
123

Leszek A. Maciaszek
Joaquim Filipe (Eds.)

10th International Conference, ENASE 2015
Barcelona, Spain, April 29–30, 2015
Revised Selected Papers

Evaluation
of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 599

Communications
in Computer and Information Science 599

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Leszek A. Maciaszek • Joaquim Filipe (Eds.)

Evaluation
of Novel Approaches
to Software Engineering
10th International Conference, ENASE 2015
Barcelona, Spain, April 29–30, 2015
Revised Selected Papers

123

Editors
Leszek A. Maciaszek
Institute of Business Informatics
Wrocław University of Economics
Wrocław
Poland

and

Department of Computing
Macquarie University
Sydney
Australia

Joaquim Filipe
Institute for Systems and Technologies
of Information, Control and
Communication (INSTICC)

Setúbal
Portugal

and

Department of Systems and Informatics
Instituto Politécnico de Setúbal (IPS)
Setúbal
Portugal

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-30242-3 ISBN 978-3-319-30243-0 (eBook)
DOI 10.1007/978-3-319-30243-0

Library of Congress Control Number: 2015955869

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 10th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering (ENASE 2015), held in Barcelona, Spain, during 29–30 April, 2015,
which was sponsored by the Institute for Systems and Technologies of Information,
Control and Communication (INSTICC) and technically co-sponsored by the IEEE
Computer Society and IEEE Computer Society’s Technical Council on Software
Engineering (TCSE).

The mission of ENASE (Evaluation of Novel Approaches to Software Engineering)
is to be a prime international forum in which to discuss and publish research findings
and IT industry experiences with relation to the evaluation of novel approaches to
software engineering. The conference recognizes the necessary changes in systems and
software thinking due to contemporary shifts of computing paradigms to e-services,
cloud computing, mobile connectivity, business processes, and societal participation.

By comparing novel approaches with established traditional practices and by
evaluating them against systems and software quality criteria, ENASE conferences
advance knowledge and research in software engineering, including and emphasizing
service-oriented, business-process driven, and ubiquitous mobile computing. ENASE
aims at identifying the most hopeful trends and proposing new directions for consid-
eration by researchers and practitioners involved in large-scale systems and software
development, integration, deployment, delivery, maintenance, and evolution.

ENASE 2015 received 74 submissions, from 33 countries in all continents, of which
40 % were orally presented and 16 % presented as posters, and their authors were
invited to submit extended versions of their papers for this book. In order to evaluate
each submission, double-blind reviewing was performed by the Program Committee.
Finally, only the best 10 papers were included in this book.

We would like to highlight that ENASE 2015 also had four plenary keynote lec-
tures, given by internationally distinguished researchers, namely: George Giaglis
(Athens University of Economics and Business, Greece), Witold Staniszkis (Rodan
Development, Poland), Martin Mocker (MIT, USA and Reutlingen University, Ger-
many), and Nuria Oliver (Telefonica Research, Spain). We must acknowledge the
invaluable contribution of all keynote speakers who, as renowned researchers in their
areas, have presented cutting-edge work, thus contributing to the scientific content
of the conference.

We especially thank the authors, whose research and development efforts are
recorded here. The knowledge and diligence of the reviewers were essential to ensure
the quality of the papers presented at the conference and published in this book.
Finally, a special thanks to all members of the INSTICC team, whose involvement was
fundamental for organizing a smooth and successful conference.

April 2015 Joaquim Filipe
Leszek A. Maciaszek

Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal/INSTICC, Portugal

Program Chair

Leszek A. Maciaszek Wroclaw University of Economics, Poland and
Macquarie University, Sydney, Australia

Program Committee

Marco Aiello University of Groningen, The Netherlands
Mehmet Aksit University of Twente, The Netherlands
Guglielmo de Angelis CNR - IASI, Italy
Costin Badica University of Craiova, Romania
Paul Bailes The University of Queensland, Australia
Ayse Basar Bener Ryerson University, Canada
Jan Blech RMIT University, Australia
Carlos Canal University of Malaga, Spain
Shiping Chen CSIRO, Australia, Australia
William Cheng-Chung Chu Tunghai University, Taiwan
Rem Collier University College Dublin, Ireland
Rebeca Cortazar University of Deusto, Spain
Massimo Cossentino National Research Council, Italy
Bernard Coulette Université Toulouse Jean Jaurès, France
Mads Dam KTH - Royal Institute of Technology, Sweden
Maya Daneva University of Twente, The Netherlands
Mariangiola Dezani Università di Torino, Italy
Tadashi Dohi Hiroshima University, Japan
Mahmoud Elish King Fahd University of Petroleum and Minerals,

Saudi Arabia
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa

(UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia
Joerg Evermann Memorial University of Newfoundland, Canada
Maria João Ferreira Universidade Portucalense, Portugal
Stéphane Galland Université de Technologie de Belfort Montbéliard,

France

Juan Garbajosa Technical University of Madrid, UPM, Spain
Amjad Gawanmeh Khalifa University, United Arab Emirates
Frédéric Gervais Université Paris-Est, LACL, France
Vaidas Giedrimas Siauliai University, Lithuania
Paolo Giorgini University of Trento, Italy
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish

National Research Council (CSIC), Spain
Jose María Gutierrez Universidad De Alcalá, Spain
Philipp Haller KTH Royal Institute of Technology, Sweden
Jason O. Hallstrom Clemson University, USA
Mahmoud EL Hamlaoui University of Mohammed V Rabat/University of

Toulouse Jean Jaurès, France
Rene Hexel Griffith University, Australia
Benjamin Hirsch EBTIC/Khalifa University, United Arab Emirates
Robert Hirschfeld Hasso-Plattner-Institut, Germany
Charlotte Hug Université Paris 1 Panthéon-Sorbonne, France
Zbigniew Huzar Wroclaw University of Technology, Poland
Fuyuki Ishikawa National Institute of Informatics, Japan
Stefan Jablonski University of Bayreuth, Germany
Slinger Jansen Utrecht University, The Netherlands
Dongwon Jeong Kunsan National University, Korea, Republic of
Monika Kaczmarek University of Duisburg-Essen, Germany
Georgia Kapitsaki University of Cyprus, Cyprus
Stefan Koch Bogazici University, Turkey
Nectarios Koziris National Technical University of Athens, Greece
Robert S. Laramee Swansea University, UK
Bogdan Lent University of Applied Sciences, Switzerland
Bixin Li Southeast University, China
Huai Liu RMIT University, Australia
Pericles Loucopoulos Manchester University, UK
André Ludwig University of Leipzig, Germany
Stephen MacDonell AUT University, New Zealand
Lech Madeyski Wroclaw University of Technology, Poland
Nazim H. Madhavji University of Western Ontario, Canada
Emilia Mendes Blekinge Institute of Technology, Sweden
Alok Mishra Atilim University, Turkey
Michael Mrissa University of Lyon, France
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Antonio Navarro Universidad Complutense de Madrid, Spain
Andrzej Niesler Wroclaw University of Economics, Poland
Andreas Oberweis Karlsruhe Institute of Technology (KIT), Germany
Janis Osis Riga Technical University, Latvia
Mourad Oussalah University of Nantes, France
Anna Perini Fondazione Bruno Kessler, Italy

VIII Organization

Ronald H. Perrott Oxford e-Research Centre, UK
Dana Petcu West University of Timisoara, Romania
Marcelo Pimenta UFRGS, Brazil
Naveen Prakash MRCE, India
Adam Przybylek Gdansk University of Technology, Poland
Elke Pulvermueller University of Osnabrück, Germany
Lukasz Radlinski West Pomeranian University of Technology, Poland
Philippe Roose LIUPPA/IUT de Bayonne/UPPA, France
Antonio Ruiz-Cortés University of Seville, Spain
Krzysztof Sacha Warsaw University of Technology, Poland
Camille Salinesi University Paris 1 - Pantheon Sorbonne, France
Markus Schatten University of Zagreb, Croatia
Fabio A. Schreiber Politecnico di Milano, Italy
Marcin Sikorski Gdansk University of Technology, Poland
Josep Silva Universidad Politécnica de Valencia, Spain
Ioana Sora Politehnica University of Timisoara, Romania
Andreas Speck Christian-Albrechts-Universität Kiel, Germany
Miroslaw Staron University of Gothenburg, Sweden
Armando Stellato University of Rome, Tor Vergata, Italy
Jakub Swacha University of Szczecin, Poland
Bedir Tekinerdogan Wageningen University, The Netherlands
Stephanie Teufel University of Fribourg, Switzerland
Rainer Unland University of Duisburg-Essen, Germany
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Krzysztof Wecel Poznan University of Economics, Poland
Bernhard Westfechtel University of Bayreuth, Germany
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Igor Wojnicki AGH University of Science and Technology, Poland
Dinghao Wu The Pennsylvania State University, USA
Kang Zhang The University of Texas at Dallas, USA
Alfred Zimmermann Reutlingen University, Germany

Additional Reviewers

Raul Barbosa University of Coimbra, Portugal
Felice Cardone Università di Torino, Italy
Ferruccio Damiani Università Degli Studi di Torino, Italy
Octavio Martín-Díaz Universidad de Sevilla, Spain
Henry Muccini University of L’Aquila, Italy
Gianluca Palermo Politecnico di Milano, Italy
Manuel Resinas Universidad de Sevilla, Spain
José Miguel Cañete

Valdeón
Universidad de Sevilla, Spain

Chen Wang CSIRO ICT Centre, Australia

Organization IX

Invited Speakers

George Giaglis Athens University of Economics and Business, Greece
Witold Staniszkis Rodan Development, Poland
Martin Mocker MIT, USA and Reutlingen University, Germany
Nuria Oliver Telefonica Research, Spain

X Organization

Contents

On Generating Test Cases from EDT Specifications 1
R. Venkatesh, Ulka Shrotri, Amey Zare, and Supriya Agrawal

A Process Support with Which to Identify Interactions Between Quality
Characteristics . 21

Gabriel Alberto García-Mireles, MaÁngeles Moraga, Félix García,
and Mario Piattini

A Method to Identify Talented Aspiring Designers in Use of Personas with
Personality . 40

Farshid Anvari and Deborah Richards

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 62
Tadeusz Pankowski

Heuristic Approaches to Improve Product Quality in Large Scale Integrated
Software Products . 80

Sai Anirudh Karre and Y. Raghu Reddy

Towards a CBSE Framework for Enhancing Software Reuse: Matching
Component Properties Using Semi-formal Specifications and Ontologies 98

Andreas S. Andreou and Efi Papatheocharous

Helping Program Comprehension of Large Software Systems by
Identifying Their Most Important Classes . 122

Ioana Şora

A Case Study for a Bidirectional Transformation Between Heterogeneous
Metamodels in QVT Relations . 141

Bernhard Westfechtel

The Implementation of ISO/IEC 29110 Software Engineering Standards
and Guides in Very Small Entities. 162

Claude Y. Laporte, Rory V. O’Connor, and Luis Hernán García Paucar

Improving Mobile Banking Usability Based on Sentiments. 180
Lalit Mohan, Neeraj Mathur, and Y. Raghu Reddy

Author Index . 195

http://dx.doi.org/10.1007/978-3-319-30243-0_1
http://dx.doi.org/10.1007/978-3-319-30243-0_2
http://dx.doi.org/10.1007/978-3-319-30243-0_2
http://dx.doi.org/10.1007/978-3-319-30243-0_3
http://dx.doi.org/10.1007/978-3-319-30243-0_3
http://dx.doi.org/10.1007/978-3-319-30243-0_4
http://dx.doi.org/10.1007/978-3-319-30243-0_5
http://dx.doi.org/10.1007/978-3-319-30243-0_5
http://dx.doi.org/10.1007/978-3-319-30243-0_6
http://dx.doi.org/10.1007/978-3-319-30243-0_6
http://dx.doi.org/10.1007/978-3-319-30243-0_7
http://dx.doi.org/10.1007/978-3-319-30243-0_7
http://dx.doi.org/10.1007/978-3-319-30243-0_8
http://dx.doi.org/10.1007/978-3-319-30243-0_8
http://dx.doi.org/10.1007/978-3-319-30243-0_9
http://dx.doi.org/10.1007/978-3-319-30243-0_9
http://dx.doi.org/10.1007/978-3-319-30243-0_10

On Generating Test Cases from EDT
Specifications

R. Venkatesh, Ulka Shrotri, Amey Zare, and Supriya Agrawal(B)

Tata Research Development and Design Centre, Pune, India
{r.venky,ulka.s,amey.zare,supriya.agrawal1}@tcs.com

Abstract. In an earlier work we presented a cost-effective approach to
generate test cases that cover functional requirements of reactive sys-
tems. The approach involved specifying requirements in EDT (Expres-
sive Decision Tables) and generating test cases from them using RGRaF,
a Row-Guided Random algorithm with Fuzzing.

In this paper we propose DRAFT, a novel Dependency driven
Random Algorithm with Fuzzing at Time boundaries, to improve
requirement coverage. DRAFT is an enhancement over RGRaF in
its ability to exploit dependencies between requirements. To compare
DRAFT and other test case generation approaches - manual, pure ran-
dom and RGRaF, we conducted experiments on four real-world applica-
tions. The experiments indicated that DRAFT achieves better coverage
than RGRaF and its variants. When compared with the manual app-
roach, our test cases subsumed all manual test cases and achieved up to
60 % reduction in effort.

Keywords: Reactive systems · Functional test generation · Random
test case generation

1 Introduction

Our earlier work presented Expressive Decision Tables Based Testing (EBT), a
cost-effective method to automatically generate functional test cases for reactive
systems [1,2]. Test generation in EBT is done by EDT-Test, a tool that targets
coverage of requirements and their interactions. There is a need to automate
functional test case generation as it is an intellectually demanding and critical
task that has a strong impact on the effectiveness and efficiency of the entire
testing process [3]. For large and complex reactive software, it is hard even
for domain experts to envision all interactions between requirements. Hence,
it becomes very difficult to manually write functional test cases that cover all
requirements and the interactions among them.

A formal specification of the requirements is necessary to generate test
cases with expected results. Therefore, any method to generate these test cases
automatically must have three attributes: (a) an easy-to-use formal notation
to specify requirements, from a practitioner’s point of view, (b) a scalable

c© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 1–20, 2016.
DOI: 10.1007/978-3-319-30243-0 1

2 R. Venkatesh et al.

test-generation algorithm, and (c) coverage criteria that map to requirements.
EBT had these attributes and included an easy-to-use tabular notation, EDT,
and the tool, EDT-Test.

Traditionally, Random Test case Generation (RTG) [4] and Model-Based
Testing (MBT) [5] have been used for test case generation. We now describe
some advantages of EBT over MBT and RTG, when compared on the three
attributes.

Formal Notation: Although MBT is implemented by several tools [6–9], it is not
widely adopted by practitioners as requirements need to be specified in the
formal languages supported by the tools. Often, these languages demand
a strong mathematical background from the user and require the user to
design the state space of the problem even if it is not part of the require-
ments [10]. This makes MBT effort-intensive and adversely affects the overall
cost of the approach. In fact, very little is known about the cost-effectiveness
of MBT [11]. To reduce this specification complexity and effort, EBT uses
EDT as the formal language. EDT has been shown to be more efficient and
effective for specifying functional requirements of reactive systems [2], than
state-based formalisms such as Statecharts [9] and Software Cost Reduction
(SCR) [12]. In an EDT specification, rows correspond to requirements that
are described in a natural language.
RTG generates input sequences using input signals and their types and does
not use any formal specification of a system. As a result, though RTG is the
easiest to use, it cannot generate expected output along with the generated
input sequence. Therefore, additional efforts are required to check the valid-
ity of the input sequences and its expected output whereas EBT generates
expected results also.

Test-generation Algorithm: As stated earlier, RTG generates input sequences
randomly using only input signals and their types. MBT tools use a combi-
nation of random generation and constraint solving to generate test cases,
neither of which scale up to industry-size applications [13,14]. EBT includes
RGRaF algorithm (pronounced as R-graph) that combines Row-Guided
Random input generation with Fuzzing at time boundaries. RGRaF gen-
erates expected results and scales up better than constraint solving and
random algorithms.

Coverage Criteria: The syntactic structure of languages supported by MBT
is very different from the original requirements description resulting in no
direct mapping from specifications to requirements. Hence, the coverages tar-
geted by these tools, such as state and transition coverage, do not directly
map to the requirements [15]. Coverage criteria targeted by RTG is based
on the values taken by individual input events leading to a large number
of redundant test cases. EBT targets requirement and requirement interac-
tion coverage, which correspond to coverage of requirements and interaction
between requirements.

In summary, existing methods have the following restraints: (a) they are
effort intensive - they either require specifications in a formal language or need

On Generating Test Cases from EDT Specifications 3

expected results to be determined, (b) the algorithms implemented by them do
not scale to industry-size applications, and (c) the generated test cases do not
map directly to requirements. EBT was conceived to overcome these limitations.
RGRaF, however, sometimes fails to cover all requirements of a large system. We
present a new algorithm DRAFT, an improvement over RGRaF that exploits
dependencies between requirements to achieve better coverage. EDT-Test has
been enhanced to include DRAFT.

To evaluate EBT and its algorithms, we conducted experiments by running
EDT-Test on 13 real-world software modules of four projects from automotive
domain. For this paper, three of the projects are same as in our previous work
[1] and a new project is included. We conducted fresh experiments for all the
four projects. We specified requirements of all 13 modules in EDT and generated
test cases using EDT-Test. To evaluate the scalability of our algorithms we first
compare RGRaF with: (a) a pure random test case generation algorithm and (b)
RGRaF without fuzzing. Next we compare the coverages achieved by DRAFT
and RGRaF. As manually created test cases and effort data for these case studies
were available with us, we also assessed the cost-effectiveness of EBT for them.
Our findings clearly show that RGRaF scales better than pure random test case
generation and RGRaF without fuzzing. However, DRAFT fares better than
RGRaF on most of the examples. The findings also showed that EBT is more
cost-effective than manual testing. Additionally, the case studies revealed a bug
in a production code and uncovered several missing requirements showing the
usefulness of EBT.

We have not compared our algorithms with model-checking or constraint
solving because it does not scale up on real-world applications [14]. We validated
this through an experiment in which we took a realistic example, smaller than the
ones in our case studies, translated it to the C language and ran the constraint
solving tool Autogen [16] on that example. We observed that Autogen was not
able to generate any test cases whereas EDT-Test covered all requirements.
Based on the findings of this experiment, we decided not to compare EDT-Test
against any constraint solving based tools.

The main contribution of this paper is a cost-effective method, EBT, to
generate functional test cases. This is achieved by the following:

– Using EDT as a specification language to reduce the effort required in speci-
fying requirements.

– Extending EDT with constructs that enable easy modeling of the environ-
ment.

– A row-guided random algorithm (RGRaF) that also adds fuzzing at time
boundaries to scale up test generation.

– An enhancement (DRAFT) to RGRaF that exploits dependencies between
requirements to achieve better coverage.

– Targeting two test coverage criteria, row and row-interaction coverage, to
ensure that all requirements and interactions between requirements are tested
adequately.

4 R. Venkatesh et al.

The organization of the paper is as follows. Section 2 discusses the related
work. We explain the EDT Notation in brief in Sect. 3. The coverage criteria for
EDT-Test, row and row-interaction, are described in Sect. 4. Section 5 describes
the algorithms RGRaF and DRAFT in detail. We present extensions to EDT in
Sect. 6 and describe the observations and findings of the experiments conducted
in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Work

The relevant work in this area can be classified based on the source specification
language, the technique employed and the targeted coverage criteria.

Generating test cases from specifications has received a lot of attention with
tools that have a variety of input languages. There are tools based on languages
such as Software Cost Reduction method (SCR) [12], Statecharts [17], Z [18],
Spec# [19], and Lustre [20]. These languages require test engineers to specify
the requirements of the system under test (SUT) in the form of mathematical
expressions or state diagrams, which takes a lot of effort. Tahat et al. [15] have
proposed an approach to generate test cases from requirements given in textual
and SDL format, but they do not have any data to show the benefits of their
approach nor have they evaluated their approach for cost-effectiveness. To the
best of our knowledge, there has been no work that compares the effort required
to specify requirements in a formal language and generate test cases using a
tool for industry examples. EBT reduces the effort required for specification by
choosing a compact and easy to use notation, EDT [2].

Additionally, all the aforementioned tools target a coverage criterion that
is natural to the formal language being used. Thus, if the language is State-
charts based then state and transition coverage criteria are targeted, and in the
case of Z, pre-/post-operation relations are considered as coverage criteria. As a
result, these coverage criteria do not always achieve requirements coverage. In
contrast, EDT-Test generates test cases to achieve row and row-interaction cov-
erage giving direct mapping to requirements coverage as EDT rows map directly
to requirements.

Several tools employ a constraint solver or a model-checker to generate test
cases. These include Java Path Finder [21], Autogen [16], KLEE [22] and Pex [23].
The scalability of constraint solvers [13,14] continues to limit the applicability
of these techniques and there are still some challenges that need to be over-
come for its wider adoption [24]. Random testing [25] has also been studied
extensively as an alternative to systematic testing as it is very easy to gen-
erate a large number of test cases randomly. Theoretical studies indicate that
random testing is as effective as systematic testing [26,27]. On the other hand,
empirical studies [28,29] have shown that pure random testing achieves less code
coverage than systematic test generation. Unlike existing methods, EBT imple-
ments a row-guided random technique with fuzzing at time boundaries to achieve
scalability and coverage.

On Generating Test Cases from EDT Specifications 5

3 EDT Notation

EDT [2] is a tabular notation to formally specify requirements of reactive sys-
tems. This notation is designed in a manner that makes it easy to understand and
use, and yet keeps it formal enough to enable automated test case generation.
It provides a uniform notation to specify both – state-based and sequence-based
requirements, leading to compact specifications of reactive systems.

An EDT specification consists of one or more table(s) where the column head-
ers specify the input and output signal names, and the rows specify relationships
between patterns of input and output signal values or events. We illustrate EDT
through partial requirements of the Alarm module of a real world automotive
application, which are described below:

1. If Ignition and Alarm are Off, and PanicSw is pressed and released twice
within 3 s, then Alarm should be On for 30 s, and Flash should blink 30 times
with a gap of 500 ms between each On and Off and should have No Req after
that.

2. If Alarm is On and PanicSw is pressed for more than 3 s and then released
(called as long press), then the Flash should be No Req and Alarm should
be Off.

3. If Ignition becomes On, then Flash should be No Req and Alarm should be
Off.

Table 1 specifies the above requirements using EDT, in which each row maps
directly to one of the requirements. The column headers specify three input
signals: Ignition, PanicSw and Alarm, and two output signals: Flash and Alarm.
Its is worth noting that Alarm is an input and output (I/O) signal. The pattern
expressions in each input cell specify the sequence of input value(s) that will
match the requirements of that cell. The pattern expressions in an output cell
specify the sequence of signal value(s) that will be output when the requirements
of all the input cells in that row are matched. The pattern language itself is
regular, as EDT supports a discrete timed model, and can be recognized by a
discrete timed automaton [30]. The pattern Off given in the first row for columns
corresponding to the signals Ignition and Alarm matches when the environment
sends the value Off to the system. The compactness of EDT is illustrated by
the pattern ‘{{Press;Release}{=2}}{<3s}’ which is detected when the values

Table 1. EDT for alarm feature.

Sno In

Ignition

In

Alarm

In PanicSw Out Alarm Out Flash

1 Off Off {{Press;Release}{=2}} On{=30s}; {On{=500ms};Off{=500ms}}
{<3s} Off {=30};No Req

2 On Press{>3s};Release Off No Req

3 On Off No Req

6 R. Venkatesh et al.

Press followed by Release are received twice within three seconds for the signal
PanicSw. The output pattern in the first row corresponding to the signal Flash
specifies that the values On followed by Off should be output with a gap of
500 ms, and this pattern should be repeated 30 times.

4 Coverage Criteria

To effectively test the system specified using EDT, we propose two coverage
criteria – row coverage and row-interaction coverage, which are described below:

4.1 Requirement/Row Coverage

An EDT row is covered when it is matched in at least one generated test case.
Complete row coverage is said to be achieved when all rows in the EDT are
covered. The intuition behind row coverage is that an individual requirement
can often be mapped to one or more EDT row(s) and hence row coverage implies
requirements coverage.

Table 2 illustrates a test case corresponding to EDT specification shown in
Table 1. The default values of input signals Ignition and Alarm are considered to
be Off. When PanicSw values are generated as Press followed by Release twice
within three seconds, that is at time 1500 milliseconds (ms) in Table 2, Row 1 is
matched and hence the expected output of Alarm is On and the flashing pattern
is ‘On followed by Off’.

4.2 Requirement-Interaction/ Row-Interaction Coverage

Requirements, as specified in EDT, can have the following two types of interac-
tions between them:

– I/O row-interaction: (r1, r2) is said to be a I/O row-interaction if r1 outputs
a value that is used by r2.

– O/O row-interaction: (r1, r2) is said to be a O/O row-interaction if both r1
and r2 output values for the same signal at the same time.

Row-interaction is covered when a test case captures either of the aforementioned
interactions between rows.

In the example mentioned in Table 1, because of the common I/O signal
Alarm, there are three I/O row-interactions: (1, 2), (2, 1) and (3, 1). This is
because the output On to Alarm in Row 1 is used by Row 2 and the out-
put Off to Alarm in Rows 2 and 3 is used by Row 1. The input sequence shown
in the test case in Table 2 covers the row-interaction (1, 2).

In Table 1, Rows 1 and 3 form an O/O row-interaction (1, 3) as both these
rows can potentially affect the output value of the same signal Flash at the same
time. Consider the input sequence shown in Table 3. At time 1500 ms, the output
pattern for Flash will start because Row 1 is matched. However, at time 2000 ms

On Generating Test Cases from EDT Specifications 7

Table 2. Test Case for Row and I/O row-interaction coverage.

Time(ms) Input Signals Remarks

0 PanicSw=Press

500 PanicSw=Release

1000 PanicSw=Press

1500 PanicSw=Release Row 1 output starts

2000 PanicSw=Press

5500 PanicSw=Release Row 2 output starts

Table 3. Test Case for O/O row-interaction coverage.

Time(ms) Input Signals Remarks

0 PanicSw=Press

500 PanicSw=Release

1000 PanicSw=Press

1500 PanicSw=Release Row 1 output starts

2000 Ignition=On Row 3 output starts

the output of Flash is changed to No Req, although the previous output pattern
is still going on. This happens because Row 3 is matched due to the occurrence
of Ignition = On. When such input sequence is generated in a test case, it is
said to have covered O/O row-interaction (1, 3).

5 RGRaF and DRAFT Algorithms

We now present the algorithms RGRaF and DRAFT that are used to gen-
erate test cases with expected output from EDT specifications. A test case
consists of a timed sequence of input values and corresponding expected
output values. Each element of the sequence is a tuple of the form
(signalname, value, time, category) where, signalname is an input signal, value
is a valid value for that signal, time is the time when the value arrives, and
category indicates if the signal is an input, output or I/O signal. The sequence
is arranged in increasing order of time. The test case generation algorithms that
generate a set of these sequences consists of four main steps; Automata construc-
tion, Input sequence generation (InpGen), Expected output sequence generation
(ExpGen) and fuzzing at time-boundaries (Fuzz).

5.1 RGRaF: Row-Guided Random Algorithm with Fuzzing

RGRaF begins by building a discrete timed automaton corresponding to the reg-
ular expression in each cell, using known techniques. It then invokes InpGen,

8 R. Venkatesh et al.

which selects a random sequence of rows and then systematically expands each
row in the sequence to produce a sequence of inputs that may match that row.
This input sequence is passed on to ExpGen, which executes the timed automa-
ton of each cell for each input to determine the rows that match. When a row
matches, ExpGen modifies the input sequence by adding outputs generated by
the matched row, thus creating the final test sequence. To increase the prob-
ability of time related requirements getting covered, ExpGen invokes Fuzz, a
function that randomly fuzzes the time of inputs at the time(τ) of the nearest
potential time-out event. This execution of InpGen and ExpGen is repeated till
either all rows and row-interactions are covered or the number of row sequences
generated by InpGen exceeds a given threshold (Sample Size), S. We refer
to the number of row sequences generated as test cases tried. The generated test
cases are always a subset of the test cases tried. The steps involved in RGRAF
are described in detail below:

RGRaF InpGen() DRAFT InpGen()
Rs := [] Rs := []
Populate Rs randomly Select a ru such that ru ∈ Ur

Is := ∅ Rs := Rs . ru
For each r in Rs While (i ≤ M)

Ir := Expand(r) Select r such that there is a high probability that
Is := Is . Ir some r’∈ Rs depends on r

End For Rs := Rs . r
return Is i := i+1

End while
Is := ∅
For each r in Rs

Ir := Expand(r)
Is := Is . Ir

End For
return Is

Fig. 1. InpGen().

InpGen for RGRaF: This function (Fig. 1) first creates a sequence of rows Rs by
randomly selecting some EDT rows, with uncovered rows having a higher proba-
bility of selection. It then invokes the function Expand, which generates an input
sequence for each cell of each row r in Rs, by selecting an element from the lan-
guage specified by that cell’s regular expression. The sequences of all the cells of
a row are merged, maintaining time ordering, to get an input sequence Ir for the
row. Each Ir is appended to Is to get a combined input sequence for all the rows
in Rs. Note that the expansion of each row proceeds independent of the other rows
in the sequence and does not take into account any value for I/O variable that may
be generated by a previous row. As a result, the actual rows matching the gener-
ated sequence of inputs could be different from the rows in Rs. This systematic

On Generating Test Cases from EDT Specifications 9

expansion of rows ensures the generation of input patterns that need repetition.
The probability of such repeated pattern getting generated will be low if input
generation is purely random.

ExpGen: This function (Fig. 2) takes Is as input, which consists of inputs yet to
be processed. Each input in Is is processed by taking a step of each row r, of the
EDT table T . A step of a row consists of taking a transition in the automaton
of each cell in that row. Once a step is taken a row matches if all its automata
are in their final state, with at least one of them having reached the final state
due to the current signal. When a row matches, tuples with category output or
I/O corresponding to the output Op of that row are merged (⊕) with the input
sequence Is maintaining its time ordering and the matched row is added to the
set of matched/covered rows Mr. If the current row matched due to outputs
generated by a previously matched row ri, then the pair 〈ri, r〉 is added to the
matched/covered interactions Mi. Any I/O signal produced by a matched row
is processed in the next step. If an automaton is in a state that has an outgoing
time-out transition it is said to be in a time-out state. Of all the automata in
a time-out state ExpGen returns the smallest time τmin at which a time-out
transition may occur.

Fuzz: As in standard discrete timed automata each transition of a cell’s automa-
ton is either labeled by a signal value or is a time-out transition of the form
〈c, op, n〉 where c is a clock variable, op is one of the operators {<,≤, >,≥} and
n is a positive integer representing time. Timing constraints modeled as time-out
transitions are one of the reasons why model-based approaches to test generation

ExpGen(Is) RGRaF/DRAFT Algorithm
For each r in table T Ur := Set of all uncovered rows

τ := ExecuteAutomata(r,first(Is) Up := Set of all uncovered row-interactions
If (r matches) i := 0

Is := Is ⊕ Op of r For each cell in each r
Mr := Mr ∪ r Build its timed automaton

End If End For
For all rows ri that produce some input of r While(i ≤ S and (Ur = ∅ or Up = ∅))

Mi := Mi ri, r Is := RGRaF/DRAFT InpGen()
End If While (Is = ∅)

τmin := min (τmin, τ) (Mr , Mi, τ) := ExpGen(Is)
End For Ur := Ur - Mr

Return (Mr , Mi, τmin) Up := Up - Mi

Is := Is → Next
Fuzz: Randomly change time of first(Is)
to before or after τ

End While
i := i+1

End While

Fig. 2. ExpGen() and RGRaF/DRAFT Algorithm.

10 R. Venkatesh et al.

do not scale up to industry size code. Random algorithms too are unable to cover
time-based requirements. To address this issue, at the end of each step, we ran-
domly change the time of inputs occurring around the nearest time τ , at which
a time-out may occur. The generated scenario is altered by randomly changing
the time of some inputs that occur either - (a) at a time t < τ to a time t′ > τ
or (b) at a time t > τ to a time t′ < τ .

We call the above alteration fuzzing at time boundaries. Consider the scenario
presented in Table 2. After processing the input at 1500 ms, the nearest time-
out will occur at 3000 ms due to the PanicSw pattern in Row 1 of the example
given in Table 1. At this point, the algorithm could randomly choose to fuzz the
scenario by changing the time of the input at 2000 ms to 3500 ms or it could
change the time of the input occurring at 5500 ms to 2500 ms. If fuzzing is
not performed, the scenario will be generated only at the 3000 ms that is the
time-out. Hence, fuzzing helps in generating scenarios with different time around
τ and thus helps in covering complex time-based scenarios. All these steps are
repeated until full row coverage and row-interaction coverage is achieved (i.e., Ur

= ∅ ∧ Up = ∅), or the number of test cases tried exceeds the Sample Size S.

5.2 DRAFT: Dependency Driven Random Algorithm with Fuzzing
at Time Boundaries

DRAFT (Fig. 2) uses row dependencies to generate test cases and differs from
RGRaF only in the manner by which it selects Rs in InpGen. Details of InpGen
of DRAFT are as follows.

InpGen for DRAFT: DRAFT populates a sequence of rows Rs, as shown in
Fig. 1, based on the dependencies of rows on each other. A row r is said to be
dependent on a row rd if output of rd is consumed as an input by r. DRAFT first
selects a row ru from the set of uncovered rows Ur, and appends ru to Rs. Next,
another row r is selected such that there is a high probability that some row in
Rs depends on it. r is appended to Rs. The process of selecting and appending
rows in Rs is repeated till Rs reaches a given maximum size(M). This size limit
of Rs is taken as an input from user. Once Rs is populated, the remainder of
InpGen functions similar to InpGen of RGRaF.

6 Extensions to EDT

For the generated test cases to be useful they should not have any input com-
binations that will never be generated by the environment. To eliminate such
invalid combinations, the environment constraints need to be specified. We have
extended the EDT notation with a special output column RejectFlag to sup-
port easy modeling of the environment constraints as required for testing. Simi-
larly, we have also added a special column ErrorFlag to support specification
of properties. These two extensions are described in detail below.

On Generating Test Cases from EDT Specifications 11

6.1 Modeling Environment Constraints

In reactive systems, there could be several combination(s) of input(s) that can
never occur in the actual run of the system. For instance, in a car, the left
and right indicator switches cannot be On simultaneously. We provide a special
output column, RejectFlag to model such environment constraints. These con-
straints are specified as an EDT row with a Reject output value to the RejectFlag
column. Sample EDT row specifying an environment constraint is illustrated in
Table 4.

If a test case generated by the Input Sequence Generator matches the row in
Table 4, then that test case is rejected. So RejectFlag is actually used to eliminate
test cases for all the combinations that cannot happen in the functioning of real-
world reactive systems.

Table 4. Specification for environment constraints.

Sno In LeftSw In RightSw Out RejectFlag

1 On On Reject

6.2 Property Checking

The requirements of real-world reactive systems generally contain certain safety-
critical requirements that should never be violated during any execution of the
system. These can be seen as properties of the system. For example, ‘when a
vehicle is moving at a considerable speed (say, >20 kmph), all doors should be
locked’, is one such requirement. It is often easier to express such requirements as
a system property. This property should not be violated by other requirements
that alter either the vehicle speed or door lock/unlock status. To specify such
properties, we provide a special output column, ErrorFlag.

An example of specifying system properties is illustrated in Table 5. As
RGRaF generates test cases for row coverage, to cover the row in Table 5, a
test case will be generated that matches this row. Once the row is matched,
ExpGen will generate ‘Error’ as the expected output of that test case. This test
case is a counter-example to the given property. So this special output signal is
actually used to detect and report error for all the signal combinations that are
possible in real-world reactive systems but should not occur due to pre-defined
system properties.

Table 5. Specification for property checking.

Sno In VehicleSpeed In DoorStatus Out ErrorFlag

1 > 20 Unlocked Error

12 R. Venkatesh et al.

7 Experiments: Results and Observations

We conducted case studies on four different real-world projects to evaluate the
practical usefulness and cost-effectiveness of EBT, and answer the following four
questions:

1. Can formal specification based methods for test generation take lesser efforts
than writing test cases test cases manually?

2. Can they achieve better row and row-interaction coverage than manually
written test cases?

3. Does fuzzing at time boundaries help in generating better test cases on real-
world systems?

4. Does DRAFT achieve better coverage than RGRaF and do both achieve
better coverage than pure random generation on real-world projects?

To investigate the aforementioned questions we needed real-world projects
which have - (a) documented requirements in a natural language, (b) manually
written test cases and, (c) detailed data of effort spent in writing these test
cases. We identified four projects from the automotive domain and carved out
case studies from these projects such that each case-study was fairly big and was
representative of a real-world reactive system.

Brief description of the conducted case studies followed by details of the
comparisons are given below.

Case Study 1 was from Body Control component of an automotive origi-
nal equipment manufacturer (OEM). It consisted of a single sub-system named
Integrated-FAT that had three modules – Flasher, Alarm and Trunk Back Door.
Each module was further divided into sub-modules and requirements of sub-
module were available. We modeled these requirements in EDT and generated
test cases for each module as well for the sub-system level.

Case Study 2 was from another automotive OEM. We conducted experiments
on four modules – Power Lift Gate (PLG), Power Closure Decision (PCD) and
Panic Alarm from Body Control component, and also for Blower Control mod-
ule from Climate Control component. For all these modules and a sub-system
(Integrated-PLG+PCD) that merged PLG and PCD, we generated test cases in
MATLAB [31] compatible format.

Case Study 3 was from Engine Control component of an automotive tier one
supplier. We generated test cases, in CoverageMaster winAMS [32] compatible
format for three modules - TF Switch Open, TF Switch Low and RD Switch
Operation.

Case Study 4 was from Body Control component of second automotive OEM.
It consisted of a single feature named Voltage Range Monitor(VRM). We gener-
ated test cases for VRM feature to evaluate the condition, decision and modified
condition/decision coverage(MCDC) of test cases. For this case study, the effort
data for manual test cases was not available.

For doing a comparative evaluation of coverage, we generated test cases using
RGRaF, it’s variants and DRAFT for all the case studies. For the first three case

On Generating Test Cases from EDT Specifications 13

studies, we have already presented the experimental results for RGRaF and it’s
variants in our previous paper [1]. However, some of these experimental results
have changed due to recent enhancements in EDT-Test implementation and thus
we had to generate test cases for these case studies again.

7.1 Comparison of RGRaF, DRAFT and Pure Random

To compare RGRaF, DRAFT and pure random test case generation we executed
these algorithms on all the modules and sub-systems of the selected case studies.
We used the same Sample Size for all the algorithms. Pure random algorithm
generated random input sequences with a random time assigned to each tuple in
the input sequence. Each input sequence was of a random length. Once an input
sequence was generated, the rest of the algorithm was similar to RGRaF and
involved execution of automata and retained only those sequences that covered
a new row or a row-interaction.

Tables 6, 7 and 8 present the results of these experiments. RGRaF, when
compared with pure random algorithm, achieved equal or higher row cov-
erage and row-interaction coverage in 12 out of 13 modules. Moreover,
RGRaF achieved 100 % row coverage for 7 modules whereas the pure random
variant achieved 100 % row coverage in only 4 modules. DRAFT, on the other
hand, achieved 100 % row coverage for 9 modules and achieved equal or bet-
ter row coverage than RGRAF on the remaining four modules. During these
experiments, we observed that pure random test generation was achieving lesser
row and row-interaction coverage for larger sub-systems/modules/systems. For
instance, in Alarm module, which had 822 rows, DRAFT covered 694 rows
and RGRaF covered 628 rows whereas pure random could cover only 573 rows
(Table 7). For the same module RGRAF covered 1126 row interactions, whereas

Table 6. Comparison of test cases tried when 100 % rows covered.

Case Study Feature Name No. of

EDT

Rows

#Test Cases Tried

DRAFT RGRaF RGRaF

Without Fuzz

Pure Random

With Fuzz

Study 1 Trunk Back Door 86 107 103 226 10K(53)

Study 2 Blower Control 101 101 96 112 10k(97)

PLG 52 1329 2154 8456 10K(40)

PCD 16 30 30 223 30

PLG + PCD 68 57925 80749 200K(65) 200K(59)

Study 3 TF Switch Open 14 3 856 10K(0) 3759

TF Switch Low 14 275 642 229 702

RD Sw Operation 31 22901 50K(30) 79 20216

Study 4 VRM 256 2646 10K(253) 10K(255) 10K(0)
∗The numbers written in brackets indicate the number of rows covered when 100% row coverage

is not achieved.

14 R. Venkatesh et al.

Table 7. Comparison of rows covered when all rows are not covered.

Case Study Feature Name No. of
EDT
Rows

#Rows covered

DRAFT RGRaF RGRaF
Without Fuzz

Pure Random
With Fuzz

Study 1 Alarm 822 694 628 592 573

Flasher 146 144 140 128 96

Integrated-FAT 1052 936 934 843 427

Study 2 Panic Alarm 262 259 259 259 244

random covered only 303 interactions(Table 8). Due to lack of time we did not
measure row interactions covered by DRAFT for any of the modules.

An analysis revealed that our algorithms performed better in cases where
size of input domain was large and in cases where to cover a row, an input with
a specific value had to be generated within a specific time. This is illustrated by
the example in Table 1. To cover Row 1 of this example the Panic Switch has to
be pressed and released twice within three seconds. The probability of this hap-
pening in pure random generation is very low. When we generated test cases for
this example using RGRaF and pure random, RGRaF needed to try only 6 test
cases to cover all rows and row-interactions, whereas the pure random algorithm

Table 8. Comparison for row-interaction coverage.

Case Study Feature Name No. of EDT Rows #Row-Interactions Covered

RGRaF RGRaF
Without
Fuzz

Pure
Random
With Fuzz

Study 1 Alarm 822 1126 1094 303

Trunk Back Door 86 63 63 28

Flasher 146 541 561 365

Integrated-FAT 1052 2076 1180 1180

Study 2 Panic Alarm 262 967 961 597

Blower Control 101 264 257 224

PLG 52 360 353 285

PCD 16 5 5 5

PLG + PCD 68 359 331 265

Study 3 TF Switch Open 14 22 0 22

TF Switch Low 14 23 23 23

RD Sw Operation 31 46 46 46

Study 4 VRM 256 427 369 0

On Generating Test Cases from EDT Specifications 15

needed to try 663. We also observed that pure random with fuzzing algorithm
generated many row sequences that contained invalid input combinations, and
hence the number of test cases tried by this algorithm are more than the others.

7.2 Impact of Fuzzing on Test Case Generation

To evaluate the contribution of fuzzing we ran RGRaF with and without fuzzing
on all the modules. To fuzz, at the end of each step of all automata, the next
input was optionally chosen. If the chosen input had a time less than the nearest
time-out τ , then the time of the input was modified to a value higher than τ else
it was changed to a time less than τ .

Tables 6, 7 and 8 present the results of the comparison. Fuzzing at time
boundaries helped in 10 modules because these had complex time-based require-
ments. For these modules, RGRaF achieved higher row and row-interaction cov-
erage as compared to RGRaF without fuzzing. This demonstrates that fuzzing of
timings of inputs helps in increasing row and row-interaction coverage, especially
in the presence of time-based requirements. A thorough analysis revealed that
fuzzing helped in cases having time constraints associated with I/O signals, as
explained in Sect. 5, because these I/O signals’ time constraints were not taken
into account while expanding rows. As fuzzing helped in RGRaF, we assume
that with DRAFT also, fuzzing has helped in achieving better coverage.

An exception has been the module RD Sw Operation, for which RGRAF
without fuzzing tried far fewer test cases (79) than the other algorithms to cover
all rows. This could be because the module has only two inputs with Boolean
type and no timing constraints on the inputs.

7.3 Comparison with Manual Testing

For the first three case studies, manually created test cases with the correspond-
ing efforts data were available to us. These test cases were created by respective
application development teams consisting of test engineers and domain experts
whereas, the team that created EDT specifications and generated test cases using
EDT-Test did not have automotive domain knowledge.

Table 9 presents a summary of our findings of a comparison between EBT
and manual test case generation for effort required. In the case of EBT the
effort is split into the person hours taken to specify requirements in EDT and
the time taken by RGRaF to generate test cases. We have not compared the two
methods for coverage because no coverage data was available for the manual test
cases. Instead we asked the domain experts from the project teams to manually
compare and analyze the two sets of test cases.

The findings reveal that on an average EBT required up to 60 % less effort
for test case creation. In all the modules, EBT not only generated all the test
cases present in the manual sets, but also generated many additional interesting
scenarios. These additional scenarios should have been part of the manual test
cases, according to the domain experts. In two modules, Flasher and PLG, EBT
test cases needed more effort compared to manual ones primarily because, these

16 R. Venkatesh et al.

Table 9. Comparison of EBT with manual approach.

Case Study Feature Name No. of

EDT

Rows

Test Case Generation Using EBT Manual

Test Case

Generation

[person

hours]

Efforts

savings

by EBT

EDT Creation

[person hours]

EDT-Test

Execution

Total Efforts

[person hours]

Case Study 1 Alarm 822 13 95 mins 14.5 38.5 33%

Trunk Back Door 86 7 2 mins 7 10

Flasher 146 18.5 32 mins 19 12

Integrated-FAT 1052 0 6.5 hours 6.5 -NA- –

Case Study 2 Panic Alarm 262 40 5 mins 40 80 44.8%

Blower Control 101 5 12 mins 5 18

PLG 52 12.5 1.5 mins 12.5 6

PCD 16 1 1 second 1 2

PLG + PCD 68 0 30 mins 0.5 -NA- –

Case Study 3 TF Switch Open 14 0.75 1 min 0.75 9 62.5%

TF Switch Low 14 1.25 1.75 mins 1.25 9

RD Sw Operation 31 10 1.5 mins 10 14

modules required an understanding of complex domain functionality that the
manual test case writers already had.
Analysis of some key findings from all the experiments is presented as follows:

– In Case study 1, for the Trunk Back Door module, EBT generated cases
covered 40 more row-interactions and in the case of Flasher it covered 346
more row-interactions than the manually written test cases.

– In Case Study 1, Integrated-FAT module clearly showed scalability of our
algorithm. It had approximately 1000 requirements and 98 signals. Due to the
complexity of the requirements, it was hard for the testers to visualize all the
requirements’ combinations. Hence, the manually created test cases covered
only module level requirements and interactions between modules were not
adequately covered. EBT test cases subsumed all the manually created ones
and generated many more valid and necessary requirements combinations as
confirmed by the domain experts and the project team.

– In Case Study 2 EBT test cases, when run on the model, detected a bug
in a post-production sub-system, Integrated-PLG + PCD. We detected this
bug by specifying properties of the sub-system using the ErrorFlag in EDT
specifications, as explained in the Sect. 6. In case of Panic Alarm module,
three missing requirements were uncovered when EBT generated test cases
were executed on corresponding MATLAB models.

– In Case Study 3, EBT generated test cases achieved 100 % condition and
decision coverage when executed on C code using CoverageMaster winAMS.
This is interesting because EBT does not explicitly target code coverage.

– In Case Study 4, EBT generated test cases achieved superior condition,
decision and MCDC coverage when compared with manual test cases, as
shown in Table 10. EBT generated test cases were executed on VRM feature’s
MATLAB models for coverage evaluation.

On Generating Test Cases from EDT Specifications 17

Table 10. Coverage comparison for case study 4.

Coverage criteria EBT Manual

Condition 88 % 76 %

Decision 100 % 98 %

MCDC 75 % 52 %

The overall analysis of our experiments demonstrates that, on real-world
projects, EBT is more cost-effective and generates better test cases than manual
test cases. It also shows that DRAFT performs better than other algorithms
including RGRaF, RGRaF without fuzzing and pure random. However, there
are some threats to validity of our experiments as given in the next section.

7.4 Threats to Validity

The threats to the validity of our findings are described as follows:

– Random test data generation is parameterized by the number of random
inputs to be generated, whereas DRAFT and RGRaF are parameterized by
the maximum number of rows to be used to generate inputs. This makes
any comparison between the two unfair. For the experiments, the number of
inputs to be generated by the random algorithm was taken as twice that of
the number of rows to be generated by the other algorithms. This was based
on an analysis of EDTs used for the experiments, which revealed that on an
average there are two inputs per row.

– Although DRAFT performed better than RGRaF on most examples, in some
cases it was only marginally better. More experiments will have to be con-
ducted to arrive at a clear conclusion.

– All the systems we selected are from the automotive domain and although
we expect the findings to carry over to reactive systems from other domains,
explicit experiments will have to be conducted to confirm it.

– To assess the quality of the generated test cases we relied on the judgment of
domain experts. A more objective study that determines the number of defects
detected by EDT-Test will have to be conducted to ascertain its effectiveness.
However, getting defect data is not easy and we were not able to get it for all
the systems we considered, making it difficult to conduct an experiment.

8 Conclusions and Future Work

From the experiments we conclude that:

– It is possible to have a formal specification based method and yet, reduce
testing efforts up to 60 %. This requires an appropriate choice of notation.

18 R. Venkatesh et al.

– Test case generation algorithms based on random generation of events can
generate scenarios that are found to be useful and interesting by test engineers
and domain experts.

– Fuzzing at time boundaries helps improve coverage when timing requirements
are present in the specification.

– Using row dependencies for input sequence helps in further increasing coverage
of complex specifications. Even for simple specifications for which all rows can
be covered by both RGRaF and DRAFT, exploiting row dependencies helps
in reducing the number of test cases tried.

Our previous algorithm RGRaF faced scalability issues in generating test
cases for applications having large and complex time-based requirements. We
have improved the scalability in test generation by means of DRAFT algorithm.
Going forward, we aim to improve the scalability of our approach for even larger
reactive systems. Further, we plan to evaluate the effectiveness of various cov-
erage criteria in finding bugs in the system under test, and enhance the criteria
to enable coverage of long sequences of requirements’ interaction. Although the
experiments were performed on applications from the automotive domain, we
expect similar benefits on reactive systems belonging to other domains as well.

References

1. Venkatesh, R., Shrotri, U., Zare, A., Agrawal, S.: Cost-effective functional testing
of reactive software. In: Evaluation of Novel Approaches to Software Engineering.
SCITEPRESS (2015)

2. Venkatesh, R., Shrotri, U., Krishna, G.M., Agrawal, S.: EDT: a specification nota-
tion for reactive systems. In: Proceedings of the Conference on Design, Automation
&Test in Europe, p. 215.European Design and Automation Association (2014)

3. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Har-
man, M., Harrold, M.J., Mcminn, P.: An orchestrated survey of methodologies for
automated software test case generation. J. Syst. Softw. 86, 1978–2001 (2013)

4. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-box system testing of real-time embedded
systems using random and search-based testing. In: Petrenko, A., Simão, A., Mal-
donado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer, Heidelberg
(2010)

5. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model-based testing in practice. In: Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 285–294. ACM (1999)

6. Reactis: Reactis. (http://www.reactive-systems.com/model-based-testing-simulink.
html). Accessed 29 October 2015

7. Peranandam, P., Raviram, S., Satpathy, M., Yeolekar, A., Gadkari, A., Ramesh,
S.: An integrated test generation tool for enhanced coverage of simulink/stateflow
models. In: 2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 308–311. IEEE (2012)

8. Wang, J., Li, H., Lv, T., Wang, T., Li, X.: Functional test generation guided by
steady-state probabilities of abstract design. In: Proceedings of the Conference on
Design, Automation & Test in Europe, p. 321. European Design and Automation
Association (2014)

http://www.reactive-systems.com/model-based-testing-simulink.html
http://www.reactive-systems.com/model-based-testing-simulink.html

On Generating Test Cases from EDT Specifications 19

9. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE Trans. Softw. Eng. 16, 403–414 (1990)

10. Thyssen, J., Hummel, B.: Behavioral specification of reactive systems using stream-
based I/O tables. Softw. Syst. Model. 12, 265–283 (2013)

11. Briand, L.: Software verification - a scalable, model-driven, empirically grounded
approach. In: Tveito, A., Bruaset, A.M., Lysne, O. (eds.) Simula Research Labo-
ratory, pp. 415–442. Springer, Heidelberg (2010)

12. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR: A toolset for specifying
and analyzing software requirements. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 526–531. Springer, Heidelberg (1998)

13. Cadar, C., Sen, K.: Symbolic execution for software testing: Three decades later.
Commun. ACM 56, 82–90 (2013)

14. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: Symbolic execution of java byte-
code. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ASE 2010, pp. 179–180. ACM, New York (2010)

15. Tahat, L.H., Vaysburg, B., Korel, B., Bader, A.J.: Requirement-based automated
black-box test generation. In: 25th Annual International Computer Software and
Applications Conference COMPSAC 2001, pp. 489–495. IEEE (2001)

16. Bokil, P., Darke, P., Shrotri, U., Venkatesh, R.: Automatic test data generation for
C programs. In: Third IEEE International Conference on Secure Software Integra-
tion and Reliability Improvement SSIRI 2009, pp. 359–368. IEEE (2009)

17. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Softw. Test. Verification Reliab. 13, 25–53 (2003)

18. Cristiá, M., Albertengo, P., Frydman, C., Plüss, B., Monetti, P.R.: Tool support
for the test template framework. Softw. Test. Verification Reliab. 24, 3–37 (2014)

19. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with spec explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39–76. Springer, Heidelberg (2008)

20. Raymond, P., Nicollin, X., Halbwachs, N., Weber, D.: Automatic testing of reactive
systems. In: Proceedings of the 19th IEEE Real-Time Systems Symposium, pp.
200–209. IEEE (1998)

21. Brat, G., Havelund, K., Park, S., Visser, W.: Java pathfinder - second generation of
a java model checker. In: Proceedings of the Workshop on Advances in Verification
(2000)

22. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp. 209–224
(2008)

23. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

24. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: Preliminary assess-
ment. In: Proceedings of the 33rd International Conference on Software Engineer-
ing ICSE 2011, pp. 1066–1071. ACM, New York (2011)

25. Hamlet, R.: Random Testing. Wiley, New York (2002)
26. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Trans. Softw.

Eng. 10, 438–444 (1984)
27. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.: Adaptive random testing: The ART

of test case diversity. J. Syst. Softw. 83(1), 60–66 (2010). SI: Top Scholars

20 R. Venkatesh et al.

28. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5, 63–86 (1996)

29. Marinov, D., Andoni, A., Daniliuc, D., Khurshid, S., Rinard, M.: An evaluation
of exhaustive testing for data structures. Technical report, MIT Computer Science
and Artificial Intelligence Laboratory Report MIT -LCS-TR-921 (2003)

30. Bowman, H., Gomez, R.: Discrete timed automata. In: Concurrency Theory, pp.
377–395. Springer, London (2006)

31. Mathworks: Matlab. (http://www.mathworks.in/products/matlab/). Accessed 29
October 2015

32. winAMS, C.: Coveragemaster winams. (http://www.gaio.com/product/dev tools/
pdt07 winams.html). Accessed 29 October 2015

http://www.mathworks.in/products/matlab/
http://www.gaio.com/product/dev_tools/pdt07_winams.html
http://www.gaio.com/product/dev_tools/pdt07_winams.html

A Process Support with Which to Identify
Interactions Between Quality Characteristics

Gabriel Alberto García-Mireles1(&), Ma Ángeles Moraga2,
Félix García2, and Mario Piattini2

1 Departamento de Matemáticas,
Universidad de Sonora, Hermosillo, Sonora, Mexico

mireles@mat.uson.mx
2 Instituto de Tecnologías y Sistemas de Información,
Universidad de Castilla-La Mancha, Ciudad Real, Spain

{MariaAngeles.Moraga,Felix.Garcia,

Mario.Piattini}@uclm.es

Abstract. Achieving a balance between the quality characteristics that need to
be addressed during the development of a software product may determine the
success of a software project. However, few software organizations deal with
interactions between the quality characteristics that could be present in a soft-
ware project. In order to support organizations, we have developed a process
framework, SQIMF, which can be used to manage this type of interactions. In
this work we describe one of the SQIMF processes - that which is employed to
monitor product quality requirements - in order to support software organiza-
tions as regards identifying interactions between quality requirements, in addi-
tion to characterizing them and identifying relevant contextual factors. An
exploratory case study was conducted in order to initiate the validation of the
proposed process, as the result of which we found interactions between usability
and security during the inception phase of a software project.

Keywords: Software product quality � Interaction between quality
characteristics � Process for monitoring quality characteristics interactions �
Interaction between quality requirements � SQIMF framework

1 Introduction

One of the main goals of software engineering is to deliver high-quality software
products and systems. The identification and specification of both functional and
non-functional requirements (NFRs) are important activities as regards establishing a
baseline that can be used to assess software quality. Quality requirements, as a subset of
the NFRs [1], are closely related to both making decisions about selecting imple-
mentation technologies and driving the process used to design software architecture [2].
However, dealing with quality requirements during software development is difficult
because they are hard to define, they are described vaguely, and they might influence
each other [3]. Software developers might therefore select a design option that com-
promises some requirements in order to achieve others [3].

© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 21–39, 2016.
DOI: 10.1007/978-3-319-30243-0_2

The interaction between requirements is described as a situation in which the
satisfaction of one requirement may influence the satisfaction of another [4]. In this
work, we are interested in the interactions between quality requirements, particularly
the negative interactions, or the conflict between quality requirements. For instance,
negative interactions between usability and security requirements could occur when the
implementation of a means to provide access to a software system requires the users to
memorize long strings of illegible data.

There is a need to develop methods which support the goals of eliciting and
analyzing customers’ quality requirements, including negotiation approaches with
which to resolve conflicting interactions [5]. In industrial practice, software organi-
zations that overlook conflicting interactions between quality requirements may con-
front issues related to increasing development costs and decreasing stakeholder
satisfaction [3, 6]. The poor management of interactions between quality requirements
could also be considered a causal factor in the failure of some projects [7–9].

Fig. 1. SQIMF framework.

22 G.A. García-Mireles et al.

Several methods with which to deal with interactions between quality requirements
have been proposed, particularly negotiation approaches and prioritization methods
[10]. However, the goals of these approaches and their application scope cover only
specific processes as those described in ISO/IEC 12207 [10]. Interactions between
quality requirements are relevant to other stages of the software development life-cycle,
such as software architecture and software testing [2]. Software organizations therefore
require methodological support in order to address the identification and documentation
of interactions between quality requirements and the resolution of negative ones. This
support should cover all the stages of the software development life cycle.

In order to provide a possible solution to the issue of managing interactions
between quality requirements throughout the software development life cycle, we take
into account two essential ideas; first, that the software process influences the quality of
a software product, and second, that a product quality model, such as ISO/IEC 25010,
can be used to generalize the quality requirements through the different processes of
software development (Table 1 depicts the main quality terms used in this paper). We
implemented the first idea by reviewing several process models and the literature
concerning improvement initiatives. As a result, we found that few process models
explicitly address quality characteristics [11, 12] and that they mention quality char-
acteristics in processes related to eliciting and analyzing quality requirements [12]. The
second idea was based on the ISO/IEC 25010, since it can be used to specify, measure
and evaluate software product quality throughout the stages of the software develop-
ment life cycle.

The main goal of this research, which uses process support as a basis, is to provide
a process that can be used to monitor interactions between quality requirements when
considering the quality characteristics described in ISO/IEC 25010. This process is part
of the Software Quality Interaction Management Framework (SQIMF) (Fig. 1) which
was presented in Garcia-Mireles et al. [14]. In this paper we detailed the process ‘P4.

Table 1. Definition of some quality-related terms.

Term Definition

Quality
requirement

A requirement that a quality attribute which is present in software [13]

Quality
characteristic

Category of software quality attributes that have a bearing on software
quality [13]

Quality model Defined set of characteristics, and the relationships between them, that
provides a framework in which to specify quality requirements and
evaluate quality [13]

Target quality
goals

A description of relevant quality characteristics and their respective
expected values that an organization is attempting to attain in a software
product

Interaction
model

A matrix-based description of interactions between quality characteristics
that shows the influences of one quality characteristic on the others

Attribute Inherent property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by humans or by automated means [13]

A Process Support with Which to Identify Interactions 23

Monitoring product quality requirements’ (P4 process in Fig. 1) and described the
approach used to identify interactions between quality characteristics. The activity ‘A2.
Check potential interactions between quality requirements’, which is a part of this
process, was validated by conducting an exploratory case study. As an additional
proposal, we included a process with which to carry out trade-offs when negative
interactions occur (P5 in Fig. 1).

The paper has seven sections. Section 2 shows an overview of the main approaches
used to deal with interactions between quality requirements and depicts an overview of
the SQIMF. The process with which to manage interactions between quality require-
ments is presented in Sect. 3 while Sect. 4 presents both the exploratory case study
design and its main outcomes. Section 5 presents a discussion of the results and threats
to validity, while a summary of the process used to resolve conflicting interactions is
provided in Sect. 6. Finally, our conclusions and future work are addressed in Sect. 7.

2 Related Work

Software requirements analysis and requirements negotiation are the main activities
within the analysis stage of software development process during which stakeholders
may discover conflicting interactions between quality requirements. According to
Dahlstedt and Persson’s notion of interaction [6], the conflicting interactions between
quality requirements occur when one quality requirement constrains the design or
coding options of another quality requirement. In general terms, the conflicting inter-
actions are resolved by employing trade-off methods.

Barney et al. [15] carried out a mapping study in order to identify approaches with
which to perform trade-offs. They found a variety of methods, such as the Analytical
Hierarchy Process, the Architectural Trade-off Method, Quality Function Deployment
and algorithmic approaches, among others. As a conclusion, they pointed out that the
field is immature and more research is needed to address software quality tradeoffs. The
articles that [15] had categorized into both the requirements and process stage were
then reviewed in order to classify them as regards their goals and the main process that
the methods contained therein support. As a result, the methods were classified as either
prioritization approaches if they seek only to assign a weight to each quality charac-
teristic or negotiation approaches when the method provides a means that stakeholders
can use to discuss their alternatives [10]. In addition, we found that methods with
which to carry out trade-offs can be used in several processes, including those related to
quality assurance.

Several methods are based on the modeling approach. For instance, the
Non-Functional Requirements Framework [16] considers requirements to be goals, and
more particularly quality requirements to be softgoals. Software developers should
build a graph in order to describe the potential interactions between goals and the
extent to which design mechanisms and components contribute to achieving those
goals. Other researchers rely on both ontologies and literature surveys to model
interactions between quality characteristics. The catalog of conflicting interactions can
be used to identify potential interactions in new software projects [17, 18].

24 G.A. García-Mireles et al.

Our proposal for dealing with interactions is process-based. In order for a software
process to contribute toward improving product quality, it should include appropriate
practices [19]. Traditional software process models (such as CMMI [20], or ISO/IEC
12207 [21]) currently lack the appropriate support needed to improve product quality
when it is assessed with a product quality model [12]. Indeed, there is a lack of
mechanisms with which to integrate the methods required to support quality charac-
teristics [22]. These facts and the need to support the management of interactions
between quality requirements are some of the reasons why we were motivated to
develop the SQIMF framework [14].

The SQIMF framework provides a set of five processes that together contribute
toward identifying and documenting interactions in addition to resolving the conflicting
interactions which occur during the software development process [14]. The ISO/IEC
25010 [13] product quality model was used to derive specific quality models for
usability, maintainability and security. These specific models were then used to identify
potential interactions between quality characteristics. The interactions identified in
literature surveys were documented in interactions models, which describe the kind of
relationship between quality characteristics (e.g. positive, negative, and independent)
[23]. The SQIMF framework also includes a process that software organizations can
use to review the practices that may be included in a particular software project in order
to improve a product quality characteristic. These types of proposals are based on a
mapping between practices targeted toward improving a particular quality characteristic
and a software process model (please see, for example, [24]).

The processes included in the SQIMF framework can be applied at both project and
organization level. At organizational level, there are two processes whose respective
main goals are tailoring the product quality model to the settings in which software
organizations develops software and developing an improvement initiative in order to
introduce practices with which to enhance the desired product quality characteristics.
At project level, three processes are aimed at: promoting a strategy which ensures that
all project team members understand the quality terms, seeking interactions between
quality requirements and resolving negative interactions through the use of trade-off
studies. However, the processes are described only in terms of purpose and outcomes
[14]. In this paper we describe two processes related to the identification of interactions
between quality characteristics (P4. Monitoring interactions between quality require-
ments process) and the resolution of negative interactions (P5. Software quality
trade-offs process). The first process (P4) also includes the design and outcomes of an
exploratory case study.

3 Process for Monitoring Interaction Between Quality
Requirements

We use the SPEM 2.0 notation [25] and the EPF composer version 1.5 (https://eclipse.
org/epf/) to describe the process employed to monitor interactions between quality
requirements (Fig. 2). The process description includes the process objectives, work
products (inputs and outputs), roles, activities and an activity diagram.

A Process Support with Which to Identify Interactions 25

https://eclipse.org/epf/
https://eclipse.org/epf/

The monitoring quality requirements process relies on the interaction model to
uncover potential negative interactions (or conflicts) between quality requirements.
Several conditions may have a tendency to lead to the appearance of interactions
between quality requirements, such as clashes among stakeholders’ quality require-
ments, the selection (or design) of software components based on quality requirements,
and strict targeted values for quality requirements. When a conflict between quality
requirements is identified it should be described in the interaction profile for further
analysis. The main outcome of this process is the interaction profile, but it is also
possible to update quality requirements and the interaction model.

3.1 Process Objectives

The objectives of the monitoring quality requirements process are the following:

• A review of the consistency of quality requirements with target quality values.
• A verification of the potential interactions between quality requirements by means

of the quality characteristics.
• An update of the appropriate interaction model using the interactions discovered.

3.2 Inputs and Outputs

The work products required in this process are: product quality requirements and
related product components, a tailored product quality model, target product quality

Fig. 2. Activity diagram used to monitor product quality requirements process.

26 G.A. García-Mireles et al.

goals, and an interaction model. The output artifacts are: a prioritized list of quality
requirements, an interaction profile and a summative report containing the interactions
found.

3.3 Roles

The roles participating in this process are presented in Table 2.

3.4 Activities

There are three main activities in this process: classify quality requirements, check
potential interaction between quality requirements and review incidents. While the
project is in progress, the activities classify quality requirements and check potential
interactions that can be carried out when the process allows review sessions. We
suggest that the last activity be performed when the project is at the closing stage in
order to evaluate the impact of the conflicting interactions and the degree to which
alternatives have resolved the problem.

• A1. Classify quality requirements activity. With regard to the tailored quality
model, the RE classifies the product quality requirements. If each review session
addresses changes that must be made as regards quality requirements, this activity
needs to be carried out in order to update the classification of quality requirements.

• A2. Check potential interactions between quality requirements activity. Catego-
rizing quality requirements in their respective quality characteristic allows the
reviewer to identify potential interactions between quality requirements since the
interaction model includes data about interactions between quality characteristics. If
an interaction is identified, the Reviewer therefore needs to describe it in the
interaction profile template.

• A3. Review incidents. PQE and PQT review the interaction profile reported in the
software project. The analysis focuses on the characteristics of the reported

Table 2. Roles participatingin the process.

Role name Description

Product Quality
Team (PQT)

A group of participants who have a diversity of quality interests in a
particular software product. They can describe quality goals and
apply appropriate methods to introduce and assess product quality

Product Quality
Expert (PQE)

A participant who has the knowledge needed to adapt a product
quality model in the context of organizational needs

Requirements
Engineer (RE)

A participant responsible for eliciting, analyzing, specifying and
validating requirements who can also categorize quality
requirements using a product quality model

Reviewer (R) A role responsible for detecting potential interactions between
categorized quality requirements which can also create an
interaction profile when a negative interaction is discovered

A Process Support with Which to Identify Interactions 27

interactions in order to evaluate its impact on both the software project and the
artifacts of the SQIMF framework (e.g., interaction model). The actions derived
from this review are documented and stored in the organization’s knowledge base.

4 Exploratory Case Study

4.1 Case Study Design

In order to validate the activity ‘A2. Identify potential interactions between quality
requirements’ which is a part of the process ‘P4. Monitoring quality requirements’, we
decided to conduct an exploratory case study. The purpose of the study was to
understand how practitioners identify interactions between quality requirements and
how they can be described. The study was conducted at a small software firm that we
named Company A, and which was selected opportunistically since we needed an
organization that was aware of how software quality can be implemented in software
projects.

Company A is currently certified as a testing laboratory with the ISO/IEC 17025
standard. The company provides consulting services based on software process
improvement initiatives or using the ISO/IEC 25010 to enhance product quality. Two
people from Company A participated in the interviews.

We performed the case study by breaking down the activities into two groups. The
first group of activities focused on the design of materials required to characterize the
contextual factors that needed to be taken into account. The second group of activities
was carried out a week after the first part of the study. Its main purpose was to identify
and describe the profile of an interaction in a current project.

Table 3. Terms related to contextual factors.

Term Description

Contextual
factor

An aspect from the environment that influences either the way in which
software is developed or the resulting software product

Contextual
facet

A coherent set of contextual factors

Product facet This includes contextual factors such as maturity, quality, size, system
type, customization and programming language [26]

Process facet This describes the work-flow of the development. It includes activities,
work-flows, and artifacts [26]

People facet This includes aspects related to project participants’ skills and experience
in addition to the assigned (project/organization) positions’ jobs and
roles

Organizational
facet

This includes the organizational structure, organizational unit, certification,
and distribution [26]

Market facet This represents the customers and competitors. The market facet includes
number of customers, market segments, strategy and constraints [26]

28 G.A. García-Mireles et al.

In the first part of the case study, we developed an interaction profile template
whose goal was to characterize an interaction between quality requirements. The lists
of factors employed to describe an interaction were extracted from Robinson et al. [4],
while the context facets [26] were used to identify factors that contribute to the
occurrence of an interaction. Table 3 describes the factors used in the interaction profile
template.

The first version of the interaction profile template was reviewed by two
researchers. Minor details concerning the interpretation of the factors were found,
which were resolved by improving their explanations. The corrected version of the
template was used to support semi-structured interviews.

The managing director and the quality leader, both of whom were employees at
company A, were informed about the aims of this study and the need to record
interview sessions. They agreed to an audio recording and also to filling in the tem-
plates and questionnaires. Both interviewees had been working with process
improvement initiatives and enhancing product quality with ISO/IEC 25010 for more
than four years. The main data source was based on their experience of working in the
quality assurance field.

The data collection procedures required notes to be taken during the interview
sessions. The notes were verified with audio files. The interactions between the quality
characteristics identified by both interviewees were compared in order to gather suit-
able evidence for this research. Data triangulation was applied to data regarding con-
textual factors in order to identify relevant contextual factor for this company.

The second part of the exploratory case study was focused on the application of
the activity ‘A2. Check potential interactions between quality requirements’ to a
software project being developed by the company. The purpose of this was to
understand the extent to which it would be feasible to use the process, including the
artifacts, in industrial settings. A questionnaire was developed in order to obtain
information about the feasibility of using the process.

4.2 Interviews Results

Company A decided to apply the process for monitoring interactions among quality
requirements in a new project they were working on. The software to be delivered was
a web application which supports an organization as regards providing web information
content for a target audience that includes the visually impaired. The exploratory case
study was conducted at the conception stage of this web project.

The interaction profile includes a section that addresses the interaction model. In
this case, it was developed in order to determine the type of relationships between
security and usability sub-characteristics. The interviewees used their own experience
and the features of the software project under study as a basis on which to establish the
type of interaction. For instance, Table 4 shows an interaction model between security
and usability filled in by one of the interviewees.

Positive interactions are marked with the sign (+) while negative interactions are
marked with (-). The sign (O) is used when the interviewee does not have sufficient
information to ensure that there is an influence between the quality sub-characteristics

A Process Support with Which to Identify Interactions 29

under review. In this case study, the interviewees reported positive interactions between
availability and user error protection. They also reported two negative interactions
between the pairs authenticity – operability and authenticity – accessibility.

After identifying an interaction between quality requirements, the next step was to
characterize the relevant factors that foster it. The interviewees used the contextual
facets to report factors related to the product and process facet.

The main factors within the product facet are quality and application type. Quality
refers to usability and security requirements that the project should address. The needs
of a particular set of targeted users constrain both the design and implementation
options of security mechanisms, since they are visually impaired people. In addition,
the application type influences the security mechanisms that can be implemented.
Moreover, the characteristics of the screen sizes and interaction mechanisms also need
to be considered when designing the web application.

With regard to the process facet, one of the interviewees suggested that the review
of software increments at the end of a software development process iteration might be
an appropriate means to identify potential interactions between quality requirements.
The executable version of software can be used to evaluate the quality requirements.
In the light of the testing results, the customer can make decisions concerning how
quality requirements were achieved. The use of this review approach allows both the
software firm and its customers to negotiate negative interactions between quality
requirements. Although the study was focused on identifying interactions between
quality requirements, the interviewee also requested methods, tools or practices that
support the management or resolution of negative interactions. He also suggested that
software developers need training if they are to manage conflicting interactions.

Table 4. Interaction model filled in by an interviewee.

Product usability

Security A
pp

ro
pr

ia
te

ne
ss

 r
ec

og
-

no
za

bi
lit

y

L
ea

rn
ab

ili
ty

O
pe

ra
bi

lit
y

U
se

r
er

ro
r

pr
ot

ec
tio

n

U
se

r
 in

te
rf

ac
e

ae
st

he
tic

s

A
cc

es
ib

ili
ty

Autenthicity O O - O O -

Confidentiality O O O O O O

Conformance O O O O O O

Attack detection O O O O O O

Availability O O O + O O

Integrity O O O O O O

Non-repudiation O O O O O O

Traceability O O O O O O

30 G.A. García-Mireles et al.

With regard to the organizational facet, Company A works by means of projects.
For this web application the team consisted of four team members. However, these
factors were not relevant as regards describing an interaction. With regard to the market
facet, the interviewees did not consider that any of its factors might contribute to the
occurrence of an interaction. In the case of the person facet, the interviewees did not
consider that people’s knowledge and skills were potential influencing factors. How-
ever, since the interviewees provide consulting to improve software quality, their
knowledge may be a relevant contextual factor as regards identifying interactions.

The interviewees determined a negative interaction between accessibility and
authenticity. They found particularly difficult to provide access support for all types of
users, including those suffering from blindness. As an argument they commented that
“a common approach employed to register users in a web system is that of using
CAPTCHAs, but they distort a label as regards differentiating between a real user and a
bot.” However, this mechanism requires an in-depth study in the context of this web
application owing to the profile of intended users.

In summary, the negative interaction only occurs with a particular group of users
when the application should display appropriate information (resources) for each type
of user. This signifies that the quality requirements for a web application are the main
contextual factors that contribute to the occurrence of a negative interaction.

The interviewees additionally highlighted positive interactions between a pair of
quality characteristics. They reported that integrity (security) has a positive influence on
user error protection (usability). The rationale for this relation is that the security
mechanisms implemented ensure that only the user with modification access can
change data records. This interaction relies on their previous experience in developing
and assessing systems.

The interaction profile template was therefore a feasible instrument with which to
characterize a negative interaction between quality characteristics. The interaction
model serves as a guideline to determine the type of interaction between quality
characteristics. The main contextual facets that were relevant for Company A in the
project under study were both the product and process facets. However, the person
facet needs to be studied in great depth in order to determine to what extent the
participants’ skills contribute toward identifying and characterizing negative
interactions.

The second part of the exploratory case study was focused on studying the feasi-
bility of using the monitoring quality requirements process in a software firm. Our main
goal was to characterize the interactions between quality requirements. We developed
guidelines for the use of the interaction profile template and the activity diagram. After
the participant had finished the tasks in the process, we asked him to answer a ques-
tionnaire developed to understand the suitability of the process.

With regard to the template for the interaction profile, the participant was clearly
able to fill in identification data: project id, date, reviewer, type of software and artifacts
analyzed. With regard to the interaction model, it can serve to identify both positive
and negative perceived interactions between quality sub-characteristics. When the
participant filled in the factors that characterized the interaction, his responses were
based mainly on his previous experiences in developing software and assessing soft-
ware quality. Since the project under study was at a conception stage, this may explain

A Process Support with Which to Identify Interactions 31

why there are few references to specific means or requirements used to describe the
interaction and its potential impact. Table 5 shows paraphrased responses for relevant
factors.

The analysis of the questionnaire filled in by the participant showed that process
objectives, roles, descriptions and work products are clearly described. However, the
process tasks and the interactions profile could be improved to support the identifi-
cation of interactions. With regard to the understandability of process elements, the

Table 5. Responses to diverse factors used to describe an interaction profile.

Factor Response

Basis In this project, adding security requirements
may have a negative influence on
accessibility and operability since the
software features are only available to
certain types of users

Which quality requirements are involved in
an interaction? Do the contextual factors
have an influence on a given quality
requirement?

Criterion New security components affect system
structure.Which reasons are considered to lead to these

interactions?
Establish the degree of the interaction Application type and target users might

impact on the degree of interaction
between quality characteristics.

What is the scope of the interaction between
quality requirements? What features,
components or users’ categories are
involved?

The stakeholder’s experience in the security
field may influence the quality of security
requirements.

The expert’s knowledge can be used to
establish a security mechanism to reduce
the influence of highly secure mechanisms
on accessibility or operability.

Probability of occurrence The interactions occur during the software
development under the constraints
considered.

What is the probability of a conflicting
interaction occurring?

Impact of the interaction The main effect: Application does not meet
basic quality requirements. Unsatisfied
users and application cannot be delivered
to target users.

What is the effect of the interaction on the
software project? For instance:
Catastrophic, inconvenient, system failure,
system reboot, unsatisfied users.

Type of interaction Perceived interaction
What is the type of this interaction? It is a
perceived interaction when it is described
at requirements level. It is an
implementation interaction when it is
based on the analysis of implementation
means

Context Main contextual factors: Application users
and application type.What contextual factors influence the

interaction between quality characteristics?

32 G.A. García-Mireles et al.

questionnaire answers depicted that process objectives, description of roles, work
products and templates are easy of understand. The process elements of the tasks
should, however, be improved.

When asked to state the extent to which process objectives are easy to apply, the
participant marked the disagree option. The comments written in the instrument
showed that there is a lack of information with which to understand how the interac-
tions can be identified when software quality measures and indicators are used. With
regard to this last comment, the experience of previous software quality assessment can
be used to identify interactions between quality characteristics. Moreover, the quality
goals should be linked to specific practices in order to evaluate whether the practices
contribute toward resolving negative interactions.

5 Results and Discussion

The exploratory case study has provided evidence about the potential usefulness of the
SQIMF. The interaction matrix and the characterization of interactions using the
contextual facets were relevant as regards establishing a profile of the conflicting
interactions between security and usability.

The interaction matrix was provided in order to determine the type of relationships
that occur between the sub-characteristics of usability and security. The case study
participants found it easy to fill in the matrix. One reason for this is that this company is
focusing on evaluating the quality of software products from the process and product
perspective. Although they could be considered expert practitioners in the field of
software quality, this case study was the first time that they had addressed the topic of
interactions between quality characteristics.

Several studies have reported interactions between software quality characteristics,
including security and usability [1], but few empirical studies address the interaction
issues by taking into account the sub-characteristic which belongs to each quality
characteristic. This is therefore an important finding to be considered when dealing
with interactions.

The purpose of the interaction profile is to characterize the interaction between
quality characteristics using the contextual facets. The evidence gathered through this
case study showed that the relevant factors that influence the interaction between
usability and security requirements are the user’s quality needs, user’s profiles, and the
type of application. The type of application is a factor that determines the type of
quality attributes to be addressed in a software project [3, 27]. With regard to the
process facet, the interviewees believed that a customer can participate in evaluating
software increments. At the end of each iteration, the customer can review the software
execution in order to identify any conflicts with the initially established quality
requirements.

The interviewees did not consider the remaining context facets, such as people,
organization, and market, to be factors that identify conflicting interactions between
quality requirements. One reason for this is that the project was at its conception stage
and the final set of requirements to be addressed in the software project had not as yet

A Process Support with Which to Identify Interactions 33

been specified. The identification of interactions is therefore based on the interviewees’
perceptions and the main factors were the stakeholders’ quality needs and product type.

The exploratory case study has shown that the process for monitoring product
quality requirements can help in the identification of interactions between quality
requirements and that it can be used in the conception stage of a software project. The
activity ‘A2. Check potential interaction between quality requirements’ is useful as
regards identifying and characterizing conflicting interactions between quality
requirements. However, the tasks related to this activity need some refinement for use
in industrial projects. Furthermore, it is necessary to validate the other activities in this
process: A1. Classify quality requirements and A3. Review incidents.

In order to mitigate the effects of threats to validity, we followed the guidelines of
Runeson et al. [28]. As regards the external validity, the exploratory case study carried
out cannot be generalized to other companies. Nevertheless the characterization of the
organization and the outcomes related to conflicting interactions between usability and
security can provide useful insights into the development of a theory with which to
characterize interactions at the conception stage of a software product. Moreover, we
identified interactions between quality sub-characteristics that can be generalized to
their respective quality characteristics considering the hierarchical structure of the
quality models. This result is thus consistent with reports of conflicting interactions
between usability and security [1, 8].

The research was kept under control through the application of the template
approach, because it allows the design of instruments and the a priori establishment of
how the instruments can contribute to the research [28]. Furthermore, in order to
improve the reliability of the artifacts designed, all of them were checked by two
researchers. Moreover, we used findings obtained from different sources to apply data
triangulation when identifying evidence [28].

Since this was the first time that Company A had worked with interactions between
quality requirements, the first part of the case study addressed the contextual factors.
These were commented on with the interviewee in order to clarify the terms.

With this action, we thus attempted to mitigate the effects of construct validity. In
addition, the guidelines used in the case study included descriptions in order to support
participants when filling in the templates. However, it was not possible to interview the
participants about whether these materials were useful as regards identifying interac-
tions between quality characteristics.

6 Towards Resolving Negative Interactions Between Quality
Characteristics

We propose that the software quality trade-off process (Fig. 3) can be used to resolve
conflicting interactions between quality characteristics. The purpose of the software
quality trade-off process is to make decisions concerning the best resolution alterna-
tive when conflicting interactions between quality requirements appear during software
development. The process employs a rationalistic approach based on criteria defined in
order to evaluate the potential resolution alternatives, and also considers the appropriate

34 G.A. García-Mireles et al.

methods with which to analyze the alternatives used to resolve conflicting interactions
between quality characteristics.

The process starts when an interaction profile is created and the software devel-
opment team wishes to resolve the conflicting interaction that has been discovered. The
main outcome of executing this process is a set of solution alternatives that are then
evaluated in order to recommend that which satisfies the decision criteria. Furthermore,
as a result of applying this process the interaction model can be updated.

6.1 Process Objectives

The software quality trade-off process can be used to attain the following:

• A systematic approach can be applied to analyze conflicting interactions and to
provide a recommended solution.

Fig. 3. Activity diagram for software quality trade-offs process.

A Process Support with Which to Identify Interactions 35

• The set of alternatives can be built using appropriate methods.
• Both the recommended solution and the interaction profile can be used to update the

interaction model.

6.2 Inputs and Outputs

The work products required in this process are: tailored product quality model (pub-
lished), target product quality goals and interaction profile. Moreover, the interaction
model is an input to be updated during the implementation of this process. The process
outcomes are the following work products: the decision to carry out a further analysis
of the interaction profile, the prioritized criteria used to assess alternatives, the set of
alternatives and the resolution report. The interaction profile can additionally be
updated during the implementation of this process.

6.3 Roles

Table 6 depicts the roles that participate in this process.

6.4 Activities

The process consists of three activities: review interaction profile, build alternatives and
evaluate alternatives. These are described in the following paragraphs.

• A1. Review interaction profile. The PQE and the PQT review the interaction profile
in order to determine further activities as regards conflicting interactions between
quality requirements. The review is enriched with the DE´s opinions with regard to
the specific quality characteristics and process under study. The outcome of the
review is a decision concerning the relevance of additional activities in order to
recommend a solution.

• A2. Build alternatives. The DE builds a set of potential alternatives with which to
resolve the interactions that have arisen between quality requirements in the context

Table 6. Roles participating in the software quality trade-off process.

Role Description

Product Quality
Team (PQT)

Described in Table 2.

Product Quality
Expert (PQE)

Described in Table 2.

Discipline Expert
(DE)

This role has the knowledge and skills needed to deal with product
quality characteristics in the context of the process under study.
The role’s responsibilities include the construction of alternatives
with which to resolve a conflicting interaction in addition to
selecting and applying methods with which to analyze proposed
alternatives.

36 G.A. García-Mireles et al.

of the software process in which they emerge. The methods used to assess alter-
natives are additionally documented and used to determine the extent to which each
alternative achieves the assessment criteria previously established.

• A3. Evaluate alternatives. The PQE and the PQT roles review alternatives and the
results of the assessment methods. The alternatives are assessed by considering the
assessment quality criteria and procedures established to carry out the assessment.
The resolution report should include the means used to resolve the conflicting
interaction and how the selected means could be implemented in the software
project. The interaction model is also updated with the interaction profile infor-
mation and with the recommended solution.

7 Conclusions

Software organizations need appropriate support to manage interactions between
quality requirements. In order to support them, in this paper we have described a
process with which to monitor interactions between quality requirements. An
exploratory case study has also been conducted to validate the activity ‘A2. Check
potential interactions between quality requirements’. This resulted in the main con-
textual factors that contribute to the identification and characterization of an interaction.
Furthermore, we have presented a summary of a process that can be used to resolve
conflicting interactions.

Although we prepared a template and guideline to support the exploratory case
study participants as regards understanding interactions and contextual factors, we
found that interactions between quality requirements were reported as a perceived
interaction because the project under study was at the conception stage. However,
without explicit reference to the potential impact of the interaction on the software
project it is difficult to understand to what extent it may influence software develop-
ment activities or project success. The identification of perceived interaction is a first
step toward understanding and characterizing an objective interaction, but it is nec-
essary to include other approaches in order to uncover the real impact of the interaction
on the software project. For instance, a risk-based technique would provide information
about the impact of the interactions.

With regard to the validation of the monitoring product quality requirements pro-
cess, the results showed that it can be used for a software organization which deals with
product quality, but some tasks should be improved. With regard to the artifacts used in
the exploratory case study, the participants stated that the interaction profile is easy to
use and apply. They also suggested taking into account indicators and measures of
software product quality in order to establish a mechanism with which to identify
interactions between quality characteristics.

As future work, it will be necessary to validate the process used to monitor
interactions between quality characteristics in other stages of the software development
life cycle and also to consider both other organizational contexts and application
domains. A software tool currently provides information about interactions between
quality characteristics, but it needs to be improved so as to address the information used

A Process Support with Which to Identify Interactions 37

to characterize an interaction. The process employed to resolve negative interactions
should also be validated by means of empirical studies.

Acknowledgements. This work has been funded by the VILMA and INGENIOSO projects
(Consejería de Educación, Ciencia y Cultura - Junta de Comunidades de Castilla La Mancha) and
Fondo Europeo de Desarrollo Regional FEDER, Ref.: PEII11-0316-2878 and Ref.
PEII11-0025-9533) and GEODAS-BC project (TIN2012-37493-C03-01 funded by the Spanish
Ministerio de Economía y Competitividad and by FEDER (Fondo Europeo de Desarrollo
Regional).

References

1. Mairiza, D., Zowghi, D., Nurmuliani, N.: Towards a catalogue of conflicts among
non-functional requirements. In: 5th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2010, pp. 20–29 (2010)

2. Ameller, D., Ayala, C., Cabot, J., Franch, X.: Non-functional requirements in architectural
decision making. IEEE Softw. 30, 61–67 (2013)

3. Chen, L., Babar, M.A., Nuseibeh, B.: Characterizing architecturally significant
requirements. IEEE Softw. 30, 38–45 (2013)

4. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction management.
ACM Comput. Surv. 35, 132–190 (2003)

5. Loucopoulos, P., Sun, J., Zhao, L., Heidari, F.: A systematic classification and analysis of
NFRs. In: 19th Americas Conference on Information Systems, AMCIS 2013 -
Hyperconnected World: Anything, Anywhere, Anytime, pp. 208–217, Chicago, IL, USA
(2013)

6. Dahlstedt, A., Persson, A.: Requirements interdependencies: state of the art and future
challenges. In: Aurum, A., Wohlin, C. (eds.) Requirements engineering, pp. 95–116.
Springer, Berlin Heidelberg (2005)

7. Boehm, B., In, H.: Identifying quality-requirement conflicts. IEEE Softw. 13, 25–36 (1996)
8. Theofanos, M.F., Pfleeger, S.L.: Guest Editors’ introduction: shouldn’t all security be

usable? IEEE Secur. Priv. 9, 12–17 (2011)
9. Thakurta, R.: A framework for prioritization of quality requirements for inclusion in a

software project. Softw. Qual. J. 21, 573–597 (2013)
10. García-Mireles, G.A., Moraga, M.Á., Garcia, F., Piattini, M.: Methods for supporting

management of interactions between quality characteristics. In: Filipe, J., Maciaszek, L.
(Eds.) 9th International Conference on Evaluation of Novel Approaches to Software
Engineering, pp. 93–100. INSTICC, Lisboa (2014)

11. Unterkalmsteiner, M., et al.: Evaluation and measurement of software process
improvement—a systematic literature review. IEEE Trans. Softw. Eng. 38, 398–424 (2012)

12. García-Mireles, G.A., Moraga, M.Á., García, F., Piattini, M.: Towards the harmonization of
process and product oriented software quality approaches. In: Winkler, D., O’Connor, R.V.,
Messnarz, R. (eds.) EuroSPI 2012. CCIS, vol. 301, pp. 133–144. Springer, Heidelberg
(2012)

13. ISO, ISO/IEC FCD 25010: Systems and software engineering - system and software product
quality requirements and evaluation (SQauRE) - System and software quality models (2010)

38 G.A. García-Mireles et al.

14. García-Mireles, G.A., Moraga, M.Á., García, F., Piattini, M.: A framework to support software
quality trade-offs from a process-based perspective. In: McCaffery, F., O’Connor, R.V.,
Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp. 96–107. Springer, Heidelberg (2013)

15. Barney, S., Petersen, K., Svahnberg, M., Aurum, A., Barney, H.: Software quality trade-offs:
a systematic map. Inf. Softw. Technol. 54, 651–662 (2012)

16. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publisher, Dordrecht (2000)

17. Al Balushi, T.H., Sampaio, P.R.F., Loucopoulos, P.: Eliciting and prioritizing quality
requirements supported by ontologies: a case study using the ElicitO framework and tool.
Expert Syst. 30, 129–151 (2013)

18. Mairiza, D., Zowghi, D.: An ontological framework to manage the relative conflicts between
security and usability requirements. In: 3rd international workshop on managing
requirements knowledge, MaRK2010, pp. 1–6 (2010)

19. Allen, J., Kitchenham, B., Konrad, M.: Theme Q. The relationships between processes and
product qualities. In: Forrester, E., (ed.). vol. pp. 19–28. Software Engineering Institute,
Carnegie Mellon. (2006)

20. CMMI, P.T. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033) (2010). cited
2012, http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

21. ISO: ISO/IEC 12207 Systems and software engineering — Software life cycle processes
(2008)

22. Chiam, Y.K., Staples, M., Ye, X., Zhu, L.: Applying a selection method to choose Quality
Attribute Techniques. Inf. Softw. Technol. 55, 1419–1436 (2013)

23. García-Mireles, G.A., Moraga, M.Á., Garcia, F., Piattini, M.: Identificación de interacciones
entre las características de calidad del software. In: XVIII Jornadas de Ingeniería del
Software y Bases de Datos JISBD2013, pp. 141–154. Universidad Complutense de Madrid,
Madrid, España (2013)

24. García-Mireles, G.A., Moraga, M.Á., Garcia, F., Piattini, M.: The influence of process
quality on product usability: a systematic review. CLEI Electron. J. 16, 1–13 (2013).
http://www.clei.org/cleiej/paper.php?id=278

25. OMG, Software & Systems Process Engineering Metamodel specification (SPEM) Version
2.0 (2008)

26. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In: 3rd
International Symposium on Empirical Software Engineering and Measurement ESEM
2009., IEEE, Editor, pp. 401–404. Lake Buena Vista, FL, USA (2009)

27. Berntsson Svensson, R., et al.: Quality requirements in industrial practice-an extended
interview study at eleven companies. IEEE Trans. Softw. Eng. 38, 923–935 (2012)

28. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Case Study Research in Software Engineering:
Guidelines and Examples. John Wiley and Sons (2012)

A Process Support with Which to Identify Interactions 39

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
http://www.clei.org/cleiej/paper.php?id=278

A Method to Identify Talented Aspiring
Designers in Use of Personas with Personality

Farshid Anvari(&) and Deborah Richards

Department of Computing, Macquarie University, Sydney, Australia
farshid.anvari@acm.org, deborah.richards@mq.edu.au

Abstract. Personnel engaged in developing applications using User-Centred
Design (UCD) techniques need to have special abilities and training to design
products that meet the needs of users. Persona, an archetypical user, is used for
design of applications. Persona with personality is deemed to better represent a
user as personality provides a richer profile and affects the way users interact
with technology. This paper presents a novel technique to identify talented
aspiring designers in use of persona with personality. We authored four personas
with different personality traits. Thirty-three participants completed a spatial
ability test, answered personality trait questionnaires and performed a design
activity. Our assessment of design artefacts indicate that participants who score
high in imagination personality factor and spatial ability tests are talented
designers in the use of personas with personality within UCD methodologies.
The implication of our study is that the talented designers can be identified and
utilised more productively.

Keywords: User-Centred Design � Holistic persona � Scenario � Personality
traits � Big-Five Factors � Imagination � Spatial ability

1 Introduction

User-Centred Design (UCD) methodologies consider the goals of the users as the
primary requirement for developing software application [1], are increasingly used in
software engineering practices and processes [2]. Personas, archetypical users, are tools
used within UCD methodologies for software applications or product design and
communication with stakeholders and scenarios are the actions carried out by the
personas interacting with the applications [3]. Personas support the design of the
application by focusing on target users and facilitating communication with stake-
holders regarding the scope and final outcomes [3]. To improve the usability and
accessibility of the application, and hence reduce cognitive load on the users, and for
better communication with stakeholders, Anvari and Tran [4] proposed Holistic Per-
sona, a persona with five dimensions: Factual, Personality, Intelligence, Knowledge
and Cognitive Process. In this paper we explore the use of Holistic Persona in UCD,
focusing on the personality dimension as the literature stresses the role that personality
plays in differentiating individuals [5, 6] and as a factor that affects the way users
interact with technology [7].

© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 40–61, 2016.
DOI: 10.1007/978-3-319-30243-0_3

To understand the usefulness of Holistic Persona with personality as a design
method, we sought to investigate the features of designers that may influence their
design performance using the method. The relationship between performance in cre-
ative professions and personality has been studied by a number of researchers e.g.
[8, 9]. It has been found that professionals who have been successful in domains such
as architecture, engineering and programming are good in spatial ability [10]. Based on
this prior research, we sought to identify if there was a specific link between design,
spatial ability and personality within software engineering and UCD methodologies. To
contribute to this understanding, we measure the performance of software engineering
students in a spatial ability test and use an established psychometric test to determine
their personality traits. In this paper we also report on our investigation of the effect of
the personality dimension of the Holistic Persona on the participants’ preferences and
conceptual designs and the design rubric to assess the design artefact. The next section
presents a literature review covering the concept of persona and previous work on
intelligence, personality traits and spatial ability. Section 3 presents the research
questions, methodology and design of the rubric. The results appear in Sect. 4 with
specific discussion of personality traits, spatial ability and design ability in Sect. 5.
Sections 6 and 7 present further discussion (includings threats to the experiment set-
tings, and measures to mitigate these), conclusion and plans for future research.

2 Literature Review

Personas are authored using photographs, sketches, factual information gathered by
market research, such as demographics, profession, hobbies and interests, etc. [3]. Long
[11] reported a higher level of empathy toward personas with photos of real people
compared with illustrated personas.

Intelligence is the ability to solve problems. Gardner [12] listed seven intelligences:
linguistic, logical-mathematical, spatial, musical, bodily-kinaesthetic, interpersonal and
intrapersonal. Persons with innate ability or giftedness have high talent in one or more
domains; with little tutoring, they can understand the abstract concepts, ask deep
questions, reflect on various interpretations of the problems [13] and can transfer their
knowledge from similar domains [14]. Plucker et al. [15, p 156] based on a number of
peer reviewed journals defined creativity as “the interplay between ability and process
by which an individual or group produces an outcome or product that is both novel and
useful as defined within some social context”. In a longitudinal study of mechanical
engineering students, Field [16] found that their performance in design subjects was
more related with their intuition and spatial ability and less related with their logical
and mathematical ability.

Relationships between personality, creativity and academic performance were
studied by a number of researchers. The Big-Five Factors (BFF) of personality is
widely used to understand the structure of personality [9, 17–19]. Two models of the
BFF of personality that are used by researchers are Trait Descriptive Adjective
(TDA) by Goldberg [5] and NEO Personality Inventory, Revised (NEO PI-R) by Costa
and McCrae [20]. Both models use similar terms to describe the five factors [5].
According to Goldberg [5] the BFF are: (1) Extraversion, (2) Agreeableness,

A Method to Identify Talented Aspiring Designers 41

(3) Conscientiousness, (4) Emotional Stability and (5) Imagination or Intellect. Crea-
tive scientists are more likely to have personality traits of extraversion and openness to
experience [8] and academics are more likely to be agreeable, conscientious and open
to experience [21]. Silvia [22] suggested that Plasticity (Extraversion and Imagination)
is more strongly related to creativity than Stability (Agreeableness, Conscientiousness
and Emotional Stability). McCrae [23] in a study of 268 men found that openness to
experience and divergent thinking, a psychometric investigation of the creativity, were
correlated. Poropat [9] in a meta-analysis of students’ measures of academic perfor-
mance measured by grade point average found that secondary and tertiary students’
performances were related to consciousness and intelligence.

The importance of spatial ability in science and engineering are studied by many
researchers. Shea et al. [24] in a longitudinal study of 563 students in late 1970 s using
Scholastic Assessment Test and spatial ability tests found that those who scored better
in a spatial ability test had selected careers in Science, Technology, Engineering or
Mathematics. Wai et al. [25] drawing a random sample from the population of 400,000
students, who were longitudinally studied for 11 years, found that among those who
chose careers in science, technology or mathematics scored high in spatial ability
during their adolescence. Charyton et al. [26] in a study of engineering students found
that their score in a Creative Engineering Design Assessment, a test for measurement of
creativity in engineering, is related to their performance in Purdue Spatial Visualization
Test of Rotation. Ault and John [27] surveyed the literature across the USA with the
result that students doing four year engineering courses generally scored about 75 % in
the Spatial Rotation of Visualisation test. Anvari et al. [14] found that students with
high spatial ability had lower cognitive load while performing 3D computer graphics
drawing and were better able to transfer knowledge from one domain to another similar
domain.

Researchers and educators often use assessment tools to monitor students’ progress
in design courses. For example, McMartin et al. [28] developed a rubric consisting of
seven criteria to measure undergraduate engineering design capability in a scenario
based assignment, where the students were assessed based on how they would solve a
realistic problem rather than providing a solution.

Blooms taxonomy revolves around the knowledge that a participant has and cog-
nitive process to use the knowledge [29]. In designing a rubric for assessing the design
produced by engineering students, Bailey and Szabo [30] specified the design objec-
tives that were going to be measured and listed key criteria of an assessment strategy to
suit their requirements, two of the key criteria considered were: (1) the rubric assesses
processes and (2) the rubric criteria are linked to different levels of Bloom’s taxonomy
[29]. Zowghi [31] used Blooms taxonomy to assess Requirements Engineering stu-
dents’ gain in knowledge which most students achieved to Comprehension level or
above.

Analytic and holistic rubrics use different approaches for the assessment of design
work; in an analytic scoring rubric each criterion is scored on a different descriptive
scale but in a holistic scoring rubric the scoring is allocated on a single descriptive scale
considering all criteria [32].

42 F. Anvari and D. Richards

3 Research Questions & Methodology

Based on the studies of Furnham and Bachtiar [8], Poropat [9], Anvari et al. [14], Field
[16], Shea et al. [24], Charyton et al. [26] we find that both personality traits and spatial
ability are important in cognitively demanding tasks such as creativity and design
within the software engineering field. Hence in this paper we address the research
question:

Can we use a spatial ability test and self-assessment of personality traits to identify talented
aspiring designers who can produce a design that matches Holistic Persona’s needs consid-
ering her personality?

This question attempts to discover innate capabilities of a participant as a UCD
designer. We conducted an empirical study to obtain data to allow us to answer the
above research question as well as other research questions that were part of a larger
study concerning the influence of the Holistic Persona on the designer and the relation
between the designer’s and persona’s personality traits. In the study we investigated two
factors of the personality, extraversion and emotional stability. This study also con-
tributes to our understanding of the personality traits and abilities required for recog-
nising personality in a persona and being a talented designer in the use of personas with
personality. Some of our findings for other questions are reported elsewhere [33].

Before the study commenced, we provided a brief introduction to UCD method-
ologies, an example of a persona, a conceptual design and a scenario; these materials
were for educational purposes only. Participants were then asked to give consent if they
wished to continue. The 75-min study consisted of six parts: demographics question-
naires, self-assessed personality traits, assessing four Holistic Personas, a design task
for one of the randomly assigned personas, post design questionnaires and a spatial
ability test. The parts that are relevant to this paper are described briefly in the fol-
lowing subsections.

3.1 Demographic Questions

Demographic questionnaires consisted of questions about the participant’s gender, birth
year, occupation, interest in design, level of competence in the English language,
country in which they spent their youth and the courses they are studying or have
studied. The demographic data was used for analysis of the results.

3.2 Self-Assessed Personality Trait

Participants rated their own personalities using Goldberg’s 50 question Trait
Descriptive Adjectives (TDA) on a 5-point Likert scale. The test is adopted from the
literature [5] and the International Personality Item Pool [34]. The bi-polar answers to
the self-assessment questions on a 5 point likert scale are added together after reverse
scoring the negative questions [5] to provide results in the range of 10-50. The resultant
data is treated as interval-level data, converted to percentages and analysed using R
statistical packages [35].

A Method to Identify Talented Aspiring Designers 43

3.3 Assessment of Holistic Persona

Participants rated four Holistic Personas (Table 1) using on a 7-point Likert scale. The
test is adopted from literature [6]. The bi-polar answers to the assessment questions on
a 7 point likert scale are added together after reverse scoring the negative questions [6]
to provide results in the range of 2–14. The participants were also asked to indicate
their liking of the Holistic Persona and whether they thought the Holistic Persona is a
real person The resultant data is treated as interval-level data, converted to percentages
and analysed using R statistical packages [35].

3.4 Design Task

Participants performed a design session of 15 min duration with a Holistic Persona that
was assigned randomly yet evenly from a set of four Holistic Personas that were
authored to be very similar to one another in all dimensions except in the personality
dimension. Two personality factors were varied as shown in Table 1 (see Appendix I
for an example of a Holistic Persona, Doris).

Participants wrote their conceptual design for a software application or product of
their choice that would help the assigned Holistic Persona and a scenario about how the
Holistic Persona would use the software application or product.

3.5 Spatial Ability Test

Participants performed a 20-item Purdue Visualization of Rotation Test. This activity
was timed. The test consisted of 20 questions; each question showed an object in a
position and the participant needed to mentally rotate the object to a new position; there
were 5 choices representing how the object looks in the new position, one of which is
correct. One mark was given for the correct answer and there was no penalty for the
wrong answer. Participants’ total score at 10 min was selected as the measure of their
performance in the spatial ability test [36].

3.6 Rubric for Evaluation of the Design

Rubric, a descriptive scoring scheme, as an assessment tool assists in consistent sub-
jective assessment of a written work; the work is divided into categories and a score
is allocated to each category by considering the description of the characteristics

Table 1. Holistic personas and their personality traits.

Persona for assessment Persona for design Extraversion Emotional Stability

Jane Doris Extravert stable
Jean Katie Extravert unstable
Jade Minty Introvert stable
June Eliza Introvert unstable

44 F. Anvari and D. Richards

of the responses within each category [37]. In designing the rubric the revised Blooms
[29] taxonomy was researched and the success of other researchers who developed
rubric for assessment of design was investigated.

The design rubric used for this paper consists of five parts for numeric scoring:

1. Abstract Design (5 marks): The design can be either an application that is a diary, a
calendar, a recommender or a specialized forum; or an abstract design with suffi-
cient description that is possible to visualise how the application works.

2. Design scenario (3 marks): A design scenario shows how the Holistic Persona
interacts with the application.

3. Factual information and reminder (2 marks): The participant is expected to refer to
the Holistic Persona by her name and the application reminds her about applying
skin lotion while intending to walk in the sun, carrying eye glasses for certain
appointments, and alerting her to her allergies while ordering food.

4. Weight issues (2 marks): As overweight is the main issue the Holistic Persona is
facing, the application is expected to suggest on food, exercise or weight.

5. Suitability to Holistic Persona (3 marks): Expressions that reflect consideration
given to the Holistic Persona as a person while explaining the design and scenario.

In our study, one of the main issues that the Holistic Persona is facing is that she is
overweight. Part four gives credit to the design that addresses weight issue by con-
centrating on food, exercise or anyway in which it can help Holistic Persona to reduce
her weight. Holistic Persona does not have any issues with other activities such as
managing her musical interests or her studies; hence addressing other interests or
aspects of her life in the design attracts credit for abstract design (part 1) only. If a
participant indicates that her/his design is to help the Holistic Persona to deal with
weight or forgetfulness issues either immediately or in the long term s/he gets credit for
connectedness in suitability of the design to Holistic Persona (part 5). An example of
connectedness would be to provide the Holistic Persona a confidence building tool with
the intention that she can take part in sporting activity.

The rubric was reviewed independently by an experienced designer Hien Minh Thi
Tran, the second author, Professor Deborah Richards and another academic Associate
Professor Michael Hitchens. Adjustments were made to the rubric to resolve any
discrepancies.

4 Analysis of Results

To answer the questions in the larger study, participants had received one of four
personalities to design for, hence the designs were varied. This section reports the results
for the variations in participants’ designs, personalities, abilities and preferences.

4.1 Participants

This paper presents data from 41 participants who completed some or all of the relevant
activities of the study for this paper; they are termed as sample population (Table 2,
item 5). They completed demographics, self-assessment of personality and one or more

A Method to Identify Talented Aspiring Designers 45

of Holistic Persona assessment, design artefact, design questionnaire, post design
questionnaire and spatial ability test. The thirty-three participants who completed the
design activity for a Holistic Persona are referred as aspiring UCD designers (Table 2,
item 2). The data from aspiring UCD designers are used for statistical evaluations of
conceptual design (Sect. 5).

The majority of the participants in sample population (73 %) were studying a
second year Software Engineering subject within the IT Department. They were invited
to participate in this research during their tutorial session to gain understanding of HCI
design through exposure to the UCD methodologies and tools, without receiving any
course credit. Other participants were postgraduate students and professionals
(Financial Analyst, Artist, Hydraulic Engineer, Human Resources Manager, Chef and
two unknowns).

In the sample population, for the question about gender, 78 % of the participants
selected male, 17 % of the sample population selected female and 5 % of the sample
population selected other. 93 % of the sample population spoke and wrote in English
for more than three years; 7 % of the sample population wrote and spoke English for
1–3 years. 80 % of the sample population had lived in Australia or New Zealand or UK
or the USA during their youth. Hence participants had different backgrounds.

Most of the sample population finished the study, including the introductory ses-
sion, within 70 min. All participants were thanked for their participation in the study
and those who gave an email address received a copy of their results for spatial ability
and personality tests. None of the participants received any financial benefit. The
results from the study presented in this section cover the following topics:

1. Participants’ assessment of Holistic Personas personality (Sect. 4.2).
2. Effect of Holistic Persona on conceptual design (Sect. 4.3).
3. Participants’ preferences for a Holistic Persona (Sect. 4.4).

Table 2. Participants in the study.

Item Activities completed Number of
participants

1 Completed ratings of Holistic Personas 38
2 Completed or attempted design activity for Holistic Persona

(aspiring UCD designers)
33

3 Completed post design questionnaire 32
4 Completed self-assessment of personality, design and spatial

ability test
32

5 Total number of participated in the study – completed all or some
of the activities (sample population)

41

46 F. Anvari and D. Richards

4.2 Participants’ Assessment of Holistic Personas’ Personalities

The Holistic Persona was assessed by the sample population to ensure that the authored
personality dimension is as intended. The objective of analysis in this section is: Does
the sample population recognize the personality dimension of a Holistic Persona as
intended?

The statistic for this analysis, the number of participants who have completed
ratings of Holistic Personas, is data from 38 participants (Table 2, item 1). The mean
values (in percentages) of the rating given to each Holistic Persona (Sect. 3.3) by the
participants are presented in Table 3.

From Table 3 Jade has been rated similarly to Jane in all factors except extraver-
sion. June is rated similarly to Jean in all factors except extraversion. Also Table 3
shows that Jane and Jade are rated high for emotionally stability (77 % and 74 %) and
Jean and June are rated low for emotionally stability (both 31 %). These results confirm
to the design of the personas, as listed in Table 1. Due to inter relationship between the
five factors [38], even though the other personality traits agreeableness, consciousness
and imagination are authored similarly for the personas, the sample population rated
these factors differently. As shown in Table 3 these differences don’t affect the overall
results. Table 3 also shows that the participants in the study considered that the Holistic
Personas resemble a real person (Jane 61 %, Jean 58 %, Jade 72 %, June 61 %). Hence,
the participants clearly saw the authored personas’ personalities as intended (Table 1)
and they resemble a real person.

4.3 Perceived Effect of Holistic Persona on Conceptual Design

Participants’ awareness of the personality of the Holistic persona and the resultant
effect that the personality had on their design was measured by design and post design
questionnaires. This section presents the relevant questionnaire and the statistical cal-
culations of their answers. Following statements were made in post design survey
questionnaire related to awareness of personality dimension of the Holistic Persona
assigned for the design activity. The aspiring UCD designers’ responses are presented
in Table 4.

Table 3. Mean Values of Holistic Personas’ Personality Factors Rated by the Participants.

Holistic
Persona

Ex % Ag % Cn % ES % Im % Holistic Persona represents a
real person %

Jane 75** 73 75* 77* 70** 61*
Jean 61 43+ 52 31 56 58*
Jade 40 73 73 74* 68* 72*
June 16 ** 57* 57 31 + 41+ 61 +

Note: ** p < .01; * p < 0.05; + p < 0.1
Legend: Ex – extraversion; Ag – agreeableness; Cn – conscientiousness; ES – emotional
stability; Im – imagination.

A Method to Identify Talented Aspiring Designers 47

1. The personality of the Holistic Persona positively influenced the scenario
writing/design activity.

2. I would like to do another scenario writing/design activity with the same Holistic
Persona or a persona that has similar personality again.

3. To meet the Holistic Persona’s needs, I added features to the design which other-
wise I would not have added.

Analysis of answers to the above questions (Table 4) indicate that the participants
were aware of the personality dimension of the Holistic Persona: 79 % of them reported
that the holistic persona’s personality influenced their design activity (57 % positively
and 22 % negatively); 78 % of them reported that they would like to design for a
Holistic Persona with a different personality than the one they were given.

Table 4 indicates that 57 % of the aspiring UCD designers took the personality of
the Holistic Persona into consideration and provided conceptual designs that are tai-
lored to the personality of the Holistic Persona. Table 6 presents a sample of quotes
from participants while they were engaged in the conceptual design task. Based on the
above analysis it can be deduced that the participants felt that the Holistic Persona’s
personality affected their conceptual design of the software application.

4.4 Preferred Holistic Persona

The participants spent some time with each Holistic Persona while they were rating the
persona and designed for one Holistic Persona. Hence they may have formed a pref-
erence for a persona that they would like to work with. Table 5 shows the answers the
participants provided to the question: Which Holistic Persona is the preferred one?

Table 4. Participants’ perception of Holistic Persona.

No Statements about Holistic Persona Participants’ Responses
(%)
Agree Neutral Disagree

1 Her personality positively influenced design activity 57 22 22
2 Would like to do another session with her 22 78
3 Extra Features Added 57 43

Table 5. Choice of Holistic Persona for a future design activity.

Holistic Persona Percentage of participants select (%)

Jane 18.9
Jean 5.4
Jade 27.0
June 5.4
I cannot remember the name 43.2

48 F. Anvari and D. Richards

Table 5 shows that 45.9 % of the participants who answered post design ques-
tionnaire prefer to design for a Holistic Persona that is emotionally stable (Table 1);
18.9 % of them selected Jane (extrovert and emotionally stable) and 27.0 % of them
selected Jade (introvert and emotionally stable). 43.2 % of the participants couldn’t
remember the name of their preferred Holistic Persona. Hence the majority of the
participants (56.8 %) had a preference for a particular Holistic Persona.

5 Personality Traits, Spatial Ability and Design Ability

This section addresses the research question: Can we use a spatial ability test and self-
assessment of personality traits to identify talented aspiring designers who can pro-
duce a design that matches Holistic Persona’s needs considering her personality?

From Table 2, data from 33 participants were complete, their scores for conceptual
design, spatial ability and personalities were analysed and the results are presented.

Table 6. Design comments about personality of the persona.

Id Holistic Persona assigned Design comments

1029 Doris
(Extravert/Emotionally
stable)

“…The virtual diary allows for entries based on
various user designed topics or sub topics, weather
that be health food ideas or new music that they
enjoyed, or information relating to her social
activities. The reminder application will utilize
multiple parts of a phones system (assuming that
such a social girl would have a relatively advanced
phone). …”

1024 Katie
(Extravert/Emotionally
unstable)

“… I think this person need some kind of personal
coach that will just ping or notify her of various
reminders and set goals for her to do each day and
she can fill these out like a survey and the coach will
say some words of encouragement …”

1036 Minty
(Introvert/Emotionally
stable)

“Minty could possibly benefit from an app that
recommended local social events. This would
encourage Minty to socialize more with the people
she is already comfortable around and continue to
engage her social skills in new, yet familiar
environments. …”.

1031 Eliza
Introvert/Emotionally
unstable

“i feel like she would not be willing to listen if I
recommended a health and fitness program …
possibly go and see a counsellor to help work
through her self-doubt. Software is not what this girl
needs. She needs human contact…”

(Continued)

A Method to Identify Talented Aspiring Designers 49

5.1 Imagination Personality Traits and Design Performance

Table 7 presents the breakdown of the sample populations according to their perfor-
mance in design based on the rubric (Sect. 3.6). The sample population was divided
into groups based on their scores in imagination personality factor and spatial ability. In
Sect. 5.2, the groups are compared with one another based on the influence that the
abilities have on their performance in design. The influence is described using effect
size, the Pearson’s correlation coefficient, r, computed from the t-test [35]. Table 8
shows partial correlation (r) of the five factors of personality with the participant’s
performance in design. Field et al. [35] lists the description of effect size as small when
r = 0.1, medium when r = 0.3 and large when r = 0.5.

Our sample population indicates that there is a medium sized relationship between
imagination personality factor and performance in design and it is significant (r = 0.37,
p = 0.049) having a shared variability of 14 %.

5.2 Dividing Performance into Four Quadrants

Since in our sample population, imagination personality factor is the only personality
factor correlated with design performance, our further analysis concerning performance
in design is restricted to the imagination personality factor and spatial ability.

Table 7. Performance in design.

No Performance in design (%) Participant (%)

1 85–100 31
2 75–84 15
3 65–74 6
4 50–64 24
5 Less than 50 24

Table 6. (Continued)

Id Holistic Persona assigned Design comments

1023 Eliza
(Introvert/Emotionally
unstable)

“An anonymous, public forum of message board where
discussion is encouraged. -This would allow Eliza to
find groups of people with similar interests, issues,
and ideas to discuss and socialize with reduced
pressure from her introverted personality (since the
application is online and anonymous). -When she
would otherwise be under too much social anxiety or
has been previously rejected in face-to-face
conversations, an online forum would allow group
discussion and input from other users who are much
more likely to empathize. This can also boost self-
esteem from the support other users are likely to
provide….”

50 F. Anvari and D. Richards

Figure 1 shows a scatter plot of the participants’ performance in the spatial ability test at
10 min versus their imagination personality factor; the points are labelled with their
performance in design. Figure 1 shows a group of participants in the top right hand
corner who mostly have performed well in design. Using the area of the plot covered by
this group as a guide, the figure is divided into four quadrants. The first quadrant (Q1) is
bounded by those participants who scored 75 % or greater in spatial ability [27] and the
imagination personality factor; in most Australian universities 75 % or greater is used to
award the grade of Distinction. Table 9 shows that 27 % participants are in Q1.

The second quadrant (Q2) is bounded by those participants whose score in spatial
ability is less than 75 % but their score in the imagination personality factor is equal to
or above 75 %. Table 9 shows that 15 % of participants are in Q2. The third quadrant
(Q3) represents those participants whose score in spatial ability is equal to or above
75 % but their score in the imagination personality factor is below 75 %. Table 9 shows
that 31 % of participants are in Q3. The fourth quadrant (Q4) is bounded by those
participants whose scores in spatial ability and the imagination personality factor are
below 75 %. Table 9 shows that 27 % of participants are in Q4. Figure 1 shows that
most participants in the first quadrant scored highly for their performance in design
with the mean value of 84.1 (Table 10).

Table 8. Partial correlation of the performance in design with personality factors study.

BFF pcor (r) r^2 t-value* p (> |t|) Effect size

Ext −0.01 0.00 −0.07 0.95 Nil
Agr 0.07 0.00 0.36 0.72 Nil
Cn −0.16 0.02 −0.86 0.40 Nil
ES 0.09 0.01 −0.47 0.64 Nil
Img 0.37 0.14 2.1 0.049 Medium

Legend: Ext – extraversion; Agr – agreeableness;
Cn – conscientiousness; ES – emotional stability;
Img – imagination; df – degrees of freedom; pcor –
partial correlation; p – probability. *(df = 27)

Table 9. Quadrant population.

No Quadrant Participant (%)

1 Quadrant 1 (Q1) 27
2 Quadrant 2 (Q2) 15
3 Quadrant 3 (Q3) 31
4 Quadrant 4 (Q4) 27

A Method to Identify Talented Aspiring Designers 51

5.3 Five Scenarios to Study Results in Four Quadrants

The participants’ data were analysed using five scenarios (Table 10). In each scenario the
performance in design was studied for two groups. The five scenarios are listed below:

1. Effect of high imagination and spatial ability: performance of the group whose score
in both imagination personality factor and spatial ability are high (Q1) compared
with the rest of the sample population (Q2, Q3 & Q4);

2. Effect of imagination: difference in performance in design for the group of partic-
ipants whose score in the imagination personality factor is high (Q1 & Q2) versus
other participants (Q3 & Q4);

3. Effect of spatial ability - high imagination: difference in performance in design for
the group of participants who scored high in both imagination personality trait and
spatial ability (Q1) versus the participants who only scored high in imagination
personality trait (Q2);

4. Effect of spatial ability: difference in performance in design for the group of par-
ticipants whose score in spatial ability is high (Q1 & Q3) versus group of other
participants (Q2 & Q4);

5. Effect of imagination - high spatial ability: difference in performance in design for
the group of participants who scored high in both spatial ability and imagination
personality factor (Q1) versus the participants who only scored high in spatial
ability (Q3).

Q2 Q4

Q1 Q3

Fig. 1. Participants’ performance in design.

52 F. Anvari and D. Richards

5.4 Comparison of the Results in Four Quadrants

Table 10 shows Mean (m), Standard Error (SE) and Median for each group of par-
ticipants. The two groups in each scenario are compared using Welch two sample
single tail t-test and the effect size (r) between the two samples are described using the
Pearson’s correlation coefficient, r computed from the t-test [35].The null hypothesis
(H0) is that all groups are drawn from the same population, hence the difference in
means of the different groups is zero, the alternate hypothesis (H1) is that the difference
in mean is greater than zero. Figure 2 shows five box plots of participants’ performance
in UCD conceptual design for each of the five scenarios listed in Table 10:

• Scenario 1 shows that the participants who scored high in both spatial ability and
imagination personality factor performed significantly higher in design (m = 84.1,
SE = 6.3) compared with the other participants’ performance in design (m = 59.1,
SE = 4.3). The Welch two sample single tail t-test indicates that the difference in the
means of the two samples is significant at 5 % (t = − 3.3, df = 16, p < 0.05) and the
Pearson’s correlation coefficient shows the effect size is large.

• Scenario 2 (Table 10 and Fig. 2) shows that the participants who scored high in the
imagination personality factor performed significantly better in design (m = 76.5,
SE = 5.8) compared with the other participants’ performance (m = 58.1, SE = 4.9),
(t = − 2.4, df = 28, p < 0.05) and the Pearson’s correlation coefficient shows the
effect size is medium.

• Scenario 3 (Table 10) shows that the participants who scored high in both imagi-
nation personality factor and spatial ability (m = 84.1, SE = 6.3) did not perform
significantly better than the participants who only scored high in imagination per-
sonality factor (m = 62.8, SE = 9.7). The Welch two sample single tail t-test
indicates that the difference in the means of the two samples is not significant
(t = 1.84, df = 7, p > 0.05). However the Pearson’s correlation coefficient shows the
effect size is large.

Table 10. Analysis of participants’ performance in design under five scenarios.

SNo Quadrants (Q) Mean % SE % Median % Welch tsst t-test Effect Size
(r)t-test df P Reject

H0

1 Q1 (SImg =>75 % &
SpAb =>75 %)

84.1 6.3 90.0 -3.3 16 0.002 True 0.6 Large

Q2, Q3 & Q4 59.1 4.3 58.5
2 SImg =>75 % Q1 & Q2 76.5 5.8 85.0 -2.4 28 0.011 True 0.4 Medium

SImg < 75 % Q3 & Q4 58.1 4.9 57.0
3 Q1 (SpAb =>75 %) 84.1 6.3 90.0 1.84 7 0.053 False 0.6 Large

Q2 (SpAb < 75 %) 62.8 9.7 60.0
4 SpAb =>75 % Q1 & Q3 74.2 4.8 80.0 -2.61 28 0.007 True 0.4 Medium

SpAb < 75 % Q2 & Q4 54.6 5.7 57.0
5 Q1 (SImg =>75 %) 84.1 6.3 90.0 2.13 17 0.024 True 0.5 Large

Q3 (SImg < 75 %) 65.3 6.2 68.0

Note: H0 – Hypothesis – True difference in mean is zero – Reject H0 at 5 % confidence
H1 – Alternate Hypothesis – True difference in mean is greater than zero
Legend: SNo – senario number; Q – quadrant; SE – standard error; df – degrees of freedom;
p – probablity; SImg – score in imagination personality factor;
SpAb – score in spatial ability; Welch tsst t-test – Welch two sample single tail t-test;

A Method to Identify Talented Aspiring Designers 53

• Scenario 4 (Table 10) shows that participants who scored high in the spatial ability
test performed significantly better than those whose spatial ability score was not
high (t = − 2.61, df = 28, p < 0.05). The Pearson’s correlation coefficient shows the
effect size is medium.

• Scenario 5 (Table 10), shows that the participants who scored high in imagination
personality factor and spatial ability performed significantly better in design
(m = 84.1, SE = 6.3) compared with the participants who scored high in spatial ability
but scored low in imagination personality factor (m = 65.3, SE = 6.2) (t = 2.13,
df = 17, p < 0.05). The Pearson’s correlation coefficient shows the effect size is large.

From Table 8, imagination personality factor is related to performance in design
(r = 0.37, p = 0.049) and, Table 10 shows the combined effect of imagination per-
sonality factor and spatial ability significantly influence performance in design
(t = − 2.4, df = 28, p < 0.05). In the sample population, the correlation between
performance in design and other personality factors such as agreeableness, extraversion
and emotional stability is inconclusive.

Hence the results indicate that participants whose score of imagination personality
factor and spatial ability test places them in first quadrant (Q1) have better chance of
performing well in design.

6 Discussion

For the design activity, the participants were required to read the description of the
Holistic Persona (Appendix I), understand her requirements and prepare a design work
within fifteen minutes. The range of designs including the level of detail and quality
was varied. A quantitative analysis of results was considered for final assessment, as it
would not be prone to subjectivity and variability.

Fig. 2. Box plots of the participants’ performance in design for five scenarios.

54 F. Anvari and D. Richards

6.1 Variability in Study Parameters

There are a number of variables: four Holistic Personas that represent real people but
have different personalities - participants verified that they representing real people with
differences in personalities (Table 3 and [33]); participants with different backgrounds –
undergraduate students, postgraduate students, professionals with non-design back-
ground (Sect. 4.1); known individual preferences for the Holistic Personas - participants
have shown their liking for a Holistic Persona (Table 5); undefined problem setting –

participants were asked to provide a conceptual design to assist the Holistic Persona who
had in addition to weight and memory problem, represented a human (Table 3) with
other personality issues. The results (Table 7) indicate that a number of participants have
overcome all these variabilities and produced designs of high quality.

6.2 Categorization of Participants

The participants are categorised into quadrants depending on their score in imagination
personality factor and spatial ability. The categorisation allows statistical comparison of
performance of participants in different categories. The participants who are close to the
boundary line could belong to either of the categories. Hence their performance has to
be examined closely and adjusted if needed. In this study to maintain integrity of the
results no adjustment to the results were made. Our results indicate that there is a
positive relationship between spatial ability, imagination and performance in UCD
design.

6.3 Literature Support for Design Suitability of the Holistic Persona

Evaluation of the design artefacts for their suitability to the Holistic Persona was based
on the literature support for the influence of personality traits on human uses of soft-
ware applications or products.

Some of the features that some participants used in their design are similar to the
following (Table 6): Oliveira et al. [18] finding that extraverts used their mobile phone
more often (e.g. participant Id 1029 remark about extraversion personality trait and
mobile phone usage) and extraverts and conscientious people were more satisfied with
the level of service they received from their mobile phone service provider; Butt and
Phillips [19] finding that extraverts not only receive more calls but spend more time
changing the ring tone and wall paper on their mobile phones however the uncon-
scientious, disagreeable and neurotic used SMS in preference to calling; Nov et al. [17]
finding that the extraverts tend to be more responsive in a more popular website and
emotionally stable people tend to be less influenced by a website’s social anchoring;
Participant Id 1023’s comments are in line with Hamburger and Ben-Artzi [39] and
Landers and Lounsbury [40]‘s findings that emotionally unstable women seek infor-
mation online anonymously.

A Method to Identify Talented Aspiring Designers 55

6.4 General Discussion

To score high in the design, the designer had to concentrate on the Holistic Persona,
issues she had, overcome their own liking or disliking of the Holistic Persona’s per-
sonality and provide a solution that is suitable to the Holistic Persona. The rubric for
marking is designed to distinguish the designers who would not be distracted by other
problems and can provide solution targeted at the Holistic Persona’s individual needs.
The results indicate that participants, who score above 75 % in the imagination per-
sonality factor and spatial ability test, have applied the techniques of UCD in their
design work. They can think of design features that suit the Holistic Persona within a
short period of time; they are identified as talented aspiring UCD designers. They can
‘think on their feet’ [41].

This study highlights the importance of the imagination personality trait and spatial
ability in performing well in UCD design. Professional software engineers may also
have this personality trait and hence our results may be extendable to professionals;
which we wish to investigate in future studies. Our study confirms previous research
that imagination is important for design work [8, 9, 16, 21, 22] and findings of Ault and
John [27] that students with higher spatial ability, perform better in other fields.

The novel techniques presented in this paper facilitates identification of talented
aspiring designers early in their studies; they can benefit by receiving advanced
training. Likewise the less talented students can be given extra tutoring. For profes-
sional establishment, the novel techniques presented in this paper facilitates identifi-
cation of the personnel talented in design and hence they can be utilised more
productively. This study contributes to the understanding of personality traits and
abilities required in being a talented designer. Identification of these traits has potential
impact on team composition and designer selection.

To the best of our knowledge, this is the first empirical study that reports on a
specific link between the performance of conceptual design, spatial ability and the
imagination personality of the designers within software engineering and UCD
methodologies.

6.5 Threats to Validity of the Study and Measures to Overcome These

Threats to the validity of construct, conclusion, internal and external of the study were
identified and measures taken to minimise their effects [42] as described below.

Construct Validity Threats. Construct validity governs generalising the concepts
behind the experiment. Since the interaction between personality traits, spatial and
design abilities are complex, the research question is exploratory. Anvari and Richards
[43] presented results drawn from 23 participants who were undergraduate students
(sub-sample of the population presented in this paper) obtained similar results. Anvari
and Richards [43] also reported that a small portion of the sample population had
pervious training in spatial ability or produced a design that they were familiar with. To
mitigate construct validity threats the experiment has to be repeated with samples
drawn from a number of different populations.

56 F. Anvari and D. Richards

Conclusion Validity Threats. One of the treats to conclusion validity is low number of
participants which affects the statistics used to evaluate the results. There are 33 partic-
ipants (Table 2) in this study who have completed the design activity, hence the con-
clusions are indicative only. In order tomitigate ‘fishing for the results’ threat [42, p. 104],
the influence of participant’s scores in spatial ability and personality factors on the results
were removed by marking the design activity separately and without reference to other
results from the study. The design artefacts were remarked again later without reference to
original markings using the rubric. The subsequent assessments were in most cases
identical with the original ones. Further, the marks for design activity were checked
independently by Hien Minh Thi Tran, without knowledge of the participants’ perfor-
mances in spatial ability or their score in personality factors. The independent marking of
design artefacts proved the validity of the rubric for inter-assessment. Due to tightness of
the rubric, the threat of ‘fishing for result’ was almost eliminated.

Internal Threats. The internal threats included partial completion of the study, mat-
uration effect, boredom, fatigue, interruption and learning effect. The participants’
answers were checked for soundness for each section of the study. Below is an outline
of methodologies used to detect data that were not sound.

• Learning effect: to mitigate the learning effect where students learn from the
examples given during introduction to UCD, no mention of personalities of per-
sonas or users were made. The learning effect from one another is very low as all
participants finished this study in one session.

• Boredom or fatigue: the time to answer the personality rating questions was mea-
sured but not displayed. A short answer time compared to average answer time would
indicate either boredom or fatigue. It was found that one participant’s answer time
was shorter than expected. His data was excluded as he did not present his design.

• Distraction during the spatial ability test: As the performance in spatial ability test is
based on the first ten minutes of the test, any disruption such as slow system
response can affect their result. The data for participants who performed well in the
test but their performance in the first ten minutes were low were investigated. If the
time taken to answer one question is larger than the rest, then the question is
ignored. Only one participant was in this situation.

• Lack of incentive to design well: As no rewards were offered for the design work,
some participants might not have incentive to perform as well as they could in the
design. As the participants who completed the study were motivated to take part
hence this was not considered to be a threat.

• Dislike of Holistic Persona: During analysis it was found some participants did not
perform well due to the Holistic Persona’s personality (e.g. Table 6 participant ID
1031). This threat can affect the results. In this paper no adjustment has been made
for such cases.

External Threats. External threats which relate to generalisation of the study are:
(1) the results cannot be generalised due to limited sample size; (2) the majority of the
sample population in this study are undergraduate students (Sect. 4.1) hence the results
would not readily extend to professionals.

A Method to Identify Talented Aspiring Designers 57

We plan to mitigate external threats to generalise the results of this study by
conducting horizontal and longitudinal studies. For horizontal studies we plan to repeat
the study a number of times using participants from different population pools and
include more professionals from various industries. These measures will increase the
sample size and provide for mix of population. For vertical studies we plan to observe
the students score in their design subjects and their career choices and assess if there is
a correlation between their performance in this study and their choices. However, we
believe that personality traits are not easily changed and hence our results which rely on
personality traits can be extended to professionals.

7 Conclusion and Future Research

In this paper we have presented empirical research in which we investigated four
separate research questions and found that: (1) participants think the Holistic Persona
resembles a real person and are able to identify the intended personality trait in her;
(2) participants indicated that the personality of the Holistic Persona has influenced
their conceptual design; (3) participants indicated that they have a preference for a
Holistic Persona based on her personality trait (most participants prefer a Holistic
Persona who is emotionally stable); (4) participants who are imaginative and have good
spatial ability can be seen as talented aspiring designers in use of persona with per-
sonality within UCD methodologies, as they were able to think of design features that
suit the Holistic Persona within a short period of time. From a practical perspective, we
propose that the techniques described for eliciting designs and the use of similar rubrics
could be used for the purpose of recruitment of new staff or allocation of staff to
software teams. Those identified as lacking in the necessary skills could receive
appropriate training or reallocation to more suitable tasks.

This study contributes to the understanding of personality traits and abilities
required in being a talented designer. Identification of these traits has potential impact
on team composition and designer selection.

In this paper we also presented details of an extensive rubric that we developed to
assess the design artefacts. Our rubric provided consistent results for both cases of
inter-assessors and intra-assessor.

We plan to investigate other important characteristics for a UCD designer such as
interpersonal intelligence, employ sophisticated tools to more accurately measure
participants’ abstract thinking capabilities and performance.

Acknowledgements. We acknowledge the assistance Hien Minh Thi Tran provided and thank
COMP255 Software Engineering Semester 2 2013 students and tutors at Macquarie University.

58 F. Anvari and D. Richards

Appendix I

The following Holistic Persona, Doris, represents an archetypical
user of the product or software application which you are designing
or recommending to her.

Doris’ grand-parents migrated to Tasmania during the early
1940’s. Her parents are busy in their professional careers. Doris is
studying at the University of Tasmania and is midway through her

Bachelor of Arts. Since childhood, she has had interest in music and recently learnt to
play guitar.

Doris is an outgoing person and likes to meets people. She likes musical concert
and attends all musical events in Hobart. After the concerts, she goes out with her
friends to local restaurants. She has a large collection of records and enjoys sharing
albums with her friends. Doris is an active member of university clubs. Doris has many
friends and enjoys their company. She has been a long member of the ‘Assisting
Socially Disadvantaged Group’, a volunteer group that help refuges and socially dis-
advantaged people in Tasmania.

Doris is short sighted and has sensitive skin but she often forgets to take her glasses
with her or apply sun-screen lotion when she goes out.

Doris is vocal and enjoys debates. She listens to other people’s point of view and
learns from the experience. Doris’ friends feel that Doris is calm, independent and
confident. She makes plans for her future and is full of hope. She does not worry if she
has to reject requests for help from her friends when she is already committed. She
knows her limits. She always meets her commitments with high spirits.

Doris is allergic to peanut but she often forgets to mention this fact while ordering
her meals. Doris has read about relationships between height, weight and energy
content of various foods.

Doris has realised that she is overweight and wishes to reduce her weight.

References

1. Norman, D.A.: Cognitive engineering. User centered system design, pp. 31–61 (1986)
2. Aoyama, M.: Persona-scenario-goal methodology for user-centered requirements

engineering. In: 15th IEEE International Requirements Engineering Conference, RE 2007.
IEEE (2007)

3. Goodwin, K.: Designing for the Digital Age. Wiley, Indiana (2009)
4. Anvari, F., Tran, H.M.T.: Persona ontology for user centred design professionals. In:

Proceedings of the ICIME 4th International Conference on Information Management and
Evaluation. Ho Chi Minh City, Vietnam (2013)

5. Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48(1), 26–34
(1993)

6. Gosling, S.D., Rentfrow, P.J., Swann Jr, W.B.: A very brief measure of the Big-Five
personality domains. J. Res. Pers. 37(6), 504–528 (2003)

A Method to Identify Talented Aspiring Designers 59

7. Svendsen, G.B., Johnsen, J.-A.K., Almås-Sørensen, L., Vittersø, J.: Personality and
technology acceptance: the influence of personality factors on the core constructs of the
Technology Acceptance Model. Behav. Inf. Technol. 32(4), 323–334 (2013)

8. Furnham, A., Bachtiar, V.: Personality and intelligence as predictors of creativity. Pers.
Individ. Differ. 45(7), 613–617 (2008)

9. Poropat, A.E.: A meta-analysis of the five-factor model of personality and academic
performance. Psychol. Bull. 135(2), 322–338 (2009)

10. Mohler, J.L.: Computer Graphics Education: Where and How Do We Develop Spatial
Ability? In: Proceedings of Eurographics, Education Papers, pp. 79–86 (2006)

11. Long, F.: Real or imaginary: the effectiveness of using personas in product design. In:
Proceedings of the Irish Ergonomics Society Annual Conference (2009)

12. Gardner, H.: Multiple intelligences: the theory in practice. Basic books (1993)
13. Winner, E.: The origins and ends of giftedness. Am. Psychol. 55(1), 159 (2000)
14. Anvari, F., Tran, H.M.T., Kavakli, M.: Using cognitive load measurement and spatial ability

test to identify talented students in three-dimensional computer graphics programming. Int.
J. Inf. Educ. Technol. 3(1), 94–99 (2013)

15. Plucker, J.A., Beghetto, R.A., Dow, G.T.: Why isn’t creativity more important to
educational psychologists? Potentials, pitfalls, and future directions in creativity research.
Educ. Psychol. 39(2), 83–96 (2004)

16. Field, B.W.: Visualization, intuition, and mathematics metrics as predictors of undergraduate
engineering design performance. J. Mech. Des. 129(7), 735–743 (2007)

17. Nov, O., Arazy, O., Lotts, K., Naberhaus, T.: Motivation-Targeted Personalized UI Design:
A Novel Approach to Enhancing Citizen Science Participation, pp. 287–297 (2013)

18. Oliveira, R.D., Cherubini, M., Oliver, N.: Influence of personality on satisfaction with
mobile phone services. ACM Trans. Comput.-Hum. Interact. 20(2), 1–23 (2013)

19. Butt, S., Phillips, J.G.: Personality and self reported mobile phone use. Comput. Hum.
Behav. 24(2), 346–360 (2008)

20. Costa, P., McCrae, R.: Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory
(NEO-FFI) Professional Manual. Psychological Assessment Resources, Odessa (1992)

21. Read, S.J., et al.: The personality-enabled architecture for cognition (PAC). In: Paiva, A.C.,
Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 735–736. Springer,
Heidelberg (2007)

22. Silvia, P.J.: Discernment and creativity: How well can people identify their most creative
ideas? Psychology of Aesthetics. Creativity, and the Arts 2(3), 139 (2008)

23. McCrae, R.R.: Creativity, divergent thinking, and openness to experience. J. Pers. Soc.
Psychol. 52(6), 1258 (1987)

24. Shea, D.L., Lubinski, D., Benbow, C.P.: Importance of assessing spatial ability in
intellectually talented young adolescents: a 20-year longitudinal study. J. Educ. Psychol.
93(3), 604 (2001)

25. Wai, J., Lubinski, D., Benbow, C.P.: Spatial ability for STEM domains: aligning over 50
years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol.
101(4), 817–835 (2009)

26. Charyton, C., Jagacinski, R.J., Merrill, J.A., Clifton, W., DeDios, S.: Assessing creativity
specific to engineering with the revised creative engineering design assessment. J. Eng.
Educ. 100(4), 778–799 (2011)

27. Ault, H.K., John, S.: Assessing and enhancing visualization skills of engineering students in
africa: a comprehensive study. Eng. Des. Graphics J. 74(2), 12–20 (2010)

28. McMartin, F., McKenna, A., Youssefi, K.: Scenario assignments as assessment tools for
undergraduate engineering education. IEEE Trans. Educ. 43(2), 111–119 (2000)

60 F. Anvari and D. Richards

29. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and Assessing: A
Revision of Bloom’s Taxonomy of Educational Objectives, Abridged Edition. Longman,
New York (2001)

30. Bailey, R., Szabo, Z.: Assessing engineering design process knowledge. Int. J. Eng. Educ.
22(3), 508 (2007)

31. Zowghi, D.: Teaching requirements engineering to the Baháí students in Iran who are denied
of higher education. In: 2009 Fourth International Workshop on Requirements Engineering
Education and Training (REET). IEEE (2009)

32. Brookhart, S.M.: Assessment theory for college classrooms. New Dir. Teach. Learn. 2004
(100), 5–14 (2004)

33. Anvari, F., Richards, D., Hitchens, M., Babar, M.A.: Effectiveness of persona with
personality traits on conceptual design. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE) (2015)

34. IPIP. International Personality Item Pool. 2013 [cited 2013 2 July]; Available from: http://
ipip.ori.org/

35. Field, A., Miles, J., Field, Z.: Discovering Statistics Using R. SAGE Publications Ltd.,
London (2012)

36. Bodner, G.M., Guay, R.B.: The Purdue visualization of rotations test. Chem. Educ. 2(4),
1–17 (1997)

37. Brookhart, S.M.: The Art and Science of Classroom Assessment. The Missing Part of
Pedagogy. ASHE-ERIC Higher Education Report, vol. 27, Number 1. ERIC (1999)

38. Ehrhart, M.G., Ehrhart, K.H., Roesch, S.C., Chung-Herrera, B.G., Nadler, K., Bradshaw, K.:
Testing the latent factor structure and construct validity of the Ten-Item Personality
Inventory. Pers. Individ. Differ. 47(8), 900–905 (2009)

39. Hamburger, Y.A., Ben-Artzi, E.: The relationship between extraversion and neuroticism and
the different uses of the Internet. Comput. Hum. Behav. 16(4), 441–449 (2000)

40. Landers, R.N., Lounsbury, J.W.: An investigation of Big Five and narrow personality traits
in relation to Internet usage. Comput. Hum. Behav. 22(2), 283–293 (2006)

41. Schön, D.A.: The reflective practitioner: how professionals think in action. vol. 5126, Basic
books (1983)

42. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering. Springer, Heidelberg (2012)

43. Anvari, F., Richards, D.: Using Personality Traits and a Spatial Ability Test to Identify
alented Aspiring Designers in User-Centred Design Methodologies. In: Proceedings of the
ENASE 10th International Conference on Evaluation of Novel Approaches to Software
Engineering (2015)

A Method to Identify Talented Aspiring Designers 61

http://ipip.ori.org/
http://ipip.ori.org/

Lorq: A System for Replicated NoSQL Data
Based on Consensus Quorum

Tadeusz Pankowski1(B)

Institute of Control and Information Engineering,
Poznań University of Technology, Poznań, Poland

tadeusz.pankowski@put.poznan.pl

Abstract. In this paper, we discuss a system, called Lorq, for NoSQL
data replication. Data replication in the system is based on replication
of logs storing update and some control operations. It is guarantied that
operations in all logs are eventually applied to their databases in the
same order. However, due to possible latency and failures, the time of the
application can be different, leading to different levels of consistencies.
Applications have possibilities to declare their consistency and latency
priorities, from strong consistency to a kind of weak consistencies. In
this way, the server level agreement (SLA) is provided. To guarantee
strong consistency, a consensus quorum algorithm is used meaning that
an update (read) operation is treated successful if a write (read) con-
sensus quorum is reached. Strong consistency ensures that the most up-
to-date data is read. To guarantee a weaker consistency, Lorq algorithm
utilizes timestamps, which are assigned to both data objects and data-
bases. These timestamps are updated along with update and control
operations performed over databases. The algorithm enforce dynamic
selection of servers accessed by read operations to ensure required level
of consistency and payment depending on consistency level.

1 Introduction

Recently, we observe a rapid development of modern storage systems based on
Internet services and cloud computing technologies [24]. Examples of this kind
of applications range from social networks [16], Web search [9,10] to e-commerce
systems [11]. Data management in such systems is expected to support needs of
a broad class of applications concerning different performance, consistency, fault
tolerance, and scalability [1]. Development of this new class of systems, referred
to as NoSQL systems, differs from conventional relational SQL systems in the
following aspects: (a) the data model is usually based on a NoSQL key-value
model; (b) data management is focus on intensive simple write/read operations
instead of ACID transactions processing; (c) NoSQL system architecture is a
multi-server data replication architecture, which is necessary to meet needs con-
cerning the performance, scalability and partition tolerance; (d) a various kinds
of consistencies are offered, from the strong consistency to weak consistencies.

c© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 62–79, 2016.
DOI: 10.1007/978-3-319-30243-0 4

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 63

In replicated systems, the following three features influence the design,
deployment and usage of the system: consistency (C), availability (A), and par-
tition tolerance (P). Partition happens when in result of a crash, a part of the
network is separated from the rest. According to the CAP theorem [14], all
these three features cannot be achieved. Because the partition tolerance is the
necessary condition expected by the users, the crucial issue is then the trade-off
between consistency and availability/latency.

Applications in such systems are often interested in possibility to declare
their consistency and latency priorities [24]. In general, except from strong con-
sistency, a user may expect a weaker kind of consistencies such as: eventual
consistency, bounded staleness, read-my-writes, monotonic read, or monotonic
read-my-writes. This is similar to declaring isolation levels in conventional SQL
databases. In some companies, the price that clients pay for accessing data repos-
itories depends both on the amount of data and on its freshness (consistency).
For example, Amazon charges twice as much for strongly consistent reads as for
eventually consistent reads in DynamoDB [2]. According to [24], applications
“should request consistency and latency that provides suitable service to their
customers and for which they will pay”. For example, Pileus system [24] allows
applications to declare their consistency and latency priorities.

Novelties of this paper are as follows.

1. We propose and discuss a method for replicating NoSQL data. The algorithm
is called Lorq (LOg Replication based on consensus Quorum). The main fea-
tures of Lorq are the following: (a) data replication is realized by means
of replicating logs storing update operations (treated as a single-operation
transactions), and so-called heartbeat operation sent by the leader; (b) the
processing and replication strategies guarantee that eventually all operations
in each replica are executed in the same order and no operation is lost.

2. A special attention is paid to different kinds of consistency, which can be guar-
anteed by the system. We propose a method based on information stored by
client services to guarantee different consistency levels, thereby implementing
SLA functionality.

In comparison to Raft [19], we propose a different way for choosing a leader in
Lorq. In particular, the procedure is based on timestamps and servers priorities.
It simplifies the election procedure significantly. Compared to Pileus [24], that
is based on state replication, the replication in Lorq is based on replication
of operations. Consequently, the ways to guarantee consistency levels differs
significantly from those proposed in Pileus.

The outline of this paper is as follows. The next section reviews problems
of NoSQL data replication. In particular, we discuss a key-value model, where
timestamps are associated with each data object and with the whole database.
The current database timestamp says how up-to-date is the database under
consideration. The system architecture and the Lorq algorithm are presented
in Sect. 3. We discuss behavior of clients and servers in particular roles. Three
roles of servers are: leader, worker and elector. An example illustrates the process

64 T. Pankowski

of log replication. Some methods for achieving the strong and one of weaker con-
sistencies in Lorq, are discussed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Replication of NoSQL Data

In modern intensively accessed data stores, a number of goals should be met:

– Scalability: The system must be able to take advantage of newly added servers
(nodes) for replication and redistribution of data. The aim of adding new
hardware is to support large databases with very high request rates and very
low latency.

– Availability: It is guaranteed that each request eventually receives a response.
The case when a response is too late, is often treated as the lack of response
at all, and the system can be understood to be unavailable.

– Partitioning tolerance: Due to communication failures, the servers in the sys-
tem can be partitioned into multiple groups that cannot communicate with
one another.

– Consistency: In conventional databases, a consistent database state is a a
state satisfying all consistency constraints. In replicated databases, consis-
tency means the equality between answers to queries issued against different
servers in the system. In the case of strong consistency all answers are iden-
tical and up-to-date (such as ACID transactions [4]). In the case of a weak
consistency, some answers can be stale. However, the staleness of answers
should be under control, and in the lack of updates, all answers converge to
be identical. Then we say about eventual consistency [25].

There is a fundamental trade-off between consistency (Quality of Data), and
latency/ availability and partition tolerance (Quality of Service).

To meet the aforementioned needs of practical data-centered and intensively
accessed systems, new classes of data repositories are based on NoSQL data
models, and database management systems utilizes replication based on quorum
consensus algorithms [4,17,19,24].

2.1 NoSQL Data Model

NoSQL data stores were developed as an alternative to well structured relational
data models mainly for efficiency reasons. NoSQL data are treated as uniquely
identified “containers” of data values. Unique identifiers and indexing on them
allow for very fast data access. Additionally, NoSQL data is provided with an
automatically updated timestamp, which is used to control the freshness of data.
Any modification of data value implies update of the timestamp. However, no
complex queries, such as join or secondary key selection, are possible on NoSQL
repositories.

NoSQL data stores manage various variants of key-value data models [6]
(e.g., PNUTS [9], Dynamo [11], Cassandra [16], BigTable [7], Spanner [10]),
Azure Tables [26]).

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 65

A NoSQL data object is a key-value pair extended with a timestamp, i.e.,

d :: = (x, val, t),

where x is a unique identifier, val is a data value, and t is a timestamp.
The unique identifier is usually a pair (PartitionKey,RowKey), where
PartitionKey identifies the partition data is stored in, and RowKey identifies
data in the partition [8]. The value component could be:

– structureless – then a data value is a sequence of bytes and an application is
responsible for its interpretation, or

– structured – data value is a set of pairs of the form A : v, where A is an
attribute name, and v is a value, possibly nested, i.e.,

val :: = {A1 : v1, . . . , An : vn}, n ≥ 0,
v :: = c | val.

Further on in this paper, we will assume that values of data objects are struc-
tured, and a (NoSQL) database is a pair DB = ({set of data objects}, t), where t
is the timestamp of the most recently performed update operation on the data-
base (the most current timestamp of all data in the database). The database
timestamp we denote by

ts(DB) = t.

We distinguish the following operations on NoSQL databases

– update operations: set, insert, delete, heartbeat,
– read operation: read.

In order to informally define syntax and semantics of operations, we assume that
there is a NoSQL database

DB = ({(x, {A : a}, t)}, tdb).

Operations are specified as follows:

– DB.set(x′, val′, t′) replaces in DB the value and the timestamp of data iden-
tified by x′; or nothing changes and an error an exception is raised, i.e.,

DB.set(x′, {B : b}, t′) =
{

({(x, {B : b}, t′)}, t′), if x = x′,
DB, if x �= x′.

– DB.ins(x′, val′, t′) either the value of existing data object is changed or the
new data object is inserted, i.e.,

DB.ins(x′, {B : b}, t′) =

⎧⎪⎪⎨
⎪⎪⎩

DB1 = ({(x, {A : a,B : b}, t′)}, t′),
if x = x′,

DB2 = ({(x, {A : a}, t), (x′, {B : b}, t′)}, t′),
if x �= x′.

66 T. Pankowski

– DB.del(x, att, t) removes fields with the attribute name att, and DB.del(x, t)
removes data object x, i.e., let DB1 and DB2 be as above, then

DB.del(x,A, t1) =
{

({(x, {B : b}, t1)}, t1), if DB = DB1,
({(x, {}, t1), (x′, {B : b}, t′)}, t1), if DB = DB2.

DB.del(x, t1) =
{

({}, t1), if DB = DB1,
({(x′, {B : b}, t′)}, t1), if DB = DB2.

– hb(t) – heartbeat is the operation sent periodically by the leader to prove its
activity; updates the database’s timestamp, i.e.,

DB.hb(t1) = ({(x, {A : a}, t)}, t1).

– read(x) – reads the data with identifier x, i.e.

DB.read(x) = (x, {A : a}, t).

2.2 Strategies of Data Replication

Data replication can be realized using:

1. State propagation: The leader (a master server) propagates its latest state
to workers (slaves, followers), which replace their current states with the
propagated data.

2. Operation propagation: The leader propagates sequences of operations. It
must be guaranteed that these operations will be applied by all workers to
their states in the same order.

In both strategies, states of all database replicas will be eventually consistent.
However, the freshness of these states is different and depends on the time needed
for the propagation. Some serious problems follow from possible crashes of servers
or communications between the servers. For instance, it may happen that the
leader crashes before propagating the data or operations. In such cases, there
must be means to prevent losing this data. From the operational point of view,
the replication must take advantages from asynchronous and parallel processing
in order to guarantee the required efficiency.

2.3 Consensus Quorum Algorithms

In a quorum-based data replication, it is required that an execution of an opera-
tion (i.e., a propagation of an update operation or a read operation) is committed
if and only if a sufficiently large number of servers acknowledge a successful ter-
mination of this operation [13].

In a quorum consensus algorithm, it is assumed that: N is a number of
servers storing copies of data (replicas), R is an integer called read quorum,
meaning that at least R copies were successfully read; W is an integer called write

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 67

quorum, meaning that propagations to at least W servers have been successfully
terminated. The following relationships hold between N , R and W :

W > N/2, (1)
R + W > N. (2)

To commit a read operation, a server must collect the read quorum, and to com-
mit a write operation must collect the write quorum. Condition (1) guarantees
that the majority of copies is updated, and (2) that among read copies at least
one is up-to-data.

The aim of consensus algorithms is to allow a collection of servers to process
users’ commands (updates and reads) as long as the number of active servers is
not less than max{W,R}. It means that the system is able to survive failures of
some of its servers.

An algorithm based on quorum consensus works properly if a majority of
servers is accessible and the most current version of data can be always provided
to a client (i.e., it guarantees the strong consistency). Note that for N = 3, R = 2,
W = 2 the system tolerates only one failure, and to tolerate at most two failures,
we can assume N = 5, R = 3,W = 3. Let p be the probability of a server failure,
then the probability that at least n servers will be available is equal to

P (N, p, n) =
n∑

k=0

pk(1 − p)N−k,

in particular, P (5, 0.02, 3) = 0.99992.

3 Log Replication Based on Consensus Quorum

During last decade, the research on consensus algorithms is dominated by Paxos
algorithms [12,18]. Lately, a variant of Paxos, named Raft [19], was presented
as a consensus algorithm for managing a replicated log. Lorq is based on ideas
underlying Paxos and Raft, and includes such steps as: (1) leader election; (2)
log replication, execution and commitment of update operations; (3) realization
of read operations on different consistency levels [20,21].

3.1 Architecture

The architecture of Lorq (Fig. 1), like in Raft [19], is organized having in
mind: operations, clients, and servers occurring in the system managing data
replication.

Operations. We distinguish three update operations: set, insert, delete, one spe-
cial control operation heartbeat (generated by the leader), and one read opera-
tion. These operations were discussed in Subsect. 2.1.

Queues. Operations from clients are serialized and put in queues. An operation
is represented as an entry of the form:

68 T. Pankowski

Fig. 1. Architecture of Lorq system. There are update and read operations in queues.
Update operations are delivered (1) by clients from queues to one leader (2). A repli-
cation module delivers them to leader’s log and to logs at all workers (3). Sequences
of operations in all logs tend to be identical and are applied in the same order to
databases (4). States of all databases also tend to be identical (eventually consistent).
A client may read (5) data from any server.

entry = (op, arg1, arg2),

where op is type of the operation, op ∈ {set, ins, del, read}; arg1 and arg2 are
arguments (possibly nulls) of the operation op. Note, that a timestamp will be
added later on.

Clients. Each queue is served by one client. When client starts, a new session
is opened. A client maintains information about timestamps of all committed
update and all performed read operations in a session, in tables:

c.LastUpdateT imestamo(Key, T imestamp),
c.LastReadT imestamo(Key, T imestamp),

where: c is the client identifier, and the timestamp of data object with key x
is returned by COMMITTED(x, t) message (see Figs. 3 and 4), and as result
(x, val, t) in response to read(x) operation.

Servers. A server maintains one replica of a database along with the log related
to this replica, and runs the software implementing Lorq protocols. One server
plays the role of the leader and the rest – roles of workers. The state of each
server is characterized by the server’s log and database. The following variables
describe the state of a server:

– lastIdx – last log index (the highest position on the log storing an operation),
– lastCommit – the highest log index storing a committed update operation,
– currentLeader – identifier of the current leader, 0 – the leader is not elected,
– lastActivity – the observed latest activity time of the leader.

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 69

Fig. 2. System states, client and server roles in Lorq. A client can ask about leader,
wait for result of election or send queries (update or read). A server can play undefined
role (unqualified server), take part in leader election (as elector), or act as leader or
worker.

3.2 States and Roles

Lorq system can be in one of the following three states (Fig. 2):

1. UnknownLeader – no leader is established in the system (when the system
starts and a short time after a leader failure).

2. LeaderElection – election of a leader is in progress.
3. KnownLeader – a leader is known in the system.

Actors of the system, i.e., clients and servers, can play in those states specific
roles.

Client in Asking Role. Initially, and when the system is in UnknownLeader
state, a client asynchronously sends the request GetLeader to all servers. In
response, each available server can return:

– 0 – if a leader can not be elected because the required quorum cannot be
achieved (the system is unavailable);

– currentLeader – identifier of the leader that is either actually known to the
server or has been chosen in reaction to the GetLeader request.

Client in Waiting Role. After issuing GetLeader request, the client plays the
Waiting role. Next, depending on the reply, changes its role to Asking or Querying.

70 T. Pankowski

Client in Querying Role. A client reads from a queue the next entry (describing
an operation), or reads again a waiting one if necessary, and proceeds as follows:

– determines values for c – client identifier, and t – timestamp;
– the leader.LorqSendEntry(c, t, entry) operation is sent to the leader and the

operation is treated as a “waiting” one;
– the Read(c, t, entry) operation is handled according to the required consis-

tency type (see Sect. 4).

If the Update command replays committed, the corresponding operation is
removed out from the queue. If the timeout for responding elapses, the client
changes its role to Asking (perhaps the leader failed and the operation will be
next reissued to a new leader).

Server in Server Role. A server plays the Server role when the system starts,
and when a worker detects that election timeout elapses without receiving any
message from the leader (that means the leader failure). A server in Server role
starts an election issuing the command StartElection to all servers. Next, the
systems goes to the LeaderElection state, and all servers change their roles to
Elector.

Server in Elector Role. The community of servers attempt to chose a leader
among them. The leader should be this server that has the highest value of
lastCommit, and by equal lastCommit, the one with the highest identifier (or
satisfying another priority criterion). The election proceeds as follows:

1. A server collects lastCommit values from all servers (including itself), and
creates a decreasingly ordered list of pairs (lastCommit, srvId).

2. If the list contains answers from majority of servers, then the srvId from the
first pair is chosen as the leader and its value is substituted to currentLeader.

3. The currentLeader is announced as the leader. The procedure guarantees
that all servers will choose the same leader.

Next, the system goes to the KnownLeader state, the server chosen as the leader
changes its role to Leader, and the remainder servers to Worker.

Server in Leader Role. The leader acts as follows (Fig. 3):

1. After receiving an operation (c, t, entry), a leader reads lastIdx position from
its log. The client identifier (c) and the timestamp (t) from this position are
set to variables cL and tL, respectively, denoting last client (last timestamp)
on the leader. The operation (c, t, entry) is appended to the log by means of
the command:

myDB.AppendToLeaderLog(cL, tL, c, t, entry).

The pair (cL, tL) is used to control the correctness of the append operation.
The append (on the leader and any worker) is correct if the previous position
on the log contains a client identifier c = cL, and a timestamp t = tL.

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 71

Fig. 3. Sending and propagating of data operations in Lorq system.

2. The operation is propagated asynchronously to all available workers, srvi:

PropagateToWorkers(cL, tL, c, t, entry),
SendToWorkersAsync(srvi, cL, tL, c, t, entry).

The operation is either appended by the worker to its log, i.e.,

myDBi.AppendToWorkerLog(cL, tL, c, t, entry),

or the repairing of the log is carried out first (managed by the leader)

RepairWorkerLog(srvi).

The criterion for repairing is whether the last position in the worker’s log
satisfies c = cL and t = tL.

3. If the propagation has completed successfully for majority of servers, the
leader initiated the process of applying and committing the replicated oper-
ation PropagateApplyAndCommit(t), t identifies the operation, (Fig. 4):

– first, any worker, srvi, tries to apply the operation to its database,
myDBi.ApplyAndCommit(t); after the success, the operation is denoted
as committed (Y on the log);

– next, if majority of workers terminates with success, the leader applies
the operation in its database,myDB.ApplyAndCommit(t), and denotes
it as committed;

72 T. Pankowski

– finally, the client is informed about result of the processing: COMMIT-
TED – operation was successfully performed and replicated by the major-
ity (equal to the write quorum), or UNAVAILABLE – otherwise.

4. Periodically, defined by the activity timeout, the leader propagates heartbeat
operation in the same way as update operations. This operation is neces-
sary to:

– confirm leader’s role and prevent starting a new election;
– for checking log consistency, especially for restarted workers;
– update database timestamp, tdb, in order to control if the database is up-

to-date (this is important in answering with required kind of consistency).

Fig. 4. Applying and committing data operations in Lorq system.

When a new leader starts, then:

– There can be some uncommitted entries in the top of the leader’s log, i.e.,
after the lastCommit entry, (lastCommit < lastIdx). These entries must be
propagated to workers in increasing order. If a delivered log entry is already
present in worker’s log, it is ignored.

– Some “waiting” operations in a queue, i.e., denoted as already sent to a leader,
could not occur in the leader’s log (the reason is that they have been sent to
a previous leader and that leader crashed before reaching the write quorum).
Then these operations must be again sent by the client from the queue to the
newly elected leader.

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 73

– After the aforementioned two operations have been done, the client starts
delivering the next update operation from the queue.

A server plays the Leader role until it fails. After recovery, it plays a role of
a Worker.

Server in Worker Role. Let a worker srv receive a command (see Fig. 3)
SendToWorkersAsync(srv, cL, tL, c, t, entry), concerning update or heartbeat
operation. Then:

1. If log of srv is consistent with the leader’s log, i.e., srv.log[lastIdx].
ClientId = cL and srv.log[lastIdx].T imestamp = tL, the operation is
appended to the log, i.e., myDBsrv.AppendToWorkerLog(cL, tL, c, t, entry)
is performed at position lastIdx + 1.

2. If log of srv is inconsistent, i.e., srv.log[lastIdx].T imestamp < tL, the worker
replays inconsistency and expects that the leader will decide to send all missing
items.

3. If log of srv has to more positions, i.e., srv.log[lastIdx].T imestamp > tL, all
excess positions (with t > tL) will be removed and the new operation will be
appended at the position as expected (as in the case of consistent log). Note,
that excessed positions cannot be committed since the server with the latest
committed position is elected to be the leader.

A server plays the Worker role until its failure or failure of the leader – then it
returns to the Server role.

Fig. 5. Illustration to a scenario of managing data replication in Lorq.

74 T. Pankowski

3.3 Example

Let us assume that there are five servers in the system (N = 5) (Fig. 5), and the
write quorum is three (W = 3). By “+” we denote committed entries, and by
“?” the waiting ones (i.e., a client waits for committing the sent operation). Let
us consider three steps in the process of replication presented in Fig. 5.

Step 1. Operations a and b are already committed, bat c and d are waiting,
i.e., their execution in the system is not completed. S1 is the leader that propa-
gated c and d to S3, and after this failed. We assume that also S5 failed. There
are two uncommitted operations, c and d, in the top of S3, these operations are
also denoted as waiting in the queue.

Step 2. In the next election, S3 has been elected the leader. The client receives
information about the new leader and sends the waiting operations c and d
to him. Since c and d are already in the S3’s log, the sending is ignored. S3

propagates c and d to available workers S2, and S4. The write quorum is reached,
so they are executed and committed. Next, S3 receives from a client the operation
e, and fails.

Step 3. Now, all servers are active and S4 is elected the leader. The client
receives information about the new leader and sends the waiting operation e to
S4. Next, the leader propagates e as follows:

1. Propagation to S1: e is appended at fifth position. Since leader’s lastCommit
is 4, thus c and d are executed in the S1’s database and committed.

2. Propagation to S2: e is successfully appended at fifth position.
3. The leader (S4) recognizes that the write quorum is already reached. Thus:

asynchronously sends to S1, S2 and to itself the command to execute and
commit e; replies COMMITTED to the client; continue propagations of e to
S3 and S5.

4. Propagation to S3: e is already in S3’s log, so the append is ignored. Along
with e, the lastCommit equal to 5 is sent to S3. Because of this, e can be
executed and committed.

5. Propagation to S5: there is an inconsistency between logs in S4 and S5. We
are decreasing lastIdx in S4, lastIdx := lastIdx−1, as long as the coherence
between both logs is observed. This happens for lastIdx = 2. Now, all entries
at positions 3, 4 and 5 are propagated to S5. Moreover, operations c, d and e
are executed in S5’s database and committed.

In the result, all logs will be eventually identical.

4 Consistency Models for Replicated Data

Some database systems provide strong consistency, while others have chosen a
weaker form of consistency in order to obtain better performance and availability.
In this section, we discuss how these two paradigms can be achieved in the Lorq
data replication system. We will discuss the following consistencies, ordered from
weak to strong:

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 75

1. Eventual consistency.
2. Bounded staleness.
3. Read-my-writes.
4. Monotonic read.
5. Monotonic read-my-writes.
6. Strong consistency.

1. Eventual Consistency. A reader is guaranteed to see a state of data that
existed at some time in the past, but not necessarily the latest state. This is
similar to so-called snapshot isolation offered by database management systems,
or to consistent prefix [23]. Eventual consistency is a theoretical guarantee that,
“if no new updates are made to the object, eventually all accesses will return the
last updated value” [25]. In this kind of consistency, reads return the values of
data objects that were previously written, though not necessarily latest values.

In Lorq, eventual consistency is realized by reading from any server. It is
guaranteed that databases in all servers store past or current states, and that
these states were up-to-date sometime in the past. In general, the level of stale-
ness is not known, since the read may be done from a server which is separated
from others by communication failure (in a separated partition).

2. Bounded Staleness. A reader is guaranteed that read results are not too
out-of-data. We distinguish version-based staleness and time-based staleness [15].
In time-based staleness, a time bound Δ is specified, and read(x) can be sent to
any server whose database has the time-stamp not less than the current time,
tnow, minus Δ, i.e., to those, where

ts(DB) >= tnow − Δ.

3. Read-My-Writes. It is guaranteed that effects of all updates performed by
the client, are visible to the client’s subsequent reads. If a client updates data
and then reads this data, then the read will return the result of this update or
an update that was done later [23].

In Lorq, the read-my-writes consistency is guaranteed by utilizing client’s
session state recording information about timestamps of updated data. Let

lastUpd(x, c) = (SELECT Timestamp FROM c.LastUpdateT imestamp
WHERE Key = x).

Then operation read(x) can be sent to any server whose database has the time-
stamp not less than lastUpd(x, c), i.e., to those, where

ts(DB) >= lastUpd(x, c).

Note, however, that this consistency does not guarantee monotonicity. It
might happen, that two consecutive readings, say in times t1 and t2, t1 < t2,

76 T. Pankowski

were sent to, respectively, DB1 and DB2, where: ts(DB1) >= lastUpd(x, c),
ts(DB2) >= lastUpd(x, c), but ts(DB1) > ts(DB2). Then the data returned
by the second read is elder than this returned by the first read. This can be
the case when DB1 and DB2 are updated by different clients. To avoid such
inconsistency, we can require monotonic read consistency.

4. Monotonic Read. A reader is guaranteed to see data states that is the
same or increasingly up-to-date over time [23]. Assume that a client reads a
data object x, read(x) = (x, v, t). Then a client (the same or different) updates
x with (x, v′, t′), where t′ > t. If next the user issues another read to this data
object, then the result will be: either (x, v, t) or (x, v′, t′), but never (x, v′′, t′′),
where t′′ < t.

In Lorq, the monotonic read consistency is guaranteed by utilizing client’s
session state recording information about timestamps of read data. Let

lastRead(x, c) = (SELECT Timestamp FROM c.LastReadT imestamp
WHERE Key = x).

Then operation read(x) can be sent to any server whose database has the time-
stamp not less than lastRead(x, c), i.e., to those, where

ts(DB) >= lastRead(x, c).

However, monotonic read does not guarantee read-my-writes consistency. It
might happen that between two consecutive reads of a data object x, the client
updates x. The second read, although it obeys the monotonic read strategy, may
not read the new version of x but the old one (the same as by the first read).
So, the read-my-write consistency is violated.

5. Monotonic Read-My-Writes. To satisfy both above consistencies, the
database, DB, being read should satisfy the condition:

ts(DB) >= max (lastUpd(x, c), lastRead(x, c)).

6. Strong Consistency. Strong consistency guarantees that a read operation
returns the value that was last written for a given data object. In other words,
a read observes the effects of all previously completed updates [23,24] performed
by any client. The following ways can be taken into account:

1. Some systems, e.g. Pileus [24], recommend sending the read operation to the
leader. However, this is a good solution only by state propagation strategy.
By log propagation, the leader applies an update operation to its database
and commits it as the last of all participating servers. So, it can happen that
the leader can return out-of-date data object.

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 77

2. Analogously to the read-my-writes, we can determine timestamp of the last
update operation on the read data object x. However, this time we should
consider all clients updating data in the system, i.e.,

lastUpd(x) = max
c∈Clients

(lastUpd(x, c)).

Then read(x) can be sent to any server whose database has the time-stamp
not less than lastUpd(x), i.e., to those, where

ts(DB) >= lastUpd(x).

Drawbacks of this approach are twofolds: first, there may be a large number
of clients, so obtaining lastUpd(x) can be costly; second, some clients may be
unavailable in the moment of calculation and the method fails.

3. Since Lorq system is based on a consensus quorum algorithm, it is guaran-
teed that a majority of servers has successfully accomplished execution of all
committed update operations in their databases. To guarantee strong con-
sistency, the number of servers we should read from is at least equal to the
read quorum (R). Next, from the set of read data objects we chose the object
with the latest timestamp. It is guaranteed that among read data there is the
latest one.

5 Conclusions and Future Work

We proposed a new algorithm, called Lorq, for managing replicated data based
on the consensus quorum approach. Lorq, like another consensus quorum algo-
rithms, is devoted for data-centric applications, where the trade-off between
consistency, availability and partition tolerance must be taken into account.
A system controlled by Lorq protocol consists of a set of autonomous servers,
among them the leader is chosen. Applications have possibilities to declare their
consistency and latency priorities, from strong consistency to one kind of weak
consistencies. In this way, the server level agreement (SLA) is provided. We
briefly discussed different kinds of consistency, and some aspects of correctness
of Lorq. The implementation of Lorq makes advantages of the modern software
engineering methods and tools oriented to asynchronous and parallel programing
[3]. In future work, we plan to extend the Lorq algorithm to take advantages of
so-called replicated data types [5,22]. We plan also to prepare and conduct some
real-system experiments. This research has been supported by Polish Ministry
of Science and Higher Education under grant 04/45/DSPB/0149.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design.
IEEE Comput. 45(2), 37–42 (2012)

2. Amazon DynamoDB Pricing: (2014). http://aws.amazon.com/dynamodb/pricing

http://aws.amazon.com/dynamodb/pricing

78 T. Pankowski

3. Asynchronous Programming with Async and Await (2014). http://msdn.microsoft.
com/en-us/library/hh191443.aspx

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison Wesley Publishing Company, Boston (1987)

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: speci-
fication, verification, optimality. In: ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2014, pp. 271–284 (2014)

6. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39(4), 12–27
(2010)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., et al.: Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008)

8. Chappell, D.: Understanding NoSQL on Microsoft Azure, pp. 1–15. Chappell &
Associates, San Francisco (2014)

9. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., et al.: PNUTS:
Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)

10. Corbett, J.C., Dean, J., Epstein, M., et al.: Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst. 31(3), 8 (2013)

11. DeCandia, G., Hastorun, D., Jampani, M., et al.: Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

12. Gafni, E., Lamport, L.: Disk paxos. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol.
1914, pp. 330–344. Springer, Heidelberg (2000)

13. Gifford, D.K.: Weighted voting for replicated data. In: ACM SIGOpPS 7th Sym-
posium on Operating Systems Principles, SOSP 2079, pp. 150–162 (1979)

14. Gilbert, S., Lynch, N.A.: Perspectives on the CAP Theorem. IEEE Comput. 45(2),
30–36 (2012)

15. Golab, W., Rahman, M.R., AuYoung, A., Keeton, K., Li, X.S.: Eventually consis-
tent: Not what you were expecting? Commun. ACM 57(3), 38–44 (2014)

16. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

17. Lamport, L.: Generalized consensus and paxos. In: Technical Report MSR-TR-
2005-33, pp. 1–63. Microsoft Research (2005)

18. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
19. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.

In: USENIX Annual Technical Conference, pp. 305–319 (2014)
20. Pankowski, T.: A consensus quorum algorithm for replicated NoSQL data. In:

Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D.
(eds.) Beyond Databases, Architectures and Structures. CCIS, vol. 521, pp. 116–
125. Springer, Heidelberg (2015)

21. Pankowski, T.: Consistency and availability of data in replicated NoSQL databases.
In: ENASE 2015 - Proceedings of the 10th International Conference on Evaluation
of Novel Approaches to Software Engineering, Barcelona, Spain, 29–30, pp. 102–
109. SciTePress (2015), April 2015

22. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

23. Terry, D.: Replicated data consistency explained through baseball. Commun. ACM
56(12), 82–89 (2013)

http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx

Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum 79

24. Terry, D.B., Prabhakaran, V., Kotla, R., Balakrishnan, M., et al.: Consistency-
based service level agreements for cloud storage. In: ACM SIGOPS, SOSP 2013,
pp. 309–324 (2013)

25. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
26. Wood, M.: An Introduction to Windows Azure Table Storage (2013). www.simple-

talk.com/cloud/cloud-data/an-introduction-to-windows-azure-table-storage

www.simple-talk.com/cloud/cloud-data/an-introduction-to-windows-azure-table-storage
www.simple-talk.com/cloud/cloud-data/an-introduction-to-windows-azure-table-storage

Heuristic Approaches to Improve Product
Quality in Large Scale Integrated

Software Products

Sai Anirudh Karre and Y. Raghu Reddy(&)

Software Engineering Research Center,
International Institute of Information Technology, Hyderabad, India

sai.anirudh@research.iiit.ac.in,

raghu.reddy@iiit.ac.in

Abstract. Software quality has always been an important criterion for assessing
stability of a product. It is quite challenging for large-scale complex products,
especially integrated products, to endure and withstand the competition after a
new version release in its market domain. Unlike regular software, integrated
software products require detailed exploration on the spread and impact of a
defect to improve overall product quality. In this paper, we use heuristic
approaches like generalized defect dependency approach, control flow graph
based approach, and feature correlation based approach to study the widespread
of defects in large software and suggest a metric called defect dependency
metric to study the dependency of defects. We implemented the generalized
defect dependency approach on an industry dataset and gathered noteworthy
results. We provide a comparative a study of the heuristic approaches and
comprehended their individual usage with observations. We further discuss the
need of adoption of such vision in industries as a standard testing practice to
improve quality.

Keywords: Defect dependency � Defect widespread � Heuristic methods �
Integrated software product � Software analysis � Software quality � Software
metrics � Software reconstruction

1 Research Motivation and Aim

Production cycle of large-scale software products, especially integrated software
products should be strategically planned to avoid software failure after product release.
An integrated product consists of two more sub-products integrated to achieve some
business goals. The sub-products referred as product pillars may have themselves been
marketed or are marketed as individual products. In integrated software products, minor
defects in specific sub-products targeted for a fix in upcoming releases may turn acute
in current product version. This is predominant, as not all defects are easy to fix after
the product release. Product stake-owners usually bypass minor defects in current
release and have them planned during subsequent service packs or maintenance packs
due to the complex product design or due to strict release deadlines. During devel-
opment sprint cycles, software quality teams may spend a lot of time to validate the fix

© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 80–97, 2016.
DOI: 10.1007/978-3-319-30243-0_5

and ensure that the fix does not cascade new defects into the integrated product. The
primary objective of quality teams is to identify and avoid as many defects as possible
before the product gets released; equally it is costlier to address re-occurred defects and
time consuming to fix them post product release. The stability of a large-scale complex
product is directly proportional to its quality in design and implementation [1].
Large-scale complex products become victim to both design and implementation issues
if it is constructed by merging two or more unstable products. Software acquisition is a
common practice in industry. A company acquires its competitor or a company that
belongs to new stream to create synergy and to produce integrated solutions to its
customer base. It is basic instinct of customers to feel safe using an integrated system
which suffices all their business and functional needs using a product with a centralized
control than on dis-integrated products that require additional manpower to merge
business data together. The individual sub-products commonly referred as pillar
products are bound together loosely for various functional and business reasons. For
example, different end-users of a banking application may use sub-products like online
transaction system, debt management, mortgage management, marketing management,
customer service management, reporting system, predictive analysts, etc. in a virtually
disintegrated fashion. However, for achieving the business needs, these products are
integrated with each other forming a large complex software system. Most of the
common defects recorded in banking applications are due to consistency. If the user
payments in mortgage sub-product are not regularly updated across other sub-products
due to a nightly data update job failure, customer service sub-product will be intimating
incorrect payment violation notifications to the customers in spite of regular bill pay-
ments. In parallel this can create disconnect among reporting teams’ as their balance
sheets with credit and debit spending never match, creating reliability issues to revenue
team. In such scenarios, product developers who are independently working as part of
mortgage, customer service and reporting sub-products might not be sure of the source
of the defect and may not log it as an integrated defect. In above example, severity
levels of fixing this defect is high for reporting sub-product when compared with other
sub-products. Such defects can cause major breakdown in the deployed product and
require stakeholders to identify methods that can check the widespread of a defect and
reprioritize the release cycle.

Quality of large-scale software is expected to improve over multiple product ver-
sions. The product versions are released in regular intervals and are usually deployed as
Software as Service [2, 3]. Such products are developed by large teams that include
developers, sustenance engineers, quality engineers, release and build engineers, pro-
duct managers, product support and maintenance engineers. With such diversity in
knowledge and skill, we can find process issues, weak cognition with in teams and
un-desired release deadlines contributing towards failure of a complex product
deployment. As per Gartner’s 2015 Magic Quadrant for Enterprise Integration plat-
forms as a Service Survey [4] most of software industries that develop complex inte-
grated products are still using traditional approaches to develop and maintain quality
standards of their existing products as new trends in research are quite tough to adopt.
Upon additional interviews with software giants it was found that there is a lot of risk
and cost associated on implementing the research as results are unpredictable. This gap

Heuristic Approaches to Improve Product Quality 81

can be evaded if there had been an initial study on defect widespread or its dependency
on overall product. We define Defect Dependency as a ‘scale to identify the widespread
of a defect with unknown impact and unknown risk over a module(s) or component(s)
or sub-product(s) of a large scale complex software product’. The research presented
in the paper is motivated by the following facts:

1. Achieving software stability in large scale complex products is difficult and not
easy.

2. Existing research doesn’t have efficient methods to identify widespread of a defect
or dependency of a defect over the large integrated complex product.

The specific research aim of the work presented in this paper is the following

1. To investigate various approaches like generalized defect dependency approach,
control flow based approach, and feature correlation based approach to calculate
defect dependency of defect in integrated software products.

2. Perform empirical analysis by implementing these approaches on real time defect
datasets and validate the effectiveness of approach across various version releases.

2 Related Work

Previous research shows various methods to improve software quality in large scale
complex software products. Ekdahl et al. proposed approaches to improve software
integration [5] with low risk and higher quality. Larsson et al. formulated an approach to
improve product integration [6] based on software build check-in data. Both these
approaches helped large software practitioners to build integrated systems efficiently.
Chang et al. suggested a model based object-oriented approach to improve software
integration from requirement and reliability perspective [7]. Gotel et al. proposed a
standard development approach for Integration software product for achieving high
productive products with good quality [8]. Hongyu et al. provided newmethodologies to
support evolution of software architecture using a dependency model so as to avoid
integration issues while merging two different products at architectural level [9]. It
solves architectural issues at greater extent as most of the integrated products are
incorrectly designed due to lack of artifacts available from both the source products
during integration. However, none of the above approaches were proactive enough on
forecasting or assessing long term quality issues. Nagappan et al. performed an
empirical study on software dependencies and churn metrics to predict failure in soft-
ware [10]. Although, the study focused on dependency issues, it was limited to a specific
piece of software and the impact on large-scale software is unknown. Clarke et al. were
the first to propose a model to identify program dependencies for improved quality and
maintenance of an industrial software products [11]. Trinitis et al. formulated
methodology to integrated software products based on component dependencies for
better quality and to avoid functional issues in future version releases [12]. Their work
helped quality teams to formulate practical approaches in real-time scenario. New trends

82 S.A. Karre and Y.R. Reddy

and challenges in software integration were discussed and alternate solutions were
proposed using an industrial case study by Rognerud et al. [14].

There has been significant published work on defect prediction and forecasting.
However, most of these studies are limited to open source software and non-
commercial products that do not have the release timelines and market competition as
commercial software. Junjie et al. proposed a standard approach to study integration
defects using a dependency network of requirements that were drafted based on dis-
cussions with client [13]. Unlike all other defect prediction methods, this approach is
more compatible to industrial adoption. Lin proposed a similar reusability approach for
improving integration using functional requirements as basis of improvising quality
and minimizing defects [15]. Shihab performed empirical analysis and found that there
are more than 100 research papers published on Software Defect Prediction
(SDP) which are mostly into prediction of defects but many do not provide guidance on
using the prediction analysis on real time or rarely consider the impact, risk and
dependency associated with the predicted or forecasted defects [16]. Practical adoption
of SDP in industry to date is limited as a fact that they are too defect-centric and
reactive. Most of the organizations need methodologies to identify most defective part
of their product and need recommendations to practitioners to prioritize defects so as to
avoid breakdown of rest of the product. Chengnian’s DRONE defect prediction method
using multi-factor analysis [17] is closer to industrial adoption, however, their model is
not aimed towards assessing dependency of a defect on overall product.

Our work is focused on the need to understand the defect widespread or defect
dependency in large software products. Our previous work [18] focuses on a generic
mathematical approach to detect defect dependency of a defect using rough set theory
[19, 20]. In this paper, we extend our previous work by making the following unique
contributions:

• We perform a focused heuristic study on implementing our initial approach on a
defect dataset of large-scale integrated software product. We implemented our study
on a real time Integrated Human Resource Management System (IHRMS) and
shared our observations from practical automated evaluation.

• Apart from our initial generalized defect dependency approach, we make use of two
other heuristic approaches (control flow based graph and feature correlation based)
to identify the defect dependency of a defect in large software and share our insights
on implementing these methods in real time.

• We perform a comparative study between these approaches and share our com-
prehension on their usage in industry.

3 Heuristic Approaches

We represent the widespread or dependency of defect by introducing a metric called
Defect Dependency Metric (D*). We use the following heuristic approaches to study
dependency of a defect on a large-scale complex integrated software product and
calculate the value accordingly:

Heuristic Approaches to Improve Product Quality 83

1. Generalized Dependency Degree based Approach
2. Control Flow Graph based Approach
3. Feature Correlation based Approach

3.1 Generalized Dependency Degree Based Approach

This is a mathematical approach based on Generalized Dependency Degree [19]
introduced by Halxuan et al. over Rough sets to calculate dependency of an object or an
entity over another in rough sets. His work was extension to rough ret theory which
was initially formulated by Pawlak in his work on Rough Set Classification theory
[20, 21]. To define rough sets further:

• Consider a rough set over an information system, it can be defined as an approx-
imation space as a pair as S = (U, A) where U is a non-empty finite set called
universal set and A is a equivalence relation defined on a U which is a nonempty
finite set of attributes i.e., a: U → Va for a ϵ A, where Va is called the domain of a.

• Here X be a subset of U, then the lower approximation of X by A in S is defined as
RX = {e ϵ U| [e]� A}, similarly the upper approximation of X by A in S is defined as
RX = {e ϵ U| [e] \ A ≠ ∅} where [e] denotes the equivalence class containing ‘e’.

If we redefine above definition in terms of a defect dependency approach, consider
a defect dataset (D) of a large scale complex software product (L). Then:

• If P1, P2, P3, P4 …… PN are sub products of L, then consider DP1, DP2, DP3, DP4…
DPN are defect subsets of respective sub-products of a universal defect dataset D.

• S = (D, De) is an approximation space, where D is a non-empty finite defect set and
De is a equivalence relation defined over all defect subsets DPi where {i ϵ 1,2,3….n}

• To calculate the dependency of a defect subset attributes over another subset, we
will evaluate the value for Г (Generalized dependency degree) which is defined as:

D� ¼ C O,Hð Þ ¼ 1
Dj j

X O xð Þ\H xð Þj j
H xð Þj j ð1Þ

Here O & H are two equivalent classes generated over an equivalence relation
framed from universal set D. Г provides us the dependency degree of equivalence
classes O and H over each other whereas D* is the notion for defect dependency metric.
This is a purely mathematical approach to understand the dependency of a one set over
another. Each data point in the dataset is a defect. The lower and upper approximation
usually vary between 0 and 10 for large defect dataset, which can be considered as a
scale to evaluate the degree of dependency on a real time defect datasets. It has to be
noted that the metric value always lies between the lower and upper approximation.
The pseudo algorithm to implement defect dependency metric using rough set theory
follows:

84 S.A. Karre and Y.R. Reddy

Experiment – Industrial Case Study. The primary author of this paper has been
working in integrated product development domain for many years and has contributed
to the integration of the integrated product suite in various roles. The primary author is
also pursuing graduate studies on a part-time basis. Hence the authors could gain access
to all the artifacts and the original data. Due to non-disclosure clauses, the name of the
integrated product suite, its product pillars and the organization is being withheld. The
product information shown in Table 1 makes use of alternate names to the existing
(real) names. However the defect dataset presented in Table 2 shows exactly the same
numbers as present in the defect database for the various products and versions of the
integrated software product.

About Dataset - Our industry defect dataset contains defects of an Integrated Human
Resource Integrated System (IHRIS) product with 5 primary product pillars (as shown
in Table 1) that are integrated as a single product suite. Each product pillar has
sub-products within which are deployed in an integrated mode. New service pack of the
entire integrated product is released in every 2 months. Also a maintenance pack is
released twice a month in a calendar year which includes minor fixes for the defects
reported between the release timeline. The defect dataset constitutes defects of all the
products and sub-products of the integrated suite which are extracted from the defect
database of a defect tracking tool called JIRA™. Dataset contains defects raised by QA
teams with developers during every sprint cycle along with defects reported by cus-
tomers post product deployment. The authors worked with quality assurance teams to
extract the defects from both sprint cycles and customers together for calculating the
metric and evaluated the data as per the requirement stated by product managers.

Study Design - The study was conducted between September 2014 and July 2015
which includes three service packs along with five maintenance packs of the above
provided integrated software suite. Product Managers chosen the entire defect dataset
i.e., it includes defect counts of all the sub-product(s) together so as to generate
equivalence classes for all the sub-products and products. Defect Dependency metric
will be applied over these equivalence classes and the metric value is calculated for all
the defects. The value of metric is the indicator for improvement study.

Heuristic Approaches to Improve Product Quality 85

QA teams progressively compared and presented the results to product manage-
ment team so that they can prioritize the defects and take an executive decision on
implementing a plan for a new feature over a stable product(s) or sub-product(s) in
upcoming service packs. This section describes the steps involved on calculating the
metric using the industry dataset:

• Each defect in this dataset is a data point. All defects related sub-products are
considered as sub-sets of universal defect set (D) which include 16 sub-products
(M) spread across 5 product pillars (P). For example, if Web Services Manager is a
pillar product, it contains Export Mgmt., Integration Mgmt. & Web Service Admin
mode as its sub-products projected as sub-sets.

• Each set contains open defects of its sub-product and they are entitled to be cal-
culated together. Here D the universal defect set contains defects of all sub-products
i.e. D = {p1 U p2 U p3 U…………….. U p16} where pi is a sub-product.

Equivalence relation and Equivalence classes are constructed using all the pi sets,
later they are applied to calculate Г(p1, p2,…, p16) to generate overall defect depen-
dency metric D*

Assumptions – While we initially considered the entire defect dataset, it was not
completely pruned. It contained duplicate defects, chained defects, un-formatted defect
reports which are not yet triaged and currently in unassigned or open state.

Implementation Setup - The implementation was programmatically developed using
.NET 4.0 and SQL. Equivalent relation and its classes were generated using a custom
packages created using Microsoft Integration Services. Below is the implementation
flow:

Table 1. Product information.

S. No Product Sub-product

1 Learning Management System (LMS) Admin Mgmt. (L1)
Learner Mode (L2)
Manager Mode (L3)

2 Human Resource System (HRS) Hire Mgmt. (H1)
Compensation Mgmt. (H2)
Succession Mgmt. (H3)
Performance Mgmt. (H4)

3 Business Intelligence System (BIS) BI Dashboards (B1)
Data Downloader (B2)
Data Uploader (B3)

4 Work Force Manager (WFM) Attendance Mgmt. (F1)
Payroll Mgmt. (F2)
Reimbursement Mgmt. (F3)

5 Web Services Manager (WSM) Export Mgmt. (W1)
Integration Mgmt. (W2)
WSM Admin Mode (W3)

86 S.A. Karre and Y.R. Reddy

• Data Extract Package (E) is developed to extract and load defect dataset from
JIRATM database (J) into a Testing Database (T). Metric Package (M) is responsible
to generate equivalent relation and its equivalent classes. Reporting Tool (R) is used
to display the metric results.

• This setup was implemented on Intel Xenon E5-2660 @ 2.20 GHz (8 cluster
processors) with 64 bit Windows Server 2008 R2 SP1 Enterprise as operating
system along with 16 GB of RAM (Fig. 1).

Results. The metric was implemented over open defects logged across 3 service packs
{V1, V2, V3} and 8 maintenance packs {V1.1, V1.2, V1.3, V2.1, V2.2, V3.1, V3.2,
V3.3} releases. V1 was the base version where we first started implementing this metric
and V3.3 was the last. Figure 2 graph contain initial overall metric value for the entire
product suite was high i.e., 6.78 in V1 version and it was significantly improved to 1.08
until version V3.3. Figure 3 graph provides the insight of metric value by product.
Table 2 provides metric details for all the open defects as part of sub-products across its
product pillars. OL, OH, OB, OF, OW being the overall metric for respective product. QA
team has been evaluating the metric by end of every sprint release separately to study
the defect dependency and have been comparing the metric values for prioritizing the
defective module so that it can be fixed with defined criticality.

From version V1 to version V3 we found a significant rise in metric value on every
standard service pack release i.e. V2 and V3. We studied the cause of this increase and
found that rise in metric is due to dependency among the new features introduced in the
respective pillar products. However, as the maintenance pack(s) were released with
subsequent fixes, we found downtrend in metric results within a version i.e. between
V1 to V1.3 etc. At the end of every version, we were able to isolate the defect
dependency to a greater extent at module level in entire integrated software product.
We identified a great fall in defects having higher widespread stabilizing the overall
product.

J E

M

T R

Fig. 1. Implementation flow.

Heuristic Approaches to Improve Product Quality 87

Observations and Remarks. Below observations were captured after implementation
concluded as part of retrospection session conducted between Product Managers and
QA teams for trend analysis.

Table 2. Drilldown metric data of sub-products (M) w.r.t their product-pillars (P).

P M V1 V1.1 V1.2 V1.3 V2 V2.1 V2.2 V3 V3.1 V3.2 V3.3

LM OL 1.84 1.49 1.24 0.99 1.26 1.15 0.53 0.8 0.41 0.28 0.14
L1 0.19 0.18 0.14 0.17 0.14 0.11 0.07 0.09 0.03 0.03 0.03
L2 0.37 0.33 0.26 0.21 0.21 0.16 0.05 0.14 0.11 0.07 0.02
L3 1.28 0.98 0.84 0.61 0.91 0.88 0.41 0.57 0.27 0.18 0.09

HRS OH 2.47 2.1 1.88 1.71 1.97 1.78 1.13 2.54 1.65 1.28 0.56
H1 0.45 0.39 0.33 0.29 0.51 0.45 0.31 0.44 0.31 0.17 0.08
H2 0.39 0.31 0.32 0.29 0.39 0.32 0.29 0.28 0.19 0.12 0.07
H3 0.22 0.21 0.16 0.15 0.18 0.13 0.12 0.14 0.11 0.05 0.02
H4 1.41 1.19 1.07 0.98 0.89 0.88 0.41 1.68 1.04 0.94 0.39

BI OB 1.02 0.93 0.81 0.62 1.08 0.96 0.72 0.98 0.72 0.42 0.19
B1 0.27 0.21 0.18 0.13 0.31 0.28 0.22 0.34 0.21 0.11 0.07
B2 0.32 0.31 0.27 0.17 0.45 0.41 0.29 0.52 0.44 0.29 0.12
B3 0.43 0.41 0.36 0.32 0.32 0.27 0.21 0.12 0.07 0.02 0

WFM OF 1.15 0.96 0.89 0.73 1.05 0.85 0.71 1.2 0.73 0.38 0.19
F1 0.31 0.25 0.19 0.12 0.44 0.37 0.31 0.58 0.31 0.21 0.09
F2 0.24 0.21 0.2 0.11 0.21 0.17 0.14 0.24 0.15 0.06 0.02
F3 0.6 0.5 0.5 0.5 0.4 0.31 0.26 0.38 0.27 0.11 0.08

WSM OW 0.3 0.26 0.22 0.22 0.24 0.1 0.07 0.17 0.06 0.04 0
W1 0.16 0.15 0.13 0.13 0.12 0.07 0.04 0.09 0.04 0.04 0
W2 0.05 0.05 0.05 0.05 0.09 0.03 0.03 0.07 0.02 0 0
W3 0.09 0.06 0.04 0.04 0.03 0 0 0.01 0 0 0

Overall 6.78 5.74 5.04 4.27 5.6 4.84 3.16 5.69 3.57 24 1.08

Fig. 2. Trend graph of overall metric of entire product suite across versions.

88 S.A. Karre and Y.R. Reddy

• There has been significant improvement on stability of the product. We found
exponential decrease in environment and performance related defects across releases.

• By end of V3.3 version release, standard evaluation results found that there was
about 71 % decrease in overall defects reported by customers post product release
and 52 % decrease in internal defects raised by QA teams during sprint cycles when
compared with older versions.

Most of the functional defects which were dependent were proactively identified
and were resolved in timely fashion. This decreased the risk of software failure during
product deployments. Proactive defects constitute 12 % among overall defects recorded
across versions before deployment.

• During this implementation, we found few architectural flaws in two of the
sub-product(s) which required total makeover in terms of integration. This wouldn’t
have been possible if the metric was never implemented. We consider this to be
significant contribution of our approach on real time scenario.

• It was also identified that it is too costlier to re-design the sub-modules when the
product is actively used by most of the customers. Hence, the faultier sub-products
are being disintegrated and are being planned to be merged as components in one of
the existing product for better product stability.

3.2 Control Flow Graph Based Approach

Control Flow Graph approach is a generic approach which uses Control Flow graphs as
base artifact. This method helps us to study the defect dependency on a defect level
across the entire large integrated software product. Below are the steps involved in the
approach:

Fig. 3. Trend graph of overall metric per sub-product across versions.

Heuristic Approaches to Improve Product Quality 89

• Consider a defect d recorded in a large software complex product (L)
• Generate a Control flow graph of defect flow across the entire product suite
• Track and identify all possible artifacts like sub-products (p), modules (m), classes

(c), blocks(b), loops (l), methods (n) etc., which can be depicted from for the control
flow graph using control flow specification language (CFSL) [24] as per respective
large scale complex product design

• Let (∑p + ∑m + ∑c + ∑b + ∑l + ∑n) be minimum approximation of entities
effected during defect flow and ∑L be the maximum approximation of all the
entities calculated using the available control flow graph

• ∑L − (∑p + ∑m + ∑c + ∑b + ∑l + ∑n) is considered as range of the defect. When
the range is divided by ∑L then it is considered as the spread per artifact for the
entire large product L.

• When the above resultant value is subtracted with 1, we get the spread for overall
large product L. This is considered to be the weightage of defect range D* math-
ematically represented as below:

D� ¼ 1�
P

L� P
pþ P

mþ P
cþ P

bþ P
lþ P

nð ÞP
L

ð2Þ

• The scale of D* here is between 0 and 1. Control flow graphs can be automatically
generated using standard software testing tools for large software like RedHat
JBPM1, Soot2 and Dr. Garbage3 etc., using control flow specification language to
generate pseudo code graphs, block graphs etc.

Assumptions – Control flow specification language is represented in XML format. One
has to externally read the XML file and compute the count the desired artifacts. As part
of this approach, we assume that it is possible to capture and generate the control flow
of a defect over a product.

Example - We illustrate the approach using a bug report as an example from product
defined in Table 1.

• Figure 4 is the control flow graph of Defect#101 and the modules linked with defect
are Performance Mgmt., WFM Module, Compensation and the products are HRS

Table 3. Example defect report in IHRIS Integrated Software Product.

Defect#101 Incorrect tax calculation in QTD payroll
Product Payroll Mgmt. (WFM)
Cause Corruption in Employee Rating in Performance Mgmt. caused incorrect flow

into WFM module. Compensation was incorrect calculated causing issue.
Fix Added Exception in Tax calculation for QTD Employee payroll w.r.t data

validation from Performance and Compensation modules.

1 http://www.jbpm.org/.
2 http://sable.github.io/soot/.
3 http://www.drgarbage.com.

90 S.A. Karre and Y.R. Reddy

http://www.jbpm.org/
http://sable.github.io/soot/
http://www.drgarbage.com

(Human Resource System) and WFM (Workforce Mgmt.). Control flow contains
blocks in bold and italic, along with other main modules. The figure also highlights
product and its sub-product to show how overlapped they are in terms of integration
(Table 3).

• ∑L is 76784 which was computed for the complete IHRIS product and
(∑p + ∑m + ∑c + ∑b + ∑l + ∑n) value for the Defect#101 is computed to be 7861.

• By using Eq. (2), D* value for the defect#101 is 0.1023.

Using this approach, D* value can be computed for all the defects reported in a
specific version and defects with high D* value can be prioritized accordingly. If the D*

value is similar for two or more defects, product managers can take a call to prioritize
defects as per business and functional need. This approach has to be re-applied for all
the defects individually to estimate the defect dependency of an individual defect over
an entire large integrated product. This approach also helps QA teams to easily evaluate
the dependency test cases which are difficult to test and fix in real time especially for
large and complex software products.

WFM
(Payroll)

HRS (Compensation)

HRS(Performance)

loadmypay();

getPerfInfo();
getPerfRating();
loadPerfInfo();

loadpayHistory();
loadtaxHistory();

getTaxPay();
getPerfInfo();

settaxPay();
getTaxRule();

generateGrandPay();
publishPerfInfo();
revisepayInfo();

updatemyPay();
updatemyComp();
generatePerfPay();

fetchComp();
fetchCompRule();

updateCompRule();
updateCompHistory();

Fig. 4. Control flow graph of defect#101, methods in block-italic are defective.

Heuristic Approaches to Improve Product Quality 91

3.3 Feature Correlation Based Approach

Large scale software development is hard. Many software projects fail due to lack of
knowledge on dependency of a product feature over another which is an undeniable
truth about the software industry. The primary idea of this approach is to understand the
correlation of the features from overall defects recorded per feature and estimate the
defect dependency among the features in a large integrated software product. We adopt
standard statistical [25] methods to evaluate the dependency over software features
using defects as criteria for assessing the metric. Below are the steps involved in the
approach:

• We will have to pre-process and prune our defect dataset to perform a co-variance
study on product features. Firstly, list down the features available in the product.

• Capture defects counts for against each feature across versions or sprint releases or
product release so as to construct the desired test dataset

• Now calculate the co-variance (cv) (as per Eq. (3)) between features for the
available defect counts and generate a Co-variance matrix (CM). Using Co-variance
matrix, we should be able to understand the relation between the features which
help us to deduce dependency among each other. Below equation is to calculate
co-variance between two features x and y which belongs to same product:

• Note: N = n−1 if the co-variance is calculated for a small sample. Else, we need to
use the entire population size for large datasets.

cv ¼
P

xi� �xð Þ yi� �yð Þ
N

ð3Þ

• The positive co-variance value indicates increasing linear relationship between the
features, whereas the negative co-variance value indicates decreasing relationship.

• Later calculate standard deviation (sd) of each feature i.e. {x, y} and calculate
Pearson Correlation co-efficient (r) to understand the strength of relation, which can
be defined as below:

r ¼ cvðx; yÞ
sd xð Þ � sdðyÞ ð4Þ

• If rj j � 2
ffiffiffiffi
N

p�
then the relationship is statistically exists between specified features,

else there is no relationship between the specified features. This is a causation
validation (c) method to understand the dependence of features among defect dataset.
Causation validation can be considered as our defect dependency metric (D*).

• We illustrate below example to demonstrate the method. Table 4 contains the defect
counts of features {F1, F2, F3, F4} which are captures across 4 different sprint
cycles. Using below example, we will be identifying the relationship between the
features using defect counts as evaluation criteria.

• Table 5 contains the basic statistics which are required to construct the Pearson
Correlation co-efficient, co-variance, correlation and co-variance matrix to identify
the relationship among the features.

92 S.A. Karre and Y.R. Reddy

• Table 6 is the co-variance matrix which contains positive and negative values for
few feature combinations. If we validate heuristically, F2 and F3 are highly related
as the value the covariance is high and the rest are highlighted in bold-italic.

• Similary, F1 and F3 are least related as their covariance value is too low.
• There is no definite scale for co-variance as it depends on the size of population of

dataset used to construct the covariance matrix.

• Table 7 provides causation validation on features across defect dataset. If the value
is +ve, there exists a dependence relationship between the features. Else the
depedence relation don’t exist. For our sample defect dataset, F1–F3 and F2–F3 are
strongly dependent to each other.

Table 4. Sample feature-sprint cycle defect count set.

 Feature
Cycle

F1 F2 F3 F4

Sprint Cycle 1 21 34 9 6
Sprint Cycle 2 19 31 4 11
Sprint Cycle 3 16 29 8 12
Sprint Cycle 4 17 19 2 9

Table 5. Statistics of sample defect data.

Feature Size Mean Std. deviation Variance

F1 4 17.5 12.76 163
F2 4 28.25 6.5 42.25
F3 4 5.75 3.304 10.91
F4 4 9.5 2.64 7

Table 6. Co-variance Matrix of features from sample defect data.

CM F1 F2 F3 F4

F1 163 0.334 0.091 −0.400
F2 0.334 42.25 2.338 −0.553
F3 0.091 2.338 10.91 −0.744
F4 −0.400 −0.553 −0.744 7

Table 7. Causation validation of feature relationship.

D* F1 F2 F3 F4

F1 - −ve +ve −ve
F2 −ve - +ve −ve
F3 +ve +ve - −ve
F4 −ve −ve −ve -

Heuristic Approaches to Improve Product Quality 93

• Using this methods, project managers and quality teams will be able to understand
the actual dependent features within defect dataset. This approach is statistical in
nature and can be statistically validated for improved results on larger defect
datasets.

• The above steps are to be repeated for every desired interval i.e. every sprint cycle
or test cycle or release cycle to learn the pattern defect dependency over features
and formulate the stability of the product.

4 Comparison and Scope of Implementing Approaches

In this section, we compare and comprehend above proposed approach to understand
their ease of usage and study the likelihood of adoption in real-time (Table 8).

In contrast, not all above approaches might help software practitioners on
addressing software quality issues in large software. In reality, it is critical to construct
a control flow graph for a large software due to its complexity. Such software products
should be first refactored and later be inspected to understand defect dependency. Also,
not all software products have recorded software specification documents. Especially in
case of legacy systems, there can be few details available which might only suffice
basic understanding of the product. However lack of design documents might not help
us implement feature based correlation approach. Software practitioners might have to
address functional requirements of their complex product before implementing above
proposed method.

Table 8. Detailed comparision of proposed approaches.

Approach

Category

Generalized
Dependency
Degree based

Approach

Control Flow
Graph based

Approach

Feature
Correlation

based Approach

Defect Dataset apt for large any size any size

Scope
prioritize most

widespread
defects

improve control
flow among sub-

products

improve features
and address

functional issues

Implementation
programmatically

achieved
partially program-
matically achieved

programmatically
achieved

Verification empirical formal statistical

Validation
n-fold

cross-validation
informal

inspection
statistical

Advantages
easy to evaluate

across
sub-products

easy to evaluate at
defect level

easy to evaluate at
feature level

Challenges
difficult to study

at a single
defect level

difficult to study if
it is not possible to

generate control
flow

difficult in case of
unavailability of

functional
specifications

Automation non-generic partially generic generic

94 S.A. Karre and Y.R. Reddy

5 Future Work

In recent years, there is moderate growth of transfer of research on new technologies
from academia to industry [22]. There were many lessons learnt from industrial case
studies over a decade [23]. As part of our current work we presented new methods to
compute defect dependency and was successfully able to implement them in real world
defect dataset. Initially it has become difficult for us to convince our quality teams to
adopt and automate the approach as the metric was not substantially showing any
improvement. In due course of implementation across various release versions we were
able to realize the significance of the defect dependency. As a future work, we will be
assessing the metric more comprehensively by getting feedback from developers and
quality teams on how significant this method helps them to prioritize the defect as part
of regular work. We will be implementing the feature correlation approach on
open-source defect datasets and also explore new approaches which can help evaluate
the defect dependency at all levels of software production cycle instead restricting to
specific artifact.

6 Summary

In this paper we present our work on need of defect dependency metric and its suc-
cessful practical implementation on real-time industry dataset. Apart from our initial
study we have also proposed few new approaches to calculate and verify defect
widespread or defect dependency over a large scale complex software product. Soft-
ware quality in large scale software products has been challenging, especially during
integration or dis-integration of legacy products in industry. This has been our driving
force to study approaches to defect dependency. We are assertive to note that the
proposed approaches are generic, simple and heuristic in nature with less complexity
and can be easily adopted in industry without any technical challenges. We strongly
recommend software practitioners to implement any of these approaches and record the
defect dependency metric as a standard and use it as a measure for assessing the quality
of large integrated software products.

Acknowledgements. The Authors Would like to Acknowledge Product Managers and Solu-
tions Architects from Sumtotal Inc. and Factset Research Systems Inc. for Sharing Their
Valuable Assistance, Suggestions and Feedback on Implementing Our Research into Reality.

References

1. Yoshida, M., Iwane, N.: Towards the software life cycle cost for integrated software product
line systems. In: International Conference on Industrial Informatics, pp. 910–916. IEEE
Press, Singapore (2006)

2. Dong, J., Wang, J., Sun, D., Lu, H.: The research of software product line engineering
process and its integrated development environment model. In: International Symposium on
Computer Science and Computational Technology, pp. 66–71. IEEE Press, Shanghai (2008)

Heuristic Approaches to Improve Product Quality 95

3. Saaksjarvi, M.: Software application platforms: from product architecture to integrated
application strategy. In: 26th Annual International Proceedings of Computer Software and
Application Conference, pp. 435–443. IEEE Press, Oxford (2002)

4. Pazzini, M., Natis, Y.V., Malinverno, P., Iijima, K., Thompson, J., Thoo, E., Guttridge, K.:
Magic Quadrant for Enterprise Integration Platform as a Service, Worldwide, Report:
G00270939, Gartner Press (2015)

5. Ekdahl, F., Crnkovic, I.: How to improve software integration. Inf. Softw. Technol. J. (2005)
6. Larsson, S., Crnkovic, I.: Product integration improvement based on analysis of build

statistics. In: European Software Engineering Conference, pp. 505–508. IEEE Press,
Dubrovnik (2007)

7. Chang, C.-H., Chu, W.C., Lu, C.-W.: Improving software integration from requirement
process with a model-based object-oriented approach. In: International Conference on
Secure System Integration and Reliability Improvement, pp. 175–176. IEEE Press,
Yokohama (2008)

8. Gotel, O., Kulkarni, V., Scharff, C., Neak, L.: Integration starts on day one in global
software development projects. In: IEEE International Conference on Global Software
Engineering, pp. 244–248, Bangalore (2008)

9. Pei, H., Crnkovic, I.: Using dependency model to support software architecture evolution.
In: 23rd IEEE/ACM International Conference Automated Software Engineering-
Workshops, pp. 82–91, L’Aquila (2008)

10. Ball, T., Nagappan, N.: Using software dependencies and churn metrics to predict field
failures - an empirical case study. In: Proceedings of International Symposium on Empirical
Engineering and Measurement, pp. 364–373. IEEE Press, Madrid (2007)

11. Clarke, L.A., Podgurski, A.: A formal model of program dependences and its implications
for software testing debugging and maintenance. Proc. IEEE Trans. Softw. Eng. 16(9),
965–979 (1990)

12. Trinitis. C., Walter, M.: How to integrate inter-component dependencies into combinatorial
availability models. In: Proceedings of Annual Reliability and Maintainability Symposium
(RAMS) Proceedings. Modeling and Simulation Techniques, pp. 226–231 (2004)

13. Wang, J., Li, J., Wang, Q.: Can requirements dependency network be used as early indicator
of software integration bugs? In: Proceedings of 21st IEEE International Requirements
Engineering Conference, pp. 185–194, Rio De Janeiro (2013)

14. Rognerud, H.J., Hannay, J.E.: Challenges in enterprise software integration: an industrial
study using repertory grids. In: Proceedings of International Symposium on Empirical
Software Engineering and Measurement, pp. 11–22, Lake Buena Vista (2009)

15. Lin, J.-M.: Cross-platform software reuse by functional integration approach. In:
Proceedings of 21st International Conference on Computer Software and Application
Conference, pp. 402–408, Washington (1997)

16. Shihab, E.: Practical software quality prediction. In: Proceedings of International Conference
on Software Maintenance and Evolution, pp. 639–644, Victoria (2014)

17. Tian, Y., Lo, D., Sun, C.: DRONE: predicting priority of reported bugs by multi-factor
analysis. In: Proceedings of International Conference on Software Maintaince (ICSM),
pp. 200–209, Netherlands (2013)

18. Karre, S.A., Reddy, Y.R.: A defect dependency approach to improve software quality in
integrated software products. In: Proceedings of International Conference on Evaluation of
Novel Approaches to Software Engineering, pp. 110–117, Barcelona (2015)

19. Yang, H., King, I., Lyu, M.R.: Generalized dependency degree between attributes. Proc.
J. Am. Soc. Inf. Sci. Technol. 58(14), 2280–2294 (2007)

20. Pawlak, Z.: Rough classification. Int. J. Hum. Comput. Stud. 51(15), 369–383 (1999)

96 S.A. Karre and Y.R. Reddy

21. Gediga, G., Düntsch, I.: Rough approximation quality revisited. Proc. J. Artif. Intell. 132(2),
219–234 (2001)

22. Laird, L., Yang, Y.: Transferring software engineering research into industry - the Stevens
way. In: Proceedings of IEEE/ACM 2nd International Workshop on Software Engineering
Research and Industrial Practice (SER&IP), pp. 46–49 (2015)

23. Wohlin, C.: Empirical software engineering research with industry: top 10 challenges. In:
Proceedings of 1st International Workshop on Conducting Empirical Studies in Industry
(CESI), pp. 43–46, (2013)

24. Smelik, R., Rensink, A., Kasternberg, H.: Specification and construction of control flow
semantics. In: IEEE Symposium on Visual Languages and Human-Centric Computing.
IEEE Press, pp. 65–72 (2006)

25. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd Edition. Wiley
India Pvt Ltd, India (2009). ISBN-10:8126524480, ISBN-13:978-8126524488

Heuristic Approaches to Improve Product Quality 97

Towards a CBSE Framework for Enhancing
Software Reuse: Matching Component

Properties Using Semi-formal
Specifications and Ontologies

Andreas S. Andreou1 and Efi Papatheocharous2(&)

1 Department of Computer Engineering and Informatics,
Cyprus University of Technology, Limassol, Cyprus

andreas.andreou@cut.ac.cy
2 Swedish Institute of Computer Science, SICS Swedish ICT, Kista, Sweden

efi.papatheocharous@sics.se

Abstract. A novel Component-based Software Engineering (CBSE) frame-
work is proposed in this work that focuses on enhancing the reuse process by
offering support for locating appropriate components. The architecture of the
framework comprises of five interrelated layers, namely Description, Location,
Analysis, Recommendation and Build. The scope of this work is to describe in
detail the first and third layers, and provide the means to evaluate the suitability
of candidate software components for reuse. The overall aim is to facilitate
components’ profiling and offer efficient matching of system and software
requirements to increase the reusability potential of components. A specifica-
tions profile is created for each component using a semi-formal natural language
that describes certain properties. A dedicated parser recognizes parts of the
profile and translates them into instance values of a dedicated CBSE ontology
that encodes these properties. Matching is then performed at the level of
ontology instances between the available components and the components
required by the developer. The framework recommends components based on a
suitability ratio that calculates their distances from the desired properties.

Keywords: Software engineering � Components � Reuse � Semi-formal spec-
ifications � Ontology

1 Introduction

Component-based software engineering (CBSE) has emerged during the last two
decades as a recognizable approach within the software development process that relies
on extensive reuse of existing components and has attracted considerable research
attention [1]. The most significant advantages of reusing existing software components
parts instead of developing systems from scratch, either small-grained units (functions,
classes) or large-grained fully-fledged systems (Components Off The Shelf, COTS), are
typically the acceleration of the development process, the increased dependability of
the reused software and the reduction of the associated process risks. However, these

© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 98–121, 2016.
DOI: 10.1007/978-3-319-30243-0_6

benefits have been explicitly reported in only 33 % of the studies according to the
systematic literature study [1]. Hence, software development with and for reuse still
suffers from certain weaknesses that hinder their full exploitation potential. In our
opinion, one of the most challenging weaknesses is the lack of efficient mechanisms to
assess the suitability of candidate components for reuse. This is exactly the problem
dealt within this work.

According to Szyperski’s definition in (2002), “A software component is a unit of
composition with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to compo-
sition by third-parties” [2]. This is particularly relevant with the way systems are
developed today, as a lot of investment is put in using or buying ready-made com-
ponents, through large-grained software reuse. The resulting systems are more quali-
tative and their time-to-market is significantly reduced, while at the same time, cost
savings can be realized.

In the domain of CBSE two primary types of roles are distinguished: the software
developer that develops the component from scratch and the reuser-developer or
consumer, that is, the developer that makes use and integrates the ready-made com-
ponents to develop a new software system. There are several alliances and agreements
that need to be formed between software creators, vendors and owners. Completing a
software product on time, within budget and with the required quality depends heavily
on these relations, as well as on the methods and/or techniques utilized to support the
development process. Mili et al. [3] define software reuse as “the process whereby an
organization defines a set of systematic operating procedures to specify, produce,
classify, retrieve and adapt software artefacts for the purpose of using them in its
development activities.”

Nowadays, although the software components industry is steadily growing, and
many emerging concepts such as Software as a Service (SaaS), Open Source Software
(OSS) components and Components Off The Shelf (COTS) become more and more
common in the way software is developed, there is still lack of efficient support to
components’ management, storing and retrieval. Although there are multiple brokers
that try to serve reusers or consumers, and related communities are formed (for
example the large Open Source community), still nowadays the need for more
appropriate tools is emphasized. Tool support is in a way unavoidable for CBSE to
succeed [1]. Even though many efforts are recognized to exist today, Barn and Brown
[4] talk about the development of new generation tools of appropriate methods and
tools that will encourage reuse and wider CBSE practice.

In a recent systematic mapping study of the CBSE area it was identified that the
majority of the literature studies address primarily new solutions’ functionality, while
interaction (e.g., between components, component compositions, reusability property)
and quality concerns are the second and third most common research topics respec-
tively [1]. In addition, among the list of research gaps reported, two of them signifi-
cantly motivate the present work: Gap 4 and Gap 5 (as mentioned in the study above).
The first indicated that CBSE concepts are still not fully integrated in industry or into
the overall development and maintenance processes. In addition, the latter, also indi-
cated that further research is needed to investigate how functionality, methodology and
management must be further developed for CBSE to work in the first place, how CBSE

Towards a CBSE Framework for Enhancing Software Reuse 99

can work efficiently and how components may be assessed. These research gaps
pin-pointed by Vale et al. [1] indicate that there is still great need for methodological
approaches to improve and automate the processes of modelling, searching, retrieving
and analyzing candidate components for integration.

To this end, the present work proposes a new CBSE reusability framework as an
extension of the work in [5]. The architecture of the framework (as originally presented in
[5]) comprises of five interrelated layers, namely Description, Location, Analysis, Rec-
ommendation and Build. The first layer of the framework is the key component to the
process as it is responsible to profile component specifications using an expressive and
easily understood (by component developers and reusers) semi-formal natural language
structure. The purpose is to make it possible to capture properties useful for components’
matching in an intuitive manner. This profile is then transformed into a more formalized
ontological representation and a simple, yet efficient way, to use this representation for
automatically matching components based on the suitability level of candidate compo-
nents that is calculated by comparing ontology tree instances. The matching process is
carried out in the third layer and the recommended solutions (components) are provided to
the fourth layer of the framework that yields detailed recommendations, as to which of the
candidate components may be best integrated and why.

In this work we focus and extend the implementations of the first and third layers.
The framework focuses on the identification of components and their assessment in
terms of required features (functional or non-functional properties). It demonstrates
their suitability for integration according to a prescribed (or desired) requirements
profile. The main novel aspects of this, is that the CBSE reusability framework
approach consists of: (i) profiling of the components using the Extended Backus-Naur
Form, which describes the desired properties of the required components, and (ii) an
automatic search and retrieval mechanism for finding appropriate components for
reuse. The latter utilizes the profiling scheme and without human intervention it
delivers the most suitable components in three sequential steps: parsing the ontology
profiles of the requested and available components, executing the matching algorithm
and recommending the best matches. To the best of our knowledge existing approaches
in the relevant literature do not offer such properties of filling-in the gap of automation
and management of components’ CBSE and reuse processes, neither have proper
support for managing non-functional properties. The latter is also mentioned as Gap 6
in study [1].

The most significant differences between this work and that of [5] may be sum-
marized to the following:

(a) The profile used to describe the components is modified and enhanced so that both
horizontal and vertical expansion is feasible. Horizontal expansion refers to
adding new values for a fixed (pre-defined) property, while vertical means the
ability to add new properties. In the latter case the parsing mechanism is modified
accordingly to be able to recognize the extension.

(b) The matching process is extended and includes the option of assigning weights to
certain properties. This addition makes it possible to increase the properties’
significance and this is primarily used in the comparison between available can-
didates. Therefore, the overall suitability of components can be adjusted based on

100 A.S. Andreou and E. Papatheocharous

what reusers consider more important when looking for appropriate
component-solutions.

(c) The recommendation layer is also slightly enhanced with information that reveals
possible incompatibilities between the successful candidates and what the reuser
tries to find. Such incompatibilities are mostly focused on differences between
programming platforms used to develop the candidates, or operating systems
supported, and would potentially result in increase of the time and effort required
by the reuser to integrate the component with the rest of the system. This case
only applies if the properties that present incompatibility have been declared as
desired and not as constraints.

(d) The experimental process was significantly extended and now includes a second,
larger stage of experiments with increased levels of complexity and size as regards
the targeted software application that is to be developed through reuse activities,
thus touching also upon issues of scalability and efficiency.

The rest of the chapter is organized as follows: Sect. 2 provides a brief literature
review on the subject. The proposed approach CBSE reusability framework for pro-
filing and matching components is described in Sect. 3. The section starts with an
overview of the reusability framework, continues with a presentation of the
semi-formal description of components specifications and ends with the presentation of
the details of the matching process, including the a dedicated CBSE ontology and the
matching algorithm. Section 4 describes the experimental process which is divided into
two stages and reports some interesting findings on the assessment of the proposed
approach framework. Finally, Sect. 5 concludes the chapter and suggests further
research steps.

2 Literature Overview

The literature overview of this section focuses on relevant publications on matching
required properties and components. The relevant component search and retrieval lit-
erature is rich with studies about COTS, while Quality of Service (QoS) is one of the
most frequently used mechanisms for component matching. In addition, ontologies
have offered promising common ground to the CBSE process, either for describing
metrics or properties for assessing components, or for supporting in some way their
matching process. A brief outline of some of those studies follows.

Zaremski and Wing [6] were among the first, to the best of our knowledge, to use
formal specifications to describe the behavior of software components and to determine
whether two components match. Chung and Cooper [7] presented an approach that
supports iterative matching, ranking and selection of COTS represented as sets of
functional and non-functional requirements. The work of Iribarne et al. [8] presented an
extension of approaches dealing with component search and service matching in which
components offer several interfaces. More specifically, they addressed service gaps and
overlaps extending the traditional compatibility and substitutability operators to deal
with components that support multiple interfaces. Yessad and Boufaida [9] proposed a
Quality of Service (QoS) ontology for describing software components and used this

Towards a CBSE Framework for Enhancing Software Reuse 101

ontology to semantically select relevant components based on the QoS specified by the
developer. Pahl [10] presented an approach for component matching by encoding
transitional reasoning about safety and liveness properties into description logic and a
Web standards compliant ontology framework. Yan et al. [11] attempted to address the
lack of semantic description ability in component searching and retrieval by intro-
ducing a conceptual ontology and a domain ontology. The authors represented a
component ontology library by a conceptual and a component graph. During the
retrieval process, the retrieval pattern graph was matched with the component graph
using a component retrieval algorithm based on graph patterns. Kluge et al. [12]
suggested an approach for matching functional business requirements to standard
application software packages via ontologies. Seedorf and Schader [13] introduced an
enterprise software component ontology to establish a common understanding of
enterprise software components, i.e., their types and relationships to entities in the
business domain. Alnusair and Zhao [14] proposed a semantic-based approach for
retrieving relevant components from a reuse repository utilizing an ontology model
comprising of three axes, source-code, component, and domain-specific ontology.
Their experiments suggested that only pure semantic search that exploits domain
knowledge tends to improve precision.

Although it is evident from the above studies that matching of component speci-
fications through the use of ontologies is not a new concept, their results also show that
it is a promising and worth pursuing research subject. Their results exhibit several
improvements but also emphasize the need for expansions. What is more important to
highlight, is the fact that current studies do not cover adequately practical aspects of
component reusability. This is because they: (i) express component services in abstract
ontology forms and/or provide matching algorithm descriptions sometimes with and
other times without the use of ontology information, or (ii) do not provide concrete, yet
simple, descriptors of the component properties, which may be reused by tools or
methods that could further aid the reuse process. This chapter aspires to address this
need by introducing an integrated CBSE reusability framework for components’ reuse,
which offers a layered approach that guides the reuse process. The details of the
framework are presented next.

3 CBSE Reusability Framework

3.1 Overview

The proposed CBSE reusability framework is depicted in Fig. 1 and consists of five
layers (sub-systems). Each layer supports a part of the CBSE development process as
follows: (i) The Description layer is responsible for creating the component profiles,
which includes the properties for the components offered or required. A developer
(either component developer or reuser) defines the functional and non-functional
requirements that are provided by or required from existing components depending on
the role the developer has within the process. The former essentially provides the
functional behavior and properties of the available components in terms of function-
ality, performance, availability, reliability, robustness etc., and the latter provides the
required properties. (ii) The Location layer offers the means to search, locate and

102 A.S. Andreou and E. Papatheocharous

retrieve the components of interest that match the profile. (iii) The Analysis layer
provides the tools to evaluate the level of suitability of the candidate components and
yield matching results that will guide the selection of components for reuse. (iv) The
Recommendation layer uses the information received from the profiling activities and
produces suggestions to reusers as to which of the candidate components may be best
integrated and why, through a cost-benefit analysis. (vi) The Build layer essentially
comprises a set of integration and customization tools for combining components and
building larger systems.

One of the challenges that the present work addresses is the issue of narrowing down
the component requirements for searching and locating appropriate components, con-
sidering a minimal set of criteria and associating the various candidates with a ratio
value of suitability. The latter can enable reaching to a plan (or recommendation) on how
to progress with a project, and how to integrate components into one fully-functioning
system. Therefore, in this work, we focus to describe only on the details of the activities
carried out in the Description and the Analysis layers. We focus to describe the process
for conducting automatic matching between required and offered properties of com-
ponents based on a structured semi-formal natural language and using ontologies. The
proposed matching process consists of the following three steps:

Fig. 1. Layered architecture of the proposed CBSE reusability framework.

Towards a CBSE Framework for Enhancing Software Reuse 103

Step 1. The required functional and non-functional properties of the component(s) are
first described in a specifications profile using a semi-formal natural language. Func-
tional properties specify a function that a system or system component must be able to
perform [15]. Non-functional properties are software requirements that describe not
what the software must do but how the software must do it [15]. The standards
(ISO/IEC) were used as inspiration on what kind of properties one might use to
describe specifications. Details on the profile descriptions are given in Subsect. 3.2.
Step 2. In this step, the profile specified is automatically parsed and certain textual parts
are recognized. These are then translated into instance values of a dedicated CBSE
ontology (details of the CBSE ontology are described in Subsect. 3.3.1). This ontology
is built so as to highlight various development issues from the perspective of com-
ponents reusability.
Step 3. The final step performs matching between required and offered components’
properties, the latter being stored also as instances of the CBSE ontology. This
matching takes place automatically at the level of ontology items and a suitability ratio
is calculated that suggests which components to consider next for possible integration.
Details on the matching process are provided in Subsect. 3.3.2.

3.2 Level 1: Description Layer

Nowadays, the metrics and properties met in Service Level Agreements (SLA) tend to
become standard in the software industry, especially for applications executing on dis-
tributed systems and the Cloud. The same concepts may easily be applied in our case
where we target at providing a profiling scheme able to capture the properties of com-
ponents for the purpose of reusing them in building larger applications. In this context,
there are various approaches to SLA metrics, like those suggested by Czajkowski
et al. [16], Emeakaroha et al. [17], Mili et al. [19] and Paschke and Schnappinger-Gerull
[18]. These studies make some useful categorization either in the context of performance
metrics from both the hardware perspective (e.g., availability, failure frequency, pro-
cessor time, etc.) and the software perspective (e.g., service times, response times,
solution times, etc.), or from the point of view of the type of property described (e.g., time
and scalar metrics). These categorizations have been carefully studied and certain con-
cepts have been adopted and adapted in this work so as to reflect better the concepts of
components description that are deemed necessary to support efficient reuse. The latter is
realized by supporting effectively the process of finding the appropriate components for
each case.

The first layer of the proposed CBSE reusability framework supports a specific type
of component profiling, which uses information revolving around three axes: func-
tional, non-functional and reusability properties. The selection of these axes was made
targeting at describing a component from the perspective of the core functional aspects
offered, the quality features and other constraints with direct effect on the functional
properties, as well as a third viewpoint focusing on reusability issues. One may argue
that the latter two types of properties may overlap. This is actually true as there is a thin
line separating certain properties, while others may have the same meaning (e.g., use of
standards). Nevertheless, we decided to differentiate between the two so as to

104 A.S. Andreou and E. Papatheocharous

emphasize on reuse issues and offer a way to handle information that may not involve
general quality properties but at the same time is of particular importance to a com-
ponent consumer, like for example those reported in the ISO-9126 standard. This
becomes clearer in the description of the types of properties used to profile components
that follows:

(i) Functional Properties. One or more functional aspects included in the component
are described. More specifically, the services offered by the component are out-
lined, accompanied with the structure of the published interface (i.e., provides/
requires, detailing what services must be made available for the component to
execute and what services are offered by the component during execution).
Component contracts are also reported with the related Pre-conditions, Post-
conditions, Invariants and Exception handling descriptions (i.e., cases where
pre/post-conditions or invariants might be violated per method).

(ii) Non-functional Properties. Non-functional constraints, such as quality properties
are reported. Performance indicators, resources requirements (e.g., memory and
CPU) and other quality features (i.e., quality attributes based on the ISO 9126
standard, like availability (MTBF) and reliability) are described.

(iii) Reusability Properties. The aspect of reusability of the component is described. It
involves general information about the component related to its context, legacy
and ways of current use, its flexibility and other factors that are considered useful
to reusers. Properties here can include the application domain the component is
developed for, the programming languages used, the operating system(s) that is
able to execute on, the type of openness/extensibility (i.e., black, glass, grey,
white), its price, developer information (i.e., details about the company or indi-
vidual that created the component), a list of protocols and standards the compo-
nent supports (e.g., JMS/Websphere, DDS/NDDS 4.0, CORBA/ACE TAO,
POSIX, SNMP and .NET), as well as information about accompanying docu-
mentation (like design, administration and user manuals, and test cases). Some of
the above properties even though important for the component’ utilization, they
are made optional in the implementation and thus it depends on the component
developers to provide the corresponding information.

The component properties descriptions are written in the Extended Backus-Naur
Form (EBNF). Expressing the component descriptions in the EBNF notations allows us
to formally prove key properties, such as well-formedness and closure, and hence help
validate the semantics. The proposed grammar has been developed with the Another
Tool for Language Recognition (ANTLR) parser generator (http://www.antlr.org/).
ANTLR is a parser and translator generator tool that allows language grammars’
definition in an EBNF-like syntax.

Table 1 presents the EBNF description of a component. As previously mentioned,
this description is used as a template from both the component developer and the
reuser. The developer’s motivation to provide this information in the best possible way
is to increase the chances and frequency of successful reuses and the reuser needs to
specify this information so as to be able to search and find the best possible alternatives
for integration. One may observe that component properties descriptions will have to
present some differences in the information provided from the two types of users.

Towards a CBSE Framework for Enhancing Software Reuse 105

http://www.antlr.org/

Table 1. Profile of a component in EBNF form.

(Continued)

106 A.S. Andreou and E. Papatheocharous

These differences are denoted in the comment lines (text in green which starts and ends
with the symbol ‘*’) and refer mostly to information about contracts, developer details
and documentation, which are not among the key information that reusers would need
to define when searching for components, and they rather constitute peripheral com-
ponent information from the reusability property descriptions. A key point here is the
ease of extensibility of the profile presented in 1. We distinguish two types of
expansion, horizontal and vertical. The horizontal expansion is realized by adding new
values at the end of certain properties where applicable. This is indicated by the ellipsis
(i.e., the punctuation mark consisting of three dots) after the last property value, for
example after ‘GUI’ for Primary Type. The vertical expansion is similarly depicted in

Towards a CBSE Framework for Enhancing Software Reuse 107

two specific parts of Table 1, namely the non-functional and the reusability properties,
and it may be achieved by adding any new properties expressing them in the proper
EBNF format and by modifying the parsing module so that it transforms the new
property elements to the correct instances of the revised ontology scheme. This feature
is not yet automatically supported; it is supported conceptually and it is left as part of
our future work on the supporting software tool.

While reading the profile from top to bottom, the reuser finds the definitions used
for the component items in the template. The reuser starts by filling-in this information,
giving a name and selecting a list of (one or more) services the component is required
to offer. Each service is defined by a primary functionality type, a secondary infor-
mative type and thirdly, an optional description. Primary types include general func-
tionality offered, like I/O, security and networking, while the secondary type explicitly
expresses the kind of function it executes, like authentication, video streaming, audio
processing etc. For example, a service could be [Security, Login Authentication]. If a
service is sought for, then the reuser assigns a Requirement value, either Constraint,
which means it is absolutely necessary and a candidate component is rejected if it does
not offer it, or Desired, which simply adds points to the suitability value of a candidate
component. Interfacing information comes next where each service is decomposed into
the various methods that implement its logic; a method is analyzed to its constituent
parts of Pre-conditions, Post-conditions, Invariants and Exceptions (if any). This piece
of information can be provided by the component developer. Non-functional require-
ments or properties are defined next by the reuser and developer (creator) respectively,
the former denoting what the search is for (and can be either defined as mandatory or
desired), and the latter denoting what the component has to offer. Finally, both the
reuser and the developer fill-in general information useful for reusability purposes
(application domain, programming language, OS etc.) with the reuser again denoting
the level to which a certain feature is required (defined as mandatory or optional). It
should also be mentioned that certain features in the sought profile may be assigned to
specific values along with a characterization as to whether this feature should be
minimized (i.e., the value denotes an upper acceptable threshold) or maximized (i.e.,
the value denotes a lower acceptable threshold) in the suitable components offered. For
example, if response time should be confined under 15 s, then next to that performance
indicator the values (15, minimize) should be entered.

3.3 Level 3: Analysis Layer

3.3.1 Dedicated CBSE Ontology
A dedicated CBSE ontology is developed to reflect development issues based on the
reusability of components. The ontology essentially addresses the same property axes
and adheres to the same semantic rules of the component profile so that an automatic
transformation of the latter to instances of the ontology is feasible. Figure 2 depicts the
largest part of the ontology; some details have been intentionally left out to make the
graphical representation more readable. A component is fully described by instances of
the ontology items and can therefore be used as the basis for the matching process that is
described next. This process works at the level of the ontology tree rather than the

108 A.S. Andreou and E. Papatheocharous

textual descriptions of the profile as comparison between required and available com-
ponents is easier and more profound, both computationally and graphically (visually).

3.3.2 Matching Process
The matching process defined in this work was inspired by considering the strengths
and weaknesses of similar approaches identified in the relevant literature. Some
researchers focus on components retrieval issues and propose different methods for
description processing, like simple string (e.g., Mili et al. [6]), signature matching (e.g.,
Zaremsky and Wing [21]) and behavioural matching (e.g., Zaremsky and Wing, [7]).
The proposed approach may be considered as a hybrid method comprising string and
behavioral matching but in a different manner than the aforementioned studies.

More specifically, the cornerstone of the matching process is a dedicated parser
which identifies parts of the profile (functional and non-functional behavior, interfaces,
performance indicators, etc.) and translates them into the CBSE ontology. The parser
first checks whether the profile is properly described in the context and semantics of the
structure presented in Table 1 using the ANTLR framework. Once successful, the
parser proceeds with recognizing the parts of the profile and building the ontology tree
of instances following the algorithm presented in Fig. 3. The parser essentially builds
ontology tree instances which describe the requested and the available components.
The next step is the matching of properties between ontology items. The tree instance
of the required component is projected on top of all other candidates assessing the level
of requirements’ fulfilment in multiple stages. The first stage requires that all con-
straints are satisfied. In this case, the list of services sought must be at least a subset of
the services offered. The second stage, executed once all constraints are satisfied,
calculates the level of suitability of each candidate component. A demonstration
example for this stage is given in the first part of the experimental section.

A requested component Pr defines in its profile a set of constraints K that must be
satisfied including number and type of services, performance and quality factors,
resource requirements, protocols/standards and documentation. The matching between

Method

InterfaceService

Is part of

Application
Domain

Implements

Is published

Requires Provides

Contract

Precondition Postcondition

Constrains

Invariant Exception

Determines

Programming
Language

Openness

Performance
Indicators

Quality Features

Codes

Characterize

Are offered

Is applied

Black White

Grey Glass

Allows

Component

O.S.

Price

Protocols /
Standards

Documentation

Resource
Requirements

Are provided

Describes

Costs

Apply

Suit

Fig. 2. The CBSE ontology based on three axes: (i) Functionality, (ii) Non-functional, and
(iii) Reusability properties.

Towards a CBSE Framework for Enhancing Software Reuse 109

the discrete items in the profile of Pr and those of a candidate component Pc is
determined through the following rules:
Rule (A): Pc is a suitable candidate for Pr if and only if every item k 2 K is satisfied

by the corresponding item in Pc. We denote this by Pc � candPr:
Rule (B): Pc is an exact match of Pr if and only if every item l defined in Pr is offered

by Pc. We denote this by Pc � Pr.

Clearly rule (B) subsumes rule (A). The level of suitability is calculated for each
suitable candidate as the ratio of matched profile items required (i.e. that are actually

Fig. 3. Algorithmic approach for the parsing process and ontology transformation.

110 A.S. Andreou and E. Papatheocharous

offered by the candidate component) to the total items outlined in Pr. More specifically,
a dissimilarity value is calculated which indicates, in case of multiple suitable candi-
dates, which one is closer to what has been requested.

We distinguish two types of properties, one of binary type (offered ‘yes’/‘no’) and
one of numerical type (e.g., price, response time). Matching properties of the former
type presumes that all constraints are by default satisfied and its level is calculated
simply by following the equations described hereafter.

The binary dissimilarity is calculated as:

Rbin ¼ 1
M

XM

i¼1
di;c;r ð1Þ

where

di;c;r ¼
0; if property i required in Pr is offered by Pc

1; if property i required in Pr is not offered by Pc

(
ð2Þ

and M the number of binary properties defined in Pr.
The numerical type is associated with minimum and maximum acceptable values.

Therefore, matching of numerical properties is essentially another assessment of dis-
similarity, which is performed by measuring how far from the optimal value (either
maximum or minimum) lies the offered property value. We distinguish two cases:

(i) The property is mandatory (constraint). The candidates in this case satisfy the
lower or upper bound of the defined feature value. Therefore, the distance
between the values of the required and offered components is calculated by:

dCi;MAX ¼ maxvi � vi
maxvi � minvi

ð3Þ

for feature value maximization, and

dCi;MIN ¼ vi � minvi
maxvi � minvi

ð4Þ

for minimization, while the total numerical dissimilarity for the constraints is calculated
as:

Rnum;const ¼ 1
T

XT

i¼1
dCi;fMAX;MINg ð5Þ

(ii) The property is, not mandatory, but desired. In this case some of the values of the
candidates satisfy the bounds defined in the desired components and some do not.
Therefore, the distance between the desired property values vd and the values
offered by the candidate components vi is calculated by:

Towards a CBSE Framework for Enhancing Software Reuse 111

dDi;MAX ¼ 1þ vd � vi
maxvi;vd

ð6Þ

dDi;MIN ¼ 1� vd � vi
maxvi;vd

ð7Þ

for feature value maximization and minimization respectively. The total numerical
dissimilarity for the desired features is then calculated as:

Rnum;des ¼ 1
M

XM

i¼1
dDi;fMAX;MINg: ð8Þ

In the above equations, maxvi;vd is the maximum value of the property between all
candidates and the desired component, while T and M are the numbers of numerical
properties that are mandatory and desired respectively.

The total value for the numerical properties is:

Rnum ¼ Rnum;const þRnum;des

2
ð9Þ

The total dissimilarity value for a suitable candidate component is then calculated as:

Rtot ¼ Rbin þRnum

2
ð10Þ

It is clear from the above that the closer the dissimilarity value to zero the better the
suitability level of a component. The recommendation task ranks suitable components
in ascending order of dissimilarity and suggests the top n candidates.

4 Experimental Evaluation

A series of experiments was designed and executed so that the usefulness, applicability,
effectiveness and efficiency of the proposed CBSE reusability framework are assessed.
Specifically, two sequential experimental stages were followed. The first stage com-
prised of searching and retrieving various components based on a set of properties,
while the second involved investigating targeted reusability development activities and
assessed in addition scalability. The second stage of experiments is considered a sig-
nificant extension of the first, as it was considerably longer, in-depth and comprises of
actual developments activities to implement a simple application with reuse and
through the use of the proposed CBSE framework. Both experimental stages were used
as feedback (based on the evaluation obtained) for the overall improvement of the
proposed framework.

The experimental stages were carried out in total by 25 subjects, 20 of which were
graduate (master level) students at the Cyprus University of Technology and the
remaining 5 were software practitioners. The students hold an undergraduate degree

112 A.S. Andreou and E. Papatheocharous

in Computer Science and/or Engineering that included courses in Software Engineering
(SE) and at the time of the experimentation they followed an advanced SE course with
emphasis on CBSE and reusability. The practitioners consisted of software developers
working in the industry, 3 of which extensively making use of component reuse for the
last 5 years and 2 of which are responsible for producing components for internal reuse
in their company for the last 3 years.

4.1 Experimental Stage A’

In the first experimental stage (A’), all subjects underwent a short period of training
(approximately 2 h) on the proposed CBSE reuse framework focusing mostly on the
profiling scheme and the semi-formal structures of the natural language used. The
target was to provide a first evaluation of the usefulness, applicability, effectiveness and
efficiency of the framework.

The experiments conducted thus aimed at addressing the following four main
questions regarding the proposed framework: (Q1) How easy and straightforward is it
for locating appropriate components? The question mainly focuses on the ease of use,
level of understandability and effective utilization of functional, non-functional and
reusability properties to seek and locate candidate components sought for. (Q2) How
“complete” is the process for locating appropriate components? Answering this
question will essentially define whether there is enough information supported from the
framework or if there exist key information that a reuser would like to search for and is
yet not supported. The word complete appears in quotes as completeness is not a
property that may easily be quantified. Nevertheless, for the purposes of this evalua-
tion, we assume that completeness denotes the level to which the proposed process
supports the profiling (and therefore the processing) of all possible sources of infor-
mation describing component properties. (Q3) How accurate are the results (i.e., the
recommended components)? This question refers to the quality of the results in terms of
correctness and specifies the end-user’s (the reuser in our case) satisfaction level. (Q4)
What is the efficiency of the process in terms of time/effort required by reusers to locate
and retrieve the components they need? This question refers to the quality of the results
in terms of efficiency and effort required to spend and again relates to the reuser
satisfaction levels.

A total of 100 synthetic components were randomly generated with the help of the
practitioners who inspected the elements produced and suggested corrections so as to
correspond to realistic cases and resembling real-world components. The components
created were divided into 7 major categories: Login (10), Calendar (10), Address Book
(10), Calculator (10), Task/Notes Manager (10), Clock (10) and GUI Widgets (Wall-
works (15), Window Style (15), Background/Fonts Style (10)). The multiple instances
of the synthetic components for each category differed on attributes such as pro-
gramming language, OS, openness, protocols/standards and documentation, as well as
on the performance indicators.

The EBNF profile of each component was then created, followed by its transfor-
mation into an ontology instance of the component tree. Each subject was then asked to
perform 10 different searches using a simple form (see Fig. 4) where basically they

Towards a CBSE Framework for Enhancing Software Reuse 113

inputted the desired functionality (primary, secondary), the values for certain perfor-
mance indicators and their level of requirement (mandatory or desired). This infor-
mation was also transformed in EBNF and then the ontology tree instance of the search
item (component) was also created. Each search tree instance was then automatically
matched against the available component instances in the repository. As this process is
essentially an item-to-item matching of the tree instances, the classic metrics of pre-
cision and recall are not applicable here since the components retrieved were only those
that satisfied all constraints for functionality and the rest of the features. Therefore, the
candidate components returned were only the suitable ones which then competed on
the basis of satisfying the rest of the properties sought for, calculating the level of
suitability, as defined in Eq. (10).

Table 2 shows details of the experimental process while one of the reusers was
searching for a Task Manager component. Components’ functionality and features
appear in the first column, preferences for the required component in the right most
column and the five (retrieved) candidates in the columns in between. The lower part of
this table lists the figures for the dissimilarity calculation described in Eqs. (1)–(10).
The figures clearly suggest that Component #2 is the candidate that best satisfies the
search preferences, followed by Components #1, #4 and #5, that have similar char-
acteristics to each other.

This process was executed 10 times by each subject for each component category
and the results were gathered and assessed qualitatively under the four main questions
(Q1–Q4), described in the beginning of the present section, related to ease of use,
completeness, accuracy and efficiency of the process and the results obtained. At the
end, the participants in the experimental study were asked to rate the approach on a
five-point Likert scale ranging from 1-Very Low to 5-Very High to obtain the focal
point of each question.

The findings of the experimental results (Stage A’) suggested the following with
respect to the questions:

Fig. 4. Excerpt of the component search form.

114 A.S. Andreou and E. Papatheocharous

(Q1) How Easy and Straightforward is it for Locating Appropriate Components? All
subjects agreed that the method was quite easy to follow once trained, with a
median rating of 4 (High). The training was mentioned that it was not too
difficult to go through and in terms of effort required it was acceptable. It is even
easier to carry out the search with the use of the dedicated supporting tool, as
some of the subjects stated; after their first few searches they felt quite com-
fortable with the approach and faced no problems in using it.

(Q2) How “Complete” is the Process for Locating Appropriate Components?
Completeness was the feature that brought to light some questioning. Initial
values by students rated this aspect with 4 (High), while practitioners gave the
value of 2 (Low). Some follow-up questions in the interviews we conducted the
difference was obvious where it originated from. Practitioners, as they are more
experienced with the variability of components in the real-world, emphasized
that the approach should be more flexible and allow for more metrics and
properties to take part in the profiling of a component. After a round of dis-
cussions, through which the open nature of the profile scheme for a component
was explained and exemplified, and emphasis was given on how new properties
may be inserted to satisfy further needs, practitioners were asked to rate again
the question. They recognized that extensibility was just a matter of profile
design and thus the current one could be extended. The approach is able to cover

Table 2. Candidates’ evaluation when seeking for a Task Manager component (C denotes
constraint and D desired).

Task Manager 1 2 3 4 5 SEARCH FOR

Service Primary input input input input input Input (C)

Service Secondary Data
processing

Data
processing

Data
processing

Data
processing

Data
processing

Data processing
(C)

Response Time (sec) (min) 10 12 8 8 9 12 (C)

Concurrent Users (max) 50 100 40 80 100 20 (C)

Memory utilization
(KB) (min)

2 3 4 1 2 4 (C)

Total task supported (max) 200 1800 700 1900 2000 1500 (D)

Download history time
(sec) (min)

6 8 22 4 20 18 (D)

Reliability (max) 90 95 92 93 90 90 (C)

Availability (max) 95 98 97 99 96 95 (C)

Application domain ANY ANY ANY ANY ANY ANY (C)

Programming language C/C++ C/C++ Java C/C++ .NET C/C++ (D)

Operating systems Windows Windows Windows
Android

Windows
Linux

Windows Windows (C)

Openness white white black grey white White (D)

Documentation Manual,
Test Cases,
Code,
Comments,
Design doc

Code,
Comments,
Design doc

Manual,
Test Cases

Manual,
Test Cases

Manual,
Test Cases,
Code,
Comments

Code (D),
Comments (D),
Design doc (D)

Evaluation
Rbin 0 0 0,714286 0,571429 0,285714

Rnum 0,8244589 0,47316 0,811688 0,270996 0,59632

Rtot 0,4122294 0,23658 0,762987 0,421212 0,441017

Towards a CBSE Framework for Enhancing Software Reuse 115

any possible features or properties a reuser may seek, as long as the structured
form followed for describing components encompasses these items. Therefore,
practitioners agreed that the approach offers great flexibility in this respect and
rated again completeness giving a median value of 4 (High).

(Q3) How Accurate are the Results (i.e., the Recommended Components)? The
components retrieved by the proposed approach were found suitable and among
the top alternatives for all cases. It was also observed that the components
returned as best candidates did not always possess the optimal numerical values
in the corresponding properties sought, that is, the best values for the specific
features (i.e., lowest time performance); they rather exhibited a good balance
between numerical properties and also presented good ratings for the binary
properties. This is clear in Table 2 where the optimal numerical values offered by
the suitable components are marked in boldface and italic; it is evident that
Component #4 holds the majority of optimal numerical values, yet it is not
among the top 2.

(Q4) What is the Efficiency of the Process in Terms of Time/Effort Required by
Reusers to Locate and Retrieve the Components They Need? The total time and
effort spent to locate the appropriate components was quite limited, rated as 2
(Low) being confined to the actions required to describe the properties of the
components sought. Automation of the whole process for returning appropriate
components back to the reuser was acknowledged to have a decisive positive
effect on the total time that had to be devoted, as stated from the practitioners.

The results from the first experimental stage, and especially Q3, gave birth, to a
possible modification/extension of the approach. This modification included an addi-
tional implementation and application of a priority or weighting scheme for the
framework properties. With this scheme the reuser will be able to define the properties
considered as more significant than the rest and therefore, change the assessment of
candidate components to take this significance into account too, along with the rest
aforementioned similarity factors. This modification is explained further in Experi-
mental Stage B’ (Subsect. 4.2).

4.2 Experimental Stage B’

With similar experimental design, the second experimental stage was conducted.
During the second experimental stage (B’), the proposed CBSE reusability framework
was used by the reusers with the target to implement a small-scale software application
and assess in addition scalability.

The same group of subjects, were asked to make use of the proposed framework
and locate appropriate components that can be reused. They were given the following
instructions. Develop a software Web application that supports the following:

• Multiple users
• User authentication mechanisms
• Management of client records (insert, update, delete)
• Management of product records (insert, update, delete)

116 A.S. Andreou and E. Papatheocharous

• Order placement for purchasing products (search and browse products, place in or
remove from shopping cart products)

• Card payment processing
• Logistics support (issue invoices, audit trails).

The target of the second experimental stage was twofold: First, to expand the use of
the framework to a larger and functionally demanding experimental setup. The setup is
more realistic, includes complex development tasks and comes across to integration
issues for CBSE (resulting from reusing of existing components, such as the issue of
synthesis and compatibility of individual parts). Second, to assess scalability and
efficiency of the approach when scaling up complexity, handling at the same time
challenges raised from the previous experimental stage.

As such, to meet the first target the approach was slightly extended at the Rec-
ommendation level so as to include a software module that performs checks to detect
profound issues affecting compatibility, like the programming language or the oper-
ating system, and suggest a different ranking of the appropriate components based on
the expected extra costs (time/effort) arising from such issues. This kind of recom-
mendations was provided only in cases where the possible incompatibilities were
associated with properties that were not declared as constraints.

To meet the second target, the framework was extended with the addition of a new
element that provides a mechanism that allows a reuser to define varying degrees of
significance among the desired properties. A weighting scheme was therefore applied
during the process of describing the properties of the component sought using a Likert
scale of 3 values indicating 1-low, 2-medium and 3-high level of significance.

A pool of 350 synthetic components was created and made available through a
server. Each functional characteristic was satisfied by at least 5 generated components
with varying properties (e.g., resource requirements, performance indicators, pro-
gramming language, etc.). The reuser was handed a randomly generated list of prop-
erties (constraints and desired ones) to guide the selection of components that were
appropriate for each case and was left free to interact with the system to set their
priorities as regards the significance of the component features and then locate the most
suitable ones for the functional tasks described above. As with the previous stage, each
reuser was given access to the server using a simple GUI for searching and retrieving
components based on the concepts of the proposed approach, with search properties
being defined using primarily pull down menus, drop-down lists and check-boxes
(Fig. 4). Then, these property definitions were automatically transformed to their EBNF
counterparts and corresponding ontology notions with no extra effort or visibility on
behalf of the reuser.

The experimental stage B’ spanned approximately one week’s time, by the end of
which the experiences obtained were shared among all participants in a closed session
and the framework was rated once again. The results of the experiment were assessed
in a similar way to the previous one:

(Q1) How Easy and Straightforward is it for Locating Appropriate Components?
Subjects answered that even with performing a wider-scope task the approach is
still quite easy and straightforward. They rated it with a median rating of 4
(High). A threat to the validation of this result is however the fact that subjects

Towards a CBSE Framework for Enhancing Software Reuse 117

were not the first time to have worked with the tool. The large size of the
application that required the search of multiple components and the increasing
complexity of the development task, minimizes the effect of this threat.

(Q2) How “Complete” is the Process for Locating Appropriate Components? The
extension of the framework to accommodate new values for fixed (pre-defined)
properties as well as new types of properties was received positively by the
experiment participants. They gave a median rating of 4 (High). A comment
received during the discussions was that even if the second experimental process
the subjects undertook is more realistic to the real working conditions in terms of
complexity, the type of developments they might face in the future would def-
initely contribute to the level of richness of the properties, and thus enhance
further the overall completeness levels.

(Q3) How Accurate are the Results (i.e., the Recommended Components)? The
accuracy of the returned components was rated with a median rating 2 (Low).
This was due to the random nature of the generated components, as well as of the
list of properties each participant was supplied with, i.e., there were cases where
the properties sought were not perfectly aligned between them. For example, the
use of a component for displaying the list of products had quite short response
time than that of the component inserting a product in the shopping cart.
Therefore, participants discussed for a more realistic generation of component
properties within the framework. Nevertheless, everybody agreed that this
“anomaly” did not violate the outcome of the experimental process as at this
stage what was important was to assess the applicability of the approach to more
complicated situations. Thus the scalability issue of the framework even if not
evaluated explicitly, was considered promising. In addition, the accuracy
potential of the results was slightly improved with the weighting scheme applied
in this experimental stage. The weighting scheme enabled reusers to narrow
down the list of matches, especially in cases where the candidate components
were similar or very close to each other with respect to the properties set. In
addition, the recommendation module worked fairly well in the majority of the
cases, although some participants pointed out that its use was not always helpful.
There were cases where the incompatibility of the programming platforms in
which the components were built hindered their composition (or at least rec-
ommended them not to be integrated), but their combination was by far better
than that of other, that appeared as more compatible ones. This observation,
combined with the fact that if a wrapper could easily be developed to handle the
incompatibility issues, led to the conclusion that the recommendation module
should be further enhanced with more sophisticated ways of suggesting the use
or not of specific types of components. Nevertheless, this was already a known
“weakness” of the recommendation engine, as its purpose was just to demon-
strate how its use may offer enhanced support to the selection of similar com-
ponents, something which was acknowledged by all participants.

(Q4) What is the efficiency of the process in terms of time/effort required by reusers to
locate and retrieve the components they need?

118 A.S. Andreou and E. Papatheocharous

Overall, the efficiency was found again high (median value was 4), despite the fact
that the search process was multifaceted compared to experimental stage A’. Indeed the
results confirmed that the size of the application under development did not add sig-
nificantly to the complexity of the way the approach was used, but rather affected the
time for locating all component instances for each case as expected.

5 Conclusions

This work addressed a specific topic in the area of component based software engi-
neering and more specifically the issue of automatic search and retrieval of software
components by matching specifications. A new CBSE reusability framework was
proposed which comprises different layers for describing, analyzing, locating and
assessing the appropriateness of available components.

The work focused on the activities of the matching process between required and
offered properties. This process initially produces a special form of natural-
language-based profile written in EBNF, the latter being highly descriptive, while it
allows formally proving key properties and validating the semantics. The profile
describes three different categories of components’ properties, that is, functional,
non-functional and general reusability properties. A specially designed module parses
the profile, recognizes certain sections and elements, and then translates them into
instances of a special form of component-based ontology developed to support the
component specification matching activities. Using this profile developers/vendors of
components offer details of what they have to offer to potential reusers who use the
profile to describe what they look for using the same EBNF notation. The profiles are
transformed into ontology trees, something that enables faster comparison between
characteristics as this commences at the level of ontology instances. The matching
process assesses if hard constraints are violated (i.e., absolutely necessary properties
required are not offered by candidates) and if not, it calculates a dissimilarity metric that
dictates the level of appropriateness of components for possible integration.

A two stage experimental process was followed, the first focusing on demonstrating
and evaluating the applicability of the proposed approach, while the second further
investigated efficiency and scalability issues through a more complicated reuse context.
The experiments provided strong evidences that the proposed approach is accurate,
complete and efficient, and therefore it may be regarded as suitable for adoption in the
everyday practice of software reuse.

The framework introduced in this work may be conceived as a promising new idea
with ample room for extensions and enhancements. Our future work will include
several research steps, some of which are outlined here: First of all, a more thorough
experimentation will be carried out to validate the applicability and efficacy of the
proposed framework. To this end, a series of experiments will be conducted utilizing
open source components. Second, the retrieval parts will be enhanced by optimization
techniques (e.g., evolutionary algorithms) for automating the process of locating can-
didate components. Finally, the dedicated software tool that supports the whole
framework will be extended with capabilities for EBNF editing and ANTLR parsing

Towards a CBSE Framework for Enhancing Software Reuse 119

during the construction of component profiles, as well as graphical representation and
visual inspection/comparison of ontology tree instances.

Acknowledgement. The work is partially supported by a research grant for the ORION project
(reference number 20140218) from The Knowledge Foundation in Sweden.

References

1. Vale, T., Crnkovic, I., de Almeida, E.S., da Mota Silveira Neto, P.A., Cerqueira Cavalcanti,
Y., de Lemos Meira, S.R.: Twenty-eight years of component-based software engineering.
J. Syst. Softw., 111, 128–148 (2016). ISSN 0164-1212. http://dx.doi.org/10.1016/j.jss.2015.
09.019

2. Szyperski, C.: Component Software: beyond object-oriented programming, 2nd ed.,
Addison Wesley, Essex, England (2002)

3. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse based software engineering: techniques,
organization, and measurement. Wiley-Blackwell, New Jersey (2002)

4. Barn, B., Brown, A.W.: Methods and tools for component based development. In:
Proceedings of IEEE Technology of Object-Oriented Languages (TOOLS 1998) (1998)

5. Andreou, A.S., Papatheocharous, P.: Automatic matching of software component
requirements using semi-formal specifications and a CBSE ontology. In: Proceedings of
the 10th International Conference on Evaluation of Novel Approaches to Software
(Barcelona, Spain, April 29–30) (2015)

6. Mili, H., Radai, R., Weigang, W., Strickland, K., Boldyreff, C., Olsen, L., Witt, J., Heger, J.,
Scherr, W., Elzer, P.: Practitioner and SoftClass: a comparative study of two software reuse
research projects. J. Syst. Softw. 25(2), 147–170 (1994)

7. Zaremski, A.M., Wing, J.M.: Specifications matching of software components. ACM T
Softw. Eng. Meth. 6(4), 333–369 (1997)

8. Chung, L., Cooper, K.: Matching, ranking, and selecting components: a COTS-aware
requirements engineering and software architecting approach. In: Proceedings of the
International Workshop on Models and Processes for the Evaluation of COTS Components
at 26th International Conference on Software Engineering, (Edinburgh, Scotland, UK, May
23–28, 2004). ICSE, pp. 41–44 (2004)

9. Iribarne, L., Troya, J.M., Vallecillo, A.: Selecting software components with multiple
interfaces. In: Proceedings of the 28th Euromicro Conference (Dortmund, Germany,
September 4–6, 2002). EUROMICRO 2002, pp. 26–32. IEEE Computer Society Press
(2002)

10. Yessad, L., Boufaida, Z.: A QoS ontology-based component selection. Int. J. Soft Comput.
(IJSC) 2(3), 16–30 (2011). doi:10.5121/ijsc.2011.2302

11. Pahl, C.: An ontology for software component matching. Int. J. Softw. Tools Technol. Trans.
9(2), 169–178 (2007)

12. Yan, W., Rousselot, F., Zanni-Merk, C.: Component retrieval based on ontology and graph
patterns matching. J. Inf. Comput. Sci. 7(4), 893–900 (2010)

13. Kluge, R., Hering, T., Belter, R., Franczyk, B.: An approach for matching functional
business requirements to standard application software packages via ontology. In:
Proceedings of the 32nd Annual IEEE International Computer Software and Applications
Conference (Turku, Finland, July 28 - August 1, 2008). COMPSAC 2008, 1017–1022
(2008). doi:10.1109/COMPSAC.2008.147

120 A.S. Andreou and E. Papatheocharous

http://dx.doi.org/10.1016/j.jss.2015.09.019
http://dx.doi.org/10.1016/j.jss.2015.09.019
http://dx.doi.org/10.5121/ijsc.2011.2302
http://dx.doi.org/10.1109/COMPSAC.2008.147

14. Seedorf, S., Schader, M.: Towards an enterprise software component ontology. In:
Proceedings of the 17th Americas Conference on Information Systems (Detroit, Michigan,
August 4–7, 2011) AMCIS (2011)

15. Alnusair, A., Zhao, T.: Component search and reuse: An ontology-based approach. In:
Proceedings of the IEEE International Conference on Information Reuse and Integration
(Las Vegas, USA, August 4–6, 2010). IRI2010, pp. 258–261 (2010)

16. ISO/IEC/IEEE 24765:2010, 2010, Systems and software engineering - Vocabulary,
ISO/IEC/IEEE 24765:2010

17. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A protocol for
negotiating service level agreements and coordinating resource management in distributed
systems. Job scheduling strategies for parallel processing, pp. 153–183. Springer, Berlin
Heidelberg (2002)

18. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to high level
SLAs-LoM2HiS framework: Bridging the gap between monitored metrics and SLA
parameters in cloud environments. In: Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS), pp. 48–54. IEEE (2010)

19. Mili, H., Ah-Ki, E., Godin, R., Mcheick, H.: An experiment in software component retrieval.
Inf. Softw. Technol. 45(10), 633–649 (2003)

20. Paschke, A., Schnappinger-Gerull, E.: A categorization scheme for SLA metrics. Serv.
Oriented Electron. Commer. 80, 25–40 (2006)

21. Zaremski, A.M., Wing, J.M.: Signature matching: A key to reuse. ACM 18(5), 182–190
(1993)

Towards a CBSE Framework for Enhancing Software Reuse 121

Helping Program Comprehension of Large
Software Systems by Identifying
Their Most Important Classes

Ioana Şora1(B)

Department of Computer and Software Engineering,
University Politehnica of Timisoara, Timisoara, Romania

ioana.sora@cs.upt.ro

Abstract. An essential prerequisite before engaging in any maintenance
activities of complex software systems is the good comprehension of the
existing code. Program comprehension is supported by documentation,
which can be either developer documentation or documentation obtained
by reverse engineering. In both cases, but especially in the case of reverse
engineered documentation, this means a large amount of detailed doc-
uments that have to be carefully studied. Processing such large and
detailed information can be made easier if there is an executive sum-
mary - a short document pointing to the most important elements of the
system.

In our work we propose a tool to automatically extract such a sum-
mary, by identifying the most important classes of the system. Our app-
roach consists of modeling the static dependencies of the system as a
graph and applying a graph ranking algorithm. How we build the depen-
dency graph is the key for the success of the approach. We empirically
determine how different dependency types should be taken into account
in building the system graph. The proposed approach has been validated
by experiments on a set of open source real systems.

Keywords: Reverse engineering · Program comprehension · Key
classes · Recommender tool

1 Introduction

Program comprehension [1] is an important software engineering activity, which
is necessary to facilitate reuse, maintenance, reengineering or extension of exist-
ing software systems.

In the case of large software systems, program comprehension has to deal
with the huge amount of code that implements it. When starting with the study
of an unknown system, software engineers are overwhelmed by the amount of
information, which makes it difficult to filter out the important elements from a
lot of details.

Documentation can help with program comprehension. Assuming that the
documentation is up-to-date, there are still additional requirements related to the
c© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 122–140, 2016.
DOI: 10.1007/978-3-319-30243-0 7

Helping Program Comprehension of Large Software Systems 123

contents of the documentation such that it is effective for facilitating the early
stages of work: very useful are documents such as architectural overviews, or
describing what is called the core of the system. Detailed and scattered imple-
mentation documentation is of little use, as are large class diagrams that are
reverse engineered from the code. This has been confirmed by the experiments
described in [2], where most subjects did not appreciate reverse engineered dia-
grams to be helpful due to the information overload in these class diagrams.

In our work we help program comprehension of object oriented software sys-
tems by identifying their most important classes [3], [4]. This gives a set of good
starting pointers for studying the system. We consider that the importance of a
class is given by the amount and types of interactions it has with other classes.
Thus, a natural approach of identifying the most important classes is based on
ranking them with a graph-ranking algorithm.

In this work we adapt PageRank [5] to use it for the purpose of ranking
classes of software systems according to their importance for the design of the
system. The key here for obtaining a ranking which is indeed effective for the
goal of program comprehension is to use an adequate graph model of the system.

Section 2 describes our approach of modeling the structure of software sys-
tems by static dependencies and the way we use this for identifying the most
important classes of the system. We define two parameters of the graph model,
given by the weights of dependency types and dependency directions. Section 3
presents experimental results. We do first an empirical fine-tuning of the parame-
ters of the graph model, then apply our approach to a set of relevant open-source
projects. In Sect. 4 we will discuss our results and draw the conclusions of our
experiments, while also comparing with related work. Section 5 draws the con-
clusions of this paper.

2 Ranking Classes According to Their Importance

2.1 Building the Right Model

We model the software system as a graph having as nodes classes or interfaces.
If an edge exists from node A to node B, this means, in PageRanks terminology,
that node A recommends node B as important. Applying the right strategy for
determining where and how to place the recommendation edges is the crucial
element for the effectiveness of the ranking approach.

In our model, the recommendations derive from the program dependencies
identified by static analysis with help of the model extractors of the ART tool
suite [6]. If A depends on B, this means both that A gives a recommendation to
B but also that B gives a recommendation to A. We call the edge from A to B a
forward recommendation, while the edge from B to A is a back recommendation.

The forward recommendation, resulting directly from a dependency, is obvi-
ous: a class which is used by many other classes has good chances to be an
important one, representing a fundamental data or business model. But also the
reverse is true: a class which is using a lot of other important classes may be
an important one, such as a class containing a lot of control of the application

124 I. Şora

or an important front-end class. If only the directed dependency would be con-
sidered as a recommendation, then library classes would rank very high while the
classes containing the control would remain unacknowledged. Thus the reason
for having back recommendations.

Recommendations may also have weights. A class is not necessarily recom-
mending all its dependency classes with an equal number of votes. It will give more
recommendation votes to those classes that offer it more services. Thus recommen-
dation weights are derived from the type and amount of dependencies.

Static dependencies in object oriented languages are produced by various
situations. There are different classifications of the mechanisms that constitute
dependencies [7]. In accordance with these, we distinguish between following
categories of dependencies between two classes or interfaces A and B:

– inheritance: A extends B
– realization: A implements B
– field: A has at least one member of type B
– member access: A member of B is accessed from code belonging to A
– method call: A calls a method of B. We can further distinguish if it is a static

method call or a method call on a class instance. Every distinct method of B
which is called is counted as a new dependency.

– parameter: A method of A has at least one parameter of type B
– return type: A method of A has the return type B
– local variable: A local variable of type B is declared in code belonging to A
– instantiation: An instance of B is code belonging to A
– cast: A type-cast to B occurs in code belonging to A

Two classes A and B can be at the same time in several dependency relation-
ships: for example, A can have members of type B, but in the same time it can
have a method with parameters of type B and overall it can call several different
methods of B.

The strength of the recommendation is proportional with the strength of the
dependency which takes into account both the number of dependency relation-
ships and the types of dependency relationships between the two classes.

The strength of a dependency can be estimated using an approach based on an
ordering of dependency types according to their relative importance. Establishing
the relative importance of static dependency types is a subject of empirical esti-
mation and different authors use different frameworks for this [7]. In this work, we
continue to use the ordering of dependency types used previously in the context
of architectural reconstruction by clustering in [8]. In summary, we take as refer-
ence for the weakest type of dependencies the local variables dependency type and
assign it weight 1. On the next level of importance, level 2, we put the dependency
strength given by one distinct method that is called. Usually several distinct meth-
ods of a class are called, thus these weights will sum up to a significant value. Also
on level 2 are dependencies generated from creating instances. Dependencies due
to parameters, return values or having a member dependency is assigned weight 3
while inheritance and realization have weights 4. We will empirically validate this
assumption of dependency weights in the context of class ranking in Sect. 3.

Helping Program Comprehension of Large Software Systems 125

The weight of the forward recommendation from A to B is given by the
dependency strength of the cumulated dependencies from A to B. The weight of
the back recommendation from B to A is a fraction F of the weight of the forward
recommendation from A to B. We identified that, while a class is important if it is
both used by other classes and it is also using other classes, the second argument
should have a smaller weight in the global reasoning, only a fraction F of the
dependency strength. We illustrate this idea with the simple example presented
in Subsect. 2.2 and we also empirically investigate values for this fraction in
Sect. 3.

2.2 A Simple Example

We illustrate the idea of our approach using as an example a simplified program
structure with four classes A, B, C, D. Class A is the front-end component of the
application, B is the main business component, C a helper, and D some utility
or library class.

A

B

member, instantiate, calls 5 methods

C

localvar, instantiate

D

calls 1 methodmember, parameter, calls 2 methods

calls 1 method

Fig. 1. Example: graph of program dependencies.

Figure 1 depicts the dependencies between the 4 classes. Class A has a mem-
ber of type B, it instantiates objects of type B and calls five different methods of
class B. Also, class A has a local variable of type C and instantiates an object of
type C. Class B has a member of type C, has member functions with parameters
of type C, and calls 2 different methods of C. Both classes A and C call one
static method of class D.

We use this simple example to explain the importance of using a weighted
dependency graph, taking into account the dependency strengths induced by
different dependency types, and also of using back-recommendations.

In a first try, we consider the dependency graph directed and unweighted.
If PageRank is applied on the directed graph of Fig. 1, without back-
recommendations, we obtain the following ranking: D(0.41), C(0.29), B(0.16),

126 I. Şora

A(0.12). This ranking places the deepest classes on a top level, bringing the util-
ity class D on the top position. The utility class D can be considered a library
class with high reuse potential, however D is not the most important class of
the system and not so important for program comprehension. This shows that
simply applying PageRank on the directed graph defined by the dependencies
is not a valid method of identifying the classes that are important for program
comprehension.

In a second try, back-recommendations are included and the unweighted
graph from Fig. 1 will be completed with a reverse edge for every original edge.
Applying PageRank on this new graph results in a new ranking: A(0.29) C(0.29)
B(0.21) D(0.21). This order brings on top two classes of medium importance
(A and C), while ranking the key class B as low as the utility class D.

In a third try, we introduce weights reflecting the type and amount of depen-
dencies, using the empirical values defined in the previous section. Following
weights result: AB=15, AC=3, AD=3, BC=11, CD=2. Back-recommendations
are given a fraction F of the weight of the forward recommendation. We experi-
ment with different values for F . If F=0 (no back-recommendations) the ranking
results D(0.38), C(0.3), B(0.19), A(0.11), which is wrong since it brings the util-
ity class on top. If F=1, the ranking is B(0.36), A(0.29), C(0.24), D(0.08). If
F=1/2, the ranking is B(0.34), C(0.29), A(0.24), D(0.11). These last two rank-
ings reflect very well the situation of B being the most important class, while D
plays only a small role as an utility class. A and C are of medium importance.
Since this example is generic and small, we cannot argue whether A should be
ranked above C or not.

More experiments on real-life systems are described in Sect. 3 and they will
show that PageRank can be used as an effective means to identify key classes for
program comprehension if it is applied to a correct model of recommendations.
We argue that this model has to take into account both the strength of the
dependencies and also include back-recommendations, with a fraction 0 < F < 1
bringing the best results.

3 Experimental Results

3.1 Experimental Setup

In order to validate the proposed ranking tool, we apply it on a set of relevant
open source systems. We run our tool that implements the ranking approach
described in Sect. 2, using weighted recommendations, according to the type
and amount of dependencies as well as back-recommendations.

In all the experiments, we limit the examination of the tool produced ranking
to the top 30 ranked classes, independent from the size of the system. We consider
that a percentage limit of 15 % or even 10 % of the system size would result in
candidate sets which are too big for the purpose of the tool, that of facilitating
an easy start in program comprehension.

Helping Program Comprehension of Large Software Systems 127

Thus we have to experimentally prove that the top 30 ranked classes are
indeed the most important classes of the analyzed systems.

Unfortunately, the identification of the most important classes of a system
may be, up to a certain degree, subjective to different opinions of different
experts. The reference solution will be the reduced set resulting from the inter-
section of different expert opinions. In order to validate the tool, we could do an
experiment asking different software experts to judge the top rankings produced
by the tool. This scenario requires a big effort and, in the end, the objectivity
of our experts may be questionable.

We chose to rely for the validation of the tool output on the comparison
with reference solutions extracted from developers documentation. The kind of
developer documentation that is useful for our validation is usually found in
documents described as “architectural overview”, “core of the system”, “intro-
duction for developers”, etc. It may consist either in pruned diagrams or even free
text descriptions. Of course, developers documentations may be outdated or not
accurate. In order to reduce these risks, we preferred as case studies systems that
provide both developers documentation and documentation from other sources,
mainly systems included in the Qualitas Corpus - a curated collection of soft-
ware systems intended to be used for empirical studies on code artifacts. These
systems have been also analyzed in other works and their structure has been
discussed by several sources, thus we can define as reference solution an inter-
section of different expert opinions. In this way we establish unbiased reference
solutions to compare the solutions produced by our tool.

In the next Subsect. 3.2 we present the detailed analysis and discussion of one
system. We use this system to perform the empirical validation of the value of
fraction F representing the back-recommendations and to show the importance
of choosing the weights that quantify dependency strengths.

Some more systems are then analyzed and presented in Subsect. 3.3.
In Chapter 4 we will discuss our results and draw the conclusions of our

experiments, while also comparing with related work.

3.2 Detailed Analysis of the First Case Study

In this subsection we present the detailed analysis and discussion of a sys-
tem, Apache Ant. Apache Ant1 is a Java library and command-line tool to
compile, build, test and run Java applications. We analyze release 1.6.1, feed-
ing as input ant.jar containing the core part of ant. It contains 524 classes.
A developer tutorial2 indicates the following key classes to understand the design
of the Ant core: Project, Target, UnknownElement, RuntimeConfigurable,
Task, as depicted in Fig. 2. Besides these main classes, IntrospectionHelper,
ProjectHelper2 and ProjectHelperImpl are mentioned in the documentation
as important.

1 http://ant.apache.org/.
2 http://codefeed.com/tutorial/ant config.html.

http://ant.apache.org/
http://codefeed.com/tutorial/ant_config.html

128 I. Şora

The Project class is instantiated whenever Ant starts and, with the help
of helper classes, the Project instance parses the build.xml file. The Target
class represents the targets specified in the build.xml file. Once parsing finishes,
the build model consists of a project, containing multiple targets. A target is a
container of tasks, represented by specializations of the Task class.

Each task in Ant has a reference to its RuntimeConfigurable instance.
Prior to the task being executed, it would need to be configured from its
RuntimeConfigurable instance.

The class UnknownElement was introduced to allow the model to support
storing information about tasks whose classes were not known at parse-time.
UnknownElement extends Task, allowing it to be stored in the Ant object model.

We consider the following set of 8 classes as the reference solu-
tion: Project, Target, UnknownElement, RuntimeConfigurable, Task,
IntrospectionHelper, ProjectHelper2 and ProjectHelperImpl. Ant has
been also analyzed for the detection of key classes in [9], and the same set
of classes has been used as a reference solution.

RuntimeConfigurable

UnknownElement

Task

Target

Project

Fig. 2. Core classes of Ant described in the developers tutorial.

We perform an empirical fine-tuning of our recommender tool in order to get
its ranking results as close as possible to the reference solution.

We use the detailed analysis of this case study to answer following questions,
for the fine-tuning of the recommender tool:

Q1. Which is the role of dependency directions? More specifically, are back-
recommendations needed? If yes, then which is the relative contribution of back-
recommendations compared to that of forward recommendations?

In our experiments, we will consider the following possibilities for dependency
directions:

– F=0: no back recommendation, only forward recommendation determined by
the dependency relationship.

– F=1: back-recommendations have the same weight as forward
recommendations.

– F=1/2, F=1/4: back-recommendations have a smaller weight than forward
recommendations

Helping Program Comprehension of Large Software Systems 129

Q2. Which types of dependencies are relevant for the goal of this recom-
mender tool? We will investigate whether all dependency types are equally
important or if there are some dependency types that can be ignored without
affecting the quality of the result or even improving it.

For dependency types and weights, we consider the following profiles:

– AllDep: dependencies of all types are considered and summed up, with equal
contributions

– CallsOnly : only method calls are considered, ignoring all other types of depen-
dencies. The number of distinct methods called is taken into account in the
global dependency strength.

– InterfOnly : only dependency relationships induced by elements visible from
the interface are counted (inheritance, implementation, method parameters),
ignoring all details such as local variables, member accesses and method calls.

– AllWeighted : all dependency types, but weighted such that interface elements
have a higher weight than method calls while local variables use brings the
smallest weights. This weighting schema is the one mentioned in Subsect. 2.1.

Table 1. Experimental results summary for Ant.

F=0 F=1 F=1/2 F=1/4

AllDep Top 10 0.38 0.38 0.25 0.38

Top 15 0.63 0.63 0.63 0.63

Top 20 0.63 0.88 1.00 0.88

Top 30 0.75 1.00 1.00 1.00

Top 50 0.75 1.00 1.00 1.00

AllWeight Top 10 0.38 0.38 0.25 0.38

Top 15 0.50 0.63 0.63 0.75

Top 20 0.63 0.88 1.00 0.88

Top 30 0.75 1.00 1.00 1.00

Top 50 0.75 1.00 1.00 1.00

CallsOnly Top 10 0.38 0.38 0.25 0.25

Top 15 0.44 0.38 0.50 0.50

Top 20 0.75 0.63 0.88 0.88

Top 30 0.75 0.89 0.89 1.00

Top 50 0.75 1.00 1.00 1.00

InterfOnly Top 10 0.50 0.25 0.25 0.38

Top 15 0.63 0.25 0.38 0.38

Top 20 0.75 0.38 0.38 0.50

Top 30 0.75 0.63 0.63 0.75

Top 50 0.75 0.75 0.75 0.88

130 I. Şora

In our experiments we will generate and study all the possible combina-
tions resulting from values for dependency weights and the fraction F of back-
recommendations. We want to find out which combination favors the retrieval
of most of the classes of the reference set. The summary of these experiments
is depicted in Table 1. The values in the table represent the percentage of the
classes of the reference set that are retrieved in the top N(where N=10, 15, 20,
30 and 50) ranked classes.

A first conclusion that can be drawn from Table 1 is that all dependency
types have to be considered, because ignoring certain dependency types (as in
the profiles CallsOnly and InterfOnly) has a negative impact. While both the
AllDeps and AllWeighted profiles allow for combinations leading to the retrieval
of all the classes of the reference solution in the top 20 ranked classes, this is not
possible in any combination with the CallsOnly and InterfOnly profiles.

A second conclusion that can be observed by analyzing the columns of
Table 1 is that the worst results are obtained when no back-recommendations
are used (F=0). Using back-recommendations (F=1) improves the results, but
the improvement is bigger when F < 1 (with F=1/2 and F=1/4).

Figure 3 presents the top 30 ranked classes when analyzing Ant with our tool
configured with the AllWeighted profile.

4/1=F2/1=F1=F0=F
1 Project Project Project Project
2 FileUtils Task Task Task

noitpecxEdliuBnoitpecxEdliuBhtaPnoitacoL3
htaPhtaPnoitpecxEdliuBnoitpecxEdliuB4

5 Task FileUtils FileUtils FileUtils
6 FilterSet Commandline Commandline Parameter
7 Target AbstractFileSet Parameter Commandline
8 ChainReaderHelper Execute AbstractFileSet Reference
9 ProjectComponent Parameter Execute Target
10 BuildEvent ProjectHelper2 Reference AbstractFileSet
11 RuntimeConfigurable Java Target Execute

piZhtaP21 UnknownElement UnknownElement
13 Reference UnknownElement DirectoryScanner RuntimeConfigurable
14 FilterSetCollection DirectoryScanner ComponentHelper ComponentHelper
15 ComponentHelper ProjectHelperImpl ProjectHelper2 IntrospectionHelper
16 PropertyHelper Target IntrospectionHelper ProjectComponent
17 DataType DefaultCompilerAdapter ProjectHelperImpl DirectoryScanner
18 UnknownElement Reference RuntimeConfigurable ProjectHelperImpl
19 Parameter ComponentHelper ProjectComponent Location

tnevEdliuBpiZcodavaJsO02
21 BuildListener IntrospectionHelper TokenFilter ProjectHelper2
22 Condition TokenFilter ModifiedSelector TarEntry
23 IntrospectionHelper rotceleSdeifidoMcodavaJtnA
24 LineTokenizer Javac Javac Condition
25 JavaEnvUtils CommandlineJava DefaultCompilerAdapter EnumeratedAttribute

trohSpiZtnAksaTgnihctaMgodhctaW62
27 Commandline Rmic EnumeratedAttribute Resource
28 InputRequest FilterChain BuildEvent MailMessage

etliFnekoTavaJrotceleSdeifidoMrevresbOtuoemiT92 r
30 AbstractFileSet ExecTask Rmic FileSelector

Found: 6/8 7/8 8/8 8/8

Fig. 3. Top fragment of the ranking of Ant classes using the AllWeighted profile.

Helping Program Comprehension of Large Software Systems 131

We can see that with F=0, only 6 out of the 8 classes of the reference set are
found. Introducing back-recommendations brings an improvement: with F=1,
7 out of 8 classes are found, while with F=1/2 and F=1/4, all the 8 classes
are found in the top 30 ranking. The detailed analysis of Ant validates our
assumption, described with help of the simple example in Sect. 2.2, that back-
recommendations are needed but they should be assigned weaker strengths
than their forward recommendation counterparts. Taking F=1/2 and F=1/4, all
classes of the reference set are found in the top 30 ranking for the analyzed sys-
tem. Using the value F=1/4 enables to get the last hit on position 21 compared
to F=1/2 where the last hit is found earlier, at position 18. In future work, more
experiments could be done to fine-tune the value of the back-recommendation
fraction F. In this work, the following experiments use the value F=1/2.

By examining the classes that occupy top positions in all rankings, we
notice the constant presence of certain classes that were not included in the
reference solution, so we manually analyzed them in order to decide if their
high ranking can be considered dangerous false positives or if they should
be rightfully included in the set of key classes. Among these classes, Path,
Parameter, Reference, Commandline, and BuildEception represent some fun-
damental data structures that are very much used and this is the reason that they
are ranked on top positions. The classes ComponentHelper, AbstractFileset,
DirectoryScanner have a controlling function which makes them interesting to
be studied. It is interesting to notice that these 3 classes are also found in top
positions in the ranking obtained in [9]. The top ranked classes obtained for Ant
in [10] and [11] have also similarities with our ranking.

3.3 More Experimental Results

We completed a series of experiments on an additional set of systems. In the
experiments described in this section we use the value F=1/2 for the back-
recommendations, as it resulted from the set of experiments described in the
previous subsection.

The analyzed systems are: JHotDraw, JEdit, ArgoUML, Wro4j and JMeter.

Analysis of JHotDraw. JHotDraw3 is a highly customizable graphic
framework for structured drawing editors. Its source code and binaries are freely
available.

We analyze here JHotDraw, release 6.0b.1. We take advantage of the capa-
bilities of our ART model extractor tools [6] that can handle compiled code,
and directly feed it as input the jhotdraw.jar file from the binary distrib-
ution, which proves to contain 398 implementation classes. The architecture
of the system is documented by its developers, the documentation provides
a short description of the core architectural classes and interfaces, enumer-
ating the most important artifacts in the opinion of the system developers.
The case study of JHotDraw has been analyzed also in [12], in order to produce

3 http://www.jhotdraw.org/.

http://www.jhotdraw.org/

132 I. Şora

a more precise class diagram, in terms of relationships, than the one provided by
the authors of JHotDraw. We noticed a couple of classes considered important
and added to the diagram: DrawingEditor, textttStandardDrawingView, Com-
positeFigure. Thus we conclude that the set of important artifacts (classes
and interfaces) for an executive summary of JHotDraw is formed by these
pointed out by the developers, completed with the three classes added in the
study of [12]: Figure, Drawing, DrawingView, DrawApplication, Tool, Handle,
DrawingEditor, StandardDrawingView, CompositeFigure. This set of 9 classes
is further considered the reference summary of the whole system comprising
398 classes.

The top 30 classes in the ranking produced by our tool are: Figure,
DrawingView, FigureEnumeration, DrawingEditor, Undoable, StorableInput,
StorableOutput, CollectionsFactory, Drawing, DrawApplication, Standard
DrawingView, ConnectionFigure, CommandTool, AbstractCommand, Composite
Figure, DrawApplet, AbstractTool, Connector, HTMLTextAreaFigure, Text
Figure, ConnectionTool, HandleEnumeration, PolyLineFigure, Handle,
RelativeLocator, Locator, FigureChangeListener, DesktopEventService,
DecoratorFigure.

We can see that all the nine classes which are in the reference are ranked in
the top 30. This means that our tool finds all the classes of the reference solution,
ranking them in the top 7.5 % classes of the 398 examined. Eight classes from
the reference set are actually ranked in the top 20, while five of them are in the
top 10. The first places of the ranking are also taken by the most important
classes.

Analysis of JEdit. JEdit4 is a cross platform programmer’s text editor written
in Java. We analyze the code of release 5.1.0, with 1266 classes.

Developer documentation is available5 and it gives the following introductory
overview of jEdit implementation: The main class of jEdit is jEdit, which is the
starting point for accessing various components and changing preferences. Each
window in jEdit is an instance of the View class. Each text area you see in a
View is an instance of JEditTextArea, each of which is contained in its own
EditPane. Files are represented by the Buffer class. The Log class is used to
print out debugging messages to the activity log. Plugin developers have to
extend EBPlugin.

In summary, the developers documentation point out the following classes of
interest: jEdit, View, EditPane, Buffer, JEditTextArea, Log, EBMessage. We
take this set of 7 classes as the reference solution.

The top 30 classes in the ranking produced by our tool are: jEdit, View,
JEdit-Buffer, Buffer, TextArea, Log, Interpreter, NameSpace, SimpleNode,
GUIUtilities, EditPane, TokenMarker, CallStack, ParserRuleSet, Misc-
Utilities, VFS, VFSBrowser PluginJAR, JEditTextArea, TextAreaPainter,
VFSFile, Selection, Mode, Primitive, DisplayManager, Gutter, SearchAnd-
Replace, EditBus, EBMessage, Parser.
4 http://jedit.org/.
5 http://community.jedit.org/cgi-bin/TWiki/view/Main/JEditSourceCodeIntro.

http://jedit.org/
http://community.jedit.org/cgi-bin/TWiki/view/Main/JEditSourceCodeIntro

Helping Program Comprehension of Large Software Systems 133

We can see that all the seven classes which are in the reference are ranked in
the top 30. This means that our tool finds all the classes of the reference solution,
ranking them in the top 2.5 % classes of the 1266 examined. Out of these, six
classes from the reference set are ranked in the top 20. Actually, the only class
which did not make it into the top 20, class EBMessage, is not so much a core
class but it is mentioned in the summary as important for plugin developers,
being important only in this context. Four of the classes in the reference set are
found in the top 10. The first places of the ranking are also taken by the most
important classes.

Analysis of ArgoUML. ArgoUML6 is a well-known open source UML mod-
eling tool. In this work we analyze its release 0.9.5, having detailed architectural
descriptions in Jason Robbins’s dissertation7 which created the fundamental
layer for ArgoUML. The analyzed jar contains a total of 852 classes.

The set of key classes as identified from the architectural descrip-
tion is composed by the following 12 classes: Designer, Critic, CrUML,
ToDoItem, ToDoList, History, ControlMech, ProjectBrowser, Project,
Wizard, Configuration, Argo.

Our analysis resulted in the following top 30 ranked classes: Project
Browser, Designer, ToDoItem, ColumnDescriptor, CrUML, Project, UMLUser
InterfaceContainer, TreeModelPrereqs, Critic, UMLAction, MMUtil,
FigNodeModelElement, NavPerspective, Notation, Wizard, UMLModelElement
ListModel, PropPanel, Configuration, TableModelComposite, ToDoList,
Argo, PropPanelModelElement, ParserDisplay, CodePiece, FigEdge
ModelElement, UMLChecklist, ModuleLoader, SelectionWButtons, Argo
EventPump, NotationName.

We notice that 6 out of the 12 classes in the reference solution are ranked in
the top 10, while 9 classes are found in the top 20 and 10 classes are found in
the top 30.

Analysis of Wro4j. Wro4j8 is an open source web resource optimizer for Java.
We have used release 1.6.3, containing 337 classes.

The classes that are mentioned in the design overview9 as impor-
tant for understanding the design of the system, and which are
further considered as the reference solution in our experiment, are
the following 12 classes: WroModel, WroModelFactory, Group, Resource,
WroManager, WroManagerfactory, ResourcePreProcessor, ResourcePost-
Processor, uriLocator, uriLocatorFactory, WroFilter, resourceType.

The first 30 classes as ranked by our tool are, in order: WroManager,
Resource, WroConfiguration, BaseWroManagerFactory, ResourcePre-
Processor, WroTestUtils, WroUtil, WroModelFactory, Injector- Builder,

6 http://argouml.tigris.org.
7 http://argouml.tigris.org/docs/robbins dissertation.
8 https://code.google.com/p/wro4j/.
9 https://code.google.com/p/wro4j/wiki/DesignOverview.

http://argouml.tigris.org
http://argouml.tigris.org/docs/robbins_dissertation
https://code.google.com/p/wro4j/
https://code.google.com/p/wro4j/wiki/DesignOverview

134 I. Şora

ResourceType, Context, HashStrategy, Resource- PostProcessor, WroModel,
WroFilter, WroRuntimeException, ProcessorDecorator, UriLocatorFac-
tory, WroManagerFactory, CacheStrategy, PreProcessorExecutor,
ReadOnlyContext, LifecycleCallbackRegistry, Injector, LifecycleCall
back, WildcardExpanderModelTransformer, ResourceWatcher, Default-
WroModelFactoryDecorator, Group, UriLocator.

We observe that 5 out of the 12 classes in the reference solution are found in
the top 10 ranked, while 10 classes are found in the top 20 and all 12 classes are
found in the top 30.

Analysis of JMeter. Jakarta JMeter10 is a Java application for test-
ing of Web Applications. We analyze version 2.0.1, its core found
in ApacheJMeter core.jar which contains 280 classes. Design documenta-
tion11 and other works that analyzed this system [13] mentions following
classes: AbstractAction, JMeterEngine, JMeterTreeModel, JMeterThread,
JMeterGUIComponent, Sampler, SampleResult, TestCompiler, TestElement,
TestListener, TestPlan, TestPlanGUI, ThreadGroup.

The first 30 classes as ranked by our tool are, in order: JMeterUtils, JMeter-
Property, GuiPackage, SampleResult, JMeterTreeNode, JMeter- Thread,
SaveService, AbstractTestElement, JMeterTreeModel, MainFrame, JMeter-
Context, PropertyIterator, JMeter, Sampler, CompoundVariable,
ThreadGroup, JMeterTreeListener, Test- Compiler, MenuFactory, Thread
GroupGui, AbstractJMeterGuiComponent, Arguments, CollectionProperty,
SampleEvent, Value- Replacer, JMeterGUIComponent, StandardJMeter
Engine, Result- Collector, GenericController.

We observe that 3 out of the 13 classes in the reference solution are found
in the top 10 ranked, while 7 classes are found in the top 20 and 8 classes are
found in the top 30.

4 Discussion and Comparison with Related Work

4.1 Summary of Experimental Results

In Table 2 we summarize the results obtained in our experiments. For each one
of the five analyzed systems, we represent in this table the raw data describing
it: its size, the size of the reference solution, the number of classes found if
the cut threshold is placed after the first 10, 15, 20 or respectively the first 30
ranked classes. The execution time includes both the analysis of dependencies
and building the model of the system and the applying of the ranking.

We compute the recall and precision for our approach, defined as in [13]:
The recall, showing the technique’s retrieval power, is computed as the per-

centage of key classes retrieved by the technique versus the total number of key
classes present in the reference set.
10 http://jmeter.apache.org/.
11 http://wiki.apache.org/jmeter/.

http://jmeter.apache.org/
http://wiki.apache.org/jmeter/

Helping Program Comprehension of Large Software Systems 135

Table 2. Experimental results summary.

JHotDraw Ant jEdit ArgoUML Wro4j JMeter Avg.Precis Avg.Recall

System size 398 524 1266 852 337 280

Execution time 1 min 2 min 3 min 2.5 min 1 min 1 min

Reference set 9 8 7 12 12 13

Hits in Top 10 5 2 4 6 5 3 42% 42%

Hits in Top 15 7 5 5 6 8 5 40% 61%

Hits in Top 20 8 8 6 9 10 7 40% 81%

Hits in Top 30 9 8 7 10 12 8 30% 90%

The precision, showing the technique’s retrieval quality, is computed as the
percentage of key classes retrieved versus the total size of the result set.

The last columns of Table 2 present the average values of recall and precision
computed from our experimental data concerning the six analyzed systems.

We consider this a good result, since the measured recall guarantees the
user a good start for program comprehension, having assured two thirds of the
relevant classes by examining a very small number of classes (only 10-15 classes),
independently on the size of the whole system. Also, in case of 4 systems out of
the six analyzed, all the relevant classes have been found in the top 30.

The precision values in our experiments are disadvantaged by the very small
size of the reference solution, which is in average 10 classes. However, we did
not add further classes to these reference sets, in order to keep them fair by
avoiding subjectivity. Also, while in most systems it would be difficult to rank
with precision all classes, this reduced top set is that which is unanimously
agreed as the most important. On the other hand, a user which uses our tool
to analyze a new system does not know the exact size of this top set. He or she
will use the tool with the expectation to find the top 10 or top 20 classes. If we
examine the top fragments of the rankings produced by the tool, we notice there
several classes that are certainly not irrelevant, although they were not included
in the reference top set.

In our opinion, program comprehension is effectively supported by the tool
in the following scenario: the tool identifies a small number of classes as key
classes. These classes give the starting points for the examination of the system
by a software engineer doing maintenance or evolution activities. For practical
effectiveness, most often is not worth to move the cut threshold below the top 20
ranked classes, due to the increased effort of manual investigation. The very short
and general executive summary of the system is quickly and easy retrieved in this
top set. After getting this executive summary, the user can continue the analysis
tasks either by parsing the documentation, beginning from the discovered key
classes, or he/she may apply other techniques such as feature localization [14]
to track more localized areas of interest.

136 I. Şora

4.2 Comparison with Related Work

There are several approaches trying to identify the most important software
artifacts (classes, packages, functions) from a software system. They present
differences in following aspects:

– the primary information that is extracted and analyzed: the majority uses sta-
tic analysis [15], [16] but there are also approaches based on dynamic analysis
[9], [11].

– the criteria used to define the importance of a class: the majority derives
the importance of a class from the ways it interacts with other classes, given
by design metrics (such as coupling), network metrics of the topology of the
interactions between the classes, or a combination of these. Other approaches
use the number of changes recorded by the versioning system [17] as an indi-
cator of the importance of a class. There were also attempts to use textual
information such as class names [18] as hints for the importance of a class.

– the techniques for identifying the key classes are mostly based on network
analysis [16], including here also webmining techniques [13], and more recently
machine learning [15], [19]. Also interactive tools for pruning of reverse engi-
neered class diagrams are developed [20].

Comparing the results obtained by all these different approaches is difficult,
because they are using different software systems as case studies and not all
publications describe the raw data of their experiments such as the rankings
that they obtained. Where such data was available we compared the results
with our results for the same systems.

Coderank [21] was one of the first works to introduce the concept of calcu-
lating PageRank values for a graph resulting from static dependencies between
the software artifacts such as classes of a project. However, there is little exper-
imental validation that supports the claims about their ability to help program
comprehension by identifying relevant components of real software systems.

An important work in detecting key classes of software systems belong to
Zaidman et al. [13], [22], [9]. They uses a graph-ranking algorithm, HITS, in
order to detect key classes of a software system. They combine this webmin-
ing technique with dynamic and static analysis, and perform experiments on
two systems. With dynamic analysis they attain an average recall of 92 % and
precision 46 %. However, a major drawback of this approach is that dynamic
analysis relies very much on the user finding good execution scenarios. It also
presents scalability issues and has a high execution time (1h45). Zaidman also
combined this webmining technique with static analysis but concluded that the
static analysis was not able to achieve a reasonable precision and recall. Here
their best reported results were an average recall of 50 % and precision 8 %, while
the execution time is still high (over 1 hour).

In our work we have proven that static analysis can be used to successfully
and efficiently identify key classes, our results near the values obtained by [13]
with dynamic analysis, while the execution time in our case is just a couple of
minutes. We think that a major enabling factor for our positive result here is our

Helping Program Comprehension of Large Software Systems 137

recommendation model, which takes into account all possible types of static
dependencies with appropriate weights, while Zaidman uses coupling metrics
that take into account only method calls. We also appreciate in the work of [13]
the extensive description of their result sets in case of Ant and JMeter, which
allowed us to compare with our result sets for these two systems. We retrieved a
couple of classes from outside the reference set that appear both in their and our
top ranking result set, leading to a future reconsideration of the reference sets.

Kamran et al. [11] develop their own version of a dynamic coupling met-
ric. Their results, obtained on analysing the Ant system, compete with those
obtained in [13] but significantly reduce the execution time. It is interesting to
note that the some classes present in the top ranking of Ant, while not included
in the reference set, are the same in our approach and in [11].

Steidl et al. [16] start from static analysis to retrieve important classes of a
system. Their approach calculates a centrality index for the nodes of the depen-
dency graph obtained by static analysis. They performed an empirical study to
find the best combination of centrality measurement of dependency graph. They
used as baseline for validation of results opinions of several software developers.
They found out that centrality indices work best on an undirected dependency
graph including information about inheritance, parameter and return depen-
dencies. Using the Markov centrality leads to the best results, with a precision
between 60 % and 80 % in the top 10 recommendation set. Their experiments
were performed on a set of 4 systems. However, they do not compute the recall
of their method, nor do they mention the members or the sizes of the reference
sets. From the data presented, one could conclude that the baseline sets for each
system were larger, being reunions of different expert opinion instead of inter-
section of such, resulting in more that 10 classes in the baseline. Theses larger
baseline solutions may have favored the count of hits in the top 10, as opposed
to the smaller reference solutions used in our experiments. We appreciate that
the retrieval power of this technique is similar with ours.

Meyer et al. [10] propose an automated way to identify the important classes
of a software system based on K-core decomposition. They show that the classes
in the highest K-cores are the ones that are the most important, but in order to
reduce the number of classes k-core values should be used in conjunction with
other network metrics as centralities. They discuss their results on 3 systems,
two of the systems being Ant and JHotDraw and obtaining rankings that have
many similarities with the ones obtained in our work. Pan et al. [23] use K-core
decomposition to find the most important packages of a software system.

Perin et al. [24] use PageRank on the graph of static dependencies. They
report experiments on several systems, including Ant, Jmeter and Jedit. How-
ever, the set of top ranked classes is very different from the sets of top ranked
classes reported for these systems in our work, and is different as well from those
reported in [9], [11], [10].

Osman et al. worked on condensing class diagrams by including only the
important classes. They used a very different approach, based on machine learn-
ing [15]. They use design metrics extracted from available forward design diagrams

138 I. Şora

to learn and then to validate the quality of prediction algorithms. Nine small to
medium size open source case studies are analyzed, taking as baseline available for-
ward design diagrams which contain from 11 to 57 classes, representing between
4 % and 47 % of the project size. In a follow-up, Osman et al. [18] built a classifier
that is based on the names of classes in addition to design metrics, but the results
show that combining text metrics with design metrics leads to modest improve-
ments over using design metrics only.

Thung et al. [19] uses machine learning combining design metrics and net-
work metrics in the learning process. Introducing network metrics besides the
design metrics improves the results of [15] by almost 10 %. However, in [19]
network metrics and design metrics are computed as distinct and independent
attributes and used in the learning process. In our approach, the network metric
(PageRank) is adapted to be computed on the weighted graph resulting after
the design metrics (measuring dependency strengths and coupling) are applied,
and thus we believe that the concept of recommendation is better adapted to its
particular purpose.

The work of Hammad [17] starts from another point of view regarding the
importance of classes: they consider that the classes that were important to the
design of the system are these often impacted by design changes. They measure
the design importance of a class as the number of commits that impact the class,
and this is also measured for the sets of classes that collaborate.

5 Conclusions

In this work, we develop a method and tool for automatically identifying the
most important classes of a software system, in order to facilitate the start of
program comprehension activities.

Our approach is based on static analysis, used to build a graph model of the
system, and the PageRang graph ranking algorithm.

In order to obtain a ranking that is relevant for our goal, the graph model of
the system has to be carefully built for this purpose. We define two parameters
of the graph model: the weights of dependency types and the dependency direc-
tions, which we call forward recommendations and back recommendations. We
have experimentally determined that all types of static dependencies between
classes have to be taken into account, weighted according to the relative impor-
tance given by the dependency type and number of occurrences. Also, exper-
iments have shown that back-recommendations are necessary, but should be
assigned only a fraction 0 < F < 1 of the weight of their corresponding forward
recommendations.

We have validated our approach by analyzing six open source systems and
comparing the top ranked classes with these described as important in developers
documentation. The results have shown our technique’s retrieval power, which
is able to find an average of 90 % of the classes of the reference sets indicated in
the developers documentation as ranked in the top 30 by our tool.

Helping Program Comprehension of Large Software Systems 139

References

1. von Mayrhauser, A., Vans, A.: Program comprehension during software mainte-
nance and evolution. Computer 28(8), 44–55 (1995)

2. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M., Ramos, I.: Are forward
designed or reverse-engineered UML diagrams more helpful for code maintenance?:
A controlled experiment. In: Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering. EASE 2013, 60–71. ACM,
New York (2013)

3. Sora, I.: Finding the right needles in hay - helping program comprehension of
large software systems. In: ENASE 2015 - Proceedings of the 10th International
Conference on Evaluation of Novel Approaches to Software Engineering, Barcelona,
Spain, 29–30, pp. 129–140 (2015), April 2015

4. Sora, I.: A PageRank based recommender system for identifying key classes in soft-
ware systems. In: 10th IEEE Jubilee International Symposium on Applied Compu-
tational Intelligence and Informatics, SACI 2015, Timisoara, Romania, May 21–23,
2015, pp. 495–500 (2015)

5. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical Report 1999–66, Stanford InfoLab Previous
number = SIDL-WP-1999-0120, November 1999

6. Şora, I.: Unified modeling of static relationships between program elements. In:
Maciaszek, L.A., Filipe, J. (eds.) ENASE 2012. CCIS, vol. 410, pp. 95–109.
Springer, Heidelberg (2013)

7. Briand, L., Daly, J., Wust, J.: A unified framework for coupling measurement in
object-oriented systems. IEEE Trans. Softw. Eng. 25(1), 91–121 (1999)

8. Sora, I., Glodean, G., Gligor, M.: Software architecture reconstruction: An app-
roach based on combining graph clustering and partitioning. In: 2010 International
Joint Conference on Computational Cybernetics and Technical Informatics (ICCC-
CONTI), pp. 259–264, May 2010

9. Zaidman, A., Calders, T., Demeyer, S., Paredaens, J.: Applying webmining tech-
niques to execution traces to support the program comprehension process. In: Ninth
European Conference on Software Maintenance and Reengineering, 2005. CSMR
2005, pp. 134–142, March 2005

10. Meyer, P., Siy, H., Bhomwick, S.: Identifying important classes of large software
systems through k-core decomposition. Advances in Complex Systems 17(07n08)
1550004 (2014)

11. Kamran, M., Azam, F., Khanum, A.: Discovering core architecture classes to assist
initial program comprehension. In: Lu, W., Cai, G., Liu, W., Xing, W. (eds.)
Discovering Core Architecture Classes to Assist Initial Program Comprehension.
LNCS, vol. 221, pp. 3–10. Springer, Heidelberg (2013)

12. Guéhéneuc, Y.G.: A reverse engineering tool for precise class diagrams. In: Proceed-
ings of the 2004 Conference of the Centre for Advanced Studies on Collaborative
Research. CASCON 2004, IBM Press 28–41 (2004)

13. Zaidman, A., Demeyer, S.: Automatic identification of key classes in a software sys-
tem using webmining techniques. J. Softw. Maintenance Evol.: Res. Pract. 20(6),
387–417 (2008)

14. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw.: Evol. Process 25(1), 53–95 (2013)

140 I. Şora

15. Osman, M.H., Chaudron, M.R.V., Putten, P.v.d.: An analysis of machine learning
algorithms for condensing reverse engineered class diagrams. In: Proceedings of
the 2013 IEEE International Conference on Software Maintenance. ICSM 2013,
Computer Society 140–149. IEEE, Washington, DC (2013)

16. Steidl, D., Hummel, B., Juergens, E.: Using network analysis for recommendation of
central software classes. In: 2012 19th Working Conference on Reverse Engineering
(WCRE), pp. 93–102, October 2012

17. Hammad, M., Collard, M., Maletic, J.: Measuring class importance in the con-
text of design evolution. In: 2010 IEEE 18th International Conference on Program
Comprehension (ICPC), pp. 148–151, June 2010

18. Osman, M., Chaudron, M., Van Der Putten, P., Ho-Quang, T.: Condensing reverse
engineered class diagrams through class name based abstraction. In: 2014 Fourth
World Congress on Information and Communication Technologies (WICT), pp.
158–163, December 2014

19. Thung, F., Lo, D., Osman, M.H., Chaudron, M.R.V.: Condensing class diagrams
by analyzing design and network metrics using optimistic classification. In: Pro-
ceedings of the 22Nd International Conference on Program Comprehension. ICpPC
2014, pp. 110–121. ACM, New York (2014)

20. Osman, M., Chaudron, M., Van Der Putten, P.: Interactive scalable abstraction of
reverse engineered uml class diagrams. In: 2014 21st Asia-Pacific Software Engi-
neering Conference (APSEC), vol. 1. 159–166, December 2014

21. Neate, B., Irwin, W., Churcher, N.: Coderank: a new family of software metrics.
In: Software Engineering Conference, 2006. Australian 10 pp.-378, April 2006

22. Zaidman, A., Du Bois, B., Demeyer, S.: How webmining and coupling metrics
improve early program comprehension. In: 14th IEEE International Conference on
Program Comprehension, 2006. ICpPC 2006, pp. 74–78 (2006)

23. Pan, W., Hu, B., Jiang, B., Xie, B.: Identifying important packages of object-
oriented software using weighted k-core decomposition. J. Intell. Syst. 23(4), 461–
476 (2014)

24. Perin, F., Renggli, L., Ressia, J.: Ranking software artifacts. In: 4th Workshop on
FAMIX and Moose in Reengineering (FAMOOSr 2010). 120 (2010)

A Case Study for a Bidirectional Transformation
Between Heterogeneous Metamodels

in QVT Relations

Bernhard Westfechtel(B)

Applied Computer Science I, University of Bayreuth, Universitaetstrasse 30,
95440 Bayreuth, Germany

bernhard.westfechtel@uni-bayreuth.de

Abstract. Model transformations constitute a key technology for
model-driven software engineering. In additional to unidirectional trans-
formations, bidirectional transformations may be required e.g. for
round-trip engineering or bidirectional data conversion. Bidirectional
transformations may be difficult to perform if the metamodels of source
and target models differ significantly from each other, as it is the case
for object-relational mappings. In this paper, we present a bidirectional
transformation between Ecore models and relational schemata written
in QVT Relations. The case study demonstrates that it is possible to
encode a bidirectional transformation between heterogeneous metamod-
els in a single relational specification. Simultaneously, the case study also
shows some inherent limitations of what can be achieved by bidirectional
transformations.

1 Introduction

In model-driven software engineering [1], software development is driven by the
construction of high-level models which are transformed over multiple stages into
executable code. For MDSE, key enabling technologies are required for defining
modeling languages as well as defining and executing model transformations.

In object-oriented modeling, the abstract syntax of a modeling language is
defined by a metamodel. To this end, the Object Management Group (OMG)
provides the Meta Object Facility standard (MOF [2]), whose subset EMOF
(Essential MOF) has been implemented in the Eclipse Modeling Framework
(EMF) [3].

For model transformations, the OMG issued the QVT standard (Queries,
Views, and Transformations), which defines a family of model transformation
languages at different levels of abstraction [4]. The most high-level language is
QVT Relations (QVT-R), which supports the declarative specification of trans-
formations between MOF-based models. QVT-R addresses a wide spectrum of
model transformation scenarios, including enforcing and checking, unidirectional
and bidirectional, batch and incremental, and n:1 transformations.

c© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 141–161, 2016.
DOI: 10.1007/978-3-319-30243-0 8

142 B. Westfechtel

This paper focuses on a particularly interesting feature of QVT-R: the declar-
ative specification of bidirectional transformations. Rather than writing two uni-
directional transformations separately, a transformation developer may provide
a single relational specification which may be executed in both directions. This
approach saves specification effort and ensures the consistency of forward and
backward transformations.

Bidirectional transformations are required e.g. for round-trip engineering.
Furthermore, integration of heterogeneous tools calls for data converters which
ideally perform lossless transformations in all directions.

However, lossless transformations in all directions require that transforma-
tions are mutually invertible: From the target model produced by the forward
transformation, the backward transformation should reconstruct the original
source model; vice versa for the opposite direction. This requires bidirectional
transformations which are bijective. In the case of heterogeneous metamodels,
bijectivity is not achievable.

This paper presents a bidirectional transformation for object-relational map-
pings. The transformation demonstrates an important advantage of QVT-R:
A fairly complex bidirectional transformation may be encoded as a single rela-
tional specification. In languages supporting only unidirectional transformations
such as e.g. ATL [5], the transformation developer would have to provide two
separate transformation definitions — one for each direction.

On the other hand, the case study also demonstrates inherent limitations of
bidirectional transformations in the presence of heterogeneous metamodels. Due
to information loss, it is not possible to reconstruct a class model completely
by running a forward transformation followed by a backward transformation.
Thus, the presented bidirectional transformation is not bijective. Furthermore,
the backward transformation essentially can process only relational schemata
which were generated by the forward transformation.

2 Model Transformations

A model is an abstraction of a system allowing predictions or inferences to be
made [6]. A model is expressed in a modeling language. A metamodel defines the
abstract syntax of a modeling language, usually with the help of class diagrams
and additional constraints (written e.g. in OCL). A model obeying the rules
defined in a metamodel is called an instance of that metamodel.

A model transformation operates on a set of models, each of which may
be either read, created, or updated. A single-source-single-target transformation
takes a single source model as input and produces a single target model as out-
put. A transformation is called exogenous (endogenous) if the source and target
metamodels are different (the same). The case study presented in this paper
deals with an exogenous single-source-single-target transformation.

A transformation may be modeled as a function from a source model to a
target model. A transformation is total if it may be applied to any instance of the
source metamodel, deterministic if it returns a unique target model for a given

A Case Study for Bidirectional Transformations in QVT Relations 143

source model, injective if it returns different target models for different source
models, surjective if it can generate any instance of the target metamodel, and
bijective if it is both injective and surjective.

As defined so far, a transformation is unidirectional : It can generate an
instance of the target metamodel from an instance of the source metamodel,
but not vice versa. A bidirectional transformation is a pair of opposite unidirec-
tional transformations (called forward and backward transformation).

In the context of round-trip engineering and bidirectional data converters, it
is highly desirable that both forward and backward transformation are total and
mutually inverse. Totality ensures that the transformations may be applied to
all instances of the respective metamodels. Mutual inversion ensures consistent
behavior: Applying the backward transformation after the forward transforma-
tion returns the original model; likewise for the opposite direction.

Fig. 1. Mappings between heterogeneous metamodels.

However, in practical applications these requirements may at best be approx-
imated. If the forward and the backward transformation are both total and
mutually inverse, there is a bijective (1:1) mapping between source models and
target models. Such a mapping does not exist in the case of heterogeneous meta-
models. This is illustrated in Fig. 1, where cij denote concepts defined in meta-
models (in terms of classes, attributes, or references): c11 cannot be mapped at
all, c12 and c13 are mapped to the same concept c22, c14 may be mapped non-
deterministically to c23 or c24, and c15 has to be simulated by the set of concepts
{c25, c26}.

3 QVT Relations (QVT-R)

QVT-R is a declarative language for specifying both uni- and bidirectional model
transformations as well as consistency checks. This section gives a brief overview
of QVT-R; see [4] for a comprehensive description and [7] for a tutorial.

144 B. Westfechtel

In QVT-R, a transformation may be defined on n ≥ 2 models; here, we
assume n = 2. The models involved in a transformation are typed by metamod-
els. A metamodel defines the elements from which models may be composed, and
constraints on their composition. In this way, it defines a set of models conform-
ing to the metamodel. In the following, models and metamodels are denoted by
lowercase and uppercase letters. The expression m ∈ M states that m conforms
to the metamodel M .

A transformation is specified in terms of rules, each of which defines a relation
between source and target patterns. A relation consists of domains, each of which
defines a pattern in one model. A domain has a unique root object and is marked
by a domain qualifier (checkonly or enforce) which controls how the domain may
be used in a transformation (see below). Furthermore, a relation may have a when
clause which serves as a precondition for applying the relation. A relation may
also comprise a where clause which essentially acts as a postcondition. Finally,
variables may be declared in a relation which are used in domains, the when and
the where clause.

A transformation is executed in the direction of a specific model. In checking
mode, the transformation is executed on a pair of already existing models m1 ∈
M1 and m2 ∈ M2. If m2 is selected as target model, it is checked whether for
each relation and each instance of a source pattern in m1 satisfying the when
clause, a corresponding target pattern instance exists in m2 such that the where
clause is satisfied, as well. Domain qualifiers are immaterial in checking mode.

In enforcing mode, the target model is updated such that it is consistent
with the source model. Thus, QVT-R provides for incremental transformations.
A batch transformation is treated as a special case (m2 is empty). To establish
consistency, it is checked for each relation and each source pattern instance
whether a corresponding instance of the target pattern already exists. If there
is no such instance, it is created if the target pattern is qualified by enforce;
otherwise, an inconsistency is reported. Furthermore, the check is performed also
in the opposite direction. If there is no matching source pattern instance, the
target pattern instance is deleted if its domain is qualified by enforce; otherwise,
an inconsistency is reported.

Ideally, a transformation may be executed in both modes in either direction.
Thus, a bidirectional transformation may be defined by a single specification.
In this case (to be considered in this paper), all domains should be qualified by
enforce. For a unidirectional transformation, source and target domains should
be qualified by checkonly and enforce, respectively. Transformations which are
run only in checking mode should mark all domains by checkonly.

4 Problem

An object-relational mapping constitutes a wide-spread use case for model trans-
formations. The QVT standard includes a small example of a unidirectional
mapping of simple UML-like models to relational schemas (see Appendix A.3.1
of the standard). In contrast, we developed a more sophisticated bidirectional

A Case Study for Bidirectional Transformations in QVT Relations 145

transformation between Ecore models (class models in EMF) and relational
schemas which covers large parts of the Ecore metamodel.

4.1 Metamodels

An excerpt from the Ecore metamodel is shown in Fig. 2. An Ecore model
consists of a tree of packages. A package owns a set of classifiers which are
partitioned into classes and data types. Classes are organized into a multiple
inheritance hierarchy. Each class owns a set of structured features which are
classified into attributes and references. A feature has a multiplicity, defined by
a lower bound and an upper bound. A feature may be designated as changeable,
volatile, transient, or derived. Multi-valued features consist of collections which
may be ordered and unique. Attributes and references are typed by data types
and classes, respectively. A data type may be an externally defined Java type,
or an enumeration type defined in the model. A reference may be designated
as a containment reference, implying exclusiveness, existential dependency, and
absence of cycles. Furthermore, unidirectional references may be grouped into
pairs, making up bidirectional references.

Fig. 2. Ecore metamodel (excerpt).

Figure 3 displays our metamodel for schemas of relational databases.
A schema consists of a set of tables, each of which has a set of named columns.
In a column, a single value is stored, which is typed by one of a set of predefined

146 B. Westfechtel

Fig. 3. Schema metamodel.

SQL data types. A key refers to a column which identifies a tuple in a relation
in a unique way. A primary key serves to uniquely identify tuples of its owning
relation. A foreign key references another relation, which must have a matching
primary key. Please note that we make the simplifying assumption that each
relation has at most one primary key which is composed of one column.

Properties and events are used to control the dynamic behavior of updates.
Each column may be decorated with a number of properties: NotNull excludes
null values, AutoIncrement defines a counter, and Unique excludes duplicates.
Furthermore, events may be defined on foreign keys as pairs of conditions and
actions. The conditions Delete and Update refer to the deletion and update of
the referenced target tuple, respectively. The action Cascade defines cascading
deletions, while SetNull sets the reference to null when the respective event is
fired.

4.2 Transformation Approach

In Ecore models and relational schemas, data are modeled in significantly dif-
ferent ways. Heterogeneity impedes the development of a bidirectional transfor-
mation. Below, we first present an approach to transform an Ecore model into
a relational schema. Next, we address the opposite direction. Finally, we discuss
the options to synthesize a bidirectional transformation.

A Case Study for Bidirectional Transformations in QVT Relations 147

Forward Transformation. For the sake of simplicity, we assume a few non-
essential restrictions regarding Ecore models: The whole Ecore model is defined
in a single package; only single inheritance is allowed; attributes must have data
types which can be mapped to SQL types, multi-valued features are assumed
to be unordered; with respect to multiplicities, only single- and multi-valued
features are distinguished (ranges [0..1] and [0..*], respectively).

The transformation to be described below may be applied to all Ecore mod-
els satisfying these restrictions. However, the transformation ignores operations
as well as volatile, transient, and derived features. Unlike the simple transfor-
mation from UML-like models to relational models in the QVT standard [4],
where an object is represented by a single tuple, objects are spread over multi-
ple tuples which are tied together by unique object identifiers. In the presence
of multi-valued features, a representation by a single tuple is not possible; fur-
thermore, the inheritance hierarchy is not flattened to provide for a modular
transformation. More specifically, the transformation works as follows:

1. Each package is mapped to a schema. In the schema, an object table is created
which manages unique identifiers (integers).

2. Each class is mapped to a table with a primary key.
3. Inheritance is mapped as follows: A root class maintains a foreign key into

the object table. A subclass maintains a foreign key into the superclass table.
4. A single-valued attribute is mapped to a column.
5. A containment reference is mapped to a column and a foreign key in the

opposite table (i.e., the table for the child class).

Fig. 4. Sample Ecore model of a campus management system.

148 B. Westfechtel

6. A single-valued unidirectional cross reference is mapped to a column and a
foreign key.

7. In all other cases, a cross reference is mapped to a table. Only a single table
is generated for a bidirectional cross reference.

8. Cascading deletions ensure that all tuples representing an object are deleted
when the tuple in the object table is deleted.

9. Furthermore, when an object is created, all tuples representing the objects
have to be inserted into the respective relations. We assume that this task
is performed in a database transaction (which, however, is not generated by
the transformation).

By applying these rules, the Ecore model of Fig. 4 is transformed into the
relational schema of Listing 1.

Backward Transformation. In the forward transformation, we have per-
formed an element-based translation, i.e., the transformation essentially consists
of rules for mapping individual elements of the source metamodel (packages,
classes, inheritance relationships, attributes, and references). Now, we follow the
same approach to design a backward transformation. This results in a simple
translation scheme: A schema is mapped to a package, a non-key column is
mapped to a single-valued attribute, a primary key is not mapped at all (Ecore
assumes implicit unique object identifiers), and a foreign key is mapped to a
single-valued unidirectional reference. Applying these rules to the schema of
Listing 1 yields the Ecore model displayed in Fig. 5.

Bidirectional Transformation. Apart from a few restrictions, the forward
transformation may be applied to arbitrary Ecore models; likewise, the backward
transformation may work on arbitrary relational schemata. Both the forward and
the backward transformations perform element-based translations. However, the
backward transformation does not invert the forward transformation; rather, it
produces an Ecore model which differs significantly from the model to which the
forward transformation was applied.

In order to (approximately) invert the forward transformation, the backward
transformation has to perform a pattern-based translation: The elements of Ecore
models have to be simulated in the relational data model. The backward trans-
formation has to recognize the simulation patterns and must transform them
back to the original element.

If we compose an element-based forward transformation with a pattern-based
backward transformation, we obtain a bidirectional transformation whose back-
ward transformation (approximately) inverts the forward transformation. How-
ever, the overall bidirectional transformation does not operate symmetrically:
The backward transformation assumes the patterns generated by the forward
transformation and is much more specific than the forward transformation.

A Case Study for Bidirectional Transformations in QVT Relations 149

150 B. Westfechtel

Fig. 5. Ecore model generated by the backward transformation.

5 Solution

The landscape of tools for QVT-R is populated sparsely. For our research, we
used medini QVT [8]. medini QVT provides an integrated development envi-
ronment for QVT-R, including a syntax-aided editor, an execution tool, and a
debugging tool which supports breakpoints and step-wise execution.

With the help of medini QVT, we developed two versions of bidirec-
tional transformations for object-relational mappings. These versions differ with
respect to the use of annotations. With annotations, it is possible to augment a
model with information which cannot be represented in the model itself. EMF
supports annotations of elements of Ecore models (which are not needed here).
To this end, the Ecore metamodel contains a class EAnnotation (not shown in
Fig. 2). However, EMF does not provide generic support for annotations of model
instances. Therefore, we extended the relational metamodel with an Annotation
class; each model may own a set of string-valued annotations (upper right corner
of Fig. 3).

Annotations constitute a well-known mechanism for reducing loss of informa-
tion in model transformation; they are frequently used in model-to-code trans-
formations to augment the generated source code. In the case of the bidirectional
object-relational mapping, it turned out that the benefit of annotations is rather
small; for example, they may be used to reconstruct the abstract and interface
properties of classes. Therefore, the presentation below covers only the bidirec-
tional transformation without annotations. In forward direction, the transforma-
tion creates the relational schema in Listing 1 from the Ecore model in Fig. 4. In
backward direction, the Ecore model is reproduced almost exactly from the rela-
tional schema (except for some multiplicities and the enumeration type Grade).

A Case Study for Bidirectional Transformations in QVT Relations 151

Table 1. Rules for mapping Ecore models to relational schemas

Rule Description

Package2Schema Maps a package to a schema and an object table
managing unique identifiers

Class2Table Maps a class to a table with an id column (primary key)

RootClass2ForeignKey Generates a foreign key into the object table

SubClass2ForeignKey Generates a foreign key into the superclass table

SingleValuedAttribute2Column Maps a single-valued attribute to a column

MultiValuedAttribute2Table maps a multi-valued attribute to a table with id and
value columns

SingleValuedUnidirectional-
CrossReference2Column

Maps a single-valued unidirectional cross reference to a
column and a foreign key into the table for the
referenced class

MultiValuedUnidirectional-
CrossReference2Table

Maps a multi-valued unidirectional cross reference to a
table with id and reference columns and
corresponding foreign keys

UnidirectionalContainment-
Reference2Column

Maps a unidirectional containment reference to a
column and a foreign key of the table for the target
class

BidirectionalContainment-
Reference2Column

Maps a bidirectional containment reference to a column
and a foreign key of the table for the target class

BidirectionalCrossReference2Table Maps a bidirectional cross reference to a table with
source and target columns and corresponding foreign
keys

152 B. Westfechtel

Since the backward transformation performs a pattern-based translation, it
has to be ensured that the translation can be performed uniquely : Each pattern
should be transformed in a unique way, i.e., there should be only one relation
which may be applied to some pattern. Otherwise, patterns are inadvertently
transformed multiple times. Therefore, the relations have to be checked pair-
wise for conflicts. In our bidirectional transformation, such conflicts do not occur.
However, in some cases uniqueness is achieved only through naming conventions.

Table 1 summarizes the mapping rules of our bidirectional transformation; in
addition, the transformation definition comprises numerous queries which will
not be presented here. Below, we describe several mapping rules, each of which
is realized by a QVT-R relation.

Listing 2 displays the relation for mapping a package to a schema. The source
domain consists of a package with a name. The target domain is composed of
a schema with the same name. In addition, it contains the object table for
managing unique object identifiers. This table has a reserved name; all reserved
names are defined by queries without arguments (QVT-R does not explicitly
support constant definitions). In addition, the table has a single column for the
object identifier (acting as primary key), which must not be null and is managed
automatically (property AutoIncrement in the when clause).

The relation in Listing 3 maps a class to a table. For technical reasons, the
enclosing package and the enclosing schema rather than the class and the table
act as domain roots (in Ecore models, the inverses of containment links are not
writable, which would be required if the class acts as domain root). By calling
the relation Package2Schema in the when clause, it is demanded that the package

A Case Study for Bidirectional Transformations in QVT Relations 153

must have already been mapped to the schema; in this way, dependencies among
different relations are expressed. The class is mapped to a table with the same
name. As in the object table, the table for the class gets an id column for the
object identifier which serves as primary key. In the where clause, an auxiliary
relation is called which establishes a relationship between the class and the table.
This relationship cannot be queried by calling the top-level relation Class2Table,
which relates only the package and the schema.

For the backward transformation, it must be ensured that only appropriate
tables are transformed into classes. The root table is excluded by a name con-
straint in the when clause. Tables for multi-valued attributes or references do
have an id column, which, however, serves as a foreign rather than a primary
key. This example demonstrates the conflict analysis which has to be performed
to check the uniqueness of the backward transformation.

The relation in Listing 4 defines the mapping of the inheritance hierarchy.
The when clause defines its preconditions: Package and schema, subclass and
table, as well as superclass and referenced table mus correspond to each other.
Thus, in a forward enforcing transformation, the package must have been trans-
formed to a schema, and the classes must have been transformed to tables before
the relation may be applied. The source pattern contains a class with a reference
to its superclass. The target pattern contains a table with its id column and a
foreign key referencing the superclass table. In a forward transformation, the
foreign key is created, but the id column is reused: Since the column name is
declared in the transformation as a key and the id column already exists, no
fresh copy is created. The foreign key is decorated with an event which provides
for cascading deletion if the referenced tuple is deleted; in this way, it is ensured
that all tuples representing an object are deleted.

154 B. Westfechtel

The backward transformation is unique: For each table for a class, there
is exactly one foreign key on the id column. Either the key references the
object table, or it references another class table. The latter case is han-
dled by the current relation, the former case is taken care of by the relation
RootClass2ForeignKey.

A Case Study for Bidirectional Transformations in QVT Relations 155

The relation in Listing 5 maps a multi-valued attribute to a table. The source
pattern contains a class with an attribute which is multi-valued (upperBound =
-1) and neither volatile nor transient or derived. Among others, the when clause
demands that the enclosing package must have been transformed to a schema
and the class must have been mapped to a table. In addition, the when clause
checks that the data type of the attribute is legal, and maps it to a predefined
SQL type. Finally, the when clause includes an expression for calculating the
name of the table to be generated. The target domain contains a table with two
columns and one foreign key. The first column is an id, on which a foreign key
into the owning class table is defined. The second column carries an attribute
value. For both columns, null values are excluded.

The backward transformation relies heavily on naming conventions. A table
to be transformed into a multi-valued attribute is recognized with the help
of columns with reserved names (idName() and valueName()). Furthermore, it
assumes a specific composition of the table name, which has to be decomposed
into a class name and an attribute name (see when clause). To generate an
attribute in the Ecore model, it is further necessary to translate the SQL type
of the value column into an Ecore data type.

156 B. Westfechtel

Please note that the order of expressions in the when clause is not semanti-
cally significant. Rather, it is required that the expressions may be evaluated in
an order which satisfies data flow constraints (e.g., in an equation v = e, either
all variables are bound, or v is unbound and all variables in e are bound). In par-
ticular, expressions may be evaluated in different orders in forward and backward
transformations. The comments Forward and Backward indicate that the respec-
tive expressions are relevant in only one transformation direction. However, they
are actually evaluated in both directions, and execution must be successful in
both cases.

As a last example, let us consider the mapping of a unidirectional containment
reference to a column (Listing 6). The root of the source domain is the parent
class, which owns a containment reference which is neither volatile nor transient
or derived. Furthermore, it must not have an opposite reference (see when clause).
Both the parent class and the referenced child class must have been transformed
to tables. In the child table, a column is generated along with a foreign key
with cascading deletion. The column name is derived from the name of the
containment reference.

In the opposite direction, it has to be verified that the column name is not
a reserved name. Furthermore, the name of the containment reference has to
be extracted from the column name (see when clause again). Please note that
the column name must be composed exactly as specified for the purpose of
the forward transformation; otherwise, the equation for the column name will
evaluate to false, preventing the application of the relation.

6 Discussion

The object-oriented and the relational approach to data modeling vary signif-
icantly from each other. Accordingly, a bidirectional transformation between
Ecore models and relational schemata has to cope with heterogeneous meta-
models (Fig. 1): For example, operations cannot be mapped at all to relational
schemata, volatile, transient, and derived features should not be mapped because
they are not stored persistently, and multi-valued features have to be simulated
by tables. In the opposite direction, the concept of a primary key does not match
the concept of an (implicit) unique object identifier, and it is difficult to map
properties of columns and events attached to foreign keys to Ecore.

As we have shown in Subsect. 4.2, there is no unique, canonical way to
derive a bidirectional transformation from the metamodels and their relation-
ships. Rather, the transformation approach depends on requirements and design
decisions. In our approach, we focused on the forward direction: We developed a
transformation which — apart from a few restrictions — can translate any Ecore
model to a relational schema. This transformation can also be executed in the
opposite direction, but it works properly only on relational schemata generated
by the forward transformation.

As a result, we obtained a biased, asymmetric bidirectional transformation:
In forward direction, the transformation performs an element-based translation;

A Case Study for Bidirectional Transformations in QVT Relations 157

in contrast, the opposite transformation performs a pattern-based translation. As
demonstrated in Subsect. 4.2, a pair of element-based translations would not con-
stitute a bidirectional transformation based on a single relational specification.

Fig. 6. Use of bidirectional transformations.

Let us discuss the implications of these observations on the way the bidirec-
tional transformation may be used in practice (Fig. 6). We may start with an
Ecore model and have it translated into a relational schema. Apart from some
minor restrictions, the backward transformation may then be employed to recon-
struct the Ecore model from the relational schema. However, if we try to start
at the opposite end (with a relational schema), the backward transformation is
useless unless the relational schema happens to satisfy the coding conventions
underlying the forward transformation. In fact, migrating an arbitrary relational
schema to an object-oriented class model constitutes a major database reverse
engineering challenge [9].

Thus, using our bidirectional transformation, the round-trip has to start
always with an Ecore model. Therefore, an initial reverse engineering trans-
formation is required in the case that only a relational schema is available. After
having improved the result of this transformation, we may start our round-trip.

Please note that the round-trip engineering scenario goes beyond the bidi-
rectional data converter scenario inasmuch as it requires incremental transfor-
mations. In the most general case, both the source and the target model may
be edited, and the changes have to be propagated in either direction. Using our
bidirectional transformation, the Ecore modeler may freely employ the modeling
concepts of Ecore. In contrast, the database designer has to stick faithfully to the
coding conventions implemented in the forward transformation. This situation
is not uncommon in round-trip engineering; in particular, it also applies to the
well-known use case of the model-to-code round-trip.

Due to loss of information, the bidirectional transformation is not bijective.
There is no 1:1 mapping between elements of Ecore models and elements of rela-
tional schemata. While the backward transformation is controlled by the same
rules as the forward transformation — executed in the opposite direction —, in
general the original source model may be approximated, but it may not be recon-
structed exactly. Thus, the backward transformation is not inverse to the forward
transformation (this would require the guarantee of an exact reconstruction of
the source model).

Annotations are used frequently for improving the functionality of transfor-
mations. In the transformation case studied in this paper, they are not vital, but

158 B. Westfechtel

they may improve the reconstruction of the original source model, e.g., by adding
information about multiplicities, abstract vs. concrete classes, etc. However, the
use of annotations is problematic for several reasons. First, they cannot be used
if the metamodel does not provide for annotations of model elements. Second,
they pollute models with tool-specific information. Third, they require the user
to add annotations such that the backward transformation works properly.

All of the considerations stated above are independent of the model trans-
formation language used for realizing a bidirectional transformation. We still
have to discuss our experiences with QVT-R. As far as this case study is con-
cerned, QVT-R was applied successfully: The relational specification behaves as
expected, eliminating the need for writing separate unidirectional transforma-
tions. Since the backward transformation performs a pattern-based translation,
it is crucial to check that a certain pattern does not match multiple relations.
This check succeeded, but it had to be performed manually. Furthermore, for
each relation is has to be verified that execution in both directions is possible.
For most of the relations, this check was easy to perform. In some relations, it
has to be checked carefully in which order expressions in the when clause are
executed in each direction. Conceptually, some of these expressions are unidi-
rectional. However, since QVT-R does not support unidirectional expressions,
each expression is evaluated in each transformation direction. Therefore, it must
be ensured that a conceptually unidirectional expression does not “stand in the
way” if the transformation is executed in the opposite direction.

7 Related Work

The vast majority of transformation languages supports only unidirectional
transformations; consider e.g. the well-known ATL language [5]. However, bidi-
rectionality is not a unique feature of QVT-R [10]. The most prominent com-
petitors are languages and tools based on triple graph grammars [11–14]. In
contrast to the grammar-based approach, QVT-R follows a relational paradigm
where a transformation is specified by a set of relations among patterns to be
instantiated in the participating models.

QVT-R is a language which is defined only informally in the QVT standard.
Not surprisingly, the informal definition suffers from lack of precision, contra-
dictions, and ambiguities. Therefore, several authors worked on the definition of
a formal semantics of QVT-R. Checking transformations are defined with the
help of game theory [15], category theory [16], or the mu calculus [17]. [18,19]
define enforcing transformations with the help of the mu calculus and the theory
of problems, respectively.

On the practical side, a number of applications of QVT-R have been pub-
lished in the scientific literature. These applications refer to a variety of domains,
such as software measurement [20], model-based testing [21], pattern mining [22],
translation of sequence diagrams to CSP [23], business process recovery [24], PIM
to PSM transformation [25], model verification [26], model transformation veri-
fication [27], and service description models [28]. All of the cited papers focus on

A Case Study for Bidirectional Transformations in QVT Relations 159

the provision of innovative functionality and use QVT-R to solve the problem at
hand. Furthermore, with a few exceptions [25,28], all of these papers deal with
unidirectional rather than bidirectional transformations.

Our work complements these efforts by exploring case studies for an eval-
uation of bidirectional transformations in QVT-R. In a predecessor paper [29],
we investigated a bidirectional transformation between different languages for
project scheduling (Gantt diagrams and CPM networks). We mainly focused on
problems occurring in the synthesis of bidirectional transformations from uni-
directional transformations, and proposed extensions to QVT-R. In contrast,
the current case study of an object-relational mapping focuses on bidirectional
transformations between heterogeneous metamodels (in the previous case study,
the metamodels were different, but still quite closely related). In particular, we
stated some observations concerning the properties of bidirectional transforma-
tions which, as we believe, are not confined to the case studied in this paper.

8 Conclusion

In this paper, we presented and investigated a bidirectional transformation
between heterogeneous metamodels. To this end, we selected the well-known
problem of object-relational mappings and presented a solution in QVT-R. The
transformation is bidirectional, and it takes a large fraction of the Ecore meta-
model into account. The concepts of Ecore models have to be simulated in rela-
tional schemata. The bidirectional transformation is not bijective; in contrast,
source and target models are structured in significantly different ways. Further-
more, the transformation is not symmetric: While the forward transformation
performs an element-based translation, the backward transformation realizes
a pattern-based translation. Essentially, the backward transformation can be
applied only to models generated by the forward transformation. QVT-R has
been used successfully to solve the transformation problem at hand. However,
the observations stated above are not specific to QVT-R and should apply to
other bidirectional transformation languages, as well.

References

1. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Com-
put. 39, 25–31 (2006)

2. Object Management Group: OMG Meta Object Facility (MOF) Core Specification
Version 2.4.1, Needham, MA. formal/2013-06-01st edn. (2013)

3. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Upper Saddle River
(2009)

4. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.2, Needham, MA.
formal/2015-02-01st edn. (2015)

5. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72, 31–39 (2008)

160 B. Westfechtel

6. Kühne, T.: Matters of (meta-) modeling. Softw. Syst. Model. 5, 369–385 (2006)
7. Reddy, S., Venkatesh, R., Zahid, A.: A relational approach to model transformation

usingQVTRelations.Technical report,TataResearchDevelopment andDesignCen-
tre, Pune, India (2006). http://www.iist.unu.edu/vs/wiki-files/QVT-TRDCC.pdf

8. ikv++ technologies: medini QVT (2014). http://projects.ikv.de/qvt
9. Jahnke, J., Zündorf, A.: Applying graph transformations to database re-

engineering. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., (eds.) Hand-
book on Graph Grammars and Computing by Graph Transformation, vol. 2: Appli-
cations, Languages, and Tools. World Scientific, Singapore, pp. 267–286 (1999)

10. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

11. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

12. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey.
In: Heckel, R., (ed.) Proceedings of the School of SegraVis Research Training Net-
work on Foundations of Visual Modelling Techniques (FoVMT 2004), vol. 148, pp.
113–150. Electronic Notes in Theoretical Computer Science, Dagstuhl, Germany,
Elsevier Science (2006)

13. Schürr, A., Klar, F.: 15 years of triple graph grammars - research challenges, new
contributions. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

14. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, imple-
mentations, and application scenarios. Technical report tr-ri-07-284, University of
Paderborn, Paderborn, Germany (2007)

15. Stevens, P.: A simple game-theoretic approach to checkonly QVT Relations. Softw.
Syst. Model. 12, 175–199 (2013)

16. Guerra, E., de Lara, J.: An algebraic semantics for QVT-Relations check-only
transformations. Fundamentae Informaticae 114, 73–101 (2012)

17. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R Transformations with gen-
eral when and where clauses via the modal mu calculus. In: de Lara, J., Zisman,
A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp.
194–208. Springer, Heidelberg (2012)

18. Bradfield, J., Stevens, P.: Enforcing QVT-R with mu-Calculus and Games. In:
Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp.
282–296. Springer, Heidelberg (2013)

19. Giandini, R., Pons, C., Pérez, G.: A two-level formal semantics for the QVT lan-
guage. In: Brogi, A., Araújo, J., Anaya, R. (eds.) Memorias de la XII Conferen-
cia Iberoamericana de Software Engineering (CIbSE 2009), pp. 73–86. Medelĺın,
Colombia (2009)

20. Mora, B., Garćıa, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carśı, J.A.,
Ramos, I.: Software measurement by using QVT transformations in an MDA con-
text. In: Cordeiro, J., Filipe, J., (eds.) Proceedings of the Tenth International Con-
ference on Enterprise Information Systems (ICEIS 2008). Vol. DISI., Barcelona,
Spain 117–124 (2008)

http://www.iist.unu.edu/vs/wiki-files/QVT-TRDCC.pdf
http://projects.ikv.de/qvt

A Case Study for Bidirectional Transformations in QVT Relations 161

21. Lamancha, B.P., Mateo, P.R., de Guzmán, I.R., Usaola, M.P., Velthius, M.P.:
Automated model-based testing using the UML testing profile and QVT. In: Pro-
ceedings of the 6th International Workshop on Model-Driven Engineering, Veri-
fication and Validation (MoDeVVa 2009), Denver, Colorado, USA, pp. 6:1–6:10.
ACM (2009)

22. Kübler, J., Goldschmidt, T.: A pattern mining approach using QVT. In: Paige,
R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp.
50–65. Springer, Heidelberg (2009)

23. Dan, L.: QVT based model transformation from sequence diagram to CSP. In:
Calinescu, R., Paige, R.F., Kwiatkowska, M.Z. (eds.) Proceedings of the 15th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS
2010), pp. 349–354. IEEE Computer Society, Oxford (2010)

24. Pérez-Castillo, R., Garćıa-Rodŕıguez de Guzmán, I., Piattini, M.: Implementing
business process recovery patterns through QVT transformations. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 168–183. Springer, Heidelberg
(2010)

25. Ma, K., Yang, B., Chen, Z., Abraham, A.: A relational approach to model transfor-
mation with QVT Relations supporting model synchronization. J. Univ. Comput.
Sci. 17, 1863–1883 (2011)

26. Elaasar, M., Briand, L., Labiche, Y.: Domain-specific model verification with QVT.
In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011.
LNCS, vol. 6698, pp. 282–298. Springer, Heidelberg (2011)

27. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. 20, 5–46 (2013)

28. Schwichtenberg, S., Gerth, C., Huma, Z., Engels, G.: Normalizing heterogeneous
service description models with generated QVT transformations. In: Cabot, J.,
Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 180–195. Springer, Heidelberg
(2014)

29. Westfechtel, B.: A case study for evaluating bidirectional transformations in QVT
Relations. In: Filipe, J., Maciaszek, L. (eds.) Proceedings of the 10th Interna-
tional Conference on the Evaluation of Novel Approaches to Software Engineering
(ENASE 2015), pp. 141–155. Spain, INSTICC, SCITEPRESS, Barcelona (2015)

The Implementation of ISO/IEC 29110
Software Engineering Standards and Guides

in Very Small Entities

Claude Y. Laporte1, Rory V. O’Connor2(&),
and Luis Hernán García Paucar3

1 École de technologie supérieure, Montréal, Canada
Claude.Y.Laporte@etsmtl.ca

2 School of Computing, Dublin City University, Dublin, Ireland
roconnor@computing.dcu.ie

3 Universidad Peruana de Ciencias Aplicadas, Lima, Peru
luis.garcia@upc.edu.pe

Abstract. This paper outlines the details of seven case studies involving the
pilot usage of the new standard ISO/IEC 29110 standard ‘Lifecycle Profiles for
Very Small Entities’, which was specifically designed by Working Group 24 of
ISO/IEC JTC1/SC7 to address the standardization needs of Very Small Entities
(VSEs). The purpose of this paper is to add substantially to the body of
knowledge and the literature on the rollout and implementation of this new and
evolving standard and to act as guidance for other researchers in the design and
implementation of ISO/IEC 29110 case studies. Furthermore it is hoped that that
the lessons learnt from these case studies will help promote the adoption of this
new standard in an industrial setting.

Keywords: Very small entities � ISO standards � ISO/IEC 29110 � VSE

1 Introduction

In the domain of software development, small and very small companies have the
challenge of handling multiple small-scale, fast-moving projects allowing little room
for unwieldy management processes, but still requiring an efficient and straightforward
monitoring process [1]. Moreover due to the small number of people involved in the
project and the organization, most of the management processes are performed through
an informal way and less documented [2]. The perception of heavyweight processes,
especially in terms of documentation, cost and nonalignment with current development
process, are among the reasons why the companies did not plan to adopt a lifecycle
standard in the short to medium term [3, 4].

The definition of “Small” and “Very Small” Entities is challengingly ambiguous, as
there is no commonly accepted definition of the terms. The term “very small entity”
(VSE) had been defined by the ISO/IEC JTC1/SC7 Working Group 24 and subse-
quently adopted for use in the new ISO/IEC 29110 process lifecycle standard as being
“an entity (enterprise, organization, department or project) having up to 25 people” [5].

© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 162–179, 2016.
DOI: 10.1007/978-3-319-30243-0_9

Industry recognizes the value of Very Small Entities (VSEs) in contributing valuable
products and services. For example in Canada, close to 98 percent of businesses are
small businesses with fewer than 50 employees. About 32 percent of these have between
one and 19 employees [6].

VSEs have unique characteristics, which make their business styles different to
larger organizations and therefore most of the management processes are performed
through a more informal and less documented manner [7]. Furthermore there is an
acknowledged lack of adoption of standards in small and very small companies, as the
perception is that they have been developed for large software companies and not with
the small organisation in mind [8, 43]. As smaller software companies have fewer
resources in term of people and money there are many challenges [9].

There is evidence that the majority of small and very small software organizations
are not adopting [54] existing standards/proven best practice models because they
perceive the standards as being developed by large organizations and orientated
towards large organizations, thus provoking the debate the in terms of number of
employees, size does actually matter [10, 44]. Studies have shown that small firms’
negative perceptions of process model standards are primarily driven by negative views
of cost, documentation and bureaucracy [11]. In addition, it has been reported that
SMEs find it difficult to relate standards to their business needs and to justify the
application of the international standards in their operations [12]. Most SMEs cannot
afford the resources for, or see a net benefit in, establishing software processes as
defined by current standards and maturity models [13].

Accordingly, a new standard ISO/IEC 29110 “Lifecycle profiles for Very Small
Entities” is aimed at meeting the specific needs of VSEs [14]. The overall objective of this
new standard is to assist and encourage very small software organizations in assessing and
improving their software process and it is predicted that this newstandard could encourage
and assist small software companies in assessing their software development process [50].
The approach [15] used to develop ISO/IEC 29110 started with the pre-existing inter-
national standards, such as the software life cycle standard ISO/IEC/IEEE 12207 [40, 41]
and the documentation standard ISO/IEC/IEEE 15289 [42].

The working group behind the development of this standard is advocating the use
of pilot projects as a mean to accelerate the adoption and utilization of ISO/IEC 29110
by VSEs [7]. Pilot projects are an important mean of reducing risks and learning more
about the organizational and technical issues associated with the deployment of new
software engineering practices [16]. To date a series of pilot projects for the software
engineering profile standard have been completed in several countries with the results
published in a variety of literature [17–20].

2 The ISO/IEC 29110 Standard for VSEs

The working group (WG24) of the ISO/IEC JTC1 SC7 mandated to develop the new set
of standards for VSEs, used the concept of ISO standardized profiles (SP) to
ISO/IEC/IEEE 12207 to develop the new standards for VSEs developing software.
From a practical point of view, a profile is a kind of matrix, which identifies precisely the
elements that are taken from existing standards from those that are not. The overall

The Implementation of ISO/IEC 29110 Software Engineering 163

approach followed by WG24 to develop this new standard for VSE consisted of the
following steps:

• develop a set of profiles for VSEs not involved in critical software development,
• select the ISO/IEC/IEEE 12207 process subsets applicable to VSEs having up to 25

people,
• select the description of the products, to be produced by a project, using

ISO/IEC/IEEE 15289 standard
• develop guidelines, checklists, templates, examples to support the subsets selected.

The basic requirements of a software development process are that it should fit the
needs of the project and aid project success [21, 22]. And this need should be informed
by the situational context where in the project must operate and therefore, the most
suitable software development process is contingent on the context [23, 24]. The core
situational characteristic of the entities targeted by ISO/IEC 29110 is size.

Profile Groups are a collection of profiles. The Generic Profile Group has been
defined as applicable to VSEs that do not develop critical software. This Profile Group
is a collection of four profiles (Entry, Basic, Intermediate, Advanced) providing a
roadmap to satisfying a vast majority of VSEs worldwide. VSEs targeted by the Entry
Profile are VSEs working on small projects (e.g. at most six person-months effort) and
for start-up VSEs. The Basic Profile describes software development practices of a
single application by a single project team of a VSE. The Intermediate Profile is
targeted at VSEs developing multiple projects with more than one project team. The
Advanced Profile is target to VSEs which want to sustain and grow as a competitive
software development business.

2.1 The ISO/IEC 29110 Basic Profile

At the core the Basic Profile of this standard is a Management and Engineering Guide,
officially know as ISO/IEC TR 29110-5-1-2 [52], which focuses on Project Manage-
ment and Software Implementation as illustrated in Fig. 1. The purpose of the Basic
Profile is to define Software Implementation (SI) and Project Management (PM) pro-
cesses from a subset of ISO/IEC/IEEE 12207 and ISO/IEC/IEEE 15289 [42] appro-
priate for VSEs, as illustrated in Fig. 1.

The main reason to include project management is that the core business of VSEs is
software development and their financial success depends on successful project com-
pletion within schedule and on budget, as well as on making a profit. The high-level
view and the relationships between the Software Implementation Process and the
Project Management processes are illustrated in Fig. 1.

This standard defines two processes: Software Implementation and Project Man-
agement. The purpose of the Software Implementation process is the systematic per-
formance of the analysis, design, construction, integration and tests activities for new or
modified software products according to the specified requirements. The purpose of the
Project Management process is to establish and carry out in a systematic way the tasks
of the software implementation project, which allows complying with the project’s
objectives in the expected quality, time and cost.

164 C.Y. Laporte et al.

The seven objectives of the PM process are [52]:

1. The Project Plan for the execution of the project is developed according to the
Statement of Work and reviewed and accepted by the Customer.

2. Progress of the project is monitored against the Project Plan and recorded in the
Progress Status Record.

3. The Change Requests are addressed through their reception and analysis. Changes
to software requirements are evaluated for cost, schedule and technical imp

4. Review meetings with the Work Team and the Customer are held. Agreements are
registered and tracked.

5. Risks are identified as they develop and during the conduct of the project.
6. A software Version Control Strategy is developed. Items of Software Configuration

are identified, defined and baselined.
7. Software Quality Assurance is performed to provide assurance that work products

and processes comply with the Project Plan and Requirements Specification.

The four activities of the Project Management Process are [52]:

• The Project Planning activity documents the planning details needed to manage the
project.

• The Project Plan Execution activity implements the documented plan on the project.
• The Project Assessment and Control activity evaluates the performance of the plan

against documented commitments.
• The Project Closure activity provides the project’s documentation and products in

accordance with contract requirements.

The purpose of the Software Implementation process is to achieve systematic
performance of the analysis, design, construction, integration, and test activities for
new or modified software products according to the specified requirements. The seven
objectives of the SI process are [52]:

Fig. 1. Basic profile processes and activities [26].

The Implementation of ISO/IEC 29110 Software Engineering 165

1. Tasks of the activities are performed through the accomplishment of the current
Project Plan.

2. Software requirements are defined, analyzed for correctness and testability,
approved by the Customer, baselined and communicated.

3. Software architectural and detailed design is developed and baselined. It describes
the Software Components and internal and external interfaces of them.

4. Software Components defined by the design are produced. Unit test are defined and
performed to verify the consistency with requirements and the design.

5. Software is produced performing integration of Software Components and verified
using Test Cases and Test Procedures. Results are recorded at the Test Report.

6. A Software Configuration, that meets the Requirements Specification as agreed to
with the Customer, which includes user, operation and maintenance documenta-
tions, is integrated, baselined and stored at the Project Repository.

7. Verification and Validation Tasks of all required work products are performed using
the defined criteria to achieve consistency among output and input products in each
activity.

The activities of the Software Implementation Process are [52]:

• Software Implementation Initiation: Ensures that the Project Plan established in
Project Planning activity is committed to by the Work Team.

• Software Requirements Analysis: Analyzes the agreed Customer’s requirements
and establishes the validated project requirements.

• Software Architectural and Detailed Design: Transforms the software requirements
to the system software architecture and software detailed design.

• Software Construction: Develops the software code and data from the Software
Design.

• Software Integration and Tests: Ensures that the integrated Software Components
satisfy the software requirements.

• Product Delivery: Provides the integrated software product to the Customer.

As illustrated in Fig. 1, the customer’s statement of work (SOW) is used to initiate
the PM process. The project plan will be used to guide the execution of the software
requirements analysis, software architectural and detailed design, software construc-
tion, and software integration and test, and product delivery activities. The PM process
closure activity will deliver the Software Configuration (i.e. a set of software products
such as documentation, code and tests) and will obtain the customer’s acceptance to
formalize the end of the project.

2.2 ISO/IEC 29110 Deployment Assistance

A novel approach was taken to assist VSEs with the deployment of ISO/IEC 29110 and
to provide guidance on the actual implementation this standard. A set of Deployment
Packages (DPs) have been developed to define guidelines and explain in more detail
the processes defined in the ISO/IEC 29110 profiles [26]. A deployment package is not
a complete process reference model. Deployment packages are not intended to preclude

166 C.Y. Laporte et al.

or discourage the use of additional guidelines that VSEs find useful. The elements of a
typical DP are: description of processes, activities, tasks, steps, roles, products, tem-
plates, checklists, examples, references and mapping to standards and models, and a list
of tools.

DPs were designed such that a VSE can implement its content, without having to
implement the complete ISO/IEC 29110 framework, i.e. all the management and
engineering activities, at the same time. A set of nine DPs have been developed and are
freely available from [27].

3 ISO/IEC 29110 Industry Trial

In this section we will present 7 trial implementations of ISO/IEC 29110. The purpose
of these trials is to illustrate the usage of this standard in an industrial context and to
provide feedback to standards authors. Whilst not a detailed methodological approach
to validation of this standard and whilst acknowledging the validation limitations, we
believe that these high level results are useful to researchers and practitioners alike.

3.1 Case 1: A Peruvian IT Start-up

Over 98 % of Perú are micro, small and medium enterprises (MSMEs) having fewer
than 10 workers. About 7,6 million people work in companies having fewer than 10
workers. About 14,000 Peruvian companies are associated with the Information
Technology and Communications (ITC) industry [28].

An implementation of ISO/IEC 29110 has been conducted in a four-people start-up
VSE created in 2012 [29]. During its two years of existence, the VSE has been
involved in over 80 projects, most of which have lasted less than two months. The VSE
used agile practices to implement software solutions such as Web 2.0 responsive design
systems and mobile applications. After completing the implementation of the Basic
profile of ISO/IEC 29110, the VSE executed in 2014 a project under contract. The
product developed was a software solution that facilitates communication between
clients and legal consultants at one of the largest insurance companies in Peru. The
solution had to be implemented on a web platform and deployed into a cloud
environment.

Since the VSE was using agile methods to implement its software projects, cus-
tomer requirements were expressed as user stories. For this project, the VSE had
determined that the duration of a sprint would be one week. The project had 6 sprints.
All software components, test cases, test procedures and user stories were linked
through a traceability matrix. As illustrated inn Table 1, the total effort to implement the
project was 882 h. The effort devoted to prevention activities such as installation of the
environment (servers, tools, etc.) was 14 h, task execution took 585 h, reviews took
124 h and effort to correct defects identified in reviews and in testing took 159 h. The
start-up wasted only 18 % of the total project effort (i.e. 159 h/882 h) on rework. Since
it was the first time the VSE had executed the new ISO/IEC 29110 processes in a real
project, so there was a learning curve that resulted in additional hours spent on rework

The Implementation of ISO/IEC 29110 Software Engineering 167

for different project tasks. Despite this situation, the result was close to the percentage
of rework (i.e. about 15 % to 25 %) of an organization that has implemented the
Capability Maturity Model and is at maturity level 3.

For the first stage of the audit process, the Peruvian VSE invested about 22 h and 500
$ for the auditor. For the initial certification stage, the VSE invested about 63 h. The cost
of the auditor, excluding the travel expenses, was 1,500$. The total effort and cost of an
ISO/IEC 29110 audit is very small compared to a typical CMMI official assessment.
This start-up became the first Peruvian VSE to obtain an ISO/IEC 29110 certification.
The third stage of a certification cycle involves the completion of two surveillance audits
one and two years after obtaining the initial certification. Finally, the fourth stage is the
recertification of the VSE; once the 3-year certification cycle has elapsed.

In order to promote the recognition of qualifications between countries, there are
international organizations such as the International Accreditation Forum (IAF).
The IAF is the world association of conformity assessment accreditation bodies in the
fields of management systems, products and services, and to date, it has more than 60
member countries. The Peruvian and the Brazilian accreditation bodies are members of
this organization. An ISO/IEC 29110 certificate of conformity issued by an accredi-
tation body member of the IAF is recognized by all members of IAF. The conformity
certificate has become a major differentiator with regard to the main competitors of the
VSE. The Peruvian start-up VSE has gained access to larger software development
projects and increased its customer base. The VSE has increased its number of workers
to date, from 4 to 23 employees.

3.2 Case 2: A Canadian IT Start-up

An implementation project has been conducted in an IT start-up VSE by a team of two
developers [25]. Their web application allows users to collaborate, share and plan their

Table 1. Effort to execute, detect and correct errors [29].

Title of task Prevention
(hours)

Execution
(Hours)

Review
(Hours)

Rework
(Hours)

Environment installation 14
Project plan development 15 3 7
Plan execution, project
assessment & control

108

Specification development 107 28 58
Architecture development 35 10 14
Test plan development 45 8 11
Code development and testing 253 70 62
Develop user guide &
maintenance document

14 5 7

Product deployment 6
Project closure 2
Total hours 14 585 124 159

168 C.Y. Laporte et al.

trips simply and accessible to all. The use of the Basic profile of ISO/IEC 29110 has
guided the start-up to develop an application of high quality while using proven
practices of ISO 29110. The total effort of this project was nearly 1000 h. The two
members of the team were assigned roles and activities of ISO 29110. The management
and engineering guide of the Basic profile lists the documents that have to be developed
during a project as well as their typical content.

During the software development, a traceability matrix was developed between the
software requirements, defined in the requirements specification document, and the
software components. Since, in most projects requirements, defined in the requirements
activity, are never finalized at the end of this activity, a traceability matrix is very
useful. One advantage of such a matrix is the possibility of rapidly identifying the
impacted software components when modifications, additions, deletions, of soft ware
requirements are done during a project.

Verification tasks, such as peer reviews, were performed on documents such as the
requirement specifications and the architecture. The team used the desk-check to
review their documents which is inexpensive and easy to implement in any organi-
zation and can be used to detect anomalies, omissions, improve a document or present
and discuss alternative solutions.

As defined in ISO/IEC 29110, the software integration and tests activity ensures
that the integrated Software Components satisfy the software requirements. This
activity provides [30] work team review of the project plan to determine task
assignment:

• Understanding of test cases and procedures and the integration environment.
• Integrated software components, corrected defects and documented results.
• Traceability of requirements and design to the integrated software product.
• Documented and verified operational and software user documentations.
• Verified software baseline.

To manage the defects detected, a tracking tool was used. Such software allowed
the team to do an inventory of problems found during the integration and testing
activity, to track problems and to classify them, and to determine a priority for each
defect found. In this project, the open source Bugzilla software tool had been used to
manage the defects.

The members of the start-up have recorded the effort, in person-hours, spent on
tasks of the project to the nearest 30 min. For each major task, the effort to execute the
task, the effort required to review a document, such as the software specification
document, in order to detect errors and, the effort required to correct the errors (i.e. the
rework). As an example, for the development of the software architecture document, it
took 42.5 h to develop, an additional 1.5 h to conduct a review and an additional 3.5 h
to correct the errors.

For this start-up project, about 8.9 % (i.e. 89 h/990.5 h) of the total project effort has
been spent in prevention tasks such as the installation of the server, the workstations
and the software tools; and only 12.6 % has been spent on rework (i.e. 125 h/990.5 h).
This indicates that the use of appropriate standards, in this case for a start-up company,
can guide all the phases of the development of a product such that the wasted effort (i.e.
rework) is about the same as a more mature organization (i.e. about level 3 of CMM).

The Implementation of ISO/IEC 29110 Software Engineering 169

In most start-ups, the wasted effort, for a project similar to this one, would have
added about 90 h (i.e. 30 % of 716 or 215 h– 125 h). This also implies, that for a net
effort of about 6 h per member per day (if we subtract from an 8 h day interruptions
(e.g. phone call), answering emails, discussions in corridors, etc.), the product would
have been ready for delivery to a customer about 15 days, of 6 h, later than with a
project with only 12.6 % of waste.

These two projects have demonstrated that, by using ISO/IEC 29110, it was pos-
sible to properly plan the project and develop the software product using proven
software practices documented in standards as well as not interfering with the creativity
during the development of their web site. People who think that standards are a burden,
an unnecessary overhead and a treat to creativity should look at this start-up project and
revisit their results.

3.3 Case 3: A Canadian/Tunisian IT Start-up

Metam is a company founded in 2013 by a software engineering graduate student of
ÉTS. The company has one site in Canada and one site in Tunisia. Its business domains
are software development services, web solutions, mobile applications as well as
consulting services to implement ERP solutions. The Basic profile of ISO/IEC 29110
was used as the framework for the company’s software processes. It was also used as a
foundation to implement CMMI DEV level 2 practices because it was requested by
some military contracts. In 2015, the VSE has 12 employees.

3.4 Case 4: A Large Canadian Financial Institution

The Cash Management IT department, of a large Canadian financial institution, is
responsible for the development and maintenance of software tools used by traders.
The software team is composed of 6 people. Each year, the division is faced with an
increase in the numbers of requests to add, correct or modify features related to sup-
ported applications. Before the implementation of the ISO 29110-agile process, cus-
tomers had the following complaints:

• Very difficult to know the status of specific requests
• Very often, there is an incident when a change is put in production.
• There is a large number of faults detected by the quality assurance department
• The development process is painful and the documentation produced is not very

useful.

In response to this problem, the process was evaluated by comparing the tasks of
the maintenance process in use to those of the Basic profile of the ISO/IEC 29110.
Some shortcomings were found in the project management process and in the software
implementation process.

The project management process has been adapted to the context of the division, by
injecting a few tasks of the SCRUM methodology. The new agile process, using the
Basic profile of the ISO/IEC 29110, has been tested on three pilot projects. The new

170 C.Y. Laporte et al.

process helped to significantly reduce the number of major incidents caused by changes
to the tools of the traders. The users are delighted with the new agile planning and
control approach, which allows them to better manage their priorities and to always
know the status of their requests. The maintenance team was also very pleased to see an
improvement in the quality of the change requests, resulting in a noticeable decrease in
the number of defects when handed to traders.

The adoption of this agile approach, however, requires a higher availability from
the users. Initially, this new approach presented a challenge. In some cases, a few users
appointed a representative to play the role of head of product backlog. But, that person
did not have adequate knowledge of the business domain. Also, the head of product
backlog was not able to respond quickly to questions from developers about the
requirements, and user stories were not sufficiently documented in advance to maintain
the velocity of the team. Finally, representatives of the Project Office and the Audit
Group required a few modifications to the new ISO 29110-agile process.

A survey has been conducted to measure the satisfaction level of traders after the
deployment of the new ISO 29110-agile process. The following ten questions were
asked to traders (on a 0 to 10 scale):

• How do you qualify the quality of our software upgrades (e.g. number of incidents
recorded in production)?

• Are you well informed about the content of the next software upgrade?
• Is the frequency of delivery right for you?
• How do you trust the new process?
• How would you describe the ability of the new process to respond to your needs?
• How easy is it to consult the status of a change request?
• How much the new process prioritizes the added value for you as a trader?
• What is the quality level of upgrades?
• Are you satisfied with the productivity of the team in response to your needs?
• What is your overall level of satisfaction about the new process (e.g. quality, cost,

return on investment)?

The new ISO 29110-agile process has been tested on three pilot projects. The new
process helped to significantly reduce the number of major incidents caused by changes
to the tools of the traders. The users are delighted with the new agile planning and
control approach, which allows them to better manage their priorities and to always
know the status of their requests. The maintenance team was also very pleased to see an
improvement in the quality of the change requests, resulting in a noticeable decrease in
the number of defects in the software tools handed to traders.

3.5 Case 5: A Canadian Company in the Automotive Field

TM4 is a Canadian company of more than 140 people, of whom 14 are directly
employed as software engineers, the meeting the criteria of being a VSE. The company
designs and sells electric powertrain systems in the automotive field. Their products are
embedded software that controls the operation of engines in real time and software that
controls the interactions between the components of a vehicle.

The Implementation of ISO/IEC 29110 Software Engineering 171

The company planned to increase its production systems in the coming years.
Before this increase in production, and for the sake of improvement and compliance
with standards, the company wanted to review and improve its software development
processes.

The Basic Profile of ISO/IEC 29110 was used in this effort to improve its processes.
A compliance study was conducted to establish the difference between the processes in
place and those proposed by the ISO/IEC 29110. A pilot project has been successfully
completed in May 2015. New software projects will use the ISO/IEC 29110-based
processes.

An analysis of differences between ISO/IEC 29110 and ISO 26262, a standard for
the automotive industry, was conducted and an economic impact assessment was
conducted using the methodology developed by ISO [31].

3.6 Case 6: A Canadian Transportation Enterprise

A project was created to define and implement project management and engineering
processes at CSinTrans Inc. (CSiT), a Canadian company, established in 2011 [32].
The company specializes in the integration of interactive systems, communication and
security in the field of public transport such as trains, subways and buses and railway
stations, and stations bus stops. Some customers in this domain are requiring from their
suppliers to be assessed at CMMI Level 2. Implementing the practices of CMMI Level
2 was too demanding for a start-up. Instead, ISO/IEC 29110 standards and guides for
systems engineering, developed from a subset of ISO/IEC/IEEE 15288 [53] and
ISO/IEC/IEEE 15289 appropriate for VSEs, have been used as the main reference for
the development of the processes of CSiT [37].

To avoid additional process and produce too many documents, participants gave
themselves the 2 sets of guidelines:

• Regarding processes, the guideline was to add tasks not described in the Basic
profile only if they add value to the context and projects of the company or provided
an alignment with CMMI level 2.

• For the document templates, the guidelines wer
• Group different documents into one where this is possible;
• Each section of a template must be relevant and applicable. If a section does not

provide added value, it is not included.

The ISO 29110 standard has helped raise the maturity of this young organization by
implementing proven practices and developing uniform work products. ISO/IEC 29110
was a good starting point to align processes with selected level 2 and 3 practices of the
CMMI model. Compliance with the ISO standard allowed CSiT to be recognized as
producing quality products. ISO/IEC 29110 has also helped in developing lightweight
processes allowing the small company to remain flexible as well as its ability to react
quickly to its customers. CSiT performed an external audit of the management and
engineering processes, mainly based on ISO 29110.

172 C.Y. Laporte et al.

3.7 Case 7: The Implementation in a Division of an Engineering
Enterprise

A Canadian division of a large American engineering company, the Transmission &
Distribution of electricity division, has implemented a program to define and imple-
ment project management processes for their small-scale and medium-scale projects
[51]. The firm already had a robust and proven process to manage their large-scale
projects. The objectives of this process improvement project were to reduce cost
overruns and project delays, standardize practices to facilitate the integration of new
managers, increase the level of customer satisfaction and to reduce risk-related plan-
ning deviations. Their projects are classified into three categories as illustrated in
Table 2. As illustrated in the table, over 95 % of the projects fall in the small- and
medium-scale categories.

Pilot projects have been conducted to test the project management processes and
associated support tools (e.g. templates, checklists). The pilot projects consisted of
running three different projects where project managers implemented the process and
the associated tools. Managers then evaluated the proposed processes, identified
problems and potential improvements.

The project management practices used by the company’s managers were assessed
against the ISO standard’s Basic Profile. The division used the project management
process of the Entry Profile of ISO 29110 [52] to document their small-scale project
management process and they used the project management process of the Basic profile
to document their medium-scale project management process.

Three pilot projects have been conducted to test the project management processes
and associated support tools (e.g. templates, checklists). The pilot projects consisted of
running three different projects where project managers implemented the process and
the associated tools. Managers then evaluated the proposed processes, identified
problems and potential improvements. The lessons learned sessions conducted at the
end of the pilot projects have identified minor adjustments to the processes and tools.

A section of the intranet, dedicated to project management, was created and served
as a main access to project management documents such as project management
process guides, checklists, forms and templates. Project managers were trained in the
new processes and support tools.

The tools developed to support the project management processes proved very
useful and helped the project managers rapidly integrate the knowledge required to
execute the processes. The improvement program was so successful that managers of

Table 2. Classification of projects by the engineering firm [51].

Small project Medium project Large project

Duration < 2 months > 2 and < 8 months > 8 months
Team size <= 4 people 4-8 people > 8 people
No. of engineering specialties 1 >1 Many
Engineering fees $5,000 - $70,000 $50,000 - $350,000 > $350,000
Percentage of projects 70 % 25 % 5 %

The Implementation of ISO/IEC 29110 Software Engineering 173

the company’s other divisions have shown an interest in learning this approach in order
to implement it within their respective divisions.

ISO has developed a methodology to assess and communicate the economic ben-
efits of standards (ISO 2010), which was used, by the engineering firm, to estimate the
anticipated costs and benefits over a period of three years. The key objectives of the
ISO methodology are to provide:

The sponsors of this process definition project made the estimates. The improve-
ment program project sponsors made an estimate of anticipated costs and benefits over
a period of three years. Table 3 shows the results for the first three years.

The engineering firm is planning to document and implement their systems engi-
neering processes for the small-scale and medium scale projects using the Entry and
Basic Profiles of the ISO 29110 systems engineering standard and guides.

4 Discussion and Future Work

This section will present some discussion on the pilot case study implementation and
well as describe future work in relation for the continued development of ISO/IEC
29110 set of standards.

4.1 Discussion

The seven pilot case studies presented in this paper have demonstrated that by using
ISO/IEC 29110, it was possible to properly plan and execute projects and develop
products or conduct projects using proven system or software engineering practices
without interfering with the creativity of developers. The relationship between the
success of a software company and the software process it utilized has been investi-
gated [33, 34] showing the need for all organizations, not just VSEs to pay attention to
software process practices such as ISO standards.

4.2 Planned Standard Development

As ISO/IEC 29110 is an emerging standard there is much work yet to be completed.
The main remaining work item is to finalize the development of the remaining two
software profiles of the Generic Profile Group: (a) Intermediate - management of more
than one project and (b) Advanced - business management and portfolio management
practices.

Table 3. Costs and benefits estimations [51].

Year 1 Year 2 Year 3 Total

Implement & maintain 59 600$ 50 100$ 50 100$ 159 800$
Net Benefits 255 500$ 265 000$ 265 000$ 785 500$

174 C.Y. Laporte et al.

Working Group 24 of ISO/IEC JTC1/SC7 who was initially authorized to develop
the ISO/IEC 29110 for software, was also assigned to develop a similar approach for
VSEs involved in the domain of systems engineering [35, 36]. Recently the ISO
published the systems engineering and management guide of the Basic profile ISO/IEC
TR 29110-5-6-2:2014 [37] and Entry profile ISO/IEC TR 29110-5-6-1:2015 [38].

Work currently underway on an assessment mechanism for ISO/IEC 29110 [39], a
clear niche market need is emerging which may force the process assessment com-
munity to change their views on how process assessments are carried out for VSEs. It is
clear that the process assessment community will have to rethink process assessment,
new methods and ideas for assessing processes in VSEs.

4.3 Standards Education

In 2009, it was proposed to establish an informal interest group about education. Its
main objective is to develop a set of courses for software undergraduate and graduate
students such that students learn about the ISO standards for Very Small Entities before
they graduate.

One way to develop standards professionals is by having professional graduate
students involved in the application and improvement of international standards. At the
École de technologie supérieure (ÉTS), a 10,000-student engineering school of Mon-
tréal, International Software Engineering Standards are introduced and used in Soft-
ware Quality Assurance and Software Process Improvement courses and industrial
projects conducted by graduate professional software engineering and IT students [55].

The role of education [45–47] is a significant issue in ensuring that the next
generation of software project managers and software process engineers are both
familiar with the benefits of standards, specifically in VSEs and the role of ISO/IEC
29110 in particular. Such education programmes may assist with addressing the per-
ceived issues with standards adoption and the lack of managerial commitment [48, 49]
in adopting VSE standards.

5 Additional Information

The following web site provides more information about ISO/IEC 29110: http://profs.
logti.etsmtl.ca/claporte/English/VSE/index.html

References

1. Coleman, G., O’Connor, R.V.: An investigation into software development process
formation in software start-ups. J. Enterp. Inf. Manage. 21(6), 633–648 (2008)

2. O’Connor, R.V., Laporte, C.Y.: Software project management in very small entities with
ISO/IEC 29110. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012. CCIS,
vol. 301, pp. 330–341. Springer, Heidelberg (2012)

The Implementation of ISO/IEC 29110 Software Engineering 175

http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html
http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html

3. Basri, S., O’Connor, R.V.: Evaluation on knowledge management process in very small
software companies: a survey. In: 5th Knowledge Management International Conference,
Terengganu, Malaysia, May 2010

4. Mora, M., O’Connor, R., Raisinghani, M., Macías-Luévano, J.: An IT service engineering
and management framework (ITS-EMF). Int. J. Serv. Sci. Manage. Eng. Technol. 2(2), 1–15
(2011)

5. Laporte, C.Y., Alexandre, S., O’Connor, R.: A software engineering lifecycle standard for
very small enterprises. In: O’Connor, R.V., et al. (eds.) Software Process Improvement.
CCIS, vol. 16, pp. 129–141. Springer, Heidelberg (2008)

6. Statistics Canada (2008). http://www.ic.gc.ca/sbstatistics
7. O’Connor, R., Laporte, C.Y.: Towards the provision of assistance for very small entities in

deploying software lifecycle standards. In: Proceedings of the 11th International Conference
on Product Focused Software (PROFES 2010). ACM (2010)

8. O’Connor, R., Coleman, G.: Ignoring ‘Best Practice’: Why Irish Software SMEs are
rejecting CMMI and ISO 9000. Australas. J. Inf. Syst. 16(1) (2009)

9. Basri, S., O’Connor, R.V.: A study of software development team dynamics in SPI. In:
O’Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS, vol. 172, pp. 143–
154. Springer, Heidelberg (2011)

10. Coleman, G., O’Connor, R.: Software process in practice: a grounded theory of the Irish
software industry. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006.
LNCS, vol. 4257, pp. 28–39. Springer, Heidelberg (2006)

11. Petkov, D., Edgar-Nevill, D., Madachy, R., O’Connor, R.: Information systems, software
engineering, and systems thinking: Challenges and opportunities. Int. J. Inf. Technol. Syst.
Approach (IJITSA) 1(1), 62–78 (2008)

12. O’Connor, R., Basri, S.: The effect of team dynamics on software development process
improvement. Int. J. Hum. Capital Inf. Technol. Prof. 3(3), 13–26 (2012)

13. O’Connor, R.V., Coleman, G.: An investigation of barriers to the adoption of software
process best practice models. In: ACIS 2007 Proceedings, vol. 35 (2007)

14. O’Connor, R.V., Laporte, C.Y.: Deploying lifecycle profiles for very small entities: an early
stage industry view. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE
2011. CCIS, vol. 155, pp. 227–230. Springer, Heidelberg (2011)

15. O’Connor, R.V., Laporte, C.Y.: Using ISO/IEC 29110 to harness process improvement in
very small entities. In: O`Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011.
CCIS, vol. 172, pp. 225–235. Springer, Heidelberg (2011)

16. Laporte, C.Y., O’Connor, R., Fanmuy, G.: International systems and software engineering
standards for very small entities. CrossTalk J. Defense Softw. Eng. 26(3), 28–33 (2013)

17. Laporte, C.Y., Séguin, N., Boas, G.V.: Seizing the benefits of software and systems
engineering standards. ISO Focus + , International Organization for Standardization, pp. 32–
36, February 2013

18. O’Connor, R.V.: Evaluating management sentiment towards ISO/IEC 29110 in very small
software development companies. In: Mas, A., Mesquida, A., Rout, T., O’Connor, R.V.,
Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 277–281. Springer, Heidelberg (2012)

19. Ribaud, V., Saliou, P., O’Connor, R.V., Laporte, C.Y.: Software engineering support
activities for very small entities. In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R.
(eds.) EuroSPI 2010. CCIS, vol. 99, pp. 165–176. Springer, Heidelberg (2010)

20. Galvan, S., Mora, M., O’Connor, R.V., Acosta, F., Alvarez, F.: A compliance analysis of
agile methodologies with the ISO/IEC 29110 project management process. Procedia
Comput. Sci. 64, 188–195 (2015)

176 C.Y. Laporte et al.

http://www.ic.gc.ca/sbstatistics

21. Clarke, P., O’Connor, R.V.: The meaning of success for software SMEs: an holistic
scorecard based approach. In: O`Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI
2011. CCIS, vol. 172, pp. 72–83. Springer, Heidelberg (2011)

22. O’Connor, R., Clarke, P.: Software process reflexivity and business performance: initial
results from an empirical study. In: International Conference on Software and System
Process (ICSSP 2015), 24–26 Aug 2015

23. Jeners, S., Clarke, P., O’Connor, R.V., Buglione, L., Lepmets, M.: Harmonizing software
development processes with software development settings – a systematic approach. In:
McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364,
pp. 167–178. Springer, Heidelberg (2013)

24. Clarke, P., O’Connor, R.: The situational factors that affect the software development
process: Towards a comprehensive reference framework. J. Inf. Softw. Technol. 54(5), 433–
447 (2012)

25. Laporte, C.Y., Hébert, C., Mineau, C.: Development of a social network website using the
new ISO/IEC 29110 standard developed specifically for very small entities. Softw. Qual.
Prof. J. 16(4), 4–25 (2014). ASQ

26. O’Connor, R.V., Laporte, C.Y.: An innovative approach to the development of an
international software process lifecycle standard for very small entities. Int. J. Inf. Technol.
Syst. Approach 7(1), 1–22 (2014)

27. Deployment Packages repository. http://profs.logti.etsmtl.ca/claporte/English/VSE/index.
html

28. Krasner, H.: Using the cost of quality approach for software. Crosstalk J. Defense Softw.
Eng. 11, 6–11 (1998)

29. Garcia, L., Laporte, C.Y., Arteaga, J., Bruggmann, M.: Implementation and certification of
ISO/IEC 29110 in an IT startup in Peru. Softw. Qual. Prof. J. 17(2), 16–29 (2015). ASQ

30. ISO/IEC TR 29110–1:2011, “Software Engineering - Lifecycle Profiles for Very Small
Entities (VSEs) - Part 1: Overview”. Geneva: International Organization for Standardization
(ISO), (2011). Available at no cost from ISO. http://standards.iso.org/ittf/
PubliclyAvailableStandards/c051150_ISO_IEC_TR_29110-1_2011.zip

31. ISO, Economic Benefits of Standards, Methodology guide » Version 2.0. International
Organization for Standardization, Geneva, Switzerland 2013

32. Tremblay, N., Menaceur, J., Poliquin, D., Laporte, C.Y.: Mise en place de processus de
gestion de projets et d’ingénierie système chez CSiT, une entreprise canadienne dans le
domaine du transport collectif. Revue Génie Logiciel 114, 11–27 (2015)

33. Laporte, C.Y., O’Connor, R.V.: A systems process lifecycle standard for very small entities:
development and pilot trials. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz, R. (eds.)
EuroSPI 2014. CCIS, vol. 425, pp. 13–24. Springer, Heidelberg (2014)

34. O’Connor, R.V., Basri, S.: Understanding the role of knowledge management in software
development: a case study in very small companies. Int. J. Syst. Serv. Oriented Engineering
4(1), 39–52 (2014)

35. Laporte, C.Y., O’Connor, R,V.: Systems and software engineering standards for very small
entities: implementation and initial results. In: 9th International Conference on the Quality of
Information and Communications Technology (QUATIC), pp.38–47, 23–26 September
2014

36. O’Connor, R.V., Sanders, M.: Lessons from a pilot implementation of ISO/IEC 29110 in a
group of very small Irish companies. In: Woronowicz, T., Rout, T., O’Connor, R.V.,
Dorling, A. (eds.) SPICE 2013. CCIS, vol. 349, pp. 243–246. Springer, Heidelberg (2013)

The Implementation of ISO/IEC 29110 Software Engineering 177

http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html
http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051150_ISO_IEC_TR_29110-1_2011.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051150_ISO_IEC_TR_29110-1_2011.zip

37. ISO/IEC TR 29110-5-6-2:2014 - Systems Engineering – Lifecycle Profiles for Very Small
Entities (VSEs) – Part 5-6-2: Systems engineering - Management and engineering guide:
Generic profile group: Basic profile, International Organization for Standardization/Interna
tional Electrotechnical Commission: Geneva, Switzerland. Available at no cost from ISO.
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063371_ISO_IEC_29110-5-6_2_
2014.zip

38. ISO/IEC TR 29110-5-6-1:2015 - Systems and software engineering – Lifecycle Profiles for
Very Small Entities (VSEs) –Part 5-6-1: System engineering Management and engineering
guide: Generic profile group: Entry profile, International Organization for
Standardization/International Electrotechnical Commission: Geneva, Switzerland.
Available at no cost from ISO. http://standards.iso.org/ittf/PubliclyAvailableStandards/
index.html

39. ISO/IEC 29110-4-1:2011, Software Engineering – Lifecycle Profiles for Very Small Entities
(VSEs) - Part 4-1: Profile specifications: Generic profile group. Geneva: International
Organization for Standardization (ISO) (2011)

40. ISO/IEC/IEEE 12207, Systems and software engineering– Software life cycle processes.
International Organization for Standardization/International Electrotechnical Commission:
Geneva, Switzerland

41. Clarke, P., O’Connor, R.: Harnessing ISO/IEC 12207 to examine the extent of SPI activity
in an organisation. In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI
2010. CCIS, vol. 99, pp. 25–36. Springer, Heidelberg (2010)

42. ISO/IEC/IEEE 15289, Systems and software engineering - Content of systems and software
life cycle process information products (Documentation), International Organization for
Standardization/International Electrotechnical Commission: Geneva, Switzerland

43. O’Connor, R.V., Basri, S., Coleman, G.: Exploring managerial commitment towards SPI in
small and very small enterprises. In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R.
(eds.) EuroSPI 2010. CCIS, vol. 99, pp. 268–279. Springer, Heidelberg (2010)

44. Basri, S., O’Connor, R.: A study of knowledge management process practices in very small
software companies. Am. J. Econ. Bus. Adm. 3(4), 636–644 (2012)

45. Laporte, C.Y., O’Connor, R.: Software process improvement in graduate software
engineering programs. In: O’Connor, R.V., Mitasiunas, A., Ross, M. (eds.) Proceeding of
the 1st International Workshop on Software Process Education, Training and
Professionalism (SPETP 2015). CEUR Electronic Workshop Proceedings, vol. 1368,
pp. 18–24 (2015)

46. Laporte, C.Y., O’Connor, R.V., Software process improvement in graduate software
engineering programs. In: Proceedings 1st International Workshop Software Process
Education, Training and Professionalism (SPEPT 2015). CEUR Workshop Proceedings,
pp. 18–24 (2015)

47. Ribaud, V., Matthieu, A.B., O’Connor, R.V.: Process Assessment Issues in a Bachelor
Capstone Project. In: Proceedings 1st International Workshop Software Process Education,
Training and Professionalism (SPEPT 2015), pp. 25 – 33, CEUR Workshop Proceedings,
2015

48. Sanchez-Gordon, M.-L., O’Connor, R.V., Colomo-Palacios, R.: Evaluating VSEs viewpoint
and sentiment towards the ISO/IEC 29110 standard: a two country grounded theory study.
In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS, vol. 526, pp. 114–127.
Springer, Heidelberg (2015)

49. Basri, S., O’Connor, R.: Organizational commitment towards software process improvement
an Irish software VSEs case study. In: 4th International Symposium on Information
Technology 2010 (ITSim 2010), Kuala Lumpur, Malaysia, June 2010

178 C.Y. Laporte et al.

http://standards.iso.org/ittf/PubliclyAvailableStandards/c063371_ISO_IEC_29110-5-6_2_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063371_ISO_IEC_29110-5-6_2_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

50. Ribaud, V., O’Connor, R.V.: Blending process assessment and employees competencies
assessment in very small entities. In: O’Connor, R.V., Akkaya, M.U., Kemaneci, K.,
Yilmaz, M., Poth, A., Messnarz, R., (eds.) EuroSPI 2015. CCIS, vol. 543, pp. 206–219.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24647-5_17

51. Laporte, C.Y., Chevalier, F.: An innovative approach to the development of project
management processes for small-scale projects in a large engineering company. In: 25th
Annual International Symposium of INCOSE (International Council on Systems
Engineering), Seattle, US, 13–16 July 2015

52. ISO/IEC TR 29110-5-1-1:2011 – Software engineering – Lifecycle Profiles for Very Small
Entities (VSEs) –Part 5-2-1: Management and engineering guide: Generic profile group:
Entry profile, International Organization for Standardization/International Electrotechnical
Commission: Geneva, Switzerland. Available at no cost from ISO. http://standards.iso.org/
ittf/PubliclyAvailableStandards/c051153_ISO_IEC_TR_29110-5-1_2011.zip ISO/IEC TR
29110-5-1-1:2011

53. ISO/IEC/IEEE 15288, Systems and software engineering– System life cycle processes.
International Organization for Standardization/International Electrotechnical Commission:
Geneva, Switzerland

54. Clarke, P., O’Connor, R.V.: An approach to evaluating software process adaptation. In:
O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE 2011. CCIS, vol. 155,
pp. 28–41. Springer, Heidelberg (2011)

55. Laporte, C., O’Connor, R., Garcia Paucar, L., Gerancon, B.: An innovative approach in
developing standard professionals by involving software engineering students in
implementing and improving international standards. Stand. Eng. J. SES (The Society for
Standards Professionals) 67(2), 2–9 (2015)

The Implementation of ISO/IEC 29110 Software Engineering 179

http://dx.doi.org/10.1007/978-3-319-24647-5_17
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_TR_29110-5-1_2011.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_TR_29110-5-1_2011.zip

Improving Mobile Banking Usability
Based on Sentiments

Lalit Mohan(B), Neeraj Mathur, and Y. Raghu Reddy

Software Engineering Research Center,
International Institute of Information Technology,

Hyderabad (IIIT-H), Hyderabad, India
{lalit.mohan,neeraj.mathur,raghu.reddy}@students.iiit.ac.in

http://www.iiit.ac.in

Abstract. India has 868+ million active subscribers with 160+ smart-
phone users. However,the number of mobile banking transactions on
smartphones is less than 1/6th of the smartphone users and 1/5th of
the other digital transactions excluding ATM channel. Though adoption
of mobile (feature/smartphone) has been in the increasing trend, con-
cerns of security, availability of sustained data connectivity and usability
will be the key factors for improving usage. We suggest a Mobile App
Usability Index (MAUI) metric for improving usability based on various
usability parameters. The parameters were formulated from sentiment
analysis of user comments posted in Google play store on the mobile
banking apps of banks. The proposed index has been validated by mobile
banking channel managers and chief information security officers.

Keywords: Mobile app usability · Mobile banking in India · Usability ·
Error handling

1 Introduction

With increasing penetration of 3G and the launch of 4G connections, adoption of
smart phones (growth rate of 44 % as per International Data Corporation, 2015
reports) and internet (expected adoption to be 300+ million in next 2 years
as per India on the Go, 2015 report) on mobile phones is expected to grow
significantly. In the next 2 years, the number of internet users in India is expected
to be more than the population of major countries like USA. From a general
market perspective, decreasing smart-phone prices, younger population in India
and improving technology awareness are some of the reasons for the growth of
smart-phone [3].

The increasing usage of Internet on smart phones provides opportunities
to banks for improved adoption of mobile banking. In India, about 120 banks
(50 % increase from 2014) provide mobile app banking services to their customers
[15]. Also, Reserve Bank of India (RBI), India’s central banking institution, has
granted license for another 23 (Payment and Small Finance) in anticipation

c© Springer International Publishing Switzerland 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2015, CCIS 599, pp. 180–194, 2016.
DOI: 10.1007/978-3-319-30243-0 10

Improving Mobile Banking Usability Based on Sentiments 181

Fig. 1. Smartphone and internet usage in India ([19] and KPMG).

of improving Financial Inclusion using disruptive technologies including Mobile
Banking between Aug–Sep’15. A report published by RBI suggests that a mobile
banking transaction costs just 2 % of the cost of a branch transaction, one-tenth
of the cost of an ATM transaction and half the cost of Internet banking transac-
tion. In other words, the transaction cost of mobile banking is much lower than
any other delivery channel in the bank [14]. This indicates that there are huge
opportunities for improved adoption and increasing the operation efficiency of
banks in India. Customers perform mobile banking using mobile apps, browsers
on the mobile devices, Unstructured Supplementary Service Data (USSD), Short
Message Service (SMS), Near Field Communication (NFC), Mobile wallets, etc.
Mobile banking using apps compared to m-websites is relatively easy for frequent
and repeated transaction and interactivity. The mobile transaction data shown
in Fig. 1 shares insights into the rapid adoption of mobile banking. The number
of mobile banking transactions in Jan’13 was about 9.5 million with an average
transaction amount of INR 2,758 whereas the number of transactions in Jul’15
was about 25+ million with an average transaction amount of INR 8,574 [16].

Although there is an increase in the average transaction amount, there are
opportunities for improving the adoption of mobile app banking. Considering
that an average customer would perform a minimum of 3 transactions (for paying
utility bills, mobile top-ups, card payments and other regular monthly usage
needs) in a month, the potential for mobile banking transactions would be 500+
million transactions in a month and should grow to 1+ Billion transactions in
next couple of years (Fig. 2).

This increase in adoption would decrease the transaction cost for banks,
thereby aiding banks in redirecting investments in other requisite areas. Also,
the small cooperative banks [16], eager to expand business are directly adopting
mobile banking instead of starting with traditional Internet banking portals for
desktops.

In our previous work [20], we conducted a survey to analyse the major reasons
for lesser adoption of mobile banking apps. Information security, Network connec-
tivity and Usability were the three most common reasons inhibiting adoption of
mobile banking apps. With improving data connectivity (3G connection is growing

182 L. Mohan et al.

Fig. 2. Improved adoption.

at a CAGR of 61.3 % from 2013–17 and 4G is expected to grow at a CAGR of 103 %
from 2013–18), and with banking security guidelines issued by RBI, Network con-
nectivity and Information Security are currently being addressed at various levels.
However, usability parameters for mobile app based banking is not available from
the RBI or by the Bureau of Indian Standards (BIS). BIS is the national standards
body of the government of India and responsible for standardization efforts.

In this paper, we propose usability parameters specific to mobile banking
applications. We performed a thorough study of the various issues concerning
the usability aspects and proposed parameters that can potentially be adopted
by the standards body.

The major contributions of this paper are:

– An index named Mobile App Usability Index (MAUI) that can guide banks
to improve usability of their mobile banking apps thereby increasing adoption
rates.

– Fine-grained parameters based on the broad factors like time taken to com-
plete a task, user interface display, and error handling.

– Validation of the proposed parameters and index with mobile banking channel
managers (business and IT), chief information security officers and also with
the mobile app customer base.

2 Mobile Banking App Usability Challenges

A survey with a sample of 1434 participants with diverse backgrounds (Chief
Information Security Officers of the banks, Mobile Banking Channel Managers
and smartphone users - working women and men from Information Technology
(IT) and Non-IT companies, homemakers, retired staff of public sector firms,
etc.) was conducted using WhatsApp, Facebook, LinkedIn, emails and face-to-
face interactions to understand the usability related challenges of mobile banking
[20]. The participants of the survey were aware that the authors were involved
in banking technology research and hence gave feedback with an expectation
for improvement of mobile banking adoption. Additionally, a total of 303,694
comments posted on 51 mobile banking apps on Google play store since Jan

Improving Mobile Banking Usability Based on Sentiments 183

2015 were analysed. We used Google playstores public API to fetch comments.
The comments reflected the sentiments of users of various mobile banking apps.
A sentiment analysis based on the user comments was done using RapidMiner
tool. Figure 3 provides a segmentation of the positive, negative and neutral com-
ments extracted using the tool.

Fig. 3. Sentiment analysis of postings on app stores.

Fig. 4. Positive word cloud of banks.

We analysed the positive comments further by extracting the words from the
comments. We correlated the words with usability related taxonomy to under-
stand the positive impact of usability on mobile banking app adoption. Figure 4
shows the word cloud for the positive comments. Majority of the positive com-
ments on Mobile Banking are on features availability such as transfer of money,
ability to make card payments, getting account summary, ease of access, etc.
They also reiterate the importance of simplicity, friendly, ease of use, etc. as the
reasons for positive sentiment.

An analysis of negative words was done to further understand the reasons
behind the negative sentiments. Figure 5 shows the word cloud from the extracted
negative comments.

184 L. Mohan et al.

Fig. 5. Negative word cloud of banks.

The typical usability challenges in mobile banking apps can be summarized
by some of the comments received during the survey:

1. Gives msg ‘mobile no. Not found’. Although my mobile number is registered.
2. Problem in installing & generating OTP. Again doesn’t work on redmi 1 s

with miui 6
3. Why should we pay RS.1 to open the application. ...coz many banks like

XXXX, their application is more user friendly. ..they don’t need any charge
to open...

4. Simplify apps with inbuilt tamper free security rather answering questions
start use of digital signatures assigned to individuals

5. Screen flickering and UI goes blank sometime
6. Application tends to take much more time then compared to other competitive

bank, on 2G it tends to hang does not show proper error messages.
7. Taking least and only required inputs.. For any operation on mobile banking

app.. Building trust in users to adopt mobile banking/marketing providing
security pin generator token/device..even to farmers..and rest of the banking
should be carried out with dtmf/sms based inputs..as these are the easiest
to use.. any person can easily adopt it.. Separate/dedicated communication
channels via service providers should be opened with highest security measures

The survey results and the comments concur with our hypothesis that better
usability leads to better adoption and in turn better revenues for the banks.

3 Usability Measurement

Usability is captured as a set of non-functional requirements in software engi-
neering practices. The user interface designer develops wire frames and mock-ups

Improving Mobile Banking Usability Based on Sentiments 185

based on the requirements and available organization standards. In our interac-
tion with the Indian banks mobile banking teams, realized that most of them do
not have specific personnel playing the role of user interface designers. Business
Analyst or technology teams develop mock-ups or screen designs. In some cases,
the interfaces were developed directly without business team/user involvement.

To understand the usability requirements and factors to measure usability,
some of the widely adopted mobile banking apps of major banks (Wells Fargo,
Bank of America, Barclays Bank, Citi Bank, and JP Morgan Chase Bank) and
Mobile Wallets (Square, Starbucks, PayPal, mPay, etc.) were installed and the
usability factors were studied.

As there are no BIS guidelines or assessment factors on usability of mobile
applications, the Human Computer Interface and the User experience guidelines
for mobile devices available from Apple for iOS [4], Google for Android [5] and
Microsoft for Windows Mobile [11] were studied. Majority of banking apps run
on these platforms, hence it covered the entire gamut of mobile banking apps.
Also, the usability models suggested by Nielsen and Norman group [13] (Mobile
website and application usability) and, People at the Centre of Mobile Applica-
tion Development (PACMAD) model [2,9,18] were studied. In addition, the five
human computer interface laws were analysed:

– Zipf law [1]
– Fitts’ Law [8]
– Miller’s law of STM (short term memory) [10]
– Power law of practice [12]
– Hick Hyman Law [17]

The main reason to study these laws was to correlate the human aspects of
remembrance, time taken to make a decision based on the available choices and
user expectations on keeping most frequently used as the first option as they
have an impact on user perception on usability.

The ISO 9241 manual on Ergonomics of Human System Interaction Guidance
on World Wide User Interfaces [7] was studied to assess the conformance of user
interfaces of the mobile apps. However, the guidelines proposed in the manual
were generic to web applications rather than mobile apps interfaces.

Like most other non-functional requirements, measuring usability is challeng-
ing. In our work, usability is measured based on the following factors:

1. Time taken to complete task: Intuitively this can be a measure as the number
of clicks.

2. User interface display parameters: This refers to the font, colours, etc.
3. Error handling: This focuses on the error messages and the techniques to

handle them.

The primary author is associated with banking technology arm of RBI and
has a working relationship with several mobile banking channel managers and
information security officers of the banks. The suggested parameters and index

186 L. Mohan et al.

has been validated via a survey of the mobile banking channel managers, informa-
tion security officers of the banks, some user interface designers and importantly
mobile app banking users.

A thorough validation of the parameters can be done after the mobile bank-
ing apps are developed using the proposed parameters. This can be done via
usability testing of the developed mobile banking apps. Instead of waiting for
the development of the apps, we chose heuristic approach in this paper to val-
idate the proposed parameters. Our thought stems from the recommendations
provided by the Nielsen Norman group (NN/g) (Mobile Website and Applica-
tion Usability), a leading organization that specializes in usability research on
heuristics based approach for validating the usability parameters.

4 Recommendations for Improving Usability

Several researchers and organizations have provided usability recommendations
for web applications. Some of the banks analysed in our study seemed to use
these recommendations for developing their mobile banking applications. It is
imperative that banks not develop the user interface of mobile banking apps
similar to internet banking sites as the display screens, network connection and
user attention span are all different from a desktop/laptop usage. The form factor
of smart-phones vary from “2 to 6”. This adds to the challenges of developing
user interfaces for consistent usability experience.

As the saying goes, “what gets measured gets managed”. After the adop-
tion of the proposed parameters, a lab can be set-up for testing of mobile apps
using Userzoom, Loop, Magitest, etc. for measuring the usability of the app.
Additionally, focus groups can be formed to perform other types of usability
testing.

We recommend a heuristic based evaluation method that computes an index
score called MAUI (Mobile App Usability Index). MAUI can be used for measur-
ing the effectiveness of implementation of Usability parameters for banks mobile
app. The parameters mentioned in this paper are for the following factors:

1. Time taken to complete task
2. User interface display
3. Error handling

The parameters are given a priority rating for measuring the Index value. Priority
rating values are given based on the quantum of themes emerging from the
Google play store comments for the mobile banking apps and the relation it has
on for improving usability. A priority of 1, 2 and 3 can be given for each of the
parameters.

4.1 Time Taken to Complete Task

Table 1 mentions the usability parameters for time taken to complete a specific
task. A task is considered as specific action that needs to be completed to satisfy

Improving Mobile Banking Usability Based on Sentiments 187

Table 1. Time taken to complete task.

A1 - Account summary (using SIM, IMEI and other device information without
disclosing any Personally identifiable information), nearest ATM/Branch,
and contact information of call centre (with option of click to call) should
be available without login using account number and password (P1)

A2 - Maximum five fields should be sought from the customers while completing
a form in the screen (P2)

A3 - Screen navigation should start with more familiar fields (amount to trans-
fer/deposit, deposit period, beneficiary name, account number, IFSC code,
etc.) (P1)

A4 - Based on users previous actions, there should be an option to set
user/default favorites (P2)

A5- Breadcrumbs should be available to keep users informed, on the navigation
(P1)

A6 - Labels of the fields should be in layman language and unambiguous for
customer rather using bank specific terminology (P1)

A7 - The option for Select All or Delete All should be removed (P3)

A8 - Banking operation that started on a desktop, branch or ATM should con-
tinue over the mobile app without keying in data again (P2)

A9 - Mobile app registration should not require going to bank branch and can
be loaded from authorized app stores. The registration should be free of
any SMS charges (P1)

A10 - Sensitive information as date of birth, customer, account number that are
already known should not be requested in the app (P1)

A11 - Related fields should be grouped together (for example, beneficiary, user
account details, etc.). Also, known fields should, be pre-populated (P1)

certain set of requirements. For example, adding beneficiary account, performing
money transfer, making chequebook request, navigating through the screens, etc.
are tasks that need to be completed. The time taken to complete the task is
measured using specific number of clicks needed on the mobile phone from the
start of the task to the end of that task.

4.2 User Interface Display Parameters

The font size/type, display colours, controls size and labels can change the user
perception on the app. Though each individual has their own liking for a colour,
font and other display parameters, the implementation of suggested parameters
can enrich user experience with respect to the interface of the mobile banking
app. Table 2 provides the parameters for user interface display.

188 L. Mohan et al.

Table 2. User interface display parameters.

B1 - Colour combination in foreground and background should be consistent across
screens and contrasting without any gradient/progressing colours (P1)

B2 - Text information should be in mixed/sentence case instead of upper case (P2)

B3 - Avoid pagination, vertical scrolling and horizontal scrolling (P1)

B4 - Text in text boxes should be in single line and not spread across multiple
lines (P2)

B5 - Measures for size of button, textbox and other controls relative to screen size
instead of pixels (P1)

B6 - There should be bank logo, title page and frame, on every screen (P2)

B7 - White spacing between fields should be, sufficient to view labels without
overlapping (P3)

B8 - Language used should be simple and consistent, with no long sentences and
paragraphs in the screens. Having local languages,based on user preference
would be highly beneficial for users (P2)

B9 - There should be clear character spacing avoiding, any overlaps (P2)

B10 - Bold text should be used sparingly (P2)

B11 - The alignment of fields (left for text fields and, right for numbers) should be
consistent (P2)

B12 - There should be left, navigation available for moving between menu options
(P2)

B13 - There should not be any drag, and drop based features (P2)

B14 - The image icons should be tested for varying resolutions (ldpi, mdpi, etc.)
and different OS, (P1)

B15 - Apps should be built using HTML5 for consistent look (P1)

4.3 Error Handling

As the mobile phone screens are smaller in size than desktops/laptops, the user
attention for detail on such screens is difficult. It is important that apps are
more thoroughly tested for various screens and device types and performance
for various connectivity options. It is important that appropriate error messages
are informed early rather than later and thus influencing user’s perception of
the usability of the app.

For example, if a PIN is entered incorrectly, an app developer may design
the app in such a way that the error is handled immediately rather than wait
for all information to be input before actually displaying the error.

4.4 Evaluating Usability Parameters Implementation

Some of the usability parameters listed are applicable for web banking applica-
tions as well. Parameters A2-A6 and A11 suggested for “time taken to complete

Improving Mobile Banking Usability Based on Sentiments 189

Table 3. Error handling.

C1 - System messages should be classified as Information (with text in Green/Blue
color), Warning (with text in Yellow color) and Error (with text in Red color)
(P1)

C2 - If a particular mobile device is not supported, an, error message should be
displayed instead of allowing the user to install and, then showing an error
message (P1)

C3 - Error messages while filling a form should be, displayed next to the fields and
button (P2)

C4 - The message should provide the reason for error and, suggests the next possible
action (P2)

C5 - Application should maintain user action persistence, and recovery from abrupt
exits (network connection lost, session timeout, battery, down, memory short-
age, etc.) (P1)

C6 - System messages should be configurable values rather, hardcoded for change
at a later point of time (P3)

C7 - Language of the error message should be in layman, language and easy to
understand and avoid displaying any bank specific error, messages (P1)

C8 - Error messages while loading a page should be at the, top of the screen (P2)

C9 - The help icon should always be available and contextual to the screen (P2)

C10 - App should be tested for varying network bandwidth, device models (make
and screen size), flip/bump, back button and other buttons on the device,
stylus, swipe operations, screen rotation, mobile keys, battery consumption
and memory usage (P1)

C11 - The app should have an option for user to report the error (P2)

C12 - The version updates should be done on regular basis and ensured to keep past
favorites intact (P1)

task”, B2 suggested for “user interface display” and C1, C3, C4 and C6-C9
suggested for “error handling” are more relevant for mobile banking interfaces.

Based on the response to the recommendations, the banks should scale the
implementation of usability parameters using the spider diagram as shown in
Fig. 6. In the figure the darker line represents a reference benchmark and grey
line is the MAUI values of a banking app. MAUI value can be computed as:

MAUI =
(∑

Pc/
∑

Pn
)

∗ 10 (1)

where Pc is the sum of priority of conformed parameters, Pn is the total sum of
priority of the parameters for each of the factors (Time to Complete Task, User
Display Parameters and Error Handling) for assessing usability. In our paper, for
sake of simplicity, MAUI is measured on a scale of 1–10, 10 being the highest and
1 being the least. Since the goal is to provide a basis for standardizing usability
rather than measure the relative importance of one parameter over another, each

190 L. Mohan et al.

recommendation parameter is treated equally by assigning one point each (at
times this may be context driven and relative weights may be assigned to each
parameter) and measured against a scaling factor. The metric can further be
revised by assigning weights to the various parameters if necessary.

Fig. 6. MAUI parameters.

For example, if there are 15 parameters and the summation of 11 parameters
met by the bank is 15 and the total of the priority of parameters is 20, the
index can be calculated as (15/20) * 10 giving a value of 7.5. The score on time
taken to complete task, user interface display parameters and error handling are
plotted on a spider diagram shown in Fig. 6.

The figure shows a benchmark/desirable score for each of the axis as 8.0. We
believe that a threshold value of 8.0 provides a reasonable assurance that the
mobile banking app provides good to very good user experience. Precise bench-
mark values and assessment agencies/organizations to assess the conformance
can be established once the rate of adoption of mobile banking apps shows a
steady increase. In addition, conformance of parameters can also be further bro-
ken down into multiple levels rather than the binary value of Yes or No shown
in this paper.

4.5 Mock-Ups

Once the parameters are taken into consideration, the User interfaces of var-
ious banking apps can be designed to best achieve the set threshold values.
Figure 7(a)–(d) are mockup screens for the Landing page, Account details,
Account statement and Fund transfer of a banking app that conforms to the
usability parameters. The mockups can be used as a reference by banks for
creating their mobile banking apps.

Improving Mobile Banking Usability Based on Sentiments 191

(a) Landing Page. (b) Account Details.

(c) Account Statement. (d) Fund Transfer.

Fig. 7. Mockups.

192 L. Mohan et al.

5 Applicability of Recommendations

The applicability of MAUI is validated through a survey conducted (Google
report on the Mobile App Usability survey, 2014) with Chief Information Secu-
rity officers to ensure that the suggested usability parameters have reasonable
security. Mobile banking channel managers having responsibility of running
mobile banking business, technology managers from the banks and IT services
industry involved in the development of mobile apps for the banks also par-
ticipated in the survey. As the survey participants consisted of senior decision-
making personnel in the banks and other relevant organizations, a detailed survey
could have taken away their interest to participate. Hence a short survey for first
five key parameters from Tables 1, 2 and 3 for each of the focus areas (time taken
to complete task, display parameters and error handling) was conducted. There
were 51 respondents in total. The responses of the survey are shown in Fig. 8.

Fig. 8. Responses to MAUI survey.

We used Likert scale (Very Useful - 5, Somewhat Useful - 4, Neutral - 3, Not
Particularly Useful - 2 and Not Useful - 1) to capture the response on the various
parameters. The average score is 4.39/5, the lowest scores are 3.87 and 3.94 and
the highest are 4.83 and 4.7. The summary of responses is shown in Fig. 8 and
the detailed view of results is available at (Google report on the Mobile App
Usability survey, 2014) [6].

Following were some of the comments from respondents:

– It will be really helpful as some of the banks have really good mobile banking
apps, while others don’t have that good apps. So if it is standardized then user
experience will be good

Improving Mobile Banking Usability Based on Sentiments 193

– These will definitely increase the user experience. Consistency in colors and
font will increase usability.

– This Mobile Banking App Usability parameters if adopted, it will be very useful
for the users. All these parameters are really very useful & helpful for mobile
banking users in terms of saving time and ease of operations.

– Yes these would be very useful. Especially some sort of intelligence from the
app with regards to error handling and saving the favourite activities of the
user.

– These features may provide ease of operation to customers. Uniformity across
all banks would also be helpful for customers.

– Good initiative to improve mobile banking

Some additional comments to enhance/modify the suggested parameters were
also provided:

– “Vertical scrolling is good but not the horizontal scrolling”
– “The first question: ‘Account summary without login’ may not be good idea”

Overall, the survey respondents seemed to agree the need for such parameters.
Some of the comments specifically seemed to point out that the parameters
can in fact be applied to most Human Computer Interfaces. Also, there were
some comments from respondents to ensure security was not compromised while
improving mobile banking app usability.

6 Conclusion

MAUI guides banks to improve usability and thereby increase adoption rates.
Banks could use MAUI for baselining the currently deployed app and increase the
adoption with an improved MAUI and perform the cost benefit analysis. These
parameters are shared with IDRBT(Institute for Development and Research in
Banking Technology, an organization established by RBI) and can be shared
with BIS for establishing usability standards for mobile apps. A semi-automated
tool may be built for measuring MAUI.

The accessibility requirements for different age groups and differently abled
people can be researched for further improving mobile banking apps adoption.
Improving usability is a constant journey with changing customer experiences
and technology innovation. Hence, it is recommended for banks to review the
usability requirements on a regular basis monitoring the feedback on app stores
and the customer queries being handled by bank operations team. Also, along
with standards body, the banks can form a consortium to standardize some of
the interfaces of the banking applications. The MAUI metric can be extended to
apps that banks are planning to deploy for internal stakeholders and also for non-
banking organization building mobile apps for enterprise needs. Better usability
of mobile apps improves customer loyalty and hence customer stickiness.

Acknowledgements. We thank Mobile Banking users, the mobile channel managers
and chief information security officers for responding to the survey and providing their
views on the usability parameters.

194 L. Mohan et al.

References

1. Apitz, G., Guimbretire, F., Zhai, S.: Foundations for designing and evaluating user
interfaces based on the crossing paradigm. ACM Trans. Comp. Hum. Interact.
(TOCHI), 17(9) (2010)

2. Bostrm, F., Nurmi, P.; Floren, P., Liu, T., Oikarinen, T.-K., Vetek, A., Boda,
P.: Capricorn - an intelligent user interface for mobile widgets. In: Proceedings of
the 10th International Conference on Human Computer Interaction with Mobile
Devices and Services, pp. 327–330. ACM (2008)

3. Conn, B.: The evolution of mobile marketing in india: current trends and best
practices. In: IAMAI Mobile Marketing Summit report (2014)

4. iOS Human Interface Guidelines: Designing for iOS. https://developer.apple.com/
library/ios/documentation/userexperience/conceptual/mobilehig

5. Mobile App Design from Android. https://developer.android.com/design/
material/index.html

6. Google report on the Mobile App Usability survey. https://docs.google.com/forms/
d/1ZYAOQF2sAAEwYR26bbp8B3 vCZaJMtaKVUaWQK3ULZU/viewanalytics

7. Ergonomics of Human System Interaction Guidance on World Wide User Inter-
faces, ISO 9241-151: ISO/TC 159/SC (2011)

8. Fitts, P.: The information capacity of the human motor system in controlling the
amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

9. Harrison, R., Flood, D., Duce, D.: Usability of mobile applications: literature
review and rationale for a new usability model. J. Interact. Sci. 1, 1–16 (2013)

10. Miller, G.: The magical number seven, plus or minus two. Psychol. Rev. 63(2),
81–97 (1956)

11. Usability Guidelines. http://msdn.microsoft.com/en-us/library/bb158578.aspx
12. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of prac-

tice. In: Anderson, J.R. (ed.) Cognitive Skills and Their Acquisition, pp. 1–55.
Erlbaum, Hillsdale (1993)

13. Nielsen Norman Group. Mobile Website and Application Usability – Nielsen Nor-
man Group report

14. Khan, H.R.: Customizing mobile banking in India: issues & challenges. In: FICCI-
IBA (FIBAC) 2012 Conference on - Sustainable Excellence Through Customer
Engagement, Employee Engagement and Right Use of Technology

15. List of Banks permitted to provide Mobile Banking Service in India - Report from
Reserve Bank of India (2014). http://www.rbi.org.in/scripts/bs viewcontent.aspx?
Id=2463

16. Banks wise volumes in ECS/NEFT/RTGS/MobileTransaction- Report from
Reserve Bank of India (2014). http://www.rbi.org.in/scripts/NEFTView.aspx

17. Rosati, L.: How to design interfaces for choice: Hick- Hyman law and classification
for information architecture. In: Slavic, A., Salah, A., Davies, C. (eds.) Classifica-
tion and Visualization: Interfaces to Knowledge: Proceedings of the International
UDC Seminar The Hague, The Netherlands, pp. 125–138, (2013)

18. Seongil, L.: Mobile internet services from consumers perspectives. Int. J. Hum.
Comput. Interact. 25(5), 390–413 (2009)

19. Mobile phone internet user penetration 2012-2018 - Statistic. http://www.statista.
com/statistics/309019/india-mobile-phone-internet-user-penetration/

20. Mohan, L., Neeraj Mathur, Y., Reddy, R.: Mobile App Usability Index (MAUI)
for Improving Mobile Banking Adoption. In: ENASE, pp. 313–320 (2015)

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig
https://developer.android.com/design/material/index.html
https://developer.android.com/design/material/index.html
https://docs.google.com/forms/d/1ZYAOQF2sAAEwYR26bbp8B3_vCZaJMtaKVUaWQK3ULZU/viewanalytics
https://docs.google.com/forms/d/1ZYAOQF2sAAEwYR26bbp8B3_vCZaJMtaKVUaWQK3ULZU/viewanalytics
http://msdn.microsoft.com/en-us/library/bb158578.aspx
http://www.rbi.org.in/scripts/bs_viewcontent.aspx?Id=2463
http://www.rbi.org.in/scripts/bs_viewcontent.aspx?Id=2463
http://www.rbi.org.in/scripts/NEFTView.aspx
http://www.statista.com/statistics/309019/india-mobile-phone-internet-user-penetration/
http://www.statista.com/statistics/309019/india-mobile-phone-internet-user-penetration/

Author Index

Agrawal, Supriya 1
Andreou, Andreas S. 98
Anvari, Farshid 40

García, Félix 21
García-Mireles, Gabriel Alberto 21

Karre, Sai Anirudh 80

Laporte, Claude Y. 162

Mathur, Neeraj 180
Mohan, Lalit 180
Moraga, Ma Ángeles 21

O’Connor, Rory V. 162

Pankowski, Tadeusz 62
Papatheocharous, Efi 98
Paucar, Luis Hernán García 162
Piattini, Mario 21

Reddy, Y. Raghu 80, 180
Richards, Deborah 40

Shrotri, Ulka 1
Şora, Ioana 122

Venkatesh, R. 1

Westfechtel, Bernhard 141

Zare, Amey 1

	Preface
	Organization
	Contents
	On Generating Test Cases from EDT Specifications
	1 Introduction
	2 Related Work
	3 EDT Notation
	4 Coverage Criteria
	4.1 Requirement/Row Coverage
	4.2 Requirement-Interaction/ Row-Interaction Coverage

	5 RGRaF and DRAFT Algorithms
	5.1 RGRaF: Row-Guided Random Algorithm with Fuzzing
	5.2 DRAFT: Dependency Driven Random Algorithm with Fuzzing at Time Boundaries

	6 Extensions to EDT
	6.1 Modeling Environment Constraints
	6.2 Property Checking

	7 Experiments: Results and Observations
	7.1 Comparison of RGRaF, DRAFT and Pure Random
	7.2 Impact of Fuzzing on Test Case Generation
	7.3 Comparison with Manual Testing
	7.4 Threats to Validity

	8 Conclusions and Future Work
	References

	A Process Support with Which to Identify Interactions Between Quality Characteristics
	Abstract
	1 Introduction
	2 Related Work
	3 Process for Monitoring Interaction Between Quality Requirements
	3.1 Process Objectives
	3.2 Inputs and Outputs
	3.3 Roles
	3.4 Activities

	4 Exploratory Case Study
	4.1 Case Study Design
	4.2 Interviews Results

	5 Results and Discussion
	6 Towards Resolving Negative Interactions Between Quality Characteristics
	6.1 Process Objectives
	6.2 Inputs and Outputs
	6.3 Roles
	6.4 Activities

	7 Conclusions
	Acknowledgements
	References

	A Method to Identify Talented Aspiring Designers in Use of Personas with Personality
	Abstract
	1 Introduction
	2 Literature Review
	3 Research Questions & Methodology
	3.1 Demographic Questions
	3.2 Self-Assessed Personality Trait
	3.3 Assessment of Holistic Persona
	3.4 Design Task
	3.5 Spatial Ability Test
	3.6 Rubric for Evaluation of the Design

	4 Analysis of Results
	4.1 Participants
	4.2 Participants' Assessment of Holistic Personas' Personalities
	4.3 Perceived Effect of Holistic Persona on Conceptual Design
	4.4 Preferred Holistic Persona

	5 Personality Traits, Spatial Ability and Design Ability
	5.1 Imagination Personality Traits and Design Performance
	5.2 Dividing Performance into Four Quadrants
	5.3 Five Scenarios to Study Results in Four Quadrants
	5.4 Comparison of the Results in Four Quadrants

	6 Discussion
	6.1 Variability in Study Parameters
	6.2 Categorization of Participants
	6.3 Literature Support for Design Suitability of the Holistic Persona
	6.4 General Discussion
	6.5 Threats to Validity of the Study and Measures to Overcome These

	7 Conclusion and Future Research
	Acknowledgements
	Appendix I
	References

	Lorq: A System for Replicated NoSQL Data Based on Consensus Quorum
	1 Introduction
	2 Replication of NoSQL Data
	2.1 NoSQL Data Model
	2.2 Strategies of Data Replication
	2.3 Consensus Quorum Algorithms

	3 Log Replication Based on Consensus Quorum
	3.1 Architecture
	3.2 States and Roles
	3.3 Example

	4 Consistency Models for Replicated Data
	5 Conclusions and Future Work
	References

	Heuristic Approaches to Improve Product Quality in Large Scale Integrated Software Products
	Abstract
	1 Research Motivation and Aim
	2 Related Work
	3 Heuristic Approaches
	3.1 Generalized Dependency Degree Based Approach
	3.2 Control Flow Graph Based Approach
	3.3 Feature Correlation Based Approach

	4 Comparison and Scope of Implementing Approaches
	5 Future Work
	6 Summary
	Acknowledgements
	References

	Towards a CBSE Framework for Enhancing Software Reuse: Matching Component Properties Using Semi-formal Specifications and Ontologies
	Abstract
	1 Introduction
	2 Literature Overview
	3 CBSE Reusability Framework
	3.1 Overview
	3.2 Level 1: Description Layer
	3.3 Level 3: Analysis Layer
	3.3.1 Dedicated CBSE Ontology
	3.3.2 Matching Process

	4 Experimental Evaluation
	4.1 Experimental Stage A'
	4.2 Experimental Stage B'

	5 Conclusions
	Acknowledgement
	References

	Helping Program Comprehension of Large Software Systems by Identifying Their Most Important Classes
	1 Introduction
	2 Ranking Classes According to Their Importance
	2.1 Building the Right Model
	2.2 A Simple Example

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Detailed Analysis of the First Case Study
	3.3 More Experimental Results

	4 Discussion and Comparison with Related Work
	4.1 Summary of Experimental Results
	4.2 Comparison with Related Work

	5 Conclusions
	References

	A Case Study for a Bidirectional Transformation Between Heterogeneous Metamodels in QVT Relations
	1 Introduction
	2 Model Transformations
	3 QVT Relations (QVT-R)
	4 Problem
	4.1 Metamodels
	4.2 Transformation Approach

	5 Solution
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	The Implementation of ISO/IEC 29110 Software Engineering Standards and Guides in Very Small Entities
	Abstract
	1 Introduction
	2 The ISO/IEC 29110 Standard for VSEs
	2.1 The ISO/IEC 29110 Basic Profile
	2.2 ISO/IEC 29110 Deployment Assistance

	3 ISO/IEC 29110 Industry Trial
	3.1 Case 1: A Peruvian IT Start-up
	3.2 Case 2: A Canadian IT Start-up
	3.3 Case 3: A Canadian/Tunisian IT Start-up
	3.4 Case 4: A Large Canadian Financial Institution
	3.5 Case 5: A Canadian Company in the Automotive Field
	3.6 Case 6: A Canadian Transportation Enterprise
	3.7 Case 7: The Implementation in a Division of an Engineering Enterprise

	4 Discussion and Future Work
	4.1 Discussion
	4.2 Planned Standard Development
	4.3 Standards Education

	5 Additional Information
	References

	Improving Mobile Banking Usability Based on Sentiments
	1 Introduction
	2 Mobile Banking App Usability Challenges
	3 Usability Measurement
	4 Recommendations for Improving Usability
	4.1 Time Taken to Complete Task
	4.2 User Interface Display Parameters
	4.3 Error Handling
	4.4 Evaluating Usability Parameters Implementation
	4.5 Mock-Ups

	5 Applicability of Recommendations
	6 Conclusion
	References

	Author Index

