we propose a formal approach based on e-graphs
for system reflection modeling, QoS contract modeling and system architecture

50 G. Tamura et al.

reconfiguration. With these definitions, we prove that the one-step system recon-
figuration of our component-based reconfiguration system is reducible to a typed
attributed graph transformation system. In [10] the Local Church-Rosser, Paral-
lelism and Concurrency theorems are proved for typed attributed graph transfor-
mation systems.Therefore, the adoption of e-graphs to build our component-based
transformation system represents three important benefits, as it allows us to: (i)
take advantage of the properties of termination and confluence that these theorems
allow to check, as a sound strategy for the development of rule-based, dynamic,
autonomous and self-reconfiguring systems; (ii) provide a rich expressive notation
by combining and exploiting graph visual presentations with graph-basedpattern-
matching; and (iii) benefit from the existing catalogs of design patterns that target
different architecture and QoS concerns, as far as the users encode them as recon-
figuration rules. In this latter case, our approach enables users to effectively reuse
these software design artifacts to enforce particular QoS attribute conditions. For
this, however, a more legible and usable concrete syntax should be developed, with
automated tools to assist the user in the writing of reconfiguration rules in a more
familiar notation such as the used in component-based specifications.

Our formal framework can be used thus to develop and implement rule-based
systems in automated and safe ways, being them QoS contracts responsible.
With these systems, a user is enabled to define her own rules while freeing her
of being aware of the rule application order and of the details of the specific
procedure to apply them. For this, and as a result of the formal definition of the
QoS contract, component-based systems are enabled as self-monitoring. To this
respect, QoS addressing proposals usually detect and manage contract violation
either at a coarse-grained, system resources level or at the fined-grained com-
ponent interfaces level. Our approach is an intermediate proposal, as it takes
into account the software components but at the architecture level. Thus, the
conditions on QoS properties that we can address can be measured from system
context components, and the corrective actions in response to their violation are
also at the component-architecture reconfiguration. Nonetheless, from a general
point of view, it is possible to formalize in our proposal the global behaviour of
the reconfiguration system, defining more precisely the meaning of the contract-
unfulfilled states of un-stability and exception, for instance using ideas from
process algebras. As future work our plan is (i) to continue the development of
our formal framework to form a comprehensive theory for the treatment of QoS
contracts in component-based software systems; and (ii) implement it and apply
it in representative cases of study to have a better understanding of the different
kind of properties that the engineering of self-adaptive software systems must
address.

Acknowledgments. This work was funded in part by the Icesi University (Cali,
Colombia), the Ministry of Higher Education and Research of Nord-Pas de Calais
Regional Council and FEDER under Contrat de Projets Etat Region (CPER)
2007-2013, and during the tenure of an ERCIM “Alain Bensoussan” Fellowship
by the third author.

QoS Contract-Aware Reconfiguration of Component Architectures 51

References

1. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R., Wallnau, K.: Technical Concepts of Component-Based Software En-
gineering. Vol. 2. Technical Report CMU/SEI-2000-TR-008, CMU/SEI (2000)

2. Barbacci, M., Klein, M.H., Longstaff, T.A., Weinstock, C.B.: Quality attributes.
Technical Report CMU/SEI-95-TR-021, CMU/SEI (1995)

3. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components con-
tract aware. IEEE Computer 32(7), 38–45 (1999)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. & Exper. 36(11-12), 1257–1284 (2006)

5. Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for structural
reconfiguration of components under behavioural adaptation. In: Procs. of the 6th
Intl. Workshop FACS (2009); ENTCS 263(1), 95 – 110 (2010)

6. Chang, H., Collet, P.: Compositional patterns of non-functional properties for con-
tract negotiation. JSW 2(2), 52–63 (2007)

7. Chang, H., Collet, P.: Patterns for integrating and exploiting some non-functional
properties in hierarchical software components. In: Procs. of the 14th IEEE Intl.
Conference and Workshops on the ECBS 2007, pp. 83–92. IEEE CS, Los Alamitos
(2007)

8. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems:
A research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525,
pp. 1–26. Springer, Heidelberg (2009)

9. Conan, D., Rouvoy, R., Seinturier, L.: Scalable processing of context information
with COSMOS. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531,
pp. 210–224. Springer, Heidelberg (2007)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag New York, Inc., Heidelberg (2009)

11. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and verification of self-healing systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

12. Hnětynka, P., Plášil, F.: Dynamic reconfiguration and access to services in hierar-
chical component models. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt,
H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063,
pp. 352–359. Springer, Heidelberg (2006)

13. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)

14. Krakowiak, S.: Middleware architecture with patterns and frameworks (2009),
http://sardes.inrialpes.fr/~krakowia/MW-Book/

15. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification(2003), IBM Available Specification

16. Meyer, B.: Applying ”Design by Contract”. Computer 25(10), 40–51 (1992)
17. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,

N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14(3), 54–62 (1999)

http://sardes.inrialpes.fr/~krakowia/MW-Book/

52 G. Tamura et al.

18. Paspallis, N., Rouvoy, R., Barone, P., Papadopoulos, G.A., Eliassen, F., Mamelli,
A.: A pluggable and reconfigurable architecture for a context-aware enabling
middleware system. In: Chung, S. (ed.) OTM 2008, Part I. LNCS, vol. 5331,
pp. 553–570. Springer, Heidelberg (2008)

19. Ramachandran, J.: Designing Security Architecture Solutions. John Wiley & Sons,
Inc., New York (2002)

20. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA/ECSA 2009, pp. 171–180. IEEE, Los Alamitos (2009)

21. The OSGi Alliance: OSGi Service Platform Core Specification Release 4. Tech. rep.,
The OSGi Alliance (June 2009), http://www.osgi.org/Download/Release4V42,
oSGi Available Specification

22. Tran, V.X., Tsuji, H.: A survey and analysis on semantics in qos for web services.
In: Intl. Conf. on Advanced Information Networking and Apps., pp. 379–385 (2009)

23. Zeng, W., Zhuang, X., Lan, J.: Network friendly media security: Rationales, so-
lutions, and open issues. In: Procs. of the 2004 Intl. Conf. on Image Processing
(ICIP), pp. 565–568. IEEE, Los Alamitos (2004)

http://www.osgi.org/Download/Release4V42

Monitoring Method Call Sequences Using

Annotations�

B. Nobakht1, M.M. Bonsangue1,2, F.S. de Boer1,2, and S. de Gouw1,2

1 Leiden Institute of Advanced Computing,
Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{bnobakht,marcello}@liacs.nl
2 Centrum Wiskunde and Informatica,

Science Park 123, 1098 XG Amsterdam, The Netherlands
{frb,cdegouw}@cwi.nl

Abstract. In this paper we introduce JMSeq, a Java-based tool for
the specification and runtime verification via monitoring of sequences of
possibly nested method calls. JMSeq provides a simple but expressive
way to specify the sequential execution of a Java program using code
annotations via user-given sequences of methods calls. Similar to many
monitoring-oriented environments, verification in JMSeq is done at run-
time, but differently from all other approaches based on aspect-oriented
programming, JMSeq does not use code instrumentation, and therefore
is suitable for component-based software verification.

Keywords: Object monitoring, run-time verification, method call se-
quence specification, code annotation, component-based testing, com-
munication traces.

1 Introduction

Testing and, more recently, monitoring are two established approaches to the
verification of large complex systems. Testing is generally used to validate the
results of each step in the software life cycle against the expected ones. More
recently, monitoring-oriented programming has emerged as a formal branch of
testing suitable to validate runtime data collected during system execution [13].
While in ordinary testing the software system under test must be stimulated so
to reproduce an expected behavior, in monitoring the actual behavior is observed
and analyzed a posteriori with respect to some specification.

Component based software engineering advocates the construction of software
by gluing together prefabricated components [27]. Because the code of the com-
ponents is not always available, automatic code insertion is not possible, thus
posing new challenges to testing and monitoring of the final product. An alter-
native to the white box view of monitoring is given by automatic generation

� This research is partly funded by the EU project FP7-231620 HATS: Highly
Adaptable and Trustworthy Software using Formal Models (http://www.
hats-project.eu/)

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 53–70, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www.hats-project.eu/
http://www.hats-project.eu/

54 B. Nobakht et al.

of wrappers for monitoring the external behavior of third-party components. A
wrapper is automatically generated for every component with tracking code to
form an observable component in the black box view. As for the automatic code
insertion, formal specifications are separated from source code, but the complex-
ity of generating the wrappers can be very high, as the code relative to a single
specification must be distributed among several wrappers. The approach is thus
not flexible and easily reusable. Basically, there are no other systematic methods
and technologies available to control and monitor the external behaviors of the
components according to a test specification.

In this paper we consider components as compiled Java packages that are an-
notated with specification of the internal object behaviors by means of sequences
of outgoing method calls from the component and incoming return messages to
the component. Component designers can use the standard Java 5 Annotations
[3] to specify the intended behavior of the component as well as the action to be
taken in case of failure. We express the intended behavior through a set of exe-
cution traces1. To check conformance of the execution trace with respect to its
specification, monitors are automatically synthesized from specified properties
and integrated into the original system to check its dynamic behaviors during
execution. The approach is therefore simple, modular and flexible to use. It does
not assume that the component source code is available, but it requires the ad-
dition of annotations either at design process or the testing phases, similar to
what happens in the proof-carrying code approach [25]. The runtime verification
and monitoring framework we implement is based on the Java Platform Debug-
ger API (JPDA) [4]. Our method is thus complementing the approach taken in
JavaMOP [14], where Java programs are monitored and verified at runtime by
means of code instrumentation. JMSeq can be used to complement other exist-
ing testing and verification frameworks to add capabilities for the developer. For
instance, one can use JML [22] to specify the properties of the data flow and use
JMSeq to specify the properties of the control flow.

The rest of the paper is organized as follows. In Section 2 we discuss the prob-
lem of monitoring and testing component based systems. Then, in Section 3 we
present a language for specifying sequences of method calls that are annotating
the interfaces or the code of a program, as explained in Section 4. These annota-
tions are used by the JMSeq framework, introduced in Section 5, to monitor the
program. In Section 6, we discuss related work including a more detailed com-
parison with JavaMOP [14], another monitoring framework. Finally, we conclude
in Section 7 and also discuss possible future work.

2 Monitoring Component Based Systems

Monitoring refers to the activity of tracking observable information from an
execution of a system with the goal of checking it against the constraints imposed
by the system specification. The observable information of the monitored system

1 By execution traces, we mean the sequence of method calls and method returns, not
sequences of states.

Method Sequence Call Specification and Verification 55

typically includes behaviors, input and output, but may also contain quantitative
information. A monitoring framework consists of a monitor that extracts the
observable behavior from a program execution, and a controller that checks the
behavior against a set of specifications. In the case that an execution violates
the constraints imposed by the specification, corrective actions can be taken.

What can be monitored depends, of course, on what can be observed in a
system. When the application source code is available, its code can be instru-
mented to receive informative messages about the execution of an application at
run time. New code is inserted into the original code, preserving the original logic
of the application; yet, the extra code is essential for the management of moni-
toring and verification mechanisms. For example JavaMOP [14] uses AspectJ to
inject monitors into the original code. Also, the JML run-time assertion checker
has been implemented using aspect-oriented programming [26].

As programs have become larger and more complex, encapsulation and hiding
techniques have become more important. Component based software construc-
tion has emerged as a viable solution for handling the complexity of software.
Components implement one or more interfaces describing the services they pro-
vide and require. Usually, the interfaces are described only in terms of a signa-
ture and the source code of a component is not available. During the integration
phase, when components are composed into a system, it is thus very difficult for
the developer to check if the behavior of the system conforms to its specification.
In fact, the absence of source code implies that we cannot instrument it, and
therefore current run-time verification techniques cannot be used.

In this paper we present JMSeq, a runtime verification framework that is not
based on code instrumentation, but rather on code annotation. Code annotation
has become increasingly popular in the past few years, especially because of its
effectiveness in integrating formal techniques for verification with programming.
Essentially, annotations are code segments that are compiled but do not provide
any logic or business in the program; yet, they indirectly affect the program
execution based on the additional information they add to the running code.

Annotations are different from documentation tags as originally used by JML
to specify assertions for verification of Java code [22]. In fact documentation tags
are not compiled, and thus are highly dependent on the presence of the source
code. The success of modern testing frameworks such as JUnit [5] advocated for
development of services based on annotations for the recent versions of the Java
language. JMSeq uses Java annotations to provide a way for the programmer to
specify for each method a set of execution traces representing an abstraction of
the intended behavior, or protocol, of a component. Thus, method call sequence
specifications specify properties of the control flow of the global execution trace.
The methods in these sequences denote the use of services of other components
or even of the component itself. In particular we do not exclude call-backs.

When deployed, we assume that each component contains the description of
its protocol that can be checked for conformance at run-time. Only the compo-
nent interfaces need to be known to the system developer, possibly with JM-
Seq annotations when the source code is not available. Of course it would be

56 B. Nobakht et al.

advantageous if the developers have documentation describing the internal com-
ponents annotations. The advantage of this approach is an easy integration of
JMSeq with the testing framework JUnit [5] for the execution of an individ-
ual component in a specific context to see whether they generate the expected
results. In this case, we do not need the component to be annotated at all as
one can easily write a JUnit test for it, annotate JUnit methods with JMSeq
annotations and run the JUnit test with JMSeq.

Let us consider the notions of “black-box” and “white-box” testing. As white-
box testing usually utilizes the internal structure of a software system, the source
code dependence is inevitable. However, in the case of black-box testing, there
is no need for the source code of the system as the test depends on the process,
input and output, and the test specification of the system.

Moreover, in the field of testing, there are times that some parts of the sys-
tem are not available (or made unavailable); thus, there should be a mechanism
to substitute “mock implementation” for a system interface when needed. This
technique may be referred to as unit testing in contrast with integration testing
as different components are being regarded as stand-alone entities providing pre-
defined interface and behavior and no mock implementation can be substituted
or provided in the system. In other words, in integration testing, the system may
be complete and operational on its own and in unit testing, there are points that
require mock implementations (since the development is not complete yet).

JMSeq is uses black-box testing as it does not use the internal structure of the
program. And, it supports both unit testing and integration testing techniques;
provided that the developer or the tester provides the mock implementations
required in unit testing.

Table 1 characterizes several testing frameworks by distinguishing among code
annotation, code instrumentation, unit testing, and integration testing tech-
niques.

Table 1. Approach Comparison

Instrumentation Annotation Technique

JML � � Unit, Integration
JavaMOP � � Unit, Integration

PQL � � Unit, Integration
JMSeq � � Unit, Integration

3 Method Sequence Call Specification

We consider a component to be a collection of compiled Java classes. The relevant
dynamic behavior of a component can be expressed in terms of specific sequences
of messages between a small, fixed number of objects. In Figure 1, we see two
UML message sequence diagrams each describing how the four objects interact
with other and in which order. In this section, we develop a specification language
for describing kinds of interactions using a context free grammar.

Method Sequence Call Specification and Verification 57

m_a

m_c
m_b

m_a
m_b

m_c

Fig. 1. Examples of Method Sequence Call Specification

Essentially, a specification language for sequences of method calls needs to
distinguish between the specifications of the two cases in Figure 1.

Case 1 shows a scenario in which (the call to) m c is nested in m b since m c
is called during the activation of m b (i.e. after m b is called and before it
returns). Similarly, both m b and m c are nested in m a.

Case 2 represents a method call in which methods from different/same objects
are called in a sequential rather than nested manner. For instance, both m b
and m c are called by m a.

Typically, a program will need a combination of both cases to specify its dynamic
behavior. Specifying only the order of the method calls is not enough, as both
cases above have the same order of method calls. It is thus required to have a
specification technique that distinguishes between the method calls and method
returns.

It is clear from the above examples that regular expressions over method
calls are not enough to specify the typical nested call structure of a sequence of
messages in the presence of recursion. In general, such sequences form a context
free language. However they have a special structure: there is a deterministic
pushdown automaton accepting them such that it pushes or pops at most one
symbol only, depending if a method call or return is read, respectively. Such an
automaton is called a visibly pushdown automaton [8].

In JMSeq, a specification denotes a post-condition associated with a method.
It specifies the set of possible sequences of method calls, or protocol, of an object
in the context of the relevant part of its environment. Formally, sequences of
method calls belong to a context free language specified by means of a grammar.
Figure 2 represents the method sequence call specification grammar.

A specification consists of a sequence of calls that can be repeated an a
priori fixed number of times (”〈Specification〉m”), with m ≥ 0, one or more

58 B. Nobakht et al.

〈Specification〉 ::= 〈Call〉 | 〈Call〉 〈Specification〉 |
〈Specification〉m | 〈Specification〉$ | 〈Specification〉# |
(〈Specification〉)

〈Call〉 ::= {call(〈Signature〉)〈InnerCall〉}$ |
{call(〈Signature〉)〈InnerCall〉}# |
{call(〈Signature〉)〈InnerCall〉}m |
{call(〈Signature〉)〈InnerCall〉} |
{call(∗)} |
< 〈Call〉 ? 〈Call〉 >

〈InnerCall〉 ::= [〈Call〉]〈InnerCall〉 | ε
〈Signature〉 ::= 〈AspectJ Call Expression Signature 〉

Fig. 2. Method Sequence Specification Grammar

times (”〈Specification〉$”), or zero or more times (”〈Specification〉#”). Although
JMSeq does not use aspect-oriented programming in its implementation; we
have used the generic method call join points syntax of AspectJ [19], using for
example # to denote the more standard Kleene star operation. Additionally,
(〈Specification〉) is a way to group specifications to avoid ambiguity. To improve
readability of the specifications, grouping is only used when necessary.

A call is a call signature followed by a (possibly empty) sequence of inner
calls. Each call can be repeated either one or more time, zero or more times, or
exactly m-times, for some m ≥ 0. Additionally, the wild card {call(∗)} denotes
a call to an arbitrary method. To support branching, JMSeq also provides <
〈Call〉?〈Call〉 > to allow the specification of a choice in the sequence of method
executions.

Inner calls are calls that are executed before the outer call returns, i.e. they are
nested. We do not have explicit return messages, but rather we specify the scope
of a call by using parentheses. Information about the message call, like caller,
callee, method name, and actual parameters are expressed using the generic
AspectJ syntax for pointcut model that is used to express the point of calling
a method from another object [19,1]. Put it simply, a call signature is of the form

call([ModifiersPattern] TypePattern
[TypePattern .] IdPattern (TypePattern | ".." , ...)
[throws ThrowsPattern]

)
reflecting the method declarations in Java that include method names, method
parameters, return types, modifiers like “static” or “public”, and throws clauses.
It is noticeable that the annotation are used for the “public” method from outside
the component; yet, the developer is allowed other modifiers such as “private”
for runtime checking since the internally used annotations are not visible from
outside the component. Here IdPattern is a pattern specifying the method
name. It can possibly be prefixed at the left by a specification of the type of

Method Sequence Call Specification and Verification 59

the object called. Method modifiers and return type are specified by the two
leftmost patterns. The method name is followed by a specification of the type
of the parameters passed during the call, and possibly by a specification of the
throws clause. It implies that JMSeq specification grammar can distinguish the
overloaded methods in a class. Patterns may contain wild card symbols “*” and
“..”, used for accepting any value and any number of values, respectively. For
example, the call

call(* *.A.m a(..))

is denoting a call to method m a of any object of type A that is placed in any
package, and returning a value of any type. If there is a need to be more specific,
a possible restatement of the same specification could be:

call(int nl.liacs.jmseq.*.A.m_a(Object, double))

Next we give few example of correct method sequence specifications. For in-
stance, the specification of the sequence in case 1 of Figure 1 is given by:

{call(* *.A.m_a(..))[{call(* *.B.m_b(..))[{call(* *.C.m_c(..))}]}]}

Here is important to notice that the call to method m b is internal to m a, and the
one to m c is internal to m b. The sequence in case 2 of the same figure would be:

{call(* *.A.m_a(..))[{call(* *.B.m_b(..))}][{call(* *.C.m_c(..))}]}

where both calls to methods m b and m c are internal to m a.
These two cases depict a fixed sequence of method calls. More interesting are

the cases when, for instance, the method m a should be called at least once be-
fore any possible method call to m b or m c:

{call(* *.A.m_a(..))}$<{call(* *.B.m_b(..))}#?{call(* *.C.m_c(..))}#>

Such a specification is used in circumstances where m a will satisfy a requirement
in advance that is used by m b or m c.

It is notable that the meta-grammar provided in Figure 2 is a context-free
grammar; however, the actual specifications are regular expressions; for example,
they may contain unbounded repetition and choice of calls. They are not context
free as the bound m in the repetition is assumed to be fixed and not a free
variable.

4 Annotations with Method Sequence Calls

Annotations do not directly affect program semantics, but they do affect the
way programs are treated by tools and libraries, which can in turn affect the
behavior of the running program [3]. Annotations can be read from source files,

60 B. Nobakht et al.

class files, or reflectively at run-time. Once an annotation type is defined, it can
be used to annotate declarations. An annotation is a special kind of modifier,
and can be used anywhere that other modifiers (such as public, static, or
final) can be used.

One of the major desired effects of using annotations in code is that it will
allow for testing components without the need to have their source code. We
only used the meta data loaded from the annotations during runtime.

JMSeq defines two type of annotations: sequenced object annotations and
sequenced method annotations.

Sequenced Object Annotations. Simply put, SequencedObject annotation
is just a marker for those classes to notify the annotation meta-data loader that
the objects from the annotated class contain methods which specify a sequential
execution. The code is demonstrated in Listing 1.

Listing 1. SequencedObject Annotation Declaration

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.TYPE)
3 public @interface SequencedObject {
4 // we need no properties for this annotation as this is only a marker.
5 }

@Retention(RetentionPolicy.RUNTIME) declares that this annotation is
only applicable during runtime and may not be used in other scenarios, whereas
@Target(ElementType.TYPE) declares that this annotation can only be used
on types including classes, interfaces and enumerated types.

Sequenced Method Annotation. A sequence method annotation is used to
specify the sequence of method calls under a given method. The annotation re-
quires a string property declaring the sequential specification discussed in Section
3. Listing 2 presents the declaration.

Listing 2. SequencedMethod Annotation Declaration

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.METHOD)
3 public @interface SequencedMethod {
4

5 String value();
6

7 Class<VerificationFailureHandler> verificationFailureHandler();
8 }

@Target.ElementType.METHOD declares that this annotation is only ap-
plicable to methods. The string value from value() holds the sequen-
tial specification. The class VerificationFailureHandler is introduced by
verificationFailureHandler() and is used when a sequence execution fail-
ure occurs at runtime. Its implementation is left to the tester or developer who
should provide a custom behavior to handle the verification failures.

Method Sequence Call Specification and Verification 61

In Listing 3 we give two examples of annotations of the class Main class in
Figure 1. In both cases we annotated method main() with two sequences of
method calls, describing the behaviors given in Figure 1.

Listing 3. Sample annotated specification

1

2 // Case 1
3 @SequencedObject
4 public class Main {
5

6 @SequencedMethod("{call(* *.A.m_a(..))[{call(* *.B.m_b(..))[{call(* *.C.
m_c(..))}]}]}")

7 public void main() {
8 // ...
9 }

10

11 public void init() {
12 // ...
13 }
14 }
15

16 // Case 2
17 @SequencedObject
18 public class Main {
19

20 @SequencedMethod("{call(* *.A.m_a(..))[{call(* *.B.m_b(..))}][{call(* *.C
.m_c(..))}]}")

21 public void main() {
22 // ...
23 }
24

25 public void init() {
26 // ...
27 }
28 }

5 The JMSeq Framework

In this section, we present the JMSeq monitoring and testing framework, and
discuss its implementation that uses Java 5 Annotations [3] and Java Platform
Debugger API [4]. More implementation details, including samples and docu-
mentation, can be found at http://code.google.com/p/jmseq/.

As discussed above, we assume that Java components come together with se-
quenced object and sequenced method annotations. More annotations are possi-
ble within the same class, but not for the same method. This implies a local and
partial view of the component specification, that can be scattered among all its
constituent classes. The annotated methods are the ones that will be monitored
by JMSeq.

JMSeq, based on some initial parameters, initiates another inner Java virtual
machine (JVM) inside the current execution to control the sequenced execution
of the program (Figure 3). Essentially, the parameters tell the inner JVM what
type of events are going to be reported back to JMSeq for verification such as
method entries and method exits. Also, JMSeq is not interested in events from
all objects but only for those specified in the parameters. The inner JVM takes

http://code.google.com/p/jmseq/

62 B. Nobakht et al.

advantage of the Java Platform Debugger Architecture (JPDA) to access the
needed details on the execution of the system while it is running. JPDA is a
framework for debugging and interfacing the JVM. Java Debugger Interface is
the interface of JPDA that gives access to different details on the execution of a
program.

Before execution, JMSeq inspects the classes in the running class path to
collect and store all the methods that are annotated for sequenced verification.
This step, denoted in Figure 3, does not need code inspection, but uses the
annotated meta data available in the compiled code.

The program is now executed. Whenever an event is reported to JMSeq the
event trace model is updated in such a way that events are aware of their previous
call stack trace (Figure 3): if the event represents a method that does not need
to be monitored the execution continues until the next event, otherwise it is
verified if it is an expected event. The verification is done through a simple state
machine with a stack for the nested events occurred so far. The verification
process is described as (Figure 3):

1. A “call expression” of the event model is constructed.
2. Using the meta data available from annotations of the methods, then, the

next “possible call expressions” of the current state is built.
3. A match making is done between the possible call expressions and the current

call expression as the candidate. The possible call expressions are computed
on-the-fly rather than constructing the full automaton in the beginning of
the verification process. This way we avoid the construction of states in the
automaton that are never used in the execution. To avoid repeated computa-
tions of the same states, JMSeq utilizes dynamic programming techniques. If
a match is found, the method is accepted; otherwise it fails. When a failure
occurs, JMSeq will execute the custom verification handler that is imple-
mented either internally as part of the component code by the programmer,
or externally by the system designer.

The overall JMSeq process is depicted in Figure 3.

5.1 JMSeq Architecture

The overall architecture of JMSeq is given in Figure 4. It basically consists of
three main modules: one for handling the communication with the JVM execut-
ing the program, another module for storing the annotation information, and a
third module for executing the run-time verification.

The current design of JMSeq is completely general and modular; as it allows
for replacing the grammar in Figure 2 with other specification modules, based,
for example, on temporal logics or extended regular expressions.

Program Execution Trace Model and Processing. According to JDI event
model, JMSeq takes control over some of the execution events that JVM pub-
lishes during a program execution. Therefore, a component was designed to

Method Sequence Call Specification and Verification 63

Fig. 3. Runtime Object Monitoring and Sequenced Execution Verification

model and hold the execution trace events required for event handling and exe-
cution verification.

1. Execution is the central component that holds the information about every
execution in the JVM using the JDI event mechanisms. Relevant events
include “method entry” and “method exit”. It provides access to information
such as:
– The object that is currently executing (the callee object) and its unique

identifier in JVM.
– Event details through subclasses such as method return values or the

caller object reference in case of a method exit event.
– Parent Execution: every execution can hold a reference to its parent exe-

cution object forming a directed tree of executions. This help traversing
the executions at validation time or for the simulation of formal specifi-
cation.

2. EventHandler is the event handling interface that is injected into JVM with
access to JDI information. The event handler receives event for which it is
subscribed and possibly takes an associate action. In particular it creates
an instance of Execution for each sequence annotation and it stores it in
the ExecutionTraceOracle registry ready to be used by the verification
module. In general, all events received and processed by EventHandler are
stored in this registry for further use by other components.

Sequential Execution Annotation Repository. As the execution traces
are stored in a repository, they are supposed to be checked and verified

64 B. Nobakht et al.

Fig. 4. Software Architecture for Method Sequence Specification

against the formal specifications as described on the @SequencedObject and
@SequencedMethod annotations of the compiled classes in the program. It is
the task of sequential execution annotation repository to store this information.
A service is responsible to read and load the meta-data of all classes that are an-
notated. This information is used when there is a need to verify the conformance
of an execution event.

Execution Verification. During an execution, events are received that need
to be monitored and verified against a message sequence specification. For every
specification in the meta-data repository, a deterministic state machine including
a stack is created for recognizing the sequences in the specification. Whenever
an event is processed that belongs to a sequence of method calls, the execution
verifier checks if the state machine can execute a transition associated with this
event. If the state machine accepts the current event, the execution will continue;
otherwise, the execution is “invalid” and therefore it is stopped. At this point,
JMSeq provides a simple way to plug in a verification failure handler by means
of a class provided by either the component designer or the test developer. The
verification failure handler should implement an interface introduced by JMSeq.

The execution verification component is composed by the following elements:

1. Call Expression is a simple component for interacting with each state ma-
chine object. Basically, it transforms execution events coming from the JVM
into call expressions used by the state machine components.

Method Sequence Call Specification and Verification 65

2. Call Expression State Machine: Sequences of executions are translated to
“call expression”s that are to be accepted by a state machine. The stack of
the automaton is necessary to distinguish the method’s context on different
calls to the same method calls, for example. At the end of a successful se-
quential execution, the stack for the automaton associated to that sequenced
execution specification should be empty. Otherwise the top of the stack is
used to match the event with a possible candidate call expression of the
previous event.

3. Call Expression Builder constructs a call expression out of:
(a) A string which is in the format of the JMSeq specification grammar as

in Figure 2. This service is used the first time a sequential execution is
detected to build the root of the future possible (candidate) call expres-
sions.

(b) An execution event; every time an execution is handed over to verification
module, an equivalent call expression is built for it so that it can be
compared and matched against the call expression for the previous event.

4. Call Expression Proposer is a service proposing possible next call expressions
for a given call expression based on the sequences specified in the annotation.
As described by the grammar in Figure 2, for each current call expression
there can be several possible next call expressions that may appear as the
next event, but for each of them the automaton associated with the gram-
mar can only make one transition (that is, the specification is a deterministic
context free language). Note that since more specification sequences are pos-
sible involving the same method, only those call expressions that are valid
in all specifications will be proposed.

5. Call Expression Matcher is another service that tries to match two call ex-
pressions. It is used, for example, to validate the current call expression
against all those proposed by the previous service. If a match is found, the
execution continues; otherwise the verification is regarded as failed. In this
case, if a verification failure hander is provided, the failure data is transferred
to it for further processing.

6 Related Work

JML [22] provides a robust and rigorous grounds for specification of behavioral
checks on methods. Although JML covers a wide range of concerns in asser-
tion checking, it does not directly address the problem of method sequence call
specification as it is more directed towards the reasoning about the state of an
object. JML is rather a comprehensive modeling language that provides many
improvements to other extensions to Design by Contract (DBC) [24] equivalent
formalism such as jContractor [9] and Jass [11].

In [16], taking advantage of the concept of protocols, an extension to JML is
proposed that provides a syntax for method sequence calls (protocols) along with
JML’s functional specification features. Through this extension, the developer
can specify the methods’ call sequence through a call sequence clause in JML-
style meta-code. In the proposed method, the state of a program is modeled as

66 B. Nobakht et al.

a “history” of method calls and return calls using the expressiveness of regular
expressions; thus, a program execution is a set of “transitions” on method call
histories. The verification takes place when the execution history is simulated
using a finite state machine and checked upon the specified method call sequence
clause.

JML features have been equivalently implemented with AspectJ constructs
[26], using aspect-oriented programming [19] They propose AJMLC (AspectJ
JMLC) that integrates AJC and JMLC into one compiler so that instead of
JML-style meta-code specifications, the developer writes aspects to specify the
requirements.

In [17] an elegant extension of JML with histories is presented. Attribute
Grammars [21] are used as a formal modeling language, where the context-free
grammar describes properties of the control-flow and the attributes describe
properties of the data-flow, providing a powerful separation of concerns. A run-
time assertion checker is implemented. Our approach differs in several respects.
The implementation of their run-time checker is based on code instrumentation.
Additionally, they use local histories of objects, so callbacks can not be modeled.
However, the behavior of a stack can be modeled in their approach (and not
in ours), since their specifications are not regular expressions but context-free
languages.

In the domain of runtime verification, Tracematches [7] enables the program-
mer to specify events in the execution trace of a program that could be specified
with “the expressiveness” of a regular pattern. The specification is done with
AspectJ pointcuts and upon a match the advised code is run for the pointcut.
Along the same line, J-LO [12] is a tool that provides temporal assertions in
runtime-checking. J-LO shares similar principles as Tracematches with differ-
ences in specifications using linear time temporal logic syntax.

Additionally, Martin, Livshits and Lam propose PQL [23] as a program ex-
ecution trace query language. It enables the programmer to express queries on
the execution events of objects, methods and their parameters. PQL then takes
advantage of two “static” and “dynamic” checkers to analyze the application.
The dynamic checker instruments the original code to install points of “recov-
ery” and “verification” actions. The dynamic checker also translates the queries
into state machine for matching criteria. The set of events PQL can deal with
includes method calls and returns, object creations and end of program among
others. Accordingly, generic logic-based runtime verification frameworks are pro-
posed as in MaC [20], Eagle [10], and PaX (PathExplorer) [18] in which monitors
are instrumented using the specification based on the language specific imple-
mentations.

Using runtime verification concepts, Chen and Rosu propose MOP [15,6] as
a generic runtime framework to verify programs based on monitoring-oriented
programming. As an implementation of MOP, JavaMOP [14] provides a plat-
form supporting a large part of runtime JML features. Safety properties of a
program are specified and inserted into the program with monitors for runtime
verification. Basically, the runtime monitoring process in MOP is divided into

Method Sequence Call Specification and Verification 67

two orthogonal mechanisms: “observation” and “verification”. The former stores
the desired events specified in the program and the latter handles the actions
that are registered for the extracted events. Our approach follows the same idea
as MOP, but it does not use AOP to implement it. Another major difference
is in the specifications part. MOP specifications are generic in four orthogonal
segment: logic, scope, running mode and event handlers. Very briefly, the scope
section is the fundamental one that defines and specifies the parts of the pro-
gram under test. It also enables the user to define desired events of the program
that need to be verified. The logic section helps the user specify the behavioral
specification of the events using different notations such as regular expressions
or context-free grammars. The running mode part lets the user specify what is
the running context of the program under test; for instance, if the test needs to
be run per thread or in a synchronized way. And, the event handlers section is
the one to inject customized code of verification or logic when there is a match
or fail based on the event expression logic.

In Listing 4 we show an example of JavaMOP code with ERE logic for the
two specifications given in Figure 1.

Listing 4. Sample JavaMOP Specification using CFG logic

1 SampleCase1(Main m) {
2 event method_m_a before(A a):
3 call(* A.m_a(..)) && target(a) {}
4 event method_m_b before(B b):
5 call(* B.m_b(..)) && target(b) && cflow(SampleCase1_method_m_a) {}
6 event method_m_c before(C c):
7 call(* C.m_c(..)) && target(c) && cflow(SampleCase1_method_m_a) &&

cflow(SampleCase1_method_m_b) {}
8

9 ere: (method_m_a method_m_b method_m_c)*
10

11 @fail {
12 System.err.println("Invalid Execution");
13 __RESET;
14 }
15 }
16

17 // Case 2
18 SampleCase2(Main m) {
19 event method_m_a before(A a):
20 call(* A.m_a(..)) && target(a) {}
21 event method_m_b before(B b):
22 call(* B.m_b(..)) && target(b) && cflow(SampleCase1_method_m_a) {}
23 event method_m_c before(C c):
24 call(* C.m_c(..)) && target(c) && cflow(SampleCase1_method_m_a) && !

cflow(SampleCase1_method_m_b) {}
25

26 ere: (method_m_a method_m_b method_m_c)*
27

28 @fail {
29 System.err.println("Invalid Execution");
30 __RESET;
31 }
32 }

It is interesting to note that both MOP specifications have the same ERE
expression. This is because JavaMOP has separated logic and scope specification
from event handling. The difference in monitoring is obtained by the different

68 B. Nobakht et al.

usage of the command cflow in the scope section. This command is an AspectJ
construct to control the context of the execution when running some code inside
a method [19].

7 Conclusion and Future Work

We proposed JMSeq, a framework for specifying sequences of method calls using
Java annotations. The sequences do not only consist of method names, but may
contain information such as object caller and callee. JMSeq uses Java Platform
Debugger to monitor the execution of a component based system based on Java.
Monitoring is divided into two phases: observing the events in the program
and verifying them against the local specifications provided through annotated
objects at runtime. No code instrumentation is necessary, as only binary code
is enough for system testing and monitoring purpose. JMSeq can be integrated
with JUnit for unit testing purposes. An initial version of JMSeq runtime checker
is available at http://code.google.com/p/jmseq.

We believe JMSeq is a novel approach to runtime verification of software using
code annotations. The approach is especially suitable for runtime component
based verification, as it does not require the presence of source code. In line with
this end, we plan to extend the support of JMSeq by providing native features
such as mock implementation or symbolic execution in case parts of the system
are unavailable which is particularly useful in unit testing. Currently, JMSeq
only provides testing capabilities in the context of JUnit.

Another potential area of improvement is the data model used by JMSeq.
Currently it overlaps with the event model that JPDA provides when publish-
ing the registered events in JVM. The resulting overhead is rather expensive.
Optimization will allow, for example, to store only the minimal necessary in-
formation providing a faster indexing for the retrieval of the events. Further
performance improvement can be obtained by better exploiting the connections
between JPDA and JVM. For example, there are tools such as Eclipse Debug
Platform [2] that provide extensive facilities through JPDA with high perfor-
mance. Currently, in JMSeq, it is the standard JVM that runs the program
and publishes the events that are interesting to JMSeq for further verification
for which, in turn, JMSeq uses a simple state machine to verify the executing
events. As another future work, instead of using a state machine, one could use
a pushdown automaton which allows for context-free method call sequence spec-
ifications. Moreover, in another approach, JVM, JPDA and the state machine
can be merged together such that it is actually the JVM that asks permission
for the next execution from the state machine that is provided. Thus, the testing
framework can even take control of the underlying program execution for further
checks or verification. In other words, method call sequence specifications may
also be used in the pre-conditions of a method. In comparison with the runtime
checking, another line of future work can be to extend JMSeq to support static
verification of protocols.

http://code.google.com/p/jmseq

Method Sequence Call Specification and Verification 69

Acknowledgments. We thank the referees for their comments and Michiel
Helvensteijn for the helpful discussion.

References

1. AspectJ Language Semantics,
http://eclipse.org/aspectj/doc/released/progguide/
semantics-pointcuts.html

2. Eclipse Debug Platform, http://www.eclipse.org/eclipse/debug/
3. Java 5 Annotations,

http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html

4. JPDA Reference Home Page,
http://java.sun.com/javase/technologies/core/toolsapis/jpda/

5. JUnit Test Framework, http://www.junit.org/
6. MOP: Monitoring-oriented programming,

http://fsl.cs.uiuc.edu/index.php/MOP
7. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak, O.,

de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA (2005)

8. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56,
16:1–16:43 (2009)

9. Anercrombie, P., Karaorman, M.: jContractor: Bytecode instrumentation tech-
niques for implementing dbc in Java. In: RV 2002 (2002)

10. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifica-
tion. In: VMCI 2004 (2004)

11. Bartetzko, D., Fischer, C., Moller, M., Wehrheim, H.: Jass - Java with Assertions.
In: RV 2001 (2001)

12. Bodden, E.: J-lo, a tool for runtime-checking temporal assertions. Master Thesis,
RWTH Aachen University (2005)

13. Chen, F., Rosu, G.: Towards Monitoring-Oriented programming: A paradigm com-
bining specification and implementation. Electronic Notes in Theoretical Computer
Science 89(2), 108–127 (2003)

14. Chen, F., Rosu, G.: Java-MOP: A monitoting oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 546–550. Springer, Heidelberg (2005)

15. Chen, F., Rosu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA. ACM Press, New York (2007)

16. Cheon, Y., Perummandla, A.: Specifying and checking method call sequences of
Java programs. Software Qual. J. 15, 7–25 (2007)

17. de Gouw, S., Vinju, J., de Boer, F.S.: Prototyping a tool environment for run-time
assertion checking in JML with Communication Histories. In: FTfJP 2010 (2010)

18. Havelund, K., Rosu, G.: Monitoring Java programs with Java PathExplorer. In:
RV 2001 (2001)

19. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Get-
ting started with ASPECTJ. In: ACM CACM (2001)

20. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a Runtime Assurance Tool
for Java. In: RV 2001 (2001)

http://eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html
http://eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html
http://www.eclipse.org/eclipse/debug/
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://www.junit.org/
http://fsl.cs.uiuc.edu/index.php/MOP

70 B. Nobakht et al.

21. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127–145 (1968)

22. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. ACM SIGSOFT Software Engineering
(2006)

23. Martin, M., Livshits, V.B., Lam, M.S.: Finding application erros and security flaws
using PQL: a program query language. In: OOPSLA (2005)

24. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, New
Jersey (2000)

25. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1997, pp. 106–119. ACM, New York (1997)

26. Rebelo, H., Soares, S., Lima, R., Borba, P., Cornelio, M.: JML and Aspects: The
benefits of instrumenting JML features with AspectJ (2008)

27. Szyperski, C., Gruntz, D., Murer, S.: Component software: beyond object-oriented
programming. Addison-Wesley, Reading (2002)

An Introduction to

Pervasive Interface Automata�

M. Calder��, P. Gray, A. Miller, and C. Unsworth

Computing Science, University of Glasgow, U.K.
Muffy.Calder@glasgow.ac.uk

Abstract. Pervasive systems are often context-dependent, component
based systems in which components expose interfaces and offer one or
more services. These systems may evolve in unpredictable ways, often
through component replacement. We present pervasive interface
automata as a formalism for modelling components and their compo-
sition. Pervasive interface automata are based on the interface automata
of Henzinger et al [3], with several significant differences. We expand
their notion of input and output actions to combinations of input, out-
put actions, and callable methods and method calls. Whereas interface
automata have a refinement relation, we argue the crucial relation in
pervasive systems is component replacement, which must include consid-
eration of the services offered by a component and assumptions about
the environment. We illustrate pervasive interface automata and compo-
nent replacement with a small case study of a pervasive application for
sports predictions.

1 Introduction

Pervasive systems are often context-dependent, component based systems that
can evolve in unpredictable ways, through component addition (composition)
and replacement. But unpredictability can have detrimental consequences for
usability and for wide-spread adoption of systems: how can we make component
based evolution more predictable?

The question is difficult because components are often designed and imple-
mented incrementally by different development teams, or via end-user configura-
tions, or they are mashups (e.g. make your own Android application mashup[7]).
A traditional approach involving modelling and reasoning about full behavioural
specifications is unlikely to be plausible. Consequently, we focus on the interfaces
exposed by components and the services they offer. We define pervasive inter-
face automata as a formalism for modelling the interfaces exposed by components
and their composition. These automata are based on the interface automata of
Henzinger et al [3], but there are several significant differences.

� This work was funded by the EPSRC grant, Verifying Interoperability Requirements
in Pervasive Systems EP/F033206/1.

�� Corresponding author.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 71–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

72 M. Calder et al.

First, we expand their notion of input and output actions to combinations
of input/output and calling and callable methods. We refer to the latter two
as master and slave actions, respectively. When components are composed, they
synchronise on shared actions so that input/output and calling/called behaviour
assumptions are met. Informally, this means that input/output and master/slave
behaviours are (two-way) synchronised. We relax the synchronisation of compo-
nents to allow a component offering a master action to wait until the appropriate
slave action is offered. This allows both busy send and busy receive, where the
original interface automata only allows a component to wait to receive, and not
wait to send.

Second, we argue the crucial relation in pervasive systems is component re-
placement, which must include consideration of both services offered by a com-
ponent and assumptions about the environment, where the environment is a
composition of components. We include the environment because it may include
actions that affect the interface of the component under consideration; specifi-
cally, it can cause some actions to become hidden (internal) or some choices to
be removed.

As an example, consider a server component within a sports prediction appli-
cation. The application keeps track of fixtures and results (e.g. a football league,
or a tennis tournament) and allows users to make and share predictions in ad-
vance of actual events. The standard server component offers a service to add
predictions and to get predictions. An online betting company might offer an
alternative component that offers a service to place a bet, in addition to the
previously mentioned services, the delivery of which relies on the availability of
services get data and add data supplied by the betting company’s online server
component. Under what circumstances can we replace the standard component
by the betting company’s component? The latter relies on services from the
company’s online server component, which we call environmental assumptions;
informally, we will allow replacement when environmental assumptions are met.

We introduce a linear temporal action logic to define service behaviour and
define the satisfaction of the formulae by a pervasive interface automaton under
assumptions about the environment. For a given environment, we can replace
one component by another, with respect to a service, when both components
satisfy the service in the environment. We judge the quality of a replacement
of one component by another by the number of services that it preserves and
any new services it may offer. We illustrate pervasive interface automata and
component replacement with a small case study of an application for sports
predictions, based on a real application.

In summary, the contributions of the paper are the following:

– definition of pervasive interface automata
– definition of action matching and algorithm for

composition of pervasive interface automata
– logical specification of services
– satisfaction relation of pervasive interaction automaton

and a service under environmental assumptions

An Introduction to Pervasive Interface Automata 73

– replacement relation between components, services
and environment assumptions

– application of pervasive interaction automata and replacement
relation to a case study involving sports predictions.

In the next section we give a brief overview of our case study, as motivation
for pervasive interface automata, which we define formally in Sect. 3. In Sect.
4 we discuss action matching and we define automata composition by way of
an algorithm. In Sect. 5 we introduce the concept of a service and define an
action based logic for defining service behaviour; in the following section, Sect.
6 we define the replacement of one component for another, with respect to an
environment and a set of services. Comparison of pervasive interface automata
with interface automata and other related work is in Sect. 7. Our conclusions
and directions for future work are in Sect. 8.

2 Case Study

We now present a case study which we use both as motivation and for expla-
nation. The case study is a pervasive application for sports prediction, written
within the Domino framework [2]. This application is mobile phone based and
allows a user to see a list of upcoming sports fixtures and make predictions about
the results. These predictions are then uploaded and stored on a remote server. A
prediction league graphical interface allows a user to download predictions from
multiple users (stored on a remote sever component) to compare them with the
actual results in a league table. The architecture of this system is shown in Fig
1. Brief descriptions of the components follow.

Storage
Server

Prediction
Server

Prediction
League

Prediction
Interface

Fixture
Server

Local

Request
Predictions

Return
DataSubmit

Data

Request
Data

addPrediction

Return
Fixtures

Request
Fixtures

Return
Predictions

Fig. 1. Architecture of the sports prediction application

74 M. Calder et al.

Prediction Interface. This component is a graphical user interface that allows a
user to pull information about upcoming sporting fixtures from a fixture server.
A user can input a prediction for one or more of the fixtures. The predictions
are then sent to a prediction server for storage.

Fixture Server. This is a passive component that responds to requests for fixture
information. The data returned is a list of forthcoming sporting events, including
information about times, dates, locations and the teams involved in the fixture.

Prediction Server. This component accepts predictions from a prediction inter-
face component and stores them in an external storage server component. The
information sent to the server includes the fixture, the prediction and the user
that made the prediction. Predictions are also retrieved from the storage server
upon request.

Storage Server. This is a web based generic data storage server component. It
allows the storage of data and allows any user to retrieve any stored information.

Prediction League. This component is a graphical user interface that allows a
user to pull historical predictions from a prediction server along with the actual
results to evaluate the predictions. The prediction league component can also
retrieve and display the predictions from other users, allowing a user to compare
their performance against that of their friends.

In this system most components are held on a local device (such as a mobile
phone) only the storage server component is external. A user may wish to up-
grade or replace any of the individual components to increase the overall systems
functionality or to improve the user experience. However, any new component
must be capable of providing all the services provided by the component it is
replacing.

3 Pervasive Interface Automata

Pervasive Interface Automata are an extension of interface automata [3] with
pervasive systems in mind. The main difference is the addition of annotations to
actions. These annotations include ! and ? to indicate output and input respec-
tively, and ◦ and � to represent slave and master actions respectively. Master
actions are instigated by the component and slave actions are instigated by the
environment (i.e. some other component). We have distinguished master/slave
behaviour from input/output behaviour to ensure that we capture the notion
of when a component requires external resources to function, i.e. to deliver a
service. This is essentially the difference between calling a method and offering
a method that can be called. For example, consider the four combinations of be-
haviour. If automaton P offers action foo?◦, then P is offering a callable method
foo, which will receive data; if P offers action foo?�, then data is returned to
P , from a method instigated by P . If automaton P offers action foo!◦, then P

An Introduction to Pervasive Interface Automata 75

is offering a callable method foo, which delivers data; if P offers action foo!�,
then data is sent by P , from a method instigated by P .

Masters synchronise with slaves, and inputs synchronise with outputs. How-
ever, there is an asymmetry between masters and slaves. Whereas components
with master actions (i.e. method calls) require slave actions (i.e. callable meth-
ods) in order to function properly, the converse is not true. More precisely, if a
component reaches a state in which a master action is offered, a synchronising
slave action is required at that point. On the other hand, if a component reaches
a state in which a slave action is offered, and there is no corresponding synchro-
nising master action, that slave action can be considered spare capacity; that is
the action is on offer, but no other component requires it. In these circumstances,
it can be ignored.

Definition 1. A Pervasive Interface Automaton P = 〈VP , V initP , AP , TP 〉 where

– VP = {v1, v2, . . . , v|VP |} is a finite set of states
– V initP ⊆ VP is the set of initial states
– AP = {a1, a2, . . . , a|AP |} is the finite set of actions,
• where an action a = name[?�|?◦|!�|!◦]

– TP ⊆ VP ×AP × VP is the set of steps (state transitions)

Action annotations indicate the following. Annotations ! and ? denote input
and output, respectively, and � and ◦ denote master and slave, respectively. An
action that has no annotation is a hidden (internal) action. A◦

P is defined to be
the set of all slave actions, i.e. actions with a ◦ annotation, and A�P is defined
to be the set of all master actions. We often use graphical representations of
example automata.

To aid later description, a number of functions are now defined.

– AP (v) is the set of actions enabled at state v
• an action a is enabled in state v if there exists (v, a, v′) ∈ TP
• A◦

P (v) is the set of slave actions enabled at state v
• A�P (v) is the set of master actions enabled at state v

– source(t) returns the state v, where transition t = (v, a, v′)
– act(t) returns the action a, where transition t = (v, a, v′)
– target(t) returns the state v′, where transition t = (v, a, v′)
– ρ = {t1, t2, . . . } is a path, defined as an ordered multiset of transitions
• ρi the ith transition in ρ
• ∀ti, ti+1 ∈ ρ, target(ti) = source(ti+1)
• ρ ∈ P means that ∀ρi ∈ ρ =⇒ ρi ∈ TP

An automaton P is said to be closed if it does not require any external resources
to function. Input/output actions require external resources to function. How-
ever, slave actions (annotated with ◦) are assumed to be spare capacity, thus
they will not be performed unless synchronised with some other component.
Therefore, only master actions need be considered when determining if an au-
tomaton is open or closed. However, it may be the case that some master actions

76 M. Calder et al.

are only enabled in states that require a transition involving a slave action to
be taken to be reached from the initial state. Such unreachable actions will not
be considered. The set of input/output requirements for an automaton is now
defined.

Definition 2. The set of input/output requirements for automaton P is

req(P) = {a ∈ A�P |∃ρ ∈ P, ∃ti ∈ ρ, act(ti) = a, ∀j < i, act(tj) /∈ A◦
P }

If req(P) = ∅ then P is closed and P is open otherwise.

4 Composition

Before two automata can be composed, it needs to be established how they are
to interact. This is a non-trivial problem, which will need a domain specific
solution. For the purposes of this document, it will be assumed that automata
will synchronise on action names. For example, if automaton P has an action
foo?◦ and automatonQ has the action foo!�, the composition P⊗Qwill have both
actions combined into a single hidden action foo. The setmatch(P, P⊗Q) is used
to show how actions in the automaton P are mapped to the actions in the product
automaton P ⊗ Q. For example in the case mentioned above, (foo?◦, foo) ∈
match(P, P ⊗ Q), meaning the slave input action foo in P is mapped to the
hidden action foo in P ⊗Q. Similarly, (foo?�, foo) ∈ match(Q,P ⊗Q). For each
action a ∈ AP we assume there is a corresponding pair (a, a′) ∈ match(P, P⊗Q),
such that neither a nor a′ appear in any other pair in match(P, P ⊗Q). In other
words, a matches, or synchronises uniquely with a′ in P ⊗Q. Note, our notion
of 2-way synchronisation is similar to CCS [10], where action a matches action
a. But, whereas in CCS a and a synchronise to become hidden τ , we assume the
name of the hidden action is retained. Note that, match(P, P ⊗ Q) is used to
map all actions from P to P ⊗Q not just the synchronised actions.

For the default case of matching actions, if aP ∈ AP and aQ ∈ AQ are to
be synchronised in P ⊗ Q then aP and aQ must be compatible. Meaning that
master output actions match slave input actions and master input actions match
slave output actions. Both aP and aQ are matched to the same hidden action in
P ⊗Q. Alternately, if an action aP ∈ AP is not to be synchronised then it will
be unchanged in P ⊗Q.

Pervasive interface automata P and Q are composable if each automaton can
perform its shared actions as required. That is, whenever P has an enabled
shared master action either Q is also capable of performing the corresponding
slave action, or P is able to wait until Q is ready to perform the slave action. In
practice this means that if a shared master action a is enabled in a state v ∈ VP
but not enabled in a product state (v, u) ∈ VP⊗Q then all paths originating in
(v, u) must include a state in which a is enabled. When allowing an automaton
to wait we do not distinguish between input and output actions, therefore, we
allow both busy send and busy receive. Note that while P is waiting Q may need

An Introduction to Pervasive Interface Automata 77

to interact with one or more other components, in which case the availability
of these components will be a factor in the assessment of the composability of
P and Q. Such requirements can be modelled as environmental assumptions,
meaning that for P and Q to be composable the environment must meet these
assumptions.

4.1 Composition

The composition of automata has two stages. The first is to generate the product
of the two automata. The second attempts to validate the product as a valid
composition.

We first define shared(P ,Q) as the set of shared actions in the product of
P ⊗Q:

shared(P,Q) := {a|(aP , a) ∈ match(P, P ⊗Q)}∩{a|(aQ, a) ∈ match(Q,P ⊗Q)}

Product. We now define the product of automata P ⊗Q as:

V initP⊗Q = V initP × V initQ

AP⊗Q= {a′|(a, a′) ∈ match(P, P ⊗Q)} ∪ {a′|(a, a′) ∈ match(Q,P ⊗Q)}
T provP⊗Q =

{((v1, u), a′, (v2, u))| u ∈ VQ, ((v1), a, (v2)) ∈ TP ,
(a, a′) ∈ match(P, P ⊗Q), a′ /∈ shared(P,Q)}∪

{((v, u1), a′, (v, u2))| v ∈ VP , ((u1), a, (u2)) ∈ TQ,
(a, a′) ∈ match(Q,P ⊗Q), a′ /∈ shared(P,Q)}∪

{((v1, u1), a′, (v2, u2))| ((v1), a1, (v2)) ∈ TP , ((u1), a2, (u2)) ∈ TQ,
(a1, a

′) ∈ match(P, P ⊗Q),
(a2, a

′) ∈ match(Q,P ⊗Q)}
s ∈ VP⊗Q ⇐⇒ ∃ρ = {ρ1, . . . , ρn,. . . }. source(ρ1) ∈ V initP⊗Q

∧ target(ρn) = s
∧ ∀ρi ∈ ρ. ρi ∈ T provP⊗Q

t ∈ TP⊗Q ⇐⇒ t ∈ T provP⊗Q ∧ source(t) ∈ VP⊗Q

The set of initial states of P ⊗Q, V initP⊗Q is the product of the two sets of initial

states V initP and V initQ . The action set AP⊗Q is the union of the action sets
of P and Q, respecting the matchings match(P, P ⊗ Q) and match(Q,P ⊗ Q)
and T provP⊗Q is the provisional set of transitions for P ⊗Q, which is used only as
a construct to aid the definition of the product. A set of transitions is added
to T provP⊗Q for each non-shared transition in TP ; for a transition (v1, a, v2) this
set consists of a transition ((v1, u), a

′, (v2, u)) for each u ∈ VQ, where (a, a′) ∈
match(P, P ⊗Q). Similarly, a set of transitions is added to T provP⊗Q for each non-
shared transition in TQ. For every pair of transitions tp ∈ TP and tq ∈ TQ,
where tp and tq involve matching shared actions, a transition t is added to T provP⊗Q,
where source(t) = (source(tp), source(tq)), target(t) = (target(tp), target(tq))
and act(t) = a, where (act(tp), a) ∈ match(P, P ⊗ Q). The set of states VP⊗Q

78 M. Calder et al.

contains all states reachable via a path constructed of transitions from T provP⊗Q and

originating from a state in V initP⊗Q. Finally, the set of transitions TP⊗Q consists
of all transitions t ∈ T provP⊗Q, where source(t) ∈ VP⊗Q.

Composition Validation. Informally, a product is a valid composition if the
following two properties hold for master transitions in P (and Q, respectively).
First, for every transition in P that involves a master action, there is a corre-
sponding transition in P ⊗Q. Second, if v is a state of P ⊗Q at which master
action a is enabled, and a corresponds to a master action of P, then there is a
path prefix in P ⊗Q that contains a, all actions occurring prior to a are hidden,
and they do not involve a state change for P .

The product P ⊗Q is a valid composition iff:

∀t ∈ TP . act(t) ∈ A�P =⇒
∃t′ ∈ TP⊗Q. (t′ = ((source(t),), a, (target(t),))

∧ (act(t), a) ∈ match(P, P ⊗Q))
∧ ∀v ∈ VP⊗Q. (v = (source(t), u)) =⇒

∃pathρ ={ρ1, . . . , ρn, . . . }. (ρ ∈ P ⊗Q
∧ source(ρ1) = (source(t), u)
∧ act(ρn) = a
∧ ∀i : 1 ≤ i < n.

(source(ρi) = (source(t),)
∧ act(ρi) is hidden))

and
∀t ∈ TQ. act(t) ∈ A�Q =⇒

∃t′ ∈ TP⊗Q. (t′ = ((source(t),), a, (target(t),))
∧ (act(t), a) ∈ match(Q,P ⊗Q))

∧ ∀v ∈ VP⊗Q. (v = (source(t), u)) =⇒
∃pathρ ={ρ1, . . . , ρn, . . . }. (ρ ∈ P ⊗Q

∧ source(ρ1) = (source(t), u)
∧ act(ρn) = a
∧ ∀i : 1 ≤ i < n.

(source(ρi) = (source(t),)
∧ act(ρi) is hidden))

where is any state in the relevant component automaton.

4.2 Composition Examples

A simple example illustrates the role of master actions in composition. Consider
the automata given in Fig. 2, assume a and b are shared actions and x is hidden
(so not shared). In the composition, EX1 ⊗ EX2, master action a!� waits for
a?◦ at (0, 0) , i.e. they do not synchronise until (0, 1). The slave b!◦ is never
synchronised. If however b!◦ is replaced by b!� in EX1, then EX1 ⊗ EX2 would
be invalid.

As another example, consider the prediction server and storage server compo-
nents described in Sect. 2, represented as pervasive interface automata in Fig. 3.

An Introduction to Pervasive Interface Automata 79

0

b!◦

a!�

0 1
x

a?◦

x
0,0 0,1

a

EX1 EX2 EX1 ⊗ EX2

Fig. 2. Pervasive interface automata examples

01 2

3
4

getPred?◦

rtnPred!◦

getData!�

rtnData?�

addPred?◦

addData!�

0

1

2 3

4
getData?◦

rtnData!◦

storeData

notify

addData?◦

findData

Prediction Server PS Storage Server SS

Fig. 3. Pervasive interface automata examples

The composition of these two automata will synchronise over the set of shared
actions {getData, rtnData, addData}. The composition is shown in Fig. 4. Note
the occurrence of a busy send in this example. From the product state (2,4), PS
needs to be able to perform the master action getData but in state 4 SS is not
yet ready to provide the matching slave action. Therefore, PS will then wait in
state 2 until SS performs the storeData and notify actions before it returns to
state 0 in which it is ready to perform the matching getData slave action. If SS
was never enabled to receive the request, then the composition would be invalid.

5 Services

A service1 is something that a component can do, such as respond to a data
request, distribute information, store and retrieve data, etc; internal detail is not
relevant. For example, a fixture server component P may offer the getF ixture
service, a service that always responds to the method call getF ix() by returning
a list of fixtures via a return method rtnF ix(). In component P , the service
is offered in a straightforward way because the fixture list is held internally.
Another component, P ′ say, may also offer the same service, even though it
obtains the list of fixtures from a third component. For example, P ′ may respond
to the getF ix() call by calling a third component to obtain the fixture list, which
it then returns via the method rtnF ix(). In both cases, P and P ′ offer the same
getF ixture service.

In terms of pervasive interface automata, a service can be described as a
property defined in our own simple custom logic, defined below.

1 Similar to a web service [1].

80 M. Calder et al.

getPred?◦

addPred?◦

getData

findData rtnData

rtnPred!◦

addData

notify

notify

getPred?◦

storeData

getPred?◦

storeData

addPred?◦

storeData
notify

0,0

1,0

0,4

1,3

1,4

4,0
3,2

3,1

2,0

2,3

2,4

0,3

addPred?◦

Fig. 4. The composition of PS and SS, PS ⊗ SS

5.1 Logic for Services

We now describe a linear temporal action logic for defining services (a simplifi-
cation of that in [6]). The logic is defined over paths ρ of a pervasive interface
automaton P . Here a and b are (annotated) actions.

Syntax:
φ = tt | offer a φ | a� b φ path formulae
Σ = ∀φ | ∃φ | Σ ∧Σ | Σ ∨Σ service formulae

Semantics:
ρ |= tt always
ρ |= offer a φ iff ∃n ≥ 1. ρ = {. . . , tn, . . . }

and act(tn) = a
and ∀i<n act(ti) are hidden actions
and {tn+1, . . . } |= φ

ρ |= a� b φ iff ∃n ≥ 1, ∃m ≥ n. ρ = {. . . , tn, . . . , tm, . . . }
and act(tn) = a
and act(tm) = b
and ∀i<n act(ti) are hidden actions
and ∀n<i<m act(ti) are hidden actions
and {tm+1, . . . } |= φ

or � ∃n ≥ 1. ρ{. . . , tn, . . . }
and act(tn) = a

P |= ∀φ iff ∀ρ ∈ P. ρ |= φ
P |= ∃φ iff ∃ρ ∈ P. ρ |= φ
P |= Σ1 ∧Σ2 iff P |= Σ1 ∧ P |= Σ2

P |= Σ1 ∨Σ2 iff P |= Σ1 ∨ P |= Σ2

Note that the actions preceding a are hidden in both offer a φ and a � b φ.
This expresses the requirement that the initiating action a of a service is available

An Introduction to Pervasive Interface Automata 81

(e.g. cannot be blocked by waiting on another component), and if a service is
initiated, then it is completed, e.g. a service is not abandoned.

5.2 Typical Services

A service often involves a response to a request (a liveness property). More
precisely, after possible hidden actions, it offers the request, which is a callable
method. After further possible hidden actions, it either sends a response, which
is a method call, or it offers to respond, which is a callable method. The ini-
tial request may be accompanied by data (an input); the response may also be
accompanied by data (an output).

Formally, assuming actions request (slave), send (master), and respond
(slave), these two service are expressed in our logic by:

1. request/send: ∀(request?◦ � send!� tt) ∧ ∃(offer request?◦ tt)
2. request/respond: ∀(request?◦ � respond!◦ tt) ∧ ∃(offer request?◦ tt)
The second conjunct: ∃(offer request?◦ tt), serves to ensure the service is not
trivially satisfied, i.e. the first action is offered by at least one path. As examples,
the first type of service is offered by the prediction server PS (Fig. 3): addPred?◦

is always followed by addData!�, and the second is offered by the storage server
SS: getData?◦ is always followed by rtnData!◦.

5.3 Components, Environments and Services

Our notion of a component automaton offering a service is not simply satisfaction
of a service formula, we also take into account the impact and requirements
placed upon the environment. We assume an environment is itself a composition
of components. How to quantify the impact is subtle; it is not sufficient to check
P |= Σ (does a component P offer the service Σ), nor is it appropriate to check
P ⊗ E |= Σ (does the composition of P with environment E offer Σ). In the
former, Σ may not be satisfied because there are non-hidden actions that do
not occur in Σ, but they will be hidden when the component is composed with
the environment and in the latter, after composition, the actions occurring in Σ
may have become hidden. Instead we consider an abstraction of environments
that, if fulfilled, means that P offers the service Σ to E.

Specifically when checking if P offers the service Σ to E, we consider the
availability of actions we require E to offer. We refer to the set of requirements
for the availability of actions as A. The availability set A contains (action,state)
pairs. A is split into two subsets A+ and A−. If (a, s) ∈ A+ then the environment
must offer action a in state s, if (a, s) ∈ A− then the environment must not offer
action a in state s.

We define a set cpath of modified paths of a component automaton. There
are two cases to consider. First, if an action (slave or master) can always be
matched by the environment, then we assume the actions represent hidden ac-
tivity. Second, if a slave action can never be matched with the environment, and

82 M. Calder et al.

it is offered from a component state that offers any other type of action (slave or
hidden), then the slave action represents spare capacity. Note, we assume angelic
non-determinism; this means that paths representing spare capacity will not be
taken.

In the following, we write f◦, g∗ etc. to stand for any slave or master action
respectively, that is we ignore input and output annotations. We call these ab-
stract actions and when we say that abstract action f◦ matches f∗, we assume
the underlying input and output annotations match as required. We refer to the
set of actions in a service formula by α(Σ); for example, α(∀a � b tt) = {a, b}.
Definition 3. The alphabet of a service formula, α(Σ), is the set of all actions
occurring in the path sub-formulas of Σ.

Definition 4. Given component automaton P , service Σ and environment as-
sumptions A, define the set cpath(P,Σ,A+, A−), as all the paths of P con-
structed in the usual way except, when constructing the paths

• for transition t, if act(t) = f∗, f∗ �∈ α(Σ), and (f◦, source(t)) ∈ A+, then
replace f� by f in t (hide master),

• for transition t, if act(t) = f◦, f◦ �∈ α(Σ), and (f�, source(t)) ∈ A+, then
replace f◦ by f in t (hide slave),

• for transition t, if act(t) = f◦,f◦ �∈ α(Σ), and (f�, source(t)) ∈ A−, then
any (sub)path beginning with t is excluded (remove spare capacity).

Note that, under the conditions given above, some slave actions can be safely
excluded from the set of paths. This is not the case for master actions as, by
definition, a component requires to be able to perform them in order to function
correctly.

As illustration of spare capacity and hidden activity, consider the two au-
tomata in Fig. 5 and the service Σ = ∀(g1◦ � g2◦ tt). The alphabet of Σ is
{g1◦, g2◦}. Both P1 and P2 include one hidden action, I.

The paths in cpath(P1, Σ, {(l�, 2)}, {(f�, 1)}) start with either prefix ρ1 =
{h1◦, k◦, h2�} or ρ2 = g1◦, I, l, g2◦}. As both ρ1 |= Σ and ρ2 |= Σ, P1 can offer

0 1

2
3

4

5
6

g1◦

g2◦

f◦

I

l◦

h2�

h1◦

k◦

0 1

2
3

4

g1◦

g2◦

f◦

I

l�

Component P1 Component P2

Fig. 5. Component automata, with abstract actions

An Introduction to Pervasive Interface Automata 83

Σ in an environment which offers l� whenever P1 is in state 2 and does not offer
f� when P1 is in state 1. All the paths in cpath(P2, Σ, {(l◦, 2)}, {(f�, 1)}) start
with prefix ρ2 = {g1◦, I, l, g2◦}. As ρ2 |= Σ, P2 can offer Σ in an environment
which offers l◦ whenever P2 is in state 2 and does not offer f� when P2 is in
state 1.

Note that in both cases the path prefix g1◦, f◦ is excluded because the action
f◦ is forbidden in state 1 (the environment will never offer a matching master
action), whereas in component P1, the path prefix h1◦, k◦ is included as spare
capacity. In both cases the action l◦ has become hidden in cpath, because it
matches an action offered by E.

In summary, the set cpath allows us to specify services that are offered by
a component, in the context of an environment that meets assumptions A+

and A−. Together, A+ and A− are an abstraction of a class of environments.
From here on we assume quantification over paths in cpath(P,Σ,A+, A−) and
we denote satisfaction with respect to A+ and A− by |=A, defined thus.

Definition 5. Given component automaton P , environment assumptions A,
and path formula φ,

P |=A ∀φ iff ∀ρ ∈ cpath(P, φ,A+, A−).ρ |= φ
P |=A ∃φ iff ∃ρ ∈ cpath(P, φ,A+, A−).ρ |= φ
P |=A Σ1 ∧Π2 iff P |=A Σ1 ∧ P |=A Σ2

P |=A Σ1 ∨Π2 iff P |=A Σ1 ∨ P |=A Σ2

By abuse of notation we extend satisfaction to sets of services S, and write
P |=A S, when ∀Σ ∈ S.P |=A Σ.

Note that P offers Σ to E can mean either P offers a service that E needs, or P
offers a service that persists after P is composed with E. In the latter case we
have P ⊗ E |= Σ, but in the former case this is not true because the actions in
Σ have become hidden.

5.4 Service Example

Consider again the getF ixture service example. If we translate the offering of
method getF ix() as an action getF ix?◦ and the rtnF ix() method as action
rtnF ix!◦, we can express the getF ixture service as the property:

getF ixture = ∀(getF ix?◦ � rtnF ix!◦ tt) ∧ ∃(offer getF ix?◦ tt)
Figure 6 shows three example automata. The first, FS1, represents a component
that can supply a fixture list without referring to any other component. FS2
represents a component that, upon request, requires a third party component
(i.e. a storage server) before the requested fixture list can be returned. The third,
FS3, offers the same basic functionality as FS1 (and thus offers the getF ix
service), however, it also offers the addition option of requesting a refined fixture
list. More formally, we have:

84 M. Calder et al.

0

1

2

I

rtnF ix!◦

getF ix?◦

0

1

2

getData!�

rtnF ix!◦

getF ix?◦

3

rtnData?�

0

1

2

I

rtnF ix!◦

getF ix?◦

getRefinedF ix?◦

FS1 FS2 FS3

Fig. 6. Three example automata

– FS1 |=A getF ixture, where A+ = ∅ and A− = ∅.
– FS2 |=A getF ixture, where A+ = {(getData?◦, 1), (rtnData!◦, 3)} and
A− = ∅.

– FS3 |=A getF ixture, where A+ = ∅ and A− = ∅.

6 Replacement

Pervasive systems are adaptive and evolutionary by definition, meaning that
components will be updated and replaced over time. Therefore, it is useful to
know what effects such replacements will have on the system. Will the new
component have the same functionality as the component it is replacing? To
this end, we now define the replacement relation, which allows us to check if one
component can be replaced by another in a given environment, with respect to
a given set of services.

Definition 6. For given component automata P , P ′, service Σ and environ-
ment requirements A, if P |=A Σ, then P may be replaced by P ′ if P ′ |=A′ Σ
and A′ ⊆ A.
Replacement of a component with respect to a set of services is the natural
extension of replacement with respect to a single service. This can be qualified:
the quality of a replacement depends upon which services are preserved in a
replacement, i.e.

Definition 7. Given component automata P , P1, P2, sets of services SS, S1,
and S2, and environment assumptions A, if P |=A SS, P1 |=A S1, and P2 |=A S2,
we say that component P1 is a better replacement than component P2 for P when
(S2 ∩ SS) ⊂ (S1 ∩ SS) ⊆ SS.
Note, we consider intersections of services, since the new components may offer
additional services.

6.1 Replacement Example

Consider fixture server component FS1 from Fig. 6 that offers the getF ixture
service defined as ∀(getF ix?◦ � rtnF ix!◦)∧∃(offer getF ix?◦ tt), with no envi-
ronment assumptions. Which components could replace FS1?

An Introduction to Pervasive Interface Automata 85

0

1

2

I

rtnF ix!◦

getF ix?◦

getRefinedF ix?◦

0

1

2

log!�

rtnF ix!◦

getF ix?◦

0

1

2

τ

rtnF ix!◦

getF ix?◦

premium!�

FS3 FS4 FS5

Fig. 7. Three potential replacement automata for FS1

Component FS3 offers the getF ixture service with no environmental assump-
tions: FS3 |=A getF ixture where A+ = ∅, A− = ∅. It also offers the additional
option of requesting a refined fixture list. Therefore FS3 can replace FS1 in any
environment; as FS3 offers additional functionality, this replacement would be
referred to as an upgrade. Component FS4 also offers the getF ixture service,
however, it also logs each use of the service. Therefore, FS4 |=A getF ixture,
where A+ = {(log?◦, 1)}, A− = ∅. That is, FS4 offers getF ixture only if a
logging service is available in the environment. So FS4 can only replace FS1 in
environments offering a logging service. A fifth component, FS5, may be offered
by some commercial organisation that requires a subscription to have access to
some premium content. In which case, a getF ix?◦ request may result in an error
message notifying the environment that the premium content is inaccessible. As
premium!� is a master action, it cannot be ignored. Therefore, FS5 would not
be a viable replacement for FS1, as FS5 �|=A getF ix, for any A.

7 Comparison with Interface Automata and Session
Types

Pervasive Interface Automata are based on Interface automata [3,4,5]. However,
the addition classification of non-hidden actions as either master (�) or slave (◦),
results in a richer action set. This combined with the more relaxed definition of
composability of pervasive interface automata make them more appropriate for
the context of pervasive systems.

A state s = (f, g) in the composition of two interface automata F and G is
said to be an error state if there is a shared action a that is an output action
in F and enabled in f , but the corresponding action is not enabled in g. This
disallows a component to wait for another to be ready before it performs an
output action. Such conditions are prevalent and desirable in pervasive systems.
Our notion of master and slave actions allow us to both define and embrace this
kind of behaviour.

A crucial aspect of pervasive interface automata is that they allow us to
formally define the notion of replacement of components, with respect to services.
This concept relies heavily on our categorisation of actions as either master or
slave, and so is not possible with interface automata.

86 M. Calder et al.

The stated objectives in [11] are similar to our own, however the authors do
not differentiate between master and slave actions. They also have a less rich
definition of services.

Pervasive interface automata (and indeed interface automata) also bear a
superficial resemblance to session types [8,9]. A session represents possible se-
quences of communication events between processes. Communication events in-
clude synchronous message passing and the passing of channel names. Again
there is no notion of master/slave actions, and properties are restricted to the
matching of communication events.

8 Conclusion and Future Work

We have introduced pervasive interface automata as a formalism for modelling
interfaces offered by components. Our motivation is managing predictability in
component-based systems, especially in pervasive systems where components
are regularly composed and replaced. Distinctive features of our automata in-
clude the separation of actions according to input or output, and method call
or callable method. Composition of automata involves synchronisation on in-
put/output and calling/called actions.

We do not just model interfaces, but also reason about services, which we
define using a linear temporal action logic. We define the notion of a component
offering a service to an environment (a composition of components) by consider-
ing the assumptions we need to make about the environment. If an environment
meets those assumptions, then we can be assured that either the component
meets the (service) needs of the environment or the service will persist after
composition. In either case, we can proceed with composition. A key relation
is replacement, which may add new functionality, but ensures that services are
still offered, given environment assumptions. Key concepts are illustrated with
a mobile phone based application for sports predictions. Our long term goal is
to derive pervasive interface automata automatically from code; this is future
work.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Data-centric systems and applications. Springer, Hei-
delberg (2004)

2. Bell, M., Hall, M., Chalmers, M., Gray, P., Brown, B.: Domino: Exploring mobile
collaborative software adaptation. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley,
A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 153–168. Springer, Heidelberg
(2006)

3. de Alfaro, L., Henzinger, T.: Interface automata. SIGSOFT Software Engineering
Notes 26(5), 109–120 (2001)

4. de Alfaro, L., Henzinger, T.: Interface theories for component-based design. In:
Henzinger, T., Kirsch, C. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.
Springer, Heidelberg (2001)

An Introduction to Pervasive Interface Automata 87

5. de Alfaro, L., Henzinger, T.: Interface-based design. Engineering Theories of
Software-intensive Systems 195, 83–104 (2005)

6. de Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

7. Google: App inventor for android (July 2010),
http://appinventor.googlelabs.com

8. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

9. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type discipline for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

11. Černá, I., Vařeková, P., Zimmerova, B.: Component substitutability via equivalen-
cies of component-interaction automata. Electronic Notes in Theoretical Computer
Science (ENTCS) 182, 39–55 (2007)

http://appinventor.googlelabs.com

A Separation Logic for OO Programs�

Liu Yijing and Qiu Zongyan

LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
{liuyijing,qzy}@math.pku.edu.cn

Abstract. We present a general storage model that reflects features of object
oriented (OO) languages with pure reference semantics. Based on this model, we
develop an OO Separation Logic (OOSL) to specify and verify OO programs.
Many inference rules in the Separation Logic still hold in OOSL. Additionally,
OOSL has certain properties important to OO reasoning. We introduce Hoare-
Triple for a small OO language, and use the Schorr-Waite Marking Algorithm as
a verification example.

Keywords: Object Orientation, Separation Logic, Verification.

1 Introduction

Object-orientation (OO) paradigm is and will remain important for software develop-
ment and programming languages design, because it supports many very useful abstrac-
tions. However, many new challenges in program specification and verification present
in the OO field. There are two key issues mutually depending on each other: (1) building
proper formal models for OO languages, and (2) developing useful methods to specify
and verify OO programs. Researchers have proposed many formal frameworks to de-
scribe core concepts of OO programs.

As the basis for formal studies, various state models are proposed to represent com-
plicated structures of state space of OO programs. Major models can be roughly classi-
fied as Object Graph Model, Access Trace Model, and Stack Heap Model.

The Object Graph Models treat objects state as some form of graphs. Examples in
this direction include the topological model [12], or object diagram [17]. In the graph,
vertexes denote objects, and edges denote variables and object attributes (i.e., instance
variables). Models of this kind are intuitive and always independent of languages. [6]
presents an operational semantics based on a graph model. However, a suitable reason-
ing framework for graph models still does not exist. The Access Trace Model (origi-
nally for pointer-programs) was introduced by [4], where each object was identified by
a set of traces to the object. Access Trace models have advantages in alias analysis [2],
but seem too abstract for general purpose. [3] attempted to define a general inference
framework for a trace model. Stack Heap Models are extensions of normal store model,
with an additional heap (a map from address to values) to represent objects. Stack Heap
Models seem low-level, however, they are relatively easy to used for definitions of pro-
gram semantics. Some works have been done upon such models, e.g. [13]. However, a
full accounting of all important OO features is still missing.

� Supported by NNSFC Grant No. 60718002 and No. 60773161.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 88–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Separation Logic for OO Programs 89

On the other hand, many works have been done on the specification and verifica-
tion of OO programs. Although JML [7] and Spec# [1] catch increasing attentions,
many critical issues of OO programs, especially that related to the mutable object struc-
tures, have not been considered deeply there. Many semantic issues must be investigated
and understood for a big-leap in this field. [8] gives a comprehensive overview for the
achievements and challenges in this area.

Separation Logic [15] is a powerful tool to handle shared mutable data structures.
Many verification techniques based on it have been developed, mainly for C-like pro-
grams, and some targeting OO programs. However, it is not straightforward to use the
Separation Logic to specify and verify OO programs, because the underlying storage
model of the logic is not ready for many OO concepts. Especially, there is no correspon-
dents of object attributes in the model. Some researchers tried to revise the Separation
Logic targeting OO fields [9,14]. The work presented here is also in this direction. We
will discuss and compare these works in Section 6.

In this article, we proposed a model for the object pool (heap), with a novel defini-
tion for the separation of object pools. The model provides a clear concept for objects.
Empty objects can be naturally represented and reasoned. We develop a revised Sepa-
ration Logic, named OO Separation Logic (OOSL), for expressing OO program states.
User-defined predicates and logic environment are clearly defined, and the semantics of
the logic is defined as a least fix-point which is guaranteed existing. The logic adopts
classical semantics, thus is more expressive than the logic with intuitionistic semantics
(referring to [5]) as used in [14]. Properties of OOSL are explored, especially a new
concept named separated assertions, which is useful in reasoning OO programs. Due
to the classical nature, properties of OO programs can be precisely specified and veri-
fied. We introduce a simple OO language, and develop Hoare-Triple like inference rules
based on OOSL. We use Schorr-Waite Marking Algorithm as an example to show how
to specify and verify OO programs with OOSL.

The rest of the paper is organized as follows: We introduce an OO storage model
in Section 2. OOSL is developed in Section 3. We introduce a simple OO language
and its inference rules in Section 4. In Section 5, we study the Schorr-Waite Marking
Algorithm. Finally, we discussed some related works and future research directions.

2 An OO Storage Model

Now we introduce a storage model for OO programs with pure reference nature.
The model is defined based on three basic sets Name, Type and Ref , these sets

model basic concepts, such as variables, fields, types and references, in OO program.

– Name: an infinite set of names, used for naming various entities, e.g., constants,
variables, attributes, etc. Three special names, true, false,null ∈ Name, denote
boolean and null constants.

– Type: an infinite set of types, including predefined types and user-defined types
(or called classes). Subtype relation is represented by symbol <:, where T1 <:
T2 states that T1 is a subtype of T2. We assume there are three predefined types
Object,Null and Bool. Object is the super type of all classes. Null is the
subtype of all classes. And Bool is the type of boolean objects. Given a type T ,

90 L. Yijing and Q. Zongyan

we can obtain its attributes by function attrs : Type → Name → Type; and we
define attrs(Object) = attrs(Null) = attrs(Bool) = ∅. Other predefined types,
such as Integer, can be added easily, but we consider only boolean type here.

– Ref: an infinite set of references which are the identities of objects. Corresponding
to the Name constants, Ref contains three basic references rtrue, rfalse and rnull,
where rtrue, rfalse refer two Bool objects, and rnull never refers to any object. We
assume two primitive functions on Ref:1

• eqref : Ref → Ref → bool, justifies whether two references are same, i.e.
given references r1, r2 ∈ Ref, eqref(r1, r2) = true iff r1 is same to r2.
• type : Ref → Type, decides the runtime type of object referred by reference.

We define type(rtrue) = type(rfalse) = Bool, type(rnull) = Null.

In fact, Name, Type and functions (relations) defined on them, such as dtype, <: and
attrs, make up the static information of an OO program.

Based on above concepts, we define an OO storage model. It is similar to the classical
Stack-Heap model with two components:

Store =̂ Name⇀fin Ref Opool =̂ Ref ⇀fin Name⇀fin Ref

State =̂ Store×Opool

where notation ”⇀fin” denotes finite partial functions.
We will use σ andO, possibly with subscript, to denote elements of Store and Opool

respectively. A store σ ∈ Store maps variables and constants to references, and an
object pool O ∈ Opool maps references to field-reference pairs. A runtime state s is a
pair, s = (σ,O) ∈ State, consisting of a store and an object pool. For every σ ∈ Store,
we assume that σtrue = rtrue, σfalse = rfalse and σnull = rnull.

We will use r, r1, . . . to denote references, and a, a1, . . . to denote attributes of ob-
jects. An element of O is a pair (r, f), where r is a reference to some object o, f is a
function from attributes of o to their corresponding values (also references). When we
mention the domain of O, we sometimes want to mean a subset of Ref associated with
a set of objects as discussed above, or sometimes a subset of Ref × Name associated
with a set of values (references). We use domO for the first case. For the second case,
we define notation dom2O =̂ {(r, a) | r ∈ domO, a ∈ domO(r)}, that is, dom2O
gets all the reference and attribute pairs of non-empty objects in O.

When considering the program states, we need to ask for some regularity, that is,
the well-typedness. Now we define the concept for states that are consistent with the
static information of the program, i.e., the well-typed states. We assume a function
dtype : Store → Name → Type, where dtype(σ)(v) gives the declaration type of
constant or variable v in store σ.

Definition 1 (Well-typed Store). A store σ is well-typed iff

∀v ∈ domσ · type(σ(v)) <: dtype(σ)(v).
Clearly, this condition requires that all variables hold valid values.

1 For example, we can define every reference as a pair (t, id) where t ∈ Type and id ∈ N,
define eqref as pair equivalence, and type(r) = r.first.

A Separation Logic for OO Programs 91

Definition 2 (Well-typed Opool). An Opool O is well-typed iff

– ∀(r, a) ∈ dom2O · a ∈ Att(r) ∧ type(O(r)(a)) <: attrs(r)(a), and
– ∀r ∈ domO ·Att(r) = ∅ ∨ (Att(r) ∩ domO(r) 	= ∅).

where Att(r) =̂ domattrs(type(r)).

Note that attrs(type(r)) is a function from an attribute set to Type. The first condition
requires that all attributes are valid according to types of all objects in O, and all at-
tributes hold values of correct types. The second condition requires that if a non-empty
object (according to its type) is in O, then O must contains at least one attribute of the
object. Thus we can identify empty objects in any Opool.

As an example, suppose we have statically domattrs(C) = {a1, a2, a3}, and have a
program state where type(r1) = Object, type(r2) = C. In this case, we easily know
that O1 = {r1
→ ∅, r2
→ {a1
→ rnull, a2
→ rnull}} is a well-typed Opool, but
O2 = {r1
→ ∅, r2
→ ∅} is not, because type(r2) = C has attributes. Further, we can
calculate that domO1 = {r1, r2}, and dom2O1 = {(r2, a1), (r2, a2)}.
Definition 3 (Well-typed State). A state s = (σ,O) is well-typed iff both σ and O are
well-typed.

We will only consider well-typed states from now on. This requirement makes sense be-
cause a well-typed program always runs under well-typed states, and the well-typedness
can be checked statically based on the type system of the language.

For convenience, we will use notation (r, {(a,-)}) to denote an (or a part of an)
object, and use (r, a,-) to denote a cell (state of an attribute of an object) in the Opool.
Here “-” represents some value which we do not care about.

We define a special overriding operator⊕ on Opool:

(O1 ⊕O2)(r) =̂

{

O1(r) ⊕O2(r) if r ∈ domO2

O1(r) otherwise

where the right ⊕ is the standard function overriding operator. Thus, for Opool O1,
O1 ⊕ {(r, a, r′)} gives a new Opool, where only one attribute value (the value for a) of
the object pointed by r is modified (denoted by r′).

We borrow some concepts and notations from the Separation Logic. O1 ⊥ O2 indi-
cates that two Opools O1 and O2 are separated from each other. The formal definition
for⊥ is new for separating object pools,

O1 ⊥ O2 =̂ ∀r ∈ domO1 ∩ domO2·
O1(r) 	= ∅ ∧O2(r) 	= ∅ ∧ dom (O1(r)) ∩ dom (O2(r)) = ∅.

That is, if a reference, referring to some object o, is in both domO1 and domO2, then
bothO1 andO2 must contain non-empty subsets of o’s attributes, respectively (the well-
typedness also guarantees this); and these two subsets must be disjoint. This means that
we can separate attributes of an object in the Opool (providing that the object is not
empty). Additionally, an empty object cannot be in two separated Opools at the same
time, because it cannot be partitioned. We will use O1 ∗O2 to indicate the union of O1

and O2, O1 ⊕O2, when O1 ⊥ O2.

92 L. Yijing and Q. Zongyan

As an example, suppose,

O1 = {(r1, ∅), (r2, {(a1, rnull)})}, O2 = {(r2, {(a2, rnull)})},
O3 = {(r1, ∅), (r2, {(a2, rnull)})}.

We have O1 ⊥ O2, although each of them contains a part of object pointed by r2. But
O1 	⊥ O3 because r1 ∈ domO1∩domO3, whileO1(r1) = {}. Additionally,O2 	⊥ O3,
because r2 ∈ domO2 ∩ domO3, while dom (O2(r2)) ∩ dom (O3(r2)) = {a2}.

Clearly, above definition of separation takes the basic cell (r, a, r′) as a unit, but
it also offers a careful treatment for empty objects. It is a revision of the separation
concept in Separation Logic, while also takes into account the characteristics of OO
programs. This definition plays an important role in our work.

3 An OO Separation Logic

To facilitate OO features, almost all OO languages adopt pure reference models, where
values of variables and object attributes are references to objects2. A special case is that
their values can be null to mean referring to no object. This model induces a great possi-
bility of sharing: besides different variables can share references, different attributes can
also share references, and can have sharing with variables. For modeling these features,
we define an OO Separation Logic(OOSL) for OO specialities.

3.1 Assertions Language

We use Ψ for the set of all assertions of OOSL, and ψ, ψ1, ψ2... as typical assertions.
The assertion language of OOSL is similar to what in Separation Logic, with some
revisions and extensions, to fit the special needs of OO programs.

Basic assertions are of two kinds in OOSL, namely primitive assertions and user-
defined assertions. All assertions are built on them.

Primitive assertions have the forms defined by the following rules:

α ::= true | false | v = r | r1 = r2
β ::= emp | r1.a
→ r2 | obj(r, T)

where v is a variable or constant name, r denotes references. In fact, here r servers as
both “references” and “reference variables” (logic variables) at the same time.

As shown, primitive assertions fall into two categories, where

– α denotes a kind of assertions that are independent of Opools. References are
atomic values in our logic. For any two references r1, r2, r1 = r2 holds iff r1
and r2 are identical, i.e., eqref(r1, r2). We treat r = v the same as v = r.

– β denotes assertions involving Opools. Empty and singleton assertions take the
similar forms as in Separation Logic. As we said before, a cell in Opool is an
attribute-value binding of an object (denoted by a reference), thus the singleton

2 One exception might be variables and attributes of primitive types, while many languages use
value model for them for efficiency.

A Separation Logic for OO Programs 93

assertion takes the form r1.a
→ r2. To make OOSL clear and simple, we do not
define v.a
→ . . . as a primitive assertion, because it is not really primitive. Cer-
tainly, we can define v.a
→ r as ∃r′ · v = r′ ∧ r.a
→ r′.

– We add an assertion form obj(r, T) to indicate that r refers to a complete object of
type T , and the Opool only contains this object. In Separation Logic, people use
l
→ - or l ↪→- to denote that location l is allocated in current heap. Because the
existence of empty object, we cannot use r.a
→- or r.a ↪→- to express that object
which r refers to is allocated in current Opool. To solve this problem, we introduce
assertion form obj(r, T) in OOSL. We will use obj(r,-) when we do not care about
r’s type.

We allow users to define new predicates in OOSL. In fact, people always need to de-
fine some recursive predicates to support specification and verification of OO programs
involving recursive data structures, e.g., list, tree, etc.

These definitions are recorded in a Logic Environment Λ with the form defined by:

Λ ::= ε | Λ, p(r) .= ψ

where ε denotes the empty environment, p is a symbol (predicate name) selected from a
given set S, r are (a list of) formal parameters, and ψ is the body, which is an assertion
correlated with r. Recursive definitions are allowed.

As a well-formed logic environment, we ask for that Λ must be self-contained, that
is: The body ψ of a definition in Λ cannot use symbols not defined in Λ. Further, we
require that Λmust be finite and syntactically monotone3, then a fix-point semantics for
Λ exists.

For every symbol p defined in Λ, we use argcΛ(p) to denote its arguments number,
where subscript Λ may be omitted when there is no ambiguity.

Complex assertions are built upon basic assertions with classical FOL combinators
and separation combinators from Separation Logic:

ψ ::= α | β | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ—∗ψ | ∃r · ψ

where p(r) is a user-defined assertion with real arguments r.
Please notice that only references, but not variables, can be quantified. The intension

is clear: variables are defined in the program text, thus are free variables in assertions.
We will use ψ[v/x] (or ψ[r/x]) to denote the assertion built from ψ by substituting

variable x with variable or constant v (reference r) in it. And ψ[r1/r2] denotes the
assertion build from ψ by substituting r2 with r1.

At last, we define some abbreviations, that are classical:

ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2) ψ1 ⇒ ψ2 ≡ ¬ψ1 ∨ ψ2

∀r · ψ ≡ ¬∃r · ¬ψ
r.a
→- ≡ ∃r′ · r.a
→ r′ r.a ↪→ r′ ≡ r.a
→ r′ ∗ true

The last two abbreviations are widely used in Separation Logic related papers.

3 For every definition p(r)
.
= ψ, every symbol occurs in ψ must lie under an even number of

negations.

94 L. Yijing and Q. Zongyan

MI(false) = ∅ (I-FALSE)

MI(true) = State (I-TRUE)

MI(v = r) = {(σ, O) | σ(v) = r} (I-LOOKUP)

MI(r1 = r2) = State iff eqref(r1, r2) (I-REF-EQ)

MI(r1 = r2) = ∅ iff ¬eqref(r1, r2) (I-REF-NEQ)

MI(emp) = {(σ, ∅)} (I-EMPTY)

MI(r1.a �→ r2) = {(σ, {(r1, a, r2)})} (I-SINGLE)

MI(obj(r, T)) = {(σ, O) | type(r) = T ∧ domO = {r}∧
dom (O(r)) = dom (attrs(T))}

(I-OBJ)

MI(p(r)) = I(p)(r) (I-APP)

MI(¬ψ) = State \MI(ψ) (I-NEG)

MI(ψ1 ∨ ψ2) =MI(ψ1) ∪MI(ψ2) (I-OR)

MI(ψ1 ∗ ψ2) = {(σ, O) | ∃O1, O2 · O1 ∗O2 = O ∧ (σ,O1) ∈ MI(ψ1)
∧(σ,O2) ∈ MI(ψ2)}

(I-S-CONJ)

MI(ψ1 —∗ψ2) = {(σ, O) | ∀O1 · O1⊥O ∧ (σ, O1) ∈ MI(ψ1)
implies (σ,O1 ∗O) ∈ MI(ψ2)

(I-S-IMPLY)

MI(∃r · ψ) = {(σ, O) | ∃r ∈ Ref · (σ,O) ∈ MI(ψ)} (I-EX)

Fig. 1. Semantic function with interpretation I

3.2 Semantics

Now, we provide a Least Fix-point Semantics for OOSL. We will define a semantic
function which maps every assertion ψ ∈ Ψ to a subset of State. To achieve this goal,
we first define a formal semantics for Λ.

We introduce a family of Predicate Functions. For any n ≥ 0, we define Pn =̂
Refn → P(State), the set of functions from n references to subsets of State. Here n is

the arity of the functions in Pn. We define P =̂
⋃

n

Pn, which is the set of all possible

predicate functions. We introduce a function arity : P → N to extract the arity of given
predicate function: For any p ∈ P , arity(p) = n iff p ∈ Pn.

We will use p, q, possibly with subscripts, for the typical elements of P . Given
p(r), q(r′) ∈ Pn, we define p ≤ q iff ∀r1, ..., rn · p(r1, ..., rn) ⊆ q(r1, ..., rn). Clearly,
(P(State),⊆) forms a complete lattice, with ∅ and State as its bottom and top elements.
So for any n, (Pn,≤) is a complete lattice, with ⊥Pn = {(r1, ...rn)
→ ∅},�Pn =
{(r1, ...rn)
→ State} as its bottom and top elements.

With Predicate Functions, we define interpretations of Λ as follows.

Definition 4 (Interpretation of Logic Environment). Given a logic environment Λ,
we say a function I : S → P is an interpretation of Λ iff for every symbol p defined in
Λ, p ∈ domI and arity(I(p)) = argcΛ(p).

We use IΛ to denote all interpretations of Λ. For any I1, I2 ∈ IΛ, we define:

I1 ≤ I2 iff ∀p ∈ domΛ · I1(p) ≤ I2(p).

A Separation Logic for OO Programs 95

Obviously, (IΛ,≤) is a complete lattice. ⊥Λ = {(p,⊥PargcΛ(p)
)|p ∈ domΛ} is the

bottom element, and �Λ = {(p,�PargcΛ(p)
)|p ∈ domΛ} is the top element.

We define a semantic functionM : I → Ψ → P(State) for OOSL, the definition is
presented in Fig.1. Note thatMI meansM(I) in the definition.

Clearly, a logic environmentΛ can have many different interpretations, but not every
interpretation makes sense. This leads the following definition.

Definition 5 (Model of Logic Environment). Suppose I is an interpretation of Λ, we
say I is a model of Λ iff for every definition p(r)

.
= ψ in Λ, we have:

∀r′ ·MI(p(r′)) =MI(ψ[r′/r]).

In fact, a model of Λ is a fix-point of function NΛ : (S → P) → (S → P), which is
defined as follows:

NΛ(I)(p) = {(r′,MI(ψ[r′/r])}, for any definition p(r)
.
= ψ in Λ

The fix-point of NΛ exists, because the self-containedness of Λ, and the syntactically
monotonic requirement for each definition of symbols in Λ.

A given Λ may have many models. We choose the least one as its standard model,
which is the least fix-point ofN . By Tarski’s fix-point theorem, this standard model can
be expressed as:

JΛ =
∞
⋃

n=0

Nn
Λ (⊥Λ),

We give a simple example as an illustration. Suppose Λ contains only one definition

list(r)
.
= (r = null ∧ emp) ∨ ∃r′ · (r.a
→ r′) ∗ list(r′)

which describes lists linked on a. In order to get the standard model of Λ, we have:

N 0
Λ = ⊥Λ
N 1
Λ = {(list, {(null, emp)})}
N 2
Λ = {(list, {(null, emp), (r, r.a
→ null)})}
N 3
Λ = {(list, {(null, emp), (r, r.a
→ null)}), (r, r.a
→ r′ ∗ r′.a
→ null)})}

. . .

Then we get a model that describes all possible lists of this type.
With the standard model JΛ, we can define the formal semantics for our assertion

language. We use σ,O |=Λ ψ to mean that ψ holds on state (σ,O) with respect to logic
environmentΛ. We have the following definition:

Definition 6 (Semantics of Assertions)

σ,O |=Λ ψ iff (σ,O) ∈ MJΛ(ψ).

We often use σ,O |= ψ as a shorthand when Λ is not ambiguous.

96 L. Yijing and Q. Zongyan

3.3 Properties and Inference Rules

The semantics defined above have some good properties:

Lemma 1. New predicate functions can be safely appended to Λ, without changing the
meaning of existing symbols in Λ. Formally, if Λ′ = (Λ, p(r)

.
= ψ), where p is not

defined in Λ, we have for every symbol q defined in Λ:

JΛ(q) = JΛ′ (q).

By this lemma, we can easily get:

Lemma 2. Given a logic environment Λ:
(1) we can safely append some new definitions to it, without changing semantics of
symbols defined in Λ;
(2) if symbols p defined in Λ are not mentioned in other definitions in Λ, then we can
safely remove them, without changing semantics of the other symbols defined in Λ. ��
And by OOSL’s semantics, it is straightforward to prove the following propositions:

Lemma 3. Suppose σ,O |= ψ, we have:
(1) if domσ′ ∩ domσ = ∅, then σ ∪ σ′, O |= ψ;
(2) if ψ does not contain variables in σ′, then σ − σ′, O |= ψ. Here σ − σ′ denotes
{(x, r) ∈ σ | x /∈ domσ′}. ��
Lemma 4. σ,O |= ψ[e/x], if and only if σ ⊕ {x
→ σe}, O |= ψ. ��
Lemma 5. Suppose a1, a2, ..., ak are all attributes of type T , then we have:

obj(r, T)⇔ r.a1
→-∗r.a2
→-∗...∗r.ak
→- ��
Lemma 6. obj(r1,-) ∗ obj(r2,-)⇒ r1 	= r2. ��
Lemma 7.

emp ∗ ψ ⇔ ψ
ψ1 ∗ (ψ1 —∗ψ2)⇔ ψ2

ψ1 —∗(ψ2 ∧ ψ3)⇔ (ψ1 —∗ψ2) ∧ (ψ1 —∗ψ3)
ψ1 —∗ψ2 —∗ψ3 ⇔ (ψ1 ∗ ψ2)—∗ψ3

Proof. We prove the last statement. Note that ψ1 —∗ψ2 —∗ψ3 is ψ1 —∗(ψ2 —∗ψ3).

⇒: Assume σ,O |= ψ1 —∗(ψ2 —∗ψ3). Take any O′ such that O′ ⊥ O and σ,O′ |=
ψ1 ∗ ψ2, by the definition of ∗, there exist O1 and O2 such that O′ = O1 ∗O2, and
σ,O1 |= ψ1, and σ,O2 |= ψ2. Because O1 ⊥ O2 ∗O and the assumption, we know
that σ,O1 ∗O |= ψ2 —∗ψ3. From this fact, and σ,O2 |= ψ2 and O2 ⊥ O1 ∗O, we
have σ,O1 ∗O2 ∗O |= ψ3. This is exactly σ,O′ ∗O |= ψ3, thus we have the “⇒”
proved.

⇐: Suppose σ,O |= (ψ1 ∗ψ2)—∗ψ3. Take anyO1 such thatO1 ⊥ O and σ,O1 |= ψ1,
then take any O2 such that O2 ⊥ O1 ∗ O and σ,O2 |= ψ2, now we need to prove
that σ,O1 ∗ O2 ∗ O |= ψ3. Because O1 ∗ O2 ⊥ O and σ,O1 ∗ O2 |= ψ1 ∗ ψ2, we
have the result immediately. ��

A Separation Logic for OO Programs 97

Many propositions in Separation Logic also hold in OOSL. For example, rules (axiom
schemata) shown in the Section 3 of [15] are all valid here.

Intuitively, there are close connection between OOSL defined here and the Sepa-
ration Logic. If we treat every tuple (r, a) as an address of memory cell, and define
a suitable address transformation for the memory layout, then we may map the stor-
age model of our logic to the storage model of Separation Logic. So, we conjecture
that every proposition holding in Separation Logic, when it does not involve in address
arithmetic, will hold in OO Separation Logic. We will investigate the relation between
Separation Logic and OOSL in future.

Similar to Separation Logic, we can define the pure, intuitionistic, strictly-exact and
domain-exact assertions. We find another important concept as follows.

Definition 7 (Separated Assertions). Two assertions ψ and ψ′ are separated from
each other, iff for all stores σ and Opools O,O′, σ,O |= ψ and σ,O′ |= ψ′ implies
O ⊥ O′. ��

Lemma 8. r1.a
→ - and r2.b
→ - are separated, provided that r1 	= r2, or a and b
are different attribute names. ��
For example, suppose we have aNode class with fields value and next. For a reference
r : Node, we know r.value
→ - and r.next
→ - are separated. No corresponding
concept is in original Separation Logic, due to the absence of attributes.

Lemma 9. Suppose ψ1 and ψ2 are separated. (1) If σ,O1 |= ψ1 and σ,O2 |= ψ2,
then σ,O1 ∗ O2 |= ψ1 ∗ ψ2. (2) If σ,O |= ψ1 ∗ ψ2, there exists an unique partition of
O = O1 ∗O2, that σ,O1 |= ψ1 and σ,O2 |= ψ2. ��

Lemma 10. ψ1 is separated from both ψ2 and ψ3, iff ψ1 is separated from ψ2 ∗ψ3. ��
Theorem 1. For any ψ1, ψ2, ψ3, if ψ1 and ψ2 are separated from each other, then ψ1 ∗
(ψ2 —∗ψ3)⇔ ψ2 —∗(ψ1 ∗ ψ3).

Proof. The proof is as follows:

⇒: For any σ and O such that σ,O |= ψ1 ∗ (ψ2 —∗ψ3), there exist O1, O2, such that
O1 ∗O2 = O, σ,O1 |= ψ1, and σ,O2 |= ψ2 —∗ψ3. By the definition of—∗, for any
O3 satisfying O2 ⊥ O3,

σ,O3 |= ψ2 implies σ,O2 ∗O3 |= ψ3.

Because ψ1 and ψ2 are separated, then by Lemma 9,

σ,O3 |= ψ2 implies σ,O1 ∗O2 ∗O3 |= ψ1 ∗ ψ3.

This is σ,O |= ψ2 —∗(ψ1 ∗ ψ3).
⇐: For any σ and O that σ,O |= ψ2 —∗(ψ1 ∗ ψ3), for any O1 that O1 ⊥ O, if σ,O1 |=

ψ2, then σ,O1 ∗O |= ψ1 ∗ ψ3. Now we fix this O1. From σ,O1 ∗O |= ψ1 ∗ ψ3 we
know there exist O2 and O′

3 such that O2 ⊥ O′
3, O2 ∗ O′

3 = O1 ∗ O, σ,O2 |= ψ1

98 L. Yijing and Q. Zongyan

and σ,O′
3 |= ψ3. Because ψ1, ψ2 are separated, thenO2 ⊥ O1. ThusO′

3 = O1∗O3

for some O3. Now we have

σ,O2 |= ψ1, σ, O1 |= ψ2, and σ,O1 ∗O3 |= ψ3.

Then we have σ,O3 |= ψ2 —∗ψ3, because the choice of O1 needs no extra restric-
tion. Thus σ,O |= ψ1 ∗ (ψ2 —∗ψ3), because O = O2 ∗O3. ��

The concept of separated assertions is very useful in reasoning OO programs. Taking
the Node class above as an example, it allows us to combine relative attributes of a
Node object together:

r1.value
→- ∗ (r2.value
→-—∗ r1.next
→-)
⇔ r2.value
→-—∗(r1.value
→- ∗ r1.next
→-)

3.4 Discussion

In this section, we discuss some expressiveness and extension issues about OOSL.
As presented above, we define a power assertion language for OOSL, especially

the user-defined predicates, which notably enhance the expressiveness of OOSL. With
OOSL, We can describe and infer recursive data structures, and some important prop-
erties between objects, such as accessibility, dangling and so on. Since our logic adopts
classical semantics, it is more expressive than its intuitionistic cousin, e.g., what defined
in [14]. We can use OOSL to describe the program state precisely, especially the Opool,
i.e., what is in or is not in an Opool.

On the other hand, the primitive assertions of OOSL are very simple and specific,
so we cannot describe quantitative relation or more complicated mathematical concepts
with OOSL. But it is not difficult to extend OOSL to support these concepts. For exam-
ple, if we want to support integer arithmetic in OOSL, we should

– add primitive assertions about integer,
– expand user-defined predicates with integer arguments,
– expand quantifiers ∃ and ∀ to support integer,
– define semantics for new adding assertions.

After these modifications, we can describe and infer properties involving integers with
OOSL. In fact, we can combine OOSL and other mathematical theories freely, such as
theories about sequences and trees, if they are orthogonal.

4 A Simple OO Language and Its Inference Rules

In this section, we study a simple OO language. For simplicity, we only consider basic
commands here. High-level features, i.e., concepts related to method and class, involv-
ing more static structure and type information, will be studied in our further works. We
demand that our storage model and OOSL are ready to deal with them.

A Separation Logic for OO Programs 99

The syntax of the language is as follows:

e ::= true | false | null | x
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip | x := e | x.a := e | x1 := x2.a |

x := new C() | c; c | if b c else c | while b c

where:

– x is a variable,C a class name or Object, a an attribute name. We adopt restricted
forms for expressions e, so their values depend only on the store. Complex expres-
sions can be encoded with the help of auxiliary variables and assignments.

– Assignments are restricted to a number of special forms. Beside the plain assign-
ment x := e, we have mutation assignment x.a := e, and lookup assignment
x1 := x2.a. Other general cases can be also encoded by these forms. For instance,
one can use x := y.a and then refer to x.a′ as a replacement of y.a.a′.

– x := new C() creates a new raw object, that is this command do not initialize the
new object.

We define Hoare-Triple like inference rules for the language. Specifications take the
form {P} c {Q}, where P is the precondition, Q is the postcondition, and c is a com-
mand. By {P}c{Q}, we mean that wheneverP holds before the execution of command
c, then predicate Q holds after the termination of c.

We list basic rules in Fig. 2. Here we treat boolean expressions as OOSL assertions,
because every boolean expression can be easily mapped to an assertion in OOSL.

Beside basic rules, we have Frame Rule that is essential for local reasoning [15].

{P} c {Q} FV (R) ∩md(c) = ∅
{P ∗R} c {Q ∗R} (FRAME)

where FV (R) is the set of all program variables in R, and md(c) denotes the variable
set modified by c with the following definition:

md(c) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{x}, if c is x := . . .
md(c1) ∪md(c2), if c is c1; c2
md(c1) ∪md(c2), if c is if b c1 else c2
md(c), if c is while b c
∅, otherwise

In this paper, we only define the local rules. We can define global rules and backwards
rules, as in [15]. For example, here is the backwards reasoning rule for mutation:

{(v = r1)∧ (e = r2)∧ (r1.a
→- ∗ (r1.a
→ r2 —∗P)} v.a = e{P} (ASN-II BACK)

Based on Rule (CONS), (FRAME) and Lemma 7, it is easy to prove that this rule is
equivalent to Rule (ASN-II).

We use a little example to end this section. This example illustrates that two newly
created empty objects are different. As mentioned above, Object has no attributes, by

100 L. Yijing and Q. Zongyan

{P} skip {P} (SKIP)

{P [e/x]} x := e {P} (ASN-I)

{x = r1 ∧ e = r2 ∧ r1.a �→-} x.a := e {x = r1 ∧ e = r2 ∧ r1.a �→ r2} (ASN-II)

{x2 = r1 ∧ r1.a �→ r2} x1 := x2.a {x1 = r2 ∧ x2 = r1 ∧ r1.a �→ r2} (ASN-III)

{emp} x := new C() {∃r · x = r ∧ obj(r, C)} (NEW)

{P} c1 {Q}, {Q} c2 {R}
{P} c1; c2 {R} (SEQ)

{b ∧ P} c1 {Q}, {¬b ∧ P} c2 {Q}
{P} if b c1 else c2 {Q} (COND)

{b ∧ I} c {I}
{I}while b c {¬b ∧ I} (ITER)

P ⇒ P ′, {P ′} c {Q′}, Q′ ⇒ Q

{P} c {Q} (CONS)

{P} c {Q}
{∃r · P} c {∃r ·Q} r is free in P and Q (EX)

Fig. 2. Inference Rules for the OO language

Rule (NEW), (FRAME) and Lemma 6,7, we have the following deduction:

{true}
{emp ∗ true}
x := new Object();
{∃r · x = r ∧ obj(r,Object) ∗ true}
y := new Object();
{∃r1, r2 · x = r1 ∧ y = r2 ∧ obj(r1,Object) ∗ obj(r2,Object) ∗ true}
{x 	= y}

This example shows that OOSL’s accurate treatment for empty objects.

5 A Case Study

In this section, we take Schorr-Waite Marking (SWM) Algorithm as an example to show
how the specification and verification can be carried on with our logic and inference
rules. Fig. 3 gives an implementation of SWM algorithm in our language. Class Node
is the graph node class which has four attributes: left and right are links to the left and
right subnodes respectively, flag mark indicates if the node is marked, and flag check
is used internally to indicate if its left part has been visited.

To verify the program, we must specify that given any unmarked graph pointed by
root, after the execution schorr waite, all nodes in the graph are marked and the graph
structure is preserved. Complete verification for these two properties is complicated, es-
pecially for the second property, for which we must introduce some mathematical con-
cepts for graphs. Yang [16] presented the first work on verifying SWM with Separation

A Separation Logic for OO Programs 101

class Node {
Node left, right;
Boolmark, check; / ∗ whether left subtree has been visited ∗ /

}

void schorr waite(Node root) {
Node t, p, q, s;
t := root; p := null;
while (p �= null ∨ (t �= null ∧ ¬t.mark)) {

if (t = null ∨ t.mark) {
if (p.check) { / ∗ pop ∗ /
q := t; t := p; p := p.right; t.right := q;

}
else { / ∗ swing ∗ /
q := t; t := p.right; s := p.left; p.right := s; p.left := q; p.check := true;

}
}
else { / ∗ push ∗ /
q := p; p := t; t := t.left; p.left := q; p.mark := true; p.check := false;

}
}

}
Fig. 3. Implementation of Schorr-Waite Marking Algorithm

node(r, r1, r2, c,m)
.
= r.left �→ r1 ∗ r.right �→ r2 ∗ r.check �→ c ∗ r.mark �→ m

mtree(r)
.
= (r = rnull ∧ emp)∨

(∃r1, r2 · node(r, r1, r2,-, rtrue) ∗mtree(r1) ∗mtree(r2))
utree(r)

.
= (r = rnull ∧ emp)∨

(∃r1, r2 · node(r, r1, r2,-, rfalse) ∗ utree(r1) ∗ utree(r2))
sbot(r)

.
= ∃r1, r2, c · node(rb, r1, r2, c, rtrue) ∗

((c = rtrue ∧ r2 = rnull ∧mtree(r1)) ∨
(c = rfalse ∧ r1 = rnull ∧ utree(r2)))

sseg(rt, rb)
.
= (rt = rb ∧ sbot(rb)) ∨ (∃r1, r2, c · node(r, r1, r2, c, rtrue) ∗

((c = rtrue ∧mtree(r1) ∗ sseg(r2, rb)) ∨
(c = rfalse ∧ utree(r2) ∗ sseg(r1, rb)))))

Fig. 4. User-defined assertions for Schorr-Waite Algorithm

Logic, where he gave a complete verification of SWM on binary tree. For the verifica-
tion, he introduced some auxiliary mathematical concepts, including tree and list. As
an illustration possibly been included in the paper, here, we do not focus on a complete
verification. We simplify the specification in two aspects: We require the input is a tree,
and we do not care about the tree structure preservation. So we take a specification here
as: given any unmarked tree, after the execution of the program, all nodes in the tree are
marked. Though this specification is not complete, it is a good example to illustrate the
usefulness and power of OOSL.

102 L. Yijing and Q. Zongyan

At first, we introduce some user-defined assertions, as shown in Fig. 4. Assertion
node specifies a single tree node;mtree(r) and utree(r) specify that the whole tree from
r is marked or unmarked, respectively. Assertions sbot and sseg talk about the implicit
stack and the segment of nodes reachable through the stack. In details, sbot(r) specifies
that r is the only node in the stack and has been marked; and if the flag check of this
node is true, then its left subtree is marked and its right subtree is null, otherwise, its left
subtree is null and right subtree is unmarked. On the other hand, sseg(rt, rb) specifies
a stack with rt as its top element and rb its bottom element. Further, if rt = rb, then
the stack has only one node rb; otherwise, every node in the stack has been visited, and
if the check flag of a node is true, then its left subtree is marked and its right field
records the next node in the stack, otherwise its right subtree is unmarked and its left
field records the next node in the stack.

Now we give a specification for the SWM program:

{root = rroot ∧ utree(rroot)} SWM {root = rroot ∧mtree(rroot)} (1)

Here SWM represents the body of the function schorr waite shown in Fig. 3.
For proving the specification, the key-point is defining a suitable loop invariant. We

define the loop invariant I as follows (with auxiliaries Invp and Invr):

I
.
= ∃rt, rp · t = rt ∧ p = rp ∧ (rp = rnull⇒ rt = rroot) ∧ Ip(rp) ∗ It(rt)

Ip(rp)
.
= (rp = rnull ∧ emp) ∨ (rp 	= rnull ∧ sseg(rp, rroot))

It(rt)
.
= mtree(rt) ∨ utree(rt)

This loop invariant says:

– If p is null, which means the stack is empty, then the value of t must be root;
– The whole Opool consists of two separated parts. The first part, that is specified by
Ip(rp), is the part of nodes reachable from the implicit stack with p referring to its
top element. If p is null then this part is empty. The second part, that is specified by
Ip(rt), is a tree denoted by t. The nodes in the tree must be all marked or unmarked.

We can simply prove the following facts:

The precondition establishes the loop invariant:

{root = rroot ∧ utree(rroot)}
t := root; p := null;
{root = rroot ∧ t = rroot ∧ p = rnull ∧ utree(rroot)}
{I}

The postcondition holds when the loop ends:

(∃rp, rt · p=rp ∧ t=rt ∧ rp= rnull ∧ (rt = rnull ∨ rt.mark ↪→ rtrue)) ∧ I
⇒ t = rroot ∧mtree(rroot)

Now we prove that the loop invariant is preserved by the loop body. The whole proof is
split into three cases according to the conditional branches, and all necessary lemmas
and rules used in the deduction can be found in Section 3.3 and 4.

The following is the verification for case Pop. The other two cases are similar and
we omit them here.

A Separation Logic for OO Programs 103

Case Pop : The condition is p 	= null ∧ (t = null ∨ t.mark) ∧ p.check. We have the
following deduction:

{(∃rt, rp · t = rt ∧ p = rp ∧ rp 	= rnull ∧
(rt = rnull ∨ rt.mark ↪→ rtrue) ∧ rp.check ↪→ rtrue) ∧ I}

{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧
(mtree(rt)∗
((rp = rroot ∧ rpr = rnull ∧ node(rp, rpl, rpr , rtrue, rtrue) ∗mtree(rpl))∨
(node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl) ∗ sseg(rpr , rroot))))}

{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧
(mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue)∗
mtree(rpl) ∗ ((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr , rroot))))}

q := t; t := p; p := p.right;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr ∧

(mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr , rroot)))}

t.right := q;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr ∧

(mtree(rt) ∗ node(rp, rpl, rt, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

{∃rp, rpr · t = rp ∧ p = rpr ∧ (rpr = rnull⇒ rp = rroot) ∧
(mtree(rp) ∗ ((rpr = rnull ∧ emp) ∨ sseg(rpr , rroot)))}

{I}
With the proofs for the other two cases together, we conclude that the specification (1)
holds. The proof for the full functional specification of Schorr-Waite Marking Algo-
rithm will be one of our future works.

6 Related Work and Conclusion

To develop a full-armed logic framework for the specification and verification of OO
programs is a long standing research goal in the software area. The work presented here
is an attempt in this direction. As the last part of the paper, we overview some closely
related work, make some comparisons, and list some future works.

Middelkoop tried to extend Separation Logic to OO domain in [9], where only the
storage model is revised, and the assertion language remains. In their work, the separa-
tion conjunction operator ∗ is defined on the object level, but not on the attribute level;
hence an object cannot be split. In this case, the atomic unit is a whole object, that limits
the power of Frame Rule considerably.

Parkinson developed a revised Separation Logic for OO programs in his thesis [14]
and some other papers. Although the start points are similar to ours, the framework is
very different. In Parkinson’s work, the program states are defined as:

Heaps =̂ (OIDS× FieldNames⇀fin Values)× (OIDS ⇀fin Class)
Stacks =̂ Vars→ Values Interpretations =̂ AuxVars→ Values
States =̂ Heaps× Stacks× Interpretations .

104 L. Yijing and Q. Zongyan

The first part of a heap h ∈ Heaps stores values of objects’ attributes, and the second
part stores their type information. An object is not explicit, but only a set of cells with
the same id from OIDS. The additional component “Interpretations” records values
of logical variables. Taking this Interpretations into program states looks not nice,
because it has no correspondent in practice. Clearly, logical variables are used only in
verification, but not in execution. It is not nature to take them as a specific and inde-
pendent part in program states. In this logic, operator ∗ separates only the first part of
Heaps in states, thus different empty objects can not be separated. As seen, our state
model is different, which records only information of program variables and objects.
We have a novel definition for the separation of heaps (Opools), that makes it possible
to separate the heaps efficiently even they contain empty objects.

Additionally, the logic in [14] adopts intuitionistic semantics, thus assertions pre-
serve true with heap extension. This makes it impossible to express precise specifica-
tions about heaps, e.g., the simplest statement “current heap is empty”. Consequently,
no precise property about OO programs can be proved in this framework. Our logic
takes the classical semantics, thus is more expressive [5]. The precise assertions are
default, and intuitionistic assertions can also be written (ref. to [15]).

Parkinson et al. [13] developed a framework and some techniques based on their
logic, for verifying OO programs modularly. We can also develop similar framework
within our OOSL, which is our current work.

From these analysis and precognition, we make our choices. We take the reference
model for OO languages, the assertion language based on Separation Logic, and the
logic with classical semantics. Of course, what reported here is only a preliminary work.

In this paper, we present a state model for OO programs, and a novel definition for
the separation of object heaps. Based on the storage model, we define an OO Separation
Logic with some new assertion forms. We give a full treatment on user-defined basic
assertions and introduce the concept of logic environment into our framework. We list
the necessary conditions which guarantee the existence of the fixed point for a logic
environment. We define semantics for the logic and prove some properties (reasoning
rules) for it. We introduce a simple OO language with a set of inference rules based on
the logic. The Schorr-Waite Marking algorithm is used as the example to illustrate how
the specification and verification can be done here.

As for the future work, first, it would be interesting to study properties of OO Sepa-
ration Logic, provide and prove more inference rules, in order to pave the way for more
effective reasoning for OO programs. We also take interests in the connection between
OOSL and the Separation Logic, as mentioned in Section 3.2.

Second, it is important to extend the language used here to support all higher level
OO features, e.g., class declaration, method definition and invocation, inheritance, etc.
Further, we should try to develop more powerful framework to do modular specification
and verification like techniques in [11,13].

Third, accounting to the procedural paradigm, Weakest Precondition (WP) semantics
plays a central role in semantics studies, and the foundation stone for many theoretical
work deeply related to the software engineering, including specification, verification,
refinement, programming from specifications [10], specification-based code generation,
etc. A well-defined WP semantics might play similar role in OO paradigm. We will try

A Separation Logic for OO Programs 105

to develop a WP Semantics for an OO language with all important OO features, which
could enables us to define data refinement and program refinement. With WP seman-
tics as a base, we could study program transformation, and the refinement relationship
between programs/specifications at different abstract levels, therefore provide the pos-
sibility of programming from specifications or code generation.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Bozga, M., Losif, R., Lakhnech, Y.: On logics of aliasing. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 344–360. Springer, Heidelberg (2004)

3. Chen, Y., Sanders, J.W.: A pointer logic for object diagrams. Technical report, International
Institute for Software Technology, The United Nations University (2007)

4. Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Liu, H. (ed.) ECOOP 1999.
LNCS, vol. 1628, pp. 344–360. Springer, Heidelberg (1999)

5. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: POPL
2001. ACM, New York (2001)

6. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of OO pro-
grams. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 347–366.
Springer, Heidelberg (2009)

7. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes 31(3), 1–38 (2006)

8. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Asp. Comput. 19(2), 159–189 (2007)

9. Middelkoop, R., Huizing, K., Kuiper, R.: A separation logic proof system for a class-based
language. In: Proceedings of the Workshop on Logics for Resources, Processes and Pro-
grams, LRPP (2004)

10. Morgan, C.: Programming from Specifications. Prentice Hall, Englewood Cliffs (1998)
11. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,

vol. 2262. Springer, Heidelberg (2002)
12. Noble, J., Biddle, R., Tempero, E., Potanin, A., Clarke, D.: Towards a model of encapsula-

tion. Technical report, Elvis Software Design Research Group (2003)
13. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In: Principles

of Programming Languages (POPL 2008). ACM, New York (2008)
14. Parkinson, M.J.: Local reasoning for Java. PhD thesis, University of Cambridge (2005)
15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS 2002.

IEEE Computer Society, Los Alamitos (2002) (Invited paper)
16. Yang, H.: Local Reasoning for Stateful Programs. PhD thesis, University of Illinois at

Urbana-Champaign (Technical Report UIUCDCS-R-2001-2227) (2001)
17. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refinement.

Formal Aspects in Computing 21(1), 103–131 (2009)

Model Checking Adaptive Multilevel Service
Compositions�

Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari, Venezia (Italy)
srossi@dsi.unive.it

Abstract. In this paper we present a logic-based technique for verifying both
security and correctness properties of multilevel service compositions. We define
modal μ-calculus formulae interpreted over service configurations. Our formulae
characterize those compositions which satisfy a non-interference property and
are compliant, i.e., are both deadlock and livelock free. Moreover, we use fil-
ters as prescriptions of behavior (coercions to prevent service misbehavior) and
we devise a model checking algorithm for adaptive service compositions which
automatically synthesizes an adapting filter.

1 Introduction

A Service Oriented Architecture (SOA) provides a software architectural style to inte-
grate loosely specified and coupled services that communicate with each other. Simple
Object Access Protocol (SOAP)-based Web services are becoming the most common
implementation of SOA. They are designed to support interoperable service-to-service
interactions over a network. In such a context of heterogeneous systems where each
application is leveraging the services of other applications, a service-oriented analysis
and design process plays a significant role.

In this paper we develop a method for verifying both security and correctness pro-
perties of multilevel service compositions based on the use of model-checking tech-
niques [9]. We specify service compositions in terms of behavioral contracts [5,6,8,16]
which provide abstract descriptions of system behaviors by means of terms of a process
algebra. Multi-party service compositions are modeled as the parallel composition of
contracts. We define modal μ-calculus [15] formulae, interpreted over service config-
urations, characterizing those compositions which satisfy a non-interference property
and are compliant, i.e., are both deadlock and livelock free. A model checker (like,
e.g., NCSU Concurrency Workbench) can then be used to simultaneously check non-
interference and compliance.

The notion of non-interference [12,14,22] we consider here is based on an informa-
tion flow security model with dynamic policies. It demands that public synchronizati-
ons are unchanged as confidential communications are varied. Security policies are
used to specify the security requirements of service components. In order to capture
the dynamic nature, heterogeneity and lack of knowledge which are intrinsic features

� Work partially supported by the MIUR Project IPODS “Interacting Processes in Open-ended
Distributed Systems”.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 106–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model Checking Adaptive Multilevel Service Compositions 107

Table 1. Syntax

Type environments Γ ::= ∅ | Γ, p : ς p ∈ P , ς ∈ Σ
Actions ϕ ::= ā@u | a@u a ∈ A, u ∈ P ∪ V
Contracts σ ::= 1 | x | ϕ.σ | σ + σ | σ�Γ⊕ Γ �σ | rec(x)σ
Compositions C ::= p[σ] | C ‖ C

of modern web services, we allow policies to be dynamically specified by the service
participants. In our model, for example, customers may formulate their security require-
ments by dynamically assign types (that are security annotations) to individual service
components. We also consider the property of compliance which is widely used in the
context of SOA as a formal device to identify well-formed service compositions, those
whose interactions are free of synchronization errors.

Finally, we develop an algorithm for verifying adaptive service compositions. This is
based on the use of filters, introduced in [7], as prescriptions of behaviour (coercions to
prevent service misbehaviour). Security and correctness properties for adaptive multi-
level service compositions are ensured by the automatic synthesis of an adapting filter.

Plan of the paper. Section 2 introduces the calculus for multilevel service composi-
tions. Section 3 formalizes the notion of non-interference. Section 4 presents character-
istic modal μ-calculus formulae for non-interference. Section 5 introduces the notion of
compliance and defines a modalμ-calculus formula characterizing it. Section 6 presents
an algorithm for adaptive service compositions. Finally, Section 7 concludes the paper.

2 The Calculus

We represent service contracts as terms of a value-passing CCS-like [18] process cal-
culus that includes recursion and operators for external and internal choice. Parallel
composition arises in contract compositions that we define as the parallel composition
of a set of principals executing contracts. We presuppose a denumerable set of action
names A, ranged over by a, b, c, a denumerable set of principal identities P , ranged
over by p, q, r, and a denumerable set of variables V , ranged over by x, y. The actions
represent the basic units of observable behavior of the underlying services, while the
principal names specify the peers providing the services.

In order to specify multilevel service compositions, we assign security levels to prin-
cipal identities and express both contracts and compositions as typed terms of our cal-
culus. Formally, we assume a complete lattice 〈Σ,
〉 of security annotations, ranged
over by ς, �, where � and ⊥ represent the top and the bottom elements of the lattice.
We denote by � and �, respectively, the join and meet operators over Σ. Type environ-
ments are used to assign security levels to principals. A type environments Γ is a finite
mapping from principals and variables to security annotations. We define Γ1�Γ2 (resp.,
Γ1 � Γ2) the type environment Γ such that Γ (p) = Γi(p) if p �∈ dom(Γ1) ∩ dom(Γ2)
and p ∈ dom(Γi), and Γ (p) = Γ1(p) � Γ2(p) (resp., Γ1(p) � Γ2(p)) otherwise.

108 S. Rossi

Table 2. Example of a travel agency

S = C[σC] ‖ T [σT] ‖ A1[σA] ‖ A2[σA]

σC = Req@T.Lst@T.(Close@T.1�∅⊕ T :H�(Buy1@T.Pay@T.

Get@A1.1�A1:H⊕ A2:H�Buy2@T.Pay@T.Get@A2.1))

σT = Req@x.Inq@A1.Inq@A2.Price@A1.Price@A2.Lst@x.(Close@x.1 +

Buy1@x.Ord@A1.Pay@x.Conf@A1.1 + Buy2@x.Ord@A2.Pay@x.Conf@A2.1)

σA = Inq@x.Price@x.(Ord@x.Conf@x.Get@y.1 + 1)

Syntax. The syntax of our calculus is presented in Table 1. Term 1 indicates a con-
tract that has reached a successful state. The contract ā@p.σ describes a service that
sends a message on a to principal p and then behaves as σ; syntactically, the principal
identity p may be a variable, but it must be a name when the prefix is ready to fire.
Dually, the input prefix a@u.σ waits for an input on a from a particular/any princi-
pal and then continues as σ. If u is a variable x, then the input form is a binder for
x with scope σ: upon synchronization with a principal p, x gets uniformly substituted
by p in σ. The contract σ + σ′ denotes an external choice, guided by the environment.
The contract σ�Γ⊕ Γ ′�σ′ represents the internal choice between σ in the type envi-
ronment Γ and σ′ in the type environment Γ ′ made irrespective of the structure of the
interacting components; the internal choice operator we adopt in this paper allows us
to model the fact that a principal may dynamically change (upgrade) the security level
of his interactions with other service components through the specific type environ-
ment associated to each choice. Finally, rec(x)σ makes it possible to express iteration
in the contract language. As usual, we assume a standard contractivity condition for
recursion, requiring that recursive variables be guarded by a prefix. Given a principal
p ∈ P , we say that a contract σ is p-compatible if for all ā@q and a@q occurring in
σ, q is different from p. A composition p1[σ1] ‖ · · · ‖ pn[σn] of principals must be
well-formed [4] to constitute a legal composition, namely: (i) the principal identities
pi’s must all be pairwise different, and (ii) each contract σi, executed by principal pi,
is pi-compatible. If C = p1[σ1] ‖ · · · ‖ pn[σn] is a legal composition, we say that C is
a {p1, . . . , pn}-composition (dually, that {p1, . . . , pn} are the underlying principals for
C). Throughout, we assume that contracts are closed (they have no free variables) and
that compositions are well formed. Also, we often omit trailing 1’s.

A service component may modify the security level of its interactions with other com-
ponents by assigning different security levels to the principals with which it is going to
interact. However, it is reasonable to assume that a service component cannot downgrade
the security level of other principals; moreover it cannot upgrade the level of its interac-
tions with other components above its own level. These are the only typing constraints
we assume. Such a typing discipline ensures that information does not explicitly flow
from high to low, but it does not deal with implicit flows. Instead, we characterize non-
interference in terms of the actions that typed service compositions may perform.

Model Checking Adaptive Multilevel Service Compositions 109

Table 3. Type system

∐

(1) = ∅ ∐

(x) = ∅ ∐

(ϕ.σ) =
∐

(σ)
∐

(σ1 + σ2) =
∐

(σ1) �
∐

(σ2)

∐

(σ1�Γ1⊕ Γ2�σ2) = Γ1 � Γ2 �
∐

(σ1) �
∐

(σ2)
∐

(rec(x)σ) =
∐

(σ)

Γ, p : ς � p[σ]
ς ∈ Σ, ⊔q∈dom(

∐

(σ))

∐

(σ)(q)
 ς Γ � C1 Γ � C2

Γ � C1 ‖ C2

Example 1. Table 2 shows an example of a service contract composition. Four services
are involved: C[σC], T [σT] and Ai[σA] representing a customer, a travel agency, and
two airline companies, respectively. The elementary actions represent business activ-
ities that result in messages being sent or received. For example, the action Req@T
undertaken by the customer results in a message being sent to the travel agency. The
customer sends a request to the travel agency which then inquires the airlines to get the
prices for the selected route. Each airline responds and the travel agency sends to the
customer the list of the best prices. The customer decides whether to close the commu-
nication with the travel agency or to buy from one of the airlines. In the latter case the
customer decides to assign a high security level (H) to both the travel agency and the
chosen airline company in order to safeguard the confidentiality of the purchasing data.
The travel agency orders the ticket from the selected airline and takes a deposit (or a
full payment) from the customer. As soon as the airline receives the confirmation of the
payment, the ticket is issued to the customer. �

Type System. The typing rules reported in Table 3 ensure that, given a service composi-
tion with an underling set π of principals, every p ∈ π cannot upgrade the security level
of the principals in π (including p) above the level of p itself. The judgments take the
form Γ � C, where Γ is a type environment and C is a service composition. We denote
by

∐

the function that associates to each contract σ the join of all the Γi occurring as a
parameter of an internal choice in σ. We say that a service component p[σ] is well-typed
in Γ if p will never upgrade the security level of other principals over its own level; this
is obtained by requiring that for all q ∈ dom(

∐

(σ)), it holds that
∐

(σ)(q)
 ς where
ς is the security level of p.

Semantics. We define the dynamics of typed service compositions in terms of labelled
transition systems (and a success predicate), with rules reported in Table 4. In the table,
and in the whole paper, λ ranges over visible contract typed actions ā@p, a@p and silent
actions τ ; δ ranges over service composition actions ap→q , āp→q and τ . We say that
Γ � C is a configuration if Γ is a type environment and C is a {p1, . . . , pn}-service
composition such that {p1, . . . , pn} ⊆ dom(Γ).

The first block of rules defines the successful states of a contract and a composition,
which are those that expose the successful term 1 at top level, or immediately under
an external choice (up-to recursive unfoldings). Notice that a composition is success-
ful only when all its components are successful. The second block of rules defines the

110 S. Rossi

Table 4. Typed contract and composition transitions

Contract and composition satisfaction: σ�

1�
σi�

σ1 + σ2 �

σ{x := rec(x)σ}�
rec(x)σ�

σ�

p[σ]�

C1 � C2 �

C1 ‖ C2 �

Typed contract transitions: Γ � σ
λ−→ Γ ′ � σ′

Γ � a@p.σ
a@p−−→ Γ � σ Γ � a@x.σ

a@p−−→ Γ � σ{x := p}

Γ � ā@p.σ
ā@p−−→ Γ � σ Γ � σ1�Γ1⊕ Γ2�σ2 τ−→ Γ � Γi � σi (i = 1, 2)

Γ � σi
λ−→ Γ ′ � σ

(i = 1, 2)
Γ � σ1 + σ2

λ−→ Γ ′ � σ

Γ � σ{x := rec(x)σ} λ−→ Γ ′ � σ′

Γ � rec(x)σ
λ−→ Γ ′ � σ′

Typed composition transitions: Γ � C
δ−→ Γ ′ � C′

Γ � σ
a@p−→ Γ � σ′

p ∈ dom(Γ), p �= q
Γ � q[σ]

ap→q−→ Γ � q[σ′]

Γ � σ
ā@p−→ Γ � σ′

p �= q

Γ � q[σ]
āq→p−→ Γ � q[σ′]

Γ � C1
ap→q−→ Γ � C′

1 Γ � C2
āp→q−→ Γ � C′

2

Γ � C1 ‖ C2
τ−→ Γ � C′

1 ‖ C′
2

Γ � σ
τ−→ Γ ′ � σ′

Γ � p[σ]
τ−→ Γ ′ � p[σ′]

Γ � C1
δ−→ Γ ′ � C′

1

Γ � C1 ‖ C2
δ−→ Γ ′ � C′

1 ‖ C2

typed transitions for contracts. The rule for the internal choice ensures that a service
component cannot downgrade the security level of other principals. Each typed con-
tract transition yields a corresponding transition for the principal hosting the contract.
Transitions for configurations are relative to the underlying set dom(Γ) of principals
and are entirely standard.

We use the following shorthands. We write =⇒ for the reflexive and transitive clo-

sure of
τ−→, and

δ
=⇒ for =⇒ δ−→=⇒. For a sequence of actions w = δ1 . . . δn, we

write
w

=⇒ to note
δ1=⇒ · · · δn=⇒. A computation for a configuration Γ � C, is a se-

quence Γ � C = Γ0 � C0
τ−→ Γ1 � C1

τ−→ . . . of internal actions.

Lemma 1 (Subject reduction). Let Γ be a type environment and C be a service com-
position such that Γ � C is a configuration. If Γ � C is well-formed and Γ � C

τ−→
Γ ′ � C′, then Γ ′ � C′ is well formed. �

Model Checking Adaptive Multilevel Service Compositions 111

Table 5. Typed internal composition transitions

Typed internal composition transitions: Γ � C
α
↪−→ Γ ′ � C′

Γ � σ
τ−→ Γ ′ � σ′

Γ � p[σ]
τ
↪−→ Γ ′ � p[σ′]

Γ � C1
α
↪−→ Γ ′ � C′

1

Γ � C1 ‖ C2
α
↪−→ Γ ′ � C′

1 ‖ C2

Γ � C1
ap→q−→ Γ � C′

1 Γ � C2
āp→q−→ Γ � C′

2

Γ � C1 ‖ C2

{a}p→q

↪−→ Γ � C′
1 ‖ C′

2

Example 2. Consider again the service compositionS of Example 1. LetΣ contain two
security annotations, L (public) and H (confidential), with L
 H. Let Γ be the type
environment C : H, T : L, A1 : L, A2 : L. The service composition S is well-typed in
Γ , i.e., Γ � S. �

3 Non-interference

The concept of noninterference [14] has been introduced to formalize the absence of in-
formation flow in multilevel systems. In the context of service compositions it demands
that public interactions between service components are unchanged as secret commu-
nications are varied or, more generally, that the low level behaviour of the service com-
position is independent from the behaviour of its high components. In this way clients
are assured that the data transmitted over the air to a web server remains confidential;
in other words, sensitive data cannot be intercepted and understood by eavesdroppers.

The notion of non-interference we are going to introduce is relative to the internal
behaviour of service compositions, i.e., we are interested in observing the synchro-
nizations between service components. We thus refine the semantics of compositions in
order to help (i) to distinguish a local contract move from a synchronization, and (ii) to
identify the principals involved in every synchronization. This is captured by the rules
collected in Table 5, where we use the relation ↪−→ to represent typed synchronizations
between service components. The τ label now indicates an internal action to a service
component, while synchronizations between different peers in a composition are repre-
sented through a label of the form {a}p→q meaning that principals p and q synchronize

on action a. We let α range over the labels {a}p→q and τ . We denote by
τ
↪−→→ a possible

empty sequence of
τ
↪−→ and define

{a}p→q

↪−→→ def
=

τ
↪−→→ {a}p→q

↪−→ τ
↪−→→.

The two semantics for service compositions, one expressed in terms of −→ and the
other one expressed in terms of ↪−→, are related as follows.

Lemma 2. Let Γ � C be a service configuration.

– Γ � C
τ
↪−→ Γ ′ � C′ if and only if C = C1 ‖p[σ]‖C2, C′ = C1 ‖ p[σ′] ‖ C2 and

σ
τ−→ σ′;

112 S. Rossi

– Γ � C
{a}p→q

↪−→ Γ � C′ if and only if C = C1 ‖ p[σ] ‖ C2 ‖ q[ρ] ‖ C3,

C′ = C1 ‖ p[σ′] ‖ C2 ‖ q[ρ′] ‖ C3, σ
ā@q−→ σ′ and ρ

a@p−→ ρ′. �

In order to define our notion of non-interference, we need to be able to distinguish the
component interactions at a given security clearance. As transitions are typed, we can
assign a security level to them as follows: the level of a synchronization depends on the
level of the principals performing it. More precisely, the level of the synchronization
{a}p→q in the type environment Γ is defined as as:

Γ ({a}p→q) = Γ (p) � Γ (q).
Thus a ς-level synchronization is performed by principals whose security clearance is
higher or equal to ς .

Behavioural Observations. We define behavioural observations in terms of equivalences
that are parametric with respect to the security level ς ∈ Σ of the behaviour we want to
observe. Such equivalences are relations over configurations that equate service compo-
sitions exhibiting the same ς-level component interactions. They are defined as a variant
of the notion of weak bisimulation [18], an observation equivalence which allows one to
observe the nondeterministic structure of the LTSs and focuses only on the observable
actions.

In the following, we write Γ1 =ς Γ2 whenever {p ∈ dom(Γ1)| Γ1(p)
 ς} = {p ∈
dom(Γ2)| Γ2(p)
 ς}.
Definition 1 (Weak bisimulation on ς-low actions). Let ς ∈ Σ. A weak bisimulation
on ς-low actions is the largest symmetric relation ≈ς over configurations such that
whenever Γ1 � C1 ≈ς Γ2 � C2 with Γ1 =ς Γ2

– if Γ1 � C1
α
↪−→ Γ ′

1 � C′
1 with α = τ or Γ1(α)
 ς , then there exist Γ ′

2 and C′
2

such that Γ2 � C2
α
↪−→→ Γ ′

2 � C′
2 with Γ ′

1 � C′
1 ≈ς Γ ′

2 � C′
2 and Γ ′

1 =ς Γ
′
2;

– if Γ1 � C1
α
↪−→ Γ ′

1 � C′
1 with α �= τ and Γ (α) �
 ς , then there exist Γ ′

2 and

C′
2 such that either Γ2 � C2

α
↪−→→ Γ ′

2 � C′
2 or Γ2 � C2

τ
↪−→→ Γ ′

2 � C′
2 with

Γ ′
1 � C′

1 ≈ς Γ ′
2 � C′

2 and Γ ′
1 =ς Γ

′
2.

We write Γ |= C1 ≈ς C2 when Γ � C1 ≈ς Γ � C2. �

The notion of non-interference is inspired by [13] and is expressed in terms of a restric-
tion operator ·|ς which allows one to represent a service composition prevented from
performing internal synchronizations of a level higher than ς . The semantics of C|ς is
described by the following rule:

Γ � C
α
↪−→ Γ ′ � C′

Γ (α)
 ς
Γ � C|ς α

↪−→ Γ ′ � C′|ς
Definition 2 (Non-interference). Let ς ∈ Σ and Γ � C be a configuration. We say
that the service composition C satisfies the non-interference property with respect to
the level ς in the type environment Γ , denoted C ∈ NIΓ,ς , if

Γ |= C ≈ς C|ς . �

Model Checking Adaptive Multilevel Service Compositions 113

Table 6. Example of a financial consulting platform

M = C[σC] ‖ F1[σF] ‖ F2[σF] ‖ S[σS]

σC = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

(Agree@F1.Close@F2.1�F1:H⊕ F2:H�Agree@F2.Close@F1.1))

σF = Inq@x.LookUp@S.Quote@x.Plan@C.(Agree@x.1 + Close@x.1)

σS = LookUp@x.Quote@x.1

M ′ = C[σ′
C] ‖ F1[σF] ‖ F2[σF] ‖ S[σS]

σ′
C = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

(Close@F2.Agree@F1.1�F1:H⊕ F2:H�Close@F1.Agree@F2.1))

Example 3. Consider again the service composition S of Example 1 in the type envi-
ronment Γ of Example 2. The property S ∈ NIΓ,L holds. �

Example 4. Consider the service composition depicted in Table 6: it consists of a client
C, two financial consulting services F1 and F2 and a stock quote service provider S.
The client inquires the financial services to get investment advices. The financial ser-
vices consult the stock quote service provider in order to look up information on the
financial quotes. Then the financial services send their investment recommendations to
the client which may decide whether or not adhere to the investment plan proposed by
one of the financial services and close the connection with the other one.

Let Σ = {L,H} with L
 H and Γ be the type environment C : H, F1 : L, F2 :
L, S : L. In this case we have that M �∈ NIΓ,L. Indeed, there is a direct causality
between the high level actions {Agree}C→Fi and the low level action {Close}C→Fj

with i �= j, performed after the clients makes the choice. As a consequence, if the
client decides to accept the proposal of F1 then F2 knows that the customer has agreed
to proceed with investment recommendation of F1 by just observing that the action
{Close}C→F2 has been performed. The service composition can be made secure by
letting {Close}C→Fj be executed independently from {Agree}C→Fi as in the compo-
sition M ′ which is obtained from M by replacing the contract σC with σ′

C . �

4 Modal Formulae for Non-interference

In this section we present a method for verifying whether Γ |= C ≈ς C|ς which
consists in defining a modal μ-calculus formula φ≈ς (Γ � C) such that Γ ′ � C′

satisfies φ≈ς (Γ � C) iff Γ � C ≈ς Γ ′ � C′. The proofs are in the spirit of [19].

114 S. Rossi

Table 7. Semantics of modal mu-calculus

MΓ�C(true)(ρ) = SΓ�C
MΓ�C(false)(ρ) = ∅
MΓ�C(φ1 ∧ φ2)(ρ) =MΓ�C(φ1)(ρ) ∩MΓ�C(φ2)(ρ)
MΓ�C(φ1 ∨ φ2)(ρ) =MΓ�C(φ1)(ρ) ∪MΓ�C(φ2)(ρ)
MΓ�C(〈α〉φ)(ρ) = {Γ ′ � C′ | ∃ Γ ′′ � C′′ : Γ ′ � C′ α

↪−→ Γ ′′ � C′′

∧ Γ ′′ � C′′ ∈MΓ�C(φ)(ρ)}
MΓ�C([α]φ)(ρ) = {Γ ′ � C′ | ∀ Γ ′′ � C′′ : Γ ′ � C′ α

↪−→ Γ ′′ � C′′

⇒ Γ ′′ � C′′ ∈MΓ�C(φ)(ρ)}
MΓ�C(X)(ρ) = ρ(X)
MΓ�C(μX.φ)(ρ) =

⋂{x ⊆ SΓ�C |MΓ�C(φ)(ρ[X �→ x]) ⊆ x}
MΓ�C(νX.φ)(ρ) =

⋃{x ⊆ SΓ�C |MΓ�C(φ)(ρ[X �→ x]) ⊇ x}

The modal μ-calculus [15] is a small, yet expressive process logic. We consider
modal μ-calculus formulae constructed according to the following grammar:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | X | μX.φ | νX.φ

where X ranges over an infinite set of variables and α over the labels {a}p→q and τ .
The fixpoint operators μX and νX bind the variable X and we adopt the usual notion
of closed formula. For a finite set M of formulae, we write

∧

M and
∨

M for the
conjunction and disjunction of the formulae inM , where

∧ ∅ = true and
∨ ∅ = false.

Modal μ-calculus formulae are interpreted over service configurations modelled by
LTS’s. Let Γ � C be a configuration and LTS (Γ � C) = (SΓ�C , Act, ↪−→) where

SΓ�C is the set of states reachable from Γ � C through
α
↪−→ and α ∈ Act denotes

the action {a}p→q or τ . The subset of configurations in SΓ�C that satisfy a formula φ,
noted by MΓ�C(φ)(ρ), is inductively defined in Table 7. ρ is an environment, i.e., it is
a partial mapping ρ : Var �→ 2SΓ�C that interprets at least the free variables of φ by
subsets of SΓ�C . For a set x ⊆ SΓ�C and a variable X , we write ρ[X �→ x] for the
environment that maps X to x and Y �= X to ρ(Y) if ρ is defined on Y .

Intuitively, true and false hold for all resp. no states and ∧ and ∨ are interpreted
by conjunction and disjunction, 〈α〉φ holds for a configuration Γ ′ � C′ ∈ SΓ�C if
there exists Γ ′′ � C′′ reachable from Γ ′ � C′ with action α and satisfing φ, and
[α]φ holds for Γ ′ � C′ if all configurations Γ ′′ � C′′ reachable from Γ ′ � C′ with
action α satisfy φ. The interpretation of a variable X is as prescribed by the environ-
ment. The formula μX.φ, called least fixpoint formula, is interpreted by the smallest
subset x of SΓ�C that recurs when φ is interpreted with the substitution of x for X .
Similarly, νX.φ, called greatest fixpoint formula, is interpreted by the largest such set.
Existence of such sets follows from the well-known Knaster-Tarski fixpoint theorem.
As the meaning of a closed formula φ does not depend on the environment, we some-
times write MΓ�C(φ) for MΓ�C(φ)(ρ) where ρ is an arbitrary environment.

Model Checking Adaptive Multilevel Service Compositions 115

The set of configurations satisfying a closed formula φ is defined as Conf (φ) =
{Γ � C | Γ � C ∈MΓ�C(φ)}. We also refer to (closed) equation systems:

Eqn : X1 = φ1 . . . Xn = φn

where X1, . . . , Xn are distinct variables and φ1, . . . , φn are formulae having at most
X1, . . . , Xn as free variables.

An environment ρ : {X1, . . . , Xn} → 2SΓ�C is a solution of an equation system
Eqn , if ρ(Xi) = MΓ�C(φi)(ρ). The fact that solutions always exist, is again a conse-
quence of the Knaster-Tarski fixpoint theorem. In fact the set of environments that are
candidates for solutions, EnvΓ�C = {ρ | ρ : {X1, . . . , Xn} → 2SΓ�C}, together with
the lifting � of the inclusion order on 2SΓ�C , defined by

ρ � ρ′ iff ρ(Xi) ⊆ ρ′(Xi) for i ∈ [1..n]

forms a complete lattice. Now, we can define the equation functional FuncEqn
Γ�C :

EnvΓ�C → EnvΓ�C by FuncEqn
Γ�C(ρ)(Xi) = MΓ�C(φi)(ρ) for i ∈ [1..n], the

fixpoints of which are just the solutions of Eqn . FuncEqn
Γ�C is monotonic and there

is the largest solution νFuncEqn
Γ�C of Eqn (with respect to �), which we denote by

MΓ�C(Eqn). This definition interprets equation systems on the configurations reach-
able by a given initial configuration Γ � C. We lift this to configurations by agreeing
that a configuration satisfies an equation system Eqn , if its initial state is in the largest
solution of the first equation. Thus the set of configurations satisfying the equation sys-
tem Eqn is Conf (Eqn) = {Γ � C | Γ � C ∈MΓ�C(Eqn)(X1)}.

The relation ≈ς can be characterized as the greatest fixpoint νFunc≈ς of the mono-
tonic functional Func≈ς on the complete lattice of relations R over configurations or-
dered by set inclusion, where (Γ1 � C1, Γ2 � C2) ∈ Func≈ς (R) if and only if
points (1) and (2) of Definition 1 hold. Thus a relation R is a weak bisimulation on
ς-low actions if and only if R ⊆ Func≈ς (R), i.e., R is a post-fixpoint of Func≈ς . By
the Knaster-Tarski fixpoint theorem, νFunc≈ς is the union of all the post-fixpoints of
Func≈ς , i.e., it is the largest weak bisimulation on ς-low actions. If we restrict to the
complete lattice of relationsR ⊆ SΓ1�C1 × SΓ2�C2 we obtain a monotonic functional

Func
(Γ1�C1,Γ2�C2)≈ς

whose greatest fixpoint is exactly νFunc≈ς ∩ (SΓ1�C1×SΓ2�C2),
and this is enough to determine if Γ1 � C1 ≈ς Γ2 � C2.

Let Γ � C be finite-state, Γ1 � C1, . . . , Γn � Cn its |SΓ�C | = n states, and
Γ1 � C1 = Γ � C its initial state. To derive a formula characterizing Γ � C up to ≈ς
we construct a characteristic equation system [19]:

Eqn≈ς
: XΓ1�C1 = φ≈ς

Γ1�C1
, . . . , XΓn�Cn = φ≈ς

Γn�Cn

consisting of one equation for each service configuration Γ1 � C1, . . . , Γn � Cn ∈
SΓ�C . We define the formulae φ≈ς

Γi�Ci
such that the largest solutionMΓ�C(Eqn≈ς

) of
Eqn≈ς

associates the variablesXΓi�Ci just with the states Γ ′
i � C′

i of SΓ�C which are
weakly bisimilar on ς-low actions to Γi � Ci, i.e., such thatMΓ�C(Eqn≈ς

)(XΓi�Ci) =
{Γ ′

i � C′
i ∈ SΓ�C | Γi � Ci≈ςΓ ′

i � C′
i}. Theorem 1 shows the exact form of such

formulae. First we define:

〈〈α〉〉Γ,ςφ def
=

{ 〈〈α〉〉φ if Γ (α)
 ς or α = τ
〈〈α〉〉φ ∨ 〈〈τ〉〉φ if Γ (α) �
 ς and α �= τ

116 S. Rossi

where 〈〈τ〉〉φ def
= μX.φ ∨ 〈τ〉X and 〈〈α〉〉φ def

= 〈〈τ〉〉〈α〉〈〈τ〉〉φ. Let
α
↪−→→ Γ,ς note either

α
↪−→→ or

τ
↪−→→ . Then 〈〈α〉〉Γ,ς , 〈〈τ〉〉 and 〈〈α〉〉 correspond to

α
↪−→→ Γ,ς ,

τ
↪−→→ and

α
↪−→→ , since

– MΓ�C(〈〈α〉〉Γ,ςφ)(ρ) = {Γ ′ � C′ | ∃ Γ ′′ � C′′ : Γ ′ � C′ α
↪−→→ Γ,ςΓ

′′ �
C′′ ∧ Γ ′′ � C′′ ∈MΓ�C(φ)(ρ)}

– MΓ�C(〈〈τ〉〉φ)(ρ) = {Γ ′ � C′ | ∃ Γ ′′ � C′′ : Γ ′ � C′ τ
↪−→→ Γ ′′ � C′′ ∧ Γ ′′ �

C′′ ∈MΓ�C(φ)(ρ)}
– MΓ�C(〈〈α〉〉φ)(ρ) = {Γ ′ � C′ | ∃Γ ′′ � C′′ : Γ ′ � C′ α

↪−→→ Γ ′′ � C′′ ∧ Γ ′′ �
C′′ ∈MΓ�C(φ)(ρ)}.

Theorem 1. Let φ≈ς

Γi�Ci
be the formula

∧{∧{〈〈α〉〉Γ,ςXΓ ′
i�C′

i
| Γi � Ci

α
↪−→ Γ ′

i � C′
i}}

∧∧{[α]∨{XΓ ′
i�C′

i
| Γi � Ci

α
↪−→→ Γ,ς Γ

′
i � C′

i}}.

Then MΓ�C(Eqn≈ς
)(XΓi�Ci) = {Γ ′

i � C′
i ∈ SΓ�C | Γi � Ci ≈ς Γ ′

i � C′
i}. �

Characteristic formulae, i.e., single formulae characterizing configurations can be con-
structed by applying simple semantics-preserving transformation rules on equation sys-
tems as described in [19]. These rules are similar to the ones used by A. Mader in
[17] as a mean of solving Boolean equation systems (with alternation) by Gauss elim-
ination. Hence, since for any equation system Eqn there is a formula φ such that
Conf (Eqn) = Conf (φ), we obtain that:

Theorem 2. For any finite-state configuration Γ � C there is a modal μ-calculus for-
mula φ≈ς (Γ � C) such that Conf (φ≈ς (Γ � C)) = {Γ ′ � C′ ∈ SΓ�C | Γ ′ � C′ ≈ς
(Γ ′ � C′)|ς}, that is the set of all the states reachable from Γ � C and satisfying
NIΓ,ς �

5 A Modal Formula for Compliance

In this paper we refer to the notion of compliance for contract service compositions
studied in [3]. Intuitively, a composition of services is compliant if it is deadlock and
livelock free, i.e., it does not get stuck nor does it get trapped into infinite loops with no
exit states. This notion is independent from the security levels of the principals involved
in the component synchronizations. Therefore we omit trailing type environments in
the definitions below, and write, e.g., C =⇒ C′ to denote a transition of the form
Γ � C =⇒ Γ ′ � C′ for some type environments Γ and Γ ′.

Definition 3 (Compliance). Let C be a contract service composition. We say that C
is compliant, noted C ↓, if for every C′ such that C =⇒ C′ there exists C′′ such that
C′ =⇒ C′′ and C′′ �. �

In other words, the notion of compliance ensures that at each intermediate step of the
computation in a service composition, each component has a way to reach a

Model Checking Adaptive Multilevel Service Compositions 117

successful state (either autonomously, or via synchronizations). This is enough to avoid
both deadlocks and livelocks.

Example 5. Consider the service composition S of Example 1. It holds that Γ � S is
both compliant, i.e., S ↓, and non interfering, i.e., S ∈ NIΓ,L. �

The notion of compliance can be equivalently expressed in terms of
α
↪−→ where α de-

notes a synchronization {a}p→q or τ . More precisely, let γ = α1, . . . , αn. We denote

by
γ
↪−→→ the sequence of transitions

α1
↪−→→ α2

↪−→→ . . .
αn
↪−→→. Again we write C

γ
↪−→→ C′ to

denote a derivation Γ � C
γ
↪−→→ Γ ′ � C′ for some type environments Γ and Γ ′.

Proposition 1. Let C be a contract service composition. It holds that C is compliant,

C ↓, if and only if every C′ such that C
γ′
↪−→→ C′ for some γ′ ∈ Act∗ there exist C′′ and

γ′′ ∈ Act∗ such that C′ γ′′
↪−→→ C′′ and C′′ �. �

The modal μ-calculus formula that characterizes compliance is defined as follows:

φ
def
= μX.

(

(�) ∨
∨

α∈Act
(〈α〉X)

)

∧ ¬μX.
(

∨

α∈Act
(〈α〉X)

)

where

φc
def
= μX.

(

∧

α∈Act
([α]X) ∧ φ

)

The sub-formula ¬μX. (∨α∈Act(〈α〉X)
)

will ensure that any configuration satisfying
φc doesn’t get trapped into infinite loops without chances to reach a successful state.
The next theorem characterizes the set of service configurations satisfying φc. The proof
is given in [2].

Theorem 3. Consider the modal μ-calculus formula φc defined above. It holds that
Conf (φc) = {Γ � C | C ↓ and Γ is a type environment}. �

Corollary 1. A compositionC is compliant if and only if Γ � C ∈ Conf (φc) for some
type environment Γ . �

As a consequence of Theorems 2 and 3 we have:

Corollary 2. Let ς ∈ Σ, Γ � C be a configuration and

ΦςΓ�C
def
= φ≈ς (Γ � C) ∧ φc.

It holds that Γ � C ∈ Conf (ΦςΓ�C) if and only if both C ∈ NIΓ,ς and C ↓. �

Using this method we can for instance exploit the model checker NCSU Concurrency
Workbench (see [10]) to check whether both C ∈ NIΓ,ς and C ↓.

118 S. Rossi

6 An Adaptive Algorithm

The model checking technique is based on the idea that the state transition graph of
a finite-state system defines a Kripke structure, and efficient algorithms can be given
for checking if the state graph defines a model of a given specification expressed in
an appropriate temporal logic. In the explicit state approach the Kripke structure is
represented extensionally, using conventional data structures such as adjacency matrices
and linked lists so that each state and transition is enumerated explicitly. Moreover, in
the global calculation approach, given a structureM and formula φ, the model checking
algorithms calculate φM = {s :M, s |= φ} that is the set of all states inM satisfying φ.
We show how such algorithms can be exploited to develop an adaptive model checking
technique for service compositions which adapts, when it is possible, the composition
under investigation in such a way that it satisfies both non-interference and compliance.
We use the filters, introduced in [7] and revised in [3], as prescriptions of behaviour.

Filters. A filter is the specification of the legal flow of actions for an individual contract.
The syntax is as follows, while the semantics is defined in Table 8.

f ∈ F := 0 | δ.f | f × f | f ⊗ f | X | rec(X) f

Definition 4 (Filter pre-order). The filter pre-order f ≤ g is the largest relation such

that if f
δ�−→ fδ then g

δ�−→ gδ and fδ ≤ gδ. �

We note (F ,�) the partial order induced by≤: by abuse of notation, we identify a filter
f with its equivalence class [f]∼, where ∼ is the symmetric closure of ≤. The union

Table 8. Dynamics of Filtered contract service compositions

Transitions for filters

δ.f
δ�−→ f

f{X := rec(X) f} δ�−→ f ′

rec(X) f
δ�−→ f ′

f
δ�−→ fδ g

δ�−→ gδ

f ⊗ g δ�−→ fδ ⊗ gδ

f
δ�−→ fδ g

δ�−→ gδ

f × g δ�−→ fδ × gδ

f
δ�−→ fδ g � δ�−→
f × g δ�−→ fδ

f � δ�−→ g
δ�−→ gδ

f × g δ�−→ gδ

Transitions for filtered peers

Γ � p[σ]
δ−→ Γ � p[σ′] f

δ�−→ f ′

Γ � f(p[σ])
δ−→ Γ � f ′(p[σ′])

Γ � p[σ]
τ−→ Γ ′ � p[σ′]

Γ � f(p[σ]))
τ−→ Γ ′ � f(p[σ′])

Γ � p[σ]�
Γ � f(p[σ])�

Model Checking Adaptive Multilevel Service Compositions 119

and intersection of filters represent the glb and lub operators for (F ,�). Furthermore,
if we assume a finite alphabet A of actions, the set of filters FA insisting on A forms
a complete lattice with 0 as bottom and the identity filter IA def

= rec(X)
∏

δ∈A δ.X as
top element.

The application Γ � f(p[σ]) blocks any action from Γ � p[σ] that is not explicitly
enabled by f . Filters may be composed to help shape a service composition. Given a set
π of principals, a composite π-filter F is a finite map from the principals in π to filters:
{p→ f [p] | p ∈ π}. A π-filter may be applied to a π-composition:

Γ � F (p1[σ1] ‖ · · · ‖ pn[σn]) ::= Γ � F [p1](p1[σ1]) ‖ · · · ‖ Γ � F [pn](pn[σn])

When we write Γ � F (C) we tacitly assume that the underlying set of principals for
both F and C is π. The operators of union and intersection, as well as the ordering on
filters extends directly to composite filters, as expected. Namely, for F and G π-filters
and for • ∈ {×,⊗}:

F ≤π G iff F [p] ≤ G[p] for all p ∈ π
(F •π G)[p] def

= F [p] •G[p] for all p ∈ π
We generalize the syntax of service compositions by allowing the term Γ � F (C) to
account for the application of filters on the components of C. The dynamics of filtered
service compositions derives directly by combining the transitions in Tables 4 and 8.

Relevance. Below we present an algorithm that given a configuration Γ � C infers
a composite filter F that fixes Γ � C, whenever such F exists. The algorithm is so
structured as to guarantee two important properties on the inferred filter. On the one
hand, the filter is as permissive as possible, in that it is the greatest (with respect to
the pre-order ≤) among the filters that fix Γ � C. On the other side, the inferred
filter is relevant, i.e., minimal in size: for any computation state reached by the service
configuration via a series of τ transitions (local moves or synchronizations), the filter
only enables actions that may be attempted at that state (either directly, or via a local
choice), by one of the components of the service configuration.

Definition 5 (Relevance). Let π be a set of principals and C be a non-empty set of

π-configurations. A filter f is p-relevant in C, written f ∝p C, if whenever f
δ�−→ ̂f

one has δ ∈ {a →p, āp→ } and there exists Γ � C ∈ C such that Γ � C
α
↪−→→ with

α ∈ {{a}→p, {a}p→ } and ̂f ∝p {Γ ′ � C′ | Γ � C
α
↪−→→ Γ ′ � C′}.

A composite π-filter F is relevant for C, written F ∝ C, if F (p) ∝p C for all p ∈ π.
A composite π-filter is relevant for a π-configuration Γ � C if F ∝ {Γ � C}. �

The Algorithm. We describe an algorithm that synthesizes the �-greatest relevant filter
that fixes Γ � C, if it exists, when Γ � C does not satisfy ΦςΓ�C .

As discussed above, a global model checking algorithm applied to a configuration
Γ � C and the modal formula ΦςΓ�C calculates the set of states in the reduction graph
(tracing the states reached by means of synchronizations or internal moves) of Γ � C
satisfying ΦςΓ�C . This is the input of our algorithm. The reduction graph can be repre-
sented as a directed graph G = (V,E) with labelled edges and vertices. The vertices in

120 S. Rossi

Procedure. PushLabels(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

done := false;
while ¬ done do

done := true;
foreach u ∈ V do

succ := false; fail := false;
if Adj[u, τ] �= ∅ then

if ∃v ∈ Adj[u, τ] : result [v] = FAIL then
fail := true;

else if ∃v∈Adj[u, τ] : result [v] = SUCC then
succ := true;

else if ∃(α,v) ∈ Adj[u] ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
succ := true;

if succ ∧ result [u] �= SUCC then
result [u] := SUCC; done := false;

else if fail ∧ result [u] �= FAIL then
result [u] := FAIL; done := false

V represent the reachable states of Γ � C. With each v ∈ V we associate two fields:
state[v] gives the computation state (i.e., the derivative Γ ′ � C′ of the initial state
Γ � C) associated with v; result [v] is a tag SUCC or FAIL depending on whether the
corresponding configuration satisfies ΦςΓ�C or not as calculated by the model checker.

An edge in E is a triple (u,v)α representing the transition state[u]
α
↪−→ state[v].

Reduction graphs may be stored in a adjacency list representation, so that the set of
outgoing edges for each u ∈ V can be retrieved as Adj[u]: thus (u,v)α ∈ E iff
(α,v) ∈ Adj[u]. We also write Adj[u, α] for the set {v ∈ V | (u,v)α ∈ E}. Vertices
with no outgoing edges are called leaves. We denote by root[G] the vertex representing
the initial state Γ � C.

The first step consists in re-labelling the graphG calculated by the model-checker in
such a way that the result label at each vertex u is set to FAIL if there exists at least one
silent transition from u to a FAIL vertex; it is set to SUCC if either there are no silent
transitions from u to a FAIL vertex and there exists a silent transition from u to a SUCC

vertex or there exists one non-silent and non-conflicting transition from u to a SUCC

vertex. The procedure iteratively examines all the vertices in the graph until it reaches
a fixed point. This computation is accomplished by the PushLabels procedure and
uses the following auxiliary definitions. Let locs(α) be {p, q} in case α = {ap→q}, and
∅ in case α = τ . Let G = (V,E) be a reduction graph, and α = {ap→q}.
- A path � = (u,u1)α1 , . . . , (un−1,v)αn from u to v in G is α-free if locs(α) ∩
locs(αi) = ∅ for all i’s.
- A vertex v is a α-free descendant of u in G (dually, u is a α-free ancestor of v) if
there is a α-free path fromu tov.

Model Checking Adaptive Multilevel Service Compositions 121

Function. SuccessGraph(G)

Input: A reduction graph G = (V,E)
Output: G′ = (V ′, E′) the success sub-graph of G

V ′ := (result [root[G]] = SUCC) ? {root[G]} : ∅; E′ := ∅; done := false;
while ¬ done do

done := true;
foreach (u,v)α ∈ E \ E′ do

if u ∈ V ′ ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
V ′ := V ′ ∪ {v}; E′ := E′ ∪ {(u,v)α};
done := false

return G′ = (V ′, E′);

- A vertex u yields a conflict on α if u has two distinct α-free descendants v1 and v2

such that (v1,w1)α and (v2,w2)α ∈ E and result [w1] �= result [w2].
- A vertex v has a conflict on α in G, noted ConflictG(α,v) if v has a α-free ancestor
yielding a conflict on α.

Intuitively, our algorithm will prune G by banning all the ‘bad’ synchronizations, and
by preserving all the ‘good’ synchronizations that lead to nodes satisfying both non-
interference and compliance. Due to the presence of internal choices, the same syn-
chronization can look good at one point, but actually be bad. The definition of conflict
formally captures this notion of ambiguous synchronizations.

Lemma 3. After the call to PushLabels(G), the following conditions hold for ev-
ery node u in G: (i) result [u] = FAIL iff either there exists no (u,v)α ∈ E such
that result [v] = SUCC and ¬ConflictG(α,u) or there exists (u,v)τ ∈ E such that
result [v] = FAIL; (ii) result [u] = SUCC iff there exists no (u,v)τ ∈ E such that
result [v] = FAIL and there exists either (u,v)τ ∈ E such that result [v] = SUCC or
(u,v)α ∈ E with α �= τ , ¬ConflictG(α,u) and result [v] = SUCC. �

We say that a path � in G is successful if result [u] = SUCC for every node u in
�, otherwise � is unsuccessful. A node u is root-successful if it is reachable from
root[G] via a successful path, otherwise it is root-unsuccessful. The next step of the
algorithm computes the sub-graph of G that only includes the root-successful vertices.
This computation is accomplished by the SuccessGraph function.

Lemma 4. Let G′ = (E′, V ′) be the graph generated by SuccessGraph(G). Then
u ∈ V ′ if and only if u is root-successful in G. �

The final step of the algorithm synthesizes the filter out of the success graph, in case this
is not empty. Let G′ = SuccessGraph(G), π be the underlying set of principals,
and FAlg [ΦςΓ�C] = ExtractFilterπ(root [G], ∅, G′).

Theorem 4 (Soundness and maximality). Let Γ � C be a π-composition. Then Γ �
FAlg [ΦςΓ�C](C) is such that both FAlg [ΦςΓ�C](C) ∈ NIΓ,ς and FAlg [ΦςΓ�C](C) ↓.
Also, if a filter F fixes Γ � C and is relevant for Γ � C, then F ≤ FAlg [ΦςΓ�C]. �

122 S. Rossi

Function. ExtractFilterπ(u, U,G)

Input: G = (V,E) a success graph. u ∈ V, U ⊆ V
Output: F , an π-composite filter

F [p] := 0 for all p ∈ π;
if state [u]� then

return F ;

if u ∈ U then
rec[u] := true; return (Xu, . . . , Xu);

foreach (α,v) ∈ Adj[u] do
Fv := ExtractFilterπ(v, U ∪ {u}, G);
foreach p ∈ π do

if α = {ap→ } then
F [p] := F [p]× āp→ .Fv[p];

else if α = {a →p} then
F [p] := F [p]× a →p.Fv[p];

else
F [p] := F [p]× Fv[p];

if rec[u] = true then
foreach p ∈ π : Xu ∈ fv(F [p]) do

F [p] := rec(Xu)F [p];

return F ;

7 Conclusion

Some research efforts on model checking web services have already been proposed
[1,11,21,23]. The most related paper that we are aware of is by Nakajima [20] who intro-
duces a lattice-based security labelling into BPEL in order to detect potential insecure
information leakage. The paper discusses how both the safety and security aspects can
be analyzed in a single framework using the model-checking verification techniques.
The main difference with our approach is that the notion of security considered in [20]
is built upon a simple lattice-based model for security labels. Instead, our approach
deals with more flexible security policies which can be dynamically specified by the
service participants. As far as correctness is concerned, [20] considers safety properties
such as deadlock freedom and specific progress properties. Our model instead deals
also with the property of livelock freedom.

In conclusion, we have developed a formal method for the analysis of both infor-
mation flow security and compliance of contract service compositions. This is based
on the characterization of such properties in terms of modal μ-calculus formulae. This
allows us to use a model checker, like the NCSU Concurrency Workbench, in order
to simultaneously check non-interference and compliance. An algorithm for adaptable
service compositions is also proposed. It computes the greatest relevant filter fixing
them.

Model Checking Adaptive Multilevel Service Compositions 123

References

1. Abouzaid, F., Mullins, J.: Model-checking Web Services Orchestrations using BP-calculus.
Electronic Notes in Theoretical Computer Science 255, 3–21 (2009)

2. Basciutti, T.: Model-Checking Web Services. Master’s thesis, Department of Computer Sci-
ence, University Ca’ Foscari of Venice (2010)

3. Bernardi, G., Bugliesi, M., Macedonio, D., Rossi, S.: A Theory of Adaptable Contract-Based
Service Composition. In: Proc. of International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, Workshop on Global Computing Models and Technologies
(GlobalComp 2008), pp. 327–334. IEEE Computer Society, Los Alamitos (2008)

4. Bravetti, M., Zavattaro, G.: Contract Compliance and Choreography Conformance in the
Presence of Message Queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387,
pp. 37–54. Springer, Heidelberg (2009)

5. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party Service
Composition. Fundamenta Informaticae 89(4), 451–478 (2009)

6. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Contracts for
Web Services. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

7. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services. In: Proc.
of the annual Symposium on Principles of Programming Languages (POPL 2008), pp. 261–
272. ACM press, New York (2008)

8. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services. ACM
Transactions on Programming Languages and Systems (TOPLAS) 31, 53–61 (2009)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge
(1999)

10. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer, Heidelberg (1996)

11. Dai, G., Bai, X., Zhao, C.: A Framework for Model Checking Web Service Compositions
Based on BPEL4WS. In: Proc. of the IEEE International Conference on e-Business Engi-
neering (ICEBE 2007), pp. 165–172. IEEE Computer Society, Los Alamitos (2007)

12. Focardi, R., Gorrieri, R.: A Classification of Security Properties for Process Algebras. Journal
of Computer Security 3(1), 5–33 (1994/1995)

13. Focardi, R., Rossi, S.: Information Flow Security in Dynamic Contexts. Journal of Computer
Security 14(1), 65–110 (2006)

14. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. of the IEEE
Symposium on Security and Privacy (SSP 1982), pp. 11–20. IEEE Computer Society, Los
Alamitos (1982)

15. Kozen, D.: Results on the Propositional μ-calculus. Theoretical Computer Science 27, 333–
354 (1983)

16. Laneve, C., Padovani, L.: The must Preorder Revisited. In: Caires, L., Vasconcelos, V.T.
(eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

17. Mader, A.: Modal μ-calculus, Model Checking, and Gauss Elimination. In: Brinksma, E.,
Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS,
vol. 1019, pp. 72–88. Springer, Heidelberg (1995)

18. Milner, R.: Communication and Concurrency. Prentice Hall International Series in Computer
Science, vol. 92. Prentice Hall, Englewood Cliffs (1989)

19. Müller-Olm, M.: Derivation of Characteristic Formulae. Electronic Notes in Theoretical
Computer Science 18 (1998)

124 S. Rossi

20. Nakajima, S.: Model-Checking of Safety and Security Aspects in Web Service Flows. In:
Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 488–501.
Springer, Heidelberg (2004)

21. Nakajima, S.: Model-Checking Behavioral Specification of BPEL Applications. Electronic
Notes in Theoretical Computer Science 151, 89–105 (2006)

22. Ryan, P., Schneider, S.: Process Algebra and Non-Interference. Journal of Computer Secu-
rity 9(1/2), 75–103 (2001)

23. Schlingloff, H., Martens, A., Schmidt, K.: Modeling and Model Checking Web Services.
Electronic Notes in Theoretical Computer Science 126, 3–26 (2005)

Distributed Adaption of Dining Philosophers

S. Andova1, L.P.J. Groenewegen2,�, and E.P. de Vink1

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

2 FaST-Group, LIACS, Leiden University, The Netherlands
luuk@liacs.nl

Abstract. Adaptation of a component-based system can be achieved in
the coordination modelling language Paradigm through the special com-
ponent McPal. McPal regulates the propagation of new behaviour and
guides the changes in the components and in their coordination. Here
we show how McPal may delegate part of its control to local adapta-
tion managers, created on-the-fly, allowing for distribution of the adap-
tation indeed. We illustrate the approach for the well-known example
of the dining philosophers problem, by modelling the migration from a
deadlock-prone solution to a deadlock-free starvation-free solution with-
out any system quiescence. The adaptation goes through various stages,
exhibiting shifting control among McPal and its helpers, and changing
degrees of orchestrated and choreographic collaboration.

1 Introduction

Many systems today are affected by changes in their operational environment
when running, while they cannot be shutdown to be updated and restarted again.
Instead, dynamic adaptive systems must be able to change their behaviour on-
the-fly and to self-manage adaptation steps accommodating a new policy.

Dynamic adaptive systems consist of interacting components, usually dis-
tributed, and possibly hierarchically organized. In such a system, components
may start adaptation in response to various triggers, such as changes in the un-
derlying execution environment (e.g. failures or network congestion) or changes
of requirements (e.g. imposed by the user). Adaptation of one component in the
system may inadvertently influence the behavior of the components it is inter-
acting with, possibly bringing about a cascade of dynamic changes in other parts
of the system. Therefore, the adaptation of the system is a combination of local
changes per component and global adaptation across components and hosts in
the distributed system. As such, adaptation has to be performed in a consistent
and coordinated manner so that the functionality of each separate component
and of the system as a whole are preserved while the adaptation is in progress.
Due to the complexity of the distributed dynamics of a system adapting on-the-
fly, it may be rather difficult to understand whether a realization of a change

� Corresponding author.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 125–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

126 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

plan indeed allows the system to perform as it is supposed to, and does not
violate any of its requirements, during and after system adaptation.

One way to circumvent this is to formally model and analyze the system
behaviour and the adaptation changes to be followed. In [13,3,6] we advocated
how orchestrated adaptation can conveniently be captured in the coordination
modeling language Paradigm. In Paradigm, a system architecture is organized
along specific collaboration dimensions, called partitions. A partition is a well-
chosen set of sub-behaviours of the local behaviour of a component, specifying
the phases the component goes through when a protocol is executed. In the
protocol, at a higher layer in the architecture, the component participates via
its role, an abstract representation of the phases. A protocol manager coordinates
the phase transfers for the components involved. In fact, in Paradigm, dynamic
adaptation is modeled as just another collaboration protocol, coordinated by a
special component McPal [13,3,6]. As progress within a phase is completely local
to the component, the use of phase transfer instead of state transfer, is the key
concept of Paradigm. This makes it possible to model, at the same time and
separated from one another, both behavioural local changes per component, and
global changes across architectural layers. The formal semantics of Paradigm
then allows for a rigorous analysis of the adaptation policy [5], at the local level
of the components as well as in the coordination of the changes across adaptive
parts of the distributed system.

The suitability of Paradigm to model distributed adaptation strategies, ex-
tending our earlier centralized studies, is shown in this paper on a dining philoso-
phers example. A deadlock-prone solution of the dining philosophers problem is
taken as a source system, to be migrated to a target solution, both deadlock-free
and starvation-free. Both systems are modeled in Paradigm, as is the migrating
from source to target. As typical for dynamic adaptation in Paradigm, McPal
regulates the propagation of new behaviour and guides the structural changes
in the components and in their coordination. But here, although adding to the
complexity of the solution, McPal delegates part of its control to local adapta-
tion managers McPhil, one for each philosopher, while McPal keeps controlling
them globally. Thus, we argue, the component-based character of the Paradigm
language allows for modeling distributed adaptation: separate modeling of local
strategies, coordinated by McPal as system adaptation manager. The main con-
tribution of the paper is, it reveals the distributed potential of system adaptation
within Paradigm. In Section 6 we elaborate on it.

Related work. In recent years a number of approaches has been proposed ad-
dressing several issues of dynamic system adaptation. Some of them [14,8,18]
focus on adaptive software architectures, where functionalities, considered as
black boxes, are connected via ports. Formal modeling of dynamic adaptation
has been addressed in e.g. [16,2,10,22]. However, none of these approaches deal
with distribution explicitly. In [11,12] dynamic adaptation is formally modeled
by means of graph transformation. Although graph transformation techniques
are well suited for distributed systems, there is no explicit focus on modeling
distributed control for adaptation in the papers mentioned.

Distributed Adaption of Dining Philosophers 127

Some aspects of dynamic adaptation of distributed systems, tailored for the
domains considered, have been treated in [1,17]. In the domain of Web Services,
[1] proposes a method to generate distributed adapters from given service de-
scriptions. [17] focuses on modeling and deployment of distributed resources for
adaptive services in a mobile environment. A framework for formal modeling and
verification of dynamic adaptation of distributed system, based on a transitional-
invariant lattice technique, is proposed in [9]. The approach uses theorem proving
techniques to show that during and after adaptation, the system always satis-
fies the transitional-invariants. This adaptation framework, however, does not
support distribution in the style discussed in this paper: distributing adaptation
tasks among local adaptation conductors by delegation.

The Conductor framework [21] for distributed adaptation allows for dynamic
deployment of multiple adaptation conductors at various points in a network, an
approach which is more suitable for complex and heterogeneous collaborations.
It includes a distributed planning algorithm which determines for a triggered
adaptation the most appropriate combination of conductors, distributed across
the network. In [19] a distributed adaptation model for component-based appli-
cations is proposed. The model consists of two types of functionalities: manda-
tory that manage basic adaptation operations and optional that can be used
to distribute adaptation activities. This way the adaptation mechanism of the
whole system can be hierarchically organized, resembling as such our hierarchical
structures of McPal conductors. However, both in [19] and [21], the main focus
is on designing the adaptation itself, while the formal modeling and analysis
of the adaptation remains uncovered, positioning them complementary to our
treatment of distributed adaptation.

Structure of the paper. Section 2 is an overview of Paradigm through the example
of the deadlock-prone solution as source system. The target system, deadlock and
starvation free, is in Section 3. Section 4 gives the distributed migration set-up
from source to target system, with Section 5 discussing coordination technicali-
ties separately. Section 6 wraps up and provides conclusions.

2 Dining Philosophers As-Is: Deadlock-Prone

This section presents a first solution to the dining philosopher problem of five
Phili components sharing five Forki components, i = 1..5. We shall refer to this
solution as the as-is system or just as-is. The solution itself is the well-known and
failing deadlock-prone solution: Any Phili, while thinking and getting hungry,
first waits until the left Fork i can be got, then gets it, waits until the right
Fork i+1 can be got, gets it and once having both forks starts eating. After
the eating has satisfied her hunger, Phili lays down both forks and returns to
thinking again. As an extra requirement, the as-is system has the ability to
migrate from its ongoing as-is solution behaviour to to-be solution behaviour,
unknown as yet but hopefully better than the failing as-is behaviour.

Apparently, steps taken by Phils and step-like status changes of Forks are to
be consistently aligned in accordance to the particular as-is solution. This means,

128 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

behaviour of the five Phils and Forks has to be coordinated such that the as-is
solution is realized, failing as it may. Based on its capabilities for keeping ongoing
behaviour constrained, the Paradigm language can specify coordination solutions
not only for foreseen situations like the as-is system, but also for originally
unforeseen migration to a still unknown to-be solution. Even more, Paradigm
allows for really smooth migrations, i.e. with ongoing but gradually changing
coordination during adaptation from as-is to to-be. In view thereof, one may
have the special component McPal in a Paradigm model, at first not influencing
the model at all, but hibernatingly present to guide upcoming system migration.

Through the example of the as-is solution for the five Phil and Fork compo-
nents with a hibernating McPal in place, we shall briefly introduce Paradigm.
The coordination modeling language Paradigm has five basic notions: STD,
phase, (connecting) trap, role and consistency rule. For more elaborate intro-
ductions see [5] (in-depth) or [4] (more intuitive).

(c)(a) (b)

layDown

Phili

Phili(Eater)
done

AskingForks

take

EatingThinking

getHungry

request

AllowedDisallowed

request
request

Disallowed

Allowed

done

Fig. 1. The five Phili: (a) STD, (b) role Eater, (c) phase/trap constraints

Component behaviour is specified by STDs, state-transition diagrams. Figure 1a
gives the STD for each Phili in UML style. It says, Phili starts in state Thinking
and has forever cycling behaviour, passing through her three states by repeatedly
taking her three actions getHungry, take, layDown in that order. When Phili gets
hungry in Thinking, she takes action getHungry, thus arriving in AskingForks.
In accordance to the as-is solution, when an arbitrary Phili is sojourning in
state AskingForks, the following is supposed to happen subsequently: (i) Fork i
is claimed by her; (ii) Forki is assigned to her; (iii) Forki+1 is claimed by her;
(iv) Fork i+1 is assigned to her. Thereupon Phili performs action take for taking
up the two Forks assigned to her by now from the table, thus arriving in state
Eating. Later when no longer hungry, Phili goes from Eating to Thinking by
taking action layDown for returning both Forks to the table. We see, claiming
and assigning of Forks is not reflected in the STD steps of Phili.

In Paradigm, such claiming and assigning is to be modeled through tempo-
rary constraints on STD behaviour; here on Forki and on Fork i+1 behaviour
influenced by Phili, as we shall see below. What we can observe already, also
Phili’s STD behaviour is like-wise influenced, i.e. temporarily constrained, by
the combined behaviours of Fork i and Fork i+1, as Phili can proceed to state
Eating only if both Forks have been assigned to her and remain so. In addition,
as long as the Forks remain assigned to her, Phili can return to Thinking but
she should not be able to proceed to AskingForks while holding them.

Distributed Adaption of Dining Philosophers 129

In general, within Paradigm a component participating in a collaboration does
not contribute to the collaboration via its STD behaviour directly, but via a so-
called role. Such a role is a different, global STD for the component built on top
of the original STD, dealing with the temporary constraints that are important
to the collaboration. The role contributes relevant essence only, role-wise distilled
from the more detailed local component behaviour.

Figure 1b specifies STD role Phili(Eater) contributed by Phili to the collab-
oration called Phil2Forksi. States of role Phili(Eater) are referred to as phases
of the Phili STD: temporarily valid behavioural constraints imposed on Phili.
Figure 1b mentions two phases: Disallowed and Allowed. Figure 1c graphically
couples the two phases to Phili, by representing each phase as a subSTD, a
scaled-down part of Phili. As one can see, phase Disallowed (on top) prohibits
Phili to be in Eating but she may get as far as AskingForks. Contrarily, phase
Allowed (at bottom) permits Phili to enter and to leave Eating once, but re-
turning to AskingForks is not allowed.

Phase drawings are additionally decorated with one or more polygons, each
polygon grouping states of that phase. In the simple case of Figure 1 polygons are
rectangles comprising a single state. Polygons visualize so-called traps : a trap,
as a subset of states in a phase, once entered, cannot be left as long as the phase
remains the constraint imposed. A trap serves as a guard for a phase transfer
(in role STDs). Therefore, traps label transitions in a role STD, cf. Figure 1b:
the guard marking the transition from the previous phase (it is a trap of) to a
next phase. In such a case, where all states in a trap are indeed states of the
next phase, the trap is called connecting from the previous phase to the next.

Thus, role Phili(Eater) behaviour, see Figure 1b, expresses the ongoing al-
ternation between Disallowed and Allowed: phase transfer from Disallowed to
Allowed only happens after connecting trap request has been entered; similarly,
phase transfer from Allowed to Disallowed only happens after connecting trap
done has been entered. Moreover, an explicitly prolonged sojourn in Disallowed
can happen after the (connecting) trap request has been entered.

(b) (c)

(d) (e)

(a)

ClaimedFreed

got

gone

got

Fork i(ForLH)Freed Claimed
got

gone

ClaimedFreed

got

gone

got

Freed Claimed Fork i(ForRH)

got
gone

AtLH
toRH

AtRH

Forki

RH? LH?

toLH

tryRH

tryLH

return

return

Fig. 2. Five Fork i: (a) STD, (b,d) phase/trap constraints per (c,e) ForLH, ForRH role

130 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

The STD Fork i is visualized in Figure 2a. State AtRHmeans, Fork i is assigned
to (the right hand of) Phili−1. Similarly, state AtLH means, Fork i is assigned
to (the left hand of) Phili. To express not being assigned to any of the two
philosophers Phili−1 or Phili, STD Fork i is on the table, but in two different
states LH? and RH?, reflecting a different bias: in LH? the bias is to Phili
and in RH? the bias is to Phili−1. In addition, upon returning to the table
from having been assigned to a philosopher’s hand, the bias is first to the other
philosopher. This means, each Fork follows a round robin approach for honouring
requests from Phili−1 and Phili, rather than a nondeterministic one. Figure 2
also presents two roles of Forki: (c) role ForLH for collaborating with Phili
(left hand) and (e) role ForRH for collaborating with Phili−1 (right hand). Role
ForLH is based on phases Freed and Claimed and their connecting traps gone
and got as given in part 2b. Note for instance, how in Freed of role ForLH the
particular Fork i is being steered towards giving up staying assigned to Phili’s
left hand, thus returning to the table with the possibility to get assigned to
Phili−1’s right hand but, for the moment, not to Phili’s left hand.

(a) (b) (c)

prepared

ContentObserving

McPal

giveOut
StartMigr

wantChange

cleanUp

JITting

Hibernating

Hibernating

McPal(Evol)

Fig. 3. McPal: (a) STD, (b) phase/trap constraint (b,d) role McPal(Evol)

The five Phils and Forks are all component ingredients needed for the as-
is system. In view of still unknown later adaptation, an extra STD McPal is
in place, see Figure 3a. Here McPal is in its hibernating form, not interfering
at all with the as-is system, but with the ability to interfere with itself first,
thus adapting itself and then later, as a consequence of its gained dynamics,
to interfere with the as-is system. Figure 3bc underline this idea: (i) via phase
Hibernating being the full McPal behaviour as long as McPal has not adapted
itself yet; (ii) via role Evol which is restricted to sojourning in phase Hibernating
as long as McPal remains unchanged. Thus we see, McPal starts in Observing
and via JITting can go as far as StartMigr, which coincides with entering trap
prepared of Hibernating. What cannot be seen from the figure but only from the
consistency rules given below, through step giveOut leading into trap prepared,
the hibernating McPal will extend the Paradigm as-is model specification with
a specification of a to-be model as well as with a well-fitting model fragment for
possible migration trajectories from as-is to to-be. To this aim, McPal embodies
the reflectivity of a Paradigm model, by owning a local variable Crs where it
stores the current model specification: consistency rules with all STDs, phases,
traps and roles involved. Thus, by taking step giveOut, Crs will be extended,
with at least one step series from StartMigr to Content, such that the no-longer-
hibernating McPal is able to coordinate the various migration trajectories. Hav-
ing returned to phase Hibernating, step cleanUp from Content to Observing

Distributed Adaption of Dining Philosophers 131

then refreshes Crs by removing all model fragments obsolete by then, keeping
the to-be model only. Note, so far McPal is the same as in [3,6].

In terms of the STDs, phases, traps and roles, Paradigm defines the ‘coor-
dination glue’ between them through its notion of a consistency rule, being a
synchronization of single role steps from different roles. Such a consistency rule
may be coupled –additionally synchronized– with one detailed step of a so-called
conductor component. Also local variables, such as Crs, can be updated. A con-
sistency rule has as format: (i) it contains one asterisk ∗, with ∗’s right-hand
side nonempty; (ii) optionally, at the left-hand side of ∗ it gives the one con-
ductor step if relevant; (iii) at the right-hand side of ∗ it gives the listing of the
role steps being synchronized; (iv) optionally, at the right-hand side ∗ a change
clause can be given for updating variables. A consistency rule with a conduc-
tor step is called an orchestration step, a consistency rule without it is called a
choreography step.

The set of consistency rules for the coordination of the as-is system, with
McPal in place, is as follows.

∗ Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed (1)

∗ Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed (2)

∗ Fork i+1(ForRH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed (3)

∗ Phili(Eater) : Allowed
done→ Disallowed, (4)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

McPal : JITting
giveOut→ StartMigr ∗ McPal : [Crs := Crs+Crsmigr + CrstoBe] (5)

McPal : Content
cleanUp→ Observing ∗ McPal : [Crs := CrstoBe] (6)

It is through consistency rules (1)–(4) the deadlock-prone solution is achieved.
Their choreographic specification can be read like this (numbers referring to
rules): (1) if Phili wants to eat and her left Fork i hasn’t been claimed yet, it is
claimed; (2) if Phili has got her left Forki assigned and her right Forki+1 hasn’t
been claimed yet, it is claimed; (3) if Phili has got her right Fork i+1 assigned too,
she is allowed to eat and can start doing so; (4) if Phili stops eating, her Fork i and
Fork i+1 are being freed and she is prohibited to eat any longer. In addition, rules
(5)–(6) are orchestration steps with McPal as conductor, not influencing ongoing
collaborative as-is behaviour, but extending the as-is model specification (5)
and reducing the model specification to the to-be specification aimed at (6),
after the migration has been done. The migration itself is not specified here,
as neither the to-be situation nor intermediate migration are known at present.
Please note, Crs is a variable of McPal. Similarly, both Crsmigr and CrstoBe are
variables containing consistency rules too, which means, their final value will be
determined in view of the particular migration trajectory traversed.

132 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

3 Dining Philosophers To-Be: No Deadlock, No
Starvation

Before addressing migration in Sections 4 and 5, this section presents the goal to
be reached by the migration, referred to as the to-be system or to-be solution. The
problem situation is the same as the one of the as-is situation, the five Phili and
five Forki. But, the solution is better now: no deadlock and also no starvation.
This is achieved in the following well-known way: for at least one Phili, but not
for all five, the order of claiming Fork i and Forki+1 is being reversed.

For the Paradigm model of the to-be solution this means, all STDs, phases,
traps and roles remain the same, but the consistency rules are different. For
their formulation we need some extra notation. Let the index sets L,R be a
non-empty disjoint partitioning of {1..5}, L referring to those Phili s for which
the left Forki is claimed first, and R referring to those Philis for which the right
Fork i+1 is claimed first. Here we use i ∈ L, j ∈ R.

∗ Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed (7)

∗ Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed (8)

∗ Fork i+1(ForRH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed (9)

∗ Phili(Eater) : Allowed
done→ Disallowed, (10)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

∗ Philj(Eater) : Disallowed
request→ Disallowed, Fork j+1(ForRH) : Freed

gone→ Claimed (11)

∗ Forkj+1(ForRH) : Claimed
got→ Claimed, Forkj(ForLH) : Freed

gone→ Claimed (12)

∗ Forkj(ForLH) : Claimed
got→ Claimed, Philj(Eater) : Disallowed

request→ Allowed (13)

∗ Philj(Eater) : Allowed
done→ Disallowed, (14)

Forkj(ForLH) : Claimed
got→ Freed, Fork j+1(ForRH) : Claimed

got→ Freed

McPal : JITting
giveOut→ StartMigr ∗ McPal : [Crs := Crs+ Crsmigr +CrstoBe] (15)

McPal : Content
cleanUp→ Observing ∗ McPal : [Crs := CrstoBe] (16)

Rules (7)–(10) together with (15)–(16) are exactly the rules (1)–(6) from Sec-
tion 2. It is not difficult to observe, rules (11)–(14) mirror (7)–(10) by reversing
the order of claiming indeed. Furthermore, note that only the consistency rules
have been adapted, so the change remains restricted to the ‘coordination glue’
between the components, particularly the choreography steps only. McPal is in
hibernation, as usual with no migration going.

4 Migration Coordination Set-Up among Helpers

As Section 3 announced, the migration to be realized is from the as-is situation
to the to-be situation, i.e. starting from the deadlock-prone solution of the dining

Distributed Adaption of Dining Philosophers 133

philosophers problem to the well-known, far better deadlock-free and starvation-
free solution, where at least one Phili gets her Fork i and Fork i+1 assigned in
a different order. So, there is ample room for different to-be solutions meeting
the requirements. Also, for each to-be solution different migration trajectories
towards it can be developed.

In view of this observation, we restrict the range of our to-be solutions as fol-
lows: regarding the sets L,R introduced above –claiming left fork first for Phili
with i ∈ L versus claiming right fork first for Philj with j ∈ R– we require L
and R to have either 2 or 3 elements. Moreover, if L = {i, i′} then Phili and
Phili′ are not adjacent, i.e. i = i′ + 2 or i = i′ + 3, and similarly, if R = {j, j′}
then Philj and Philj′ are not adjacent. Thus, for the to-be solution, of the two
groups of Phils one group consists of two Phils and the other group consists of
three Phils. In addition, the Phils from the group of two are not neighbours.
This reduction in admitted to-be solutions will illustrate the interplay of cen-
tral change management and local change management more clearly. Moreover,
it helps us in substantially restricting the range of migration trajectories, still
showing the dynamic flexibility of the migration1.

(a) (b)

�orchestration��choreography� McPhili

Forki Phili Forki+1

Phil2Forksi

PhiliForki Forki+1

Phil2Forksi

ForRHForLH EaterForRHForLH Eater

Fig. 4. Two collaboration snapshots (a) during hibernation, (b) during migration

Before addressing the actual migration through coordination not yet specified,
we want to clarify an important structural difference in the collaboration of Phili
and her two forks Fork i and Forki+1: during McPal’s hibernation versus dur-
ing migration. Figure 4a, in UML-style, gives collaboration diagram Phil2Forks i
during hibernation. It says, the three components Phili, Fork i, Forki+1 are in-
volved in it and, in line with the Paradigm model, they contribute to it via
their respective roles Eater, ForLH, ForRH. This makes the collaboration into a
choreography. Note, this architectural snapshot is valid for the as-is as well as
for the to-be solution, the difference being in the behaviour only.

During the migration the collaboration has a slightly different structure, how-
ever, see Figure 4b. For each Phili an extra component McPhili is involved,
meant as delegated helper of McPal for the Phil2Forks i collaboration only, to
enlarge McPal’s influence. As we shall see below, McPhili joins the collaboration
as a new local driver of the ongoing choreography, thereby turning Phil2Forks i
into an orchestration with McPhili as its conductor, with essentially the same
collaborative behaviour for a short while. Then, as conductor in place it migrates

1 For an animated migration trajectory, see the extended version of the FACS 2010
presentation at http://www.win.tue.nl/∼evink/research/paradigm.html.

134 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

(a) (b) (c)
JITting StartMigr

giveOut

Observing Content

Gathering

doubleDeflexLR

Delegated

doubleDeflexRL
singleDeflexLR
singleDeflexRL

singleSwapLR
singleSwapRL

goAheadLR
goAheadRL

Migrating

Hibernating

cleanUp

closewantChange

delegate

McPal

collect

McPal(Evol)

prepared

prepared
Hibernating

Migrating

done

done

Fig. 5. McPal during migration: (a) STD, (b) phase/trap constraints, (c) role Evol

the orchestration and informs McPal about the result achieved so far, whereupon
McPal decides about keeping or altering a result. ThenMcPhili does so and steps
back as conductor, turning collaboration Phil2Forks i into a choreography again.

McPal’s actual migration activity is outlined in Figure 5: McPal, upon awak-
ening from phase Hibernating, becomes active within phase Migrating as main
conductor of the migration orchestration. Here it immediately delegates the ac-
tual migration coordination to its five helpers McPhili, by taking step delegate.
In doing so, McPal provides each McPhili with the orchestration rules for the
local migration, while keeping the as-is choreography rules. Arrived in state
Delegated, McPal then waits for the local results from the McPhili, being pre-
liminary only. The preliminary results can be of two kinds: either Phili (still)
belongs to L or Phili (now) belongs to R. Depending on the combined results of
the five McPhili, conductor McPal takes one out of eight possible steps to state
Gathering: by possibly letting zero, one or two specific McPhili adjust their
preliminary result when finalizing and by letting the other McPhili make their
preliminary results permanent. In state Gathering, McPal starts collecting the
five sets Crs i,toBe of consistency rules the various McPhili have to deliver when
finalizing: the to-be choreography local to Phil2Forks i, constituting McPhili’s
final result. To this aim McPal takes step collect five times, one per McPhili. Af-
ter having collected the five sets Crs i,toBe and after the five helper McPhili have
stopped their activities, McPal takes step close to state Content, thus entering
trap done marking the final stage of the migration phase.

The overall migration conducting of McPal sets the stage for the local mi-
gration exerted by McPhili on the ongoing collaboration Phil2Forks i. The be-
haviour of each McPhili is drawn in Figure 6a. From starting state NonExisting
to Awake it takes step stir, to get ready for whatever it has to do. From Awake it
takes step takeOver to state JoiningIn, thereby removing the as-is choreography
rules from the (local) model specification Crs i, thus keeping the orchestration

Distributed Adaption of Dining Philosophers 135

(c)(a) (b)

Awake

Dozing

triv

ToL ToR

ToBeL ToBeR

NonExisting

JoiningIn

away

donedone

Passive

Retreating

McPhil i

conductToR

conductToL

triv

Passive

halfwayL halfwayR

Active

EndAsL EndAsR

Retreating

donedonechoreofyToRchoreofyToL

choreofyToLchoreofyToR

yawn

immobilize

takeOver

stir

conductToL conductToR

away

yawn
McPhil i(Evol)

halfwayL

Active

halfwayR

EndAsL EndAsR

halfwayR halfwayL

Fig. 6. McPhil i during migration: (a) STD, (b) phase/trap constraints, (c) role Evol

rules only, that were already added earlier by McPal when delegating the local
migration to McPhili.

By taking step conductToL from state JoiningIn to state ToL and by iterating
step conductToL in ToL, helper McPhili sticks to the as-is orchestration, for the
L-order that is. Similarly, by taking step conductToR from state JoiningIn to
state ToR and by iterating step conductToR in ToR, helper McPhili swaps the
orchestration of the as-is choreography to the orchestration for the R-order. From
state ToL helper McPhili can, apart from iterating, either take step choreofyToL
to state ToBeL, in which case McPhili sticks to the L-order but turns the or-
chestration back into the equivalent choreography, or McPhili can take step
choreofyToR to state ToBeR, in which case McPhili swaps to the R-order (on
second thought, instigated by McPal) and moreover turns the orchestration into
the equivalent choreography for the R-order. Analogously, from state ToR helper
McPhili can, apart from iterating, either take step choreofyToR to state ToBeR,
in which case McPhili sticks to the R-order but turns the orchestration into the
equivalent choreography, or McPhili can take step choreofyToL to state ToBeL,
in which case McPhili swaps back to the L-order and moreover turns the or-
chestration into the equivalent choreography for the L-order. From then on, in
two consecutive steps, viz. yawn and immobilize, helper McPhili returns to state
NonExisting.

Figure 6b presents the phase and trap constraints on McPhili. Based on these
constraints, role McPhili(Evol) is given in part 6c. In phase Passive helper
McPhili can’t do anything. In phase Active it can go as far as providing to
McPal its preliminary result, being of two possible kinds, one per trap halfwayL
or halfwayR. Phases EndAsL and EndAsR correspond to the two final results
possible, the original L-order or the new R-order, respectively, available once
trap done has been entered. Finally, in phase Retreating helper McPhili enters
trap away. After that it returns to Passive where it can’t do anything.

It is stressed all this is to happen dynamically, on-the-fly, without any sys-
tem halting. Consistency rules specifying this turn out to be quite technical.
Therefore we discuss them separately in Section 5.

136 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

5 Migration Coordination Distributed among Helpers

The consistency rules below specify the coordination according to Section 4’s mi-
gration set-up. The technicalities of the rules mainly arise where change clauses
manipulate sets of rules and model fragments aiming to influence the migration.
Computing in terms of rules timely adapts the coordination strategy, gracefully
enforcing the system’s change. The following sets of consistency rules occur.

Crsi,asIs ::= choreography of Phil2Forks i, L-order only (as in Section 2)

Crshibr ::= orchestration conducted by McPal during phase Hibernating

CrsnoHb ::= orchestration conducted by McPal during phase Migrating

Crsi,orch ::= orchestration conducted by McPhili

Crsi,toBeL ::= choreography of Phil2Forks i in L-order

Crsi,toBeR ::= choreography of Phil2Forks i in R-order

Crsmigr ::= CrsnoHb +Crs1,orch + · · ·+Crs5,orch

The above sets are fixed, the sets below vary during the migration.

Crs ::= varying orchestration/choreography, not governed by McPhili

Crs i ::= varying McPhili-governed rule set for Phil2Forks i

Crs i,toBe ::= either Crs i,toBeL or Crsi,toBeR

CrstoBe ::= growing from Crshibr to Crshibr + Crs1,toBe + · · ·+Crs5,toBe

The fixed sets of the consistency rules are specified first. Note, the variable sets
of consistency rules are updated through detailed change clauses involving the
fixed sets.2 Consistency rules (17)–(20) making up Crs i,asIs are exactly rules
(1)–(4) from Section 2.

∗ Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed (17)

∗ Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed (18)

∗ Fork i+1(ForRH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed (19)

∗ Phili(Eater) : Allowed
done→ Disallowed, (20)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

Likewise, rules (21)–(22) making up Crshibr, are exactly rules (5)–(6) and also
rules (15)–(16) from Section 2 and 3, respectively.

McPal : JITting
giveOut→ StartMigr ∗ McPal : [Crs := Crs+Crsmigr + CrstoBe] (21)

McPal : Content
cleanUp→ Observing ∗ McPal : [Crs := CrstoBe] (22)

Note the two assignments to Crs. In rule (21), on the verge of migration, Crs
is extended with the rules in Crsmigr as well as in Crs toBe, the latter set at this

2 One may call this behaviour computation, programming in terms of behavioural
constraints.

Distributed Adaption of Dining Philosophers 137

moment containing Crshibr only, already present in Crs. In rule (22), right after
the migration, Crs is replaced by Crs toBe, by then containing all choreography
rules computed by the five McPhil plus the two rules in Crshibr already present.

Next we present the consistency rule set CrsnoHb, rules (23) to (36), covering
the interaction of McPal and its five helper McPhili.

∗ McPal(Evol) : Hibernating
prepared→ Migrating (23)

McPal : StartMigr
create→ Delegated ∗ McPal : [Crs := CrsnoHb + Crshibr], (24)

McPhil1(Evol) : Passive
triv→ Active, . . . ,McPhil5(Evol) : Passive

triv→ Active,

McPhil1[Crs1 := Crs1,asIs + Crs1,orch], . . . , McPhil5[Crs5 := Crs5,asIs + Crs5,orch]

The set CrsnoHb contains the rule (23) for McPal’s own phase transfer from
Hibernating to initiate the migration. From then on one finds orchestration rules
for various conducting steps McPal may take within phase Migrating. Rule (24)
gets the five helper McPhili going, providing each with the local as-is choreo-
graphic rules as well as with its own orchestration rules, while McPal keeps those
from Crshibr and CrsnoHb as its own rules only.

The STD of McPal in Figure 5 provides eight transitions from state Delegated
to state Gathering. McPal takes a transition from its state Delegated to the
state Gathering once all five McPhili have reached a ‘halfway’ trap, either trap
halfwayL or trap halfwayR, in their phase Active. Therefore, the figure shows
eight different actions, dependent on the various combinations. By coupling a
local transition of McPal to a global step in the Evol role of the McPhili, the
proper transition is taken by McPal and the right continuation for the McPhili
is prescribed. Below, in the set of consistency rules CrsnoHb, we only provide the
rules for the actions doubleDeflexLR and singleDeflexRL, rules (25) and (26),
leaving the details of the remaining six rules to the reader.

McPal : Delegated
doubleDeflexLR→ Gathering ∗ (25)

McPhil1(Evol) : Active
halfwayR→ EndAsL, McPhil2(Evol) : Active

halfwayR→ EndAsR,

McPhil3(Evol) : Active
halfwayR→ EndAsL, McPhil4(Evol) : Active

halfwayR→ EndAsR,

McPhil5(Evol) : Active
halfwayR→ EndAsR

McPal : Delegated
singleDeflexRL→ Gathering ∗ (26)

McPhili(Evol) : Active
halfwayR→ EndAsR, McPhili+1(Evol) : Active

halfwayL→ EndAsL,

McPhili+2(Evol) : Active
halfwayL→ EndAsR, McPhili+3(Evol) : Active

halfwayL→ EndAsL,

McPhili+4(Evol) : Active
halfwayL→ EndAsL

six more rules similar to (25) and (26) (27)–(32)

Rules (25)–(32) deal with the eight scenarios for handling the combined pre-
liminary results from the five helper McPhili. In particular, rule (25) for action
doubleDeflexLR covers the case where all five McPhili follow R-order, so two
non-neighbouring ones of them have to be swapped (back) to L-order, here we

138 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

choose the first and the third. Similarly, rule (26) covers the case where exactly
oneMcPhili followsR-order, so another non-neighbouring one has to be swapped
to R-order (as yet), here we choose McPhili+2.

McPal : Gathering
collect→ Gathering ∗ McPhili(Evol) : EndAsR

done→ Retreating, (33)

McPal[Crs := Crs+Crsi,CrstoBe := CrstoBe +Crs i,toBe]

McPal : Gathering
collect→ Gathering ∗ McPhili(Evol) : EndAsL

done→ Retreating, (34)

McPal[Crs := Crs+Crsi,CrstoBe := CrstoBe +Crs i,toBe]

McPal : Gathering
close→ Content ∗ (35)

McPhil1(Evol) : Retreating
away→ Passive, . . . , McPhil5(Evol) : Retreating

away→ Passive

∗ McPal(Evol) : Migrating
done→ Hibernating (36)

Rules (33) and (34) incorporate the final local R-order or the final local L-
order, respectively, as final choreography part into the two variable sets Crs and
CrstoBe. Rule (35) passivates the five helper McPhili. Rule (36) allows McPal to
return into hibernation, mirroring rule (23).

The set Crsi,orch with the actual adaptation orchestration by McPhili, com-
prising the rules (37) to (68) below, follows the STD of Figure 6.

McPhili : Awake
takeOver→ JoiningIn ∗ McPhili[Crsi := Crs i −Crs i,asIs] (37)

McPhili : JoiningIn
conductToL→ ToL ∗ (38)

Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed

McPhili : JoiningIn
conductToL→ ToL ∗ (39)

Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed

McPhili : JoiningIn
conductToR→ ToR ∗ (40)

Phili(Eater) : Disallowed
request→ Allowed, Fork i+1(ForRH) : Claimed

got→ Claimed

McPhili : JoiningIn
conductToR→ ToR ∗ Phili(Eater) : Allowed

done→ Disallowed, (41)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

McPhili : JoiningIn
conductToR→ ToR ∗ Phili(Eater) : Disallowed

request→ Disallowed, (42)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

triv→ Claimed

Rule (37) removes the as-is choreography. Here, (38)–(41), with McPhili in
JoiningIn, cover the four previous choreography steps of the as-is protocol, cf.
rules (17–20), but now orchestrated. Rules (38) and (39) lead the conductor to
state ToL to continue conducting the original L-order; rules (40) and (41) lead
the conductor to state ToR to continue according to the new R-order. In these
two steps the swap from L-order to R-order is easy as it happens to coincide
with stopping to eat or with getting hungry anew. Rule (42) is needed to escape
deadlock, a subtlety not further elaborated here.

Distributed Adaption of Dining Philosophers 139

McPhili : ToR
conductToR→ ToR ∗ (43)

Phili(Eater) : Disallowed
request→ Disallowed, Fork i+1(ForRH) : Freed

gone→ Claimed

McPhili : ToR
conductToR→ ToR ∗ (44)

Fork i+1(ForRH) : Claimed
got→ Claimed, Fork i(ForLH) : Freed

gone→ Claimed

McPhili : ToR
conductToR→ ToR ∗ (45)

Fork i(ForLH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed

McPhili : ToR
conductToR→ ToR ∗ Phili(Eater) : Allowed

done→ Disallowed, (46)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

four similar rules for cycling in ToL (47)–(50)

Rules (43)–(46), with McPhili in ToR, cover the new R-order, basically imple-
menting the to-be rules (11)–(14), but conducted by McPhili while sojourning
in state ToR, waiting for McPal’s consent. The symmetric rules (47)–(50), with
McPhili staying in ToL are suppressed.

McPhili : ToL
choreofyToL→ ToBeL ∗ (51)

Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed,

McPhili [Crs i := Crsi − Crsi,orch +Crs i,toBeL, Crsi,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL→ ToBeL ∗ (52)

Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed,

McPhili [Crs i := Crsi − Crsi,orch +Crs i,toBeL, Crsi,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL→ ToBeL ∗ (53)

Fork i+1(ForRH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed,

McPhili [Crs i := Crsi − Crsi,orch +Crs i,toBeL, Crsi,toBe := Crs i,toBeL]

McPhili : ToL
choreofyToL→ ToBeL ∗ Phili(Eater) : Allowed

done→ Disallowed, (54)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed,

McPhili[Crsi := Crsi −Crsi,orch + Crsi,toBeL, Crs i,toBe := Crsi,toBeL]

Rules (51)–(54), with McPhili moving from ToL to ToBeL, cover the installment
of L-order conducting as the to-be protocol. In addition, all orchestration in Crs i
is replaced by the L-order choreography.

McPhili : ToL
choreofyToR→ ToBeR ∗ Phili(Eater) : Disallowed

request→ Disallowed, (55)

Fork i(ForLH) : Freed
triv→ Freed, Fork i+1(ForRH) : Freed

gone→ Claimed,

McPhili[Crsi := Crsi −Crsi,orch + Crsi,toBeR,Crs i,toBe := Crsi,toBeR]

McPhili : ToL
choreofyToR→ ToBeR ∗ (56)

Fork i(ForLH) : Claimed
triv→ Freed, Fork i+1(ForRH) : Freed

gone→ Claimed,
McPhili[Crsi := Crsi −Crsi,orch + Crsi,toBeR, Crs i,toBe := Crsi,toBeR]

McPhili : ToL
choreofyToR→ ToBeR ∗ Phili(Eater) : Disallowed

triv→ Disallowed, (57)

Fork i(ForLH) : Claimed
triv→ Freed, Fork i+1(ForRH) : Claimed

triv→ Claimed,

McPhili : [Crsi := Crs i −Crs i,orch + Crsi,toBeR, Crs i,toBe := Crsi,toBeR]

140 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

McPhili : ToL
choreofyToR→ ToBeR ∗ (58)

Phili(Eater) : Disallowed
request→ Allowed, Fork i+1(ForRH) : Claimed

got→ Claimed,

McPhili[Crsi := Crsi −Crsi,orch + Crsi,toBeR, Crs i,toBe := Crsi,toBeR]

McPhili : ToL
choreofyToR→ ToBeR ∗ Phili(Eater) : Allowed

done→ Disallowed, (59)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed,

McPhili[Crsi := Crsi −Crsi,orch + Crsi,toBeR, Crs i,toBe := Crsi,toBeR]

nine rules for leaving ToR, similar to rules (51)–(59) (60)–(68)

Rules (55)–(59), with McPhili heading for ToBeR, cover the orchestrated swap-
ping from L-order to R-order, thereby installing it as choreography. In particular,
(55) covers claiming the first (right) Fork without having to undo an earlier claim
of the left Fork. Contrarily, (56) covers claiming the first (right) Fork together
with necessary undoing of an earlier claim of the left Fork. Notably, rule (57)
covers continuing to claim the first (right) Fork together with necessary undoing
of an earlier claim of the left Fork. Thus, (57) provides an escape from deadlock,
similar to rule (42). Rule (58) and (59) cover starting and stopping to eat, for the
last time as resulting from L-order. The symmetric rules (60)–(68) for leaving
ToR are omitted.

Finally, the rule sets Crs i,toBeL and Crs i,toBeR contain the choreography rules
for the to-be-situation in L-order and in R-order, rules (69)–(72) and (73)–(76)
respectively.

∗ Phili(Eater) : Disallowed
request→ Disallowed, Fork i(ForLH) : Freed

gone→ Claimed (69)

∗ Fork i(ForLH) : Claimed
got→ Claimed, Fork i+1(ForRH) : Freed

gone→ Claimed (70)

∗ Fork i+1(ForRH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed (71)

∗ Phili(Eater) : Allowed
done→ Disallowed, (72)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

∗ Phili(Eater) : Disallowed
request→ Disallowed, Fork i+1(ForRH) : Freed

gone→ Claimed (73)

∗ Fork i+1(ForRH) : Claimed
got→ Claimed, Fork i(ForLH) : Freed

gone→ Claimed (74)

∗ Fork i(ForLH) : Claimed
got→ Claimed, Phili(Eater) : Disallowed

request→ Allowed (75)

∗ Phili(Eater) : Allowed
done→ Disallowed, (76)

Fork i(ForLH) : Claimed
got→ Freed, Fork i+1(ForRH) : Claimed

got→ Freed

Note, rules (17)–(76) cover all migration trajectories. The rather large number
of sixty rules is the consequence of our aim to distribute the migration, thus
revealing the distributed potential of the Paradigm-McPal tandem for system
adaptation by giving freedom to McPhils as delegates. As final remark we note,
neither the STDs of Phils and Forks nor their roles Eater, ForLH, and ForRH
roles had to be changed: the migration is fully situated within the coordination
of the five ongoing collaborations. Again, Phil and Fork components remain
running while the system migrates, dynamically indeed.

Distributed Adaption of Dining Philosophers 141

6 Discussion and Concluding Remarks

In the setting of component-based system development, we have addressed dy-
namic system adaptation without any form of quiescence. By using the coordi-
nation modeling language Paradigm, in combination with the special component
McPal, we particularly underlined the suitability of the approach for dynamic
adaptation in a distributed manner. The distributed potential of the Paradigm-
McPal tandem is our main result, actually revealed through delegation among
helpers. Concrete form to the distributive aspect is given via the dining philoso-
phers example: letting the system adapt itself from a rather bad solution (dead-
lock) to a substantially better one having neither deadlock nor starvation.

In the context of the example, the distributed character of the adaption pro-
duces another three new results as spin-off, all three showing a wider reach of
the approach: (i) creation/deletion of STDs, (ii) adaptation with self-healing,
(iii) behaviour computation. We elaborate on the three of them first.

In line with the coordination features offered by Paradigm, distribution of
adaptation is achieved through delegation. Moreover, as adaptation is towards an
originally unforeseen to-be solution, delegation thereof is brought into action by
McPal. This results in concrete delegation to originally unforeseen components
McPhili, one per collaboration Phil2Forks i. As the McPhil components exist
neither at the time the as-is solution is ongoing with McPal in hibernation nor
at the time the to-be solution is ongoing with McPal in hibernation, in this case
we model both STD creation and STD deletion in Paradigm, at the start and
at the end of McPal’s non-hibernating phase Migrating, respectively. Modeling
creation and deletion is achieved by simulating it via the phases of the various
McPhili(Evol) roles: creation ofMcPhili when bringing it to life by leaving phase
Passive; deletion of McPhili when taking its life by returning to phase Passive.
This way, STDs for components and for their roles can easily be created and
deleted in a dynamically consistent manner, as all this comes down to suitable
coordination.

As explained at the start of Section 4, coordinating adaptation, referred to
as migration, is being modeled in state JITting such that different to-be sit-
uations can be reached, possibly through different migration trajectories. Ac-
cordingly, the migration model distributes the migration coordination among
five helper McPhili, with the initial aim of locally achieving a reasonable result.
Then McPal, by centrally collecting the partial results and comparing them in
state Delegated, redistributes additional, specific alignment directives among the
same five helper McPhili. After execution of the directives, final results are gath-
ered and compiled into the particular to-be solution arising from the distributed
migration coordination effort. The self-healing aspect, explicitly present in this
example, lies in the activities occurring in state Delegated in view of selecting
one out of eight outgoing action-transitions to state Gathering: rules (25)–(32)
specify which particular alignment has to be done. The selection decision is the
self-healing: it is solely based on trap information, certain combinations of five
halfwayL vs. halfwayR traps having been entered. This means, it is solely based
on intermediate migration results. Only in case of the two actions goAheadLR or

142 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

goAheadRL the self-healing is empty; in the six other cases there is at least one
adjustment from L-order to R-order or vice versa, and often two. Please note,
such adjustments indeed arise on-the-fly of the still ongoing migration. Also in-
teresting to note is, the self-healing directives are given at the level of McPal,
the self-healing directives are performed at the (lower) delegation level of the
five helper McPhili, very much in line with the architectural ideas in [15].

The above form of self-healing is finalized in McPal’s state Gathering. There
the final to-be model is compiled into Crs toBe, through composition of smaller
model fragments composed to that aim by each helper McPhili. Fragments are
about behaviour, so their composition certainly is behaviour computation, at
the level of McPal as well as at the level of each McPhili. Thus, our behaviour
computation is a distributed computation.

Another interesting feature of the example is, the seamless zipping of a con-
ductor into a choreography, turning it into an ‘equivalent’ orchestration. Con-
versely, the seamless zipping of a conductor out of an orchestration, turns it
into the ‘equivalent’ choreography. In this perspective, the temporary conduc-
tor McPhili is reminiscent to the notion of a ‘scaffold’ in [20]. In our example,
through the additional Evol role of a conductor McPhili, the scaffold has addi-
tional flexibility, changing phase-wise, while the model remains ongoing during
alterations as usual.

As one might have observed, quite some redundancy appears in the above.
(i) Paradigm has it in the role concept, repeating essence of component dynam-
ics in view of exogenous coordination via consistency rules. (ii) Two roles per
Fork introduce even more redundancy in view of architectural separation of five
collaborative concerns. Behavioural redundancy is present too, organized in line
with the five collaboarations Phil2Forks i: (iii) After any helper McPhili has
communicated its partial result, it possibly has to undo the partial result. Or
(iv) McPhili possibly does essentially nothing, as partial result and local as-is as
well as local to-be collaboration remain unchanged (L: left fork first, as always).
This means, within the environment of the other four ongoing collaborations,
a single McPhili’s behaviour computation robustly meanders towards its final
result instead of going there straightforwardly.

During the final panel session at FACS 2010 the above four italicized charac-
teristics –robust instead of correct, environment as first class citizen, exogenous
coordination, partial results– have been positioned [7] as crucial for service-orien-
tation in comparison to component technology. They reflect the additional flexi-
bility service-orientation has to offer, when taking the next step from component
technology. In Paradigm, these characteristics arise from redundancy designed
on purpose: in language, in model structure and in model dynamics.

Recently, the Paradigm-McPal tandem is being deployed within Edafmis. The
ITEA-project Edafmis aims at innovative integration of ICT-support from dif-
ferent advanced imaging systems into non-standard medical intervention prac-
tice, such that all flexibility needed during such interventions can be sustained
smoothly and quickly, adequately and pleasantly. Particularly, the possibility for
distributed migrations, as presented here, is of great value.

Distributed Adaption of Dining Philosophers 143

As presenting our model uses the full size of the paper, we are not able to
address formal verification and further analysis of the migration here. We do
have some results already. In future work we will report on it in more detail, in
combination with other interesting migrations of dining philosophers.

References

1. Alia, M., et al.: Managing distributed adaptation of mobile applications. In: Indul-
ska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 104–118. Springer,
Heidelberg (2007)

2. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998)

3. Andova, S., Groenewegen, L.P.J., Stafleu, J., de Vink, E.P.: Formalizing adapta-
tion on-the-fly. In: Salaün, G., Sirjani, M. (eds.) Proc. FOCLASA 2009. ENTCS,
vol. 255, pp. 23–44 (2009)

4. Andova, S., Groenewegen, L.P.J., Verschuren, J.H.S., de Vink, E.P.: Architecting
security with Paradigm. In: de Lemos, R., Fabre, J.-C., Gacek, C., Gadducci, F.,
ter Beek, M. (eds.) Architecting Dependable Systems VI. LNCS, vol. 5835, pp.
255–283. Springer, Heidelberg (2009)

5. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Dynamic consistency in process
algebra: From Paradigm to ACP. Science of Computer Programming, 45 (2010),
doi:10.1016/j.scico.2010.04.011

6. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Towards dynamic adaptation of
probabilistic systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010 Part II.
LNCS, vol. 6416, pp. 143–159. Springer, Heidelberg (2010)

7. Arbab, F.: Personal communication (2010)

8. Bencomo, N., et al.: Dynamically adaptive systems are product lines too: Using
model-driven techniques to capture dynamic variability of adaptive systems. In:
Proc. DSPL 2008, Limerick, pp. 23–32 (2008)

9. Biyani, K.N., Kulkarni, S.S.: Assurance of dynamic adaptation in distributed sys-
tems. Journal of Parallel Distributed Computing 68, 1097–1112 (2008)

10. Bradbury, J.S., et al.: A survey of self-management in dynamic software architec-
ture specifications. In: Garlan, D., Kramer, J., Wolf, A.L. (eds.) Proc. WOSS 2004,
pp. 28–33. ACM, New York (2004)

11. Bucchiarone, A., et al.: Self-repairing systems modeling and verification using agg.
In: Proc. WICSA/ECSA 2009, pp. 181–190. IEEE (2009)

12. Ehrig, H., et al.: Formal analysis and verification of self-healing systems. In: Rosen-
blum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer,
Heidelberg (2010)

13. Groenewegen, L., de Vink, E.: Evolution-on-the-fly with Paradigm. In: Ciancar-
ini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 97–112.
Springer, Heidelberg (2006)

14. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Transactions on Software Engineering 16, 1293–1306 (1990)

15. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In:
Briand, L.C., Wolf, A.L. (eds.) Proc. FOSE 2007, pp. 259–268. IEEE, Los Alamitos
(2007)

144 S. Andova, L.P.J. Groenewegen, and E.P. de Vink

16. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT
Software Engineering Notes 21, 3–14 (1996)

17. Melliti, T., Poizat, P., Mokhtar, S.B.: Distributed behavioural adaptation for the
automatic composition of semantic services. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 146–162. Springer, Heidelberg (2008)

18. Morin, B., et al.: An aspect-oriented and model-driven approach for managing dy-
namic variability. In: Czarnecki, K., et al. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 782–796. Springer, Heidelberg (2008)

19. Segarra, M.-T., André, F.: A distributed dynamic adaptation model for component-
based applications. In: Awan, I., et al. (eds.) Proc. AINA 2009, pp. 525–529. IEEE,
Los Alamitos (2009)

20. Stam, A.W.: Interaction Protocols in PARADIGM. PhD thesis, LIACS, Leiden
University (2009)

21. Yarvis, M., Reiher, P., Popek, G.J.: Conductor: A framework for distributed adap-
tation. In: Proc. HOTOS 1999, Rio Rico, pp. 44–51. IEEE, Los Alamitos (1999)

22. Zhang, J., Goldsby, H.J., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: Sullivan, K.J., et al. (eds.) Proc. AOSD 2009, pp. 161–172. ACM,
New York (2009)

Component Service Promotion: Contracts,
Mechanisms and Safety

Pascal André, Gilles Ardourel, and Mohamed Messabihi

AeLoS Team - LINA CNRS UMR 6241 - University of Nantes
2, rue de la Houssinière F-44322 Nantes Cedex, France

{FirstName.LastName}@univ-nantes.fr

Abstract. Composition is a core concept of component and service-
based models. In hierarchical component composition, promotion is used
to make services available at a higher level of the hierarchy without
breaking encapsulation. In this article we will study different kinds of
promotion of services equipped with contracts, their usefulness, as well
as their safety by considering appropriate proof obligations. We introduce
several explicit assertion constructs in order to reduce the proof effort.
We study the impact of encapsulation and rich state description on these
promotions. We illustrate the approach (specification and verification)
with the Kmelia component language.

1 Introduction

Composition is a core concept of component models. In hierarchical component
composition, promotion is used to make an entity available at a higher level of
the hierarchy. The exposed entity may vary from one model to another: it can
be a port, an interface or a service. In UML2 related component models such as
Palladio, KobrA, Java/A [11], the exposed entity is a port and the promotion
is obtained by a delegation connector which usually does not modify the sub-
component features. The approach is similar in BIP [14] or in ADLs like Darwin
and Unicon which model architectures as composite components [16]. Sofa [9] and
Fractal [8] are component models that expose interfaces. Promotion is achieved
by special interface bindings (delegate/subsume). Again the promoted interfaces
usually remain unchanged except that connectors can be redefined. Last, service
promotion can be seen as a special kind of service composition [15,13]. In this
article we deal with this last category.

The motivation of our approach is to build correct components and compos-
ites considering both bottom-up and top-down construction approaches. The
two guiding principles are abstraction and encapsulation: components are black
boxes in horizontal composition (assembly) and vertical composition (compos-
ite). Therefore we aim at avoiding, detecting or correcting errors when assem-
bling components and promoting services at the composite level. In previous
works [3,2] we set the basis of building correct components and assemblies. The
verification of correctness is done by establishing different proof obligations.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 145–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 P. André, G. Ardourel, and M. Messabihi

In this article we tackle the issue of the correct vertical composition and
especially the problem of correct promotion. We show that promotion can be
more flexible than it appears while still being safe. We present a verification
method and show that the proof effort can be reduced by using explicit predicate
constructs and capitalising from already-proven properties. We describe a model
and a process that support scalability through the abstraction task that makes an
assembly be seen as a component: we want to avoid the flattening of composites
for both the specification and the verification tasks. As in our previous works,
we propose a methodology equipped with tools which is applied in the context
of the Kmelia component model [3].

The article is structured as follows. Section 2 introduces a general component
model and the promotion correctness obligation is sketched. In Section 3 we
give a classification of promotions in which we describe their uses and we dis-
tinguish between safe and unsafe promotions. The Section 4 is dedicated to the
correctness verification of the kinds of promotion previously described, introduc-
ing predicate operators and illustrating their role in the proofs with a specific
component language (Kmelia). In Section 5, we study the impact of encapsu-
lation on the promotions. Section 6 is dedicated to related works, and finally
Section 7 concludes the article.

2 Hierarchical Composition and Service Promotion

This section introduces a component model equipped with an internal compo-
sition operator that allows promotion of services. We then present promotion
correctness based on the respect of the Client-Supplier Contract.

2.1 Simple Model and Example

Consider a component model that separates component interface from com-
ponent body and enables component composition. Each component defines a
state space (using typed variables V and invariant properties Inv) and services.
A composite is a component that encapsulates other components (called sub-
components), which can themselves be composites. The component interface
exposes services which therefore can be promoted at the composite level. The
provided services (server point of view) of a component are distinct from its re-
quired services (client point of view). A service refers to a software functionality,
defined here by a signature and pre/post-conditions. These are predicates over
the state space variables and parameters (a virtual state space for a required
service). Figure 1 illustrates the formalism used in this article. The boxes de-
note components and the grey (resp. white) "funnel" denotes provided (resp.
required) services. Three components are considered: a composite cc that in-
cludes two components ocA and ocB. ocA provides a service provServ1 that is
required by service reqServ1 of component ocB: an assembly link binds both ser-
vices. ocB provides a service origProvServ, which is promoted at the composite cc
level by promoProvServ: a promotion link binds both services.

Component Service Promotion 147

Fig. 1. Component and Composite component

Service promotion is usually associated with both the operations of making a
service available at the composite level and adding it in the composite’s inter-
face. In this article we call promotion the former operation. The latter is only
considered when explicitly mentioned.

2.2 Promotion Correctness

Let us focus on the promotion of a service origin provided by a component C
to a service promoted of a composite CC. The contract of the service origin
ensures that under the pre-condition Preorigin of origin and the invariant invC

of C, the service origin will satisfy its post-condition Postorigin and preserve
the invariant invC . Assuming the component state before and after values, we
express this contract as follows:

Service Client-Supplier Contract
Preorigin(before, param) ∧ invC(before) ⇒ Postorigin(after, result) ∧ invC(after).

In such a contract, the pre-condition should be established by the caller of the
service (the client), while the post-condition and the invariant are established
by the callee (the supplier). Since we handle only promotion in this article, the
above contract holds for the service origin1. Also the actual service behaviour
is assumed to be consistent with its contract, the possibility that the service has
been underspecified is ignored and we do not try to make its pre/post-conditions
more precise. Under these hypotheses, the promotion of origin to promoted is
considered to be correct if the service client-supplier contract holds for promoted.

Whether choosing a top down or a bottom up approach, the designer selects
from the set of available components which ones will be adequate for making its
composite component. The services available in these components were not built
to meet a specific composite designer’s needs: even if they fit its purpose, they
1 In [3] we showed how to prove such a contract in the Kmelia specification language.

148 P. André, G. Ardourel, and M. Messabihi

can range from being quite generic operations with weak pre/post-conditions,
to very specialised services with strong and precise pre/post-conditions. The
composite designer has multiple and sometimes conflicting goals:

1. safety requires proving the composition of components to be safe,
2. scalability requires higher level abstractions and hiding the subcomponent

structure and services,
3. flexibility requires taking into account future changes in the composite (for

instance when a subcomponent is expected to be replaced by a better one),
4. environment adaptability requires tailoring the services to the environment

the component is targeting, that might require uniform interfaces (which
also enhance readability).

In order to achieve safety in the simplest way, most component models leave
pre and post-conditions unchanged when promoting a service. However, it is
necessary to change them to take the all the above goals into account. In the
following, we will see which changes can be safely applied.

2.3 Changing Signatures and Predicates

The service signature can be seen as a part of a service’s contract: the parameter
types are part of the pre-condition and the return type is part of the post-
condition. Since being of type T implies being of its super-type U , we can see
that using a subtype in a predicate is strengthening it while using a super-type
is weakening it. During promotion, the pre/post-conditions can be either

– weakened (Predicateorigin ⇒ Predicatepromoted),
– unchanged (Predicateorigin ⇔ Predicatepromoted),
– or strengthened (Predicatepromoted ⇒ Predicateorigin).

If none of these possibilities holds, then a part of the promoted predicate is not
related to the origin predicates, and nothing can be concluded except that the
predicate makes no sense and is considered to be incorrect.

3 Small Classification of Service Promotion

We study here different combinations: weakening, strengthening and unchanging,
in order to capture their intent and to discuss their safety. In the sense of type
systems, the original provided service can be seen as overriding the promoted
one, which is type safe when it is contravariant on the parameters and covariant
on the return type (and the opposite for required services). However we target
a wider set of change possibilities.

3.1 Provided Service Promotion

Table 1 summarises the different changes of predicates during the promotion of
a provided service and their safety.

Component Service Promotion 149

– Weakening pre-condition is unsafe in the general case because it allows to
break the Service Contract. A potential caller may invoke the promoted ser-
vice in situations where the origin service can not ensure its post-condition.

– Strengthening pre-condition ensures that the original pre-condition will hold.
– Weakening post-condition is safe because the original service will then ensure

more than it needs.
– Strengthening post-condition is unsafe in the general case. However, this part

of the contract being the responsibility of the specifier of promoted, there
are some cases in which it can put constraints on the execution context of
origin in order to ensure it. We will characterise these cases in the following.

Table 1. Modifications of predicates when promoting a provided service

Weakened Pre Unchanged Pre Strengthened Pre
Weakened Post Unsafe Safe Safe
Unchanged Post Unsafe Safe Safe
Strengthened Post Unsafe Generally Unsafe Generally Unsafe

Out of the nine combinations derivable from these cases, we will not consider
the cases involving the weakening of a pre-condition since they definitely cannot
be proven consistent in the context of the composite alone.

Safe Kinds of Provided Service Promotion. The promotion kinds in this
category are always safe provided that the contract at the composite level has
been proven (this is discussed in Section 4.2).

1. Keeping both the pre- and post-conditions is the standard promotion that
preserves the original contracts.

2. Keeping the pre-condition and weakening the post-condition is useful when
the composite does not need as much precision in the type of a result as
offered by the original service. Having a weaker post-condition will allow for
easier future service substitutions. From a methodological point of view, it
is related to information hiding, since it hides from the user, specific infor-
mations that are not deemed relevant in order to ease internal changes.

3. Strengthening the pre-condition and keeping the post-condition is useful
when the composite CC is designed to evolve in an environment which is
more constrained in terms of datatypes (e.g. sub-typing, domain restric-
tion. . .) than the more generic components it contains. In such cases, strength-
ening the pre-condition to match those of the other services makes a more
consistent interface and allows for substitutions with more strict services.

4. Strengthening the pre-condition and weakening the post-condition combines
the previous goals and uses.

Generally Unsafe Promotion Kinds. Almost unsafe in the general case,
some promotion kinds in this category are both safe and useful.

150 P. André, G. Ardourel, and M. Messabihi

1. Strengthening both the pre/post-conditions: "strengthening by parameters"
is safe if we can prove that the restriction on the parameters of the pre-
condition implies the promoted post-condition. This case is illustrated in
Section 4. While unlikely, the post-condition could also be strengthened by
the context (see below).

2. Keeping the pre-condition and strengthening the post-condition: "strength-
ening by context" is safe only when the usage of the components in the
composite strengthen the invariant on the state in such a way that it also
strengthen a post condition depending on this state. This kind of promotion
can only arise using a component model that supports state observability (see
section 5). The context can only be restricted before the invocation of the
promoted service, otherwise the component invariant can not be strength-
ened. This means that strengthening by context is restricted by a protocol
(e.g. a user guide) or a specific initialisation of the sub-component.

We can illustrate the last case by considering a variant of the previous one where
the constrained parameter is replaced by a state which is assigned a value either
at the initialisation of the component by the composite (if it is supported by the
component model) or by using a service which is called before the service origin
(this can be ensured either by a protocol on the component C or by a protocol
on the composite).

We saw earlier that a service’s signature contains both a pre- and a post-
condition. However, the post-condition strengthening will be more rare and
harder to prove because type dependency is seldom expressed in post-conditions.
To express it, one can use either anchor types or an explicit return of a param-
eter by reference modified by a service; the former requiring some kind of clone
operation and the latter being rather unorthodox.

3.2 Required Service Promotion

In the specification of a required service, the pre-condition states what the poten-
tial callers inside the component will ensure upon calling the service which will
achieve the required service. Conversely, the post-condition states what these
callers expect from the required service. In this contract, the client is the caller
of the required service (see the service call arrows in the right part of Fig. 1) and
the supplier is the service that achieves it. This is the reverse situation of the
one described in Table 1, with an additional restriction: the execution context in
this case is in the behaviour of the callers and can not be constrained efficiently
to enable generally unsafe situations.

1. Keeping both the pre- and post-conditions is the standard service delegation.
2. Keeping the pre-condition and strengthening the post-condition is requiring

more than what was expected by the origin service. This can be done for
uniformising the component interface.

3. Weakening the pre-condition and keeping the post-condition is promising
less than the origin service e.g. to anticipate a change in origin service or
to hide information.

Component Service Promotion 151

4. Weakening the pre-condition and strengthening the post-condition accepts
(2) and (3) together.

Table 2 summarises the different changes of assertions during the promotion of
a required service and their safety.

Table 2. Modifications of assertions when promoting a required service

Weakened Pre Unchanged Pre Strengthened Pre
Weakened Post Unsafe Unsafe Unsafe
Unchanged Post Safe Safe Unsafe
Strengthened Post Safe Safe Unsafe

3.3 N-ary Service Promotion

In many component models, a set of origini services can be promoted to a single
promoted service. These kinds of promotion have different name or semantics:
shared, multi-cast, gather-cast [4] but the consequences are simple: the client
service contract is to be verified for each couple (origini, promoted).
For provided services:

– the pre-condition of promoted should imply the strongest of the origini pre-
conditions (if any) or their conjunction (if satisfiable),

– the post-condition of promoted should be implied by the weakest of the
origini post-conditions (if any) or their disjunction.

For required services:

– the pre-condition of promoted should be implied by the weakest of the origini

pre-conditions (if any) or their disjunction,
– the post-condition of promoted should imply the strongest of the origini

post-conditions (if any) or their conjunction (if satisfiable).

4 Verification Methodology of Promotion Correction

We illustrate the above promotion cases on a stock Management case study. The
specification language is Kmelia [3]. Kmelia is an abstract formal component model
dedicated to the specification and development of correct components. A Kmelia
component is a container of services; it has a state space constrained by an invari-
ant. A service is more than a simple operation; it has pre/post-conditions and a
behaviour described with a labelled transition system (LTS). An assembly is a set
of components linked via their required and provided services with the aim to build
effective functionality. A composite component is a component that encapsulates
an assembly. Kmelia is supported with an Eclipse-based analysis platform called
COSTO. The proofs of correctness are experimented with AtelierB2 one of the tool
support of the B method [1]. The B method is a general purpose proof-based formal
method; its input formalism is based on set-theory and first order logic.
2 http://www.aterlierb.eu

http://www.aterlierb.eu

152 P. André, G. Ardourel, and M. Messabihi

4.1 An Example in Kmelia

The support example is a simplified Stock Management application. The system
is designed by assembling two components: sm:StockManager and ve :Vendor. The
former is the core business component to manage references and storage. The
latter is the system access interface. The system specification is given in [3] and
we go one step further in the specification by detailing the StockManager.

Fig. 2. Stock Manager composite component

Figure 2 shows that the composite component is made of three components:
stock and catalog are instances of a specialised COTS3 Dictionary , and m an
instance of Manager is a controller of the composite. Most promoted services
come from m. Listing 1 gives the specification of the StockManager composite.
The first part describes the composite as a component while the COMPOSITION
clause describes the encapsulated assembly (its components and assembly links).
The From keyword denotes a promotion link for state variables or services. The

3 component of-the-shelf

Component Service Promotion 153

obs keyword characterises observable features, according to the rules given in
Section 5. The promotion store−addToEntry is a generally unsafe situation of
change: only natural numbers are possible.

Listing 1. StockManager composite

��������� ���������	
�
����	
���

� � � � � � � � : � �

�
�
 �
��
 , �
 �
 �
�
 �
 �
 � �
 , � � � �
 , � � �
 � �
� � 	
 � � � � : � � � � � � � � � � � � � � �

�
�
 ����������
��	�����

��� � � � � � � 	 ���� �. �
 � ;
! � � "
 � � ���� �� � � � � 	 . # � � �
 � ; �� ������ � � 	
 � � � � � � � �
!� ���� ���� � �� �� . # � � �
 � �� ������ �
 � �� � � � �

����	����
��� $"���
� :
 � � 	 % � � � � � � 	 & <= ��'�
� ,
$�
 �
 �
 � �
� : � � � � � � �
 � : �
 �
 �
� �
 (� � � � � � 	
 % � � � � � � 	 , �
 � & � � � � � 	

% ! � � "
 � �) �
 � * <>
�!� �� � � �	 ��� ! � � "
 � �) �
 � * <> ��+���� � � & ,
$�� � �
 �
 �
 � �
� : � � � � � � �
 � : �
 �
 �
� �
 (� � � � � 	
 % � � � � � � 	 , �
 � & � � � � � 	

% ! � � "
 � �) �
 � * =
�!� �� � � �	 ��� ! � � "
 � �) �
 � * = ��+���� � � &

�	����

����������� ������	� � � � � � � 	�
 	 � � � � 	

� � � � � � � � �

�
�
 �
��
 ���� �. �

�
�
 �
��

���
� � � � � � � � � � � �
 % ! � � : � � �
 	
 � ; !,� : � � �
 	
 � & : � � �
 	
 � ���� � �� �� . �����-���

�
�
 � � �
�.�
 � � � ��	
 � /��� %0 < !,� &
�
�
 � � �
�.�� � � � � ��	
 � /��� ! � ����) ! � � * > � � � % ! � ���� &) ! � � *

���
. . .
����������� � 	
 � � � 	 �
 	 � � � � 	
 � � � � � � � � � 	
 � � � � � � � � �
� % & ���� �. � � � � � � � � � � � � �
���
����
�	����

�����
�����

������ !
��������"�

� � � � � � 	 : � � � � � 	1 � � � � � � � � ; � � � �� : � � � 1 � � � � � � � � ; � : ����	
� ;
� � � # � �� ���������� �

	�� �� � � � �
 ����������

$��� : �. �

�
���� � � � � � � 	 . �

-���
$	�� : �. 	
��
 ���� � � � � � � 	 . 	
 �-� � �
$	�� : �. 	
 ��
 �� ���� � � � �� . 	
 �-� � �
$� � � : �. �
 ��
 �� � � �� � � � �� . �
 � -� � �
$��� : �. ����
������ � � � �� . �����-���
. . .

��� �� �

	�� ��
���������
�����

During the edition of the specification with the COSTO platform, the first
steps of analysis are performed on the specification: syntax, type-checking, struc-
ture and visibility well-formedness. The proofs on contracts are performed using
B tools [3,2]. An abstract machine made of a state space (described by an in-
variant) and operations, is the unit of B specifications. The B method generates
proof obligations to establish the consistency of abstract machines. Refinement
of abstract machines to executable codes may also be considered. In the following
we explain the properties to be checked which are related to promotion contracts,
and the way we prove them using AtelierB . First, B machines are extracted for
each kind of property we target, this extraction step is followed by processing
proof obligations in AtelierB .

154 P. André, G. Ardourel, and M. Messabihi

4.2 Explicit Promotion Operators

A promotion is correct if we can prove the Client Service Contract for the
promoted service. For some kinds of promotion, we can capitalize from the proof
of the service contract of origin and simplify greatly the problem of promotion
correction. However, knowing which kind of promotion is being used is more
difficult in the general case than the correction problem itself. In order to make
the intent explicit, we propose to use predicate constructors to strengthen or to
weaken an origin predicate. Here are the predicate constructors in the form of
keywords weaker, stronger, with preceding a predicate.

– weaker Predicatepromoted,
Introduces Predicatepromoted as a weakened form of the original one.
The associated proof obligation is: (Predicateorigin ⇒ Predicatepromoted).

– weaker with PredicateWpromoted,
Constructs Predicatepromoted as Predicateorigin ∨ PredicateWpromoted

The associated proof obligation: (Predicateorigin ⇒ Predicatepromoted)
holds by construction. The optional (w.r.t. safety) proof obligation is:
¬ (Predicateorigin ⇒ PredicateWpromoted)

– stronger Predicatepromoted,
Introduces Predicatepromoted as a strengthened form of the original one.
The associated proof obligation is: (Predicatepromoted ⇒ Predicateorigin)

– stronger with PredicateWpromoted,
Constructs Predicatepromoted as Predicateorigin ∧ PredicateWpromoted

The associated proof obligation: (Predicatepromoted ⇒ Predicateorigin)
holds by construction. There is an optional (w.r.t. safety) proof obliga-
tion: satisfiability of Predicatepromoted

Table 3 summarises the impact of different changes of predicates during the
promotion of a provided service and their safety. Using these constructors cap-
tures the designer intent, reduces the proof effort (when the contract is satisfied
by construction or when it is always unsafe) and in some cases allows to au-
tomatically detect errors without resorting to a proof assistant (e.g. weakening
pre-conditions in a provided service, strengthening post-conditions which do not
depend on constrained state or parameters). An additional case of weaker with
can also be used in models that support predicate names by removing a specific
part of a conjunction predicate, which ensures the weakening by construction.

Table 3. Modifications of predicates when promoting a provided service

Pre Weakened Strengthened Strengthened with Unchanged
Unchanged Post Unsafe Safe Proven Safe Proven Safe
Weakened Post With Unsafe Safe Proven Safe Proven Safe
Weakened Post Unsafe Safe Safe Safe
Strengthened Post Unsafe Generally Unsafe Generally Unsafe Generally Unsafe

Component Service Promotion 155

4.3 Formal Analysis of Service Promotion Correctness

In this section, we characterise the proof obligations in Kmelia from the above-
defined constructors and we show how to prove them using Atelier B.

1. Unsafe case: the specifier is notified immediately that the promotion is not
correct without any proof.

2. Proven safe case: the specifier’s intent is captured by strengthening/weak-
ening operators and the proof obligations are satisfied by construction.

3. Safe case: as in the previous case, the specifier’s intent is captured, but to
be sure that the promotion is really safe, we must prove that the predicates
match the intent (proving the strengthening or weakening).

4. Generally unsafe case: in this case we must prove that the new predicates
satisfy the client contract.

Listing 2. B pattern for service promotion verification

MACHINE
C_CC_origin_promoted

CONSTANTS
/* ORIGINAL */
/* C variables */
C_v1, ...

/* C variables updated values */
C_v1_new, ...

/* parameters of origin service */
o_param1,... , o_result,

/* PROMOTION */
/* C variables promoted in CC */
CC_v1, ...

/* C variables promoted in CC, updated values */
CC_v1_new, ...

/* parameters of promoted service */
p_param1, ..., p_result

PROPERTIES
/* ORIGINAL */
/* C variables and origin parameters typing */

C_v1∈T ∧ o_param1∈T ∧ ...
/* C invariant related to the above C variables and their updated values */

Inv_C ∧ Inv_C_new...
/* postcondition of service origin */

Post_origin ∧ ...
/* PROMOTION */
/* C variables promoted in CC and promoted parameters typing */

CC_v1∈T ∧ p_param1∈T ∧ ...
/* promotion variable mapping */

CC_v1=C_v1 ∧ ...
/* parameter mapping */

p_result=o_result ∧ ...
/* precondition of promoted service - hypothese for the client contract */

Pre_promoted ∧ ...
ASSERTIONS

/*precondition of the origin service */
Pre_origin ∧

/*postcondition of the promoted service */
Post_promoted

END

156 P. André, G. Ardourel, and M. Messabihi

At this stage the sub-components are assumed to be proven correct. The main
idea behind our correctness checking method for component service promotions is
to encode a promoted service as a B machine, in such a way that the consistency
proof of it establishes the correctness of the promoted service. Practically, we
generate the appropriate B specifications which proof obligations correspond to
the client contract on the promoted pre/post-conditions. For each promotion of
a provided origin to a promoted, we build a B machine as shown in Listing 2.
Indeed, for a B machine with properties PB , invariant IB and assertions AB, the
B method generates the following proof obligation: PB ∧ IB ⇒ AB.

The CONSTANTS clause of the B machine contains variables C_v1,... of the
C base component, parameters o_param1,... of the origin service and its result
variable o_result. It also contains their promoted version, prefixed by CC_ for
variables and p_ for parameters and the result variable of the promoted ser-
vice. The PROPERTIES clause contains typing information for every variable
and parameters involved (C_v1∈T ∧ o_param1∈T ∧ ...), mapping predicates for
the promoted variables (CC_v1=C_v1 ∧ ...), and the following predicates which
are used as axioms:

– the promoted pre-condition Pre_promoted is supposed satisfied by the client,
– the base component invariant Inv_C ∧ Inv_C_new... has already been proven,
– the original post-condition Post_origin is considered satisfied if the original

pre-condition holds.

The ASSERTIONS clause contains the original pre-condition Pre_origin and the
promoted post-condition Post_promoted.

4.4 Experimental Results

This section presents the experimentations led on the example of Section 4.1.
Once edited and verified with COSTO, the specification is visited to extract one
B machine for each service promotion. First the sub-component correctness is
checked independently with the principles given in [3]. Then the B machines are
extracted from the Kmelia specifications. For this experimentation the extraction
was done manually, but we developed B extraction plugins to prove component
and assembly correctness [2].

The B machine addToEntry_Store of Listing 3 is used to prove the correct-
ness of the Store service in StockManager, which results from the promotion of
addToEntry from IntDictionary . The machine contents instantiates the pattern of
Listing 2. The analysis of this machine generated 6 proof obligations which were
all discharged by the AtelierB prover in the Automatic force (1) mode. Addition-
ally, in order to better illustrate our approach, we intentionally introduced the
following errors in the promotion contracts:

– The pre-condition of promoted service was weakened by deleting the pred-
icate pid >= 10 from the original one. In this case, regardless of the post-
condition there are still proof obligations that are not discharged by AtelierB
prover. This corresponds to the column "Unsafe" in Table 1.

Component Service Promotion 157

Listing 3. StockManager addToEntry store extracted B machine

�������
�	
���
�
����
���
��	����	
��

������������������
�� ������ �	��	
��
 ��

����� �

��
���� �

������	 �

��
�
��� �

�� �������� �	��	
��
 ��

���
	
�
� �
���
���� �
���	
�� �
�������	 �

�� ������ �	�	�����
 ��

���� �

��
��� �

�� �������� �	�	�����
 ��

�� � �
��!	� �

�� ���	��� �	��	
��
��

��"�
��
���� �
��"����	
��

#��#������
�� ������ ������ ��

����� ⊆ $ %% $&& ∧

��
���� ∈ $ %% $&& → ��� ∧

������	 ∈ ��� ∧

��
�
��� ∈ ��� ∧

��
�
��� ' ($ ∧

�� �������� ������ ��

���
	
�
� ⊆ $ %% $&& ∧
���
���� ∈ $ %% $&& → ��� ∧
���	
�� ∈ $ %% $&& → ��� ∧
�������	 ∈ ��� ∧

�� ������ �	�	�����
 ������ ��

���� ∈ ��� ∧

��
��� ∈ ��� ∧

�� �������� �	�	�����
 ������ ��

�� � ∈ ��� ∧
��!	� ∈ ��� ∧

�� ���	��
 �	��	
��
 ������ ��

��"�
��
���� ∈ $ %% $&& → ��� ∧
��"����	
�� ∈ $ %% $&& → ��� ∧

�� ������ ���	��	�� 	���	�� ������ ��

�
��)
����� * ≤ $&& ∧
�� ������ ��
� ��

������	 '
���� ∧
��"�
��
����)
����* '
��
����)
����*+

��
��� ∧
�� �	���� ������	� ��

�������	 '
������	 ∧
���
	
�
� '
����� ∧
���	
�� '
��
���� ∧
�� � '
���� ∧

��
��� ' ��!	� ∧
��"�
��
���� ' ��"����	
�� ∧

�� ��� �������� ��

) �� � ∈ ���
	
�
� ∧ ���	
��) �� � * +
��!	� ≥ & ∧ ��!	� > & *

����������
����� ��������

���� ∈
����� ∧
��
����)
���� * +

��
��� ≥ & ∧

���������� ��
���

�������	 ' �� � ∧
���
	
�
� ' ���
	
�
� ∪ , �� � - ∧
��"����	
��)�� �* ' ���	
��)�� �*+��!	� ∧
��"����	
��) �� � * > ���	
��) �� � *

��.

– Keeping the pre-condition unchanged, we have not introduced other re-
strictions in the invariant of the composite (restriction by context). The
AtelierB could not prove the strengthened post-condition of the promoted
service because we have no guarantee that pqty > 0 establishes the predicate
pstock[pid] < old(pstock)[pid]. This is the first case of "Generally Unsafe" in
Table 1. This simple case could be detected without launching the prover.

– Strengthening both the pre-condition with pqty > 0 and the post-condition
with pstock[pid] < old(pstock)[pid] let the new post-condition unsatisfied.
Hence the AtelierB proof could not succeed.

The contract expressed by the B pattern of Listing 2 corresponds to the general
case of the client service contract for provided services. It contains the proof of
pre-condition strengthening. However, the safety property can be proven without
consistency of the designer declarations: a weakened post-condition could have
been introduced using a STRONGER keyword. This case and the reverse one (less
likely to have ensured the safety proof) requires an additional proof.

158 P. André, G. Ardourel, and M. Messabihi

5 Encapsulation and Observability Rules

In this section we study the impact of state observability on promotion safety.
State observability in component models is achieved using either observable vari-
ables, accessing methods or attribute controllers. Abstraction and encapsulation
are crucial to the scalability of the component approach. To an outside observer,
a composite component should not be distinguished from a primitive compo-
nent and should not be overly complex. Promoting all the services and variables
of its sub-components would run contrary to this goal. When deciding what is
observable or what is promoted, the designer makes a trade-off between encap-
sulation and a precise state description. From the verification point of view, the
goal is to achieve both abstraction and capitalisation from previous proofs. In
the following we note V O the observable subset of the state variables V .

5.1 Observability of Predicates

Predicates containing non-observable state variables are of no use to potential
clients of the component. Consequently, we distinguish between observable pred-
icates which contain only variables in V O from non-observable predicates which
can take their variables in V . The observable predicates InvO and the non-
observable predicates InvNO form a partition of the invariant Inv. The decision
to make a predicate observable is subject to the following guideline (gl) and two
rules (r1, r2):

gl. To get observable predicates as meaningful as possible, there must be few
(preferably none) non-observable predicates depending only on observable
variables.

r1. The pre-condition of a provided service must not contain non-observable
predicates because it would make for an unfair contract: the client would
have no way to know if the pre-condition is satisfied.

r2. Conversely, the post-condition of a required service, which expresses what is
expected, cannot contain non-observable predicates.

More details about the verification of invariants and well-formedness of predi-
cates w.r.t. observability can be found in [3,2].

5.2 Variable Abstraction and Promotion

In Kmelia, one can define a calculated variable (e.g. defining isEmpty as size =
0). This abstraction mechanism can be used to simplify predicates. If the initial
variable is no longer present in observable predicates, it can be safely removed
from V O. This abstraction mechanism is even more useful when building a com-
posite component, since only a subset of the predicates are actually used.

The composite invariant and the pre/post-conditions of its services might
depend on the observable variables of its sub-components. In order to preserve
encapsulation, these variables have to be seen as variables of the composite
(otherwise it would expose the sub-components). In Kmelia the operation of

Component Service Promotion 159

variable promotion allows one to define special composite variables that link to
observable variables of sub-components. An observable variable vo from a sub-
component c : C can be promoted as a variable vp of a composite component (the
syntax for that is: vp FROM c.vo). The promoted variables retain their types and
are abstractions of the read-only access to the vo in their effective contexts. This
guarantees the encapsulation principle. The consequences of the observability
rules for the provided services are:

– Observable variables in Preorigin must be observable by the clients of
promoted; removing them in the predicate or marking them as non observ-
able would be equivalent as a weakening of the pre-condition, which is unsafe
and forbidden.

– Observable variables in Postorigin can optionally be made observable in the
composite. If they are not, it can be a weakening of the post-condition in
the spirit of information hiding.

5.3 Invariant Promotion

In order to qualify correctly the promoted variables, the corresponding observ-
able invariants are to be promoted too. If these predicates make use of non-
promoted variables, the designer will face again a trade-off between abstraction
(dropping the predicates) and precise qualification of the variables (promoting
the variables needed). In the following we call reachable properties of a promoted
variable the subset of the predicates in the observable invariant of its origin that
depends only on promoted variables. The promoted invariant is usually a weak-
ened version of the original one when all variables are not promoted. However,
constraints in the initialisation of the sub-components can strengthen it.

5.4 Consequences on the Promotion Process

The rules governing observability and promotion dependencies are quite simple
and easy to integrate in a semi-automated process sketched as follows:

1. determining the sub-components of the composite;
2. selecting the services to promote, and automatically promote the variables

needed and their reachable properties:
(a) optionally modifying the services pre/post-conditions,
(b) updating needed variables according to the new predicates;
(c) automatically checking the proof feasibility if applicable (see table 3),

3. optionally selecting additional promoted variables and recompute their reach-
able properties;

4. optionally defining calculated variables and abstracting existing predicates;
5. assigning variables, services and predicate observability according to the

rules previously defined through automatic guidance and verification;
6. checking the proof feasibility and generating proof obligations if applicable

using the method described in Section 4.

160 P. André, G. Ardourel, and M. Messabihi

This iterative promotion process stresses the use of encapsulation and abstrac-
tion. The verification method remains unchanged but the extraction process
takes the selection of predicates and variables into account. The automatic com-
putation of reachable properties and the observability rules guide the designer in
establishing the trade-off between encapsulation and a precise state description
before proving the promotion correctness.

6 Related Work

The work presented in this article covers a series of topics including aggregation,
composition, promotion, sharing, and contracts in the area of components and
services. We compared functional contracts and verification with formal methods
in [2]. In the following we focus on the contract based approaches.

Contracts are helpful to deliver rich trusted information. In [18] functional
and extra-functional contracts (including dynamic behaviours) provide trust-
by-contract components. However the proof of the contracts is not treated at
the design level. A component contract classification is proposed by Beugnard
et al. [6]. Four levels are considered: syntactic contracts (i), semantic constraints
such as behavioural contracts (ii) and synchronisation contracts (iii) are encoun-
tered in various component models; and finally quality of service (iv) which is
often used at runtime. Applied to services, the classification of Brogi [7] consid-
ers also four contract levels: signature, quality of service, ontology for data and
protocols. In summary, the word "contract" or "behavioural contract" is often
overloaded. We distinguish functional contracts from synchronisation contracts.
In the former e.g. [17,14], the pre/post-conditions are interpreted in terms of call
sequences and (observational) equivalence rather than in logical predicates. The
latter category is related to the definition of Meyer’s contracts and subcontracts,
it is the subject of the remaining of the section.

ConFract [10] inherits from Fractal’s interface delegation (promotion) support.
ConFract contracts are mainly used for composite components and they are
located in Fractal membranes. ConFract contracts are independent entities which
are associated to several participants of the composite (external and internal
views), and support a rely/guarantee mechanism. ConFract uses the executable
assertions language CCL-J to express specifications at interface and component
levels. In the case of CCL-J, when a method is called on an interface, the contract
controller is then notified and it applies the checking rules. Pre-conditions, post-
conditions and method invariants of all contracts "are checked at runtime". A
ConFract contract may cover several interfaces and it does not handle promotion,
i.e. the interface may change by promotion. In Kmelia the promotion contract
must conform to the original one and therefore we reuse the proof efforts made
on sub-components.

The Service Component Architecture [12,15] is a set of specifications which
describes a model for building applications using a Service-Oriented Architec-
ture. The approach, as formalised in [12] is very similar to Kmelia when ports are
services but contracts are not handled. A promotion mechanism is proposed to
make services visible at the composite level but no transformation is permitted.

Component Service Promotion 161

Hidden dependencies [13] is another formalism close to Kmelia: it supports
contracts for provided and required services and it handles four types of service
dependencies. But unlike Kmelia the dynamic compatibility is weak and services
are flat operations supporting sub-typing. Promotion is defined by delegation
dependencies, the promoted services are said to be visible while the original ones
are said to be hidden. A fixed-point equation solves the dependency and contract
rules. The contents of the dependency relation is not given, and promotion links
seem to be governed by an ∧-rule rather than an⇒-rule. No verification support
is provided yet.

7 Conclusion

In this article we presented the issue of the correct promotion of services in com-
ponent models. Our approach contributes at the level of correct-by-construction
composite components and also at the level of the consistency of component
assemblies. We described several kinds of promotions, their usefulness and the
conditions of their safety. We defined operators on predicates to be used during
the promotion of a service to make explicit the intent of the designer and reduce
the proof effort. In particular, using these operators allows to easily rule out
promotion kinds in systematically unsafe situations, and automatically accept
always safe promotions kinds, as well as defining simple heuristics to warn the
designer about generally unsafe situations.

We presented and illustrated a verification method that capitalises from previ-
ously proven properties [3]. This method is based on the generation of B models
from relevant parts of the Kmelia specifications and their analysis using B tools.
We then described a model and a process that support scalability through ab-
straction while taking into account the verification needs.

The COSTO tool currently determines the always safe and always unsafe
cases according to the keywords involved, but we aim at adding wizards to assist
the specifier in following the process sketched in Section 5 and define simple
heuristics for determining when calculated variables would favour abstraction.
Other short term perspectives of this work include its full implementation in
COSTO with a new B extraction plugin integrating the promotion language
features introduced in this article, as well as a feedback analysis. A medium
term perspective is to extend the current primitives to behavioural contract
promotion, as a follow-up of the work on the behavioural compatibility rules
already defined in Kmelia and behavioural refinement of [5].

Note: A separate appendix for this article is available at:
http://www.lina.sciences.univ-nantes.fr/coloss/download/facs10_app.pdf

References

1. Abrial, J.R.: The B-Book Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996) ISBN 0-521-49619-5

2. André, P., Ardourel, G., Attiogbé, C., Lanoix, A.: Contract-based Verification of
Kmelia Component Assemblies using Event-B. In: Proceedings of FESCA (2010)

http://www.lina.sciences.univ-nantes.fr/coloss/download/facs10_app.pdf

162 P. André, G. Ardourel, and M. Messabihi

3. André, P., Ardourel, G., Attiogbé, C., Lanoix, A.: Using assertions to enhance the
correctness of kmelia components and their assemblies. ENTCS 263, 5–30 (2010);
Proceedings of FACS 2009

4. Baude, F., Caromel, D., Henrio, L., Morel, M.: Collective interfaces for distributed
components. In: CCGRID, pp. 599–610. IEEE Computer Society, Los Alamitos
(2007)

5. Bauer, S.S., Hennicker, R., Bidoit, M.: A Modal Interface Theory with Data Con-
straints. In: Proceedings of the 13th Brazilian Symposium on Formal Methods
(SBMF 2010). LNCS series of Springer (to appear)

6. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components con-
tract aware. Computer 32(7), 38–45 (1999)

7. Brogi, A.: On the Potential Advantages of Exploiting Behavioural Information for
Contract-based Service Discovery and Composition. Journal of Logic and Algebraic
Programming (March 2010), http://dx.doi.org/10.1016/j.jlap.2010.01.001

8. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Frac-
tal Component Model and Its Support in Java. Software Practice and Experi-
ence 36(11-12) (2006)

9. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a hier-
archical component model. In: Proceedings of SERA, pp. 40–48. IEEE Computer
Society, Los Alamitos (2006)

10. Collet, P., Malenfant, J., Ozanne, A., Rivierre, N.: Composite Contract Enforce-
ment in Hierarchical Component Systems. In: Lumpe, M., Vanderperren, W. (eds.)
SC 2007. LNCS, vol. 4829, pp. 18–33. Springer, Heidelberg (2007)

11. Crnkovic, I., Larsson, M.: Component based software engineering - state of the art.
Technical Report ISSN 1404-3041 ISRN MDH-MRTC-15/2000-1-SE, Mälardalen
University (January 2000)

12. Ding, Z., Chen, Z., Liu, J.: A rigorous model of service component architecture.
Electr. Notes Theor. Comput. Sci. 207, 33–48 (2008)

13. Enselme, D., Florin, G., Legond-Aubry, F.: Design by contract: analysis of hidden
dependencies in component based application. Journal of Object Technology 3(4),
23–45 (2004)

14. Graf, S., Quinton, S.: Contracts for bip: Hierarchical interaction models for compo-
sitional verification. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574,
pp. 1–18. Springer, Heidelberg (2007)

15. Krämer, B.J.: Component meets service: what does the mongrel look like?
ISSE 4(4), 385–394 (2008)

16. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26(1), 70–93 (2000)

17. Reussner, R., Poernomo, I., Schmidt, H.W.: Reasoning about Software Architec-
tures with Contractually Specified Components. In: Cechich, A., Piattini, M., Val-
lecillo, A. (eds.) Component-Based Software Quality. LNCS, vol. 2693, pp. 287–325.
Springer, Heidelberg (2003)

18. Schmidt, H.: Trustworthy components-compositionality and prediction. J. Syst.
Softw. 65(3), 215–225 (2003)

http://dx.doi.org/10.1016/j.jlap.2010.01.001

Systems-Theoretic View of
Component-Based Software Development�

Daniel Côté, Michel Embe Jiague, and Richard St-Denis

Département d’informatique
Université de Sherbrooke

Sherbrooke (Québec), J1K 2R1, Canada
{Daniel.R.Cote,Michel.Embe.Jiague,
Richard.St-Denis}@USherbrooke.ca

Abstract. This paper investigates component-based software development in the
perspective of systems theory. In the proposed systems-theoretic view, a complex
system is organized hierarchically from horizontal and vertical aggregations of
components, but more important is the explicit control at each level of the hier-
archy. Control actions are then determined by controllers that enforce constraints
imposed on components and their interaction, and thus reduce their degree of au-
tonomy. Not only the system behavior is restrained but nonfunctional properties
emerge at each level. The finer the exercised control, the richer emergent prop-
erties should be. Therefore, achieving nonfunctional properties, such as liveness,
predictability, safety and security, corresponds to solving control problems. The
supervisory control theory initiated in the early and mid eighties is a mathemati-
cal apparatus that helps to accomplish this task in a rigorous way.

Keywords: Systems theory, supervisory control theory, component-based soft-
ware development, component model, formal method, hierarchical control, con-
troller synthesis.

1 Introduction

According to Szyperski’s definition [29], a software component is a delineated unit
of composition that is contractually bound to carry out useful functions through clearly
defined interfaces. One important element missing in this definition is the notion of con-
trol, which appears only occasionally in component models under an explicit form. For
instance, in the Fractal component model a component provides an open set of control
capabilities [5]. The implementation part of a component is composed of other compo-
nents, called sub-components, which are under the supervision of the controller of the
enclosing component. The controller takes actions regarding the behavior to be associ-
ated with a component. In particular, it can superpose control behavior to the behavior
of its sub-components. Unfortunately, the way these controllers are designed is not sup-
ported by a suitable theoretical framework. Most recent formal models of interacting
components pay little attention to aspects related to control. In the theory elaborated by

� The research described in this paper was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 163–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 D. Côté, M.E. Jiague, and R. St-Denis

Broy [6], elements associated with control are stated in assumption/commitment spec-
ifications for services. Such specifications ensure that input sequences within a service
domain lead to a well controlled behavior. In the formal model defined by Chen et
al [8], control is limited to flow of control inside a process (glue code) on when to call
out or wait for a call to its provided services. The rCOS method suggests to model the
flow of control and synchronization of a component by a state machine diagram which
represents the reactive behavior of the component [15]. An interesting feature concerns
the verification of the dynamic consistency of the sequence diagram and state machine
diagram. They are translated into CSP processes to check deadlock-freedom.

The proposal defended in this paper was deeply influenced by Nancy Leveson’s work
on safety engineering in the perspective of modern systems thinking and systems the-
ory [20], but with the aim to put forward the idea that a mathematically-based control
theory can contribute to a general theoretical framework for component-based software
engineering (CBSE):

“in systems theory, emergent properties, such as safety, arise from the interac-
tions among the system components. The emergent properties are controlled
by imposing constraints on the behavior of and interactions among the compo-
nents. Safety then becomes a control problem where the goal of the control is
to enforce the safety constraints [20].”

In this perspective, solving control problems is considered to be essential and this task
can be realized by taking advantage of the supervisory control theory (SCT) [26]. This
theory peculiar to discrete event systems (DES) tackles control problems with respect
to various structural configurations, in particular hierarchical control variants suitable to
manage complexity as recognized by systems theory. It puts the focus on formulation
of conditions for the solvability of different control problems and design of synthe-
sis procedures that automatically derive controllers, which are correct by construction.
Therefore, CBSE could benefit from SCT, especially when considering dynamic adap-
tive components and dynamic reconfigurations. The former include a special compo-
nent that delegates control to the other components while keeping the control over them
itself in order to guide structural changes in components and their coordination [1]. The
latter require a monitor not only for interpreting a configuration, but also for acting
on architectural elements to reconfigure a system in a consistent way [10]. All these
forms of control raise many open issues that could be solved by considering the mutual
advantages between CBSE and SCT.

Several component models, in particular the one of rCOS, adopt the principle of sep-
aration of concerns. This paper focuses on one concern, namely the control. It shows
how a hierarchical control variant of SCT can be adapted as a theoretical foundation
for this concern. The ultimate goal is to separate the control from the interface and im-
plementation, as proposed in the Fractal component model, by bringing to the fore a
design process based on the formulation and resolution of a specific control problem,
including the synthesis of controllers. The main advantage of this approach is to avoid
negative impacts such as overlapping of functionality, dissipation of an important con-
cern (control) into several architectural elements or combination of code specific to a
concern with those that implement other concerns.

Systems-Theoretic View of Component-Based Software Development 165

Since synthesis problems and verification problems are dual, the approach advo-
cated in this paper is in some sense the converse of the one proposed by the Sifakis’s
team in which components (including possible controllers) are specified in a subset
of the BIP language and verification techniques combined with heuristics are used to
check deadlock-freedom [3]. There is, however, more information in the latter, since
controllers missing in the former must be calculated. This calculation does not require
heuristics to verify deadlock-freedom (or other types of properties) because of a less ex-
pressive formalism to specify the behavior of components. The system is deadlock free
by construction. Nevertheless, a more expressive formalism can be used, but heuristics
or human intervention (when heuristics fail) are required during the execution of the
synthesis procedure [28]. The main contributions of this paper are the following.

– It shows how to match the concepts of a SCT hierarchical control variant [32] with
those of a general component model. This is not at first sight obvious consider-
ing the richness of the theory with respect to the number of hierarchical control
variants. For instance, in the aggregate multilevel hierarchy approach proposed by
Leduc et al [18], hierarchical system construction with an arbitrary number of lay-
ers is not really supported since the abstraction process cannot be repeated along the
vertical line. It is limited to two layers [19]. The two-tiered architecture as defined
in this framework does not yield another generic model, including the interface,
unless a composition mechanism is applied in an ad hoc manner. In the structural
multilevel hierarchy approach developed by Ma and Wonham [22], the encapsula-
tion is open because the internal transition structure is accessible to the synthesis
procedure and the unique optimal nonblocking supervisor calculated by a synthesis
procedure is directed against the whole transition structure.

– It provides abstraction rules to endow the interface part of a component with a
standard control technology in order to achieve conditions that guarantee safety,
deadlock-freedom and progress by construction. This set of abstraction rules ends
up being more restrictive than what it is suggested by Wong and Wonham [32],
which requires the output control consistent property (OCC) in order to obtain the
finest possible control granularity. In the proposed definition the OCC requirement
is discarded with the effect of the relinquishment of control options in the imple-
mentation part of a component. Generally, the OCC property leads to more complex
models for the implementation part. Thus, it represents a difficulty for practitioners.

– It introduces component properties, considers horizontal composition and vertical
composition as well as superposition of control, and it shows that these proper-
ties are invariant under these three operations. This allows for their combination in
an arbitrary way with an unrestrained number of components and an unrestrained
number of abstraction levels. Thus, the proposed approach satisfies an important
requirement mentioned in a survey on software component models [17], namely
theories must support systematic composition and infer properties about the result
of applying a composition operator to components. In other words, it preserves the
formal guaranties provided by SCT throughout the entire design process. It is in
the same spirit of some work in the domain [11] (flexible composition preserves
deadlock-freedom), [6] (separate refinements of the components of a system lead
to a refinement of the composed system), [16] (the characteristics of encapsulation

166 D. Côté, M.E. Jiague, and R. St-Denis

and compositionality are preserved) and [8] (the disjoint union of closed compo-
nents forms another closed component).

The rest of this paper is divided into substantial sections. Section 2 introduces a run-
ning example in order to make readable the next sections to readers less familiar with a
control-theoretic approach. Section 3 presents basic notions of SCT in order to grasp the
nature of a typical control problem when stated formally. Most notions are illustrated
with the running example. Section 4 outlines the hierarchical control in its more abstract
form around a key theorem, while establishing a correspondence between concepts of
SCT and those of a general component model. It also provides a useful method to apply
it. Section 5 details three basic constructs of components used to assemble components
horizontally and vertically with control while satisfying the conditions of the theorem
introduced in the previous section. A conclusion situates this work in a technical discus-
sion about its advantages, contrasting it with Gössler and Sifakis’work, and mentions
how it can evolve in the future with respect to a list of open issues.

2 A Running Example: Composition and Control of BPEL
Processes

To illustrate component-based software development in the paradigm of systems theory
within the limits of the supervisory control theory as suggested in this paper, a con-
cise example is provided. In this example components are Web services implemented
as BPEL1 processes. The example is built around an on-line store that places at its
customers’ disposal a Web application from which they can purchase goods. In order to
maintain a reasonable stock, goods are acquired from manufacturers, then conveyed and
stored in a stockroom. Deliveries to customers are worldwide and made by using a ser-
vice supplied by a partner shipping company. When required (e.g., due to non-shipping
facilities in a target country), the shipping company may exploit other shipping services
to reach customers. The Web application is a front end of a workflow implemented as
a BPEL process, called Shop. The latter interacts with other BPEL processes: Bank
for credit authorization and debit, Manufacturer for goods production and Ship
for delivery scheduling. The process is such that an end user of the Web application can
review its order before submitting it to final processing.

Figure 1 shows all the BPEL processes in a schematic notation. The reader can pre-
sume that the auxiliary BPEL processes have more complex WSDL interfaces, but only a
part of the whole is effectively used by the processShop. The interpretation of the BPEL
processes is straightforward, except at the point whereShop interacts withBank through
the messages validate(creditCard)i and validate(creditCard)o. Af-
ter receiving the response from the bank,Shopmay report an error, because the customer
is not creditworthy, or complete the order. In the last case the control flow is divided into
three parallel threads of execution that perform activities towards the goal of confirm-
ing the customer order. The messages getProdQtyi and getProdQtyo have no
counterpart in the auxiliary processes. They are internal messages. BPEL processes hold

1 BPEL stands for Business Process Execution Language. It is an OASIS standard executable
language for specifying actions within business processes with Web services.

Systems-Theoretic View of Component-Based Software Development 167

Incoming request

Request/response

Outgoing response

Split/Merge

Conditional routing

Ship

validate(creditCard)
debit(creditCard)

Bank

restockProduct

Manufacturer

Shop

pay(creditCard)

validate(creditCard)

refusederror

checkout(clientId,cart)

restockProduct

debit(creditCard)getProdQty

prodQty < threshold
planShipping

orderConfirmed

accepted

shipPrice(items)

shipPrice(items)

planShipping

shipPriceq

shipPricer

error

Fig. 1. Workflows of BPEL processes

information associated to each of its threads. For instance, when Ship receives the re-
questshipPrice(items)i, information about items to ship and destination2 is kept
until an error occurs or the determination of a shipping schedule.

3 The Implementation and Control Parts — Introduction to the
Supervisory Control Theory

The supervisory control theory is an established theory in the domain of DES. Since
the last 30 years, it has been refined and perfected to contemplate a wide range of
problems with various formalisms and analysis tools. There is a wealth of literature on
this theory and its application in circumscribed domains. Ramadge and Wonham, the

2 Due to space limitation some arguments are missing in the messages.

168 D. Côté, M.E. Jiague, and R. St-Denis

shipPricei

shipPriceo

shipPriceo

restocki

restocki

restocki

restocko

restocko

restocko

shipPricei

error, planShipping

error, planShipping

Fig. 2. Possible interactions with the shipping company and the manufacturer

founders of this theory, surveyed language-based formulation of control problems, in-
cluding their underlying properties such as controllability, observability, nonblocking
and nonconflicting, together with their automaton representation for computational and
implementation purposes [26]. Instead of using formal languages or automata for de-
scribing admissible event trajectories, temporal logics have also been considered in or-
der to specify more complex liveness and real-time properties [2]. Holloway et al wrote
a survey paper on Petri net methods for controlled DES [12]. In their book, Kumar and
Garg developed basic results about control under complete observation, control under
partial observation and control of nonterminating behavior using the lattice theory [14].
Cassandras and Lafortune addressed more subjects in their textbook on DES, partic-
ularly diagnosis, decentralized control, control of Petri nets and hybrid systems [7].
Finally, Bherer et al included in their paper on the control of parameterized DES an
overview of techniques to limit the negative impact of the state-space explosion prob-
lem shared by most control problems and detailed one of them [4].

In SCT system behavior is mostly modeled by an automatonG := (X,Σ, δ, x0, Xm),
where X is a set of states; Σ is a finite set of events; δ : X × Σ → X is the partial
transition function; x0 is the initial state; and Xm is the subset of marked states, which
represents the completed tasks. Such a model is often obtained by a synchronous prod-
uct of pairwise disjoint component models. It is convenient to introduce the extended
transition function δ : X ×Σ∗ → X as in the usual way [13]. The closed behavior and
marked behavior of G are defined, respectively, as follows:

L(G) := {w ∈ Σ∗ | δ(x0, w)!} and Lm(G) := {w ∈ Σ∗ | δ(x0, w) ∈ Xm},

Systems-Theoretic View of Component-Based Software Development 169

where δ(x,w)! is an abbreviation for the expression “δ(x,w) is defined”. The ac-
tive event set of a state x, noted Γ (x), is defined by {σ | δ(x, σ)!}. For computa-
tional reasons, it is generally assumed that a DES has finitely many states. The pair
〈L(G), Lm(G)〉 is a language model of the system. Figure 2 shows a fragment of the
automaton that represents the free behavior of the process Shop, more specifically the
possible interactions with the shipping company and the manufacturer in its implemen-
tation part. It should be noted that transitions cannot be labelled with predicates and
update relations as in the BIP framework [3]. However, it is possible to use variables
with finite domains and represent their different values by states.

Sometimes it is convenient to make abstraction of the underlying transition structure
and consider only an alphabet Σ and a pair 〈L,Lm〉 with L,Lm ⊆ Σ∗ and Lm ⊆ L =
L, where L denotes the prefix closure of L [14]. These two types of model will be used
interchangeably in this paper. Let FL := {K ∈ ℘(L) | K = K}, where ℘(L) denotes
the power set of L, be the set of closed sublanguages of L. The term ℘2(L), which is a
short form of ℘(℘(L)), represents the set of families of sublanguages of L.

Let x be the current state of G. If x �∈ Xm and Γ (x) = ∅, there is a deadlock,
since no further event can occur. If x belongs to a strongly connected component that
consists solely of unmarked states without outgoing transitions, there is a livelock. If
Lm(G)= L(G),G is said nonblocking. Intuitively, this means that all subtasks inG can
be eventually completed. OtherwiseG is blocking (i.e.,Lm(G) �⊇ L(G)), a deadlock or
a livelock can happen. The nonblocking property is predominant in many control prob-
lems. In the language-based formulation, the condition for E ⊆ L to be nonblocking is

E = E ∩ Lm. (1)

The controllability property is another important concept of SCT. A languageK ⊆ Σ∗

is controllable with respect to L, if KΣu ∩ L ⊆ K , where Σu ⊆ Σ is the set of
uncontrollable events (Σc := Σ −Σu is the set of controllable events). In the Web ap-
plication example, the incoming requests correspond to controllable events (indicated
by a slanting bar on transitions in Figure 2) and the outgoing responses correspond
to uncontrollable events. Responses to requests are uncontrollable because the initia-
tor of requests has no control on when and if they will eventually arrive. An event
that represents a timeout is also uncontrollable. Intuitively, a language K is control-
lable if any subtask of K followed by an uncontrollable event that is possible in L is
also a subtask of K . Let Λ := ℘(Σc) be the set of all control actions and λ ∈ Λ. If
σ ∈ λ, then σ is disabled; otherwise, it is enabled. An uncontrollable event is always
enabled. This way of implementing control is called the standard control technology.
In fact, a control technology can be seen as an implementation of a control structure,
which is a means to represent control abstractly by a family of controllable sublan-
guages. Formally, a control structure is a map C : FL → ℘2(L) that satisfies four
axioms (for every H ∈ FL): join closure (C(H) ⊆ ℘(H) is a complete upper semi-
lattice), nontriviality (∅, H ∈ C(H)), prefix closure (K ∈ C(H) =⇒ K ∈ C(H))
and inheritance (for F ∈ FL and H ⊆ F , C(F) ∩ ℘(H) ⊆ C(H), with equality if
H ∈ C(F) := FF ∩ C(F)) [32]. Further restrictions can be imposed on such maps in
order to establish associations between control structures and control technologies. A
control technology induces a standard, locally definable control structure. In particular,
the standard control technology induces a standard, locally definable control structure.

170 D. Côté, M.E. Jiague, and R. St-Denis

Implementation C
on

tr
olInterface

V

w

G

λ

The closed-loop system (V/G)A component A first abstract model of a component

G
V

Fig. 3. Control in the framework of the supervisory control theory

Furthermore, a standard, locally definable control structure can always be implemented
by a control technology (see [30] for more details).

In SCT, any controlled system is seen as a solution of a control problem, which
typically consists in synthesizing a supervisor to restrain the uncontrolled behavior of a
DES in order to achieve a given specification. More precisely, given a model 〈L,Lm〉 of
a DES and a specification E, a nonblocking supervisor V : L → Λ must be calculated
such that the system behavior under the supervision of V is restrained to the greatest
possible number of event trajectories of Lm included in E. The language defined by
these trajectories is called the supremal controllable sublanguage of E with respect to
L, sinceE is not necessarily controllable, and the synthesized supervisor is termed max-
imally permissive. In the running example, the specification prescribes some ordering
constraints on the occurrences of messages (e.g., the response shipPrice(items)o
must occur before planShipping) or indicates bad states for security reasons. Intu-
itively, a specification can be interpreted as a model of control glue usually written in a
coordination language.

In general, given F ∈ FL and H ⊆ F , the map κF : ℘(F) → C(F) assigns
to H the supremal controllable sublanguage of H with respect to F . For notational
purpose, κF := κF |FF is the restriction of κF to FF . The DES and supervisor are
brought together in a closed-loop system denoted by V/G. The DES generates events
with respect to control actions determined by the supervisor as shown in Figure 3.

Several synthesis algorithms exist to calculate supervisors. They differ substantially
in the formalisms used to represent the DES and specification. Some of them inte-
grate BDD to deal with very large systems (e.g., [22]). Thus, the application of SCT to
component-based software development is limited by the expressiveness of formalisms
supported by those algorithms and the size of models.

4 The Interface Part — The Hierarchical Control Variant

In Figure 3, the interface has been excluded from the abstract model of a component.
This omission was intentional because the emphasis was on the control exercised on
the implementation. To take into consideration all the constituents of a component, in
particular the interface, one can take advantage of hierarchical control, a variant of
SCT. It is developed around the schema at the left of Figure 4. Let Glo (or 〈L,Lm〉)
be a model of the implementation and T be the alphabet associated to the interface.
A high-level model Ghi (or 〈M,Mm〉 with M,Mm ⊆ T ∗ and Mm ⊆ M = M) is

Systems-Theoretic View of Component-Based Software Development 171

Implementation

Interface

C
on

tr
ol

Agent (L)
θ

Abstraction (M) Chi

GloClo

Chi Ghi

θ−1 θ

Clo

A componentAn abstract model of a componentHierarchical control

Fig. 4. Elements of hierarchical control

planShipping

checkout creditAccepted

pay

orderConfirmed

creditRefused

Ship

Shop

shipPriceo

BankManufacturer

‖
restocki validatei debiti

validateo debitorestocko

shipPricei

shipPriceq

shipPricer

error

Fig. 5. Hierarchical abstract view of BPEL processes

obtained from the low-level modelGlo by using a causal reporter map θ : L→ T ∗ (θ is
prefix-preserving). Thus, Ghi is a model of the interface with M := θ(L) and Mm :=
θ(Lm). Furthermore, θ and θ−1 : ℘(M) → ℘(L), the inverse image map, represent
the information channel and command channel respectively. In other words, Ghi is an
abstraction of Glo, the agent. The latter is supervised by the control structure Clo, but
the control in the upper level, represented by the control structure Chi, is indirect: in a
dynamic closed-loop model the control actions of Chi are dispatched to Clo through the
command channel, the result of this translation is applied to the agent, the abstraction is
then driven by the agent via the information channel and the behavior of the abstraction
is recorded in Chi in order to complete the closed loop [32].

Figure 5 depicts the hierarchical structure of components, which is an abstract view
of the BPEL processes in Figure 1 or Web services with WSDL files when deployed.
The interface exposed by Shop results from the use of a specific causal reporter map.
Depending on applications, different causal reporter maps lead to different interfaces.
At the implementation level, Shop uses the interfaces of Ship, Manufacturer and

172 D. Côté, M.E. Jiague, and R. St-Denis

Bank. The interface of the latter is outlined as the shuffle product (interleaving) of
two simple request/response automata. The automaton modeling the interface of Ship
indicates that after generating the controllable event shipPricei, the correspond-
ing response shipPriceo can occur. The automaton can then be reset following the
occurrence of the controllable events error or planShipping. The possible inter-
actions between Shop and the auxiliary processes are then represented by an automaton
with 24 states for which a fragment has been given in Figure 2. To obtain the appro-
priate interaction in the implementation of Shop, a specification must be provided in
order to calculate a controller. In this example the specification corresponds to the be-
havior of the BPEL process Shop (as given at the left of Figure 1) and it is controllable.
In fact, the specification is most probably an over specification which is the customary
way of programming. For more complex situations involving parallelism, the human
brain cannot encompass the whole structure. In this case, the synthesis presents many
advantages.

Let Lvoc := {ε} ∪ ω−1(T) ⊆ L where ω : L→ T ∪ {ε}, called the tail map of θ, is
defined as follows (s ∈ Σ∗ and σ ∈ Σ): ω(ε) := ε and

ω(sσ) :=

{

τ, if θ(sσ) = θ(s)τ ;
ε if θ(sσ) = θ(s).

The set Lvoc is the set of vocal strings, which are the strings of L that cause the gen-
eration of an event through θ [32]. The causal reporter map θ can then be expressed as
follows: θ(ε) = ε

θ(sσ) =

{

θ(s)ω(sσ), if ω(sσ) = τ ;
θ(s) otherwise.

The central theorem of the hierarchical control variant gives conditions for preserving
the nonblocking property as defined by Equation 1.

Theorem 4.1. (theorem 6 in [32]) Let Clo be a standard control structure on L and
θ : L→ T ∗ be a causal reporter map. Suppose that
Chi(M) = θ(Clo(L)) (control consistency),
θ−1(Mm) = Lm (consistency of marking),
θ is an observer, and
θ−1
v ◦ κM ≤ κL ◦ θ−1 ◦ κM (partner-freedom).

Then, for all E ⊆M , κM (E) is nonblocking⇔ κL ◦ θ−1(E) is nonblocking.

The first condition is a specific case of the control consistency property, in which H =
L, as illustrated in the left part of Figure 6. It states that the projection of any language
that belongs to Clo is controllable in the upper level. In particular, this property ensures
that Chi is a control structure on M [32].

The second condition can be easily satisfied by defining L′
m = θ−1(Mm) (gener-

ally θ−1(Mm) ⊇ Lm) and substituting L′
m for Lm. This artifice is purely theoretical.

In practice, this pseudo expansion of Lm implies that a complete task in Ghi is not
promptly completed in Glo.

The third condition requires that θ be an observer. This property can be characterized
as follows (lemma 2.1 in [33]). Let H ⊆ L. Then θ is an H-observer iff

(∀s ∈ L)(∀t ∈ T ∗)θ(s)t ∈ θ(H) =⇒ (∃u ∈ Σ∗)su ∈ H ∧ θ(su) = θ(s)t.

Systems-Theoretic View of Component-Based Software Development 173

θ(s)t ∈ θ(H) =⇒ (∃u ∈ Σ∗)su ∈ H ∧ θ(su)=θ(s)t

s

θ(s)

u

t

θ

FL ℘2(L)

θθ

Clo

FM

Chi
℘2(M)

(∀H ∈ FL) Chi(θ(H))=θ(Clo(H))

Fig. 6. Control consistency of (L, θ, Clo) [32] and characterization of the observer property

Intuitively, if a given behavior of the abstraction can be extended to an admissible string,
no matter where the agent is, as long as its image is θ(s), its behavior can be extended
to a string that belongs to H with θ(su) = θ(s)t (see the illustration in the right part of
Figure 6). IfH = L, θ is an observer. The observer property is closely related to the con-
cept of observation equivalence defined by Milner [24]. Following Wong and Wonham,
a causal reporter map θ : L → T ∗ is an observer iff the transition structure obtained
by relabelingGlo, the automaton for 〈L,Lm〉, with events in T according to the output
behavior of θ, can be reduced to a deterministic quotient which is a bisimulation equiva-
lence of the relabeled automaton containing no unobservable transitions. Thus, given an
arbitrary causal reporter map, Wong and Wonham’s algorithm [33] modifies this map,
adding further vocalized transitions, until the coarsest observer which is finer than the
given map is obtained. This new (observer) map can then be used as is. But it usually
serves as a heuristic concerning the modifications that should be made to the original
map in order to make it into an observer. The interface exhibited by Shop in Figure 5
is in fact an observer. It should be noted that the event creditAccepted should not
normally appear in the interface because it corresponds to an internal message. How-
ever, it has been added to the interface because the original causal reporter map was not
an observer. Also, the message error has been renamed to creditRefused in the
interface (via the causal reporter map) in order to maintain uniformity.

In the last condition, the expression κL ◦ θ−1 ◦ κM is interpreted as the low-level
implementation of the high-level synthesis. The expression θ−1

v ◦ κM refers to all the
vocal strings corresponding to the high level synthesis (the term θv is the restriction of
θ to the set of vocal strings, i.e., θv := θ|Lvoc). Therefore, this condition means that
the implementation in the lower level captures all the vocal strings corresponding to the
high level synthesis.

Unfortunately, applying Theorem 4.1 constitutes a serious challenge for practitioners
in the design of real component systems. Therefore, this theorem has been adapted to a
weaker form of control consistency, namely Chi(M) ⊆ θ(Clo(L)), when the specifica-
tion for the abstraction is controllable [9]. Under this restriction,E ⊆M is replaced by
κM (E) ∈ Chi(M) in the conclusion of Theorem 4.1, that is,

κM (E) is nonblocking⇔ κL ◦ θ−1(κM (E)) is nonblocking,

since κM is idempotent. Compared with strict control consistency, the weak form gives
access to fewer control options in Clo by the upper level, thus control becomes coarser
as the hierarchy of abstraction builds up. Nevertheless, it often reveals adequate for

174 D. Côté, M.E. Jiague, and R. St-Denis

practical use as it embodies the usual trade-off made to obtain coarser-grained interfaces
(i.e., simpler abstractions) in order to encapsulate complexity.

Generally, the low level fits with the standard control technology (Σ = Σc ∪ Σu),
which induces a standard, locally definable control structure Clo on L. The goal is to
equip the abstraction with the standard control technology. This leads to control co-
incidence, θ−1(Chi(M)) ⊆ Clo(L), which means that any controllable language in
the upper level matches a controllable language in the lower level through the inverse
image map. Finally, it can be shown that the weak control consistency and partner-
freedom properties are fulfilled under the condition that the control coincidence prop-
erty holds [9]. Clearly θ must be defined so that {Tc, Tu} is a partition of T . Assume
the following definitions:

Xτ := {sσ ∈ Lvoc | ω(sσ) = τ}; Tθ := {τ ∈ T | Xτ �= ∅};
Tc := {τ ∈ Tθ | Xτ ⊆ Σ∗Σc}; and Tu := Tθ − Tc. (2)

Without loss of generality, T can be considered equal to Tθ. An event τ is controllable
(τ ∈ Tc) if all vocal strings that cause the generation of τ end with a controllable event
in Σc. It can be observed that θ−1

v (tτ) := θ−1(tτ) ∩Lvoc ⊆ Σ∗Σc and ∅ �= ω−1(τ) ⊆
Σ∗Σc for all tτ ∈ M and τ ∈ Tc. This is the clue to establish the control coincidence
property.

The results presented in this section highlight the need to coordinate correctly aggre-
gation of components.

5 Composition of Components

There are three cases to consider when composing components: i) components are ag-
gregated horizontally without adding supplementary control; ii) components are aggre-
gated vertically without adding supplementary control; and iii) supplementary control
is superposed to the control of the abstraction of a component. According to the weak
form of Theorem 4.1, weak control consistency, consistency of marking, observer, and
partner-freedom properties must be preserved in all these cases in order to combine
such operations in an arbitrary way with an unrestrained number of components since
the underlying operators (composition of functions and interleaving) are associative.

5.1 Horizontal Aggregation without Additional Control

The case in which components are pairwise disjoint is considered (Σ1∩Σ2 = ∅). In the
context of reusable components, this limitation imposed on components is reasonable
because if instances share events or if there is any other form of dependency between
them, instantiation becomes tricky. Thus, the interleaving operator (“‖”) between lan-
guages (or families of languages) [14] is used in the horizontal composition as shown
in Figure 7. It is also assumed that the control structures are standard and locally de-
finable, since they are induced by the standard control technology. The following basic
properties hold:

θ1(H1) ‖ θ2(H2) = θ(H1 ‖ H2), θ
−1
1 (N1) ‖ θ−1

2 (N2) = θ−1(N1 ‖ N2).

Systems-Theoretic View of Component-Based Software Development 175

Horizontal composition

Superposition of control

Vertical composition

θ
Abstraction (M)

Agent (L) Clo(L)

Chi(M) C1,hi(M1)

C1,lo(L1)Agent (L1)

Abstraction (M1)
θ1

Abstraction (M2) C2,hi(M2)

Agent (L2) C2,lo(L2)
θ2:= ‖

:= ◦
Clo(L)

C′
hi(ϕ ◦ θ(L))

ψ

Abstraction (⊆ Γ ∗)

Agent (L)

Abstraction (⊆ Γ ∗)
ϕ

Agent (M)

Clo(L)Agent (L)

Chi(M)

Chi(M)

θ

C′
hi(ϕ(M))

Clo(L)

Chi(M)
θ

Abstraction (M)

Agent (L)Clo(K)

Chi(N)Abstraction (N)

Agent (K)
θ|K

Abstraction (M)

Fig. 7. Composition of components and superposition of control

Let pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i be natural projections: pi(ε) := ε; pi(σ) := σ if
σ ∈ Σi; pi(σ) := ε if σ �∈ Σi; and pi(wσ) := pi(w)pi(σ) for w ∈ (Σ1 ∪ Σ2)

∗ and
σ ∈ Σ1 ∪ Σ2 (i = 1, 2). Then, C1(K1) ‖ C2(K2) = C(K1 ‖ K2), where Ki ⊆ Σ∗

i ,
Ci is a standard, locally definable control structure on Li (i = 1, 2) and C := C1 ‖ C2,
where pi ◦ C = Ci ◦ pi. Furthermore, pi ◦ C(L) = Ci(Li) for i = 1, 2 (see appendix E
in [30]).

Let θ : L → T ∗, where T = T1 ∪ T2 and θ := θ1 ‖ θ2, the synchroniza-
tion of θ1 and θ2 [25]. It can be verified that Chi(M1 ‖ M2) ⊆ θ(Clo(L1 ‖ L2)) if
Ci,hi(Mi) ⊆ θi(Ci,lo(Li)) (i = 1, 2). Furthermore, if θ−1

i (Mi,m) = Li,m (i = 1, 2),
then θ−1(M1,m ‖ M2,m) = L1,m ‖ L2,m. In accordance with the following proposi-
tion, the observer property is also preserved.

Proposition 5.1. (adaptation of some results in [25]) Let θi : Li → T ∗
i be a causal

reporter map on a closed languageLi overΣi (i = 1, 2), whereΣ1∩Σ2 = T1∩T2 = ∅.
Let L := L1 ‖ L2 be the interleaving between of L1 and L2 (L is a closed language
over Σ = Σ1 ∪Σ2). Let Hi ⊆ Li (i = 1, 2) and H := H1 ‖ H2. Suppose that θi is an
Hi–observer (i = 1, 2). Then θ : L → T ∗ is an H-observer, where T = T1 ∪ T2 and
θ := θ1 ‖ θ2, the synchronization of θ1 and θ2.

To show that the partner-freedom is preserved, it suffices to show that the control coin-
cidence is preserved (based on an argument used in the previous section). This can be
done in the particular case of the standard control technology defined by Equation 2,
since if θ−1

i,v (tτ) ⊆ Σ∗
i Σi,c and ω−1

i (τ) ⊆ Σ∗
iΣi,c, for all tτ ∈ Mi and τ ∈ Ti,c (i =

176 D. Côté, M.E. Jiague, and R. St-Denis

1, 2), then θ−1
v (tτ) ⊆ (Σ1∪Σ2)

∗(Σ1,c∪Σ2,c) and ω−1(τ) ⊆ (Σ1∪Σ2)
∗(Σ1,c∪Σ2,c),

for all tτ ∈ M1 ‖ M2 and τ ∈ T1,c ∪ T2,c, and ω : L1 ‖ L2 → T1 ∪ T2 ∪ {ε} defined
as follows:

ω(sσ) :=

{

ωi(pi(s)σ), if σ ∈ Σi and ωi(pi(s)σ)! (i = 1, 2)
undefined otherwise.

Finally, Clo = C1,lo ‖ C2,lo and Chi = C1,hi ‖ C2,hi as expected.

5.2 Vertical Aggregation without Additional Control

Three points must be considered in the vertical aggregation of components. First, the
design of an observer for the higher component in the vertical structure is done accord-
ingly with the procedure described in the previous section. It is denoted ϕ as shown in
Figure 7. By using the following proposition,ψ = ϕ◦θ is an observer for the aggregated
component.

Proposition 5.2. (lemma 5 in [31]) Let θ : L → T ∗ be a causal reporter map on a
closed language L over Σ and ϕ :M → Γ ∗ be a causal reporter map on M := θ(L).
Let H ⊆ L. Suppose that θ is anH–observer and ϕ is a θ(H)–observer. Then ψ : L→
Γ ∗ is an H-observer, where ψ := ϕ ◦ θ.

Second, the abstraction of the higher component is equipped with the standard control
technology in accordance with Equation 2, which implies control coincidence. Con-
sequently, weak control consistency and partner-freedom properties hold in this com-
ponent. Third, the consistency of marking is simply satisfied by defining the marked
languages appropriately. Therefore, from the two source components:

Chi(M) ⊆ θ(Clo(L)) and C′hi(ϕ(M)) ⊆ ϕ(Chi(M)) (weak control consistency),

which implies C′hi(ϕ(M)) ⊆ ϕ(Chi(M)) ⊆ ϕ ◦ θ(Clo(L));
θ−1(θ(Lm)) = θ−1(Mm) = Lm and ϕ−1(ϕ(Mm)) =Mm (consistency of marking); and

θ−1
v ◦κM ≤ κL ◦ θ−1 ◦ κM and ϕ−1

v ◦ κϕ(M) ≤ κM ◦ϕ−1 ◦ κϕ(M) (partner-freedom).

Thus, weak control consistency and consistency of marking properties are preserved in
the target component:

C′hi(ψ(L)) = C′hi(ϕ ◦ θ(L)) ⊆ ϕ ◦ θ(Clo(L)) = ψ(Clo(L));
Lm = θ−1(ϕ−1(ϕ(Mm))) = θ−1(ϕ−1(ϕ(θ(Lm)))) = θ−1(ϕ−1(ψ(Lm))) = ψ−1(ψ(Lm)).

Verifying the preservation of partner-freedom property requires more attention. Since
κM ◦ ϕ−1 ◦ κϕ(M) is the low-level implementation of the high-level synthesis (with
respect to the higher component) of some closed controllable language of ϕ(M) and
partner-freedom between L and M and between M and ϕ(M) holds, then

θ−1
v (κM ◦ ϕ−1 ◦ κϕ(M)) ≤ κL ◦ θ−1(κM ◦ ϕ−1 ◦ κϕ(M))

θ−1
v (ϕ−1

v ◦ κϕ(M)) ≤ θ−1
v (κM ◦ ϕ−1 ◦ κϕ(M)) ≤ κL ◦ θ−1(κM ◦ ϕ−1 ◦ κϕ(M))

Systems-Theoretic View of Component-Based Software Development 177

and since κM ◦ ϕ−1 ◦ κϕ(M) ≤ ϕ−1 ◦ κϕ(M),

θ−1
v (ϕ−1

v ◦ κϕ(M)) ≤ κL ◦ θ−1(κM ◦ ϕ−1 ◦ κϕ(M)) ≤ κL ◦ θ−1(ϕ−1 ◦ κϕ(M)).

Finally,

θ−1
v (ϕ−1

v ◦ κϕ(M)) ≤ κL ◦ θ−1(ϕ−1 ◦ κϕ(M))

(θ−1
v ◦ ϕ−1

v) ◦ κϕ(M) ≤ κL ◦ (θ−1 ◦ ϕ−1) ◦ κϕ(M)

ψ−1
v ◦ κϕ(θ(L)) ≤ κL ◦ ψ−1 ◦ κϕ(θ(L))
ψ−1
v ◦ κψ(L) ≤ κL ◦ ψ−1 ◦ κψ(L).

The preservation weak control consistency and partner-freedom properties should be
deduced from the preservation of the control coincidence property, since

θ−1(Chi(M)) ⊆ Clo(L) and ϕ−1(C′hi(ϕ(M))) ⊆ Chi(M) (control coincidence)

implies

ψ−1(C′hi(ψ(L))) = ψ−1(C′hi(ϕ ◦ θ(L))) = ψ−1(C′hi(ϕ(M))) = θ−1 ◦ ϕ−1(C′hi(ϕ(M)))

⊆ θ−1(Chi(M)) ⊆ Clo(L).
But, it has been shown that this assumption was unnecessary to establish the preserva-
tion of these two first properties.

It should be noted that no control is added during reabstraction. In fact the control
structure for the agent in the higher component is the same as the one for the abstraction
in the lower component.

5.3 Superposition of Control

In this case, the component has all the required properties (weak control consistency,
consistency of marking, observer and partner-freedom), but a nonblocking controllable
language N = κM (E) that belongs to Chi is selected to impose further control on the
abstraction, where E is a high-level specification. Thus, the control associated with N
in the lower level is K = κL ◦ θ−1(κM (E)). The control technology in the upper level
is clearly the same as the one for M . Therefore, the control coincidence property is
fulfilled. The only condition that remains to verify is that θ is a K-observer. Since the
partner-freedom property between M and L holds, then (L, θ) is strongly observable
with respect to X := {H ∈ Clo(L) | κL ◦ θ−1 ◦ θ(H) = H ∧ θ(H) ∈ Chi(M)},
the set of closed and controllable sublanguages that are supremal with respect to their
corresponding controllable high level languages, and since K ∈ X then we have that
θ|K is an observer (see the argumentation of proposition 16 in [32]).

6 Conclusion

The approach advocated in this paper suggests to apply SCT, in particular the hierar-
chical control variant, to component-based software development of complex systems.
If basic components are pairwise disjoint, satisfy control consistency, consistency of

178 D. Côté, M.E. Jiague, and R. St-Denis

marking, observer and partner-freedom properties, then the theory ensures that non-
blockingness is preserved during the composition of components or when further con-
trol is superposed to the original control. Furthermore, control can become explicit (and
be combined), which means that the controllability of specifications must be verified or,
even better, controllers can be synthesized.

Briefly, within the formal framework of the hierarchical variant of SCT, it seems to be
possible to build components that foster a design process that is correct by construction
(SCT synthesis procedures), is incremental in nature (localization of control), allows
abstraction (well-defined interfaces) and provides support for encapsulation through
abstract interfaces (abstraction rules), as in the framework of Gössler and Sifakis [11].
However, SCT being set in the context of general systems theory, it does not directly
account for heterogeneity of system architectures (synchronous vs asynchronous exe-
cution paradigm, atomic vs non-atomic interactions with or without strict synchroniza-
tion). In this sense the hierarchical variant of SCT is less flexible. One can contend
however, that given the presence of well-defined procedures for subsystems synthesis
and abstraction, this may still be worth careful examination. Nevertheless, it is endowed
with a fully associative and commutative composition operator that allows for combin-
ing components incrementally into larger subsystems. As long as the procedures (and
operators) for composition, synthesis and abstraction are used, one remains within the
framework with all its benefits. In particular this affords for building further compo-
nents by assembly of already abstract components from within the same framework,
incorporating the benefits of component reuse to the very process of component build-
ing. This opens the way to pyramidal hierarchies of abstract components, potentially
compounding the cost savings usually associated with reuse.

In CBSE with vertical and horizontal aggregation of components, an explicit im-
perative control flow mechanism is generally assumed, the service call. Thus control
actions are considered to propagate downwards from the top level through the use of
service calls performed on the aggregated components, hence control flows downward.
In the control theory of DES there is no such mechanism assumed. In a system, events
are considered to occur in no particular order or pattern, and control is exercised by
allowing or disallowing the occurrence of those events which can be prevented to occur
(the controllable events). Indeed, if a system is viewed as an aggregation of devices,
then system’s activities actually start from the devices themselves and the control flow
would seem to be reversed from that of a service call based model. One may wonder
if this situation could not invalidate a paradigm such as the one proposed in this paper:
implementation + control + interface. It appears not to be so. In the hierarchical con-
trol of DES, control does propagate downwards from the top level under the form of
constraints coming from beyond the local scope of an aggregated component (i.e., its
operating environment). Those environmental constraints are added to the local control
exercised by this component as further constraints for the component and eventually re-
layed down to the next level if required. Therefore everything happens as if there existed
a control flow running form the top down and the conceptual model is preserved despite
the lack of an explicit control flow mechanism. This situation means that programmers
must think carefully during the design process.

Systems-Theoretic View of Component-Based Software Development 179

The restriction concerning the alphabets of components (they must be pairwise dis-
joints) seems too restrictive. A richer model, which consists of a set of components, a set
of channels and links between the components and channels could be considered. Even
though such variants exist in the setting of SCT (e.g., [27]), substantial research effort
should be devoted to combine both variants. The formalism used to model BPEL pro-
cesses (automata) is another limitation, since BPEL is more expressive than automata.
The use of a richer formalism like Petri nets with well defined structural properties could
be used. Such restrictive assumptions are frequently made even though BPEL processes
are modeled with Petri nets (e.g., [23,21]). In these pieces of research formal methods
allow for verifying BPEL processes compatibility. Unfortunately, the term controllabil-
ity used in [21] has not the same meaning as the one usually given in SCT. Furthermore,
blockingness and control are not considered.

In the last decades a major preoccupation of the CBSE community was the defini-
tion of operators for combining components, based on process algebras, π-calculus or
category of coalgebras, as well as algebraic laws in order to specify properties being
satisfied by these operators. This aspect was not overlooked in this paper with respect
to the work presented in Section 5. This was done, however, in the perspective of a con-
trol theory hoping to bring the benefits of a formal specification of the control aspect of
components within the scope of the domain.

References

1. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Distributed adaptation of dining philoso-
phers. In: Pre-proceedings of 7th International Workshop on Formal Aspects of Component
Software, Guimarães Portugal, pp. 101–119 (2010)

2. Barbeau, M., Kabanza, F., St-Denis, R.: A method for the synthesis of controllers to han-
dle safety, liveness, and real-time constraints. IEEE Transactions on Automatic Control 43,
1543–1559 (1998)

3. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for
component-based systems and application. In: Cha, S., Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg
(2008)

4. Bherer, H., Desharnais, J., St-Denis, R.: Control of parameterized discrete event systems.
Discrete Event Dynamic Systems: Theory and Applications 19, 213–265 (2009)

5. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal component model. OW2 Consortium
technical report, version 2.0-3 (2004), http://Fractal.OW2.org

6. Broy, M.: A theory of system interaction: components, interfaces, and services. In: Goldin,
D., Smolka, S.A., Wegner, P. (eds.) Interactive Computation: the New Paradigm, pp. 41–96.
Springer, Heidelberg (2006)

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer,
New York (2008)

8. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer, Heidelberg (2007)

9. Côté, D.: Conception par composantes de contrôleurs d’usines modulaires utilisant la théorie
du contrôle supervisé. Ph.D. thesis, Département d’informatique, Université de Sherbrooke,
submitted (2011)

http://Fractal.OW2.org

180 D. Côté, M.E. Jiague, and R. St-Denis

10. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic reconfigura-
tions of components. In: Pre-proceedings of 7th International Workshop on Formal Aspects
of Component Software, Guimarães Portugal, pp. 121–138 (2010)

11. Gössler, G., Sifakis, J.: Composition for component-based modeling. Science of Computer
Programming 55, 161–183 (2005)

12. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of Petri net methods for controlled dis-
crete event systems. Discrete Event Dynamic Systems: Theory and Applications 7, 151–190
(1997)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 3rd edn. Addison-Wesley, Boston (2006)

14. Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems. Kluwer
Academic Publishers, Boston (1995)

15. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and Tool for Component-Based Model Driven
Development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 62–80.
Springer, Heidelberg (2010)

16. Lau, K.-K., Ornaghi, M., Wang, Z.: A Software Component Model and Its Preliminary For-
malisation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2005. LNCS, vol. 4111, pp. 1–21. Springer, Heidelberg (2006)

17. Lau, K.-K., Wang, Z.: Software component models. IEEE Transactions on Software Engi-
neering 33, 709–724 (2007)

18. Leduc, R.J., Brandin, B.A., Lawford, M., Wonham, W.M.: Hierarchical interface-based su-
pervisory control—part I: serial case. IEEE Transactions on Automatic Control 50, 1322–
1335 (2005)

19. Leduc, R.J., Lawford, M., Wonham, W.M.: Hierarchical interface-based supervisory
control—part II: parallel case. IEEE Transactions on Automatic Control 50, 1336–1348
(2005)

20. Leveson, N.G.: Engineering a safer world: system safety for the 21st century (or systems
thinking applied to safety). In: Aeronautics and Astronautics and Engineering Systems Divi-
sion. MIT, Cambridge (2009)

21. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-BPEL pro-
cesses using flexible model generation. Data & Knowledge Engineering 64, 38–54 (2008)

22. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE
Transactions on Automatic Control 51, 782–793 (2006)

23. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing compatibility of BPEL processes.
In: Proceedings of Advanced International Conference on Telecommunications and Inter-
national Conference on Internet and Web Applications and Services (AICT/ICIW), Guade-
loupe, French Caribbean, p. 147 (2006)

24. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
25. Pu, K.Q.: Modeling and control of discrete-event systems with hierarchical abstraction. Mas-

ter thesis, Department of Electrical and Computer Engineering, University of Toronto (2000)
26. Ramadge, P.J., Wonham, W.M.: Control of discrete event systems. Proceedings of the

IEEE 77, 81–98 (1989)
27. Santos, E.A.P., De Negri, V.J., Cury, J.E.R.: A computational model for supporting con-

ceptual design of automatic systems. In: Proceedings of 13th International Conference on
Engineering Design, Glasgow UK, pp. 517–524 (2001)

28. St-Denis, R.: Designing reactive systems: integration of abstraction techniques into a synthe-
sis procedure. The Journal of Systems and Software 60, 103–112 (2002)

29. Szyperski, C., Gruntz, D., Murer, S.: Component Software — Beyond Object-Oriented Pro-
gramming, 2nd edn. ACM Press and Addison-Wesley, New York (2002)

Systems-Theoretic View of Component-Based Software Development 181

30. Wong, K.C.: Discrete-event control architecture: an algebraic approach. Ph.D. thesis, De-
partment of Electrical Engineering, University of Toronto (1994)

31. Wong, K.C., Thistle, J.G., Malhamé, R.P., Hoang, H.-H.: Supervisory control of distributed
systems: conflict resolution. Discrete Event Dynamic Systems: Theory and Applications 10,
131–186 (2000)

32. Wong, K.C., Wonham, W.M.: Hierarchical control of discrete-event systems. Discrete Event
Dynamic Systems: Theory and Applications 6, 241–273 (1996)

33. Wong, K.C., Wonham, W.M.: On the computation of observers in discrete-event systems.
Discrete Event Dynamic Systems: Theory and Applications 14, 55–107 (2004)

Aspect Weaving in UML Activity Diagrams:

A Semantic and Algorithmic Framework

Djedjiga Mouheb, Dima Alhadidi, Mariam Nouh, Mourad Debbabi,
Lingyu Wang1, and Makan Pourzandi2

1 Computer Security Laboratory
Concordia Institute for Information Systems Engineering

Concordia University
Montreal, Canada

{d mouheb,dm alhad,m nouh,debbabi,wang}@encs.concordia.ca
2 Ericsson Canada Inc.

Montreal, Canada
makan.pourzandi@ericsson.com

Abstract. Aspect-Oriented Modeling (AOM) is an emerging solution
for handling crosscutting concerns at the software modeling level in or-
der to reduce the complexity of software models and application code.
Most existing work on weaving aspects into UML design models is pre-
sented from a practical perspective and lacks formal syntax and seman-
tics. In this paper, we propose formal specifications for aspect weaving
into UML activity diagrams and the implementation strategies of the
proposed weaving semantics. To this end, we define syntax for activ-
ity diagrams and UML aspects. We also show the correctness and the
completeness of the matching and the weaving processes in terms of the
semantics and the algorithms provided in this paper. Finally, we demon-
strate the viability and the relevance of our propositions using a case
study.

Keywords: Aspect-OrientedModeling (AOM), UML Activity Diagram,
Weaving, Operational Semantics.

1 Introduction

Dealing with crosscutting concerns, such as logging and synchronization, is a
major challenge in the development of software systems. In this respect, Aspect-
Oriented Programming (AOP) is an appealing approach that allows the sepa-
ration of crosscutting concerns from the software core functionality [15]. Due
to the increasing interest, AOP has recently stretched over earlier stages of the
software development life-cycle. Aspect-Oriented Modeling (AOM) [9] applies
aspect-oriented techniques to software models with the aim of modularizing
crosscutting concerns. Indeed, handling those concerns at the modeling level
would significantly help in alleviating the complexity of software models and
application code. Additionally, it reduces development costs and maintenance
time.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 182–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aspect Weaving in UML Activity Diagrams 183

Most of the contributions [10, 12, 21, 13, 11, 20, 17] that have explored aspect
weaving into UML design models are presented from a practical perspective. The
research proposals that have handled the theoretical foundations in this area are
still behind practical implementation ones. Accordingly, there is a desideratum
to provide such foundations that are important to offer complete and rigorous
definitions for better understandability, to establish theoretical properties, and to
facilitate mathematical reasoning. In this paper, we propose formal specifications
for aspect weaving in UML activity diagrams and the implementation strategies
of the proposed weaving semantics. We focus on activity diagram [8] typically
used to model business processes and operational workflows of systems.

The concepts of our defined AOM approach are similar to the ones of AOP,
namely, adaptations, join points, and pointcuts. An adaptation specifies the mod-
ification to be performed on the base model. A join point is a location in the
base model where an adaptation should be applied. A pointcut is an expression
that designates a set of join points. Our definition of adaptations and pointcuts
is completely based on UML constructs. We support two types of adaptations:
(1) add adaptations, which add new behaviors to activity diagrams before, after,
or around specific join points, and (2) remove adaptations, which delete existing
behaviors from activity diagrams. The novelty of our join point model is that it
considers not only executable nodes, i.e., action nodes, but also various control
nodes, i.e., initial, final, flow final, fork, join, decision and merge nodes. Captur-
ing such control nodes allows modeling crosscutting concerns needed with alter-
natives, loops, exceptions, and multithreaded applications. On the other hand,
the main advantage of the design and the implementation over existing practi-
cal efforts [10, 12, 21, 13, 11, 20, 17] is the use of the Object Constraint Language
(OCL) [6] for join point matching due to its expressiveness and conformance
to UML. This language is a declarative one for describing rules that apply to
UML models. Furthermore, we choose Query/View/Transformation (QVT) lan-
guage [5] for weaving since it is an OMG standard compatible with UML and
supports a large set of modifications on UML models. Employing OCL and QVT,
which are standard languages, enables the portability and the expressiveness of
the proposed weaver.

The main contributions of this paper are three fold. First, we formalize se-
mantics and algorithms for matching and weaving in UML activity diagrams.
For this reason, syntax for activity diagrams together with syntax for UML as-
pects are defined. Second, We show the correctness and the completeness of the
matching and weaving processes with respect to the semantics and algorithms.
Third, we present implementation strategies of the weaving capabilities accord-
ing to the proposed semantics. To explore the viability and the relevance of the
defined approach, a case study is developed.

The remainder of this paper is structured as follows. Section 2 presents the
syntax of UML activity diagrams and aspects. In Section 3, we define formal
semantics for aspect matching and weaving. A correctness and a completeness
analysis is presented in Section 4. Afterwards, we explain the implementation
strategies of UML weaving capabilities in Section 5. A case study is conducted

184 D. Mouheb et al.

in Section 6. We discuss the related work in Section 7. Concluding remarks as
well as future work are represented in Section 8.

2 Syntax

This section presents the syntax of UML activity diagrams and aspects. The
proposed syntax covers all the constructs that are required for the weaving se-
mantics. This semantics describes how to inject adaptations at specific locations
in the activity diagrams. First, we introduce the following notations that will be
used throughout this paper.

Notation

– The algorithms and notations are written with respect to the OCaml nota-
tions [1].

– Given a record space D = 〈f1 : D1, f2 : D2, . . . , fn : Dn〉 and an element e
of type D, the access to the field fi of an element e is written as e.fi.

– Given a type τ , we write τ-set to denote the type of sets having elements
of type τ .

– Given a type τ , we write τ-uset to denote the type of sets having a unary
element of type τ .

– Given a type τ , we write τ-list to denote the type of lists having elements
of type τ .

– The type Identifier classifies identifiers.

2.1 Activity Diagram Syntax

An activity diagram, as shown in Fig. 1, consists of a set of nodes and a set
of edges. An edge is a directed connection between two nodes represented by
source and target. In addition, an edge may have a guard condition specifying
if the edge can be traversed. A node can be either an executable node (e.g.,
action, structured activity) or a control node (e.g., initial, final). We consider
the following nodes:

– Initial: represents an initial node at which the activity starts executing. It
has one outgoing edge and no incoming edges.

– Final: represents a final node that can be either: (1) an activity final, at
which the activity execution terminates, or (2) a flow final, at which a flow
terminates. It has one incoming edge and no outgoing edges.

– Action: represents an action node. It has one incoming and one outgoing
edge.

– Fork/Decision: represent fork and decision nodes. Both have one incoming
edge and multiple outgoing edges.

– Join/Merge: represent join and merge nodes. Both have one outgoing edge
and multiple incoming edges.

– StructuredActivity: represents a structured activity node, which may have in
turn its own nodes and edges. It has one incoming and one outgoing edge.

Aspect Weaving in UML Activity Diagrams 185

Activity ::= 〈name:Identifier,
nodes:Node-set,
edges:Edge-set〉

Node ::= Initial | Final |
Action |
ForkDecision |
JoinMerge |
Structured

Initial ::= 〈type:initial,
name:Identifier,
outgoing:Edge-uset〉

Final ::= 〈type:final | flowfinal,
name:Identifier,
incoming:Edge-uset〉

Action ::= 〈type:action,
name:Identifier,
incoming:Edge-uset,
outgoing:Edge-uset〉

ForkDecision::= 〈type:fork | decision,
name:Identifier,
incoming:Edge-uset,
outgoing:Edge-set〉

JoinMerge ::= 〈type:join | merge,
name:Identifier,
incoming:Edge-set,
outgoing:Edge-uset〉

Structured ::= 〈type:structuredactivity,
name:Identifier,
incoming:Edge-uset,
outgoing:Edge-uset,
nodes:Node-set,
edges:Edge-set〉

Edge ::= 〈name:Identifier,
source:Node,
target:Node,
guard:true | false〉

Fig. 1. Activity Diagram Syntax

2.2 Aspect Syntax

An aspect, as depicted in Fig. 2, includes a list of adaptations. An adaptation
can be of two kinds:

– Add adaptation: includes the following:

• The activity element to be injected at specific locations picked out by
pointcuts. It can be either a basic element (action) or a composed element
(structured activity).
• The insertion point that specifies where the activity element should be
injected according to a specific location. It can have the following three

Aspect ::= Adaptation-list (Aspect)
Adaptation ::= 〈kind: add, (Adaptations)

elem: Action | Structured,
pos: before | after | around,
pcd: Pcd〉

| 〈kind: remove,
pcd: Pcd〉

Pcd ::= true (Pointcuts)
| ¬p
| p ∧ p

| 〈kind: initial | final | flowfinal | action | fork
| join | decision | merge | inside activity,

name: Identifier〉

Fig. 2. Aspect Syntax

186 D. Mouheb et al.

values: before, after, and around. A before- (resp. after-) position means
that the new element should be added before (resp. after) the identified
location, while an around-position means that the existing element at
the identified location should be replaced with a new one.

– Remove adaptation: includes a pointcut that picks out the elements that
should be removed from the activity diagram.

A pointcut specifies a set of join points in the activity diagram where the aspect
adaptations should be applied. We consider the following kinds of basic point-
cuts: initial, final, flowfinal, action, fork, join, decision, merge, and
inside activity. These basic pointcuts can be combined with logical operators
to produce more complex ones.

3 Matching and Weaving Semantics

In this section, we present the matching and the weaving semantics in activity
diagrams. The matching semantics describes how to identify the join points
targeted by the activity adaptations. The weaving semantics describes how to
apply the activity adaptations at the identified join points.

3.1 Matching Semantics

We define the judgmentA, n �match pcd, , which is used in the matching semantic
rules presented in Fig. 3, to describe that a node n belonging to the activity A
matches the pointcut pcd. A node n can be an initial node i, an activity final
node af, a flow final node ff, an action node a, a fork node f , a join node j, a
decision node d, a merge node m, or either of these nodes sn. In the following,
we explain the matching semantic rules:

pcd.kind = initial pcd.name = i.name

A, i �match pcd

pcd.kind = final pcd.name = af .name

A, af �match pcd

pcd.kind = flowfinal pcd.name = ff .name

A,ff �match pcd

pcd.kind = action pcd.name = a.name

A, a �match pcd

pcd.kind = fork pcd.name = f.name

A, f �match pcd

pcd.kind = join pcd.name = j.name

A, j �match pcd

pcd.kind = decision pcd.name = d.name

A, d �match pcd

pcd.kind = merge pcd.name = m.name

A,m �match pcd

pcd.kind = inside activity pcd.name = A.name

A, sn �match pcd

A, n �match pcd1 A, n �match pcd2

A, n �match pcd1 ∧ pcd2

A, n �match pcd1

A, n �match pcd1 ∨ pcd2

A, n �match pcd2

A, n �match pcd1 ∨ pcd2

A, n �match pcd

A, n �match ¬pcd

Fig. 3. Matching Semantics

Aspect Weaving in UML Activity Diagrams 187

Initial Describes the case where the current node is an initial node, the current
pointcut is an initial one, and the pointcut name equals the node name. In
such a case, the initial node matches the pointcut.

Final Describes the case where the current node is an activity final node, the
current pointcut is a final one, and the pointcut name equals the node name.
In such a case, the activity final node matches the pointcut.

FlowFinal Describes the case where the current node is a flow final node, the
current pointcut is a flow final one, and the pointcut name equals the node
name. In such a case, the flow final node matches the pointcut.

Action Describes the case where the current node is an action node, the current
pointcut is an action one, and the pointcut name equals the node name. In
such a case, the action node matches the pointcut.

Fork Describes the case where the current node is a fork node, the current point-
cut is a fork one, and the pointcut name equals the node name. In such a
case, the fork node matches the pointcut.

Join Describes the case where the current node is a join node, the current point-
cut is a join one, and the pointcut name equals the node name. In such a
case, the join node matches the pointcut.

Decision Describes the case where the current node is a decision node, the current
pointcut is a decision one, and the pointcut name equals the node name. In
such a case, the decision node matches the pointcut.

Merge Describes the case where the current node is a merge node, the current
pointcut is a merge one, and the pointcut name equals the node name. In
such a case, the merge node matches the pointcut.

InsideActivity Describes the case where the current node is a sn node, i.e., ini-
tial, final, flow final, action, fork, join, decision, or merge node, the current
pointcut is an inside activity one, and the pointcut name equals the name
of the activity containing the node. In such a case, the sn node matches the
pointcut.

And, Or1, Or2, and Not Describe the cases where pointcuts are combined us-
ing logical operators to produce more complex ones.

3.2 Weaving Semantics

The weaving semantics presented in Fig. 4 is represented by the weaving con-
figuration 〈Activity ,Aspect ,Node, State〉. The state State is a flag that repre-
sents the stage of the adaptation weaving process, which is either weaving or
end. The flag is equal to weaving when adaptations still have to be woven
whereas it becomes end when the weaving is completed. Hence, the transforma-
tion 〈A, s, n, weaving〉 ↪→ 〈A′, [], n′, end〉 means that the activity diagram A′ is
the result of weaving all the applicable adaptations in the adaptation list s into
the node n. Before presenting the weaving rules, we define a function builtEdge

that takes two nodes as inputs and returns an edge between these two nodes:

builtEdge : Node × Node → Edge

builtEdge(s, t) = e where (e.source = s) ∧ (e.target = t)

188 D. Mouheb et al.

s = ad :: s′ ad.kind = add ad.pos = before n.type �= initial

A, n �match ad.pcd es = n.incoming e ∈ es e.target = ad.elem

e′ = builtEdge(ad.elem, n) ad′ = {ad with elem.incoming = e, elem.outgoing = e′}
n′ = {n with incoming = (es\{e}) ∪ {e′}} no = A.nodes ed = A.edges

A′ = {A with nodes = (no\{n}) ∪ {n′, ad′.elem}, edges = ed ∪ {e′}}
〈A, s, n, weaving〉 ↪→ 〈A′, s′, n′, weaving〉

(Before)

s = ad :: s′ ad.kind = add ad.pos = after n.type �= final n.type �= flowfinal

A, n �match ad.pcd os = n.outgoing e ∈ os next = e.target

e′ = builtEdge(ad.elem, next) e.target = ad.elem

ad′ = {ad with elem.incoming = e, elem.outgoing = e′} es = next.incoming

next.incoming = (es\{e}) ∪ {e′} no = A.nodes ed = A.edges

A′ = {A with nodes = no ∪ {ad′.elem}, edges = ed ∪ {e′}}
〈A, s, n, weaving〉 ↪→ 〈A′, s′, n, weaving〉

(After)

s = ad :: s′ ad.kind = add ad.pos = around n.type = action

A, n �match ad.pcd e ∈ n.incoming e′ ∈ n.outgoing e.target = ad.elem

e′.source = ad.elem no = A.nodes ad′ = {ad with elem.incoming = e,

elem.outgoing = e′} A′ = {A with nodes = (no\{n}) ∪ {ad′.elem}}
〈A, s, n, weaving〉 ↪→ 〈A′, s′, ad′.elem, weaving〉

(Around)

s = ad :: s′ ad.kind = remove n.type = action A, n �match ad.pcd

e ∈ n.incoming e′ ∈ n.outgoing next = e′.target e.target = next

no = A.nodes ed = A.edges es = next.incoming

next.incoming = (es\{e′}) ∪ {e} A′ = {A with nodes = no\{n}, edges = ed\{e′}}
〈A, s, n, weaving〉 ↪→ 〈A′, s′, next, weaving〉

(Remove)

s = ad :: s′ A, n �match ¬ ad.pcd

〈A, s, n, weaving〉 ↪→ 〈A, s′, n, weaving〉
(NoMatch)

s = []

〈A, s, n, weaving〉 ↪→ 〈A, [], n, end〉
(End)

Fig. 4. Weaving Semantics

Before Describes the case where an add and a before adaptation matches a
specific node. This adaptation can be applied before this matched node unless
it is an initial node since this node starts the activity execution. The activity
element of the adaptation is inserted before the matched node.

After Describes the case where an add and an after adaptation matches a specific
node. This adaptation can be applied after this matched node unless it is a
final node or a flow final node since those nodes terminate the activity exe-
cution. The activity element of the adaptation is inserted after the matched
node.

Around Describes the case where an add and an around adaptation matches a
specific node. This adaptation can be applied just around matched action
nodes. The activity element of the adaptation supersedes the matched node.

Aspect Weaving in UML Activity Diagrams 189

Remove Describes the case where a remove adaptation matches a specific node.
This adaptation can be applied just on matched action nodes. The matched
node is deleted from the activity diagram.

NoMatch Describes the case where the current adaptation pointcut does not
match a node n. In this case, the activity diagram remains the same and the
weaving process continues with the rest of the adaptations.

End describes the case where there are no more adaptations to apply on the
activity diagram. In this case, the activity diagram remains the same and
the weaving process terminates.

4 Completeness and Correctness of the Weaving

In this section, we address the correctness and the completeness of the weav-
ing in UML activity diagrams. We first present algorithms that implement the
matching and the weaving semantics reported in the rules in Fig. 3 and Fig. 4
respectively. Since the semantics in general is syntax-directed, it is a well-known
fact that it can be turned into algorithms. Accordingly, the proofs of the cor-
rectness and the completeness of the matching and weaving processes according
to the provided semantics and algorithms are straightforward and we choose to
omit them for space limitation.

The matching algorithmM is presented in Fig. 5. It takes three arguments:
an activity diagram A, a node n, and a pointcut pcd. It returns true if the node n
matches the pointcut pcd and it returns false otherwise. The weaving algorithm
W is presented in Fig. 6. It takes three arguments: an activity diagram A, an
adaptation list s, and a node n. The outcome of the weaving algorithm is an
activity diagram A′ that represents the woven diagram.

M(A, n, pcd) = case pcd.kind of

inside activity ⇒ if n.type ∈ {initial,final,flowfinal,
action,fork,join,decision,merge} then

pcd.name = A.name

initial| final| flowfinal|
action| fork| join| decision| merge ⇒ if n.type= pcd.kind then

n.name = pcd.name

Fig. 5. Matching Algorithm

Lemma 1. (Soundness of M). Given an activity diagram A, an activity node
n, and a pointcut pcd. IfM(A, n, pcd) then A, n �match pcd.

Proof. The proof of Lemma 1 is straightforward since the algorithmM results
from the rules presented in Fig. 3.

Lemma 2. (Completeness of M). Given an activity diagram A, an activity
node n, and a pointcut pcd. If A, n �match pcd then M(A, n, pcd).

190 D. Mouheb et al.

Proof. The proof of Lemma 2 is straightforward since the algorithmM results
from the rules presented in Fig. 3.

Theorem 1. (Soundness of W). Given an activity diagram A, an adaptation
list s, and a node n. IfW(A, s, n)=A′′ then 〈A, s, n, weaving〉 ↪→ 〈A′′, [], n′′, end〉.
Proof. The proof of Theorem 1 is straightforward since the algorithmW results
from the rules presented in Fig. 4.

Theorem 2. (Completeness ofW). Given an activity diagram A, an adaptation
list s, and a node n.
If 〈A, s, n, weaving〉 ↪→ 〈A′′, [], n′′, end〉 then W(A, s, n)=A′′.

Proof. The proof of Theorem 2 is straightforward since the algorithmW results
from the rules presented in Fig. 4.

5 Design and Implementation

We design and implement the weaving features that are inspired from the de-
fined semantics as a plug-in to the IBM Rational Software Modeler tool (RSM
v7.5.2) [14]. The steps and the technologies that are followed to implement the
weaving capabilities are presented in Fig. 7. The implemented weaving process is
organized into three main steps: (1) aspects specialization, (2) join point match-
ing, and (3) weaving. In the following, we explain each of these steps.

5.1 Aspect Specialization

For the purpose of reuse, aspects are designed as generic templates representing
crosscutting concerns independently of the application specificities. Since generic
pointcuts have no concrete specification, an aspect needs to be specialized to a
specific application before it can be woven into base models. To this end, we
provide a weaving interface that exposes the generic pointcuts to the developer.
From this weaving interface and based on his/her understanding of the applica-
tion, the developer has the possibility of mapping each generic element of the
aspect to its corresponding element(s) in the base model. After mapping all the
generic elements, the application-dependent aspect is automatically generated
by the defined framework.

5.2 Matching

During the matching, the join points where aspect adaptations should be applied
are automatically selected from the base model. The targeted join points are ac-
tions and control nodes. In order to identify and match join points, we translate
the pointcuts of the application-dependent aspect into a language that can easily
navigate the activity diagram and query its elements. We choose Object Con-
straint Language (OCL) [6] due to its expressiveness and conformance to UML.

Aspect Weaving in UML Activity Diagrams 191

W(A, s, n) = case s of

ad :: s′ ⇒ if M(A, n, ad.pcd) then

case ad.kind of

add ⇒ case ad.pos of

before ⇒ if n.type �= initial && e ∈ n.incoming then

let es = n.incoming

e.target = ad.elem

e′ = builtEdge(ad.elem, n)

ad′ = {ad with elem.incoming = e, elem.outgoing = e′}
n′ = {n with incoming = (es\{e}) ∪ {e′}}
no = A.nodes

ed = A.edges

A′ = {A with nodes = (no\{n}) ∪ {n′, ad′.elem}, edges = ed ∪ {e′}}
in W(A′, s′, n′)

after ⇒ if n.type �= final && n.type �= flowfinal && e ∈ n.outgoing then

let os = n.outgoing

next = e.target

e′ = builtEdge(ad.elem, next)

e.target = ad.elem

ad′ = {ad with elem.incoming = e, elem.outgoing = e′}
es = next.incoming

next.incoming = (es\{e}) ∪ {e′}
no = A.nodes

ed = A.edges

A′ = {A with nodes = no ∪ {ad′.elem}, edges = ed ∪ {e′}}
in W(A′, s′, n)

around ⇒ if n.type = action && e ∈ n.incoming && e′ ∈ n.outgoing then

let e.target = ad.elem

e′.source = ad.elem

no = A.nodes

ad′ = {ad with elem.incoming = e, elem.outgoing = e′}
A′ = {A with nodes = (no\{n}) ∪ {ad′.elem}}

in W(A′, s′, ad′.elem)

remove ⇒ if n.type = action && e ∈ n.incoming && e′ ∈ n.outgoing then

let next = e′.target

e.target = next

no = A.nodes

ed = A.edges

es = next.incoming

next.incoming = (es\{e′}) ∪ {e}
A′ = {A with nodes = no\{n}, edges = ed\{e′}}

in W(A′, s′, next)

else W(A, s′, n)

[] ⇒ A

Fig. 6. Weaving Algorithm

192 D. Mouheb et al.

Transformation

Engine

Adaptation Pointcut OCL Pointcut

Adaptation

Rule Generation

Parsing and OCL

Generation

Matching

Base Model

Matched Join

Points

QVT Transformation

Rules

Woven Model

Fig. 7. Overview of the Weaving Process

In this context, we use CUP parser generator for Java [2] for translating point-
cuts into OCL. This tool takes as inputs: (1) the grammar of pointcuts along
with the actions required to translate each basic pointcut into its corresponding
OCL expression, and (2) a scanner used to break the pointcut expression into
meaningful tokens. It provides as output a parser that is capable of parsing and
translating any pointcut expression into its equivalent OCL one.

Once the OCL expressions are generated, a join point matching module is
called to evaluate them on the activity diagram elements. This module takes an
OCL expression along with an activity element as inputs and generates a query
that will evaluate the given expression on that element according to the matching
semantics presented in Fig. 3. The result is a boolean value representing whether
the element is a matched join point or not.

5.3 Weaving

During the weaving, aspect adaptations are automatically applied on the base
model at the matched join points. We implement aspect weaving into activity
diagrams as a model-to-model transformation. The latter is the process of gener-
ating target model(s) from source model(s). In our framework, the source models
of the transformation are the base model and the specialized aspect model, and
the target model is the woven model. We choose Query/View/Transformation
(QVT) language [5] as the transformation language since it is an OMG stan-
dard compatible with UML and supports a large set of modifications on UML

Aspect Weaving in UML Activity Diagrams 193

models. We implement the weaving capabilities using the Eclipse implementa-
tion of the QVT standard: QVT Operational (QVTO) [3] that we installed on
top of Rational Software Modeler.

Typically, a model-to-model transformation consists of a set of transformation
rules, also called mapping rules, which are used to describe how each element in
the source model is transformed in the target model. The adopted implementa-
tion methodology consists of first translating each adaptation into its equivalent
QVT mapping rule. This is done by identifying the type of adaptation, whether
it is an add adaptation or a remove adaptation, and the position of the adap-
tation, whether it is before, after, or around. This implementation depends on
the defined weaving semantics presented in Fig. 4. Once the appropriate QVT
mapping rules are identified and the join points where to perform the weav-
ing are determined, the QVTO transformation engine executes the appropriate
mapping rules on the identified join points and produces as a result the woven
activity diagram.

6 Case Study: Adding Authorization to
SIP-Communicator

SIP-Communicator [7] is an open source software that provides internet-based
audio/video telephony and instant messaging services. It is composed of more
than 1400 Java classes and 150K lines of code based on the version 1.0. We
present next how to add an authorization mechanism into the design models
of SIP-Communicator to allow communication between only authorized clients
using our framework.

The activity diagram presented in Fig. 8 depicts the specification of sending
an instant message using SIP protocol. The action named SendRequest that in-
vokes the method sendRequest() is responsible for sending a request message.
This method is being called in 32 different places inside functions implementing
the operations of SIP communicator, i.e., instant messaging, telephony, pres-
ence, notification, etc. The activity diagram, presented in Fig. 8, is an example
showing just one occurrence of this method call. An authorization mechanism is
required before any execution of the action SendRequest. For this purpose, we
catch all the SendRequest actions in the design models and automatically inject
the authorization mechanism into the appropriate locations using our defined
framework.

The authorization aspect presented in Fig. 9 is designated using our defined
UML extension for Aspect-Oriented Modeling [18]. It is based on Role-Based Ac-
cess Control (RBAC) security model [19], which is an approach to restricting sys-
tem access to authorized users. The authorization aspect specifies the addition of
an access control behavior that checks client permissions based on the informa-
tion contained in a message request. This is accomplished by defining the adap-
tation AddCheckPermission that specifies to inject the authorization behavior

194 D. Mouheb et al.

Fig. 8. Activity Diagram for Sending an Instant Message - Base Model

Fig. 9. Authorization Aspect

Aspect Weaving in UML Activity Diagrams 195

as a structured activity node before any call to a sensitive method picked out
by the pointcut SensitiveMethod. This aspect is application-independent and
must be specialized by the developer.

The first step of the weaving is to specialize the authorization aspect to the
base model depicted in Fig. 8. Through a graphical weaving interface, the de-
veloper maps each abstract element of the aspect to its corresponding element
in the base model. In this experiment, the developer maps the abstract method
SensitiveMethod to the method sendRequest as shown in Fig. 10. After this
step, the application-dependent aspect is automatically generated. Its specifi-
cation is similar to the application-independent one except for the pointcut
SensitiveMethod that will have the value call(sendRequest).

Fig. 10. Specialization of the Authorization Aspect

The next step of the weaving is the automatic identification of the join points
where the check permission behavior shown in Fig. 9 should be injected. To
achieve this, we first translate the textual expression of the pointcut
SensitiveMethod to OCL. The resulting OCL expression is as follows:

self.oclIsTypeOf(CallOperationAction) and self.operation.name=“sendRequest”

The evaluation of this OCL expression by the join point matching module re-
turns as join points all the call operation actions that are invoking the method
sendRequest. For instance, in the example of Fig. 8, the action SendRequest

will be selected as matched join point. The last step of the weaving is the au-
tomatic injection of the check permission behavior into the base model at the
identified join points. This is achieved by executing the QVT mapping rule that
corresponds to the adaptation AddCheckPermission shown in Fig. 9. Finally,
the resulting woven model for sending an instant message is generated as shown
in Fig. 11.

196 D. Mouheb et al.

Fig. 11. Sending an Instant Message with Authorization - Woven Model

Aspect Weaving in UML Activity Diagrams 197

7 Related Work

Various practical approaches have been proposed for weaving aspects into dif-
ferent kinds of UML diagrams. In the following, we present an overview of these
contributions.

The most relevant contribution is the one presented by Cui et al. [10] for
modeling and integrating aspects with UML activity diagrams. Compared to
this contribution that supports only adding new elements before and after the
matched join points, our framework considers also replacing existing elements by
new ones and removing elements. In addition, control nodes are also considered as
join points. Algorithms for matching and weaving are provided in [10]. However,
there is no formal semantics for these processes.

Fuentes and Sánchez [12] have proposed a model weaver for aspect-oriented
executable UML models. Advice pieces are modeled as activity diagrams and
injected into the base model as structured activities. Pointcuts are specified using
sequence diagrams and intercept only observable behaviors such as sending and
receiving of messages. This weaver supports adding new behaviors before, after,
and around join points, but does not support removing behaviors. The weaving is
performed on the XMI representation of the models using XSLT transformations.
Therefore, the graphical representation of the woven model is not supported.

Zhang et al. [21] have presented Motorola WEAVR; a tool for weaving aspects
into executable UML state machines. This weaver supports only two types of join
points that are action and transition. It is implemented on top of the Telelogic
TAU G2. Accordingly, it is tool-dependent and not portable.

Groher and Voelter [13] have presented XWeave; a weaver that supports
the weaving of models and meta-models. This weaver is implemented follow-
ing a model-to-model transformation approach using the openArchitectureWare
framework. Compared to our framework, this weaver is limited only to the addi-
tion of new elements to the base model. It does not support removing or replacing
existing elements.

Morin et al. have presented GeKo [17] that supports weaving of class, state
machine, and sequence diagrams. The weaving is implemented as model trans-
formations using Kermeta language [4]. The GeKo approach is based on the
definition of mappings between the pointcut and the base model, and the point-
cut and the advice. From these mappings, the elements to be added, deleted, or
replaced are identified.

Whittle et al. [20] have developed MATA, a tool for modeling and composing
UML models based on graph transformations. MATA supports weaving aspects
into class, sequence, and state machine diagrams. In contrast to our approach, in
MATA there are no explicit join points; any model element can be a join point.
The weaving is implemented as graph transformation rules. Accordingly, both
aspect and based models need to be transformed into graphs. After the weaving,
the result is transformed back to a UML model.

Klein et al. [16] have proposed a semantic-based weaving algorithm for hierar-
chial message sequence charts, a formalism similar to UML sequence diagrams.
The weaving algorithm is implemented as a set of transformations. The matching

198 D. Mouheb et al.

process consists of transforming the original model in such a way that pointcuts
only match a finite number of paths. Similar to our approach, they support
adding, replacing, and removing behaviors.

8 Conclusion and Future Work

We have presented in this paper a formal and practical framework for aspect
weaving in UML activity diagrams. In this respect, syntax of activity diagrams
together with their corresponding adaptations have been defined to express the
matching and weaving semantics. Afterwards, we have proved the correctness
and the completeness of the matching and weaving algorithms with respect to the
defined semantics. At the end, we presented the methodology that we followed
to implement the matching and weaving rules together with a case study that
demonstrates the viability and the relevance of our framework. By adopting
the standard OCL for evaluating the pointcuts, our approach is generic enough
to specify a wide set of pointcut expressions covering various activity diagram
elements. The adoption of the standard QVT for implementing the weaving rules
extends portability of the designed weaver to all tools supporting QVT language
beyond current implementation in RSA. As a future work, we plan to extend
the weaving semantics to include other UML diagrams, such as, class diagrams,
sequence diagrams, and state machine diagrams.

References

1. OCaml for Scientists (2010), http://caml.inria.fr/pub/docs/manual-ocaml
2. CUP: LALR Parser Generator for Java (2010),

http://www2.cs.tum.edu/projects/cup/

3. Eclipse QVT Operational (2010),
http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml

4. Kermeta (2010), http://www.kermeta.org/
5. MOF Query/View/Transformation, Version 1.0. (2010),

http://www.omg.org/spec/QVT/1.0/

6. Object Constraint Language, Version 2.2.(2010),
http://www.omg.org/spec/OCL/2.2/

7. SIP Communicator Web site (2010), http://sip-communicator.org/
8. Unified Modeling Language (OMG UML): Superstructure, Version 2.2 (2010),

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

9. Aspect-Oriented Modeling Workshop Web site (2010),
http://www.aspect-modeling.org/

10. Cui, Z., Wang, L., Li, X., Xu, D.: Modeling and Integrating Aspects with UML Ac-
tivity Diagrams. In: Shin, S.Y., Ossowski, S. (eds.) Proceedings of the Symposium
on Applied Computing (SAC), pp. 430–437. ACM, New York (2009)

11. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach for Auto-
matic Model Composition. In: Proceedings of the Workshop on Aspect-Oriented
Modeling, pp. 7–15. Springer, Heidelberg (2007)

12. Fuentes, L., Sánchez, P.: Designing and Weaving Aspect-Oriented Executable UML
Models. Journal of Object Technology 6(7), 109–136 (2007)

http://caml.inria.fr/pub/docs/manual-ocaml
http://www2.cs.tum.edu/projects/cup/
http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml
http://www.kermeta.org/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/OCL/2.2/
http://sip-communicator.org/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.aspect-modeling.org/

Aspect Weaving in UML Activity Diagrams 199

13. Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: Proceedings
of the Workshop on Aspect-Oriented Modeling, pp. 35–40. ACM, New York (2007)

14. IBM-Rational Software Modeler (2010),
http://www.ibm.com/software/awdtools/modeler/swmodeler/

15. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

16. Klein, J., Hélouët, L., Jézéquel, J.M.: Semantic-Based Weaving of Scenarios. In:
Proceedings of the International Conference on Aspect-Oriented Software Devel-
opment (AOSD), pp. 27–38. ACM, New York (2006)

17. Morin, B., Klein, J., Barais, O., Jézéquel, J.: A Generic Weaver for Supporting
Product Lines. In: Proceedings of the Workshop on Software Architectures and
Mobility (EA), pp. 11–18. ACM, New York (2008)

18. Mouheb, D., Talhi, C., Nouh, M., Lima, V., Debbabi, M., Wang, L., Pourzandi,
M.: Aspect-Oriented Modeling for Representing and Integrating Security Concerns
in UML. In: Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds.) SERA
2010. SCI, vol. 296, pp. 197–213. Springer, Heidelberg (2010)

19. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST Model for Role-Based Access Con-
trol: Towards A Unified Standard. In: Proc. of the ACM workshop on Role-Based
Access Control, pp. 47–63 (2000)

20. Whittle, J., Jayaraman, P.: Mata: A Tool for AOM Based on Graph Transfor-
mation. In: Proceedings of the Aspect-Oriented Modeling Workshop, pp. 16–27.
Springer, Heidelberg (2007)

21. Zhang, J., Cottenier, T., Berg, A., Gray, J.: Aspect Composition in the Motorola
Aspect-Oriented Modeling Weaver. Journal of Object Technology. Special Issue on
Aspect-Oriented Modeling 6(7), 89–108 (2007)

http://www.ibm.com/software/awdtools/modeler/swmodeler/

Using Temporal Logic for

Dynamic Reconfigurations of Components

Julien Dormoy1, Olga Kouchnarenko1, and Arnaud Lanoix2

1 University of Franche-Comté, Besançon, France
{jdormoy,okouchnarenko}@lifc.univ-fcomte.fr

2 Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr

Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architectures to
evolve at run-time. This paper deals with the formal specification and
verification of dynamic reconfigurations of those systems using architec-
tural constraints and temporal logic patterns.

The proposals of the paper are applied to the Fractal component
model. Given a Fractal reference implementation of a component-based
system, we specify its dynamic reconfigurations using a temporal pat-
tern logic for Fractal, called FTPL, characterizing the correct behaviour
of the system under some architectural constraints. We study system
reconfigurations on which we verify these requirements, in particular by
reusing the FPath and FScript tools.

1 Introduction

Component-based development provides significant advantages like portability,
adaptability, re-usability, etc. when developing, e.g., Java Card smart card ap-
plications or when composing components or services within Service Component
Architecture (SCA). The adaptability means that component-based systems
must be adapted, or even adapt themselves [15] to their environments during
their lifetime, and there is a need to support dynamic reconfigurations, includ-
ing unanticipated ones [20]. To take up this challenge, this paper deals with the
formal specification and verification of dynamic reconfigurations of component-
based systems, and uses temporal patterns to monitor them.

The present paper makes the following contributions. The first contribution
is a formal definition of the semantics of component-based systems with re-
configurations. To specify system reconfigurations, the second contribution is
the definition of a linear time temporal logic based on architectural constraints
which are first order configuration properties, and on event properties. For tem-
poral operators, its expressive power is related to the well known linear time
temporal logic (LTL) [19]. The third contribution is the application of the pa-
per proposals to the Fractal component model [10]. For the Fractal component
model, run-time verification issues are addressed to monitor reconfigurations
during system lifetime.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 200–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Using Temporal Logic for Dynamic Reconfigurations of Components 201

More precisely, this paper follows the line of reasoning suggested in [12], where
the system consistency during its dynamic reconfigurations relies on integrity
constraints—predicates on assemblies of architectural elements and component
states. To go further, we propose to support dynamic reconfigurations by using
more complex architectural constraints and linear temporal logic patterns. These
temporal patterns have been inspired by the pragmatic work of the SanTos Spec-
ification Pattern Project [13], and works on temporal extension of JML [21,9,14]
helping Java programmers in writing formal specifications. We refer to this tem-
poral extension as FTPL, for Temporal Pattern Language, prefixed by an ‘F’
to denote its adaptation to Fractal-like component systems and to first-order
integrity constraints over them.

The proposals of the paper are applied to the Fractal component model. Given
a Fractal reference implementation of a component-based system, we specify its
dynamic reconfigurations using FTPL, characterizing the correct behaviour of
the system under some architectural constraints. We monitor system reconfigu-
rations by reusing the FPath and FScript tool supports.

The remainder of the paper is organised as follows. After giving a motivating
example in Sect. 2, we formally define the semantics of component-based sys-
tems with reconfigurations in Sect. 3. To support system reconfigurations, Sect. 4
introduces a linear time temporal logic based on architectural constraints and
events. Then, the proposals of the paper are applied to and illustrated on the
Fractal component model in Sect. 5. Finally, Section 6 concludes before dis-
cussing related work.

2 Motivating Example

To motivate and to illustrate our approach, let us consider an example of a
HTTP server from [11]. The architecture of this server is displayed in Fig. 1.

HttpServer

httpRequest

RequestReceiver

request getHandler

RequestHandler
(deviation, load)

handler getDispatcher

getCache

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer1

server1

FileServer2

server2

Fig. 1. HTTP Server architecture

The RequestReceiver component reads HTTP requests from the network
and transmits them to the RequestHandler component. In order to perform
a request, RequestHandler can either use the cache (with the component
CacheHandler) or transmit the request to the RequestDispatcher component.

202 J. Dormoy, O. Kouchnarenko, and A. Lanoix

This component uses a set of file servers (like the FileServer1 and FileServer2
components) to answer the request.

This architecture provides a cache (CacheHandler component) and a load
controller (RequestDispatcher component) in order to control the response time
of the HTTP server. To keep the response time as short as possible whatever
the number of requests is, in [11] the authors propose to dynamically reconfigure
the HTTP server. For that, some requirements have been identified:

1. The CacheHandler component is used only if the number of similar HTTP
requests is high.

2. The quantity of allocated memory for the CacheHandler component must
depend on the overall load of the server.

3. The validity of data in the cache must also depend on the overall load of the
server.

4. The number of used file servers depends on the overall load of the server.

In order to take these requirements into account, the RequestHandler and
CacheHandler components are equipped with some parameters. The number of
requests (load) and the percentage of similar requests (deviation) are two parame-
ters defined for the RequestHandler component. The memory size (memorySize)
and the data validity duration (validityDuration) are two parameters defined for
the CacheHandler component.

We consider that the HTTP server can be reconfigured during the execution
by the following reconfigurations

1. AddCacheHandler and RemoveCacheHandler which are respectively used to
add and remove the CacheHandler component,

2. AddFileServer and removeFileServer which are respectively used to add and
remove the FileServer2 component,

3. MemorySizeUp and MemorySizeDown which are respectively used to increase
and to decrease the MemorySize value,

4. DurationValidityUp and DurationValidityDown to respectively increase and de-
crease the ValidityDuration value.

3 Architectural (Re-)Configuration Model

This section gives means for specifying component-based systems with recon-
figurations. A model we propose here is inspired by the model in [16,18] given
for Fractal. Both models are graphs allowing one to represent component-based
architectures and reconfiguration operations and to reason about them. Un-
like [16,18], in our model, only the basic and generic concepts are considered to
allow their application to various hierarchical component models: components as
runtime entities, required and provided interfaces as interaction points between
components, bindings to link component interfaces. Components are either prim-
itive components or composite components, and primitive components can have
some attributes used as configuration parameters.

Using Temporal Logic for Dynamic Reconfigurations of Components 203

Basically, a component-based system with reconfigurations is characterized
by a set of configurations and a set of actions that allow the modification of
configurations.

3.1 Component-Based Architectures

In general, the system configuration is the specific definition of the elements
that define or prescribe what a system is composed of. We define a configuration
to be a set of architectural elements (components, interfaces and parameters)
together with a relation to structure and to link them. We consider a graph-
based representation as proposed in [16,18].

Definition 1. A configuration c is a tuple 〈Elem,Rel〉 where:
– Elem is a set of architectural elements, and
– Rel ⊆ Elem× Elem is a relation between architectural elements.

In our model, the architectural elements are the core entities of a component-
based system: components, required or provided interfaces, and parameters.

Definition 2. The set of architectural elements Elem is defined by:

Elem = Component � Interface � Parameter � Type

where

– Component is a non-empty set of the core entities, i.e components;
– Interface = Required � Provided is a set of the (required and provided)

interfaces;
– Parameter is a set of component parameters;
– Type is a set of data types associated with parameters.

Each data type is a set of data values. For the sake of readability, we identify
data type names with the corresponding data domains.

The architectural relation Rel then expresses various links between archi-
tectural elements. For example, it allows specifying that a component has an
interface or a parameter, or that a component contains other (sub-)components,
or that an interface is linked to another one.

Definition 3. The architectural relation Rel is defined by:

Rel =
ProvidedBy � RequiredBy � ParameterOf �
TypeOf � V alueOf � ChildOf � Binding � Delegate

where

– ProvidedBy : Provided→ Component is a total surjective function which
gives the component having a provided interface;

– RequiredBy : Required → Component is a total function which gives the
component with a required interface;

– ParameterOf : Parameter → Component is a total function which gives
the component of a considered parameter;

204 J. Dormoy, O. Kouchnarenko, and A. Lanoix

– TypeOf : Parameter → Type is a total function which gives the type
associated with a considered parameter;

– V alueOf : Parameter → ⋃

type∈Type type such that ∀p ∈ Parameter :
V alueOf(p) ∈ TypeOf(p), is a total function which gives the current value
of a considered parameter;

– ChildOf ⊆ Component× Component is a irreflexive and antisymetric re-
lation linking composite components to their sub-components1 such that:
• ∀ c, c′ ∈ Component. ((c, c′) ∈ ChildOf ⇒ ∀ p ∈
Parameter. (ParameterOf(p)
= c)), i.e, composite components have
no parameter;
• Let ChildOf+ be the transitive closure of ChildOf . Then, ∀c, c′ ∈
Component. ((c, c′) ∈ ChildOf+ ⇒ c
= c′), i.e., ChildOf is an acyclic
relation;

– Binding : Provided → Required is a partial function such that ∀ ip ∈
Provided, ir ∈ Required. (Binding(ip) = ir ⇒ ProvidedBy(ip)
=
RequiredBy(ir) ∧ ∃ c ∈ Component. ((c, ProvidedBy(ip)) ∈ ChildOf ∧
(c, RequiredBy(ir)) ∈ ChildOf)), i.e., two linked interfaces do not belong to
the same component, but the corresponding components are sub-components
of the same composite component;

– Delegate : Interface → Interface is a partial injec-
tive function to specify the delegation from a sub-component
interface to the composite interface such that ∀ i, i′ ∈
Interface. (Delegate(i) = i′ ⇒ (ProvidedBy(i′), P rovidedBy(i)) ∈
ChildOf ∨ (RequiredBy(i′), RequiredBy(i)) ∈ ChildOf), i.e., when
delegating, the component providing i is a sub-component of the component
providing i′, or the component requiring i is a sub-component of the
component requiring i′.

Fig. 2. Graph representation of the HTTP Server example

1 For any (p, q) ∈ ChildOf , we say that p has a sub-component q, i.e. q is a child of p.

Using Temporal Logic for Dynamic Reconfigurations of Components 205

Example 1. Figure 2 illustrates main lines of Definition 3 on the example from
Section 2. In this figure, the architectural elements are depicted as boxes and
circles, whereas architectural relations are represented by arrows. For example,
the request architectural element (at the bottom on the left) is an interface pro-
vided by RequestReceiver. The RequestReceiver architectural element is a sub-
component of the HttpServer composite component which provides the httpRe-
quest interface. The request interface delegates results passing to the httpRequest
interface.

3.2 Dynamicity of Component Architectures

To support system evolution, some component models provide mechanisms to dy-
namically reconfigure the component-based architecture, during their execution.
These dynamic reconfigurations are then based on architectural modifications,
among the following primitive operations:

– instantiation/destruction of components;
– addition/removal of components;
– binding/unbinding of component interfaces;
– starting/stopping components;
– setting parameter values of components;

or combinations of them. Notice that reconfigurations are not the only manner
to make a component architecture evolve. The normal running of different com-
ponents also changes the architecture by modifying parameter values or stopping
components, like in the example.

Considering the component-based architecture model given in Sect. 3.1, an
operation which makes the component architecture evolve by a reconfigura-
tion action or by running, is modelled by a graph transformation operation
adding or removing nodes and/or arcs in the graph of the configuration. An
evolution operation op transforms a configuration c = 〈Elem,Rel〉 into another
one c′ = 〈Elem′, Rel′〉. It is represented by a transition from c to c′, noticed
c
op→ c′. Among the evolution operations (running operations and reconfigura-

tions), we particularly focus on the reconfiguration ones, which are either the
above-mentioned primitive architectural operations or their compositions. The
remaining running operations are all represented by a generic operation, called
the run operation; it is also the case for sequences of running operations.

Definition 4. The set of evolution operations Rrun is defined by:

Rrun = R∪ {run}
with

– R is a finite set of reconfiguration operations;
– run is an action renaming one or more running operations.

Given a component architecture and the set Rrun of reconfiguration operations,
the behaviour of the component architecture is defined as a transition system
labelled over Rrun.

206 J. Dormoy, O. Kouchnarenko, and A. Lanoix

Definition 5. The evolution of a component architecture is defined by the tran-
sition system 〈C,Rrun,→〉 where:
– C = {c, c1, c2, . . .} is a set of configurations,
– Rrun is a finite set of evolution operations,
– → ⊆ C ×Rrun × C is the reconfiguration relation.

Given the evolution of a component architecture, we can now define the useful
notions of path, trace, etc.

Definition 6. Given the model M = 〈C,Rrun,→〉, an evolution path (or a path
for short) σ of M is a (possibly infinite) sequence of configurations c0, c1, c2, . . .

such that ∀i ≥ 0.∃ri ∈ Rrun.ci ri→ ci+1 ∈→)).
We use σ(i) to denote the i-th configuration of a path σ. The notation

σi denotes the suffix path σ(i), σ(i + 1), . . ., and σji denotes the segment path
σ(i), σ(i + 1), σ(i + 2), ..., σ(j − 1), σ(j). The segment path is infinite in length
when the last state of the segment is repeated infinitely often.

Fig. 3. Part of an evolution path of the HTTP server example

Example 2. A possible evolution path of the HTTP server is given in Fig. 3. In
this path,

– c1 is a configuration of the HTTP server without the CacheHandler and
FileServer2 components;

– c2 is obtained from c1: the load value was changed following the running of
the RequestHandler component;

– c′2 is the same configuration as c2. Without the CacheHandler component,
the RemoveCacheHandler reconfiguration cannot terminate, it is then roll-
backed without any modification;

– c3 is obtained from the configuration c2 by adding CacheHandler, following
the AddCacheHandler reconfiguration operation;

– c4 is the configuration c3 in which the memorySize value was increased;
– c′4 is the same configuration as c4. The result of the running is not observable;
– c5 is obtained from c4 by adding the FileServer2 component;
– c6 is like the configuration c5 but the durationValidity value was increased.

4 Temporal Logic for Dynamic Reconfigurations

This section presents the syntax and the semantics of the temporal logic for
dynamic reconfigurations. This logic, called FTPL, is inspired by the temporal
logic in [21] designed to help Java programmers in writing formal specifications.

Using Temporal Logic for Dynamic Reconfigurations of Components 207

4.1 Syntax of the Logic

Let us first give the FTPL syntax:

<TempProp> ::= after <Events> <TempProp>
| before <Events> <TraceProp>
| <TraceProp> until <Events>
| <TraceProp> unless <Events>
| between <Events> <Events> <TraceProp>
| <TraceProp>

<TraceProp> ::= always ConfigProp
| eventually ConfigProp
| never ConfigProp
| <TraceProp> ∧ <TraceProp>
| <TraceProp> ∨ <TraceProp>

<Events> ::= <Event> , <Events>
| <Event>

<Event> ::= ReconfigOp called
| ReconfigOp normal
| ReconfigOp exceptional
| ReconfigOp terminates

This language consists of different layers:

– the configurations properties,
– the reconfiguration operations,
– the trace properties,
– the temporal properties.

4.2 Semantics of FTPL

Let us now give the FTPL semantics. It is defined by induction on the form of
the formulas.

Configuration properties. Basically, there is a need to express properties on the
configurations, i.e constraints on the architectural elements and the relations
between them. These constraints are specified using first order logic formulas,
sets and relational operations on the primitive sets and relations given in Sect. 3.

Given the model M , we say that a configuration property cp is valid on a
configuration c = 〈Elem,Rel〉, written M, c |= cp, when the evaluation of cp on
the configuration c = 〈Elem,Rel〉 is true. When M is understood, we simply
write c |= cp.

The configuration properties are expressed at different specification levels. At
the component model level, the constraints are common to all the component
architectures. In addition, some constraints must be expressed to restrict a family
of component architectures (a profile level), or to restrict a specific component
architecture (an application level).

208 J. Dormoy, O. Kouchnarenko, and A. Lanoix

Example 3. Let CacheConnected be a configuration property defined by

∃cache, getCache ∈ Interface.(ProvidedBy(cache) = CacheHandler ∧
RequiredBy(getCache) = RequestHandler ∧Binding(cache) = getCache).

It expresses that the component CacheHandler is connected to RequestHandler.
For the evolution path from Fig. 3 we have: c3 |= CacheConnected whereas
c2
|= CacheConnected.

Event properties We want to observe reconfiguration action effects, for example
when a reconfiguration is called or when it terminates, to specify and verify
properties over them. Given a reconfiguration operation r in R, we consider the
following events:

– r called denoting that the reconfiguration r has been invoked,

– r normal denoting that the reconfiguration r has terminated normally,

– r exceptional denoting that the configuration r has rollbacked.

Definition 7. Let σ be an evolution path in M , and r a reconfiguration opera-
tion in R. Given an event property e, depicted <Event> in the FTPL syntax ,
its validity on the i-th configuration of σ, denoted σ(i) |= e, is inductively defined
on the form of e by:

σ(i) |= r called iff ∃σ(i+ 1).(σ(i)
r→ σ(i+ 1) ∈→)

σ(i) |= r normal iff i > 0 ∧ σ(i− 1) |= r called ∧ σ(i− 1) �= σ(i)
σ(i) |= r exceptional iff i > 0 ∧ σ(i− 1) |= r called ∧ σ(i− 1) = σ(i)
σ(i) |= r terminates iff σ(i) |= r normal ∨ σ(i) |= r exceptional

Given an evolution path σ, and a list of event properties E = e1, . . . , en, depicted
<Events> in the syntax, we say that E is valid on the i-th configuration of σ,
denoted σ(i) |= E, iff at least one event of the list E is valid on σ(i).

Example 4. Let us consider again the evolution path displayed in Fig. 3. We
have: c3 |= MemorySizeUp called, c5 |= AddFileServer normal and c2 |=
RemoveCacheHandler exceptional.

Trace Properties A trace property expresses a constraint which must be true
when the component-based architecture changes, i.e on the evolution path.

Definition 8. Let σ be an evolution path, and cp a configuration property. Given
a trace property trp, depicted <TraceProp> in the FTPL syntax, its validity on
σ, denoted σ |= trp, is inductively defined on the form of trp by:

σ |= always cp iff ∀i.(i � 0 ⇒ σ(i) |= cp)
σ |= eventually cp iff ∃i.(i � 0 ∧ σ(i) |= cp)
σ |= trp1 ∧ trp2 iff σ |= trp1 ∧ σ |= trp2
σ |= trp1 ∨ trp2 iff σ |= trp1 ∨ σ |= trp2

Using Temporal Logic for Dynamic Reconfigurations of Components 209

Intuitively,

– always cp is valid on an evolution path σ iff cp is valid on each configuration
of σ;

– eventually cp is valid on an evolution path σ iff cp is valid on one configu-
ration of σ, at least;

– the semantics of conjunction and disjunction is classical.

In the syntax a keyword never is introduced: never cp being an abbreviation
for always ¬ cp.

Let us remark that architectural invariants as presented in [16,18], can be
handled within the FTPL framework by using always cp, where cp represents
the considered architectural invariant.

Temporal Properties. Temporal properties are based on all the properties above,
i.e. they exploit architectural constraints, event properties and trace properties,
together with some temporal patterns, like in [21]. Let us recall that the SanTos
Specification Pattern Project [13] has identified these temporal patterns as useful
in practice.

Definition 9. Let σ be an evolution path, E, E1 and E2 be lists of events, trp
a trace property. Given a temporal property tpp, depicted <TempProp> in the
FTPL syntax, its validity on σ, denoted σ |= tpp, is inductively defined on the
form of tpp by:

σ |= after E tpp iff ∀i.(i � 0 ∧ σ(i) |= E ⇒ σi |= tpp)
σ |= before E trp iff ∀i.(i > 0 ∧ σ(i) |= E ⇒ σi−1

0 |= trp)
σ |= trp until E iff ∃i.(i > 0 ∧ σ(i) |= E ∧ σi−1

0 |= trp)
σ |= trp unless E iff ∀i.(i � 0 ∧ σ(i) �|= E ⇒ σ |= trp)

∨ ∃i.(i � 0 ∧ σ(i) |= E ∧ σi−1
0 |= trp)

Intuitively,

– the property after E tpp is valid on an evolution path σ iff the validity of the
event property E on a configuration of σ implies the validity of the temporal
property tpp on the suffix of σ starting at this configuration;

– before E trp is valid on an evolution path σ iff for each configuration of
σ, the validity of E on it means that the trace property trp is valid on the
prefix of σ before the considered configuration;

– trp until E is valid on an evolution path σ iff there is a configuration of σ
satisfying the event property E, and the trace property trp is valid on the
prefix of σ ending before this event occurs;

– trp unless E is valid on an evolution path σ iff either the event property E
is not valid on σ implying that the trace property trp is valid on σ, or there is
a configuration of σ satisfying the event property E, and the trace property
trp is valid on the prefix of σ before the corresponding event occurs;

A formula between E1 E2 trp has the same semantics as after E1 (trp until
E2), i.e. the trace property trp is valid on the segment of σ consisting of the
configurations in-between the configuration where E1 holds (including it), and
the configuration where E2 holds (excluding it).

210 J. Dormoy, O. Kouchnarenko, and A. Lanoix

4.3 Application to the HTTP Server Example

Let us now illustrate the FTPL language use by expressing some properties for
the example of HTTP server from Sect. 2.

Let us consider a temporal property saying that after the invocation of the
reconfiguration operation AddCacheHandler, the CacheHandler component is
always connected to RequestHandler, i.e. the CacheConnected configuration
property from Example 3 holds on the path configurations after the invocation.
This property is valid on the evolution path σ depicted in Fig. 3:

σ |= after AddCacheHandler called always CacheConnected.

The following property expresses an architectural constraint saying that at least
there is always one file server component connected.

always
(∃getServer ∈ Interface.(RequiredBy(getServer) =

RequestDispatcher ∧ ∃i ∈ Interface.Binding(i) = getServer)
)

Let us now specify that the deviation must always be lower than 50 until the
AddCacheHandler reconfiguration operation terminates normally:

(always
∃deviation ∈ Parameter.(ParameterOf(deviation) = RequestHandler

∧ deviation < 50)) until AddCacheHandler normal

The following property says that between the exceptional termination of either
the MemorySizeUp reconfiguration or the DurationValidityUp reconfiguration,
and the normal termination of the AddCacheHandler reconfiguration operation,
the number of used file servers is greater than 1:

between
(

MemorySizeUp exceptional, DurationValidityUp exceptional
)

(

addCacheHandler normal
)

(∃getServer ∈ Interface.(RequiredBy(getServer) = RequestDispatcher ∧
∃i, i′ ∈ Interface.(i
= i′ ∧Binding(i) = getServer ∧Binding(i′) = getServer)

)

These examples show that architectural invariants and properties on immediate
predecessors or target configurations of reconfiguration operations can be ex-
pressed by FTPL formulas. Further, they show that FTPL is more expressive
than the proposals in [12]. Indeed, FTPL allows expressing event properties and
temporal properties involving different kinds of properties satisfying temporal
patterns which have been shown useful for practical applications.

4.4 On the Expressiveness of FTPL

Before considering FTPL temporal properties, let us recall that configuration
properties are first order logic formulas.

Let us now consider temporal patterns. As explained in Sect.4, FTPL has been
inspired by proposals in [13], and works on a temporal extension of JML [21,9,14],
called JTPL. The semantics of JTPL temporal formulas and translation rules

Using Temporal Logic for Dynamic Reconfigurations of Components 211

into JML annotations are detailed in [21] for safety properties and in [9] for
liveness properties.

Let LTLk() denote a function translating the FTPL properties of the kind
k into LTL properties. We adapt the above-mentioned works and propose the
following translation of FTPL patterns into LTL formulas. In this translation cp
is a configuration property, trp, trp1 and trp2 are trace properties, E, E1 and
E2 are lists of event properties, and tpp is a temporal property. In FTPL, there
is a way to decide whether a list of event properties is valid on a configuration
or not. The following functions suppose that the same decision procedure exists
in LTL.

Leaving aside the FTPL and LTL models, it is easy to see that FTPL trace
properties can be rewritten in LTL as follows:

LTLTrace(always cp) G(cp)

LTLTrace(eventually cp) F(cp)

LTLTrace(trp1 & trp2) LTLTrace(trp1) ∧ LTLTrace(trp2)

LTLTrace(trp1 | trp2) LTLTrace(trp1) ∨ LTLTrace(trp2)

For example, if in LTL atomic properties could be configuration properties, the
safety property specifying that always there is at least one file server component
connected, would be written in LTL as follows:

G(∃getServer ∈ Interface.(RequiredBy(getServer) =
RequestDispatcher ∧ ∃i ∈ Interface.Binding(i) = getServer))

For temporal properties, we have:

LTLTemp(after E tpp) G(E ⇒ LTLTemp(tpp))

LTLTemp(after E trp) G(E ⇒ LTLTrace(trp))

LTLTemp(before E trp) F(E) ⇒ LTLTraceB (E, trp)

LTLTemp(trp until E) F(E) ∧ LTLTraceB (E, trp)

LTLTemp(trp unless E) LTLTraceC (E, trp)

LTLTemp(between E1 E2 trp) LTLTemp(after E1 (trp until E2))

LTLTemp(trp) LTLTrace(trp)

where:

LTLTraceB (E, always cp) cp U E

LTLTraceB (E, eventually cp) ¬(¬cp U E)

LTLTraceC (E, always cp) G(cp) ∨ (cp U E)

LTLTraceC (E, eventually cp) F(cp) ∧ ¬(¬P U E)

Remark that a trace property is translated into LTL according to the temporal
context in which the property is used, that is why we define two auxiliary func-
tions LTLTraceB and LTLTraceC . The LTLTrace function translates a trace prop-
erty which either does not depend on a temporal property, or is inside an after
temporal property. The LTLTraceB function is used to translate a trace property
which is inside a before or an until temporal properties. Finally, the LTLTraceC
function translates a trace property bounded by a unless temporal property.

212 J. Dormoy, O. Kouchnarenko, and A. Lanoix

For example, the property specifying that the deviation must always be lower
than 50 until the AddCacheHandler reconfiguration operation terminates nor-
mally can be written in LTL as follows:

F(AddCacheHandler normal) ∧ (
∃deviation ∈ Parameter.(ParameterOf(deviation) = RequestHandler

∧ deviation < 50) U AddCacheHandler normal)

5 Application to the Fractal Component Model

The Fractal component model [10] is one of the motivations of the present work
because of its native support for dynamic architectures. Fractal also provides
means for introspection and reconfigurations. Existing implementations for Frac-
tal and its extensions offer a framework to experiment with FTPL-based recon-
figurations. This section briefly describes some Fractal features and the existing
language support for reconfigurations, before reporting on our experiments.

5.1 Overview of Fractal, FPath and FScript

The Fractal model is a hierarchical and reflective component model intended
to implement, deploy and manage software systems [10]. A Fractal component
is both a design and a run-time entity that consists of a unit of encapsulation,
composition and configuration. A component is wrapped in a membrane which
can show and control a casually connected representation of its encapsulated
content. This content is either directly an implementation in case of a primitive
component, or sub-components for composite components.

FPath [12] is a domain-specific language inspired by the XPath language that
provides a notation and introspection mechanisms to navigate inside Fractal
architectures. FPath expressions use the properties of components (e.g. the value
of a component attribute or the state of a component) or architectural relations
between components (e.g. the subcomponents of a composite component) to
express queries about Fractal architectures.

FScript [12] is a language that allows the definition of reconfigurations of
Fractal architectures. FScript integrates FPath seamlessly in its syntax, FPath
queries being used to select the elements to reconfigure. To ensure the reliability
of its reconfigurations, FScript considers them as transactions and integrates a
back-end that implements this semantics on top of the Fractal model.

5.2 From the FTPL Model to Fractal

As explained above, the architectural model presented in Sec. 3 has been devel-
oped to capture the Fractal component model, among other component-based
models with reconfigurations, like CCM, GCM, etc. To illustrate our proposals,
in this section we give a part of the Http Server example encoded using our
model (Fig. 4) as well as its implementation in FractalADL (Fig. 5).

Using Temporal Logic for Dynamic Reconfigurations of Components 213

Component = { HttpServer,RequestReceiver,RequestHandler, . . . }
Required = { getHandler, getDispatcher, getCache, . . .}
Provided = { httpRequest, request, handler, . . .}
Parameter = { load, deviation, . . .}
Type = { Int}
ProvidedBy = { httpRequest �→ HttpServer, request �→ RequestReceiver,

handler �→ RequestHandler, . . .}
RequiredBy = { getHandler �→ RequestReceiver,

getDispatcher �→ RequestHandler,
getCache �→ RequestHandler, . . .}

ParameterOf = { load �→ RequestHandler, deviation �→ RequestHandler, . . .}
TypeOf = { load �→ Int, deviation �→ Int, . . .}
V alueOf = { load �→ 100, deviation �→ 50, . . . }
ChildOf = { (HttpServer,RequestReceiver),

(HttpServer,RequestHandler), . . . }
Binding = { getHandler �→ handler, . . .}
Delegate = { request �→ httpRequest }

Fig. 4. HttpServer example using Definitions 2 and 3

Let us recall that FractalADL2 is the architecture description language for
Fractal which allows implementing the Fractal component model.

We then use the FScript language to specify the reconfiguration operations
presented in Sec. 3, and the FScript tool support to execute them. FScript
is focused on the manipulation of architectural concepts and provides complete
control of the architecture of the systems modeled in Fractal. Concretely, FScript
takes an architecture of a current Fractal configuration and dynamically changes
it according to a FScript file in order to create a new target architecture. The
FScript implementation features guarantee that FScript reconfigurations always
terminate and keep the system in a consistent and usable state.

For example, we specify the AddCacheHandler reconfiguration in FScript as
presented in Fig. 6. This reconfiguration consists in creating a new instance of
CacheHandler (name) and in specifying its name (set-name). Then, the compo-
nent is integrated into the architecture (add) and the binding with the component
RequestHandler is set (bind). Finally, the component CacheHandler is started
(start).

5.3 Dynamic Verification

We now report on our experiments evaluating the feasibility of a run-time moni-
toring of FTPL properties. The monitoring on the execution of the architectural
reconfiguration model depends on the property to be verified; It is either the sat-
isfiability of a configuration property on one configuration, or the satisfiability
of a temporal property on a sequence of component-based system architectures.

Verification of configuration properties. We use the FPath language support
to verify a configuration property on one configuration. Indeed, any first order
logic formula specifying a configuration property can be translated into an FPath
expression, the FPath language having the same expressive power [16].

2 http://fractal.ow2.org/fractaladl/

http://fractal.ow2.org/fractaladl/

214 J. Dormoy, O. Kouchnarenko, and A. Lanoix

1 <d e f i n i t i o n name=”HttpServer”>
2 < i n t e r f a c e name=”httpRequest” r o l e=” se rve r ”

s i gna tu r e=” java . lang . Runnable”/>
3 <component name=”RequestRece iver ”>
4 < i n t e r f a c e name=” reque s t” r o l e=” se rve r ”

s i gna tu r e=” java . lang . Runnable”/>
5 < i n t e r f a c e name=”getHandler ” r o l e=” c l i e n t ”

s i gna tu r e=”Handler”/>
6 <content c l a s s=”RequestRece iverImpl”/>
7 </component>
8 <component name=”RequestHandler ”>
9 < i n t e r f a c e name=”hand le r” r o l e=” se rve r ”

s i gna tu r e=”Handler”/>
10 <content c l a s s=”RequestHandlerImpl ”/>
11 <a t t r i b u t e s s i gna tu r e=”RequestHand le rAttr ibute s”>
12 <a t t r i bu t e name=” load ” va lue=”100”/>
13 <a t t r i bu t e name=” dev i a t i on ” va lue=”50”/>
14 </ a t t r i b u t e s>
15 <c o n t r o l l e r desc=” p r im i t i v e ”/>
16 </component>
17 . . .
18 <b ind ing c l i e n t=” th i s . httpRequest”

s e rv e r=”RequestRece iver . r e que s t ”/>
19 <b ind ing c l i e n t=”RequestRece iver . getHandler ”

s e rv e r=”RequestHandler . hand le r”/>
20 . . .
21 </ d e f i n i t i o n>

Fig. 5. HTTP Server example in FractalADL

1 action addCache (root)
2 {
3 newCache = new(" CacheHandler");
4 set -name($newCache , "CacheHandler");
5 add($root , $newCache);
6 bind($root/child ::RequestHandler/interface::getcache , $newCache/

interface::cache);
7 start($newCache);
8 }

Fig. 6. AddCacheHandler Reconfiguration specified in FScript

For example, the CacheConnected configuration property from Example 3
can be expressed in FPath by:

$HttpServer/child:: RequestHandler/interface:: getCache /binding ::cache/
↪→ component:: CacheHandler

Verification of temporal properties. Once the configuration properties are han-
dled thanks to FPath, there is a need to deal with FTPL temporal properties.
In [7], it is shown that the monitoring works well on specific safety properties. In
FTPL the safety properties are properties containing only the keywords after,
before, unless and always; The safety properties are also properties contain-
ing the eventually keyword iff they contain the before keyword to bound the
eventually part. The other properties are liveness properties.

Using Temporal Logic for Dynamic Reconfigurations of Components 215

We have studied the feasibility of the safety properties monitoring by de-
veloping a controller in Fractal. This controller supervises the properties of
interest each time a reconfiguration operation occurs. It retains the con-
figurations appearing during the system execution to build a history and
to use it for verification purpose. In order to make the monitoring eas-
ier, the controller divides the property into sub-properties and keeps each
sub-property until it manages to validate it. For example, for the property
after AddCacheHandler called always CacheConnected, the controller tries first
to find a configuration where the AddCacheHandler called event property holds.
Once such a configuration is found, the controller continues with the monitoring
of the CacheConnected configuration property for all the following configura-
tions.

The FTPL properties can be divided into two classes: the properties dealing
with the past and the properties dealing with the future. As it is possible to
determine what has happened in the past thanks to the history built by the
controller, all the past properties can be monitored. But, due to the run-time
verification, there are properties that cannot be ensured by the controller. For
any property about the future containing always, the controller only ensures
that the current configuration does not violate the property at the moment. For
any property about the future containing eventually key-word, the controller
cannot conclude neither.

As explained before, the controller is able to monitor the safety properties
about the past, where as for the properties about the future, it only ensures their
non-violation until the current configuration. An LTL-derived logic is proposed
in [8] to specify and verify that a system behaviour will “presumably” conform
or violate the property in the future. In [7], the monitoring of safety properties
necessitates time intervals bounded in the past as well as in the future. To go
further within the Fractal-based approach, and to handle liveness properties, a
solution would be to exploit a variant specification of the Loop clause [14], to
which liveness properties can be reduced.

6 Conclusion

In this paper we have developed a theoretical framework for dynamic reconfigu-
rations of component-based systems. As a calculus for expressing and analysing
reconfiguration and integrity constraints, we have utilised linear temporal logic,
since formulas are interpreted over configuration sequences which naturally rep-
resent dynamic behaviour of component-based systems. For the Fractal compo-
nent model, we have studied the feasibility of monitoring dynamic reconfigura-
tions during system lifetime.

Related work. Dynamic reconfiguration of distributed applications is an active
research topic [1,2,7,18] motivated by practical applications like those modelled
in Fractal [10]. In the context of dynamic reconfigurations, ArchJava [3] gives
means to reconfigure Java architectures, and the ArchJava language guaran-
tees communication integrity at run-time. Barringer and al. also give a formal
temporal logic based framework to reason about the evolution of systems [5].

216 J. Dormoy, O. Kouchnarenko, and A. Lanoix

The idea of using graph-based models to specify dynamic reconfigurations is
not new at all. In [4], a temporal logic is proposed to specify and verify properties
on graph transformation systems. In the Fractal-based framework, in [17,18] the
authors have defined integrity constraints on a graph-based representation of
Fractal, to specify the reliability of component-based systems. There are tools
to allow the user to ensure the reliability of those reconfigurations at run-time.

Our model in Sect. 3 is closely related to the model proposed in [18] for the
Fractal component systems but unlike [18], our model lays down only general
architectural constraints. In this sense it can be considered as a generalisation of
the Fractal-oriented model. Moreover, our model seems to be general enough to
give operational semantics to other component-based systems. On the integrity
and architectural constraint side, the FTPL logic allows us to specify architec-
tural constraints more complex that only architectural invariants in [12].

Among other applications, our proposals aims at an active monitoring of
component-based systems. The active monitoring involves interpreting a configu-
ration data set and acting on those data to (re-)configure the system accordingly.
This may simply be a validation of the target configuration, or a reconfigura-
tion operation interruption. In [7,6], Basin and al. have shown the feasibility
of monitoring temporal (safety) properties and, more recently, security proper-
ties using a runtime monitoring approach for metric First-order temporal logic
(MFOTL). The semantics of MFOTL has been defined with respect to timed
temporal structures. Like the model in [7], our model is a first-order structure,
but instead of considering a sequence of time stamps, we focus on reconfigura-
tion operations. Although our main motivation and hence the model are different,
their algorithms for monitoring temporal safety properties would be adapted for
performing dynamic reconfigurations of component-based systems.

References

1. Aguilar Cornejo, M., Garavel, H., Mateescu, R., De Palma, N.: Specification and
Verification of a Dynamic Reconfiguration Protocol for Agent-Based Applications.
Research Report RR-4222, INRIA (2001)

2. Aguirre, N., Maibaum, T.: A temporal logic approach to the specification of recon-
figurable component-based systems. Automated Software Engineering (2002)

3. Aldric, J.: Using types to enforce architectural structure. In: WICSA 2008, pp.
23–34 (February 2008)

4. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for
verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y.
(eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007)

5. Barringer, H., Gabbay, D.M., Rydeheard, D.E.: From runtime verification to evolv-
able systems. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
97–110. Springer, Heidelberg (2007)

6. Basin, D.A., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal
logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
1–18. Springer, Heidelberg (2010)

7. Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: IARCS, FSTTCS 2008, India, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik. LIPIcs, vol. 2, pp. 49–60 (2008)

Using Temporal Logic for Dynamic Reconfigurations of Components 217

8. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation, JLC (2010)

9. Bellegarde, F., Groslambert, J., Huisman, M., Julliand, J., Kouchnarenko, O.: Ver-
ification of liveness properties with JML. Technical report RR-5331, INRIA (2004)

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal
component model and its support in java. Softw., Pract. Exper. 36(11-12), 1257–
1284 (2006)

11. Chauvel, F., Barais, O., Plouzeau, N., Borne, I., Jézéquel, J.-M.: Composition et
expression qualitative de politiques d’adaptation pour les composants Fractal. In:
GDR GPL 2009, Toulouse, France (January 2009)

12. David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language
support for navigation and reliable reconfiguration of Fractal architectures. Annales
des Télécommunications 64(1-2), 45–63 (2009)

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420 (1999)

14. Giorgetti, A., Groslambert, J., Julliand, J., Kouchnarenko, O.: Verification of class
liveness properties with java modelling language. In: IET Software (2008)

15. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

16. Léger, M.: Fiabilité des Reconfigurations Dynamiques dans les Architectures à
Composant. PhD thesis, Ecole Nationale Supérieure des Mines de Paris (2009)

17. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in the frac-
tal component model. In: ARM 2007, pp. 1–6. ACM, New York (2007)

18. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in a reflec-
tive component model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010.
LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

20. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of appli-
cation behaviour. In: Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 205–230.
Springer, Heidelberg (2002)

21. Trentelman, K., Huisman, M.: Extending jml specifications with temporal logic. In:
Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334–348.
Springer, Heidelberg (2002)

Modular Termination Analysis of Java Bytecode

and Its Application to phoneME Core Libraries

D. Ramı́rez-Deantes1, J. Correas2, and G. Puebla1

1 DLSIIS, Technical University of Madrid (UPM), Spain
2 DSIC, Complutense University of Madrid (UCM), Spain

Abstract. Termination analysis has received considerable attention, tra-
ditionally in the context of declarative programming and, recently, also
for imperative and Object Oriented (OO) languages. In fact, there ex-
ist termination analyzers for OO which are capable of proving termina-
tion of medium size applications by means of global analysis, in the sense
that all the code used by such applications has to be proved terminating.
However, global analysis has important weaknesses, such as its high mem-
ory requirements and its lack of efficiency, since often some parts of the
code have to be analyzed over and over again, libraries being a paramount
example of this. In this work we present how to extend the termination
analysis in the COSTA system in order to make it modular by allowing
separate analysis of individual methods. The proposed approach has been
implemented. We report on its application to the termination analysis of
the core libraries of the phoneME project, a well-known open source im-
plementation of Java Micro Edition (JavaME), a realistic but reduced ver-
sion of Java to be run on mobile phones and PDAs. We argue that such
experiments are relevant, since handling libraries is known to be one of the
most relevant open problems in analysis and verification of real-life ap-
plications. Our experimental results show that our proposal dramatically
reduces the amount of code which needs to be handled in each analysis
and that this allows proving termination of a good number of methods for
which global analysis is unfeasible.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination. In the last two
decades, a variety of sophisticated termination analysis tools have been devel-
oped, primarily for less-widely used programming languages. These include ana-
lyzers for term rewrite systems [16], and logic and functional languages [18,9,17].

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 218–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modular Termination Analysis of Java Bytecode and Its Application 219

Termination-proving techniques are also emerging in the imperative paradigm
[7,10,16] and the object oriented (OO for short) paradigm, where static analysis
tools such as Julia [25], AProVE [21], and costa [1] are able to prove termina-
tion of non-trivial medium-size programs. In the context of OO languages, we
focus on the problem of proving whether the execution of a method m terminates
for any possible input value which satisfies m’s precondition, if any. Solving this
problem requires, at least in principle, a global analysis, since proving that the
execution of m terminates requires proving termination of all methods transi-
tively invoked duringm’s execution. In fact, the three analysis tools for OO code
mentioned above require the code of all methods reachable from m to be avail-
able to the analyzer and aim at proving termination of all the code involved.
Though this approach is valid for medium-size programs, we quickly get into
scalability problems when trying to analyze larger programs. It is thus required
to reach some degree of compositionality which allows decomposing the analysis
of large programs into the analysis of smaller parts.

In this work we propose an approach to the termination analysis of large OO
programs which is compositional and we (mostly) apply it by analyzing a method
at a time. We refer to the latter as modular, i.e., which allows reasoning on a
method at a time. Our approach provides several advantages: first, it allows
the analysis of larger programs, since the analyzer does not need to have the
complete code of the program nor the intermediate results of the analysis in
memory. Second, methods are often used by several other methods. The analysis
results of a shared method can be reused for multiple uses of the method.

The approach presented is flexible in the level of granularity: it can be used
in a component-based system at the level of components. A specification can be
generated for a component C by analyzing its code, and it can be deployed to-
gether with the component and used afterwards for analyzing other components
that depend on this one. When analyzing a component-based application that
uses C, the code of C does not need to be available at analysis time, since the
specification generated can be used instead.

In order to evaluate the effectiveness of our approach, we have extended the
costa analyzer to be able to perform modular termination analysis and we have
applied the improved system to the analysis of the phoneME implementation
of the core libraries of JavaME. Note that analysis of API libraries is quite
challenging and a significant stress test for the analyzer for a number of reasons
which are discussed in more detail in Section 5 below. The main contribution
of this paper is that it provides a practical framework for the modular analysis
of Java bytecode, illustrating its applicability to real programs by analyzing
phoneME librares. These contributions are detailed from Section 4 onwards.

2 Non-modular Termination Analysis in costa

costa (see [4] and its references) is a cost [2] and termination [1] analyzer for
Java bytecode. costa receives as input the signature of the method m whose
termination (or cost) we want to infer. Method m is assumed to be available

220 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

JBC

class
analysis

CFG RBR

Terminates

BC SIZE

Unknown

nullity
sign

CFG
build

RBR
build

BC
build

size
analysis

PUBS
solver

heap
analysis

Fig. 1. Architecture of costa

in the classpath or default Java run-time environment (jre for short) libraries,
together with all other methods and classes transitively invoked by m. Since
there can be many more classes and methods in the classpath and jre than
those reachable from m, a first step during analysis consists in identifying a
set M of methods which includes all methods reachable from m. This phase
is sometimes referred to as program extraction or application extraction. Then,
costa performs a global analysis since, not only m, but all methods in the
program M are analyzed.

We now briefly describe the overall architecture of costa, which is graphically
represented in Figure 1. More details can be found in [3]. The dashed frames
represent the two main phases of the analysis: (i) consists of extracting a program
M from the method m plus the transformation of the bytecode for all methods
in M into a suitable internal representation; and (ii) the actual static analysis.
Input and output of the system are depicted on the left: by JBC we denote the
bytecode of all classes in the classpath and jre plus the signature of a method and
yields information about termination, indicated by Terminates (the analyzer has
proved that the program terminates for all valid inputs) orUnknown (otherwise).
Ellipses (e.g. CFG) represent what the system produces at each intermediate
stage of the analysis; rounded boxes (e.g. “CFG build”) indicate the main steps
of the analysis process; square boxes (e.g. class analysis), which are connected to
the main steps by dashed arrows, denote auxiliary analyses which allow obtaining
more precise results. During the first phase, depicted in the upper half of the
figure, the incoming JBC is transformed into a rule-based representation (RBR).
In the second phase, depicted in the lower half of the figure, the system performs
the actual termination analysis on the RBR.

2.1 From the Bytecode to the Rule-Based Representation

Generation of Control Flow Graphs Guided by Class Analysis. costa
transforms the bytecode of a method into Control Flow Graphs (CFGs) by us-
ing techniques from compiler theory. As regards Virtual invocation, computing a
precise approximation of the methods which can be executed at a given program

Modular Termination Analysis of Java Bytecode and Its Application 221

point is not trivial. As customary in the analysis of OO languages,costa uses class
analysis [24] (or points-to analysis) in order to precisely approximate this infor-
mation. First, the CFG of the initial method is built, and class analysis is applied
in order to approximate the possible runtime classes at each program point. This
information is used to resolve virtual invocations. Methods which can be called at
runtime are loaded, and their corresponding CFGs are constructed. Class analysis
is applied to their body to include possibly more classes, and the process continues
iteratively. Once a fixpoint is reached, it is guaranteed that all reachable methods
have been loaded, and the corresponding CFGs have been generated.

As regards exceptions, costa handles internal exceptions (i.e., those asso-
ciated to bytecodes as stated in the JVM specification), exceptions which are
thrown (bytecode athrow) and possibly propagated back in methods, as well as
finally clauses. Exceptions are handled by adding edges to the corresponding
handlers. costa provides the options of ignoring only internal exceptions, all
possible exceptions or considering them all.

Rule-Based Representation. Given a method m and its CFGs, a RBR for m
is obtained by producing, for each basic block mj in its CFGs, a rule which (1)
contains the set of bytecode instructions within the basic block; (2) if there is a
method invocation within the instructions, includes a call to the corresponding
rule; and (3) at the end, contains a call to a continuation rule mc

j which includes
mutually exclusive rules to cover all possible continuations from the block. Note
that several rules may be produced with the same name. A procedure P is the
set of all rules with name P .

2.2 Context-Sensitive (Pre-)Analyses to Improve Accuracy

costa performs three context-sensitive analyses on the RBR based on abstract
interpretation [12]: nullity, sign and heap analysis. These analyses improve the
accuracy (and efficiency) of subsequent steps inferring information from individ-
ual bytecodes, and propagating it via a standard, top-down fixpoint computation.

Nullity Analysis aims at keeping track of reference variables which are def-
initely null or are definitely non-null. For instance, the bytecode new(si) allows
assigning the abstract value non-null to si. The results of nullity analysis often
allow removing rules corresponding to NullPointerException.

Sign Analysis aims at keeping track of the sign of variables. The abstract
domain contains the elements ≥, ≤, >, <, = 0, �= 0, � and ⊥, partially ordered
in a lattice. For instance, sign analysis of const(si, V) evaluates the integer value
V and assigns the corresponding abstract value = 0, > or < to si, depending,
resp., on if V is zero, positive or negative [12]. Knowing the sign of data allows
removing RBR rules for arithmetic exceptions which are never thrown.

HeapAnalysis obtains information related to variables and arguments located
in the heap, a global data structure which contains objects (and arrays) allocated
by the program. Infers properties like constancy and cyclicity of variables and ar-
guments, and sharing, reachability and aliasing between variables and arguments
in the heap [15]. They are used for inferring sound size relations on objects.

222 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

2.3 Size Analysis of Java Bytecode

From the RBR, size analysis takes care of inferring the relations between the
values of variables at different points in the execution. To this end, the notion
of size measure is crucial. The size of a piece of data at a given program point
is an abstraction of the information it contains, which may be fundamental to
prove termination. The costa system uses several size measures:

– Integer-value maps an integer value to its value (i.e., the size of an integer
is the value itself). It is typically used in loops with an integer counter.

– Path-length [23] maps an object to the length of the maximum path reachable
from it by dereferencing. This measure can be used to predict the behavior
of loops which traverse linked data structures, such as lists and trees.

– Array-length maps an array to its length and is used to predict the behavior
of loops which traverse arrays.

Size analysis works in two phases. In the first one, called abstract compilation,
each bytecode, call or guard is abstracted by linear constraints on the size of
its variables: for example, iadd(s0, s1, s

′
0) will be abstracted by the constraint

s′0=s1+s0, meaning that the size of s0 after executing the instruction is the sum
of the size of s0 and s1 before.

In the second phase, linear constraints replacing parts of the program can be
propagated via a standard, bottom-up fixpoint computation, in order to combine
the information about single rules. The goal of this global analysis is to have size
relations on variables between the input of a rule (i.e., a block in the CFG) and
another one which can be (directly or indirectly) called by the first one.

2.4 Inferring Termination

From the RBR and the results of size analysis, a set of binary clauses (BC in Fig-
ure 1) is produced, which capture calls among blocks together with information
on how the values of variables change from one call to another. On such binary
clauses, standard termination analysis techniques developed for i.e., termination
of logic program can be applied. In particular, costa proves termination by using
semantic-based techniques, relying on binary unfolding combined with ranking
functions, as those in [9]. This is performed by means of the PUBS solver. More
details on how termination proofs are performed in costa can be found in [1].

3 Abstract Interpretation Fundamentals

Before describing the modular analysis framework, a brief description to ab-
stract interpretation is in order. Abstract interpretation [12] is a technique for
static program analysis in which execution of the program is simulated on a
description (or abstract) domain (D) which is simpler than the actual (or con-
crete) domain (C). Values in the description domain and sets of values in the

Modular Termination Analysis of Java Bytecode and Its Application 223

actual domain are related via a pair of monotonic mappings 〈α, γ〉: abstraction
α : 2C → D and concretization γ : D→ 2C which form a Galois connection, i.e.

∀x ∈ 2C : γ(α(x)) ⊇ x and ∀λ ∈ D : α(γ(λ)) = λ.

The set of all possible descriptions represents a description domain D which is
usually a complete lattice for which all ascending chains are finite. Note that in
general
 is induced by ⊆ and α (in such a way that ∀λ, λ′ ∈ D : λ
 λ′ ⇔
γ(λ) ⊆ γ(λ′)). Similarly, the operations of least upper bound (�) and greatest

lower bound (�) mimic those of 2C in some precise sense that depends on the
particular abstract domain. A description λ ∈ D approximates a set of concrete

values x ∈ 2C if α(x)
 λ. Correctness of abstract interpretation guarantees
that the descriptions computed approximate all of the actual values which occur
during the execution of the program.

In costa, abstract interpretation is performed on the rule based represen-
tation introduced in Section 2. We first introduce some notation. CP and AP
stand for descriptions in the abstract domain. The expression P :CP denotes a
call pattern. This consists of a procedure P together with an entry pattern for
that procedure. Similarly, P �→ AP denotes an answer pattern, though it will
be referred to as AP when it is associated to a call pattern P :CP for the same
procedure. Since a method is represented in the RBR as a set of interconnected
procedures that start from a single particular procedure, the same notation will
be used for methods: m:CP denotes a call pattern that corresponds to an in-
vocation to method m (i.e., the entry procedure for method m), and m �→ AP
denotes the answer pattern obtained after analyzing method m.

Context-sensitive abstract interpretation takes as input a program R and an
initial call pattern P :CP, where P is a procedure and CP is a restriction of the
values of arguments of P expressed as a description in the abstract domain D
and computes a set of triples, denoted analysis(R,P :CP) = {P1:CP1 �→ AP1,
. . . , Pn:CPn �→ APn}. In each element Pi:CPi �→ APi, Pi is a procedure and
CPi and APi are, respectively, the abstract call and answer patterns.

An analysis is said to be polyvariant if more than one triple P :CP1 �→ AP1,
. . . , P :CPn �→ APn n ≥ 0 with CPi �= CPj for some i, j may be computed for
the same procedure P , while a monovariant analysis computes (at most) a single
triple P :CP �→ AP for each procedure (with a call pattern CP general enough
to cover all possible patterns that appear during the analysis of the program
for P). Although in general context-sensitive, polyvariant analysis algorithms
are more precise than those obtained with context-insensitive or monovariant
analyses, monovariant algorithms are simpler and have smaller memory require-
ments. Context-insensitive analysis does not consider call pattern information,
and therefore obtains as result of the analysis a set of pairs {P1 �→ AP1, . . . ,
Pn �→ APn}, valid for any call pattern.

costa includes several abstract interpretation based analyses: nullity and
sign are context-sensitive and monovariant, size is context-insensitive, and heap
properties analysis [15] is context-sensitive and polyvariant.

224 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

4 Extending costa to Modular Termination Analysis

As described in Section 2, the termination analysis performed by costa is in
fact a combination of different processes and analyses that receive as input a
complete program and eventually produce a termination result. Our goal now
is to obtain a modular analysis framework for costa which is able to produce
termination proofs by analyzing programs one method at a time. I.e., in order
to analyze a method m, we analyze the code of m only and (re-)use the analysis
results previously produced for the methods invoked by m.

The communication mechanism used for this work is based on assertions,
which store the analysis results for those methods which have already been
analyzed. Assertions are stored by costa in a file per class basis and they keep
information regarding the different analyses performed by costa: nullity, sign,
size, heap properties, and termination.

Same as analysis results, assertions are of the form m:Pre �→ Post, where
Pre is the precondition of the assertion and Post is the postcondition. The
precondition states for which call pattern the method has been analyzed. It
includes information regarding all domains previously mentioned except size,
which is context-insensitive. PreD (resp., PostD) denotes the information of the
precondition (resp., postcondition) related to analysis domain D. For example,
Prenullity corresponds to the information related to nullity in the precondition
Pre. The postcondition of an assertion contains the analysis results for all do-
mains produced after analyzing methodm. Furthermore, the assertion also states
whether costa has proved termination for that method.

In addition to assertions inferred by the analysis, costa has been extended
to handle assertions written by the user, namely assumed assertions. These as-
sertions are relevant for the cases in which analysis is not able to infer some
information of interest that we know is correct. This can happen either because
the analyzer is not precise enough or because the code of the method is not avail-
able to the analyzer, as happens with native methods, i.e., those implemented
at low-level and for which no bytecode is available. The user can add assumed
assertions with information for any domain. However, for the experiments de-
scribed in Section 6 assumed assertions have been added manually for providing
information about termination only, after checking that the library specification
provided by Sun is consistent with the assertion. In assumed assertions where
only termination information is available, abstract interpretation-based analyses
take � as the postcondition for the corresponding methods.

4.1 Modular Bottom-Up Analysis

The analysis of a Java program using the modular analysis framework consists
in analyzing each of the methods in the program, and eventually determining if
the program will terminate or not for a given call pattern. Analyzing a method
separately presents the difficulty that, from the analysis point of view, the code
to be analyzed is incomplete in the sense that the code for methods invoked is
not available. More precisely, during analysis of a method m there may be calls

Modular Termination Analysis of Java Bytecode and Its Application 225

m′:CP and the code for m′ is not available. Following the terminology in [14], we
refer to determining the value of AP to be used for m′:CP �→ AP as the answer
patterns problem.

Several analysis domains existing in costa are context-sensitive, and all of
them, except heap properties analysis, are monovariant. For simplicity, the mod-
ular analysis framework we present is monovariant as well. That means that at
most one assertion m:Pre �→ Post is stored for each method m. If there is
an analysis result for m′, m′:Pre �→ Post, such that CP is applicable, that is,
CP
 PreD in the domain D of interest, then PostD can be used as answer
pattern for the call to method m′ in m.

For applying this schema, it is necessary that all methods invoked by m have
been analyzed already when analyzing method m. Therefore, the analysis must
perform a bottom-up traversal of the call graph of the program. In order to
obtain analysis information for m′ which is applicable during the analysis of m,
it is necessary to use a call pattern for m′ in its precondition such that it is equal
or more general than the pattern actually inferred during the analysis of m. We
refer to this as the call patterns problem.

Solving the Call and Answer Patterns Problems. A possibility for solv-
ing the call patterns problem would be to make the modular analysis framework
polyvariant: store all possible call patterns to methods in the program and then
analyze those methods for each call pattern. This approach has two main dis-
advantages: on one hand, it is rather complex and inefficient, because all call
patterns are stored and every method must be analyzed for all call patterns that
appear in the program. On the other hand, it requires performing a fixpoint
computation through the methods in the program instead of a single traversal
of the call graph, since different call patterns for a method may generate new
call patterns for other methods.

Another alternative is a context-insensitive analysis. All methods are analyzed
using � as call pattern for all domains. In this approach, all assertions are
therefore applicable, although in a number of cases � is too general as call
pattern for some domains, and the information obtained is too imprecise.

The approach finally used in this work tries to find a balance between both
approaches. A monovariant modular analysis framework simplifies a great deal
the behavior of the modular analysis, since a single traversal of the call graph is
required. In contrast, it is context-sensitive: instead of �, a default call pattern
is used, and the result of the analysis is obtained based on this pattern. This
framework uses different values as call patterns, depending on the particular
analysis being performed. The default call pattern for nullity and sign is �. For
Heap properties analysis, in cyclicity it is the pattern that indicates that no
argument of the method is cyclic. For variable sharing, it is the one that states
that no arguments share. The default call patterns used for analyzing methods
are general enough to be applicable to most invocations used in the libraries and
in user programs, solving the call patterns problem. However, there can be cases
in which the call pattern of an invocation from other method is not included
in the default pattern, i. e., CP �
 PreD. If the code of the invoked method is

226 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

available, costa will reanalyze it with respect to CP�PreD, even though it has
been analyzed before for the default pattern. If the code is not available,� is used
as answer pattern. A potential disadvantage of this approach is that all methods
are analyzed with respect to a default call pattern, instead of the specific call
pattern produced by the analysis. This means that the analyses in costa could
produce more precise results when applied non modularly, even though they
are monovariant, and it represents a possible loss of precision in the modular
analysis framework. Nonetheless, in the experiments performed in Section 6 no
method has been found for which it was not possible to prove termination using
modular analysis, but it was proved in the non-modular model.

Cycles in the Call Graph. Analyzing just a method at a time and (re-)using
analysis information while performing a bottom-up traversal of the call graph
only works under the assumption that there are no cyclic dependencies among
methods. In the case where there are strongly connected components (SCCs for
short) consisting of more than one method, we can analyze all the methods in the
corresponding SCC simultaneously. This presents no technical difficulties, since
costa can analyze multiple methods at the same time. In some cases, we have
found large cycles in the call graph that require analyzing many methods at the
same time. In that case a different approach has been followed, as explained in
Section 6. Therefore, in costa we perform a SCC study first to decide whether
there are sets of methods which need to be handled as a unit.

Field-Sensitive Analysis. In some cases, termination of a method depends on
the values of variables stored in the heap, i.e., fields. costa integrates a field-
sensitive analysis [5] which, at least in principle, is a global analysis and requires
that the source code of all the program be available to the analyzer. Neverthe-
less, in order to be able to use this analysis in the modular setting, a preliminary
adaptation of that analysis has been performed. The field-sensitive analysis in
costa is based on the analysis of program fragments named scopes, and mod-
elling those fields whose behaviour can be reproducible using local variables.
Fields must satisfy certain conditions in order to be handled as local variables.
As a first step of the analysis, related scopes are analyzed in order to determine
the fields that are consulted or modified in each scope. Given a method for which
performing field-sensitive analysis is required in order to prove termination, an
initial approximation to the set of methods that need to be analyzed together
is provided by grouping those methods that use the same fields. We have pre-
computed these sets of methods by means of a non-modular analysis. Since the
implementation of this preanalysis is preliminary and can be highly optimized,
the corresponding time has not been included in the experiments in Section 6.

5 Application of Modular Analysis to phoneME Libraries

We have extended the implementation of costa for the modular analysis frame-
work. In order to test its applicability, we have analyzed the core libraries of the

Modular Termination Analysis of Java Bytecode and Its Application 227

phoneME project, a well-known open-source implementation of Java Micro Edi-
tion (JavaME). We now discuss the main difficulties associated to the analysis
of libraries:

– Entry points. Whereas a self contained program has a single entry method
(main(String[])), a library has many entry points that must be taken into
account during the analysis.

– It is designed to be used in many applications. Each entry point must be
analyzed with respect to a call pattern that represents any valid call from
any program that might use it. By valid we mean that the call satisfies the
precondition of the corresponding method.

– Large code base. A system library, especially in the case of Java, usually
is a large set of classes that implement most of the features in the source
language, leaving only a few specific functionalities to the underlying vir-
tual machine, mainly for efficiency reasons or because they require low-level
processing.

– With many interdependencies. It is usual that library classes are extensively
used from within library code. As a result of this, library code contains a
great number of interdependencies among the classes in the library. Thus,
non-modular analysis of a library method often results in analyzing a large
portion of the library code.

– Implemented with efficiency in mind. Another important feature of library
code is that it is designed to be as efficient as possible. This means that
readability and structured control flow is often sacrified for relatively small
efficiency gains. Section 6 shows some examples in phoneME libraries.

– Classes can be extended and methods overridden. Using a library in a user
program usually not only involves object creation and method invocation,
but also library classes can be extended and library methods overridden.

– Use of native code. Finally, it is usual that a library contains calls to native
methods, implemented in C or inside the virtual machine, and not available
to the analyzer.

5.1 Some Further Improvements to costa

While trying to apply costa to the phoneME libraries, we have identified some
problems which we discuss below, together with the solutions we have imple-
mented. As mentioned above, our approach requires analyzing methods in re-
verse topological order of the call graph. For this purpose, we extended costa
in order to produce the call graph of the program after transforming the byte-
code to a CFG. The call graph shows the complex structure of the classes in
phoneME libraries. Furthermore, apparently, some cycles among methods ex-
isted in some of the call graphs, mainly caused by virtual invocations. However,
we observed that some potential cycles did not occur in practice. In these cases,
either nullity and sign analyses remove some branches if they detect that are un-
reachable, or costa proves termination when solving the binary clauses system.

228 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

A few cases include a large cycle that involves many methods. Those cycles are
formed by small cycles focused in few methods (basically from Object, String
and StringBuffer classes), and a large cycle caused by virtual invocations from
those methods. In order to speed up analysis, methods in small cycles have been
analyzed at the same time, as mentioned above, and large cycles have been
analyzed considering the modular, method at a time bottom up approach.

In addition, costa has been extended for a more refined control of which
pieces of code we want to include or exclude from analysis. Now there are several
visibility levels: method, class, package, application, and all. When all is
selected, all related code is loaded and included in the RBR. In the other extreme,
when method is selected only the current method is included in the RBR and
only the corresponding assertions are available for other methods.

5.2 An Example of Modular Analysis of phoneME Libraries

As an example of the modular analysis framework presented in this paper, let us
consider the method Class.getResourceAsStream in the phoneME libraries. It
takes a string with the name of a resource in the application jar file and returns an
object of type InputStream for reading from this resource, or null if no resource
is found with that name in the jar file. Though costa analyzes bytecode, we
show below the corresponding Java source for clarity of the presentation:

public java.io.InputStream getResourceAsStream(String name) {

try {

if (name.length() > 0 && name.charAt(0) == ’/’) {

name = name.substring(1);

} else {

String clName = this.getName();

int idx = clName.lastIndexOf(’.’);

if (idx >= 0)

name = clName.substring(0, idx+1).replace(’.’, ’/’) + name;

}

return new com.sun.cldc.io.ResourceInputStream(name);

} catch (java.io.IOException x) { return null; }

}

In the source code of this method there are invocations to eleven methods of dif-
ferent classes (in addition to the eight methods explicitly invoked in the method
code, the string concatenation operator in line 9 is translated to a creation of a
fresh StringBuffer object and invocations to some of its methods.)

If the standard, non-modular approach of analysis is used, the analyzer would
load the code of this method and all related methods invoked. In this case,
there are 65 methods related to getResourceAsStream, from which 10 are na-
tive methods. In fact, using this approach costa is unable to prove termination.
Using modular analysis, the call graph is traversed bottom-up, analyzing each
method related to getResourceAsStream one by one. For example, the analysis

Modular Termination Analysis of Java Bytecode and Its Application 229

of the methods invoked by getResourceAsStream has obtained the following
information related to the nullity domain1:

Method call result

StringBuffer.toString() n/a nonnull

StringBuffer.append(String) � nonnull

StringBuffer.<init>()V n/a n/a

String.replace(char,char) (�,�) nonnull

com.sun.cldc.io.ResourceInputStream.<init>(String) nonnull n/a

String.substring(int) � nonnull

String.length() n/a �
String.substring(int,int) (�,�) nonnull

String.charAt(int) � �

In this table, the call pattern refers to nullity information regarding the val-
ues of arguments and the result is related to the method return value. De-
spite of the call patterns generated by the analysis of getResourceAsStream

shown above, when the bottom-up modular analysis computation is performed,
all methods are analyzed with respect to the default call pattern �. The analysis
of getResourceAsStream uses the results obtained for those methods to gener-
ate the nullity analysis results for getResourceAsStream. The same mechanism
is used for other domains: sign, size and heap related properties.

Finally, two native methods are invoked from getResourceAsStream (lastI-
ndexOf and getName) that require assumed assertions. In this case, � is assumed
as the answer pattern for those invocations.

5.3 Contracts for Method Overriding

As mentioned above, one of the most important features of libraries in OO lan-
guages is that classes can be extended by users at any point in time, including
the possibility of overriding methods. This poses significant problems to modu-
lar static analysis, since classes and methods which have already been analyzed
may be extended and overridden, thus possibly rendering the previous analysis
information incorrect. Let us illustrate this issue with an example:

class A {

void m(){/* code for A.m() */};

void caller_m(){this.m();};

};

class B extends A {

void m(){/* code for B.m() */};

};

class Example {

void method_main(A a){

a.caller_m();

};

};

1 These analysis results have been obtained ignoring possible exceptions thrown by
the Java virtual machine (e.g., no method found, unable to create object, etc.) for
clarity of the presentation.

230 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

Here, there are three different classes: A, B, and Example. But for now, let us con-
centrate on classes A and Example only. If A is analyzed, the result
obtained for caller m depends directly on the result obtained for A.m (for in-
stance, caller m could be guaranteed to terminate under the condition that
A.m terminates). Then, the class Example is analyzed, using the analysis re-
sults obtained for A. Let us suppose that analysis concludes that method main

terminates.
Now, let us suppose that B is added to the program. As shown in the example,

B extends A and overrides m. Imagine now that the analysis concludes that the
new implementation of m is not guaranteed to terminate. The important point
now is that the termination behavior of some of the methods we have already
analyzed can be altered, and we have to make sure that analysis results can
correctly handle this situation. In particular, caller m is no longer guaranteed
to terminate, and the same applies to method main. Note, however, that class
inheritance is correctly handled by the analyzer if all the code (in this case
the code of B) is available from the beginning. This is done by considering, at
the invocation program point, the information about both implementations of
m. However, in general, the analyzer does not know, during the analysis of A,
that the class will be extended by B. Such a situation is very common in the
analysis of libraries, since they must be analyzed without knowing which user-
defined classes will override their methods. In this example, corresponds to A

and Example being library classes and B being defined by the user.
In order to avoid this kind of problems, the concept of contract can be used

(in the sense of subcontracting of [20]). This means that the analysis result
for a given method m is taken as the contract for m, i.e., information about
how m and any redefinition of it is supposed to behave with respect to the
analysis of interest. A contract, same as an assertion, has two parts: the calling
preconditions which must hold in order the contract can be applicable; and the
postcondition, the result of the analysis with respect to that preconditions. For
example, a contract for A.m() may say that it terminates under the condition
that the this object of type A is an acyclic data structure. In the example above,
when B is added to the program, we have to analyze B.m taking as call pattern
the precondition (Pre) in the contract for A.m. This guarantees that the result
obtained for B.m will be valid in the same set of input states as the contract for
A.m. Then, we need to compare the postconditions. If mB:Pre �→ PostB and
mA:Pre �→ PostA are the assertions generated for B.m and A.m, respectively,
and Pre is the default calling pattern for both implementations, there are two
possible cases: (a) If PostB
 PostA then B.m satisfies the contract for A.m; (b)
otherwise, the contract cannot be applied, and B.m is considered incorrect. The
user can manually inspect the code of B.m and if the analyzer loses precision,
add an assumed assertion for B.m. Interfaces and abstract methods are similar
to overriding methods of a superclass, with the difference that there is no code
to analyze in order to generate the contract. In this case, assumed assertions
written by the user can be used as contracts.

Modular Termination Analysis of Java Bytecode and Its Application 231

6 Experiments

After obtaining the call graph for the classes of phoneME’s java.lang package, a
bottom-up traversal of the call graphs has been performed. In a few particular
cases, it was required to enable other analyses included in costa (e.g., field
sensitive analysis [5], as mentioned above) for proving termination, or disabling
some features such as handling jvm exceptions.

Table 1 shows the results of termination analysis of java.lang package, plus
some other packages used by java.lang. This table compares the analysis using
the modular analysis described in this paper with the non-modular analysis
previously performed by costa. The columns underModular show the modular
analysis results, while under the Non Modular heading non-modular results
are shown. #Bc shows the number of bytecode instructions analyzed for all
methods in the corresponding class, #T shows the number of methods of each
class for which costa has proved termination and Timea shows the analysis
time of all the methods in each class. In the modular case, the total analysis
time is Timea plus Tcg, the time spent building the call graph of each class.

The two columns under Assumed show the number of methods for which
assumed assertions were required: Nat is the number of native methods in each
class, and NNat contains the number of non-native methods that could not be
proved terminating. Finally, the last two columns under Related contain the

Table 1. Termination Analysis for java.lang package in costa (execution times are in
seconds)

Class
Modular Non Modular Assumed Related

#Bc #T Tcg Timea #Bc #T Timea Nat NNat 1st All
Boolean 56 6 0.02 0.19 67 6 0.22 0 0 1 1
Byte 59 7 0.40 0.22 1545 7 21.10 0 0 4 22
Character 64 11 0.16 0.27 513 11 1.03 0 0 6 11
Class 110 4 1.17 1.10 4119 3 842.70 11 1 20 58
Double 107 17 3.66 1.12 107 13 0.36 2 0 8 57
Error 7 2 0.02 0.04 60 2 0.12 0 0 2 4
FDBigInt 1117 14 0.80 16.10 2513 12 158.39 0 2 23 47
Float 106 18 3.74 1.16 3105 15 5674.96 2 0 9 60
FloatingDecimal 3028 12 4.32 1201.10 3402 9 4983.88 0 8 49 64
Integer 469 21 1.35 18.76 4519 21 62.51 0 0 7 20
Long 268 11 0.64 10.99 2164 11 36.08 0 0 7 20
Math 207 16 0.14 0.67 212 16 0.69 6 0 3 3
NoClassDefFoundError 7 2 0.02 0.04 108 2 0.13 0 0 2 6
Object 737 3 0.21 46.21 891 3 129.31 5 0 7 28
OutOfMemoryError 7 2 0.02 0.03 170 2 0.18 0 0 2 8
Runtime 14 3 0.02 0.08 27 3 0.08 4 0 1 1
Short 59 7 0.39 0.24 1545 7 20.83 0 0 4 22
String 1784 39 5.88 21.11 8709 32 7217.43 6 3 34 120
StringBuffer 1509 37 6.74 11.01 14206 33 12103.35 0 0 37 86
System 45 7 0.38 0.31 2778 6 4864.33 5 0 11 62
Throwable 615 4 0.16 1.23 628 4 60.54 2 0 6 22
VirtualMachineError 7 2 0.02 0.04 108 2 0.14 0 0 2 6
Exception Classes (18) 136 38 0.61 0.74 3961 38 21.27 0 0 11 18

com/sun/* (7) 1584 26 5.55 22.36 11293 16 5161.29 0 0
java/io/* (8) 106 11 1.47 0.65 2337 9 4983.35 0 0
java/util/* (3) 265 13 0.88 3.33 2171 12 51.93 0 0

Total 12473 333 38.77 1359.10 71258 295 46396.17 43 14 256 746

232 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

number of methods from other classes that are invoked by the methods in the
class, either directly, shown in 1st or the total number of methods transitively
invoked, shown in All. Some rows in the table contain results accumulated for
a number of classes (in parenthesis). The last three rows in the table contain
accumulated information for methods directly or transitively invoked by the
java.lang package which belong to phoneME packages other than java.lang.These
rows do not include information about Related methods, since they are already
taken into account in the corresponding columns for java.lang classes. The last
row in the table, Total, shows the addition for all classes of all figures in each
column. A number of interesting conclusions can be obtained from this table.
Probably, the most relevant result is the large difference between the number
of bytecode instructions which need to be analyzed in the modular and non-
modular cases: 12,473 vs 71,258 instructions, i.e. nearly 7 times more code needs
to be analyzed in the non-modular approach. The reason for this is that though
in the modular approach methods are (at least in principle) analyzed just once,
in the non-modular approach methods which are required for the analysis of
different initial methods are analyzed multiple times. Obviously, this difference
in code size to be analyzed has a great impact on the analysis times: the Total
row shows that the modular analysis of all classes in java.lang is more than 30
times faster than the non-modular case.

Another crucial observation is that by using the modular approach we have
been able to prove termination of 38 methods for which the non-modular ap-
proach is not able, either because the analysis runs out memory or because it fails
to produce results within a reasonable time. Furthermore, the modular approach
in this setting has turned out to be strictly more precise than the non-modular
approach, since for all cases where the non-modular approach has proved ter-
mination, it has also been proved by the modular approach. This results in 333
methods for which termination has been proved in the modular approach, versus
295 in the non-modular approach. Altogether, in our experiments we have tried
to prove termination of 389 methods. In the studied implementation of JavaME,
43 of those methods are native. Therefore, costa could not analyze them, and
assumed assertions have been added for them. In addition, costa was not able
to prove termination of 14 methods, neither in the modular nor non-modular
approaches, as shown in the NNat column. For these methods, assumed asser-
tions have also been added, and have not been taken into account in the other
columns except in the last two ones. These two columns provide another view on
the difference between using modular and non-modular analyses with respect to
the number of transitively invoked methods (746) that required analysis, w.r.t.
those directly invoked (256). In the modular case, only directly invoked methods
need to be considered, and only for loading their assertions, whereas the non-
modular approach requires loading (and analyzing) all related methods. We now
describe in more detail the methods whose termination has not been proved by
costa and the reasons for this:

– Bitwise operations. The size analysis currently available in costa is not
capable of tracking numeric values after performing bitwise operations on

Modular Termination Analysis of Java Bytecode and Its Application 233

them. Therefore, we cannot prove termination of some library methods which
perform bitwise operations (in most cases, right or left shift operations) on
variables which affect a loop termination condition.

– Arrays issues. During size analysis, arrays are abstracted to their size.
Though this is sufficient for proving termination of many loops which traverse
arrays, termination cannot be proved for loops whose termination depends
on the value of specific elements in the array, since such values are lost by
size abstraction.

– Concurrency. Though it is the subject of ongoing work, costa does not
currently handle concurrent programs. Nonetheless, it can handle Java code
in which synchronized constructs are used for preventing thread interfer-
ences and memory inconsistencies. In particular, few java.lang phoneME
classes make real use of concurrency. For this reason, Thread class has not
been included in the test, neither Table 1 does include information regarding
Class.initialize nor wait methods defined in Object.

– Unstructured control flow. There are some library methods in which the
control flow is unstructured, apparently for efficiency reasons. For example,
String.indexOf uses a continue statement wrapping several nested loops,
the outer most of them being an endless loop as in the following code (on
the left):

indexOf(String str, int i){

...

searchChar:

while (true) {

...

if (i > max) return -1;

while (j < end) {

if (v1[j++] != v2[k++]){

i++; continue searchChar;}}

return i - offset;} }

fixResourceName(String n){

int stI = 0;

int e = 0;

while((e=n.indexOf(’/’,stI))!= -1){

if (e == stI) {

stI++; continue;}

.... } } }

– Other Cases. ResourceInputStream.fixResourceName involves a call to
a native method in the loop condition (see code above on the right). A
termination assertion is not enough to find a ranking function of the loop to
prove termination.

7 Discussion

Modular analysis has received considerable attention in different programming
paradigms, ranging from, e.g., logic programming [14,11,8] to object-oriented
programming [22,6,19]. A general theoretical framework for modular abstract
interpretation analysis was defined in [13], but most of the existing works re-
garding modular analysis have focused on specific analyses with particular prop-
erties and using more or less ad-hoc techniques. A previous work from some
of the authors of this paper presents and empirically tests a modular analysis
framework for logic programs [14,11]. There are important differences with this

234 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

paper: in addition to the programming paradigm, the framework of [14] is de-
signed to handle one abstract domain, while the framework presented in this
paper handles several domains at the same time, and the previous work is based
on CiaoPP, a polyvariant context-sensitive analyzer in which an intermodular fix-
point algorithm was performed. In [22] a control-flow analysis-based technique is
proposed for call graph construction in the context of OO languages. Although
there have been other works in this area, the novelty of this approach is that it
is context-sensitive. Also, [6] shows a way to perform modular class analysis by
translating the OO program into open DATALOG programs. In [19] an abstract
interpretation based approach to the analysis of class-based, OO languages is
presented. The analysis is split in two separate semantic functions, one for the
analysis of an object and another one for the analysis of the context that uses
that object. The interdependence between context and object is expressed by two
mutually recursive equations. In addition, it is context-sensitive and polyvari-
ant. As conclusion, in this work we have presented an approach which is, to the
best of our knowledge, the first modular termination analysis for OO languages.
Our approach is based on the use of assertions as communication mechanism
between the analysis of different methods. The experimental results show that
the approach increases the applicability of termination analysis. The flexibility
of this approach allows a higher level of scalability and makes it applicable to
component-based systems, since is not required that all code be available to
the analyzer. Furthermore, the specification obtained for a component can be
reused for any other component that uses it. It remains as future work to extend
the approach to other intermediate cases between modular and global analysis,
i.e., by allowing analysis of several methods as one unit, even if they are not in
the same cycle. This can be done without technical difficulties and it should be
empirically determined what granularity level results in more efficient analysis.

Acknowledgments. The authors would like to thank Damiano Zanardini for
interesting discussions and for his help with the heap analysis in costa. This
work was funded in part by the Information & Communication Technologies pro-
gram of the European Commission, Future and Emerging Technologies (FET),
under the ICT-231620 HATS project, by the Spanish Ministry of Science and
Innovation (MICINN) under the TIN-2008-05624DOVES project, the TIN2008-
04473-E (Acción Especial) project, the HI2008-0153 (Acción Integrada) project,
the UCM-BSCH-GR58/08-910502 Research Group and by the Madrid Regional
Government under the S2009TIC-1465 PROMETIDOS project.

References

1. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation Analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

Modular Termination Analysis of Java Bytecode and Its Application 235

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Resource Usage
Analysis and its Application to Resource Certification. In: FOSAD 2007. LNCS,
vol. 5705, pp. 258–288. Springer, Heidelberg (2009)

5. Albert, E., Arenas, P., Genaim, S., Puebla, G., Ramı́rez, D.: From Object Fields to
Local Variables: A Practical Approach to Field-Sensitive Analysis. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 100–116. Springer, Heidelberg
(2010)

6. Besson, F., Jensen, T.: Modular class analysis with datalog. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 19–36. Springer, Heidelberg (2003)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005)

8. Codish, M., Debray, S.K., Giacobazzi, R.: Compositional analysis of modular logic
programs. In: Proc. POPL 1993 (1993)

9. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. J. Log. Program. 41(1), 103–123 (1999)

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

11. Correas, J., Puebla, G., Hermenegildo, M., Bueno, F.: Experiments in Context-
Sensitive Analysis of Modular Programs. In: Hill, P.M. (ed.) LOPSTR 2005. LNCS,
vol. 3901, pp. 163–178. Springer, Heidelberg (2006)

12. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
1977, pp. 238–252. ACM, New York (1977)

13. Cousot, P., Cousot, R.: Modular static program analysis. In: CC 2002. LNCS,
vol. 2304, pp. 159–179. Springer, Heidelberg (2002)

14. Puebla, G., et al.: A Generic Framework for Context-Sensitive Analysis of Modular
Programs. In: Bruynooghe, M., Lau, K. (eds.) Program Development in Compu-
tational Logic. LNCS, vol. 3049, pp. 233–260. Springer, Heidelberg (2004)

15. Genaim, S., Zanardini, D.: The acyclicity inference of COSTA. In: 11th Interna-
tional Workshop on Termination (July 2010)

16. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

17. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL 2001, pp. 81–92. ACM, New York (2001)

18. Lindenstrauss, N., Sagiv, Y.: Automatic termination analysis of logic programs.
In: ICLP (1997)

19. Logozzo, F.: Separate Compositional Analysis of Class-based Object-oriented Lan-
guages. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS,
vol. 3116, pp. 334–348. Springer, Heidelberg (2004)

20. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Inc.,
Upper Saddle River (1997)

21. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Termination Analysis of Java
Bytecode by Term Rewriting. In: Waldmann, J. (ed.) WST 2009, Leipzig, Germany
(June 2009)

236 D. Ramı́rez-Deantes, J. Correas, and G. Puebla

22. Probst, C.W.: Modular Control Flow Analysis for Libraries. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 165–179. Springer, Hei-
delberg (2002)

23. Spoto, F., Hill, P.M., Payet, E.: Path-length analysis of object-oriented programs.
In: EAAI 2006. ENTCS. Elsevier, Amsterdam (2006)

24. Spoto, F., Jensen, T.: Class analyses as abstract interpretations of trace semantics.
ACM Trans. Program. Lang. Syst. 25(5), 578–630 (2003)

25. Spoto, F., Mesnard, F., Payet, É.: A Termination Analyser for Java Bytecode based
on Path-Length. ACM TOPLAS 32(3) (2010)

Decomposition of Constraint Automata

Bahman Pourvatan1, Marjan Sirjani2, Farhad Arbab3, and Marcello M. Bonsangue3

1 AmirKabir University, Tehran, Iran and LIACS, Leiden University, Leiden, Netherland
2 Reykjavik University, Reykjavik, Iceland and University of Tehran, Tehran, Iran

3 CWI, Amsterdam and LIACS, Leiden University, Leiden, Netherland

Abstract. Reo is a coordination language that can be used to model different sys-
tems. Constraint automata form a formal semantics for Reo connectors based on
a co-algebraic model of streams. In this paper, we introduce complete constraint
automata (CCA) whose extra information about entropy states helps in analyzing
and decomposing them into Reo circuits. We show that a complete constraint au-
tomaton is invertible. This property helps to partition and decompose a constraint
automaton, a process which can be utilized to synthesize Reo circuits from con-
straint automata, automatically.

Keywords: Reo, Constraint automata, Automata decomposition, Complete con-
straint automata, Inverse Automata.

1 Introduction

Reo [1] is an exogenous coordination language, wherein complex connectors are com-
positionally built out of simpler ones. The simplest connectors in Reo consist of a set
of channels with well-defined behavior. Reo connectors are represented graphically as
circuits that resemble electronic circuits. The emphasis in Reo is on the connectors,
which orchestrate the synchronization and communication among components, not on
the internal behavior of components. Constraint automata [2] were introduced as a com-
positional semantics for Reo. Using constraint automata we can analyze the behavior
of Reo circuits. Although Reo was initially introduced as a coordination language, it
can be used as a model of concurrency in various kinds of applications. Reo and con-
straint automata are used as an ADL (Architectural Description Language) [3], as a
system-level design language in hardware-software co-designs [4], and as an orchestra-
tion language for web services [5]. In these applications, Reo is generally used to show
the communication and synchronization, and constraint automata are used to model
the components. In this way, the behavior of a whole system can be compositionally
constructed using the constraint automata specification of its constituents.

In this paper, we propose an effective decomposition approach for constraint au-
tomata. Given a constraint automaton that specifies the desired behavior of a system,
and a number of constraint automata, each describing the behavior of a component or
sub-connector that can be used to construct the system, our decomposition technique
produces the missing behavior necessary to compose those components (and/or sub-
connectors) into the specified system. We provide an approach for automatic decom-
position. As we derive the constituent components from the specified functionality by

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 237–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 B. Pourvatan et al.

decomposition, it is guaranteed that the resulting composed system fulfills the require-
ment and no further verification or validation is necessary.

Our approach in this paper exploits the structure of a constraint automaton, instead
of the composition of its SDS language. Our proposed approach can decompose a
constraint automaton into two constraint automata, one of which is a given operand
of the product of the two. The product on constraint automata has no inverse: for a
constraint automaton A built as the product of two constraint automata B and C (A =
B �� C) it is not possible to obtain B, given the two constraint automata A and C. The
synthesis approach in [2] does not address this problem, either.

For such “anchored” decomposition of constraint automata, we need the inverse
of the product operation. Instead of defining this inverse, we use the product op-
eration itself with the inverse of constraint automata. To define the inverse of con-
straint automata, we define Complete Constraint Automata (CCA) by adding ex-
tra information about the impossible events and states disallowed by the original
constraint automata. Complete constraint automata are invertible and we define the
Inverse of Complete Constraint Automata, formally.

Plan of the paper. The rest of this paper is organized as follows: Section 2 contains
a brief overview of Reo, channels, and connectors. In Section 3 we briefly discuss con-
straint automata. In Section 4, we define complete constraint automata. In Section 5,
we show an example for decomposition. Related work is discussed in Section 6. In
Section 7, we discuss our future work and conclude the paper.

2 Reo: A Coordination Language

Reo is a formal language for building component connectors in a compositional man-
ner [2]. Reo allows one to model the behavior of connectors, formally reason about
them, and once proven correct, automatically generate the so-called glue code from
such specification. Each connector in Reo is, in turn, constructed compositionally out
of simpler connectors, which are ultimately composed out of a set of primitive connec-
tors, called channels.

A channel is a primitive communication medium with exactly two ends, each with its
own unique identity, plus a (set of) constraint(s) relating the flows of data through those
ends. There are two types of channel ends: source end through which data enters, and
sink end through which data leaves a channel. A channel must support a certain set of
primitive operations, such as I/O, on its ends; beyond that, Reo places no restriction on
the behavior of a channel. This allows an open-ended set of different channel types to
be used simultaneously together in Reo, each with its own policy for synchronization,
buffering, ordering, computation, data retention/loss, etc [2]. Reo offers a set of open
ended channels, but there is also a set of primitive channels, shown in Figure 1, out
of which the most useful circuits with typical coordination patterns can be built. We
mostly use these channels in our examples.

A Sync channel has a source end and a sink end. The pair of I/O operations on its
two ends can succeed only simultaneously, while the channel passes the data item on
its source end to its sink end. A LossySync is similar to Sync but its source end always
accepts data items. The data item at the source end is lost if there is no reader at the sink

Decomposition of Constraint Automata 239

end. If the sink end is ready to accept then the channel transfers the data item exactly the
same as a Sync channel. SyncDrain has two source ends. The pair of I/O operations on
its two ends can succeed only simultaneously and all data items written to this channel
are lost. A FIFO1 has a source and a sink end and an internal buffer with the capacity
for 1 data item. The channel accepts a data item at its source end only if its internal
buffer is empty. The accepted data item is kept in the internal buffer and makes it full.
An appropriate operation (take) on the sink end succeeds only if the buffer is not empty.
A Filter has a source and a sink and a specified pattern P . An operation on the source
end of this channel that attempts to writes a data item that does not match P , succeeds
immediately and the channel loses the data item. Writing a data item that matches P to
the source of this channel succeeds only simultaneously together with a take operation
on its sink, which obtains the data item.

Channels are connected to make a circuit. Connecting channels is achieved by join-
ing their channel ends together into nodes. Thus, a node consists of a set of channel
ends. A node in Reo has a certain semantics which depends on its type. A node that
contains only source channel ends is called a source node; one that contains only sink
channel ends is called a sink node; and one that contains both types of channel ends
is called a mixed node. The source and sink nodes of a connector are also collectively
called its boundary nodes.

A component can write data items to a source node that it is connected to. The write
operation succeeds only if all (source) channel ends coincident on the node accept the
data item, in which case the data item is transparently written to every source end coin-
cident on the node. A source node, thus, acts as a replicator. A component can obtain
data items, by an input operation, from a sink node that it is connected to. A take op-
eration succeeds only if at least one of the (sink) channel ends coincident on the node
offers a suitable data item; if more than one coincident channel end offers suitable data
items, one is selected nondeterministically. A sink node, thus, acts as a nondetermin-
istic merger. A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its coinci-
dent source channel ends.

The behavior of every connector in Reo imposes a specific coordination pattern on
the entities that perform normal I/O operations on the boundary nodes of that connector,
without the knowledge of those entities. This makes Reo a powerful glue language
for compositional construction of connectors to combine component instances into a
software system, and exogenously orchestrate their mutual interactions.

3 Constraint Automata: Compositional Semantics of Reo

Constraint automata are presented in [2] as formal semantics for Reo connectors based
on a co-algebraic semantics given in [6]. Using constraint automata as an operational
model for Reo connectors, the automata states stand for the possible configurations (e.g.,
the contents of the FIFO-channels of a Reo connector) while the automata-transitions
represent the possible data flows and their effects on these configurations. The oper-
ational semantics for Reo presented in [2] can be reformulated in terms of constraint
automata. The constraint automaton of a given Reo connector can be constructed by

240 B. Pourvatan et al.

composition the constraint automata of its primitive channels. The constraint automata
composition operators for carrying out this concatenation are presented in [2].

An extension of constraint automata with state memory(CASM) extends the language
of data constraints to accommodate state memory cells.

Definition 1 (Constraint Automata with State Memory (CASM)). A constraint au-
tomaton with state memory (over the data domain Data) is a tuple A = (Q, N , →
, q0, M) where

– Q is a finite set of states
– N is a finite set of names.
– → is a finite subset ofQ×2N×DC (N ,M,Data)×Q, called the transition relation

of A, where DC (N ,M,Data) is the set of data constraints, defined below.
– q0 ∈ Q is an initial state.
– M is a set of memory cell names, whereN ∩M = ∅. �

We can partition N into three disjoint sets, N src a set of source node names, N snk

a set of sink node names, and Nmix a set of mixed node names. Thus N = N src �
N snk � Nmix.

We write q
N,g−→ p instead of (q,N, g, p) ∈→. We call N ∈ 2N the name-set and g

the guard or data constraint of the transition. For every transition q
N,g−→ p we require

that g ∈ DC (N,M,Data), where DC (N,M,Data) is the language defined by the
following grammar:

g ::= true | ¬g | g ∧ g | u = u

u ::= d(n) | m′ | m | v
Here “=” is the symmetric equality relation, n ∈ N is a port name, d(n) refers to the
data item that passes through port n, m ∈ M refers to a memory cell in the current
state (source of the transition), m′ refers to the memory cell m in the next state (target
of the transition), and v ∈ Data. As a shorthand, we allow in our syntax false to stand
for ¬ true, and other logical operators, such as ∨ and =⇒ (for implication), can also
be defined, in the usual way.

We omit transitions whose data constraints can be reduced to ¬ true using the
boolean laws. A data constraint, g, that can be reduced to true can be left out. We use
Mg to denote the set of all m ∈ M that syntactically appear as m in a data constraint
g; andM′

g to denote the set of all m ∈ M that syntactically appear as m′ in g.
We use a valuation function Vq :M→ 2Data to designate the set of values Vq(m)

of a memory cell m ∈ M in a state q ∈ Q, where Vq0(m) = ∅ for all m ∈ M. A con-

straint automaton can make a transition q
N,g−−→ p only if there exists a substitution for

every syntactic element d(n),m, andm′ that appears in g to make it true. A substitution
simultaneously replaces every occurrence of d(n) with the data value (to be) exchanged
through the node n ∈ N ; every occurrence of m with a value v ∈ Vq(m); and every
occurrence of m′ with a value v ∈ Data. Making this transition, the automaton defines
the valuation function Vp for the target state p, as follows. For every m ∈ M′

g, Vp(m)
is the set of all v ∈ Data whose replacements in g yield substitutions that make g true.
For every m ∈ M \M′

g, Vp(m) = ∅.

Decomposition of Constraint Automata 241

Fig. 1. Constraint automata with state descriptor for primitive channels and the merger

Figure 1 shows the constraint automata with state memory for the primitive channels
and the merger node.

In order to find which nodes and/or memory cells are related by a data constraint g
to each other or to values in Data, we use the function ()# to parse g.

Definition 2 (Related Names of Data Constraints). The related names of a data con-
straint g is the symmetric binary relation g#, derived from g by the following structural
induction rules:

– (true)# = ∅
– (¬g)# = g#

– (g1 ∧ g2)# = g#1 ∪ g#2
– for x ∈ N ,m ∈ M : (d(x) = m)# = (d(x) = m′)# = (m = d(x))# = (m′ =
d(x))# = {(x,m), (m,x)}

– for x ∈ N , v ∈ Data : (d(x) = v)# = (v = d(x))# = {(x, v), (v, x)}
– for m ∈ M, v ∈ Data : (m = v)# = (m′ = v)# = (v = m)# = (v = m′)# =
{(m, v), (v,m)}

– for x, y ∈ N : (d(x) = d(y))# = {(x, y)}
– for m,n ∈ M : (m = n)# = (m′ = n)# = (m = n′)# = (m′ = n′)# =
{(m,n)} �

3.1 Product of Constraint Automata with State Memory

The product of two constraint automata with state memory is defined in a similar way
to the product of two constraint automata [2].

Definition 3. [Product-automaton (join)] The product-automaton of the two CASM
A1 = (Q1,N1,→1, q01 ,M1) and A2 = (Q2,N2,→2, q02 ,M2) is:

A1 �� A2 = (Q1 ×Q2,N1 ∪ N2,→, 〈q01 , q02〉,M1 ∪M2)

where→ is defined by the following rules:

q1
N1,g1−−−−→1 p1, q2

N2,g2−−−−→2 p2, N1 ∩N2 = N2 ∩ N1

〈q1, q2〉 N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉

242 B. Pourvatan et al.

and
q1

N,g−→1 p1, N ∩ N2 = ∅
〈q1, q2〉 N,g−→ 〈p1, q2〉

and latter’s symmetric rule. �

The node sets Nmix,N src, N snk of the product are:

N src = N src
1 \ (Nmix

2 ∪ N snk
2) ∪ N src

2 \ (Nmix
1 ∪ N snk

1)
N snk = N snk

1 \ (Nmix
2 ∪ N src

2) ∪ N snk
2 \ (Nmix

1 ∪ N src
1)

Nmix = Nmix
1 ∪ Nmix

2 ∪ (N src
1 ∩ N snk

2) ∪ (N snk
1 ∩N src

2)

Moving toward Complete Constraint Automata. Complete constraint automata are
based on CASM. First, we add a descriptor for each state, which shows whether each
memory cell in that state has a value or is empty. Then, we define complete constraint
automata and their inverse.

We define the descriptor of a state using the descriptor for a transition, based on
the data constraints g. The function δ returns a set of memory cells that are referenced
in the data constraint g of a transition in the form of m or m. We define the function

δ(q
N,g−−→ p) as:

δ(q
N,g−−→ p) = {m | m ∈M∧ Vp(m)
= ∅} ∪ {m | m ∈ M∧ Vp(m) = ∅}

Observe that, by the definition of the valuation functionV and how it affects the memory

cells of p, a given m ∈ M can appear in δ(q
N,g−−→ p) exclusively either as m or as m,

depending on whether or not m′ appears in a term in g. All descriptors have the same

size (| δ(q N,g−−→ p) |=| M |).
We consider a subset of constraint automata with state memory as constraint au-

tomata with state descriptor (CASD) defined as follows:

Definition 4. [Constraint Automata with State Descriptor (CASD)] A constraint au-
tomaton with state memory A = (Q, N , →, q0, M) is a constraint automaton

with state descriptor if (1) for every q ∈ Q all incoming transitions p
N,g−→ q have the

same descriptor; and (2) no transition into the initial state imposes a constraint on its
memory cells; i.e.:

(p
N1,g1−−−−→ q) ∧ (r

N2,g2−−−−→ q)⇔ δ(p
N1,g1−−−−→ q) = δ(r

N2,g2−−−−→ q)

δ(q
N,g−−→ q0) = {m |m ∈M}

�

Definition 5. [Descriptor of a state] For a constraint automaton with state descriptor,

we extend the descriptor function δ to states. For each state q: δ(q) = δ(p
N,g−−→ q), and

δ(q0) = {m |m ∈ M}. �

Decomposition of Constraint Automata 243

Every constraint automatonA can be mapped to a CASDA′ by splitting each state ofA
with different incoming transition descriptors into multiple states in A′ such that each
state inA′ has the same descriptor for all of its incoming transitions; andA � A′(where
� denotes bisimulation). Thus, the set of CASD covers CA.

Next, we define a subset of constraint automata with state descriptors as constraint
automata with unique state descriptor, where the descriptor of every state is unique, i.e.,
every state has a descriptor that is different than the descriptors of all other states in the
automaton.

Definition 6. [Constraint Automata with Unique State Descriptor (CAUSD)] A con-
straint automaton with state descriptor A = (Q, N , →, q0, M) is a constraint
automaton with unique state descriptor if for all p, q ∈ Q:

δ(p) = δ(q)⇔ p = q

�
Every CASD A = (Q, N , →, q0, MA) can be mapped to a bisimilar CAUSD
A′ = (Q, N , →, q0, MA′) by adding memory cells to distinguish the non-bisimilar
states ofA that have the same state descriptors. If q1, q2 ∈ Q, q1 and q2 are not bisimilar,
and δA(q1) = δA(q2), we add a new memory cell m
∈ MA to MA′ and define
δA′(q1) = δA(q1)∪{m} and δA′(q2) = δA(q2)∪{m}. Thus, the set of CAUSD covers
CASD (which, in turn, covers CA). According to Definition 6 a constraint automaton
with unique state descriptor withM = ∅ has only one state (| Q |= 1) with descriptor
∅. Figure 1 shows the CAUSD for some Reo channels.

The state descriptors of the FIFO1 in Figure 1 are:

δ(1) = {X} , δ(2) = {X} where M = {X} and Q = {1, 2}
The product of two CAUSD is bisimilar to a CAUSD because we only consider pairs
of states with unique descriptor. The state descriptor for each state in the result of the
product is the union of the descriptors of the product operands, i.e., for 〈q1, q2〉 ∈ Q⇒
δ(〈q1, q2〉) = δ(q1) ∪ δ(q2).

For each constraint automatonA, we define its negationA¬ as follows:

Definition 7. [Negation of Constraint Automata with Unique State Descriptor] The
negation of a constraint automaton A = (Q, N , →, q0, M) denoted as A¬ is
defined asA¬ = (Q, N , →¬, q0, M) where the transition relation→¬ is obtained
from→ by negating its data constraints:

p
N,g−→ q ∈→

p
N,¬g−−−→ q ∈→¬

�
4 Complete Constraint Automata

In order to decompose a CAUSD we need a new operation that acts as the inverse of the
product operation. Instead of defining the inverse of the product operation we use the
product operation itself together with the inverse of a CAUSD. A CAUSDA corresponds
to (i.e, recognizes or produces) a formal language L(A) ⊆ N ∗ and has an inverse

244 B. Pourvatan et al.

CAUSD B where (1) B corresponds to the formal language N ∗ \ L(A), and (2) the
product of A and B is an automaton with a single state that recognize only the null
language. To arrive at an algebraic system, for every A we need to have a unique B
that satisfies the second condition. However, CAUSD do not have this property: for
a CAUSD, we can find more than one CAUSD that fulfils the second condition. For

example, for a CAUSD with a single state p and two transitions p
{A,B},true−−−−−−−→ p and

p
{A,B},true−−−−−−−→ p, we can find three different CAUSDA1, A2, A3 that satisfy the second

condition. Each of these three automata has a single state p and their transition sets

are A1 : {p {A,B},true−−−−−−−→ p}, A2 : {p {A,B},true−−−−−−−→ p}, and A3 : {p {A,B},true−−−−−−−→
p , p

{A,B},true−−−−−−−→ p}. We introduce complete constraint automata (CCA) to solve this
problem and make constraint automata invertible.

For every CAUSDAwe define a complete constraint automatonA′ as its counterpart.
To construct the complete constraint automatonA′ for a CAUSDA, for each state q ∈ A
we define A′ to have both q and its complement state qc, all transitions in A, and also
all transitions that are impossible in A.

Unmasking Constraint Automata. The unmasked version of a CAUSD explicitly
shows the absence of node names on its transitions and the empty (stuttering) transitions
that cause the automaton to remain in each state.

Definition 8. [Unmasked Constraint Automata] The unmasked version of a CAUSD
A = (Q, N , →A, q0, M) is the automaton AU = (Q, N , →, q0, M) where

→=→S ∪ →A and→S is the smallest relation such that ∀q ∈ Q : q
∅,true−−−−→ q ∈

→S . �

Especially for the unmasked constraint automata, we often use the syntax p
N∪N,g−−−−−→ q

where N = {n | n ∈ N \N} for (p,N, g, q) ∈→.
For example in Figure 1, there is only one transition for the automaton of the Sync

channel, when A and B fire simultaneously. If A and B do not fire together, it is im-
plied that the automaton remains in state 1. This behavior is expressed by the implicit

stuttering transition 1
∅,true−−−−→ 1 (not shown) in Figure 1. In Figure 2-i the unmasked

version of the automaton for the Sync channel shows this stuttering behavior explicitly

as the transition 1
AB,true−−−−−→ 1.

There is a unique unmask constraint automaton ξN , called the null automaton, for
a name set N defined as follows. The null automaton serves as the zero element with
product and negation.

Definition 9. [Null Automaton] The null automaton, for a name set N , is
ξN = ({q0}, N , ∅, q0, ∅). �

Since all non-initial states in the product A �� A¬ become unreachable from its initial
state, we have that A �� A¬ � A¬ �� A � ξNA , and that A �� ξNA � ξNA �� A �
ξNA .

In the rest of this paper, we use the term constraint automata instead of unmasked
CAUSD when the context makes the intention clear.

Decomposition of Constraint Automata 245

Fig. 2. Unmasked, and complete constraint automaton for Sync channel constraint automaton

Complete Constraint Automata. Constraint automata show the permissible transition
in reaction to possible events, and unmasked constraint automata make the stuttering
transitions explicit. In order to have an algebraic system over automata, we need to
consider all impossible transitions as well. An automaton (CAUSD) with the set of
names N may have any element of 22

N
on the outgoing transitions of each state. For

each state p ∈ Q, the set 22
N \ �p contains all impossible combinations of names for

the outgoing transitions of p, where �p = {N | p N,g−→ q, q ∈ Q}. To construct
the CCA from an automaton (CAUSD) for each p, we add the following impossible
transitions: transitions with the elements of �p as their name sets with the negation of

their corresponding data constraints, and the transitions with name sets of 22
N \ �p

and true as their data constraints. For each state in the CAUSD automaton, we add
a complement state as its entropy state in its CCA counterpart to which impossible
transitions lead.

Figure 2-ii shows a complete constraint automaton for a Sync channel with the name
set {A,B}. For the Sync channel, eitherA andB fire simultaneously and d(A) = d(B)
is true, or they do not fire at all. To build the complete constraint automaton of the Sync
channel, we add the complement states, here {1c}. For state 1, �1 = {{A,B}, {A,B}}
and the elements of 22

{A,B} \ �1 are {{A,B}, {A,B}}. We add transitions to the
complement state 1c with {A,B} and {A,B} and the negated data constraints; and
{{A,B}, {A,B}} with the data constraints true. In Figure 2-ii, the transition with the
name set {A,B} with the d(A)
= d(B) data constraint is shown. The transition with
the name set {A,B} has a data constraint of false, and is, thus, removed.

We also add transitions from state 1c back to 1 with the same labels as elements of
�1 and we add the transitions from 1c to 1c for each transition from 1 to 1c.

Definition 10 (Complete Constraint Automata (CCA)). A complete constraint au-
tomaton (CCA) (over the data domain Data) is a tuple A = (Q, N , →, q0, M)
where

246 B. Pourvatan et al.

Fig. 3. Transition p
N,g−→ q and three added transitions in CCA

– Q is a finite set of states that is partitioned into the QR and QC , and comes
equipped with an isomorphism (−)C : QR → QC , such that the descriptor δ(q) of
every state q ∈ QR is unique among all states in QR, and δ(q) = δ(qc).

– N is a finite set of names.
– → is a finite subset of Q × 2N × DC (N ,M,Data) × Q, called the transition

relation of A, that satisfies the following rules, where DC (N ,M,Data) is the set
of data constraints, as before.
• For p, q ∈ QR (as shown in Figure 3):

p
N,g−→ q

pc
N,g−→ q , p

N,¬g−−−→ qc , pc
N,¬g−−−→ qc

• For p ∈ QR and �p = {N | p N,g−→ q, q ∈ QR}:

N ∈ 22
N \ �p

p
N,true−−−−→ pc , pc

N,true−−−−→ pc

(p
N,g−→ q) ∧ (p
= q)

p
N,true−−−−→ pc , pc

N,true−−−−→ pc

– q0 is an initial state and q0 ∈ QR.
– M is a finite set of memory cells. �

Observe that for p, q ∈ QR, we have

δ(p) = δ(q)⇔ p � q and δ(q) = δ(qc).

We can map any constraint automaton with unique state descriptor into its corre-
sponding complete constraint automaton by applying the completion function Υ :
CAUSD → CCA , defined below.

Definition 11 (Completion of Constraint Automata with unique state descriptor). The
completion of a constraint automaton with unique state descriptorA = (QR, N ,→R

, q0,M), denoted as Υ (A), is a constraint automatonA′:

Decomposition of Constraint Automata 247

Υ (A) = A′ = (QR ∪QC , N ,→, q0, M)

where

– QC = {qc | q ∈ QR}.
– → is defined by the following rules:

• For each p, q ∈ QR:

p
N,g−→ q ∈→R

pc
N,g−→ q , p

N,¬g−−−→ qc , pc
N,¬g−−−→ qc

• For each p ∈ QR and �p={N | p N,g−→ q, q ∈ QR}

N ∈ 22
N \ �p

p
N,true−−−−→ pc , pc

N,true−−−−→ pc

(p
N,g−→ q) ∧ (p
= q)

p
N,true−−−−→ pc , pc

N,true−−−−→ pc

�

Observe that Υ (A) is also a complete constraint automaton. Figure 4 shows a complete
constraint automaton for a FIFO1 channel.

The state set in Q of every complete constraint automata on A can be split into two
disjoint setsQR andQC , such that, (1)QR contains the initial state q0; and (2) for every
state p inQC , there exists a unique state q inQR with the same state descriptor as pwith

Fig. 4. Complete Constraint Automaton for FIFO1 Channel

248 B. Pourvatan et al.

δ(q) = δ(p), (3) there exists a τ transition from q to p, or p to q. By removing every

transition q
N,g−−→ p where p and q are not both in the same subset QR or QC , we obtain

two disjoint constraint automataA1 = (QR, N ,→R, q0,M) andA2 = (QC , N ,→C

, qc0,M), such that, A1 �� A2 = ξN and Υ (A1) = A.

Lemma 1. The function Υ is an isomorphism. �

4.1 Inverse of Complete Constraint Automata

Complete constraint automata are invertible. We define the inverse of complete con-
straint automata as follows:

Definition 12. [Inverse of Complete Constraint Automata] The inverse of a complete
constraint automaton A = (Q,N ,→, q0,M) is the complete constraint automaton

A = (Q,N ,→, qc0,M) where q0 and qc0 are related by the transition qc0
∅,true−−−−→ q0 or

q0
∅,true−−−−→ qc0, and (−)C is the isomorphism on Q in Definition 10. �

Lemma 2. For constraint automatonA, we have Υ (A¬) = Υ (A). �

Figure 5, shows the inverse of complete constraint automata for the Sync and the FIFO1
channels.

Lemma 3. For complete constraint automatonA we have:A = A. �

4.2 Product of Two Complete Constraint Automata

Complete constraint automata contain more structural information than CASM. Specif-
ically, the isomorphism defined on the states set of a complete constraint automaton (in
Definition 10) is a refinement that makes the normal product of CASM in Definition 3
inadequate for the CCA. Thus, we need a new definition for the �� product of the CCA.
To do this, we first introduce the simple product of CCA, denoted as

⊙

, in Definition
13, as a straight-forward adaptation of Definition 3, which accommodates the extra in-
formation content of the CCA by classifying the states of the product automaton either
as real or complement states.

Recall that we define complete constraint automata in order to use its inverse and
the product operation, instead of defining the inverse of the product operation. For the
complete constraint automata A1 = B �� C and A2 = D �� C , we expect A1 �� A2

to be the same as B �� D (up to bisimilarity). But the simple product A1

⊙

A2 yields
the null automaton, instead ofB

⊙

D. Therefore, the
⊙

product cannot serve as the ��
product of the CCA, and we need to consider more details to define the �� product on
the CCA.

That the above example yields the null automaton follows from the fact that C and
C̄ are “contained” in A1 and A2, respectively. The

⊙

product “fails” in such cases
(by producing the null automaton, instead of the “expected” product), and these are
precisely the cases that require special attention in the definition of the �� product.
Intuitively, the �� product of the CCA identifies the part of an automaton whose inverse

Decomposition of Constraint Automata 249

Fig. 5. Inverse of the complete constraint automata for a Sync and a FIFO1 channel

250 B. Pourvatan et al.

is contained in the other automaton (e.g., the automaton C and its inverse C , above),
subtracts (i.e., removes) this common overlap from both operands, and then forms the
product of the remainders. In the rest of this section, we define the simple product,
subtraction, and the product of the CCA.

Definition 13 (Simple Product of CCA). The simple product of the two complete con-
straint automata A1 = (QR1 ∪ QC1 ,N1,→1, q

1
0 ,M1) and A2 = (QR2 ∪ QC2 ,N2,→2

, q20 ,M2), denoted as A1

⊙A2 is the automaton:

A = (QR ∪QC ,N1 ∪ N2,→, 〈q10 , q20〉,M1 ∪M2)

where→ is defined by the rule:

q1
N1,g1−−−−→1 p1, q2

N2,g2−−−−→2 p2, N1 ∩N2 = N2 ∩ N1

〈q1, q2〉 N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉

andQR andQC are subsets of (QR1 ∪QC1)×(QR2 ∪QC2) defined by the following rules:

p ∈ QR1 , q ∈ QR2
〈p, q〉 ∈ QR

p ∈ QC1 ∨ q ∈ QC2
〈p, q〉 ∈ QC

�

The node sets Nmix,N src, N snk of the product are as in Section 3.
Note that the states with the same state descriptor in QC are bisimilar.
Figures 6 shows two complete constraint automata for two Sync channels and their

product before and after merging the bisimilar complement states.
Subtracting a set of names N1 from an automaton A is a projection that yields an-

other automatonB. The name set ofB is obtained from the name set ofA by considering
to remove all names in N1. A name in N1 can be removed only if is not related to any
name not in N1. If a mixed node in N1 is not removed, its type may change to become
a boundary node in B.

Subtraction uses an asymmetric relation called the directional data constraints of
a transition, which we use to derive potential paths for data-flows. As such, data con-
straints play a key role in our decomposition scheme. When no specific constraint needs
to hold on the data exchanged through a node x in a transition, d(x) simply does not
appear in the data constraints of that transition. For instance, in Figure 1, the data con-
straint for the transition of the CA for the SyncDrain channel is true, which means any
data item occurring on nodes A and B are acceptable. As a semantic model for Reo, a
CA (or CCA) must reflect the characteristic property of Reo mixed nodes: they never
produce, consume, or store data items; therefore, they cannot be the initial sources or the
ultimate targets of any data transfer in any transition. The absence of data constraints,
mentioned above, may lead to CA with transitions whose data constraints seem to indi-
cate a mixed node is the initial source or the ultimate target of data transfers. To resolve
this discrepancy, the implied meaning of the absence of any data constraint for a node
must be made explicit in directional data constraints.

Decomposition of Constraint Automata 251

Fig. 6. Two complete constraint automata (above), the product of the two automata before merg-
ing their bisimilar complement states (middle), and after merging their bisimilar complement
states (bottom)

252 B. Pourvatan et al.

Definition 14 (Directional Data Constraints). For a transition q
N,g−−→ p , we define

its directional data constraints g� as the asymmetric relation built based on g and the
type (mixed, source, sink) of nodes and state memory references that appear in g:

g� = g�∪{(x, ?) | x ∈ N∩Nmix∧(x, y)
∈ g�}∪{(?, x) | x ∈ N∩Nmix∧(y, x)
∈ g�}

where the symbol “?” represents a function that generates fresh new unique special
values that represent don’t care (i.e., no two don’t care values produced by the “?”
function are the same),

g� = {(x, y)|(x, y) ∈ g∗, x ∈ {N src ∪Nmix ∪Mg} ∧ y ∈ {N snk ∪Nmix ∪M′
g}}

and g∗ is the transitive closure of the related names g# of the data constraints g. �

The setsMg andM′
g are defined in Section 3, following Definition 1. Observe that

while g∗ is symmetric, g� is not. Moreover, (x, y), (y, u) ∈ g� =⇒ y ∈ Nmix.

Definition 15 (Name set Subtraction Function). The subtraction of a name set N1

from a complete constraint automaton A = (Q,N ,→, q0,M), denoted as Λ(A,N1),
is a complete constraint automaton B = (Q,N ′,→r, q0,M), where N ′ = N \ NS

and NS = {x|((x, y) ∈ g+ ∨ (y, x) ∈ g+) =⇒ x ∈ N1 ∧ y ∈ N1}. The constraints
set g+ is constructed from the directional data constraints g� of all transitions in A:

g+ =
⋃

q
N,g−−→p

g�

where g� is the transitive reduction of g�. The transition relation→r is obtained from
→ by the following rule:

q
N,g−−→ p

q
N∩N ′,g�(N′∪M)−−−−−−−−−−−→r p

where g �S is obtained by substituting true for every atomic proposition in g that refers
to a name not in S (causing the “removal” of those atomic propositions from g). �

The transitive reduction of g� yields the data-flows that occur from the firing source
nodes and/or memory cells of the source state of a transition, through its firing mixed
nodes, into its firing sink nodes and/or memory cells of its target state. The transitive
reduction of a (finite) binary relation is not unique if it contains cycles. The algorithms
for finding the transitive reduction of a relation allow removing any arbitrary tuple out
of a relation to break the cycle and obtain a minimal relation [7].

Observe that cycles are possible in g� only if they involve mixed nodes exclusively.
Alternative g� reductions obtained by removing alternative tuples involved in such a
cycle in a g� yield data-flow paths that are equivalent under renaming of these (syn-
chronously firing) mixed nodes. Thus, to obtain a g�, we can remove tuples (x, y) ∈ g�
involved in a cycle arbitrarily if x
∈ N1 or y
∈ N1 (or both x and y are not in N1). If
both x and y are in N1 then we remove either (x, y) or (y, x) arbitrarily, but not both.

Decomposition of Constraint Automata 253

Remark: removing a node name in a subtraction may change the classification of
other remaining node names from mixed to sink or source. As it is a derivable detail,
we skip this reclassification.

Definition 16 (Maximal Synchronized Names). The function Φ : CCAS × 2N →
22

N
(where CCAS is the set of all complete constraint automata over the name set N)

designates the sets of maximal synchronized names of a complete constraint automaton
excluding the synchronization between names of a given set N1 ⊆ N . For a complete
constraint automatonA = (Q,N ,→, q0,M), every S ∈ Φ(A,N1) is a maximal sub-

set of N such that for all transitions q
N,g−−→ p of A and every pair of (not necessarily

distinct) X and Y in S where X
∈ N1 ∨ Y
∈ N1, X ∈ N =⇒ Y ∈ N. �

Intuitively, the node names in a S ∈ Φ(A,N1) have the property that either all or none
of them appear in the name set of a transition in A.

By subtraction, some of the synchronization and data-flow relations are removed and
this may produce automata that can be partitioned into other automata with disjoint sets
of node names and memories.

Definition 17 (Automata Partitioning Function). The partitioning function Γ :

CCAS × 22
N → 2CCAS (where CCAS is the set of all complete constraint automata

over the name set N) partitions a complete constraint automaton into a finite set of
complete constraint automata, preserving a given maximal synchronized names set.
Specifically, for a complete constraint automaton A = (Q,N ,→, q0,M) and a maxi-
mal synchronized names set Z , Γ (A,Z) partitions A into a finite number of complete
constraint automata Ai = (Q,Ni,→i, q0,Mi), for 0 < i <= n. The disjoint non-
empty setsN1, ...Nn andM1, ...Mn are obtained as the maximal number of partitions
of the sets N andM, respectively, such that:

1. Ni contains every x ∈ N that is related to a y ∈ Ni in every G ∈ G,
2. for all S ∈ Z,S ⊆ Ni for 0 < i <= n, and
3. Mi contains every x ∈ M that is related to a m ∈ Mi or a y ∈ Ni in every
G ∈ G,

where
G =

⋃

q
N,g−−→p

{{r} | r ∈ (g#)∗}

and (g#)∗ is the transitive closure of the related names g# of the data constraints g of
each transition in→.

The transition relations→i are derived from→ by the following rule:

q
N,g−−→ p

q
N∩Ni,g�Ni∪Mi−−−−−−−−−−→i p

where g �S is obtained by substituting true for every atomic proposition in g that refers
to a name not in S (causing the “removal” of those atomic propositions from g). �

254 B. Pourvatan et al.

Theorem 1. If A1

⊙A2 = Υ (ξNr) and A1

⊙A2 = A1 where A1
�
Υ (ξNA1

) ∧ A2
� Υ (ξNA2
) then A1 and A2 share a ”sub-automaton” and its in-

verse, i.e., the CCA B,E and D exist such that A1 = B
⊙

E and A2 = D
⊙

E and
NE = (NA1 ∪ NA2) \ Nr and (Nr = NB ∪ ND). �

Based on Theorem 1, we define the product-automaton for complete constraint au-
tomata as follow:

Definition 18 (Product-automaton for CCA)
The product-automaton of the two complete constraint automata A1 and A2 is A1 ��
A2:

A1 �� A2 = (

n
⊙

i=1

L1i)
⊙

(

m
⊙

i=1

L2i)

where
(L11 , L12 , ..., L1n) = Γ (Λ(A1, s), Φ(A1, s))

(L21 , L22 , ..., L2m) = Γ (Λ(A2, s), Φ(A2, s))

The symbol s refers to the name set as below:

s =

{

(NA1 ∪ NA2) \ Nr if A1

⊙A2 = Υ (ξNr) ∧ A1

⊙A2 = A1

∅ otherwise
�

Note 1: A1 �� A2 = A1

⊙A2 if A1

⊙A2
= Υ (ξNr) or s = ∅.
Note 2: A1

⊙A2 = Υ (ξNr) ∧ A1

⊙A2 = A1 ⇒ A1

⊙A2 = A2 where
A1
� Υ (ξNA1

) ∧ A2
� Υ (ξNA2
).

Due to space limitation, in the sequel, we omit the details and the proofs.

Lemma 4. (Name set Un-hiding) For the complete constraint automatonA1, A2, and
B, where B = A1 �� A2:

B �� A1 � (A1 �� A2) �� A1 � (A1 �� A1) �� A2 � (A1 �� A2) � B

�

Lemma 5. (Self Product) For the complete constraint automatonA, A = A �� A . �

5 Decomposition Example

To decompose a constraint automaton A based on a given constraint automaton B, we
only compute the product of the completion of Υ (A) with the inverse of the comple-
tion of Υ (B): The complete constraint automaton C = Υ (A) �� Υ (B) is the result of
extracting B fromA. Based on Theorem 1, if B is a part of the constraint automatonA,
the result of Υ (A)⊙ Υ (B) must be Υ (ξNA\NB), and Υ (A)⊙ Υ (B) must be Υ (A).

Decomposition of Constraint Automata 255

Fig. 7. The left figure shows constraint automaton A for two FIFO1 channels composed in a
simple Reo circuit. The middle figure shows the constraint automaton A after name subtraction.
The right figure shows the constraint automaton A after merging the states with the same state
descriptor. For simplicity these figures show only the real states of the automata.

Figure 7 shows a simple Reo circuit with two FIFO1 channels and its constraint
automaton with state memory A. We decompose A by extracting a FIFO1 channel
from it.

A = ({1, 2, 3, 4},NA = {A,B,C},→A,MA = {X,Y })

B = ({1, 2},NB = {A,B},→B,MB = {X})

C = ({1, 2},NC = {B,C},→C,MC = {Y })
If we use the simple product-automaton we obtain the following result:

Υ (A)
⊙

Υ (B) = Υ (ξNA\NB)

The result is the null automaton and we obtain the A as a result of the following com-
putation:

Υ (A)
⊙

Υ (B) = Υ (A)

According to the above results, we must apply subtraction and partitioning. We remove
NB from B using the subtract function Λ(B,NB), obtaining the null automaton which
cannot be partitioned.

We then remove NB from A using the subtract function Λ(A,NB) and with
Φ(A,NB) = {{A}, {B}}, we obtain the automaton shown in Figure 7, which can-
not be partitioned.

The final result of the product is the second FIFO1 channel in Figure 7 (after merging
the states with the same state descriptor).

As a larger case study, we worked on the Reo circuit and constraint automata for
orchestrating three components in a service oriented application. We had the constraint
automata for the three components in Figure 8, and the required behaviour of the system
in Figure 9. We extracted the automata for the three components from the automata of
their required behaviour and obtained the automaton for their orchestration and then
construct the Reo circuit using the same approach.

256 B. Pourvatan et al.

Fig. 8. Figures from left to right show an automaton for the service dynamic manager component,
the UDDI Discovery component, and the user dynamic manager component

Fig. 9. Architecture based on the Reo circuit and required composed system and its automaton

6 Related Work

The problem of decomposing complex systems into simpler components is one of the
fundamental problems in both science and engineering. The particular case of interact-
ing finite state automata is considered in many disciplines in computer science, such
as distributed computing, hardware realizations, distributed AI, and behavior-based
robotics - to mention a few. To accomplish this, automata decomposition was first in-
troduced by Krohn and Rhodes in [8], and Eilenberg introduced Holonomy Decom-
position in [9]. The holonomy method appears to be relatively efficient and has been
implemented by Egri-Nagy in [10]. A specific automata set with a binary product oper-
ation form a semigroup in [8] and [9]. Each of these decomposition disciplines works

Decomposition of Constraint Automata 257

on a specific language and takes advantage of how the combination of some primitive
automata yields that language.

Schützenberger was the first to establish the semigroup as the fundamental mathe-
matical structure of ordinary finite automata [11]. Actually, the proper algebraic struc-
ture for finite automata and regular languages is the Kleene algebra, a semi-ring with
an extra unary operation [12].

The automata we consider in this paper are different from the classical finite au-
tomata as they have constraints and memory cells. The richness of this language allows
us to move from semigroups to Abelian groups, thus introducing an inverse automaton
for each complete constraint automaton.

Synthesis of Reo circuits was first introduced in [13] where the authors showed how
to construct a Reo circuit from schedule-data stream. Another synthesis method was
introduced by Koehler and Clarke in [14] on port automata. Basically, a port automaton
is a constraint automaton without any data constraint. They showed that port automata
can be synthesized using only the merger primitive. This work is in the same line as
Vuillemin and Gama in [15] where they showed that there is a normal form for regular
languages which can be generated by using only the primitive XOR.

For decomposition or synthesis, existing similar works generally expand the au-
tomata, which typically transforms a simple automaton to a large automaton. They de-
compose each automaton to a specific set of predefined primitive automata. Moreover,
they use the inverse of the language generated by the automata and not the automata
themselves. These works abstract additional constraints or conditions on the automata.

We show that a set of CCA on a specific name set with a binary product operator are
invertible and we present a formal definition to obtain the inverse of complete constraint
automata. We can then use this inverse to decompose any complex automata into an
arbitrary set of given components.

7 Conclusion and Future Work

In this work we defined the inverse of a constraint automaton which will be used to
build an algebraic system. To do this, we have extended constraint automata to complete
constraint automata.

We can show that a set of complete constraint automata (CCAS) over a given name
set, together with the product operation form an Abelian Group in an algebraic system.

We introduced rules and lemmas that are used in decomposition of constraint au-
tomata. These rules can help us to perform model-driven development, reverse engi-
neering, and automatic programming. Starting from a given model for the system, and
a set of reusable off-the-shelf components, all specified in the form of constraint au-
tomata, we can iteratively extract the CA of components from the CA model of a desired
system and obtain the CA of the necessary missing building blocks, as the “remainder”
in this operation. Currently, we are working on building a set of rules to show the crite-
ria for selecting the suitable components in each step. These criteria can be customized
based on the availability of components, their cost, speed and other relevant parameters.

Moreover, we will investigate the interesting features of Abelian groups that can be
used for different goals. Lemma 1 of the paper shows that the completion function is

258 B. Pourvatan et al.

an isomorphism. This implies that it should be possible to apply a variant of the inverse
function proposed in this paper directly on constraint automata. Hence, this work serves
as an exercise to build the rationale towards simpler techniques which can be the basis
for developing more efficient decomposition and synthesis tools.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition. Mathemat-
ical Structures in Computer Science 14, 329–366 (2004)

2. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo
by constraint automata (extended abstract). Electr. Notes Theor. Comput. Sci. 97, 25–46
(2004)

3. Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compositions
of software architectural primitives. In: ASE, pp. 371–374. IEEE Computer Society, Los
Alamitos (2004)

4. Razavi, N., Sirjani, M.: Using Reo for formal specification and verification of system designs.
In: MEMOCODE, pp. 113–122. IEEE, Los Alamitos (2006)

5. Meng, S., Arbab, F.: Web services choreography and orchestration in Reo and constraint
automata. In: Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) SAC, pp.
346–353. ACM, New York (2007)

6. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer,
Heidelberg (2003)

7. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J.
Comput. 1, 131–137 (1972)

8. Krohn, K., Rhodes, J.: Algebraic theory of machines. I. prime decomposition theorem for fi-
nite semigroups and machines. Transactions of the American Mathematical Society, vol. 116,
pp. 450–464. ACM, New York (1965)

9. Eilenberg, S.: Automata, languages and machines (1976)
10. Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state automata:

Comparison of implementations for Krohn-Rhodes theory. In: Domaratzki, M., Okhotin, A.,
Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg
(2005)

11. Schützenberger, M.: On the definition of a family of automata. Information and Control,
245–270 (1961)

12. Kozen, D.: On Kleene algebras and closed semirings. In: Proc. Mathematical Foundations in
Computer Science, vol. 452, pp. 26–47 (1990)

13. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M., Sirjani, M.: Synthesis of Reo circuits for
implementation of component-connector automata specifications. In: Jacquet, J.M., Picco,
G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg
(2005)

14. Koehler, C., Clarke, D.: Decomposing port automata. In: Shin, S.Y., Ossowski, S. (eds.) SAC,
pp. 1369–1373. ACM, New York (2009)

15. Vuillemin, J., Gama, N.: Compact normal form for regular languages as xor automata. In:
Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)

Graph Representation of Sessions and Pipelines for
Structured Service Programming�

Roberto Bruni1, Zhiming Liu2, and Liang Zhao1,2,��

1 Department of Computer Science, University of Pisa, Italy
2 United Nations University - International Institute for Software Technology,

P.O. Box 3058, Macao
liang@iist.unu.edu

Abstract. Graph transformation techniques, and the Double-Pushout approach
in particular, have been successfully applied in the modeling of concurrent sys-
tems. In this area, a research thread has addressed the definition of concurrent se-
mantics for process calculi. In this paper, we show how graph transformation can
cope with advanced features of service-oriented process calculi, such as several
logical notions of scoping (like sessions and pipelines) together with the interplay
between linking and containment. This is illustrated by encoding CaSPiS, a re-
cently proposed process calculus with such sophisticated features. We show how
to represent the congruence and reduction relations between CaSPiS processes
by exploiting concurrent graph transformations over hierarchical graphs.

Keywords: process calculus, hierarchical graph, graph transformation.

1 Introduction

Process calculi are a flexible mathematical formalism that provides a convenient ab-
straction for the study of concurrent systems, in the same way as λ-calculus lays the
foundation of sequential computation. The main ingredients of process calculi are: an
algebra (i.e. a signature and a set of structural congruence axioms) of computational
entities, called processes with primitives for communication, parallel composition, etc.,
and an operational semantics modelling the evolution of processes either in terms of
a labelled transition system or as a reduction system, that poses the basis for studying
several notions of behavioural equivalence over processes.

Process calculi have become quite mature in studying traditional concurrent and
communicating systems [11,14], and even advanced to specification and verification of
mobile systems [15]. However, these traditional process calculi does not match certain
advanced features of service-oriented computing like the nested scoping of sessions or
pipelining workflows, or the interplay between linking and containment. Though there
exist attempts of using π-calculus [15] as a model of service systems [13,8], the en-
coding of channels, sessions and pipelines are quite low level and different first-class

� The work is supported by the project GAVES funded by Macau Science and Technology De-
velopment Fund, NSFC 60970031, 973 program 2009CB320702, and STCSM 08510700300
and by the Italian MIUR project IPODS (PRIN 2008).

�� Correspondence author.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 259–276, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

260 R. Bruni, Z. Liu, and L. Zhao

aspects in SOC are mixed up and obfuscated. The low level communication primitives
of π-calculus make the analysis, e.g. about safe interactions, too complex and even in-
feasible.

The Service Centered Calculus (SCC) [1] introduces service definition, service in-
vocation and session handling as first class modeling elements, so as to model service
systems at a better level of abstraction. However, SCC has a rudimentary mechanism
for handling session closure, and it has no mechanism for orchestrating values arising
from different activities. These aspects have been improved in the Calculus of Session
and Pipelines (CaSPiS) [2]. CaSPiS still supports the important features of SCC with
respect to service autonomy, client-service interaction and orchestration. However, the
notions of session and pipelining play a more central role. In CaSPiS, a session has
two sides (or participating processes) and it is equipped with protocols followed by
each side during an interaction between the two sides. A pipeline in CaSPiS permits
orchestrating the flow of data produced by different sessions. The concept of pipeline is
inspired by Orc [16], a basic and elegant programming model for structured orchestra-
tion of services. A structured operational semantics of CaSPiS is given in [2] based on
labeled transitions. It does yet have a simpler and compact reduction semantics [3], on
which we focus, that handles silent actions of processes in the labeled transition system.

As illustrated by a large body of literature, graphs and graph transformations provide
useful insights into distributed, concurrent and mobile systems [10,12,9]. Following
this direction, we are going to define a graph-based concurrent semantics for CaSPiS.
This can help, for example, to record causal dependencies between interactions and ex-
ploit such information for detecting the possible source of faults and misbehaviors. In
order to succeed we need to address two issues. The first is that sessions and pipelines
introduce a strong hierarchical nature to a service oriented system in both of its static
structure and dynamic behavior. The hierarchical structure also changes during the evo-
lution of the system, due to dynamic creation of sessions by invocations of services, and
dynamic creation of processes in pipelines. Therefore we must deal with hierarchical
graphs. The second is that the graph transformation semantics must be “compatible”
with the existing interleaving one.

In this paper, we propose a hierarchical graph representation of service oriented sys-
tems and show how to use graph transformation rules to study their behaviors. More
precisely, our first contribution is to set up a model of hierarchical graphs by exploit-
ing a suitable graph algebra. In this model, graph transformations are studied following
the well-known Double-Pushout (DPO) approach [7]. Then, we map CaSPiS processes
to hierarchical graphs in the graph algebra and define a graph transformation system
with two sets of graph transformation rules to represent the congruence relation and
reduction semantics of CaSPiS, respectively. Finally, we provide the soundness and
completeness results of such representation with respect to the congruence relation as
a main result and conjecture a similar result to hold for the reduction semantics. Our
framework can be extended to deal with persistent services, i.e. services always avail-
able for invocations, without compromising the soundness and completeness results.

There is some work that also aims at providing a graph model for SOC. In [5], states
of service systems are interpreted as terms of a graph algebra that supports names, name
restrictions and design hierarchy. We adopt the grammar of the algebra, but provide a

Graph Representation of Sessions and Pipelines for Structured Service Programming 261

different semantic model where hierarchy is realized by a special kind of edges, called
abstract edges. With such a model, we are able to define graph transformation rules in
the DPO form that change the hierarchical structure of a graph, i.e. through adding or
removing the corresponding abstract edges.

An extension of the work [5] is presented in [4] where the behaviors of processes
are also studied. The authors defined standard forms of graph transformation rules for
reductions of processes, while each rule only deals with the case that the reduction
occurs in a specific context. To handle reductions in all possible contexts, an infinite
number of rules would be needed. Compared with this work, our graph model is based
on the DPO approach which enables us to define the behaviors of processes through a
finite number of rules.

We introduce the calculus CaSPiS in the next section, and our graph model in Sec-
tion 3. In Section 4, we give the graph representation of CaSPiS processes and define
the graph transformation system. Section 5 is a small example to illustrate the applica-
tion of the graph transformation rules, and Section 6 draws some conclusions.

2 The Calculus CaSPiS

This section introduces the key notions of the service-oriented calculus CaSPiS [2].
Let S , R , V and C be four disjoint infinite sets, respectively of service names, session
names, variables and constants. Variables and constants are called values.

The simplest process is the inactive process 0 (nil). A process P can be prefixed by
an abstraction (?x) that is ready to receive a value and assign it to each occurrence of
the variable x occurring in P; a concretion 〈V 〉 that generates an output value V ; or a
return 〈V 〉↑ that returns a value V to the environment outside the current session.

The standard parallel composition P|Q is allowed. The choice operator “+” is limited
to the nil process, as well as those processes prefixed with abstractions, concretions and
returns, called the prefixed processes, i.e. only guarded sums are allowed.

A service is declared by a service definition s.P and used by the environment through
a service invocation s.Q. A participant process of a session is represented by r �P,
where r is a session name, and P is the protocol process this participant follows. In
CaSPiS, a session r can have only two participants that interact with each other. They
are also called the two sides of the session.

A process P can be pipelined with another process Q, denoted by P > Q, so that
P can keep producing values for Q to consume. Service names, session names and
variables can be restricted, in a way like the π-calculus [15] by (νn)P. This restricts all
the occurrences of the name n within P, and P is called the scope of the restriction.

Definition 1 (CaSPiS process). A process is a term generated by the syntax:

Process P,Q ::= M | P|Q | s.P | s.P | r�P | P> Q | (νn)P
Sum M ::= 0 | πP | M+M
Prefix π ::= (?x) | 〈V 〉 | 〈V 〉↑

where s ∈ S , r ∈ R , x ∈ V , V ∈ V ∪C and n ∈ S ∪R ∪V .

We remark that the session construct r �P is a runtime syntax: it should not be used
to model the initial state of a system, but can be dynamically generated upon service

262 R. Bruni, Z. Liu, and L. Zhao

(P|P′)|P′′ ≡c P|(P′|P′′) (νn)0 ≡c 0
P|P′ ≡c P′|P (νn)(νn′)P ≡c (νn′)(νn)P

(M+M′)+M′′ ≡c M+(M′+M′′) P|(νn)Q ≡c (νn)(P|Q) if n /∈ fn(P)
M+M′ ≡c M′+M (νn)Q > P ≡c (νn)(Q > P) if n /∈ fn(P)

M+0 ≡c M r� (νn)P ≡c (νn)(r�P) if n
= r

Fig. 1. Cases of congruence

invocations. We omit 0 in a prefixed term and write, for example, (?x)〈x〉 for (?x)〈x〉0.
A name n occurring in a process is free if it is not bound by either an abstraction (?n) or
a restriction (νn), and fn(P) denotes the set of free names of P. We do not distinguish
between processes that are alpha-convertible, such as (?x)〈x〉〈z〉 and (?y)〈y〉〈z〉. In ad-
dition, we have a set of structural congruence rules among processes, given in Fig. 1.
They are standard monoidal laws and rules for moving restrictions forward.

2.1 Operational Semantics in Terms of Reduction

The basic behavior of a process P is the communication and synchronization (called in-
teractions) between its sub-processes. After an interaction, P evolves to another process
Q. A step of such a change is called a reduction, denoted as P−→Q.

The behaviors of the prefixed processes, the sum “+”, parallel composition, and re-
striction are similar to those in a traditional process calculus, such as π-calculus [15].

A service definition process s.P and service invocation process s.Q synchronize on
the service s and its corresponding invocation s. After offering the service s, s.P evolves
to a session process r�P with a fresh session name r. Symmetrically, after the service
invocation s, s.Q becomes a session process r �Q of the same session name r. For
example, s.P|s.Q−→(νr)(r�P|r�Q).

The session name r will bound the communication scope of P and Q. The freshness
of r guarantees that other processes cannot interfere with the interaction between P and
Q. When a session r starts, the protocols P and Q of the session sides r�P and r�Q
become active, i.e. they are ready to produce and receive values from each other. This
is shown by the example r� (?x)P|r� 〈V 〉Q−→r�P[V/x]|r�Q.

A pipelined process P> Q behaves as P but keeps the new state of P pipelined with
Q, until P produces a value. When P produces a value, a new instance of Q is created,
that consumes the value produced by P and then runs in parallel with the pipeline. For
example: 〈V 〉P> (?x)Q−→(P > (?x)Q)|Q[V/x].

Context. The formal definition of a reduction needs the notion of context, which is a
process expression with some “holes”. Specifically, a context with k holes is a process
term C(X1, . . . ,Xk) defined in Definition 1, but with processes variables X1, . . . ,Xk in it.
In this paper, we only need contexts with one or two holes, and we omit the process
variables and denote a context as C[·] or C[·, ·]. A context is called static if none of
its holes occurs in the scope of a dynamic operator, which is either a service definition
s.[·], a service invocation s.[·], a sum [·]+M or M+[·], a prefix π[·], or the right-hand
side of a pipeline P > [·]. A context is session-immune if its hole(s) does not occur in

Graph Representation of Sessions and Pipelines for Structured Service Programming 263

(Sync)
P ≡c C[s.P1, s.P2]
Q ≡c (νr)C[r�P1, r�P2] r fresh for C[·, ·],P1,P2

(S-Sync)
P ≡c C[r� (P′|(〈V 〉P1+M1)), r�C1[(?x)P2 +M2]]
Q ≡c C[r� (P′|P1), r�C1[P2σ]]

(S-Sync-Ret)
P ≡c C[r� (P′|r′�C2[〈V 〉↑P1 +M1]), r�C1[(?x)P2 +M2]]
Q ≡c C[r� (P′|r′�C2[P1]), r�C1[P2σ]]

(P-Sync)
P ≡c C0[(P′|(〈V 〉P1 +M1))> ((?x)P2 +M2)]
Q ≡c C0[P2σ|((P′|P1)> ((F)P2 +M2))]

(P-Sync-Ret)
P ≡c C0[(P′|r�C2[〈V 〉↑P1 +M1])> ((?x)P2 +M2)]
Q ≡c C0[P2σ|((P′|r�C2[P1])> ((?x)P2 +M2))]

Fig. 2. Cases of reduction

the scope of a session, and restriction-immune if its hole(s) does not occur in the scope
of a restriction. A 2-hole context is called restriction-balanced if the holes occur in the
same restriction environment. For example, (νn)[·]|r� [·] is a static context that is not
restriction-balanced, since the restriction (νn) bounds the first hole but not the second.

Reduction Rules. Following the discussion about the informal behavior of processes,
we summarize the reduction rules in Fig. 2 for service definition, service invocation,
session and pipelined processes, where each rule shows a pair of processes P and Q such
that P−→Q. In Fig. 2, σ denotes the substitution [V/x]; C0[·] is static; C[·, ·] is static
and restriction-balanced; C1[·] and C2[·] are static, session-immune and restriction-
immune. There is no rule that allows a reduction to take place in a non-static context.

Let us consider the process Ser |(Cl > (?y)P), where Ser = req.(ν�)(〈�〉+ 〈null〉) is
a service to allocate new resources (if available), Cl = req.(?x)〈x〉↑ is a client of Ser and
P is a generic process. Then the above process can evolve as illustrated below:

Ser |(Cl > (?y)P)−→ (νr)(r� (ν�)(〈�〉+ 〈null〉) | (r� (?x)〈x〉↑ > (?y)P)) by (Sync)
≡c (νr)(ν�)(r� 〈�〉+ 〈null〉 | (r� (?x)〈x〉↑ > (?y)P))
−→ (νr)(ν�)(r�0 | (r� 〈null〉↑ > (?y)P)) by (S-Sync)
−→ (νr)(ν�)(r�0 | (r�0> (?y)P) | P[null/y]) by (P-Sync-Ret)

Note that, as r � 0 is clearly inert and therefore also r � 0 > (?y)P is inert, then the
reached process amounts essentially to P[null/y]. An analogous computation could have
led (up to the presence of inert processes) to the process (ν�)P[�/y].

3 Algebra of Hierarchical Graphs

A CaSPiS process can be represented as a (hyper)graph. For example in Fig. 3(a),
the graph of P = 〈x〉〈y〉↑ shows that P generates a value x, returns a value y and then
becomes the nil process. The unnamed • nodes represent the states of the control flow,
and the nodes �x and �y show that x and y are values generated and returned by the
concretion and return edges, respectively. The graph in Fig. 3(b) shows that process Q
generates a value z but this value is restricted, thus invisible from outside. A restricted

264 R. Bruni, Z. Liu, and L. Zhao

�x �y

• �� Con

��

�� • �� Ret

��
�� • �� Nil

�

• �� Res

��������� �� • �� Con

��
�� • �� Nil

(a) P = 〈x〉〈y〉↑ (b) Q = (νz)〈z〉

Fig. 3. Graph representations of processes

value node is therefore not named in the graph. These graphs are called hypergraphs,
since an edge can be associated with one or more nodes. A hypergraph shows the control
flow and data flow, as well as the structure of a process, through different types of nodes,
such as � and •, and different types of edges, such as Ret, Res and Con.

3.1 Graph Grammar

We use a graph algebra [5] to specify and study the algebraic properties of hypergraphs,
in order to study CaSPiS processes. Our vocabulary includes a set of node names N
and set of edge labels L . We also use x to denote a sequence, x[i], {x} and |x| to denote
the i-th member, the set of members and the length of the sequence, respectively.

Definition 2 (Graph term). A graph term is generated by the grammar

G ::= 0 | x | l(x) | G|G | (νx)G

where x ∈N and l ∈ L .

Term 0 represents the empty graph, x is the graph of only one node whose name is x,
l(x) is the graph of an l-labeled edge attached to nodes x through its tentacles, G1|G2

roughly represents the union1 of G1 and G2 and (νx)G is a restriction that binds the
name x in G so that it is invisible outside G.

A process P of CaSPiS can be represented by a graph term, denoted by �P�. The
graph terms of processes P and Q in Fig. 3 are respectively written as

�P� = (νp)(νp1)(νp2)(Con(p,x, p1)|Ret(p1,y, p2)|Nil(p2))
�Q� = (νp)(νp1)(νp2)(νz)(Res(p,z, p1)|Con(p1,z, p2)|Nil(p2)).

For a graph term G, we denote its hypergraph as H (G) and called it the hypergraph of
G, and H (�P�) the underlying graph of process P.

We say a node x occurring in a graph term is free if it is not bound by a restriction
(νx). As shown in Fig. 3, free nodes of G are labeled with their names in the hypergraph
of G, while bound nodes are not. When an edge has more than one tentacle, we usually
order them clockwise, with the first one being drawn as an incoming arrow and others
as outgoing arrows. If necessary, we explicitly give their order by 1,2, . . . ,k. For an
edge with only one tentacle, it is not significant whether it is shown as an incoming or
outgoing edge.

1 Actually, the union is up to their common free nodes, as will be defined later.

Graph Representation of Sessions and Pipelines for Structured Service Programming 265

Hierarchical Graph. The graph grammar defined above only describes single CaSPiS
processes that represent closed systems. However, we have to treat open systems and
their compositions. For example, the graph term �P|Q� is not just �P�|�Q�, as its proper
definition require some further machinery (see Fig. 5). For this we need to define a
mechanism of encapsulation, called design, to introduce a hierarchical structure into
the graphs. Like simple edges, designs need to be labeled. To this end, we assume a set
D of design labels is given, and extend the graph grammar presented in Definition 2.

Definition 3 (Hierarchical graph term). A hierarchical graph term is either a graph
or a design generated by the grammar

Graph G ::= 0 | x | l(x) | G|G | (νx)G | D〈x〉
Design D ::= Lx[G]

where x ∈N , l ∈ L and L ∈D.

A design D = Ly[G] exposes a sequence of free nodes y of its body graph G as its in-
terface nodes (interface for short). For a design D, the hypergraph of D〈x〉 is obtained
from the hypergraph of D by attaching its interface nodes to the nodes x. This hyper-
graph is a simple design edge, and it has the same label as D. The hierarchical nature
of hypergraphes is given by that the body graph G in a design Ly[G] may also contain
design edges.

Recall that the hypergraphs of P and Q in Fig. 3 and their corresponding graph terms
represent P and Q as closed systems. They cannot be composed. We can represent each
of them, say P, as an open process by a design graph term. Instead of restricting, we
expose the first control node p as the interface of the design and label it by the design
label P. Then we have the design graph terms of P and Q.

�P� = Pp[(νp1)(νp2)(Con(p,x, p1)|Ret(p1,y, p2)|Nil(p2))]
�Q� = Pp[(νp1)(νp2)(νz)(Res(p,z, p1)|Con(p1,z, p2)|Nil(p2))]

The hypergraphs of the two terms are re-depicted on the top and bottom of Fig. 4(a),
respectively. These two hypergraphs can then be composed by linking their interfaces
with an edge Par that also have a third node p to interface with the outside. We thus
make this composed hypergraph as a design labeled by P and exposing p as its interface.
This is the graph in Fig. 4(a), representing the parallel composition P|Q, and

�P|Q� = Pp[(νp1)(νp2)(Par(p, p1, p2)|�P�〈p1〉|�Q�〈p2〉)].

A design plays two roles in the graph representation of a process. First, it represents a
service or a session as a hierarchical part of a whole process. In this case the edges2

P
1
1, P2

1 and P
3
1 represent the designs, called abstract edges. Secondly, it represents the

interface of a process through which the process communicates with its environment.
When we are not interested in the hierarchical structure, a hypergraph can always be
flattened by combining the nodes linked by internal abstract edges. For example, the
hypergraph in Fig. 4(b) is the flat version of the hypergraph in Fig. 4(a).

2 The use of labels such as P1
1 will become clarified by the formal interpretation rules of graph

terms by hypergraphs.

266 R. Bruni, Z. Liu, and L. Zhao

�x �y

• ��
P

2
1 • �� Con

��

�� • �� Ret

��
�� • �� Nil

• ��
P

1
1 • �� Par

��

��
�

• ��
P

3
1 • �� Res

��������� �� • �� Con

��

�� • �� Nil

�x �y

• �� Con

��

�� • �� Ret

��
�� • �� Nil

• ��
P

1
1 • �� Par

��

��
�

• �� Res

��������� �� • �� Con

��

�� • �� Nil

(a) 〈x〉〈y〉↑|(νz)〈z〉 (b) flat version of 〈x〉〈y〉↑|(νz)〈z〉

Fig. 4. Graph representation with designs

3.2 Interpretation of Graph Terms by Hypergraphs

A hypergraph has different types of nodes for different modeling entities. In Fig. 3,
for example, � nodes represent data while • nodes represent states of the control flow.
We assume a set T of node types and use T(x) ∈ T to denote the type of node x.
Each edge label or design edge label l has an arity AR(l) and a type T(l) that is the
sequence of types of the nodes that the edge is associated with, thus |T(l)| = AR(l). In
our discussion, we consider only three types of nodes, i.e. T = {•,�,�}, representing
the control flow, data and channels, respectively. A design D = Lx[G] is well-typed if the
sequence of its interface nodes x is of type T(L), while a design edge D〈y〉 is well-typed
if D is well-typed and y is of type T(L).

To syntactically indicate whether a design edge is to be interpreted as a flattened
hypergraph, we assume a designated set of design edge labels F ⊆ D, i.e. a design
edge is interpreted in the flat way if and only if its label is in F .

Definition 4 (Interpretation of graph terms). For a graph term G, we define its inter-
pretation by a hypergraph

H (G) = 〈N(G), E(G), AE(G), fn(G), ex(G)〉

that is defined in Fig. 5, where N(G) is the set of nodes names, E(G) the set of edges,
AE(G) the set of abstract edges, fn(G) the set of free node names, and ex(G) the sequence
of interface nodes.

As discussed in the previous subsection, the interpretation of a node, edge, restriction
composition of a graph term is straightforward and easy to understand. A design is
generally represented by a set of binary edges, called abstract edges. The source of
each abstract edge is a node in the body graph of the design which is to be exposed,
and the target is an interface node of the design for interaction with the environment.
For example, Fig. 4(a) has three abstract edges, and its flatten version Fig. 4(b) has
only one, that is P1

1. In general, the superscript of an abstract edge label indicates which
design the abstract edge represents. In Fig 4(a), we have P1

1, P2
1 and P

3
1 that correspond

to different designs. The subscript of an abstract edge label indicates which interface
node of the design the abstract edge links to.

Notice that terms (νx)(νy)G and (νy)(νx)G are interpreted as the same hypergraph.
We thus extend the restriction operator to a set of nodes and write, for example,
(ν{x,y})G for either (νx)(νy)G or (νy)(νx)G.

Graph Representation of Sessions and Pipelines for Structured Service Programming 267

H (0) def
= 〈 /0, /0, /0, /0, /0〉

H (x)
def
= 〈{x}, /0, /0, {x}, /0〉

H (l(x))
def
= 〈{x}, {l(x)}, /0, {x}, /0〉

H ((νx)G1)
def
= 〈N(G1), E(G1), AE(G1), fn(G1)\{x}, /0〉

H (G1|G2)
def
= 〈N(G1)∪N(G2), E(G1)∪E(G2), AE(G1)∪AE(G2), fn(G1)∪ fn(G2), /0〉

(N(G1)∩N(G2) = fn(G1)∩ fn(G2))

H (Ly[G1])
def
= 〈N(G1)∪{y′}, E(G1), AE(G1)∪{Lα

i (y[i],y
′[i])|1≤ i≤ |y|}, fn(G1)\{y}, y′〉

(y′ fresh, T(y′) = T(y), α fresh for L)

H (Ly[G1]〈x〉) def
= 〈N(G1)[x/y], E(G1)[x/y], AE(G1)[x/y], (fn(G1)\{y})∪{x}, /0〉 (L ∈ F)

H (Ly[G1]〈x〉) def
= 〈N(D)[x/ex(D)], E(D)[x/ex(D)], AE(D)[x/ex(D)], fn(D)∪{x}, /0〉

(L
∈ F , D = Ly[G1])

Fig. 5. Interpretation of terms

Morphism. For a formal definition of graph transformations, we need to study the
relations between hypergraphs, which is captured by the notion of morphism.

Definition 5 (Morphism). A morphism m :G1−→G2 is a mapping from one hypergraph
G1 to another hypergraph G2 that satisfies the following conditions.

1. m(e) has the same type as e, where e is either a node, an edge or an abstract edge.
2. If m maps an edge or abstract edge l(x) to l(y), m maps x to y.
3. m maps the sequence of interface nodes of G1 to those of G2.

A morphism m :G1−→G2 is fn-preserving if it maps each free node of G1 to a free node
of G2 with the same node name. Two hypergraphs G1 and G2 are isomorphic, denoted
as G1 ≡d G2, if there is a morphism between them that is bijective and fn-preserving.

Since a morphism preserves the label, source and target of abstract edges, it also
preserves the hierarchical structure of hypergraphs, i.e. the layout of designs. Recall
that each design is represented by a sequence of abstract edges.

3.3 Graph Transformation Rules

A graph-based theory of programming always requires the formalization of rules of
graph transformations for defining the behavior of a program or the derivation of one
program from another. A graph transformation rule is often defined in terms of the
algebraic notions of pushout3 [7].

Definition 6 (Double-Pushout rule). A Double-Pushout (DPO) rule R:GL
ml←GI

mr→GR
is a pair of morphisms ml : GI−→GL and mr : GI−→GR, where ml is injective. Graphs
GL, GI and GR are called the left-hand side, the interface and the right-hand side of
the rule, respectively.

3 Intuitively, a pushout combines a pair of graphs with possibly some common parts by injecting
them into a larger graph that is isomorphic to their disjoint union up to the common parts.

268 R. Bruni, Z. Liu, and L. Zhao

• �� l �� •

l

��

•

��

• �� l �� •

•

• �� l �� •

l

�����

•

�����

•

•

•x

•x′

•x

x/x′ → x
R1 R2

Fig. 6. Two DPO rules

GL

m1

��

GI
ml�� mr ��

m2

��

GR

m3

��
G G′′

m′l�� m′r �� G′

Fig. 7. A direct derivation

In many DPO rules, ml and mr are identity mappings or they only change a small part
of the source graph. We thus simply represent a DPO rule by listing the three graphs
as4 GL|GI|GR when both of its morphisms are identities, otherwise we add necessary
annotations to indicate the mapping between nonidentical elements. For example, both
morphisms of Rule R1 of Fig. 6 are the identity mapping and thus no annotation is
needed, but for Rule R2, we use x/x′ → x to annotate that mr maps different nodes x and
x′ in the interface to the same node x in the right-hand side.

Definition 7 (Direct derivation). Let R :GL
ml←GI

mr→GR be a DPO rule. Given a graph
G and a morphism m1 : GL−→G, we say that G′ is a direct derivation of G by R (based
on m1), denoted as G⇒R G′, if there exist the morphisms in Fig. 7 such that m′l , m′r are
fn-preserving and both squares are pushouts.

In the definition, m1 is called the match in the derivation as it actually matches graph GL
with the subgraph m1(GL) of G. According to this match, a graph G′′ is constructed by
removing the elements, i.e. nodes, edges and abstract edges, in m1(GL\ml(GI)) from
G and preserving the elements in m1(ml(GI)). Since ml is injective, there is a unique
triple 〈m2,G′′,m′l〉 such that m′l is fn-preserving. Then, a graph G′ is obtained from G′′
by adding the elements corresponding to GR\mr(GI). An example of direct derivation
by Rule R1 from Fig. 6 is shown in Fig. 8.

A graph transformation system is defined by a set δ of DPO rules, and a graph deriva-
tion is a sequential application of DPO rules of the system. Formally, G′ is a derivation
of G in system δ, denoted as G⇒∗δ G′, if there is a sequence of graphs G0, . . . ,Gk (k≥ 0)
such that G≡d G0⇒R1 G1⇒R2 . . .⇒Rk Gk ≡d G′ for R1, . . . ,Rk ∈ δ.

4 Here, the symbol "|" is just used to separate the graphs. It does not represent their union.

Graph Representation of Sessions and Pipelines for Structured Service Programming 269

• �� l �� •

l

��

l

��

•

��

•

��

• �� l �� •

l

��

• •

��

• �� l �� •

l

�����
l

��

•

�����
•

��

G G′′ G′

Fig. 8. An example of direct derivation by R1

4 Graph Representation of CaSPiS

This section applies the graph algebra for representation of CaSPiS processes and uses
graph transformations to study reductions of these processes. We first define a direct
representation of a CaSPiS process P by a design �P�. This representation is easy to
understand, but would allow reductions to occur under non-static contexts. To overcome
this problem, we define a tagged version �P�

† of �P�, where only tagged positions are
enabled for reduction, and show that �P�

† can be obtained by applying transformations
rules to the untagged version �P�. Then we define reductions on tagged graphs by graph
transformation rules that are consistent with the process reductions.

In order to represent a process as a hierarchical graph, we define three node types •, �
and �, representing the control flow, data and channels of a process, respectively. We in-
troduce a set of edge labels {Nil,Abs,Con,Ret,Sum,Par,De f , Inv,Ses,Pip,Res,rv,A}.
Some of them represent the operators on processes, such as (Abs) for abstraction, (Par)
for parallel composition and (Ses) for session. The others are for tagging (A) and re-
stricted values (rv), which will become clear later on. The design labels represent pro-
cesses (P), service definitions (D), invocations (I), sessions (S) and right-hand sides of
pipelines (R). Only design edges labeled with P are flat, so the hierarchy of a graph are
introduced only by services, sessions and pipelines.

4.1 Processes as Designs

A process is represented as a P-labeled design. The exposed nodes of such a design
consist of a • node p, together with an input � node i, an output � node o and a return �
node t. For a CaSPiS process P, the formal definition of its graph representation �P� is
given in Fig. 9 by induction on the structure of P.

The nil process 0 is represented as an edge Nil (Fig. 10(a)). An abstraction (?x)P
is represented as a graph that attaches an edge Abs to the graph �P� and to the input
channel of the whole process (Fig. 10(b)). Similar to an abstraction, a concretion and a
return process is represented, but with a Con and a Ret edge associated with the output
channel and the return channel, respectively. The graph of (νn)P is composed of an
edge Res and the graph �P� (Fig. 10(c)).

In the graph of a parallel composition P|Q (or a sum P+Q), the graphs of P and
Q are connected by a Par (or Sum) edge, and the channels of P and Q are combined
(Fig. 10(d)). The graph of a session process r�P is defined by attaching the graph of
P with a session edge Ses. The Ses edge is also connected with the input and output

270 R. Bruni, Z. Liu, and L. Zhao

�0�
def
= P(p,i,o,t)[i|o|t|Nil(p)]

�(?x)P�
def
= P(p,i,o,t)[(ν{p1,x})

(

Abs(p,x, p1, i)|�P�〈p1, i,o, t〉
)

]

�〈V 〉P�
def
= P(p,i,o,t)[(νp1)

(

Con(p,V, p1,o)|�P�〈p1, i,o, t〉
)

]

�〈V 〉↑P�
def
= P(p,i,o,t)[(νp1)

(

Ret(p,V, p1, t)|�P�〈p1, i,o, t〉
)

]

�M+M′� def
= P(p,i,o,t)[(ν{p1, p2})

(

Sum(p, p1, p2)|�M�〈p1, i,o, t〉|�M′�〈p2, i,o, t〉
)

]

�P|Q�
def
= P(p,i,o,t)[(ν{p1, p2})

(

Par(p, p1, p2)|�P�〈p1, i,o, t〉|�Q�〈p2, i,o, t〉
)

]

�s.P�
def
= P(p,i,o,t)[i|t|D(p,t)[(ν{p1, i1,o1})

(

De f (p,s, p1, i1,o1)|�P�〈p1, i1,o1, t〉
)

]〈p,o〉]
�s.P�

def
= P(p,i,o,t)[i|t|I(p,t)[(ν{p1, i1,o1})

(

Inv(p,s, p1, i1,o1)|�P�〈p1, i1,o1, t〉
)

]〈p,o〉]
�r�P�

def
= P(p,i,o,t)[i|t|S(p,t)[(ν{p1, i1,o1})

(

Ses(p,r, p1, i1,o1)|�P�〈p1, i1,o1, t〉
)

]〈p,o〉]
�P>Q�

def
= P(p,i,o,t)[(ν{p1, p2,o1})

(

Pip(p, p1, p2,o1, i,o, t)|�P�〈p1, i,o1, t〉|Rp[(ν{i,o, t})�Q�〈p, i,o, t〉]〈p2〉
)

]

�(νn)P�
def
= P(p,i,o,t)[(ν{p1,n})

(

Res(p,n, p1)|�P�〈p1, i,o, t〉
)

]

Fig. 9. Graph representation of processes

P � �� �

• �� • �� Nil � �� �

� �� �

P �

• �� • �� Abs

��

��

����
���

�� • �� �P�

		����
���

��

� ��
�

��
�

��
�

��
� � �

P �

• �� • �� Res

��

�� • �� �P�

��

��
�

		����
���

�

��
�

��
�

��
� � �

P • �� �P� ��

���
��

��	
		
		
		

� �� �

• �� • �� Par

��

��
� �� �

• �� �Q�

�����
�� � �� �

(a) �0� (b) �(?x)P� (c) �(νn)P� (d) �P|Q�

P S �r

• �� • �� • �� Ses

��

��

����
���

��
���

��
• �� �P�

��

��
�

		����
���

�

��
� �

�

��
�

��
�

��
� � �

P

• �� �P�

��

��

����
��
��
�

R

• �� • �� Pip

��
����

����
���

��
����

��
��

� • �� • �� �Q�

���
��

��

��
�

�

��
�

��
�

��
� � �

� � �

(e) �r�P� (f) �P>Q�

Fig. 10. Examples of graph representation

channels of P. This subgraph is enclosed in an S-labeled design (Fig. 10(e)). The graph
of a service definition or invocation is defined in the same way. A pipeline P > Q is
represented as an edge Pip connected with the graphs of P and Q, where the graph of
the right-hand-side of the pipeline Q is enclosed in a R-labeled design (Fig. 10(f)).

Notice that in Fig. 10, we enclose the body of each design by a dotted box and label it
with the design label in the upper-left corner, so that the abstract edges of the design can
be seen as its tentacles. We then order them clockwise, with the first one drawn as an
incoming dotted arrow. In this way, all the labels of abstract edges5 can be determined
and do not need to be explicitly shown, i.e. the graph looks simpler. We will use this
convention in all figures from now on. It is also worth pointing out that designs provide
a natural mechanism of abstraction, enabling us to hide elements (e.g. the details of �P�

or �Q� in Fig. 10) that are not significant in the current view.

5 Recall that such labels are always complicated, with both superscripts and subscripts.

Graph Representation of Sessions and Pipelines for Structured Service Programming 271

�0�
† def
= P(p,i,o,t)[i|o|t|A(p)|Nil(p)]

�(?x)P�
† def
= P(p,i,o,t)[(ν{p1,x})

(

A(p)|Abs(p,x, p1, i)|�P�〈p1, i,o, t〉
)

]

�〈V 〉P�
† def
= P(p,i,o,t)[(νp1)

(

A(p)|Con(p,V, p1,o)|�P�〈p1, i,o, t〉
)

]

�〈V 〉↑P�
† def
= P(p,i,o,t)[(νp1)

(

A(p)|Ret(p,V, p1, t)|�P�〈p1, i,o, t〉
)

]

�M+M′�† def
= P(p,i,o,t)[(ν{p1, p2})

(

A(p)|Sum(p, p1, p2)|�M�〈p1, i,o, t〉|�M′�〈p2, i,o, t〉
)

]

�P|Q�
† def
= P(p,i,o,t)[(ν{p1, p2})

(

Par(p, p1, p2)|�P�
†〈p1, i,o, t〉|�Q�

†〈p2, i,o, t〉
)

]

�s.P�
† def
= P(p,i,o,t)[i|t|A(p)|D(p,t)[(ν{p1, i1,o1})

(

De f (p,s, p1, i1,o1)|�P�〈p1, i1,o1, t〉
)

]〈p,o〉]
�s.P�

† def
= P(p,i,o,t)[i|t|A(p)|I(p,t)[(ν{p1, i1,o1})

(

Inv(p,s, p1, i1,o1)|�P�〈p1, i1,o1, t〉
)

]〈p,o〉]
�r�P�

† def
= P(p,i,o,t)[i|t|S(p,t)[(ν{p1, i1,o1})

(

Ses(p,r, p1, i1,o1)|�P�
†〈p1, i1,o1, t〉

)

]〈p,o〉]
�P>Q�

† def
= P(p,i,o,t)[(ν{p1, p2,o1})

(

Pip(p, p1, p2,o1, i,o, t)|�P�
†〈p1, i,o1, t〉|Rp[(ν{i,o, t})�Q�〈p, i,o, t〉]〈p2〉

)

]

�(νn)P�
† def
= P(p,i,o,t)[(νn)

(

rv(n)|�P�
†〈p, i,o, t〉)]

Fig. 11. Tagged graphs of processes

P A

��
�

• �� • �� Abs

��

��

����
���

�� • �� �P�

		����
���

��
� ��

�

��
�

��
�

��
� � �

P � �� rv

• �� • �� �P�†

���
��

��

��
�

�

��
�

��
�

��
� � �

�(?x)P�
†

�(νn)P�
†

Fig. 12. Examples of tagged graphs

4.2 Tagged Graphs of Processes

In the graph term �P� of a process P, a control flow node, i.e. a • node, p represents the
“beginning” of the graph of a sub-process Q. In this sense, p corresponds to a context
C[·] with C[Q] = P. Recall that in a process reduction only sub-processes occurring in
static contexts are allowed to interact with each other (e.g. reductions cannot take place
under a prefix). Therefore to define reduction on graphs, we need to distinguish the •
nodes, i.e. control flow nodes, that correspond to static contexts from those • nodes
that correspond to non-static contexts. For this, we introduce unary edges labeled by A,
called tag edges. These edges are used to tag the control flow nodes corresponding to
static contexts.

Definition 8 (Tagged graph). The tagged graph representation of P, denoted as �P�
†

is defined in Fig. 11 by induction on the structure of P.

In a tagged graph �P�
†, each occurrence of abstraction, concretion, return, service def-

inition or invocation in a static context is tagged by an A-edge. For an abstraction and
a restriction, their tagged graphs are depicted in Fig. 12. Note in the case of a restric-
tion, �(νn)P�

† is quite different from its untagged version. In �(νn)P�
†, a new value is

generated and it is denoted by an rv-labeled edge, and original Res-labeled edge in the
untagged version is not needed in the tagged version any more.

272 R. Bruni, Z. Liu, and L. Zhao

A

��
S �

• �� • �� Ses

��

��
��

���

•

� � � �� �

S �

• �� • �� Ses

��

��
��

���

•

� � � �� �

S � A

��
• �� • �� Ses

��

��
��

���

•

� � � �� �

(Ses-Tag)

A

��
�

• �� Res

��

�� •

A

��
�

•p •p′

A

��
�

��•p rv

p/p′ → p
(Res-Tag)

Fig. 13. Two tagging rules

It is possible to obtain a tagged graph �P�
† from its untagged version �P�. For this

purpose, we add a tag edge to the start of the control flow of �P�, and then apply a
sequence of graph transformations, called tagging rules and denoted as ΔT . Fig. 13
shows two interesting tagging rules. The tagging starts with a tag A at the beginning
of the control. It then moves along the flow of control through a session to its body, a
pipeline to its left-hand side or a parallel composition to both of its branches, before it
stops at a nil process or a dynamic operator. When the tag arrives at a restriction, the
restriction edge is removed, its original control nodes are combined and an rv-labeled
edge is added.

We have proved that tagging rules are correctly defined, i.e. they indeed enable us to
transform the untagged graph of any process to its tagged version.

Theorem 1 (Correctness of tagging). For any P,P(p,i,o,t)[A(p)|�P�〈p, i,o, t〉]⇒∗ΔT
�P�

†.

4.3 Graph Transformation Rules for Congruence

We have defined a set of graph transformation rules ΔC to simulate the structural con-
gruence relation between CaSPiS processes (Section 2). These rules are presented in
the full version of the paper available as a technical report [6] and they include the basic
rules of monoidal laws, and those for moving restrictions forward. Because of the page
limit, we only give one representative rule of each kind in Fig. 14.

This set of DPO rules for congruence ΔC is proven to be sound and complete with
respect to the structural congruence of CaSPiS. The soundness means that a rule for
congruence transforms the tagged graph of any process to that of a congruent process,
while the completeness means that the tagged graphs of two congruent CaSPiS pro-
cesses can always be transformed to the same tagged graph through application of these
DPO rules. They are formalized in the following theorems.

Theorem 2 (Soundness w.r.t. congruence). Let P be a process, R ∈ ΔC and G be a
graph. If �P�

†⇒R G, there exist a process Q such that �Q�
† = G and P≡c Q.

Theorem 3 (Completeness w.r.t. congruence). For two processes P and Q such that
P≡c Q, there is a process Q′ such that �P�

†⇒∗ΔC
�Q′�† and �Q�

†⇒∗ΔC
�Q′�†.

The proof of Theorem 2 and 3 is presented in our technical report [6].

Graph Representation of Sessions and Pipelines for Structured Service Programming 273

•

• �� Sum

��

��
•

•

•

•

•

• 1 �� Sum

3
��

2 ��
•

Par ��
���

��
•

•

��

•

��

•

Par

��
�� •

•

• •

•

Par ��
��

•

•

��

•

��
•

Par

����� �� •

(Sum-Comm) (Par-Assoc)

�

• �� Res

��
�� • �� Nil • • �� Nil

•
��

•

Par

�����

��
�

• �� Res

����� �� •

• •

�

•

•
��

•

Res ��
��

�

• �� Par

��

�� •

(Res-Unit) (Par-Res-Comm)

Fig. 14. Four rules for congruence

4.4 Graph Transformation Rules for Reduction

We have also defined a set of graph transformation rules ΔR to simulate the reductions of
CaSPiS processes (Section 2). We only present the two most subtle rules in Fig. 15 and
explain their understanding. Rule (Ser-Sync) is for the synchronization between a pair
of service definition and service invocation. The synchronization causes the creation
of a new session. Note that the data node representing the service name can become
isolated after the synchronization, but it can be eliminated by the garbage collection rule
(D-GC) shown in Fig. 16. Rule (Ses-Sync) is for the interaction between a concretion
and an abstraction on opposite sides of a session. The shared channel node by the edges
Con and Ses makes sure that the concretion belongs to one of the sides. Similarly, the
abstraction belongs to the other session side. Both of the abstraction and concretion are
removed after the communication, with the value of the concretion assigned to variables
originally bound by the abstraction.

Let ΔA be the set of all the DPO rules provided so far, including rules for tagging,
congruence and reduction. The soundness and completeness of DPO rules with respect
to CaSPiS reduction is formalized below.

Conjecture 1 (Soundness w.r.t. reduction). For two processes P and Q such that �P�
†⇒∗ΔA

�Q�
†, Q can be obtained from P through a sequence of reductions, i.e. P−→∗Q, where

−→∗ is the reflexive and transitive closure of the reduction relation−→.

Conjecture 2 (Completeness w.r.t. reduction). For two processes P and Q such that P−→
Q, there exists a process Q′ ≡c Q such that �P�

†⇒∗ΔA
�Q′�†.

The proof of these conjectures is not as easy as that of Theorem 2 and 3. As for the
proof of Conjecture 1, the main technical challenge is to handle intermediate states of
graphs generated through applications of ΔR. For example, after an application of (Ser-
Sync), we may arrive at a state with an isolate node, and such a state does not represent
any process. So, we have to show that even with various intermediate states, the graph
transformation rules are still in accordance with the reduction semantics of CaSPiS. As
for the proof of Conjecture 2, the main technical challenge is to deal with replications.
Recall that during the reduction of a pipeline, a copy of its right-hand side is produced.
However, a DPO rule consists of a fixed number of nodes and edges, thus unable to

274 R. Bruni, Z. Liu, and L. Zhao

A

��
D �

• �� • �� De f

����� ��
��

���

•

� � � �� �

A

��
I

• �� • �� Inv

�������������� ��
��

���

•

� � � �� �

A

��
�

• • •

� � � �

A

��
• • •

� � � �

A

��
S rv ��� �

• �� • �� Ses

��
��

��

���
•

� � � �� �

A

��
S

• �� • �� Ses

��

��
��

���

•

� � � �� �

(Ser-Sync)

S � A

��
�

• �� • �� Ses

��
��

����
�����
• • �� Con

��
��

������
����

•

� ��� � �

S A

��
�

• �� • �� Ses

��

��
����

�����
• • �� Abs

��
��

����
•

� ��� � �

S � A

��
�n′

• �� • �� Ses

��
��

����
�����
• •p •p′

� ��� � �

S A

��
�n

• �� • �� Ses

��

��
����

�����
• •q •q′

� ��� � �

S � A

��
• �� • �� Ses

��
��

����
�����
• •p

� ��� � �

S A

��
�n

• �� • �� Ses

��

��
����

�����
• •q

� ��� � �

p/p′ → p, q/q′ → q, n/n′ → n
(Ses-Sync)

Fig. 15. Two rules for reduction

�

(D-GC)

Fig. 16. Garbage collection of isolate data node

make a copy of a process of any size. So, it is not straightforward to define a set of DPO
rules for the reductions of a pipeline that are complete. We leave the definition of such
rules and the proof of Conjecture 1 and 2 as our future work.

5 An Example

Consider a service named time which is ready to output the current time T . This service
can be used by a process that invokes the service, receives values it produces and then
returns them. The composition of the service and the process is specified in CaSPiS
as P0 = time.〈T 〉|time.(?x)〈x〉↑. The synchronization between time and time creates a
session with a fresh name r, and P0 evolves to P1 = (νr)(r � 〈T 〉|r � (?x)〈x〉↑). Then,
the concretion 〈T 〉 on one session side interacts with the abstraction (?x) on the other
side, assigning x on the latter side with T . Such an interaction makes P1 evolve to
P2 = (νr)(r� 0|r� 〈T 〉↑).

The same behavior can be simulated by graph transformations shown in Fig. 17. The
first graph is the tagged graph of P0. It is transformed to the tagged graph of P1 by
DPO rules (Ser-Sync), (D-GC) and (Ses-Tag). The tagged graph of P1 can be further
transformed to that of P2 by Rule (Ses-Sync).

Graph Representation of Sessions and Pipelines for Structured Service Programming 275

P A

��

D �time �T

• �� • �� De f

����� ��
����

�
��

• �� Con

��

��

������
���

• �� Nil � �� �

� � �
��

�

• �� • �� Par

��

��

�

��

� �� �

I �

• �� • �� Inv

������������������� ��
�������

• �� Abs

 ������� ��

������
���

• �� Ret

��
��

��
• �� Nil

A

��

� � �

�� (Ser−Sync)−→

P A

��

S rv ��� �time �T

• �� • �� Ses

��

��
���

����
• �� Con

��

��

������
���

• �� Nil � �� �

� � �
��

�

• �� • �� Par

��

��

�

��

� �� �

S �

• �� • �� Ses

��

��
�������

• �� Abs

 ������� ��

		����
���

• �� Ret

��
��

��
• �� Nil

A

��
� � �

��

�P0�
†

(D−GC)(Ses−Tag)−→

P S rv ��� A

��

�T

• �� • �� Ses

��

��
����

�
��

• �� Con

��

��

		���
���

• �� Nil � �� �

� � �
��

�

• �� • �� Par

��

��

�

��

� �� �

S A

��
�

• �� • �� Ses

��

��
�������

• �� Abs

��������� ��

		���
���

• �� Ret

��
��

��
• �� Nil

� � �

�� (Ses−Sync)−→

P S rv ��� A

��
• �� • �� Ses

��

��
����

�
��

• �� Nil � �� �

� � �
��

�

• �� • �� Par

��

��

�

��

� �� �

S A

��
�T

• �� • �� Ses

��

��
�������

• �� Ret

��
��

��
• �� Nil

� � �

��

�P1�
†

�P2�
†

Fig. 17. Application of Graph Transformation Rules

6 Conclusion

We propose a graph characterization of structured service programming with sessions
and pipelines. This is done by translating a CaSPiS process term to a design term of
a graph algebra, and giving the graph algebra a model of hypergraphs. A reduction
semantics of CaSPiS is then defined by a suitable graph transformation system.

The advantage of this approach is gained from the intuitive understanding of graphs6

and the mathematical elegance and large body of theory available on graphs and graph
transformations. In addition, the use of designs provides us a natural mechanism of
abstraction and information hiding. This is important for the scalability of graphs. Our
graph model is new compared with the one given in [5] in that hierarchy is modeled by
proper combinations of abstract edges between nodes and edges of different designs.
This is a key nature that enables us to define graph transformations in the DPO form.

We provide two sets of graph transformation rules, ΔC for congruence relation be-
tween graphs (and thus for processes) and ΔR for the reduction semantics. ΔC is proven
to be sound and complete with respect the congruence rules of CaSPiS processes. For
future work, we are going to prove of soundness and completeness of ΔR with respect
to the operational semantics of CaSPiS. Although ΔR looks not as simple as ΔC, we are
quite confident that it is sound and complete. The proof for the cases of services and ses-
sions will be straightforward, and the only difficulty is the case of pipelines due to the
dynamic creation of processes. Future work also includes the application of our graph
model to a more substantial case study of service systems, and the implementation of

6 This is more in terms of the concepts and structures of graphs than the graphic representation.

276 R. Bruni, Z. Liu, and L. Zhao

the graph model with existing graph tools. Due to the complexity of the underlying
mathematical structures of graphs, we need to consider possible optimizations in the
implementation so as to reduce the computation scale as well as the consumption of
computer resources.

References

1. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Mon-
tanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a service cen-
tered calculus. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

2. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for structured ser-
vice programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19–38. Springer, Heidelberg (2008)

3. Bruni, R.: Calculi for service oriented computing. In: Bernardo, M., Padovani, L., Zavattaro,
G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 1–41. Springer, Heidelberg (2009)

4. Bruni, R., Corradini, A., Montanari, U.: Modeling a service and session calculus with hi-
erarchical graph transformation. In: Proc. of GraMoT 2010. ECEASST. EASST (2010) (to
appear)

5. Bruni, R., Gadducci, F., Lluch Lafuente, A.: A graph syntax for processes and services. In:
Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 46–60. Springer, Heidelberg
(2010)

6. Bruni, R., Liu, Z., Zhao, L.: Graph representation of sessions and pipelines for structured
service programming. Technical Report 432, UNU-IIST, P.O. Box 3058, Macao (2010),
http://www.iist.unu.edu/www/docs/techreports/reports/report432.pdf

7. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic ap-
proaches to graph transformation, Part I: Basic concepts and double pushout approach. In:
Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Foundations, vol. 1, pp. 163–245. World Scientific, Singapore (1997)

8. Decker, G., Puhlmann, F., Weske, M.: Formalizing service interactions. In: Dustdar, S., Fi-
adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419. Springer, Heidel-
berg (2006)

9. Ferrari, G., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyperedge re-
placement as a model for service oriented computing. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 22–43. Springer, Hei-
delberg (2006)

10. Gadducci, F.: Term graph rewriting for the pi-calculus. In: Ohori, A. (ed.) APLAS 2003.
LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

11. Hoare, C.A.R.: Communicating sequential processes. Comm. ACM 21(8), 666–677 (1978)
12. Jensen, O.H., Milner, R.: Bigraphs and mobile processes. Technical Report 570, Computer

Laboratory, University of Cambridge (2003)
13. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of Logic and

Algebraic Programming 70(1), 96–118 (2007)
14. Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs

(1989)
15. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Information and

Computation 100(1), 1–40, 41–77 (1992)
16. Misra, J., Cook, W.R.: Computation orchestration: a basis for wide-area computing. Journal

of Software and Systems Modeling 6(1), 83–110 (2007)

http://www.iist.unu.edu/www/docs/techreports/reports/report432.pdf

Will the Real Service Oriented Computing
Please Stand Up?

Farhad Arbab

Foundations of Software Engineering
CWI

Science Park 123
1098 XG Amsterdam

The Netherlands

1 Introduction

At the end of the FACS 2010 meeting, in the charming city of Guimarães, a panel
discussion was organized around the topic of service oriented computing. The panel
members were asked for their views on whether or not the rather better established
field of component based software engineering subsumes service oriented computing,
and if not, what exactly is the difference between component based and service oriented
computing. The starting position of the majority of the panel members was that the basic
concepts and formalisms at the foundation of service oriented computing are covered
and investigated sufficiently well within component based software engineering. As a
member of this panel, my dissenting views on this topic triggered a lively discussion
that engaged the audience as well. Once the dust of the discussions arising from the
usual misunderstandings of terminology settled, a near consensus became visible, and
a useful distinction emerged that may lead to a better understanding of the territory and
identification of directions for further research. Subsequently, a number of participants
proposed to me that it may be useful to summarize this part of the discussions, and the
editors of this volume agreed that such a summary complements the portrayal of FACS
2010 conveyed by the regular contributed papers in this post-proceedings. As such, this
document is neither a report on nor a summary of the said panel discussion. Rather, it is
a reconstruction of my personal views as presented and discussed in this panel, which
does not necessarily reflect the views of others.

2 The Buzz

Indeed, service oriented computing has become very fashionable in the past few years,
attracting considerable attention in both academia and industry. The flurry of activity
that has produced an alphabet soup of acronyms for complementary, incompatible, and
conflicting standards concerning various aspects of (Web) services has only recently
ebbed. As it is usual with fashionable trends, the inevitable more sober evaluation of
what exactly is the problem for which these standards and technology constitute a so-
lution has subdued the initial over-enthusiasm depicting service oriented computing as

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 277–285, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

278 F. Arbab

the new panacea for all software problems. The coexistence of at least two irreconcil-
able worlds of Web and Grid services from the start, plus the advent of cloud computing
that sapped part of that over-enthusiasm, may have speeded up this sobering somewhat.
To be fair, healthy skepticism about service oriented computing has not been in short
supply. Prompt proclamations of “been there, done that” were issued, although to what
extent they were heeded remains anyone’s guess.

If software services are supposed to offer a new paradigm for engineering of soft-
ware (intensive) systems, the hard questions of “What precisely is conceptually new
here?” and “What exactly are the scientific challenges, if any?” have not received the
serious attention that they deserve often enough, and seldom answered satisfactorily. It
is perfectly understandable for those who view this scene from outside, especially with
the more austere look honed by formal methods, to conclude that beyond some hyped
up standards and exchange and wrapper technology, the paradigm of software services
involves nothing conceptually new or challenging, beyond the concerns of good old
distributed computing and component based systems. This panel was certainly not the
first time that I was confronted with such views. While there is a good deal of truth to
these views, I believe that underneath the commotion, there really are serious questions
and challenges that, although often neglected, must be eventually attended to for soft-
ware services to both deserve recognition as constituting a new paradigm, and have an
impact commensurable with their hitherto hype.

This situation reminds me of the popular TV game show To Tell The Truth, which
originally ran in the 60’s on CBS in the US and was syndicated in the 70’s and 80’s
and beyond. The set up of the game involves (usually) 3 challengers and a panel of
celebrities. The challengers consist of a contestant who has an unusual occupation or
experience and is obligated to answer questions posed to him truthfully, accompanied
by 2 impostors whose roles are to pretend to be the real contestant by giving misleading
or untrue answers to questions posed to them. The panel and the audience are first
presented with a truthful statement describing the unusual occupation or experience of
the contestant. Then, each member of the panel of celebrities is given a fixed length of
time to ask questions from each challenger, and in the end, the panel members vote to
identify the contestant among the impostors. Once the votes are cast, the host asks the
catch phrase question of the game show: “Will the real [contestant] please stand up?”
The challenger and the impostors, then, reveal their true identities and the challenger
wins a prize money based on the number of incorrect votes.

It seems to me that we have been confounded in identifying true service oriented
computing among the challengers. As in the game show, asking the right questions
based on a keen understanding of the proclaimed profile of the contestant serves us
well in eliminating the impostors. Let us start to examine this profile.

3 Software Engineering

Software engineering consists of applying engineering discipline to construction of
complex software intensive systems. A hallmark of all engineering disciplines is com-
position: Construct more complex systems by composing simpler ones. This principle
allows us to derive the properties of a composed system as a composition of the prop-
erties of its constituents.

Will the Real Service Oriented Computing Please Stand Up? 279

Any brief history of the evolution of software engineering must mention the
milestones of structured programming with subprograms, functions, and modules, the
object-oriented paradigm (OO), component-based software engineering (CBSE), and
purportedly, service-oriented computing (SOC), as the contemporary tentative end of
this history. SOC involves highly interactive, open, dynamic, heterogeneous, distributed
applications, wherein the notion of service (as opposed to function, module, class, or
object) constitutes the basic, atomic building block. Many examples of SOC and ser-
vice oriented architectures already exist and have been considered successful in the real
world. This has attracted strong academic and industrial interest, and active standard-
ization efforts.

It is instructive to measure the milestones of this history against the hallmark of the
discipline to identify trends: what composition mechanisms are afforded by each of
these milestones and what properties characterize those mechanisms?

Functions and subprograms are composed using local or remote procedure calls. A
procedure call in fact invokes a specific algorithm and weaves it into the algorithm of
the caller. The composition mechanism in structured programming amounts to direct
composition of algorithms. Intuitive as it may seem in the sequential world, in parallel
and distributed settings, weaving algorithms by hard-coding function calls within other
functions intermixes (data-dependent) computation control flow with concurrency pro-
tocols, making both more convoluted than necessary.

Method invocation (local or remote) constitutes the composition mechanism in OO.
It loosens the tight coupling of algorithm weaving of function calls by introducing ob-
ject as a level of indirection between the caller and the called algorithms. Instead of
deciding on and invoking a specific algorithm in a function call, in OO the caller only
identifies an operation to be performed by an object; it is (the implementer of) the
target object that decides which specific algorithm to use in order to perform that oper-
ation. The caller is thus shielded from the details of the target algorithm (and the data
structures that it manipulates) by the level of indirection that the target object provides,
yielding a looser coupling than composition via direct function calls. The control-flow
coupling between the caller and the called algorithms becomes even looser in the asyn-
chronous method invocation mechanisms, making them even more suitable than syn-
chronous method invocation for concurrent settings.

With few negligible exceptions, software composition via composition of functions,
objects, modules, and libraries is possible only at the source language level within the
same programming language. Generally, the object code of a function, class, or object
produced by one programming language compiler cannot be composed with the object
code of a calling program produced by another language compiler, or even another
version of the same language compiler. The possibility of object-code-level composition
is one of the key advantages offered by component models in CBSE. Variants of method
invocation have proliferated from OO programming into the world of OO components.

Stripped of its OO method invocation semantics, asynchronous message passing
constitutes a different composition mechanism based on the exchange of (locally or
remotely) targeted messages. Used in concurrency platforms such as PVM and MPI,
non-OO component models, and SOC, asynchronous exchange of messages through
targeted-send and receive loosens the coupling between the sender and the receiver

280 F. Arbab

further by disallowing any control-flow coupling between the two. Targeted message
passing imposes an asymmetric dependence between the sender and the receiver of a
message: the sender must (know and) target the message to the receiver, but the receiver
is free to receive any message from any (unknown) sender. As a composition mecha-
nism, then, targeted message passing hinges on an asymmetric coupling: the binding of
the sender to the receiver is tighter than the binding of the receiver to the sender. Un-
targeted message passing, as used in stream processing, dataflow, and workflow mod-
els, which are also used in SOC, provides a composition mechanism with the loosest
possible coupling between the constituents that comprise a system. It binds communi-
cating entities in symmetrically anonymous communication: neither the sender nor the
receiver of a message needs to know its counterpart beforehand.

As its purported successor milestone, it is not surprising that SOC shares this same
profile with CBSE. To recognize what, if anything, differentiates them, we must exam-
ine the implications of what it means to have services as the atomic building blocks
in composition, and in fact, what exactly, if anything, distinguishes a service from a
component.

4 Service Oriented Computing

My preferred definition of a (software) service states that a service is the behavior that
a piece of software manifests when it executes on its provider’s own hardware. Imme-
diately, this definition distinguishes a service from a component (or function, module,
class, object, library, pattern, skeleton, etc.) because it states that a service is not a
piece of software, but the behavior that a piece of software exhibits when executed on
its provider’s own hardware. Viewed as commodity behavior, software services have
less in common with pieces of software, as in components, and more in common with
services that constitute the basic commodities in service economies of post-industrial
societies. We are not concerned with how our mail is actually sorted and delivered.
For all we know, the behavior we subscribe to as our mail service may equally well be
manifested by the likes of Cliff Clavin of Cheers, or elves and gnomes: our interface
with this service (pick up and delivery of mail) shields us from knowing or caring what
agents manifest it or how. Similarly, for all we care to know, what lies behind the fast
effective search service offered by Google may not be software at all, but armies of
clever homunculi and specially trained gerbils.

Transportation services, delivery services, catering services, event organization ser-
vices, janitorial services, etc. use other services and compose them with their own added
value to provide new offerings in the service market. Similarly, although the building
blocks of SOC involve software (intensive) systems, SOC is primarily not about soft-
ware! SOC emphasizes the intrinsic value of the behavior of a software (intensive)
system as a business process, with a simple client-friendly interface, that can be used
directly, or in the context of composed services, by other services.

The proclaimed promise of SOC has been to transform the Web into an open global
marketplace to offer electronic services. For this promise to materialize, an easy to
use infrastructure is necessary to support composition of distributed services by third-
parties. This fact, naturally, shows the overlap of SOC with many a concern in dis-
tributed computing. These concerns, of course, have been recognized and studied in

Will the Real Service Oriented Computing Please Stand Up? 281

the context of distributed components as well. However, SOC adds a new emphasis on
many such concerns and presents a few challenges of its own.

Traditionally, the primary concern in distributed computing has been exploitation of
resources, primarily hardware, but also other resources such as specialized databases
available only on certain sites. Typically, in distributed computing one is concerned
with only a single distributed application, which is virtually always closed. In this set-
ting, composition involves pieces of software, such as components or (sub)tasks, that
are tailor-made to fit and cooperate with each other, and encapsulate the hard-coded
concurrency protocols necessary to do so. Heterogeneity is to be avoided as a plague,
and only if that is not possible, then one may cope with it in quarantine. Autonomy of
the constituents is typically a convenient pretense: a useful abstraction to achieve a rea-
sonable structural decomposition of the application into its custom-made constituents.

The situation in SOC is different. SOC is meant to offer an open platform, not just
individual closed applications. Distribution in SOC involves more than mere resources:
jurisdiction and expertise are distributed as well. The expertise of the provider of a ge-
ographic location service is integral to the commodity behavior that it provides; some-
thing that is unlikely for the clients of this service to be able to duplicate cost-effectively.
This provider, of course, maintains both legal jurisdiction and de facto control over the
offered service. In this setting, autonomy is real and absolute. Heterogeneity is unavoid-
able and the norm. Composition of services involves making multiple, generally incon-
gruent, full applications that were not necessarily designed to work with each other, do
so nevertheless, without access to their source, object, or even executable code. It is
unimaginable to expect service providers change the protocol of their offerings on de-
mand to custom fit them within each new composition dreamed up by an entrepreneur
who wishes to create a new composed service. The coordination and concurrency pro-
tocols for making those incongruent full applications work together must be imposed
on them exogenously, i.e., from outside.

5 Challenges of SOC

The first technical challenge in SOC involves the aforementioned coordinated compo-
sition from outside. Services that are not tailor made to work with each other need some
so-called glue code that resides outside of those services to make their protocols and
data types compatible, and orchestrate their activities into that of a coherent whole.
Naturally, such glue code can be written in any programming language. But, given the
special requirements and characteristics of this type of glue code programs, can we
design more suitable programming models and languages to serve this purpose?

In fact, this seems the simplest among the SOC challenges, perhaps because we
understand its issues better than those of other challenges and some solutions already
exist as well. Aside from conventional programming languages, scripting languages and
workflow models and languages are used for this purpose, and a new language specifi-
cally intended for composition of Web services, BPEL, has also emerged, which incor-
porates a number of features to deal with such concepts as failure and compensation in
long running transactions. Nevertheless, conceptually, the level of abstraction of BPEL
is arguably, if only marginally, higher than that of, say Java or C, and using any of these

282 F. Arbab

alternatives to develop glue code, the simplest incongruity among to-be-composed ser-
vices can require the sort of non-trivial programming that taxes the skills of the novice.
The inherent concurrency of SOC makes it quite nontrivial to reason about the proper-
ties of the resulting glue code, such as conformance with the requirements, correctness,
safety, liveness, etc. What the intended users in SOC can relate to consists of specifica-
tions of business processes, abstract workflows, compliance requirements, etc. Suitable
models and tools to enable these users to communicate in these terms are sparse, the
gap between such models and the existing glue code languages is huge, and this void
spans over still missing significant concepts.

A second challenge in SOC involves search and discovery of services. Analogous
to a function or class, identification of a service by its syntactic signature is trivial and
standard Interface Definition Languages are utilized for this purpose. Semantic mat-
ters, however, are less trivial: recognizing differently named compatible types, types
that “contain” or “overlap” with other types, and types that can be easily converted into
other types, etc., requires an understanding of the “meaning” behind signature syntax.
Clearly, ontologies can help here. What is far less obvious is how to describe the be-
havior of a service, such that a search engine can locate among the service offerings
available on the Web, the suitable exact, partial, and/or close matches with the desired
behavior of a required service that a user specifies.

Just as it is easy to use such tags to describe the contents of pictures, it is also easy
to imagine associating ontological, structured textual, or even free text tags with every
service to describe its behavior. Both schemes are unreliable (how do we know the de-
scriptions are accurate?), impractical (who does that?), and inadequate (what ensures
consistent compliance in a large population?). Advances in image processing have now
placed us at the threshold of programs understanding the contents of pictures, such that,
given the picture of the face of an individual, they can search for other pictures that
include that individual, although his/her facial expressions, features, hair style, acces-
sories, etc., may slightly differ in the two pictures, e.g., because the individual may have
aged. Given a proper description of the behavior of a service, e.g., an automaton, how
can we encode this behavior into a comprehension by programs such that we can de-
fine measures of sameness, containment, closeness, etc., for behavior in order to allow
analogous searches?

A third challenge involves adaptation and decomposition of behavior (not mere syn-
tax or ontologies). Given a proper formal specification of the behavior that a user needs
and that of a behavior that contains, overlaps, or is close to it by the above measures,
how can the latter be adapted into the required behavior? To do this automatically
requires formal models in which we can articulate two given instances of behavior,
compute their behavioral difference, and express this difference as the missing adapter
that transforms one into the other. In such a setting, a provider that conjures up a new
service offering can specify its desired behavior, X , play the what-if game of con-
structing X by some composition that incorporates the behaviors Y1, Y2, ...Yn of n
existing service offerings as the essential ingredients of X , and automatically derive
the missing behavior Z of the glue code that would be necessary to adapt and compose
X = Z �� Y1 �� Y2... �� Yn. The decomposition of X using Y = Y1 �� Y2... �� Yn is
an instance of finding the behavior Z of a missing adapter to transform Y into X .

Will the Real Service Oriented Computing Please Stand Up? 283

A fourth challenge concerns a glaring reality implied by the very definition of a
service as a behavior, rather than a piece of software. From functions and modules to
objects and classes to components, software composition involves procuring pieces of
software (as source, object, or even executable code) and integrating (perhaps slightly
modified versions of) them into the medium of software that constitutes a new appli-
cation. In all such constructions, procured software touches software. Composition of
software services is different in that it involves constructions where procured service
software does not touch software. The subtle, but important, implication of “software
does not touch software” comes to light by asking “Then, what is in between?” The
answer is the bane of real world applications, the dread of software people, everything
that is not software: the environment!

A significant difference between software engineering and other engineering disci-
plines stems from the fact that the artifacts of its discourse comprise of primarily math-
ematical abstractions, as opposed to real world objects. Unencumbered by concerns for
gravity, decay, and other forces of nature, software engineers have been free to construct
any edifice imaginable, capable to last for ever, so long as it is designed and constructed
correctly in the first place. Engineers of other disciplines hardly can afford the luxury
of abstracting the real world out (at least, not for long).

Isolated from the forces of nature, the feeling of omnipotence in this abstract world
of software artifacts induces a detrimental exaggerated sense of responsibility in soft-
ware people: as the sole cause of everything a piece of software does, its developer
surely must assume the responsibility for whatever that may go wrong when it runs.
Perhaps this illusion of responsibility has contributed to over-indulgence with the no-
tion of correctness in (at least the more formal side of) software engineering. By “over-
indulgence” I do not intend to discount the importance of correctness of software, nor
denigrate all the remarkable progress we have made to establish it. However, I believe
“over-indulgence” is a fair description of how we have emphasized correctness to the
exclusion of other relevant concerns.

Strictly speaking, by far the majority of objects, artifacts, tools, constructs, and pro-
cesses (including software systems) that we use and rely on every day are incorrect;
life itself is incorrect! But, none of this actually matters and we use and rely on them
nevertheless, because they either work and behave correctly frequently enough, and/or
we manage to bypass or work around their quirky misbehavior, most of the time. Unless
and until, that is, their incorrectness or misbehavior passes our threshold of tolerance
and produces a real or metaphoric disaster. Other engineering disciplines that have not
enjoyed the luxury of primarily living in the abstract world of mathematical constructs
immune to the forces of nature, have developed long-standing traditions that empha-
size the concept of robustness, not instead of, but alongside correctness. There is plenty
that software engineering can learn and adapt about robustness from other engineering
disciplines, and SOC presents a grand theater of operation where without robustness
victory will remain illusive.

Correctness and robustness are fundamentally different. Correctness presumes con-
trol over the causes of, and therefore, the ability to detect and eliminate all
failure; ergo, correctness attempts to banish failure, to yield a perfectly correct artifact.
Robustness presumes that it is not possible to control the causes of, detect, or elimi-

284 F. Arbab

nate all failure; ergo, robustness acknowledges and embraces the potential for failure,
and instead attempts to restrict, confine, or compensate for the consequential damages
that ensue from failure, when and if it happens, keeping them below the threshold of
disaster.

In the setting of SOC, it seems only common sense that we should not fret over the
correctness of every service; practically we cannot. If we strive to make every bit of soft-
ware we construct correct, services offered by others that we use in composition with
ours may not be correct. Furthermore, it still does not matter if every individual service
we use, and every bit of software in between, is correct: things will still go wrong be-
cause that proverbial butterfly will still flutter its wings one sunny spring morning in a
nature park in India, setting off a chain reaction that manifests a storm a few days later
in Canada, that knocks down the north-east section of the power grid in the US, taking
out the servers on which some of those correct services run. Corrosion and wear and
tear of electrical surges still slowly take their toll on the cables, switches, and physical
equipment that manifest that decay-free abstract world wherein our software rules. Ro-
bustness means we need to consider the real world and the forces of nature as the real
environment in which services operate, and therefore make sure that the behavior of
these services will not conspire with the failures inspired by causes beyond our control,
to initiate or exacerbate undue damage.

The distributed nature of SOC adds the complications of partial failures, long running
transactions, and compositional reasoning about quality of service (QoS) properties.
The atomicity of multiple actions in a distributed setting cannot always be guaranteed
in presence of failures, and not every action can be undone in the real world. Robust-
ness requires at least a compensation for the effects of partially completed composite
actions that cannot be rolled back. The high degree of heterogeneity and the fact that
the owner of a composite service is not necessarily the owner of its building blocks,
make issues involving QoS properties increasingly entangled. The end-to-end QoS of
a composed service is an integral part of its robustness, often as important as its func-
tional properties. Yet, even if the QoS properties of every individual service and glue
code are known, it is far from trivial to determine and reason about the end-to end QoS
of a composed system in its application context.

Of course, many of the issues involved in robustness have been studied in computer
science, for instance, under the rubric of fault tolerance. But SOC adds its own new
twist to robustness. Even if we assume that all conceptual issues have already been
adequately addressed, it is unimaginable to expect that every provider who conjures
up a new service by composing existing services, possesses the technical skills and
resources to manually infuse robustness into its new offering. The software engineering
challenge of robustness in SOC is to provide a distributed platform that supports the
robustness of composed services, given the robustness and compensation properties of
their constituent services. Preventing plug-ins to do harm in the framework of a browser
is non-trivial. Unlike a browser, the framework of SOC is distributed and its intended
developers of new services are far larger in numbers and far less skilled (ergo, need
much more automation) than the developers of browser plug-ins.

In other engineering disciplines, control theory is used to control the behavior of
dynamical systems. Although the bulk of this work deals with continuous systems,

Will the Real Service Oriented Computing Please Stand Up? 285

discrete and hybrid systems have attracted some attention too. In discrete dynamical
systems, game theory has been used to assess the likelihood and the scope of undesir-
able outcomes, and to avert them by identifying the possibilities of making moves to
counter or block the deleterious doings of an adversary. Providing a platform for SOC
that offers automation support for robustness may entail borrowing concepts, results,
and techniques from control theory and game theory, among others, and naturalizing
them in this new setting.

6 Vote

My colleagues in the FACS 2010 panel initially stated that they consider SOC essen-
tially as a repackaging of components, and were surprised by my “provocative” dis-
senting view. My intention, as reflected in this essay, was to show that there exists a
profile of interesting issues and challenging problems distinct enough to differentiate
SOC as a new phase in the evolution of software engineering. Nevertheless, sparing
some preciously rare exceptions, the bulk of the activity and standards that have mate-
rialized under the rubric of SOC does not contend with the challenges in this sketched
profile. As such, I must agree with the initial position of the other FACS 2010 panelists
(shared by many in the audience and at large, as well) that, if the activity, not the pro-
file, portrays SOC, then as the Dutch saying goes, SOC is the old wine of components
in a new bottle. Perhaps we, especially in the academic research community, should
pay more serious attention to what SOC ought to be, as the next phase in the evolu-
tion of software engineering, instead of focusing on the repackaged technologies and
standards currently offered as SOC, that confirm we’ve already been there, done that
with components. Addressing the challenges sketched in this essay can orient us in the
right direction. Since what is currently offered as SOC does not fit its proclaimed profile
closely enough to qualify as a new milestone paradigm, in this unusual round of To Tell
The Truth, this panelist votes that all challengers are impostors!

Performance Verification in Complex

Enterprise-Level Component Systems�

Ludwig Adam

Ludwig-Maximilians-Universität München, Germany
adaml@pst.ifi.lmu.de

1 Introduction

More and more complex enterprise-scale systems are considered to be time-
critical : These applications provide a correct functionality only if certain time
constraints for their program execution are met. In these time-critical environ-
ments, the aspect of performance becomes a relevant functional aspect and needs
to be verifiable. We aim to find a solution for this problem by providing a practi-
cal approach for the implementation of complex enterprise-level systems, whose
timing properties can be formally verified.

In the following we concentrate on the formal aspects of our work by giving
an overview on a methodology for the formal specification of timed component
behaviour and its verification in Sect. 2. We then outline our current work on
using this methodology to verify execution constraints within component services
in Sect. 3.

2 Output- and Input-Compatibility for TIOA and Their
Verification

Pure I/O transitition systems (IOTS), commonly used for component behaviour
specification, do not satisfy our requirements to specify time constraints for com-
ponent behaviour. We have therefore introduced Timed I/O-Automata (TIOA)
to support the specification of component behaviour, based on the original defi-
nition of Alur and Dill [3], as well as the work of Bengtson et al. [4] and, more
recently, De Alfaro et al. [7]. TIOA have been covered in detail in [2], therefore
we only provide an overview on the syntax and semantics of TIOA:

For a finite set Cl of clock variables (or clocks), a clock constraint is a boolean
expression of the form true, false , or x �� n where x ∈ Cl and n ∈ N with ��∈
{<,>,=,≤,≥}. A clock constraint x �� n is downward closed if ��∈ {<,=,≤}.
A guard is a finite conjunction over clock constraints. The set of guards over
clock variables Cl is denoted by G(Cl). An invariant is a finite conjunction over
downward closed clock constraints. The set of invariants over clock variables Cl
is denoted by I(Cl). A clock reset for Cl is a subset of Cl . The set of clock resets
is denoted by R(Cl).
� This work has been partially funded by the Bavarian Ministry for Economics, Infras-
tructure, Traffic and Technology under the IuK initiative RAJA, IUK-0805-0005.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 286–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Performance Verification in Complex Systems 287

Definition 1 (Timed I/O-Automata). A Timed I/O- Automaton (TIOA)
T is a tuple 〈L, l0,Cl , I , Σ,E〉 where
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Cl is a finite set of clocks,
– I : L→ I(Cl) maps every location l ∈ L to an invariant over Cl,
– Σ = Σin � Σout � Σint is a finite set of actions, partitioned into disjoint

sets of input, output and internal actions respectively, with τ ∈ Σint being
the anonymous action,

– E ⊆ L× G(Cl)×Σ ×R(Cl)× L is a set of edges.

We indicate a ∈ Σout by a! (postfixing a with an exclamation mark); similarly,
we indicate a ∈ Σin by a? (postfixing a with a question mark). Moreover, when
a TIOA T is given, we refer to the elements of T by using subscripts, e.g. we use
LT to refer to the set of locations of T and so on.

TIOA can be composed to networks to specify the behaviour of concurrent sys-
tems of interacting components which communicate over shared actions. In [2] we
have provided an operational semantics of networks of TIOA in form of labeled
IOTS following the approach of [5]. This synchronous, rendezvous-based com-
munication of TIOA can now introduce violations of specified clock constraints.
Two possible cases need to be considered: First, a TIOA trying to send an output
may be blocked because there is no communication partner ready to take this
output. Second, within a component specification it should be possible to specify
that a certain input is required within a certain time for correct behaviour, e.g.
if a component requires data from another component in a certain time frame in
order to ensure its own execution constraint. For both cases we have defined a
notion of compatibility: The property of timed output-compatibility ensures, that
for every state and time in which a component tries to send an output, this out-
put is immediately accepted by a communication partner. An input requirement
for TIOA can be specified using explicit time-locks with location invariants [2,6].
If such an input requirement is encountered, the property of input-compatibility
ensures that a correct input is received and is received in time. Using syntactic
transformation rules for TIOA both notions of compatibility can be verified in
model-checkers for Timed Automata [2], e.g. the UPPAAL model-checker [1].

3 Services in Component Behaviour

When we impose time constraints a component not only acts as a entity in the
system that reacts on some input but can be rather seen as an entity that per-
forms a set of specific tasks or services in a given time.1 With this perspective we
gain a different understanding of component behaviour: A component executes
one or more services that are provided on its ports. The component behaviour

1 We will use the notion of service not in the meaning of entities of a SOA but rather
in its original meaning of a function that is provided by an entity within the system
- in our case the components.

288 L. Adam

specification acts as a kind of service orchestration. Ports not only act as well-
defined communication endpoints between components but they also act as ser-
vice endpoints for services provided by the component: Each provided operation
corresponds to the initiation of a service to be executed by the component and
a call to a required operation can be understood as a service request. Execution
constraints are then specified for service executions rather for the whole compo-
nent behaviour. Based on their external behaviour we classify these services into
dependent and independent services: While independent services do not com-
municate with other components during their program execution, dependent
services require some external communication for correct behaviour. Dependent
services can be categorized further into services with or without callbacks. In
our current work we are now interested in the verification of time constraints
within service executions. Especially we want to focus on possible violations of
clock constraints within dependent services that are caused by wrong behaviour
of the communication partner. This can be achieved by specifying single service
executions as TIOA that follow certain well-formedness criteria.

Definition 2 (Well-Formedness). Let T be a TIOA. T is a well-formed ser-
vice execution specification, if following criteria are met:

– T has a local service clock serviceclock that is reset with the service initiation.
Given a service constraint value sc for the overall execution of the service,
every location of T has at least the service invariant serviceclock < sc.

– No mixed locations are allowed within T , i.e. there exists no location l ∈
LT and no a ∈ Σin

T and no b ∈ Σout
T ∪ Σint

T with (l, a, g, r, l′) ∈ ET and
(l, b, g, r, l′) ∈ ET .

– Every input in T is specified as a input requirement as defined in [2], i.e. if
there exists a ∈ Σin

T and (l, a, g, r, l′) ∈ ET , then there exists a clock c and a
constraint value deadline, s.t. IT (l) = c < deadline.

Given two dependent services S1 and S2 that are represented by two well-formed
service execution specifications T1 and T2 we can now use the properties of
output-compatibility and input-compatibility to check for potential violations
of service constraints: If S1 is a dependent service without callbacks we can
use the verification of output-compatibility to check if the outputs of S1 are
immediately accepted by S2. If S1 is a dependent service with callbacks we can
use the verification of input-compatibility to check if the callback is sent in time
by S2. The other direction works the same.

Example 1. Fig. 1 shows an example of two service execution specifications for an
ATM service that calls another service for its PIN verification. Both services are
specified to terminate within 6 time units. However, the ATM service requires,
that the PIN verification is done within 5 ticks for correct behaviour. This is
clearly violated by the corresponding service as the verification-result may be
available only after more than 5 ticks. Verification of timed input-compatibility
of these two automata shows that these automata are indeed not compatible.

Performance Verification in Complex Systems 289

serviceclock1<6

serviceclock1<6

serviceclock1<6 && cb < 5serviceclock1<6

cb:=0

encryptPIN

verifyPIN!

verificationResult?

(a) ATM service

serviceclock2<6 serviceclock2<6
processRequest

verificationResult!

serviceclock2<6

(b) Service execution specification for
verifyPIN

Fig. 1. Example service execution specifications

4 Conclusion and Future Work

We have outlined how execution constraints can be specified and verified for ser-
vice specifications for components. While we are confident that timed output-
and input-compatibility is a sound method to check for violations of service con-
straints we still need to provide a formal proof. This includes the formal definiton
of service declarations and service execution specifications as outlined in Sect. 3.
Additionally, in order to provide a complete framework approach we will need
to define a refinement relation to show that the component implementations are
correct with regards to the specified services. Currently we are also evaluating
different possibilities to specify the full behaviour of a component given a set of
service specifications, as TIOA do not seem to be the ideal choice for this.

References

1. UPPAAL Model Checker, http://www.uppaal.com/
2. Adam, L.: Verification of timed output-compatibility and timed input-compatibility

in networks of timed input/output-automata. Submitted for ECRTS 2011 (2010)
3. Alur, R., Dill, D.: A theory of timed automata. In: Huizing, C., de Bakker, J.W.,

Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73.
Springer, Heidelberg (1992)

4. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a Tool
Suite for Automatic Verification of Real–Time Systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995 Part III. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1996)

5. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

6. Bowman, H.: Modelling timeouts without timelocks. In: Katoen, J.-P. (ed.) ARTS
1999. LNCS, vol. 1601, pp. 334–353. Springer, Heidelberg (1999)

7. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

http://www.uppaal.com/

Runtime Programming through Model-Preserving,
Scalable Runtime Patches

Christoph M. Kirsch1, Luı́s Lopes2, Eduardo R.B. Marques2, and Ana Sokolova1

1 Department of Computer Sciences, University of Salzburg
2 CRACS/INESC-Porto LA, Faculdade de Ciências, Universidade do Porto

1 Introduction

We propose a methodology for flexible software design, runtime programming, by
means of incremental software modifications at runtime. Runtime programming ac-
knowledges that software designs are often incomplete, and require the flexibility of
change, e.g., fixing bugs or introducing new features, without disruption of their ser-
vice. This flexibility is much needed for critical software that generally needs to handle
uncertainty, e.g. cloud computing or cyber-physical systems, due to dynamic require-
ments of composition, service, or performance. Runtime modifications should be al-
lowed recurrently, and, thus, be handled as a common case of system functionality in
predictable and efficient manner, with proper understanding of inherent functional and
non-functional aspects. The work in many diverse research communities with related
concerns typically tends to take a partial and domain-specific view of the problem,
hence comprehensive and general methodologies are in order.

In this extended abstract, we make a summary of the runtime programming proposal
of [4]. The work follows up on a preliminary formulation of runtime programming [3],
and work on modular compilation of real-time programs [2].

2 Runtime Programming through Runtime Patches

The runtime programming abstraction is illustrated in Fig. 1. A program (bottom) is
subject at runtime to recurrent incremental modifications, called runtime patches, by
an external program, a runtime patcher (top). A runtime patch determines a switch
between two program specifications and states of these programs, by replacing a com-
ponent in the source program. Runtime patches are applied by the patcher in congru-
ence with program state and the (evolving) program does not stop, instead it flows with

runtime patcher
(“controller”)

running program
(“plant”)

program
state

runtime
patches

Fig. 1. Runtime programming [4]

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 290–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Runtime Programming through Model-Preserving, Scalable Runtime Patches 291

O N

P - O

N

P [/ N]

O

P

s s'

 / N

programs

processes

quiescence initialization

Fig. 2. A runtime patch [4]

any introduced runtime patches. An obvious analogy exists with the “controller-plant”
formulation of control theory: the evolving program is the “plant”, the patcher is the
“controller”, and runtime patches define the “control”.

The transformation defined by a runtime patch, illustrated in Fig. 2, has well-defined
syntactic and semantic effects.

Syntactically, a patch σ/N over program P defines the substitution of a component
at “program path” σ, O = P [σ], by component N , yielding program P [σ/N]. Strict
component addition or removals are special instances of this effect, when O or N are
undefined respectively.

Semantically, the patch defines an instantaneous switch from a state s of P to a
state s′ of P [σ/N] such that: the processes of O terminate, according to a notion of
“quiescence” in place that expresses graceful conditions for doing so (e.g., inactivity, or
atomic instants that marks the end of a component’s “transaction”); the processes of N
start in a valid initial state; and the state of processes of other components P − O is
unaffected (s[P −O] = s′[P −O]).

Thus, runtime programming assumes only a simple abstraction of component-based
software, comprised of a modular relation between (the syntax of) components and (the
semantics of) processes, plus built-in notions of initialization and quiescence.

3 Model Preservation

We consider that runtime programming should be model-preserving. i.e., preserve the
programming model in place for programs in terms of program syntax, semantics, and
correctness properties. More precisely, model preservation is the guarantee that, in a
runtime programming system, a proper program is running at all times, and a corre-
sponding state for that program is observed that complies with correct operation. The
point is avoiding an “ad-hoc”, disruptive nature for runtime patches, and relying on no
particular abstraction level other than the one already in place for programs.

The concept of a runtime patch, described above, already provides relatively strong
model-preserving provisions. A runtime patch defines an atomic switch, and observes
proper quiescence, initialization, and isolation of replaced, new, and unchanged com-
ponents, respectively. This means that in a runtime programming system, a proper pro-
gram is running at all times, and a corresponding state of that program is observed, with
a safe continuous flow observed upon patch effect. Hence there are no transient “meta-
programs” or “meta-behavior” that are alien to the syntax or semantics of programs.

292 C.M. Kirsch et al.

/N

R
I

E

I
program
initialization

patch
effect

R
E

standard
traces

patch-induced
traces

Fig. 3. Model preservation [4]

Additionally, we should expect a program that is “started” through patch effect be-
haves correctly. That is, its execution should conform to any particular properties of
correctness for the program, were it to execute from scratch. The problem, however,
illustrated in Fig. 3, is that a runtime patch σ/N over a given program P defines a par-
tial, “live” initialization of P [σ/N], rather than a whole-program initialization. So it
could happen that “patch-induced traces”, those with states RE resulting from effect E
of σ/N over the flow of P , do not conform to a certain expected property ψ of correct-
ness that holds for “standard traces” of P [σ/N], those with states RI resulting from
overall initial conditions I . We say the patch is model-preserving if and only if RE is
a subset of the satisfiability state space of the correctness property ψ. Checking model
preservation should be an integral part of the process of patch compilation, described
next.

4 Scalability

The complexity of a runtime programming system should ideally scale with the “size”
of runtime patches. Such complexity comes from patch compilation, the set of proce-
dures required to verify and integrate a patch, such as checking a model-preserving
nature for patches, and other aspects like code generation or re-linking. If patch com-
pilation does not scale in the general case, the practicality of runtime programming is
compromised.

To characterize scalability of patch compilation, we propose the incremental compi-
lation framework illustrated in Fig. 4. The idea is that for a patch σ/N over

P [/ N]

N

D (P,N,)

dependency
context

I(φ) = (ψφ,Dφ, Cφ)

P |= φ Dφ(P,N, σ) |= ψφ

P [σ/N] |= φ

Cφ(P,N, σ) = O (Dφ(P,N, σ) |= ψφ)

Fig. 4. Scalability [4]

Runtime Programming through Model-Preserving, Scalable Runtime Patches 293

program P , compilation should be incremental to that of P , and scale appropriately
in proportion to the extent of the patch, as determined by P , σ and N . For each as-
pect of compilation φ (e.g. code generation), an incremental strategy should be de-
fined, I(φ) = (ψφ,Dφ, Cφ) with the following rationale. For a patch σ/N over (the
previously compiled) P , φ should be dealt with for P [σ/N] by some incremental ef-
fort ψφ over a dependency context of components Dφ(P,N, σ). The complexity of
checking ψφ over Dφ(P,N, σ) by some algorithm is expressed by Cφ(P,N, σ) =
O (Dφ(P,N, σ) |= ψφ), which we call the compilation cost. In Fig. 4, it is shown (left)
that the dependency context Dφ(P,N, σ) is a set of components within P [σ/N], and,
additionally, it may also include the “old” componentO = P [σ]. The inference rule on
the right of the figure expresses the incrementality in compilation: under the assumption
that P already verifies φ, it is just required to verify ψφ over Dφ(P,N, σ).

This formulation inherently characterizes incremental compilation and its scalability,
in the size (dependency context) and time (compilation cost) dimensions. Scalability
can be broken in one of the dimensions, e.g., when a patch requires the full program
as context, or if the incremental effort is intractable, as measured by the compilation
cost. A good degree of scalability corresponds to a small dependency context, and a
tractable incremental effort. To achieve it, the choice of compilation strategy may in
some cases represent a loss of precision. A strategy that scales well, and covers the
more general cases of valid patches reasonably, will be preferable to one that is more
exact, but scales poorly. This is important in particular when we are faced with the
well-known “state explosion problem” incurred by an exact analysis.

5 Ongoing Work

In [4] we provide a detailed description and formalization of runtime programming,
corresponding to the general overview given here. Additionally, we put the formulation
in perspective with a case-study instantiation of runtime programming for a component-
based language for distributed real-time systems, the Hierarchical Timing Language
(HTL) [2,1]. In earlier work [3], some of these ideas and HTL runtime patching were
discussed in preliminary short form but mainly considering the specific context of real-
time systems and HTL. An incremental compilation framework was proposed for HTL
already in [2], which we generalized now for component-based systems in the context
of runtime programming.

Acknowledgements. This work has been supported by the EU ArtistDesign Network
of Excellence on Embedded Systems Design, the Austrian Science Funds P18913-N15
and V00125, and Fundação para a Ciência e Tecnologia funds PTDC/EIA/71462/2006
and SFRH/BD/29461/2006.

References

1. Ghosal, A., Henzinger, T., Iercan, D., Kirsch, C., Sangiovanni-Vincentelli, A.: A hierarchical
coordination language for interacting real-time tasks. In: Proc. International Conference on
Embedded Software (EMSOFT), pp. 132–141. ACM, New York (2006)

294 C.M. Kirsch et al.

2. Henzinger, T., Kirsch, C., Marques, E., Sokolova, A.: Distributed, modular HTL. In: Proc.
Real-Time Systems Symposium (RTSS), pp. 171–180. IEEE, Los Alamitos (2009)

3. Kirsch, C., Lopes, L., Marques, E.: Semantics-Preserving and Incremental Runtime Patching
of Real-Time Programs. In: Online Proc. Workshop on Adaptive and Reconfigurable Embed-
ded Systems (APRES). pp. 3–7. ARTIST Network of Excellence (2008)

4. Kirsch, C., Lopes, L., Marques, E., Sokolova, A.: Runtime Programming through Model-
Preserving, Scalable Runtime Patches. Tech. Rep. 2010-08, Department of Computer Sci-
ences, University of Salzburg (2010)

Steps on the Road to Component Evolvability�

Mario Bravetti1, Cinzia Di Giusto2, Jorge A. Pérez3, and Gianluigi Zavattaro1

1 Laboratory FOCUS (Università di Bologna / INRIA)
2 INRIA Grenoble - Rhône-Alpes

3 CITI - Department of Computer Science, FCT New University of Lisbon

Abstract. We have recently developed a calculus for dynamically evolvable
aggregations of components. The calculus extends CCS with primitives for de-
scribing components and their evolvability capabilities. Central to these novel
primitives is a restricted form of higher-order communication of processes in-
volved in update operations. The origins of our calculus for components can in-
deed be traced back to our own previous work on expressiveness and decidability
results for core higher-order process calculi. Here we overview these previous
works, and discuss the motivations and design decisions that led us from higher-
order process calculi to calculi for component evolvability.

Introduction. The deployment of applications by the aggregation of elementary blocks
(modules, components, Web services, ...) is a long-standing principle in software engi-
neering. Our interest is in the correctness of aggregations of components which are
subject to evolvability and adaptation concerns. The term “component” is used here in
a broad sense, as it refers to elementary blocks such as Web services in cloud comput-
ing scenarios, but also to analogous concepts in different settings, such as services in
service-oriented computing or long-running processes in workflow management.

To this end, we have recently defined E , a process calculus equipped with primitives
for describing components and their evolvability. Using E as a basis, we have studied
the decidability of verification problems associated to the correctness of aggregations
of components [2]. In this short paper, we present E and discuss the origins and moti-
vations that led to its definition. In particular, we elaborate on the relationship between
the notion of component evolvability in E and higher-order process calculi.

Steps towards Specification Languages. Higher-order process calculi are calculi in
which processes can be passed around in communications. Higher-order (or process-
passing) concurrency is often presented as an alternative paradigm to the first-order (or
name-passing) concurrency of the π-calculus [8] for the description of mobile systems.
As in the λ-calculus, higher-order process calculi involve term instantiation: a computa-
tional step results in the instantiation of a variable with a term, which is copied as many
times as there are occurrences of the variable. The basic operators of these calculi are
usually those of CCS [7]: parallel composition, input and output prefix, and restriction.
Replication and recursion can be encoded. Proposals of higher-order process calculi
include the higher-order π-calculus [10], Homer [5], and Kell [11].

� Supported by the EU integrated project HATS, the Fondation de Coopération Scientifique Dig-
iteo Triangle de la Physique, and FCT / MCTES (CMU-PT/NGN44-2009-12) - INTERFACES.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 295–299, 2012.
© Springer-Verlag Berlin Heidelberg 2012

296 M. Bravetti et al.

With the purpose of investigating expressiveness and decidability issues in the hi-
gher-order paradigm, a core higher-order process calculus, called HOCORE, was intro-
duced [6]. HOCORE is minimal, in that only the operators strictly necessary to obtain
higher-order communications are retained. Most notably, HOCORE has no restriction
operator. Thus all names are global, and dynamic creation of new names is impossible.
The grammar of HOCORE processes is:

P ::= a(x). P | a〈P 〉 | P ‖ P | x | 0

An input process a(x). P can receive on name a a process to be substituted in the place
of x in the body P ; an output message a〈P 〉 sends the output object P on a; parallel
composition allows processes to interact. As in CCS, in HOCORE processes evolve from
the interaction of complementary actions; this way, e.g., a〈P 〉 ‖ a(x). Q −→ Q{P/x} is
a sample reduction. See [6,9] for a complete account on the basic theory of HOCORE.

While considerably expressive, HOCORE is far from a specification language for
settings involving (forms of) higher-order communication. For instance, it lacks primi-
tives for describing the localities into which distributed systems are typically abstracted.
Similarly, HOCORE also lacks constructs for influencing the execution of a running
(higher-order) process. This is a particularly sensible requirement for the specification
of systems featuring forms of evolvability and/or dynamic reconfiguration. In order to
deal with those aspects, higher-order process calculi such as Homer and Kell provide
primitives that allow to suspend running processes. In a nutshell, such primitives rely
on named localities in which processes can execute and interact with their environment,
but also in which their execution can be stopped at any time by interaction with comple-
mentary input actions. This way, the suspension of a running process is assimilated to
regular process communication. Let us illustrate these intuitions by considering the ex-
tension of HOCORE with process suspension. Let a[P] denote the process P inside the
so-called suspension unit a. Assuming a labelled transition system (LTS) with actions
of the form P

α−−→ P ′, process suspension is formalized by the following two rules:

[TRANS] P
α−−→ P ′ ⇒ a[P] α−−→ a[P ′] [SUSP] a[P]

a〈P 〉−−−−→ 0

where a〈P 〉 corresponds to the output action in the LTS of HOCORE (see [6]). As a
simple example, process S = a[P1] ‖ a(x). b[x ‖ x] defines a process P1 running
at locality a, in parallel with an input action which may suspend the content of a and
relocate two copies of it into locality b. Assuming that P1 evolves into P2, and given
the above two rules, a possible evolution for S is the process b[P2 ‖ P2]. Observe how
term instantiation plays a prominent rôle in mechanisms for process suspension.

In spite of this simple formulation, we observe that suspension primitives are not
entirely satisfactory for describing evolvability as in component systems. The reason is
that by assimilating suspension to communication, the evolvability of a running process
is decoupled into two phases: (i) one in which the state of the process is actually sus-
pended and captured and (ii) one in which the suspended process state is used within a
new context. In the previous example: the first phase corresponds to capturing the state
at a as P2, while the second corresponds to substituting P2 twice inside locality b. By
considering that update actions are typically atomic operations in which suspension and

Steps on the Road to Component Evolvability 297

relocation occur at the same time, this decoupling turns out to be not realistic in terms
of modeling purposes.

Given the above considerations, in [2] we have defined Evolvable CCS (abbreviated
E), a variant of CCS without restriction and relabeling, and extended with primitives
that allow for process evolvability in a “coupled” style. As in CCS, in E processes can
perform actions or synchronize on them. The grammar of E extends CCS with update
prefixes and a primitive notion of component, denoted a[P]:

P ::= π. P | a[P] | P ‖ P | !π. P | 0 π ::= a | a | ã{U}

where the U in the update prefix ã{U} represents a context, i.e., a process with some
holes •. We use a and a to denote atomic input and output actions, respectively. The
rest of the syntax follows standard lines. Evolution at a is realized by the interaction
of component a[P] with the update action ã{U}, which leads to process U{P/•}, i.e.,
the process obtained by replacing every hole in U by P . The previous example would
be written in E as the process S′ = a[P1] ‖ ã{b[• ‖ •]}, which evolves to b[P2 ‖ P2]
in a single reduction. This way, evolvability relies on the term instantiation feature of
higher-order languages in a more disciplined way, ensuring atomicity in updates.

Steps towards Decidability of Verification Problems. We are interested in two cor-
rectness properties for E processes. The first one, k-bounded adaptation (abbreviated
BA) ensures that, given a finite k, at most k errors can arise during the system evolu-
tion. The second property, eventual adaptation (abbreviated EA), is similar but weaker:
it ensures that the system will eventually reach a state from which no other error will
arise (that is, only finitely many errors can occur). Both these properties are undecid-
able for E processes, as we have shown that E is a Turing complete model (see [2]).
The challenge is then to identify fragments of E expressive enough so as to represent
useful evolvability patterns and for which BA and/or EA are still decidable.

A similar scenario was addressed in [3,9] for the case of HOCORE. In spite of its
minimality, HOCORE was shown to be Turing complete [6]. As studied in [3,9], central
to the expressiveness of HOCORE is the ability of forwarding a received process within
an arbitrary context. We then investigated HO−f , a fragment of HOCORE in which the
kind of processes that can be communicated is limited: in HO−f , output objects can only
correspond to the parallel composition of statically known closed processes (i.e., with-
out free variables) with processes received in previously executed input actions. This
limitation to forwarding proved to be effective in terms of verification, as termination
for HO−f processes was shown to be decidable. From a pragmatic perspective, HO−f

is able to abstract those scenarios in which objects can be passed around and can only
be modified by “appending” to them new objects that admit no inspection. This is the
case of, e.g., the mobility of already compiled code, on which it is not possible to apply
inverse translations (such as, e.g., reverse engineering).

The study in [3,9] thus suggests that key to the decidability of verification problems
for higher-order process calculi is the kind of contexts allowed in higher-order actions.
In turn, this is closely related to the term instantiation feature discussed before. Based
on this observation, we considered constraints on the ways in which components can

298 M. Bravetti et al.

be updated in E . As a result, we obtained six variants of E via two orthogonal char-
acterizations. The first characterization is structural, and distinguishes between static
and dynamic topologies of component aggregations. In a static topology the number
of components does not vary along the evolution of the system: components cannot be
destroyed nor new components can appear. In contrast, this restriction is not considered
in dynamic topologies. The second characterization is behavioral, and concerns update
patterns (i.e., the context U in ã{U}) which define the behavior of components after an
update action. We identified three update patterns, which determine three families of E
calculi—denoted E1, E2, and E3, respectively. The first update pattern admits all kinds
of contexts, and so it represents the most expressive form of update. In particular, holes
• can appear behind prefixes. The second update pattern forbids such guarded holes in
contexts. In the third update pattern we additionally require contexts to have exactly one
hole, thus preserving the existing behavior (and possibly adding new behaviors): this is
the most restrictive form of update that we consider. These variants of E capture a fairly
ample spectrum of scenarios. They borrow inspiration from existing component mod-
els, development frameworks, and programming languages. In [2], we have obtained
the following (un)decidability results for BA and EA in the different variants of E :

Dynamic Topology Static Topology

E1 BA undec / EA undec BA undec / EA undec
E2 BA dec / EA undec BA dec / EA undec
E3 BA dec / EA undec BA dec / EA dec

The decidability of EA is shown by resorting to Petri nets, while for BA we con-
sider results for the theory of well-structured transition systems [4,1]. The undecid-
ability results are obtained by resorting to termination problems in Turing complete
models.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with
well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

2. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Adaptable Processes. Technical report,
University of Bologna (2011), Draft in, http://www.japerez.phipages.com

3. Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the expressiveness of forwarding in higher-
order communication. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684,
pp. 155–169. Springer, Heidelberg (2009)

4. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.
Sci. 256(1-2), 63–92 (2001)

5. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copenhagen (2004)

6. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of
higher-order process calculi. Inf. Comput. 209(2), 198–226 (2011)

7. Milner, R.: Comunication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

http://www.japerez.phipages.com

Steps on the Road to Component Evolvability 299

8. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput. 100(1),
1–40 (1992)

9. Pérez, J.A.: Higher-Order Concurrency: Expressiveness and Decidability Results. PhD the-
sis, University of Bologna (2010), Draft in, http://www.japerez.phipages.com

10. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)

11. Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order distributed process
calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer,
Heidelberg (2005)

http://www.japerez.phipages.com

Towards Linear Algebras of Components

Hugo Daniel Macedo1 and José Nuno Oliveira2

1 MAPi Doctoral Programme, Portugal
hmacedo@di.uminho.pt

2 Minho University, Portugal
jno@di.uminho.pt

1 Introduction

In a recent article [1], David Parnas questions the traditional use of formal
methods in software development, which he considers an underdeveloped body
of knowledge and therefore of little hope for the software industry. He confronts
the reader with the following statement, at some stage:

“We must learn to use mathematics in software development, but we need to
question, and be prepared to discard, most of the methods that we have been
discussing and promoting for all these years.”

At the core of Parnas objections we find the contrast between the current ad-hoc
(re)invention of mathematical concepts which are cumbersome and a burden to
use and elegant (and therefore useful) concepts which are neglected, often for
cultural or (lack of) background reasons.

The question is: what is it that tells “good and “bad” methods apart? As
Parnas writes, there is a disturbing gap between software development and tra-
ditional engineering disciplines. In such disciplines one finds a successful, well-
established mathematical background taught regularly at every higher-education
institute, essentially made of calculus (derivatives and integrals), linear algebra
and probability theory. This raises another question: can one hope to share such
a successful tradition in the computing field, or is this definitely a different kind
of science, hostage of formal logics and set theory?

For quite some time this has been the common understanding but, with the
advent of quantitative formal methods, things are changing. For instance, there
is a trend towards the explicit use of matrix operations and linear algebra tech-
niques in computing, driven by disparate research interests. In the area of eval-
uating high-availability standby redundant clusters, for instance, Distefano et al
[2] develop a technique resorting to Kronecker sums and products. In the field
of quantum programming and semantics of probabilistic programs, Sernadas et
al [3] use linear algebra techniques in considering a probabilistic program to be
a linear transformation over a suitable vector space. In the field of data mining,
the authors of this text show in [4] how to perform some OLAP operations solely
based on linear algebra operations. Trčka [5] presents a unifying matrix approach
to the notions of strong, weak, and branching bisimulation ranging from labeled
transition systems to Markov reward chains. And many other examples could
be given, which are omitted for space economy.

L.S. Barbosa and M. Lumpe (Eds.): FACS 2010, LNCS 6921, pp. 300–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Linear Algebras of Components 301

Why is linear algebra so appealing? In this extended abstract, we start by
briefly investigating how often linearity (understood in the broad sense) is present
in models of computation, and therefore underlying the notion of a software com-
ponent. In fact, most computing models are linear in some sense. This leads into
Kleene and regular algebras and their matrix extensions [6,7]. As a special case
we will find the classical interpretation of non-deterministic computation cap-
tured by binary relations, a way of doing algebraic logic which is a century and
a half old [8]. This extends to the very general concept of an allegory [9] which,
in general, has to do with matrices whose data values form locales.

Finally, we will draw attention to the categorical, matricial machine based
theory of concurrency developed by Bloom et al [10]. Work in this vein can be
traced much earlier, back to Conway’s work on regular algebras [6] and regular
algebras of matrices, so elegantly presented in [7, Chap. 10].

This leads into our own work in developing a generic, typed approach to linear
algebra [11], based on the biproduct concept [12] and aiming at capturing the best
of both ends: type systems from the computing side and the powerful blocked
matrix algebra from the mathematics side.

2 Linear Algebras of Machines

Any abstract notion of a computation is bound to encompass two kernel opera-
tions, one multiplicative x ·y (usually abbreviated to xy) capturing sequencing
and the other additive (x+ y) capturing choice (alternation). The additive unit
0 will mean death and the multiplicative unit 1 will mean skip (do nothing).

One is thus lead into a semiring (S,+, ·, 0, 1) of computations, meaning that
(S, ·, 1) is a monoid, (S,+, 0) is a Abelian (commutative) monoid, 0 annihilates
(·), x 0 = 0 x = 0, and (·) distributes over (+):

x(y + z) = xy + xz , (y + z)x = yx+ zx (1)

Property (1) is at the heart of building matricesM of computations over semiring
S: it is necessary and sufficient for matrix multiplication, also denoted by (·), to
be associative [9] M · (N ·R) = (M ·N) · R and form a monoid too.

Such is the beginning of any linear algebra of computations. In the relational
approach to non-determinism, for instance, S is the Boolean algebra of truth
values and matrices are relations. The set-valued function approach also falls
in this bin, since the powerset lattice of outputs is also a Boolean algebra. For
aficionados of relational methods and inequational reasoning, both situations
above lead to allegories, as shown in [9]. Also the case for the LTS model in [5].

A similar, and perhaps better standpoint for building up the same framework
is to regard S as a regular algebra (S,+, ·,≤, 0, 1) [6] and scale this up to the
regular algebra of S-valued matrices [7]. The advantage of this approach is that
of bringing a number of Galois connections to surface, which prove very useful in
the reasoning, as [7] amply shows. For instance, (1) does not need be postulated
in this approach: it arises from (x·) and (·x) being lower adjoints.

302 H.D. Macedo, J.N. Oliveira

Bloom et al [10] go very close to building a linear algebra of components by de-
veloping amatricial, machine-based theory of concurrency where S is the semiring
L(X∗) of subsets of words on a finite alphabet X . They provide block-definitions
for the iteration M∗ of a square matrix M and the feedback M↑ of matrix M ,
on some conditions. They further define machine composition, machine target
and source tupling, and machine Kronecker product (termed shuffle product). Via
these constructions they obtain a compositional and modular approach to build
complex machines, whose behavioural semantics are given via a functor associat-
ing each machine with a matrix on a category of L(X∗)-valued matrices.

3 Typed Matrices for Blockwise Abstraction

Computer scientists tend to regard matrices as rectangular shaped data struc-
tures, bidimensional arrays, lists of lists, and the like. Mathematicians tend to
regard them as linear transforms, i.e. vector-to-vector operations. Yet matrices
are abstract entities independent of either such views: they can be regarded as
arrows of particular categories, whereby they become typed. This answers ques-
tions such as: what is the type of a matrix? What are their basic constructors?
In what measure are these related to standard matrix operations and algebra?

By studying categories of matrices [12] we have defined typed, algebraically
rich constructors [11] repairing the lack mentioned. Backhouse [7] writes that
matrices are a way of compacting sets of equations into single equations which
“is a tremendous improvement in concision that does not incur any loss of pre-
cision!”. In [11] we show how the very general concept of a biproduct promotes
individual values to blocks and value-level operations to block-level operations,
after all the great conceptual advantage offered by matrix notation.

Below we draw a diagram in which arrows of shape m
M �� n represent

matrices withm (input) columns and n (output) rows. Given matrices R,S, U, V ,
other universal matrices are brought to light explaining how the construction of
a blocked matrix (either by juxtaposition [R|S] or stacking

[

R
S

]

) is made from
the original R and S by composition with biproduct (elementary) matrices π1
and π2 and adding the results:

[R|S] = R · π1 + S · π2
[

U

V

]

= i1 · U + i2 · V

m

n

R

�����������

i1
�� n+ p

[R|S]
��

π1�� π2 �� p
i2
��

S

�����������

t

U

�����������
[UV]

��

V

�����������

The composition operator (·) is the usual matrix multiplication, (+) is matrix
addition and the elementary matrices are π1 =

[

1 0
]

and π2 =
[

0 1
]

, taking 1 and
0 as the identity and zero matrices of suitable dimensions. Matrices i1 and i2 are
obtained by transposing π1 and π2, respectively. More elaborate biproducts can
be defined catering for special matrix operations, for instance Gauss elimination

Towards Linear Algebras of Components 303

[11]. More details about the approach can be consulted in [11] where it is used
to formally derive blocked matrix algorithms.

4 Postlude

We have shown that there is significant foundational work on what could lead
to a linear algebra approach to software components. Should these be weighted
automata [13] or machines in the sense of Bloom et al [10], then [11] offers a con-
structive, fully typed approach to such matrix models. However abstract or prim-
itive these may look to practitioners, they promise the calculation style which is
the hallmark of engineering disciplines. Back to Parnas reflections [1], engineers
rarely use the phrase proof of correctness. Instead, they calculate properties of
the products they build. Linear algebras are especially apt for calculation.

Let us dare going in this way and lay proper foundations for the emerging
disciplines of software architecture and component-ware. Otherwise we shall be
wasting our time.

References

1. Parnas, D.L.: Really rethinking ’formal methods’. IEEE Computer 43(1), 28–34
(2010)

2. Distefano, S., Longo, F., Scarpa, M.: Availability assessment of ha standby redun-
dant clusters. In: 29th IEEE Int. Symp. on Reliable Distributed Systems (2010)

3. Sernadas, A., Ramos, J., Mateus, P.: Linear algebra techniques for deciding the
correctness of probabilistic programs with bounded resources. Technical report,
TU Lisbon, Short paper, LPAR, Doha, Qatar (November 22-27, 2008)

4. Macedo, H., Oliveira, J.: Can we teach computers to generate fast OLAP code?
Technical note (May 2010), http://wiki.di.uminho.pt

5. Trcka, N.: Strong, weak and branching bisimulation for transition systems and
Markov reward chains: A unifying matrix approach. In: Andova, S.E. (ed.) Proc. 1st
Workshop on Quantitative Formal Methods: Theory and Applications (December
2009)

6. Conway, J.: Regular Algebra and Finite Machines. Chap.& Hall, London (1971)
7. Backhouse, R.: Mathematics of Program Construction, 608 pages. Univ. of Not-

tingham (2004) Draft of book in preparation
8. Maddux, R.: The origin of relation algebras in the development and axiomatization

of the calculus of relations. Studia Logica 50, 421–455 (1991)
9. Freyd, P., Scedrov, A.: Categories, Allegories. Mathematical Library, vol. 39. North-

Holland, Amsterdam (1990)
10. Bloom, S.L., Sabadini, N., Walters, R.F.C.: Matrices, machines and behaviors.

Applied Categorical Structures 4, 343–360 (1996), doi:10.1007/BF00122683
11. Macedo, H., Oliveira, J.: Matrices As Arrows! A Biproduct Approach to Typed

Linear Algebra. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 271–287. Springer, Heidelberg (2010)

12. MacLane, S.: Categories for the Working Mathematician (Graduate Texts in Math-
ematics). Springer, Heidelberg (September 1998)

13. Bonchi, F., Silva, A., Bonsangue, M., Rutten, J.: Quantitative Kleene coalge-
bras. In: Information and Computation. Academic Press, London (November 2010)
ISSN: 0890-5401

http://wiki.di.uminho.pt

Author Index

Adam, Ludwig 286
Alhadidi, Dima 182
Andova, S. 125
André, Pascal 145
Arbab, Farhad 237, 277
Ardourel, Gilles 145

Boer, F.S. de 53
Bonsangue, Marcello M. 53, 237
Bravetti, Mario 295
Bruni, Roberto 259

Caires, Lúıs 6
Calder, M. 71
Casallas, Rubby 34
Cleve, Anthony 34
Correas, J. 218
Côté, Daniel 163

Debbabi, Mourad 182
Di Giusto, Cinzia 295
Dormoy, Julien 200
Duchien, Laurence 34

Gouw, S. de 53
Gray, P. 71
Groenewegen, L.P.J. 125

Jiague, Michel Embe 163

Kirsch, Christoph M. 290
Kouchnarenko, Olga 200

Lanoix, Arnaud 200
Liu, Zhiming 259
Lopes, Lúıs 290

Macedo, Hugo Daniel 300
Marques, Eduardo R.B. 290
Messabihi, Mohamed 145
Miller, A. 71
Mouheb, Djedjiga 182

Nobakht, B. 53
Nouh, Mariam 182

Oliveira, José Nuno 300

Pérez, Jorge A. 295
Pourvatan, Bahman 237
Pourzandi, Makan 182
Puebla, G. 218

Ramı́rez-Deantes, D. 218
Rossi, Sabina 106

Seshia, Sanjit A. 1
Sirjani, Marjan 237
Sokolova, Ana 290
St-Denis, Richard 163

Tamura, Gabriel 34

Unsworth, C. 71

Vieira, Hugo Torres 6
Vink, E.P. de 125

Wang, Lingyu 182

Yijing, Liu 88

Zavattaro, Gianluigi 295
Zhao, Liang 259
Zongyan, Qiu 88

	001Download PDF (111.2 KB)front-matter
	002Download PDF (162.0 KB)fulltext
	Quantitative Analysis of Software:
Challenges and Recent Advances
	Introduction
	Challenge: Environment Modeling
	Automatic Model Inference: The GameTime Approach
	Looking Ahead
	References

	003Download PDF (390.4 KB)fulltext
	Analysis of Service Oriented Software Systems
with the Conversation Calculus
	Introduction
	Aspects of Services
	Distribution
	Communication, Contexts, and Context Sensitiveness
	Loose Coupling
	Other Aspects

	The Conversation Calculus
	Communication
	Service Oriented Idioms
	Exception Handling
	Syntax and Semantics of the Calculus
	Representing Service-Oriented Idioms

	A Sequence of Examples
	Memory Cell
	Dictionary
	Service Provider Factory
	Exceptions
	Programming a Finance Portal

	Analysis Techniques
	Further Reading and Closing Remarks
	References

	004Download PDF (520.7 KB)fulltext
	QoS Contract-Aware Reconfiguration of
Component Architectures Using E-Graphs
	Introduction
	Motivation and Scope
	Running Example
	E-Graph Modeling of QoS Contracts-Based System Reconfiguration
	Extended Graphs: Base Definitions
	System Reflection
	QoS Contracts
	Component-Based Architecture Reconfiguration Modeling

	QoS Contracts-Based Reconfiguration Properties
	Component-Based Structural Compliance
	Termination and Confluence of the System Reconfiguration
	Stabilization and Exception in the Reconfiguration Process

	Related Work
	Conclusions
	References

	005Download PDF (353.5 KB)fulltext
	Monitoring Method Call Sequences Using
Annotations
	Introduction
	Monitoring Component Based Systems
	Method Sequence Call Specification
	Annotations with Method Sequence Calls
	Sequenced Object Annotations.
	Sequenced Method Annotation.

	The JMSeq Framework
	JMSeq Architecture
	Program Execution Trace Model and Processing.
	Sequential Execution Annotation Repository.
	Execution Verification.

	Related Work
	Conclusion and Future Work
	References

	006Download PDF (256.5 KB)fulltext
	An Introduction to
Pervasive Interface Automata
	Introduction
	Case Study
	Pervasive Interface Automata
	Composition
	Composition
	Composition Examples

	Services
	Logic for Services
	Typical Services
	Components, Environments and Services
	Service Example

	Replacement
	Replacement Example

	Comparison with Interface Automata and Session Types
	Conclusion and Future Work
	References

	007Download PDF (332.5 KB)fulltext
	A Separation Logic for OO Programs
	Introduction
	An OO Storage Model
	An OO Separation Logic
	Assertions Language
	Semantics
	Properties and Inference Rules
	Discussion

	A Simple OO Language and Its Inference Rules
	A Case Study
	Related Work and Conclusion
	References

	008Download PDF (349.8 KB)fulltext
	Model Checking Adaptive Multilevel Service
Compositions
	Introduction
	The Calculus
	Non-interference
	Modal Formulae for Non-interference
	A Modal Formula for Compliance
	An Adaptive Algorithm
	Conclusion
	References

	009Download PDF (316.4 KB)fulltext
	Distributed Adaption of Dining Philosophers
	Introduction
	Dining Philosophers As-Is: Deadlock-Prone
	Dining Philosophers To-Be: No Deadlock, No Starvation
	Migration Coordination Set-Up among Helpers
	Migration Coordination Distributed among Helpers
	Discussion and Concluding Remarks
	References

	010Download PDF (447.9 KB)fulltext
	Component Service Promotion: Contracts,
Mechanisms and Safety
	Introduction
	Hierarchical Composition and Service Promotion
	Simple Model and Example
	Promotion Correctness
	Changing Signatures and Predicates

	Small Classification of Service Promotion
	Provided Service Promotion
	Required Service Promotion
	N-ary Service Promotion

	Verification Methodology of Promotion Correction
	An Example in Kmelia
	Explicit Promotion Operators
	Formal Analysis of Service Promotion Correctness
	Experimental Results

	Encapsulation and Observability Rules
	Observability of Predicates
	Variable Abstraction and Promotion
	Invariant Promotion
	Consequences on the Promotion Process

	Related Work
	Conclusion
	References

	011Download PDF (338.8 KB)fulltext
	Systems-Theoretic View of
Component-Based Software Development
	Introduction
	A Running Example: Composition and Control of BPEL Processes
	The Implementation and Control Parts — Introduction to the Supervisory Control Theory
	The Interface Part — The Hierarchical Control Variant
	Composition of Components
	Horizontal Aggregation without Additional Control
	Vertical Aggregation without Additional Control
	Superposition of Control

	Conclusion
	References

	012Download PDF (509.8 KB)fulltext
	Aspect Weaving in UML Activity Diagrams:
A Semantic and Algorithmic Framework
	Introduction
	Syntax
	Activity Diagram Syntax
	Aspect Syntax

	Matching and Weaving Semantics
	Matching Semantics
	Weaving Semantics

	Completeness and Correctness of the Weaving
	Design and Implementation
	Aspect Specialization
	Matching
	Weaving

	Case Study: Adding Authorization to SIP-Communicator
	Related Work
	Conclusion and Future Work
	References

	013Download PDF (393.4 KB)fulltext
	Using Temporal Logic for
Dynamic Reconfigurations of Components
	Introduction
	Motivating Example
	Architectural (Re-)Configuration Model
	Component-Based Architectures
	Dynamicity of Component Architectures

	Temporal Logic for Dynamic Reconfigurations
	Syntax of the Logic
	Semantics of FTPL
	Application to the HTTP Server Example
	On the Expressiveness of FTPL

	Application to the Fractal Component Model
	Overview of Fractal, FPath and FScript
	From the FTPL Model to Fractal
	Dynamic Verification

	Conclusion
	References

	014Download PDF (298.5 KB)fulltext
	Modular Termination Analysis of Java Bytecode
and Its Application to phoneME Core Libraries
	Introduction
	Non-modular Termination Analysis in costa
	From the Bytecode to the Rule-Based Representation
	Context-Sensitive (Pre-)Analyses to Improve Accuracy
	Size Analysis of Java Bytecode
	Inferring Termination

	Abstract Interpretation Fundamentals
	Extending costa to Modular Termination Analysis
	Modular Bottom-Up Analysis

	Application of Modular Analysis to phoneME Libraries
	Some Further Improvements to costa
	An Example of Modular Analysis of phoneME Libraries
	Contracts for Method Overriding

	Experiments
	Discussion
	References

	015Download PDF (1.1 MB)fulltext
	Decomposition of Constraint Automata
	Introduction
	Reo: A Coordination Language
	Constraint Automata: Compositional Semantics of Reo
	Product of Constraint Automata with State Memory

	Complete Constraint Automata
	Inverse of Complete Constraint Automata
	Product of Two Complete Constraint Automata

	Decomposition Example
	Related Work
	Conclusion and Future Work
	References

	016Download PDF (428.6 KB)fulltext
	Graph Representation of Sessions and Pipelines for
Structured Service Programming
	Introduction
	The Calculus CaSPiS
	Operational Semantics in Terms of Reduction

	Algebra of Hierarchical Graphs
	Graph Grammar
	Interpretation of Graph Terms by Hypergraphs
	Graph Transformation Rules

	Graph Representation of CaSPiS
	Processes as Designs
	Tagged Graphs of Processes
	Graph Transformation Rules for Congruence
	Graph Transformation Rules for Reduction

	An Example
	Conclusion
	References

	017Download PDF (136.1 KB)fulltext
	Will the Real Service Oriented Computing
Please Stand Up?
	Introduction
	The Buzz
	Software Engineering
	Service Oriented Computing
	Challenges of SOC
	Vote

	018Download PDF (138.1 KB)fulltext
	Performance Verification in Complex
Enterprise-Level Component Systems
	Introduction
	Output- and Input-Compatibility for TIOA and Their Verification
	Services in Component Behaviour
	Conclusion and Future Work
	References

	019Download PDF (203.6 KB)fulltext
	Runtime Programming through Model-Preserving,
Scalable Runtime Patches
	Introduction
	Runtime Programming through Runtime Patches
	Model Preservation
	Scalability
	Ongoing Work
	References

	020Download PDF (156.8 KB)fulltext
	Steps on the Road to Component Evolvability

	021Download PDF (123.0 KB)fulltext
	Towards Linear Algebras of Components
	Introduction
	Linear Algebras of Machines
	Typed Matrices for Blockwise Abstraction
	Postlude
	References

	022Download PDF (25.2 KB)back-matter

