

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning SharePoint 2007 Administration:
Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server 2007
ISBN: 978-0-470-12529-8
SharePoint MVP Göran Husman walks you through everything from planning and installation to configuration and administration so you
can begin developing a production environment.

Beginning SharePoint 2007: Building Team Solutions with MOSS 2007
ISBN: 978-0-470-12449-9
This book provides detailed descriptions and illustrations of the functionality of SharePoint as well as real-world scenarios, offering
coverage of the latest changes and improvements to Microsoft Office SharePoint Server 2007.

Building Dashboards for Windows SharePoint Services 3.0 using SharePoint Designer 2007
ISBN: 978-0-470-48566-8
In this e-book only downloadable Wrox Blox, you’ll learn how to create powerful Dashboards for Windows SharePoint Services 3.0. It
introduces Web Part Pages and out-of-the box Web Parts available in WSS, how to use Web Part Connections to add interactivity in
Dashboards, and you’ll create advanced Dashboard Views using the Data Form Web Part available with SharePoint Designer 2007.

Professional SharePoint 2007 Design
ISBN: 978-0-470-28580-0
This book outlines all of the steps and considerations a developer should understand in order to design better looking and more successful
SharePoint implementations.

Professional SharePoint 2007 Development
ISBN: 978-0-470-11756-9
A thorough guide highlighting the technologies in SharePoint 2007 that are new for developers, with special emphasis on the key areas of
SharePoint development: collaboration, portal and composite application frameworks, enterprise search, ECM, business process/workflow/
electronic forms, and finally, business intelligence.

Professional Microsoft SharePoint 2007 Reporting with SQL Server 2008 Reporting Services
ISBN: 978-0-470-48189-9
Build customized reports quickly and efficiently with SQL Server 2008 Reporting Services for SharePoint sites and this unique guide.
Developers, you’ll learn report development and deployment; SharePoint or SQL Server Reporting Services administrators, you’ll see how
to leverage SharePoint to use SQL Server Reporting Services in SharePoint Integrated Mode.

Professional SharePoint 2007 Web Content Management Development
ISBN: 978-0-470-22475-5
Use this book to learn such things as optimal methods for embarking on web content management projects, ways to implement sites with multiple
languages and devices, the importance of authentication and authorization, and how to customize the SharePoint authoring environment.

Real World SharePoint 2007: Indispensable Experiences from 16 MOSS and WSS MVPs
ISBN: 978-0-470-16835-6
This anthology of the best thinking on critical SharePoint 2007 topics is written by SharePoint MVPs—some of the best and most recognized
experts in the field. Some of the topics they cover include: Branding, Business Data Connector, Classified Networks, Forms-based Authentication,
Information Rights Management, and Zones and Alternate Access Mapping.

Professional SharePoint® 2007 Records
Management Development

Introduction . xv
Chapter 1: Offi cial Records . 1
Chapter 2: Preparing for Records Management Development. 19
Chapter 3: SharePoint Tools for Managing Records . 39
Chapter 4: The MOSS 2007 Records Center . 99
Chapter 5: Building and Confi guring a Records Repository 117
Chapter 6: Populating the Records Repository . 171
Chapter 7: Information Management Policy . 195
Chapter 8: Information Policy and Record Retention 235
Chapter 9: Information Policy and Record Auditing 255
Chapter 10: Managing Physical Records . 281
Chapter 11: Suspending Record Processing Using Holds 295
Chapter 12: Building and Deploying Custom Routers 307
Chapter 13: Maintaining Record Integrity . 325
Chapter 14: Managing Electronic Mail Records . 355
Chapter 15: Using Workfl ow to Manage Records . 371
Chapter 16: The DoD 5015.2 Add-On Pack . 403
Index . 421

87620ffirs.indd i87620ffirs.indd i 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

87620ffirs.indd ii87620ffirs.indd ii 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

Professional

SharePoint® 2007 Records
Management Development

Managing Offi cial Records with
Microsoft® Offi ce SharePoint® Server 2007

John Holliday

87620ffirs.indd iii87620ffirs.indd iii 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

Professional SharePoint® 2007 Records Management Development:
Managing Offi cial Records with Microsoft® Offi ce SharePoint® Server 2007
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-28762-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim
all warranties, including without limitation warranties of fi tness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall
be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009930062.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in
the United States and other countries, and may not be used without written permission. Microsoft and
SharePoint are registered trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

87620ffirs.indd iv87620ffirs.indd iv 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

This book is dedicated to the ever present and ever emerging singularity;

the eternal point-value at which all things are known

and through which all knowledge is shared.

87620ffirs.indd v87620ffirs.indd v 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

Credits
Acquisitions Editors
Katie Mohr
Paul Reese

Project Editor
Kelly Talbot

Technical Editors
Dan Attis
Aaron Cutlip
Todd Meister
Stacy Draper

Senior Production Editor
Debra Banninger

Copy Editor
Cate Caffrey

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Jeffrey Lytle, Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
J & J Indexing

Cover Image
© Tetra images/Punchtock

87620ffirs.indd vi87620ffirs.indd vi 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

About the Author
John Holliday has more than 25 years of professional software develop-
ment experience and has been involved in a wide range of commercial
software projects from desktop personal information managers to enter-
prise information systems for companies including IBM, Kodak, Autodesk,
Mentor Graphics, Tektronix, and Alcatel. After receiving a bachelor’s degree
in applied mathematics from Harvard and a J.D. from the University of
Michigan, John began researching alternative methods of representing
legal relationships and developing a specialized computing language for
constructing legal expert systems. Over the years, his interest in knowledge
representation has expanded to include all aspects of distributed systems
development, with a special focus on intelligent documents, collabora-
tion, and enterprise content management. In addition to his professional
career, John is actively involved in humanitarian activities through Works

of Wonder International, a non-profi t organization he co-founded with his wife, Alice, and the Art of
Living Foundation, an international service organization devoted to uplifting human values through-
out the world.

87620ffirs.indd vii87620ffirs.indd vii 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

Acknowledgments

First of all, I thank my lovely and gracious wife, Alice, without whose love and support I could not sur-
vive and without whose patience this book would not have been possible. I also thank my noble and
courageous mother, Frances, whose enduring spirit lights my way and warms my heart.

Thanks to Microsoft for creating a breakthrough product and for bringing together the best minds in
the industry, some of whom I’ve had the great good fortune to interact with directly. Mike Ammerlaan,
Ryan Duguid, Paul Andrew, Eilene Hao, and Andrew May, to name a few, provided tremendous insight
and clarity about the inner workings of the product, and I owe them an immense debt of gratitude.

Reviewing a technical book like this one is no easy task. It takes careful attention to detail and a will-
ingness to challenge the author’s fundamental assumptions, as well as the ability to do all of this in
an impossibly short amount of time. I cannot thank Dan Attis, Aaron Cutlip, Todd Meister, and Stacy
Draper enough for their help and support. I also thank my friends Spencer Harbar, Eric Shupps, Robert
Bogue, John Ross, Todd Baginski, Natalya Voskresenkaya, Paul Galvin, Zlatan Dzinic, Jeremy Sublett,
Sahil Malik, Brendon Schwartz, and Bradley Smith for many wonderful discussions about ECM and
SharePoint development in general.

They say a good teacher always learns more than his or her students, and I must say that I am continu-
ally amazed at how much I’ve learned while delivering SharePoint training for Ted Pattison’s Critical
Path Training (www.criticalpathtraining.com). Ted has assembled a remarkably talented group of
instructors whose high professional standards and willingness to share their knowledge have helped
me greatly. In particular, I will be forever indebted to Andrew Connell for introducing me to Ted and
for his continued guidance and friendship.

A very special thanks goes out to my friend Eli Robillard (http://weblogs.asp.net/ERobillard),
whose unique insights into enterprise content management and what it takes to build effective ECM
solutions on the SharePoint platform are truly enlightening. Eli spent a great deal of time thinking
about the book and helping me to strike the right balance between theory and practice.

I also express my sincere appreciation to Jim Minatel and the folks at Wiley Publishing, whose expe-
rience and professionalism are unparalleled in the industry. I especially thank Katie Mohr, whose
support for me and for this project has been unwavering from the beginning, even through the many
personal and professional challenges that presented themselves along the way. I also give a special
“thank you” to my development editor, Kelly Talbot, who was a joy to work with and whose thoughtful
advice and insights about the writing process were indispensable.

I know that other writers have echoed the popular phrase, “It takes a village,” when describing the
experience of bringing a book like this to market. I can only say that I truly understand now what that
means. The village I’m referring to here is the worldwide network of SharePoint MVPs that I feel privi-
leged to be a part of and whose amazing spirit, dedication, and enthusiasm continue to inspire me.
Microsoft has done an incredible job of creating a unique and vibrant community of SharePoint profes-
sionals that I hope will continue to thrive and expand.

87620ffirs.indd viii87620ffirs.indd viii 9/3/09 11:10:21 AM9/3/09 11:10:21 AM

Contents

Introduction xv

Offi cial Records Chapter 1: 1

What Are Offi cial Records? 1
Core Records Management Principles 2
Content Modeling 3

Understanding the Content Life Cycle 4
Content Modeling Goals 5
The Role/Activity Modeling Technique 6

Developing a File Plan 14
Identifying Roles and Responsibilities 15
Identifying Applicable Policies and Procedures 15
Identifying Custom Routing and Workfl ow Requirements 16
Identifying Document Categories and Groups 16
Identifying Document Sources 16
Analyzing Storage Requirements 17
Analyzing Security Requirements 17

Summary 17

Preparing for Records Management Development 1Chapter 2: 9

Understanding Current U.S. Regulations 19
Setting Up Your Development Environment for Maximum Productivity 20

CAML.NET IntelliSense 22
ECM2007: A Foundation Class Library for Records Management 23
Creating a SharePoint Feature Project Template 25
Leveraging XML Schemas for Maximum Flexibility 32
Generating Schema Classes from within Visual Studio 36

Summary 37

SharePoint Tools for Managing Records 3Chapter 3: 9

Document Libraries 40
Creating Document Libraries 40
Document Libraries and Property Promotion 41

87620ftoc.indd ix87620ftoc.indd ix 9/2/09 10:17:00 AM9/2/09 10:17:00 AM

x

Contents

Content Types 42
Uses for Content Types 44
Content Type Defi nitions 47
Creating Content Types 47

Versioning 64
Versioning Rules 66
Check-Out, Check-In, and Versioning 67
Versioning Pitfalls 69
Programmatic Versioning 71

Content Security 83
SharePoint Permissions 83
Strategies for Controlling Access to Content 88
Information Rights Management 90

The Records Management Object Model and API 92
The Offi cial File Web Service 93
Summary 96

The MOSS 2007 Records Center 9Chapter 4: 9

The Records Management Feature 99
The Records Center Site Defi nition 102
Records Center Components 103

The Records Repository Users Group 104
The Record Routing Table 104
The Holding Zone 104
The Holds List 105
Workfl ow Provisioning 105
Default Record Series 105
Default Expiration Actions 106

Records Center File Processing 106
The Core Record Routing Mechanism 106
Custom Record Routing 108
Property Storage 108
Audit History 110
Property Promotion and Demotion 112

Summary 115

Building and Confi guring a Records Repository 11Chapter 5: 7

Creating the Records Center Site 117
Creating a Records Center Manually 118
Creating a Records Center Programmatically 122

87620ftoc.indd x87620ftoc.indd x 9/2/09 10:17:00 AM9/2/09 10:17:00 AM

xi

Contents

Working with Traditional File Plans 125
Creating Document Libraries and Content Types 125
Setting Up the Record Routing Table 129

Building and Using Dynamic File Plans 130
Designing the File Plan Schema 132
A Quick Introduction to InfoPath 2007 134
Generating Serialization Classes 142
Building the File Plan Gallery 157
Executing the File Plan 164

Summary 169

Populating the Records Repository 17Chapter 6: 1

Submitting Individual Records 171
Confi guring the Farm for Manual Submission 171
Granting Users Permission to Submit Records 172
Testing the Farm Confi guration 173
Submitting Records Programmatically 177

Submitting Multiple Records 179
Summary 193

Information Management Policy 19Chapter 7: 5

Information Policy Architecture 196
Limitations of Information Policy in SharePoint Server 2007 198

Policies, Policy Features, and Policy Resources 198
The Information Policy Life Cycle 200

Building Custom Policy Features 203
Designing for Extensibility 203
Creating Reusable Policy Components 203
Creating a Printer Control Policy Feature 216
Creating the Policy Feature Class 217
Adding Custom Policy Feature Settings 224
Creating a Print Monitor Add-In for Word 2007 229

Summary 233

Information Policy and Record Retention 23Chapter 8: 5

The Expiration Policy Feature 235
Creating Custom Expiration Formulas and Actions 236

Expiration Formulas 238
Expiration Actions 240

87620ftoc.indd xi87620ftoc.indd xi 9/2/09 10:17:00 AM9/2/09 10:17:00 AM

xii

Contents

The Expiration Timer Job 243
Planning for Retention 245

Extending the File Plan to Include Expiration Policies 245
Adding Expiration Policy Support to the Dynamic File Plan 245

Summary 253

Information Policy and Record Auditing 25Chapter 9: 5

Understanding Auditing in SharePoint 255
Enabling and Disabling Auditing 257
Managing Audit Entries 258
Audit Reporting 259

Using the Auditing Policy Feature 262
Auditing in a Records Center Site 262

Creating an Audit Viewer Web Part 262
Viewing Historical Audit Records 271
Additional Considerations for Auditing 276

Extending the File Plan Schema to Support Auditing Policy 277
Summary 279

Managing Physical Records 28Chapter 10: 1

Physical Records and List Items 281
Create a Physical Record Content Type 282
Create a Physical Records List 283
Confi gure Information Policy Features 283

Physical Records and Folders 284
Automating the Process 286
Physical Records and Workfl ow 292
Summary 294

Suspending Record Processing Using Holds 29Chapter 11: 5

The Holds Architecture 296
Creating and Removing Holds 303

Placing a Hold 303
Removing a Hold 304

The Search & Process API 304
Summary 306

87620ftoc.indd xii87620ftoc.indd xii 9/2/09 10:17:00 AM9/2/09 10:17:00 AM

xiii

Contents

Building and Deploying Custom Routers 30Chapter 12: 7

Building Custom Routers 307
Creating a Simple Filtering Router 310
Installing the Router 313
Activating the Router 313
Creating a Tracking Router 314
Creating a Redirecting Router 317

Extending the File Plan Schema to Support Custom Routing 322
Summary 323

Maintaining Record Integrity 32Chapter 13: 5

Building a Content Validation Framework 325
Defi ning a Validation Schema 327
Building Validation Components 330
Using the Validation Framework with a Self-Validating Proposal Content Type 342
Using the Validation Framework to Build a Validating Router 347

Summary 353

Managing Electronic Mail Records 35Chapter 14: 5

Confi guring Exchange 2007 357
Handling the Folders in Outlook 2007 368
Handling Missing Properties 368

Summary 369

Using Workfl ow to Manage Records 37Chapter 15: 1

A SharePoint Workfl ow Primer 373
Offi cial Records, Workfl ow, and Complexity 376

Primitive Activities 377
Useful Activities for Records Management 380
Domain-Specifi c Records Management Activities 381

Workfl ow Modeling 381
Building a Workfl ow Activity Library 383

Testing Your Activities 384
Building Workfl ow Activities for Records Management 387

Executing a File Plan 388
Validating List Item Metadata 391

87620ftoc.indd xiii87620ftoc.indd xiii 9/2/09 10:17:00 AM9/2/09 10:17:00 AM

xiv

Contents

Extending SharePoint Designer to Use Records Management Workfl ows 396
Deploying and Registering the Activity Library 396
Creating the .ACTIONS File 396

Summary 401

The DoD 5015.2 Add-On Pack 40Chapter 16: 3

Requirements Addressed by the Add-On Pack 403
New Concepts 404
Enhanced Search 408

Installing the Add-On Pack 409
The Components Installed by the Add-On Pack 411

The RecordCenterRouter Feature 411
The RecordCenterAddonPack_Web Feature 411
The RecordCenterAddonPack_SiteWorkfl ows Feature 412
Custom Field Types and Field Controls 412
Content Types 413
Timer Jobs 413
Workfl ows 414
STSADM Commands 417

The Records Center E-Mail Router 418
Summary 420

Index 421

87620ftoc.indd xiv87620ftoc.indd xiv 9/2/09 10:17:01 AM9/2/09 10:17:01 AM

Introduction

Despite its power and fl exibility, SharePoint presents many challenges for building enterprise content
management (ECM) solutions. This is partly because of the inherently complex nature of application
development on the SharePoint platform in general, but mainly because the out-of-the-box tools that
SharePoint provides (such as content types, site columns, lists, etc.) are defi ned at such a low level that
it is often diffi cult for developers to fi nd the right balance between building reusable components that
capture the semantics they need when crafting their solutions and writing applications directly using
CAML and .NET code. These challenges are even greater for records management (RM) development
because the platform provides no built-in support for fi le planning or content life-cycle management.

Records management on the SharePoint platform relies on several different components that together
provide a comprehensive set of tools for building RM solutions, but each of these components can also
be understood as a separate and distinct technology. As an example, Information Policy plays an impor-
tant role in records management but also stands alone as a powerful component of any ECM solution.

This book, therefore, has two goals. The fi rst is to explain the Microsoft Offi ce SharePoint Server
(MOSS) records management architecture and to share the most effective design methodologies and
development strategies I’ve found for building ECM/RM solutions on the SharePoint platform. The sec-
ond is to describe the underlying technologies and core components of the platform in suffi cient detail
to enable readers to apply the design methodologies and development techniques effectively to any
SharePoint solution.

Who This Book Is For
This book is for SharePoint developers who are tasked with planning and implementing solutions
involving documents that have been designated as offi cial records at some point during their life cycle.
These kinds of solutions typically include requirements such as controlling how long certain kinds
of documents remain in the system, determining where those documents are stored, keeping track of
what happens to documents after they have been placed into document libraries, and so on. In order to
focus on such high-level requirements without getting lost in the details of SharePoint solution devel-
opment, the book assumes that the reader is already familiar with the fundamentals of developing
SharePoint solutions using Visual Studio.

While it is not necessary to be a seasoned SharePoint developer with years of experience, the reader
should understand the basic steps involved in creating SharePoint features, writing custom code
against the SharePoint object model, and deploying that code into the SharePoint run-time environ-
ment. The reader should also be comfortable using C# or Visual Basic .NET within the Visual Studio
integrated development environment to create ASP.NET web applications.

It is not necessary for the reader to be familiar with general records management principles or with specifi c
regulatory requirements. The book will bring the reader up to speed on the relevant regulations and will
also introduce a conceptual framework for understanding them in the context of SharePoint development.

87620flast.indd xv87620flast.indd xv 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xvi

What This Book Covers
No records management solution is complete without a fi le plan, but there is little guidance available to
help developers understand the fi le planning process or to incorporate a consistent fi le planning meth-
odology into the development cycle. This book fi lls that gap by introducing a fi le planning methodol-
ogy based on a set of concrete fi le plan components that enable developers to incorporate fi le plans into
the solutions themselves, as parts of information policies, workfl ows, or custom features.

Unlike other SharePoint development books that focus only on the mechanics of building solutions, this
book introduces content modeling as an integral part of the development process. This approach helps the
reader to better understand enterprise content in the context of the roles it is intended to support, and to
identify the “high value targets” to focus on fi rst. The book then guides the reader through the develop-
ment of a consistent methodology for identifying offi cial records and creating effective fi le plans, under-
standing the out-of-the-box tools provided by SharePoint for managing offi cial records, and understanding
the limitations of the current architecture, including ways to work around them wherever possible.

The book also presents an overall development strategy that seeks to leverage the power of the
SharePoint object model to create reusable components. Because of the breadth of the SharePoint plat-
form and the inherent complexity of ECM solutions, developers often fall into the habit of writing
“throw-away” code that can only be applied to a single solution or that must be copied and pasted from
one solution to another. This tendency is even greater when a developer is forced to use a declarative
XML-based language like CAML that is not compiled and that therefore does not offer the same level of
reuse that most developers are used to. This book seeks to counteract that tendency and increase devel-
oper productivity while simplifying the design and implementation of complex solutions by developing
and then continually extending a core set of ECM components in an ECM foundation class library. The
components that are developed throughout the book can be extended easily and applied repeatedly, not
only to records management solutions, but also to a wide range of SharePoint development projects.

How This Book Is Structured
This book is about building MOSS 2007 records management solutions, but it also includes some addi-
tional material related to SharePoint development in general. The early chapters build a conceptual frame-
work that includes a content modeling methodology and also introduces several tools and techniques that
are referred to throughout the book. It is therefore recommended that you read the fi rst three chapters
fi rst, and then read the other chapters, focusing on the subsystems that interest you. Chapter 2 introduces
the ECM2007 foundation class library, which is gradually extended throughout the book. It also intro-
duces the dynamic fi le plan component, which is also extended throughout the book as a way of tying
together the different phases of the content life cycle. The remaining chapters focus on specifi c parts of the
MOSS records management architecture and need not be read in any particular order.

Chapter 1: Offi cial Records ❑ — Chapter 1 provides a conceptual framework for understand-
ing MOSS records management and introduces the concept of content modeling, which helps to
develop more effective records management solutions. It also describes the fi le planning process
and lays the foundation for the remaining chapters.

Chapter 2: Preparing for Records Management Development ❑ — Chapter 2 starts by examining
some of the key U.S. legislation that drives many records management solutions. It then walks
through the process of setting up a Visual Studio development environment for an optimal

87620flast.indd xvi87620flast.indd xvi 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xvii

development experience, shows you how to create your own SharePoint Feature project tem-
plate, and introduces the ECM2007 foundation class library that is referred to and extended
throughout the book.

Chapter 3: SharePoint Tools for Managing Records ❑ — Chapter 3 provides an overview of the
built-in components on the SharePoint platform that are most important for building records
management solutions. It covers core concepts such as document libraries, content types,
versioning, and security, showing how to add support for these components to the ECM2007
foundation class library. Finally, the chapter introduces the SharePoint records management
namespaces and object model and describes the Offi cial File Web Service.

Chapter 4: The MOSS 2007 Records Center ❑ — Chapter 4 provides a deep dive into the archi-
tecture and implementation of the MOSS Records Center site defi nition, which provides most of
the built-in support for records management in the SharePoint environment. It introduces each
component of the site defi nition and describes how incoming records are processed.

Chapter 5: Building and Confi guring a Records Repository ❑ — Chapter 5 builds on Chapter 4
and describes how to set up and confi gure a Records Repository, including the steps required
for creating the necessary document libraries and content types and setting up the Record
Routing Table. The chapter also introduces the concept of using a dynamic fi le plan for confi g-
uring the repository programmatically. It then further extends the ECM2007 foundation class
library to include custom fi le planning components.

Chapter 6: Populating the Records Repository ❑ — Chapter 6 looks at the Records Repository
from the perspective of users, administrators, and client applications that need to submit
documents to the Repository. It walks through the steps needed to confi gure the SharePoint
Farm for manual submission, and it shows how to submit records programmatically to the
Repository. It also shows how to extend the SharePoint UI to support the submission of more
than one record at a time.

Chapter 7: Information Management Policy ❑ — Chapter 7 provides a broad introduction to
MOSS Information Management Policy, which underlies much of the advanced records man-
agement capabilities of the SharePoint platform. It describes the Information Policy architecture
and gives a detailed explanation of each component, showing how to create custom policy fea-
tures and how to build libraries of reusable Information Policy components.

Chapter 8: Information Policy and Record Retention ❑ — Chapter 8 builds on Chapter 7 and
shows how Information Policy is used to control record retention. The chapter provides a
detailed explanation of how the built-in Expiration Policy Feature works and shows how
to extend it with custom expiration formulas and actions. It then shows how to extend the
dynamic fi le plan introduced in Chapter 5 to include record retention policies.

Chapter 9: Information Policy and Record Auditing ❑ — Chapter 9 takes a similar approach
to Chapter 8, showing how Information Policy is used to control record auditing. It starts by
describing the built-in auditing features of the SharePoint platform and shows how to work
with the SharePoint auditing components and audit entries. It then shows how to extend the
dynamic fi le plan components from Chapter 5 to include record auditing support.

Chapter 10: Managing Physical Records ❑ — Chapter 10 shows how to use the MOSS Records
Management features to handle physical records by managing them as list items from within
the Records Center site. It then shows how to leverage the Information Policy framework in
conjunction with SharePoint workfl ows to reduce the complexity inherent in coordinating the
physical and electronic components.

87620flast.indd xvii87620flast.indd xvii 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xviii

Chapter 11: Suspending Record Processing Using Holds ❑ — Chapter 11 describes the Holds
architecture and shows how to create and remove holds, associate them with records, and lever-
age the built-in holds reporting and processing functionality. It also introduces the Search &
Process API, which can be used to quickly locate records to apply or remove holds.

Chapter 12: Building and Deploying Custom Routers ❑ — Chapter 12 introduces the MOSS
Record Routing framework and shows how to build and deploy custom routers that enhance
the built-in support for processing incoming records. It adds custom routing support to the
ECM2007 foundation class library and then shows how to use custom routers for fi ltering, track-
ing, and redirecting records. Finally, the chapter further extends the dynamic fi le plan compo-
nents from Chapter 5 to support custom routing.

Chapter 13: Maintaining Record Integrity ❑ — Chapter 13 approaches records management from
a higher level and focuses on the problem of ensuring that incoming records have valid content
and metadata. It starts by extending the ECM2007 foundation class library to include an exten-
sible content validation framework, which is then used to associate custom validation rules with
standard SharePoint components such as content types and Information Policy features. The
chapter then shows how to use the Validation framework from within a custom router.

Chapter 14: Managing Electronic Mail Records ❑ — Chapter 14 explains the built-in support
provided by MOSS and Exchange 2007 for managing electronic mail records. It introduces the
Messaging Records Management framework and walks through the required steps for set-
ting up Exchange 2007 to route offi cial e-mail messages to a MOSS Records Repository using
Exchange Managed Folders. The chapter also includes code that shows how to set up managed
folders programmatically and further extends the dynamic fi le plan components from Chapter 5
to include support for setting up Exchange.

Chapter 15: Using Workfl ow to Manage Records ❑ — Chapter 15 introduces the concept of using
SharePoint workfl ows to manage the complex interactions that are often involved in ECM/RM
solutions. After providing a brief overview of the SharePoint workfl ow architecture, the chapter
describes the workfl ow activities that are included in the Microsoft SharePoint ECM Starter Kit
for working with offi cial records. The chapter then identifi es additional workfl ow activities that
are useful for records management and shows how to build a custom workfl ow activity library
for building records management solutions that uses many of the components, such as the
dynamic fi le plan and the custom validation framework, that were created in earlier chapters.
Finally, the chapter shows how to extend SharePoint Designer to add records management sup-
port to declarative, no-code workfl ows.

Chapter 16: The DoD 5015.2 Add-On Pack ❑ — Chapter 16 provides a deep dive into the architec-
ture and implementation of the DoD 5015.2 Add-On Pack. It starts by describing the additional
requirements imposed by the DoD 5015 standard and shows how each of these requirements is ful-
fi lled by the components installed by the Add-On Pack. The chapter then walks through the instal-
lation and confi guration of the Add-On Pack and describes each of its components and features in
detail, including custom fi eld types and controls, content types, timer jobs, and workfl ows.

What You Need to Use This Book
This book assumes that the reader has moderate profi ciency in using C# and the Visual Studio develop-
ment environment to build ASP.NET web applications. It also assumes that the reader is familiar with
the basic steps involved in building and deploying SharePoint features and solution packages using
Visual Studio.

87620flast.indd xviii87620flast.indd xviii 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xix

The code modules and examples in the book were developed on a Windows Server 2003 system (Enterprise
Edition with Service Pack 2), Offi ce SharePoint Server 2007 with Service Pack 1, Offi ce 2007 Ultimate, Visual
Studio 2008 with Service Pack 1, and the Visual Studio 2008 Software Development Kit. The downloadable
Visual Studio solution fi les that accompany the book require the .NET Framework 3.5, and InfoPath 2007 is
required for working with the dynamic fi le planning components that are introduced in Chapter 5.

The examples in Chapter 16 were developed in a separate development environment in which the DoD
5015.2 Add-On Pack was installed. As mentioned in that chapter, installing the Add-On Pack irre-
versibly alters the MOSS environment. I therefore highly recommend that you create and confi gure a
separate system for working through those examples to avoid having to redeploy your primary devel-
opment environment.

There are several additional tools that are popular among SharePoint developers, and I typically use
many of them when building SharePoint solutions. These include the SharePoint Debugger Feature
(www.codeplex.com/features), DebugView from SysInternals (www.sysinternals.com), SPTraceView
(sptraceview.codeplex.com), Spence Harbar’s Application Pool Manager (www.harbar.net), and
SharePoint Manager (www.codeplex.com/spm). Although not a requirement for working though the code
examples, I also highly recommend Carsten Keutmann’s WSP Builder (wspbuilder.codeplex.com),
Lutz Roeder’s .NET Refl ector (www.red-gate.com/products/reflector), and my own CAML.NET
IntelliSense (http://code.msdn.microsoft.com/camlintellisense).

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used several conven-
tions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We show keyboard strokes like this: [Ctrl]+A. ❑

We show URLs and code within the text like this: ❑ persistence.properties.

We present code in two different ways: ❑

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using

87620flast.indd xix87620flast.indd xix 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xx

the Search box or by using one of the title lists), and click on the “Download Code” link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this book’s ISBN is
978-0-470-28762-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time, you will be helping us provide even higher-
quality information.

To fi nd the Errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click on the Book Errata link. On this page, you can view
all errata that have been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the book’s Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s Errata page and fi x the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only
as you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click on the Register link.

 2. Read the terms of use and click Agree.

87620flast.indd xx87620flast.indd xx 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Introduction

xxi

 3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click on the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specifi c to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

87620flast.indd xxi87620flast.indd xxi 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

87620flast.indd xxii87620flast.indd xxii 9/2/09 10:17:14 AM9/2/09 10:17:14 AM

Official Records

Records management is driven primarily by regulatory compliance and the need to reduce the
risk of exposure to legal liability for improperly managing information. The prospect of paying
signifi cant fi nes for not adhering to an increasing array of regulatory requirements provides a
strong incentive for companies to implement comprehensive records management solutions. But
there can be equally signifi cant costs associated with implementing those solutions that must
also be considered. There is the potential for lost productivity as knowledge workers spend more
and more time focusing on records management issues. There is also the potential for increased
IT costs as additional time and energy must be devoted to building and maintaining the records
management infrastructure.

That infrastructure has requirements as well. Not only must it support the identifi cation and
handling of offi cial records, but it must also provide the same tools for collaboration, approval, and
workfl ow that other knowledge workers employ in their day-to-day work. Compliance offi cers are
knowledge workers too, and the job of managing offi cial records can be even more daunting than
creating them.

Microsoft has published a comprehensive records management planning guide that is essential
reading for anyone involved in the development of records management policies and procedures,
regardless of whether you are using MOSS as an implementation platform or not. You can
download the guide from http://go.microsoft.com/fwlink/?LinkID=92720.

What Are Official Records?
Don’t you hate it when you ask someone a question and they respond with the generic answer,
“that depends”? I often fi nd myself thinking, “This person obviously doesn’t know the answer to
my question and is just stalling for time so they can come up with something intelligent to say!”
You see where I’m going with this, right? When thinking about records management, the fi rst
question that often comes to mind is, “What is an offi cial record, anyway?”

87620c01.indd 187620c01.indd 1 9/2/09 10:17:29 AM9/2/09 10:17:29 AM

2

Chapter 1: Offi cial Records

When does an ordinary document become something more? When does it “offi cially” become something
you have to treat specially because of some legislation or corporate policy or other business process that
may govern what you might otherwise do with it? Well, I hate to do this to you right off the bat, but the
only answer I can give you is, “that depends.” Let’s dig a little deeper, and you’ll see what I mean.

To answer this simple question, there is a lot to consider. Is there something about the document itself
that determines whether it is considered an offi cial record? In the simplest case, that determination
might fl ow from a special set of values in one or more document properties. In other cases, it might
come from the presence of a particular kind of content within the document. For example, the docu-
ment might contain sensitive information that only certain people should be allowed to see. Ultimately,
particularly in the context of highly collaborative environments like SharePoint, the fi nal determination
of what constitutes an offi cial record may have as much to do with how a document is used as it does
with the document content or with the metadata associated with it.

Traditional records management systems are focused primarily on archival mechanisms. We could
characterize them as location-based, where the physical location of the document is the dominant
consideration.

If physical storage were our only concern, then building records management solutions would be fairly
simple. Assuming we had a consistent platform for associating metadata with a fi le, we would basically
only need an established process for storing the fi le in a secure repository so we could fi nd it again eas-
ily. Obviously, we would also need to apply some discipline in categorizing the metadata according to a
given set of rules, but this would be a relatively straightforward process.

The more challenging scenarios involve concurrent processes that may have nothing at all to do with
the policies or rules we are trying to enforce. This is where SharePoint distinguishes itself signifi cantly
from other systems. Dealing with offi cial records in the context of dynamically changing metadata
without interfering with critical business processes represents a quantum shift in the way we think
about offi cial records and the software components needed to manage them effectively.

Core Records Management Principles
What are the core principles of records management? Here, I’m talking about the essential character-
istics of any records management system. At a minimum, there are four: confi dentiality, information
integrity, adherence to policy, and auditability. If any one of these capabilities is missing, then that sys-
tem does not provide the necessary control points for ensuring that a given organization is meeting the
regulatory requirements driving the decision to implement the system.

In the SharePoint environment, we can add one additional core requirement: high availability. This gets
back to the notion that whatever controls you put in place for managing offi cial records should have
minimal impact on normal business operations. For collaborative documents that support multiple
business processes, it means that you must implement solutions that do not hinder those business pro-
cesses or increase their cost.

Now look at these principles of records management more closely:

Confi dentiality ❑ — Confi dentiality requires that the records management system must ensure
that strict access controls are maintained for any offi cial record so that only those persons and
groups with appropriate permissions are able to view the record. Any deviation from such
access controls must also be properly monitored and recorded.

87620c01.indd 287620c01.indd 2 9/2/09 10:17:29 AM9/2/09 10:17:29 AM

3

Chapter 1: Offi cial Records

Information Integrity ❑ — The records management system should provide a way to check the
integrity of a record’s metadata as well as its content. This could require the enforcement of
rules that govern the range of property values that are considered valid for a given set of meta-
data fi elds. The system must also ensure that neither the content nor the metadata associated
with records is altered after they have been placed into the repository.

High Availability ❑ — Offi cial records must be available at all times to support processes that
may or may not be related to core business functions, such as litigation support or compli-
ance research. This requirement of high availability often underscores the need to decouple
the Records Repository from other enterprise information stores so that any request for offi cial
records is not tied to critical business processes.

Adherence to Policy ❑ — Adherence to policy means that there are rules that govern how particular
types of records must be handled by the system. For policies to be implemented effectively, they
must be defi ned clearly and must also support administrative proof that a given policy was fol-
lowed for a given record instance.

Auditability ❑ — The auditability requirement means that there must be an effi cient and secure
mechanism for keeping track of everything that happens to a record. This typically includes
changes to the way in which the auditing itself is implemented. Thus, audit records are also
treated as offi cial records. Consequently, the records management system must provide tools
for ensuring that the auditing features are also tamper-proof and that the audit records are
securely maintained.

Content Modeling
What are the essential characteristics of content that enable effective records management? Is there
a methodology we can use for deciding what metadata to associate with a given content element?
Ultimately, we want tools that not only enable us to build detailed models of our metadata design, but
also to bind the resulting metadata to our code consistently and in a reusable fashion so we can avoid
having to build the same model repeatedly.

What we have today is a pretty haphazard defi nition of what metadata consists of and how it should be
defi ned. There are different kinds of metadata coming in from legacy document management systems
and from unstructured documents. The properties attached to those documents haven’t necessarily
been defi ned in any consistent or rigorous manner. Consequently, when we’re building records man-
agement solutions in SharePoint, we run into the problem of matching columns to properties and mak-
ing sure that each document being managed by our solution has appropriate data in the right places.
This can be a big problem, and it can get very complicated. There are third-party tools cropping up that
purport to provide mechanisms for mapping properties, and thus the concern is not so much about the
actual mechanics, but about the methodology used for fi guring out which properties are important for
a given scenario and deciding what we’re going to map those properties to.

Another way that metadata is being determined now is that there are often many different copies of
the same document fl oating around in the enterprise. In a perverted kind of way, the more duplication
there is of a particular document, the more we could say that document may increase in value. Because
it is being used so much, it must have more value than other documents. It becomes a sort of high-value
target as a starting point for further analysis. By examining frequently copied documents, we may
develop a rudimentary understanding for how the document is being used at different times. As an
example, let’s say that we have an annual report that is being created consistently every year. But then

87620c01.indd 387620c01.indd 3 9/2/09 10:17:29 AM9/2/09 10:17:29 AM

4

Chapter 1: Offi cial Records

at some point, new management takes control of the company and they need new information, and
the annual report morphs into a different kind of document that includes additional reports. Another
example might be an expense report that has new expense items that must be included. Whenever a
document that is attached to one business process is applied to different business processes, the result
is that the metadata gets messy very quickly. Certain properties support either the original process or
the new one, while other properties support both.

Generally, there is no systematic method for determining what metadata is needed for a given business
purpose. Yet the paradigm keeps evolving, and we’re moving forward with this content explosion. We
have no choice but to move more and more content into SharePoint based on a pretty informal method-
ology. To deal with this, it helps to think about how the metadata is going to be used. If it is simply for
classifi cation and categorization, it may not be as important to have formal methodology for fi guring
out what the metadata should be. But if it is going to be used to drive business process automation, it
becomes vitally important to have a methodology so that we can consistently determine or derive the
correct metadata because we need to coordinate multiple processes and the activities being performed
by people connected to those processes. Where is that coordination going to come from? It’s going to
come from something attached to the document or to some other object that describes the document.
In a traditional document management system, we might have a database record that includes this
metadata. In SharePoint, we can attach the metadata directly to the document, associate it with a list or
content type, or embed it into a workfl ow activity.

Understanding the Content Life Cycle
The content life cycle provides a useful model of the way humans interact with information, and it
can be represented as a simple sequence consisting of four phases: creation, review-and-edit, publica-
tion, and fi nal disposition. Depending on the type of content being modeled and the way it is used, the
review-and-edit phase may be repeated as often as needed.

It is worth noting also that this is a recursive model, meaning that the entire sequence can be embed-
ded within any individual phase to drill deeper into the analysis of the content-driven workfl ow. For
example, the process of creating an annual report could be modeled as a sequence of steps starting with
the gathering of initial metadata to create the document instance, review-and-edit of the content and
underlying assumptions, approval and publication of a series of drafts, and then fi nal disposition to a
shredder or long-term storage repository.

But the process of gathering the metadata could itself be modeled in the same way. This is because what
we call content depends on many factors, not the least of which is the context of the analysis. Figure 1-1
illustrates the basic sequence.

Create Review
& Edit

Approve
& Publish Dispose

Figure 1-1: Typical content life cycle.

87620c01.indd 487620c01.indd 4 9/2/09 10:17:29 AM9/2/09 10:17:29 AM

5

Chapter 1: Offi cial Records

The content life cycle can help a lot when building ECM solutions because it provides a context within
which to understand and tease out the requirements needed to deal with chaos. The content life cycle
informs further analysis of those requirements, even though our current tools for creating content pro-
vide no consistent data model that can be leveraged to answer basic questions about the information
we use every day to perform common business functions. The key lies in the fact that content drives all
business processes. If we can clarify just what kinds of interrelationships tend to help or hinder those
processes, we can defi ne and identify critical metadata that can then be used to manage the transforma-
tion of content from one stage to another.

At each stage of this life-cycle model (creation, review-and-edit, publication, and fi nal disposition), dif-
ferent tools may be used to manage the production or consumption of information at that stage. Having
the right tools at the right stage can have a signifi cant impact on whether a given business process is
successful. It can certainly infl uence how quickly an organization can respond to changes in the under-
lying information. Therefore, it is useful to explore ways to leverage whatever can be known about the
life cycle of a particular kind of content to understand how that content relates both to the individual
producers and consumers of that content and the environment surrounding how that content is used.

Consider what happens during the content creation phase. Whether using a server or client application,
the way that content is created is driven at least in part by the role being played by each person who
interacts with the content or with the initial metadata used to generate that content. As an example, if a
team is producing a periodic report such as an annual report for a company or a quarterly report for a
department, then the appropriate tools must be available for each team member to create the required
metadata before the report can be created (whether it is generated or being written by hand). Once it is
created, it then moves on to the next phase in its life cycle and may require different tools at that point.

What’s interesting is that the role being played by each team member as well as other essential char-
acteristics of the content itself help to defi ne what tools are needed at each stage. This intersection
between the content life cycle, the roles of each content producer and consumer, and the business pro-
cess to which the content is being applied defi nes a “nexus of opportunity” that can be exploited to
achieve new levels of business effi ciency. The trick will be to fi nd an effective technique that pulls all
of the required elements together in a way that engages all stakeholders. First, we’ll lay out some high-
level goals for our content modeling technique, and then we’ll look at role/activity modeling, which
addresses these goals.

Content Modeling Goals
Goals that you should keep in mind as you develop a content modeling methodology generally include
the following:

 1. Understand the essential characteristics of content that can enable effective management and
control.

 2. Develop a methodology for deciding what metadata to associate with a given content element.

 3. Develop tools for binding content metadata to code in consistent and repeatable patterns.

 4. Build an effective strategy for using content to support business process automation.

 5. Be precise and not require heavy IT skills or sophisticated modeling tools.

87620c01.indd 587620c01.indd 5 9/2/09 10:17:29 AM9/2/09 10:17:29 AM

6

Chapter 1: Offi cial Records

Ideally, the modeling methodology should not require heavy technical skills. The target audience will
include both developers and knowledge workers who typically understand business processes better
than IT does. We don’t want to introduce a modeling technique that is overly technical. At the same
time, it has to be precise enough to support the kinds of quantitative analysis we need for software
component building in order to respond to the business requirements.

The fi nal goal is that we don’t want to have to use sophisticated modeling tools. We should be able to
create these models easily using something no more complicated than Microsoft Excel. We should also
be able to create visual models easily that relate directly to the actual modeling activity using some-
thing like Microsoft Visio so that we can easily share the model with knowledge workers, developers,
and architects.

The Role/Activity Modeling Technique
We use role/activity modeling to identify the content that drives specifi c business processes, and then
we classify the content so that we can map it to different parts of the solution. The remaining content is
grouped for highest effi ciency, such as by predominant role, security requirements, source location, and
so on. Finally, we identify and build domain-specifi c components (such as timer jobs, event receivers,
and workfl ow activities) around those content elements. This results in a set of components that is more
tightly coupled to the business process being automated and greatly simplifi es the construction of solu-
tions around that business process.

This technique is particularly useful for workfl ow development because the components you identify can
be implemented as custom workfl ow activities that can then be added to SharePoint Designer to enable
business analysts to easily add domain-specifi c workfl ow support to any SharePoint portal.

The role/activity modeling exercise begins with a guided discussion to identify the major roles that will
participate in the solution and the primary responsibilities that will be assigned to those roles. Then we
walk through a very informal, but still structured analysis to determine what the main activities are
that are required in order to fulfi ll those responsibilities. Within each of these activities, we then deter-
mine what information is essential to performing the tasks we have enumerated. As it turns out, this
is a very useful analysis when dealing with any kind of portal because in the portal environment, you
are presenting users with tools for performing tasks that fulfi ll responsibilities to which various roles
have been assigned. And so that maps pretty nicely into, for example, an Active Directory permission-
granting environment wherein you are providing certain tools to certain individuals and information is
constantly fl owing into and out of the system. Figure 1-2 shows the steps of the technique.

Step 1

Identify
Roles

Step 2

Enumerate
Responsibilities

Step 3

Identify
Activities

Step 4

Identify
Content In/Out

Figure 1-2: Role/activity modeling.

Here, we are making a few basic assumptions about the portal environment, such as the ability to cap-
ture metadata in the form of lists, the ability to control access to documents, the ability to build compre-
hensive workfl ows, and so on. Typically, what is needed prior to doing this kind of analysis is to build
the necessary semantic tools to do the envisioning at a higher level. From the perspective of a business

87620c01.indd 687620c01.indd 6 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

7

Chapter 1: Offi cial Records

analyst who may be new to the SharePoint environment, an essential ingredient is helping them to
develop a realistic understanding of what features SharePoint provides out-of-the-box and what it does
not, and then move on to a broader strategic vision that includes guidance for how those features can
be applied to solving the particular business problem. In order to use the analysis as a foundation for
building solutions, it is also necessary to identify reusable patterns that can be combined to reduce the
overall complexity of a given problem by making it possible to decompose the problem into smaller,
more manageable pieces.

I like to think of SharePoint in two dimensions: space and time. If you view it from the spatial dimen-
sions, then the share point is the location in space at which you place information to be shared with
others. It’s like a glorifi ed fi le share. It’s a physical location for sharing information. Alternatively, if
you look at it from the temporal dimension, then the share point is the point in time when collaboration
becomes essential to your business process. In other words, there is a point in time when the complex-
ity of working with shared content becomes so great that you have no viable alternative but to share
the information. The solution requires more consciousness, so you have no choice but to collaborate.
SharePoint is therefore a great name for this platform because it truly captures the spatial and temporal
complexities that are inherent in the work we do and the activities we have been tasked with.

Consider the platform itself. We have a set of sites that support large numbers of users. We have a fi xed
topology that imposes a certain structure on the information stored within it. Perhaps there is a top-
level site with departmental sites underneath it and end-users have the ability to create their own sites
beneath those. With so many sites being created and so much information being stored in so many
ways, the spatial constraint is to reduce the unnecessary duplication of information. But it’s a tempo-
ral constraint as well. We want to enable users to fi nd and reuse information as much as possible, just
in the interest of time. Otherwise, they will fall into the same behavioral patterns they used when all
they had were fi le shares. The reason there were so many duplicate copies of the same document was
because someone couldn’t fi nd that fi rst copy they created last year that was exactly on point for what
they are doing now. Even if it was only 80 percent on point, they just don’t have time to look for it.

Enumerating Roles
We need a way to determine what the workfl ow patterns look like because there are many ways to
structure information to support those patterns. But there can be a real disconnect between the collabo-
ration platform and what people in the organization are being tasked with. In many ways, collaboration
presents a paradigm shift for the average information worker, who is used to working on a separate
island of information. Now, there are other nearby islands they need to collaborate with, but they are still
thinking in terms of my island and your island. They are not yet comfortable with the shared repository
idea, especially when it potentially affects their ability to deliver work product.

The role/activity modeling exercise helps to clearly state and enumerate the roles that are involved.
There are clearly defi ned responsibilities. That’s an embedded relationship. You can’t have the same
responsibility in more than one role. By enumerating the list of responsibilities associated with each
role, you have a way to identify the primary forces working against the collaboration initiative. When it
comes down to it, people are motivated by their need to fulfi ll their perceived responsibilities. Adopting
a new paradigm requires effort. It requires time to learn the new tools. It requires a commitment to
learning. It is easier to persuade people to invest the additional time and energy if they think the new
paradigm will better enable them to fulfi ll those responsibilities.

If you roll out a portal that does not facilitate the individual’s ability to perform his or her assigned
tasks, you are increasing the noise they have to deal with, and you are increasing the effort they must

87620c01.indd 787620c01.indd 7 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

8

Chapter 1: Offi cial Records

expend. There is then little incentive for them to adopt the new paradigm. One of the strategies that
Microsoft started with was to integrate the collaboration platform tightly with Offi ce. This gives you the
ability to build on knowledge they already have. You have the ability to extend rather than shift the para-
digm. This works well for both the collaboration and aggregation activities.

Enumerating Responsibilities, Activities, and Tasks
The role/activity modeling exercise can really help to clarify and focus the structure of an information
portal. Beyond that, it can also provide a foundation for building analytical models that can guide the
construction of component libraries so they provide the essential tools required by users to meet specifi c
business objectives. Figure 1-3 illustrates the relationships between the different parts of the model.

Responsibility ResponsibilityResponsibility

Role

Activity

Task

Task Task

Content

Content

Figure 1-3: Role/activity modeling elements.

People don’t really have a choice with regard to their responsibilities. It’s part of their job descriptions.
They must fulfi ll their responsibilities in order to satisfy their job requirements. The following table
shows some common examples of roles and responsibilities.

Group Role Responsibilities

Administration Administrative
Assistant

Managing communications and scheduling activities to
alleviate executive information workload

Accountant Collecting, auditing, and reviewing fi nancial documents and
related information

Creating fi nancial reports

Bookkeeper Collecting and distributing funds and issuing receipts

Maintaining fi nancial records

87620c01.indd 887620c01.indd 8 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

9

Chapter 1: Offi cial Records

Group Role Responsibilities

Operations Ensuring that all operations are running smoothly

Troubleshooting problems as they arise

Compliance Comptroller Ensuring that legal documents, contracts, and releases are
properly signed, received, and fi led

Compliance
Offi cer

Ensuring that the organization acts in accordance with
governmental rules and laws as well as internal policies and
guidelines

Ensuring that governmental reporting requirements are met

Media/PR Outreach Contacting and maintaining relationships with the press

Marketing Identifying advertising opportunities

Creating marketing plans

Developing PR campaigns

Interfacing with graphic designers

Developing branding requirements and specifi cations

Press Coordinator Developing and approving talking points for media
spokespeople

Coordinating with the media outreach specialist

Developing and maintaining lists of media spokespeople

Developing and approving press materials

Developing and maintaining a database of media contacts

Interfacing with the publications group to ensure that
materials are created

Human
Resources

HR Manager Identifying the personnel needs of the organization

Recruiting, hiring, and managing the staff

Mediator/
Counselor

Reviewing trends to identify potential problems

Pulling together the appropriate resources to help people deal
with diffi cult situations

Creating a mechanism to enable people to fi nd the support
they need

Acting as a mediator/facilitator

Team Builder Identifying needs, creating teams, and inspiring people to
join them

Creating and designing activities to build team identity and
cohesiveness and sustainability within the team

Continued

87620c01.indd 987620c01.indd 9 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

10

Chapter 1: Offi cial Records

Group Role Responsibilities

Skills Manager Creating and disseminating training programs and materials
to keep staff and teachers up-to-date with new policies, pro-
grams, and legal requirements

Identifying gaps in skills and developing tools for updating
individual skills and ensuring that mandated policies are
effectively applied

Getting people to simply articulate their understanding of what their responsibilities are can be helpful
in itself. You can organize them easily in a simple spreadsheet with columns for Role, Responsibilities,
Tasks/Activities, and Inputs and Outputs. You don’t have to organize them into an elaborate model — just
simply enumerate them. Later on you can project them onto a site topology that identifi es the most appro-
priate tools that support those activities. They don’t have to be connected into a workfl ow, either, although
the ultimate tool would be one that ties the inputs and outputs to other activities within the same business
process. That would yield a modeling platform that provides everything needed to map the process all
the way down to the individual content elements fl owing into and out of the system. Until we have such a
tool, just getting users to articulate their understanding of the roles and responsibilities can be valuable.

A Simple Example
As an example, consider the role of compliance offi cer in an organization. The compliance offi cer is
responsible for ensuring that the system is properly enforcing the core requirements of any records
management system, namely, confi dentiality, auditability, high availability, and so on. Figure 1-4 illus-
trates the technique applied to this role.

These are unique responsibilities, because the same responsibility cannot be associated with more than one
role. Also, high availability in the context of records management does not mean up time, which might be
the responsibility of an operations staff or system administrators. It means ensuring that the information
needed to manage a given set of records is always available and that the ability to comply with regulatory
requirements is not compromised by day-to-day interactions with the affected documents.

Auditability High AvailabilityConfidentiality

Compliance
Officer

Audit
Monitor
Usage

Run
Report

Audit
Entries

Figure 1-4: Role/activity modeling example.

87620c01.indd 1087620c01.indd 10 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

11

Chapter 1: Offi cial Records

Within the auditability responsibility, we want to derive a list of tasks that are essential to fulfi lling that
responsibility. When we are done, we want to be able to say, “If I perform these tasks, then the respon-
sibility is fulfi lled.” So the tasks must be tied directly to the fulfi llment. Within each task, there may
be several activities that are part of the task. This just gives us a way to capture iterative processes that
taken together make up the set of actions that must be performed. Keep in mind that each activity may
feed other tasks. They may be ordered or unordered — it depends on the task.

Within each activity, there is information that is essential to performing the activity. Without that
information, the activity cannot be done. We need to enumerate those pieces of information as well.
Similarly, as a result of performing an activity, there is new information that is produced. We can say
that every activity must produce new information or it is not an activity we are interested in modeling.
However, metadata can also fulfi ll this requirement, so the very fact that an activity was initiated can
be information that is produced as a by-product of performing the activity.

Typically, list items, documents, or e-mails are produced or consumed by the activities when modeling
human interactions. The same technique can be applied to system level workfl ows; however, different
kinds of information may be produced or consumed — perhaps more fi ne-grained. For example, when
dealing with business-to-business workfl ows, we may be talking about packets of information in the
form of WCF messages instead of actual documents.

After going through this process, you can now build a site topology that presents all of the tools and infor-
mation needed for a records manager or project lead to fulfi ll the responsibilities to which they’ve been
assigned. You could provide a Records Manager’s Workspace that includes links for performing a specifi c set
of tasks. You could go further and limit the available tasks to only those that have been enumerated dur-
ing the role/activity modeling exercise. You could also think about the web parts or custom Web Services
needed to support those activities, whether they are presented sequentially or in random order.

For any given model, the level of granularity needed when defi ning the roles can vary. They can be spe-
cifi c to an industry, especially in the context of regulatory compliance that often involves roles whose
responsibilities are driven directly by constraints imposed by a particular piece of legislation. One
approach is to actually defi ne the roles as off-shoots of each regulation. So, for example, we could defi ne
roles such as HIPAA Compliance Offi cer and SOX Compliance Offi cer and model the solution based on the
specifi c regulatory issues faced by those users. Such an analysis would naturally lead to HIPAA-specifi c
web parts that simplify searching for records that are affected by HIPAA rules, or a SOX-specifi c fi le
plan that captures SOX-related metadata that, in turn, is used to set up the Records Center site to work
with those records, and so on. Figure 1-5 depicts what this might look like.

The end-users involved in a records management application are not users of the Records Center site,
but users of the collaboration portal — collaborative end-users. These are the people who are interact-
ing with documents daily. These documents may or may not be promoted to offi cial record status. In
the simplest case, there are scenarios wherein the end-user selects a document and sends it manually
to the Records Repository. Other scenarios involving end-users might require specialized tools beyond
the simple send to repository functionality provided by the SharePoint UI. As an example, you might
want to enable users to send many documents to the Records Center at once, and consequently may
need to provide tools that allow them to specify all of the metadata for those records in a single batch.

87620c01.indd 1187620c01.indd 11 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

12

Chapter 1: Offi cial Records

Activities

Documents
Logs

Send
documents

to the
repository

Assign
permissions

Monitor
access to

patient
records

Perform
consistency

checks
on records

Gather
and monitor

system
metrics

Responsibilities

Ensure the validity
of document

metadata

Ensure
confidentiality of
patient records

Ensure
accuracy of

financial records

Optimize storage
bandwidth and
performance

Roles

RMS

End-User HIPAA
Compliance

Officer

SOX
Compliance

Officer

Administrator

Procedures Metrics
Policies

Validation RulesRequests
Logs

Figure 1-5: RMS role activity model.

Factors to Consider When Applying the Technique
There are several useful factors to consider when using role/activity modeling:

The discovery process empowers knowledge workers. ❑

Models can be created quickly using familiar tools, making the modeling exercise approachable ❑

by business analysts, developers, and end-users.

Modeling artifacts (such as spreadsheets and Visio diagrams) directly support software compo- ❑

nent building and can help clarify and drive other development activities.

Discovery Empowers Knowledge Workers
Just by going through this discovery process, knowledge workers may suddenly understand what their
responsibilities are, whereas before the exercise, their understanding of this might have been vague.
It forces everyone to be on the same page in terms of identifying what the requirements are for a par-
ticular set of content elements and responsibilities. Another thing to observe is that it’s very approach-
able both by business analysts and by those who are not business analysts, but who know what their

87620c01.indd 1287620c01.indd 12 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

13

Chapter 1: Offi cial Records

business responsibilities are. By being engaged in the role/activity modeling exercise early in the solu-
tion development cycle, knowledge workers can gain deeper insights into their business function and
understand their existing responsibilities in new ways that can improve their performance. Common
understanding forces everyone onto the same page, enabling them to share responsibilities more effec-
tively and work better as a coordinated team, lessening the perceived need to take ownership of parts
of the process that are beyond their immediate control.

Roles and Activities Are Easily Understood
In the case of one large volunteer organization (with more than 10,000 members), we pulled together
people from IT, people from management, and people from the board of directors and the oversight
group, as well as people who were being assigned these tasks, such as accounting and HR, with a wide
range of skills and experience, but everyone in the room was comfortable with Excel. No one pushed
back on the process. This enabled us to reach consensus quickly and fi gure out exactly what they
needed in this particular portal environment.

Without a methodology like this, it all falls on IT to fi gure out what everyone needs. Experience in
several different projects has shown that there can be a substantial time lag between when IT comes
up with a design and when they present it to those who are going to use the SharePoint portal in their
day-to-day activities. This increases the chance for failure if there was never any clear enumeration of
roles and responsibilities. Applying this methodology can really help with user adoption of any kind of
portal design.

Content modeling and data validation are interrelated. When building a content model, there is a natu-
ral progression from the role/activity modeling exercise to the construction of a more detailed XML
schema that describes the content and its interactions with various business processes. From that point
onward, an API can be developed gradually using generated classes that are extended with domain-
specifi c interfaces as they are discovered.

Modeling Artifacts Support Component Building
After the role/activity modeling exercise is complete, you will end up with some number of spread-
sheets and diagrams that describe the model elements and how they are related. We can call these
artifacts of the modeling exercise. What’s really interesting is that by defi ning these artifacts in a struc-
tured way, we now have tools that we can use to go ahead and begin declaring our content types. The
modeling exercise has already identifi ed the major content types as well as their interdependencies.
What is left is the actual fi elds that make up each type. The fi eld derivation is fairly straightforward at
this point. Just examining the tasks and looking at what they consume and produce is enough to iden-
tify existing site columns and fi eld types or to design new ones. Finally, the context provided by the
roles and responsibilities enables us to create separate schemas that describe each type in context as it
moves from one phase of its life cycle to the next.

This means that you can build XML schemas to support various layers of the solution. As an example,
consider a meeting agenda for a board of directors. This information is required by the board secretary,
but is also required by the individual board members. So the meeting agenda has a life cycle that inter-
acts with both roles. Therefore, when defi ning the metadata for the meeting agenda, you can focus on
the metadata that is specifi c to the board secretary and consider that metadata separately from the same
meeting agenda when it is being used by a board member. Likewise for any of the other items, you can
easily see when a particular content element is being referenced or consumed by multiple roles.

87620c01.indd 1387620c01.indd 13 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

14

Chapter 1: Offi cial Records

As we apply the role/activity modeling technique to records management, you will see that this abil-
ity to capture high-level details of the content life cycle in a schema that maps each phase to a discrete
set of roles and activities makes the XML schema an important tool for building any kind of content
management solution. In the next section, we’ll examine what are the most important elements of such
a schema that could be used specifi cally for managing offi cial records.

Developing a File Plan
At the heart of any records management system is the fi le plan. Records managers and compliance
offi cers are accustomed to creating fi le planning worksheets that describe the kinds of documents that
their organization will treat as offi cial records. The fi le plan describes where each type of record should
be stored, how long it should be kept, and the manner and conditions under which it will be archived
or destroyed. A traditional fi le plan may also include additional information that is used to categorize
documents and to assign tasks to the persons responsible for managing each record type.

The fundamental concept of an offi cial record is intended to convey the notion that at some point in its
life cycle, a document may serve as evidence of some transaction that has taken place within the orga-
nization. For instance, when a contract or legal agreement is signed, then the contract itself serves as
evidence of the agreement. It’s not the only evidence of the agreement, but taken together with other
evidence, it can serve to clarify the intentions of both parties. Therefore, it should be possible to some-
how freeze the document in its current state such that a snapshot of the document is stored in the system
so that it can be retrieved and reviewed later.

For certain scenarios, taking an actual snapshot of the document may suffi ce. However, storing only an
image of the document is not as useful as keeping all of its metadata, macros, embedded objects, and so on.

The following table lists the basic elements of a fi le plan, as defi ned by Microsoft. They provide a start-
ing point for analyzing documents and describing the types of records needed to manage them. The
resulting worksheet can then be used to design an effective MOSS Record Repository.

Element Description

Record Type This is the name of the record type and typically matches the name of the
content type associated with the document.

Description This is a brief description of the record type that should be targeted at content
managers so they understand the rationale for “promoting” the document to an
offi cial record.

Media This describes the format in which the record is stored, such as MP3, HTML,
Word 2007, and so on.

Category This is a general categorization that can be used to group similar record types
together, for example, when deciding which document libraries will house
submitted documents.

Retention This is a statement of the required retention period for records of this type. The
retention statement will ultimately be used to determine how the expiration pol-
icy for the document is confi gured. It should therefore include all of the informa-
tion needed to perform that confi guration.

87620c01.indd 1487620c01.indd 14 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

15

Chapter 1: Offi cial Records

Element Description

Disposition This is a description of what will happen to the document when its designated
retention period ends. This will be used to select the appropriate expiration
action for the document and will therefore also infl uence the confi guration of the
expiration policy applied to the document.

Contact This is the name of the compliance offi cer or content administrator assigned to
documents of this type.

Typically, this information is captured in a spreadsheet and then is referred to by all members of the
compliance team, which may include lawyers, business analysts, and IT personnel. This spreadsheet
can become a useful artifact because it can be easily uploaded to a document library, revised, approved,
and then used to drive the manual construction and maintenance of the Records Repository. From this
one document, all of the required content types can be identifi ed and linked to the appropriate routing
types. Custom routers can also be built and installed if necessary, and document retention policies as
well as other information policies can be confi gured and tested.

Ultimately, we’d like to move beyond the manual model represented by the static fi le plan described
above toward a more automated approach, wherein a dynamic fi le plan is used to drive the process of
adding the required components into an existing Records Repository. An automated or semi-automated
approach would fi t in well with the day-to-day operation of a typical Records Center by enabling com-
pliance offi cers and content managers to deal more effectively with constantly changing requirements
and regulations. Ideally, we’d like to publish the fi le plan using a set of SharePoint features. But before
we can delve into the mechanics of building dynamic fi le plans using the MOSS Records Center API,
we fi rst need to cover the manual steps that are required to set up a Records Repository using the out-
of-the-box Records Center site template.

Identifying Roles and Responsibilities
The process of associating roles and responsibilities with the fi le plan fl ows very naturally from the
role/activity modeling exercise. We simply copy the roles into the fi le plan, describing each one using
information that we’ve captured in the spreadsheet. We can follow a similar process when enumerat-
ing the responsibilities, keeping in mind our rule that there can be only one role associated with each
responsibility. By enumerating the roles within the fi le plan, we can more easily see how different
aspects of the plan are affected by and serve the various roles.

In this way, we can think of fi le planning as an extension of the role/activity modeling exercise, the key
difference being that whereas fi le planning is content-centric, role/activity modeling is more process-
driven. This translation from process- to content-centric views while creating the fi le plan is key to devel-
oping a clear understanding of how a particular kind of content drives the business process. The role/
activity modeling exercise then becomes an essential preliminary step so that we thoroughly understand
the process before attempting to refi ne our understanding of each content element that feeds it.

Identifying Applicable Policies and Procedures
To develop a comprehensive fi le plan that can support different operations at various stages of the over-
all processing life cycle for a record, it is important to identify the policies and procedures that govern
what happens to the record at each stage. One approach might be to defi ne the policy very simply as

87620c01.indd 1587620c01.indd 15 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

16

Chapter 1: Offi cial Records

just a descriptive text statement attached to each record. That text could then be presented to the con-
tent manager or to other persons involved in the document processing sequence, and could explain the
purpose of the policy and the reasons for its inclusion, perhaps tying it back to a particular piece of leg-
islation or to a particular organizational rule or procedure.

Another approach might be to attempt a more granular description of the policy by breaking it down
into its constituent parts. Using the expressive power of XML, for instance, we could begin with a Policy
element and then identify different parts of the policy as nested subelements. Those subelements might
refer to other elements in the fi le plan, such as the roles and responsibilities most affected by the policy,
and so on.

Identifying Custom Routing and Workfl ow Requirements
As we develop a deeper understanding of how a particular content element feeds the business process,
we’re really starting to talk about workfl ow. We’re looking specifi cally at how a particular content element
fl ows out of the collaborative environment and into the more structured and restrictive environment of
the Records Repository. We are basically using the fi le plan to defi ne a path for the record to follow, and as
part of that process we are examining what happens to the record as it moves along that path.

This is where custom routing requirements may begin to emerge. If, for example, we determine that the
primary requirement for handling a given set of documents is to keep track of what happens to them,
then we may need enhanced tracking that is more detailed or comprehensive than the tracking mecha-
nisms that are provided out-of-the-box. For other record types, such as patient records, the dominant
requirement might be confi dentiality, in which case, we may need a special router that attaches more
restrictive permissions to the record when it is stored.

Identifying Document Categories and Groups
Categorization is a natural part of any content processing mechanism. We do this automatically when-
ever we decide what name to give a folder that will contain new documents that we create. We do the
best we can to identify the proper folder, and we typically name the folders based on our current under-
standing of the document’s intended purpose. Later, the primary purpose of the document may change,
and we often end up copying the document to a different folder and renaming it.

When building a fi le plan, it is important to capture as much information as possible about the groups a
given record might belong to as well as the categories it might be associated with. This supports the con-
struction of different views of the record while it is being processed. You can also use the categorization
information to defi ne queries for retrieving and manipulating only those documents you are interested in.

Identifying Document Sources
The process of fi nding documents that match the fi le plan can be highly subjective. Describing the sources
of those documents in an objective way can help to simplify the process and can also provide a foundation
for building expertise around the fi le plan that is not dependent on any one person. One way to do this is to
include information that can be used to create a query for fi nding the documents to which the plan applies.

This is technically more of a document management than a records management activity, because it
applies to active documents that have not yet moved into the records management process. However,

87620c01.indd 1687620c01.indd 16 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

17

Chapter 1: Offi cial Records

capturing the relevant metadata, location, keywords, and other properties that determine whether the
plan applies to a given document is an important part of the planning process, and the fi le plan is the
most convenient location for storing this information.

Analyzing Storage Requirements
Storage information can be included in the fi le plan to support capacity planning for the Records
Repository and is related to the identifi cation of document sources. Using a query to identify and locate
record candidates would allow you also to calculate the probable size of the Repository before actually
constructing it. This information might also infl uence how the Repository is organized.

Analyzing Security Requirements
Security and access constraints should also be included in the fi le plan so that permissions can be set
up automatically for certain documents. For example, if you’re developing a fi le plan for healthcare
documents that are governed by the Health Insurance Portability and Accountability Act (HIPAA),
then confi dentiality rules may apply such that when the records are processed, only certain people are
allowed to see them. Having a description of these rules in the fi le plan enables any processing compo-
nents to assign the required permissions to the appropriate people or groups.

Another aspect of security is the identifi cation of the persons who will be responsible for the manage-
ment of the record once it moves into the repository. Thus, there may be multiple levels of security that
must be described. One approach is to identify a records manager with a certain set of permissions and
then to add a separate list of roles and their permissions.

Summary
Records management is driven by regulatory compliance, which imposes core constraints on any
records management system. These include confi dentiality, information integrity, high availability,
adherence to well-established policies, and auditability. The MOSS Records Management infrastructure
provides tools that support each of these requirements.

This chapter introduced the concept of content modeling, which helps to develop more effective records
management solutions by identifying the key content elements that drive a business process. The role/
activity modeling technique was introduced as a straightforward methodology that identifi es the pri-
mary roles and responsibilities involved in a business process and then maps them to the tasks and
content elements needed to fulfi ll them. This approach is easily understandable to business analysts
as well as to knowledge workers and IT staff, which makes it an ideal candidate for bridging the gap
between the groups involved in the development of business process automation solutions. The role/
activity modeling technique can be applied easily using readily available tools like Excel and Visio and
offers a way to ensure consistent binding of metadata to content elements, the people who interact with
them, and the business processes that produce and consume them.

At the heart of any records management strategy is the fi le plan, which is a document that describes
the criteria that determines which documents shall be treated as offi cial records and how they should be
processed. This chapter enumerated the essential parts of an effective fi le plan and showed how the fi le
plan can provide a strong foundation for further development activities.

87620c01.indd 1787620c01.indd 17 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

87620c01.indd 1887620c01.indd 18 9/2/09 10:17:30 AM9/2/09 10:17:30 AM

Preparing for Records
Management Development

There are some basic considerations that come into play when building a solution that will sup-
port records management activities. The fi rst things to think about are the roles involved in the
overall workfl ow. The business processes for records management may include collaborative
workfl ows, but they may also include other workfl ows that are driven by compliance needs or
auditing needs and that generally involve closer oversight and have stricter rules associated with
them. So in this chapter, you’ll see some of the key roles that are involved in a few of the more
common regulatory compliance scenarios.

Some tools and techniques for SharePoint development will be identifi ed that can help to maxi-
mize your productivity when building records management solutions. More specifi cally, we’ll
look at ways to enhance the Visual Studio development environment by installing some popular
utilities that are freely available on the Internet, taking advantage of some off-the-shelf tools that
are included with the Visual Studio product, and building some additional tools of our own.

Understanding Current U.S. Regulations
Since records management is driven primarily by regulatory compliance, our solution develop-
ment strategy depends on fi rst understanding the relevant regulations so that we have a better idea
of the roles and responsibilities facing organizations having to deal with records management.
These regulations specify rules for handling e-mail, privacy, accuracy in fi nancial reporting, iden-
tity security, and other records management issues. Following are some of the most important U.S.
regulations that you might need to consider in developing your solution development strategy:

DoD 5015.2 ❑ — The DoD 5015 standard is often referred to as the gold standard for records
management software systems in the United States because it is so well-known and widely
used. It provides detailed guidance for the proper management of offi cial records and
defi nes many of the criteria that companies use to determine whether a given software
system includes the features needed to manage records in a way that satisfi es the strict

87620c02.indd 1987620c02.indd 19 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

20

Chapter 2: Preparing for Records Management Development

requirements of government agencies. These criteria include the management of e-mail records,
the creation and processing of complex document retention rules, and the ability to automate the
periodic review of records that are deemed critical to the operation of an enterprise. For more
information, see www.dtic.mil/whs/directives/corres/pdf/501502std.pdf.

Health Insurance Portability and Accountability Act (HIPAA) ❑ — This legislation was enacted
in 1996 to protect health insurance coverage for workers and their families when they change
or lose their jobs. It includes specifi c provisions governing the creation and distribution of
electronic health records that potentially cover all health care transactions and requires the
establishment of national standards pertaining to the security and privacy of those transactions.
These standards include the establishment of national identifi ers for employers, health care pro-
viders, and health insurance plans. For more information, see www.hipaa.org/.

Sarbanes-Oxley (SOX) ❑ — There are 11 provisions, or Titles, in this bill, two of which directly
affect the management of fi nancial reports. Title III requires that corporate offi cers take individ-
ual responsibility for the accuracy of corporate fi nancial reports and specifi cally requires
that they personally certify and approve those reports every quarter. Title IV requires internal
controls for assuring the accuracy of fi nancial reports and requires both audits and reports on
those controls. For more information, see www.soxlaw.com.

Gramm-Leach-Bliley Act (GLBA) ❑ — This legislation was enacted by Congress in 1999 to pro-
tect the privacy of personal fi nancial information maintained by banks and other fi nancial insti-
tutions. In particular, the so-called “Safeguards Rule” requires fi nancial institutions to develop
and maintain an information security plan to protect each client’s private information. As part
of this plan, the rule requires the institution to develop actual safeguards for the information
and establishes procedures for verifying the effectiveness of those safeguards. For more infor-
mation, see www.ftc.gov/privacy/privacyinitiatives/glbact.html.

This book does not include any material that references the Model Requirements for the Management of
Electronic Records (MoReq) specifi cation that is gaining popularity in the European Union. While the
MoReq and MoReq2 specifi cations provide a thorough treatment of the key issues involved in the design
and construction of electronic document and records management systems, a detailed examination of
MoReq in the context of MOSS is beyond the scope of this book. For more information about the MoReq
specifi cation, visit www.moreq2.eu.

Setting Up Your Development Environment
for Maximum Productivity

Although Visual Studio is widely regarded as the de facto standard development environment for build-
ing SharePoint solutions, it does not include many of the tools needed to build real-world solutions. The
good news is that there are many great tools available on the Internet, but they must be downloaded and
installed separately. These tools are concerned primarily with creating various SharePoint components,
such as web parts, site and list defi nitions, and generating SharePoint solution packages. The following
list is provided to point you to a minimal set of tools to get you started:

A more complete list of developer tools and resources is available on the SharePoint Developer Network
website. This is a public portal I created to support professional SharePoint developers. The site includes
training resources, job listings, and other content that you may fi nd useful. For more information, visit
http://sharepointdeveloper.org.

87620c02.indd 2087620c02.indd 20 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

21

Chapter 2: Preparing for Records Management Development

Visual Studio Extensions for SharePoint ❑ (www.microsoft.com/downloads/details
.aspx?familyid=7BF65B28-06E2-4E87-9BAD-086E32185E68) — This is an extensive set
of tools designed by Microsoft to provide support for creating SharePoint solutions in Visual
Studio. It includes project templates for web parts, site and list defi nitions, and other compo-
nents. It also includes a solution generator and tools for converting existing SharePoint compo-
nents such as lists and columns into the CAML needed to create new ones.

WSP Builder ❑ (www.codeplex.com/wspbuilder) — This is a very popular tool for creating
SharePoint solution packages that many consider a “must have” for SharePoint development.
It integrates directly into the Visual Studio IDE and works by reading fi les from a designated
folder to build a solution manifest, which is ultimately compiled into a WSP fi le ready to be
deployed into the SharePoint farm.

SharePoint Server 2007 SDK ❑ (www.microsoft.com/downloads/details
.aspx?FamilyId=6D94E307-67D9-41AC-B2D6-0074D6286FA9) — This is the offi cial
SharePoint Software Development Kit from Microsoft. It includes documentation as well as
essential resources such as conceptual overviews, “How Do I?” programming tasks, developer
tools, code samples, references, and the Enterprise Content Management (ECM) starter kit.

Windows SharePoint Services 3.0 SDK ❑ (www.microsoft.com/downloads/details
.aspx?familyid=05E0DD12-8394-402B-8936-A07FE8AFAFFD) — The Windows SharePoint
Services 3.0 software development kit (SDK) contains conceptual overviews, programming
tasks, samples, and references to guide you in developing solutions based on Microsoft
Windows SharePoint Services 3.0.

STSDEV ❑ (www.codeplex.com/stsdev) — This tool was created by Ted Pattison to help with
the initial creation of SharePoint components like features and web parts. It does this through a
set of Visual Studio project and item templates as well as custom MSBuild targets that automati-
cally deploy the SharePoint components when the project is built.

SharePoint Features Project ❑ (www.codeplex.com/features) — This site is maintained by Scot
Hillier and contains an ever-growing collection of very useful features for both developers and
administrators. To date, there are close to 50,000 downloads of the solution packages, which are
well organized. Source code for all of the features is included.

Application Pool Recycler ❑ (www.harbar.net/articles/APM.aspx) — This is a free System
Tray utility developed by Spencer Harbar for providing quick access to common IIS tasks that
are useful on a SharePoint development machine, such as recycling selected application pools. It
also includes code for warming up the URLs you are working on whenever a recycle or ISS Reset
occurs, giving you much better performance (and therefore productivity) during development.

SPTraceView ❑ (http://hristopavlov.wordpress.com/2008/06/19/sptraceview-
lightweight-tool-for-monitoring-the-sharepoint-diagnostic-logging-in-real-
time/) — SPTraceView monitors in real time all SharePoint diagnostic tracing (also called ULS
tracing) and can notify you using balloon-style messages in the tray bar when any information
of particular interest to you is sent (traced) by any of the MOSS services and components.
Because SPTraceView processes the tracing in real time, you can identify errors and events as
they happen. That is as soon as you interact with the SharePoint GUI when testing/debugging
your custom SharePoint solutions including web parts, event receivers, workfl ows, and all other
SharePoint technology components.

87620c02.indd 2187620c02.indd 21 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

22

Chapter 2: Preparing for Records Management Development

CAML.NET IntelliSense
Working with raw XML can be diffi cult for .NET developers because the lack of a compiler means that
you can make trivial mistakes that waste a lot of time. One way to increase productivity is to add the
SharePoint schemas to Visual Studio so you get IntelliSense when editing CAML fi les. This is a good
fi rst step, but we can take it even further by copying the core schema fi les and then extending them so
they provide more information. Specifi cally, we can enhance them by adding the detailed guidance for
each CAML element from the SharePoint SDK.

Using Annotated Schemas
The code download for this book includes the CAML.NET Intellisense installer package. This pack-
age installs an enhanced annotated version of the WSS.XSD fi le into the Visual Studio IDE.

You can download the CAML.NET Intellisense installer directly from the MSDN Code Gallery at
http://code.msdn.microsoft.com/camlintellisense.

The main idea behind the CAML.NET IntelliSense project is to extend the core schemas in two ways:

 1. Gather as much information as possible about each element and attribute and place it into
xs:annotation elements so that it pops up in context while editing.

 2. Identify and replace as many xs:string types as possible with enumerated types so the valid
values for each attribute also pop up in context while editing.

For example, using the core WSS schemas directly, we get a dropdown like that shown in Figure 2-1
while editing a Field element.

Figure 2-1: Using the core WSS schemas.

That is better than nothing, but it does not say what the attribute is for, so unless you’re already familiar
with it, you have to refer back to the SDK either online or in the compiled help (CHM) fi le. On the other
hand, using the enhanced annotated schema, we can provide more information in context. We only
have to refer to the SDK documentation when it’s really needed. Figure 2-2 shows the result of using the
enhanced version.

87620c02.indd 2287620c02.indd 22 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

23

Chapter 2: Preparing for Records Management Development

Figure 2-2: Using the enhanced schema.

In addition to annotating the schemas with the corresponding SDK documentation for each element,
we can go one step further and change the plain vanilla xs:string types to custom enumerated types
so we get the list of valid choices for the attribute values. This comes in very handy and also helps to
eliminate those nasty little typos that can be really hard to fi nd.

There are lots of places in the SDK documentation where the expected attribute values are listed in the
description, but are not enumerated in the schema. This again means that we have to go digging through
the documentation to discover what SharePoint expects the attribute values to be. This can be an enor-
mous waste of time — even if you have a pretty good idea of what the values are. Figure 2-3 shows the
effect when each enumeration is also annotated so that you get contextual help for the available values.

Figure 2-3: Annotated enumerations.

ECM2007: A Foundation Class Library for
Records Management

I’m a strong believer in building reusable tools as much as possible. Developers who are new to
SharePoint sometimes fall into the habit of thinking that, since they are working in XML as well as
their .NET language of choice (C# or VB.NET), reuse is no longer an integral part of the development
life cycle. However, by using disciplined component-building, we can overcome many of the perceived
shortcomings of the typical SharePoint Records Management development life cycle. We’d like as much
as possible to identify components and capture them in a set of reusable tools so that we don’t waste
time re-building the same functionality over and over again. When it comes to SharePoint Records
Management development, sometimes that is more easily said than done. One recurring problem is

87620c02.indd 2387620c02.indd 23 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

24

Chapter 2: Preparing for Records Management Development

fi guring out how to integrate declarative elements written in XML with imperative elements written in
the .NET language in a way that facilitates reuse without introducing too much additional complexity.

Throughout this book, I have tried to strike a balance between making the code samples understand-
able while at the same time showing how to create a set of foundation classes that can be extended easily
to support your own custom solution requirements now and in the future. Therefore, we will build a
component library called ECM2007 that defi nes some base classes and interfaces that make it easier to
build SharePoint solutions. The library includes the following namespaces, interfaces, and components:

Namespace Class/Interface Description

ECM2007 ISharePointObject Provides an abstraction for any
SharePoint object.

SharePointObject Base class for other SharePoint compo-
nents. Inherits from System
.Configuration.Install
.Installer to enable quick deployment.

SharePointList Static wrapper class for SPList that
provides utility methods for accessing
list data

ItemEventReceiver Base class for declaring item event
receivers. Provides a default imple-
mentation of SPItemEventReceiver
that uses refl ection to determine which
event receiver methods have been imple-
mented by the derived class.

ECM2007.
ContentTypes

SharePointContentType Custom attribute class that allows any
.NET class to act as a template for a
content type. Supports automatic wiring
of event receivers, loading of document
templates and XML documents from
embedded resources, and data binding
for fi elds.

FieldRefAttribute Custom attribute class used to mark up
public properties that are mapped to col-
umns on a SharePoint list or content type

ECM2007.
InformationPolicy

ISharePointPolicy,
ISharePointPolicyFeature,
ISharePointPolicyResource

Abstractions for information management
policy components

SharePointPolicy Base class for declaring information
policies

87620c02.indd 2487620c02.indd 24 9/3/09 10:31:50 AM9/3/09 10:31:50 AM

25

Chapter 2: Preparing for Records Management Development

Namespace Class/Interface Description

SharePointPolicyFeature Base class for declaring information policy
features. This class provides a default
implementation of the IPolicyFeature
interface, allowing derived classes to
implement only the methods they require.

SharePointPolicyResource Base class for implementing policy
resources

ECM2007.
RecordsManagement

SharePointRouter Base class for implementing custom
routers. This class provides a default
implementation of the IRouter
interface, allowing derived classes to
override selected methods.

ECM2007.
Versioning

SPListEx,
SPListItemCollectionEx

Static classes that declare extension
methods for list items and list item
collections related to versioning

The code for most of these components is shown and explained in the appropriate sections of this book.
For those that are not explained in detail, you can refer directly to the comments included in the down-
loadable solution fi les that accompany this book.

Creating a SharePoint Feature Project Template
Often when building SharePoint solutions, it is useful to have tools that generate some of the code for
you. This is especially true when you are writing raw CAML code or you need to structure your project
a certain way. During the process of developing records management solutions, you will typically work
in a virtual machine that is running both MOSS and the Visual Studio IDE. Anything you can do to
shorten the edit/compile/debug cycle will directly affect your day-to-day productivity.

To create components that will be installed into SharePoint using a feature, you have to copy fi les and
other elements into a special folder that is commonly known as the 12 hive. This folder is where the
SharePoint product is installed, and it located at %programfi les%/common fi les/microsoft shared/web
server extensions/12 on the server machine. The easiest way to ensure that the fi les in your project folder
are copied into the correct locations within the 12 hive is to mimic the same folder structure within your
Visual Studio project. This means that every time you create a new SharePoint feature project, you will
have to create the appropriate folder structure within Visual Studio.

Creating the correct project folder structure for your feature is only part of the story, however. You must
also create a special set of fi les that includes the feature manifest, one or more element manifests, a feature
receiver class, an optional image fi le to use as the feature logo, and so on. If a feature receiver is included
in your solution, then the feature manifest must also specify the correct assembly name and public key
token, and the assembly must be registered in the Global Assembly Cache (GAC) after it is built.

Using a Visual Studio project template can automate the entire process of setting up the project, gener-
ating the required fi les, and entering the required text into those fi les — reducing it all to a single step. I

87620c02.indd 2587620c02.indd 25 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

26

Chapter 2: Preparing for Records Management Development

like to take it one step further and create a wizard to capture the data needed to generate all of the fi les.
That way, I don’t have to worry about any of the details in my daily work. Figure 2-4 shows the dialog
presented by the Feature Wizard to gather information about the feature project, and the resulting fea-
ture project is shown in Figure 2-5.

Figure 2-4: SharePoint Feature Wizard input form.

Figure 2-5: Generated SharePoint
feature project.

To create a Visual Studio project template, you need two things: a vstemplate fi le that describes the dif-
ferent elements that will be included in the template, and an example of the project you intend to create.
The vstemplate fi le, along with the fi les of the sample project, are added to a zip fi le and copied into the
Visual Studio installation folder.

Listing 2-1 shows the code for a SimpleFeature.vstemplate fi le that sets up a SharePoint feature project.
This template is based on a sample project that is included in the code download for the book. The
sample project fi les referenced from this template are located in the VisualStudio/SimpleFeature folder
of the ECM2007 project.

87620c02.indd 2687620c02.indd 26 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

27

Chapter 2: Preparing for Records Management Development

Listing 2-1: SimpleFeature.vstemplate

<VSTemplate Version=”2.0.0” xmlns=”http://schemas.microsoft.com/developer/
 vstemplate/2005” Type=”Project”>
 <TemplateData>
 <Name>SharePoint Feature</Name>
 <Description>A basic SharePoint feature project</Description>
 <ProjectType>CSharp</ProjectType>
 <ProjectSubType>SharePoint</ProjectSubType>
 <SortOrder>1000</SortOrder>
 <CreateNewFolder>true</CreateNewFolder>
 <DefaultName>SharePoint Feature</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 <LocationField>Enabled</LocationField>
 <EnableLocationBrowseButton>true</EnableLocationBrowseButton>
 <Icon>__TemplateIcon.ico</Icon>
 </TemplateData>
 <TemplateContent>
 <Project TargetFileName=”$safeprojectname$.csproj”
 File=”SimpleFeature.csproj” ReplaceParameters=”true”>
 <Folder Name=”12” TargetFolderName=”12”>
 <Folder Name=”TEMPLATE” TargetFolderName=”TEMPLATE”>
 <Folder Name=”FEATURES” TargetFolderName=”FEATURES”>
 <Folder Name=”SimpleFeature” TargetFolderName=”SimpleFeature”>
 <ProjectItem ReplaceParameters=”true” TargetFileName=
 “elements.xml”>elements.xml</ProjectItem>
 <ProjectItem ReplaceParameters=”true” TargetFileName=
 “feature.xml”>feature.xml</ProjectItem>
 </Folder>
 </Folder>
 <Folder Name=”IMAGES” TargetFolderName=”IMAGES”>
 <Folder Name=”ECM2007” TargetFolderName=”ECM2007”>
 <ProjectItem ReplaceParameters=”false” TargetFileName=
 “logo.png”>logo.png</ProjectItem>
 </Folder>
 </Folder>
 </Folder>
 </Folder>
 <ProjectItem ReplaceParameters=”false” TargetFileName=
 “ECM2007.snk”>ECM2007.snk</ProjectItem>
 <ProjectItem ReplaceParameters=”true” TargetFileName=
 “FeatureReceiver.cs”>FeatureReceiver.cs</ProjectItem>
 <ProjectItem ReplaceParameters=”true” TargetFileName=
 “Install.bat”>Install.bat</ProjectItem>
 <Folder Name=”Properties” TargetFolderName=”Properties”>
 <ProjectItem ReplaceParameters=”true” TargetFileName=
 “AssemblyInfo.cs”>AssemblyInfo.cs</ProjectItem>
 </Folder>
 </Project>
 </TemplateContent>
 <WizardExtension>
 <Assembly>ECM2007, Version=1.0.0.0, Culture=neutral, PublicKeyToken=
 eb8a6a1622425a15</Assembly>
 <FullClassName>ECM2007.FeatureWizard</FullClassName>
 </WizardExtension>
</VSTemplate>

87620c02.indd 2787620c02.indd 27 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

28

Chapter 2: Preparing for Records Management Development

The WizardExtension element at the bottom of the template associates it with the custom Feature
Wizard described above. The ECM2007.FeatureWizard class implementation is shown in Listing 2-2. It
implements the IWizard interface, which Visual Studio uses to communicate with the Wizard at run time.

Listing 2-2: ECM2007.FeatureWizard implementation

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using EnvDTE;
using Microsoft.SharePoint;
using Microsoft.VisualStudio.TemplateWizard;

namespace ECM2007
{
 public class FeatureWizard : IWizard
 {
 const string RootFolderName = “12”;
 const string DefaultFeatureFolderName = “SimpleFeature”;

 private string feature_name = string.Empty;
 private string feature_prefix = “Custom”;
 private string feature_folder = string.Empty;
 private string feature_title = “SharePoint Feature”;
 private string feature_description = string.Empty;
 private bool feature_hidden = false;
 private SPFeatureScope feature_scope = SPFeatureScope.Web;
 private FeatureDetailsForm m_inputForm;

 /// <summary>
 /// Recursively searches for an item having the default feature folder name
 /// and changes it to the value in feature_name.
 /// </summary>
 bool AdjustFeatureFolderName(ProjectItem item)
 {
 if (item.Name.Equals(DefaultFeatureFolderName))
 {
 item.Name = feature_folder;
 return true;
 }
 else
 {
 foreach (ProjectItem subItem in item.ProjectItems)
 if (AdjustFeatureFolderName(subItem))
 return true;
 }
 return false;
 }

 #region IWizard Members

 /// <summary>
 /// Called before opening any item that has the OpenInEditor attribute.
 /// </summary>

87620c02.indd 2887620c02.indd 28 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

29

Chapter 2: Preparing for Records Management Development

 /// <param name=”projectItem”></param>
 void IWizard.BeforeOpeningFile(ProjectItem projectItem)
 {
 }

 /// <summary>
 /// Called after a new project is generated.
 /// </summary>
 /// <param name=”project”></param>
 void IWizard.ProjectFinishedGenerating(Project project)
 {
 // Search for the “12” folder.
 foreach (ProjectItem item in project.ProjectItems)
 {
 switch (item.Kind)
 {
 case EnvDTE.Constants.vsProjectItemKindPhysicalFolder:
 if (item.Name.Equals(RootFolderName))
 AdjustFeatureFolderName(item);
 break;
 }
 }
 // Adjust the project name
 project.Name = feature_folder;
 }

 /// <summary>
 /// Called for item templates, not for project templates.
 /// </summary>
 /// <param name=”projectItem”></param>
 void IWizard.ProjectItemFinishedGenerating(ProjectItem projectItem)
 {
 }

 /// <summary>
 /// Called after the project is created.
 /// </summary>
 void IWizard.RunFinished()
 {
 }

 /// <summary>
 /// Called when the wizard is started.
 /// </summary>
 /// <param name=”automationObject”>The root DTE object -
 used for customization.</param>
 /// <param name=”replacementsDictionary”>A collection of all
 pre-defined parameters in the template.</param>
 /// <param name=”runKind”>A WizardRunKind parameter that contains
 information about what kind of template is being
 used.</param>
 /// <param name=”customParams”>An object array that contains a set of
 parameters passed to the wizard by Visual Studio.</param>
 void IWizard.RunStarted(object automationObject, Dictionary<string,

Continued

87620c02.indd 2987620c02.indd 29 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

30

Chapter 2: Preparing for Records Management Development

 string> replacementsDictionary, WizardRunKind runKind,
 object[] customParams)
 {
 try
 {
 // Retrieve some parameters for use later.
 feature_name = replacementsDictionary[“$safeprojectname$”];
 feature_title = replacementsDictionary[“$projectname$”];

 // Display a form to the user to collect data needed to
 configure the project.
 m_inputForm = new FeatureDetailsForm();
 m_inputForm.Hidden = feature_hidden;
 m_inputForm.FeatureName = feature_name;
 m_inputForm.FeatureTitle = feature_title;
 m_inputForm.FeaturePrefix = feature_prefix;
 m_inputForm.FeatureDescription = feature_description;
 m_inputForm.FeatureScope = feature_scope;
 m_inputForm.ShowDialog();

 // Retrieve the edited parameters from the input form.
 feature_name = m_inputForm.FeatureName.Replace(“ “,””);
 feature_title = m_inputForm.FeatureTitle;
 feature_prefix = m_inputForm.FeaturePrefix.Replace(“ “,”_”);
 feature_folder = string.IsNullOrEmpty(feature_prefix) ?
 feature_name : feature_prefix + “.” + feature_name;
 feature_description = m_inputForm.FeatureDescription;
 feature_scope = m_inputForm.FeatureScope;
 feature_hidden = m_inputForm.Hidden;

 // Add custom parameters that can be referenced from the template.
 replacementsDictionary.Add(“$feature_name$”, feature_name);
 replacementsDictionary.Add(“$feature_title$”, feature_title);
 replacementsDictionary.Add(“$feature_prefix$”, feature_prefix);
 replacementsDictionary.Add(“$feature_folder$”, feature_folder);
 replacementsDictionary.Add(“$feature_description$”,
 feature_description);
 replacementsDictionary.Add(“$feature_scope$”,
 feature_scope.ToString());
 replacementsDictionary.Add(“$feature_hidden$”,
 feature_hidden ? “TRUE” : “FALSE”);

 }
 catch (Exception x)
 {
 MessageBox.Show(x.ToString());
 }
 }

 /// <summary>
 /// Only called for item templates.

Listing 2-2: ECM2007.FeatureWizard implementation (continued)

87620c02.indd 3087620c02.indd 30 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

31

Chapter 2: Preparing for Records Management Development

 /// </summary>
 /// <param name=”filePath”></param>
 /// <returns></returns>
 bool IWizard.ShouldAddProjectItem(string filePath)
 {
 return true;
 }

 #endregion
 }
}

The Wizard is responsible for presenting the user interface, retrieving the input data, and then plac-
ing it into replacement variables that are substituted for text tokens in the fi les that are included in the
project. For example, the following text is used to generate the feature manifest by using replacement
variables for the feature ID, title, description, scope, and so on:

<?xml version=”1.0” encoding=”utf-8” ?>
<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”$guid2$”
 Title=”$feature_title$”
 Description=”$feature_description$”
 ImageUrl=”ECM2007\logo.png”
 Version=”1.0.0.0”
 Scope=”$feature_scope$”
 Hidden=”$feature_hidden$”
 ReceiverAssembly=”$safeprojectname$, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=eb8a6a1622425a15”
 ReceiverClass=”$safeprojectname$.FeatureReceiver”
 >
 <ElementManifests>
 <ElementManifest Location=”elements.xml”/>
 </ElementManifests>
</Feature>

If you decide to modify the included feature template, then all you have to do to install it on your system
is run the InstallProjectTemplate.bat fi le that is located in the ECM2007\VisualStudio folder. This batch
fi le takes care of copying the SimpleFeature.zip fi le into the Visual Studio installation folder. Then you
need to restart Visual Studio in order to start using the template. Listing 2-3 shows the batch fi le code.

Listing 2-3: InstallProjectTemplate.bat

@SET VSTEMPLATE=SimpleFeature
@SET PROJECTTEMPLATEPATH=”C:\Program Files\Microsoft Visual Studio
 9.0\Common7\IDE\ProjectTemplates\CSharp\SharePoint\”
@MD %PROJECTTEMPLATEPATH%
@COPY /Y %VSTEMPLATE%\%VSTEMPLATE%.zip %PROJECTTEMPLATEPATH%
@ECHO Installing VS Templates...
DevEnv /installvstemplates
@SET VSTEMPLATE=
@SET PROJECTTEMPLATEPATH=

87620c02.indd 3187620c02.indd 31 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

32

Chapter 2: Preparing for Records Management Development

If you decide to modify the provided template, then after building the ECM2007 project (which
includes the Feature Wizard) and having registered it in the Global Assembly Cache, you need to
re-create the SimpleFeature.zip fi le that contains all of the required elements before executing the
InstallProjectTemplate batch fi le. The only tricky part is creating the zip fi le. To do that, follow
these steps:

 1. Navigate to the ECM2007\VisualStudio\SimpleFeature folder from Windows Explorer (not
from within the ECM2007 Visual Studio project).

 2. Delete the SimpleFeature.zip fi le.

 3. Select all of the fi les in the folder and right-click on the selected fi les.

 4. Choose the Send To->Compressed (zipped) folder command.

 5. Rename the new zip fi le as SimpleFeature.zip.

To learn more about creating Visual Studio project templates, visit the Visual Studio 2008 Developer
Center at http://msdn.microsoft.com/en-us/library/6db0hwky.aspx.

Leveraging XML Schemas for Maximum Flexibility
Solution development on the SharePoint platform can be simplifi ed greatly by taking advantage of XML
schemas. Part of the problem when working with SharePoint is that there are so many touch points — so
many moving parts in any given solution. On the one hand, you have CAML elements that must be
specifi ed precisely according to the schema that defi nes each subsystem. Then you have code compo-
nents that must coordinate with those CAML declarations. Even within those code components, there
are often many pieces that fi t together to provide the whole solution. A good example of this might be
a list that you create in a feature, and that list works in conjunction with event receivers attached to the
list or to a content type associated with the list. You may want to connect everything programmatically,
or you may want to divide the task among code and declarative elements. Another example might be a
list and content types that are created declaratively and then confi gured programmatically within the
feature receiver. Since the feature receiver is always called after the provisioning of declarative compo-
nents, you might then use code to examine the content database to ensure that everything needed for
the solution is in place and confi gured properly. There may be other dependent features that must be
examined, perhaps to make sure that their lists have not been modifi ed, and the like.

XML schemas can be used as the glue to tie all of these elements together. By taking a step back and writ-
ing a high-level description of all of the solution components, you can generalize the solution so that it is
driven in part by the content of an XML fi le. This is how many of the built-in components of MOSS are
implemented. For instance, the site provisioning engine is used in this way to confi gure publishing sites
based on an XML fi le that describes the target site topology. In fact, the SharePoint feature provisioning
and solution deployment subsystems are all driven using XML fi les defi ned by XML schemas.

Later in the book, we’ll construct a dynamic fi le plan based on this approach. We’ll use an XML schema
to describe the essential elements of the fi le plan. This allows our fi le plan defi nition to grow over time to
accommodate all of the aspects needed to support the various code components that make up whatever
solution we wish to build. The power of XML schemas comes from the ability to unambiguously describe
a set of components and operations on those components using XML tags and attributes. The trick is
to leverage the expressive power of XML by integrating it into our standard set of development tools.
Fortunately, Visual Studio is already set up to support this development methodology. The Visual Studio

87620c02.indd 3287620c02.indd 32 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

33

Chapter 2: Preparing for Records Management Development

IDE includes an XML Schema Editor. You can start by simply creating a new XSD fi le and then begin
developing a schema in text mode. Listing 2-4 shows a sample schema that describes an Employee object.

Listing 2-4: Employee schema

<xs:schema targetNamespace=”http://tempuri.org/XMLSchema.xsd”
 elementFormDefault=”qualified”
 xmlns=”http://tempuri.org/XMLSchema.xsd”
 xmlns:mstns=”http://tempuri.org/XMLSchema.xsd”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
>
 <xs:element name=”Employee”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”FullName” type=”xs:string”/>
 <xs:element name=”Department” type=”xs:string”/>
 <xs:element name=”Manager” type=”xs:string”/>
 <xs:element name=”Email” type=”xs:string”/>
 <xs:element name=”Phone” type=”xs:string”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

After the schema has been defi ned, you can create a sample data fi le that matches the schema. Again,
the Visual Studio IDE helps greatly by binding the schema to the data fi le to automatically validate its
contents during editing. IntelliSense prompts help to ensure that the data has been entered correctly
according to the tags and attributes defi ned in the schema.

Once you have the schema and a sample data fi le, you have two options for processing the data. The
fi rst approach is to read the data using an XMLDocument or XPath expression and then perform what-
ever operations they describe. This approach relies on the data being properly formatted with valid
values, and so on. A better approach is to take advantage of the strong typing afforded by the .NET
compiler (either C# or VB.NET) by generating wrapper classes for the objects specifi ed in the schema
and then deserializing the XML data into runtime instances of those classes.

This approach offers several benefi ts. First, the data is automatically validated during the deserialization
process, which avoids errors that might show up at a later stage in the processing of the data. Second,
changes to the schema are automatically accommodated simply by regenerating the wrapper classes. This
effectively turns the schema into a living specifi cation that can ultimately translate into dramatic reductions
in the amount of time and effort needed to construct the solution. Finally, the generated classes can be
extended easily using a code-beside model that is supported by most code generation tools.

The code-beside model means that the generated code can be regenerated later without affecting any
handwritten code that may be associated with the same class. The tool I use to generate wrapper classes
is called XSD.EXE and is included with the Visual Studio product. This command-line tool accepts the
path to the schema fi le (with extension .xsd) and additional parameters that specify the language (C# or
VB.NET) to use when generating the wrappers and whether to generate classes or data sets. Listing 2-5
shows the generated wrapper classes for the Employee entity we declared previously.

87620c02.indd 3387620c02.indd 33 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

34

Chapter 2: Preparing for Records Management Development

Listing 2-5: Generated Employee wrapper class

namespace ECM2007 {
 using System.Xml.Serialization;

 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.42”)]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute(“code”)]
 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true,
 Namespace=”http://tempuri.org/XMLSchema.xsd”)]
 [System.Xml.Serialization.XmlRootAttribute(
 Namespace=”http://tempuri.org/XMLSchema.xsd”, IsNullable=false)]
 public partial class Employee {

 private string fullNameField;
 private string departmentField;
 private string managerField;
 private string emailField;
 private string phoneField;

 /// <remarks/>
 public string FullName {
 get {
 return this.fullNameField;
 }
 set {
 this.fullNameField = value;
 }
 }

 /// <remarks/>
 public string Department {
 get {
 return this.departmentField;
 }
 set {
 this.departmentField = value;
 }
 }

 /// <remarks/>
 public string Manager {
 get {
 return this.managerField;
 }
 set {
 this.managerField = value;
 }
 }

 /// <remarks/>

87620c02.indd 3487620c02.indd 34 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

35

Chapter 2: Preparing for Records Management Development

 public string Email {
 get {
 return this.emailField;
 }
 set {
 this.emailField = value;
 }
 }

 /// <remarks/>
 public string Phone {
 get {
 return this.phoneField;
 }
 set {
 this.phoneField = value;
 }
 }
 }
}

The fact that the wrapper class is generated with the partial keyword allows us to create additional
methods that are defi ned in a separate fi le. Thus, if we modify the schema and regenerate the core
methods, the additional methods remain intact. This means we can defi ne entire subsystems of func-
tionality easily to extend the component in different ways. As an example, we can extend the Employee
object to support the automatic construction of an Employee instance from data stored in a SharePoint
list item by defi ning a static CreateFromListItem method in a separate fi le as shown in Listing 2-6.

Listing 2-6: Extended Employee wrapper class

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
using Microsoft.SharePoint;

namespace ECM2007
{
 public partial class Employee
 {
 /// <summary>
 /// This method constructs an Employee instance from
 /// data stored in a SharePoint list item.
 /// </summary>
 /// <param name=”item”>the item containing the employee data</param>
 /// <returns>an initialized Employee instance</returns>
 public static Employee CreateFromListItem(SPListItem item)
 {
 try
 {

Continued

87620c02.indd 3587620c02.indd 35 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

36

Chapter 2: Preparing for Records Management Development

 return new Employee()
 {
 FullName = item.Title,
 Department = item[“Department”].ToString(),
 Email = item[“Email”].ToString(),
 Manager = item[“Manager”].ToString(),
 Phone = item[“Phone”].ToString()
 };
 }
 catch (SPException spex)
 {
 Helpers.HandleException(typeof(Employee), spex);
 }
 return null;
 }
 }
}

Generating Schema Classes from within Visual Studio
Although XSD.EXE is a powerful tool, running it from the Windows command line or even from a pre-
build event can have a negative impact on productivity because of the extra steps involved. We would
rather have it integrated directly into the Visual Studio IDE so that whenever a change is made to a
schema, the wrapper classes are regenerated automatically.

Visual Studio supports the creation of custom tools, which are code modules that are registered on the
development machine so that Visual Studio can fi nd them. The purpose of a custom tool is to support
code generation, where a source fi le is post-processed after editing to generate the actual source, which
is then compiled into the assembly. This is the same approach used by the built-in editors, such as the
Forms Designer, which generate a secondary fi le containing the code needed to initialize the form.

The downloadable solution fi les that accompany this book include a project called XsdClassGenerator.
This project is set up to automatically register itself on the development machine, so all you have to do
is open the project in Visual Studio and build it. Once you have done that, then close and reopen the
Visual Studio IDE so that the registration entries are reloaded.

The XsdClassGenerator project is based on code that was originally developed by Chris Sells, a long-time
builder of useful .NET developer tools. The source code is included in this book with his permission. For
more information about Chris Sells and other tools he has created, see www.sellsbrothers.com.

To use the tool, open the Properties window in the Visual Studio IDE. Next open the Solution Explorer
window and select the XML schema fi le (with an .xsd extension) you want to generate classes for.
Enter XsdClassGenerator as the value for the “Custom Tool” entry in the Properties window as shown
in Figure 2-6.

Listing 2-6: Extended Employee wrapper class (continued)

87620c02.indd 3687620c02.indd 36 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

37

Chapter 2: Preparing for Records Management Development

Figure 2-6: Custom Tool property value
for an XSD fi le.

If you wish to reference the generated classes from within a specifi c namespace, then enter the
namespace into the “Custom Tool Namespace” fi eld. Now, whenever the fi le is saved to disk, a second-
ary fi le is created beneath the original fi le node with the appropriate extension, based on the program-
ming language defi ned for the current project. Figure 2-7 shows the generated fi le for a C# project.

Figure 2-7: Generated C# class fi le.

Summary
This chapter introduced the essential steps involved in preparing for Records Management solution
development on the SharePoint platform. Since regulatory compliance is the primary driver for any
RMS development strategy, we fi rst examined some of the key U.S. legislative acts that have been
enacted in recent years to gain a better understanding of the primary challenges facing the users of
most records management systems.

The chapter then focused on ways to maximize developer productivity by enhancing the Visual Studio
development environment with freely downloadable tools and developer resources. These include tools
for creating web parts, site and list defi nitions, solution packages, and other core components of any
SharePoint solution. We also looked at the CAML.NET IntelliSense project, which greatly enhances the
built-in help provided by the Visual Studio XML Editor to make it more context-sensitive.

87620c02.indd 3787620c02.indd 37 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

38

Chapter 2: Preparing for Records Management Development

We introduced the ECM2007 foundation class library, which is included in the code download for the
book, and showed how to create a set of base classes and interfaces that simplify records management
solution development. The chapter showed how to further customize a SharePoint development envi-
ronment to achieve maximum productivity by creating a custom SharePoint Feature project template
that uses a built-in Feature Wizard to gather the information needed to set up a properly constructed
SharePoint feature project in Visual Studio.

Finally, the chapter showed how to leverage the power of XML schemas to gain the maximum fl exibil-
ity when developing components that must work together to deliver an integrated solution. This tech-
nique is particularly useful for records management development, wherein many components must be
coordinated to provide a complete set of interrelated functionality. The chapter showed how to generate
C# or VB.NET wrapper classes from XML schema defi nitions and introduced the XsdClassGenerator
custom tool that enables automatic class regeneration from within the Visual Studio IDE.

87620c02.indd 3887620c02.indd 38 9/3/09 10:31:51 AM9/3/09 10:31:51 AM

SharePoint Tools for
Managing Records

This chapter introduces the key components for building records management solutions on
the SharePoint platform. We’ll look at the tools and components that are built into Windows
SharePoint Services for building collaborative applications, and we’ll also look at the extended
functionality provided by MOSS.

It is important to remember that MOSS is essentially a Windows SharePoint Services applica-
tion. There are additional assemblies that are deployed with MOSS to provide the code behind
the MOSS-specifi c features, but you can really think of MOSS as just a collection of SharePoint
features. Thus, when we consider the tools and components needed to build records management
solutions, we are really looking at both the WSS fundamentals as well as the extended functional-
ity provided by MOSS.

The core WSS components we examine will include document libraries, which are a specializa-
tion of the SharePoint list that provides the ability to store documents and their metadata. It will
include content types, which are essential for ECM development and make it much easier to build
records management solutions because they provide much of the core functionality needed to
associate different kinds of records with the unique processing required to manage them. In this
chapter, we’ll explore different approaches to creating content types.

Another area we’ll explore is the versioning mechanism that is built into WSS. Although version-
ing is not seen as a primary component for records management, it is a critical part of the content
management infrastructure provided by MOSS. Therefore versioning is an important component
of any solution strategy that involves collaborative elements. As an example, consider the typical
web publishing portal in which minor versions are visible by content authors, while end-users see
only major versions. It would be easy to extend this concept into a records management scenario
whereby published versions of a document are sent automatically to the Records Center when-
ever a new major version is created within the publishing portal. Similar functionality might be
tied to more complex version metrics, perhaps driven by a workfl ow. In such scenarios, it is the
versioning API and related functionality that can either hamper or facilitate the solution design.

87620c03.indd 3987620c03.indd 39 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

40

Chapter 3: SharePoint Tools for Managing Records

Finally, it is important to understand the mechanisms that are provided by SharePoint to control access
to content, so we’ll also examine content security. Whatever solution strategy you may wish to pursue,
your ability to assign permissions to individuals and groups throughout the content life cycle is deter-
mined by the fl exibility of the underlying platform for managing permissions. You’ll see what the avail-
able permissions are, how they are attached to documents and list items, and what tools are available
for assigning and managing permissions throughout the content life cycle.

Document Libraries
If you have worked with SharePoint at all, then you already have a general understanding of docu-
ment libraries. At a very high level you can think of a document library as a special kind of list. In the
SharePoint object model, document libraries are, in fact, derived from the SPList, but unlike standard
lists, document libraries are always associated with a document template. It doesn’t have to be a Word
template — it can be a form template if you’re using an InfoPath form library, or it can be a custom
document template that has been assigned to the item.

Another aspect of document libraries is that they allow you to manage the transfer of metadata
between the library itself, which displays metadata in columns, and each document instance, which
may contain additional properties that are not displayed in columns. These additional properties may
be in any format. We cannot assume we’re always dealing with Offi ce documents, so we have to con-
sider XML documents, PDF fi les, and other kinds of documents. Therefore, we need a way to map arbi-
trary document properties between each document and the document library.

Just like lists, document libraries expose a simple folder structure. This is a basic requirement because
when you’re using the object model to manipulate document libraries, you ultimately need to access the
actual fi le that is stored within the content database. SharePoint deals with this requirement by expos-
ing an object model that is very similar to what most developers are already used to when dealing with
the physical fi le system. It’s not actually structured storage per se, but we do have the same concepts of
folders and fi les. Folders can contain other folders, and folders may contain fi les.

Whereas SharePoint 2.0 had separate implementations for lists and document libraries, the SharePoint
3.0 document library inherits most of its functionality from the SPList object. Thus, there is greater
parity between the two concepts. For example, the SPFolder/SPFile structure is built into the standard
SharePoint list architecture and is available for all lists, not just document libraries.

Since documents are stored as standard list items, it is easy to write custom list management code that
manipulates documents in the same ways as any other list item. It is also easy to access and manipulate
document metadata. This allows us to build and use a standard set of tools, site columns, fi eld types for
those columns, and so on, and it also makes it easy to add custom behavior to items using SharePoint
workfl ows, event receivers, and menu commands without having to code specifi cally for documents.

Creating Document Libraries
Creating a document library is similar to creating a list, except that with document libraries there is the
additional concept of the document template. Lists don’t have document templates. Therefore, when creat-
ing a document library, one consideration might be the determination of which document template to asso-
ciate with the library. This will, in turn, determine the format of documents that are based on the template.

87620c03.indd 4087620c03.indd 40 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

41

Chapter 3: SharePoint Tools for Managing Records

This determination also applies to content types that inherit from the document content type, which is
the default content type associated with a document library. It is the document content type that adds
the document template fi eld to the list item.

To create a document library programmatically, you just create a new list that is based on the document
library template type using code like the following:

 /// <summary>
 /// Retrieve or create a document library instance.
 /// </summary>
 public static SPDocumentLibrary Create(SPWeb web, string title, string
 description)
 {
 Guid listid = Guid.Empty;
 SPDocumentLibrary docLib = null;
 try
 {
 docLib = web.Lists[title] as SPDocumentLibrary;
 }
 catch
 {
 /* ignore exception - library does not exist */
 }
 if (docLib == null)
 {
 listid = web.Lists.Add(title, description,
 SPListTemplateType.
 DocumentLibrary);
 docLib = web.Lists[listid] as SPDocumentLibrary;
 }
 return docLib;
 }

This results in a new object in the content database that includes the necessary support for managing
documents in the list. The corresponding class in the SharePoint object model is SPDocumentLibrary,
which inherits directly from SPList. This class extends the SPList class by adding methods for get-
ting and setting the document template URL, and for getting the list of checked-out fi les.

Document Libraries and Property Promotion
One of the more interesting parts of a document library is that it provides an additional layer of support
for synchronizing document metadata between the document library and individual documents. This
support is provided by a built-in mechanism called property promotion and demotion. Property promotion
refers to the process of copying document properties from a document into the columns of a document
library. Property demotion refers to the converse process whereby column values are copied from col-
umns in the document library back into the document.

Properties are automatically promoted whenever a document is saved into the document library. So,
for example, when you select the New command from a document library, a new document opens on
the client in whatever application is associated with the document template attached to the library.
When the document is saved, any embedded document property values that were changed during

87620c03.indd 4187620c03.indd 41 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

42

Chapter 3: SharePoint Tools for Managing Records

the editing session are copied into the matching columns of the document library. Similarly, when-
ever you upload a document into a document library, any matching properties are extracted from the
document and placed into the appropriate columns of the document library. This works both for the
standard document properties like Title, Subject, Author, Category, and Keywords, as well as any
custom document properties that may have been added to the document.

Properties are demoted whenever you change a property in the document library. For example, if you
modify a document’s properties via the Edit Properties form in the SharePoint user interface and then
open the document for editing or viewing on the client, the new property values appear in the docu-
ment on the client. When the Edit Properties form is saved, the document parser is loaded and invoked
to copy the new property values back into the document.

This functionality is provided by a special component called a Document Parser. A document parser is a cus-
tom COM component that SharePoint calls to handle property promotion and demotion. SharePoint locates
the document parser for a given document based on its fi le extension. This means that although the same
document parser may be applied to multiple fi le types, only one document parser can be associated with
any given fi le type. SharePoint provides out-of-the-box document parsers for the Offi ce fi le types.

Property promotion and demotion are enabled by default for document libraries in most SharePoint
sites, but they are turned off for Records Center sites. This is done by disabling the document parsing
functionality at the web-site level. For more information on this topic, see the section entitled, “Property
Promotion and Demotion,” in Chapter 4.

Content Types
Content types are the primary means by which information is classifi ed and controlled within the
SharePoint environment. Every list item stored in the content database is based on a content type. The
SharePoint terminology is actually a specialization of a more fundamental concept that is found in
many document management systems and is called by different names. The basic idea is the same: A
content type (or object type) is a named collection of metadata elements that support business processes.
In this sense, a content type is very similar to the notion of a class, with properties, methods, and
business rules. The business rules are either attached directly to the type using event receivers, or are
written separately with reference to those properties and methods. Either way, the goal is to somehow
encapsulate the behavior and the metadata together so they can be treated as an atomic unit. Figure 3-1
provides a basic illustration of this idea.

Metadata
(Fields)

Behavior
(Events)

Payload
(XML)

Content
Type+ + =

Figure 3-1: Content types in SharePoint.

The current implementation of content types in the SharePoint environment provides only a partial encap-
sulation of metadata and content-driven behavior. This has ramifi cations for many “idealistic” design
strategies that fail to account for future evolution of the platform. In this book, I’ve taken the optimistic
view that tighter encapsulation will eventually emerge because effective ECM solutions demand it.

87620c03.indd 4287620c03.indd 42 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

43

Chapter 3: SharePoint Tools for Managing Records

Thus, a content type boils down to three primary components — metadata, behavior, and payload. The
metadata is the actual columns added to a list whenever a content type is associated with it. I’m using
the term behavior loosely to describe any custom code that operates on the underlying list item based on
information stored within the content type. This includes event receivers, but may also include work-
fl ow activities or other custom code that determines what to do based on the content type defi nition.
The term payload refers to everything else and may include arbitrary data that is bound to the content
type during its lifetime. Figure 3-2 provides an abstract view of the core architecture.

Site Columns Event Receivers

Define
Custom

Metadata

Track and
Validate
Changes

RMS/IRM Information Policy

Control
Access to
Content

Enforce
Custom
Rules

CONTENT
TYPES

Figure 3-2: Content types and core document management
requirements.

Whether columns really need to be bound directly to each list is a question for the SharePoint product
team, because it can cause problems with certain types of solutions. In general it works pretty well.
For the current implementation, the columns that are defi ned as part of the content type defi nition are
physically copied into the list instance. It works this way because a list can contain more than one con-
tent type. The list acts as a container for the content type templates that are used to create the actual list
item fi elds. You declare and name the columns in much the same way you would if you were adding
them directly to a list, but this can cause problems when you’re writing a solution that needs to update
an existing content type. Since the list keeps a separate copy of the content type defi nition, the columns
from the previous version are still there in the list when you update the master content type template.
Even if you check fi rst that the content type is not already being used, if you create it again, you will
end up with duplicate columns in any list that the content type was already attached to.

Behavior or code is a key component of a content type. There is no notion of script associated with con-
tent types, although that might be useful in many scenarios. Currently the only way to attach behavior
to a content type is to write some code and attach it directly to the content type as an event receiver, or
call it indirectly through a workfl ow activity.

It is important to note that for event receivers, even though the code is bound to the content type, the code is
invoked in the context of the list and not of the content type. I’m using the term context loosely to mean that
event receivers are defi ned in terms of actions on list items and not in terms of actions on content types.

87620c03.indd 4387620c03.indd 43 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

44

Chapter 3: SharePoint Tools for Managing Records

Payload is the last part of a content type. Why do we need a content type payload? In short, for exten-
sibility. The content type concept is so fundamental to the way that SharePoint works, it would not be
possible to anticipate all of the ways in which a content type defi nition might be used. So the SharePoint
product team built in an extensible mechanism for associating arbitrary data with a content type defi ni-
tion by leveraging the way that data types are defi ned in XML. XML data types are defi ned by declar-
ing a unique namespace for a given XML fragment. SharePoint uses the same mechanism to manage
a collection of XML documents associated with a content type defi nition. Any number of XML docu-
ments can be added to the content type template, but only one of each type, where the type is defi ned
by a unique namespace within the collection, as illustrated in Figure 3-3. We’ll come back to this topic
when we start to build custom solutions that rely on content types to carry additional information
needed by different solution components.

Figure 3-3: Content type payload showing XML documents
indexed by namespace.

SharePoint itself uses the XML document collection to store the names of classes and assemblies that
implement the event receivers associated with the content type. It is also used to store other informa-
tion such as the names of the forms that should be used when a particular list item is opened, edited, or
created.

Uses for Content Types
SharePoint is such a comprehensive development platform, it is easy to appreciate why many develop-
ers often skip the fundamentals and go straight to implementation, focusing too much attention on the

87620c03.indd 4487620c03.indd 44 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

45

Chapter 3: SharePoint Tools for Managing Records

“how” of building a solution, and not enough on the “why”. This section explores a little more carefully
the why related to content types, with the not-so-subtle goal of fi nding a methodology for fi guring out
when content types are useful and when they are not.

There are many obvious uses for content types. Indeed, the SharePoint architecture is designed around
the assumption that many different kinds of solutions will be built around content types. The MOSS pub-
lishing features, for example, depend on content types for their implementation. Similarly, workfl ow in the
SharePoint environment relies on content types to manage tasks assigned by workfl ow activities.

But what if we look beyond the SharePoint environment for a moment and consider the broader uses
for a generic “content typing” mechanism? Might this yield a broader defi nition of ECM than what the
SharePoint platform currently supports? To that end, we can identify four primary uses for a such a
generic content typing mechanism: organization, classifi cation, validation, and control.

The idea of control is intentionally overbroad to capture both the notions of access control and process
control. There may be other kinds of controls that depend on the context in which the content type is
used. For the purposes of this discussion, it is good enough to simply distinguish control from classifi ca-
tion, organization, and validation.

Organization
The simplest way to use content types is to organize groups of documents by type. This is best used
when the organization of the content is not likely to change, or the scenarios in which the content will
be used are not well-defi ned. Using content types to organize documents is often the fi rst step toward
developing a more comprehensive content management strategy. In this case, the metadata is not as
important as deciding which bin to place a document into.

The advantage of using content types instead of simply placing the document into a particular docu-
ment library is that the organizational scheme can be applied later in the content life cycle across many
different sites and site collections without revisiting every document instance.

The disadvantage of using content types merely to organize documents is that it may impose unneces-
sary constraints on subsequent analysis because of dependencies that tend to diverge from purely orga-
nizational goals. For example, you might begin by organizing your documents according to department,
distinguishing HR documents from Accounting documents. Later, you may need to defi ne a policy that
applies to all Financial documents, regardless of the department they originated from. In this case, using
content types for organization would tend to thwart your subsequent functional requirements.

Classifi cation
You can also use content types to defi ne a taxonomy for classifying content based on a specifi c set of
metadata. The content type then becomes a named bundle of metadata that we can work with in much
the same way as a traditional class or data structure. However, because we don’t (yet) have a compiler
to enforce the classifi cation, problems can arise when we try to build on it. These problems are exacer-
bated if we try to create very nested hierarchies.

These problems are easy to see when you consider the effect of specialization on a given content-type
classifi cation hierarchy. At the top of the hierarchy, you typically have broad categories, like report and
statement. As you move down the hierarchy, more specialization comes in, so you have bank statement

87620c03.indd 4587620c03.indd 45 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

46

Chapter 3: SharePoint Tools for Managing Records

and policy statement. These are still broad classifi cations that are not likely to change very often. But
then as you start to move further down the tree, the more specialized the classifi cation becomes and
the greater the likelihood that your classifi cation will eventually need to change. So instead of policy
statement, you now have document retention policy statement and expense reimbursement policy statement. If
new document retention policies have to be implemented because of a change in the law or some other
outside infl uence, then the content type may need to be adjusted, or yet another level would need to be
added to the hierarchy.

This is a risky strategy for SharePoint content types because there is no true encapsulation offered by
the platform. So there is no way to guarantee that a previously identifi ed content type can be extended
without breaking code that depends on that classifi cation. Therefore, any time and effort invested in the
creation of deeply nested content type hierarchies are wasted, unless it yields other benefi ts not directly
related to solution development. One such benefi t might be the clarity that comes from going through
the analysis, especially if knowledge workers are involved as we saw in the section on content modeling
in Chapter 1.

Validation
Another way to use content types is to provide a weak encapsulation for the purpose of validating
documents in preparation for their involvement in a business process. Content types provide a way to
encapsulate metadata and to bind that metadata to a specifi c set of operations. Those operations could
evaluate the metadata to determine whether the current state of the document meets the requirements
of a particular business process.

I think of this as weak encapsulation because the metadata and the dependent behavior are not linked
in any way that can achieve true information-hiding like that provided by a compiled language such
as C#. Instead, they are linked through a loose runtime association that allows the metadata to change
independently of any code that may depend on it, thus leading to problems if the change is not properly
coordinated.

Here again, we are thinking in terms of a class with specifi c operations. To implement an effective docu-
ment validation strategy using content types, we would need to apply even more skill and discipline
(discipline because we need the content-type defi nition to remain fi xed throughout the process, so the
initial analysis must be as complete as possible).

Control
Since we have adopted a life-cycle model to drive our analysis instead of focusing on the features of a
particular platform, it is easy to see that having a generic content typing mechanism with the ability to
carry an arbitrary payload can support various operations at various stages of the content life cycle.

Content types can be used to support access control and process control mechanisms by leveraging the
payload in various ways. SharePoint and Offi ce use this approach to implement access controls for con-
tent after it leaves the server. Information policy information, for instance, is embedded within Offi ce
documents and is then used by the Offi ce client applications to control what happens to the document
while it is being viewed or edited. We can follow the same model for our own solutions and extend it to
control how content is manipulated and transformed throughout its life cycle.

87620c03.indd 4687620c03.indd 46 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

47

Chapter 3: SharePoint Tools for Managing Records

Content Type Defi nitions
SharePoint content types are defi ned using an XML template based on Collaborative Application
Markup Language (CAML). CAML is an XML derivative or a dialect of XML containing a specialized
set of schemas, which SharePoint uses to describe the different components that make up a SharePoint
web application. CAML is used throughout the SharePoint platform to describe different SharePoint
components. For content types, this includes describing the individual components of the type.

The CAML fragment that describes a content type is called a content type defi nition and is typically read
from disk on the SharePoint Server or as part of a SharePoint feature defi nition. The content type defi ni-
tion is used by SharePoint to create a content type template in the content database. The content type
template is then used to create instances of the content type when it is bound to a list. Figure 3-4 shows
the relationships between the various components.

Parent Site

Content Type Gallery

Proposal Definition Proposal Template

Proposal Template

Child Site

List

List

Figure 3-4: Content type defi nitions, sites, and lists.

The content type defi nition defi nes the layout of the metadata, which includes the order, names, and
data types of the fi elds that make up the content type. It also specifi es the classes and assemblies for
event receivers and which event receiver types have been implemented by those classes.

Creating Content Types
There are two basic ways to create content types: declaratively or programmatically. The traditional
approach is to create an XML fi le containing the required CAML elements and then install the content
type as part of a SharePoint feature. This can be somewhat tedious if there are a lot of existing site
columns that are referenced from the content type, or if the new content type is based on a deep tax-
onomy of other content types in its inheritance chain. One way around this is to use the SharePoint user
interface on a development server to create the content type and then use a utility to extract the CAML
defi nition from the content database and add it to a feature in Visual Studio. There are tools available
on the Internet that simplify the process of extracting the CAML from the content database. Getting the

87620c03.indd 4787620c03.indd 47 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

48

Chapter 3: SharePoint Tools for Managing Records

CAML is just the fi rst step, however. We would still need to examine the fi eld references individually to
make sure they are available in the target site, and since we cannot specify event receivers and custom
payloads through the user interface, these would have to be created manually using CAML.

The other approach is to create the content types entirely in code. This has several advantages, including
the ability to more easily control changes in the requirements and greater ease in referencing existing
content types and site columns. The one major disadvantage is that the SharePoint API does not provide a
way to create a content type that is based on an existing content type identifi er, but instead always assigns
a new identifi er when a content type is created using code. This does not work for scenarios that involve
deploying several components that must all reference the same content type instance.

Declaring Content Types Using CAML
The standard approach to creating content types is to work directly with CAML. This is usually done
by writing the content type defi nition as part of a SharePoint feature. This approach has the advantage
that the CAML content type schema is well-defi ned and you get IntelliSense support within Visual
Studio, so the actual task of writing the XML is not that diffi cult for simple types. Deploying them is
then a simple matter of deploying the feature. The CAML fragment in Listing 3-1 declares a content
type for a simple expense report.

Listing 3-1: CAML expense report content type declaration

<ContentType ID=”0x01010023904EF3F40B244BB2324879A29B3ADC”
 Name=”Expense Report” Group=”ECM2007”
 Description=”A worksheet for recording personal and business expenses.”
 Version=”13”>

<FieldRefs>
 <FieldRef ID=”{fa564e0f-0c70-4ab9-b863-0177e6ddd247}” Name=”Title”/>
 <FieldRef ID=”{6DF9BD52-550E-4a30-BC31-A4366832A87F}” Name=”Comment”/>
 <FieldRef ID=”{ddd41f57-c23e-43fa-930a-ca2eae38e37e}”
 Name=”Project Type” Type=”Choice” Required=”TRUE”>
 <CHOICES>
 <CHOICE>Consulting</CHOICE>
 <CHOICE>Training</CHOICE>
 <CHOICE>Programming</CHOICE>
 <CHOICE>Sales</CHOICE>
 </CHOICES>
 </FieldRef>
</FieldRefs>

</ContentType>

The downside of using the declarative approach is that the content type declaration must strictly con-
form to the content type defi nition schema. If it does not, then SharePoint will refuse to load it. When
you are writing so much CAML code, it’s easy to make little mistakes that can be hard to fi nd, so you
have to take care when writing it. Also, the fi eld references are defi ned by GUID, so you have to look
them up. This can quickly become a tedious process. To make it a little easier to locate the correct fi eld
identifi er, you can use the following trick.

87620c03.indd 4887620c03.indd 48 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

49

Chapter 3: SharePoint Tools for Managing Records

Most of the built-in site columns are declared in the fi le fi eldswss.xml, which is part of the fi elds feature
located in the 12/TEMPLATES/FEATURES/fi elds folder. This fi le contains about 4,600 lines of CAML
code. Instead of searching manually through the fi le, we’ll use an XSLT stylesheet to transform it into a
simple HTML table. We’ll start by copying the fi eldswss.xml fi le to a separate folder, then we’ll create a
simple XSLT stylesheet like the one shown in Listing 3-2.

Listing 3-2: XSLT stylesheet for fi eld lookups

<?xml version=”1.0” encoding=”utf-8” ?>
<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:wss=”http://schemas.microsoft.com/sharepoint/”>
 <xsl:output method=”html” version=”1.0” encoding=”utf-8” indent=”yes” />

 <xsl:template match=”wss:Elements”>
 <html>
 <body>
 <h2>SharePoint 3.0 Built-In Fields</h2>
 <table border=”0” width=”100%” style=”font-size:9pt;”>
 <tr bgcolor=”#9acd32”>
 <th align=”left”>Field</th>
 <th align=”left”>Group</th>
 <th align=”left”>Type</th>
 <th align=”left”>Declaration</th>
 </tr>
 <xsl:apply-templates>
 <xsl:sort select=”@Name” />
 </xsl:apply-templates>
 </table>
 </body>
 </html>
 </xsl:template>
<!--=-->
 <xsl:template match=”wss:Field”>
 <tr>
 <td>
 <xsl:value-of select=”@Name” />
 </td>
 <td>
 <xsl:value-of select=”@Group” />
 </td>
 <td>
 <xsl:value-of select=”@Type” />
 </td>
 <td>
 <!-- Emit The Full Declaration -->
 <xsl:element name=”FieldRef”>
 <xsl:attribute name=”ID”>

Continued

87620c03.indd 4987620c03.indd 49 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

50

Chapter 3: SharePoint Tools for Managing Records

 <xsl:value-of select=”@ID”/>
 </xsl:attribute>
 <xsl:attribute name=”Name”>
 <xsl:value-of select=”@Name”/>
 </xsl:attribute>
 <xsl:attribute name=”DisplayName”>
 <xsl:value-of select=”@DisplayName”/>
 </xsl:attribute>
 </xsl:element>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

Next, we copy the stylesheet into the same folder we copied the fi eldswss.xml fi le into and then open
the fi eldswss.xml fi le in Visual Studio. From the Properties tool window, we then select the Stylesheet
property and browse to the stylesheet fi le, as shown in Figure 3-5.

Figure 3-5: Selecting an XLST stylesheet for the FieldsWSS.xml fi le.

Now we can click anywhere in the XML text editor for the fi eldswss.xml fi le and select “Show XSLT
Output” from the XML menu. The resulting HTML table is shown in Figure 3-6.

Listing 3-2: XSLT stylesheet for fi eld lookups (continued)

87620c03.indd 5087620c03.indd 50 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

51

Chapter 3: SharePoint Tools for Managing Records

Figure 3-6: SharePoint fi eld declarations as an HTML table.

Play around with the XSLT code so that it includes all of the detail you need. This example generates
the entire fi eld declaration to avoid having to fi ddle with the details. Another idea is to include a button
that copies the declaration directly to the clipboard.

There are lots of ways to create tools that simplify the process of writing code. Still, once a declarative
content type is deployed, the fi eld references are fi xed. Because of this, we cannot easily defi ne a higher
level of site provisioning code that could, for example, determine dynamically which fi elds should
be included in the content type. Instead, we have to resolve which fi elds to include well in advance of
deployment. In fact, many problems can arise if we decide to change the order or type of declared fi elds
after the fact. From a pure design standpoint, there are many scenarios in which we may not know which
fi elds we need until we’ve either interacted with the user or consulted an external database, and so on.
Going back to our content life-cycle metaphor, these are the kinds of solutions we want to be able to build
because these are just the kinds of solutions that map more naturally into the use cases we typically
encounter in the fi eld. To address these scenarios, we need a more dynamic approach. The next section
describes how to build a utility that makes it easier to declare new content types by browsing through
the currently deployed content types in the farm to extract the CAML code from the content database.

A Content Type Browser Utility
To build anything, you need good tools. One point of frustration for many SharePoint developers is the
lack of available tools. Although this situation is constantly improving, there is still a gap in the mar-
ketplace for developer tools. Once you start diving deeper into the SharePoint API, this gap becomes
even more apparent. Many developers are familiar with Lutz Roeder’s excellent .NET Refl ector (now
owned by Red Hat Software), which has become a mainstay for SharePoint developers because of its
integrated disassembler and ease of use. For other areas, it often becomes necessary to build your own
tools. Working with content types is one of those areas where a custom tool can go a long way toward
enhancing your development experience.

87620c03.indd 5187620c03.indd 51 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

52

Chapter 3: SharePoint Tools for Managing Records

As a fi rst step, let’s use Refl ector to peek inside the Microsoft.SharePoint assembly and examine
the classes we have to work with. In particular, we’re interested in the SPContentType class shown in
Figure 3-7.

Figure 3-7: The SPContentType class in .NET Refl ector.

The fi rst thing to point out is that this is a sealed class, which means we cannot inherit from this class to
implement our own custom specializations. That’s probably a good thing, since future versions of the
SPContentType class are likely to include signifi cant improvements over the current implementation. On
the other hand, it would be nice to have a more standard way to build custom content type components.

This is one place where an interface would have been very useful. Having an ISPContentType inter-
face that developers could implement and then substitute for the default implementation would have
allowed third-party developers and partners to extend the platform quite easily. Hopefully, the next ver-
sion of SharePoint will address this need.

When developing content types, it helps if you can see what is going on within the content database
as you use the content type in various scenarios. This is because the content type payload (XML docu-
ments and other properties) carries information that is used throughout a SharePoint deployment. A
good example of this is adding an event receiver to an existing content type or applying an information
policy. The SharePoint UI does not provide much insight, and a command-line tool, while effective,
quickly starts to interfere with developer productivity. It would be nice to have a simple explorer-style
forms application just for browsing the content types on the local system.

In the following sections, we’ll build a tool that we can then use throughout the book to explore the
details of all content types that are deployed on the local server. Then as we develop additional code

87620c03.indd 5287620c03.indd 52 9/3/09 10:32:09 AM9/3/09 10:32:09 AM

53

Chapter 3: SharePoint Tools for Managing Records

that creates or depends on content types, we can easily inspect those details to see how the content type
changes and how those changes affect other SharePoint objects. Our Content Type Explorer user inter-
face is shown in Figure 3-8.

Figure 3-8: A simple Content Type Explorer utility.

The complete source code for the Content Type Explorer is included in the downloadable code for the book.

The utility fi nds all of the content types on the local farm and then organizes them in a treeview control
by group. This list includes all content types in all sites in all site collections in all web applications on
the local farm, excluding any duplicates.

What’s nice about this is that when you click on an item, the program displays a property grid, but also
displays the CAML defi nition in a separate window. This is the actual schema defi nition for the content
type in its current state. So this gives us a window into the content database that we can use to continu-
ally monitor changes that we make either through the SharePoint UI or through our custom code.

This is not a truly live view of the content database, because there are no triggers in place for detect-
ing changes to the content database. One approach to doing that might be to monitor changes to the
SharePoint log fi les and then selectively refresh the display. I’ll leave that as an exercise for the reader.

The key component of the content type explorer tool is the code that retrieves all content types in the
local farm. A portion of that code is shown in Listing 3-3.

Listing 3-3: Get all ContentTypes

/// <summary>
/// Returns a list of all content types that have been defined
/// in the local SharePoint farm.
/// </summary>

Continued

87620c03.indd 5387620c03.indd 53 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

54

Chapter 3: SharePoint Tools for Managing Records

/// <returns>the complete list of local content types</returns>

public static List<SPContentType> GetAllContentTypes()
{
 List<SPContentType> allContentTypes = new List<SPContentType>();

 // Create a dictionary to hold the actual instances.
 Dictionary<string, SPContentType> types =
 new Dictionary<string, SPContentType>();

 // Loop over all servers in the farm.
 foreach (SPServer server in SPFarm.Local.Servers)
 {
 // loop over all services running on the server.
 foreach (SPServiceInstance service in server.ServiceInstances)
 {
 // check for the SPWeb service
 if (service.Service is SPWebService)
 {
 SPWebService spws = (SPWebService)service.Service;
 // loop over the IIS web applications controlled by this service.
 foreach (SPWebApplication webapp in spws.WebApplications)
 {
 // loop over all site collections in the web application.
 foreach (SPSite siteCollection in webapp.Sites)
 {
 // loop over all webs in the site collection.
 foreach (SPWeb web in siteCollection.AllWebs)
 {
 // loop over all available content types
 foreach (SPContentType ct in web.AvailableContentTypes)
 {
 if (!types.ContainsKey(ct.Name))
 types[ct.Name] = ct;
 }
 }
 }
 }
 }
 }
 }

 // return a list of just the values
 foreach (SPContentType type in types.Values)
 allContentTypes.Add(type);

 return allContentTypes;
}

Starting with the global SPFarm object, we get all of the servers in the farm and look for the Web
Service instance for each server. Then we drill down, getting the web applications, the SPSite objects,
and then each SPWeb. Finally within the Web, we access the AvailableContentTypes collection so
we are sure to see all of the content types that are defi ned within that Web or any of its parent Webs.

Listing 3-3: Get all ContentTypes (continued)

87620c03.indd 5487620c03.indd 54 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

55

Chapter 3: SharePoint Tools for Managing Records

Although we could have written the code more narrowly to retrieve only content types defi ned in a
given Web, this is good enough for our purposes.

Once we have a content type, we then add it to a dictionary keyed on the content type name. The rest of
the magic happens in the treeview control, which then fi nds the group associated with each content
type and puts them in the tree at the appropriate place.

Creating Content Types Programmatically
Obviously, having a collection of reusable components is a good thing. One of my goals with this book
is to provide developers with reusable code that can be applied to many different kinds of ECM solu-
tions. This is especially true for something as fundamental as content types. We’ll start by creating a
new class library called ECM2007, and then throughout the book, we’ll gradually build it out by add-
ing additional classes and code to deal with each topic as it comes along. By the end, we should have a
pretty robust collection of tools that will make your job much easier.

The ECM2007 class library is included as part of the downloadable companion code for the book.

In the interest of extensibility, we’ll start by defi ning an abstraction for any SharePoint object. This may
seem like overkill for creating content types, but bear with me. Remember, we’ll be adding other things
to our component model as we go along, so having a simple abstraction should quickly become more
of a benefi t than a hindrance. The main reason we need this is so that we can rely on a common set of
properties that all SharePoint objects provide. This will allow us to write generic methods that operate
consistently across all objects in the library. It will also allow us to quickly identify those objects that
don’t fi t the model. The ISharePointObject interface is shown in Listing 3-4.

Listing 3-4: ISharePointObject interface

/// <summary>
/// Provides an abstraction for any SharePoint object.
/// </summary>
public interface ISharePointObject
{
 // shared public properties
 string Id { get; }
 string Name { get; }
 string Title { get; }
 string Description { get; }
 string SchemaXml { get; }
 string Publisher { get; }
 string AssemblyName { get; }
 string ClassName { get; }
}

The key properties declared in this interfaces are the SchemaXml property, which returns the raw
CAML that defi nes an object, and the AssemblyName and ClassName properties, which are used to
locate custom code associated with it.

Now we have two options for developing our library of helper classes. We can create an abstract base
class that implements the ISharePointObject interface and then derive our helper classes from it.
This should suffi ce for many components that do not have special requirements. But there are other

87620c03.indd 5587620c03.indd 55 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

56

Chapter 3: SharePoint Tools for Managing Records

classes for which this approach will not work, either because they must inherit from some other class
(as is the case for certain SharePoint objects) or because they require special handling (typically during
the deployment phase).

Content types are one of those special cases — not so much because of the way that SharePoint defi nes
them, but because of the way we intend to work with them. In short, we want to build a set of tools that
yield the same expressive power that CAML provides, but using managed code instead of XML.

One way to accomplish this is through .NET Refl ection. By using .NET attribute classes, we can enable
users of the class library to mark up their own classes in such a way that the foundation classes in the
library can fi gure out everything that is needed to declare the component and create the corresponding
object in the content database.

First, we defi ne an Attribute class called SharePointContentType that can be applied to any other
class. We can refer to the class to which the attribute has been applied as the holder class. The attribute
itself will include properties that map to those of the SPContentType class as defi ned by the SharePoint
object model.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text.RegularExpressions;
using System.Xml;
using ECM2007.Utilities;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;

namespace ECM2007.ContentTypes
{ [AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
 public class SharePointContentType : Attribute, ISharePointObject
 {
 }
}

The class inherits from the System.Attribute class, and the AttributeTargets attribute is added to
the class to tell the .NET compiler where the SharePointContentType attribute can be placed. Notice
that although we are declaring an attribute class, we can also apply other attributes to it, highlighting
the power and fl exibility of the .NET Refl ection architecture for adding custom markup to code.

Next, we implement the ISharePointObject interface on our SharePointContentType attribute
class. This will allow us to refl ect over any holder classes provided by our callers. We can then rely on
our SharePointObject abstraction to obtain the properties we need to construct a content type within
the content database. The essential parts of the SharePointContentType attribute class are shown in
Listing 3-5.

Throughout the code examples, you will see references to a Helpers class. This is a utility class declared
in the ECM2007 class library that exposes methods for diagnostic logging, creating event receivers, locat-
ing attributes, and copying streams. It is implemented in the fi le ECM2007/Common/Helpers.cs.

87620c03.indd 5687620c03.indd 56 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

57

Chapter 3: SharePoint Tools for Managing Records

Listing 3-5: SharePointContentType core properties

#region Core Properties

/// <summary>
/// Calculates the identifier automatically based on attributes or type.
/// </summary>
public virtual string Id
{
 get
 {
 // try for the Guid attribute
 GuidAttribute guidAttribute = Helpers.FindAttribute<GuidAttribute>(this);
 if (guidAttribute != null) return guidAttribute.Value;
 // use the type name
 return GetType().FullName;
 }
}

private string m_name;
// The content type name.
public string Name
{
 get
 {
 if (m_ct != null)
 return m_ct.Name;
 if (!string.IsNullOrEmpty(m_name))
 return m_name;
 NameAttribute attribute = Helpers.FindAttribute<NameAttribute>(this);
 if (attribute != null)
 return attribute.Name;
 return GetType().Name;
 }
 set { m_name = value; }
}

// The content type title.
public string Title
{
 get { return m_ct != null ? m_ct.Name : string.Empty; }
}

private bool m_hidden;
// Whether or not the content type is hidden from the user interface.
public bool Hidden
{
 get { return m_ct != null ? m_ct.Hidden : m_hidden; }
 set { m_hidden = value; }
}

private bool m_sealed;
// Whether or not the content type is sealed to prevent modifications.

Continued

87620c03.indd 5787620c03.indd 57 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

58

Chapter 3: SharePoint Tools for Managing Records

public bool Sealed
{
 get { return m_ct != null ? m_ct.Sealed : m_sealed; }
 set { m_sealed = value; }
}

private string m_group;
// The group category with which the content type is associated.
public string Group
{
 get { return m_ct != null ? m_ct.Group : m_group; }
 set { m_group = value; }
}

private string m_description;
// The content type description.
public string Description
{
 get
 {
 if (m_ct != null)
 return m_ct.Description;
 DescriptionAttribute attribute = Helpers.FindAttribute
 <DescriptionAttribute>(this);
 if (attribute != null)
 return attribute.Description;
 if (!string.IsNullOrEmpty(m_description))
 return m_description;
 return string.Empty;
 }
 set { m_description = value; }
}

// Extracts the base type from the raw CAML schema.
private string ParseBaseType(string schemaXml)
{
 return “”;
}

private string m_baseType = “Item”;
// Specifies the content type on which this one is based.
public string BaseType
{
 get { return m_ct != null ? ParseBaseType(m_ct.SchemaXml) : m_baseType; }
 set { m_baseType = value; }
}

// Retrieves the schema for this object.
public string SchemaXml
{
 get { return m_ct != null ? m_ct.SchemaXml : string.Empty; }
}

// Retrieves the publisher name.

Listing 3-5: SharePointContentType core properties (continued)

87620c03.indd 5887620c03.indd 58 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

59

Chapter 3: SharePoint Tools for Managing Records

public virtual string Publisher
{
 get
 {
 PublisherAttribute attribute = Helpers.FindAttribute<PublisherAttribute>
 (this);
 if (attribute != null) return attribute.Name;
 return string.Empty;
 }
}

// Retrieves the fully qualified assembly name for this component.
public virtual string AssemblyName
{
 get
 {
 return GetType().Assembly.GetName().FullName;
 }
}

// Retrieves the fully qualified class name for this component.
public virtual string ClassName
{
 get
 {
 return GetType().FullName;
 }
}

#endregion

In addition to the core properties of the content type, we also need to declare the individual fi elds,
which are declared using the FieldRef element in CAML. When declaring content types in code, we
need a similar mechanism to specify the individual columns that make up the content type. The most
natural way is to declare the columns in the same way we would declare the public properties of a
class. Here again, we can use refl ection to declare the properties in the normal way and then mark up
selected properties to map them to SharePoint columns. To accomplish this, we can defi ne a second
FieldRef attribute, as shown in Listing 3-6.

Listing 3-6: FieldRef attribute class

using System;
using System.Collections.Generic;
using System.Text;
using System.Reflection;
using Microsoft.SharePoint;

namespace ECM2007.ContentTypes
{
 /// <summary>
 /// Use this attribute class to markup public properties
 /// that you want to map to SharePoint fields.

Continued

87620c03.indd 5987620c03.indd 59 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

60

Chapter 3: SharePoint Tools for Managing Records

 /// </summary>
 [AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited =
 true)]
 public class FieldRef : Attribute
 {
 #region Constructors

 public FieldRef()
 {
 InitProperties();
 }

 public FieldRef(string fieldName)
 {
 InitProperties();
 this.FieldName = fieldName;
 }

 void InitProperties()
 {
 this.ShowInDisplayForm = true;
 this.ShowInEditForm = true;
 this.ShowInListSettings = true;
 this.ShowInNewForm = true;
 this.ShowInVersionHistory = true;
 this.ShowInViewForms = true;
 this.DisplaySize = 30;
 }
 #endregion

 #region Properties

 public string FieldName { get; set; }
 public string Description { get; set; }
 public string Group { get; set; }
 public int DisplaySize { get; set; }
 public bool Required { get; set; }
 public bool Hidden { get; set; }
 public bool Indexed { get; set; }
 public bool ReadOnly { get; set; }
 public bool ShowInDisplayForm { get; set; }
 public bool ShowInEditForm { get; set; }
 public bool ShowInListSettings { get; set; }
 public bool ShowInNewForm { get; set; }
 public bool ShowInVersionHistory { get; set; }
 public bool ShowInViewForms { get; set; }

 private string m_displayName = string.Empty;
 public string DisplayName
 {
 get { return string.IsNullOrEmpty(m_displayName) ?

Listing 3-6: FieldRef attribute class (continued)

87620c03.indd 6087620c03.indd 60 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

61

Chapter 3: SharePoint Tools for Managing Records

 this.FieldName : m_displayName; }
 set { m_displayName = value; }
 }

 #endregion
 }
}

Here, we can take advantage of additional information that the compiler knows about the property,
such as its underlying data type and visibility. The following code in the FieldRefAttribute class
shows how we can extract the fi eld type from the property itself. We can also detect if the data type is
an enumeration type and automatically create CHOICE fi elds in the content type.

CHOICE fi elds are a built-in fi eld type that allows the SharePoint user to select from a list of values,
either using a dropdown control or a set of option buttons.

/// <summary>
/// Calculates the SPFieldType based on the refl ected property info.
/// </summary>
/// <param name=”propInfo”>describes the property to which this attribute is
 attached</param>
/// <returns>an SPFieldType that corresponds to the underlying property
 type</returns>
private SPFieldType GetFieldType(PropertyInfo propInfo)
{
 if (propInfo.PropertyType.IsEnum)
 return SPFieldType.Choice;
 switch (propInfo.PropertyType.Name.ToLower())
 {
 case “int”: return SPFieldType.Integer;
 case “decimal”: return SPFieldType.Currency;
 case “double”: return SPFieldType.Number;
 case “fl oat”: return SPFieldType.Number;
 case “datetime”: return SPFieldType.DateTime;
 case “guid”: return SPFieldType.Guid;
 case “bool”: return SPFieldType.Boolean;
 }
 // check the size to determine which type of text fi eld it is
 if (this.DisplaySize > 255)
 return SPFieldType.Note;
 return SPFieldType.Text;
}

The fi nal piece of the puzzle is provided by a utility method that adds a given fi eld reference to an exist-
ing content type. The big advantage here is that we don’t have to look up fi eld identifi ers when referenc-
ing existing fi eld names using the object model. The SharePoint API looks up the fi eld for us and sets
the correct identifi er automatically.

/// <summary>
/// Adds the fi eld reference to a content type.
/// </summary>
/// <param name=”ct”></param>

87620c03.indd 6187620c03.indd 61 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

62

Chapter 3: SharePoint Tools for Managing Records

/// <param name=”propInfo”></param>
public void AddToContentType(SPContentType ct, PropertyInfo propInfo)
{
 try
 {
 // Locate the fi eld in the web associated with the type.
 SPWeb web = ct.ParentWeb;
 SPField fi eld = null;

 try
 {
 // Perform a special check for changes to the
 // display name of the Title fi eld.
 if (this.FieldName == “Title”)
 {
 SPFieldLink fi eldLink = ct.FieldLinks[“Title”];
 fi eldLink.DisplayName = this.DisplayName;
 ct.Update();
 return;
 }

 // check if it’s in the available fi elds
 fi eld = web.AvailableFields[this.DisplayName];
 if (fi eld != null)
 {
 // now check if it’s in the actual web
 // if so, then delete it
 fi eld = web.Fields[this.DisplayName];
 if (fi eld != null && fi eld.CanBeDeleted)
 {
 web.Fields.Delete(this.DisplayName);
 fi eld = null;
 }
 }
 }
 catch { }

 // Create a new fi eld if none exists.
 if (fi eld == null)
 {
 try
 {
 SPFieldType fi eldType = GetFieldType(propInfo);
 string fi eldName = web.Fields.Add(this.DisplayName, fi eldType,
 this.Required);
 fi eld = web.Fields[this.DisplayName];
 if (!string.IsNullOrEmpty(this.Description))
 fi eld.Description = this.Description;
 if (!string.IsNullOrEmpty(this.Group))
 fi eld.Group = this.Group;
 fi eld.Hidden = this.Hidden;
 fi eld.Indexed = this.Indexed;

87620c03.indd 6287620c03.indd 62 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

63

Chapter 3: SharePoint Tools for Managing Records

 fi eld.ReadOnlyField = this.ReadOnly;
 fi eld.ShowInDisplayForm = this.ShowInDisplayForm;
 fi eld.ShowInEditForm = this.ShowInEditForm;
 fi eld.ShowInListSettings = this.ShowInListSettings;
 fi eld.ShowInNewForm = this.ShowInNewForm;
 fi eld.ShowInVersionHistory = this.ShowInVersionHistory;
 fi eld.ShowInViewForms = this.ShowInViewForms;
 fi eld.DisplaySize = this.DisplaySize.ToString();

 // Add choices for an enum type
 if (fi eldType == SPFieldType.Choice && propInfo.PropertyType.
 IsEnum)
 {
 SPFieldChoice choiceField = fi eld as SPFieldChoice;
 foreach (string s in Enum.GetNames(propInfo.PropertyType))
 choiceField.Choices.Add(s);
 choiceField.Update();
 }
 }
 catch { }
 }

 if (fi eld != null)
 {
 try
 {
 // avoid adding duplicate fi eld links
 bool found = false;
 foreach (SPFieldLink fi eldLink in ct.FieldLinks)
 if (fi eldLink.Name.Equals(fi eld.Title))
 {
 found = true;
 break;
 }
 if (!found)
 ct.FieldLinks.Add(new SPFieldLink(fi eld));
 }
 catch
 {
 }
 }
 }
 catch
 {
 }
}

With these attributes and components in place, we can now declare content types easily in code.
Listing 3-7 shows the declaration of a sample content type.

87620c03.indd 6387620c03.indd 63 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

64

Chapter 3: SharePoint Tools for Managing Records

Listing 3-7: Sample content type created using refl ection

using System.Diagnostics;
using ECM2007.ContentTypes;
using Microsoft.SharePoint;

namespace SampleContentTypes
{
 [SharePointContentType(BaseType=”Document”,
 Description=”My Sample Content Type”,
 Group=”ECM2007”,
 Name=”MyContentType”,
 Sealed=false)]
 public class SampleContentType : SPItemEventReceiver
 {
 [FieldRef(“Dept”,
 Description=”The name of the department”,
 DisplayName=”Sample Department”)]
 public string Department { get; set; }
 public string Manager { get; set; }

 public override void ItemAdded(SPItemEventProperties properties)
 {
 base.ItemAdded(properties);
 Trace.WriteLine(“SampleContentType - ItemAdded”);
 }
 }
}

Notice that the sample content type shown above inherits the SPItemEventReceiver class in order
to implement an event receiver. This is made possible by additional code in the attribute class that
searches the methods implemented by the class to automatically attach any event receivers it fi nds.
Inheriting from SPItemEventReceiver here is similar to what you would do to create any event
receiver. The advantage of using Refl ection to bind the event receiver to the content type declaration in
this way is that the markup is added directly to the code instead of in a separate fi le, creating a stronger
encapsulation between the properties of the content type and its behavior.

Versioning
Versioning is a key feature for content management and provides a foundation for collaboration and
approval. Without the ability to track the versions of an item, it would not be possible to establish a
baseline for publication from which successive refi nements can be made. It would also not be possible
to “roll back” or to track the progression of an item from draft to fi nal approval.

The word version has a common defi nition and may lead us to assume that it is just a mechanism for
keeping track of which versions there are and that there is some sort of built-in differencing engine
being used to detect what has changed between one version and the next. But there are some additional
considerations that come into play when dealing with versioning in the context of a SharePoint content

87620c03.indd 6487620c03.indd 64 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

65

Chapter 3: SharePoint Tools for Managing Records

database. One question concerns when versions are created. Another has to do with what changes
occur within the content database when versioning is enabled. So we need to dig a little deeper into the
advantages and disadvantages of using versioning in the SharePoint environment and then see how
versioning affects Records Management on the SharePoint platform.

All of this is built on top of the object model that SharePoint provides for managing content as though
it were a fi le system. The SharePoint virtual fi le system includes SPFolder and SPFile objects and
exposes a robust layer of functionality that can be leveraged extensively to support custom version-
ing scenarios. There is also a close relationship in SharePoint between how versioning works and how
check-in and check-out work.

SharePoint includes the ability to track changes to sites, site collections, lists, and list items. However,
versioning applies only to items stored in lists and document libraries. This is because versions are
associated with SPFile objects. Versioning does not apply to the other objects, and it does not apply to
content types. On the other hand, versioning can be enabled for any kind of list item in any type of list.
Document libraries support both major and minor versions, while lists support major versions only.
The primary benefi ts of versioning in SharePoint include:

The ability to roll back to a previous version ❑

The ability to selectively view or delete individual versions ❑

The ability to maintain a history of changes made to a given item ❑

The big advantage of versioning, of course, is that SharePoint monitors fi le saves so that changes can be
rolled back easily along a timeline. It also creates a version history, from which you can also selectively
review and delete prior snapshots of the document. One big disadvantage, however, is that it is not an
incremental snapshot. There is no “differencing engine” that SharePoint uses to keep track of minor
changes to a document or list item. Therefore, there is a cost to be paid in terms of storage space for the
fl exibility that versioning offers. Versioning is especially important in the MOSS environment when
you’re designing and building publishing portals.

You can enable versioning for any kind of list item in any kind of list. There is no concept, however, for
applying versioning to a content type. Remember that a content type is really just a description of how
a list item should be created, with some additional guidance for how instances should behave. When
a content type is attached to a list, it infl uences the columns that are created within the list, and the
content type ID controls which columns are displayed for each list item. But it’s the list item, not the
content type, that is being instantiated. And so when we talk about versioning, we’re only talking about
the list item. Specifi cally, we’re talking about the SPFile object attached to the list item, which is where
the content physically resides.

There is an option for an administrator to place a limit on the maximum number of versions that
SharePoint will retain. But this is available only for major versions. There is no way to limit the number
of minor versions that SharePoint will keep. Thus, storage costs will tend to escalate if a particular type
of document requires many iterations before producing a published major version. Again, there is no
way to assign these rules to content types, although that would be more natural when designing solu-
tions. Ideally, we would like to specify version throttling according to document type instead of at the
list level, especially since each list may contain many different kinds of documents. Currently, there is
no way to accomplish this. If you need special throttling for a particular document type, then you have
to create a special list that contains only that document type.

87620c03.indd 6587620c03.indd 65 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

66

Chapter 3: SharePoint Tools for Managing Records

Versioning Rules
There are specifi c rules that govern how SharePoint handles versions. Figure 3-9 illustrates the algo-
rithm used to determine when a version is created or updated within the SharePoint content database.

Upload
Yes

Yes

Yes

No

No

No

No

Yes

Create
Version

Add as New
Version?

First
Time?

Existing File
Name?

Update
Version

Edit Properties

Open, Edit and
Save

Check-In

Create

Check-Out
Required?

Figure 3-9: SharePoint versioning algorithm.

When you create a document, check-out may or may not be required on the list. Forced check-out is a
confi guration option that is available for each list. When a new document is created, SharePoint checks
the forced check-out fl ag to determine if check-out is required. If it is, then it fi rst performs the check-
out procedure, which will eventually lead to a subsequent point along the timeline at which a check-in
must occur. Not until the fi le is checked in will a new version be created for the fi le. On the other hand,
if forced check-out is not enabled for the list, then a new version is created immediately.

The upload sequence is slightly different from creating a document. When a document is uploaded,
there is the possibility that the document being uploaded may overwrite an existing document with the
same fi lename. If that is not the case and there is no naming confl ict, then SharePoint just creates the
new version. If there is a naming confl ict, then the user is presented with the option to either add the
new document as a new version or overwrite the old one. You could also go into the document and edit
its properties. With versioning enabled, a new version is created immediately.

87620c03.indd 6687620c03.indd 66 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

67

Chapter 3: SharePoint Tools for Managing Records

A different sequence is followed when just opening the document, for example, in Word 2007 and then
editing and saving it. The fi rst time the document is saved, a new version is created. For subsequent
saves in the same session, it simply updates the current version. This means that there is no additional
storage cost for saving the same document multiple times per editing session. If a new editing session
is started, or if the cookie times out, then a new version is created the next time the document is saved.
Figure 3-10 shows what happens when editing a Word 2007 document in a document library with major
versions enabled.

Version 1 Version 2 Version 3New Session

Create Save Edit &
Save

Close &
Reopen

Edit &
Save

Figure 3-10: Document versioning sequence.

This algorithm carries some implications for users who rely on the ability to revert to a prior version
after saving the fi le. If they perform a long series of edits, keeping the document checked out for long
periods of time, they will still overwrite the current version each time the document is saved, because
SharePoint sees this as a single editing session. It is important, therefore, for users to understand that
for long editing sessions, it is better to check out the document, save it locally, and then check it back in
when the edits are completed.

Check-Out, Check-In, and Versioning
Check-out and check-in provide a standardized “locking” mechanism for documents that works the
way most people understand. The primary characteristics are as follows:

The person who checks out the document ❑ owns the item.

The owner (or a delegate) can check in or undo the check-out. ❑

Undo discards the new versions. ❑

The SharePoint check-out and check-in mechanisms can alter the versioning sequence and also depend
on whether minor versioning is enabled. There is also the option in SharePoint to force the user to
check out a document before editing it. This also has an impact on the versioning sequence. Figure 3-11
illustrates what happens when the user interface is used to check out a document with minor version-
ing enabled. After the initial save, the document is assigned a minor version. Then, if the document
is closed and then checked out on the server, immediately a new version (0.2) is created on the server.
Discarding the check-out at that point reverts back to version 0.1. Checking in the document (whether
changes were made or not), the user is presented with a choice of whether to update the current ver-
sion, create a new minor version (0.2), or publish a new major version (1.0).

87620c03.indd 6787620c03.indd 67 9/3/09 10:32:10 AM9/3/09 10:32:10 AM

68

Chapter 3: SharePoint Tools for Managing Records

0.1
1.0

0.2

Create Save Close

Close

Check
Out Discard

Figure 3-11: Check-out versioning sequence.

One problem with forced check-out is that there is no way to do it when you’re using content types. In the
real world, we would really like to force check-out and have that setting applied to the item based on the
content type. Currently, the only way to force check-out is to confi gure the document library directly. The
result is that even though the library may support multiple content types, check-outs will apply to every
document in the library. And since there is no event that fi res when the user begins the editing process,
there is no way to programmatically force a check-out on the fl y for a given content type. Other approaches
for solving the problem might include writing extensive JavaScript code that essentially hijacks the entire
process of editing a document or implementing a custom interface that enforces custom business rules
when retrieving the fi les. Both of these approaches would be costly to implement.

Accessing Document Versions in the Browser
SharePoint provides several shortcuts to access information through the browser
using virtual paths, which are specially recognized tokens that can be added to a URL
to retrieve data from the content database. To retrieve a particular version of a docu-
ment, all that is needed is the version number and the relative path to the document.

The form of the URL is http://www.mydomain.com/ _vti_history /###/
Shared%20Documents/mydocument.docx. The virtual pathname is _vti_history
followed by a forward slash and a number we can refer to as the version selector.
SharePoint applies a simple algorithm to calculate the version selector that is based on a
modulus of the number 512. Thus, major versions are a multiple of 512, and minor ver-
sions are the remainder after dividing by 512.

As an example, to retrieve version 2.0 of “a large document.doc” from the Versioned
Documents library, we could enter the following URL: http://www.mydomain
.com/_vti_history/1024/Versioned%20Documents/A%20Large%20Document
.doc. Here, the value of 1024 is computed by multiplying 512 by the major version of 2.
To get version 2.1, we would enter http://www.mydomain.com/_vti_history/1025/
Versioned%20Documents/A%20Large%20Document.doc. In this case, the value of
1025 is computed by multiplying 512 by the major version of 2 to get 1,024, and then
adding the minor version of 1.

87620c03.indd 6887620c03.indd 68 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

69

Chapter 3: SharePoint Tools for Managing Records

Versioning Pitfalls
The ability to track versions comes at a cost. The most obvious cost is measured in the resulting expan-
sion of the content database. Each new version of a document copies the entire content of the previous
version. This cost is greater for documents than for list items. The point is that there is no “differencing
engine” available to store only the changed bits, so the decision to enable versioning can have a signifi -
cant impact on the overall storage profi le of the site collection in which the library resides.

One way to mitigate this effect is to place a limit on the number of versions allowed for a given docu-
ment library. When the limit is reached, new versions replace the oldest versions in round-robin fash-
ion. While this works for major versions, it does not work when minor versioning is enabled, because
SharePoint does not provide a way to limit the number of minor versions for a document.

Another pitfall associated with versioning is the introduction of user adoption headaches and frustra-
tion because of the way that versioning is implemented. One thing that users fi nd annoying is the way
that SharePoint numbers each version. Major and minor versions are numbered differently. Major ver-
sions start with 1, while minor versions start with 0. So the fi rst major version of a document is version
1.0, but if minor versions are enabled, then the fi rst version is 0.1. This can be confusing for many users.

Another point of frustration for users is the fact that if a version limit has been applied, then older ver-
sions are replaced with new versions once the limit has been reached. Often, users are not aware of
such limits that have been imposed by administrators. Furthermore, the limits can be changed at any
time. This can cause problems, especially in highly collaborative environments, where some users may
rely on the ability to roll back to an older version only to fi nd that the prior content has been lost. So if
you’ve set it to keep fi ve versions, users may not realize that by creating a new version, they are auto-
matically deleting the oldest version once they get up to fi ve. That may mean that you have to educate
the users about how many versions they actually have available to them. And you may have to take
some additional care balancing the need to control the growth of the content database versus control-
ling how the users interact with it. When the round-robin effect happens, it’s a permanent deletion.
SharePoint does not move the document into the Recycle Bin, which would have been useful in those
cases in which the user does not know about the deletion and then creates a new version, thereby losing
the oldest version.

Also, with the version limits, even if you start from scratch and you set the limit, if that limit is lower
than the versions that already exist for an item, the versioning behavior becomes non-intuitive.
Although the limit is set to save, say, three documents, if there were already fi ve versions in existence
when you set that limit, SharePoint will keep those fi ve versions until you create the sixth. At that time,
it will delete the oldest versions so that the total number of versions (excluding the current version)
equals the new version limit.

Another issue is related to content approval. If approval is enabled, then moderation is also enabled,
and that forces a new version to be created immediately for pending items whether or not they have
been approved or rejected. As an example, let’s confi gure a document library to enable versioning and
adjust the default view so that the version number is displayed. Then we’ll turn on content approval so
that the approval status is also displayed. Figure 3-12 shows an existing document at version 1.0.

If we then edit the item, the approval status changes to Pending and a new version is created, as shown
in Figure 3-13. This makes sense because SharePoint needs to retain the ability to roll back the item if it
is ultimately rejected. It also relieves the SharePoint code from having to deal with differences between
the proposed changes and the original bits. The problem is it doesn’t actually perform the rollback.

87620c03.indd 6987620c03.indd 69 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

70

Chapter 3: SharePoint Tools for Managing Records

Notice what happens if we make changes to the document and then reject the item. The version number
stays at 2.0, and the content does as well. It does not revert back to the previous version. Consequently,
we end up with a duplicate copy of the document in its prior state.

Figure 3-12: Approved list item.

Figure 3-13: Item rejected but version remains.

The absence of a differencing engine can cause other problems, because SharePoint has no way to
determine which bits are “good” and which bits are expendable. Consider the simple case of opening
the Edit view of a document without actually making any changes and then pressing the OK button
anyway. SharePoint dutifully increments the version (and copies the bits) whenever the OK button is
clicked on the Edit page without actually comparing the bits to determine if any changes were made.
Figure 3-14 shows the version history for a rather large document after simply clicking the OK button
on the Edit page without actually making any changes. In this case, each exploratory click cost more
than half a megabyte in storage space.

This is where the object model comes into play. We can use the Versioning API to clean up these kinds
of issues where too many versions exist, the content database starts to explode, and performance starts
to degrade. This can be diffi cult code to write, however, because again we have the problem of needing
to examine the bits of each item to determine the proper course of action. At a minimum, we can pro-
vide an administrator with discovery tools so that informed choices can be made.

87620c03.indd 7087620c03.indd 70 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

71

Chapter 3: SharePoint Tools for Managing Records

Figure 3-14: Version history after null edits.

Programmatic Versioning
Uses for programmatic versioning include:

Fine-tuning the content database ❑

Managing large collections of documents ❑

Fixing versioning problems ❑

So how do we deal with these issues? There are a lot of different scenarios where it may become neces-
sary to programmatically adjust the version history. We might need to delete versions that were created
unnecessarily. Of course, we can do that piecemeal by painstakingly examining each document and
then deciding which version to keep. Or we could create a set of versioning tools that help to identify
duplicate items (by comparing bits) and then automatically archive or eliminate them. We could have
another set of routines that search for list items or documents that match a given versioning profi le.

As an example, we might create a routine that calculates the average number of versions that exist for
all documents in a document library. We could use this to create a web part that shows a list of the
document libraries in a site along with the average number of versions being kept for documents in that
library. Yet another idea might be to retrieve a list of all documents that have a greater than average ver-
sion count. The basic concept is to build a versioning component library for calculating versioning met-
rics so we can use them to construct web parts and utilities that deal with version-specifi c issues in the
content database. Based on these metrics, we can make more informed choices about setting the correct
versioning limits, determining whether minor versions are really required, and so on.

In order to build a versioning component library, we need to defi ne a versioning API. In this section,
we’ll develop the API and then build a set of versioning components and add them to our ECM2007 class
library. These components will focus on calculating versioning metrics for lists and list items. To make our
components available to any code that deals with versioning, we’ll declare them as extension methods.

87620c03.indd 7187620c03.indd 71 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

72

Chapter 3: SharePoint Tools for Managing Records

C# 3.0 Extension Methods
Version 3.0 of the C# language introduced a new feature called extension methods, which are static meth-
ods that can be invoked using instance method syntax. This allows new functionality to be added to
existing classes without modifying the assembly in which those classes are defi ned. In order to use
extension methods in your code, you need to install Microsoft .NET Framework 3.5.

As an example, the following code adds a ToStringEx method to the SPListItem class:

namespace ECM2007.Extensions
{
 using Microsoft.SharePoint;

 public static class SPListItemEx
 {
 public static string ToStringEx(this SPListItem item)
 {
 return string.Format(“Extended string for item: {0}”,
 item.ToString());
 }
 }
}

Extension methods are declared by specifying the this keyword as the fi rst parameter of the method.
To call the method, we add a using statement to reference the containing namespace and then simply
invoke it as though it were a part of the SPListItem class, like so:

public static void DumpItems(SPList list)
{
 foreach (SPListItem item in list.Items)
 Console.WriteLine(item.ToStringEx());
}

Calculating Version Metrics
It is useful to create a set of routines that fi nd list items or documents that match a given versioning
profi le. This makes it possible to focus in on the versioning metrics and decide further actions to take
for a given set of list items. As an example, when a document library has been up-and-running for a
while, it may not be obvious how it is being used. Having a set of routines that calculate, for instance,
the average number of versions for all documents in the library makes it possible to produce a report
showing a list of the items that have an unusually high number of major or minor versions. Such a
report could then be used to either trim the document library or move those documents to a different
one that is perhaps designed to handle the higher collaboration frequency.

This set of routines will be applied to list items instead of fi les so they can be used with the
SPListItemCollection class. This class is a good choice to extend because it can be retrieved either
directly from a list or indirectly as the return value of a CAML query, making it easy to incorporate ver-
sioning metrics into web parts and other controls. Since they are dealing with list items, the fi rst thing
to do is extend the SPListItemVersion class so that it’s not necessary to parse the version label for
every version instance referenced. This class is located in the Versioning folder of the ECM2007 project.

public static class SPListItemVersionEx
{
 /// <summary>

87620c03.indd 7287620c03.indd 72 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

73

Chapter 3: SharePoint Tools for Managing Records

 /// Returns the major version number as an integer.
 /// </summary>
 public static int GetMajorVersionNumber(this SPListItemVersion version)
 {
 return Int32.Parse(version.VersionLabel.Split(‘.’)[0]);
 }

 /// <summary>
 /// Returns the minor version number as an integer.
 /// </summary>
 public static int GetMinorVersionNumber(this SPListItemVersion version)
 {
 return Int32.Parse(version.VersionLabel.Split(‘.’)[1]);
 }
}

There is a separate class called SPFileVersion that is used to retrieve version information for the fi les
attached to a list item. Whereas the SPListItemVersion class includes the metadata fi elds associated
with each item, the SPFileVersion class includes the array of bytes associated with the fi le. This is
not just the new bytes (or delta) associated with a particular version, but a full copy of the original fi le,
including both the old and the new bytes.

Next, a couple of methods are needed for the SPListItem class to count versions and to determine the
sizes of each copy of the fi les associated with each version. Additional routines can then be constructed
using these as a base.

public static class SPListItemEx
{
 /// <summary>
 /// Returns the highest version number for the item.
 /// </summary>
 /// <param name=”item”>the list item to be tested</param>
 /// <param name=”level”>optional version level to test</param>
 /// <returns>the number of matching versions</returns>
 public static int GetVersionCount(
 this SPListItem item, params SPFileLevel[] level)
 {
 int result = 0;
 if (item.File != null && item.File.Versions.Count > 0)
 {
 SPFileLevel targetLevel = SPFileLevel.Published;

 if (level != null && level.Length > 0)
 targetLevel = level[0];

 foreach (SPListItemVersion version in item.Versions)
 {
 int versionNumber = 0;
 if (version.Level == targetLevel)
 {
 switch (targetLevel)
 {
 case SPFileLevel.Published:
 versionNumber = version.GetMajorVersionNumber();
 break;

87620c03.indd 7387620c03.indd 73 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

74

Chapter 3: SharePoint Tools for Managing Records

 case SPFileLevel.Draft:
 versionNumber = version.GetMinorVersionNumber();
 break;
 }
 }
 if (versionNumber > result)
 result = versionNumber;
 }
 }
 return result;
 }

 /// <summary>
 /// Returns the size in bytes by version for the item.
 /// </summary>
 /// <param name=”item”>the list item to be tested</param>
 /// <param name=”level”>optional version level to test</param>
 public static long GetByteCount(
 this SPListItem item, params SPFileLevel[] level)
 {
 long result = 0;
 if (item.File != null)
 {
 if (level == null || level.Length == 0)
 result = item.File.Length;
 else
 {
 foreach (SPFileVersion version in item.File.Versions)
 {
 if (version.Level == level[0])
 result += version.File.Length;
 }
 }
 }
 return result;
 }
}

To make it easier to call these routines, we use the params keyword for the SPFileLevel array so
that the level parameter is optional. Although it is declared as an array, the code only references the
fi rst element if provided to match versions at that level.

Listing 3-8 shows a set of routines that extend the SPListItemCollection class to provide versioning
metrics. This class fi le is also located in the Versioning folder of the ECM2007 project.

Listing 3-8: SPListItemCollectionEx.cs

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;

87620c03.indd 7487620c03.indd 74 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

75

Chapter 3: SharePoint Tools for Managing Records

using Microsoft.SharePoint;

namespace ECM2007.Versioning
{
 /// <summary>
 /// Extension methods for SPListItemCollection.
 /// </summary>
 public static class SPListItemCollectionEx
 {
 /// <summary>
 /// Determines the highest version number of all items in the collection.
 /// </summary>
 /// <param name=”items”>a collection of list items</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the maximum number of versions in the collection</returns>
 public static int GetHighestVersion(
 this SPListItemCollection items, SPFileLevel level)
 {
 int result = 0;
 foreach (SPListItem item in items)
 {
 int count = item.GetVersionCount(level);
 if (count > result)
 result=count;
 }
 return result;
 }

 /// <summary>
 /// Computes the average number of versions in the collection.
 /// </summary>
 /// <param name=”items”>a collection of list items to be tested</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the average numer of versions in the collection</returns>
 public static double GetAverageVersionCount(
 this SPListItemCollection items, SPFileLevel level)
 {
 double result = 0.0;
 int count = items.Count;
 if (count > 0)
 {
 foreach (SPListItem item in items)
 result += item.GetVersionCount(level);
 result /= count;
 }
 return result;
 }

 /// <summary>
 /// Computes the total number of versions contained in the collection.
 /// </summary>
 /// <param name=”items”>list containing items to be tallied</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the total number of versions in all items of the

Continued

87620c03.indd 7587620c03.indd 75 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

76

Chapter 3: SharePoint Tools for Managing Records

 list</returns>
 public static int GetVersionCount(
 this SPListItemCollection items, SPFileLevel level)
 {
 int result = 0;
 foreach (SPListItem item in items)
 result += item.GetVersionCount(level);
 return result;
 }

 /// <summary>
 /// Computes the size of the largest version in the collection.
 /// </summary>
 /// <param name=”items”>a collection of list items to be tested</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the size of the largest version in the collection</returns>
 public static long GetMaxSize(
 this SPListItemCollection items, SPFileLevel level)
 {
 long result = 0;
 foreach (SPListItem item in items)
 {
 long size = item.GetByteCount(level);
 if (size > result)
 result = size;
 }
 return result;
 }

 /// <summary>
 /// Computes the size of the smallest version in the collection.
 /// </summary>
 /// <param name=”items”>a collection of list items to be tested</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the size of the smallest version in the collection</returns>
 public static long GetMinSize(
 this SPListItemCollection items, SPFileLevel level)
 {
 long result = items.Count > 0 ? long.MaxValue : 0;
 foreach (SPListItem item in items)
 {
 long size = item.GetByteCount(level);
 if (size > 0 && size < result)
 result = size;
 }
 return result;
 }

 /// <summary>
 /// Computes the total bytes used by all versions in the collection.
 /// </summary>
 /// <param name=”items”>list containing items to be tested</param>

Listing 3-8: SPListItemCollectionEx.cs (continued)

87620c03.indd 7687620c03.indd 76 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

77

Chapter 3: SharePoint Tools for Managing Records

 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the total bytes used by matching versions of all
 /// items in the collection</returns>
 public static long GetTotalSize(
 this SPListItemCollection items, SPFileLevel level)
 {
 long result = 0;
 foreach (SPListItem item in items)
 result += item.GetByteCount(level);
 return result;
 }

 /// <summary>
 /// Computes the average number of bytes used by all versions in the
 collection.
 /// </summary>
 /// <param name=”items”>list containing items to be tested</param>
 /// <param name=”level”>optional level of items to test</param>
 /// <returns>the average bytes used by matching versions of all items
 /// in the collection</returns>
 public static double GetAverageSize(
 this SPListItemCollection items, SPFileLevel level)
 {
 double result = 0;
 int count = items.GetVersionCount(level);
 if (count > 0)
 {
 foreach (SPListItem item in items)
 result += item.GetByteCount(level);
 result /= count;
 }
 return result;
 }

 /// <summary>
 /// Returns a collection of all items with an above average number of
 versions.
 /// </summary>
 /// <param name=”items”>list containing items to be retrieved</param>
 /// <param name=”level”>optional level of items to include</param>
 /// <returns>collection of items with matching version counts
 /// above the average for the list</returns>
 public static List<SPListItem> GetItemsByVersionAboveAverage(
 this SPListItemCollection items, SPFileLevel level)
 {
 List<SPListItem> result = new List<SPListItem>();
 double averageVersions = items.GetAverageVersionCount(level);
 foreach (SPListItem item in items)
 {
 if (item.GetVersionCount(level) > averageVersions)
 result.Add(item);
 }
 return result;

Continued

87620c03.indd 7787620c03.indd 77 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

78

Chapter 3: SharePoint Tools for Managing Records

 }

 /// <summary>
 /// Returns all items with a below average number of versions.
 /// </summary>
 /// <param name=”items”>list containing items to be retrieved</param>
 /// <param name=”level”>optional level of items to include</param>
 /// <returns>collection of items with matching version counts
 /// below the average for the list</returns>
 public static List<SPListItem> GetItemsByVersionBelowAverage(
 this SPListItemCollection items, SPFileLevel level)
 {
 List<SPListItem> result = new List<SPListItem>();
 double averageVersions = items.GetAverageVersionCount(level);
 foreach (SPListItem item in items)
 if (item.GetVersionCount(level) < averageVersions)
 result.Add(item);
 return result;
 }

 /// <summary>
 /// Returns all items with an above average number of bytes.
 /// </summary>
 /// <param name=”items”>list containing items to be retrieved</param>
 /// <param name=”level”>optional level of items to include</param>
 /// <returns>collection of items with matching version sizes
 /// above the average for the list</returns>
 public static List<SPListItem> GetItemsBySizeAboveAverage(
 this SPListItemCollection items, SPFileLevel level)
 {
 List<SPListItem> result = new List<SPListItem>();
 double averageSize = items.GetAverageSize(level);
 foreach (SPListItem item in items)
 if (item.GetByteCount(level) > averageSize)
 result.Add(item);
 return result;
 }

 /// <summary>
 /// Returns all items with a below average number of bytes.
 /// </summary>
 /// <param name=”items”>list containing items to be retrieved</param>
 /// <param name=”level”>optional level of items to include</param>
 /// <returns>collection of items with matching version sizes
 /// below the average for the list</returns>
 public static List<SPListItem> GetItemsBySizeBelowAverage(
 this SPListItemCollection items, SPFileLevel level)
 {
 List<SPListItem> result = new List<SPListItem>();
 double averageSize = items.GetAverageSize(level);
 foreach (SPListItem item in items)
 if (item.GetByteCount(level) < averageSize)
 result.Add(item);

Listing 3-8: SPListItemCollectionEx.cs (continued)

87620c03.indd 7887620c03.indd 78 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

79

Chapter 3: SharePoint Tools for Managing Records

 return result;
 }

 /// <summary>
 /// Returns all items with a version count above a specified number.
 /// </summary>
 public static List<SPListItem> GetItemsByVersionAboveTarget(
 this SPListItemCollection items, SPFileLevel level, int target)
 {
 List<SPListItem> result = new List<SPListItem>();
 foreach (SPListItem item in items)
 if (item.GetVersionCount(level) > target)
 result.Add(item);
 return result;
 }

 /// <summary>
 /// Returns all items with a version count below a specified number.
 /// </summary>
 public static List<SPListItem> GetItemsByVersionBelowTarget(
 this SPListItemCollection items, SPFileLevel level, int target)
 {
 List<SPListItem> result = new List<SPListItem>();
 foreach (SPListItem item in items)
 if (item.GetVersionCount(level) < target)
 result.Add(item);
 return result;
 }
 }
}

Listing 3-9 shows how the extension methods are used. All of the methods are declared in the
ECM2007.Versioning namespace. Using them requires the appropriate using statement and a
SPListItemCollection instance. The sample program shown in Listing 3-9 accepts the address
of a SharePoint site or list and then calls the ProcessList routine for each matching list instance.

This program is included in the downloadable code for the book in the project ECM2007
.VersioningTestConsole. To use it on your own system, you will need to change the command-line
argument in the project properties so that it references a site on your local SharePoint farm.

Listing 3-9: VersioningTestConsole.cs

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Linq;
using System.Text;
using Microsoft.SharePoint;
using ECM2007.Versioning;

namespace ECM2007.VersioningTestConsole
{
 class Program

Continued

87620c03.indd 7987620c03.indd 79 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

80

Chapter 3: SharePoint Tools for Managing Records

 {
 /// <summary>
 /// Returns the program usage banner.
 /// </summary>
 static string Usage
 {
 get
 {
 string name = Assembly.GetExecutingAssembly().GetName().Name;
 Console.WriteLine(“Usage: {0} -url <url>”, name);
 Console.WriteLine(“”);
 Console.WriteLine(“-url\t\tthe url of a SharePoint site or list”);
 Console.WriteLine(“”);
 return “Invalid number of arguments”;
 }
 }

 /// <summary>
 /// Extracts arguments from the command line.
 /// </summary>
 static bool GetArgs(string[] args, ref string url)
 {
 url = null;
 StringComparison comparisonType =
 StringComparison.InvariantCultureIgnoreCase;

 for (int i = 0; i < args.Length - 1; i++)
 {
 if (args[i].Equals(“-url”, comparisonType))
 url = args[i + 1];
 }

 return !string.IsNullOrEmpty(url);
 }

 /// <summary>
 /// Entry Point
 /// </summary>
 /// <param name=”args”></param>
 static void Main(string[] args)
 {
 string url = “http://localhost:108”;

 // Extract arguments and abort if invalid.
 if (!GetArgs(args, ref url))
 throw new System.Exception(Usage);

 // Open the SharePoint site collection...
 using (SPSite siteCollection = new SPSite(url))
 {
 Console.WriteLine(“Opening site: {0} “, siteCollection.Url);

 // Get the root web...

Listing 3-9: VersioningTestConsole.cs (continued)

87620c03.indd 8087620c03.indd 80 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

81

Chapter 3: SharePoint Tools for Managing Records

 using (SPWeb site = siteCollection.OpenWeb())
 {
 Console.WriteLine(“Opening web: {0}”, site.Title);

 // Get the target list...
 SPList targetList = site.GetList(url);
 if (targetList != null)
 ProcessList(targetList);
 else foreach (SPList list in site.Lists)
 ProcessList(list);
 }
 }

 Console.WriteLine(“”);
 Console.WriteLine(“Press any key...”);
 Console.ReadKey();
 }

 /// <summary>
 /// Processes an individual list.
 /// </summary>
 /// <param name=”list”></param>
 static void ProcessList(SPList list)
 {
 Console.WriteLine(“Processing list: {0}”, list.Title);

 Console.WriteLine(“Highest major version = {0}”,
 list.Items.GetHighestVersion(SPFileLevel.Published));
 Console.WriteLine(“Highest minor version = {0}”,
 list.Items.GetHighestVersion(SPFileLevel.Draft));

 Console.WriteLine(“Number of major versions = {0}”,
 list.Items.GetVersionCount(SPFileLevel.Published));
 Console.WriteLine(“Number of minor versions = {0}”,
 list.Items.GetVersionCount(SPFileLevel.Draft));

 Console.WriteLine(“Average major versions = {0}”,
 list.Items.GetAverageVersionCount(SPFileLevel.Published));
 Console.WriteLine(“Average minor versions = {0}”,
 list.Items.GetAverageVersionCount(SPFileLevel.Draft));

 Console.WriteLine(“Maximum major version size = {0}”,
 list.Items.GetMaxSize(SPFileLevel.Published));
 Console.WriteLine(“Maximum minor version size = {0}”,
 list.Items.GetMaxSize(SPFileLevel.Draft));

 Console.WriteLine(“Minimum major version size = {0}”,
 list.Items.GetMinSize(SPFileLevel.Published));
 Console.WriteLine(“Minimum minor version size = {0}”,
 list.Items.GetMinSize(SPFileLevel.Draft));

 Console.WriteLine(“Total size of all major versions = {0}”,
 list.Items.GetTotalSize(SPFileLevel.Published));

Continued

87620c03.indd 8187620c03.indd 81 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

82

Chapter 3: SharePoint Tools for Managing Records

 Console.WriteLine(“Totals size of all minor versions = {0}”,
 list.Items.GetTotalSize(SPFileLevel.Draft));

 Console.WriteLine(“Average size of major versions = {0}”,
 list.Items.GetAverageSize(SPFileLevel.Published));
 Console.WriteLine(“Average size of minor versions = {0}”,
 list.Items.GetAverageSize(SPFileLevel.Draft));

 List<SPListItem> items =
 list.Items.GetItemsByVersionAboveAverage(SPFileLevel.Published);
 Console.WriteLine(
 “{0} items containing greater than average major versions”,
 items.Count);

 items = list.Items.GetItemsByVersionBelowAverage
 (SPFileLevel.Published);
 Console.WriteLine(
 “{0} items containing fewer than average major versions”,
 items.Count);
 }
 }
}

Figure 3-15 shows the collection of documents in a document library with different versions created.

Figure 3-15: A library of versioned documents.

Listing 3-9: VersioningTestConsole.cs (continued)

87620c03.indd 8287620c03.indd 82 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

83

Chapter 3: SharePoint Tools for Managing Records

Content Security
SharePoint permissions control everything that can be done to content within the SharePoint environ-
ment. In this section, we’ll explore SharePoint permissions and permission levels and see how they can
be applied from a content life-cycle perspective, which puts additional demands on the granularity
of permission sets. First, we need a basic understanding of how SharePoint permissions work and the
available API for manipulating them.

SharePoint Permissions
There are 33 individual permissions that can be attached to objects in SharePoint. These permissions are
divided into the following three categories and defi ne what actions can be taken for any given object:

Personal Permissions (3) ❑

List Permissions (12) ❑

Site Permissions (18) ❑

Permissions can be grouped into named collections called permission levels as a way to assign them to
what are essentially roles within the SharePoint object model. Permission levels can be assigned to users,
groups, sites, lists, or list items using an SPRoleAssignment object. SharePoint optimizes the allocation
of permission masks by allowing them to be inherited. By default, inheritance is enabled for each item.
The following code illustrates the steps involved in assigning unique permissions to an object:

public static class RoleAssignmentSample
{
 public static void AssignPermissionLevel(SPListItem item,
 string groupName, string roleDefi nitionName)
 {
 // Get the group whose permissions are to be modifi ed for the item.
 SPGroup group = item.Web.SiteGroups[groupName];

 // Create a new role assignment object for the group.
 SPRoleAssignment roleAssignment =
 new SPRoleAssignment(group as SPPrincipal);

 // Break permission inheritance for the item, since
 // it will now have its own permissions. Pass ‘true’
 // to copy any existing role assignments.
 item.BreakRoleInheritance(true);

 // Bind the role assignment to the new permission level
 roleAssignment.RoleDefi nitionBindings.Add(
 item.Web.RoleDefi nitions[roleDefi nitionName]);

 // apply the new role assignment to the item
 item.RoleAssignments.Add(roleAssignment);
 }
}

87620c03.indd 8387620c03.indd 83 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

84

Chapter 3: SharePoint Tools for Managing Records

As you can see in the code, in order to attach unique permissions to an item, permission inheritance
must be broken. This is done by an explicit call that tells SharePoint to attach the permissions directly to
the object instead of determining the permissions based on the object’s parent.

There are nine default permission levels as shown in the following table, and there are four default
SharePoint groups: Owner, Member, Visitor, and Viewer.

Whenever a site collection is created through the SharePoint user interface, a special method named
SPWeb.CreateDefaultAssociatedGroups is called on the root web of the site collection. This
method takes care of creating the default groups for the web site. Note that this method is not called
when creating a site collection using the STSADM command-line utility.

Level Description

Full Control This permission level has all permissions enabled and is assigned to the
Owners group by default.

Design This allows users to create lists and document libraries, edit pages, and apply
thematic elements like borders and stylesheets using tools like SharePoint
Designer 2007.

Contribute This allows items to be added, edited, and deleted.

Approve This enables users to edit and approve pages, documents, and list items.

Manage Hierarchy This enables users to create sites and to edit pages, documents, and list items.

Read This provides read-only access to the site, which allows users or groups to
view items and pages, open items, and view documents.

Restricted Read This permission allows users to view the content of pages and documents, but
not prior versions. This is intended to allow a wide audience of users to see
only the current version of special content like company policies.

View Only This permission is more restrictive than Read permission and controls whether
the user can open the fi le in a client application if a server-side viewer is avail-
able. If so, then the user cannot open the fi le in the native application.

Limited Access The purpose of this permission level is to grant the minimal set of permissions
possible for a specifi c object without granting access to everything in the site.
It is therefore not possible to assign it directly to users or groups. Instead, it is
assigned automatically by SharePoint when you grant access to an object that
inherits permissions from another object that the user or group does not have
access to.

Next, we will examine more closely the three categories of permissions.

87620c03.indd 8487620c03.indd 84 9/3/09 10:32:11 AM9/3/09 10:32:11 AM

85

Chapter 3: SharePoint Tools for Managing Records

Personal Permissions
The three personal permissions are focused on the ability to keep private information and the ability
to show private web parts on a Web Part page. These permissions control each user’s ability to interact
with the section of the content database that is reserved for personal data. As an example, a web part
developer can mark individual properties as personalizable, which causes the web part manager object
on the page to reserve space in the database for a copy of each property value to be stored uniquely
for each user. Thus, a web part that displays a personal zip code would display a different zip code for
every user visiting the page. Removing the SPBasePermissions.UpdatePersonalWebParts would
disallow this capability.

List Permissions and Groups
SharePoint groups are defi ned in the site collection and can be assigned to multiple permission
levels. Whenever a new site collection is created, then the default set of groups is created automati-
cally. Figuring out which permission levels are associated with each group can be confusing at fi rst.
Figure 3-16 shows how the 12 list permissions are mapped to the default permission levels and groups.

Owner

Create Alerts

Full
Control

View Pages

Delete Versions

View Versions

Open Items

Approve Items

View Items

Delete Items

Edit Items

Add Items

Override Check-Out

Manage Lists
Visitor

Limited
Access

View
Only

Restricted
Read

Read

Member

Design

Contribute

Approve

Manage
Hierarchy

Figure 3-16: List permissions and groups.

87620c03.indd 8587620c03.indd 85 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

86

Chapter 3: SharePoint Tools for Managing Records

Site Permissions and Groups
There is a similar mapping for the 18 site permissions, as shown in Figure 3-17.

Visitor

Owner

Member
Open Web Sites, Lists & FoldersLimited

Access

View
Only

Restricted
Read

Read

Full
Control

Design

Manage
Hierarchy

Approve

Contribute

Edit Personal User Information

Use Client Integration Features

Use Remote Interfaces

Manage Alerts

Browse User Information

Enumerate Permissions

View Site Pages

Use Self-Service Site Creation

Browse Directories

Create Groups

Apply Stylesheets

Apply Themes & Borders

Add & Customize Pages

Manage Web Site

Create Subsites

View Usage Data

Manage Permissions

Figure 3-17: Site permissions and groups.

Permission Dependencies
There’s one more thing to think about related to permissions. It is sometimes necessary to create a
custom role defi nition for a particular user or group. When doing so, it is important to understand
permission dependencies, because that will determine the effective permissions being granted. With
the exception of the Open permission, which grants the ability to open web sites, lists, and folders to
access their contents, every SharePoint permission depends on one or more of the other permissions.
This means, for example, that if you grant the “Manage Alerts” site permission, you are also automati-
cally granting the “Create Item Alerts,” “View List Items,” and “Open List Items” list permissions as
well as the “View Site Pages” and “Open” site permissions. Figure 3-18 illustrates the interdependencies
between each of the 33 permissions.

87620c03.indd 8687620c03.indd 86 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

87

Si
te

 P
er

m
is

si
on

s

Li
st

 P
er

m
is

si
on

s

Pe
rs

on
al

 P
er

m
is

si
on

s

Vi
ew

 U
sa

ge
Da

ta
Ap

pr
ov

e
Li

st
 It

em
s

M
an

ag
e

Pe
rs

on
al

Vi
ew

s

M
an

ag
e

Li
st

s

Vi
ew

Li
st

 It
em

s

Ed
it

Li
st

 It
em

s
De

le
te

Ve
rs

io
ns

Up
da

te
Pe

rs
on

al
 W

eb
Pa

rts

Ad
d/

Re
m

ov
e

Pr
iv

at
e

W
eb

Pa
rts

Ad
d

Li
st

 It
em

s
De

le
te

Li
st

 It
em

s
Cr

ea
te

Ite
m

 A
le

rts
Ov

er
rid

e
Ch

ec
k-

Ou
t

M
an

ag
e

Al
er

ts
Cr

ea
te

Gr
ou

ps

Br
ow

se
 U

se
r

In
fo

rm
at

io
n

Ed
it

Pe
rs

on
al

 U
se

r
In

fo
rm

at
io

n

M
an

ag
e

Pe
rm

is
si

on
s

Op
en

 W
eb

Si
te

s,
 L

is
ts

 &
Fo

ld
er

s

Us
e

Re
m

ot
e

In
te

rf
ac

es

Us
e

Cl
ie

nt
In

te
gr

at
io

n
Fe

at
ur

es

Vi
ew

Ap
pl

ic
at

io
n

Pa
ge

s

Br
ow

se
Di

re
ct

or
ie

s

Us
e

Se
lf-

Se
rv

ic
e

Si
te

Cr
ea

tio
n

Ap
pl

y
Th

em
es

 &
Bo

rd
er

s

Vi
ew

Si
te

 P
ag

es
Ap

pl
y

St
yl

e
Sh

ee
ts

Cr
ea

te
Su

bs
ite

s
M

an
ag

e
W

eb
 S

ite

Ad
d

&
Cu

st
om

ize
Pa

ge
s

Vi
ew

Ve
rs

io
ns

En
um

er
at

e
Pe

rm
is

si
on

s
Op

en
Li

st
 It

em
s

Fi
gu

re
 3

-1
8

: P
er

m
is

si
on

 d
ep

en
de

nc
ie

s.

87620c03.indd 8787620c03.indd 87 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

88

Chapter 3: SharePoint Tools for Managing Records

Strategies for Controlling Access to Content
There are several strategies available for dealing with access control in the context of ECM. Ideally, we’d
like an end-to-end life-cycle strategy that is governed primarily by the roles involved and for what pur-
poses a given content element will be used. Unfortunately, there are technology limitations that force
design concessions, and the best we can hope for is a compromise.

Strategy Description

Role-Driven Identify roles and create groups.

Create and assign fi xed permission levels.

Move content between libraries to attach permissions to list items.

Content-Driven Associate roles with content types.

Assign item-level permissions using an event receiver or workfl ow activity.

Life-Cycle-Driven Identify permission levels at each life-cycle stage for each role.

Create a separate document library for each life-cycle stage.

Attach a permission manifest to each document library.

Assign item-level permissions in a content type event receiver.

In order to apply a role-driven strategy whereby content is moving through different document librar-
ies at different stages in its life cycle, there would have to be a mechanism for attaching custom permis-
sion manifests to the document library so they could be retrieved programmatically. A content-driven
strategy would go one step further and assign permissions to each item by reinterpreting the manifest
at each stage. A life-cycle strategy would likely require a state-machine workfl ow to determine which
document libraries were needed, and when and what permissions were required for the items currently
residing in those document libraries.

There is a hidden limit of about 1,800 unique permissions per securable object, which is any object that
implements the Microsoft.SharePoint.ISecurableObject interface. This interface exposes
methods for determining the roles that a given object is assigned to, as well as the permissions of the
object. Permissions are assigned to securable objects using Access Control Lists (ACLs) that are man-
aged by the operating system. Since there is a fi nite number of ACLs available in the system, it means
there is a limit to the number of unique permissions.

Role-Driven Strategy
If we’re pursuing a role-driven strategy using artifacts from a role/activity modeling exercise, we
can easily identify the roles, defi ne the groups, and determine the fi xed permission levels. In order
to assign the permission levels correctly, our strategy would be to move content between libraries
with different fi xed permission levels as the content moves through its life cycle. This might be a bit
non-intuitive for certain users who would then have to go to a different library in order to interact

87620c03.indd 8887620c03.indd 88 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

89

Chapter 3: SharePoint Tools for Managing Records

with the content, but it would solve the problem of being able to easily assign different permissions
at different stages of the life cycle, perhaps by using a workfl ow. However, this is a compromise. It
is a work-around for the limitation in the number of unique permissions that can be assigned to a
given document or list item. Typically, the limit is not reached because in most scenarios, you don’t
need to use unique permissions. Instead, you are using groups or permissions associated with a
library or permissions that are inherited from the parent object.

Content-Driven Strategy
Ideally when using a life-cycle model, you want to assign unique permissions so that the permis-
sions are driven at least in part by the needs of the content, and not by the current location in which
that content is stored. In this way, you could pursue a purely content-driven strategy for assigning
permissions. A content-driven strategy would simply associate the roles with the content type, break
permission inheritance, and then assign item-level permissions in an event receiver associated with
the content type at each stage of the content life cycle. This might work for scenarios involving less
than 1,800 users. But once you get to larger deployments, it again breaks because you hit the operat-
ing system limit on ACLs that can be attached to the objects required to implement the strategy.

Life-Cycle Access Control Strategy
The goal here is to move a document through different stages and change its required permissions
at each stage. Ideally, you want to handle this at the content-type level, but you don’t necessarily
want to change the content type of the document from one stage to the next. One enhancement to
this approach might be instead to assign a special property to each document library that contains
a permission manifest and then read the manifest in the content-type event receiver. Here again,
you may run into the hard limits imposed by the operating system because SharePoint will begin to
throw exceptions as it runs out of ACLs to assign.

Although these limits throw a monkey wrench into the life-cycle access control strategy, it may still
be possible to optimize the content life cycle by looking for ways to share permission sets and then
applying the unique permissions to a special list or document library that is used just to store those
items. Although it adds a layer of complexity, it may preserve the life-cycle strategy until the ACL
problem is fi xed or a better solution is found.

Figure 3-19 illustrates the life-cycle strategy using a “Statement of Work” document that must sup-
port multiple roles. During the creation phase, the sales team needs special permissions related to
creating the document and any associated resources. Once it moves into the review-and-edit phase,
the sales permissions are modifi ed to support review. At the same time, the engineering team needs
its own review-and-edit permissions. For approval and publication, the management team is given
access, and the permissions for the other teams are removed. Finally, the document is archived by
the original sales team, which takes fi nal control of its disposition.

87620c03.indd 8987620c03.indd 89 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

90

Chapter 3: SharePoint Tools for Managing Records

Create Review Publish Dispose

Contribute Sales Review

Engineering Review

Approve

Sales Disposition

Sales

Engineering

Management

Create Review
& Edit

Approve
& Publish

Dispose

Review
& Edit

Statement of Work

Figure 3-19: Role-based permission cycles.

Ultimately, we can envision a methodology based on an executable schema that identifi es every
content element that may be required for each cell of the matrix in Figure 3-19 and then provides
prescriptive guidance or even rules that govern the transformation of such content as it moves from
one cell to another.

Information Rights Management
To round out our discussion of content security, some attention must be given to the problem of control-
ling what happens to content after it leaves the server. It’s one thing to control content access while it is
stored electronically, but what about when it moves into client applications?

Information Rights Management (IRM) and Rights Management Services (RMS) are fully integrated
into the SharePoint platform. Although digital rights management affects all types of content, includ-
ing offi cial records, a full treatment of IRM/RMS is beyond the scope of this book. For a very detailed
overview of how to confi gure and use RMS/IRM in the SharePoint Environment, I highly recommend
Jason Medero’s chapter, “Using Information Rights Management,” in Real World SharePoint 2007:
Indispensable Experiences from 16 MOSS and WSS MVPs (ed. Scot Hillier; Wrox Press, 2007).

87620c03.indd 9087620c03.indd 90 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

91

Chapter 3: SharePoint Tools for Managing Records

In a Microsoft-only world, where everyone uses Microsoft Offi ce products to create and edit their
documents, it would be a simple matter of building in the appropriate hooks that would prevent users
from violating any content management policies that may govern a particular document instance.
Fortunately (or unfortunately, depending on your point of view), we don’t live in such a world.
Consequently, a more open set of tools is needed to manage the security of information once it leaves
the confi nes of the central repository.

Microsoft has provided an extensible platform for managing digital assets in a distributed environ-
ment. It’s called Rights Management Services (RMS). It runs on the server, providing a central point from
which client applications running on the same network can request a license (EUL) for any digital asset.
RMS can then correlate that license at a later time with other applications that need to determine what
rights to grant to users accessing the protected resource. The license fi le that is retrieved from the RMS
server is then used to encrypt and decrypt the content so that it can be safely transmitted across the
network. Once encrypted, the contents cannot be opened without contacting the RMS server and sup-
plying the correct credentials. This means that the RMS server acts as a central certifying authority that
controls what happens to the content wherever it may happen to end up.

While RMS provides the basic ability to grant permissions and validate license fi les, an additional layer is
needed to complete the Information Rights Management architecture within the SharePoint environment.
The ultimate goal is to enable the construction of protected document libraries that allow companies to
set up special repositories for sensitive documents and to control what happens to those documents when
they are checked out of the library. Whether using an Offi ce client application or an application from some
other vendor, it should not be possible for unauthorized users to view or print protected documents. It
should also be possible for administrators to modify the permissions associated with a given user without
touching the document itself, or the document library in which it is stored.

The basic principles of IRM in the SharePoint environment are as follows:

Files are not stored in an encrypted form, but are encrypted “on demand” when downloaded by ❑

using a public/private key pair obtained from the RMS server.

SharePoint limits the set of users and/or applications that can encrypt or decrypt fi les. ❑

The RMS server controls the rights of users to manipulate documents. ❑

SharePoint attaches a textual ❑ policy statement to documents so that end-users can be informed
about the policies that control their access to the protected content.

These basic principles ensure that information rights can be managed effectively in a distributed envi-
ronment. The fact that they are also referenced by a written policy statement attached to the document
further reinforces the user’s awareness of their responsibilities related to the content and also eliminates
the ignorance defense if the policy is broken.

87620c03.indd 9187620c03.indd 91 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

92

Chapter 3: SharePoint Tools for Managing Records

The Records Management Object Model
and API

Before we can build custom records management components to automate the management of offi -
cial records, we need to understand the tools provided as part of the SharePoint API for dealing with
records and related data structures. The components we need are located in the Microsoft.Office
.RecordsManagement namespace, which is implemented in the Microsoft.Office.Policy assem-
bly, located in the ISAPI folder of the 12 Hive. Figure 3-20 shows the primary components provided.

IRouter

RecordSeriesCache

RecordSeries

RecordSeriesCollection

OfficialFileResults

OfficialFileCore

Router

RouterResult

Figure 3-20: Records Management API core components.

The core API can be accessed either directly, by calling the public methods of the OfficialFileCore
class, or indirectly using the Offi cial File Web Service. The obvious advantage of using the Web Service
is that it enables both manual and automated fi le submission from client applications that may or may
not be running on a Windows platform. The not-so-obvious downside is that there are several assump-
tions made by the server-side API that require special attention in the client. In particular, as we saw
earlier in the chapter, the Records Center implementation relies on the submission of additional infor-
mation along with each incoming record so that it can properly handle things like routing, auditing,
and property promotion. Although it is possible to submit records without this additional informa-
tion, doing so may lead to inconsistent results. This is especially true if the same repository is set up
to receive manual submissions from SharePoint document libraries as well as automated submissions
directly from client applications.

Figure 3-21 shows the general processing sequence that occurs when a fi le is submitted. In the simple case,
where we are not supplying additional metadata, we can simply call the OfficialFileCore.SubmitFile
method. This is demonstrated in Listing 3-10 in the following section, “The Offi cial File Web Service.”

87620c03.indd 9287620c03.indd 92 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

93

Chapter 3: SharePoint Tools for Managing Records

Official File Submit

SubmitFile

Call Custom
Routers

SuccessCancelFurtherProcessingRejectFile

No

No

Yes

Yes

Yes

RouterResult?

Hold?Move to Final
Location

Store in
Holding Zone

Return
Success

Return
FileRejected

Return
MoreInformation

Valid?
Missing

Properties?
Return

Success

Return
UnknownError

SuccessContinueProcessing

No

Figure 3-21: Offi cial File submission sequence.

The Official File Web Service
The Offi cial File Web Service is another tool we can use to work with offi cial records. It is bundled auto-
matically with any Records Center site. It provides a standardized mechanism for managing a Records
Center remotely, and it is the same mechanism that is used by SharePoint itself to submit fi les to the
repository. You can see the Web Service defi nition by entering a URL based on the following pattern
into a web browser: http://<site url>/_vti_bin/officialfile.asmx.

Figure 3-22 shows the resulting page displayed in the browser.

87620c03.indd 9387620c03.indd 93 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

94

Chapter 3: SharePoint Tools for Managing Records

Figure 3-22: Offi cial File Web Service methods.

Using the methods of the Offi cial File Web Service, you can implement applications that run either on
the client or the server to submit documents to a repository or to determine what record types it cur-
rently supports. Connecting to the Web Service requires a web reference, which you can add to your
project by specifying the appropriate server and portal names as shown in Figure 3-23.

Figure 3-23: Adding an Offi cial File Web Service reference.

87620c03.indd 9487620c03.indd 94 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

95

Chapter 3: SharePoint Tools for Managing Records

When you add a web reference in this way, the Web Service address is hardcoded to the URL you enter
into the dialog, but you can change it later before invoking the web methods to target a different reposi-
tory, using code like the following:

OfficialFileService.RecordsRepository repository =
 new OfficialFileService.RecordsRepository();
repository.Credentials = System.Net.CredentialCache.DefaultCredentials;
repository.Url=GetRepositoryUrlFromUser(); // user-defined function to get the url

The GetRecordRoutingCollection web method returns an XML string containing the list of
available record routing types in the Records Center. The easiest way to parse the string is to use an
XPathNodeIterator. Typically, you will use code like the following to search through the list of avail-
able routing types for a match with the type of the document you are sending to the repository:

string rTypes = repository.GetRecordRoutingCollection();
string expr = “/RecordRoutingCollection/RecordRouting/Name”;

XPathDocument doc = new XPathDocument(new StringReader(rTypes));
XPathNavigator nav = doc.CreateNavigator();
XPathNodeIterator iter = nav.Select(expr);

while (iter.MoveNext())
{
 if (nameToMatch == iter.Current.Value)
 {
 /* prepare the file for submission */
 }
}

To submit a fi le to the repository using the Web Service, you must perform the following steps:

 1. Obtain the array of bytes that represent the fi le contents.

 2. Create an array of RecordsRepositoryProperty objects, and populate them with the name,
type, and value of properties you want to be stored along with the fi le.

 3. Send the data and the properties to the repository, and parse the result string to determine if the
submission was successful.

The code in Listing 3-10 illustrates the process.

Listing 3-10: Submitting a fi le using the Web Service

 /// <summary>
 /// Submits the file using the specified routing type.
 /// </summary>
 public string Submit(OfficialFileService.RecordsRepository repository,
 RoutingType routingType, string filePath)
 {

Continued

87620c03.indd 9587620c03.indd 95 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

96

Chapter 3: SharePoint Tools for Managing Records

 string result = “Not submitted”;
 try
 {
 // Retrieve the file data.
 byte[] data = File.ReadAllBytes(filePath);

 // Create a property array.
 OfficialFileService.RecordsRepositoryProperty[] props
 = new OfficialFileService.RecordsRepositoryProperty[1];

 // Specify some property data.
 props[0] = new OfficialFileWebServiceClient.OfficialFileService
 .RecordsRepositoryProperty();
 props[0].Name = “OriginalPath”;
 props[0].Type = “String”;
 props[0].Value = filePath;

 // Parse the xml result.
 string result = repository.SubmitFile(data, props,
 routingType.Name, filePath,
 WindowsIdentity.GetCurrent().Name);

 XPathNavigator nav =
 new XPathDocument(
 new StringReader(
 string.Format(“<OFS>{0}</OFS>”,result)
)).CreateNavigator();

 XPathNodeIterator iter = nav.Select(“/OFS/ResultCode”);
 result = iter.MoveNext() ?
 iter.Current.Value : “Error retrieving result code.”;
 }
 catch (Exception x)
 {
 result = x.Message;
 }
 return result;
 }

Summary
This chapter introduced the key components provided by SharePoint for building records management
solutions. We looked at the tools and components that are built into Windows SharePoint Services for
building collaborative applications as well as extended functionality provided by MOSS.

Document libraries are a specialization of SPList that add document templates and document prop-
erty promotion. Document libraries and lists support the same standard fi le I/O operations, providing

Listing 3-10: Submitting a fi le using the Web Service (continued)

87620c03.indd 9687620c03.indd 96 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

97

Chapter 3: SharePoint Tools for Managing Records

a consistent API based on folders, subfolders, and fi les. Document templates can be bound to server-
side (.ASPX) or client-side (.DOTX, etc.) fi les, enabling a variety of methods for ensuring that documents
are created properly.

Content types are one of the most important components in the SharePoint platform for creating con-
tent management solutions. The three primary components of content types are metadata (fi elds),
behavior (event receivers), and an extensible payload (XML documents). Together, they provide the
foundation for ECM on the SharePoint platform. Although content types support simple metadata
inheritance, they do not support behavioral inheritance, limiting their usefulness for building deep
taxonomies. A single document can be associated with only one content type at a time, which can affect
the extensibility of life-cycle-based solutions. Nevertheless, metadata drives all stages of the content life
cycle, and content types provide a way to control metadata throughout the content life cycle.

Versioning and check-in/check-out are key features that enable rollback, selective viewing, deletion, and
item-level tracking. Windows SharePoint Services follows a specifi c set of rules that determine when a
new version is created or an existing version is updated. Versioning can signifi cantly increase the size of
the content database and can also cause problems for users who are not accustomed to controlled collabo-
ration. The Windows SharePoint Services Versioning API enables many different kinds of reporting and
version management tools and web parts. Versioning complements check-in and check-out by managing
rollback for client-side editing.

SharePoint permissions and permission levels provide role-based security for sites, lists, document
libraries, folders, and list items. The role-based security model can be manipulated through code
attached to lists and to content types. Using event receivers, the role-based security model can be
extended to support content-driven and life-cycle-driven content security strategies. The static nature of
SharePoint permission levels means that life-cycle strategies must rely on external code to adjust user/
group permissions at each stage for a given item instance.

The MOSS Records Management API provides the high-level components and methods needed to
manipulate documents and list items as offi cial records. The key component is the OfficialFileCore
implementation, which includes the functionality needed to submit records to the repository. Working
in conjunction with the core API, the Offi cial File Web Service enables access to the same functionality
through web methods that can be called from either server or client applications.

87620c03.indd 9787620c03.indd 97 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

87620c03.indd 9887620c03.indd 98 9/3/09 10:32:12 AM9/3/09 10:32:12 AM

The MOSS 2007
Records Center

Although it is possible to use portions of the MOSS Records Management functionality, such as
information policy, separately from a Records Center site, most of the records management func-
tionality provided by MOSS is tied in some way to the Records Center site defi nition. As with
most of the extensions that MOSS introduces into the core Windows SharePoint Services environ-
ment, the Records Center site defi nition is activated as a feature. This provides a great window
into the underlying functionality. Analyzing the built-in Records Management feature provides
valuable insights into the way the records management components are organized and how they
are intended to work together.

The Records Management Feature
Within the 12/TEMPLATE/FEATURES folder, there is a single feature named Records
Management — shown in Listing 4-1 — that is responsible for setting up the custom actions
and information policies needed for records management.

Listing 4-1: Records Management feature

<Feature Id=”6d127338-5e7d-4391-8f62-a11e43b1d404”
 Title=”$Resources:RecordsManagementFeatureTitle”
 Description=”$Resources:RecordsManagementFeatureDescription”
 DefaultResourceFile=”dlccore”
 Version=”12.0.0.0”
 Hidden=”TRUE”
 Scope=”Farm”

Continued

87620c04.indd 9987620c04.indd 99 9/2/09 10:18:23 AM9/2/09 10:18:23 AM

100

Chapter 4: The MOSS 2007 Records Center

 ReceiverAssembly=”Microsoft.Office.Policy, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c”
 ReceiverClass=”Microsoft.Office.RecordsManagement.Internal.
 RecordsManagementFeatureReceiver”
 xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <ElementManifests>
 <ElementManifest Location=”Links.xml” />
 </ElementManifests>
</Feature>

While not specifi c to the Records Center site defi nition, this feature must be activated in order for much
of the Records Center functionality to work.

Note that the Records Management feature is a hidden, farm-scoped feature bound to an implementa-
tion of SPFeatureReceiver that overrides the FeatureActivated method to provision not only the
built-in policy features (e.g., the Expiration, Audit, Barcode, and Label policy features), but also the entire
Information Policy subsystem, including the timer jobs used for policy updates, expiration, and holds.

For more information about these timer jobs and how they operate, see Chapter 8.

The feature also installs the fi ve custom actions shown in Listing 4-2 that enable administrators to
access the Information Policy confi guration pages and to confi gure audit settings for the site collec-
tion. These links show up on the Site Settings menu and the List Settings, Content Type Settings, and
Content Type Template Settings pages. In addition, two custom actions are added to the Operations
page of Central Administration to support the confi guration of Information Policy reports and
Information Policy security.

Listing 4-2: Records Management custom actions

<Elements
 xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <!-- _Layouts/Settings -->
 <CustomAction
 Id=”PolicyTemplate”
 GroupId=”SiteCollectionAdmin”
 Location=”Microsoft.SharePoint.SiteSettings”
 RequireSiteAdministrator=”true”
 Sequence=”90”
 Title=”$Resources:dlccore, PolicyLinks_SiteSettings_PolicyTemplates;”>
 <UrlAction
 Url=”_layouts/Policylist.aspx” />
 </CustomAction>
 <CustomAction
 Id=”ListPolicySettings”
 GroupId=”Permissions”
 Location=”Microsoft.SharePoint.ListEdit”
 Rights=”ManageLists”

Listing 4-1: Records Management feature (continued)

87620c04.indd 10087620c04.indd 100 9/2/09 10:18:23 AM9/2/09 10:18:23 AM

101

Chapter 4: The MOSS 2007 Records Center

 Sequence=”100”
 Title=”$Resources:dlccore, PolicyLinks_ContentTypeSettings_PolicySettings;”>
 <UrlAction Url=”_layouts/policy.aspx?List={ListId}” />
 </CustomAction>
 <CustomAction
 Id=”ContentTypePolicySettings”
 GroupId=”General”
 Location=”Microsoft.SharePoint.ContentTypeSettings”
 Sequence=”100”
 Title=”$Resources:dlccore, PolicyLinks_ContentTypeSettings_PolicySettings;”>
 <UrlAction Url=”_layouts/policy.aspx”/>
 </CustomAction>
 <CustomAction
 Id=”ContentTypeTemplatePolicySettings”
 GroupId=”General”
 Location=”Microsoft.SharePoint.ContentTypeTemplateSettings”
 Sequence=”100”
 Title=”$Resources:dlccore, PolicyLinks_ContentTypeSettings_PolicySettings;”>
 <UrlAction Url=”_layouts/policy.aspx”/>
 </CustomAction>
 <CustomAction
 Id=”AuditSettings”
 GroupId=”SiteCollectionAdmin”
 Location=”Microsoft.SharePoint.SiteSettings”
 RequireSiteAdministrator=”true”
 Sequence=”70”
 Title=”$Resources:Reporting_AuditSettingsFeatureTitle;”>
 <UrlAction
 Url=”_layouts/AuditSettings.aspx” />
 </CustomAction>
 <!-- _Admin/Operations -->
 <CustomAction
 Id=”PolicyRptConfiguration”
 GroupId=”LoggingAndReporting”
 Location=”Microsoft.SharePoint.Administration.Operations”
 Sequence=”40”
 Title=”$Resources:dlccore, PolicyLinks_Operations_PolicyRptConfiguration;”>
 <UrlAction
 Url=”/_admin/PolicyRptConfig.aspx” />
 </CustomAction>
 <CustomAction
 Id=”PolicyFeaturesConfig”
 GroupId=”Security”
 Location=”Microsoft.SharePoint.Administration.Operations”
 Sequence=”50”
 Title=”$Resources:dlccore, PolicyLinks_Operations_PolicyFeaturesConfig;”>
 <UrlAction
 Url=”/_admin/Policyfeatures.aspx” />
 </CustomAction>
</Elements>

87620c04.indd 10187620c04.indd 101 9/2/09 10:18:23 AM9/2/09 10:18:23 AM

102

Chapter 4: The MOSS 2007 Records Center

The Records Center Site Definition
SharePoint Server 2007 includes a special site defi nition located at 12/TEMPLATE/SiteTemplates/offi le
that implements the default Records Repository. Figure 4-1 shows the basic structure of this site defi ni-
tion, which declares the core components of the MOSS Records Management infrastructure.

Configurations

Default

Basic Web
Parts

Three-State
Workflow

Team
Collaboration

Mobility
Redirect

Default
DWS

Document
Templates

DefaultBlank

Modules

Modules

NavBars

Record
Center

Features

Figure 4-1: Records Center site defi nition.

By itself, the site defi nition looks just like a normal team site. Although you might expect to see special
feature dependencies within the site defi nition that create the lists and other components that appear
whenever a site based on this defi nition is created, they are not there. Instead, the site defi nition only
includes the standard set of WSS features that enable web parts, team collaboration, mobile devices, and
the three-state workfl ow. In fact, there is only one confi guration that references a single default module.

So how are the components created? The answer is in the WEBTEMPOFFILE.XML fi le that specifi es
how the site defi nition is presented on the Create Site page in the SharePoint user interface. A portion of
the XML code for this template is shown below:

<Templates xmlns:ows=”Microsoft SharePoint”>
 <Template Name=”OFFILE” ID=”14483”>

 <Confi guration
 ID=”1”
 Title=”Records Center”
 Hidden=”FALSE”
 ImageUrl=”/_layouts/images/offi cialfi le.jpg”
 Description=”This template creates a site designed for records management.
 Records managers can confi gure the routing table to direct incoming

87620c04.indd 10287620c04.indd 102 9/2/09 10:18:23 AM9/2/09 10:18:23 AM

103

Chapter 4: The MOSS 2007 Records Center

 fi les to specifi c locations. The site prevents records from being
 modifi ed after they are added to the repository.”
 ProvisionAssembly=”Microsoft.Offi ce.Policy, Version=12.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c”
 ProvisionClass=”Microsoft.Offi ce.RecordsManagement.RecordsRepository.Setup”
 ProvisionData=””
 DisplayCategory=”Enterprise”
 VisibilityFeatureDependency=”9E56487C-795A-4077-9425-54A1ECB84282”
 >
 </Confi guration>

 </Template>
</Templates>

Notice the ProvisionAssembly and ProvisionClass attributes in the Configuration node with
ID=”1”. The Setup class declared in the Microsoft.Office.RecordsManagement
.RecordsRepository namespace supplies an implementation of SPWebProvisioningProvider
that SharePoint calls whenever an instance of the site is created.

For more information about using the SPWebProvisioningProvider class to customize the
creation of SharePoint sites, see David Mann’s article, “Customizing SharePoint Site Creation”
(www.sharepointbriefing.com/spcode/article.php/3792601/
Customizing-SharePoint-Site-Creation.htm).

The Setup class performs the following operations:

Applies the default confi guration of the OFFILE site defi nition to the new web site. ❑

Sets up the Records Repository Users Group. ❑

Sets up the global ❑ RecordSeriesCollection.

Sets up the holding zone for records that are missing required metadata. ❑

Sets up the holds processing layer. ❑

Prepares the workfl ow provisioning layer. ❑

Sets up the default record series for unclassifi ed records. ❑

Sets up a list to receive submitted records. ❑

Prepares the default expiration actions. ❑

Sets up the default links. ❑

Sets up the default validators and web parts. ❑

The following sections describe how these components are confi gured.

Records Center Components
The Records Center site defi nition installs several auxiliary components that come into play at various
stages in the processing of records. The following sections describe each component in detail.

87620c04.indd 10387620c04.indd 103 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

104

Chapter 4: The MOSS 2007 Records Center

The Records Repository Users Group
The Records Repository Users Group identifi es users who can submit records to the Records Center
using Web Services. If this group does not exist in the web site, it is created, and its group identifi er is
stored in the web site properties array under the key _dlc_RepositoryUsersGroup. If the key already
exists in the web site properties, it means that a previously provisioned site group may have been
removed, in which case the group is also re-created, and the new group identifi er is stored in place of
the old one. This logic ensures that the group exists after the provisioning process is complete.

The Record Routing Table
The Record Routing table is a generic list with the columns shown in the following table:

Column Type Description

Title Single line of text The record series name

Description Multiple lines of text Description of the series

Location Single line of text The name of the document library in which matching
records will be stored

Aliases Multiple lines of text The names of additional content types that match this
record series

Default Yes/No Whether this record series should be used for records that
do not match any record series

After creating the Record Routing table, the provisioning code adds an additional hidden fi eld that
specifi es the custom router to use for incoming records. Then the default view is created containing
the visible columns and a ListView web part is added to the left zone. The Records Repository User
Group is granted Reader privileges on the list, and an event receiver is added for the ItemAdding,
ItemUpdating, and ItemDeleting events. Finally, the list is set up to prevent the removal of items by
setting the AllowDeletion fl ag to false, and special properties are added to the root folder to support
holds processing.

The Holding Zone
When records are submitted to the repository that are missing required metadata, they are placed into
a special document library that is referred to as the holding zone in the SharePoint SDK. The title of this
library is “Records Pending Submission.” The holding zone columns that are added to this library are
listed in the following table:

Column Type Description

Title Single line of text The record title

Source Url Single line of text The source of the record

87620c04.indd 10487620c04.indd 104 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

105

Chapter 4: The MOSS 2007 Records Center

Column Type Description

Record Routing Single line of text The record routing type to be used for processing the
record

User Name Single line of text The name of the user who submitted the record

In addition to the column defi nitions, two folders are added to the list to provide a place to store the
record properties and audit history. This list is protected from deletion, and the Records Repository
Users Group is granted contributor permissions for the list.

The Holds List
During the provisioning process, the Holds Processing layer is initialized, and the Holds List is created.
The Holds List is a generic list that contains individual items called Holds that are used to suspend the
normal expiration processing for submitted records. The Holds List columns that are added to this list
are shown in the following table:

Column Type Description

Title Single line of text The title of the hold

Description Multiple lines of text Text describing the purpose of the hold

Managed By Person or Group Identifi es the person or group responsible for
managing the hold

There are some additional hidden columns that are added to the Holds List to manage the hold count,
hold status, and last reporting date. For more information about how the Holds Processing layer is ini-
tialized within the Records Center, see Chapter 11.

Workfl ow Provisioning
The workfl ow provisioning layer ensures that the Workfl ow Task and History Lists are created. The
Task List that is used is the standard Task List that appears in the Quick Launch navigation bar. The
History List is created as a standard workfl ow history list, which does not appear in the content area
but does appear on the association page for the Disposition Approval workfl ow. This workfl ow man-
ages document expiration and retention for records in the repository.

Default Record Series
Records that have not been assigned to a record series are routed to the Default Record Series, which
is set up by default to be associated with the Unclassifi ed Records document library. The provision-
ing code creates this library and clears the AllowDeletion fl ag so that it cannot be removed. An
Unclassifi ed Records entry is also added to the master RecordSeriesCollection associated with the
Web and shows up as an item in the Record Routing List.

87620c04.indd 10587620c04.indd 105 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

106

Chapter 4: The MOSS 2007 Records Center

Default Expiration Actions
There is only one default expiration action, which is to remove a record from the repository when
the record expires. This functionality is provided by a custom policy resource that is linked to the
Expiration policy by the provisioning code.

Records Center File Processing
The main event for the Records Center is the fi le submission process. Whether sent via the Offi cial File
Web Service or the Records Management API, the OfficialFileCore.SubmitFile method is ulti-
mately called to process incoming records. The following sections describe the core routing mechanism
and explain how the other components contribute to the overall processing sequence.

The Core Record Routing Mechanism
Incoming records are processed via the SubmitFile method, which accepts the parameters listed in
the following table:

Parameter Type Description

Web SPWeb The web site in which to store the
document

Bytes byte[] The content of the document being
submitted

Properties RecordsRepositoryProperty[] The collection of properties for the
document being submitted

recordSeriesName String The name of the record routing type for
the document being submitted

sourceUrl String The source URL of the document being
submitted

userName String The name of the user who submitted
the document

sentViaSMTP bool True if the fi le is being sent through
SMTP

resultDetails out String A string that will contain the results of
the call; for example, the reason why the
document was rejected

87620c04.indd 10687620c04.indd 106 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

107

Chapter 4: The MOSS 2007 Records Center

Figure 4-2 shows the basic processing sequence that is implemented by this routine. The fi rst thing that
happens is a check to see if the current user is a member of the Records Center Users Group. If not, then
the call returns with a result of OfficialFileResult.InvalidArgument. Next, a check is done to
ensure that the record series specifi ed corresponds to a valid routing type and that the fi le being sub-
mitted has actual contents. Then if a custom router is associated with the routing type, it is loaded, and
the record is processed through the router.

Return Success

Call Custom
Routers

Current User
in Record Center

User Group?

Return
InvalidArgument

Return
InvalidConfiguration

Null File
or Record
Series?

Yes

No
No

Return
FileRejected

No

No

Yes

Yes

Yes

Yes

Yes

SuccessCancel
FurtherProcessing?

Success
ContinueProcessing?

Return
InvalidArgument

No

Valid
UserName?

No

Sent via
SMTP

Store in
Library

Promote
Properties to

Library

Figure 4-2: Processing sequence for submitted records.

Depending on the result returned from the custom router, if any, additional processing is either aban-
doned (in the case of RouterResult.SuccessCancelFurtherProcessing) or continued. If contin-
ued, then the Boolean fl ag is checked to see if the fi le was submitted via electronic mail. If so, then no
attempt is made to promote the document properties into the destination library because special han-
dling is needed for e-mail records. Instead, the document is simply placed into the destination library,
which will be the Records Pending Submission library for e-mail records. Otherwise, a fi nal check is made
to determine if the username that was supplied to the routine is valid.

87620c04.indd 10787620c04.indd 107 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

108

Chapter 4: The MOSS 2007 Records Center

The submitted username may not be the same as the authenticated user under whose account the
SubmitFile method is being called. This can happen if the fi le is submitted from outside the SharePoint
farm, as in the case of a client application or external web application, or from a site collection in a web
application separate from the Records Center that uses a different authentication method.

If the submitted username is valid, then the properties submitted with the document are processed,
and any matching properties are copied into the appropriate columns of the document library. Finally,
the document is placed into the destination library.

Custom Record Routing
The custom router processing has an interesting undocumented feature that is not obvious. The sig-
nature of the IRouter.OnSubmitFile method declares the location parameter, which is of type
SPList, as a ref parameter as shown below:

RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fi leToSubmit,
 ref RecordsRepositoryProperties[] properties,
 ref SPList destination,
 ref string resultDetails
)

This parameter declaration suggests that the implementer of a custom router can change the location
into which the document will be stored by simply specifying a different document library from the one
specifi ed by the routing type. Unfortunately, this value is ignored, and the original location specifi ed by
the routing type is used.

Property Storage
When a document is submitted to the repository using either the Records Management API or the
Offi cial File Web Service, its metadata properties are passed in an array. Two processing phases are
applied to the array when the record is processed by the Records Center. These processing steps occur
after a Record routing type has been found that matches the incoming document.

In the fi rst processing phase, each property is compared to the columns that are declared on the docu-
ment library associated with the Record routing type used to route the document to its fi nal destina-
tion. Matching columns are then populated with the data in the associated properties. Having the
document property values in document library columns allows standard search mechanisms to work
as expected. However, there may be many additional properties that do not need to be placed into col-
umn values. This is where the second processing phase comes in.

In the second phase, the entire collection of properties is written to an XML document and stored in a
subfolder within the primary folder associated with the new record. This preserves all of the properties
so that advanced search utilities, reporting tools, and other components can locate and work with them.

To see how this all works, start by creating or uploading a document to a team site and adding some
column values for testing. Figure 4-3 shows a sample document with some column values added.

87620c04.indd 10887620c04.indd 108 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

109

Chapter 4: The MOSS 2007 Records Center

Figure 4-3: Sample document prior to submission.

Send the document to the Records Center using the “Send To” command on the Edit Control Block
dropdown, and then navigate to the Unclassifi ed Records library in the Records Center and open the
folder corresponding to today’s date. Inside that folder, you will fi nd a document having the name of
the document you submitted with a unique suffi x added, along with a subfolder named Properties as
shown in Figure 4-4.

Figure 4-4: Sample document Properties folder.

Inside the Properties folder, you will fi nd an XML fi le with the same name as the document in the parent
folder. This fi le contains all of the properties that were submitted along with the record. If you click on the
fi lename, it should open in the browser, and you can see all of the properties and their values, as shown in
Figure 4-5.

87620c04.indd 10987620c04.indd 109 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

110

Chapter 4: The MOSS 2007 Records Center

Figure 4-5: Sample document properties.

Audit History
A special property is used by SharePoint to submit the audit history for a document, if auditing is
enabled for the record being submitted and there are audit records associated with the document. The
name of the special property is AuditHistory, and it is stored in the Property array as an XML string.

When a record arrives for processing, the Records Center separates out the audit history from the other
properties and copies the individual audit entries into a string that is ultimately written to the destina-
tion library in its own folder. This process removes the audit history from the properties that are sub-
mitted with the document and ensures a clean separation between the previous audit history and any
subsequent audit records that are created through interactions with the record in the repository.

To see how this works, repeat the exercise from the previous section but with auditing enabled in the
source web site. To enable auditing, navigate to the Site Settings page of the source web site and choose
the ”Site collection audit settings” link in the Site Collection Administration section. For this exercise,
just enable the fi rst two events in the “Documents and Items” section, as shown in Figure 4-6. Press OK
to save your settings.

Now go back to the sample document library and edit some properties. For example, change the name of
the document from the previous exercise. Save your changes, and submit the fi le again to the repository.

87620c04.indd 11087620c04.indd 110 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

111

Chapter 4: The MOSS 2007 Records Center

This time, when you navigate to the storage location inside the Unclassifi ed Records library, you will
fi nd two documents and an additional folder named Audit History, as shown in Figure 4-7.

Figure 4-6: Confi gure Audit Settings.

Figure 4-7: Audit History folder created.

Inside the Audit History folder, as for the Properties folder, there will be an XML fi le whose name
matches the newly submitted fi lename. Instead of property values, this fi le contains audit record entries
as shown in Figure 4-8. Scroll through the list to verify that the change you made to the document was
captured in the Audit History fi le.

87620c04.indd 11187620c04.indd 111 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

112

Chapter 4: The MOSS 2007 Records Center

Figure 4-8: Audit History entries.

Property Promotion and Demotion
SharePoint includes a document parser that can extract document properties and write them into the
appropriate columns in the document library where the document is stored. This process is called
property promotion and happens automatically for any document libraries contained in an SPWeb
object whose ParserEnabled property is set to true. The reverse is called demotion, in which the
property values stored in the document library columns are written back into the document. If the
ParserEnabled property is set to false, then the built-in document parser is disabled, and there will
not be any property promotion or demotion for any document libraries in the entire Web. This is impor-
tant for the Records Repository, because with the document parser enabled, it means that changes to the
column values in the document library will automatically cause the parser to demote the property back
into the document, resulting in a modifi cation of the record, which is not allowed.

Unfortunately, it is not possible to turn off property demotion without also turning off property pro-
motion. The result is that if a record needs to be changed at some point after its submission, perhaps
to update incorrect metadata, then additional care must be taken to ensure that any changes made to
the document are propagated back to the corresponding column in the document library in which the
record is stored; otherwise, the library metadata and the document metadata will be out of sync.

To see the difference in property handling between a document library in a web site with parsing
enabled and one without, perform the following test. First, create a Microsoft Offi ce Word document,
and enter values for the built-in Subject and Category properties, as shown in Figure 4-9.

Next, create a document library in an ordinary team site, and add two columns, one for the Subject
and another for the Category. Figure 4-10 shows the result of adding the standard site columns for
Subject and Category.

87620c04.indd 11287620c04.indd 112 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

113

Chapter 4: The MOSS 2007 Records Center

Figure 4-9: Document properties in a Word document.

Figure 4-10: Document library with columns added.

87620c04.indd 11387620c04.indd 113 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

114

Chapter 4: The MOSS 2007 Records Center

Upload the sample document, and note that the property values are automatically promoted into the
appropriate columns as shown in Figure 4-11.

Figure 4-11: Document properties promoted.

Now create a second document library in a Records Center site, and repeat the steps taken above,
adding the Subject and Category columns and then uploading the same document to the library.
Figure 4-12 shows the resulting library with the values not promoted.

Figure 4-12: Document properties not promoted.

87620c04.indd 11487620c04.indd 114 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

115

Chapter 4: The MOSS 2007 Records Center

It is important to realize that disabling the document parser is an all-or-nothing proposition for the
Records Center web site. It means that the default Records Center disables the document parser for all
document libraries in the site. Thus, any solution that creates document libraries that are not used for
record storage will have to handle property promotion explicitly for those libraries.

Summary
This chapter provided a detailed look at the Records Center site defi nition to understand its architec-
ture and to see how the various components of the MOSS Records Management infrastructure work
together to provide a foundation for building records management solutions.

We examined the individual SharePoint Features used to install the Records Center components and
then looked at how the record routing table, the Holds List, and the unclassifi ed records document
library are set up according to basic assumptions about how a Records Repository will be used. To
understand how all of these components fi t together, we explored the core record processing sequence
used by the Records Center to handle incoming records, including how metadata properties are sub-
mitted and stored, how audit entries are processed, and how properties are promoted to columns in the
destination document library.

87620c04.indd 11587620c04.indd 115 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

87620c04.indd 11687620c04.indd 116 9/2/09 10:18:24 AM9/2/09 10:18:24 AM

Building and Configuring a
Records Repository

In Chapter 4, we examined the structure of the Records Center site defi nition and explored its
architecture and the components that together provide the core records processing functionality.
That functionality depends on the proper confi guration of the Records Center site. In this chapter,
we’ll look into the steps you should follow in order to achieve that goal, whether doing it manu-
ally or programmatically.

Creating the Records Center Site
It is a common requirement to set up a Records Center site, and there is a lot of information avail-
able for doing that using the SharePoint UI. We’ll review those steps in this chapter as well, but
then we’ll take a slightly different approach toward building a semi-automated process based on
a dynamic fi le plan. This process will allow us to set up a Records Center so that it supports a spe-
cifi c set of record types. Later in the book, we’ll add more features so that the dynamic fi le plan
becomes our central point of focus for managing offi cial records throughout their life cycle. I like
to think of this as a semi-automated approach because it still requires the creation of a document
(the actual fi le plan) that describes the types of records that are being confi gured. It’s also impor-
tant to note that the automated part may not happen immediately when the Records Center site is
created, but later on, after the site is up and running.

I’ve taken this approach because there are really two stages to setting up a Records Center site.
The fi rst part has to do with creating the site itself based on the Records Center site defi nition
and then activating the features needed to make everything work. That includes installing any
custom components like routers, workfl ows, and master pages. The second part has to do with
creating the appropriate record routing types for incoming documents, associating them with
document libraries, and identifying the appropriate metadata that will be promoted to columns,
and the like. In short, the fi rst part has more to do with standard Microsoft Offi ce SharePoint
Server (MOSS) site provisioning, while the second part is more focused on the records manage-
ment infrastructure.

87620c05.indd 11787620c05.indd 117 9/2/09 10:19:11 AM9/2/09 10:19:11 AM

118

Chapter 5: Building and Confi guring a Records Repository

Ideally, we’d like to automate both parts. For example, we could use a technique called feature stapling to
attach our custom infrastructure components to the out-of-the-box Records Center site defi nition.

Feature stapling is a technique whereby a SharePoint Feature is bound (stapled) to a site defi nition
so that the feature is activated automatically whenever a site is created based on the site defi nition. You
can use this technique to add features to out-of-the-box site defi nitions like the Records Center. For more
information about feature stapling and how it works, see http://msdn.microsoft.com/en-us/
library/bb861862.aspx.

Using the feature stapling approach, we could then easily ensure that every Records Center site has the
necessary components installed without having to build our own custom Records Center site defi nition.
Once the new Records Center is created, we would then activate a second set of tools that any records
administrator could use to extend the Records Center site to enable it to handle a given set of document
types, which have been identifi ed in the fi le plan. We would activate the document type-specifi c tools
using a separate set of SharePoint features so as to consolidate the individual steps that would normally
be required to confi gure a particular document type.

Now, let’s go step-by-step through the process of manually creating and confi guring a Records Center
site using the SharePoint UI. Later in the chapter, we will refer back to this site as we explore other ways
to set up and manage a Records Center site programmatically.

In order to create a Records Center site, the MOSS enterprise features must be activated at both the site
and site-collection levels.

Creating a Records Center Manually
Our Records Repository will provide controlled storage for the legal and accounting departments to
archive contracts and legal documents related to ongoing litigation. It will also be used to house annual
reports produced by the accounting department.

The fi rst step is to set up a new site collection for offi cial records. In order to facilitate greater admin-
istrative control over the contents of the repository, we will create the site collection in a separate web
application.

Using a separate web application makes it easy to partition offi cial records from other types of content.
The web application you create will have its own content database and will be used exclusively to store
and manage offi cial documents.

 1. Open a web browser and navigate to the Central Administration web site.

 2. When the page opens, click on the Application Management tab.

 3. From the Application Management page, click “Create or extend Web application” in the
“SharePoint Web Application Management” section.

 4. On the Create or Extend Web Application page, click “Create a new Web application.” In the
IIS Web Site section, select the default “Create a new IIS web site.” Enter SharePoint - Records
Center into the Description fi eld. Enter a number into the Port fi eld or accept the default. Leave
the Host Header fi eld blank. See Figure 5-1.

87620c05.indd 11887620c05.indd 118 9/2/09 10:19:11 AM9/2/09 10:19:11 AM

119

Chapter 5: Building and Confi guring a Records Repository

Figure 5-1: Creating a Records Center web application.

Port 9995 just happens to be the port number I chose to use when creating the Records Center web
application in this example. Using a specifi c port number can make it easier to locate the web application
during development because you’ll tend to use the same number in each of your virtual machines. For
example, I’ve gotten into the habit of using port 9999 for the central administration site. You can use
any port or URL you like, as may be appropriate for your system or network confi guration.

 5. Scroll down to the Application Pool section. Select “Create new application pool” and enter
SharePoint - Records Center as the Application Pool name. Select Confi gurable under “Select
a security account for this application pool.” Enter the administrator username and password,
making sure to specify the fully qualifi ed name including the user’s domain, and then select the
“Restart IIS Automatically” radio button as shown in Figure 5-2.

Figure 5-2: The Records Center Application Pool.

 6. Scroll down to the “Database Name and Authentication” section. Enter WSS_Records into the
Database Name fi eld as shown in Figure 5-3. Click OK to create the new web application.

87620c05.indd 11987620c05.indd 119 9/2/09 10:19:11 AM9/2/09 10:19:11 AM

120

Chapter 5: Building and Confi guring a Records Repository

Figure 5-3: The Records Center database name.

 7. On the Application Created page shown in Figure 5-4, click on the “Create Site Collection” link.

Figure 5-4: Records Center site creation confi rmation.

 8. On the Create Site Collection page, ensure that the correct application and port are visible in
the Web Application dropdown shown in the “Web Application” section of Figure 5-5. In this
example, it is http://mossdev:9995/.

Figure 5-5: Create site collection page.

87620c05.indd 12087620c05.indd 120 9/2/09 10:19:11 AM9/2/09 10:19:11 AM

121

Chapter 5: Building and Confi guring a Records Repository

 9. Enter Records Center in the Title fi eld, and any description you like.

 10. Scroll down to the “Template Selection” section. Click on the Enterprise tab and select the
Records Center site template as shown in Figure 5-6.

Figure 5-6: Records Center Template Selection.

 11. In the “Primary Site Collection Administrator” section, enter the name of the site collection
administrator and press [Ctrl]+K to resolve the name. Optionally, select another user as the
Secondary Site Collection Administrator and press [Ctrl]+K again to resolve the name.

Pressing [Ctrl]+K in the people picker control is the same as pressing the icon to the right of the textbox
that shows a user with a checkmark next to it, which causes the control to check the names you entered
against the actual user accounts that are currently registered in the domain in which the system is run-
ning. (In my system, that results in the primary site administrator being MOSSDEV\Administrator.)

 12. Finally, press OK to create the top-level site, and then from the Top-Level Site Successfully
Created page, click the link to open the site and verify the site URL, which should display a
new Records Center site as shown in Figure 5-7.

Figure 5-7: The Records Center home page.

We have now created a Records Center site using the SharePoint user interface. In the next section,
we will look at how to do the same thing programmatically. Later, we will confi gure the repository to
accept offi cial records that are submitted from other SharePoint sites or from external applications.

87620c05.indd 12187620c05.indd 121 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

122

Chapter 5: Building and Confi guring a Records Repository

Creating a Records Center Programmatically
Another approach to building a Records Center is to write a SharePoint feature, console application or
PowerShell script that calls the SharePoint API to build the site. This, of course, gives you more fl ex-
ibility to control how the site is structured and can come in handy when dealing with the second part of
confi guring the site, that is, setting up routing types and other components. Listing 5-1 shows the code
needed to create a Records Center as the root web of a site collection in its own web application.

Listing 5-1: Creating a Records Center programmatically

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using System.DirectoryServices;
using System.Security;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;

namespace ECM2007.RecordCenterBuilder
{
 /// <summary>
 /// This program creates a records center site in its
 /// own web application as the root web of a site
 /// collection.
 /// </summary>
 class Program
 {
 int targetPort = 9995;
 string appName = “ECM2007_RecordCenter”;
 string appTitle = “ECM2007 Records center”;
 string dbName = “WSS_Content_ECM2007_RecordCenter”;
 string appDescription = “A site for managing official records.”;
 string appTemplate = “OFFILE#1”;
 string appPoolName = “ECM2007_RecordCenter”;
 string adminEmail = “admin@ecm2007.com”;
 string adminLogin = “Administrator”;
 string adminPassword = “pass@word1”;
 string adminDisplayName = “Records Administrator”;

 static void Main(string[] args)
 {
 new Program(args).Run();
 }

 public Program(string[] args)
 {
 }

 public void Run()

87620c05.indd 12287620c05.indd 122 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

123

Chapter 5: Building and Confi guring a Records Repository

 {
 try
 {
 // Get the local farm object.
 SPFarm farm = SPFarm.Local;
 SPWebApplicationBuilder builder = new
 SPWebApplicationBuilder(farm);

 // Check if the web application exists.
 string appUrl = string.Format(“http://localhost:{0}”, targetPort);
 SPWebApplication app = SPWebApplication.Lookup(new Uri(appUrl));

 if (app == null)
 {
 // Use the SPWebApplicationBuilder to create the app.
 builder.Port = targetPort;
 builder.CreateNewDatabase = true;
 builder.UseNTLMExclusively = true;
 builder.AllowAnonymousAccess = false;
 builder.UseSecureSocketsLayer = false;
 builder.ApplicationPoolId = appPoolName;
 builder.IdentityType = IdentityType.SpecificUser;
 builder.ApplicationPoolUsername = adminLogin;
 builder.ApplicationPoolPassword = new SecureString();
 foreach (Char c in adminPassword.ToCharArray())
 builder.ApplicationPoolPassword.AppendChar(c);

 // Create the app with a new app pool.
 Log(“Creating web application at {0}”, appUrl);
 app = builder.Create();
 app.Name = appName;
 app.Update();

 Log(“Provisioning content database: {0}”,
 builder.DatabaseName);
 app.Provision();

 // Add the new application to central admin.
 Log(“Adding application to central admin console.”);
 SPWebService.AdministrationService.WebApplications.Add(app);

 // Recycle the app pool.
 using (DirectoryEntry pool = new DirectoryEntry(
 string.Format(“IIS://localhost/w3svc/apppools/{0}”,
 appPoolName)))
 {
 Log(“Recycling app pool: {0}”, appPoolName);
 pool.Invoke(“Recycle”);
 }

 // Create the site collection.

Continued

87620c05.indd 12387620c05.indd 123 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

124

Chapter 5: Building and Confi guring a Records Repository

 Log(“Creating records center site collection...”);
 SPSite siteCollection = app.Sites.Add(“/”, appTitle,
 appDescription,
 1033, appTemplate, adminLogin, adminDisplayName,
 adminEmail);
 Log(“Records center created successfully.”);
 }
 else
 {
 Log(“Records center already exists at url: {0}”, appUrl);
 }

 Log(“Redirecting...”);
 Process.Start(appUrl);
 }
 catch (Exception x)
 {
 HandleException(x);
 }
 }

 void Log(string format, params object[] args)
 {
 string message = string.Format(format,args);
 Trace.WriteLine(message,”Records Center Builder”);
 Debug.WriteLine(message,”Records Center Builder”);
 Console.WriteLine(message);
 }

 void HandleException(Exception x)
 {
 Log(“Exception occured: {0}\n{1}”, x.Message, x.ToString());
 }
 }
}

This code starts by creating an instance of the SPWebApplicationBuilder class. This class is a great
way to set up new web applications because it allows you to specify all of the properties needed by IIS
and then call a single Create method to build the web site. The SPWebApplicationBuilder object
then handles all of the low-level communication with IIS so you don’t have to.

The result of calling the SPWebApplicationBuilder.Create method is a new instance of the
SPWebApplication class. This class encapsulates the steps needed to provision a SharePoint content
database using its Provision method. Then we must add the new web application to the Central
Administration console so that it shows up in the list of web applications for the administrator.

Finally, we recycle the application pool and then create a new site collection based on the OFFILE#1 site
template. This specifi es the site defi nition and confi guration needed to create a new Records Center site
at the root.

Listing 5-1: Creating a Records Center programmatically (continued)

87620c05.indd 12487620c05.indd 124 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

125

Chapter 5: Building and Confi guring a Records Repository

Working with Traditional File Plans
Chapter 1 introduced the core elements of the traditional fi le plan that is familiar to records manag-
ers and content administrators. These are typically created as worksheets and are used to describe the
kinds of documents that will eventually become “offi cial records” and how they should be handled
at the enterprise level. In the following sections, we will use this approach to set up the content types,
document libraries, and record routing types needed to process incoming records.

Creating Document Libraries and Content Types
Whether we create the Records Center site manually through the user interface or programmatically
using code like that shown above, it must fi rst be confi gured to accept specifi c kinds of documents
before we can begin submitting records. In this example, we will set up a document library to hold
legal documents like contracts and service agreements, as well as litigation support documents like
motions and other court fi lings. We will also confi gure a separate document library for the accounting
department that will hold fi nancial statements and the like.

From the Quick Launch navigation bar on the left side of the Records Center home page, click on the
Documents link. From the All Site Content page, click Create. On the Create page, click “Document
Library.” Enter Legal Documents as the library name, along with a description, and click Create.
Repeat this process to create a document library called Financial Documents.

Next, we need to add the metadata that we wish to associate with incoming documents. This is the
point where the fi le plan infl uences the confi guration of the Records Center.

When you are setting up the document library, you can either specify the record metadata directly on
the library itself, or you can use content types. If your fi le plan does not distinguish between different
document types within the same category, then you can attach the appropriate columns directly to the
library. On the other hand, if you anticipate that the Records Center will receive different kinds of docu-
ments within the same category, then it is better to create a content type for each one so that you can
more easily manage the metadata. After creating the required content types, you can then add them to
any library you choose.

Let’s assume we have a simple fi le plan that identifi es the three record types Brief, Motion, and
Statement as shown in the following table. The Brief and Motion record types belong to the Legal
Documents category, and the Statement record type belongs to the Financial Documents category.

Record Type Description Media Category Retention Disposition

Brief A legal brief for use dur-
ing litigation

Electronic Legal
Documents

2 years Archive

Motion A motion that was fi led
with the court

Electronic,
Printed

Legal
Documents

5 years Archive

Statement A statement of account,
such as a bank statement

Electronic Financial
Documents

5 years Archive

87620c05.indd 12587620c05.indd 125 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

126

Chapter 5: Building and Confi guring a Records Repository

Let’s assume further that our fi le plan specifi es certain metadata fi elds that must be tracked for each
record type as shown in the following table.

To simplify the table layout, we’ll use an asterisk to indicate required fi elds. Also, the data types
shown are the internal type names, and not the display names that appear in the dropdown lists of the
SharePoint user interface.

Record Type Property Description Type

Legal Document Matter A unique number that identifi es the matter
the document refers to

Text*

Attorney The name of the attorney who is responsible
for the document

Text

Brief Case Number A unique case number that identifi es the
case to which the brief applies

Text*

Plaintiffs The names of the plaintiffs in a case Note

Defendants The names of the defendants in a case Note

Motion Docket Number The docket number that was assigned to
the case

Text*

Subject The subject of the motion Text*

Statement Balance The current statement balance Currency*

Period
Starting Date

The date on which the current period started DateTime*

Period Ending
Date

The date on which the current period ends DateTime*

Using this information, we can set up the Legal Documents document library so that there is a pre-
scribed location for incoming documents that match the profi le of records described in the fi le plan. The
best way to do this is to create a separate content type for each record type.

Navigate to the Site Settings page of the Records Center site, and then click on the “Site content types”
link to open the Site Content Type Gallery page. Click on the Create button to create a new content type.
First, we’ll create a content type for each of the parent categories, and then we’ll create content types for
the individual record types.

Enter Legal Document into the Name fi eld, and then enter Any kind of legal document for the descrip-
tion. In the “Select parent content type from” dropdown, select “Document Content Types” and then
select Document for the “Parent Content Type.” In the Group section, select the “New group” option
and enter Record Types into the textbox fi eld as shown in Figure 5-8.

87620c05.indd 12687620c05.indd 126 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

127

Chapter 5: Building and Confi guring a Records Repository

Figure 5-8: Legal Document Content Type.

Using content types for general record categories like this makes it easier to capture properties for fi le
plans that are created early in the development cycle and may lack the detail needed to defi ne the record
types more precisely. As metadata properties and behaviors are discovered, these content types will pro-
vide a convenient place to attach them before performing further analysis.

Repeat this process to create a second high-level content type called Financial Document with an appro-
priate description. Assign this content type to the same Record Types group.

Now, we’ll create a separate content type for each record type described in the fi le plan. Create another
content type and enter Brief into the Name fi eld. Copy the description from the fi le plan shown in the
fi rst table above, and select Legal Document as the parent content type. Repeat this process for each of
the content types described in the fi le plan. When you are fi nished, you should have fi ve content types
declared as shown in Figure 5-9.

Figure 5-9: Record types in the Content Type gallery.

Next, we need to add columns so that we can capture the metadata for each type. From the Site Content
Type Gallery page, click on the link for the Legal Document content type you just created. Since the
Matter and Attorney columns are not among the built-in site columns, we’ll have to create them.
Click on the “Add from new site column” link to open the New Site Column page. Enter Matter into the
Column name fi eld and choose “Single line of text” as the data type. Select “New group” under “Put this
site column into,” enter Legal Document Columns, and press OK to create the column.

87620c05.indd 12787620c05.indd 127 9/2/09 10:19:12 AM9/2/09 10:19:12 AM

128

Chapter 5: Building and Confi guring a Records Repository

Although this is a required column, you cannot specify it on this page because you are only defi ning
the column within the site column gallery at this point. To specify that the column is required, navigate
back to the Content Type Settings page for the Legal Document content type, and click the link for the
Matter column to open the Change Site Content Type Column: Legal Document page. From here you
can specify that the column is required, as shown in Figure 5-10.

Figure 5-10: Editing site content type to make it required.

Repeat this process for each of the columns specifi ed in the fi le plan from the fi rst table above. As you
create each column, it is a good idea to check fi rst to determine whether there is already a site column
in the gallery that you can use. For instance, the Subject, Start Date, and End Date columns are
available out-of-the-box.

Although the Start Date and End Date column names do not match the Period Starting Date
and Period Ending Date column names exactly, they are close enough to capture the information
we need.

With the content types defi ned, we can now complete the confi guration of our two document libraries.
Navigate to the Document Library Settings page for the Legal Documents document library and click
on the “Advanced settings” link to open the Document Library Advanced Settings page. Select the Yes
option under “Allow management of content types” and click OK. Click the “Add from existing site
content types” link, and add the Brief, Motion, and Legal Document content types to the library.

To keep things nice and tidy, it is good practice to remove the default Document content type from the
list of content types for the library. This avoids unnecessary confusion for records managers who may
not know what to do if the content type of a given item does not match the record types specifi ed in
the fi le plan. It is also possible to exclude the Legal Document content type, since both Brief and
Motion inherit from it. Including it will allow the records manager to route other kinds of legal docu-
ments into the library and have them automatically assigned to the Legal Document type by default.

87620c05.indd 12887620c05.indd 128 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

129

Chapter 5: Building and Confi guring a Records Repository

Since the Legal Documents library will only contain legal documents, you can remove the Document
content type and set the default content type to Legal Document. To do this, click on the link for the
Document content type and select “Delete this list content type” from the list of options on the page.
Click on the “Change new button order and default content type” link to specify Legal Document as
the fi rst content type in the list so that it becomes the default.

Repeat this process to confi gure the Financial Documents document library such that the default con-
tent type is Financial Document and the Statement content type is also declared for the library.
Now we are ready to confi gure the Record Routing Table that tells the SharePoint records processing
infrastructure how incoming documents should be processed.

Setting Up the Record Routing Table
For this fi le plan, we need to create two routing types — one for legal documents and another for fi nan-
cial documents. Using these routing types, the Records Center can identify incoming records from each
category and route them to the appropriate document library. The content types we defi ned for the
record types within each category will be mapped to the list of aliases declared for each routing type.

From the home page of the Records Center site, click on the New button on the toolbar of the Record
Routing list. On the Record Routing: New Item page, enter the details shown in Figure 5-11. This cre-
ates a new routing type that will match the three content types Legal Document, Brief, and Motion
for any incoming record. When matched, the incoming record will be placed into the Legal Documents
document library.

Figure 5-11: Creating a Record Routing Table entry.

Repeat the process to create a routing table entry for fi nancial documents. When you are done, you will
have a routing table that resembles the one shown in Figure 5-12.

87620c05.indd 12987620c05.indd 129 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

130

Chapter 5: Building and Confi guring a Records Repository

Figure 5-12: Confi gured Record Routing Table.

At this point, the Records Center is set up and ready to process incoming records. As you saw from the
preceding discussion, there are a lot of steps involved in confi guring each record type. This can become
an increasingly time-consuming and tedious process as the number of record types, categories, and
metadata properties continues to grow. In Chapter 6, we’ll look at the steps needed to submit fi les to
the Records Center. But fi rst, let’s consider an alternate approach to confi guring the Records Center that
does not require as many manual steps.

Building and Using Dynamic File Plans
Now, we’d like to extend the traditional notion of a fi le plan to include the ability to execute a fi le plan
so that the record defi nitions and other rules contained within it are applied automatically to an exist-
ing Records Center site. The idea is to create a fi le plan document using XML instead of a table so
that it includes all of the information that would normally be entered into a traditional fi le planning
worksheet, but it can also include additional information that is interpreted by our records manage-
ment components to set up the Records Center site automatically so that it can process records of any
type described in the plan. Such a dynamic fi le plan could be loaded by a custom SharePoint feature to
automatically confi gure the Records Center site to which it is attached. It could also be extended to set
up holds and to account for other types of special conditions as they are discovered so that the Records
Center can be adjusted directly from rules contained within the plan without having to perform those
steps manually. This approach can dramatically reduce the risk of omitting critical steps and making
errors that would otherwise compromise the integrity of the Records Center site.

Since our main concern is confi guring a specifi c Records Center site that already exists, we’ll start by
creating a site-scoped feature that can be activated from any Records Center site. This design fi ts nicely
with the MOSS one records center per farm model, but also supports Records Center topologies that
include multiple Records Center sites, as long as they reside within the same site collection.

87620c05.indd 13087620c05.indd 130 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

131

Chapter 5: Building and Confi guring a Records Repository

The functionality of our feature will be as follows:

 1. Create a File Plan gallery to hold the fi le plan documents.

 2. Enable administrators to create or upload fi le plans into the gallery.

 3. Enable administrators to execute a fi le plan within the Records Center site.

Figure 5-13 shows the File Plan feature project structure within Visual Studio.

Figure 5-13: File Plan feature project.

The File Plan gallery will reside at the site-collection level so that when a fi le plan is executed for a
given Web, our code will have access to the site column and site content type galleries that are shared
by all Webs within the site collection. When executing a fi le plan, the administrator will be presented
with a list of the record types that can be activated. If there are optional settings for a given fi le plan,
these can be set on the File Plan Execution page. When the administrator presses the Execute button,
the selected record specifi cations will be used to confi gure the Records Center site automatically.

Before we can build the feature, we need a way to capture the essential elements of the fi le plan. We’ll
do this using InfoPath 2007 driven by an XML schema. In the sections that follow, we’ll design the
schema and create an InfoPath form for entering the record specifi cations.

One of the primary benefi ts of developing a schema separately from the form is the ability to reuse the
same schema in different layers of the solution. This approach lends fl exibility to the solution architec-
ture so it can be easily adapted to changing roles and evolving requirements.

XML schemas can also simplify both the design and development of supporting code related to data
elements that conform to the schema. By using an .xsd fi le as the primary data source for the form, our

87620c05.indd 13187620c05.indd 131 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

132

Chapter 5: Building and Confi guring a Records Repository

schema can be used to generate wrapper classes that understand how to serialize and de-serialize any
data fi les created from the form template. We can then extend those generated classes in various ways
to perform other operations on the underlying data.

Designing the File Plan Schema
We’ll start by designing a simple schema that describes a fi le plan. Our schema will include the tradi-
tional fi le plan components we identifi ed in Chapter 1, but we’ll extend it now to include some addi-
tional information that will be useful for confi guring a Records Center site. For instance, we can include
things like the name of the content type to associate with a particular record (or we can derive it from
the record name), the name of the document library to create, the name of the custom router to use, and
which information policy features to enable, and so on. Listing 5-2 shows the portion of the FilePlan
schema that reveals its overall structure.

Listing 5-2: FilePlan schema

<xs:annotation>
 <xs:documentation>
 Schema for declaring a dynamic file plan that describes
 how to convert one or more documents into “official records”,
 including instructions for processing each record type
 when it is submitted to a SharePoint records repository.
 </xs:documentation>
</xs:annotation>

<xs:element name=”FilePlan”>
 <xs:annotation>
 <xs:documentation>
 This is the top-level element that defines the file plan
 and includes general information such as the plan title and
 description.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:all>
 <xs:element name=”Title” type=”xs:string”/>
 <xs:element name=”Description” type=”xs:string”/>
 <xs:element name=”Author” type=”xs:string”/>
 <xs:element name=”Records” type=”RecordSet” maxOccurs=”1”/>
 </xs:all>
 </xs:complexType>
</xs:element>

Listing 5-3 shows the additional details needed to describe an individual record specifi cation.

Listing 5-3: RecordSpecification schema

<xs:complexType name=”RecordSpecification”>
 <xs:annotation>
 <xs:documentation>

87620c05.indd 13287620c05.indd 132 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

133

Chapter 5: Building and Confi guring a Records Repository

 This element describes a single record type and is used to control
 how documents matching a given type are processed when submitted
 to a records center site.
 </xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element name=”Sources” type=”RecordSources” minOccurs=”0”/>
 <xs:element name=”Media” type=”xs:string” minOccurs=”0”>
 <xs:annotation>
 <xs:documentation>
 Describes the media type for the document (such as web page,
 spreadsheet or presentation).
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name=”Aliases” type=”AliasList” minOccurs=”0” maxOccurs=”1”/>
 <xs:element name=”Location” type=”xs:string” minOccurs=”0” maxOccurs=”1”>
 <xs:annotation>
 <xs:documentation>
 Specifies the location in the records center in which records of this
 type will be stored. If the location does not already exist, one is
 created automatically when the file plan is executed.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name=”Router” type=”xs:string” minOccurs=”0”>
 <xs:annotation>
 <xs:documentation>
 Specifies the name of the custom router to associate with
 this record type. The specified router must be installed separately
 into the records center by an administrator.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name=”AssignedTo” type=”People” minOccurs=”0”>
 <xs:annotation>
 <xs:documentation>
 Specifies the people who are responsible for managing this
 record type. The users in this list may be notified when the
 record series is created, and tasks can be created automatically
 to remind them to perform related tasks.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name=”Description” type=”xs:string” minOccurs=”0”>
 <xs:annotation>
 <xs:documentation>
 A brief description of the purpose of the record series.
 </xs:documentation>
 </xs:annotation>

Continued

87620c05.indd 13387620c05.indd 133 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

134

Chapter 5: Building and Confi guring a Records Repository

 </xs:element>
 </xs:all>
 <xs:attribute name=”Name”>
 <xs:annotation>
 <xs:documentation>The name of the record series.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name=”Type” type=”RecordType” default=”Electronic”/>
</xs:complexType>

Note that we have provided elements in the schema to capture the source locations of each record speci-
fi cation. In later chapters, we will extend the fi le plan schema to include additional information where
necessary to support other operations that occur over the course of the content life cycle such as fi nding
and moving documents into the repository, setting up auditing, and confi guring information policies.

With the schema defi ned, we can now use it to build our InfoPath form. Before describing the steps in
detail, a brief introduction to the InfoPath forms design process will help to clarify the importance of
starting with a schema. As you will see in the following sections, InfoPath 2007 provides strong support
for schema-driven component building.

A Quick Introduction to InfoPath 2007
In this section, we’ll explore ways to use InfoPath effectively. This ties into the notion of schematizing
metadata in order to drive different phases of the content life cycle for a given solution, and it requires
that we consider InfoPath in a broader context than as a stand-alone Forms Designer. Like the other pro-
grams that make up the Microsoft Offi ce 2007 client suite, InfoPath 2007 can be viewed as one component
of an enterprise-wide content management system. InfoPath provides a controlled path for information to
fl ow through the system in ways that allow us to extend and use it to drive other parts of the system.

In addition to providing a rich end-user experience for entering data into forms, the primary goal
of InfoPath 2007 is to capture schematized XML data and to do it in a way that conforms to widely
accepted standards. Consequently, InfoPath uses XSL stylesheets to present views of the data and uses
the same APIs to read and write the data that we will be using in our own code. By adhering to the
same schema for both the gathering and processing of data, we can build different components that
interoperate on that data at different stages of the content life cycle. An important secondary goal of
InfoPath is to establish and maintain tight integration with SharePoint so that data can be easily con-
sumed through SharePoint sites.

InfoPath 2007 is the second version of the product. If you had any experience using InfoPath 2003,
you will immediately see that the new version provides a signifi cantly improved design experience,
although it is still somewhat labor-intensive from a developer perspective.

In my talks with developers who use InfoPath 2007 regularly, I’ve found that they tend to take little
shortcuts on the design side, ultimately relinquishing their forms to page designers who are more famil-
iar with design tools. The Visual Studio developers I know lack the patience required to produce very
sophisticated designs. Similarly, herein we will focus on making sure that the required elements are in
place and that the schema is complete, and we won’t spend a lot of time with the design tools.

Listing 5-3: RecordSpecification schema (continued)

87620c05.indd 13487620c05.indd 134 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

135

Chapter 5: Building and Confi guring a Records Repository

One of the major enhancements to InfoPath 2007 is that it now offers the ability to separate pure design
activities from the steps required to deploy a form. It includes several tools and wizards that assist in
the deployment process for various deployment targets, including the fi le system, SharePoint sites, and
document libraries. This helps to eliminate concerns about deployment issues that don’t really affect the
design process. Also, the tighter integration with SharePoint really takes advantage of its new function-
ality. For example, you can publish a form to SharePoint directly from the InfoPath designer as a new
content type that is bound to the form template and then use that content type in multiple libraries.

Another big requirement that came from users of InfoPath 2003 was the need to extend the reach of
InfoPath forms beyond the client machine and to access electronic forms from a web browser so that
users without the InfoPath client could still interact with the form in the same robust manner and with
a similar rich user experience as that presented to users of the client-side product. The term extending
the reach is the politically correct way to say you don’t really get full fi delity when interacting with a
form through the browser. There are some limitations that come in because of the fact that you’re pub-
lishing into a shared environment. Nevertheless, the ability to enable interaction with a form without
having the InfoPath client installed enables the deployment of enterprise-wide content management
solutions and fi ts well with the life-cycle approach we are taking here.

Using the InfoPath Forms Designer
Let’s take a closer look at the InfoPath Forms Designer. When you open InfoPath, you get various
options for creating a form. You can start by importing or designing a form using a blank template or
by customizing one of the included sample forms such as the Asset Tracking form shown in Figure 5-14.

Figure 5-14: An Asset Tracking form.

87620c05.indd 13587620c05.indd 135 9/2/09 10:19:13 AM9/2/09 10:19:13 AM

136

Chapter 5: Building and Confi guring a Records Repository

The design process involves dragging items onto the Design surface to layout controls, which are used
by the end-user to manipulate data that comes from one of the embedded data sources. Figure 5-15
shows the main data source that describes the asset tracking information. To create a control on the
form, you simply drag the data element you want onto the form. InfoPath then allows you to select a
user-interface control that can display that type of data, and then it automatically binds the data ele-
ment to the control you have chosen.

Figure 5-15: Asset Tracking data
source.

Not only does InfoPath provide a Design surface onto which you can drag controls or data elements,
but it also includes an integrated validation framework so that if you make mistakes while binding data
elements to controls, InfoPath can warn you that something is wrong with that element. This makes
it much easier to build forms, and InfoPath does a pretty good job of validation. InfoPath 2003 did not
provide as much support, which made it possible to spend a lot of time designing a form only to end up
with errors that were diffi cult to fi nd and fi x.

87620c05.indd 13687620c05.indd 136 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

137

Chapter 5: Building and Confi guring a Records Repository

While designing a form, you can click on the Preview button to see what the form will look like to the
end-user. You can also set up data connections that allow your form to store data to or retrieve data
from external data sources.

Another important area to pay attention to when designing a form is the set of options available for
enabling the user to submit the form after fi lling it out. Submitting a form is different from saving a form.
The user can save the form at any time and come back to it later to continue fi lling it out. When the user
is ready to submit the form, a special operation comes into play and may have special rules attached.
InfoPath lets you enable or disable the Submit button and defi ne the rules that govern what happens
when the user presses it.

If you turn on the ability to submit the form, there are many options for doing so. You could specify
that when the user submits the form, code is executed that automatically sends the form data to various
locations. The actual locations might depend on other factors related to the environment in which the
form was deployed. You might also perform custom actions and create rules that are executed when
the form is submitted. InfoPath lets you change the text that is displayed on the Submit menu item title,
or you can hide it completely. You also get additional features such as the ability to customize the mes-
sages that are displayed on the success or failure of the submission, and you can control what happens
after submission, such as close the form, leave it open for continued editing, or create another instance
of the form. Since the submit processing has been separated out, you don’t have to write special code to
accomplish many of the standard submit operations. This simplifi es the whole process and allows you
to add code only when absolutely necessary.

Designing the File Plan Form
To simplify the creation of fi le plans, we will use InfoPath 2007 to design a simple form based on the
fi le plan schema. By using InfoPath, we can avoid having to build a user interface for editing fi le plan
documents. Figure 5-16 shows the completed form in the InfoPath Forms Designer. This isn’t the most
elegantly designed form, but it should be good enough for our purposes.

Figure 5-16: File Plan form.

87620c05.indd 13787620c05.indd 137 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

138

Chapter 5: Building and Confi guring a Records Repository

We start by creating a new InfoPath Form Template project in Visual Studio and giving it the name
ECM2007.FilePlanForm, as shown in Figure 5-17.

VSTA is an initiative that Microsoft created to allow managed-code assemblies to be associated with
any kind of application, whether managed or unmanaged. VSTA is a very powerful platform, that when
integrated into an application provides a pared-down version of the Visual Studio IDE embedded within
the application itself. InfoPath 2007 includes VSTA and thus embeds the Visual Studio IDE into the
Forms Designer. In contrast, VSTO is a subset of VSTA that is geared more toward building offi ce
applications using the .NET Framework. Instead of embedding the Visual Studio IDE into the Forms
Designer, it embeds the Forms Designer into Visual Studio, giving the developer the same development
experience as for other types of solutions. The screenshots in this book that involve the creation of
custom InfoPath forms will generally show the VSTO user interface.

Figure 5-17: Creating a new VSTO InfoPath project

InfoPath provides several ways to build the data source that a form will be based on. We can extract a
schema directly from a Web Service or a SQL database, or we can base the data source on an existing
XML schema. In the next dialog, we select “Form Template” based on “XML or Schema” as shown in
Figure 5-18. This allows us to automatically defi ne the data source for the form based on the sales pro-
posal schema we have already created.

From here, we can simply browse to the FilePlan.xsd fi le we created previously, as seen in Figure 5-19.

When we press OK, InfoPath generates the form template and then opens it in the Visual Studio
InfoPath Form Designer.

87620c05.indd 13887620c05.indd 138 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

139

Chapter 5: Building and Confi guring a Records Repository

Figure 5-18: Choosing a form template.

Figure 5-19: InfoPath Data Source Wizard.

When creating an InfoPath form template using VSTO, the standard InfoPath Form Designer is inte-
grated directly into the Visual Studio IDE. The same options are available, but they are placed in differ-
ent locations within the IDE. This can be somewhat confusing at fi rst, but you just have to learn where
the commands are located within each environment.

87620c05.indd 13987620c05.indd 139 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

140

Chapter 5: Building and Confi guring a Records Repository

Figure 5-20: File Plan Form data source.

From the Design Tasks window, we can begin designing our form. Click on the “Data Source” link to
examine the FilePlan data source defi nition that InfoPath has created. Note in Figure 5-20 that the
data source is locked to prevent inadvertent modifi cations of the schema.

By locking data sources based on external schemas, InfoPath ensures that the schema will not be
changed when controls are dragged onto the Form Designer surface.

At this point, we can start dragging data elements onto the form. If you are following along in your
own copy of InfoPath, use the illustration in Figure 5-21 as a guide to drag-and-drop controls onto the
form. The most important point is to ensure that we have included all of the data elements we need.
One way to do that is to simply drag the entire data source onto the Design surface and then rearrange
the controls. Another approach (used here) is to create the basic layout using layout tables and then
drag individual data elements or element groups into the layout table cells.

When we fi nish designing our form, we are ready to test it. To do this, we can right-click on the
manifest.xsf fi le in Solution Explorer and select “Open With” from the context menu. Choose
“Microsoft Offi ce InfoPath 2007” and press OK. This will open a new instance of InfoPath with our
form ready for editing. Enter some data into the form fi elds.

After entering our sample data, we can then save the fi le to disk and open it for editing within Visual
Studio, as shown in Figure 5-22.

87620c05.indd 14087620c05.indd 140 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

141

Chapter 5: Building and Confi guring a Records Repository

Figure 5-21: File Plan Form design.

Figure 5-22: File plan data in the Visual Studio IDE.

87620c05.indd 14187620c05.indd 141 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

142

Chapter 5: Building and Confi guring a Records Repository

At this point, we have a File Plan form template that can be loaded into InfoPath to gather XML data
that is guaranteed to conform to our fi le plan schema. Next, we need to build a File Plan API that will
allow us to serialize and de-serialize the data into C# wrapper classes. We will use these classes to sim-
plify the code we must write in order to interpret the instructions contained within a given fi le plan to
programmatically confi gure the Records Center site to which they are applied.

Generating Serialization Classes
In this step, we will generate C# classes for each of the elements of the fi le plan schema defi ned previ-
ously. To do this, we will use the XsdClassGenerator custom tool described in Chapter 2 that acts as a
wrapper for the XSD.EXE command-line utility that comes with Visual Studio.

Make sure the Properties window is open in Visual Studio, and then right-click on the FilePlan.xsd fi le
in the Solution Explorer window. Enter XsdClassGenerator in the ‘Custom Tool” property, and then
press the [Enter] key to generate the wrapper classes. You can also specify a custom namespace that the
tool will use to enclose the generated classes.

A new node appears beneath the FilePlan.xsd fi le named FilePlan.cs that contains the serialization
classes we need. (The top-level FilePlan component is shown in Listing 5-4.) In later steps, we will
add more code in separate fi les to extend the functionality of the generated classes. At this point, how-
ever, we can go ahead and build the project to create a compiled assembly. This will ultimately become
a custom File Plan API that can be incorporated into any solution that requires fi le plan functionality.

Listing 5-4: FilePlan serialization wrapper classes

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.3031
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

//
// This source code was auto-generated by xsd, Version=2.0.50727.42.
//
namespace ECM2007.RecordsManagement {
 using System.Xml.Serialization;

 /// <remarks/>
 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.42”)]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute(“code”)]
 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true,
 Namespace=”http://schemas.johnholliday.net/FilePlan.xsd”)]
 [System.Xml.Serialization.XmlRootAttribute(

87620c05.indd 14287620c05.indd 142 9/2/09 10:19:14 AM9/2/09 10:19:14 AM

143

Chapter 5: Building and Confi guring a Records Repository

 Namespace=”http://schemas.johnholliday.net/FilePlan.xsd”,
 IsNullable=false)]
 public partial class FilePlan {

 private string titleField;
 private string descriptionField;
 private string authorField;

 private RecordSpecification[] recordsField;

 /// <remarks/>
 public string Title {
 get {
 return this.titleField;
 }
 set {
 this.titleField = value;
 }
 }

 /// <remarks/>
 public string Description {
 get {
 return this.descriptionField;
 }
 set {
 this.descriptionField = value;
 }
 }

 /// <remarks/>
 public string Author {
 get {
 return this.authorField;
 }
 set {
 this.authorField = value;
 }
 }

 /// <remarks/>
 [System.Xml.Serialization.XmlArrayItemAttribute(“Record”,
 IsNullable=false)]
 public RecordSpecification[] Records {
 get {
 return this.recordsField;
 }
 set {
 this.recordsField = value;
 }
 }
 }
}

87620c05.indd 14387620c05.indd 143 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

144

Chapter 5: Building and Confi guring a Records Repository

In practice, it’s a good idea to remove the DebuggerStepThroughAttribute from the generated
wrapper classes because this will prevent you from stepping through the debugger as you write code to
extend them. Although a bit tedious because you have to do this every time the classes are regenerated, it
can save a lot of time while developing the custom API. The source code for the XsdClassGenerator
tool is provided with the code downloads for the book, so it’s possible to add some additional methods to
remove these lines after the fi le is generated, but it has never seemed worth the hassle.

To handle the serialization and de-serialization of XML data into the classes, we use the System.Xml
.Serialization.XmlSerializer class. To make it easier to load FilePlan objects into memory, we
will extend the generated wrapper classes by adding three versions of a static Load method. These
methods will accept either a path to a fi le containing XML fi le plan data, an SPFile object, or an
SPListItem from which an SPFile object can be obtained. We will place this code into a separate fi le
called FilePlanEx.cs so that it is not overwritten when the fi le plan schema changes and the wrapper
classes are regenerated. Listing 5-5 shows the de-serialization code.

Listing 5-5: FilePlan de-serialization methods

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.SharePoint;

namespace ECM2007.RecordsManagement
{
 /// <summary>
 /// Extended implementation of the generated FilePlan
 /// class to support Record Center configuration.
 /// </summary>
 public partial class FilePlan
 {
 public const string FILEPLAN_NAMESPACE =
 “http://schemas.johnholliday.net/FilePlan.xsd”;
 private List<ListDescriptor> m_documentLibraries = null;
 private List<ListDescriptor> m_lists = null;

 #region Deserialization Methods
 /// <summary>
 /// Loads a file plan object from a file.
 /// </summary>
 /// <param name=”filePath”>fully qualified path to the file</param>
 /// <returns>a FilePlan component</returns>
 public static FilePlan Load(string filePath)
 {
 try
 {
 XmlSerializer ser = new XmlSerializer(typeof(FilePlan),
 FILEPLAN_NAMESPACE);
 using (FileStream fs = File.Open(filePath, FileMode.Open))
 return (FilePlan)ser.Deserialize(fs);

87620c05.indd 14487620c05.indd 144 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

145

Chapter 5: Building and Confi guring a Records Repository

 }
 catch (FileNotFoundException fx)
 {
 Helpers.HandleException(“ECM2007.FilePlan”, fx);
 }
 catch (XmlException x)
 {
 Helpers.HandleException(“ECM2007.FilePlan”,x);
 }
 return null;
 }

 /// <summary>
 /// Loads a file plan object from a SharePoint file.
 /// </summary>
 /// <param name=”file”>the file object containing the file plan</param>
 /// <returns>a FilePlan component</returns>
 public static FilePlan Load(SPFile file)
 {
 try
 {
 XmlSerializer ser = new XmlSerializer(typeof(FilePlan),
 FILEPLAN_NAMESPACE);
 return (FilePlan)ser.Deserialize(file.OpenBinaryStream());
 }
 catch (SPException spx)
 {
 Helpers.HandleException(“ECM2007.FilePlan”,spx);
 }
 return null;
 }

 /// <summary>
 /// Loads a file plan object from a SharePoint list item.
 /// </summary>
 /// <param name=”item”>the list item containing the file plan
 document</param>
 /// <returns>a FilePlan component</returns>
 public static FilePlan Load(SPListItem item)
 {
 if (item.File != null)
 return Load(item.File);
 Helpers.Log(“Cannot load file plan. List item ‘{0}’ has no file”,
 item.Title);
 return null;
 }
 #endregion
 }
}

In addition to the de-serialization methods, we’ll need some code for confi guring the Records Center
site. Listing 5-6 shows the confi guration code, starting with the ConfigureRecordCenter method that
iterates through all of the RecordSpecification objects declared within the fi le plan and then del-
egates to the RecordSpecification.Execute method to perform the actual confi guration step.

87620c05.indd 14587620c05.indd 145 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

146

Chapter 5: Building and Confi guring a Records Repository

We will extend the RecordSpecification class later in this section in the same way we extended
the FilePlan class, namely, by creating a separate fi le and declaring a partial class containing the
additional methods we need.

Listing 5-6: Records Center confi guration from a fi le plan

#region Record Center Configuration

/// <summary>
/// Configures an existing record center site with the
/// content types, lists, document libraries and record
/// routing entries needed to implement a file plan.
/// </summary>
/// <param name=”recordCenter”>a record center site</param>
public bool ConfigureRecordCenter(SPWeb recordCenter)
{
 try
 {
 bool success = true;
 foreach (RecordSpecification record in this.Records)
 success = success && record.Execute(this,recordCenter);
 return success;
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x,
 “Failed to configure record center: {0}”,
 recordCenter.Title);
 }
 return false;
}

public RecordSpecification Find(string recordName)
{
 foreach (RecordSpecification record in this.Records)
 if (record.Name.Equals(recordName))
 return record;
 return null;
}

/// <summary>
/// Gets the list of unique document libraries as
/// specified by records defined in the file plan.
/// </summary>
[XmlIgnore]
public List<ListDescriptor> DocumentLibraries
{
 get
 {
 if (m_documentLibraries == null)
 {
 Dictionary<string, ListDescriptor> libraries
 = new Dictionary<string, ListDescriptor>();

87620c05.indd 14687620c05.indd 146 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

147

Chapter 5: Building and Confi guring a Records Repository

 foreach (RecordSpecification record in this.Records)
 {
 if (record.Type == RecordType.Electronic)
 {
 if (libraries.ContainsKey(record.Location))
 libraries[record.Location].Update(record);
 else
 libraries.Add(record.Location, new ListDescriptor(record));
 }
 }
 m_documentLibraries = libraries.Values.ToList<ListDescriptor>();
 }
 return m_documentLibraries;
 }
}

/// <summary>
/// Gets ths list of unique lists needed for managing
/// physical records as specified by records in the
/// file plan.
/// </summary>
[XmlIgnore]
public List<ListDescriptor> PhysicalRecordLists
{
 get
 {
 if (m_lists == null)
 {
 Dictionary<string, ListDescriptor> lists
 = new Dictionary<string, ListDescriptor>();

 foreach (RecordSpecification record in this.Records)
 {
 if (record.Type != RecordType.Electronic)
 {
 if (lists.ContainsKey(record.Location))
 lists[record.Location].Update(record);
 else
 lists.Add(record.Location, new ListDescriptor(record));
 }
 }
 m_lists = lists.Values.ToList<ListDescriptor>();
 }
 return m_lists;
 }
}

/// <summary>
/// Creates a task list that is used to notify
/// record managers of outstanding tasks for records
/// that were created by this plan.
/// </summary>
/// <param name=”recordCenter”>a record center site</param>

Continued

87620c05.indd 14787620c05.indd 147 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

148

Chapter 5: Building and Confi guring a Records Repository

/// <returns>the associated task list</returns>
public SPList CreateTaskList(SPWeb recordCenter)
{
 string listName = string.Format(“{0} Tasks”, this.Title);
 string listDescription = string.Format(
 “Records management tasks for file plan ‘{0}’”, this.Title);
 return SharePointList.Create(recordCenter,
 SPListTemplateType.Tasks, listName, listDescription);
}

/// <summary>
/// Creates the content types as specified by records
/// defined in the file plan. A separate content type
/// is created for each record type.
/// </summary>
public void CreateContentTypes(SPWeb recordCenter)
{
 foreach (RecordSpecification record in this.Records)
 record.CreateContentTypes(this, recordCenter);
}

/// <summary>
/// Creates custom lists needed by the records described
/// in the file plan.
/// </summary>
private void CreatePhysicalRepositories(SPWeb recordCenter)
{
 foreach (RecordSpecification record in this.Records)
 record.CreatePhysicalRepository(this, recordCenter);
}

/// <summary>
/// Creates the document libraries specified by records
/// defined in the file plan.
/// </summary>
private void CreateDocumentLibraries(SPWeb recordCenter)
{
 foreach (RecordSpecification record in this.Records)
 record.CreateDocumentLibrary(this, recordCenter);
}

/// <summary>
/// Creates the record routing types identified by this
/// file plan. Each routing type is configured using properties
/// and options contained within the file plan.
/// </summary>
private void CreateRecordSeries(SPWeb recordCenter)
{
 foreach (RecordSpecification record in this.Records)
 record.CreateRecordSeries(this, recordCenter);
}
#endregion

Listing 5-6: Records Center confi guration from a fi le plan (continued)

87620c05.indd 14887620c05.indd 148 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

149

Chapter 5: Building and Confi guring a Records Repository

Most of the work of executing the fi le plan is delegated to the RecordSpecification object, which
is one of the XSD-generated wrapper classes declared in the fi le plan schema. We can apply the same
technique to extend this class to support the additional operations we need. Listing 5-7 shows the
RecordSpecification.Execute method and the steps involved in confi guring the Records Center for
a given record type.

Listing 5-7: RecordSpecification.Execute method

public bool Execute(FilePlan filePlan, SPWeb recordCenter)
{
 try
 {
 // create or locate the required content types
 CreateContentTypes(filePlan, recordCenter);
 // create lists for physical record types
 CreatePhysicalRepository(filePlan, recordCenter);
 // create libraries for electronic record types
 CreateDocumentLibrary(filePlan, recordCenter);
 // populate the record series table
 CreateRecordSeries(filePlan, recordCenter);
 // return success indicator
 return true;
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x);
 }
 return false;
}

We also need some utility methods to help ensure that the strings we are using are valid for the record
series name, the target location, and the name of each content type declared within the fi le plan. The
following routines are declared within the RecordSpecification class to check for missing charac-
ters and return reasonable default values in case any of the fi le plan data is invalid:

/// <summary>
/// Returns a safe name for the record specification.
/// </summary>
[XmlIgnore]
public string SafeName
{
 get
 {
 return this.Name.Trim().Replace(“ “, “_”)
 .Replace(“;”, “”);
 }
}

/// <summary>
/// Returns a safe location for the record specification.
/// </summary>
[XmlIgnore]

87620c05.indd 14987620c05.indd 149 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

150

Chapter 5: Building and Confi guring a Records Repository

public string SafeLocation
{
 get
 {
 if (string.IsNullOrEmpty(this.Location))
 return “Unclassified records”;
 return this.Location;
 }
}

/// <summary>
/// Calculates the name to be used for content types.
/// </summary>
public string GetContentTypeName(FilePlan filePlan)
{
 return String.Format(“{0} {1}”, filePlan.Title, this.Name);
}

At a minimum, executing a record specifi cation means that a storage location must be provided for
incoming records of that type. But the incoming record can also have metadata associated with it that
must be promoted to columns in the target document library. The best way to handle incoming meta-
data is to create a content type for each record specifi cation so that we can add the required metadata
columns later in the life cycle. We can also use the content type to attach policies to the incoming record
and to execute custom code when the record arrives.

Our strategy for creating the content type is to place it into a group having the name of the fi le plan
and to select the parent content type based on whether the record is an electronic document or a
physical one. Physical records will inherit the generic Item content type, and electronic records will
inherit from Document. We create the content types fi rst, because we will later need to bind the con-
tent type to the document library or list used to store the associated records. Listing 5-8 shows the
RecordSpecification.CreateContentTypes method that handles this process.

Listing 5-8: CreateContentTypes method

public void CreateContentTypes(FilePlan filePlan, SPWeb recordCenter)
{
 try
 {
 string typeName = GetContentTypeName(filePlan);
 SPContentType type = SharePointContentType.Find(
 recordCenter, typeName);

 // create the type if necessary
 if (type == null)
 {
 string groupName = String.IsNullOrEmpty(filePlan.Title) ?
 “File Plan” : string.Format(“File Plan - {0}”, filePlan.Title);

 string baseType = this.Type == RecordType.Electronic ?
 “Document” : “Item”;

 type = SharePointContentType.Create(recordCenter, typeName,

87620c05.indd 15087620c05.indd 150 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

151

Chapter 5: Building and Confi guring a Records Repository

 this.Description, groupName, baseType);
 }

 // ensure that the type exists
 if (type == null)
 throw new SPException(string.Format(
 “Failed to create content type for record: ‘{0}’”,
 this.Name));

 // setup event receivers for physical records so that
 // record managers are notified when records are added to
 // the content database
 if (type != null)
 {
 SPEventReceiverDefinition receiver =
 Helpers.FindOrCreateEventReceiver(
 GetType(), type, SPEventReceiverType.ItemAdded);

 SharePointContentType.AddXmlDocumentString(type,
 FilePlan.FILEPLAN_NAMESPACE,
 CreateReceiverData(filePlan, recordCenter));
 }
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x);
 throw x;
 }
}

Physical records are not associated with routing types but can still be tracked using the functions pro-
vided by the Records Center. Figure 5-23 shows a sample fi le plan input form being used to declare a
physical record by selecting Bar Coded or Labeled as the record type.

Figure 5-23: Entering a physical record specifi cation.

When the content type is created, we also add an ItemAdded event receiver so we can respond to
records that arrive in the repository. Since we’ll be reusing the same event receiver method for all

87620c05.indd 15187620c05.indd 151 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

152

Chapter 5: Building and Confi guring a Records Repository

record types, we have to prepare some contextual information that can be used by the event receiver
method to determine which record specifi cation controls the disposition of the record. We’ll create a
custom XML fragment to hold the context data, and we’ll store it in the content type itself using the
XmlDocuments collection. Listing 5-9 shows the code that creates the context data, which we add to the
content type using our SharePointContentType utility class.

Listing 5-9: Contextual data for a record specifi cation

private string CreateReceiverData(FilePlan filePlan, SPWeb recordCenter)
{
 XmlDocument xmlDoc = new XmlDocument();
 string ns = FilePlan.FILEPLAN_NAMESPACE;
 new XmlNamespaceManager(xmlDoc.NameTable).AddNamespace(“fp”, ns);

 XmlElement rootNode = xmlDoc.CreateElement(“fp”, “FilePlanRecord”, ns);
 xmlDoc.AppendChild(rootNode);

 XmlElement node;
 rootNode.AppendChild(node = xmlDoc.CreateElement(“fp”, “Name”, ns));
 node.InnerText = this.SafeName;

 rootNode.AppendChild(node = xmlDoc.CreateElement(“fp”, “Type”, ns));
 node.InnerText = this.Type.ToString();

 rootNode.AppendChild(node = xmlDoc.CreateElement(“fp”, “TaskListId”, ns));
 SPList taskList = filePlan.CreateTaskList(recordCenter);
 node.InnerText = taskList.ID.ToString();

 rootNode.AppendChild(node = xmlDoc.CreateElement(“fp”, “Users”, ns));
 foreach (string user in this.AssignedTo)
 {
 XmlElement userNode = xmlDoc.CreateElement(“fp”, “User”, ns);
 userNode.InnerText = user;
 node.AppendChild(userNode);
 }
 return xmlDoc.OuterXml;
}

Now that the content type is created, we can proceed to create the document library for electronic records
or the custom list for physical records. After creating the library, we’ll confi gure it with the required con-
tent types and set the appropriate fl ag to ensure that it appears on the Quick Launch navigation bar.

/// <summary>
/// Creates a document library for the record type.
/// </summary>
/// <param name=”filePlan”>a file plan objects</param>
/// <param name=”recordCenter”>a records center site</param>
public void CreateDocumentLibrary(FilePlan filePlan, SPWeb recordCenter)
{
 if (this.Type == RecordType.Electronic)
 {
 string listName = this.SafeLocation;

87620c05.indd 15287620c05.indd 152 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

153

Chapter 5: Building and Confi guring a Records Repository

 if (String.IsNullOrEmpty(listName))
 listName = this.SafeName;

 SPList list = SharePointList.Create(recordCenter,
 SPListTemplateType.DocumentLibrary, listName,
 this.Description);

 SPDocumentLibrary library = list == null ?
 null : list as SPDocumentLibrary;

 if (library == null)
 {
 // either found a list that was not a library, or
 // failed to create a new library
 Helpers.Log(this,
 “Failed to create document library ‘{0}’ in records center ‘{1}’”,
 listName, recordCenter.Title);
 }
 else
 {
 // configure the library with the required content types
 library.ContentTypesEnabled = true;
 library.OnQuickLaunch = true;
 SharePointList.AddContentType(library, GetContentTypeName(filePlan));
 SharePointList.RemoveContentType(library, “Document”);
 library.Update();
 }
 }
}

To confi gure the document library, we enable content types, add the content type we created previously,
and remove the default Document content type. Similarly, when creating a custom list for physical
records, we remove the default Item content type.

/// <summary>
/// Creates a custom list which is used to track physical records.
/// Creates a custom task list for use by the file plan.
/// </summary>
/// <param name=”filePlan”>a file plan object</param>
/// <param name=”recordCenter”>a records center site</param>
public void CreatePhysicalRepository(FilePlan filePlan, SPWeb recordCenter)
{
 if (this.Type != RecordType.Electronic)
 {
 string listName = this.SafeLocation;
 if (String.IsNullOrEmpty(listName))
 listName = this.SafeName;
 SPList list = SharePointList.Create(recordCenter,
 SPListTemplateType.GenericList, listName, this.Description);
 if (list == null)
 Helpers.Log(this,
 “Failed to create physical repository for record ‘{0}’”,
 this.Name);
 else

87620c05.indd 15387620c05.indd 153 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

154

Chapter 5: Building and Confi guring a Records Repository

 {
 // configure the list with the record content type
 list.ContentTypesEnabled = true;
 SharePointList.AddContentType(list, GetContentTypeName(filePlan));

 // remove the default “Item” content t ype
 SharePointList.RemoveContentType(list, “Item”);
 list.Update();

 // create a task list for this record
 // (shared by all record types in the plan)
 filePlan.CreateTaskList(recordCenter);
 }
 }
}

For physical records, we take one additional step. This is where the ItemAdded event receiver will play
a role. Physical records are not submitted to the repository. Instead, they are added directly to the desig-
nated list. Whenever this happens, we will automatically create a task that informs the persons respon-
sible for the record type that they must perform a manual task related to that record. For example, it
may be necessary to generate a label or a barcode and physically attach it to the record in question. This
can be handled any number of ways. In this example, we’ll simply create a task and assign it to the fi rst
user listed in the record specifi cation. To make it easy to track and locate the tasks that belong to this
fi le plan, we create a task list for each plan as shown in the code above. When a physical record is added
to any list using one of the content types created by the fi le plan, the ItemAdded event receiver shown
in Listing 5-10 is called.

Listing 5-10: ItemAdded event receiver

/// <summary>
/// Handles the addition of a physical record entry.
/// </summary>
/// <param name=”properties”></param>
public override void ItemAdded(SPItemEventProperties properties)
{
 // Create a new task for the record manager associated with physical
 // record types so that they are reminded to perform tasks outside
 // of SharePoint, such as attaching a barcode or a label.

 DisableEventFiring();
 try
 {
 SPList taskList = null;
 RecordType recordType;
 string recordName;
 SPUser recordManager;

 Helpers.Log(this, “ItemAdded ‘{0}”, properties.ListItem.Title);
 if (ParseReceiverData(properties, out taskList,
 out recordType, out recordName, out recordManager))
 {
 string title;

87620c05.indd 15487620c05.indd 154 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

155

Chapter 5: Building and Confi guring a Records Repository

 SPListItem item = taskList.Items.Add();
 switch (recordType)
 {
 case RecordType.Barcoded:
 title = “Add barcode to physical record: “;
 break;
 case RecordType.Labeled:
 title = “Add label to physical record: “;
 break;
 default:
 title = “Record added: “;
 break;
 }
 item[“Title”] = string.Format(“{0}{1}”, title,
 properties.ListItem.Title);
 string description = @”A physical record of type ‘{0}’ “ +
 “has been created. You now need to generate a {1} “ +
 “and attach it to the document so it can be tracked.”;
 item[“Body”] = string.Format(description, recordName,
 recordType == RecordType.Barcoded ? “BARCODE” : “LABEL”);
 if (recordManager != null)
 item[“AssignedTo”] = recordManager;
 item.SystemUpdate();
 }
 }
 catch (SPException x)
 {
 Helpers.HandleException(this, x);
 }
 EnableEventFiring();
}

The following method parses the receiver data that we created earlier to extract the key elements
needed to determine the type of record, the ID of the target task list, and the login name of the user
who is responsible for managing records of this type:

private bool ParseReceiverData(SPItemEventProperties properties,
 out SPList taskList, out RecordType recordType,
 out string recordName, out SPUser recordManager)
{
 taskList = null;
 recordType = RecordType.Labeled;
 recordManager = null;
 recordName = string.Empty;
 SPWeb recordCenter = properties.ListItem.Web;
 SPContentType ct = properties.ListItem.ContentType;

 try
 {
 string xmlData = SharePointContentType.GetXmlDocumentString(
 ct, FilePlan.FILEPLAN_NAMESPACE);
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(xmlData);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);

87620c05.indd 15587620c05.indd 155 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

156

Chapter 5: Building and Confi guring a Records Repository

 nsmgr.AddNamespace(“fp”, FilePlan.FILEPLAN_NAMESPACE);
 XmlNode node = xmlDoc.SelectSingleNode(“fp:FilePlanRecord/fp:Name”, nsmgr);
 recordName = node.InnerText;
 node = xmlDoc.SelectSingleNode(“fp:FilePlanRecord/fp:Type”, nsmgr);
 recordType = (RecordType)Enum.Parse(typeof(RecordType), node.InnerText);
 node = xmlDoc.SelectSingleNode(“fp:FilePlanRecord/fp:TaskListId”, nsmgr);
 taskList = recordCenter.Lists[new Guid(node.InnerText)];
 XmlNodeList nodes = xmlDoc.SelectNodes(“fp:FilePlanRecord/fp:Users/
 fp:User”, nsmgr);
 if (nodes != null && nodes.Count > 0)
 {
 string userName = nodes[0].InnerText;
 foreach (SPUser user in recordCenter.SiteUsers)
 if (user.LoginName.ToLower().Contains(userName.ToLower()))
 {
 recordManager = user;
 break;
 }
 }
 return true;
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x,
 “Failed to parse receiver data for item ‘{0}’”,
 properties.ListItem.Title);
 }
 return false;
}

Incoming documents will now be routed to the correct location as specifi ed in the plan, and physical
documents can be tracked easily using the built-in task management functionality as illustrated in
Figure 5-24.

Figure 5-24: File plan task detail.

87620c05.indd 15687620c05.indd 156 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

157

Chapter 5: Building and Confi guring a Records Repository

Finally, if the record specifi cation describes an electronic record type, we can set up the record series
table entry as shown in Listing 5-11. For this to work, the document library must already exist. We grab
the list of aliases for the record, as well as the name of any custom router that should be associated with
the record series.

Listing 5-11: Creating the record series table entry

/// <summary>
/// Creates the record series table entry for this record type.
/// </summary>
/// <param name=”filePlan”></param>
/// <param name=”recordCenter”></param>
public void CreateRecordSeries(FilePlan filePlan, SPWeb recordCenter)
{
 if (this.Type == RecordType.Electronic)
 {
 // access the routing table for the records center
 RecordSeriesCollection routingTable =
 new RecordSeriesCollection(recordCenter);

 routingTable.Add(this.Name, this.SafeLocation, this.Description,
 this.Aliases, this.Router, false);
 }
}

At this point, we have an InfoPath form that produces XML data that can be serialized and de-serialized
using our custom File Plan API. We can also create sample data easily using the rich InfoPath 2007 user
interface that will ensure that the data always conforms to our fi le plan schema. In the next step, we will
build a SharePoint feature to publish the form into a special location within the Records Center site so it
can be used by a records manager to create executable fi le plans.

Building the File Plan Gallery
Now that we have a fi le plan schema and a simple form for creating and editing fi le plan documents,
we can proceed to create a feature that can be activated within any Records Center site. When the fea-
ture is activated, it will create a File Plan gallery as a form library and then attach custom actions that
enable the administrator to execute custom commands on a given fi le plan document.

First, we need a content type that describes the fi le plan itself. Creating a content type will allow us to
associate the Execute command with individual fi le plan documents using a second custom action that
will appear on the Edit Control Block (ECB) dropdown menu. The following CAML code declares the
content type and associates it with the FilePlan.xsn fi le as the document template:

 <!-- Declare a ‘FilePlan’ content type that specifies the InfoPath form as its
 document template. -->
<ContentType
 ID=”0x01010100D7412981EC6441FA8F805FBA212C7E05”

87620c05.indd 15787620c05.indd 157 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

158

Chapter 5: Building and Confi guring a Records Repository

 Name=”File Plan”
 Description=”Describes how to store official records”
 Version=”0”
 Group=”ECM2007”
>
 <DocumentTemplate TargetName=”FilePlan.xsn” />
</ContentType>

Since the content type references the FilePlan.xsn fi le, we need to provision the fi le to the appropriate
place so that it will load properly when a new fi le plan document is created. To do this, we add a module
element that places the fi le in the proper location.

<!-- Declare a module to provision the document template for the content type. -->
<Module Name=”FilePlanResources” Url=”_cts/File Plan” RootWebOnly=”TRUE”>
 <File Url=”FilePlan.xsn” Type=”Ghostable”/>
</Module>

I generally prefer to create content types in code rather than declaratively as we’ve done here because
it’s faster and I don’t have to worry about fi eld identifi ers and typos that inevitably happen when you’re
working with XML. In this case, however, we need the content type identifi er in order to declare the
custom action, and there is no programmatic way to create content types with a specifi c identifi er, nor is
there a way to programmatically create custom actions, so we are forced to use CAML.

With the content type declared, we can add a custom action to its ECB that points to a File Plan
Execution page that we will create shortly.

<!--
Add a custom command to the FilePlan ECB that enables a plan
administrator to execute the plan against the current site.
-->
<CustomAction
 Id=”FilePlan.Execute”
 Location=”EditControlBlock”
 RegistrationType=”ContentType”
 RegistrationId=”0x01010100D7412981EC6441FA8F805FBA212C7E05”
 ImageUrl=”/_layouts/images/CheckValues.gif”
 Title=”Execute File Plan”
 Sequence=”120”
 Description=”Applies the rules contained in the selected file plan to the
 current records center site.”>
 <UrlAction Url=”/_layouts/ECM2007/FilePlanExecute.aspx?ItemId=
 {ItemId}&ListId={ListId}”/>
</CustomAction>

We’ll create the gallery itself using a ListInstance element, but we won’t bind it to the content type
in the declarative CAML code. Instead, we’ll write some code in the feature receiver to handle that and
take care of a few additional loose ends, like setting up the document template that will point to our
custom InfoPath form. Listing 5-12 shows the CAML code needed for the ListInstance declaration.

87620c05.indd 15887620c05.indd 158 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

159

Chapter 5: Building and Confi guring a Records Repository

Listing 5-12: ListInstance declaration

<!--
Create a form library to hold the file plan forms, which
are InfoPath 2007 forms based on the file plan schema.
-->
<ListInstance
 FeatureId=”00BFEA71-1E1D-4562-B56A-F05371BB0115”
 TemplateType=”115”
 Description=”Use the file plan gallery to create file plans for managing
 official records. You can execute a file plan to create the record
 series, lists and document libraries associated with the document types
 identified in the plan.”
 OnQuickLaunch=”True”
 Title=”File Plans”
 Url=”FilePlan” />

Listing 5-13 shows the implementation of the FeatureReceiver class that takes care of confi guring the
File Plan gallery list instance after the feature is activated.

Listing 5-13: File plan FeatureReceiver

 using System;
using System.Diagnostics;
using ECM2007.ContentTypes;
using Microsoft.SharePoint;

namespace ECM2007.FilePlanFeature
{
 /// <summary>
 /// Handles events during feature installation and activation.
 /// </summary>
 public class FeatureReceiver : SPFeatureReceiver
 {
 const string TRACE_CATEGORY = “ECM2007.FilePlanFeature”;
 const string FILEPLANTYPE = “File Plan”;
 const string FILEPLANTEMPLATE = “FilePlan.xsn”;
 const string FILEPLANGALLERY = “File Plans”;

 /// <summary>
 /// Configure the site collection on feature activation.
 /// </summary>
 /// <param name=”properties”></param>
 public override void FeatureActivated(SPFeatureReceiverProperties
 properties)
 {
 SPSite siteCollection = properties.Feature.Parent as SPSite;
 try
 {
 // Configure the file plan gallery.

Continued

87620c05.indd 15987620c05.indd 159 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

160

Chapter 5: Building and Confi guring a Records Repository

 using (SPWeb site = siteCollection.RootWeb)
 {
 // Locate the Form content type.
 SPContentType formType = SharePointContentType.Find(site,
 “Form”);
 if (formType == null)
 Fail(“Form content type not found.”);

 // Locate the FilePlan content type.
 SPContentType filePlan = SharePointContentType.Find(site,
 FILEPLANTYPE);
 if (filePlan == null)
 Fail(“Content Type Not Found: ‘{0}’”, FILEPLANTYPE);

 // Locate the gallery.
 Log(“Configuring the file plan gallery”);
 SPDocumentLibrary gallery = SharePointList.Find(site,
 FILEPLANGALLERY)
 as SPDocumentLibrary;
 if (gallery == null)
 Fail(“File Plan Gallery not found”);

 // Enable content types and add the file plan type to the list.
 gallery.ContentTypesEnabled = true;
 gallery.ContentTypes.Add(filePlan);

 // Remove the default “Form” from the content types in
 the gallery.
 gallery.ContentTypes.Delete(formType.Id);

 // Setup the remaining properties.
 gallery.EnableVersioning = true;
 gallery.EnableFolderCreation = false;
 gallery.ForceCheckout = true;
 gallery.Update();
 }
 }
 catch (Exception x)
 {
 HandleException(“FeatureActivated”, x);
 }
 }

 /// <summary>
 /// For testing purposes, try to remove the file plan gallery upon
 deactivation,
 /// but only if the list is empty.
 /// </summary>
 /// <param name=”properties”></param>
 public override void FeatureDeactivating(SPFeatureReceiverProperties
 properties)
 {

Listing 5-13: File plan FeatureReceiver (continued)

87620c05.indd 16087620c05.indd 160 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

161

Chapter 5: Building and Confi guring a Records Repository

 SPSite siteCollection = properties.Feature.Parent as SPSite;
 try
 {
#if DEBUG
 SPList list = SharePointList.Find(siteCollection.RootWeb,
 FILEPLANGALLERY);
 if (list != null && list.Items.Count == 0)
 SharePointList.Delete(siteCollection.RootWeb, FILEPLANGALLERY);
#endif
 }
 catch (Exception x)
 {
 HandleException(“FeatureDeactivating”, x);
 }
 }

 public override void FeatureInstalled(SPFeatureReceiverProperties
 properties)
 {
 }

 public override void FeatureUninstalling(SPFeatureReceiverProperties
 properties)
 {
 }

 /// <summary>
 /// Fails with an error message.
 /// </summary>
 /// <param name=”format”></param>
 /// <param name=”args”></param>
 void Fail(string format, params object[] args)
 {
 throw new Exception(String.Format(format, args));
 }

 /// <summary>
 /// Logs a diagnostic message.
 /// </summary>
 void Log(string format, params object[] args)
 {
 Trace.WriteLine(string.Format(format, args), TRACE_CATEGORY);
 }

 /// <summary>
 /// Generic exception handler.
 /// </summary>
 void HandleException(string scope, Exception x)
 {
 Log(“Exception occurred: {0}\n{1}”, scope, x.ToString());
 }

 }
}

87620c05.indd 16187620c05.indd 161 9/2/09 10:19:15 AM9/2/09 10:19:15 AM

162

Chapter 5: Building and Confi guring a Records Repository

To allow the user to navigate to the File Plan gallery, we’ll add a link to the Site Settings page in the
appropriate section as shown in Figure 5-25. Listing 5-14 shows the CAML code needed to set this up.

Listing 5-14: CustomAction link to the File Plan gallery

<!-- Add a command to the ‘Galleries’ section of the site settings page to
 enable navigation to the file plan gallery. -->
<CustomAction
 Id=”FilePlanGallery”
 Location=”Microsoft.SharePoint.SiteSettings”
 GroupId=”Galleries”
 Title=”File plans”
 Description=”File Plan Gallery”
 Sequence=”100”
>
 <UrlAction Url=”/FilePlan/forms/allitems.aspx”/>
</CustomAction>

Figure 5-25: File Plan gallery link.

As with any SharePoint feature that declares a feature receiver, after building the assembly we must
ensure that it is installed properly in the Global Assembly Cache and that the feature XML is copied
into the SharePoint 12 hive. This must be done before we can activate the feature. Listing 5-15 shows
the install.bat fi le that is invoked from the post-build event to handle the required feature deploy-
ment steps.

This script uses an APPPOOL environment variable to specify the application pool to reset after the fea-
ture is installed. If you are building the code supplied with the book, then remember to set this variable
to the appropriate application pool name.

87620c05.indd 16287620c05.indd 162 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

163

Chapter 5: Building and Confi guring a Records Repository

Listing 5-15: Post-build event installation batch script

@SET SPROOT=”C:\Program Files\Common Files\Microsoft Shared\Web Server
 Extensions\12”
@SET STSADM=”C:\Program Files\Common Files\Microsoft Shared\Web Server
 Extensions\12\BIN\STSADM”
@SET GACUTIL=”C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\gacutil.exe”
@SET IISAPP=”C:\Windows\System32\iisapp.vbs”

@SET APPPOOL=”ECM2007_RecordCenter”

@Echo Installing %1 Assembly in the GAC
%GACUTIL% -if %2%

@Echo Copying files to the 12 Hive
XCOPY /e /y 12* %SPROOT%

@Echo Installing Feature “ECM2007.FilePlanFeature”
%STSADM% -o installfeature -name ECM2007.FilePlanFeature -force

@Echo Recycling SharePoint Application Pools
CSCRIPT %IISAPP% /a %APPPOOL% /r

@Echo Installation Complete
@SET APPPOOL=

Once activated, the new fi le plan content type is created and attached to the File Plan gallery as shown
in Figure 5-26.

Figure 5-26: File Plan gallery.

87620c05.indd 16387620c05.indd 163 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

164

Chapter 5: Building and Confi guring a Records Repository

Executing the File Plan
To execute a fi le plan, we’ll need a custom ASPX page with code-behind. To invoke the operation, the
plan administrator will use the ECB associated with each fi le plan instance, as shown in Figure 5-27.

Figure 5-27: Execute File Plan ECB command.

We will perform the execution in two steps so that we can allow the plan administrator to review the
plan details before committing to the execution process. We can also display a list of the record types
that are affected by the plan and let the administrator select which ones to process. Listing 5-16 shows
the markup for the Plan Execution page.

Listing 5-16: File Plan Execute page

<%@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Assembly Name=”ECM2007.FilePlanFeature, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=eb8a6a1622425a15” %>

<%@ Page Language=”C#” MasterPageFile=”~/_layouts/application.master”
 Inherits=”ECM2007.FilePlanFeature.FilePlanExecute”
 EnableViewState=”true” EnableViewStateMac=”true” %>
<!--=-->
<%@ Register TagPrefix=”SharePoint”
 Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Register TagPrefix=”Utilities”
 Namespace=”Microsoft.SharePoint.Utilities” Assembly=”Microsoft.SharePoint,
 Version=12.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>

87620c05.indd 16487620c05.indd 164 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

165

Chapter 5: Building and Confi guring a Records Repository

<!--=-->
<%@ Register TagPrefix=”wssuc”
 TagName=”InputFormSection”
 Src=”~/_controltemplates/InputFormSection.ascx” %>

<%@ Register TagPrefix=”wssuc”
 TagName=”InputFormControl”
 Src=”~/_controltemplates/InputFormControl.ascx” %>

<%@ Register TagPrefix=”wssuc”
 TagName=”ButtonSection”
 Src=”~/_controltemplates/ButtonSection.ascx” %>
<!--=-->
<asp:Content ID=”PageTitle” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitle”>
 Execute File Plan
</asp:Content>
<!--=-->
<asp:Content ID=”PageTitleInTitleArea” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitleInTitleArea”>
 Execute File Plan ‘<asp:Label ID=”FilePlanPageTitle” runat=”server” />’
</asp:Content>

<asp:Content ID=”Main” runat=”server”
 ContentPlaceHolderID=”PlaceHolderMain”>
 <p>
 Executing a file plan automatically creates the content types,
 lists, document libraries and information policies needed
 to manage the record types identified by the plan.
 After these items are created, the routing table is
 populated with matching record series entries.
 </p>
 <table border=”0” cellspacing=”0” cellpadding=”0” width=”100%”>
 <tr>
 <td>
 <!-- Plan Details -->
 <wssuc:InputFormSection runat=”server”
 Title=”Plan Details”>
 <Template_InputFormControls>
 <tr>
 <td>
 <asp:Label ID=”PlanAuthor” runat=”server” />

 <asp:Label ID=”PlanDescription” runat=”server” />

 </td>
 </tr>
 </Template_InputFormControls>
 </wssuc:InputFormSection>

 <!-- Record Type List -->
 <wssuc:InputFormSection runat=”server”
 Title=”Official Records”
 Description=”Select the records you wish to process using the
 checkboxes provided.”>
 <Template_InputFormControls>

Continued

87620c05.indd 16587620c05.indd 165 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

166

Chapter 5: Building and Confi guring a Records Repository

 <tr>
 <td>
 <asp:CheckBoxList runat=”server”
 ID=”chkboxlistRecordTypes” />
 </td>
 </tr>
 </Template_InputFormControls>
 </wssuc:InputFormSection>

 <!-- Buttons -->
 <wssuc:ButtonSection runat=”server”>
 <Template_Buttons>
 <asp:Button UseSubmitBehavior=”false” runat=”server”
 class=”ms-ButtonHeightWidth” Text=”Execute”
 id=”btnExecute” Enabled=”true”/>
 </Template_Buttons>
 </wssuc:ButtonSection>
 </td>
 </tr>
 </table>
</asp:Content>

To minimize the amount of work we have to do, we can apply the standard application.master mas-
ter page and create a code-behind page class that inherits from LayoutsPageBase as shown in
Listing 5-17. We can also take advantage of some SharePoint-provided user controls to display the
plan details and the buttons used to start the plan execution. These are brought into the page from the
_controltemplates folder using the wssuc tag prefi x. The controls we need are the InputFormSection,
InputFormControl, and ButtonSection controls shown in the listing. These are template controls
that contain the actual server controls we’ll populate from the code-behind.

Listing 5-17: File plan execution

public class FilePlanExecute : LayoutsPageBase
{
 protected Label FilePlanPageTitle;
 protected Label PlanDescription;
 protected Label PlanAuthor;
 protected CheckBoxList chkboxlistRecordTypes;
 protected Button btnExecute;
 private FilePlan _filePlan;

 protected override void OnLoad(EventArgs e)
 {
 // get the current site and web
 SPWeb site = this.Web;

 // get the source list
 string listId = Request.QueryString[“ListId”];
 SPList list = site.Lists[new Guid(listId)];

 // get the current list item

Listing 5-16: File Plan Execute page (continued)

87620c05.indd 16687620c05.indd 166 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

167

Chapter 5: Building and Confi guring a Records Repository

 string itemId = Request.QueryString[“ItemId”];
 SPListItem item = list.Items.GetItemById(Convert.ToInt32(itemId));

 // install the click handler
 btnExecute.Click += new EventHandler(btnExecute_Click);

 // load the file plan from the item.
 _filePlan = FilePlan.Load(item);

 FilePlanPageTitle.Text = _filePlan.Title;
 PlanAuthor.Text = “Plan author: “ + _filePlan.Author;
 if (!string.IsNullOrEmpty(_filePlan.Description))
 PlanDescription.Text = “Plan description: “ + _filePlan.Description;

 // populate the check box list with the names of
 // the records identified by the plan
 foreach (RecordSpecification record in _filePlan.Records)
 chkboxlistRecordTypes.Items.Add(new ListItem(record.Name));
 }

When the page is loaded, we retrieve the source list and list item from the request parameters supplied
by our custom action. Then we wire up the button click event and load the fi le plan from the item.

The FilePlan.Load method is a static utility method we added to the FilePlan object that we gen-
erated from the fi le plan schema using the XsdClassGenerator custom tool. This method handles the
de-serialization of a FilePlan object from the SPFile object associated with a list item.

Next, we retrieve the plan title and description and store them in the appropriate controls. Finally, we
iterate through the list of RecordSpecification objects in the plan and populate the checkbox list
so that the plan administrator can select which ones to process. Figure 5-28 shows the resulting page
within the SharePoint environment.

Figure 5-28: File Plan Execution page.

87620c05.indd 16787620c05.indd 167 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

168

Chapter 5: Building and Confi guring a Records Repository

When the user clicks on the Execute button, we want two things to happen. First, we want the page to
go into a holding pattern similar to all the other pages within SharePoint that inform the user to wait
while the operation is in progress. We need this because we don’t know how long it will take to process
all the records in the fi le plan. Since we’ll potentially create lots of content types, lists, and other objects
for a given record specifi cation, we anticipate that this could take a long time. Second, we want to redi-
rect the user back to the home page when the execution is completed. If errors occur, we also want the
option to redirect the user to some other page containing diagnostic information.

Fortunately, there is an easy way to accomplish this. The SharePoint API provides a utility class called
SPLongOperation that can be invoked on an application page to inform the user that a potentially
long operation is in progress. It automatically changes the page image to an animated rotating icon
and handles the threading needed to set up background processing for our code. Listing 5-18 shows
the btnExecute_Click method using this technique.

Listing 5-18: File plan execution method

/// <summary>
/// Handles the execute button click.
/// </summary>
/// <param name=”sender”></param>
/// <param name=”e”></param>
void btnExecute_Click(object sender, EventArgs e)
{
 Log(“Executing file plan: {0}”, _filePlan.Title);
 using (SPLongOperation operation = new SPLongOperation(this.Page))
 {
 bool failed = false;
 string message = “File plan execution failed.”;
 List<string> recordsToProcess = new List<string>();

 // process only the selected record types
 foreach (ListItem item in chkboxlistRecordTypes.Items)
 if (item.Selected)
 recordsToProcess.Add(item.Text);

 operation.Begin();

 try
 {
 foreach (string recordName in recordsToProcess)
 {
 RecordSpecification record = _filePlan.Find(recordName);
 if (record != null)
 failed = failed || !record.Execute(_filePlan, this.Web);
 }
 }
 catch (Exception x)
 {
 failed = true;
 message = String.Format(
 “Exception occurred during file plan execution: {0}”,
 x.ToString());

87620c05.indd 16887620c05.indd 168 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

169

Chapter 5: Building and Confi guring a Records Repository

 }

 if (failed)
 Log(message);

 operation.End(this.Web.Url);
 }
}

First, we create a list of the record names the plan administrator has selected for processing, and then
we start the operation, keeping track of whether each RecordSpecification object succeeds or fails
execution against the current SPWeb.

In this example, we simply display a message on failure. Alternatively, we could redirect the user to a
diagnostic page by passing the URL to the SPLongOperation.End method.

After all is said and done, we should end up with a fully populated Record Routing Table along with the
content types and document libraries or lists needed to manage the records according to the fi le plan.
Figure 5-29 shows the resulting routing table. The big advantage here is that we are able to coordinate all
the required steps by driving the creation of the individual components from a single schematized data
fi le. This will allow us to extend the solution further in later chapters when we enhance the fi le plan defi -
nition to include support for additional operations such as auditing and document retention.

Figure 5-29: Fully confi gured fi le plan routing table.

Summary
This chapter described the process of creating a Records Center site using both the SharePoint user
interface and the Records Management API. Building a Records Center site involves creating a
SharePoint site based on the Records Center site template, but before records can be submitted to

87620c05.indd 16987620c05.indd 169 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

170

Chapter 5: Building and Confi guring a Records Repository

the site, additional confi guration steps must be performed. These include creating the appropriate con-
tent types, document libraries, and Record Routing Table entries that describe each record type that the
Records Center will recognize and process.

Confi guring a Records Center site requires that the information contained in a fi le plan worksheet must
be translated into the corresponding components within the SharePoint environment. Because this
information typically includes not only the high-level descriptions of record types, but the low-level
descriptions of required metadata, the steps required to confi gure the Records Center can be tedious
and prone to error.

InfoPath 2007 provides many options for creating electronic forms, including the ability to design a
form based on a predefi ned XML schema. One strategy for simplifying the steps needed to set up a
Records Center properly is to create a dynamic fi le plan that is based on an XML schema that describes
the type and structure of data used at each processing stage for a given record type. This is essential for
building code components that can operate on that content in a consistent manner.

Using a dynamic fi le plan offers several other advantages, including the ability to capture the essential
elements of the fi le plan in a form that can be automated using the Records Management API, and cap-
turing additional information that can drive external processes such as workfl ow activities and sched-
uled processes.

The chapter demonstrated the construction of a SharePoint feature that extends the Site Settings page to
include a link to a File Plan gallery that enables a plan administrator to create a fi le plan using InfoPath
2007 and execute it within the Records Center site to create the required components automatically.

87620c05.indd 17087620c05.indd 170 9/2/09 10:19:16 AM9/2/09 10:19:16 AM

Populating the
Records Repository

In Chapter 4, we examined the structure of the Records Center and looked at the records process-
ing architecture. In Chapter 5, we learned how to set up and confi gure a Records Center site. In
this chapter, we will explore the different ways in which offi cial records can be submitted. This
will include two scenarios:

Submitting records one at a time from within a document library ❑

Submitting records in a batch using a custom application page ❑

Submitting Individual Records
SharePoint enables individual users to select a document in a library and send it to a Records
Repository via the Edit Control Block (ECB) menu attached to the library. The Send To command
displays the name of the Records Center site. Selecting this command sends the selected docu-
ment to the repository, displaying the result (success or failure) in a separate page. In order for
this process to work, the farm must fi rst be confi gured by the farm administrator to communicate
with the Records Center site, and the Records Center site itself must be confi gured to give the user
permission to do so.

Confi guring the Farm for Manual Submission
In Chapter 5, we created our Record Center site and confi gured the record routing types. Now we
can complete the confi guration of the SharePoint Farm so that users can send documents to the
repository easily from the SharePoint UI.

Open the Central Administration web site. Navigate to the Application Management page
and select “Records center” in the “External Service Connections” section. On the Confi gure

87620c06.indd 17187620c06.indd 171 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

172

Chapter 6: Populating the Records Repository

Connection to Records Center page, click “Connect to a Records Center.” Enter the URL of the Offi cial
File Web Service, using the URL of the Records Center site we created in Chapter 5. For example, if the
Records Center is located at http://mossdev:9995/, then the Offi cial File Web Service URL would
be http://mossdev:9995/_vti_bin/officialfile.asmx. Enter the appropriate URL and give the
Records Center a title, such as Records Center. This is the name that will appear as a location under the
Send To menu item on the ECB for all document items in all document libraries in the farm.

Notice that we are entering the full path to the Web Service endpoint that includes the web applica-
tion and port number we confi gured earlier. To verify that you have entered the URL correctly, simply
copy and paste it into the address bar of the web browser. You should see the Web Service Defi nition
Langauge (WSDL) page as shown in Figure 6-1.

Figure 6-1: Offi cial File Web Service page.

One limitation of this architecture is that there is only one Records Center URL we can defi ne for
the entire farm. So if we had multiple Records Center sites, we would have to use a custom action of
our own in order to extend the ECB dropdown menu to allow users to select from the list of differ-
ent Records Center sites. The problem with that approach is that all of the additional processing that
SharePoint performs prior to sending the fi le would then have to be duplicated in our code.

SharePoint delegates the task of preparing a fi le for submission to a special ASPX page located in the
LAYOUTS folder called SendToOffi cialFile.aspx. The parameters that are passed to this page include the
source URL of the fi le to be submitted. The page then retrieves the referenced fi le and then, in turn,
delegates its processing to the SPFile.SendToOfficialFile method. This method extracts the con-
tent type from the fi le and then invokes the Offi cial File Web Service indirectly using the internal class
Microsoft.SharePoint.OfficialFile. We’ll look at how this works a bit later when we examine
how to submit fi les programmatically. First, we’ll complete the confi guration of the Records Center site
and then test it to make sure the farm is properly set up to enable manual fi le submission.

Granting Users Permission to Submit Records
SharePoint requires that users must be granted special permission before they are allowed to sub-
mit fi les to a Records Center site through the Offi cial File Web Service. This additional layer of

87620c06.indd 17287620c06.indd 172 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

173

Chapter 6: Populating the Records Repository

protection is incorporated directly into the records processing infrastructure that is part of the Records
Management API.

During the record processing sequence, the Records Center checks whether the login name supplied
with the incoming fi le matches the name of a user who belongs to the Records Center Web Service
Submitters group. To add a user to this group, use the “People and Groups” link on the Records Center
home page, and then click the More link in the Groups section of the navigation bar on the left side of
the page, as shown in Figure 6-2.

Figure 6-2: Records Center Web Service Submitters group.

Testing the Farm Confi guration
Now we can test our work by submitting a few documents from various places to our Records
Repository.

 1. Open the browser and navigate to the local farm. Select “Site Settings” from the Site Actions
menu and open the Content Types gallery for the site.

 2. Create the following content types:

Type Parent Group

Brief Document Legal Record Types

Contract Document Legal Record Types

Motion Document Legal Record Types

Annual Report Document Financial Record Types

Financial Statement Document Financial Record Types

The Content Type gallery should now resemble the one shown in Figure 6-3.

87620c06.indd 17387620c06.indd 173 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

174

Chapter 6: Populating the Records Repository

Figure 6-3: Content Type gallery.

 3. Click Site Actions ➪ Create and create a new document library called Shared Documents if it
does not already exist.

 4. Open the Document Library Settings page and click on the “Advanced Settings” link. Select
“Allow management of content types” and click OK.

 5. On the Customize Shared Documents page, click “Add from existing site content types” in the
“Content Types” section.

 6. On the Add Content Types: Shared Documents page, select the content types you just created
from the list and click on the Add button.

 7. Now you can navigate back to the Shared Documents page and upload some documents
according to the type of document it is. Figure 6-4 shows a sampling of documents.

Figure 6-4: Shared documents.

87620c06.indd 17487620c06.indd 174 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

175

Chapter 6: Populating the Records Repository

 8. Select any document and then choose Send To ➪ Records Center from the context menu.

 9. When the operation has completed, navigate back to the Records Center site home page. You
should now see the document in the appropriate library, depending on its content type. For
example, if the Records Center includes the routing type shown in Figure 6-5 and a document
with a content type of Annual Report is submitted, then the Financial Documents document
library in the Records Center would receive the record, as shown in Figure 6-6.

Figure 6-5: Financial Documents routing type.

Figure 6-6: Financial Documents library contents.

Submitted records are not moved from one document library to another. They are copied. This means
that offi cial records that are stored in the Records Center represent only a snapshot of the document at
the time it was submitted.

Let’s go back to the Records Center and take a closer look at what happens on the receiving end when-
ever a document is submitted. First of all, notice that the document library is organized by folder, using
the current day and time to name the folder.

87620c06.indd 17587620c06.indd 175 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

176

Chapter 6: Populating the Records Repository

The date format used here is the xsd:dateTime format, which is defi ned in Chapter 5.4 of ISO
8601, the international standard for date and time representations. For more information, see
http://www.iso.org. This format is a combination of a date and a time and has the following
layout: [-]CCYY-MM-DDThh:mm:ss[Z | (+|-)hh:mm], where the optional Z suffi x indicates
the time zone.

If we drill into this folder, we see the actual item as shown in Figure 6-7, with some additional charac-
ters appended so that it can be tracked as a unique object. If you click on it, it will open the fi le for view-
ing or editing.

Figure 6-7: Contents of folder containing submitted fi les.

Notice also that there is a subfolder called Properties. There may also be an audit history folder if audit-
ing information was provided along with the submitted fi le. Let’s click on the Properties folder to take a
closer look inside.

Figure 6-8 shows the XML document that describes the record’s metadata properties after it has been
submitted. The fi lename matches that of the submitted fi le, but the fi le type is XML. Clicking on the
link opens the fi le on the client machine.

Figure 6-8: XML fi le containing record properties.

Figure 6-9 shows an example of the contents of a property fi le. If you scroll to the bottom of this fi le,
you can see that the record routing type name is included, along with the source URL and the user who
submitted the fi le. The other properties are all of the columns and column values that were associated
with the fi le within the source document library.

87620c06.indd 17687620c06.indd 176 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

177

Chapter 6: Populating the Records Repository

Figure 6-9: Record properties.

Notice that the RecordRouting type name in this example is Annual Report, and not
Financial Document. The type name is the value that was supplied when the fi le was submitted,
and not the name of the record routing list item in the Record Routing Table.

The document properties were extracted from the document and copied into this fi le. This system
allows the original metadata to be processed independently of the document and supports post-
processing of the metadata from external code, including workfl ow activities and timer jobs. We can
also surface selected properties automatically into the target document library by defi ning match-
ing columns either in the library itself or on the content type associated with the incoming record.
SharePoint will automatically promote these properties into the library.

This type of property promotion works for simple types, such as Text, Integer, and DateTime. It
does not work for complex types such as User and Lookup without custom coding.

In a typical records management scenario, we’re talking about thousands of documents that may be
coming into the Repository. They won’t be coming in all at once, as people are continually interacting
with documents, and various workfl ows are completing their life cycles, and so on. Therefore, compli-
ance offi cers may need additional collaboration and search tools for fi nding and performing planned
operations on different kinds of records. However, as solution developers, we’re mainly concerned with
getting documents into the Repository as effi ciently as possible. In the following sections, we’ll look at
the tools we have for accomplishing this.

Submitting Records Programmatically
In Chapter 3, we saw how to submit fi les to a remote repository using the Offi cial File Web Service. You
would typically use that kind of code when writing applications that run on client machines where
SharePoint is not also running. You might also use the same approach when writing SharePoint fea-
tures that include commands that enable users to submit records. However, the server-side SharePoint
API provides a shortcut that makes the process of submitting records more direct and straightforward.

87620c06.indd 17787620c06.indd 177 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

178

Chapter 6: Populating the Records Repository

Listing 6-1 shows the code needed to submit a fi le located in a document library to the Records Center
site that is currently confi gured for the farm. Unlike the raw Offi cial File Web Service approach you
would have to use from a client application, where the Records Center site could be located anywhere,
when using the server-side API, you don’t have to know the URL of the Records Center site, and you
don’t have to include a web reference directly in your code. Instead, you can simply tell the SPFile
object to send itself to the Records Center that is confi gured in the farm. It will then automatically
retrieve the information it needs through the SharePoint Administrative API.

Listing 6-1: Submitting a fi le stored in a document library

using Microsoft.SharePoint;

namespace ECM2007.RecordsManagement
{
 public static class OfficialFileSend
 {
 /// <summary>
 /// Submits a file to a records center site using the
 /// records management API.
 /// </summary>
 /// <param name=”documentUrl”>the address of the file to be
 sent</param>
 /// <param name=”resultDetails”>the result of submitting the
 file</param>
 /// <returns>the OfficialFileResult from submitting the
 file</returns>
 public static OfficialFileResult Submit(string documentUrl, ref
 string resultDetails)
 {
 string additionalInfo = string.Empty;
 OfficialFileResult result = OfficialFileResult.UnknownError;

 using (SPSite site = new SPSite(documentUrl))
 {
 using (SPWeb web = site.OpenWeb())
 {
 SPFile file = web.GetFile(documentUrl);
 if (file != null)
 {
 result = file.SendToOfficialFile(out additionalInfo);
 }
 }
 }

 resultDetails = additionalInfo;
 return result;
 }
 }
}

87620c06.indd 17887620c06.indd 178 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

179

Chapter 6: Populating the Records Repository

Submitting Multiple Records
One of the common pain points for SharePoint users who are tasked with sending documents to a
Records Repository is the fact that they can only send them one at a time. There are many scenarios
where this is very ineffi cient. As an example, consider a situation in which existing records must be
categorized and moved into a new SharePoint portal environment. In such cases, the original fi les are
not active in the sense that they are involved in any kind of collaborative workfl ow. Instead, they are
typically uploaded in bulk, and someone must then go through the list to determine if they have the
required metadata and are properly classifi ed before being sent to the Repository.

In this section, we will create an application page that displays all of the documents in the site collection
and allows the user to select which ones to send to the Records Center by marking a checkbox next to
each item. The results of each fi le submission will be displayed next to the item after processing has com-
pleted. We will install the application page using a web-scoped feature, which we will create using the
ECM2007 Feature Wizard. Figure 6-10 shows the Wizard dialog with the appropriate fi eld values entered.

Figure 6-10: Feature Wizard.

The Feature Wizard generates the standard layout for our feature project, which includes the 12\
TEMPLATE folder with subfolders for FEATURES and IMAGES. We will deploy our custom application
page to a subfolder of the LAYOUTS folder, so we need to add it as shown in Figure 6-11.

87620c06.indd 17987620c06.indd 179 9/3/09 10:32:33 AM9/3/09 10:32:33 AM

180

Chapter 6: Populating the Records Repository

Figure 6-11: ECM2007.Offi cialFileSend
project structure.

Listings 6-2 and 6-3 show the feature and elements manifests, respectively. These fi les instruct
SharePoint on how to install the feature and declare the custom action that will appear on the Actions
menu of any document library in the web site on which the feature is activated.

Listing 6-2: feature.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”345fca5b-a92c-4f1e-8f5d-3cb28348877c”
 Title=”ECM2007 - Official File Send”
 Description=”This feature adds the ability to send multiple
 documents to the records center in a single batch operation. The
 results of each file submission are stored for later review.”
 ImageUrl=”ECM2007\logo.png”
 Version=”1.0.0.0”
 Scope=”Web”
 Hidden=”FALSE”
 >
 <ElementManifests>
 <ElementManifest Location=”elements.xml”/>
 </ElementManifests>
</Feature>

Listing 6-3: elements.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <CustomAction
 Id=”OfficialFileSelect”
 GroupId=”ActionsMenu”
 Location=”Microsoft.SharePoint.StandardMenu”
 RegistrationType=”List”

87620c06.indd 18087620c06.indd 180 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

181

Chapter 6: Populating the Records Repository

 RegistrationId=”101”
 Sequence=”2000”
 Title=”Official File Submit”
 Description=”Select one or more documents to send to the records
 center.” >
 <UrlAction Url=”/_layouts/ECM2007.OfficialFileSend/
 OfficialFileSelect.aspx?ListId={ListId}”/>
 </CustomAction>
</Elements>

Figure 6-12 shows the custom command as it appears on the Actions menu of a document library.
Choosing this command navigates to the Offi cialFileSelect.aspx page that will display the documents
contained in the library and enables the user to choose which ones to send to the confi gured repository.

Figure 6-12: Offi cial File Send custom command.

We will use a custom grid control to display the documents and allow the user to select which ones to
process. We also need to display the results of each attempt to process an item. To handle this, we will
inherit from the SPGridView control and add the following columns:

Column Description

ID The document identifi er

FileLeafRef A link to the actual document item

Select A checkbox that the user will use to specify whether to process the item

Record Type The content type of the document

Processing Results A label control that displays the results of processing the item

87620c06.indd 18187620c06.indd 181 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

182

Chapter 6: Populating the Records Repository

To add the Select and Processing Results columns, we will use Template controls that are added
when the grid is initialized. Listing 6-4 shows the DocumentGrid class implementation.

Listing 6-4: DocumentGrid.cs

using System;
using System.Collections.Generic;
using System.Data;
using System.Diagnostics;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace ECM2007.OfficialFileSend
{
 /// <summary>
 /// This class extends the SPGridView control to display
 /// a list of documents with support for multiple selection.
 /// </summary>
 public class DocumentGrid : SPGridView
 {
 public const string ID_ITEMID = “ItemId”;
 public const string ID_ITEMSTATE = “ItemState”;
 public const string ID_CHECKBOX = “ItemSelected”;
 public const string ID_RESULT = “SendToOfficialFileResult”;
 public const string NO_RESULTS = “N/A”;
 public SPDocumentLibrary m_library = null;
 protected DataTable m_dataTable = null;

 /// <summary>
 /// The document library associated with the grid.
 /// </summary>
 SPDocumentLibrary Library
 {
 get
 {
 return ((OfficialFileSelect)this.Page).Library;
 }
 }

 /// <summary>
 /// Data table containing list items to be displayed in the grid.
 /// </summary>
 DataTable DataTable
 {
 get
 {
 if (m_dataTable == null)
 m_dataTable = this.Library.Items.GetDataTable();
 return m_dataTable;
 }
 set

87620c06.indd 18287620c06.indd 182 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

183

Chapter 6: Populating the Records Repository

 {
 m_dataTable = value;
 }
 }

 /// <summary>
 /// Configure the grid.
 /// </summary>
 protected override void OnInit(EventArgs args)
 {
 try
 {
 this.EnableViewState = true;
 this.DataTable = this.Library.Items.GetDataTable();

 // trap the data binding event
 this.RowDataBound += new
 GridViewRowEventHandler(DocumentGrid_RowDataBound);

 Log(“Setting grid properties”);
 this.AutoGenerateColumns = false;
 this.AllowFiltering = true;
 this.HeaderStyle.Font.Bold = true;
 this.AlternatingRowStyle.CssClass = “ms-alternating”;

 BoundField id = new BoundField();
 id.DataField = “ID”;
 id.HeaderText = “ID”;
 id.Visible = false;
 Columns.Add(id);

 BoundField docName = new BoundField();
 docName.DataField = “FileLeafRef”;
 docName.HeaderText = “Document”;
 Columns.Add(docName);

 TemplateField checkbox = new TemplateField();
 checkbox.HeaderText = “Select”;
 checkbox.ItemTemplate = new CheckBoxTemplate();
 Columns.Add(checkbox);

 BoundField contentType = new BoundField();
 contentType.DataField = “ContentType”;
 contentType.HeaderText = “Record Type”;
 Columns.Add(contentType);

 TemplateField result = new TemplateField();
 result.HeaderText = “Processing Results”;
 result.ItemTemplate = new ResultTemplate();
 Columns.Add(result);

 // setup for paging
 this.PageSize = 20;

Continued

87620c06.indd 18387620c06.indd 183 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

184

Chapter 6: Populating the Records Repository

 this.AllowPaging = true;
 this.PageIndexChanging += new
 GridViewPageEventHandler(SPDocumentGrid_PageIndexChanging);
 this.PagerTemplate = null;
 this.PagerSettings.Mode = PagerButtons.NextPreviousFirstLast;

 this.PagerSettings.NextPageImageUrl =
 “/_layouts/images/ewr020.gif”;
 this.PagerSettings.FirstPageImageUrl =
 “/_layouts/images/ewr018.gif”;
 this.PagerSettings.PreviousPageImageUrl =
 “/_layouts/images/ewr019.gif”;
 this.PagerSettings.LastPageImageUrl =
 “/_layouts/images/ewr021.gif”;

 // bind the data to the grid
 Refresh();
 }
 catch (Exception x)
 {
 HandleException(x);
 }
 }

 /// <summary>
 /// Retrieve the list of selected items.
 /// </summary>
 public List<SPListItem> GetSelectedItems()
 {
 List<SPListItem> items = new List<SPListItem>();
 for (int i = 0; i < Rows.Count; i++)
 {
 GridViewRow row = Rows[i];
 if (row.RowType == DataControlRowType.DataRow)
 {
 CheckBox checkBox = row.FindControl(ID_CHECKBOX) as
 CheckBox;
 if (checkBox.Checked == true)
 {
 HiddenField itemId = row.FindControl(ID_ITEMID) as
 HiddenField;

 items.Add(this.Library.Items.GetItemById(
 Convert.ToInt32(itemId.Value)));
 }
 }
 }
 return items;
 }

 /// <summary>

Listing 6-4: DocumentGrid.cs (continued)

87620c06.indd 18487620c06.indd 184 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

185

Chapter 6: Populating the Records Repository

 /// Handles the paging logic.
 /// </summary>
 void SPDocumentGrid_PageIndexChanging(object sender,
 GridViewPageEventArgs e)
 {
 this.PageIndex = e.NewPageIndex;
 this.DataBind();
 }

 /// <summary>
 /// Diagnostic output routine.
 /// </summary>
 /// <param name=”format”></param>
 /// <param name=”args”></param>
 protected void Log(string format, params object[] args)
 {
 string category = GetType().Name;
 Trace.WriteLine(string.Format(format, args) + “...”, category);
 }

 /// <summary>
 /// Generic exception handler.
 /// </summary>
 /// <param name=”x”></param>
 protected void HandleException(Exception x)
 {
 Log(“Exception occurred: {0}”, x.ToString());
 }

 /// <summary>
 /// Helper method to refresh the grid.
 /// </summary>
 private void Refresh()
 {
 try
 {
 // Bind the data table to the grid.
 Log(“Binding the data table to the grid”);
 this.DataSource = this.DataTable.DefaultView;
 this.DataBind();
 }
 catch (Exception x)
 {
 HandleException(x);
 }
 }
 }
}

The OnInit routine creates the grid columns, sets up the paging controls, and performs the initial data
binding against the list item collection associated with the library. An event handler is created for the
RowDataBound event so that custom fi xup code can be executed as each row is bound to the grid.

87620c06.indd 18587620c06.indd 185 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

186

Chapter 6: Populating the Records Repository

The OnInit routine also sets the EnableViewState member to true so that the checkbox state
is maintained during postback events. Notice that the checkbox and result fi elds are cre-
ated as instances of TemplateField and that the item templates are created as instances of
CheckBoxTemplate and ResultTemplate. These are custom classes that provide support for
the Select and Processing Results columns. Listing 6-5 shows the implementation for the
CheckBoxTemplate class.

Listing 6-5: CheckBoxTemplate

/// <summary>
/// Custom item template for selecting documents to process.
/// </summary>
class CheckBoxTemplate : ITemplate
{
 /// <summary>
 /// Called by the page framework to instantiate an item.
 /// </summary>
 void ITemplate.InstantiateIn(Control container)
 {
 // Add the checkbox for selecting the item
 CheckBox box = new CheckBox();
 box.ID = DocumentGrid.ID_CHECKBOX;
 box.Visible = true;
 box.EnableViewState = true;
 box.CausesValidation = true;
 container.Controls.Add(box);

 // add a hidden field to hold the item identifier
 HiddenField itemId = new HiddenField();
 itemId.ID = DocumentGrid.ID_ITEMID;
 itemId.Visible = false;
 container.Controls.Add(itemId);
 }
}

When the template is instantiated for a given row, it creates a new CheckBox control that is displayed to
the user, and a HiddenField control that is not displayed, but holds the list item identifi er that is asso-
ciated with the row. This identifi er will be retrieved when the Submit button is pressed to locate the list
item for processing. Listing 6-6 shows the ResultTemplate implementation.

Listing 6-6: ResultTemplate

/// <summary>
/// Custom item template for displaying processing results.
/// </summary>
class ResultTemplate : ITemplate
{
 /// <summary>
 /// Called when the item is instantiated.
 /// </summary>
 void ITemplate.InstantiateIn(Control container)
 {

87620c06.indd 18687620c06.indd 186 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

187

Chapter 6: Populating the Records Repository

 // Add a label to display the records processing
 // result string, or “not sent” if results unavailable
 Label results = new Label();
 results.ID = DocumentGrid.ID_RESULT;
 results.Visible = true;
 results.Width = Unit.Pixel(200);
 container.Controls.Add(results);
 }
}

This class simply creates a Label control that is used to display the current processing results for the item.
Since the user can navigate to the Offi cialFileSend.aspx page at any time, the processing results are stored
in the property bag for each item. This means that the page will always display some processing result
string, whether the item has been sent to the Repository or not. The item will contain either a null value
for the property or a string that indicates the most recent processing result for that item.

Both the item identifi er and the current processing result string for each item are set in the
DocumentGrid_RowDataBound event handler, which is called once for each row. The following code
shows the implementation of this method:

/// <summary>
/// Called when a row is bound to data. Stores the list item
/// identifier into the hidden field used to locate the selected
/// item for records processing.
/// </summary>
void DocumentGrid_RowDataBound(object sender, GridViewRowEventArgs e)
{
 // check for a data row
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // set the item identifier
 HiddenField itemId = e.Row.FindControl(ID_ITEMID) as HiddenField;
 if (itemId != null)
 {
 DataRowView data = e.Row.DataItem as DataRowView;
 itemId.Value = data[“ID”].ToString();
 }

 // set the item result
 Label resultLabel = e.Row.FindControl(ID_RESULT) as Label;
 if (resultLabel != null)
 {
 // default to no results
 string results = DocumentGrid.NO_RESULTS;

 if (itemId != null)
 {
 // get the item to retrieve most recent results
 SPListItem item = null;
 try
 {
 item = this.Library.Items.GetItemById(
 Convert.ToInt32(itemId.Value));

87620c06.indd 18787620c06.indd 187 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

188

Chapter 6: Populating the Records Repository

 }
 catch (SPException spx)
 {
 HandleException(spx);
 }

 if (item != null)
 {
 try
 {
 results = item.Properties[DocumentGrid.ID_RESULT].ToString();
 }
 catch (Exception x)
 {
 HandleException(x);
 }
 }
 }
 // set the label to the most recent results
 resultLabel.Text = results;
 }
 }
}

First, we set the hidden fi eld value to the item identifi er. Next, we locate the result label control and set
its text to either a default N/A string or to the value of the most recent processing result.

Listing 6-7 shows the markup that declares the Offi cialFileSelect.aspx page. It includes a Register
element for the ECM2007.OfficialFileSend assembly that contains the page implementation and
declares an instance of the ECM2007.DocumentGrid class shown above.

Listing 6-7: Offi cialFileSelect.aspx

<%@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Assembly Name=”ECM2007.OfficialFileSend, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=eb8a6a1622425a15” %>

<%@ Page Language=”C#” MasterPageFile=”~/_layouts/application.master”
 Inherits=”ECM2007.OfficialFileSend.OfficialFileSelect”
 EnableViewState=”true” EnableViewStateMac=”true” %>

<%@ Register TagPrefix=”SharePoint”
 Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Register TagPrefix=”Utilities” Namespace=”Microsoft.SharePoint.Utilities”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Register TagPrefix=”wssuc” TagName=”ButtonSection”

87620c06.indd 18887620c06.indd 188 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

189

Chapter 6: Populating the Records Repository

 Src=”~/_controltemplates/ButtonSection.ascx” %>

<%@ Register TagPrefix=”ECM2007” Namespace=”ECM2007.OfficialFileSend”
 Assembly=”ECM2007.OfficialFileSend, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=eb8a6a1622425a15” %>

<asp:Content ID=”PageTitle” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitle”>
 Records Center File Submit
</asp:Content>

<asp:Content ID=”PageTitleInTitleArea” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitleInTitleArea”>
 Send Files to <asp:Label ID=”RecordCenterTitle” runat=”server” /> from
 ‘<asp:Label ID=”LibraryTitle” runat=”server” />’
</asp:Content>

<asp:Content ID=”Main” runat=”server” ContentPlaceHolderID=”PlaceHolderMain”>
 <p>
 The following list displays all of the documents contained in this
 list. Mark
 the items you wish to send to the records center and then click the
 ‘Submit’ button
 to begin the operation. The results will be displayed next to each
 item after the
 files have been submitted.
 </p>

 <!-- Records list -->
 <ECM2007:DocumentGrid runat=”server” id=”RecordsGrid”
 EnableViewState=”true”
 AutoGenerateColumns=”false”
 />

 <!-- Buttons -->
 <wssuc:ButtonSection runat=”server”>
 <template_buttons>
 <asp:Button UseSubmitBehavior=”false” runat=”server”
 class=”ms-ButtonHeightWidth” Text=”Submit”
 id=”btnSubmit” Enabled=”true”/>
 </template_buttons>
 </wssuc:ButtonSection>
</asp:Content>

Listing 6-8 shows the actual implementation of the Offi cialFileSelect application page, which inher-
its from LayoutsPageBase to give it the standard SharePoint look and feel. The btn_Submit_Click
method is called when the user clicks on the Submit button. This method retrieves the list of selected
list items from the grid and then starts an SPLongOperation that automatically displays a rotating
progress icon while each record is processed and sent to the Repository. The result string from each
record submission attempt is stored in the property bag for each item. If an exception occurs, the excep-
tion details are stored into the property instead. When the operation completes, the user is redirected to
the same page so that the results are refreshed.

87620c06.indd 18987620c06.indd 189 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

190

Chapter 6: Populating the Records Repository

Listing 6-8: Offi cialFileSelect.cs

using System;
using System.Collections.Generic;
using System.Web.UI.WebControls;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.WebControls;

namespace ECM2007.OfficialFileSend
{
 public class OfficialFileSelect : LayoutsPageBase
 {
 protected Label LibraryTitle;
 protected Label RecordCenterTitle;
 protected OfficialFileSend.DocumentGrid RecordsGrid;
 protected Button btnSubmit;

 /// <summary>
 /// Represents the library associated with the page.
 /// </summary>
 public SPDocumentLibrary Library
 {
 get
 {
 SPDocumentLibrary library =
 ViewState[“Library”] as SPDocumentLibrary;

 if (library == null)
 {
 Guid listId = new Guid(Request.Params[“ListId”]);
 library = this.Web.Lists[listId] as SPDocumentLibrary;
 }

 return library;
 }
 set
 {
 ViewState[“Library”] = value;
 }
 }

 /// <summary>
 /// Override to initialize the controls on the page.
 /// </summary>
 /// <param name=”e”></param>
 protected override void OnInit(EventArgs e)
 {
 // retrieve the document library instance
 LibraryTitle.Text = this.Library.Title;

 // get the name of the configured records center site
 RecordCenterTitle.Text = “Records Center”;
 SPWebApplication app = SPAdministrationWebApplication.Local;

87620c06.indd 19087620c06.indd 190 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

191

Chapter 6: Populating the Records Repository

 using (SPSite recordsCenter = new
 SPSite(app.OfficialFileUrl.ToString()))
 {
 if (recordsCenter != null)
 RecordCenterTitle.Text = recordsCenter.RootWeb.Title;
 }

 // install the click handler for the submit button
 btnSubmit.Click += new EventHandler(btnSubmit_Click);
 }

 /// <summary>
 /// Diagnostic helper routine.
 /// </summary>
 void Log(string format, params object[] args)
 {
 System.Diagnostics.Trace.WriteLine(
 string.Format(format, args), “OfficialFileSelect”);
 }

 /// <summary>
 /// Handles the submit button click.
 /// </summary>
 void btnSubmit_Click(object sender, EventArgs e)
 {
 Log(“Processing Records”);

 // Start a long operation so we can display a rotating
 // icon to the user while the files are submitted to the
 // records center.
 using (SPLongOperation operation = new
 SPLongOperation(this.Page))
 {
 string message = “Record processing failed.”;

 // find the selected items
 List<SPListItem> recordsToProcess =
 RecordsGrid.GetSelectedItems();

 // start the operation
 operation.Begin();

 try
 {
 foreach (SPListItem item in recordsToProcess)
 {
 Log(String.Format(“Processing record ‘{0}’”,
 item.Name));
 string resultString = string.Empty;
 try
 {
 // submit the file and retrieve the result
 OfficialFileResult result =
 item.File.SendToOfficialFile(out

Continued

87620c06.indd 19187620c06.indd 191 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

192

Chapter 6: Populating the Records Repository

 resultString);

 // save the result string as a custom property
 if (string.IsNullOrEmpty(resultString))
 {
 switch (result)
 {
 case OfficialFileResult.FileCheckedOut:
 resultString = “The file is checked
 out.”;
 break;
 case OfficialFileResult.FileRejected:
 resultString = “The file was
 rejected.”;
 break;
 case
 OfficialFileResult.InvalidConfiguration:
 resultString = “Invalid
 configuration.”;
 break;
 case OfficialFileResult.MoreInformation:
 resultString = “Additional
 information needed.”;
 break;
 case OfficialFileResult.NotFound:
 resultString = “The current user was
 not found in the submitter’s group.”;
 break;
 case OfficialFileResult.Success:
 resultString = “The file was
 processed successfully.”;
 break;
 case OfficialFileResult.UnknownError:
 resultString = “An unknown error
 occurred.”;
 break;
 }
 }
 }
 catch (Exception x)
 {
 resultString = String.Format(
 “An exception occurred during record
 processing: {0}”,
 x.ToString());
 Log(message);
 }

 // store the item result
 item.Properties[DocumentGrid.ID_RESULT] =
 resultString;
 item.Update();

Listing 6-8: Offi cialFileSelect.cs (continued)

87620c06.indd 19287620c06.indd 192 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

193

Chapter 6: Populating the Records Repository

 }
 }
 finally
 {
 // complete the operation and redirect to same page
 operation.End(this.Request.Url.ToString());
 }
 }
 }
 }
}

The user may continue selecting documents and pressing the Submit button to process them. Each time
the page is refreshed, the most recent processing results are displayed next to each item. Figure 6-13
shows the page in action.

Figure 6-13: Offi cial File Send page.

Summary
This chapter explored the different ways that documents can be sent to a Records Repository by high-
lighting the two key scenarios in which end-users need this functionality. The fi rst scenario involves
sending individual records from within a document library. The second involves sending multiple
records at the same time.

Some additional confi guration is required within the Records Center before end-users are able to sub-
mit records for storage. The chapter explored the necessary confi guration steps, which include confi g-
uring the farm so that the necessary Web Service end-point is available from any document library in
the farm, and also ensuring that each user is added as a member of the Records Center Web Service
Submitters group within the Records Center site.

87620c06.indd 19387620c06.indd 193 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

194

Chapter 6: Populating the Records Repository

The chapter then described the steps needed to submit records programmatically without having to
invoke the Web Service methods directly.

Finally, the chapter presented a SharePoint feature project that installs a custom application page that
enables users to select a group of documents in a document library and then submit them in a single
batch operation to the Records Repository.

87620c06.indd 19487620c06.indd 194 9/3/09 10:32:34 AM9/3/09 10:32:34 AM

Information
Management Policy

When talking about information policy, I often ask the question, “What is the difference between
a policy and a rule?” This invariably leads the discussion toward notions of corporate governance
and regulatory compliance. Somehow the idea of breaking a rule doesn’t carry the same weight
as violating a policy. There can be a rule that says you shall capitalize all occurrences of the word
COMPANY in all legal agreements, failing which a given document might still be valid, but no
additional guidance is available to interpret the application of the rule. On the other hand, if we
declare a policy that contains the same requirement, we tend to look to the policy itself to deter-
mine the appropriate context within which to analyze the appropriate next steps.

Information policy in SharePoint is similar, in that the policy becomes a sort of repository of regula-
tory information in the form of policy items that implement the collection of rules. At the heart of
information policy is the ability to make explicit the rules that govern the creation, disposition, and
use of content. At the very least, it gives us a place to record our thoughts about the different scenar-
ios in which a given type of content will be used. The important thing here is that we must maintain
a clear separation between a given piece of content and any policies we wish to associate with it.

Separating the actual content from any policy statements that refer to it is important for several
reasons. First, it makes it possible to modify the policy without referring back to the original con-
tent that is currently being affected by it. This should be obvious when we start to look at auto-
mating content management using policies because it allows us to modify the policy code without
modifying the content. But it works both ways. It also allows us to modify the content defi nition
without referring back to the policy. The interpretation of the policy is really only relevant when
it is attached to the content, and its relevance may be further constrained by the content life cycle.

87620c07.indd 19587620c07.indd 195 9/3/09 10:33:06 AM9/3/09 10:33:06 AM

196

Chapter 7: Information Management Policy

Another reason for maintaining a clean separation between policy statements and the affected content is
the ability to associate multiple policies with the same piece of content. Although the SharePoint informa-
tion management policy framework only allows a single policy to be defi ned for a given content type or list
at a time, we can still use policy features to capture the essence of our policies and effectively apply mul-
tiple rules to each content item by enabling multiple policy features.

Information Policy Architecture
So, what is information management policy in the SharePoint Server 2007 environment? The informa-
tion policy framework provides a non-invasive way to apply a prescribed set of rules to any list item.
Whether attached to the list that contains the item, or associated with a content type, a policy is simply a
block of text that describes the policy (for administrators to understand its application), a second block
of text that states the policy (for users to understand its purpose), and a collection of policy items that
carry additional information that SharePoint uses to locate the code needed to apply the policy to the
list item. Figure 7-1 shows the default Policy confi guration page that content administrators use to con-
fi gure policy settings.

Figure 7-1: Information Policy confi guration page.

Once a policy is defi ned, it is added to a global catalog of policy objects and is used to manage subcol-
lections of policy items. Each policy item represents a separate component that can be bound to custom
code that further defi nes how the policy is applied to a given list item. Applying a policy to a list item
may involve any number of operations, such as changing or fi ltering the item content or modifying the
item metadata. The actual interpretation of a given policy is the responsibility of the developer, who
writes code that SharePoint calls whenever the policy is applied.

87620c07.indd 19687620c07.indd 196 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

197

Chapter 7: Information Management Policy

Policies can be created at three levels:

In the Site Collection Policies list in the root web of a site collection ❑

Attached to a site content type ❑

Attached to a list or document library ❑

Adding a policy to the Site Collection Policies list defi nes it as a global policy. Global policies can be
exported to a fi le and then imported into other site collections, thus making it easier to maintain con-
sistency between policies at the enterprise level. Once a global policy has been created, it can then be
attached to content types and lists. SharePoint provides additional support for ensuring consistency by
preventing users from editing global policies at the content type or list level.

Attaching a policy to a site content type limits its reusability because there is no way to export or
import the policy, but it can be associated with more than one list. When a policy is attached to a con-
tent type, the XML policy defi nition is propagated automatically to child content types that inherit
from the content type to which the policy is attached. SharePoint also prevents users from changing the
policy settings for child content types, as shown in Figure 7-2. If the policy is removed from the parent,
users can then attach a policy to the child.

Subsequently attaching another policy to the parent overrides any policies already attached to the child,
thereby removing them. If the second policy is then removed from the parent, the original policy that
was attached to the child will be gone.

Figure 7-2: Policy locked for child content type.

Attaching a policy directly to a list or document library is the least fl exible approach because you can-
not reuse the policy defi nition. Instead, you must re-create the policy for each list separately. Also, you
can only attach a policy directly to lists and document libraries that are associated with a single content
type. If multiple content types are enabled, then the policy associated with each content type is used.

Site collection administrators can selectively disable certain policy features from being added to poli-
cies at the content type or list level, effectively forcing users to work with global policies for the dis-
abled policy features. This is done from the Security Confi guration section of the Operations page in
the Central Administration web site.

87620c07.indd 19787620c07.indd 197 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

198

Chapter 7: Information Management Policy

Limitations of Information Policy in SharePoint Server 2007
While the information policy framework is very powerful, the current architecture is limited by the
fact that it allows only one policy to be applied at any given time to a list or to a content type. It is fur-
ther limited by the way in which policy defi nitions for content types are tightly bound to the content
type defi nition, essentially adding the policy statement to the content type itself. This may not seem
to be a severe limitation at fi rst because every policy can support multiple policy features, as you’ll see
in a moment. Using a single policy, for example, a content administrator can bind multiple processing
components to every list item, and this is good enough for many scenarios. However, to move beyond
simple processing logic to handle life-cycle-driven scenarios, where members of different roles interact
with the same content element in different ways, using a single policy falls short.

Consider the common requirement to manage document retention and content auditing at the same
time. With the current architecture, we have to enable both the Expiration Policy Feature and the audit-
ing policy feature as part of the same policy. Consequently, if we were to suspend the policy, it would
simultaneously suspend all features, which is not always what we want. This is part of the reason why
the exempt from policy functionality applies only to the Expiration Policy Feature and not to the policy
as a whole. Suspending other policies might be useful for many solutions, but unfortunately, it is only
available for that single policy feature.

Policies, Policy Features, and
Policy Resources

Information management policy is implemented in the Microsoft.Office.Policy assembly, which
is located in the ISAPI folder of the 12 hive. A quick look at the namespaces it contains reveals a tightly
coupled collection of components that provide a global policy catalog tied to a site collection. Thus,
every site collection maintains a separate list of policy objects, which you access by instantiating a pol-
icy catalog using the public constructor. From the catalog, you can then access the individual policies
that are currently defi ned for the site collection.

using (SPSite site = new SPSite(“http://localhost”)) {
 PolicyCatalog catalog = new PolicyCatalog(site);
}

Each policy is represented by an instance of the Microsoft.Office.RecordsManagement
.InformationPolicy.Policy class, which acts as a wrapper for the XML policy defi nition, adding a
few methods for manipulating the policy template. Figure 7-3 shows the basic architecture of the infor-
mation policy framework.

The Policy object is described by a schema that is used to validate the XML policy defi nition when-
ever a new policy object is created. The actual schema is buried inside the Microsoft.Office.Policy
assembly in the ValidateManifest method of the Policy object implementation. The complete
schema defi nition is shown in Listing 7-1.

87620c07.indd 19887620c07.indd 198 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

199

Chapter 7: Information Management Policy

Document
Library

Policy

Content Type

IPolicy Feature

Policy Resource

IPolicyResource

Aenean consequat, diam ut
sollicitudin commodo, nibh libero
dignissim turpis, eget mattis nisi nisl
eu leo. Suspendisse eu urna leo, a vulputate
neque. Donec condimentum lacus non
mauris bibendum at viverra elit dapibus.
Praesent nec augue eros. Mauris eleifend
tellus id tortor aliquet ultricies. Fusce
rhoncus euismod varius. Cras non ligula
orci, non lobortis purus. Donec interdum
mollis laoreet. Pellentesque ac nulla erat.
Maecenas dignissim bibendum lectus
viverra mollis. Proin
sit amet lorem sed
erat congue tempus.
Aliquam auctor purus
ut est eleifend
sollicitudin. Praesent
et congue est. Proin
sed dui lacus. Sed

Policy Feature

Figure 7-3: Information policy architecture.

Listing 7-1: Policy defi nition schema

<?xml version=”1.0” encoding=”utf-8”?>
<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 xmlns=’office.server.policy’
 elementFormDefault=’qualified’
 targetNamespace=’office.server.policy’>

 <xsd:element name=’Policy’ type=’policy’ />
<!--=-->
 <xsd:complexType name=’policy’>
 <xsd:sequence>
 <xsd:element name=’Name’ type=’xsd:string’ />
 <xsd:element name=’Description’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Statement’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’PolicyItems’ type=’policyItems’ minOccurs=’0’ />
 </xsd:sequence>
 <xsd:attribute name=’id’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’local’ type=’xsd:boolean’ />
 </xsd:complexType>

Continued

87620c07.indd 19987620c07.indd 199 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

200

Chapter 7: Information Management Policy

<!--=-->
 <xsd:complexType name=’policyItems’>
 <xsd:sequence>
 <xsd:element name=’PolicyItem’ type=’policyItem’
 minOccurs=’0’ maxOccurs=’unbounded’ />
 </xsd:sequence>
 </xsd:complexType>
<!--=-->
 <xsd:complexType name=’policyItem’>
 <xsd:sequence>
 <xsd:element name=’Name’ type=’xsd:string’ />
 <xsd:element name=’Statement’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Description’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’CustomData’ type=’customData’ minOccurs=’0’ />
 </xsd:sequence>
 <xsd:attribute name=’featureId’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’BlockPreview’ type=’xsd:boolean’ />
 </xsd:complexType>
<!--=-->
 <xsd:complexType name=’customData’>
 <xsd:sequence>
 <xsd:any processContents=’skip’ minOccurs=’0’ maxOccurs=’unbounded’ />
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

This schema defi nes a kind of policy envelope that can support a heterogeneous collection of policy
items. The customData element is declared so that each policy item can defi ne its own custom data,
which is also stored as an XML string, but which the policy item can interpret in any way that it likes.
Policy features and policy resources are both packaged into the policy as policy items at this level. Later
in the chapter, we’ll look at how each of these policy items is implemented, but fi rst we need to under-
stand how policies are applied to list items by examining the information policy life cycle.

The Information Policy Life Cycle
SharePoint determines when to apply a policy to a given list item based on a number of factors. Such fac-
tors include whether the settings for individual policy features have changed since the item was added to
the list, whether items were already in the list when the policy was applied, and whether a policy was in
force when new list items were created. Figure 7-4 illustrates the normal event processing sequence.

Policy features implement the IPolicyFeature interface, which is also declared in the Microsoft
.Office.RecordsManagement.InformationPolicy namespace. The interface defi nition is shown
in Listing 7-2.

Listing 7-1: Policy defi nition schema (continued)

87620c07.indd 20087620c07.indd 200 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

201

Chapter 7: Information Management Policy

Process
ListItem

OnRemove

Process
ListItem

Register

Unregister

OnGlobal
CustomData

Change

OnCustom
DataChange

Item-Level
Settings Changed

New Policy
Attached

Policy Definition
Changed

Policy Feature
Enabled IPolicyFeature

Policy
Removed

Farm-Level Settings
Changed

Policy Feature
Disabled

Figure 7-4: Information policy processing of list items.

Listing 7-2: IPolicyFeature interface

using Microsoft.SharePoint;
using System;

namespace Microsoft.Office.RecordsManagement.InformationPolicy
{
 public interface IPolicyFeature
 {
 void OnCustomDataChange(PolicyItem policyItem, SPContentType ct);
 void OnGlobalCustomDataChange(PolicyFeature feature);
 bool ProcessListItem(SPSite site, PolicyItem policyItem, SPListItem
 listItem);
 bool ProcessListItemOnRemove(SPSite site, SPListItem listItem);
 void Register(SPContentType ct);
 void UnRegister(SPContentType ct);
 }
}

87620c07.indd 20187620c07.indd 201 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

202

Chapter 7: Information Management Policy

When a new policy is attached to a list or to a content type associated with an item in a list, the infor-
mation policy framework calls the IPolicyFeature.Register method for any policy features that
were enabled for the policy. This method is also called if a policy is modifi ed to enable a new policy
feature. Similarly, the IPolicyFeature.Unregister method is called whenever a policy feature is
disabled in the UI.

Enabling or disabling a policy feature is performed by the content manager using the checkbox next to
the policy feature name displayed on the Policy confi guration page.

After the policy feature is registered, the IPolicyFeature.ProcessListItem method is then called
for any list items now being managed by the policy that contains the policy feature. This method is also
called if the policy defi nition changes or if a new policy is attached to the list or content type. It is also
called if a new item is created while the policy is in force.

The IPolicyFeature.ProcessListItemOnRemove method is called when a policy is removed from
the list or content type or when the policy feature is disabled. The thinking behind this is that any
content elements that are governed by a policy may require special processing whenever the policy
is enabled or disabled. Calling this method gives the policy feature an opportunity to perform any
required actions, such as adding or removing administrative metadata to the item, attaching event
receivers to the item, and so on.

Policy features may also require custom confi guration data at the farm level for global settings and
at the user level for settings that apply to each policy instance. SharePoint provides a separate UI for
each set of settings and also provides abstract server controls we can use to build a custom user inter-
face for users and administrators. Since we must implement our own custom controls derived from
these abstract server controls, SharePoint can easily detect when changes have been made to the base
control properties. It then calls the appropriate method in the policy feature whenever this occurs.
IPolicyFeature.OnGlobalCustomDataChange is called when changes are made through the farm-
level UI (Central Administration), and IPolicyFeature.OnCustomDataChange is called for changes
made via the standard SharePoint UI.

One approach to building policy features and policy resources programmatically is to fi rst generate
wrapper classes using the published schema and then extend them with custom methods that create
and manipulate the policy objects within SharePoint. For most of the information policy components,
this turns out to be more trouble than it’s worth because the default XML serialization includes more
information than is typically needed and can cause the validation method to fail. A more direct approach
is to simply create an abstract base class that generates the appropriate XML on demand by pulling the
required element values from virtual methods we can implement in a derived class. I will use this tech-
nique throughout the chapter to construct custom policy items.

Policy resources are code components that participate in the application of a policy feature to a given
policy. They enable developers to defi ne a sort of mini-framework of cooperating components that
together provide the required functionality. Policy features and their associated policy resources are
typically implemented together and share a common set of principles and/or data structures and inter-
faces. SharePoint imposes no restrictions on how policy features and their policy resources communi-
cate. The only requirement is that a given policy resource must accurately identify the policy feature
with which it is associated. It does this by providing SharePoint with the appropriate policy feature
identifi er, which must be known to the developer implementing the policy resource.

87620c07.indd 20287620c07.indd 202 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

203

Chapter 7: Information Management Policy

Building Custom Policy Features
SharePoint’s information policy features enable content administrators to apply different kinds of con-
trols to various documents without creating a separate SharePoint feature for every document type. The
interface-based loose coupling between policies, policy features, and policy resources enables develop-
ers to provide the reusable layers of functionality needed to make this work.

In the preceding chapters, we began implementing a set of custom components as part of a foundation
class library for working with SharePoint objects. In this section, we’ll extend our ECM2007 foundation
class library to include specialized components for building information policies, policy features, and
policy resources.

Designing for Extensibility
One of the limitations of the standard SharePoint information management policy architecture is that it
requires the developer to anticipate the different ways in which different types of content will be used.
This is often unrealistic because the policy framework is itself intended to allow developers to delegate
many of the confi guration details to an administrator or business analyst. The ability to build custom
policy features partially addresses this by providing a way for the developer to gather confi guration
settings from the administrator and then design the policy feature so that it is driven by those settings.

However, it is also possible to extend the framework further by leveraging policy resources and pub-
lishing well-known interfaces that developers can implement easily without having to deal with unnec-
essary complexity. The expiration policy framework is a good example of this. By implementing the
IExpirationFormula and IExpirationAction interfaces on custom policy resource classes, you can
extend and customize the Expiration Policy Feature without having to address any of the other issues
related to content expiration. Like that, it’s a good idea to identify similar patterns and expose them as
well-defi ned interfaces when designing your own policy features.

Creating Reusable Policy Components
When working with policy features, it is useful to have a library of components that can be reused in
several projects. In this exercise, you will use a set of utility classes that greatly simplifi es the creation of
custom policies, policy features, and policy resources. Let’s declare another interface that captures the
essential elements that will be merged into any serialized policy object:

using System;

namespace ECM2007.InformationPolicy
{
 /// <summary>
 /// Describes an information policy.
 /// </summary>
 interface ISharePointPolicy
 {
 /// <summary>
 /// The policy identifier.
 /// </summary>
 Guid PolicyId { get; set; }
 /// <summary>

87620c07.indd 20387620c07.indd 203 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

204

Chapter 7: Information Management Policy

 /// The name of the policy.
 /// </summary>
 string PolicyName { get; set; }
 /// <summary>
 /// A brief description of the policy.
 /// </summary>
 string PolicyDescription { get; set; }
 /// <summary>
 /// The policy statement presented to end users.
 /// </summary>
 string PolicyStatement { get; set; }
 /// <summary>
 /// The XML manifest that describes the policy.
 /// </summary>
 string PolicyManifest { get; }
 }
}

Note that we have excluded the collection of policy items from the interface defi nition. We don’t really
need them when creating policy objects. SharePoint will create the policy items automatically when we
add policy features to the policy. If we later decide to build a reporting or administrative layer, then it
might be useful to add the policy item collection to our interface. In that case, we might also need addi-
tional methods for fi nding and extracting existing policies.

Next, we declare a class that implements the interface and provides an abstract base from which to
derive specifi c policy objects. We can again leverage our SharePointObject base class to add support
for using the InstallUtil utility for registering the policy directly from the command line without
activating a feature.

Feature activation via SharePoint solution packages is the best practice for deploying SharePoint com-
ponents. However, there are situations in which a command-line approach might also be useful. Here,
we are designing for both scenarios.

using System;
using System.Text;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Microsoft.Office.RecordsManagement.InformationPolicy;
using Microsoft.SharePoint;
using ECM2007.Utilities;

namespace ECM2007.InformationPolicy
{
 /// <summary>
 /// Base class for declaring information policies.
 /// </summary>
 public abstract class SharePointPolicy : SharePointObject, ISharePointPolicy
 {
 }
}

To enable the creation of policies, we declare a couple of static factory methods — one to create a policy
in a site collection and another to associate a policy with a content type.

87620c07.indd 20487620c07.indd 204 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

205

Chapter 7: Information Management Policy

The return value from these factory methods is an instance of the SharePoint Policy class, which we
can then use to perform other operations on the resulting policy object.

The fi rst method creates a policy for a site collection based on information contained in a separate class.
That class will represent the actual policy, and we will use a combination of attributes and data mem-
bers to provide the information needed to declare the policy within SharePoint. To retrieve that infor-
mation, we use the ISharePointPolicy interface declared previously.

public static Policy Create(SPSite site, Type policyType)
{
 ISharePointPolicy policyInstance =
 Activator.CreateInstance(policyType) as ISharePointPolicy;
 if (policyInstance != null)
 {
 try
 {
 PolicyCollection.Add(site, policyInstance.PolicyManifest);
 }
 catch
 {
 PolicyCollection.Delete(site, policyInstance.PolicyId.ToString());
 PolicyCollection.Add(site, policyInstance.PolicyManifest);
 }
 }
 return FindPolicy(site,policyType);
}

After creating an instance of the referenced type, we call its implementation of the PolicyManifest
property to add the policy defi nition to the policy catalog for the site collection. If it already exists, we
handle the InvalidOperation exception and then attempt to delete the policy before trying a second
time to add it to the catalog. If we are successful, then we return the result of fi nding the new policy in
the catalog.

The next method creates a policy and associates it with a content type.

public static Policy Create(SPContentType ct, Type policyType)
{
 Policy policy = null;
 try
 {
 policy = FindPolicy(ct.ParentWeb.Site, policyType);
 if (policy == null)
 policy = Create(ct.ParentWeb.Site,policyType);
 if (policy != null && !policy.IsLocal)
 Policy.CreatePolicy(ct, policy);
 }
 catch (Exception x)
 {
 Trace.WriteLine(string.Format(
 “Failed to create policy of type ‘{0}’ for content type ‘{1}’ - {2}”,
 policyType.Name, ct.Name, x.Message));
 }
 return policy;
}

87620c07.indd 20587620c07.indd 205 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

206

Chapter 7: Information Management Policy

Often, it is necessary to locate an existing policy, so we can add a utility method for that purpose, which
we can call while creating a policy to ensure that a duplicate policy is not created inadvertently.

/// <summary>
/// Locates a policy in a site collection.
/// </summary>
/// <param name=”site”></param>
/// <param name=”policyType”></param>
/// <returns></returns>
public static Policy FindPolicy(SPSite site, Type policyType)
{
 ISharePointPolicy policyInstance =
 Activator.CreateInstance(policyType) as ISharePointPolicy;
 if (policyInstance != null)
 {
 PolicyCatalog catalog = new PolicyCatalog(site);
 foreach (Policy policy in catalog.PolicyList)
 if (policy.Id.Equals(policyInstance.PolicyId.ToString()))
 return policy;
 }
 return null;
}

Finally, we declare a virtual property that constructs a properly formatted XML fragment that
SharePoint recognizes as a valid policy defi nition. This method retrieves the individual properties from
the derived class to fi ll out the XML fragment.

/// <summary>
/// Returns the schema xml that describes the policy.
/// </summary>
public override string SchemaXml
{
 get
 {
 StringBuilder sb = new StringBuilder(
 “<Policy xmlns=’urn:schemas-microsoft-com:office:server:policy’ “);
 sb.AppendFormat(“id = ‘{0}’ “, this.Id);
 sb.AppendFormat(“Local = ‘{0}’>”, this.IsLocal ? “TRUE” : “FALSE”);
 sb.AppendFormat(@”<Name>{0}</Name>”, this.PolicyName);
 sb.AppendFormat(@”<Description>{0}</Description>”, this.PolicyDescription);
 sb.AppendFormat(@”<Statement>{0}</Statement>”, this.PolicyStatement);
 sb.Append(“</Policy>”);
 return sb.ToString();
 }
}

With this component in our library, declaring a new policy is a simple matter of deriving a new class
from the abstract base and then either decorating it with attributes or overriding the properties we wish
to customize.

Policy Features
Policy features are also defi ned within SharePoint by a schema as shown in Listing 7-3.

87620c07.indd 20687620c07.indd 206 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

207

Chapter 7: Information Management Policy

Listing 7-3: Policy feature schema

<?xml version=”1.0” encoding=”utf-8”?>
<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 xmlns:p=’urn:schemas-microsoft-com:office:server:policy’
 elementFormDefault=’qualified’
 targetNamespace=’urn:schemas-microsoft-com:office:server:policy’>

 <xsd:element name=’PolicyFeature’ type=’p:policyFeature’ />
<!--=-->
 <xsd:complexType name=’policyFeature’>
 <xsd:sequence>
 <xsd:element name=’LocalizationResources’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Name’>
 <xsd:simpleType>
 <xsd:restriction base=’xsd:normalizedString’>
 <xsd:whiteSpace value=’collapse’ />
 <xsd:pattern value=’[^\s](.)*’ />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=’Description’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Publisher’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’ConfigPage’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’ConfigPageInstructions’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’DefaultCustomData’ type=’p:customData’ minOccurs=’0’ />
 <xsd:element name=’GlobalConfigPage’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’GlobalCustomData’ type=’p:customData’ minOccurs=’0’ />
 <xsd:element name=’AssemblyName’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’ClassName’>
 <xsd:simpleType>
 <xsd:restriction base=’xsd:string’>
 <xsd:pattern value=’([^\s])+’ />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=’ResourceTypes’ type=’p:resourceTypes’ minOccurs=’0’ />
 </xsd:sequence>
 <xsd:attribute name=’id’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’group’ type=’xsd:string’ />
 </xsd:complexType>
<!--=-->
 <xsd:complexType name=’customData’>
 <xsd:sequence>
 <xsd:any processContents=’skip’ minOccurs=’0’ maxOccurs=’unbounded’ />
 </xsd:sequence>
 </xsd:complexType>
<!--=-->
 <xsd:complexType name=’resourceTypes’>
 <xsd:sequence>
 <xsd:element name=’ResourceType’ type=’p:resourceType’ minOccurs=’0’
 maxOccurs=’unbounded’ />
 </xsd:sequence>
 </xsd:complexType>

Continued

87620c07.indd 20787620c07.indd 207 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

208

Chapter 7: Information Management Policy

<!--=-->
 <xsd:complexType name=’resourceType’>
 <xsd:sequence>
 <xsd:element name=’Name’ type=’xsd:string’ />
 </xsd:sequence>
 <xsd:attribute name=’id’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’required’ type=’xsd:boolean’ use=’required’ />
 </xsd:complexType>

</xsd:schema>

We start by declaring an interface we can use to retrieve the essential elements of a policy feature. This
includes the XML manifest as well as the confi guration page and instructions that will appear on the
confi guration page for administrators.

using System;

namespace ECM2007.InformationPolicy
{
 /// <summary>
 /// Describes an information policy feature.
 /// </summary>
 interface ISharePointPolicyFeature
 {
 /// <summary>
 /// The unique policy feature identifier.
 /// </summary>
 string Id { get; }
 /// <summary>
 /// The name of the feature.
 /// </summary>
 string Name { get; set; }
 /// <summary>
 /// A brief description of what the feature does.
 /// </summary>
 string Description { get; set; }
 /// <summary>
 /// The name of the user control that provides a user interface
 /// for configuring the policy feature.
 /// </summary>
 string ConfigPage { get; set; }
 /// <summary>
 /// Additional instructions that are added to the configuration
 /// user interface for the policy feature.
 /// </summary>
 string ConfigPageInstructions { get; set; }
 /// <summary>
 /// Retrieves the XML manifest for the feature.
 /// </summary>
 string Manifest { get; }
 }
}

Listing 7-3: Policy feature schema (continued)

87620c07.indd 20887620c07.indd 208 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

209

Chapter 7: Information Management Policy

The ISharePointPolicyFeature implementation will call back through a set of virtual methods
that can be overridden by derived classes. We can also use this pattern to redirect calls from the
IPolicyFeature implementation as well. We then end up with a default implementation of the core
methods as well as providing an easy way for developers to further extend the component.

#region Virtual Properties
public virtual string ConfigPage { get; set; }
public virtual string ConfigPageInstructions { get; set; }
#endregion

#region Virtual Overrides
/* Virtual methods that can be overridden by derived classes. */
public virtual void OnCustomDataChange(PolicyItem policyItem, SPContentType ct) { }
public virtual void OnGlobalCustomDataChange(PolicyFeature feature) { }
public virtual bool ProcessListItem(SPSite site, PolicyItem policyItem,
 SPListItem listItem) { return false; }
public virtual bool ProcessListItemOnRemove(SPSite site, SPListItem listItem)
 { return false; }
public virtual void Register(SPContentType ct) { }
public virtual void UnRegister(SPContentType ct) { }
#endregion

The SchemaXml override builds the CAML needed to describe the policy feature to SharePoint by
retrieving the required values from the derived class implementation.

/// <summary>
/// Returns the schema xml that describes the policy.
/// </summary>
public override string SchemaXml
{
 get
 {
 StringBuilder sb = new StringBuilder(
 “<PolicyFeature xmlns=’urn:schemas-microsoft-com:
 office:server:policy’ “);
 sb.AppendFormat(“id = ‘{0}’>”, this.Id);
 sb.AppendFormat(“<Name>{0}</Name>”, this.Name);
 sb.AppendFormat(“<Description>{0}</Description>”, this.Description);
 sb.AppendFormat(“<Publisher>{0}</Publisher>”, this.Publisher);
 sb.AppendFormat(“<ConfigPage>{0}</ConfigPage>”, this.ConfigPage);
 sb.AppendFormat(“<ConfigPageInstructions>{0}</ConfigPageInstructions>”,
 this.ConfigPageInstructions);
 sb.AppendFormat(“<AssemblyName>{0}</AssemblyName>”, this.AssemblyName);
 sb.AppendFormat(“<ClassName>{0}</ClassName>”, this.ClassName);
 sb.Append(“</PolicyFeature>”);
 return sb.ToString();
 }
}

With the virtual methods and properties in place, we can simply delegate the remaining methods as
needed.

#region IPolicyFeature Members

void IPolicyFeature.OnCustomDataChange(PolicyItem policyItem, SPContentType ct)

87620c07.indd 20987620c07.indd 209 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

210

Chapter 7: Information Management Policy

{
 this.OnCustomDataChange(policyItem, ct);
}

void IPolicyFeature.OnGlobalCustomDataChange(PolicyFeature feature)
{
 this.OnGlobalCustomDataChange(feature);
}

bool IPolicyFeature.ProcessListItem(SPSite site, PolicyItem policyItem, SPListItem
 listItem)
{
 return this.ProcessListItem(site, policyItem, listItem);
}

bool IPolicyFeature.ProcessListItemOnRemove(SPSite site, SPListItem listItem)
{
 return this.ProcessListItemOnRemove(site, listItem);
}

void IPolicyFeature.Register(SPContentType ct)
{
 this.Register(ct);
}

void IPolicyFeature.UnRegister(SPContentType ct)
{
 this.UnRegister(ct);
}

#endregion

The Register and Unregister methods are called when the feature is registered for a content type
and when the policy feature is deactivated, respectively.

/// <summary>
/// This method is called when the feature is registered for a content type.
/// Adds a “TrustedPrinters” field to the content type.
/// </summary>
/// <param name=”ct”></param>
public override void Register(SPContentType ct)
{
 base.Register(ct);
 Log(“Registering print control for content type: “ + ct.Name);

 // Setup the item event receiver for the content type.
 ItemEventReceiver.Create(ct, typeof(PrinterPolicyEventReceiver));

 // Add the “TrustedPrinters” field to the content type.
 SPFieldLink fieldRef = SharePointContentType.AddOrCreateFieldReference(ct,
 PrinterPolicyFeature.TrustedPrintersFieldName, SPFieldType.Text, false,
 true, true,true,true);

87620c07.indd 21087620c07.indd 210 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

211

Chapter 7: Information Management Policy

}

/// <summary>
/// This method is called when the policy feature is removed.
/// Uninstalls the event receiver from the content type.
/// </summary>
/// <param name=”ct”></param>
public override void UnRegister(SPContentType ct)
{
 base.UnRegister(ct);
 Log(“Unregistering PrintControl for content type: “ + ct.Name);
 ItemEventReceiver.Remove(ct, typeof(PrinterPolicyEventReceiver));
}

The ProcessListItem method is called by the policy framework for list items that were created before
the policy feature was applied.

/// <summary>
/// This method is called by the policy framework for list items that were
/// created before the policy was applied to the list.
/// </summary>
/// <param name=”site”></param>
/// <param name=”policyItem”></param>
/// <param name=”listItem”></param>
/// <returns></returns>
public override bool ProcessListItem(SPSite site,
 Microsoft.Office.RecordsManagement.InformationPolicy.PolicyItem policyItem,
 SPListItem listItem)
{
 Log(“Processing list item: “ + listItem.Title);
 bool result = base.ProcessListItem(site, policyItem, listItem);

 // Add the policy item custom data to the TrustedPrinters field.
 try
 {
 // Get the policy data from the item payload.
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(policyItem.CustomData);

 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.PrintControlPolicyNamespace);
 XmlNode node = xmlDoc.SelectSingleNode(“p:data/p:printers”, nsmgr);

 // Store the list of trusted printers into the list item.
 listItem[PrinterPolicyFeature.TrustedPrintersFieldName] = node.InnerText;
 listItem.Update();
 }
 catch (Exception x)
 {
 Log(“ProcessListItem failed for item: “ + listItem.Title + “ - “ +
 x.ToString());
 }
 return result;
}

87620c07.indd 21187620c07.indd 211 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

212

Chapter 7: Information Management Policy

The OnCustomDataChange event fi res whenever the custom data for a policy item changes. In this case,
we will load the custom data from the policy item, which we will store as an XML document. We can
structure the XML fragment any way we want. We just have to ensure that both the custom control and
the policy feature handle the data in the same way. In this case, we just need to store and retrieve the
list of trusted printers as shown in Listing 7-4.

Listing 7-4: OnCustomDataChange method implementation

/// <summary>
/// This method is called when the custom data for a policy item changes.
/// </summary>
/// <param name=”policyItem”></param>
/// <param name=”ct”></param>
public override void OnCustomDataChange(PolicyItem policyItem, SPContentType ct)
{
 base.OnCustomDataChange(policyItem, ct);
 Log(“OnCustomDataChange for policy item: “ + policyItem.Name
 + “ and content type “ + ct.Name + “ where policy item custom data = “
 + policyItem.CustomData);

 try
 {
 // Get the custom data from the policy item.
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(policyItem.CustomData);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.PrintControlPolicyNamespace);

 // Add the custom data to the content type payload.
 ct.XmlDocuments.Delete(PrinterPolicyFeature.PrintControlPolicyNamespace);
 ct.XmlDocuments.Add(xmlDoc);
 ct.Update();
 }
 catch (Exception x)
 {
 Log(“OnCustomDataChange failed for item: “ + policyItem.Name + “ - “ +
 x.ToString());
 }
}

As mentioned earlier, policy features and policy resources work together to provide a complete pack-
age of functionality for an information policy. Since policy resources are also packaged as policy items
when added to a policy, we can take a similar approach and defi ne an abstract interface and base class
implementation to make it easier to create custom policy resource components.

Policy Resources
We start by defi ning a simple abstraction for our generic policy resource component. We do this by
declaring the ISharePointPolicyResource interface shown in Listing 7-5.

87620c07.indd 21287620c07.indd 212 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

213

Chapter 7: Information Management Policy

Listing 7-5: ISharePointPolicyResource interface

using System;
using System.Collections.Generic;
using System.Text;

namespace ECM2007.InformationPolicy
{
 public interface ISharePointPolicyResource
 {
 string FeatureId { get; }
 string Publisher { get; }
 }
}

As we have done for other components in our ECM2007 foundation class library throughout the book,
we will include a special SchemaXml property that constructs the CAML code needed to describe the
resource to SharePoint. It does this by retrieving the resource name, description, publisher, assembly,
and class name from the derived class that will actually implement the policy resources we will eventu-
ally build. The CAML code must conform to the policy resource schema shown in Listing 7-6.

Listing 7-6: Policy resource schema

<?xml version=”1.0” encoding=”utf-8”?>
<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 xmlns=’urn:schemas-microsoft-com:office:server:policy’
 elementFormDefault=’qualified’
 targetNamespace=’urn:schemas-microsoft-com:office:server:policy’>

 <xsd:element name=’PolicyResource’ type=’policyResource’ />
<!--=-->
 <xsd:complexType name=’policyResource’>
 <xsd:sequence>
 <xsd:element name=’LocalizationResources’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Name’>
 <xsd:simpleType>
 <xsd:restriction base=’xsd:normalizedString’>
 <xsd:whiteSpace value=’collapse’ />
 <xsd:pattern value=’[^\s](.)*’ />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=’Description’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’Publisher’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’GlobalConfigPage’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’GlobalCustomData’ type=’customData’ minOccurs=’0’ />
 <xsd:element name=’AssemblyName’ type=’xsd:string’ minOccurs=’0’ />
 <xsd:element name=’ClassName’>
 <xsd:simpleType>
 <xsd:restriction base=’xsd:string’>
 <xsd:pattern value=’([^\s])+’ />
 </xsd:restriction>

Continued

87620c07.indd 21387620c07.indd 213 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

214

Chapter 7: Information Management Policy

 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=’id’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’featureId’ type=’xsd:string’ use=’required’ />
 <xsd:attribute name=’type’ type=’xsd:string’ use=’required’ />
 </xsd:complexType>
<!--=-->
 <xsd:complexType name=’customData’>
 <xsd:sequence>
 <xsd:any processContents=’skip’ minOccurs=’0’ maxOccurs=’unbounded’ />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Listing 7-7 shows the declaration of our abstract base class with the SchemaXml method that constructs
the required CAML code. Notice the two protected virtual properties, FeatureId and ResourceType.
These values will provide the appropriate context for the policy resource when the component is loaded
into the SharePoint environment. The FeatureId value tells SharePoint which feature to associate the
resource with. It then loads the component and makes it available to the policy feature when it runs.
The ResourceType property is provided so that the feature can distinguish among the different types
of resources that may be loaded. You’ll see in a moment how this value is used to distinguish expiration
formulas from expiration actions.

Listing 7-7: SharePointPolicyResource class

using System;
using System.Collections.Generic;
using System.Text;
using System.ComponentModel;
using System.Configuration.Install;
using Microsoft.Office.RecordsManagement.InformationPolicy;
using Microsoft.Office.RecordsManagement.PolicyFeatures;

namespace ECM2007.InformationPolicy
{
 /// <summary>
 /// Base class for policy resource implementations.
 /// </summary>
 public abstract class SharePointPolicyResource : SharePointObject,
 ISharePointPolicyResource
 {
 /// <summary>
 /// Override this property to specify the correct ID
 /// of the policy feature this resource belongs to.
 /// </summary>
 protected virtual string FeatureId
 {
 get { return string.Empty; }

Listing 7-6: Policy resource schema (continued)

87620c07.indd 21487620c07.indd 214 9/3/09 10:33:07 AM9/3/09 10:33:07 AM

215

Chapter 7: Information Management Policy

 }

 /// <summary>
 /// Override this property to specify the policy resource type.
 /// </summary>
 protected virtual string ResourceType
 {
 get { return this.Name; }
 }

 /// <summary>
 /// Override to construct the required manifest for this component type.
 /// </summary>
 public override string SchemaXml
 {
 get
 {
 StringBuilder sb = new StringBuilder(
 “<PolicyResource xmlns=’urn:schemas-microsoft-com:
 office:server:policy’ “);
 sb.AppendFormat(“id = ‘{0}’ “, this.Id);
 sb.AppendFormat(“featureId = ‘{0}’ “, this.FeatureId);
 sb.AppendFormat(“type = ‘{0}’>”, this.ResourceType);
 sb.AppendFormat(“<Name>{0}</Name>”, this.Name);
 sb.AppendFormat(“<Description>{0}</Description>”, this.Description);
 sb.AppendFormat(“<Publisher>{0}</Publisher>”, this.Publisher);
 sb.AppendFormat(“<AssemblyName>{0}</AssemblyName>”, this.AssemblyName);
 sb.AppendFormat(“<ClassName>{0}</ClassName>”, this.ClassName);
 sb.Append(“</PolicyResource>”);
 return sb.ToString();
 }
 }
 }
}

Leveraging the InstallUtil utility is a great way to deploy policy resources. We’ll implement our
base class so that it provides a default implementation of the Install and Uninstall methods that
are inherited from the System.Configuration.Installer component. These methods can then
be enabled or disabled from the declaration of any derived classes by including or excluding the
RunInstaller attribute from the class defi nition.

/// <summary>
/// Installs the policy resource into the local farm.
/// </summary>
public override void Install(System.Collections.IDictionary stateSaver)
{
 base.Install(stateSaver);
 string manifest = this.SchemaXml;
 Console.WriteLine(“Installing policy resource: {0}”, this.Name);
 try
 {
 Console.WriteLine(“Attempting to delete using id: {0}”, this.Id);
 PolicyResourceCollection.Delete(this.Id);
 }

87620c07.indd 21587620c07.indd 215 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

216

Chapter 7: Information Management Policy

 catch (Exception x1)
 {
 Console.WriteLine(“Delete failed: {0}”, x1.Message);
 }
 try
 {
 Console.WriteLine(“Validating manifest:\n{0}”, manifest);
 PolicyResource.ValidateManifest(manifest);
 PolicyResourceCollection.Add(manifest);
 }
 catch (Exception x2)
 {
 Console.WriteLine(“Error in manifest: {0}”, x2.Message);
 }
}

/// <summary>
/// Removes the policy resource from the local farm.
/// </summary>
public override void Uninstall(System.Collections.IDictionary savedState)
{
 base.Uninstall(savedState);
 Console.WriteLine(“Uninstalling policy resource with id: {0}”, this.Id);
 PolicyResourceCollection.Delete(this.Id);
}

We can now use our base set of information policy components to build solutions more quickly
and easily.

In the following sections, we’ll develop a custom information policy feature that controls the distri-
bution of printed material by limiting the printing of certain documents to a specifi c set of secure
printers. Our policy feature will contain a list of trusted printers and will work in conjunction with
a Visual Studio Tools for Offi ce (VSTO) add-in that will trap the print event to determine whether a
trusted printer is being used. If not, then a dialog will be displayed to the user, and the print job will
be canceled.

Creating a Printer Control Policy Feature
This is an implementation of a use case suggested by Microsoft in the white paper, “Compliance
Features in the 2007 Microsoft Offi ce System” (http://www.microsoft.com/downloads/details
.aspx?familyid=d64dfb49-aa29-4a4b-8f5a-32c922e850ca&displaylang=en), which was pub-
lished in November 2006. I decided to implement this use case as a way to explore the information
policy framework, but also to take a closer look at the inherent dependency between server-side and
client-side policy components.

We’ll start by creating a new SharePoint Feature project named ECM2007.PrinterControlPolicyFeature.
Since Information Policy Features are installed globally, our feature could be scoped to any level. For
convenience and in anticipation of adding additional components such as content types and fi elds to
our solution later, we’ll set the feature scope to Site, as shown in Figure 7-5.

87620c07.indd 21687620c07.indd 216 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

217

Chapter 7: Information Management Policy

Figure 7-5: Printer control policy feature project details.

In order to use the Records Management features, we need to add a reference to the Microsoft
.Office.Policy assembly, which is located in the 12\ISAPI folder. We’ll also need to add a refer-
ence to the ECM2007 component library that contains the Information Policy components we built
earlier in the chapter.

The ECM2007 project includes some additional references we need to add in order for our project to
build. First, we’ll add a reference to the System.Configuration.Install assembly from the .NET
tab so that we can use the InstallUtil command-line utility to install our components into the
SharePoint environment. We will also need the System.Web assembly.

Creating the Policy Feature Class
Policy features allow administrators to select which parts of a policy should be applied to different
items. Here, we will create a custom policy feature that maintains a list of trusted printers that users are
allowed to send output to. To support the policy feature implementation on the client machine, we will
create a separate VSTO add-in that will use this information to prevent the end-user from printing to an
untrusted printer.

87620c07.indd 21787620c07.indd 217 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

218

Chapter 7: Information Management Policy

We add a class to the project called PrinterPolicyFeature and then add the following using
statements at the top of the fi le.

using System;
using System.ComponentModel;
using System.Diagnostics;
using System.Xml;
using Microsoft.Office.RecordsManagement.InformationPolicy;
using Microsoft.SharePoint;

using ECM2007.ContentTypes;
using ECM2007.InformationPolicy;

We’ll delete the generated class declaration and replace it with the following code:

[Name(“Document Print Controller”)]
[Description(“Maintains a list of ‘trusted’ printers so that administrators “
 + “can control where documents are printed.”)]
[Publisher(“John F. Holliday”)]
public class PrinterPolicyFeature : SharePointPolicyFeature
{
 public const string TrustedPrintersFieldName = “TrustedPrinters”;
 public const string PrintControlPolicyNamespace =
 “urn:ecm401:policy.printcontrol”;

 public PrinterPolicyFeature()
 {
 }
}

Our policy feature class inherits from the ECM2007.InformationPolicy.SharePointPolicyFeature
abstract base class. This class provides a default implementation of the IPolicyFeature interface,
which must be implemented to enable SharePoint to communicate with the policy feature. Using an
abstract base allows us to implement only the methods we require.

The base class also uses attributes to generate the CAML code needed to register our component in
the SharePoint environment. The TrustedPrintersFieldName and PrintControlPolicyNamespace
constants will be used to set up the content types and list items affected by the policy.

First, we’ll create a static method for writing trace messages during development:

/// <summary>
/// Helper method for logging trace messages.
/// </summary>
public static void Log(string message)
{
 Trace.WriteLine(message,”ECM2007.PrinterPolicyFeature”);
}

Policy features work by hooking into the event receiver mechanism for the lists and content types to
which they are attached. When the printer control policy feature is registered for a content type, it will
set up event receivers for the ItemAdded and ItemUpdated events so that it can copy the list of trusted
printers into a special column on the target list item. To make it easier to register and unregister event

87620c07.indd 21887620c07.indd 218 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

219

Chapter 7: Information Management Policy

receivers, the ECM2007 utility library includes a class called ItemEventReceiver. In the next step, we
will inherit from this class to declare event receiver methods for these two event types.

We add a new nested class declaration inside the PrinterPolicyFeature class named
PrinterPolicyEventReceiver that inherits from ItemEventReceiver:

/// <summary>
/// This class implements the event receivers for the policy feature.
/// </summary>
public class PrinterPolicyEventReceiver : ItemEventReceiver
{
 /// <summary>
 /// Handles the item added event to set the list of trusted printers.
 /// </summary>
 /// <param name=”properties”></param>
 public override void ItemAdded(SPItemEventProperties properties)
 {
 base.ItemAdded(properties);
 Log(“PrinterPolicyFeature.ItemAdded - “ + properties.ListTitle);
 AddPrintersToListItem(properties.ListItem);
 }

 /// <summary>
 /// Handles the item updated event to set the list of trusted printers.
 /// </summary>
 /// <param name=”properties”></param>
 public override void ItemUpdated(SPItemEventProperties properties)
 {
 base.ItemUpdated(properties);
 Log(“PrinterPolicyFeature.ItemUpdated - “ + properties.ListTitle);
 AddPrintersToListItem(properties.ListItem);
 }
}

Both of these routines delegate the job of adding the list of printers to the list item whenever a new item
is added or an existing item is updated. The list of printers is extracted from the content type payload
(a custom XMLDocument added by the policy feature) and placed into the TrustedPrinters fi eld of the
list item. We add the following code to the PrinterPolicyEventReceiver class defi nition:

/// <summary>
/// Gets the list of trusted printers from the content type associated
/// with the item and places it into the appropriate field.
/// </summary>
/// <param name=”item”></param>
private void AddPrintersToListItem(SPListItem item)
{
 if (item == null || item.ContentType == null)
 return;
 Log(“AddPrintersToListItem ‘” + item.Title + “’”);
 string xml = item.ContentType.XmlDocuments[PrinterPolicyFeature.
 PrintControlPolicyNamespace];
 if (string.IsNullOrEmpty(xml))
 {
 Log(“-- content type payload is empty”);

87620c07.indd 21987620c07.indd 219 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

220

Chapter 7: Information Management Policy

 }
 else
 {
 Log(“-- loading content type payload”);
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(xml);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.PrintControlPolicyNamespace);
 XmlNode node = xmlDoc.SelectSingleNode(“p:data/p:printers”, nsmgr);
 Log(“-- ‘” + node.InnerText + “’”);
 SPField field = item.Fields[PrinterPolicyFeature.TrustedPrintersFieldName];

 try
 {
 item[field.Id] = node.InnerText;
 item.SystemUpdate();
 Log(“-- UPDATED!”);
 }
 catch (SPException x)
 {
 Log(string.Format(“-- FAILED to update item - {0}”, x.Message));
 }
 }
}

Now we are ready to override selected methods of the SharePointPolicyFeature base class. We add
a region to the PrinterPolicyFeature class named SharePointPolicyFeature Overrides and
insert the following code inside the region:

/// <summary>
/// This method is called when the feature is registered for a content type.
/// Adds a “TrustedPrinters” field to the content type.
/// </summary>
/// <param name=”ct”></param>
public override void Register(SPContentType ct)
{
 base.Register(ct);
 Log(“Registering print control for content type: “ + ct.Name);

 // Setup the item event receiver for the content type.
 ItemEventReceiver.Create(ct, typeof(PrinterPolicyEventReceiver));

 // Add the “TrustedPrinters” field to the content type.
 SPFieldLink fieldRef = SharePointContentType.AddOrCreateFieldReference(ct,
 PrinterPolicyFeature.TrustedPrintersFieldName, SPFieldType.Text, false,
 true, true,true,true);
}

/// <summary>
/// This method is called when the policy feature is removed.
/// Uninstalls the event receiver from the content type.
/// </summary>
/// <param name=”ct”></param>
public override void UnRegister(SPContentType ct)

87620c07.indd 22087620c07.indd 220 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

221

Chapter 7: Information Management Policy

{
 base.UnRegister(ct);
 Log(“Unregistering PrintControl for content type: “ + ct.Name);
 ItemEventReceiver.Remove(ct, typeof(PrinterPolicyEventReceiver));
}

These routines handle the registration and un-registration of the feature for a given content type. The
code fi rst creates an ItemEventReceiver for the content type using the nested class we just created,
and then it adds a TrustedPrinters fi eld to the content type.

Next, we will override the OnCustomDataChange method, which is called whenever the custom data
associated with the policy item changes. This happens when the policy administrator enters a new
value into the custom UI we will provide for specifying the list of trusted printer names. We add the
following code to the class defi nition:

/// <summary>
/// This method is called when the custom data for a policy item changes.
/// </summary>
/// <param name=”policyItem”></param>
/// <param name=”ct”></param>
public override void OnCustomDataChange(PolicyItem policyItem, SPContentType ct)
{
 base.OnCustomDataChange(policyItem, ct);
 Log(“OnCustomDataChange for policy item: “ + policyItem.Name
 + “ and content type “ + ct.Name + “ where policy item custom data = “
 + policyItem.CustomData);

 try
 {
 // Get the custom data from the policy item.
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(policyItem.CustomData);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.PrintControlPolicyNamespace);

 // Add the custom data to the content type payload.
 ct.XmlDocuments.Delete(PrinterPolicyFeature.PrintControlPolicyNamespace);
 ct.XmlDocuments.Add(xmlDoc);
 ct.Update();
 }
 catch (Exception x)
 {
 Log(“OnCustomDataChange failed for item: “ + policyItem.Name + “ - “ +
 x.ToString());
 }
}

SharePoint monitors the life cycle of items affected by a policy and calls the ProcessListItems method
when updates are needed for a given item. Next, we will override this method to update the TrustedPrinters
fi eld with the updated list from the policy item. We add the following code to the class defi nition:

/// <summary>
/// This method is called by the policy framework for list items that were
/// created before the policy was applied to the list.

87620c07.indd 22187620c07.indd 221 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

222

Chapter 7: Information Management Policy

/// </summary>
/// <param name=”site”></param>
/// <param name=”policyItem”></param>
/// <param name=”listItem”></param>
/// <returns></returns>
public override bool ProcessListItem(SPSite site, Microsoft.Office.
 RecordsManagement.InformationPolicy.PolicyItem policyItem, SPListItem
 listItem)
{
 Log(“Processing list item: “ + listItem.Title);
 bool result = base.ProcessListItem(site, policyItem, listItem);

 // Add the policy item custom data to the TrustedPrinters field.
 try
 {
 // Get the policy data from the item payload.
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(policyItem.CustomData);

 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.PrintControlPolicyNamespace);
 XmlNode node = xmlDoc.SelectSingleNode(“p:data/p:printers”, nsmgr);

 // Store the list of trusted printers into the list item.
 listItem[PrinterPolicyFeature.TrustedPrintersFieldName] = node.InnerText;
 listItem.Update();
 }
 catch (Exception x)
 {
 Log(“ProcessListItem failed for item: “ + listItem.Title + “ - “ +
 x.ToString());
 }
 return result;
}

In order to test the policy feature, it must be registered in the site collection when the feature is activated.
In the FeatureReceiver.cs fi le, we replace the FeatureActivated method with the following code:

/// <summary>
/// Override to install the printer control policy feature.
/// </summary>
/// <param name=”properties”></param>
public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (!SharePointPolicyFeature.Install(typeof(PrinterPolicyFeature)))
 Trace.WriteLine(“Printer Policy Feature installation failed.”);
}

This method gets the SPSite object from the feature receiver properties and uses the static Install
method of the SharePointPolicyFeature base class to register the policy feature within the
SharePoint environment.

87620c07.indd 22287620c07.indd 222 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

223

Chapter 7: Information Management Policy

Similarly, we replace the FeatureDeactivating method with the code shown below:

/// <summary>
/// Override to remove the printer control policy feature.
/// </summary>
/// <param name=”properties”></param>
public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (!SharePointPolicyFeature.Uninstall(typeof(PrinterPolicyFeature)))
 Trace.WriteLine(“Printer Policy Feature removal failed.”);
}

Now we are ready to test our work so far. Building the project and navigating to any SharePoint site,
from the Site Settings page, we can select “Site Collection Features” and see the feature listed.

After activating the feature, we can navigate to any document library and then from the List Settings
page, select the “Information management policy settings” link. If the document library has content
types enabled, then we will see a list of content types to choose from. Clicking one of the links will take
us to the Policy Settings page. If content types are not enabled for the list, we will go directly to that
page. From the Policy Settings page, select the “Defi ne a policy” link and click OK. Now, we should see
our policy feature displayed at the bottom of the list of available policy features to be enabled, as shown
in Figure 7-6.

Figure 7-6: Printer Control policy feature confi guration.

If we enable the feature, we will get a post-back, but nothing is displayed beneath the checkbox. In the next
step, we will add a custom user interface to enable administrators to specify the list of trusted printers.

87620c07.indd 22387620c07.indd 223 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

224

Chapter 7: Information Management Policy

Adding Custom Policy Feature Settings
In this step, we will create a custom control for entering a list of trusted printers. This will be a simple
textbox with instructions to enter a semicolon-delimited list of printer names.

In actual practice, we would more likely retrieve the list of trusted printers from an external database or
from a SharePoint list and present them as a dropdown list or combo-box.

The fi rst step is to create a control template that SharePoint can load when the administrator selects the
checkbox next to the name of our policy feature.

We’ll need to deploy the control template into the LAYOUTS folder of the 12 hive. Since we are not
building a complete solution package, we can copy the fi le directly from our Visual Studio project into
SharePoint by adding a folder to the solution. We can right-click on the TEMPLATE folder in the Solution
Explorer window and select Add ➪ New Folder from the context menu. We’ll name the new folder
LAYOUTS to match the target folder in the 12 hive. Beneath the LAYOUTS folder, we’ll add a subfolder
named ECM2007.PrinterControlPolicyFeature. Within that folder, we’ll add a new Text File item and
give it the name PrinterPolicySettings.ascx.

Although we selected Text File as the item type, Visual Studio uses the fi le extension to determine
which editor to use. Here, we are creating an ASCX fi le to use as a template for our custom user interface.

We’ll add the following code to the ASCX fi le to defi ne the control template:

<%@ Assembly Name=”ECM2007.PrinterControlPolicy, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=d3d13d75b9fd2b46” %>

<%@ Register TagPrefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Register TagPrefix=”Utilities” Namespace=”Microsoft.SharePoint.Utilities”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<%@ Import Namespace=”Microsoft.SharePoint” %>

<%@ Control Language=”C#” Inherits=”ECM2007.PrinterControlPolicy.
 PrinterPolicySettings” %>
<p>
 <table cellpadding=”0” class=”ms-authoringcontrols”>
 <tr>
 <td>
 </td>
 <td>
 <asp:Label ID=”Label1” runat=”server”
 Text=”Enter trusted printer names, separated by ‘;’”>
 </asp:Label></td>
 </tr>
 <tr>
 <td>
 </td>
 <td>

87620c07.indd 22487620c07.indd 224 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

225

Chapter 7: Information Management Policy

 <asp:TextBox ID=”TextBoxPrinters” runat=”server”
 TextMode=”MultiLine”
 Rows=”5” MaxLength=”1024” Columns=”40” class=”ms-input”
 ToolTip=”Enter the list of trusted printers here.” />
 <asp:RequiredFieldValidator ID=”RequiredValidatorPrinters”
 ControlToValidate=”TextBoxPrinters”
 ErrorMessage=”At least one printer name is required.”
 Text=”Please enter a semicolon-delimited list of printer
 names.”
 EnableClientScript=”false” runat=”server” />
 </td>
 </tr>
 </table>
</p>

This template declares a Label, a TextBox, and an associated FieldValidator control. It inherits
from a code-behind class we will now implement in a separate fi le.

We add a new class to the project named PrinterPolicySettings and replace the generated class
with the following code:

/// <summary>
/// This class implements a custom Information Policy settings control
/// that enables an administrator to enter the list of trusted printers.
/// </summary>
public class PrinterPolicySettings : CustomSettingsControl
{
 // holds the custom data associated with the control
 string m_customData = string.Empty;

 // automatically bound to the TextBox control in the template
 protected TextBox TextBoxPrinters;
}

We’ll need to pull in some additional code, so we add the following using statements at the top of
the fi le:

using System.Web.UI.WebControls;
using System.Xml;
using Microsoft.Office.RecordsManagement.InformationPolicy;
using Microsoft.SharePoint;

The m_customData string will hold the custom data being transferred to and from the TextBox control.
The protected TextBoxPrinters control is automatically bound to the matching control in the tem-
plate by ASP.NET.

Our PrinterPolicySettings class inherits from a base class that is provided by the
SharePoint Information Policy framework for implementing policy feature user interfaces. The
CustomSettingsControl class is an abstract class that declares several abstract methods. Because they
are abstract methods, we must provide an implementation for all of them in our derived class. Listing 7-8
shows the custom settings control methods we are responsible for implementing.

87620c07.indd 22587620c07.indd 225 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

226

Chapter 7: Information Management Policy

Listing 7-8: Information Policy custom settings control

using Microsoft.SharePoint;
using System;
using System.Collections.Specialized;
using System.Web.UI;

namespace Microsoft.Office.RecordsManagement.InformationPolicy
{
 public abstract class CustomSettingsControl : UserControl, IPostBackDataHandler
 {
 protected CustomSettingsControl();

 public abstract SPContentType ContentType { get; set; }
 public abstract string CustomData { get; set; }
 public abstract SPList List { get; set; }

 public abstract bool LoadPostData(string postDataKey,
 NameValueCollection values);
 public abstract void RaisePostDataChangedEvent();
 }
}

Several methods will not be used in this solution, so we can enter stubs for the overrides as follows:

/// <summary>
/// Not used - must be implemented because base class is abstract.
/// </summary>
public override void RaisePostDataChangedEvent(){}

/// <summary>
/// Not used - must be implemented because base class is abstract.
/// </summary>
public override SPList List { get; set; }

/// <summary>
/// Not used - must be implemented because base class is abstract.
/// </summary>
public override SPContentType ContentType { get; set; }

The custom data will consist of a list of printer names that we will embed into an XML fragment so it
can be added to the payload of a content type. Add the following method to the class defi nition:

/// <summary>
/// This accessor is called to get or set the custom data
/// associated with the control.
/// </summary>
public override string CustomData
{
 get

87620c07.indd 22687620c07.indd 226 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

227

Chapter 7: Information Management Policy

 {
 XmlDocument xmlDoc = new XmlDocument();
 string ns = PrinterPolicyFeature.PrintControlPolicyNamespace;
 new XmlNamespaceManager(xmlDoc.NameTable).AddNamespace(“p”, ns);
 XmlElement rootNode = xmlDoc.CreateElement(“p”, “data”, ns);
 xmlDoc.AppendChild(rootNode);
 XmlElement printersNode = xmlDoc.CreateElement(“p”, “printers”, ns);
 rootNode.AppendChild(printersNode);
 printersNode.InnerText = TextBoxPrinters.Text;
 m_customData = xmlDoc.InnerXml;
 return m_customData;
 }
 set
 {
 m_customData = value;
 }
}

The LoadPostData method is called to set the custom data string after the text in the control is
modifi ed.

/// <summary>
/// This method updates the custom data associated with the control.
/// </summary>
/// <param name=”postDataKey”></param>
/// <param name=”values”></param>
/// <returns></returns>
public override bool LoadPostData(string postDataKey, System.Collections.
 Specialized.NameValueCollection values)
{
 string oldData = this.CustomData;
 string newData = values[postDataKey];
 if (oldData != newData)
 {
 this.CustomData = newData;
 return true;
 }
 return false;
}

Finally, we need to initialize the TextBox with the initial data when the page is loaded.

/// <summary>
/// Loads the custom data string into the textbox whenever the control is loaded.
/// </summary>
/// <param name=”e”></param>
protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);
 if (!(base.IsPostBack || string.IsNullOrEmpty(m_customData)))

87620c07.indd 22787620c07.indd 227 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

228

Chapter 7: Information Management Policy

 {
 try
 {
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(m_customData);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, PrinterPolicyFeature.
 PrintControlPolicyNamespace);
 XmlNode node = xmlDoc.SelectSingleNode(“p:data/p:printers”, nsmgr);
 TextBoxPrinters.Text = node.InnerText;
 }
 catch (Exception x)
 {
 System.Diagnostics.Trace.WriteLine(“Failed to load printer settings - “
 + x.Message, GetType().Name);
 }
 }
}

Now that we have created the control template and implemented its code-behind class, we need to
tell SharePoint where it is located on the server. We also need to provide some instructions for the
administrator describing the purpose of the feature and how it should be used. Time to reopen the
PrinterPolicyFeature.cs fi le for editing:

Because the base SharePointPolicyFeature class inherits from the Installer class, Visual
Studio treats the class fi le as a component, causing the IDE to attempt to load a designer for it. To go
directly to the code editor, we must right-click on the fi le and choose “View Code.”

Now we can add the following lines to the PrinterPolicyFeature constructor:

this.ConfigPage = “ECM2007.PrinterControlPolicyFeature/PrinterPolicySettings.ascx”;
this.ConfigPageInstructions = @”Add the names of trusted printers “
 + “here, separated by semicolons. This will prevent users from printing “
 + “documents to which this policy is applied on unsecure printers. “
 + “NOTE: In order for this to work, you must also deploy the “
 + “PrintController add-on for Microsoft Office to all client machines.”;

After building the project again, we can navigate back to the Policy Settings page for the policy we created
earlier. Now, our custom instructions appear beneath the “Document Print Controller” caption. When
we click on the checkbox next to the “Enable Document Print Controller” policy feature, we should see a
labeled TextBox control where we can enter the list of trusted printers, as illustrated in Figure 7-7.

To test our work, we can enter some names into the TextBox control and save the policy. Whenever we
add or update an item to which the policy is attached, we should see the list of printers in the “Trusted
Printers” column of the item.

It is not necessary to copy the list of trusted printers into a column of each list item. This was done here
only to illustrate the steps that are typically required when writing policy features that need to modify
the list item fi elds or place special metadata into columns. For the purposes of this particular scenario
(managing trusted printers), we can access the policy defi nition along with its custom data directly
from the content type payload. In the next section, we will use this approach to prevent users from
printing to untrusted printers.

87620c07.indd 22887620c07.indd 228 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

229

Chapter 7: Information Management Policy

Figure 7-7: Printer Control policy feature settings.

Creating a Print Monitor Add-In for Word 2007
To prevent users from violating the printer control policy, we need some additional code that will run
on every client machine. This code must be installed on each client and confi gured as an application-
level add-in for the Offi ce client applications. In this step, we will use Visual Studio Tools for Offi ce to
create a print monitor add-in for Word 2007 that will read the trusted printer list from the document
and compare it to the currently active printer. If the currently active printer name is not in the list, then
any attempt to print the document is aborted with an error message.

When an information policy is attached to a content type, a copy of the policy is embedded within any
document that is associated with the type. This means that the entire policy defi nition travels with
the document and is accessible from our add-in code. We can take advantage of this by creating a new
VSTO project called ECM2007.PrintMonitorAddin. From the New Project dialog as shown in Figure 7-8,
we select “Word 2007 Add-in” from the Offi ce/2007 section.

Open the ThisAddIn.cs fi le for editing, and add the following namespaces to the using statements at
the top of the fi le:

using System.Xml;
using System.Windows.Forms;

87620c07.indd 22987620c07.indd 229 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

230

Chapter 7: Information Management Policy

The fi rst bit of code will handle the Startup event to install a handler for the BeforePrint event. This
handler will be called whenever the user attempts to print the active document. Add the following code
inside the ThisAddIn_Startup event handler that was auto-generated by the New Project Wizard.

// install a handler for the print event
this.Application.DocumentBeforePrint
 += new Word.ApplicationEvent4_DocumentBeforePrintEventHandler(
 Application_DocumentBeforePrint);

Figure 7-8: New Project dialog for PrintMonitor add-in.

Replace the generated event-handler stub with the following code:

/// <summary>
/// This event handler gets the name of the printer the user is
/// attempting to use. It then obtains the list of “trusted” printers
/// as defined by the PrintControl policy associated with the document.
/// If the current printer is not trusted, then a message is displayed
/// and the operation is cancelled.
/// </summary>
/// <param name=”Doc”></param>
/// <param name=”Cancel”></param>
void Application_DocumentBeforePrint(Word.Document Doc, ref bool Cancel)
{
 if (!PrinterIsTrusted(Application.ActivePrinter))
 {
 MessageBox.Show(String.Format(
 “Sorry. Big Brother does not want you to print this document “ +
 “on printer ‘{0}’! Please select a different printer.”,
 Application.ActivePrinter),
 “Printer Is Not Trusted”);

87620c07.indd 23087620c07.indd 230 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

231

Chapter 7: Information Management Policy

 Cancel = true;
 }
}

The next routine will return true if the specifi ed printer is a trusted printer as defi ned by the policy:

/// <summary>
/// Determines whether a specified printer is trusted.
/// </summary>
/// <param name=”printerName”></param>
/// <returns>true if the specified printer is in the list of trusted
 printers</returns>
bool PrinterIsTrusted(string printerName)
{
 // Retrieve the list of trusted printers from the attached policy.
 List<string> trustedPrinters = GetTrustedPrintersList();
 // Check whether the specified printer is in the list.
 if (trustedPrinters.Count == 0)
 return true;
 return trustedPrinters.Contains(printerName);
}

Finally, we need a routine to extract the list of trusted printers from the information policy attached
to the document. For Word 2007 documents the information policy is embedded as a CustomXMLPart
object within the active document. The collection of custom XML parts is exposed as a property of
the Microsoft.Office.Interop.Word.Document object. The following code performs the lookup
operation:

/// <summary>
/// Retrieves the list of trusted printers from the PrintControl policy
/// associated with the document.
/// </summary>
/// <remarks>
/// This method searches through the list of custom XML parts in
/// the document until it finds one matching the PrintControl policy URN.
/// </remarks>
/// <returns>the list of trusted printers from the attached policy</returns>
List<string> GetTrustedPrintersList()
{
 List<string> result = new List<string>();
 const string policyNamespace = “urn:ecm401:policy.printcontrol”;
 Office.CustomXMLParts parts = Application.ActiveDocument.CustomXMLParts;
 foreach (Office.CustomXMLPart part in parts)
 {
 if (part.XML.Contains(policyNamespace))
 {
 // extract the list of trusted printers.
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(part.XML);
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xmlDoc.NameTable);
 nsmgr.AddNamespace(“p”, policyNamespace);
 XmlNode node = xmlDoc.SelectSingleNode(“p:data/p:printers”, nsmgr);
 if (node != null)
 {

87620c07.indd 23187620c07.indd 231 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

232

Chapter 7: Information Management Policy

 string[] printers = node.InnerText.Split(“;”.ToCharArray());
 foreach (string printer in printers)
 result.Add(printer);
 break;
 }
 }
 }
 return result;
}

To test our work, we can simply run the project in the debugger and open a document from the docu-
ment library we used to test the information policy. When we try to print the document, we should see
a dialog like the one shown in Figure 7-9.

Figure 7-9: Printer policy error dialog.

In actual practice, when creating a VSTO add-in, we would need to also create a setup project to install
the add-in on client machines.

87620c07.indd 23287620c07.indd 232 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

233

Chapter 7: Information Management Policy

Summary
Microsoft Offi ce SharePoint Server 2007 provides an extensible framework for defi ning and applying
custom information policies to individual list items. The Information Management Policy framework
enables administrators to attach custom policy statements and custom code to lists or to content types,
eliminating the need to modify and redeploy the code if the policy statement changes or if the policy
must be removed or applied to a different set of objects.

This chapter described the Information Policy framework architecture and introduced the policy fea-
ture and policy resource components, showing how they work together to provide a complete package
of functionality for a given policy. The chapter also described the information policy life cycle to help
you understand how the code that is implemented in a policy feature is invoked when changes are
made to policy settings or list items.

Since the declaration and deployment of information policy components require a precise coordination
between the XML documents used to describe the components and the code used to implement them,
this chapter showed how to create a library of reusable components and interfaces to make it easier to
create custom policy features and policy resources.

In order to build effective information policy–based solutions, it is often necessary to build cooperat-
ing code that must run on the client. Several strategies exist for passing information between the server
and the client to synchronize the behavior of client and server components. The Information Policy
framework supports this by embedding the policy statement directly within Offi ce 2007 documents as
custom XML objects that can be accessed using client-side code.

87620c07.indd 23387620c07.indd 233 9/3/09 10:33:08 AM9/3/09 10:33:08 AM

87620c07.indd 23487620c07.indd 234 9/3/09 10:33:09 AM9/3/09 10:33:09 AM

Information Policy and
Record Retention

Since the Information Policy framework was developed precisely to deal with records manage-
ment issues, you can learn a lot by studying the default implementations of the built-in policy
features. In this chapter, we’ll look at the Expiration Policy Feature, which uses a straightforward
design pattern that addresses the competing goals of enabling administrators to defi ne complex
expiration policies while allowing developers to extend the policy feature with custom expiration
formulas and actions. We’ll also look beyond the core implementation to gain an understanding
of the special Expiration Timer Job and its role in ensuring that the retention period for individual
list items is calculated correctly and that any associated actions are performed in a timely man-
ner. Finally, we’ll look for ways to extend our evolving File Plan schema to include support for
automatically applying an expiration policy to documents and list items.

The Expiration Policy Feature
In Chapter 7, we explored the Information Policy architecture and the structure of custom policy
features and policy resources. In this chapter, let’s take a deeper look at the built-in Expiration
Policy Feature to gain a better understanding of how it works. I’m calling attention to this partic-
ular policy feature because it implements an interesting design pattern that we can apply to our
own policy features and policy resources.

The Expiration Policy Feature is used to control how long documents are held in the content data-
base. This is such a core requirement that much of the Information Policy architecture was built
specifi cally to support this scenario. The primary goal is to provide a way to allow content man-
agers to defi ne both the formula used to determine the expiration date of an item as well as the
action to take when that date arrives.

87620c08.indd 23587620c08.indd 235 9/2/09 10:20:21 AM9/2/09 10:20:21 AM

236

Chapter 8: Information Policy and Record Retention

As you can imagine, there are several challenges to making this work effi ciently. The obvious problem
is determining when to calculate the expiration date. The next problem is fi guring out when to check
the date of each item without affecting the performance of the system as a whole. It turns out that the
Information Policy architecture provides a convenient way for SharePoint to address these issues. The
fi rst part has to do with optimization.

Given the fact that there may be hundreds of thousands of list items in the content database at any
given time, we obviously need a timer job that runs periodically to determine whether a particular item
has expired. But since document retention is managed by a specifi c information policy feature, we can
safely ignore any items to which that policy feature has not yet been applied.

So far, so good.

The second thing to note is that we can go ahead and compute the expiration date at the moment the
policy feature is activated. This allows the policy feature to place a pre-computed date into a custom
fi eld associated with the list item. That way, our timer job can easily compare the system date to the
stored date to determine if the item has expired.

While this may seem like a good idea at fi rst, it actually limits the kinds of expiration formulas we can
build. We could not, for example, build dynamic expiration formulas that determine the expiration date
based on changing external data because the expiration formula is called only once — when the policy
feature is activated or its settings are changed.

Creating Custom Expiration Formulas
and Actions

You will recall from Chapter 7 that an information policy consists of one or more policy features, which
are classes that implement the IPolicyFeature interface. Each policy feature may rely on one or more
policy resources, which are typically used to provide low-level support for the policy feature imple-
mentation. Consequently, policy features and policy resources are generally implemented together, and
there is no restriction on how they are structured. The idea is to place as few constraints as possible
on how the policy features and policy resources interact, leaving it to the discretion of the designer to
declare the appropriate interfaces needed to fulfi ll a given set of requirements.

This open architecture is exploited very effectively by the built-in Expiration Policy Feature as illus-
trated in Figure 8-1.

To take advantage of this design, you create and install your own custom expiration formulas as
policy resources that are linked to the Expiration Policy Feature. Policy resources must implement the
IPolicyResource interface. Policy resources are linked to a specifi c policy feature by specifying the
feature identifi er in the policy resource defi nition, which is used to tell SharePoint which policy feature
the resource is associated with. Because of this mechanism, each resource can be linked to only one
policy feature at a time, although a policy feature can be associated with more than one policy resource.

87620c08.indd 23687620c08.indd 236 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

237

Chapter 8: Information Policy and Record Retention

Policy

IPolicyFeature

Expiration
Policy Feature

IExpirationFormula IExpirationAction

Custom Expiration
Action

Custom Expiration
Formula

Figure 8-1: Expiration Policy Feature architecture.

The Expiration Policy Feature communicates with your custom expiration formula policy resource
through a special interface provided for that purpose. The IExpirationFormula interface is declared
in the Microsoft.Office.RecordsManagement.PolicyFeatures namespace. This interface declares
a single method that is called to compute the expiration date for a given list item. The interface defi ni-
tion is shown in Listing 8-1.

Listing 8-1: IExpirationFormula interface

using Microsoft.SharePoint;
using System;
using System.Xml;

namespace Microsoft.Office.RecordsManagement.PolicyFeatures
{
 public interface IExpirationFormula
 {
 DateTime? ComputeExpireDate(SPListItem item, XmlNode parametersData);
 }
}

The DateTime? syntax was introduced as part of the .NET Framework 2.0. It means that the method
returns a nullable type, which solves many problems like storing null values in a database.

All you have to do to defi ne a custom expiration formula is create a class that implements this interface
and then load it into the SharePoint environment as a valid policy resource component. Writing the
component is easy. The tricky part is creating the appropriate CAML code needed to register the com-
ponent correctly so that both SharePoint and the Expiration Policy Feature will recognize it.

87620c08.indd 23787620c08.indd 237 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

238

Chapter 8: Information Policy and Record Retention

Expiration Formulas
Using the helper classes we developed in Chapter 7, we can easily build a custom expiration formula.
Our custom formula will simply calculate the expiration date for a list item based on the current date
and time. First, we derive a new class from our SharePointPolicyResource component and then
implement the IExpirationFormula interface as shown in Listing 8-2.

Listing 8-2: A custom expiration formula component

using System;
using System.ComponentModel;
using ECM2007.InformationPolicy;
using Microsoft.Office.RecordsManagement.PolicyFeatures;
using Microsoft.SharePoint;

namespace ECM2007.DocumentExpiration
{
 [Name(“Custom Expiration Formula”)]
 [Description(“Calculates document expiration based on current time.”)]
 [RunInstaller(true)]
 public class CustomExpirationFormula : SharePointPolicyResource,
 IExpirationFormula
 {
 /// <summary>
 /// Override to associate this custom formula component with the
 /// correct policy feature for document expiration.
 /// </summary>
 protected override string FeatureId
 {
 get
 {
 return “Microsoft.Office.RecordsManagement.PolicyFeatures.
 Expiration”;
 }
 }

 /// <summary>
 /// Override to specify the policy resource type.
 /// </summary>
 protected override string ResourceType
 {
 get
 {
 return “DateCalculator”;
 }
 }

 #region IExpirationFormula Implementation

 /// <summary>

87620c08.indd 23887620c08.indd 238 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

239

Chapter 8: Information Policy and Record Retention

 /// Simple implementation that expires the item immediately.
 /// </summary>
 public Nullable<DateTime> ComputeExpireDate(SPListItem item,
 System.Xml.XmlNode parametersData)
 {
 return DateTime.Now;
 }

 #endregion
 }
}

Notice the two overridden properties FeatureId and ResourceType. These are provided by our
base class to enable us to specify the identifi er of the policy feature to which our policy resource
belongs, and any additional information needed by that policy feature. For the FeatureId property,
we return the value Microsoft.Office.RecordsManagement.PolicyFeatures.Expiration,
which uniquely identifi es the built-in Expiration Policy Feature. For the ResourceType we must
return the value DateCalculator, which is a special value that the Expiration Policy Feature recog-
nizes as an expiration formula.

For this simple example, we’ll implement the ComputeExpireDate method to just return the cur-
rent date as the expiration date. This will cause the associated list item to expire immediately. In
actual practice, we could have retrieved some data from the list item itself or pulled confi guration
data from a separate list and then used it to compute the expiration date. A typical scenario might
require that we correlate the expiration date of one item with the value of some fi eld in another item.
The important point to remember is that the expiration date is computed when the policy is applied,
and not when the expiration date arrives. This means that the ComputeExpireDate method will be
called only once for each list item unless something happens that causes the policy to be applied to
the item again, such as changing the policy settings as explained earlier.

If we wanted to implement a more sophisticated solution that modifi es the expiration date when some
other event occurs, then we would need to programmatically modify the policy so that SharePoint
recomputes the expiration date for all affected items. We could do this, for example, from an event
receiver attached to the master item. This would require careful coordination between the vari-
ous components of the solution, however, to ensure that a specifi c policy is active and available for
modifi cation.

You will recall from previous chapters that we took advantage of the Installer tool provided by the
.NET Framework (Installutil.exe) to install our server resources during development by execut-
ing custom installer components within an assembly from the command line. We can do it again
here simply by adding the appropriate command to the post-build events in Visual Studio, as shown
in Figure 8-2.

Now when we build the project, our custom expiration formula is automatically installed into the
local SharePoint farm. Figure 8-3 shows our new formula as it appears in the dropdown list of the
Policy confi guration page.

87620c08.indd 23987620c08.indd 239 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

240

Chapter 8: Information Policy and Record Retention

Figure 8-2: InstallUtil called from post-build events.

Figure 8-3: Custom expiration formula selection.

Expiration Actions
Custom expiration formulas allow us to control the computed expiration date, but it’s also useful to
develop custom expiration actions to control what happens when a document expires. This is done in a
very similar fashion to the expiration formulas, except we instead implement the IExpirationAction
interface and provide a different value for the ResourceType property included in the policy resource
CAML defi nition. Instead of returning the value DateCalculator, we return the value Action to tell
the Expiration Policy Feature that this policy resource implements an expiration action. Here, we imple-
ment a custom expiration action that adds an item to a custom expiration history list whenever an item
expires. Listing 8-3 shows the completed component.

Listing 8-3: CustomExpirationAction class

using System;
using System.ComponentModel;
using System.Xml;
using ECM2007.InformationPolicy;

87620c08.indd 24087620c08.indd 240 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

241

Chapter 8: Information Policy and Record Retention

using Microsoft.Office.RecordsManagement.PolicyFeatures;
using Microsoft.SharePoint;

namespace ECM2007.DocumentExpiration
{
 [Publisher(“John F. Holliday”)]
 [Name(“Expiration Event Logger”)]
 [Description(“Writes to the expiration history list when an item expires.”)]
 [RunInstaller(true)]
 public class CustomExpirationAction : SharePointPolicyResource,
 IExpirationAction
 {
 protected override string FeatureId
 {
 get
 {
 return “Microsoft.Office.RecordsManagement.PolicyFeatures.
 Expiration”;
 }
 }

 protected override string ResourceType
 {
 get
 {
 return “Action”;
 }
 }

 #region IExpirationAction Members

 /// <summary>
 /// Handles the action to be performed when the item expires.
 /// </summary>
 /// <remarks>
 /// Writes an entry to the expiration history list.
 /// </remarks>
 /// <param name=”item”></param>
 /// <param name=”parametersData”></param>
 /// <param name=”expiredDate”></param>
 void IExpirationAction.OnExpiration(SPListItem item,
 XmlNode parametersData, DateTime expiredDate)
 {
 SPSecurity.RunWithElevatedPrivileges(delegate()
 {
 using (SPSite site = new SPSite(item.Web.Url))
 using (SPWeb web = site.OpenWeb())
 {
 new ExpirationHistoryList(web).WriteEntry(
 string.Format(“The item ‘{0}’ in list ‘{1}’ of web ‘{2}’
 has expired”,
 item.Title, item.ParentList.Title, web.Title));
 }
 });

Continued

87620c08.indd 24187620c08.indd 241 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

242

Chapter 8: Information Policy and Record Retention

 }

 #endregion
 }
}

To see the expiration action in operation, we’ll create a generic list that displays a message for each
expired item. We can use a simple helper class that creates the list if it does not already exist and then
appends an item containing a specifi ed string.

public class ExpirationHistoryList
{
 private SPList m_list = null;
 public ExpirationHistoryList(SPWeb web)
 {
 // Create or open a custom list named “Expiration History”.
 const string name = “Expiration History”;
 const string description = “Records expiration events.”;
 try { m_list = web.Lists[name]; } catch { }
 if (m_list == null)
 {
 try
 {
 m_list = web.Lists[
 web.Lists.Add(name, description, SPListTemplateType.
 GenericList)
];
 m_list.OnQuickLaunch = true;
 m_list.Update();
 }
 catch (Exception x)
 {
 Trace.WriteLine(“Failed to create expiration history list - “
 + x.Message, “CustomExpirationAction”);
 }
 }
 }

 public void WriteEntry(string description)
 {
 try
 {
 SPListItem newItem = m_list.Items.Add();
 newItem[“Title”] = description;
 newItem.Update();
 }
 catch (Exception x)
 {
 Trace.WriteLine(“Failed to write to expiration history list - “
 + x.Message, “CustomExpirationAction”);
 }
 }
}

Listing 8-3: CustomExpirationAction class (continued)

87620c08.indd 24287620c08.indd 242 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

243

Chapter 8: Information Policy and Record Retention

Now when we re-build the project, our custom expiration action is installed, and we can navigate
back to the Policy confi guration page to select the expiration action in the dropdown list, as shown
in Figure 8-4.

Figure 8-4: Custom expiration action selection.

The Expiration Timer Job
The fi nal piece of the expiration puzzle is understanding how the expiration timer job works. I already
mentioned that in order for expiration to work effi ciently without affecting the performance of the farm,
there must be a timer job that checks periodically for list items that have expired. Although it doesn’t
have to check every list item in the content database, it must still run as a timer job. There is a specifi c
timer job, called the Expiration timer job, that does just that.

Information Policy features are confi gured from the Central Administration web site on the Operations
tab under the “Security Confi guration” section. Clicking on the “Information management policy con-
fi guration” link takes us to the Policyfeatures.aspx page, shown in Figure 8-5.

Figure 8-5: Policy Confi guration page in Central Administration.

87620c08.indd 24387620c08.indd 243 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

244

Chapter 8: Information Policy and Record Retention

From here, we’ll click on the “Expiration” link to get to the Confi gure Expiration page shown in
Figure 8-6.

Figure 8-6: Confi gure Expiration page.

This page provides controls for scheduling the expiration timer job as well as a button for running the
job immediately. At the bottom of the page is the current set of installed policy resources that return a
FeatureId property value of Microsoft.Office.RecordsManagement.PolicyFeatures.Expiration.

Returning to the main site, we can now create a sample document and have it expire immediately.
Although the document expires immediately by virtue of our custom policy, the expiration history
list won’t show up until we run the expiration timer job. To do that, we can press the “Process Expired
Items Now” button from Central Administration and wait for a minute or so until the timer job actually
runs. Figure 8-7 shows the resulting entry when the expired document is processed and our custom
action is called.

Figure 8-7: Custom expiration history list showing expired documents.

87620c08.indd 24487620c08.indd 244 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

245

Chapter 8: Information Policy and Record Retention

Planning for Retention
Now that we understand how the Expiration Policy Feature works, we can refactor the fi le planning exer-
cise so that we can include document retention into the fi le plan. The advantage of doing this is that we
can use it to more fully encapsulate the life cycle of a particular record type. By including more detailed
document retention instructions into the fi le plan, it becomes a kind of living document specifi cation that can
enhance and simplify the processing of a document throughout its life cycle.

Extending the File Plan to Include Expiration Policies
We would like to end up with information in the fi le plan that includes document retention instruc-
tions that can be applied directly to the Expiration Policy Feature. The default fi le planning worksheet
already includes general information about document retention. It describes the retention period in
terms of a fi xed number of days, weeks, months, or years and may include a general statement about
what to do when that period expires, such as “archive,” “destroy,” and so on.

Now, we’d like to capture more detailed information that describes how to calculate the expiration date
and what steps to take when the retention period ends. We can drive this specifi cation from the fi elds
that are included in the built-in Expiration Policy Feature. The following table shows the additional col-
umns needed to capture this information:

Element Description

Expiration Policy Type Specifi es how the expiration date should be calculated. Valid values
include: time-span, programmatic, or custom.

Expiration Period Start Specifi es how to determine the starting date for calculating the retention
period. This can be specifi ed as the value of a document property or a
static value.

Expiration Period Units Specifi es the unit of measurement for the expiration period. Valid values
include days, weeks, months, or years.

Expiration Formula Describes the method used to calculate the expiration period. This can
be an actual formula or a reference to a custom formula implemented
elsewhere.

Expiration Action Specifi es what to do when the retention period ends. Valid values are
Archive, Delete, StartWorkflow, or Custom.

Expiration Action Data Specifi es additional data needed to perform the expiration action.

Once we’ve added the columns to fi le plan schema, the next step is to add support to the fi le plan.

Adding Expiration Policy Support to the Dynamic File Plan
We can now extend the dynamic fi le plan schema and the associated fi le-planning components we
developed in Chapter 5 to support the automatic construction of document retention policies whenever
a fi le plan is executed. Once we’ve added the required elements to the schema and regenerated the

87620c08.indd 24587620c08.indd 245 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

246

Chapter 8: Information Policy and Record Retention

components, we can then write some additional code that translates the supplied fi eld values into
actual policies when the content types and document libraries are created during fi le plan execution.

You will recall that our fi le plan schema includes an element type called RecordSpecification that
is used to describe each offi cial record type. We will now extend that element defi nition to include an
Expiration subelement based on a new complex type called ExpirationPolicyFeature.

 <xs:complexType name=”ExpirationPolicyFeature”>
 <xs:annotation>
 <xs:documentation>
 Specifies how the record expiration policy feature should
 be configured for a record type.
 </xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element name=”Policy” type=”ExpirationPolicy” nillable=”true”/>
 <xs:element name=”Action” type=”ExpirationAction” nillable=”true”/>
 </xs:all>
 </xs:complexType>

This element consists of two subelements: one to describe the expiration policy and another to describe
the expiration action. The ExpirationPolicy element is shown below:

 <xs:complexType name=”ExpirationPolicy” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the expiration policy details for a record series.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name=”TimePeriod” type=”ExpirationPeriod”/>
 <xs:element name=”Function” type=”ExpirationFunction”/>
 <xs:element name=”Custom” type=”ExpirationFormula”/>
 </xs:choice>
 <xs:attribute name=”Type” type=”ExpirationPolicyType”/>
 </xs:complexType>

Keeping in mind that we will ultimately have to translate this information into an actual policy
attached to the content type for each record, we’ll factor the individual pieces into separate elements
so that when the XSD.exe utility converts them into classes, there will be a separate class for each
subcomponent. Thus, we’ll have separate classes for the ExpirationPeriod, ExpirationFunction,
and ExpirationFormula elements referenced in the element. Note that these are declared within an
xs:choice element so there can be only one specifi ed at a time.

We’ll also use an enumerated type to specify the type of policy being applied so that we can extend
it easily.

 <xs:simpleType name=”ExpirationPolicyType”>
 <xs:annotation>
 <xs:documentation>
 Specifies the type of expiration policy to apply to the record.
 </xs:documentation>

87620c08.indd 24687620c08.indd 246 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

247

Chapter 8: Information Policy and Record Retention

 </xs:annotation>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”TimeSpan”/>
 <xs:enumeration value=”Programmatic”/>
 <xs:enumeration value=”Custom”/>
 </xs:restriction>
 </xs:simpleType>

The ExpirationPeriod simply declares a starting date and a span of time, but each of these can be
customized to specify the document property used as the starting date and the units used to calculate
the span.

 <xs:complexType name=”ExpirationPeriod” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies a time period for expiration.
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name=”FromDate” type=”ExpirationPeriodType”/>
 <xs:attribute name=”Span” type=”ExpirationPeriodSpanType”/>
 </xs:complexType>

 <xs:simpleType name=”ExpirationPeriodType”>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Created”/>
 <xs:enumeration value=”Modified”/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name=”ExpirationPeriodSpanType”>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Days”/>
 <xs:enumeration value=”Months”/>
 <xs:enumeration value=”Years”/>
 </xs:restriction>
 </xs:simpleType>

Next, we add the ExpirationFunction and ExpirationFormula elements. These are essentially
placeholders to capture the name of a custom expiration function or workfl ow and the name of any
custom expiration formula that might be installed in the system. Depending on how you choose to
implement the associated components, additional information can be included here, such as the name
of an assembly and class that implements the custom formula, or an identifi er for looking up additional
information when the fi le plan is executed.

These are specifi ed as mixed types so that the name can be written directly within the element tags
instead of having to use an attribute.

 <xs:complexType name=”ExpirationFunction” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the use of an unspecified programmatic function
 (such as a workflow) that will calculate the expiration date.
 </xs:documentation>

87620c08.indd 24787620c08.indd 247 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

248

Chapter 8: Information Policy and Record Retention

 </xs:annotation>
 </xs:complexType>

 <xs:complexType name=”ExpirationFormula” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the name of a custom expiration formula to use.
 </xs:documentation>
 </xs:annotation>
 </xs:complexType>

With the ExpirationFormula element defi ned, we can add the specifi cation for the
ExpirationAction element. This element can be declared as one of three types: BuiltIn,
StartWorkflow, or Custom.

 <xs:complexType name=”ExpirationAction” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the expiration action details for a record series.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name=”BuiltIn” type=”BuiltInExpirationAction”/>
 <xs:element name=”StartWorkflow” type=”WorkflowExpirationAction”/>
 <xs:element name=”Custom” type=”CustomExpirationAction”/>
 </xs:choice>
 </xs:complexType>

The BuiltInExpirationAction is simply a string that specifi es the name of one of the built-in expira-
tion actions, such as Delete.

Since the list of built-in expiration actions is known, we could declare them as an enumerated type. I’ve
chosen to leave it as a string to avoid having to revisit the schema in case additional actions are added to
the platform in the future.

Similarly, the WorkflowExpirationAction simply captures the name of the workfl ow to start when
the retention period ends, and the CustomExpirationAction captures the name of the custom action
to search for and attach to the policy.

 <xs:complexType name=”WorkflowExpirationAction” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the name of a workflow to start when the
 record expires.
 </xs:documentation>
 </xs:annotation>
 </xs:complexType>

 <xs:complexType name=”CustomExpirationAction” mixed=”true”>
 <xs:annotation>
 <xs:documentation>
 Specifies the name of a custom expiration action
 to execute when the record expires.
 </xs:documentation>

87620c08.indd 24887620c08.indd 248 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

249

Chapter 8: Information Policy and Record Retention

 </xs:annotation>
 </xs:complexType>

With these elements in place, we can now write the code needed to create an expiration policy for a record
type when the fi le plan is executed. To do this, we need to extend the CreateContentTypes method of
the RecordSpecification class so that it calls a method of the embedded ExpirationPolicyFeature
class that then creates and attaches the policy. The ExpirationPolicyFeature class is generated as a
partial class along with the other classes from the schema. We can extend this class by writing the code
shown in Listing 8-4.

Listing 8-4: ExpirationPolicyFeature.cs

using System;
using System.Text;
using Microsoft.Office.RecordsManagement.InformationPolicy;
using Microsoft.SharePoint;

namespace ECM2007.RecordsManagement
{
 public partial class ExpirationPolicyFeature
 {
 /// <summary>
 /// Creates and attaches any expiration policy which may have been
 /// specified along with the record.
 /// </summary>
 /// <param name=”type”>Identifies the content type to which the expiration
 /// policy will be attached.</param>
 public void CreateExpirationPolicy(SPContentType type)
 {
 try
 {
 // check if there is a policy attached to the content type
 // if not, then create one so we can configure it
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy
 targetPolicy =
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy.
 GetPolicy(type);
 if (targetPolicy == null)
 {
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy.
 CreatePolicy(type, null);
 targetPolicy = Microsoft.Office.RecordsManagement.
 InformationPolicy.Policy.GetPolicy(type);
 }

 // add the expiration policy to the content type
 const string expirationPolicyFeatureId =
 “Microsoft.Office.RecordsManagement.PolicyFeatures.Expiration”;
 if (targetPolicy.Items[expirationPolicyFeatureId] == null)
 targetPolicy.Items.Add(expirationPolicyFeatureId, “”);

 PolicyItem expirationPolicyItem =

Continued

87620c08.indd 24987620c08.indd 249 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

250

Chapter 8: Information Policy and Record Retention

 targetPolicy.Items[expirationPolicyFeatureId];
 expirationPolicyItem.CustomData = GetCustomDataString();
 expirationPolicyItem.Update();

 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x);
 }
 }

 /// <summary>
 /// Builds the custom data string used to specify the expiration policy.
 /// </summary>
 private string GetCustomDataString()
 {
 StringBuilder sb = new StringBuilder(“<data>”);
 sb.Append(this.Policy.ToString());
 sb.Append(this.Action.ToString());
 sb.Append(“</data>”);
 return sb.ToString();
 }
 }
}

This code creates the expiration policy by building a custom data string, which it attaches to a new
policy object associated with the content type. The custom data string is constructed in two parts. The
fi rst part describes the formula, and the second part describes the action.

The format of the custom data string is determined by the implementer of each policy feature. In this case,
the custom data is formatted so that it will be recognized and parsed by the Expiration Policy Feature.

Listings 8-5 and 8-6 show the overrides of the ToString() method for the generated ExpirationPolicy
and ExpirationAction classes, respectively. These methods simply retrieve the properties from the data
fi le and then generate the appropriate CAML that identifi es the formula and the action to perform.

Listing 8-5: ExpirationPolicy.cs

using System.Text;

namespace ECM2007.RecordsManagement
{
 public partial class ExpirationPolicy
 {
 /// <summary>
 /// Calculates the custom data string needed to configure the
 /// expiration policy in the SharePoint environment.
 /// </summary>
 public override string ToString()
 {

Listing 8-4: ExpirationPolicyFeature.cs (continued)

87620c08.indd 25087620c08.indd 250 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

251

Chapter 8: Information Policy and Record Retention

 StringBuilder sb = new StringBuilder(“<formula “);

 switch (this.Type)
 {
 case ExpirationPolicyType.TimeSpan:
 {
 ExpirationPeriod period = this.Item as ExpirationPeriod;
 sb.AppendFormat(“id=\”{0}\”>”,
 “Microsoft.Office.RecordsManagement.PolicyFeatures.
 Expiration.Formula.Builtin”);
 sb.AppendFormat(“<number>{0}</number>”, period.Text);
 sb.AppendFormat(“<property>{0}</property>”,
 GetPeriodProperty(period));
 sb.AppendFormat(“<period>{0}</period>”,
 period.Span.ToString().ToLower());
 break;
 }
 case ExpirationPolicyType.Programmatic:
 {
 ExpirationFunction function = this.Item as
 ExpirationFunction;
 sb.AppendFormat(“id=\”{0}\”>”, function.Text);
 break;
 }
 case ExpirationPolicyType.Custom:
 {
 ExpirationFormula formula = this.Item as ExpirationFormula;
 sb.AppendFormat(“id=\”{0}\”>”, formula.Text);
 break;
 }
 }

 sb.Append(“</formula>”);
 return sb.ToString();
 }

 /// <summary>
 /// Retrieves the name of the property to use when calculating the
 /// start of the retention period.
 /// </summary>
 /// <returns></returns>
 private string GetPeriodProperty(ExpirationPeriod period)
 {
 switch (period.FromDate)
 {
 case ExpirationPeriodType.Created:
 return “Created”;
 case ExpirationPeriodType.Modified:
 return “Modified”;
 default:
 return “Expiration”;
 }
 }
 }
}

87620c08.indd 25187620c08.indd 251 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

252

Chapter 8: Information Policy and Record Retention

Listing 8-6: ExpirationAction.cs

using System.Text;

namespace ECM2007.RecordsManagement
{
 public partial class ExpirationAction
 {
 /// <summary>
 /// Retrieves the custom data string needed to configure the
 /// expiration action in the SharePoint environment.
 /// </summary>
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder(“<action “);

 BuiltInExpirationAction builtinAction = this.Item as
 BuiltInExpirationAction;
 if (builtinAction != null)
 {
 sb.AppendFormat(“type=\”action\” id=\”{0}\””,
 GetActionId(builtinAction));
 }
 else
 {
 WorkflowExpirationAction workflowAction = this.Item as
 WorkflowExpirationAction;
 if (workflowAction != null)
 {
 // assumes that the workflow tag contains the workflow GUID
 // this code could be extended to retrieve the workflow id
 from its name
 sb.AppendFormat(“type=\”workflow\” id=\”{0}\””,
 workflowAction.Text);
 }
 else
 {
 CustomExpirationAction customAction = this.Item as
 CustomExpirationAction;
 if (customAction != null)
 {
 // assumes that the custom action tag contains the name of
 // the custom action class that implements the action
 sb.AppendFormat(“id=\”{0}\””, customAction.Text);
 }
 }
 }

 sb.Append(“>”);
 sb.Append(“</action>”);
 return sb.ToString();

87620c08.indd 25287620c08.indd 252 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

253

Chapter 8: Information Policy and Record Retention

 }

 /// <summary>
 /// Retrieves the id of the builtin action.
 /// </summary>
 private string GetActionId(BuiltInExpirationAction action)
 {
 switch (action.Type)
 {
 case BuiltInExpirationActionType.Delete:
 return “Microsoft.Office.RecordsManagement.PolicyFeatures.
 Expiration.Action.MoveToRecycleBin”;
 default:
 return string.Empty;
 }
 }
 }
}

Using these examples as a starting point, you can easily apply the same techniques to quickly build a
set of custom components that can address unique document retention requirements in a variety of
scenarios. We started by capturing the information and rules needed to determine the retention period
for a given record type, and then we added more rules to specify the appropriate actions to take when
the retention period ends. All of this information is captured in a single fi le plan schema and drives the
implementation of an extensible set of components we can work with easily. Over time, as more and
more use cases are analyzed, we can continually revisit the fi le plan specifi cation and look for addi-
tional ways to add value to the component library.

Summary
The MOSS document retention strategy builds on the core Information Policy framework by providing
additional extensibility points for implementing custom expiration formulas and actions. In this chapter,
we explored the built-in Expiration Policy Feature to gain a deeper understanding of the development
techniques used by the MOSS product team to implement the default policy features and policy resources
that are supplied as part of the MOSS Records Management platform architecture. We can apply the same
techniques when developing our own custom policy features and resources.

Leveraging the custom Information Policy components we have been developing throughout the book
as part of our ECM2007 component library, we saw how to create and deploy custom expiration formu-
las and expiration actions so that they can be added to information policies by a content administrator
and attached to documents and list items.

We also extended the fi le-planning worksheet so that it can be used to capture enough information for
setting up expiration policies, and we extended the dynamic fi le plan schema and associated classes
that we developed in Chapter 2 to process the additional information needed to create expiration poli-
cies automatically whenever the fi le plan is executed.

87620c08.indd 25387620c08.indd 253 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

87620c08.indd 25487620c08.indd 254 9/2/09 10:20:22 AM9/2/09 10:20:22 AM

Information Policy and
Record Auditing

Another important policy feature that is included out-of-the-box with MOSS is the Auditing
Policy feature, which we’ll look at in this chapter. Before we can explore the Auditing Policy fea-
ture, we have to fi rst take a look at the auditing framework that is provided by MOSS. Auditing
is an important component of any content management system and is particularly important for
records management, where any change to a document or list item that is being tracked as an offi -
cial record is stored in the content database along with the content itself. So, we’ll fi rst look at the
auditing architecture within MOSS and examine ways to create audit records, control how much
information is kept in the content database, and also explore different ways to extract and view
that information for a given record or set of records. Then we’ll see how to associate auditing
components with information policy through the default implementation of the Auditing Policy
feature. Finally, we’ll revisit the fi le planning worksheet and schema so that they include instruc-
tions for enabling auditing on a given record type.

Understanding Auditing in SharePoint
Content auditing is an essential part of records management, and there are some basic observa-
tions we can make about auditing in general. The fundamental requirement is to keep track of
changes to content throughout its life cycle. Such changes may include modifi cations to the meta-
data associated with an item as well as to the item content itself. Depending on the type of business
process involved, audit records themselves may be the subject of an auditing event. For example,
if you are providing tools for an administrator to review and delete audit records, then additional
audit events should be generated so that the act of deleting the audit records is also recorded. It is
therefore part of our general auditing requirement that we track changes to the audit records as
well as to any confi guration settings that may infl uence how auditing events are generated.

One thing to keep in mind is that any auditing mechanism that tracks audit records would have
to account for recursion and avoid modifying audit records during the auditing process.

87620c09.indd 25587620c09.indd 255 9/3/09 10:33:38 AM9/3/09 10:33:38 AM

256

Chapter 9: Information Policy and Record Auditing

SharePoint addresses these requirements by using a generalized auditing infrastructure whereby audit
records are created in the content database whenever operations are performed on the content elements
that are stored within it. This auditing mechanism is disabled by default and must be enabled through
the user interface or programmatically either through utility code that runs on the server or by writing
and activating a feature. This means that when we create a SharePoint site or site collection, auditing
is turned off and no audit events are generated. In a Windows SharePoint Services environment, there
is no user interface provided for viewing audit records or for enabling the audit events. The reason for
this is obvious when you think about the many ways that direct access to the auditing layer could be
abused. We don’t want to allow any user to casually manipulate the auditing mechanism. On the other
hand, we do need the ability to provide some level of confi guration for administrative users. It should
also be easy for those users to view the current set of audit events in the form of a report or list. MOSS
gives us both capabilities out-of-the-box.

Auditing events can be generated for many kinds of content elements in a SharePoint environment, not
only for documents and list items. The following objects can be the subject of an auditing event:

Site collections ❑

Sites ❑

Lists ❑

Folders ❑

Document and list items ❑

For each type of object, the auditing infrastructure defi nes a set of monitored operations, which are con-
trolled using a bitmask. The SPAuditMaskType enumeration specifi es the following monitorable events
that can be enabled for all elements, such as the ones listed above, that expose an SPAudit object:

Audit Mask Description

All All event types and actions are monitored.

CheckIn An entry is created when the object is checked in.

CheckOut An entry is created when the object is checked out.

ChildDelete An entry is created when one of the object’s child objects is deleted (such as
when deleting a fi le from a folder or a site from a site collection).

Copy An entry is created when the object is copied.

Delete An entry is created when the object is deleted.

Move An entry is created when the object is moved.

None No event types or actions are monitored.

ProfileChange An entry is created when a profi le associated with an object is changed.

SchemaChange An entry is created when the object’s schema is modifi ed.

87620c09.indd 25687620c09.indd 256 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

257

Chapter 9: Information Policy and Record Auditing

Audit Mask Description

Search An entry is created when the object is searched.

SecurityChange An entry is created when a change is made to the object’s security
confi guration.

Undelete An entry is created when the object is restored from the recycle bin.

Update An entry is created when the object’s properties are updated.

View An entry is created whenever the object is viewed by a user.

Workflow An entry is created when the object is used in a workfl ow activity.

Once a mask has been associated with an SPAudit object, SharePoint begins monitoring what happens
to those objects in the content database.

Enabling and Disabling Auditing
To enable auditing in a Windows SharePoint Services environment, we can create a simple feature that
modifi es the audit mask of the SharePoint site in which it is activated or deactivated. The following code
shows what has to be done:

public class AuditingFeature : SPFeatureReceiver
{
 public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 // Store the current audit flags.
 site.RootWeb.Properties[“AuditFlags”] =
 site.Audit.AuditFlags.ToString();
 site.RootWeb.Properties.Update();

 // Enable auditing for all items in the site collection.
 site.Audit.AuditFlags = SPAuditMaskType.All;
 site.Audit.Update();
 }
 }

 public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
 {
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 // Restore the original audit flags.
 site.Audit.AuditFlags = (SPAuditMaskType)
 Enum.Parse(typeof(SPAuditMaskType),
 site.RootWeb.Properties[“AuditFlags”]);

87620c09.indd 25787620c09.indd 257 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

258

Chapter 9: Information Policy and Record Auditing

 site.Audit.Update();
 }
 }

 public override void FeatureInstalled(SPFeatureReceiverProperties properties) {}
 public override void FeatureUninstalling(SPFeatureReceiverProperties properties)
 {}
}

The feature activation code fi rst retrieves the current audit mask for the site collection and then stores it
in the property bag associated with the site so that the deactivation code can restore the site to its previ-
ous settings. In this example, we are turning on auditing for all event types. This means that SharePoint
will start storing auditing events for nearly everything that happens within the site collection. This has
obvious implications for performance and storage. With auditing enabled, there is a performance cost,
but probably not a noticeable one since most interactions on a site are confi ned to a single page request.
The real cost comes with the additional storage required to maintain the audit records. Thus, turning
on all audit events can dramatically increase the size of the content database. One way to deal with this
might be to periodically purge the audit entry collection after saving it to external storage.

Purging the audit history is not provided as an out-of-the-box feature of SharePoint and would have to
be custom-coded.

Managing Audit Entries
Audit records are stored in the content database along with the content being audited. This has several
advantages. It allows the audit history to be backed up along with the content, and it reduces the risk that
the audit history and the referenced records might get out-of-sync or, worse, that the audit history will be
lost. Since the audit confi guration may change over time, the history of those changes and the resulting
audit records can be more easily analyzed and correlated if everything is kept together in one place.

The built-in auditing support covers all content-related operations that can occur within the SharePoint
environment, but there is also support for creating our own custom audit entries. This covers cases in
which the out-of-the-box auditing events are inadequate, and it allows us to defi ne high-level auditing
events that may depend on external factors or that represent the aggregation of primitive events.

This ability to defi ne custom audit records is an important part of the auditing framework. As an example,
we might have auditing enabled for a site and want to monitor changes that are made to a particular list
defi nition. In addition to tracking the modifi cations themselves, we might also want to keep a record of
any changes that are made by a particular person or group — or perhaps an attempt to modify the schema
by a person or group other than those to whom the list has been assigned. In cases such as this, we could
build an event receiver that is called whenever the list schema changes and then writes a custom audit
entry for the list item, but only if the current user is not a member of the list administrator’s group. The
generation of the custom audit record could be governed by a policy, allowing the text and payload of the
custom audit entry to change, depending on how the policy is defi ned. The following code snippet shows
how these kinds of custom audit entries might be written if we had, say, a custom AuthorizedToUpdate
method that determined whether the user had the appropriate permissions:

public class ListItemMonitor : SPItemEventReceiver
{
 public override void ItemUpdated(SPItemEventProperties properties)

87620c09.indd 25887620c09.indd 258 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

259

Chapter 9: Information Policy and Record Auditing

 {
 base.ItemUpdated(properties);
 SPListItem item = properties.ListItem;

 if (!AuthorizedToUpdate(item, item.Web.CurrentUser))
 {
 StringBuilder sb = new StringBuilder(“<PolicyEnforcement>”);
 sb.AppendFormat(“<Site>{0}</Site>”, item.Web.Url);
 sb.AppendFormat(“<Item>{0}</Item>”, item.ID);
 sb.AppendFormat(“<User>{0}</User>”, item.Web.CurrentUser.LoginName);
 sb.Append(“</PolicyEnforcement>”);

 item.Audit.WriteAuditEvent(SPAuditEventType.Custom,
 “UnauthorizedUpdate”, sb.ToString());
 item.Audit.Update();
 }
 }
}

The interesting thing about custom audit entries is that they are not associated with a bitmask. Instead,
they are associated with an arbitrary string that indicates the source of the event. Additionally, audit
entries carry a payload in the EventData fi eld of the SPAuditEntry object, so it is a relatively simple
matter to read and interpret them in whatever way is necessary.

Reading audit entries requires elevation of privileges to prevent casual access to the audit tables.
Writing audit entries does not require elevated privileges so that the current user is always recorded
along with the event. This is important to remember when writing code like that shown above, because
when the audit entry is written to the content database, it is associated with the user under whose
account the code is executing.

In the code shown, the current user’s login name is also being written explicitly into the payload of the
audit event.

Audit Reporting
Offi ce SharePoint Server provides built-in audit reporting. To view these built-in audit log reports, the
Reporting feature must fi rst be activated. To do this, follow these steps:

 1. Navigate to the Site Collection Features page.

 2. Scroll down until you see the Reporting feature.

 3. Click on the Activate button and then return to the Site Settings page.

 4. In the Site Collection Administration section, there is now a link for “Audit log reports.” Click
on this link to open the View Auditing Reports page shown in Figure 9-1.

 5. Click on any of the links to generate and view a report in Microsoft Excel.

The default audit reports are created by an application page called Reporting.aspx, which writes ExcelML
to a fi le and then returns the fi le to the user.

87620c09.indd 25987620c09.indd 259 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

260

Chapter 9: Information Policy and Record Auditing

The term ExcelML refers to “Excel Markup Language,” which is an XML representation of a Microsoft
Excel workbook that is based on the XML Spreadsheet Schema that was introduced by Microsoft in 2001.
This should not be confused with OpenXML, which is a more formal open standard for representing any
kind of document content using the XML language. Microsoft Excel 2002 and later versions can read raw
ExcelML fi les, enabling the creation of spreadsheets on platforms such as web servers that do not have the
Excel product installed.

Figure 9-1: Default audit reports in MOSS.

Since they are based on ExcelML, the out-of-the-box reports can be somewhat diffi cult to read, espe-
cially if they contain many entries. One alternative would be to save the report to disk and then apply
an XSLT stylesheet to transform the report into something more readable. Other alternatives include
writing a custom application page for displaying audit records or building an audit reporting web part.
We’ll take the second approach later in the next section.

The following table lists the values of the SPAuditEventType enumeration, which are written into each
audit record:

Audit Event Type Description

AuditMaskChange A change occurred in the types of events being audited for the
object.

CheckIn Check-in of the object

CheckOut Check-out of the object

ChildDelete A child object has been deleted from the object.

87620c09.indd 26087620c09.indd 260 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

261

Chapter 9: Information Policy and Record Auditing

Audit Event Type Description

ChildMove A child of the object has been moved.

Copy The object has been copied.

Custom A custom event has occurred.

Delete The object was deleted.

EventsDeleted Some audited events connected with the object were deleted.

Move The object was moved.

ProfileChange A profi le associated with the object was changed.

SchemaChange The object schema was changed.

Search A search query was performed on the object.

SecGroupCreate A group was created for a site collection.

SecGroupDelete A group was deleted from a site collection.

SecGroupMemberAdd A new member was added to a group in a site collection.

SecGroupMemberDel A member was removed from a group in a site collection.

SecRoleBindBreakInherit Security permissions are no longer inherited from the object’s parent.

SecRoleBindInherit Security permissions are now inherited from the object’s parent.

SecRoleBindUpdate Security permissions for the object were changed.

SecRoleDefBreakInherit A permission level (role) inheritance was removed from the object.

SecRoleDefCreate A new permission level (role) was created for the object.

SecRoleDefDelete A permission level (role) was removed from the object.

SecRoleDefModify A permission level (role) associated with the object was modifi ed.

Undelete The object was restored from the recycle bin.

Update A new object was created or an existing object’s properties were
modifi ed.

View The object was viewed by a user.

Workflow The object was accessed by a workfl ow.

We can use these values along with the SPAuditItemType and SPAuditLocationType enumerations to
generate custom reports or to build custom web parts that focus on a particular set of auditable events.

87620c09.indd 26187620c09.indd 261 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

262

Chapter 9: Information Policy and Record Auditing

Using the Auditing Policy Feature
Now that we understand how auditing works in the MOSS environment, we can see how auditing instruc-
tions are attached to an information policy so they can be associated with a content type or document
library. The Auditing Policy feature is implemented similarly to other policy features, but it is structured so
that whenever an item is processed, the audit fl ags are set according to instructions that have been confi g-
ured by the administrator of the policy. Those instructions are simply the list of audit fl ags that should be
enabled for each item. Figure 9-2 shows the user interface that is provided for setting the audit fl ags.

Figure 9-2: Auditing Policy user interface.

These are the same fl ags that appear on the Confi gure Audit Settings page, except for the Lists,
Libraries, and Sites event masks, which do not apply to list items.

Auditing in a Records Center Site
Unlike a more traditional Records Repository that is used only for storing offi cial records, a Records
Center site in SharePoint supports collaboration on the records that it contains. This is one of the things
that sets SharePoint apart from other systems. Since records managers routinely need to examine the state
of each record in addition to its content and standard metadata, it is useful to provide them with tools that
present the information in a way they can work with more easily. In this section, we’ll create a simple web
part for viewing audit records and also create a custom user interface for viewing the audit history of sub-
mitted records just to see what would be involved in creating similar tools for records managers.

Creating an Audit Viewer Web Part
In this section, we’ll create a simple web part for viewing audit records in a site collection. This web
part will enable any user to view the audit log, although in actual practice, we would most likely
include security trimming code to prevent casual viewing of the audit log by unauthorized users.

For the purposes of this book, we will ignore security trimming and simply focus on the auditing func-
tionality. However, if you want to extend the example to fi lter the displayed audit records based on the
profi le of the current user, then you have several options. You could determine the permissions for the
current user as they relate to the individual objects being audited, or you could map the roles or group
affi liations of the current user to a more general set of restrictions that apply only to audit records.

We’ll start by creating a feature that we’ll activate to install the web part, and we’ll scope the feature to
Site since it will install web parts into the web part gallery. Figure 9-3 shows the project structure.

87620c09.indd 26287620c09.indd 262 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

263

Chapter 9: Information Policy and Record Auditing

Figure 9-3: Auditing Web Parts
feature project.

Next, we’ll create the web part itself by deriving a new class from System.Web.UI.WebControls
.WebParts.WebPart. Our web part will contain an SPGridView control to display the audit table
entries. To make it easier to reuse the grid in other web parts, controls, and pages, we’ll implement the
audit entry management code inside the grid by deriving a new class from the SPGridView class and
then hosting the specialized grid as a child control of the web part.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace ECM2007.AuditingWebParts
{
 /// <summary>
 /// This web part displays a grid containing audit records
 /// associated with the current web, allowing the user to
 /// filter the grid based on a specified audit mask.
 /// </summary>
 public class AuditViewerWebPart : WebPart
 {
 public SPAuditEntryGrid Grid { get; private set; }

 /// <summary>
 /// Create the child controls that implement the
 /// web part functionality.

87620c09.indd 26387620c09.indd 263 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

264

Chapter 9: Information Policy and Record Auditing

 /// </summary>
 protected override void CreateChildControls()
 {
 this.Controls.Clear();
 this.Controls.Add(this.Grid =
 new SPAuditEntryGrid(SPContext.Current.Site));
 }
 }
}

We want to generalize the grid’s behavior, so we’ll simply pass the current SPSite object to its constructor.
Later, we can extend the grid to accept different objects as determined by the contexts in which it is used.

Every grid consists of rows and columns, so before declaring the grid itself, let’s create a class we can
use to confi gure the columns. Our ColumnInfo class will hold the column header and sorting expres-
sion along with the type and format of the information the column will display.

/// <summary>
/// Represents a column in the grid.
/// </summary>
public class ColumnInfo
{
 public string header;
 public string sortExpression;
 public Unit width;
 public AuditEntryField field;
 public Type fieldType;

 public enum AuditEntryField {
 User, DocumentUrl, ItemType, ItemId, EventType, EventTime
 };

 public void Update(SPSite site, DataRow row, SPAuditEntry entry)
 {
 switch (field)
 {
 case AuditEntryField.User:
 {
 string userName = string.Empty;
 try
 {
 userName = site.RootWeb.SiteUsers.GetByID(
 entry.UserId).Name;
 }
 catch
 {
 userName = entry.UserId.ToString();
 }
 row[field.ToString()] = userName;
 break;
 }
 case AuditEntryField.DocumentUrl:
 row[field.ToString()] = entry.DocLocation;
 break;

87620c09.indd 26487620c09.indd 264 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

265

Chapter 9: Information Policy and Record Auditing

 case AuditEntryField.ItemType:
 row[field.ToString()] = entry.ItemType.ToString();
 break;
 case AuditEntryField.ItemId:
 row[field.ToString()] = entry.ItemId.ToString();
 break;
 case AuditEntryField.EventType:
 row[field.ToString()] = entry.Event;
 break;
 case AuditEntryField.EventTime:
 row[field.ToString()] = entry.Occurred.ToLocalTime();
 break;
 }
 }
}

Our AuditEntryField enumeration identifi es the type of information that will be displayed in the col-
umn. The fieldType member specifi es the underlying .NET type of the data stored in each cell. We’ll
use this to confi gure the data table that will be bound to the grid. The Update method will be called for
each column in a row to extract the relevant fi eld values from the SPAuditEntry object and place it into
the appropriate row cell.

Now we can declare the SPAuditEntryGrid class, which inherits from SPGridView. The constructor
creates a new DataTable and an SPAuditQuery object that we will use to retrieve the audit records.
We’ll also override the OnLoad method to refresh the grid using a helper method we will implement
along with a couple of diagnostic logging and exception handling routines. To set up the grid, we’ll
need a collection of ColumnInfo objects, which we can create easily using a static collection initializer
as follows:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace ECM2007.AuditingWebParts
{
 /// <summary>
 /// This class extends the SPGridView control to display
 /// a collection of audit entries based on an audit query.
 /// </summary>
 public class SPAuditEntryGrid : SPGridView
 {
 public SPAuditQuery Query { get; private set; }
 public SPSite SiteCollection { get; private set; }
 public DataTable DataTable { get; private set; }

87620c09.indd 26587620c09.indd 265 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

266

Chapter 9: Information Policy and Record Auditing

 /// <summary>
 /// Static initializer for column configuration.
 /// </summary>
 protected List<ColumnInfo> m_columns = new List<ColumnInfo>() {

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.User,
 fieldType=typeof(string), header=”User” },

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.DocumentUrl,
 fieldType=typeof(string), header=”Url” },

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.ItemType,
 fieldType=typeof(string), header=”Type” },

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.ItemId,
 fieldType=typeof(string), header=”Id” },

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.EventType,
 fieldType=typeof(string), header=”Event” },

 new ColumnInfo(){ field=ColumnInfo.AuditEntryField.EventTime,
 fieldType=typeof(DateTime), header=”Time”,
 width=new Unit(120) },
 };

 /// <summary>
 /// Constructor.
 /// </summary>
 /// <param name=”query”></param>
 public SPAuditEntryGrid(SPSite siteCollection)
 {
 Log(“ctor”);
 this.DataTable = new DataTable();
 this.Query = new SPAuditQuery(
 this.SiteCollection = siteCollection);
 }

 /// <summary>
 /// Override to refresh the grid.
 /// </summary>
 /// <param name=”args”></param>
 protected override void OnLoad(EventArgs args)
 {
 Log(“OnLoad”);
 Refresh();
 }

 /// <summary>
 /// Diagnostic output routine.
 /// </summary>
 /// <param name=”format”></param>
 /// <param name=”args”></param>

87620c09.indd 26687620c09.indd 266 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

267

Chapter 9: Information Policy and Record Auditing

 protected void Log(string format, params object[] args)
 {
 string category = GetType().Name;
 Trace.WriteLine(string.Format(format, args)+”...”, category);
 }

 /// <summary>
 /// Generic exception handler.
 /// </summary>
 /// <param name=”x”></param>
 protected void HandleException(Exception x)
 {
 Log(“Exception occurred: {0}”, x.ToString());
 }
 }
}

The overridden OnInit routine loops through the ColumnInfo table adding columns to both the
DataTable and the grid. Using the ColumnInfo table avoids having duplicate column names and will
make it easier to extend later. While we’re at it, we’ll also enable sorting, fi ltering, and paging.

The line “this.PagerTemplate = null” in the OnInit code is required because of a bug in
the SPGridView control that fails to display the paging tabs. To work around it, you have to set
the PagerTemplate property to null after the grid has been added to the controls collection but
before the BindData method is called. For more information, see Paul Robinson’s blog post entitled,
“SPGridView: Adding Paging to SharePoint When Using Custom Data Sources,” at http://
blogs.msdn.com/powlo/archive/2007/03/23/Adding-paging-to-SPGridView-when-
using-custom-data-sources.aspx.

/// <summary>
/// Called when the control is to be initialized to setup
/// the grid columns.
/// </summary>
/// <param name=”args”></param>
protected override void OnInit(EventArgs args)
{
 try
 {
 // setup the columns
 Log(“Initializing columns”);
 foreach (ColumnInfo column in m_columns)
 {
 this.DataTable.Columns.Add(
 column.field.ToString(), column.fieldType);

 SPBoundField field = new SPBoundField();
 field.HeaderText = column.header;
 field.DataField = column.field.ToString();
 if (column.width != null)
 field.ControlStyle.Width = column.width;
 if (!string.IsNullOrEmpty(column.sortExpression))
 field.SortExpression = column.sortExpression;
 else

87620c09.indd 26787620c09.indd 267 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

268

Chapter 9: Information Policy and Record Auditing

 field.SortExpression = column.field.ToString();
 this.Columns.Add(field);
 }

 // configure the grid
 Log(“Setting grid properties”);
 this.AutoGenerateColumns = false;
 this.AllowFiltering = true;
 this.HeaderStyle.Font.Bold = true;
 this.AlternatingRowStyle.CssClass = “ms-alternating”;

 this.PageSize = 12;
 this.AllowPaging = true;
 this.PageIndexChanging += new GridViewPageEventHandler(
 SPAuditEntryGrid_PageIndexChanging);
 this.PagerTemplate = null;

 this.AllowSorting = true;
 this.Sorting += new GridViewSortEventHandler(
 SPAuditEntryGrid_Sorting);
 }
 catch (Exception x)
 {
 HandleException(x);
 }
}

Refreshing the grid involves clearing the table and then executing the audit query against the site collec-
tion. Our design makes it possible to adjust the query before loading the grid. As an example, we could
restrict the query so that it operates only on particular event types, users, or lists. We could also restrict
it so that it only returns events that occur within a particular range of dates.

Once we have the collection of audit entries, we add them to new table rows by calling the
ColumnInfo Update method, passing the site collection, row, and audit entry objects.

/// <summary>
/// Helper method to refresh the grid based on the current
/// query definition.
/// </summary>
private void Refresh()
{
 try
 {
 this.DataTable.Clear();

 // Execute the query to get the audit entry collection.
 // This requires elevation of privileges.
 Log(“Executing audit query”);
 SPSecurity.RunWithElevatedPrivileges(delegate()
 {
 SPAuditEntryCollection entries =
 this.SiteCollection.Audit.GetEntries(this.Query);

 // Fill the data table with the entry data.

87620c09.indd 26887620c09.indd 268 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

269

Chapter 9: Information Policy and Record Auditing

 Log(“Initializing data table with {0} entries”, entries.Count);
 foreach (SPAuditEntry entry in entries)
 {
 DataRow row = this.DataTable.Rows.Add();
 foreach (ColumnInfo col in m_columns)
 col.Update(this.SiteCollection, row, entry);
 }
 });

 // Bind the data table to the grid.
 Log(“Binding the data table to the grid”);
 // Recreate sort if needed.
 if (ViewState[“SortDirection”] != null &&
 ViewState[“SortExpression”] != null)
 {
 this.DataTable.DefaultView.Sort =
 ViewState[“SortExpression”].ToString()
 + “ “ + ViewState[“SortDirection”].ToString();
 }
 this.DataSource = this.DataTable.DefaultView;
 this.DataBind();
 }
 catch (Exception x)
 {
 HandleException(x);
 }
}

Note that we are running this code within a delegate passed to the SPSecurity
.RunWithElevatedPrivleges method. This ensures that our web part will work in any user
context because SharePoint requires that code that accesses audit records must run as a site
administrator. However, this may limit the usefulness of the web part for use in production. We
could address this by either checking whether the current user is an administrator or performing
some other test before instantiating the grid. Of course, we could also handle the exception and
simply inform the user of his or her woefully inadequate permissions.

Sorting in an SPGridView requires a little fi nesse in the callback to manage the ViewState so that the
sort expression and direction are coordinated properly between the grid and the underlying data table
view. We do this by fi rst checking the ViewState for any previously defi ned sort expression or direc-
tion so we can use them if they are available. Otherwise, we use the default values.

Thanks to Paul Robinson (blogs.msdn.com/powlo) for explaining the ViewState trick.

void SPAuditEntryGrid_Sorting(object sender, GridViewSortEventArgs e)
{
 string lastExpression = “”;
 if (ViewState[“SortExpression”] != null)
 lastExpression = ViewState[“SortExpression”].ToString();

 string lastDirection = “asc”;
 if (ViewState[“SortDirection”] != null)
 lastDirection = ViewState[“SortDirection”].ToString();

 string newDirection = “asc”;

87620c09.indd 26987620c09.indd 269 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

270

Chapter 9: Information Policy and Record Auditing

 if (e.SortExpression == lastExpression)
 newDirection = (lastDirection == “asc”) ? “desc” : “asc”;

 ViewState[“SortExpression”] = e.SortExpression;
 ViewState[“SortDirection”] = newDirection;

 this.DataTable.DefaultView.Sort = e.SortExpression + “ “ + newDirection;
}

Since we have enabled paging, we also need to handle the PageIndexChanging event as follows:

void SPAuditEntryGrid_PageIndexChanging(
 object sender, GridViewPageEventArgs e)
{
 this.PageIndex = e.NewPageIndex;
 this.DataBind();
}

Now we just need to package it up and send it to SharePoint. For that, we’ll need a .webpart fi le to con-
fi gure the web part in the gallery:

<webParts>
 <webPart xmlns=”http://schemas.microsoft.com/WebPart/v3”>
 <metaData>
 <type name=”ECM2007.AuditingWebParts.AuditViewerWebPart, ECM2007.
 AuditingWebParts, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=eb8a6a1622425a15”/>
 <importErrorMessage>Cannot import this Web Part.</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <!-- Standard Web Part properties -->
 <property name=”ChromeType” type=”chrometype”>Default</property>
 <property name=”Title” type=”string”>Audit Viewer Web Part</property>
 <property name=”Description” type=”string”>Displays audit records for
 items in the current site.</property>
 <property name=”CatalogIconImageUrl” type=”string”>/_layouts/images/
 ecm2007/logo.png</property>
 <property name=”TitleIconImageUrl” type=”string”>/_layouts/images/
 ecm2007/logo.png</property>
 <property name=”ExportMode” type=”exportmode”>All</property>
 </properties>
 </data>
 </webPart>
</webParts>

and we’ll need a SafeControl entry in the web.confi g fi le:

<SafeControl Assembly=”ECM2007.AuditingWebParts, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=eb8a6a1622425a15” Namespace=”ECM2007.AuditingWebParts”
TypeName=”*” Safe=”True”/>

87620c09.indd 27087620c09.indd 270 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

271

Chapter 9: Information Policy and Record Auditing

Figure 9-4 shows the web part displayed on a page. Clicking on the column headers sorts and fi lters the
rows accordingly.

Figure 9-4: Audit Viewer Web Part.

The Audit Viewer Web Part we’ve created retrieves audit records from the content database and dis-
plays them in a grid for the user to review. It demonstrates how to obtain the audit records based on
an SPAuditQuery and how to decode the audit entry fi elds for display. It does not support fi ltering or
security trimming, which are features you will most likely want to add before putting the web part into
production. In the next section, we will deal with a different kind of audit review mechanism that is
unique to Records Center sites.

Viewing Historical Audit Records
In the context of a Records Center, where each incoming record may be submitted with its own audit
history (from interactions with the document prior to submission), you may wish to provide an addi-
tional layer of support for those users who are tasked with examining or otherwise working directly
with that audit history. Although the recorded information is similar to that stored within the content
database for active documents and list items, the audit history records are static, and they are stored
in a separate location. In this section, we will create a custom application page and an associated Edit
Control Block (ECB) command that will allow a records manager to view the audit history (as opposed
to the active audit entries) for a given record in a more user-friendly display than that provided by sim-
ply viewing the audit history fi le.

Figure 9-5 shows how audit history fi les are stored for an incoming record. A special folder is created,
and within this folder, the individual XML data fi les are placed that contain the actual audit entries.

87620c09.indd 27187620c09.indd 271 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

272

Chapter 9: Information Policy and Record Auditing

Figure 9-5: Audit history for a
submitted record.

The fi le that the Records Center generates is an XML fi le that contains an AuditEntry element for each
audit record, along with additional information about the source web site, the item and its type, the
user ID, the document location, and the type of event that occurred. The audit history is stored in a fi le
having the same name as the record (including the date stamp), but with an XML extension inside the
Audit History folder. This fi le only exists if audit records were submitted with the fi le. Listing 9-1 shows
an example of the information that is contained within this fi le.

Listing 9-1: Sample audit history fi le

<AuditData>
 <AuditEntry>
 <SiteId>4cfb9fd1-c3a8-4215-bea4-a7d58e835d2c</SiteId>
 <ItemId>b9a0e871-37e7-4cc1-ba10-1cde82ff1f53</ItemId>
 <ItemType>Document</ItemType>
 <UserId>1073741823</UserId>
 <DocLocation>Legal Documents/Lorem Ipsum.doc</DocLocation>
 <LocationType>Url</LocationType>
 <Occurred>3/21/2009 3:53:42 PM</Occurred>
 <Event>Update</Event>
 <EventSource>SharePoint</EventSource>
 <EventData>
 <Version>
 <Major>1</Major>
 <Minor>0</Minor>
 </Version>
 </EventData>
 </AuditEntry>
 <AuditEntry>
 <SiteId>4cfb9fd1-c3a8-4215-bea4-a7d58e835d2c</SiteId>
 <ItemId>b9a0e871-37e7-4cc1-ba10-1cde82ff1f53</ItemId>
 <ItemType>Document</ItemType>
 <UserId>1073741823</UserId>
 <DocLocation>Legal Documents/Lorem Ipsum New.doc</DocLocation>
 <LocationType>Url</LocationType>
 <Occurred>3/21/2009 3:54:24 PM</Occurred>
 <Event>View</Event>
 <EventSource>SharePoint</EventSource>
 <EventData>
 <Version>
 <Major>0</Major>
 <Minor>6</Minor>

87620c09.indd 27287620c09.indd 272 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

273

Chapter 9: Information Policy and Record Auditing

 </Version>
 </EventData>
 </AuditEntry>
</AuditData>

Figure 9-6 shows the structure of the ECM2007.AuditHistoryViewer feature. The main elements
are the elements.xml fi le shown in Listing 9-2, which contains the custom ECB command, and
the AuditHistory.aspx page shown in Listing 9-3, which contains a placeholder for a customized
SPGridView that we will use to display the audit records.

Figure 9-6: ECM2007
.AuditHistoryViewer feature.

Listing 9-2: elements.xml

<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <CustomAction
 Id=”ECM2007.AuditHistoryViewer”
 Location=”EditControlBlock”
 Title=”View Audit History”
 RegistrationType=”List”
 RegistrationId=”101”>

 <UrlAction Url=”~site/_layouts/ECM2007/AuditHistory.aspx?
 List={ListId}&ID={ItemId}” />
 </CustomAction>
</Elements>

Listing 9-3: AuditHistory.aspx

<%@ Assembly Name=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Assembly Name=”ECM2007.AuditHistoryViewer, Version=1.0.0.0, Culture=neutral,

Continued

87620c09.indd 27387620c09.indd 273 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

274

Chapter 9: Information Policy and Record Auditing

 PublicKeyToken=eb8a6a1622425a15” %>

<%@ Page Language=”C#” MasterPageFile=”~/_layouts/application.master”
 Inherits=”ECM2007.AuditHistoryViewer.AuditHistoryPage”
 EnableViewState=”true” EnableViewStateMac=”true” %>

<%@ Register TagPrefix=”SharePoint”
 Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>

<asp:Content ID=”PageTitle” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitle”>
 View Record Audit History
</asp:Content>

<asp:Content ID=”PageTitleInTitleArea” runat=”server”
 ContentPlaceHolderID=”PlaceHolderPageTitleInTitleArea”>
 Audit History For: ‘<asp:Label ID=”AuditedRecordName” runat=”server” />’
</asp:Content>

<asp:Content ID=”Main” runat=”server”
 ContentPlaceHolderID=”PlaceHolderMain”>
 <p>
 This page displays the audit records, if any, that were submitted to the
 records center along with the file. These audit entries do not reflect
 subsequent interactions with the record after it was submitted.
 </p>
 <!-- Placeholder for the Audit Entry Grid -->
 <asp:PlaceHolder ID=”phGrid” runat=”server” />
</asp:Content>

To simplify the binding of audit records to the grid, we fi rst convert the raw XML data into a
DataTable and then bind the table to the grid. To further simplify the parsing of the audit history fi le,
we can use a schema and then generate wrapper classes. The easiest way to generate a schema from
an existing XML data fi le is to load the fi le into Visual Studio and then select the “Create Schema”
command from the XML menu item. Once the schema is created, we can simply generate the deseri-
alization classes we need using the XSD.EXE command line tool. Using the resulting wrapper classes,
we can then write the code we need to add the audit entries to the DataTable for binding to the grid.
Listing 9-4 shows the Refresh method for an AuditHistoryGrid component that follows the same
structure as the SPAuditEntryGrid we created for the AuditViewerWebPart.

Listing 9-4: AuditHistoryGrid.Refresh

/// <summary>
/// Helper method to refresh the grid from historical audit entries.
/// </summary>
private void Refresh()
{
 try

Listing 9-3: AuditHistory.aspx (continued)

87620c09.indd 27487620c09.indd 274 9/3/09 10:33:39 AM9/3/09 10:33:39 AM

275

Chapter 9: Information Policy and Record Auditing

 {
 this.DataTable.Clear();

 // Retrieve the collection of audit entries from
 // the attached list item. These are the static entries
 // that were submitted along with the record.

 Log(“Loading audit records from the list item.”);

 // Locate and open the containing folder.
 SPFolder thisFolder = FindContainingFolder(
 Item.ParentList.RootFolder.SubFolders, Item);
 if (thisFolder != null && thisFolder.Exists)
 {
 // Locate and open the “Audit History” folder.
 SPFolder auditHistoryFolder = thisFolder.SubFolders[“Audit History”];
 if (auditHistoryFolder != null && auditHistoryFolder.Exists)
 {
 // Locate an XML file that matches the name of
 // the selected item.
 string auditFileName =
 Path.GetFileNameWithoutExtension(Item.Name) + “.xml”;
 SPFile auditFile = auditHistoryFolder.Files[auditFileName];

 if (auditFile.Exists)
 {
 SPSite site = Item.Web.Site;

 // Deserialize the file into an “AuditData” component.
 XmlSerializer ser = new XmlSerializer(typeof(AuditData),””);
 using (Stream auditStream = auditFile.OpenBinaryStream())
 {
 AuditData auditData =
 (AuditData)ser.Deserialize(auditStream);
 foreach (AuditDataAuditEntry entry in auditData.AuditEntry)
 {
 DataRow row = this.DataTable.Rows.Add();
 foreach (ColumnInfo col in m_columns)
 col.Update(site, row, entry);
 }
 }
 }
 }
 }

 // Bind the data table to the grid.
 Log(“Binding the data table to the grid”);

 // Recreate sort if needed.
 if (ViewState[“SortDirection”] != null &&
 ViewState[“SortExpression”] != null)
 {

Continued

87620c09.indd 27587620c09.indd 275 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

276

Chapter 9: Information Policy and Record Auditing

 this.DataTable.DefaultView.Sort =
 ViewState[“SortExpression”].ToString()
 + “ “ + ViewState[“SortDirection”].ToString();
 }
 this.DataSource = this.DataTable.DefaultView;
 this.DataBind();
 }
 catch (Exception x)
 {
 HandleException(x);
 }
}

When we’re done, we can activate the feature and select the new “View Audit History” command from
the ECB dropdown for any given record. Figure 9-7 shows the Audit History page for a typical record.

Figure 9-7: Audit History page.

Additional Considerations for Auditing
There are many ways to leverage the Auditing API for records management. The ability to write cus-
tom audit entries opens the door for all kinds of audit-related processing and post-processing. They
essentially allow us to add layers of meaning on top of the predefi ned audit events without adding to the
core set of event types. As an example, consider a Delete event for a fi nancial document in a Records
Center. Using an item event receiver, we could monitor the deletion of any such document on, say, a
business holiday and then write a custom audit entry that basically says, “A questionable action was
detected that appears to violate our policy XYZ.” Furthermore, the conditions governing how the cus-
tom audit entries are created could be defi ned in an actual policy attached to the content type or to the
list containing the item.

It’s always a good idea to keep track of when the audit log is viewed and by whom, and as mentioned
earlier, it’s equally important to consider adding security-trimming logic for any controls and/or web
parts that allow users to view audit records. It might also be advisable to provide a separate user inter-
face that allows only administrative users to view and modify audit settings.

Listing 9-4: AuditHistoryGrid.Refresh (continued)

87620c09.indd 27687620c09.indd 276 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

277

Chapter 9: Information Policy and Record Auditing

Extending the File Plan Schema to Support
Auditing Policy

Extending the fi le plan schema to support auditing is a simple matter of adding the available audit
masks to the schema and then writing some code to create the appropriate policy feature for the content
type associated with the record type. To do this, we fi rst copy the enumeration values of the audit mask
and add them to the schema:

<xs:complexType name=”AuditingPolicyFeature”>
 <xs:annotation>
 <xs:documentation>
 Specifies how the auditing policy feature should be configured
 for a record type.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name=”Audit” type=”AuditMask” minOccurs=”0”
 maxOccurs=”unbounded” nillable=”true”/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name=”AuditMask”>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Viewing”/>
 <xs:enumeration value=”Editing”/>
 <xs:enumeration value=”CheckingOut”/>
 <xs:enumeration value=”Copying”/>
 <xs:enumeration value=”Deleting”/>
 </xs:restriction>
</xs:simpleType>

Next, we regenerate the wrapper classes so that we can access the new data structure, and then we
extend the CreateContentTypes method of the RecordSpecification class so that it adds the audit-
ing policy to the content type when the fi le plan is executed:

// the auditing policy is specified as an array of audit masks - if any were
// specified, then enable the policy feature using a static method of the
// extended AuditingPolicyFeature class
if (this.Auditing.Length > 0)
{
 AuditingPolicyFeature.CreatePolicy(type, this.Auditing);
}

The additional code needed to create the new audit policy for a content type is shown in Listing 9-5.

Listing 9-5: Adding an auditing policy to a content type

public partial class AuditingPolicyFeature
{
 /// <summary>

Continued

87620c09.indd 27787620c09.indd 277 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

278

Chapter 9: Information Policy and Record Auditing

 /// Creates and attaches any auditing policy which may have been
 /// specified along with the record.
 /// </summary>
 /// <param name=”type”>Identifies the content type to which the auditing
 /// policy will be attached.</param>
 /// <param name=”auditFlags”>specifies the audit flags that should be
 set</param>
 public static void CreateAuditingPolicy(SPContentType type, AuditMask?[]
 auditFlags)
 {
 try
 {
 // check if there is a policy attached to the content type
 // if not, then create one so we can configure it
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy
 targetPolicy =
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy.
 GetPolicy(type);
 if (targetPolicy == null)
 {
 Microsoft.Office.RecordsManagement.InformationPolicy.Policy.
 CreatePolicy(type, null);
 targetPolicy = Microsoft.Office.RecordsManagement.
 InformationPolicy.Policy.GetPolicy(type);
 }

 // add the auditing policy to the content type
 const string auditingPolicyFeatureId =
 “Microsoft.Office.RecordsManagement.PolicyFeatures.PolicyAudit”;
 if (targetPolicy.Items[auditingPolicyFeatureId] == null)
 targetPolicy.Items.Add(auditingPolicyFeatureId, “”);

 PolicyItem auditingPolicyItem =
 targetPolicy.Items[auditingPolicyFeatureId];
 auditingPolicyItem.CustomData = GetCustomDataString(auditFlags);
 auditingPolicyItem.Update();

 }
 catch (Exception x)
 {
 Helpers.HandleException(typeof(AuditingPolicyFeature), x);
 }
 }

 /// <summary>
 /// Builds the custom data string used to specify the auditing policy.
 /// </summary>
 private static string GetCustomDataString(AuditMask?[] auditFlags)
 {
 StringBuilder sb = new StringBuilder(“<Audit>”);
 foreach (AuditMask mask in auditFlags)
 {

Listing 9-5: Adding an auditing policy to a content type (continued)

87620c09.indd 27887620c09.indd 278 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

279

Chapter 9: Information Policy and Record Auditing

 switch (mask)
 {
 case AuditMask.CheckingOut:
 sb.Append(“<CheckInOut/>”);
 break;
 case AuditMask.Copying:
 sb.Append(“<MoveCopy/>”);
 break;
 case AuditMask.Deleting:
 sb.Append(“<DeleteRestore/>”);
 break;
 case AuditMask.Editing:
 sb.Append(“<Update/>”);
 break;
 case AuditMask.Viewing:
 sb.Append(“<View/>”);
 break;
 }
 }
 sb.Append(“</Audit>”);
 return sb.ToString();
 }

}

Summary
In this chapter, we examined the auditing support that is built into the SharePoint platform to under-
stand how to control the information that is added to the content database for tracking what happens
to documents and list items during the content life cycle. We then explored ways to enhance the user
experience related to auditing by creating a web part that displays audit records for any active docu-
ment or list item in the current site.

Since records managers may need to review historical audit entries that are submitted along with
incoming records in addition to active audit entries that are written by SharePoint to the content data-
base, we created a SharePoint feature that extended the Edit Control Block (ECB) with a custom com-
mand for retrieving and displaying historical audit records.

Finally, we examined how the built-in Audit Policy feature enables a records manager to attach audit
masks to information policies. We then extended the dynamic fi le plan schema introduced in Chapter 5
to include auditing instructions and extended the dynamic fi le plan components to automatically gen-
erate auditing policies during content type creation when the fi le plan is executed.

87620c09.indd 27987620c09.indd 279 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

87620c09.indd 28087620c09.indd 280 9/3/09 10:33:40 AM9/3/09 10:33:40 AM

Managing Physical Records

This chapter is about using the records management functionality provided by SharePoint to
manage records that exist primarily on paper and must be stored physically. When you think
about it, dealing with physical records is so fundamentally different from managing electronic
documents that the challenges should be obvious. First, there is the problem of keeping the physi-
cal documents and any associated metadata synchronized with the corresponding database
record or list item being used to manage them. Next, there are the problems of securing the physi-
cal repository and tracking what happens to the documents it contains. Then there are the purely
logistic issues involved in fi nding and retrieving documents that have already been stored in the
repository and ensuring that they fi nd their way back to the right spot.

Clearly, dealing with physical records properly involves additional costs. There are the real costs
associated with maintaining a secure storage facility and the paperwork and personnel costs
required to manage both the transient and fi nal disposition of documents. Then there are the
soft costs that fl ow from the additional time needed to coordinate the fl ow of electronic and non-
electronic data throughout the organization. These problems are, of course, not new, but they do
present a unique set of challenges for any Rights Management Service (RMS), and especially for
one designed to support collaboration and workfl ow.

Physical Records and List Items
Offi ce SharePoint Server 2007 is already designed to handle physical records. The features needed
for tracking electronic records, such as content types, workfl ows, forms, and information policies,
work equally well for lists and for document libraries. The difference is that the storage of physi-
cal records is handled outside of the Records Center. The Record Routing Table is purely a storage
mechanism and is designed to work in conjunction with document libraries, which provides the
storage medium. Therefore, the Record Routing mechanism is not used for managing physical
records. Instead, you simply create a custom list to capture the metadata needed for tracking
the physical record and then enhance the list with workfl ows, forms, and information policies
to coordinate the management part that is handled by SharePoint with the storage part that is
handled externally. Figure 10-1 depicts the overall processing sequence. The sections that follow
describe the steps needed to manage physical records using list items.

87620c10.indd 28187620c10.indd 281 9/2/09 10:20:53 AM9/2/09 10:20:53 AM

282

Chapter 10: Managing Physical Records

Records Center

List Item

Records Manager

Physical Records

Physical Storage

Barcode
0 20 6 4 2 5 3 3 3 1 7

Figure 10-1: Physical records processing.

Create a Physical Record Content Type
The fi rst step is to create a content type to describe each physical record type. Content types greatly
simplify the management of physical records because they can capture metadata, workfl ow, and infor-
mation policy requirements. For example, we can declare a generic content type called Physical Record
to handle all physical records and to defi ne the key elements needed to manage them. Later, we can
extend the concept if necessary by inheriting from this content type.

The basic information needed in the Physical Record content type is not that different from the infor-
mation we are already gathering in our fi le plan. The following table shows the minimal set of columns
that might be used for tracking a typical physical record. The actual columns you choose will depend
on your specifi c requirements.

Column Type Description

Title Single line of text Specifi es the record type.

Description Multiple lines of text Describes the purpose of the record.

Category Single line of text Describes the record category.

Media Single line of text Specifi es the media, such as “photograph” or
“brochure.”

87620c10.indd 28287620c10.indd 282 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

283

Chapter 10: Managing Physical Records

Column Type Description

Location Single line of text Specifi es the location in which the record is stored.

Manager’s
Name

Single line of text Identifi es the person who is responsible for managing
the record.

Create a Physical Records List
After creating a content type for each physical record, create a new generic list to represent their actual
location. Give it a representative name such as Physical Record and enable management of content types
from the Advanced Settings page. Add the new Physical Record content type to the list of content types
on the Customize Physical Records page. Now as items are placed into the actual repository, you can
create corresponding list items of type Physical Record in the list. The challenge, of course, will be
keeping the list synchronized with what is actually happening in the real world. Later in the chapter,
we’ll look at ways to approach this using workfl ow. For now, there is one additional feature that can
help to keep things in order, and that is information management policy.

Confi gure Information Policy Features
The Barcode information policy feature provides a convenient mechanism for identifying physical records
because the barcode is generated from within the Records Center and is then affi xed to the physical
record. Later, when the record is checked out or moved from one physical location to another, the barcode
can be scanned to quickly locate the corresponding list item so that it can be updated accordingly.

One advantage of enabling the Barcode policy feature at the content type level is that you don’t have to
repeat the confi guration operation for every list you create to track physical records. The information
policy follows the content type instead of the list. On the other hand, enabling the policy feature at the
list level ensures that generic items also have a barcode assigned.

To enable the Barcode policy feature for the Physical Record content type, navigate to the Content Type
Settings page, and choose the “Information management policy settings” link. From the Information
Management Policy Settings: Physical Record page, click on the “Defi ne a policy” radio button and
press OK. Place a checkmark in the “Enable Barcodes” feature and press OK. Now whenever a new
instance of Physical Record is created, a barcode will be generated automatically.

To prove it, navigate to the custom Physical Records list and choose New ➪ Physical Record from the tool-
bar. Fill in the properties on the Physical Records: New Item page as shown in Figure 10-2, and press OK.

To see the generated barcode, you have to view the item properties by selecting the View Item com-
mand from the Edit Control Block of the new item. Figure 10-3 shows the item with the barcode as it
will appear when affi xed to the record.

87620c10.indd 28387620c10.indd 283 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

284

Chapter 10: Managing Physical Records

Figure 10-2: Physical Record Item properties.

Figure 10-3: Physical Record Item with barcode.

Physical Records and Folders
Another approach to dealing with physical records is to create folders within the Records Center that
represent the physical locations in which the records are stored. This technique is convenient because it
maps directly to what is happening in the real world. To facilitate this approach, you can create folder
content types for each physical location being modeled.

87620c10.indd 28487620c10.indd 284 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

285

Chapter 10: Managing Physical Records

Folder content types are special content types that apply only to folders, but they have the same charac-
teristics as other content types for specifying columns, workfl ows, and information policies. To create
a folder content type, navigate to the Site Content Type Gallery of the Records Center and select Create
to open the New Site Content Type page shown in Figure 10-4. Enter a name for the folder, such as DVD
Rack. Select “Folder Content Types” from the dropdown list under “Select parent content type from”
and then select “Folder” as the parent content type and click OK to create the new type.

Figure 10-4: Creating a folder content type.

From the Site Content Type settings page, add some additional columns similar to the columns created
for the Physical Record content type, such as Category and Location. Select the “Information manage-
ment policy settings” link to enable the Barcode policy feature.

Next, create a new content type called DVD that inherits from Physical Record. Add additional columns
as needed for the presentation, department, subject, serial number, and so on. You would use this kind
of content type to represent individual DVDs in a given rack within the physical storage location.

Finally, enable all three content types (Physical Record, DVD, and DVD Rack) on the Physical Records
list as shown in Figure 10-5. Now you can create a new folder that represents a physical DVD rack,
and it will be assigned a barcode automatically, which can be printed and affi xed to the physical rack.
Through a periodic review of the DVDs contained in the physical rack, you can now easily add new
items to the folder to match the DVDs contained in the rack.

87620c10.indd 28587620c10.indd 285 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

286

Chapter 10: Managing Physical Records

Figure 10-5: Physical records list settings.

Automating the Process
To simplify the steps required for setting up the Records Center to handle physical records, we’ll create
a SharePoint feature called PhysicalRecordsFeature to do the heavy lifting for us. We’ll start by cre-
ating a new solution in Visual Studio that will hold the SharePoint feature project and adding a refer-
ence to the ECM2007 support library we’ve been using throughout the book. We’ll use the Information
Policy components in the support library to create the Content Type, List, and Barcode policies that will
be installed by the feature. We’ll also need to reference the Microsoft.Office.Policy, Microsoft
.SharePoint, and System.Configuration.Install assemblies. The last one is needed because of
code in the ECM2007 support library. Figure 10-6 shows the solution layout.

The project layout shown in this example includes components that are created automatically by the
custom SharePoint feature project template we constructed in Chapter 2.

The feature.xml fi le specifi es this as a Web scoped feature with a ReceiverAssembly and
ReceiverClass that are called when the feature is activated.

<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”1e1b1079-81a5-4da1-9f9c-9890b07f7821”
 Title=”ECM2007 Physical Records”
 Description=”Creates a custom list and associated content type for managing
 physical records. The content type is automatically bound to the barcode
 policy feature to facilitate tracking physical records linked to list items.”
 ImageUrl=”ECM2007\logo.png”
 Version=”1.0.0.0”
 Scope=”Web”
 Hidden=”FALSE”
 ReceiverAssembly=”ECM2007.PhysicalRecordsFeature, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=eb8a6a1622425a15”

87620c10.indd 28687620c10.indd 286 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

287

Chapter 10: Managing Physical Records

 ReceiverClass=”ECM2007.PhysicalRecordsFeature.FeatureReceiver”
 >
 <ElementManifests>
 <ElementManifest Location=”elements.xml”/>
 </ElementManifests>
</Feature>

Figure 10-6: Physical Records feature project.

The FeatureReceiver class inherits from SPFeatureReceiver and implements the
FeatureActivated method to set up the Records Center site. The code we will write requires the fol-
lowing namespaces:

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using Microsoft.SharePoint;
using ECM2007.ContentTypes;
using ECM2007.Utilities;
using ECM2007.InformationPolicy;
using Microsoft.Office.RecordsManagement.PolicyFeatures;
using Microsoft.Office.RecordsManagement.RecordsRepository;
using Microsoft.Office.RecordsManagement.InformationPolicy;

The fi rst component we need is a Physical Record content type. For this, we will use the
SharePointContentType attribute class from the ECM2007 support library to create a new content
type based on attributes that we declare in a separate PhysicalRecord helper class as follows:

using System;
using System.Collections.Generic;

87620c10.indd 28787620c10.indd 287 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

288

Chapter 10: Managing Physical Records

using System.Linq;
using System.Text;
using ECM2007.ContentTypes;

namespace ECM2007.PhysicalRecordsFeature
{
 [
 SharePointContentType(BaseType=”Item”,
 Description=”This record type is used to handle physical records, like
 inventory reports and miscellaneous documents. Each record is bar
 coded so it can be coordinated with information stored in the content
 database.”,
 Group=”Professional Records Management”,
 Name=”Physical Record”,
 Sealed=false)
]
 public class PhysicalRecord
 {
 [FieldRef(“Description”,
 Description=”Describes the record”,
 DisplayName=”Description”)]
 public string Description { get; set; }

 [FieldRef(“Category”,
 Description=”The record category”,
 DisplayName=”Category”)]
 public string Category { get; set; }

 [FieldRef(“Location”,
 Description=”The physical location where the record is stored”,
 DisplayName=”Location”)]
 public string Location { get; set; }

 [FieldRef(“Media”,
 Description=”The media type of the record, such as ‘Print’ or ‘Tape’”,
 DisplayName=”Media”)]
 public string Media { get; set; }
 }
}

Next, we need to enable the Barcode policy feature for the content type so that whenever a physi-
cal record item is created, a barcode is automatically generated for it. To do this, we fi rst create a
BarcodePolicy object and then use it to enable the Barcode policy feature for the content type. Add
a new class called BarcodePolicy to the project that inherits from the SharePointPolicy compo-
nent defi ned in the ECM2007.InformationPolicy namespace of the ECM2007 support library. The
SharePointPolicy component exposes a Create method that reads the required properties from a
separate class, which declares the policy name and policy statement in the constructor as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;

87620c10.indd 28887620c10.indd 288 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

289

Chapter 10: Managing Physical Records

using ECM2007.InformationPolicy;

namespace ECM2007.PhysicalRecordsFeature
{
 [Guid(“69A35EA8-1BCC-40bd-896C-D93CE617EBBF”)]
 public class BarcodePolicy : SharePointPolicy
 {
 public BarcodePolicy()
 : base(
 “PhysicalRecordBarcodePolicy”,
 “This policy enables the barcode feature for managing physical
 records.”
)
 {
 }
 }
}

Listing 10-1 shows the full implementation of the feature receiver class. The fi rst thing we do is check
to ensure that the feature is being activated on a Records Center web site. This will keep users from
activating it on other kinds of sites where the functionality makes no sense. To do that, we compare
the WebTemplateId of the web site to that of the Records Repository as published by the Records
Management API.

We then proceed to create the Physical Records list using the SharePointList component from our
custom ECM2007 support library. This is a simple generic list that we will continue to confi gure as we
build up the other required components. The SharePointPolicy.Create method returns the new
Policy object from the Microsoft.Office.RecordsManagement.InformationPolicy namespace
and associates it with the content type. All that remains is to enable the Barcode policy feature, which
is accomplished by adding the correct policy feature identifi er to the internal list of policy items that
SharePoint associates with the policy object. The RecordsManagement API makes this easy by exposing
the correct policy feature identifi er as a public static string property of the Barcode object (Microsoft
.Office.RecordsManagement.PolicyFeatures.Barcode.PolicyId).

Listing 10-1: PhysicalRecordsFeature feature receiver

namespace ECM2007.PhysicalRecordsFeature
{
 /// <summary>
 /// Handles events during feature installation and activation.
 /// </summary>
 public class FeatureReceiver : SPFeatureReceiver
 {
 public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 if (web != null)
 {
 // Perform an initial check to ensure that the feature can only be
 // activated on a record center site.
 if (web.WebTemplateId != RecordsRepositoryCommon.
 RecordsRepositoryWebTemplateID)

Continued

87620c10.indd 28987620c10.indd 289 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

290

Chapter 10: Managing Physical Records

 {
 throw new SPException(“This feature must be activated in a Records
 Center site.”);
 }

 // Create the “Physical Records” list.
 SPList physicalRecords = SharePointList.Create(web,
 SPListTemplateType.GenericList, “Physical Records”,
 “Use this list to manage physical records by creating list items that
 include the required metadata.”);

 if (physicalRecords == null)
 {
 throw new SPException(“Failed to create the physical records list.”);
 }

 // Create the PhysicalRecord content type.
 SPContentType spPhysicalRecord = SharePointContentType.Create(
 web, typeof(PhysicalRecord));
 if (spPhysicalRecord == null)
 {
 throw new SPException(“Failed to create the physical record content
 type.”);
 }

 // Turn on the barcode policy feature for the content type.
 Policy barcodePolicy = SharePointPolicy.Create(
 spPhysicalRecord, typeof(BarcodePolicy));
 if (barcodePolicy == null)
 {
 Helpers.Log(this,
 “Failed to create barcode policy for physical record content
 type.”);
 }
 else
 {
 barcodePolicy.Items.Add(Barcode.PolicyId, string.Empty);
 barcodePolicy.Update();
 }

 // Enable content type management on the list
 // and add the physical record content type.
 try
 {
 physicalRecords.ContentTypesEnabled = true;
 physicalRecords.ContentTypes.Add(spPhysicalRecord);
 physicalRecords.OnQuickLaunch = true;
 physicalRecords.Update();
 }
 catch (SPException spex)
 {
 // Get here if the content type is already associated with the list.

Listing 10-1: PhysicalRecordsFeature feature receiver (continued)

87620c10.indd 29087620c10.indd 290 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

291

Chapter 10: Managing Physical Records

 Helpers.HandleException(this, spex);
 }
 }
 else
 {
 Helpers.Log(this, “Invalid feature scope - expected SPWeb”);
 }
 }

 public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
 {
 }

 public override void FeatureInstalled(SPFeatureReceiverProperties properties)
 {
 }

 public override void FeatureUninstalling(SPFeatureReceiverProperties properties)
 {
 }
 }
}

Finally, we enable content types on the list, add the Physical Record content type to the collection of
content types that are attached to the list, add the list to the QuickLaunch bar, and update the list in the
content database. When the feature is activated, the custom list is created with the new content type
attached and the Barcode policy automatically enabled for physical records management. Figure 10-7
shows the resulting list in the SharePoint UI.

Figure 10-7: Physical Records feature activated.

87620c10.indd 29187620c10.indd 291 9/2/09 10:20:54 AM9/2/09 10:20:54 AM

292

Chapter 10: Managing Physical Records

Physical Records and Workflow
Although the preceding approach described using list items and barcodes works well to keep things
synchronized, there is still a substantial gap between the electronic list item being managed by
SharePoint and the physical document being stored separately. One problem is that there are a lot of
“moving parts” to the overall scheme, which increases the complexity of the job facing the records man-
ager using the system. As with anything else, increased complexity brings higher cost.

The complexity is increased because there is more for the records manager to do, and this procedure
must be applied to every record being managed. Even the simple process of looking up the barcode in
order to retrieve the right box containing the needed records can end up requiring a lot of extra time
and effort that could be spent more productively elsewhere.

Although it is possible to set up business rules that control record routing and policies that specify
required metadata, and so on, real-world scenarios typically involve active documents that are either
moving into or out of a business process. Consequently, it is often insuffi cient to handle only the trans-
fer of records from the collaborative environment into the repository. What is really required is some
sort of workfl ow process to oversee the coordination of related tasks that generally need to occur at the
same time. This is particularly true for highly regulated industries.

In early 2007, Microsoft published a case study entitled “Streamlining Records Management Using
SharePoint Server 2007 Workfl ow,” in which they described an approach taken by the Microsoft Legal
and Corporate Affairs (LCA) Records Management team. The power of this approach really shows how
workfl ow can be used to fi ll in the gaps between electronic and physical information stores.

The example scenario presented by Microsoft involved a legal department and the problems they faced
attempting to manage all of the different touch points that fl owed out of their need to archive managed
electronic documents into a physical inventory. We can extrapolate from that scenario to develop an
overall strategy for dealing with physical records in general. The key elements are as follows:

 1. A team is responsible through their collaborative environment to mark a document as a record.

 2. The record is placed into a container, possibly along with other documents.

 3. The container and the documents within it are labeled or barcoded to allow them to be uniquely
identifi ed.

 4. The labels are bound to a list item in the Records Center.

 5. The container is placed into inventory.

Over time, this day-to-day process will create a lot of containers, and at various times, personnel will
have to retrieve a particular document from a particular container — either because of a routine audit or
through the execution of some periodic review process. No matter how good the labeling system is, there
will be some cost associated with going into the records management system, performing a search to
locate the records of interest, and then fi guring out which container the document is in. Additional costs
will fl ow from physically locating the appropriate container, checking it out of storage, and retrieving the
document, while making sure that all of the procedures required to keep that document associated with
the corresponding list item are followed correctly. Once the document is out-of-the-box, it may also be
necessary to lock the electronic record to ensure that no inconsistent metadata creeps into the system. The
entire process may also be governed by continually evolving laws and regulations designed to ensure that
the records management procedures are effective in achieving their goals.

87620c10.indd 29287620c10.indd 292 9/2/09 10:20:55 AM9/2/09 10:20:55 AM

293

Chapter 10: Managing Physical Records

Workfl ow is one way to tie all of this together so that the entire process can be easily understood by all
of the stakeholders involved. It is not the only approach available. For example, it is certainly possible to
create specialized SharePoint timer jobs that process requests for physical records and perform the nec-
essary updates to the content database, and so on. However, the tight integration between SharePoint
and Windows Workfl ow Foundation provides a convenient integration point for developing an effective
overall strategy for coordinating activities related to the management of physical records.

Using workfl ow, there are programmatic elements (Workfl ow Activities) that produce tasks created
within SharePoint to assist in the management process. The Microsoft solution involved allocating
those tasks among the different roles involved in the business process they were already using to man-
age physical record inventories for their legal department. The fi nal solution included a specially con-
structed workfl ow that was initiated by any request to retrieve a physical document. Figure 10-8 shows
the overall workfl ow.

Tasks and List Items
Updated in Record Center

Records Manager
Requests Record

Workflow
Coordinates

Tasks

Barcode Scanned
Using Hand-Held PC

Courier Retrieves
Record from Storage

0 20 6 4 2 5 3 3 3 1 7

Figure 10-8: Managing physical records using workfl ow.

When the electronic record was created originally, a barcode was generated at the same time and was
then placed physically on the document associated with the list item. The physical document was then
moved into the offsite repository. Later, when a request was made to retrieve the document for review,
the specially constructed workfl ow created a task that was assigned to a specifi c group of people
responsible for retrieving documents from physical inventory. In this case, it was a team of couriers
armed with hand-held barcode readers who understood the business processes involved. With the
appropriate instructions in hand, these couriers would then fetch the documents and scan the bar-
code label. A separate Windows Mobile application would then inform the workfl ow to complete the
retrieval task and create more tasks assigned to the team responsible for taking possession of the physi-
cal documents, reviewing them, and so on. At the same time, the workfl ow locked the electronic record
to prevent further updates until the physical document was returned to storage.

87620c10.indd 29387620c10.indd 293 9/2/09 10:20:55 AM9/2/09 10:20:55 AM

294

Chapter 10: Managing Physical Records

The same strategy can be applied to any scenario involving external record storage. Whether or not you
are using an actual courier, the real benefi t comes from delegating the responsibility for task coordina-
tion to the workfl ow process and from maintaining the association between the Records Center list item
and the physical document through a unique identifi er. Figure 10-9 shows the generalized workfl ow.

Request Review Return

Re
co

rd
 C

en
te

r
W

or
kf

lo
w

Co
ur

ie
r

Re
co

rd
s

M
gr

Physical Records Management Workflow

Retrieve
Record
from

Storage

Return to
Storage

Unlock
List Item

Request
Physical
Record

Approve
Retrieval

Task

Create
Retrieval

Task

Scan
Barcode to
Check Out

Record

Scan
Barcode to
Check In
Record

Review
Record

Return
to

Courier

Complete
Retrieval

Task

Item Locked
While Task
in Progress

Process
Barcode

Scan

Process
Barcode

Scan

Create
Approval

Task

Figure 10-9: Physical records management workfl ow.

Summary
This chapter showed how Offi ce SharePoint Server 2007 is set up to handle physical records by manag-
ing them as list items from within the Records Center site rather than as documents submitted to the
Records Repository. Whereas electronic records require both storage and management support, physical
records only need to be managed because they are stored outside of the Records Center.

The management support provided by SharePoint for handling physical records is greatly enhanced
by the availability of information management policy. Specifi cally, the Barcode policy feature makes it
possible to track physical records easily by automatically generating a barcode whenever a correspond-
ing list item is created. Information policy used in the conjunction with content types provides a com-
plete solution, but presents greater complexity to the records manager who is responsible for ensuring
that all of the steps are performed correctly for each record. This increased complexity can be reduced
through the use of custom workfl ows, which can help to coordinate the various activities involved.

87620c10.indd 29487620c10.indd 294 9/2/09 10:20:55 AM9/2/09 10:20:55 AM

Suspending Record
Processing Using Holds

The Hold Feature is provided as part of the Records Management infrastructure to deal with situ-
ations in which the default processing for an individual record needs to be suspended for some
reason. A typical example of this would be a litigation support scenario where a court order is
issued to freeze the normal processing for a specifi c set of documents that are related to the case.
The primary purpose of a hold is to prevent a group of records from being destroyed until after
the associated event has been reconciled. Since holds are intended primarily to prevent the dele-
tion of records, the Holds architecture is tied indirectly to the Expiration Policy Feature described
in Chapter 8, but only if the designated expiration action is to delete the document. Whenever a
hold is applied to an item, it is not possible to remove it from a list.Figure 11-1 shows the relation-
ship between the items in a document library or list and the Holds list. Each item is linked to one
or more hold items, which are stored as list items in the Holds list.

Holds List

Court Order 501

Annual Report.docx

Contract.docx

On Hold

Hold Status Holds

Pending
Release

Document Library

Pending Litigation

Figure 11-1: Holds and list items.

87620c11.indd 29587620c11.indd 295 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

296

Chapter 11: Suspending Record Processing Using Holds

The Holds Architecture
When a Records Center web site is provisioned, it is automatically confi gured for holds processing.
A Boolean property called IsHoldEnabled is added to the property collection associated with the
web site to indicate that it has been set up to manage holds. At the same time, another property called
HasRecordCenter is added to the root web of the site collection to indicate that the site collection is
now associated with a Records Management site that is now active within the site collection.

Next, the built-in document parser is disabled for the entire web site. This turns off automatic property
promotion and demotion for document libraries, which could inadvertently cause the properties of a
document to change whenever document library column values are modifi ed, thus voiding the purpose
of having a Records Repository in the fi rst place.

Because the document parser confi guration setting applies to all document libraries in the web site, it
carries implications for any document library that depends on property promotion and demotion. It
essentially means that any other document libraries you create in the web site that are not involved in
managing records will no longer promote or demote properties the way that standard document librar-
ies do. This may require some additional training for records managers who may be accustomed to edit-
ing document properties through the standard document library user interface.

The master Holds list is then created, and the fi elds listed in the following table are added to it as well
as to any content types associated with the list:

Field Type Description

Description Note Provides a brief description of the purpose of the hold.

ManagedBy User Identifi es the user who is responsible for managing the hold.

HoldStatus HoldStatusField Contains the current hold status.

HoldCount Text The current number of items to which this hold applies.

ReportDate DateTime The most recent date on which a holds report was generated.

Minor versioning is also enabled for the list, and a default view is created that displays the title
with a link to the item, the item description, and the ManagedBy and HoldStatus fi elds. Finally, a
special event receiver is attached to the list for the ItemDeleting, ItemAdding, ItemAdded, and
ItemUpdating events.

When a hold is created, SharePoint adds an additional column to the list to display the current status
of the hold, as shown in Figure 11-2. This column is implemented using the internal HoldsField and
HoldsFieldControl classes described below.

Because Edit Control Block (ECB) menu items are generated using JavaScript embedded in the web
page, it is still possible for end-users to attempt to delete an item to which a hold has been applied,
simply by entering the appropriate URL into the address bar of the web browser. However, any such
attempt causes the Holds API to throw an exception, which appears to the end-user in a standard error
page, as shown in Figure 11-3.

87620c11.indd 29687620c11.indd 296 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

297

Chapter 11: Suspending Record Processing Using Holds

Figure 11-2: List item with hold applied.

Figure 11-3: Holds Error page.

Following is a list of the key components involved in holds processing. The Holds list and the Hold
Reports list are specialized SharePoint lists. The other components are part of the object model and are
declared within the Microsoft.Office.RecordsManagement.Holds namespace that is implemented
in the Microsoft.Office.Policy dll.

The Holds List ❑ — The processing of holds requires a location in which to store the description of
each hold that will be placed on list items. This location is a special list called a Holds list whose
items describe each hold. Interestingly, unlike other specialized lists that are used throughout the
Records Center, the Holds list is not associated with any content type. Instead, several columns
are added directly to the list to keep track of the title and description of the hold. This informa-
tion is then used programmatically to create Hold objects within the content database.

87620c11.indd 29787620c11.indd 297 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

298

Chapter 11: Suspending Record Processing Using Holds

The ❑ Hold Class — The Hold class implements the core functionality used to apply and remove
holds from list items. It also exposes several static methods that support the Holds architecture
as shown in Listing 11-1.

The ❑ HoldsField Class — The HoldsField class is attached by the framework to a document
library or list in the Records Center site to manage the collection of holds that have been applied
to items in the list. The value that is stored in the fi eld is managed by the HoldsFieldControl
class, which is the designated base fi eld control for the class. This class and all its members are
reserved for internal use, and there are no public methods that can be called for this class.

The ❑ HoldsFieldControl Class — The HoldsFieldControl displays the list of holds that are
currently applied to the list item. It compiles the list in the Render method by decoding the list
of hold identifi ers stored in the SPFieldMultiChoiceValue object used to format the fi eld
value. Each item is displayed as a link to the list item describing the hold.

The ❑ HoldStatusField Class — The HoldStatusField is attached to a document library or
list to display the current hold processing status for the item. This class and all its members are
reserved for internal use, and there are no public methods that can be called for this class.

The ❑ HoldStatusFieldControl Class — The HoldStatusFieldControl works in conjunc-
tion with the HoldStatusField to display the current hold status.

The Hold Reports List ❑ — A special timer job called the Hold Processing and Reporting job is
scheduled automatically by the Records Management framework to run daily. This job is
responsible for compiling a report of the holds that have been applied to various list items.

Listing 11-1: The Hold class

namespace Microsoft.Office.RecordsManagement.Holds
{
 /// <summary>
 /// Represents specific properties of a hold.
 /// Holds can be placed on documents to exempt them
 /// from the enforcement of the expiration policy
 /// that is applied to them.
 /// </summary>
 public class Hold
 {
 /// <summary>
 /// Constructs a new Hold object as a list item in
 /// the specified list in the Records Center.
 /// </summary>
 public Hold();

 /// <summary>
 /// Gets the most current holds report for the specified document.
 /// </summary>
 /// <returns>
 /// A string that represents the most current holds report for
 /// the specified document.
 /// </returns>
 /// <param name=”hold”>
 /// The document for which you want to get a holds report.

87620c11.indd 29887620c11.indd 298 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

299

Chapter 11: Suspending Record Processing Using Holds

 /// </param>
 public static string GetHoldReportName(SPListItem hold);

 /// <summary>
 /// Gets a list of items currently on hold for the specified
 /// SharePoint site.
 /// </summary>
 /// <returns>
 /// Returns an SPList object that represents a list of the
 /// items on hold for the specified site.
 /// </returns>
 /// <param name=”web”>
 /// The site for which you want the holds report.
 /// </param>
 public static SPList GetHoldReportsList(SPWeb web);

 /// <summary>
 /// Returns the list where the holds are stored for the
 /// specified Records Center.
 /// </summary>
 /// <returns>
 /// Returns an SPList object that represents the list where the
 /// holds are stored for this Records Center.
 /// </returns>
 /// <param name=”web”>
 /// The Records Center for which you want the list where the
 /// holds are stored.
 /// </param>
 public static SPList GetHoldsList(SPWeb web);

 /// <summary>
 /// true if the specified document currently has a hold
 /// applied to it; otherwise, false.
 /// </summary>
 /// <returns>
 /// A Boolean value that specifies whether the document
 /// currently has a hold applied to it.
 /// </returns>
 /// <param name=”item”>
 /// The document for which you want to know if
 /// a hold has been applied.
 /// </param>
 public static bool IsItemOnHold(SPListItem item);

 /// <summary>
 /// true if the specified document currently has the specified
 /// hold applied to it; otherwise, false.
 /// </summary>
 /// <returns>
 /// A Boolean value that specifies whether the document
 /// currently has the specified hold applied to it.
 /// </returns>
 /// <param name=”item”>
 /// The document for which you want to know if the specified

Continued

87620c11.indd 29987620c11.indd 299 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

300

Chapter 11: Suspending Record Processing Using Holds

 /// hold has been applied.
 /// </param>
 /// <param name=”holdID”>
 /// The integer that identifies the list item that represents the hold.
 /// </param>
 public static bool IsItemOnHold(SPListItem item, int holdID);

 /// <summary>
 /// Releases any documents on the specified SharePoint site
 /// from the specified hold.
 /// </summary>
 /// <param name=”web”>
 /// The site on which the documents you want released from
 /// this hold are located.
 /// </param>
 /// <param name=”holdID”>
 /// The integer that identifies the list item that
 /// represents the hold.
 /// </param>
 /// <param name=”comments”>
 /// Any comment you want to write to the audit log when
 /// the hold is released.
 /// </param>
 public static void ReleaseHold(int holdID, SPWeb web, string comments);

 /// <summary>
 /// Releases the specified document from the specified hold.
 /// </summary>
 /// <param name=”item”>
 /// The document for which you want the specified hold released.
 /// </param>
 /// <param name=”holdID”>
 /// The integer that identifies the list item that represents the hold.
 /// </param>
 /// <param name=”comments”>
 /// Any comment you want to write to the audit log
 /// when the hold is released for the specified document.
 /// </param>
 public static void RemoveHold(int holdID, SPListItem item, string
 comments);

 /// <summary>
 /// Releases all the specified items from the specified hold.
 /// </summary>
 /// <returns>
 /// A Boolean value that represents whether the hold was
 /// successfully removed from the specified items.
 /// </returns>
 /// <param name=”items”>
 /// A collection of the list items for which you want
 /// to release the hold.
 /// </param>
 /// <param name=”holdID”>

Listing 11-1: The Hold class (continued)

87620c11.indd 30087620c11.indd 300 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

301

Chapter 11: Suspending Record Processing Using Holds

 /// The integer that identifies the list item that
 /// represents the hold.
 /// </param>
 /// <param name=”comments”>
 /// Any comment you want to write to the audit log when
 /// the hold is released for the specified documents.
 /// </param>
 public static bool RemoveHold(int holdID, SPListItemCollection items,
 string comments);

 /// <summary>
 /// Applies the specified hold to the specified document.
 /// </summary>
 /// <param name=”item”>
 /// The document to which you want the specified hold applied.
 /// </param>
 /// <param name=”holdID”>
 /// The integer that identifies the list item that represents the hold.
 /// </param>
 /// <param name=”comments”>
 /// Any comment you want to write to the audit log
 /// when the hold is applied to the specified document.
 /// </param>
 public static void SetHold(int holdID, SPListItem item, string comments);

 /// <summary>
 /// Applies the specified hold to all the specified items.
 /// </summary>
 /// <returns>
 /// A Boolean value that represents whether the hold
 /// was successfully applied to the specified items.
 /// </returns>
 /// <param name=”items”>
 /// A collection of the list items to which you
 /// want the specified hold applied.
 /// </param>
 /// <param name=”holdID”>
 /// The integer that identifies the list item
 /// that represents the hold.
 /// </param>
 /// <param name=”comments”>
 /// Any comment you want to write to the audit log
 /// when the hold is applied to the specified documents.
 /// </param>
 public static bool SetHold(int holdID, SPListItemCollection items, string
 comments);

 public static string HoldECBItemFeatureGuid { get; }
 public static string HoldsFieldInternalName { get; }
 public static string HoldsListColumn_Description { get; }
 public static string HoldsListColumn_HoldStatusInternal { get; }
 public static string HoldsListColumn_ManagedBy { get; }
 public static string HoldsListColumn_ReportDateInternal { get; }
 }
}

87620c11.indd 30187620c11.indd 301 9/2/09 10:21:09 AM9/2/09 10:21:09 AM

302

Chapter 11: Suspending Record Processing Using Holds

Let’s take a closer look at the Hold Reports list. The purpose of the Hold Processing and Reporting
timer job is to generate an XML fi le that lists the holds that have been created in the Records Center site
and the items to which they have been applied. The report is generated in a format that enables it to
open automatically in Microsoft Excel. Whenever a report is generated, it is stored in the Hold Reports
list, which resides in the Records Center web site, as shown in Figure 11-4.

Figure 11-4: Hold Reports list.

The Hold Report template is copied from the Hold feature folder located on the server machine (in the 12
hive) to the Forms subfolder within the root folder of the Hold Reports list (in the content database) when
the web site is fi rst provisioned. This template is an XML fi le (ExcelML) that defi nes the layout and con-
tent of the holds report so that it can be opened directly in Microsoft Excel. When the timer job runs, a
copy of the template is loaded into memory, and the data from each hold is injected to produce the report.

Although the code that generates the holds report is designed to be called only from the timer
job, it is still possible to generate a hold report programmatically by calling the static overloaded
ProcessAndReport method on the Hold class. Two versions of this method are available, one to gen-
erate a report for all holds in the Web, and a second to generate a report for an individual hold item.
Listing 11-2 shows an example of the code needed to generate the report. A separate report fi le is created
for each hold item. If the report already exists, then it is replaced with the latest version of the report.

Listing 11-2: Generating a holds report programmatically

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.Office.RecordsManagement.Holds;

namespace RunHoldsReport
{
 class Program
 {

87620c11.indd 30287620c11.indd 302 9/2/09 10:21:10 AM9/2/09 10:21:10 AM

303

Chapter 11: Suspending Record Processing Using Holds

 static void Main(string[] args)
 {
 const string url = “http://mossdev:9995/records”;
 using (SPSite site = new SPSite(url))
 using (SPWeb web = site.OpenWeb())
 {
 Hold.ProcessAndReport(web);
 }
 }
 }
}

Creating and Removing Holds
To apply a hold to a list item, use the Hold.SetHold method. This method checks to ensure that the target
item is not a folder or a workfl ow task. If it is, then an exception is thrown because holds are not supported
for these types. Then a check is made to ensure that the current user has permission to edit list items.

If holds are not enabled for the parent list, then an attempt is made by the SetHold method to reprovi-
sion the list. Reprovisioning the list ensures that the correct event receivers are attached and that the list
contains the required fi elds for managing the hold. Another check is made to ensure that the root folder
is properly marked to indicate that the list has items on hold. This is a secondary consistency check to
make sure that everything is properly confi gured. Finally, a new SPFieldMultiChoiceValue object is
created for the HoldsField associated with the list. The hold identifi er is appended to the fi eld, and the
HoldCount is incremented.

If the target fi le is currently checked-out, it is forcibly checked-in. An audit event record is then written
to the content database that includes the hold identifi er, the hold name, and any user comments sup-
plied to the method.

Placing a Hold
To place a hold on a collection of list items, use code such as the following, which executes a query to
obtain the SPListItemCollection object, retrieves the hold to be applied from the Holds list, and
then calls the Hold.SetHold method to apply the hold:

SPList holdsList = Hold.GetHoldsList(web);
SPListItem holdItem = holdsList.Items[GetHoldItemIndex()];

SPQuery itemQuery = CreateItemQuery();
SPList legalDocuments = web.Lists[“Legal Documents”];
SPListItemCollection itemsToPlaceOnHold = legalDocuments.GetItems(itemQuery);

Hold.SetHold(holdItem.ID, itemsToPlaceOnHold,
 “Processing has been suspended for legal documents.”);

The GetHoldItemIndex() and CreateItemQuery() methods are placeholders for custom helper
routines that are implemented in this example.

87620c11.indd 30387620c11.indd 303 9/2/09 10:21:10 AM9/2/09 10:21:10 AM

304

Chapter 11: Suspending Record Processing Using Holds

The overloaded SetHold method accepts an SPListItemCollection to make it easy to apply a hold
to a collection of items. Later, we’ll see how to take advantage of the Search & Process API to effi ciently
place holds on items that may reside in separate lists.

Removing a Hold
To remove a hold from a particular item, invoke the Hold.RemoveHold method. This method searches
the SPFieldMultiChoiceValue fi eld value from the HoldsField associated with the item. It then
removes the specifi ed value from the fi eld and adjusts the HoldCount fi eld. It also ensures that the fi le
is checked-in and then writes an audit entry containing the hold ID, the hold name, and any user com-
ments supplied to the method. The code to remove a hold looks like the following, which removes a
specifi c hold from all items in a document library:

Hold.RemoveHold(holdItem.ID, legalDocuments.Items,
 “Hold removed from legal docments.”);

You can also remove a hold from a collection of list items using the Hold.RemoveHold(int holdId,
SPListItemCollection items, string comments) method. This method simply iterates over the
collection calling the individual RemoveHold method.

To release all documents in the web site from a given hold, invoke the Hold.ReleaseHold method.
When this method is called, the hold status column for the document is set to HoldIsPendingRelease,
and an audit event is written that includes the hold identifi er, the hold name, and any user comments
supplied to the method.

The naming of these routines is a little odd. There are actually three overloads for the Hold.RemoveHold
routine. The fi rst overload accepts an SPWeb object, and the other two accept SPListItem and
SPListItemCollection objects as the second parameter, respectively. However, the Hold
.RemoveHold(int, SPWeb) routine does not accept the third comments string parameter, and
it is indicated as being “reserved for internal use” in the SDK documentation, so you should not call
it directly to release a hold from all documents in the web site. Instead, you should call the Hold
.ReleaseHold(int holdId, SPWeb web, string comments) method, which accepts the
comments string parameter.

The Search & Process API
The Records Management API includes support for Search & Process operations. This feature allows
for the execution of a keyword query and then performing a custom operation on every list item that
is returned from the query. I’ve included the description of this subsystem here in the Holds chapter,
because applying and removing holds is one of the most common scenarios in which it is used.

The Search & Process feature is exposed through the Microsoft.Office.RecordsManagement
.SearchAndProcess namespace and can only be accessed from code. The purpose of this API is to
provide a way to process list items effi ciently without having fi rst to retrieve them from the content
database and then iterate over the collection in memory. It also allows SharePoint to schedule each
call into the assembly that implements the operation in a way that does not affect the overall perfor-
mance of the system.

87620c11.indd 30487620c11.indd 304 9/2/09 10:21:10 AM9/2/09 10:21:10 AM

305

Chapter 11: Suspending Record Processing Using Holds

To use the Search & Process API, you fi rst create an assembly that contains one or more classes
that implement the IProcess interface. This interface is declared in the Microsoft.Office
.RecordsManagement.SearchAndProcess namespace as follows:

public interface IProcess
{
 bool ProcessItem(SPListItem item, string[] args, out string msg);
}

The return code from the ProcessItem method indicates whether the item was processed successfully,
and the output string receives a description of the processing results. The args parameter contains an
array of additional arguments that may be specifi ed by the user.

The Search & Process API can be confusing at fi rst because of the way it is structured. In order to
ensure that the processing of items returned by the query is handled effi ciently, everything — includ-
ing the query itself — must be scheduled and coordinated with the SharePoint system. This is done
using the SearchAndProcessItem class. After creating an instance of this class and setting the
required property values, you then call the Add method to schedule the process with SharePoint.
Listing 11-3 shows an example.

Listing 11-3: Search & Process example

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.Office.RecordsManagement.SearchAndProcess;
using Microsoft.Office.RecordsManagement.Internal;

namespace SearchAndPlaceOnHold
{
 public class JobScheduler
 {
 public void ScheduleSearchAndProcessJob(SPWeb web)
 {
 SearchAndProcessItem job = new SearchAndProcessItem();
 Type processor = typeof(Microsoft.Office.RecordsManagement.Internal.
 AddToHold);
 job.AssemblyName = processor.Assembly.GetName().FullName;
 job.ClassName = processor.FullName;
 job.KeywordQuery = “Enron”;
 job.Add(web, DateTime.Now, Guid.Empty, 0, false, Guid.Empty,
 Guid.Empty, web.CurrentUser.ID);
 }
 }
}

In this example, a keyword query is defi ned to locate documents that contain the keyword Enron so
that the resulting documents can be placed under a hold. It turns out that placing documents on hold
is so common that the Microsoft.Office.Policy assembly already includes an implementation

87620c11.indd 30587620c11.indd 305 9/2/09 10:21:10 AM9/2/09 10:21:10 AM

306

Chapter 11: Suspending Record Processing Using Holds

of the IProcess interface needed to perform this operation. This implementation is provided by
the AddToHold class from the Microsoft.Office.RecordsManagement.Internal namespace. So
all we have to do is set up the SearchAndProcessItem instance so that it specifi es the appropriate
AssemblyName and ClassName and then call the Add method to schedule it for execution the next time
the SharePoint Master Timer job runs.

A keyword query is different from a normal CAML query. Keyword queries use the Windows
SharePoint Services Search Keyword syntax to execute a query against MOSS Enterprise Search,
whereas CAML queries operate directly against the content database.

Summary
This chapter provided an overview of the Hold feature in MOSS that prevents records from being
deleted or expired, allowing auditors to effectively suspend the normal operation of policies and
other processes related to the disposition of records. MOSS provides an integrated set of components
that enable the creation of Hold objects that are linked to individual documents or list items through
a HoldsField custom fi eld that is bound to each record through a column on the list. This mechanism
enables the Hold processing layer to leverage standard MOSS mechanisms such as event receivers to
protect individual records from being destroyed.

We examined the changes that are made to a Records Center web site in order to support holds pro-
cessing, and we saw how to add and remove holds programmatically. We also explored the Search &
Process API, which offers an effi cient alternative to iterating manually through a collection of list items
to add or remove holds by providing a way to schedule the processing of each item using a keyword
query and the SharePoint Master Timer job.

87620c11.indd 30687620c11.indd 306 9/2/09 10:21:10 AM9/2/09 10:21:10 AM

Building and Deploying
Custom Routers

The SharePoint records management components are built around an extensible framework for pro-
cessing records that are submitted to the records center. That framework can be extended to include
custom record routing logic by building a router component and then associating it with a particu-
lar record series type. The custom router is called by the framework after a record of that type is
received by the records center but before the record is placed into the target document library. This
gives us an opportunity to add post-processing logic that participates in the routing mechanism.
As an example, this architecture could be used to check the integrity of incoming records and reject
them if they fail to conform to specifi c validation requirements. In this chapter, we will explore the
custom routing framework in detail by building several different types of custom routers.

Building Custom Routers
In Chapter 4, when we looked into the process of transferring fi les into the records center, you
saw that the default routing architecture took care of placing the document into the appropri-
ate document library. Now if we go back to the record vault and take another look at the routing
type for legal documents, you see that when we edit the item, we don’t have an option to add any
kind of custom router. That’s because we haven’t built and installed any custom routers yet. They
haven’t been registered in the system. Custom routers are registered in a manner similar to infor-
mation policy features. Once we create a custom router and register it, then it will show up in the
list of available routers and we can select it for a given record series type.

A signifi cant limitation of the MOSS routing architecture is that it only supports attaching a
single router to a given record type at a time. This presents a challenge if we want to leverage
the routing framework to apply more than one type of rule. Thus, using a custom router for vali-
dation would preclude using a second router for other purposes, such as de-duplication. One
approach might be to place special rules in the target document library itself or to use informa-
tion policy features. This would not be ideal because the record would already be in the reposi-
tory, thus defeating the purpose of having a custom router in the fi rst place.

87620c12.indd 30787620c12.indd 307 9/2/09 10:21:24 AM9/2/09 10:21:24 AM

308

Chapter 12: Building and Deploying Custom Routers

A better approach would be to create a master router that loads a secondary set of routing action compo-
nents to perform the actual routing. Such a system might include confi guration pages for an admin-
istrator that displayed the list of installed routing actions and then allowed the administrator to map
selected routing actions to the current list of record routing types. The master router would then exam-
ine the record type associated with an incoming record, load the specifi ed routing actions, and then call
them in sequence to achieve the desired result. This would effectively create a routing pipeline that sup-
ports as many actions as needed.

Constructing such a framework would involve many technical challenges and is beyond the scope of
this book. First of all, it would have to be transactional so that the entire pipeline of routing actions is
performed as an atomic operation. Otherwise, a record could be partially processed, which would under-
mine the entire purpose of having a records center at all. Second, the ordering of actions might be sig-
nifi cant, so there would need to be some way to establish a prescribed sequence for executing the custom
actions, and so on. Third, there would have to be a central location for storing the collection of installed
routing actions and their confi guration information, and you would also have to hook into the standard
routing confi guration mechanisms (CAML views, etc.) provided by the Records Center site defi nition in
order to enable a records administrator to select and confi gure the individual routing actions.

Building a custom router involves creating a .NET class that implements the IRouter interface.
This interface is defi ned in the Microsoft.Office.RecordsManagement.RecordsRepository
namespace. This interface declares a single method called SubmitFile, as shown in Listing 12-1.

Listing 12-1: IRouter interface

using Microsoft.SharePoint;
using System;

namespace Microsoft.Office.RecordsManagement.RecordsRepository
{
 public interface IRouter
 {
 RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fileToSubmit,
 ref RecordsRepositoryProperty[] properties,
 ref SPList destination,
 ref string resultDetails);
 }
}

When the SubmitFile method is called, we get the record series name, the source URL, the user, the
bytes associated with the fi le, the property bag, the destination list, and a string in which to store the
result details. Most of this information maps to the information provided by the submitter using the
Offi cial File Web Service to submit a record. Some of it, however, comes from the initial processing per-
formed by SharePoint to determine where the record will be stored.

Although the destination SPList parameter is declared using the ref keyword, it is not intended to be
changed. SharePoint will still send the record to the designated destination unless an error occurs during
the process. We’ll look at this more closely when we build a redirecting router later in the chapter.

87620c12.indd 30887620c12.indd 308 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

309

Chapter 12: Building and Deploying Custom Routers

The RouterResult return type is used to tell SharePoint what to do with the fi le. There are three different
router results that can be returned: SuccessContinueProcessing, SuccessCancelFurtherProcessing,
and RejectFile. We need two success values to handle the situation in which you determine that a
given fi le should not be stored in the repository but don’t want to abandon the entire operation. Although
it’s up to the calling application to determine what to do when an error condition arises, you need the
SuccessCancelFurtherProcessing value to indicate that the application should consider the operation
a success, but that the document was not fully processed for some reason. A description of the reason is
returned in the resultDetails parameter. The resultDetails are also returned to the caller along with
the RejectFile result code.

Building the router is one thing, but deploying the router is another. This is another area where we
can leverage the InstallUtil utility and build an abstract base class for routers that inherits from the
Installer component class. We could then apply the RunInstaller attribute to your derived router
class so that administrators can install our custom router from the command line. It would also be use-
ful to have the option of installing the router using a FeatureActivated feature receiver.

In the following sections, we’ll extend the record routing capability of the records center to redirect,
track, and fi lter incoming records based on document metadata as well as custom business rules. This
will require that we create several custom routers that will be installed by a feature that can be acti-
vated on a given records center site.

Let’s start by creating a new SharePoint Feature project in Visual Studio and give it the name ECM2007
.CustomRouting. We’ll set the feature scope to Web so that it can be activated on any SharePoint web
site, as shown in Figure 12-1.

Figure 12-1: Custom routing feature.

87620c12.indd 30987620c12.indd 309 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

310

Chapter 12: Building and Deploying Custom Routers

Our feature will take advantage of utility code from the ECM2007 class library that we’ve been using
throughout the book. In this case, we’ll be using classes from the ECM2007.RecordsManagement
namespace. Again, we’ll simply add the project to our solution and then add a reference to it and to the
System.Configuration.Install assembly that the ECM2007 project depends on. Since we will also
be relying on classes in the Microsoft.Office.RecordsManagement namespace, we will need to add a
reference to the Microsoft.Office.Policy.dll fi le. The initial project should resemble Figure 12-2.

Figure 12-2: Custom routing
solution setup.

The fi rst router we create will simply fi lter incoming records based on incoming metadata. This router
will examine selected properties associated with each incoming record and then decide whether to
accept or reject the fi le based on the property values. In this example, the fi ltering rules will be hard-
coded into the logic of the SubmitFile method. In actual practice, we would read the rules in from an
external fi le or from a database system.

Creating a Simple Filtering Router
Add a new class to the project called FilteringRouter and open the new code fi le for editing. Add the
following lines to the set of using statements at the top of the fi le:

using System.Diagnostics;
using Microsoft.Office.RecordsManagement.RecordsRepository;
using WSS=Microsoft.SharePoint;
using ECM2007.RecordsManagement;

The WSS= prefi x is required because there is a confl ict between the RecordsRepositoryProperty
object declared in the Microsoft.SharePoint namespace and an object of the same name declared
in the Microsoft.Office.RecordsManagement.RecordsRepository namespace.

87620c12.indd 31087620c12.indd 310 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

311

Chapter 12: Building and Deploying Custom Routers

The ECM2007.RecordsManagement namespace contains utility classes that simplify the construction
of various SharePoint components. One of these is the SharePointRouter base class that understands
how to install and uninstall custom routers and also provides a default implementation of the IRouter
interface that all custom routers must implement. We will derive our custom router from this abstract
base class and then override the OnSubmitFile method.

Next, we’ll modify the generated class declaration so that it matches the following code:

[Name(“ECM2007 Filtering Router”)]
public class FilteringRouter : SharePointRouter
{
}

The NameAttribute class is a custom attribute class provided in the ECM2007 utility library for
attaching a name to any type. The SharePointRouter base class looks for this attribute and then
uses it to determine the router name when the custom router is installed.

The IRouter interface declares a single method called OnSubmitFile that will contain our custom
routing logic. We handle this by adding the code shown in Listing 12-2 to the class defi nition.

Listing 12-2: FilteringRouter.OnSubmitFile

/// <summary>
/// Custom implementation that validates the submitted files contents.
/// </summary>
protected override RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fileToSubmit,
 ref RecordsRepositoryProperty[] properties,
 ref WSS.SPList destination,
 ref string resultDetails)
{
 // setup the default result...
 RouterResult result = RouterResult.SuccessContinueProcessing;
 try
 {
 if (!(ValidateContent(ref resultDetails, ref fileToSubmit)
 && ValidateMetadata(ref resultDetails, ref properties)))
 {
 result = RouterResult.RejectFile;
 }
 }
 catch (Exception x)
 {
 EventLog.WriteEntry(“FilteringRouter”, String.Format(
 “Exception occurred: {0}”, x.Message));
 // Cancel if we encounter problems.
 result = RouterResult.SuccessCancelFurtherProcessing;
 }
 return result;
}

87620c12.indd 31187620c12.indd 311 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

312

Chapter 12: Building and Deploying Custom Routers

Next, we apply custom business rules to validate the content and metadata of each incoming record
using two utility methods called ValidateContent and ValidateMetadata:

/// <summary>
/// Checks the file content for validity. This can be any algorithm we like.
/// </summary>
bool ValidateContent(ref string resultDetails, ref byte[] fileToSubmit)
{
 return true;
}

We complete the router implementation by adding the following code to the class defi nition:

/// <summary>
/// Checks the metadata properties for validity and consistency.
/// </summary>
/// <param name=”resultDetails”></param>
/// <param name=”properties”></param>
/// <returns></returns>
bool ValidateMetadata(ref string resultDetails, ref RecordsRepositoryProperty[]
 properties)
{
 foreach (RecordsRepositoryProperty property in properties)
 {
 if (property.Name.Equals(“ContentType”))
 {
 // Only accept certain content types?
 if (property.Value.Equals(“Document”))
 {
 Log(“Rejecting generic document.”);
 resultDetails = “Generic documents are not allowed.”;
 return false;
 }
 }
 else if (property.Name.Equals(“File_x0020_Type”))
 {
 // Only accept certain file extensions?
 if (property.Value.Equals(“xls”))
 {
 Log(“Rejecting Excel file.”);
 resultDetails = “Excel Files are not allowed.”;
 return false;
 }
 }
 else if (property.Name.Equals(“_IsCurrentVersion”))
 {
 // Only accept current versions of documents.
 if (!property.Value.Equals(“True”))
 {
 Log(“Rejecting older version.”);
 resultDetails = “Only current versions of documents can be stored
 in the repository.”;
 return false;
 }

87620c12.indd 31287620c12.indd 312 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

313

Chapter 12: Building and Deploying Custom Routers

 }
 }
 return true;
}

Now that the router is created, we need to install it.

Installing the Router
In order for our router to be recognized within the SharePoint environment, it must be added to the
global collection of routers for the Web on which our feature is activated. To accomplish this, we will
use a factory method of the SharePointRouter utility class. In the FeatureReceiver.cs fi le, implement
the FeatureActivated and FeatureDeactivating methods using the following code:

In this example, I am using my custom SharePointFeature Visual Studio project template, which is
described in Chapter 2. You can also use your own favorite tool instead, making whatever minor modifi -
cations are necessary in order to deploy the feature into SharePoint each time the project is built.

/// <summary>
/// Override the feature activation event to declare custom routers.
/// </summary>
/// <param name=”properties”></param>
public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 using (SPWeb web = properties.Feature.Parent as SPWeb)
 SharePointRouter.AddRouter(web, typeof(FilteringRouter));
}

/// <summary>
/// Override the feature deactivating event to remove custom routers.
/// </summary>
/// <param name=”properties”></param>
public override void FeatureDeactivating(SPFeatureReceiverProperties properties) {
 using (SPWeb web = properties.Feature.Parent as SPWeb)
 SharePointRouter.RemoveRouter(web, typeof(FilteringRouter));
}

The next step is to close the fi le, build the project, and install the feature into the local SharePoint farm.

Activating the Router
There are two steps that must be completed before our custom router is available in the records center
site. First, we must activate the feature. Second, we must associate the router with one or more record
series types.

To activate the feature, navigate to the Site Settings page of the records center site and select the Site
Features link. The ECM2007.CustomRouter feature should appear in the list of features. We can then
activate the feature and navigate to the home page of the records center site and select a record routing
type from the Record Routing list, for example, Financial Document. Then, from the Record Routing:
Financial Document page, scroll to the bottom of the page and select your custom router from the list,
as shown in Figure 12-3. Press OK to update the routing table.

87620c12.indd 31387620c12.indd 313 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

314

Chapter 12: Building and Deploying Custom Routers

You can select any routing type you like. “Financial Document” was chosen here just to illustrate
the process.

Figure 12-3: Filtering router selection.

Now we can submit a variety of fi le types to the records center from any document library. But when
we try to submit an Excel spreadsheet, it is rejected. The same will be true for generic documents and
older versions of existing documents.

The next router we create will be used to track incoming records by writing an entry to a custom list in
the records center site. The same logic could be applied to write custom auditing records into the con-
tent database or to an external SQL database.

Creating a Tracking Router
Start by adding a new class to the project named TrackingRouter and then open the fi le for editing.
As when creating the fi ltering router, add the following using statements at the top of the fi le:

using System.Diagnostics;
using Microsoft.Office.RecordsManagement.RecordsRepository;
using WSS=Microsoft.SharePoint;
using ECM2007.RecordsManagement;

Next, modify the class declaration so it matches the following code:

[Name(“ECM2007 Tracking Router”)]
public class TrackingRouter : SharePointRouter
{
}

87620c12.indd 31487620c12.indd 314 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

315

Chapter 12: Building and Deploying Custom Routers

To simplify creating and updating the history list, we will use a nested wrapper class. Insert the follow-
ing code inside the TrackingRouter class defi nition.

/// <summary>
/// A custom wrapper class that facilitates creating a list
/// and writing an entry to it.
/// </summary>
internal class RecordRouterHistoryList
{
 const string listTitle = “Record Routing History”;
 const string listDescription = “This list is used by the TrackingRouter to
 record incoming parameter values.”;

 const string colRecordSeries = “Record Series”;
 const string colSourceUrl = “Source Url”;
 const string colUserName = “User Name”;
 const string colFileSize = “File Size”;
 const string colDestination = “Destination”;

 private WSS.SPList m_list = null;

 public RecordRouterHistoryList(WSS.SPList sourceList)
 {
 // Create the list in the same web as the source list.
 WSS.SPWeb web = sourceList.ParentWeb;

 // Create or open a custom list
 try { m_list = web.Lists[listTitle]; }
 catch { /* list does not exist - eat the exception */ }
 if (m_list == null)
 {
 try
 {
 m_list = web.Lists[
 web.Lists.Add(listTitle, listDescription,
 WSS.SPListTemplateType.GenericList)
];

 m_list.Fields.Add(colRecordSeries, WSS.SPFieldType.Text, false);
 m_list.Fields.Add(colSourceUrl, WSS.SPFieldType.URL, false);
 m_list.Fields.Add(colUserName, WSS.SPFieldType.Text, false);
 m_list.Fields.Add(colFileSize, WSS.SPFieldType.Number, false);
 m_list.Fields.Add(colDestination, WSS.SPFieldType.Text, false);
 m_list.OnQuickLaunch = true;
 m_list.Update();
 }
 catch
 {
 // if we get here, there is a catastrophic failure within
 // the SharePoint API - calling code will throw another
 // exception and log the error
 }
 }
 }

 /// <summary>

87620c12.indd 31587620c12.indd 315 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

316

Chapter 12: Building and Deploying Custom Routers

 /// Writes an entry to the list.
 /// </summary>
 public void WriteEntry(
 string recordSeries,
 string sourceUrl,
 string userName,
 int fileSize,
 string destination)
 {
 WSS.SPListItem item = m_list.Items.Add();
 item[colRecordSeries] = recordSeries;
 item[colSourceUrl] = sourceUrl;
 item[colUserName] = userName;
 item[colFileSize] = fileSize;
 item[colDestination] = destination;
 item.Update();
 }

}

With our history list defi ned, we can override and implement the OnSubmitFile method. Add the fol-
lowing code to the TrackingRouter class defi nition:

/// <summary>
/// Custom implementation that writes incoming parameters
/// to a custom list. Creates the list if it does not exist.
/// </summary>
protected override RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fileToSubmit,
 ref RecordsRepositoryProperty[] properties,
 ref WSS.SPList destination,
 ref string resultDetails)
{
 // setup the default result...
 RouterResult result = RouterResult.SuccessContinueProcessing;
 try
 {
 // Write an entry to the history list.
 new RecordRouterHistoryList(destination).WriteEntry(
 recordSeries, sourceUrl, userName,
 fileToSubmit.Length, destination.Title);

 // Write an event log entry to capture the properties.
 EventLog.WriteEntry(“TrackingRouter Properties”,
 string.Format(“Source Url = ‘{0}’\nProperties:\n{1}”,
 sourceUrl, ExtractProperties(properties)));
 }
 catch (Exception x)
 {
 // Cancel if we encounter problems writing to the list.
 // (could reject with resultDetails)
 EventLog.WriteEntry(“TrackingRouter”,
 String.Format(“Exception occurred: {0}”, x.Message));

87620c12.indd 31687620c12.indd 316 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

317

Chapter 12: Building and Deploying Custom Routers

 result = RouterResult.SuccessCancelFurtherProcessing;
 }
 return result;
}

This method performs the dual function of writing to the history list and also to the system event log,
which it also uses to record any problems encountered while writing to the history list. To make it eas-
ier to deal with the custom properties that have been provided along with the incoming fi le, a separate
helper method is used. Add the following code to the TrackingRouter class defi nition:

/// <summary>
/// Returns a string containing all of the properties in the array.
/// </summary>
/// <param name=”properties”></param>
/// <returns></returns>
string ExtractProperties(RecordsRepositoryProperty[] properties)
{
 StringBuilder sb = new StringBuilder();
 foreach (RecordsRepositoryProperty property in properties)
 sb.AppendFormat(“{2}{0}={1}”, property.Name, property.Value, sb.Length > 0
 ? “ ;” : “”);
 return sb.ToString();
}

This completes the tracking router implementation. As a fi nal step, we must add code to the
FeatureActivated and FeatureDeactivating feature receiver methods to register and unregister
the router in the SharePoint environment.

Open the FeatureReceiver.cs fi le and add the following line to the FeatureActivated method:

SharePointRouter.AddRouter(web, typeof(TrackingRouter));

Add the following line to the FeatureDeactiving method:

SharePointRouter.RemoveRouter(web, typeof(TrackingRouter));

Save and re-build the project, recycle the application pool or perform an IISRESET, and then deactivate
and reactivate the feature. Select a record series type and enable the ECM2007 Tracking Router custom
router. Now when you send a document to the repository that matches the selected record series type,
you should see a new list named Record Routing History with an entry for each incoming fi le.

The fi nal router we create will redirect incoming records to different document libraries based on meta-
data associated with each record. This is a standard requirement for record routing and the code we
write can easily be extended for use in our own solutions.

Creating a Redirecting Router
As with the other routers in this set, start by adding a new class to the project named RedirectingRouter.
Open the code fi le for editing and add the appropriate using statements at the top of the fi le:

using System.Diagnostics;
using Microsoft.Office.RecordsManagement.RecordsRepository;

87620c12.indd 31787620c12.indd 317 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

318

Chapter 12: Building and Deploying Custom Routers

using WSS=Microsoft.SharePoint;
using ECM2007.RecordsManagement;

Modify the class declaration so it matches the following code:

[Name(“ECM2007 Redirecting Router”)]
public class RedirectingRouter : SharePointRouter
{
 // Write exceptions to the trace log.
 void HandleException(Exception x)
 {
 Log(string.Format(“Exception occurred: {0}”,x.ToString()));
 }
}

This implementation of OnSubmitFile will redirect incoming records based on the collec-
tion of metadata properties attached to the fi le. The metadata properties are provided in the
RecordsRepositoryProperties array, which is passed to the method by SharePoint.

Add the following code to the RedirectingRouter class defi nition:

/// <summary>
/// Custom implementation that redirects incoming records
/// based on the metadata properties attached to the file.
/// </summary>
protected override RM.RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fileToSubmit,
 ref RM.RecordsRepositoryProperty[] properties,
 ref SPList destination,
 ref string resultDetails)
{
 // setup the default result...
 RM.RouterResult result = RM.RouterResult.SuccessContinueProcessing;
 try
 {
 // get the content type from the property array
 string contentTypeName = string.Empty;
 foreach (RM.RecordsRepositoryProperty property in properties)
 if (property.Name.Equals(“ContentType”)) contentTypeName =
 property.Value;

 // use the content type name and properties to determine the correct
 destination
 SPList newDestination = destination;
 if (AdjustDestination(contentTypeName, sourceUrl, userName,
 ref properties, ref newDestination))
 {
 string sourceFileName = Path.GetFileNameWithoutExtension(sourceUrl);

 // store the file into the new destination
 if (SaveDocument(contentTypeName, sourceUrl, userName, ref

87620c12.indd 31887620c12.indd 318 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

319

Chapter 12: Building and Deploying Custom Routers

 fileToSubmit, ref properties, ref newDestination, ref resultDetails))
 {
 // succeeded in saving the document...
 Log(string.Format(“Saved ‘{0}’ to ‘{1}’”, sourceFileName,
 destination.Title));
 }
 else
 {
 // failed to save the document...
 Log(string.Format(“Document save failed for ‘{0}’”,
 sourceFileName));
 }

 // return success but cancel further processing, since we
 // are taking responsibility for storing the file...
 result = RM.RouterResult.SuccessCancelFurtherProcessing;
 }
 else
 {
 // redirection is not required
 // continue processing normally
 Log(string.Format(“Redirection not required for content type ‘{0}’”,
 contentTypeName));
 result = RM.RouterResult.SuccessContinueProcessing;
 }
 }
 catch (Exception x)
 {
 // cancel processing if we encounter an error...
 HandleException(x);
 result = RM.RouterResult.SuccessCancelFurtherProcessing;
 }
 return result;
}

The goal of a redirecting router is to change the target location of each incoming fi le based on a custom
algorithm.

The SharePoint API implies (by use of the ref keyword on the destination SPList parameter) that
you can change the destination target simply by changing this value to reference another list. In actual
practice, this does not work unless there is a problem storing the fi le into the original location. In order
to change the destination, you have to do it explicitly in your custom router code.

Instead of relying on SharePoint to copy the fi le, we will use a helper method to copy the fi le ourselves
depending on whether an adjustment to the destination is required. We will use another helper method
to make that determination based on the incoming content type and metadata properties. Add the fol-
lowing helper method to the RedirectingRouter class defi nition:

// Attempts to adjust the destination list based on incoming metadata.
bool AdjustDestination(string contentTypeName, string sourceUrl, string userName,
 ref RM.RecordsRepositoryProperty[] properties,
 ref SPList destination)
{

87620c12.indd 31987620c12.indd 319 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

320

Chapter 12: Building and Deploying Custom Routers

 // if no content type name was provided, then no special processing is
 possible...
 if (string.IsNullOrEmpty(contentTypeName))
 return false;

 // if the content type name matches an existing document library, then use that
 // as the new destination library...
 SPList targetList = SharePointList.Find(destination.ParentWeb,
 contentTypeName);
 if (targetList != null)
 {
 Log(string.Format(“Reusing existing list ‘{0}’”, targetList.Title));
 destination = targetList;
 }
 else
 {
 // target list does not exist, so create a new document library...
 destination = SharePointList.Create(destination.ParentWeb,
 SPListTemplateType.DocumentLibrary, contentTypeName,
 “Created by the RedirectingRouter”);
 // no special fields added to the default “Document” content type
 destination.ContentTypesEnabled = true;
 destination.OnQuickLaunch = true;
 destination.Update();
 }

 return true;
}

To perform the actual copy operation, add the SaveDocument helper method to the class defi nition:

// Stores the document using metadata to determine where to place it within the
 target list.
bool SaveDocument(string contentTypeName, string sourceUrl, string userName,
 ref byte[] fileToSubmit, ref Microsoft.Office.RecordsManagement.
 RecordsRepository.RecordsRepositoryProperty[] properties,
 ref SPList destination, ref string resultDetails)
{
 SPFolder targetFolder = null;
 SPListItem item = null;
 SPFile file = null;
 string fileName = Path.GetFileNameWithoutExtension(sourceUrl);

 try
 {
 // get a folder in the destination list using the user name
 int pos = userName.LastIndexOf(‘\\’);
 string actualUserName = userName.Substring(pos >= 0 ? pos : 0);
 targetFolder = SharePointList.CreateFolder(destination, actualUserName);
 }
 catch (Exception x1)
 {
 HandleException(new Exception(“Failed to get target folder”, x1));
 }

 try

87620c12.indd 32087620c12.indd 320 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

321

Chapter 12: Building and Deploying Custom Routers

 {
 // add the document to the folder
 file = targetFolder.Files.Add(fileName, fileToSubmit);
 item = file.Item;
 }
 catch (Exception x2)
 {
 HandleException(new Exception(“Failed to add document to folder”, x2));
 }

 // set the content type if recognized...
 try
 {
 SPContentType ct = destination.ContentTypes[contentTypeName];
 item[“ContentTypeId”] = ct.Id;
 item.Update();
 }
 catch (Exception x3)
 {
 HandleException(new Exception(“Failed to update content type id”, x3));
 }

 // copy any matching properties into the new item...
 foreach (RM.RecordsRepositoryProperty property in properties)
 {
 if (item.Fields.ContainsField(property.Name))
 {
 try
 {
 // check the validity of the target field...
 SPField field = item.Fields.GetField(property.Name);
 if (field != null && !field.ReadOnlyField &&
 (field.Type != SPFieldType.Invalid) &&
 (field.Type != SPFieldType.WorkflowStatus) &&
 (field.Type != SPFieldType.File) &&
 (field.Type != SPFieldType.Computed) &&
 (field.Type != SPFieldType.User) &&
 (field.Type != SPFieldType.Lookup) &&
 (!field.InternalName.Equals(“ContentType”)))
 {
 item[property.Name] = property.Value;
 }
 }
 catch (Exception x)
 {
 resultDetails = string.Format(“Exception occurred while
 saving ‘{0}’: {1}”, fileName, x.Message);
 return false;
 }
 }
 }

 item.Update();
 return true;
}

87620c12.indd 32187620c12.indd 321 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

322

Chapter 12: Building and Deploying Custom Routers

Open the FeatureReceiver.cs fi le again and add the registration code to the feature receiver methods.
Add this line to the FeatureActivated event receiver method:

SharePointRouter.AddRouter(web,typeof(RedirectingRouter));

Add this line to the FeatureDeactivating event receiver method:

SharePointRouter.RemoveRouter(web,typeof(RedirectingRouter));

Re-build the project, and then deactivate and activate the feature and associate the redirecting router
for one or more record series types.

Extending the File Plan Schema to Support
Custom Routing

In Chapter 5, we developed a fi le plan schema that allows us to create dynamic fi le plan components
based on an XML data fi le and then execute the fi le plan to populate the record center with the content
types, document libraries, and routing types needed for a given set of record defi nitions. Since custom
routing can play a critical role in the disposition chain for a record, it makes sense to extend the fi le
plan schema so that we can capture this additional information and then use it to enhance the fi le plan
execution so that the custom router is automatically associated with the routing type.

To do this, we simply add a fi eld to the fi le plan schema that allows the end-user (the person fi ll-
ing out the form) to specify which router he or she wants to use. The schema already includes a
RecordSpecification element that describes each record type. Extend this element with a Router
element using the following code:

<xs:element name=”Router” type=”xs:string” minOccurs=”0”>
 <xs:annotation>
 <xs:documentation>
 Specifies the name of the custom router to associate with
 this record type. The specified router must be installed separately
 into the record center by an administrator.
 </xs:documentation>
 </xs:annotation>
</xs:element>

Once the fi eld has been added to the schema, we then regenerate the wrapper class using the XSD.EXE
utility so that the fi eld is available to our FilePlan component implementation:

 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.42”)]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute(“code”)]
 [System.Xml.Serialization.XmlTypeAttribute(
 Namespace=”http://schemas.johnholliday.net/FilePlan.xsd”)]
 public partial class RecordSpecification {
 /* code omitted */
 private string routerField;

87620c12.indd 32287620c12.indd 322 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

323

Chapter 12: Building and Deploying Custom Routers

 public string Router {
 get {
 return this.routerField;
 }
 set {
 this.routerField = value;
 }
 }
 }

Finally, we add some code to the CreateRecordSeries method that picks up the router name and
then programmatically associates it with the new record series. The RecordSeriesCollection.Add
method already accepts the router name as a parameter. Whereas before we passed an empty string,
now we can pass the actual router name. If the specifi ed router does not exist, the record series will still
be created, but the router will not be attached.

 /// <summary>
 /// Creates the record series table entry for this record type.
 /// </summary>
 /// <param name=”filePlan”>a FilePlan object</param>
 /// <param name=”recordCenter”>the records center site</param>
 public void CreateRecordSeries(FilePlan filePlan, SPWeb recordCenter)
 {
 if (this.Type == RecordType.Electronic)
 {
 // access the routing table for the record center
 RecordSeriesCollection routingTable =
 new RecordSeriesCollection(recordCenter);

 routingTable.Add(this.Name, this.SafeLocation, this.Description,
 this.Aliases, this.Router, false);
 }
 }

Summary
This chapter examined the extensible routing architecture provided by the Offi ce SharePoint Server
records management API. The MOSS record routing framework can be used to address a variety of
requirements related to the fi nal disposition of incoming records. Typically, custom routers are used
for fi ltering, tracking, and redirecting records to different locations based on the record metadata. This
chapter showed how to build these types of routers and described some of the limitations of the current
MOSS routing architecture, suggesting strategies for working around them. This chapter also showed
how to extend the dynamic File Plan Schema introduced in Chapter 5 to include additional information
about custom routing and showed the code needed to automatically associate the router with a record
type when the fi le plan is executed.

87620c12.indd 32387620c12.indd 323 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

87620c12.indd 32487620c12.indd 324 9/2/09 10:21:25 AM9/2/09 10:21:25 AM

Maintaining Record Integrity

In Chapter 1, we identifi ed information integrity as a core records management requirement
because any degradation in record integrity can affect many business processes and can also
lead to legal liability. Often, companies must not only enforce a Records Management Policy that
ensures records are not tampered with, but they must also prove that no tampering could have
occurred. In this chapter, we will expand the notion of record integrity to include more than just
creating tamper-proof records. We would also like to ensure that incoming records have valid
metadata, which requires having the appropriate range of values in specifi c columns that are suit-
able for a given purpose. In this way we can ensure that a particular piece of content can be used
to drive other business processes.

Building a Content Validation Framework
We would like to de-couple content validation from the core custom routing mechanism. Content
validation is such a key requirement, it will often be necessary to incorporate some form of con-
tent validation logic into many different routing solutions. One way to do that is to build a sepa-
rate validation framework that we can call from anywhere.

Although we are building the validation framework in the context of records management, it is
important to note that this framework is suitable for inclusion in any SharePoint solution where
you want to disallow certain content based on a precise set of validation rules.

In this section, we will attack the problem of validating list items by constructing a simple XML-
based metadata parsing utility that examines the values of list item fi elds to determine if they
match a given set of values. The matching values are expressed in XML so that we can attach
them to a content type or to a router, store them in a separate list, or read them from an external
database. Later, we will build a Validating Router that uses the validation framework to accept or
reject incoming records based on a custom set of validation rules.

We want to end up with an XML fi le that describes all of the validation rules to be applied
to an item, as well as the actions to be taken if the validation fails. For example, suppose our
SalesProposal content type includes a fi eld that specifi es the proposal type as either FixedBid

87620c13.indd 32587620c13.indd 325 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

326

Chapter 13: Maintaining Record Integrity

or TimeAndMaterials. We might then have a validation rule that requires all fi xed bid proposals to
have a bid amount over, say, $5,000, in order to be accepted as an offi cial record. Anything less than that
should be rejected from the Records Center. Although somewhat contrived, we would like to express
this rule using an XML fragment similar to Listing 13-1.

Listing 13-1: ProposalValidationRules.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<ListItemValidator xmlns=”http://tempuri.org/ListItemValidator.xsd”>
 <Rule Name=”MinimumBidAmount”>
 <Match>
 <Eq>
 <Field>ProposalType</Field>
 <Value Type=”String”>FixedBid</Value>
 </Eq>
 </Match>
 <Try>
 <Geq>
 <Field>Bid Amount</Field>
 <Value Type=”Decimal”>5000</Value>
 </Geq>
 </Try>
 <Catch>
 <Throw>The bid amount must be at least 5000</Throw>
 </Catch>
 </Rule>
 <Rule Name=”MinimumHours”>
 <Match>
 <Eq>
 <Field>Proposal Type</Field>
 <Value Type=”String”>TimeAndMaterials</Value>
 </Eq>
 </Match>
 <Try>
 <Geq>
 <Field>Estimated Hours</Field>
 <Value Type=”Number”>300</Value>
 </Geq>
 </Try>
 <Catch>
 <Throw>The estimated hours must be at least 300.</Throw>
 </Catch>
 </Rule>
</ListItemValidator>

For any given list item, we can defi ne a set of rules that are evaluated in the context of the item. Each
rule is evaluated in sequence using a match-try-catch algorithm. If the logical expression contained in
the Match element evaluates to true, then the logical expression in the Try element is evaluated. If the
result is true, then the rule succeeds; otherwise, the rule fails and the Catch element is evaluated. If all
of the rules in the set succeed, then the list item is considered valid; otherwise, it is invalid.

This set of rules states that for a given list item, two validation rules must be applied. The fi rst declares
that list items with a fi eld named Proposal Type that equals the string FixedBid must have a decimal

87620c13.indd 32687620c13.indd 326 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

327

Chapter 13: Maintaining Record Integrity

fi eld named Bid Amount, and the value contained in that fi eld must be greater than or equal to $5,000.
The second declares that list items with a proposal type of TimeAndMaterials must have a number
fi eld named Estimated Hours, and the value contained in that fi eld must be greater than or equal to 300.

Using this approach, we can easily create validation rules that can be applied to list items in many dif-
ferent contexts. The rules can be stored anywhere and can be evaluated independently of the items
themselves. We can attach rules to content types, document libraries, timer jobs, site collections, or any
persistable SharePoint object. We start by defi ning a validation schema.

Defi ning a Validation Schema
It is important that our validation schema be fl exible enough to handle simple logical expressions. It
would be nice to have a more elaborate language for building logical expressions, but we don’t want to
spend a lot of energy developing an expression parser. We could use regular expressions, but we also
want the syntax to be readable since we would ultimately like to provide a tool for administrators to
create and maintain validation rules — perhaps in a SharePoint list. Also, by using XML, we can pro-
vide administrators with the actual schema to help them construct syntactically correct rules.

It turns out that we can build a simple expression evaluator using XML elements that describe standard
expressions with operators like GEQ, LEQ, and so on. Begin by creating a new XML schema fi le and
creating a top-level element called ListItemValidator:

<?xml version=”1.0” encoding=”utf-8” ?>

<xs:schema id=”ListItemValidator”
 targetNamespace=”http://tempuri.org/ListItemValidator.xsd”
 elementFormDefault=”qualified”
 xmlns=”http://tempuri.org/ListItemValidator.xsd”
 xmlns:mstns=”http://tempuri.org/ListItemValidator.xsd”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<!-- This is the top-level element that declares the validation rules -->
 <xs:element name=”ListItemValidator”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”Rule” type=”Rule”
 minOccurs=”1” maxOccurs=”unbounded”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The top-level element contains a sequence of Rule elements. We set the minOccurs attribute to 1 to
require at least one rule. The maxOccurs attribute is set to unbounded to allow for any number of rules.
Since we specifi ed a type other than xs:string, we need to add a defi nition for the Rule element:

<!-- This element declares an individual rule using the Match/Try/Catch pattern -->
 <xs:complexType name=”Rule”>
 <xs:sequence>
 <xs:element name=”Match” type=”Expression” minOccurs=”1” maxOccurs=”1”/>
 <xs:element name=”Try” type=”Expression” minOccurs=”1” maxOccurs=”1”/>
 <xs:element name=”Catch” type=”Exception” minOccurs=”0” maxOccurs=”1”/>
 </xs:sequence>

87620c13.indd 32787620c13.indd 327 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

328

Chapter 13: Maintaining Record Integrity

 <xs:attribute name=”Name” type=”xs:string” use=”required”/>
 </xs:complexType>

The Rule element declares an ordered sequence of subelements representing the Match, Try, and
Catch elements, which are of type Expression. We set the minOccurs attribute of the Catch element
to 0 so that it is optional. The Match and Try elements are required. There can be only one instance of
each of these elements. The Name attribute allows the user to provide a name for the rule, which can be
used in error messages.

Next, we declare the Expression element. This element can take many forms, each representing a dif-
ferent kind of expression. To set this up, we need an xs:choice element within the xs:sequence
that is required, but limited to a single instance. This allows the XML validation to ensure that at
least one of the subelements is present. Using this approach, we can map different keywords such as
And, Or, and Not to the appropriate expression type. We need four types of expressions to describe
validation rules — UnaryLogicalExpression, LogicalExpression, FieldExpression, and
FieldRangeExpression:

 <xs:complexType name=”Expression”>
 <xs:sequence>
 <xs:choice minOccurs=”1” maxOccurs=”1”>
 <xs:element name=”Any” type=”xs:string”/>
 <xs:element name=”Not” type=”UnaryLogicalExpression”/>
 <xs:element name=”And” type=”LogicalExpression”/>
 <xs:element name=”Or” type=”LogicalExpression”/>
 <xs:element name=”Eq” type=”FieldExpression”/>
 <xs:element name=”Neq” type=”FieldExpression”/>
 <xs:element name=”Gtr” type=”FieldExpression”/>
 <xs:element name=”Geq” type=”FieldExpression”/>
 <xs:element name=”Less” type=”FieldExpression”/>
 <xs:element name=”Leq” type=”FieldExpression”/>
 <xs:element name=”Contains” type=”FieldExpression”/>
 <xs:element name=”InRange” type=”FieldRangeExpression”/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

The UnaryLogicalExpression element allows us to express the negation of some other expression. It
is declared not as a sequence of subelements, but as a single choice between the subelement types.

 <xs:complexType name=”UnaryLogicalExpression”>
 <xs:choice minOccurs=”1” maxOccurs=”1”>
 <xs:element name=”And” type=”LogicalExpression”/>
 <xs:element name=”Or” type=”LogicalExpression”/>
 <xs:element name=”Eq” type=”FieldExpression”/>
 <xs:element name=”Neq” type=”FieldExpression”/>
 <xs:element name=”Gtr” type=”FieldExpression”/>
 <xs:element name=”Geq” type=”FieldExpression”/>
 <xs:element name=”Less” type=”FieldExpression”/>
 <xs:element name=”Leq” type=”FieldExpression”/>
 <xs:element name=”Contains” type=”FieldExpression”/>
 <xs:element name=”InRange” type=”FieldRangeExpression”/>
 </xs:choice>
 </xs:complexType>

87620c13.indd 32887620c13.indd 328 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

329

Chapter 13: Maintaining Record Integrity

The LogicalExpression element allows us to describe a logical relationship between two expressions.
It requires exactly two subelements.

 <xs:complexType name=”LogicalExpression”>
 <xs:choice minOccurs=”2” maxOccurs=”2”>
 <xs:element name=”Not” type=”UnaryLogicalExpression”/>
 <xs:element name=”Eq” type=”FieldExpression”/>
 <xs:element name=”Neq” type=”FieldExpression”/>
 <xs:element name=”Gtr” type=”FieldExpression”/>
 <xs:element name=”Geq” type=”FieldExpression”/>
 <xs:element name=”Less” type=”FieldExpression”/>
 <xs:element name=”Leq” type=”FieldExpression”/>
 <xs:element name=”Contains” type=”FieldExpression”/>
 <xs:element name=”InRange” type=”FieldRangeExpression”/>
 </xs:choice>
 </xs:complexType>

The FieldExpression element allows us to identify a list item fi eld by name and specify its value. This is
used as part of a larger expression in which we need to compare the value of a fi eld to some other value.

 <xs:complexType name=”FieldExpression”>
 <xs:sequence>
 <xs:element name=”Field” type=”xs:string” minOccurs=”1” maxOccurs=”1”/>
 <xs:element name=”Value” type=”ValueType” minOccurs=”1” maxOccurs=”1”/>
 </xs:sequence>
 </xs:complexType>

The FieldRangeExpression element is useful for testing whether the value of a list item fi eld falls
within a given range. This is particularly useful for date value types.

 <xs:complexType name=”FieldRangeExpression”>
 <xs:sequence>
 <xs:element name=”Field” type=”xs:string” minOccurs=”1” maxOccurs=”1”/>
 <xs:element name=”From” type=”ValueType” minOccurs=”1” maxOccurs=”1”/>
 <xs:element name=”To” type=”ValueType” minOccurs=”1” maxOccurs=”1”/>
 </xs:sequence>
 </xs:complexType>

The ValueType element is an atomic element used in the preceding expression elements to declare a
scalar value of a given type. The Type attribute is used to coerce the supplied string into the designated
underlying type at run time. It is declared as a FieldDataType so we can control what types the user is
allowed to enter.

 <xs:complexType name=”ValueType”>
 <xs:simpleContent>
 <xs:extension base=”xs:string”>
 <xs:attribute name=”Type” type=”FieldDataType” use=”optional”/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

The Exception element accepts a string that is used to communicate validation faults to the calling
process. This message could be written to a log fi le or displayed to the user through the user interface.

87620c13.indd 32987620c13.indd 329 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

330

Chapter 13: Maintaining Record Integrity

 <xs:complexType name=”Exception”>
 <xs:sequence>
 <xs:element name=”Throw” type=”xs:string”/>
 </xs:sequence>
 </xs:complexType>

The FieldDataType element specifi es the recognized set of data types for scalar values. This could be
extended to enable the user to specify any .NET type by adding an xs:enumeration element called,
for example, TypeSpecifier. The specifi ed string could then be interpreted as the name of a type that
would then have to be resolved using .NET Refl ection.

 <xs:simpleType name=”FieldDataType”>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Number”/>
 <xs:enumeration value=”Date”/>
 <xs:enumeration value=”String”/>
 <xs:enumeration value=”Decimal”/>
 <xs:enumeration value=”Double”/>
 <xs:enumeration value=”Boolean”/>
 </xs:restriction>
 </xs:simpleType>

Building Validation Components
Now that we have a validation schema, we can generate wrapper classes and extend them to build vali-
dation components. Our goal is to have a set of components that we can call from a variety of scenarios
to validate list items, document properties, and any other object that might be the subject of validation
rules. As an example, we might call a validator component from an event receiver attached to a list as
illustrated in Figure 13-1.

List Item
Validator

Validate()
ItemAdding()

ItemUpdating()

Item Event
Receiver

SharePoint List

Title Rules (XML)

<title> <rules>

Figure 13-1: Validator called from an event receiver.

87620c13.indd 33087620c13.indd 330 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

331

Chapter 13: Maintaining Record Integrity

In this case, the validation rules might be attached directly to the list item, perhaps in a special column
based on a custom fi eld type. Or, we might want to associate the validation rules to a content type, as
shown in Figure 13-2.

Item Event
Receiver

List Item
Validator Validation Rules (XML)

XML Documents

Content Type

Validate()

ItemAdding()

ItemUpdating()

Figure 13-2: Validation rules in a content type.

In this case, the validation rules could be stored in an XmlDocument attached to the content type. This
would facilitate building a custom policy feature wherein the policy is attached to a content type. Yet
another scenario might involve a custom router, as shown in Figure 13-3.

Validation
Rules

List Item
Validator

SubmitFile()IRouter

Validate()Custom
Router

Routing Types List

Routing Type Rules (Form)

Contact

Properties

Document

Figure 13-3: Validator called from a custom router.

Here, the validation rules could be attached directly to the routing table, so that for each routing type
an administrator could specify the validation rules to be applied to incoming records. The custom
router would then send the document properties to the validator instead of a list item.

87620c13.indd 33187620c13.indd 331 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

332

Chapter 13: Maintaining Record Integrity

To build our validator component from the schema, we’ll use the XSD.EXE custom tool introduced ear-
lier to produce partial classes for each of the schema elements, and then we’ll extend them so that call-
ers can de-serialize a set of rules and pass objects in to be validated.

The fi rst thing we need is a ListItemValidator constructor and some static factory methods we can use
to create a new instance from data loaded from some other object. We at least need to have factory meth-
ods that create a ListItemValidator instance from a fi le or from an XML string. We’ll include some
public methods to allow the caller to easily determine the current validation state and to retrieve any error
message that might have been generated. We’ll also add an event that the caller can subscribe to so that
whenever the validator detects a validation failure, a callback function can be invoked automatically.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Text;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.SharePoint;

namespace ECM2007.Validation
{
 /// <summary>
 /// Extends the generated class to include static factory methods and to fire
 events
 /// when validation fails for a given list item.
 /// </summary>
 public partial class ListItemValidator
 {
 public bool IsValid { get; set; }
 public string ErrorMessage { get; set; }
 public event ValidationHandler ValidationFailed;
 public delegate void ValidationHandler(SPListItem item, string message);

 #region Deserialization Methods

 public static ListItemValidator FromXml(string xmlString)
 {
 XmlSerializer ser = new XmlSerializer(typeof(ListItemValidator), “”);
 ListItemValidator validator = null;
 try
 {
 validator = ser.Deserialize(new StringReader(xmlString)) as
 ListItemValidator;
 }
 catch { }
 return validator;
 }

 public static ListItemValidator FromFile(string filename)
 {

87620c13.indd 33287620c13.indd 332 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

333

Chapter 13: Maintaining Record Integrity

 XmlSerializer ser = new XmlSerializer(typeof(ListItemValidator), “”);
 ListItemValidator validator = null;
 try
 {
 validator = ser.Deserialize(new FileStream(filename,
 FileMode.Open)) as ListItemValidator;
 }
 catch { }
 return validator;
 }
 #endregion

 }
}

Before we get into the validator itself, let’s take a look at how the expressions themselves are processed.
This is the heart of the validator component and contains the code that does the actual work of compar-
ing fi eld values and taking the appropriate actions.

To start out, there are two scenarios we want to handle with regard to validating list items. First, we
need to validate individual list items directly. This will allow us to mix in validation calls from wher-
ever we have access to a list item instance, such as after executing a CAML query or when responding
to an event receiver. Second, we’d like to validate list items indirectly, by passing in another structure
from which we extract the actual list item. For example, it might be useful to have a method that under-
stands the SPItemEventDataCollection object that is passed to list item event-receiver methods.
Listing 13-2 shows the two public static methods that handle these scenarios.

Listing 13-2: Static expression evaluation methods

/// <summary>
 /// Applies an operation to a list item for different kinds of expressions.
 /// </summary>
 public static bool Evaluate(SPListItem item, ItemChoiceType1 op, object
 expression)
 {
 if (expression is FieldExpression)
 return ((FieldExpression)expression).Eval(item, op);
 else if (expression is FieldRangeExpression)
 return ((FieldRangeExpression)expression).Eval(item, op);
 else if (expression is LogicalExpression)
 return ((LogicalExpression)expression).Eval(item, op);
 else if (expression is UnaryLogicalExpression)
 return ((UnaryLogicalExpression)expression).Eval(item, op);
 return false;
 }

 /// <summary>
 /// Applies an operation to a property set for different kinds of
 expressions.

Continued

87620c13.indd 33387620c13.indd 333 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

334

Chapter 13: Maintaining Record Integrity

 /// </summary>
 public static bool Evaluate(SPItemEventDataCollection properties,
 ItemChoiceType1 op, object expression)
 {
 if (expression is FieldExpression)
 return ((FieldExpression)expression).Eval(properties, op);
 else if (expression is FieldRangeExpression)
 return ((FieldRangeExpression)expression).Eval(properties, op);
 else if (expression is LogicalExpression)
 return ((LogicalExpression)expression).Eval(properties, op);
 else if (expression is UnaryLogicalExpression)
 return ((UnaryLogicalExpression)expression).Eval(properties, op);
 return false;
 }

The static methods delegate to the separate Eval methods shown in Listings 13-3 and 13-4. These meth-
ods simply decode the operation and then delegate to the appropriate subexpression, each of which
exposes its own Eval method.

Listing 13-3: ListItem expression evaluation method

/// <summary>
 /// Determines if the values of the specified list item fields matches
 this expression.
 /// </summary>
 /// <param name=”item”>the list item to test</param>
 /// <returns>true if the item matches the rule, otherwise false</returns>
 public bool Eval(SPListItem item)
 {
 try
 {
 ItemChoiceType1 op = this.ItemElementName;
 if (Item is FieldExpression)
 return ((FieldExpression)Item).Eval(item, op);
 else if (Item is FieldRangeExpression)
 return ((FieldRangeExpression)Item).Eval(item, op);
 else if (Item is LogicalExpression)
 return ((LogicalExpression)Item).Eval(item, op);
 else if (Item is UnaryLogicalExpression)
 return ((UnaryLogicalExpression)Item).Eval(item, op);
 else if (ItemElementName == ItemChoiceType1.Any)
 return true;
 }
 catch
 {
 }
 return false;
 }

Listing 13-2: Static expression evaluation methods (continued)

87620c13.indd 33487620c13.indd 334 9/2/09 10:21:41 AM9/2/09 10:21:41 AM

335

Chapter 13: Maintaining Record Integrity

Listing 13-4: SPItemEventDataCollection expression evaluation method

/// <summary>
 /// Processes a collection of item data properties.
 /// </summary>
 /// <param name=”properties”></param>
 /// <returns></returns>
 public bool Eval(SPItemEventDataCollection properties)
 {
 try
 {
 ItemChoiceType1 op = this.ItemElementName;
 if (Item is FieldExpression)
 return ((FieldExpression)Item).Eval(properties, op);
 else if (Item is FieldRangeExpression)
 return ((FieldRangeExpression)Item).Eval(properties, op);
 else if (Item is LogicalExpression)
 return ((LogicalExpression)Item).Eval(properties, op);
 else if (Item is UnaryLogicalExpression)
 return ((UnaryLogicalExpression)Item).Eval(properties, op);
 else if (ItemElementName == ItemChoiceType1.Any)
 return true;
 }
 catch
 {
 }
 return false;
 }

Our validation model is based on a simple pattern that applies the validation rules to list items
that match a set of conditions. To express those conditions, we use FieldExpression and
FieldRangeExpression elements. The code shown in Listing 13-5 compares a list item (or a
SPItemEventDataCollection object) to a value and returns true if it matches.

The return value is false if the specifi ed fi eld value is null.

Listing 13-5: FieldExpression.cs

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;

namespace ECM2007.Validation
{
 /// <summary>
 /// Applies an operator to a given field value to determine a match.
 /// </summary>
 public partial class FieldExpression

Continued

87620c13.indd 33587620c13.indd 335 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

336

Chapter 13: Maintaining Record Integrity

 {
 public bool Eval(SPListItem item, ItemChoiceType1 op)
 {
 object fieldValue = Expression.GetFieldValue(item, this.Field);
 if (fieldValue == null)
 return false;
 return this.Value.Eval(op, fieldValue);
 }

 public bool Eval(SPItemEventDataCollection properties, ItemChoiceType1 op)
 {
 object fieldValue = Expression.GetFieldValue(properties, this.Field);
 if (fieldValue == null)
 return false;
 return this.Value.Eval(op, fieldValue);
 }
 }
}

Similarly, we can also test whether a given fi eld falls within a range of values. This is useful for validat-
ing list items that fall within a range of dates or numeric values.

public partial class FieldRangeExpression
 {
 /// <summary>
 /// Determines if a field value is within a given range.
 /// </summary>
 /// <param name=”item”></param>
 /// <param name=”op”></param>
 /// <returns></returns>
 public bool Eval(SPListItem item, ItemChoiceType1 op)
 {
 object fieldValue = Expression.GetFieldValue(item, this.Field);
 if (fieldValue == null) return false;
 return
 this.From.Eval(ItemChoiceType1.Geq, fieldValue) &&
 this.To.Eval(ItemChoiceType1.Leq, fieldValue);
 }

 public bool Eval(SPItemEventDataCollection properties, ItemChoiceType1 op)
 {
 object fieldValue = Expression.GetFieldValue(properties, this.Field);
 if (fieldValue == null) return false;
 return
 this.From.Eval(ItemChoiceType1.Geq, fieldValue) &&
 this.To.Eval(ItemChoiceType1.Leq, fieldValue);
 }
 }

The rest of the implementation falls out of the schema as declared. For example, Listing 13-6 shows the
code for handling logical expressions.

Listing 13-5: FieldExpression.cs (continued)

87620c13.indd 33687620c13.indd 336 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

337

Chapter 13: Maintaining Record Integrity

Listing 13-6: LogicalExpression

public partial class LogicalExpression
{
 public bool Eval(SPListItem item, ItemChoiceType1 op)
 {
 switch (op)
 {
 case ItemChoiceType1.And:
 return Expression.Evaluate(item, op, Items[0]) &&
 Expression.Evaluate(item, op, Items[1]);
 case ItemChoiceType1.Or:
 return Expression.Evaluate(item, op, Items[0]) ||
 Expression.Evaluate(item, op, Items[1]);
 }
 return false;
 }

 public bool Eval(SPItemEventDataCollection properties,
 ItemChoiceType1 op)
 {
 switch (op)
 {
 case ItemChoiceType1.And:
 return Expression.Evaluate(properties, op, Items[0]) &&
 Expression.Evaluate(properties, op, Items[1]);
 case ItemChoiceType1.Or:
 return Expression.Evaluate(properties, op, Items[0]) ||
 Expression.Evaluate(properties, op, Items[1]);
 }
 return false;
 }
}

The ValueType code shown in Listing 13-7 handles the low-level value comparisons needed for evalu-
ating expressions. The value of any given object is determined by the operator passed in. The set of
operators is defi ned within the schema, and the comparison is driven by the data type of the fi eld as
declared within the validation rule.

Listing 13-7: ValueType.cs

/// <summary>
/// Handles low-level value comparisons.
/// </summary>
public partial class ValueType
{
 public bool Eval(ItemChoiceType1 op, object fieldValue)
 {
 FieldDataType dataType =
 this.TypeSpecified ? this.Type : FieldDataType.String;
 switch (dataType)
 {

Continued

87620c13.indd 33787620c13.indd 337 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

338

Chapter 13: Maintaining Record Integrity

 case FieldDataType.Date:
 {
 DateTime dateTest = DateTime.Parse(this.Value);
 DateTime dateValue = DateTime.Parse(fieldValue.ToString());
 switch (op)
 {
 case ItemChoiceType1.Eq:
 return dateValue.Equals(dateTest);
 case ItemChoiceType1.Geq:
 return dateValue.CompareTo(dateTest) >= 0;
 case ItemChoiceType1.Gtr:
 return dateValue.CompareTo(dateTest) > 0;
 case ItemChoiceType1.Leq:
 return dateValue.CompareTo(dateTest) <= 0;
 case ItemChoiceType1.Less:
 return dateValue.CompareTo(dateTest) < 0;
 case ItemChoiceType1.Neq:
 return !dateValue.Equals(dateTest);
 case ItemChoiceType1.Any:
 return true;
 } break;
 }
 case FieldDataType.Boolean:
 {
 break;
 }
 case FieldDataType.Decimal:
 {
 decimal decTest = decimal.Parse(this.Value);
 decimal decValue = decimal.Parse(fieldValue.ToString());
 switch (op)
 {
 case ItemChoiceType1.Eq:
 return decValue.Equals(decTest);
 case ItemChoiceType1.Geq:
 return decValue.CompareTo(decTest) >= 0;
 case ItemChoiceType1.Gtr:
 return decValue.CompareTo(decTest) > 0;
 case ItemChoiceType1.Leq:
 return decValue.CompareTo(decTest) <= 0;
 case ItemChoiceType1.Less:
 return decValue.CompareTo(decTest) < 0;
 case ItemChoiceType1.Neq:
 return !decValue.Equals(decTest);
 }
 break;
 }
 case FieldDataType.Double:
 {
 double doubleTest = double.Parse(this.Value);
 double doubleValue = double.Parse(fieldValue.ToString());
 switch (op)

Listing 13-7: ValueType.cs (continued)

87620c13.indd 33887620c13.indd 338 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

339

Chapter 13: Maintaining Record Integrity

 {
 case ItemChoiceType1.Eq:
 return doubleValue.Equals(doubleTest);
 case ItemChoiceType1.Geq:
 return doubleValue.CompareTo(doubleTest) >= 0;
 case ItemChoiceType1.Gtr:
 return doubleValue.CompareTo(doubleTest) > 0;
 case ItemChoiceType1.Leq:
 return doubleValue.CompareTo(doubleTest) <= 0;
 case ItemChoiceType1.Less:
 return doubleValue.CompareTo(doubleTest) < 0;
 case ItemChoiceType1.Neq:
 return !doubleValue.Equals(doubleTest);
 }
 break;
 }
 case FieldDataType.Number:
 {
 int intTest = int.Parse(this.Value);
 int intValue = int.Parse(fieldValue.ToString());
 switch (op)
 {
 case ItemChoiceType1.Eq:
 return intValue.Equals(intTest);
 case ItemChoiceType1.Geq:
 return intValue.CompareTo(intTest) >= 0;
 case ItemChoiceType1.Gtr:
 return intValue.CompareTo(intTest) > 0;
 case ItemChoiceType1.Leq:
 return intValue.CompareTo(intTest) <= 0;
 case ItemChoiceType1.Less:
 return intValue.CompareTo(intTest) < 0;
 case ItemChoiceType1.Neq:
 return !intValue.Equals(intTest);
 }
 break;
 }
 case FieldDataType.String:
 {
 string stringTest = this.Value;
 string stringValue = fieldValue.ToString();
 switch (op)
 {
 case ItemChoiceType1.Eq:
 return stringValue.Equals(stringTest);
 case ItemChoiceType1.Geq:
 return stringValue.CompareTo(stringTest) >= 0;
 case ItemChoiceType1.Gtr:
 return stringValue.CompareTo(stringTest) > 0;
 case ItemChoiceType1.Leq:
 return stringValue.CompareTo(stringTest) <= 0;
 case ItemChoiceType1.Less:
 return stringValue.CompareTo(stringTest) < 0;
 case ItemChoiceType1.Neq:

Continued

87620c13.indd 33987620c13.indd 339 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

340

Chapter 13: Maintaining Record Integrity

 return !stringValue.Equals(stringTest);
 }
 break;
 }
 }
 return false;
 }
}

Since our validator will potentially be used in many different scenarios, we want to have a fl exible
mechanism for detecting when the validation fails. One approach is to create a validator object, call the
validation method, and then check if any errors have occurred. Another approach is to attach an event
handler that is called whenever validation fails. Using event handlers will make it easier for developers
to trap validation failure events without having to write code for each validation scenario. Listing 13-8
shows the code needed to enable both techniques.

Listing 13-8: Validation helper methods

#region Validation Methods

/// <summary>
/// Helper to fire validation events.
/// </summary>
protected void OnValidationFailed(SPListItem item, string message)
{
 this.IsValid = false;
 this.ErrorMessage = message;
 if (ValidationFailed != null)
 ValidationFailed(item, message);
}

/// <summary>
/// Helper to set flags for later interrogation by caller.
/// </summary>
/// <param name=”properties”></param>
/// <param name=”message”></param>
protected void OnValidationFailed(SPItemEventDataCollection properties, string
 message)
{
 this.IsValid = false;
 this.ErrorMessage = message;
 if (ValidationFailed != null)
 ValidationFailed(null, message);
}

#endregion

Now we can write the last bit of code that evaluates the validation rules in sequence to determine which
rules match a given list item. The matching rules are then fi red, raising the ValidationFailed event if
the rule evaluation fails.

Listing 13-7: ValueType.cs (continued)

87620c13.indd 34087620c13.indd 340 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

341

Chapter 13: Maintaining Record Integrity

/// <summary>
/// Validates all items in a collection.
/// </summary>
/// <param name=”items”></param>
/// <returns></returns>
public bool Validate(SPListItemCollection items)
{
 foreach (SPListItem item in items)
 if (!Validate(item))
 return false;
 return true;
}

/// <summary>
/// Evaluates the validation rules in sequence to determine which rules match
 this list item.
/// Matching rules are then fired, raising the ValidationFailed event on failure.
/// </summary>
/// <param name=”item”>the list item to be validated</param>
/// <returns>true if the validation succeeded</returns>
public bool Validate(SPListItem item)
{
 try
 {
 this.IsValid = true;
 this.ErrorMessage = string.Empty;
 EventLog.WriteEntry(“ListItemValidator: Validating Item”, item.Title);

 foreach (Rule rule in this.Rule)
 {
 Log(“ListItemValidator: Validating Rule”, “Rule = “ + rule.Name);
 if (rule.Match.Eval(item))
 {
 Log(“ListItemValidator: Matched Rule”, “Rule = “ + rule.Name);
 if (!rule.Try.Eval(item))
 {
 Log(“ListItemValidator: rule.Try.Eval(item)”, “Failed -
 Firing Event...”);
 OnValidationFailed(item, rule.Catch.Throw);
 }
 else
 {
 Log(“ListItemValidator: rule.Try.Eval(item)”, “Succeeded”);
 }
 }
 }
 }
 catch
 {
 return false;
 }
 return true;
}

87620c13.indd 34187620c13.indd 341 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

342

Chapter 13: Maintaining Record Integrity

Using the Validation Framework with a Self-Validating
Proposal Content Type

The typical validation scenario for a content type would involve creating a ListItemValidator com-
ponent by loading the validation rules from an XML string stored in a SharePoint list or attached to the
content type. The validation code would be called from the ItemAdding and ItemUpdating methods
of an item event receiver to determine if the item is valid. If it were not, then the operation would be
canceled with an appropriate error message. The following section illustrates this approach.

Using our ECM2007 content type components, we can easily declare a Self-Validating Proposal type
that uses the validation framework to ensure that any proposal added or uploaded into a document
library conforms to a given set of validation rules.

using System;
using System.Diagnostics;
using System.IO;
using System.Reflection;
using Microsoft.SharePoint;
using ECM2007.ContentTypes;
using ECM2007.Validation;

namespace ECM2007.ValidatingProposal
{
 [
 SharePointContentType(
 Name = “Validating Proposal”,
 Description = “A Sales Proposal Content Type with Validation”,
 BaseType = “Document”,
 Group = “ECM2007”,
 Hidden = false,
 XmlDocuments =
 “res://ProposalRules.xml[http://tempuri.org/ListItemValidator.xsd]”)
]
 public class ProjectProposal : SPItemEventReceiver
 {
 const string VALIDATION_NAMESPACE =
 “http://tempuri.org/ListItemValidator.xsd”;

 public enum ProposalTypeEnum
 {
 FixedBid,
 TimeAndMaterials
 }

 void Log(string message)
 {
 Trace.WriteLine(message, “ProjectProposal”);
 }

 #region Field References

 [FieldRef(“ProposalType”,
 DisplayName = “Proposal Type”,
 Required = true)]

87620c13.indd 34287620c13.indd 342 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

343

Chapter 13: Maintaining Record Integrity

 public ProposalTypeEnum ProposalType { get; set; }

 [FieldRef(“BidAmount”,
 DisplayName = “Bid Amount”)]
 public decimal BidAmount { get; set; }

 [FieldRef(“EstHours”,
 DisplayName = “Estimated Hours”)]
 public int EstimatedHours { get; set; }

 #endregion

 #region Event Receiver Methods

 /// <summary>
 /// Prevent the creation of invalid proposals.
 /// </summary>
 /// <param name=”properties”></param>
 public override void ItemAdding(SPItemEventProperties properties)
 {
 base.ItemAdding(properties);
 Log(“ItemAdding”);
 ValidateFromResourceFile(ref properties, “ProposalRules.xml”);
 }

 /// <summary>
 /// Prevent the updating of invalid proposals.
 /// </summary>
 /// <param name=”properties”></param>
 public override void ItemUpdating(SPItemEventProperties properties)
 {
 base.ItemUpdating(properties);
 Log(“ItemUpdating”);
 ValidateFromResourceFile(ref properties, “ProposalRules.xml”);
 }

 #endregion
 }
}

In this example, since we are building the content type as a .NET component, we can store the valida-
tion rules as an embedded resource directly in the assembly. The following routine shows how to load
the embedded resource and convert it to an XML string. The string is then passed to one of the static
factory methods to obtain an initialized instance of the ListItemValidator.

void ValidateFromResourceFile(ref SPItemEventProperties properties, string
 rulesFile)
{
 try
 {
 Assembly asm = Assembly.GetExecutingAssembly();
 string resourcePath = asm.GetName().Name + “.” + rulesFile;

 Log(“Resource path = “ + resourcePath);
 Stream stream = asm.GetManifestResourceStream(resourcePath);

87620c13.indd 34387620c13.indd 343 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

344

Chapter 13: Maintaining Record Integrity

 if (stream == null)
 {
 Log(“Failed to load rules file: “ + resourcePath);
 return;
 }

 Log(“Calling validator”);
 StreamReader reader = new StreamReader(stream);
 ListItemValidator validator =
 ListItemValidator.FromXml(reader.ReadToEnd());
 bool isValid = validator.Validate(properties.AfterProperties);
 if (!isValid)
 {
 properties.Cancel = true;
 properties.ErrorMessage = validator.ErrorMessage;
 Log(string.Format(“Validation failed: {0}”,validator.ErrorMessage));
 }
 }
 catch (System.Exception x)
 {
 Log(String.Format(“Exception during validation: {0}”, x.Message));
 EventLog.WriteEntry(“Validating Proposal”, “Exception during validation: “
 + x.ToString());
 }
}

Other scenarios might require that the validation rules can be changed after the content type code is
deployed. In such scenarios, the validation rules would need to be stored in the SharePoint content
database. A convenient location is to store them as an XmlDocument attached to the content type itself.
The following routine shows how to locate the content type object from the SPItemEventProperties
and then extract the validation rules from the XmlDocuments collection:

void ValidateFromXmlDocument(ref SPItemEventProperties properties, string nsRules)
{
 try
 {
 Log(“ValidateFromXmlDocument”);
 // get the web associated with the object
 using (SPWeb web = properties.OpenWeb())
 {
 // get the content type
 string ctName = properties.AfterProperties[“ContentType”].ToString();
 Log(“Retrieving content type: “ + ctName);

 SPContentType ctProposal = web.ContentTypes[ctName];
 if (ctProposal == null)
 Log(“Failed to retrieve content type “ + ctName);

 if (ctProposal != null)
 {
 // Create a list item validator by loading the rules from the
 content type.

87620c13.indd 34487620c13.indd 344 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

345

Chapter 13: Maintaining Record Integrity

 Log(“Retrieving rules from namespace “ + nsRules);
 string rules =
 SharePointContentType.GetXmlDocumentString(ctProposal, nsRules);

 if (string.IsNullOrEmpty(rules))
 {
 Log(“No rules in content type payload for type: “ + ctName);
 return;
 }
 ListItemValidator validator = ListItemValidator.FromXml(rules);

 bool isValid = (properties.ListItem == null) ?
 validator.Validate(properties.AfterProperties)
 : validator.Validate(properties.ListItem);

 if (!isValid)
 {
 properties.Cancel = true;
 properties.ErrorMessage = validator.ErrorMessage;
 Log(string.Format(“Validation failed - {0}”,
 validator.ErrorMessage));
 }
 }
 }
 }
 catch (System.Exception x)
 {
 Log(string.Format(“Exception during validation - {0}”, x.ToString()));
 EventLog.WriteEntry(“Validating Proposal”,
 “Exception during validation: “ + x.ToString());
 }
}

Listing 13-9 shows the feature receiver code that creates the proposal content type in the SharePoint
environment.

Listing 13-9: FeatureReceiver.cs

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using ECM2007.ContentTypes;

namespace ECM2007.ValidatingProposal
{
 /// <summary>
 /// Handles events during feature installation and activation.
 /// </summary>
 public class FeatureReceiver : SPFeatureReceiver
 {

Continued

87620c13.indd 34587620c13.indd 345 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

346

Chapter 13: Maintaining Record Integrity

 /// <summary>
 /// Override to create the project proposal content type.
 /// </summary>
 /// <param name=”properties”></param>
 public override void FeatureActivated(SPFeatureReceiverProperties
 properties)
 {
 SPSite siteCollection = properties.Feature.Parent as SPSite;
 if (siteCollection != null)
 {
 // Create the Project Proposal content type
 SPContentType ctProposal =
 SharePointContentType.Create(siteCollection.RootWeb,
 typeof(ProjectProposal));
 }
 }

 /// <summary>
 /// Override to remove the project proposal content type.
 /// </summary>
 /// <param name=”properties”></param>
 public override void FeatureDeactivating(SPFeatureReceiverProperties
 properties)
 {
 SPSite siteCollection = properties.Feature.Parent as SPSite;
 if (siteCollection != null)
 {
 SharePointContentType.Delete(siteCollection.RootWeb,
 typeof(ProjectProposal));
 }
 }
 public override void FeatureInstalled(SPFeatureReceiverProperties
 properties) { }
 public override void FeatureUninstalling(SPFeatureReceiverProperties
 properties) { }
 }
}

Now we can activate the feature and create an instance of the proposal. Entering invalid values as
shown in Figure 13-4 generates the error page shown in Figure 13-5.

Other ways to use the validation framework include building a Validating Router for a Records Center
or creating a validation policy feature using information management policy. To create a validation
policy using the Information Policy framework, we would build a custom policy feature with a user
interface that allows an administrator to enter the rules as an XML string. The policy feature would
then store the rules for use later, either by adding them to the property bag of the site or attaching them
to the list or to the content type associated with the policy. At the same time, the policy feature would
install event receivers for the ItemAdding and ItemUpdating events similar to what we have done
here. When the event receivers are called, the validation rules are retrieved, and the item is validated.

Listing 13-9: FeatureReceiver.cs (continued)

87620c13.indd 34687620c13.indd 346 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

347

Chapter 13: Maintaining Record Integrity

Figure 13-4: Entering invalid proposal values.

Figure 13-5: Proposal validation error page.

Using the Validation Framework to Build a Validating Router
A Validating Router would work slightly differently. Instead of installing event receivers and validat-
ing a list item, the router would validate the properties associated with the incoming record. In order
to validate an incoming record, we need a place to store the validation rules. Since the incoming record
series name is uniquely associated with an SPListItem in the Record Routing Table, we can attach the
validation rules to the matching record series item in the Records Center site. This allows the records
manager to copy-and-paste the rules’ XML into a column of the routing type to control how the records
associated with that type are validated. The router will then locate the item and extract the rules to
evaluate them against the incoming document properties.

87620c13.indd 34787620c13.indd 347 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

348

Chapter 13: Maintaining Record Integrity

To set this up, we’ll need a helper class that exposes a method we can call to ensure that the custom
fi eld has been added to the routing table before we attempt to access it.

 /// <summary>
 /// Wrapper class used to manipulate the record routing table
 /// in a records center site.
 /// </summary>
 public static class RoutingList
 {
 // The name of a custom field used to store validation rules.
 public const string RULES_FIELDNAME = “ValidationRules”;

 // Default validation rules if none are specified for a series.
 public const string DEFAULT_VALIDATIONRULES =
 “<ListItemValidator><Rule Name=\”Default\”></Rule>
 </ListItemValidator>”;

 /// <summary>
 /// Ensures that the record routing table is properly
 /// configured to hold validation rules.
 /// </summary>
 /// <param name=”web”></param>
 /// <returns></returns>
 public static SPList EnsureSetupValidation(SPWeb web)
 {
 SPList list = null;

 try
 {
 // Get the routing table as an SPList.
 SPList routingTable = web.GetList(RecordSeries.ListUrl(web));

 // Check if the routing table list contains the rules field.
 if (!routingTable.Fields.ContainsField(RULES_FIELDNAME))
 {
 // Add a column to the list to hold validation rules
 string result = routingTable.Fields.Add(RULES_FIELDNAME,
 SPFieldType.Note, false);
 SPField rulesField = routingTable.Fields[RULES_FIELDNAME];
 }
 }
 catch (Exception x)
 {
 Helpers.HandleException(typeof(RoutingList), x);
 }
 return list;
 }
}

We also need a routine to convert a RecordSeries object into an SPListItem so we can retrieve the
validation rules that have been added by the records manager:

 /// <summary>
 /// Retrieves the SPListItem associated with a given RecordSeries object.

87620c13.indd 34887620c13.indd 348 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

349

Chapter 13: Maintaining Record Integrity

 /// </summary>
 public static SPListItem GetRecordSeriesItem(SPWeb web, RecordSeries
 series)
 {
 try
 {
 SPList routingTable = web.GetList(RecordSeries.ListUrl(web));
 SPListItemCollection items = routingTable.Items;
 foreach (SPListItem seriesItem in items)
 if (seriesItem.Title.Equals(series.Name))
 return seriesItem;
 }
 catch (Exception x)
 {
 Helpers.HandleException(typeof(RoutingList), x);
 }
 return null;
 }

Finally, we can tie all this together with another static method that retrieves the validation rules from a
given Web and record series:

 /// <summary>
 /// Extracts any validation rules that may be defined for a given record
 /// series, while ensuring that the routing table is properly configured
 /// for validation.
 /// </summary>
 public static string GetValidationRules(SPWeb recordCenter, RecordSeries
 series)
 {
 string result = RoutingList.DEFAULT_VALIDATIONRULES;
 try
 {
 RoutingList.EnsureSetupValidation(recordCenter);
 SPListItem seriesItem =
 RoutingList.GetRecordSeriesItem(recordCenter, series);
 if (seriesItem != null)
 {
 string test = seriesItem[RoutingList.RULES_FIELDNAME]
 .ToString();
 if (!string.IsNullOrEmpty(test))
 result = test;
 }
 }
 catch (Exception x)
 {
 Helpers.HandleException(typeof(RecordSeries), x);
 }
 return result;
 }

87620c13.indd 34987620c13.indd 349 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

350

Chapter 13: Maintaining Record Integrity

Next, we need to extend the ListItemValidator so that it supports validation against an array of
RecordsRepositoryProperty objects instead of just SPListItem and SPItemEventDataCollection
objects. To do this, we simply add an additional Eval method to each of the following classes:

Expression ❑

FieldExpression ❑

FieldRangeExpression ❑

LogicalExpression ❑

UnaryLogicalExpression ❑

The new Eval method can be created by simply copying the code from the existing
Eval(SPItemEventDataCollectionProperties) method and changing the properties
parameter type to RecordsRepositoryProperty[]. The following code shows the added
Eval method for the Expression class:

 /// <summary>
 /// Processes a collection of records repository properties.
 /// </summary>
 /// <param name=”properties”></param>
 /// <returns></returns>
 public bool Eval(RecordsRepositoryProperty[] properties)
 {
 try
 {
 ItemChoiceType1 op = this.ItemElementName;
 if (Item is FieldExpression)
 return ((FieldExpression)Item).Eval(properties, op);
 else if (Item is FieldRangeExpression)
 return ((FieldRangeExpression)Item).Eval(properties, op);
 else if (Item is LogicalExpression)
 return ((LogicalExpression)Item).Eval(properties, op);
 else if (Item is UnaryLogicalExpression)
 return ((UnaryLogicalExpression)Item).Eval(properties, op);
 else if (ItemElementName == ItemChoiceType1.Any)
 return true;
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x);
 }
 return false;
 }

Finally, we can subclass the ListItemValidator class to create a specialized class for handling
record properties. Our RecordPropertyValidator class simply defi nes a custom Validate method
that accepts an array of RecordsRepositoryProperty objects and then calls the appropriate Eval
methods shown above.

public class RecordPropertyValidator : ListItemValidator
{
 public bool Validate(RecordsRepositoryProperty[] properties)

87620c13.indd 35087620c13.indd 350 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

351

Chapter 13: Maintaining Record Integrity

 {
 try
 {
 this.IsValid=true;
 this.ErrorMessage = string.Empty;
 foreach (Rule rule in this.Rule)
 if (rule.Match.Eval(properties))
 if (!rule.Try.Eval(properties))
 {
 OnValidationFailed((SPListItem)null, rule.Catch.Throw);
 return false;
 }
 }
 catch (System.Exception x)
 {
 Helpers.HandleException(typeof(RecordPropertyValidator), x);
 return false;
 }
 return true;
 }
}

Now we can use the RoutingList wrapper class to write the code for a custom router that validates
incoming documents. The essential elements are that the OnSubmitFile method must retrieve the
RecordSeries object specifi ed for the record and then access the routing table to extract any validation
rules that may have been added by the administrator for that routing type. Figure 13-6 shows what this
might look like in a Records Center site.

Figure 13-6: Routing type extended with validation rules.

87620c13.indd 35187620c13.indd 351 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

352

Chapter 13: Maintaining Record Integrity

Listing 13-10 shows the code for the ValidatingRouter class.

Listing 13-10: ValidatingRouter.cs

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using Microsoft.Office.RecordsManagement.RecordsRepository;
using WSS=Microsoft.SharePoint;
using ECM2007.RecordsManagement;
using ECM2007.Validation;

namespace ECM2007.CustomRouting
{
 [Name(“ECM2007 Validating Router”)]
 public class ValidatingRouter : SharePointRouter
 {
 /// <summary>
 /// Calls the RecordsRepositoryValidator to check the validity
 /// of document properties that were submitted with the file.
 /// </summary>
 protected override RouterResult OnSubmitFile(
 string recordSeries,
 string sourceUrl,
 string userName,
 ref byte[] fileToSubmit,
 ref RecordsRepositoryProperty[] properties,
 ref WSS.SPList destination,
 ref string resultDetails)
 {
 // setup the default result...
 RouterResult result = RouterResult.SuccessContinueProcessing;
 try
 {
 // Get the web associated with the records center
 // from the destination list.
 WSS.SPWeb web = destination.ParentWeb;

 // Get the named record series object.
 RecordSeries series = new RecordSeries(web, recordSeries, true);

 // Make sure the routing list is properly configured.
 RoutingList.EnsureSetupValidation(web);

 // Get the validation rules from the record series.
 string validationRules = RoutingList.GetValidationRules(web,
 series);

 if (!string.IsNullOrEmpty(validationRules))
 {
 // Create a validator from the rules.
 RecordPropertyValidator validator =

87620c13.indd 35287620c13.indd 352 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

353

Chapter 13: Maintaining Record Integrity

 ListItemValidator.FromXml(validationRules)
 as RecordPropertyValidator;

 // Validate the document properties.
 if (!validator.Validate(properties))
 {
 // Store the result details from the error message in the
 validator
 resultDetails = validator.ErrorMessage;

 // Set the return value to reject the file.
 result = RouterResult.RejectFile;
 }
 }
 }
 catch (System.Exception x)
 {
 // Cancel if we encounter problems validating the properties.
 EventLog.WriteEntry(“ValidatingRouter”,
 String.Format(“Exception occurred: {0}”, x.Message));
 result = RouterResult.SuccessCancelFurtherProcessing;
 }
 return result;
 }
 }
}

Summary
Record integrity is a core requirement for any records management system. This chapter explored ways
to fulfi ll that requirement by showing how to build a fl exible content validation framework that can be
applied to any list item to validate its metadata against a given set of rules. Leveraging the expressive
power of XML, this chapter developed a validation schema that was then used to generate wrapper
classes for the key elements of the schema. These wrapper classes were then extended to support the
validation of SPListItem and SPItemEventDataCollection objects so they could be called easily
from event receivers on list items or content types.

The chapter showed how to integrate the validation framework by building a Self-Validating Proposal
content type that illustrated the steps needed to invoke the validator from an event receiver. The chap-
ter also showed how to extend the framework to include support for validating incoming records by
building a Validating Router component that applies validation rules attached to record routing types
in the Records Repository.

87620c13.indd 35387620c13.indd 353 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

87620c13.indd 35487620c13.indd 354 9/2/09 10:21:42 AM9/2/09 10:21:42 AM

Managing Electronic
Mail Records

The purpose of this chapter is to provide an overview of how MOSS is set up to handle e-mail
records. If we’re talking about Offi ce SharePoint Server 2007 and e-mail, then we have to
include Exchange 2007 in the discussion because of the tight integration it provides. It turns out
that Exchange 2007 is designed to work in tandem with MOSS to provide end-to-end “content
life-cycle” support that includes Messaging Records Management (MRM). MRM is an addi-
tional layer within Exchange 2007 that seeks to simplify the process of staying in compliance
with company policy, government regulations, or other requirements.

E-mail comprises the majority of enterprise content, much of which is directly related to offi cial
communications that become part of the offi cial record and history related to particular business
activities. It’s not diffi cult to imagine scenarios in which e-mails must be treated as something
more than simply transient messages. For example, an e-mail message can have attachments.
If the message is to be treated as an offi cial record, then its attachments would also need to be
included in the Records Management strategy.

Failure to develop an effective system for managing e-mail records can have serious fi nancial and
personal consequences, as shown by often cited court cases such as Murphy Oil v. Fluor Daniel
(2002), United States v. Philip Morris (2004), and CIBC World Markets v. Genuity Capital Markets
(Canada, 2005).

In the Murphy Oil case, the plaintiff requested discovery of e-mail messages that were stored on
backup tapes over the course of 14 months. The defendant estimated it would take 6 months and
more than $6 million to produce them. In the Philip Morris case, the court fi ned the defendant
company $2.75 million because it continued to delete e-mail messages in spite of a litigation hold.

In the Canadian CIBC case, Genuity was being sued for an alleged trade secret infringement. It
was learned during discovery that Genuity did not maintain a centrally managed electronic mail
archive, so the court allowed forensic experts to examine all PCs and smart phones of all of its
employees, including those belonging to their spouses and children.

87620c14.indd 35587620c14.indd 355 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

356

Chapter 14: Managing Electronic Mail Records

Planning for e-mail records management can be viewed as an extension of the File Plan strategy we
used in Chapter 1 to design document-based records management solutions. Whether implementing
the plan using the out-of-the-box features of Exchange 2007 or integrating it with a SharePoint Records
Center site, the same information needs to be gathered. To accommodate the special requirements for
handling e-mail, we would need to extend the semantic defi nition of File Plan to include descriptions of
the components that must also be created and/or confi gured to support the submission and processing
of e-mail messages and attachments. To that end, it would be an added bonus if we can fi nd ways to
extend our Dynamic File Plan concept from Chapter 5 so that the processing rules may be used to con-
fi gure Outlook 2007 and Exchange 2007, as well as the SharePoint Records Center.

How would this work? First, we would have to extend our File Plan Schema to include additional
metadata that describes the retention policies so they can be used to confi gure the e-mail system.
Such metadata might include rules that specify permissions for certain groups and users, or that
specify retention periods and actions for e-mail messages as distinct from documents for the same fi le
type, while another set of metadata elements might control the processing of attachments, and so
on. Once we’ve extended the File Plan Schema, we can then look at ways to realize or render a given
fi le plan within Exchange 2007 and/or Outlook 2007 in the same way that we “executed” the File
Plan InfoPath form within SharePoint. In that way, we can ensure that the same fi le plan description
applies equally to any custom confi guration that may be applied to the SharePoint Records Center.

Figure 14-1 shows a high-level overview of the overall processing strategy. We have managed folders
in Exchange that allow us to set up rules that are attached to each folder. There is the client-side story
provided by Outlook to move messages into those managed folders. And then you have a link between
the centrally managed folders in Exchange and the Records Center site in SharePoint. That link is main-
tained not through the typical route that uses the Web Services (WS) layer to send documents to the
Repository, but actually by simply forwarding e-mails from the managed folders to the Repository.

E-Mail
Records

Figure 14-1: E-mail Records Management architecture.

There are three parts to the overall solution. First, how do we set up the managed folders in Exchange
and what tools are available for confi guring them, both manually and programmatically? We’ll go
through the manual steps of creating a managed folder, and then we’ll look at how this might be done
programmatically from code implemented in the dynamic fi le plan. Second, how will users interact

87620c14.indd 35687620c14.indd 356 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

357

Chapter 14: Managing Electronic Mail Records

with the centrally managed folders to designate certain messages as offi cial messages? This typically
requires only that users see the managed folders in Outlook 2007 so they can drag offi cial messages into
the appropriate folders. It might also include setting up rules in the Outlook client to move or copy mes-
sages to those folders automatically. The third component requires that the SharePoint Farm is properly
confi gured to receive incoming e-mails and that the Records Center site exposes an e-mail address that
can be used for submitting e-mail messages. We’ll look at the steps needed to set this up and also exam-
ine what happens within the Records Center as those e-mail messages are processed.

It is not technically necessary to use Exchange 2007 managed folders to support MRM, since Outlook
can be confi gured to simply forward e-mail messages directly to the Records Center. However, using
Exchange has the added advantage of enabling administrators to control the fl ow of offi cial e-mail mes-
sages centrally without having to reconfi gure each e-mail client individually whenever the location or
e-mail address of the Records Center changes, or when additional processing rules and policies must be
applied to e-mail messages.

Confi guring Exchange 2007
E-mail records management is called Messaging Records Management (MRM) in Exchange. It is designed
around the concept of managed folders. A number of managed folders are created by default. For example,
the Inbox is a managed folder that automatically appears in each user’s mailbox. Managed folders are
designed to support MRM through the use of policies called mailbox policies, and each managed folder
has a FolderType associated with it. The Inbox is of type InboxFolder. Each user’s mailbox can have
only one mailbox policy assigned to it, and each policy can be associated with only one managed folder
of a given type.

To confi gure Exchange 2007 for records management, we must perform the following steps:

 1. Create a managed folder for each e-mail record type you want to manage.

 2. Confi gure the managed content settings for the folder to control what happens to messages
added to the folder.

 3. Create a managed folder mailbox policy. The policy may contain a policy statement that is dis-
played to users so they understand the purpose of the folder and how it should be used.

 4. Add managed folders to the mailbox policy to make the folders available to end-users. When
the policy is associated with a mailbox, the managed folders appear in Outlook, allowing users
to route e-mail messages to the managed folders in Exchange.

 5. Run the Managed Folder Assistant utility to complete the confi guration within Exchange.
This utility is like a timer job that can be scheduled or run immediately. Until it is executed, the
managed folders will not appear in the user interface (UI).

The following sections describe these tasks in greater detail. The fi rst thing to do to confi gure Exchange
2007 is to create managed folders.

Creating Managed Folders
This section shows how to create a managed folder using the user interface of the
Exchange Management Console and programmatically using the Exchange Management Shell.
The Exchange Management Console is a tool that is included with Exchange Server to perform

87620c14.indd 35787620c14.indd 357 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

358

Chapter 14: Managing Electronic Mail Records

administrative tasks. The Exchange Management Shell provides a command-line interface to the same
functionality based on Windows PowerShell cmdlets.

To create a managed folder using the user interface provided by the Exchange Management Console,
perform the following steps:

 1. Select the Mailbox node under the Organization Confi guration node.

 2. Choose the New Managed Custom Folder command. The dialog shown in Figure 14-2 is
shown. This dialog includes several options that control what the user sees in Outlook. These
options are useful for letting the user know the purpose of the folder and how it should be used.
This can be particularly important for records management where policy statements are often
used to keep users informed and to avoid the claim that they did not know about the policy.

 3. Fill out the form, click on the New button, and then click on the Finish button to close the dia-
log. The new managed folder now appears in the console window.

Figure 14-2: Creating a managed folder using the Exchange Management Console.

Another way to create a managed folder is to use the Exchange Management Shell shown in
Figure 14-3, which provides a command-line interface to many of the functions that are available
through the console.

87620c14.indd 35887620c14.indd 358 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

359

Chapter 14: Managing Electronic Mail Records

Figure 14-3: The Exchange Management Shell.

This is an important capability for our purposes, because our ultimate goal is to extend the dynamic fi le
plan component so we can automate the Exchange 2007 confi guration by calling methods implemented
by our FilePlan component. To do that, we can call the interfaces that are exposed by the Exchange
Management Shell, and therefore employ many of the same techniques that are typically used by
Exchange administrators who are familiar with the shell. As an example, the following command cre-
ates a managed folder using the New-ManagedFolder cmdlet within the Exchange Management Shell.

New-ManagedFolder -Name OfficialMessages -FolderName “Official Messages”

In order to extend our FilePlan component so that we can create managed folders as part of the File
Plan execution, we need a way to invoke commands in the Exchange Management Shell from .NET. To
do that, we’ll add a utility class to the ECM2007 foundation classes that will facilitate communication
with Exchange. We’ll add this class to the ECM2007 project in Visual Studio.

By adding methods to the FilePlan component, we are essentially adding a layer of support for build-
ing tools that can be used by administrators to help them correctly confi gure the SharePoint Farm as
well as other servers for a given set of record types.

To handle the confi guration of an Exchange 2007 server, one approach would be to customize the
InfoPath 2007 form we created in Chapter 5 to capture the File Plan data so that it includes a
Configure Exchange command. Using such a form, an administrator running the InfoPath cli-
ent directly on the Exchange Server machine could then open any File Plan document stored in a
SharePoint form library and then confi gure the server directly from within InfoPath.

Another option might be to create a Windows PowerShell cmdlet that could be deployed to the
Exchange Server and loaded into the Exchange Management Shell. This cmdlet would accept the URL
of the File Plan data fi le as a parameter and then load it to automatically confi gure the Exchange server.

Exchange Server 2007 commands are implemented as Windows PowerShell cmdlets that are called from
within the Exchange Management Shell. Our utility class will do the same. Therefore, we must refer-
ence the PowerShell namespaces, which are located in the System.Management.Automation assembly.

87620c14.indd 35987620c14.indd 359 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

360

Chapter 14: Managing Electronic Mail Records

Although this assembly is installed into the Global Assembly Cache when PowerShell is installed, it does
not show up in the list of .NET assemblies when you try to add the reference to your project. To get around
this, we’ll add the reference manually to the .csproj fi le using the following procedure:

 1. Right-click on the project node in the Visual Studio Solution Explorer and choose “Unload
Project.”

 2. Right-click on the project node again and choose “Edit <projectname>.”

 3. Search for the ItemGroup containing Reference nodes, and add the line <Reference
Include=”System.Management.Automation”/>.

 4. Save the fi le and reload it into Visual Studio.

We can now create the ExchangeManagementShell utility class as shown in Listing 14-1.

For more examples of how to call Exchange Management Shell commands from managed code, see the
following MSDN article: http://msdn.microsoft.com/en-us/library/bb332449.aspx.

Listing 14-1: Exchange Management Shell utility class

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Text;
using System.Management.Automation;
using System.Management.Automation.Host;
using System.Management.Automation.Runspaces;

namespace ECM2007
{
 /// <summary>
 /// Provides a wrapper for calling methods in the
 /// Exchange Management Shell.
 /// </summary>
 public class ExchangeManagementShell
 {
 public static Runspace Runspace;
 public static RunspaceConfiguration Configuration;
 public static RunspaceInvoke RunspaceInvoke;
 public const string SnapInName =
 “Microsoft.Exchange.Management.PowerShell.Admin”;

 /// <summary>
 /// Initializes the runspace that will be used to execute
 /// PowerShell commands. Happens only once.
 /// </summary>
 private static void Init()
 {
 if (Configuration == null)
 {

87620c14.indd 36087620c14.indd 360 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

361

Chapter 14: Managing Electronic Mail Records

 Configuration = RunspaceConfiguration.Create();
 AppDomain.CurrentDomain.AssemblyResolve
 += new ResolveEventHandler(AssemblyResolver);

 PSSnapInException ex;
 PSSnapInInfo info=Configuration.AddPSSnapIn(SnapInName,out ex);
 if (ex != null)
 {
 Helpers.HandleException(typeof(ExchangeManagementShell), ex);
 }
 Runspace = RunspaceFactory.CreateRunspace(Configuration);
 Runspace.Open();
 }
 }

 /// <summary>
 /// Adds the path to the Exchange 2007 assemblies so that
 /// PowerShell can find them.
 /// </summary>
 private static Assembly AssemblyResolver(object obj,
 ResolveEventArgs args)
 {
 if (args.Name.Contains(“Microsoft.Exchange”))
 {
 string programFiles = Environment.GetFolderPath(
 Environment.SpecialFolder.ProgramFiles);
 string exchangePath = Path.Combine(programFiles,
 @”Microsoft\Exchange Server\bin\”);
 return Assembly.LoadFrom(
 Path.Combine(exchangePath,
 args.Name.Split(‘,’)[0] + “.dll”));
 }
 return null;
 }

 /// <summary>
 /// Retrieves the shared static RunspaceInvoke object.
 /// </summary>
 public static RunspaceInvoke Invoke
 {
 get
 {
 Init();
 if (RunspaceInvoke == null)
 RunspaceInvoke = new RunspaceInvoke(Runspace);
 return RunspaceInvoke;
 }
 }

 /// <summary>
 /// Invokes a simple command.
 /// </summary>
 /// <param name=”command”>a PowerShell command</param>
 /// <returns>the PowerShell result set</returns>

Continued

87620c14.indd 36187620c14.indd 361 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

362

Chapter 14: Managing Electronic Mail Records

 public static ICollection<PSObject> Run(string command)
 {
 return Invoke.Invoke(command);
 }

 /// <summary>
 /// Invokes a command with parameters.
 /// </summary>
 /// <param name=”command”>a PowerShell command</param>
 /// <param name=”input”>input parameters to the command</param>
 /// <returns>the PowerShell result set</returns>
 public static ICollection<PSObject> Run(string command,
 IEnumerable input)
 {
 return Invoke.Invoke(command, input);
 }

 /// <summary>
 /// Invokes a command and retrieves any errors.
 /// </summary>
 /// <param name=”command”>a PowerShell command</param>
 /// <param name=”errorList”>receives any error output</param>
 /// <returns>the PowerShell result set</returns>
 public static ICollection<PSObject> Run(string command,
 out IList errorList)
 {
 return Run(command, null, out errorList);
 }

 /// <summary>
 /// Invokes a command with parameters and retrieves any errors.
 /// </summary>
 /// <param name=”command”>A PowerShell command</param>
 /// <param name=”input”>input parameters</param>
 /// <param name=”errorList”>receives any error output</param>
 /// <returns>the PowerShell result set</returns>
 public static ICollection<PSObject> Run(string command,
 IEnumerable input, out IList errorList)
 {
 return Invoke.Invoke(command, input, out errorList);
 }
 }
}

With this utility class now available in the library, we can use it to create a managed folder in Exchange
using code like the following:

ICollection<PSObject> results
 = ECM2007.ExchangeManagementShell.Run(
 “New-ManagedFolder -Name OfficialMessages -FolderName \”Official Messages\””
);

Listing 14-1: Exchange Management Shell utility class (continued)

87620c14.indd 36287620c14.indd 362 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

363

Chapter 14: Managing Electronic Mail Records

We will use code similar to this when we extend the FilePlan component to support setting up managed
folders automatically. First, we need to see how managed content settings are confi gured in Exchange.

Setting Up the Records Center E-Mail Address
When you create a Records Center site using the Records Center site defi nition, it checks to see if incom-
ing e-mail has been enabled in Central Administration for site collections in the farm. If it has, then an
e-mail address is automatically provisioned using the incoming e-mail settings that were specifi ed in
the Central Administration web site.

This e-mail address then appears in the Records Center announcements list as shown in Figure 14-4
and is automatically associated with special processing code that is responsible for parsing incoming
e-mail messages and associating them with the correct routing type. This is the e-mail address you will
use when setting up Managed Content Settings in Exchange.

Figure 14-4: Records Center e-mail address.

The important thing to remember here is that SharePoint does not confi gure the mailbox for you. It only
allocates the e-mail address that it uses internally to determine which incoming messages are intended
for the Records Center. In order to direct e-mail messages from the Exchange Server to the SharePoint
Server, you have to create a contact object in the Exchange 2007 management console that contains the
correct SMTP mail alias needed to route messages to the SharePoint Server. In the case of the Records
Center shown in Figure 14-4, you would add the e-mail address recordscenter_CI6TLK@MOSSDEV
to the contact object in Exchange and create a send connector pointing moss.development to the
SharePoint Server.

Confi guring Managed Content Settings
Once a managed folder is available in Exchange, it can be confi gured to control how long items remain
in the folder and what to do when they expire. You can either delete the messages when their retention
period ends or journal the messages to a separate storage location such as a SharePoint Records Center.
This is done using Managed Content Settings and is the way that Exchange 2007 enables e-mail reten-
tion policies.

The retention policies that you set up in Exchange are in addition to any retention policies that might
also be confi gured within the Records Center site. In this example, we will not specify a retention policy
in Exchange, but instead delegate the retention policy to the Records Center.

87620c14.indd 36387620c14.indd 363 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

364

Chapter 14: Managing Electronic Mail Records

To create Managed Content Settings using the Exchange Management Console, perform the follow-
ing steps:

 1. Select the Mailbox node under the Organization Confi guration node in the Management
Console window, and then navigate to the Managed Custom Folders tab and select the folder to
be confi gured.

 2. Right-click on the folder, select “New Managed Content Settings,” and then enter a name and
a notifi cation message for the user. For the Message type, leave the default set to “All Mailbox
Content.”

 3. Leave the “Length of retention period” checkbox unchecked and click “Next” to move to the
Journal page. Since the management of messages affected by this policy will be delegated to the
Records Center, we will not specify retention settings here. Instead, we will route them directly
to the Records Center in the next step.

 4. On the Journal page, select the “Forward copies to” checkbox and then click “Browse” to select
the contact you created earlier for the SharePoint Records Center.

 5. Enter a label that will be applied to messages that are forwarded to the Records Center. This is
very important, because the label you enter is what will be used to select the Routing Type that
controls how the message will be processed upon arrival at the Records Center. Think of this as
the Content Type for all messages in the folder to which these settings will apply.

 6. Finally, select the message format to be used when the message is forwarded. Normally, this
will be the “Outlook Message Format (*.msg).” Using this format ensures that attachments are
sent in their native format. The default “Exchange MAPI Message Format (TNEF)” embeds the
attachments as a binary stream within the body of the message, making them more diffi cult to
work with.

 7. Click “Next” and then “New” and “Finish” to complete the wizard and create the settings.

In order to extend the FilePlan component, we again need to invoke the appropriate Exchange
Management Shell commands. Listing 14-2 shows the necessary code added to the FilePlan compo-
nent that calls the ExchangeManagementShell utility class from a new SetupExchangeFolder static
method. This method accepts four parameters: the folder identifi er and name, the target record routing
type, and the Records Center e-mail address. When called, it creates a new managed folder and then
completes the confi guration by using the supplied parameters to confi gure the managed content set-
tings for the new folder.

Listing 14-2: FilePlan extended to set up exchange

namespace ECM2007.RecordsManagement
{
 public partial class FilePlan
 {
 public static void SetupExchangeFolder(string folderId, string folderName,
 string recordRoutingType, string recordsCenterEmailAddress)
 {
 // create the managed folder in Exchange
 ICollection<PSObject> results = ExchangeManagementShell.Run(

87620c14.indd 36487620c14.indd 364 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

365

Chapter 14: Managing Electronic Mail Records

 string.Format(“New-ManagedFolder -Name {0} -FolderName \”{1}\””,
 folderId, folderName));

 // configure the content settings
 const string messageClass = “All Mailbox Content”;
 const string messageFormat = “MSG”;
 StringBuilder command = new
 StringBuilder(“New-ManagedContentSettings”);
 command.AppendFormat(“ -FolderName {0}”, folderName);
 command.AppendFormat(“ -MessageClass {0}”, messageClass);
 command.AppendFormat(“ -Name {0}ContentSettings”, folderId);
 command.AppendFormat(“ -RetentionEnabled $false”);
 command.AppendFormat(“ -JournalingEnabled $true”);
 command.AppendFormat(“ -AddressForJournaling {0}”,
 recordsCenterEmailAddress);
 command.AppendFormat(“ -LabelForJournaling {0}”, recordRoutingType);
 command.AppendFormat(“ -MessageFormatForJournaling {0}”,
 messageFormat);
 results = ExchangeManagementShell.Run(command.ToString());
 }
 }
}

Using this method, we can simply extend the File Plan Schema to include a new record type, called
Official Message, and then add a method to our FilePlan object to confi gure Exchange. This
method might be invoked from a command-line utility or a custom PowerShell command to process
an XML fi le containing a fi le plan on an existing Exchange 2007 Server. Listing 14-3 shows the modi-
fi ed RecordType element in the schema, and Listing 14-4 shows the new FilePlan
.ConfigureExchange method.

Listing 14-3: File Plan Schema support for offi cial messages

<xs:simpleType name=”RecordType”>
 <xs:annotation>
 <xs:documentation>
 Describes the incoming record type, which is used to determine how
 the file
 should be processed in the record center. Electronic documents are
 placed
 into document libraries. Physical documents are placed into custom lists
 with special columns used to store the document barcode or label.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Electronic”/>
 <xs:enumeration value=”Barcoded”/>
 <xs:enumeration value=”Labeled”/>
 <xs:enumeration value=”OfficialMessage”/>
 </xs:restriction>
</xs:simpleType>

87620c14.indd 36587620c14.indd 365 9/3/09 10:34:02 AM9/3/09 10:34:02 AM

366

Chapter 14: Managing Electronic Mail Records

Listing 14-4: FilePlan.ConfigureExchange method

/// <summary>
/// Configures an existing Exchange 2007 server with the
/// managed folders and content settings needed to implement
/// this file plan for a given records center.
/// </summary>
public bool ConfigureExchange(string recordsCenterEmailAddress)
{
 try
 {
 foreach (RecordSpecification record in this.Records)
 if (record.Type == RecordType.OfficialMessage)
 {
 FilePlan.SetupExchangeFolder(record.SafeName, record.Name,
 record.SafeName, recordsCenterEmailAddress);
 }
 return true;
 }
 catch (Exception x)
 {
 Helpers.HandleException(this, x,
 “Failed to configure Exchange Server”);
 }
 return false;
}

Creating a Mailbox Policy
Managed policies provide a way to create a logical grouping of managed folders that can be attached to
a user’s mailbox all at once. In fact, only one mailbox policy can be associated with any given mailbox,
but there can be any number of managed folders associated with the policy. This gives administrators
the fl exibility they need to assign groups of folders to different users. In the context of MRM, it means
that the policy is the primary tool that administrators have for controlling the fl ow of offi cial e-mail
records into the Repository.

To create a mailbox policy using the Exchange Management Console, perform the following steps:

 1. Select “New Managed Folder Mailbox Policy” from the Mailbox node under the Organization
Confi guration node in the console tree, and enter the policy name into the “Managed folder
mailbox policy name” fi eld of the form. This will be the name you use to reference the policy in
subsequent steps.

 2. Add the managed folders you want to associate with the policy by clicking on the “Add” button
in the “Specify the managed folders to link with this policy” section. This opens a dialog that
lists the available managed folders to select from.

 3. Click “New” and then “Finish” to close the form and create the policy.

To create a policy using the ExchangeManagementShell component, we can use code similar to the
following:

string name=”MRMPolicy”;
string folders=”OfficialMessages”;

87620c14.indd 36687620c14.indd 366 9/3/09 10:34:03 AM9/3/09 10:34:03 AM

367

Chapter 14: Managing Electronic Mail Records

string command=”New-ManagedFolderMailboxPolicy”;
ExchangeManagementShell.Run(
 string.Format(“{0} -Name {1} -ManagedFolderLinks \”{2}\””,
 command, name, folders)
);

Running the Managed Folder Assistant
After setting up the managed folders, content settings, and policies on the Exchange Server, we then
have to schedule a job that will run at predetermined intervals to propagate the objects out to user
mailboxes. This process is similar to scheduling SharePoint timer jobs. In Exchange 2007 parlance, it is
known as the Managed Folder Assistant. We basically need to tell Exchange when to run the Managed
Folder Assistant by specifying a schedule that will apply to the entire server.

To schedule the Managed Folder Assistant using the Exchange Management Console, perform the fol-
lowing steps:

 1. Select “Mailbox” from the Server Confi guration node of the console, and then open the “proper-
ties” dialog and select the Messaging Records Management tab.

 2. Select “Use Custom Schedule” in the “Schedule the Managed Folder Assistant” section, and
click on the Customize button to display the schedule dialog. Use the controls in the “Schedule”
section to specify when you want the program to run.

Figure 14-5 shows an example of the completed dialog.

Figure 14-5: Scheduling the Managed Folder
Assistant.

We don’t really need to start the Managed Folder Assistant from code related to the FilePlan because
it’s more of an administrative procedure that should be left to the Exchange Administrator. In a typical

87620c14.indd 36787620c14.indd 367 9/3/09 10:34:03 AM9/3/09 10:34:03 AM

368

Chapter 14: Managing Electronic Mail Records

scenario, we will load some number of FilePlan defi nitions from disk and then process them to set up
the appropriate Managed Folders, Managed Content Settings, and MRM Policies in Exchange. Then
the Exchange Administrator will schedule or run the Managed Folder Assistant at some later time to
propagate the objects out to users. However, during solution development, you can use the following
command to start the Managed Folder Assistant immediately:

ExchangeManagementShell.Run(“Start-ManagedFolderAssistant”);

Handling the Folders in Outlook 2007
Once the Managed Folder Assistant runs, users will see the new managed folders in the Outlook client
as shown in Figure 14-6. At this point, they can either drag-and-drop e-mail messages into the appro-
priate folder or set up Outlook rules to route incoming e-mails to the managed folders automatically.
E-mails that are routed into managed folders are then processed according to the associated content
settings, ultimately being forwarded to the Records Center within SharePoint for their fi nal disposition.

Figure 14-6: Managed folders in Outlook 2007.

Handling Missing Properties
The standard Records Center processing sequence ensures that all of the required properties are pres-
ent for each incoming record by comparing the items in the incoming property array with the columns
of the target document library as indicated by the routing type associated with the record. If any of the
columns are marked as required and the matching property values are not present in the array, then the
record is placed into the Holding Zone and the result details (a text string) are formatted to indicate
that additional information is needed before the record can be processed.

87620c14.indd 36887620c14.indd 368 9/3/09 10:34:03 AM9/3/09 10:34:03 AM

369

Chapter 14: Managing Electronic Mail Records

For incoming e-mail records, the result details are routed back to the person who submitted the mes-
sage, along with a link to a custom view that is generated by the Records Center for the purpose of col-
lecting the required metadata. The record is not processed until the missing metadata is supplied.

The generated message is not sent to the submitter immediately, but is postponed until the next scheduled
time slot for processing missing properties. This time slot is scheduled by the administrator in Central
Admin. When the message is sent, it links back to an aggregated view that displays a grid that enables the
submitter to enter metadata for all pending records at one time. Figure 14-7 shows an example of the gen-
erated form.

Figure 14-7: Generated form for missing properties.

Summary
This chapter provided an overview of the available tools for managing offi cial electronic mail records
using Offi ce SharePoint Server 2007, Outlook 2007, and Exchange 2007, including setting up a Records
Center to receive electronic mail and using Exchange Managed Folders to facilitate centralized routing
of e-mail messages to the Records Center site.

We explored the Exchange 2007 components and tools for creating the necessary components as well as
options for confi guring them programmatically. We also showed how to extend the Dynamic File Plan
component from Chapter 5 so that it can be used to control the automatic confi guration of Exchange
using the same data fi les we used earlier to confi gure the Records Center site.

87620c14.indd 36987620c14.indd 369 9/3/09 10:34:03 AM9/3/09 10:34:03 AM

87620c14.indd 37087620c14.indd 370 9/3/09 10:34:03 AM9/3/09 10:34:03 AM

Using Workflow to
Manage Records

One thing that is striking about enterprise content management in general is the dynamic inter-
play that exists between content and business processes. This should not be surprising, since all
business processes depend on information in some form. However, understanding the converse
relationship — how content depends on business processes — requires a different level of exami-
nation and ultimately may lead to the construction of different kinds of tools.

Business processes certainly produce as well as consume information. Indeed, the very purpose
of many business processes, particularly those focused on document creation, is to do precisely
that. But there are other processes that may produce or modify content simply as by-products of
their primary function, and those by-products feed into yet other processes in a semi-coordinated
dance that hopefully brings us closer to the holy grail of “increased productivity.”

Consider the lowly expense report — clearly one of the most underappreciated mainstays of the
business report pantheon. Whether fi lling it out directly or indirectly through a form, each row
in the report might spawn any number of separate and distinct business processes. There could
be a line-item approval workfl ow that is conditionally invoked for any expense item with an
amount greater than a specifi ed threshold value. Even the determination of that value might be
the result of a separate business process run periodically to assess the overall fi nancial health of
the organization. There could be an aggregate approval workfl ow that determines whether an
expense report qualifi es for special examination based on factors having nothing to do with the
report itself, but instead may be driven by things like the frequency of unapproved items submit-
ted by a particular user. As shown in Figure 15-1, this might, in turn, result in the generation of
an employee evaluation document and the creation of a related set of tasks to be performed by a
manager or HR personnel.

87620c15.indd 37187620c15.indd 371 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

372

Chapter 15: Using Workfl ow to Manage Records

Creation Review & Edit Disposition

Em
pl

oy
ee

M
an

ag
er

HR

Expense Reporting

Submit?

No

Yes

No

Yes

Create
Report

View
Report

Expenses
Submitted

Save
Report

Expense
Record

View/Edit
Report

Status Changed

Approve?

Credit
Account

Account
Credited

1

1

1

Figure 15-1: Expense reporting workfl ow.

True enterprise content management must account for the way in which a particular content element
will be used. If workfl ow and Enterprise Content Management (ECM) are to deliver on the promise of
increasing day-to-day productivity, then business analysts must be able to describe business processes in
the language of their business and in terms of the fl ow of content into and out of the system as a whole.
In the context of workfl ow development, this means having a richer set of workfl ow activities to work
with. It is much easier to describe a business process that involves the generation of an audit report using
a GenerateAuditReport activity than to spell out the individual steps needed to produce one.

The ECM team at Microsoft released an interesting set of tools at the beginning of the product cycle
called the “ECM Starter Kit.” It included a variety of code samples intended to highlight the ECM fea-
tures of the MOSS 2007 product. The samples included code for document management and content
processing, records management, information policy, and workfl ow. The workfl ow samples were par-
ticularly interesting because they included a special library called ECMActivities. This library contained
several custom workfl ow activities that purported to interact with the enterprise content management
features of SharePoint in such a way that they could be used in other workfl ows. It is not clear whether
the term other workfl ows was intended to include non-SharePoint workfl ows, but the overall concept reso-
nated on an intuitive level. If the idea was to promote the development of high-level ECM workfl ow
activities so they could be plugged into larger business processes without having to deal with the
lower-level activities provided by the built-in SharePoint workfl ow activities, then it seemed like a good

87620c15.indd 37287620c15.indd 372 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

373

Chapter 15: Using Workfl ow to Manage Records

idea. Unfortunately, the ECM Starter Kit does not seem to have gained much traction during the year or
so that followed its introduction. Perhaps it came too early in the product life cycle. Nevertheless, it still
seems like a good idea, and luckily it is still included in the SharePoint Server 2007 SDK.

The purpose of this chapter is to explore the possibility of extending the set of workfl ow activities that
are available out-of-the-box for building records management solutions. Part of this involves identifying
general-purpose ECM workfl ow activities that can be applied to any SharePoint site, list, or list item. But
it also includes identifying more specialized workfl ow activities that may be tied to specifi c business
processes, and then developing a methodology for identifying and building them.

As part of this exploration, we will start by examining the ECM workfl ow activities that were included
in the original ECM Starter Kit and then look for ways to improve and possibly generalize them even
further. Following the lead of the ECM team at Microsoft, we will then attempt to identify and develop
some additional activities that were not part of the original set, but that add value to any SharePoint
ECM solution. Finally, we will focus on a few activities that are specifi c to some of the records manage-
ment code already developed in previous chapters, such as the validation framework for content valida-
tion and the fi le plan schema.

A SharePoint Workflow Primer
What is a workfl ow? Think of it as a long-running process that has built-in support for persistence.
Long-running means that it functions like any other program but can be suspended or resumed auto-
matically by the Workfl ow Foundation run time. The way that the Workfl ow Foundation architecture
allows us to build on that notion is by breaking the overall process down into discrete activities.
These are the atomic operations that exist for any given application domain. What’s unique about the
Workfl ow Foundation approach is that activities may contain other activities. There is the ability to
compose new activities from existing ones that is an essential ingredient for creating a set of tools that
we can build on and continue to add value to over time.

There are two basic types of workfl ow programs. One is the sequential workfl ow, like the one shown
in Figure 15-2, which is modeled like a fl owchart where you have a beginning and an end state with
branches in between.

There is also the state machine workfl ow, where you have many state transitions that can occur at any
time. With sequential workfl ows, the fl ow of control moves in one direction through the logic, whereas
state machine workfl ows follow more of an event-driven model. As it turns out, the state machine
model is a more natural way to describe human interactions than the sequential workfl ow. Humans
tend to operate in interrupt-driven fashion when processing information in response to stimuli that
come from all directions all the time. It’s no surprise, then, that the state machine model works well for
describing human-based workfl ows. Figure 15-3 shows a state machine for managing task reminders.

Workfl ow activities are .NET classes that are written in managed code (VB .NET or C#) and then com-
piled into assemblies called workfl ow activity libraries. Within those classes, certain properties and meth-
ods are implemented, which are exposed in the same way they would be for normal classes except that
additional wrappers are added so they can participate in the workfl ow process. When those properties
and methods are exposed, the workfl ow run time can use .NET Refl ection to fi nd those properties and
methods and then bind them to other activities dynamically as the workfl ow runs.

87620c15.indd 37387620c15.indd 373 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

374

Chapter 15: Using Workfl ow to Manage Records

Create
Task

OnWorkflowActivated

No Yes
Completed?

OnTaskChanged

Complete
Task

Log To
History List

Figure 15-2: A sequential workfl ow.

Start
Awaiting
Reminder

Date

workflow
started

reminder
sent

due date
passed

Awaiting
Reminder

Processing
Reminders

reminder interval
elapsed

reminder
date passed

task
completed

task
completed

past-due
reminder

sent

past-due
reminder
interval
elapsed

Awaiting
Completion

Awaiting
Past-Due
Reminder

End

Figure 15-3: State machine workfl ow for managing tasks.

87620c15.indd 37487620c15.indd 374 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

375

Chapter 15: Using Workfl ow to Manage Records

.NET Refl ection is an essential ingredient for the success of the workfl ow run time. Without the ability
to refl ect dynamically over the assembly to fi gure out how to connect the published workfl ow proper-
ties and methods to other activities, it would not be possible to write workfl ow programs as a collection
of activities wired together. Instead, it would be necessary to write each workfl ow program as a mono-
lithic implementation of a particular set of requirements. This was a problem that many developers
faced when trying to build workfl ows prior to the emergence of the Workfl ow Foundation architecture.
Part of the problem was that it was very hard to model the workfl ow generically and yet stay focused
on the problem at hand. There was always the need to work on the entire workfl ow program at one
time. With the emergence of the activity library, it is now possible to break off a piece of the functional-
ity and focus on it independently. This makes it possible to design and build workfl ow components.
Our goal here is to extend this notion to include the construction of ECM workfl ow components.

Workfl ow activities also expose interfaces that can be invoked by other activities. This allows the work-
fl ow run time to establish and enforce contracts between activities. Just like other .NET classes, workfl ow
activities can include an event-fi ring mechanism. So it is possible to write workfl ow activities that handle
events that are generated by the workfl ow run time and that fi re events that enable other activities to
respond to them.

This workfl ow architecture and the tools provided to construct workfl ows are easy to understand at the
conceptual level. In practice, there is a lot of detail to master. One of the many tasks that face new work-
fl ow developers is becoming familiar with the tools that are available in the platform. There are many
activities that are provided with the Workfl ow Foundation, and these are the activities that all other work-
fl ows are built on. Starting with the simple code activity, there are simple and complex activities that every
developer must learn. There is also the fundamental notion of a composite activity that is defi ned in terms
of other activities contained within it. For example, you could think of a sequential workfl ow as being a
composite activity that imposes an order of execution for the child activities contained within it.

In addition to the fundamental activities, there are SharePoint-specifi c activities, which are distributed
in a custom activity library called the Microsoft.SharePoint.Workfl owActions.dll, which has been written in
conjunction with a specialized workfl ow layer built into the SharePoint product itself.

It was quite fortuitous that the SharePoint Server 2007 product and the Workfl ow Foundation were
being built at the same time. This allowed them to take advantage of each other’s expertise. While the
Workfl ow Foundation team was trying to design an architecture that would be strong enough, yet sim-
ple and elegant enough to support sophisticated applications like SharePoint, the SharePoint team was
focused on extending the core concepts of the Workfl ow Foundation to ensure that they could meet all of
their requirements. The result is a truly elegant and extensible architecture.

As MOSS was being built, the Workfl ow Foundation team and the MOSS team collaborated to come up
with a core set of activities, but decided to restrict what SharePoint developers could do in several areas.
One such restriction limits the ability to defi ne custom interfaces and then load them into the workfl ow
run time as custom services that can be discovered by running workfl ow activities and executing them.
This is one of the most powerful features of the Workfl ow Foundation architecture because it allows you
to create custom libraries of shared services that can be called from many different workfl ow activities.
The SharePoint implementation of the workfl ow run time disallows this capability. We could have used
this in lots of ways. For example, we could have used it to construct a custom report generation framework
that exposes a standard set of interfaces that could be consumed by any workfl ow activity. Unfortunately,
it is not possible with the current product. It may be possible in the future, but it introduces many com-
plexities that the Workfl ow Foundation team and SharePoint group decided not to support at this time.

87620c15.indd 37587620c15.indd 375 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

376

Chapter 15: Using Workfl ow to Manage Records

Official Records, Workflow, and Complexity
Imagine a long document of, say, 250 pages. Within that document there are different sections, and
within those sections there are paragraphs, sentences, and words. For documents that drive busi-
ness processes, the same content may be viewed by people who must fulfi ll different responsibilities
depending on the roles they must play in relation to the business process. For any given role, the docu-
ment might be presented in different ways, perhaps hiding irrelevant sections, highlighting important
sentences or words, or organizing the content in a different order.

Sitting behind the document, then, is a set of rules that collectively determine how the document should
be viewed or routed. These rules make up the intelligence that moves along with the document and
provides a particular implementation of the business process.

For single documents, the implementation can be provided by a set of macros or by code in a .NET
assembly attached to the document. Adding even a second document to the process can dramatically
increase the complexity involved. As more and more documents are added to the business process,
then the aggregated rules become increasingly complex, more metadata is needed to capture the
rules, and the entire process becomes more diffi cult to manage. The ability of a given system to deal
with this kind of content-driven complexity will depend on its fl exibility and scalability, but also on
the ease with which business analysts can extend the process model to deal with the new abstractions
being introduced.

The complexity of a simple business process involving a single content type could be modeled in terms
of the kind of content it is. For example, a text fi le could be defi ned as a primitive content component
with a complexity of 1. Additional metrics could be defi ned that measure the “usefulness” of the con-
tent, based on the number of roles or responsibilities it supports either as an input or as an output. This
could be derived from the role/activity modeling exercise introduced in Chapter 1. The kinds of ques-
tions to ask in coming up with a measure of content complexity might include:

How many ways can the content element be produced? ❑

Does it require creative input? ❑

Is it produced as an artifact of some other process? ❑

Does it require approval? ❑

Consider the typical approval process, wherein there is a decision point associated with a content ele-
ment. If that decision point is embedded within a fl owchart, then the value of that content is derived
in part from where it appears in the fl owchart, and its complexity might therefore be calculated based
on the number of subsequent decisions that depend on it. Similarly, we might measure the impact of a
wrong decision on the enterprise as a whole and then use that measurement to assign a value or cost to
the content element.

Using these kinds of analytical methods, we might develop a content complexity matrix based on stan-
dard types of documents that are currently in use throughout an organization. For example, we might
measure the “cost” of a particular type of report not reaching all of its intended recipients in a timely
fashion. Time sheets, sales reports, expense reports, and the like could all be analyzed from this per-
spective to come up with a complexity matrix for a given workfl ow based on the kinds of content ele-
ments it contains.

87620c15.indd 37687620c15.indd 376 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

377

Chapter 15: Using Workfl ow to Manage Records

The problem with this approach is that the analysis is often too expensive. Although everyone may
recognize the value of content reengineering, few would be willing to take the entire system off-line
in order to execute it. Since most of the value would be derived from the ability to match a given con-
tent element to a particular business process, there is little opportunity to identify (and too little time
to implement) specialized tools that might help simplify the analysis. In other words, the hard part of
the analysis would already be completed by the time the content is available for further analysis. The
content is seen therefore as a by-product of the business process rather than an enabler for achieving
greater process effi ciency.

However, an interim approach is available using workfl ow activities. They provide an additional layer
within which to maneuver, so that instead of focusing on the complexity of the content itself, we can
focus on the workfl ow patterns that govern its use. Using this approach, we can identify three layers of
complexity associated with workfl ow activities in the records management arena:

 1. Category 1 — Primitive activities

 2. Category 2 — Generic records management activities

 3. Category 3 — Domain-specifi c activities

Primitive Activities
Primitive activities include the basic set of workfl ow activities provided by the Workfl ow Foundation,
as well as the SharePoint-specifi c workfl ow activities provided by MOSS. The following table lists the
primitive activities and their descriptions:

Activity Description

CallExternalMethod Works in conjunction with the HandleExternalEvent
activity to invoke a local method on a local service.

CancellationHandler Cleans up a composite activity if part of the activity cancels
before its children are done executing.

Code Allows you to write custom code as part of a workfl ow.

Compensate Allows you to compensate for failed transactions that have
already committed.

CompensationHandler Works in conjunction with the Compensate activity to
execute a group of activities when a transaction fails after
having been committed.

CompensatableSequence Implements the ICompensatableActivity interface to
provide a compensatable version of the Sequence activity.

CompensatableTransactionScope Implements the ICompensatableActivity interface to
provide a compensatable version of the TransactionScope
activity.

Continued

87620c15.indd 37787620c15.indd 377 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

378

Chapter 15: Using Workfl ow to Manage Records

Activity Description

ConditionedActivityGroup Executes child activities based on a set of conditions or code
such as a WhenCondition or UntilCondition.

Delay Works from within a Listen activity to specify a period of
time to delay.

EventDriven Executes child activities in response to a specifi c event.

EventHandlers Enables the connection of events to activities.

EventHandlingScope Allows you to run the main child activity concurrently with
EventHandlers activities while they are listening for events.

FaultHandler Works like a catch statement to handle a specifi ed fault type.

HandleExternalEvent Waits for an external event to occur, blocking execution of
the workfl ow.

IfElse Works like an If Else to specify a condition to determine
which branch to follow.

IfElseBranch Contains the activities for IfElse branches.

InvokeWebService Invokes a Web Service.

InvokeWorkflow Invokes another workfl ow.

Listen Contains multiple branches of event-driven activities. Can
only be used in sequential workfl ows.

Parallel Contains two or more Sequence activities that execute at
the same time.

Policy Implements a forward-chaining rules engine for specifying
business logic separate from the workfl ow.

Replicator Creates multiple instances of an activity at run time, allow-
ing you to specify an indeterminate number of times to
execute a given activity.

Sequence Allows you to execute a collection of activities in a pre-
defi ned sequence.

SetState Allows you to transition between states in a state machine
workfl ow.

State Represents a state in a state machine workfl ow.

StateInitialization Contains child activities that are executed when a state is
transitioned to.

87620c15.indd 37887620c15.indd 378 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

379

Chapter 15: Using Workfl ow to Manage Records

Activity Description

StateFinalization Contains child activities that are executed when a state is
transitioned out of.

Suspend Suspends the workfl ow.

SynchronizationScope Allows you to serialize access to critical code segments simi-
lar to thread semantics in programming languages.

Terminate Immediately terminates the workfl ow with no recourse.

Throw Throws an exception that can be handled by a Fault activity.

TransactionScope Used to wrap transactions, allowing you to roll back in case
of failure. Cannot be nested in another TransactionScope
activity.

WebServiceFault Allows you to raise a SOAP exception.

WebServiceInput Allows you to receive data from a Web Service.

WebServiceOutput Used to respond to a Web Service request

While Similar to a While loop that continues until a given condi-
tion is met.

The next table shows the set of workfl ow activities that are specifi c to SharePoint and are implemented
in the Microsoft.SharePoint.WorkflowActions assembly.

Activity Description

CompleteTask Marks a task as completed.

CreateTask Creates a task with the specifi ed property values.

CreateTaskWithContentType Creates a task item using a specifi ed content type.

DeleteTask Deletes a task item.

EnableWorkflowModification Enables a workfl ow modifi cation form so that the modifi cation
can be listed as an available workfl ow modifi cation in the user
interface (UI).

InitializeWorkflow Initializes a new instance of the workfl ow.

LogToHistoryList Logs information about the execution of a workfl ow to the
workfl ow history list.

OnTaskChanged Responds to changes to a task associated with the workfl ow.

Continued

87620c15.indd 37987620c15.indd 379 9/3/09 10:34:20 AM9/3/09 10:34:20 AM

380

Chapter 15: Using Workfl ow to Manage Records

Activity Description

OnTaskCreated Responds to the creation of a task associated with the workfl ow.

OnTaskDeleted Responds to the deletion of a task associated with the workfl ow.

OnWorkflowActivated Responds to the initiation of a new workfl ow for a list item.

OnWorkflowItemChanged Responds to changes in the item associated with the workfl ow.

OnWorkflowItemDeleted Responds to the deletion of a workfl ow item.

OnWorkflowModified Responds to the submission of a workfl ow modifi cation form.

RollbackTask Rolls a workfl ow task back to its last accepted state.

SendEmail Creates and sends an e-mail message to a specifi ed list of users.

SetState Sets the status text for the workfl ow that is displayed in the UI.

SharePointSequential
WorkflowActivity

Executes a sequence of SharePoint workfl ow activities.

Useful Activities for Records Management
The availability of generic enterprise content management activities makes it easier to incorporate
records management functionality into workfl ow programs. The following table lists the generic ECM
activities that are included in the Microsoft SharePoint ECM Starter Kit:

Activity Description

WssTask Creates a task, waits for it to be changed, then completes the task
and handles task deletion.

ApplyHold Puts an item in a Records Center on hold.

SendToRecordsRepository Sends an item to the Records Center associated with the site.

In addition to these, the general-purpose ECM activities listed in the following table can be built using
some of the code developed in the preceding chapters of this book.

Activity Description

RemoveFromHold Removes an item in a Records Center from a hold.

ExecuteFilePlan Executes a dynamic fi le plan for a Records Center site. The fi le plan can
be supplied by the workfl ow or loaded from the File Plan gallery.

SetExpirationPolicy Confi gures the expiration settings for a new or existing information policy.

87620c15.indd 38087620c15.indd 380 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

381

Chapter 15: Using Workfl ow to Manage Records

Activity Description

EnableBarcodePolicy Confi gures the barcode settings for a new or existing information policy.

EnableLabelPolicy Confi gures the labeling settings for a new or existing information policy.

GenerateAuditReport Generates a custom audit report for a list item and places the report into
a specifi ed document library.

ValidateListItem Uses the ListItemValidator to apply custom validation rules to a list
item. The validation rules can be supplied by the workfl ow or can be
loaded from a separate list.

Domain-Specifi c Records Management Activities
To further simplify the creation of workfl ows that support records management, domain-specifi c activi-
ties can be derived from a detailed analysis of the workfl ow associated with a particular regulation or
business rule that is driving the need for records management. The overriding goal here is to identify
high-value targets for automating a complex business process that is required in order to manage records
effectively for a given regulatory compliance scenario. Examples might include the generation of a report
from data provided during the workfl ow or the conditional execution of a workfl ow based on data gath-
ered in a document that has now been published or approved. The following table lists a few examples:

Regulation Activity Description

HIPAA ValidatePHIContent Checks whether an item contains Protected Health
Information (PHI) that might require special
processing.

SOX UpdateCEOCertification,
UpdateCFOCertification

SOX compliance requires a periodic certifi cation by
the CEO and CFO that disclosure controls and pro-
cedures are in place. These activities could be used to
enforce this requirement by creating the appropriate
tasks or generating notifi cations and reminders for
the responsible users.

Workflow Modeling
The easiest way to model a workfl ow is to start with a Visio diagram. While this works great for trivial
workfl ows, once you get to a certain level of complexity, a lot more effort is involved. Another way to
think about this is that sequential modeling is good for “primitive” or atomic operations, but is not as
good for describing more complex interactions between activities. As the number of cross-connections
increases, so does the overall complexity of the model. Consequently, its value — both in terms of its
ability to convey the logical fl ow and its ability to control that fl ow — is reduced.

87620c15.indd 38187620c15.indd 381 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

382

Chapter 15: Using Workfl ow to Manage Records

As mentioned earlier, state machine workfl ows are a more natural way to model how humans interact.
SharePoint workfl ows, and ECM workfl ows in particular, are basically describing human interactions,
so state machine workfl ow modeling offers a lot of promise. Still, there are well-known procedures such
as approval or task modifi cation that are good candidates for sequential workfl ows. Ultimately, ECM
solutions will include a mixture of both styles. The choice of a modeling template can also be infl uenced
by the complexity metrics introduced previously, and as shown in the following table:

Complexity Dominant Characteristic Modeling Template

Category 1 — Primitive Sequential Flowchart

Category 2 — Generic RM Event-driven Datafl ow diagram

Category 3 — Domain-
specifi c

Role-driven Cross-functional fl owchart/datafl ow

Although Visual Studio provides a great workfl ow development environment, it may not be the best choice
for initially modeling the workfl ow because developers tend to get sucked into “development mode” and
lose focus once they are back in the Integrated Development Environment (IDE). It is so easy to start pro-
totyping different ideas and dropping in pieces of code, and it is easy to get carried away with the details
of a particular property or data structure. I prefer to start with Visio because I can’t write code in Visio.
So the focus stays on design mode. Only after I’ve found the right level of granularity and I’ve shared it
with the client and the client agrees do I then go into Visual Studio to implement the model.

Visio is also a good tool for converting role/activity modeling artifacts into a workfl ow design because
the same terminology that the stakeholders have used during the discovery process can also be used to
describe the content elements being consumed and produced by the workfl ow. Since it is a role-driven
methodology, it is easy to create a cross-functional fl owchart or a cross-functional datafl ow diagram
and present that to the stakeholders as an additional tool to make sure the workfl ow design accurately
addresses their requirements. Microsoft Visio plus Microsoft Excel provides all the tools needed to
determine what content will be created as by-products of workfl ow activities and how they will feed
into other workfl ow state transitions. This is also where the high-value targets for building domain-
specifi c ECM activities will likely surface.

After the high-value ECM activity targets have been identifi ed, we can focus on the related content ele-
ments and either extend them using strongly typed XML schemas or simply use them as a reference to
build domain-specifi c components and workfl ow activities. As part of this component-building exer-
cise, we can also include additional support for workfl ow activities by including events that the work-
fl ow activities can handle or by exposing interfaces that they can more easily consume.

Finally, we want to expose the records management workfl ow activities to SharePoint designer so they
are available to declarative workfl ows and ultimately reduce the overall cost of building domain-specifi c
workfl ows. This process will yield assets that can be reused throughout the organization for any work-
fl ow scenario that involves ECM.

Designing workfl ow activities that work well as declarative “no-code” workfl ows requires some plan-
ning and optimization. Many of the out-of-the-box activities included with SharePoint were designed
especially for use in SharePoint Designer and are not supported in the Visual Studio IDE.

87620c15.indd 38287620c15.indd 382 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

383

Chapter 15: Using Workfl ow to Manage Records

Building a Workflow Activity Library
So what does it take to build a custom workfl ow activity library? The fi rst thing to do is create a separate
assembly for the workfl ow activities using the Workfl ow Activity Library project template in Visual Studio.
This is important primarily because we don’t want to complicate the deployment process by introducing
code that might not fi t within the security constraints needed for deploying the workfl ow assembly. It also
maintains a clean separation between the workfl ow and non-workfl ow-related aspects of the component so
that it can also be referenced easily from non-workfl ow code. The Workfl ow Activity Library project tem-
plate is located in the New Project dialog under the Workfl ow node of the language you are using.

The activity library is automatically set up with the appropriate references for building a standard
workfl ow. For SharePoint workfl ow activities, we must also add references to the Microsoft
.SharePoint and Microsoft.SharePoint.WorkflowActions assemblies.

The Visual Studio Workfl ow Activity Library project template also extends the user interface so that we
can add activities easily to the project. By right-clicking on the project node, we get a convenient context
menu command for creating a new activity, as shown in Figure 15-4.

Figure 15-4: Context menu command for
creating an activity in Visual Studio.

After creating the activity and giving it a name, the fi rst thing to do is close the workfl ow design sur-
face and then open the code-beside fi le by right-clicking on the component fi le in Solution Explorer and
selecting “View Code.” Now add using statements for the namespaces needed to code the activity.

using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using Microsoft.SharePoint.WorkflowActions;

87620c15.indd 38387620c15.indd 383 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

384

Chapter 15: Using Workfl ow to Manage Records

When adding a new activity module to a project, the project template automatically inherits from
SequenceActivity. In most cases, we should change this to Activity unless there is a need to execute
child activities in a predefi ned order. For the ECM workfl ow activities, a simple Activity derivation is all
that is needed. The fi nal steps are to add the dependency properties so that the workfl ow developer can
provide the information needed to execute the activity and override the Execute method.

With Visual Studio 2008, it’s very simple to create a dependency property. Dependency properties
are like wrappers around the actual properties or data members that contain the information passed
between the workfl ow activity and the workfl ow run time. Enabling this requires that each dependency
property is marked up with the appropriate attributes so that the workfl ow run time can interact with
them. This can involve a lot of keystrokes that basically just reference the actual property. To make this
easier to set up, Microsoft has provided a set of code snippets (which you can access by typing [Ctrl]+K
followed by [Ctrl]+X) that insert the appropriate information in a single step, as shown in Figure 15-5.

Figure 15-5: Dependency property code
snippet.

Finally, after building the activity library, the activities must be added to the toolbox so that workfl ow
developers can use them. This is a simple matter of right-clicking anywhere in the control toolbox,
selecting “Choose items,” and then browsing to the assembly and selecting the activities to add. At that
point, the activity can be dragged onto the design surface and confi gured as part of the workfl ow.

If you are building a workfl ow as part of the same Visual Studio solution, then the new workfl ow activ-
ity should appear in the toolbox automatically.

Testing Your Activities
To test the new workfl ow activities, create a new workfl ow project using the SharePoint 2007 Sequential
Workfl ow project template as shown in Figure 15-6.

Using the SharePoint Workfl ow Project Wizard, enter the name of the workfl ow and the address of
a SharePoint site to use for testing. This step allows Visual Studio to automatically confi gure the site
by associating the workfl ow template with a specifi c list, task list, and workfl ow history list. It also
generates and installs a workfl ow feature that makes the workfl ow template available to be executed.
Figure 15-7 shows the Wizard dialog as it appears in Visual Studio.

87620c15.indd 38487620c15.indd 384 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

385

Chapter 15: Using Workfl ow to Manage Records

Figure 15-6: Creating a new SharePoint Sequential
Workfl ow project.

Figure 15-7: Setting up the workfl ow project for debugging.

Next comes a dialog for selecting which lists the workfl ow should use, as shown in Figure 15-8, and a
fi nal dialog for specifying how the workfl ow should start, as shown in Figure 15-9.

After everything is done, the project folder will contain a feature.xml fi le and a workfl ow.xml fi le
that are used to install the template into SharePoint when [F5] is pressed. There is no need to add an
explicit reference to the custom workfl ow activity library, since that will be handled when the activity is
dragged onto the design canvas from the toolbox.

87620c15.indd 38587620c15.indd 385 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

386

Chapter 15: Using Workfl ow to Manage Records

Figure 15-8: Specifying the lists to be used by the workfl ow.

Figure 15-9: Setting up the workfl ow instantiation properties.

87620c15.indd 38687620c15.indd 386 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

387

Chapter 15: Using Workfl ow to Manage Records

Building Workflow Activities for
Records Management

The following sections step through the creation of general-purpose ECM workfl ow activities that can
be used to build real solutions, as illustrated in Figure 15-10. The fi rst uses the File Plan Schema API
developed in Chapter 5 to execute a fi le plan from data in an XML fi le attached to a list item in a form
library. The second activity uses the list item validator developed in Chapter 13 to validate the metadata
contained in a list item. The workfl ow developer provides the validation rules either directly as an XML
string or indirectly as another list item containing an InfoPath form. The validation rules are processed
and events are fi red, allowing the workfl ow developer to handle error conditions.

Start by creating a new workfl ow activity library project in Visual Studio called ECM2007
.Workfl owActivities. This project will contain each of the activities shown in the sections that follow.
After creating the project, delete the starter activity called Activity1.cs, and then add references to the
Microsoft.SharePoint and Microsoft.SharePoint.WorkflowActions assemblies. You’ll also
need to add references to the ECM2007 component library because the activities will call out to compo-
nents that are declared within that assembly.

SharePoint

Workflow Runtime

ECM Activities

IValidateListItem

List Item
Validator

Dynamic
File Plan

Figure 15-10: Custom records management workfl ow
activities.

To add each of the activities described below, you will right-click on the project node and then select the
Add ➪ Activity command from the context menu. This will bring up the Add New Item dialog with the
Workfl ow node pre-selected. Choose the Activity item template from the “Visual Studio installed tem-
plates” section. This will add the new activity with a design surface and a code-beside fi le.

Do not choose the “Activity (with code separation)” item template, as this would create a separate
XAML fi le for the activity defi nition.

87620c15.indd 38787620c15.indd 387 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

388

Chapter 15: Using Workfl ow to Manage Records

Executing a File Plan
Listing 15-1 shows a workfl ow activity that executes a dynamic fi le plan using the contents of an XML
data fi le stored in the list item associated with the workfl ow. The workfl ow developer provides the iden-
tifi er of a list item that contains the fi le plan and the URL of the Records Center site to which the fi le
plan should be applied. Optionally, the workfl ow developer can provide an Invoke event handler that
is called prior to the fi le plan execution so that the dependency properties can be initialized.

Listing 15-1: File plan execution workfl ow activity

using System;
using System.ComponentModel;
using System.Drawing;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Compiler;
using System.Workflow.ComponentModel.Design;
using ECM2007.RecordsManagement;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using Microsoft.SharePoint.WorkflowActions;

namespace ECM2007.WorkflowActivities
{
 [ActivityToolboxDisplayAttribute(“ExecuteFilePlan”, true)]
 [ToolboxItem(typeof(ActivityToolboxItem))]
 [ToolboxBitmap(typeof(ExecuteFilePlan), “Resources.JFH.ico”)]
 public partial class ExecuteFilePlan : Activity
 {
 public ExecuteFilePlan()
 {
 InitializeComponent();
 }

 #region Dependency Properties
 public static DependencyProperty __ContextProperty = DependencyProperty.
 Register(“__Context”, typeof(WorkflowContext), typeof(ExecuteFilePlan));

 [DescriptionAttribute(“__Context”)]
 [CategoryAttribute(“File Plan”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public WorkflowContext __Context
 {
 get
 {
 return ((WorkflowContext)(base.GetValue(ExecuteFilePlan.
 __ContextProperty)));
 }
 set
 {

87620c15.indd 38887620c15.indd 388 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

389

Chapter 15: Using Workfl ow to Manage Records

 base.SetValue(ExecuteFilePlan.__ContextProperty, value);
 }
 }
 public static DependencyProperty ListIdProperty = DependencyProperty.
 Register(“ListId”, typeof(string), typeof(ExecuteFilePlan));

 [DescriptionAttribute(“ListId”)]
 [CategoryAttribute(“File Plan”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public string ListId
 {
 get
 {
 return ((string)(base.GetValue(ExecuteFilePlan.ListIdProperty)));
 }
 set
 {
 base.SetValue(ExecuteFilePlan.ListIdProperty, value);
 }
 }
 public static DependencyProperty ListItemProperty = DependencyProperty.
 Register(“ListItem”, typeof(int), typeof(ExecuteFilePlan));

 [DescriptionAttribute(“ListItem”)]
 [CategoryAttribute(“File Plan”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public int ListItem
 {
 get
 {
 return ((int)(base.GetValue(ExecuteFilePlan.ListItemProperty)));
 }
 set
 {
 base.SetValue(ExecuteFilePlan.ListItemProperty, value);
 }
 }

 public static DependencyProperty RecordsCenterUrlProperty =
 DependencyProperty.Register(“RecordsCenterUrl”, typeof(string),
 typeof(ExecuteFilePlan));

 [DescriptionAttribute(“RecordsCenterUrl”)]
 [CategoryAttribute(“File Plan”)]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public string RecordsCenterUrl

Continued

87620c15.indd 38987620c15.indd 389 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

390

Chapter 15: Using Workfl ow to Manage Records

 {
 get
 {
 return ((string)(base.GetValue(ExecuteFilePlan.
 RecordsCenterUrlProperty)));
 }
 set
 {
 base.SetValue(ExecuteFilePlan.RecordsCenterUrlProperty, value);
 }
 }
 public static DependencyProperty InvokeEvent = DependencyProperty.
 Register(“Invoke”, typeof(EventHandler), typeof(ExecuteFilePlan));

 [DescriptionAttribute(“Invoke”)]
 [CategoryAttribute(“File Plan”)]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public event EventHandler Invoke
 {
 add
 {
 base.AddHandler(ExecuteFilePlan.InvokeEvent, value);
 }
 remove
 {
 base.RemoveHandler(ExecuteFilePlan.InvokeEvent, value);
 }
 }
 #endregion

 /// <summary>
 /// Logs an exception to the SharePoint workflow history list.
 /// </summary>
 internal static void LogExceptionToWorkflowHistory(Exception e,
 ActivityExecutionContext context, Guid workflowInstanceId)
 {
 ISharePointService service = (ISharePointService)context.
 GetService(typeof(ISharePointService));
 if (service == null)
 throw new InvalidOperationException();
 service.LogToHistoryList(workflowInstanceId,
 SPWorkflowHistoryEventType.WorkflowError, 0,
 TimeSpan.MinValue, “Error”, e.ToString(), “”);
 }

 /// <summary>
 /// Executes the workflow activity.
 /// </summary>

Listing 15-1: File plan execution workfl ow activity (continued)

87620c15.indd 39087620c15.indd 390 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

391

Chapter 15: Using Workfl ow to Manage Records

 protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext executionContext)
 {
 try
 {
 // Raise invoke event to execute custom code in the workflow.
 this.RaiseEvent(ExecuteFilePlan.InvokeEvent, this,
 EventArgs.Empty);

 // Elevate privileges to run under the application pool identity.
 SPSecurity.RunWithElevatedPrivileges(delegate
 {
 // open the source website from the context info
 using (SPSite site = new SPSite(__Context.Web.Site.ID))
 using (SPWeb web = site.AllWebs[__Context.Web.ID])
 {
 // locate the list item that contains the file plan data
 SPList sourceList = web.Lists[new Guid(ListId)];
 SPListItem sourceItem = sourceList.Items.
 GetItemById(ListItem);

 // extract the file plan data from the item
 FilePlan filePlan = FilePlan.Load(sourceItem);

 // execute the file plan on the target site
 using (SPSite recordsCenterSite = new
 SPSite(RecordsCenterUrl))
 using (SPWeb recordsCenter = recordsCenterSite.OpenWeb())
 filePlan.ConfigureRecordCenter(recordsCenter);
 }
 });
 }
 catch (Exception ex)
 {
 LogExceptionToWorkflowHistory(ex, executionContext,
 WorkflowInstanceId);
 throw new Exception(“File Plan execution failed”, ex);
 }
 return base.Execute(executionContext);
 }
 }
}

Validating List Item Metadata
We can also create a workfl ow activity that leverages the content validation components we created as
part of the ECM2007 foundation class library. Add another workfl ow activity called ItemValidator
using the code shown in Listing 15-2. This workfl ow activity validates a list item by applying validation
rules supplied as an XML string. The workfl ow developer provides the identifi er of the list item to be
validated and a string containing the validation rules. Optionally, the workfl ow developer can provide
an Invoke event handler that is called before the validation is attempted, and a Fail event handler that
is called if the validation operation fails.

87620c15.indd 39187620c15.indd 391 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

392

Chapter 15: Using Workfl ow to Manage Records

Listing 15-2: List item validation workfl ow activity

using System;
using System.ComponentModel;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Compiler;
using ECM2007.Validation;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using Microsoft.SharePoint.WorkflowActions;

namespace ECM2007.WorkflowActivities
{
 [ActivityToolboxDisplayAttribute(“ItemValidator”, true)]
 [ToolboxItem(typeof(ActivityToolboxItem))]
 public partial class ItemValidator : Activity
 {
 public ItemValidator()
 {
 InitializeComponent();
 }

 #region Dependency Properties
 public static DependencyProperty __ContextProperty = DependencyProperty.
 Register(“__Context”, typeof(WorkflowContext), typeof(ItemValidator));

 [DescriptionAttribute(“__Context”)]
 [CategoryAttribute(“Item Validator”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public WorkflowContext __Context
 {
 get
 {
 return ((WorkflowContext)(base.GetValue(ItemValidator.
 __ContextProperty)));
 }
 set
 {
 base.SetValue(ItemValidator.__ContextProperty, value);
 }
 }
 public static DependencyProperty ListIdProperty = DependencyProperty.
 Register(“ListId”, typeof(string), typeof(ItemValidator));

 [DescriptionAttribute(“ListId”)]
 [CategoryAttribute(“Item Validator”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public string ListId

87620c15.indd 39287620c15.indd 392 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

393

Chapter 15: Using Workfl ow to Manage Records

 {
 get
 {
 return ((string)(base.GetValue(ItemValidator.ListIdProperty)));
 }
 set
 {
 base.SetValue(ItemValidator.ListIdProperty, value);
 }
 }
 public static DependencyProperty ListItemProperty = DependencyProperty.
 Register(“ListItem”, typeof(int), typeof(ItemValidator));

 [DescriptionAttribute(“ListItem”)]
 [CategoryAttribute(“Item Validator”)]
 [BrowsableAttribute(true)]
 [ValidationOption(ValidationOption.Required)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public int ListItem
 {
 get
 {
 return ((int)(base.GetValue(ItemValidator.ListItemProperty)));
 }
 set
 {
 base.SetValue(ItemValidator.ListItemProperty, value);
 }
 }
 public static DependencyProperty RulesProperty = DependencyProperty.
 Register(“Rules”, typeof(string), typeof(ItemValidator));

 [DescriptionAttribute(“Rules”)]
 [CategoryAttribute(“Item Validator”)]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public string Rules
 {
 get
 {
 return ((string)(base.GetValue(ItemValidator.RulesProperty)));
 }
 set
 {
 base.SetValue(ItemValidator.RulesProperty, value);
 }
 }
 public static DependencyProperty InvokeEvent = DependencyProperty.
 Register(“Invoke”, typeof(EventHandler), typeof(ItemValidator));

 [DescriptionAttribute(“Invoke”)]
 [CategoryAttribute(“Item Validator”)]

Continued

87620c15.indd 39387620c15.indd 393 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

394

Chapter 15: Using Workfl ow to Manage Records

 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public event EventHandler Invoke
 {
 add
 {
 base.AddHandler(ItemValidator.InvokeEvent, value);
 }
 remove
 {
 base.RemoveHandler(ItemValidator.InvokeEvent, value);
 }
 }
 public static DependencyProperty FailEvent = DependencyProperty.
 Register(“Fail”, typeof(EventHandler), typeof(ItemValidator));

 [DescriptionAttribute(“Fail”)]
 [CategoryAttribute(“Fail Category”)]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
 Visible)]
 public event EventHandler Fail
 {
 add
 {
 base.AddHandler(ItemValidator.FailEvent, value);
 }
 remove
 {
 base.RemoveHandler(ItemValidator.FailEvent, value);
 }
 }
 #endregion

 /// <summary>
 /// Logs an exception to the SharePoint workflow history list.
 /// </summary>
 internal static void LogExceptionToWorkflowHistory(System.Exception e,
 ActivityExecutionContext context, Guid workflowInstanceId)
 {
 ISharePointService service = (ISharePointService)context.
 GetService(typeof(ISharePointService));
 if (service == null)
 throw new InvalidOperationException();
 service.LogToHistoryList(workflowInstanceId,
 SPWorkflowHistoryEventType.WorkflowError, 0, TimeSpan.MinValue,
 “Error”, e.ToString(), “”);

Listing 15-2: List item validation workfl ow activity (continued)

87620c15.indd 39487620c15.indd 394 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

395

Chapter 15: Using Workfl ow to Manage Records

 }

 /// <summary>
 /// Executes the activity.
 /// </summary>
 protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext executionContext)
 {
 try
 {
 // Raise Invoke event to execute custom code in the workflow.
 this.RaiseEvent(ItemValidator.InvokeEvent, this, EventArgs.Empty);

 // elevate privileges
 SPSecurity.RunWithElevatedPrivileges(delegate
 {
 // open target web from context info
 using (SPSite site = new SPSite(__Context.Web.Site.ID))
 using (SPWeb web = site.AllWebs[__Context.Web.ID])
 {
 // locate the source list
 SPList sourceList = web.Lists[new Guid(ListId)];

 // locate the list item
 SPListItem sourceItem = sourceList.Items.
 GetItemById(ListItem);

 // construct an item validator
 ListItemValidator validator = ListItemValidator.
 FromXml(Rules);
 bool isValid = validator.Validate(sourceItem);

 if (!isValid)
 {
 // notify the workflow that the validation failed
 this.RaiseEvent(ItemValidator.FailEvent, this,
 EventArgs.Empty);
 }
 }
 });
 }
 catch (System.Exception e)
 {
 LogExceptionToWorkflowHistory(e, executionContext,
 WorkflowInstanceId);
 throw new System.Exception(“Item validation failed”, e);
 }
 finally
 {
 }
 return base.Execute(executionContext);
 }
 }
}

87620c15.indd 39587620c15.indd 395 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

396

Chapter 15: Using Workfl ow to Manage Records

Extending SharePoint Designer to Use
Records Management Workflows

The Workfl ow Design Wizard that is built into SharePoint Designer 2007 can be a powerful tool for
creating workfl ows in the fi eld, provided that the collection of workfl ow activities is rich enough to
describe the business processes needed by a particular organization. Otherwise, the granularity of the
tool can be too fi ne-grained to be useful. Extending the set of available workfl ow activities to include
both general-purpose and domain-specifi c ECM workfl ow activities can add signifi cant value by
enabling business analysts to harness the power of ECM for use in day-to-day operations.

Extending SharePoint Designer 2007 to use custom workfl ow involves adding a fi le to the 12\
TEMPLATE\<locale id>\Workfl ow folder on the SharePoint Server. When SharePoint Designer loads
or creates a workfl ow, any fi les in that folder with the extension .ACTIONS are downloaded and used
to confi gure the workfl ow designer interface. The default fi le has the name WSS.ACTIONS, and the
entries it contains describe the kinds of activities that can be used in a declarative workfl ow, along with
detailed information about how to present the rules used to build conditions, specify actions, and inter-
act with each activity. By providing a customized version of this fi le, we can completely customize the
user interface presented in the workfl ow designer.

The steps to accomplish this for a given activity library are:

 1. Deploy the activity library to the Global Assembly Cache (GAC).

 2. Confi gure SharePoint to recognize the activity library.

 3. Create the .ACTIONS fi le to be used by SharePoint Designer.

You can deploy the activity library to the Global Assembly Cache as you normally would, by calling the
GACUTIL.EXE command-line utility from the post-build events in Visual Studio. Next, you must con-
fi gure SharePoint to recognize the activity library.

Deploying and Registering the Activity Library
After building the activity library and copying it to the GAC, it must be registered as a trusted assem-
bly in the web.confi g fi le associated with the web application. This is similar to confi guring a web part
as a safe control, but instead of adding an entry to the <SafeControls> section, you add an entry to
the <System.Workflow.ComponentModel.WorkflowCompiler> section. To do this, edit the web
.confi g fi le for the SharePoint web application and add an <authorizedType> element as follows:

<authorizedType Assembly=”ECM2007.WorkflowActivities, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=0b97b340d4a71524”
Namespace=”ECM2007.Workflow” TypeName=”*” Authorized=”True” />

Creating the .ACTIONS File
The fi nal step is to create the .ACTIONS fi le that describes the activity to SharePoint Designer. Since
this is an XML fi le, it can be created using Visual Studio or any XML Editor. Unfortunately, the XML
schema for this fi le is not included in the SharePoint SDK. Writing these fi les manually without some
kind of IntelliSense can be quite diffi cult, so with the help of my colleague Scot Hillier, I created the

87620c15.indd 39687620c15.indd 396 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

397

Chapter 15: Using Workfl ow to Manage Records

schema shown in Listing 15-3. Loading this schema into Visual Studio makes the job of declaring cus-
tom activities much easier.

Listing 15-3: WSSACTIONS.XSD

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”WSSActions”
 targetNamespace=”http://schemas.microsoft.com/sharepoint/”
 elementFormDefault=”qualified”
 xmlns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:mstns=”http://schemas.microsoft.com/sharepoint/”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 attributeFormDefault=”unqualified”>
 <xs:element name=”WorkflowInfo” type=”WorkflowRoot” />
 <xs:complexType name=”WorkflowRoot” mixed=”true”>
 <xs:all>
 <xs:element name=”Actions” type=”ActionsDefinition” minOccurs=”0”
 maxOccurs=”1” />
 <xs:element name=”Conditions” type=”ConditionsDefinition” minOccurs=”0”
 maxOccurs=”1” />
 </xs:all>
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”ConditionsDefinition”>
 <xs:sequence>
 <xs:element name=”Condition” type=”ConditionDefinition”
 maxOccurs=”unbounded” />
 </xs:sequence>
 <xs:attribute name=”And” type=”xs:string” fixed=”and” />
 <xs:attribute name=”Or” type=”xs:string” fixed=”or” />
 <xs:attribute name=”Not” type=”xs:string” fixed=”not” />
 <xs:attribute name=”When” type=”xs:string” fixed=”If” />
 <xs:attribute name=”Else” type=”xs:string” fixed=”Else if” />
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”ConditionDefinition”>
 <xs:sequence>
 <xs:element name=”RuleDesigner” type=”RuleDesignerDefinition” minOccurs=”0”
 maxOccurs=”1” />
 </xs:sequence>
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”ActionsDefinition”>
 <xs:sequence>
 <xs:element name=”Action” type=”ActionDefinition” maxOccurs=”unbounded” />
 </xs:sequence>
 <xs:attribute name=”Sequential” type=”xs:string” fixed=”then” />
 <xs:attribute name=”Parallel” type=”xs:string” fixed=”and” />
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”ActionDefinition”>
 <xs:sequence>

Continued

87620c15.indd 39787620c15.indd 397 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

398

Chapter 15: Using Workfl ow to Manage Records

 <xs:element name=”RuleDesigner” type=”RuleDesignerDefinition” minOccurs=”0”
 maxOccurs=”1” />
 <xs:element name=”Parameters” type=”ParametersDefinition” minOccurs=”0”
 maxOccurs=”1” />
 </xs:sequence>
 <xs:attribute name=”Name” type=”xs:string” use=”required” />
 <xs:attribute name=”ClassName” type=”xs:string” use=”required” />
 <xs:attribute name=”Assembly” type=”xs:string” use=”required” />
 <xs:attribute name=”Category” type=”xs:string” use=”required” />
 <xs:attribute name=”AppliesTo” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”all” />
 <xs:enumeration value=”doclib” />
 <xs:enumeration value=”list” />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”CreatesTask” type=”xs:boolean” use=”optional” />
 <xs:attribute name=”UsesCurrentItem” type=”xs:boolean” use=”optional” />
 <xs:attribute name=”CreatesInList” type=”xs:string” use=”optional” />
 <xs:attribute name=”ListModeration” type=”xs:boolean” use=”optional” />
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”RuleDesignerDefinition”>
 <xs:sequence>
 <xs:element name=”FieldBind” type=”FieldBindDefinition”
 maxOccurs=”unbounded” />
 </xs:sequence>
 <xs:attribute name=”Sentence” type=”xs:string” use=”required” />
 <xs:attribute name=”Name” type=”xs:string” use=”required” />
 <xs:attribute name=”AppliesTo” type=”xs:string” use=”required” />
 <xs:attribute name=”UsesCurrentItem” type=”xs:boolean” use=”optional” />
 <xs:attribute name=”Type” type=”xs:string” use=”optional” />
 <xs:attribute name=”FunctionName” type=”xs:string” use=”optional” />
 <xs:attribute name=”ClassName” type=”xs:string” use=”optional” />
 <xs:attribute name=”Assembly” type=”xs:string” use=”optional” />
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”FieldBindDefinition”>
 <xs:sequence>
 <xs:element name=”Option” type=”OptionDefinition” maxOccurs=”unbounded” />
 </xs:sequence>
 <xs:attribute name=”Id” type=”xs:unsignedByte” use=”required” />
 <xs:attribute name=”Field” type=”xs:string” use=”required” />
 <xs:attribute name=”Function” type=”xs:boolean” use=”required” />
 <xs:attribute name=”Text” type=”xs:string” use=”required” />
 <xs:attribute name=”DesignerType” use=”optional” >
 <xs:simpleType>

Listing 15-3: WSSACTIONS.XSD (continued)

87620c15.indd 39887620c15.indd 398 9/3/09 10:34:21 AM9/3/09 10:34:21 AM

399

Chapter 15: Using Workfl ow to Manage Records

 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”ChooseDocLibItem” />
 <xs:enumeration value=”ChooseListItem” />
 <xs:enumeration value=”CreateListItem” />
 <xs:enumeration value=”Date” />
 <xs:enumeration value=”Dropdown” />
 <xs:enumeration value=”Email” />
 <xs:enumeration value=”Integer” />
 <xs:enumeration value=”FieldNames” />
 <xs:enumeration value=”ListNames” />
 <xs:enumeration value=”Operator” />
 <xs:enumeration value=”ParameterNames” />
 <xs:enumeration value=”Person” />
 <xs:enumeration value=”SinglePerson” />
 <xs:enumeration value=”StringBuilder” />
 <xs:enumeration value=”Survey” />
 <xs:enumeration value=”TextArea” />
 <xs:enumeration value=”UpdateListItem” />
 <xs:enumeration value=”WritableFieldNames” />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”TypeFrom” type=”xs:string” use=”optional” />
 <xs:attribute name=”OperatorTypeFrom” use=”optional”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”DropDownMenu” />
 <xs:enumeration value=”FieldName” />
 <xs:enumeration value=”Left” />
 <xs:enumeration value=”Variable” />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”Value” type=”xs:string” use=”optional” />
 </xs:complexType>
 <!-- -->
 <xs:complexType name=”OptionDefinition”>
 <xs:attribute name=”Name” type=”xs:string” use=”required” />
 <xs:attribute name=”Value” type=”xs:string” use=”required” />
 <xs:attribute name=”TypeFilter” type=”xs:string” use=”optional” />
 <xs:attribute name=”UnaryHides” type=”xs:string” use=”optional” />
 </xs:complexType>
 <xs:complexType name=”ParametersDefinition”>
 <xs:sequence>
 <xs:element name=”Parameter” type=”ParameterDefinition”
 maxOccurs=”unbounded” />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name=”ParameterDefinition”>
 <xs:attribute name=”Name” type=”xs:string” use=”required” />
 <xs:attribute name=”Type” type=”xs:string” use=”required” />
 <xs:attribute name=”Direction” use=”required” >
 <xs:simpleType>

Continued

87620c15.indd 39987620c15.indd 399 9/3/09 10:34:22 AM9/3/09 10:34:22 AM

400

Chapter 15: Using Workfl ow to Manage Records

 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”In” />
 <xs:enumeration value=”Optional” />
 <xs:enumeration value=”Out” />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”InitialValue” type=”xs:string” use=”optional” />
 </xs:complexType>
</xs:schema>

The .ACTIONS fi le describes the public properties exposed by the activity and tells SharePoint Designer
how to map those properties into the rules that are displayed to the user. The following code shows a
custom .ACTIONS fi le for the custom activity that validates a list item:

<?xml version=”1.0” encoding=”utf-8” ?>
<WorkflowInfo>
 <Actions Sequential=”then” Parallel=”and”>
 <Action Name=”Apply Validation Rules to Item”
 ClassName=”ECM2007.WorkflowActivities.ItemValidator”
 Assembly=”ECM2007.WorkflowActivities, Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=eb8a6a1622425a15”
 AppliesTo=”list”
 UsesCurrentItem=”true”
 Category=”Core Actions”>
 <RuleDesigner Sentence=”Validate using %1”>
 <FieldBind Field=”Rules” Text=”these rules” Id=”1” />
 </RuleDesigner>
 <Parameters>
 <Parameter Name=”Rules” Type=”System.String, mscorlib”
 Direction=”In” />
 <Parameter Name=”__Context” Type=”Microsoft.SharePoint.
 WorkflowActions.
 WorkflowContext, Microsoft.SharePoint.WorkflowActions”
 Direction=”In”/>
 <Parameter Name=”__ListId” Type=”System.String, mscorlib”
 Direction=”In” />
 <Parameter Name=”__ListItem” Type=”System.Int32, mscorlib”
 Direction=”In” />
 </Parameters>
 </Action>
 </Actions>
</WorkflowInfo>

The Actions tag tells SharePoint Designer what to display for each action in the set. Within that, the
Action tag describes the individual action. The Name attribute is what gets displayed in the Designer. The
ClassName and Assembly attributes are used in the generated XAML for the workfl ow. The interesting
part is the way that the RuleDesigner and Parameter tags work. The RuleDesigner tag lets us set up a
sentence that gets displayed in the Designer as the user builds the workfl ow. The Sentence attribute then
allows us to bind to the activity properties and then substitute their values when the activity is executed.

Listing 15-3: WSSACTIONS.XSD (continued)

87620c15.indd 40087620c15.indd 400 9/3/09 10:34:22 AM9/3/09 10:34:22 AM

401

Chapter 15: Using Workfl ow to Manage Records

The FieldBind tag includes a Field attribute that specifi es a given property by name. This is a refer-
ence to a specifi c property exposed by the workfl ow activity. The DesignerType attribute specifi es
which kind of control to use to gather the data, and the Id property specifi es the substitution ID to use
when building the sentence. Finally, the Parameter tag specifi es the activity side of the contract and is
used when calling the Execute method of the activity on the server.

We can declare as many actions as we want in the fi le. A good rule of thumb is to use a separate
.ACTIONS fi le for each logical group of custom activities we want to deploy. Once we’ve created
the .ACTIONS fi le and copied it to the server, we can refresh the site in SharePoint Designer and the
custom activity will now appear in the Workfl ow Designer as shown in Figure 15-11.

Figure 15-11: Custom activity in the Workfl ow Designer.

Summary
This chapter introduced SharePoint workfl ows and stepped through the process of creating custom work-
fl ows and workfl ow activities using the Visual Studio Workfl ow Designer, with the goal of providing a
foundation for identifying and building specialized workfl ow activities that support the construction
of records management and other enterprise content management solutions. We followed the approach
taken by the Microsoft ECM team when they created the ECM Starter Kit, which included ECM-specifi c
workfl ow activities, and then we identifi ed records-management-specifi c activities based on code devel-
oped in previous chapters, such as the list item validator and the dynamic fi le plan component.

Workfl ow activities are a lot like web parts. The richer the collection of activities, the more powerful
are the workfl ows that can be built. We looked at ways to leverage the power of Visual Studio to create
specialized records management workfl ow activities and take advantage of the fl exibility that is built
into SharePoint Designer 2007 to create declarative workfl ows that require no coding. By extending
SharePoint Designer to incorporate our records management workfl ow actions, we can expose a higher
level of functionality to a wider audience of administrators, developers, and business analysts.

87620c15.indd 40187620c15.indd 401 9/3/09 10:34:22 AM9/3/09 10:34:22 AM

87620c15.indd 40287620c15.indd 402 9/3/09 10:34:22 AM9/3/09 10:34:22 AM

The DoD 5015.2 Add-On Pack

The Department of Defense (DoD) 5015.2 Add-On Pack was created in response to the fact that
the out-of-the-box features of the default MOSS Records Center do not meet the requirements
of the DoD 5015 standard. However, many of those requirements can be addressed by applying
the typical techniques used to build any solution on the Windows SharePoint Services platform.
Viewed in this light, the DoD 5015.2 Add-On Pack provides a great starting point for understand-
ing how to extend the out-of-the-box features of the MOSS platform to address specifi c regulatory
requirements. In fact, the approach taken by the designers of the Add-On Pack truly underscores
the power of the MOSS platform and the many extensibility points it offers for handling different
kinds of requirements.

Requirements Addressed by the
Add-On Pack

The primary goal of the Add-On Pack is to enhance the default Records Center site so that it includes
the specifi c Records Management features required by the DoD 5015 standard. It is not intended to be
used in production, but rather as a starting point for developing a compliant solution. It does, however,
demonstrate many useful techniques that can be applied to many compliance scenarios.

The specifi c requirements addressed by the Add-On Pack are:

Global periods and events ❑

Disposition and cutoff processing ❑

Record categories ❑

87620c16.indd 40387620c16.indd 403 9/2/09 10:22:31 AM9/2/09 10:22:31 AM

404

Chapter 16: The DoD 5015.2 Add-On Pack

Vital records ❑

Supplemental markings and access controlled columns ❑

Record relationships ❑

Enhanced search center functionality ❑

Workfl ow-assisted records management ❑

We’ll discuss all of these requirements in this section except for workfl ow-assisted records manage-
ment, which is explored at the end of this chapter.

New Concepts
In order to address the DoD 5015.2 compliance requirements, the Add-On Pack introduces several con-
cepts that provide the foundation for understanding how its components are intended to work. These
concepts are derived directly from the language of the DoD 5015.2 standard.

Global Periods
Global periods are spans of time that are declared centrally so they can be shared throughout the Records
Center site. The Add-On Pack creates a special list in which global period entries are defi ned. Each item
specifi es the period name, lengths, units, and a starting date. As records are managed, special retention
rules can be applied that refer back to that period of time. The main advantage is that the time period
can be changed easily without touching the records themselves or the retention policy. The actual expi-
ration date is computed by comparing the record metadata to the information contained in the Global
Period object with which it is associated.

Global Events
Global events are events that occur within an organization that may trigger the disposition of one or
more records. The standard example given is that of employee termination. Whenever a person is hired
in an organization, it is reasonable to assume that at some point the employee relationship will end. At
that time, certain processing will have to occur related to the termination of the employer/employee
relationship. One way to ensure that the appropriate end-of-employment processing actually happens
is to set up an event mechanism that invokes the corresponding process at that time. The Add-On Pack
adds Global Event objects to help with this kind of scenario.

The problem is that global events are not abstract event defi nitions. They are actual event instances that
have to be created for every future occurrence. In the case of the employee relationship, it would mean
that a records manager would need to create a separate global employee termination event for each
and every employee so that when that employee’s employment ends, the appropriate record disposition
logic can be invoked. Obviously, this would not work very well for most organizations, even though it
technically meets the DoD 5015 standard. A better solution would be to provide a more general event-
ing mechanism, perhaps based on a set of rules that are evaluated whenever an employee is terminated.
It is nevertheless instructive to examine the way the current feature is implemented.

Disposition and Cutoff Processing
According to the DoD specifi cation, to cut off a record means to break or end it at regular intervals to
permit its disposal or transfer as a completed unit. This concept allows records to be terminated in

87620c16.indd 40487620c16.indd 404 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

405

Chapter 16: The DoD 5015.2 Add-On Pack

batches so that old fi les can be replaced with new ones while the workfl ow continues. There are specifi c
rules for when cutoffs should be applied, based on a record’s retention period. For example, records
with a retention period of less than a year are typically cut off when the retention period ends. On the
other hand, records with a retention period of a year or more are typically cut off at the end of each fi s-
cal or calendar year.

The DoD 5015.2 specifi cation allows for the handling of more complex retention rules, which may be
driven by many factors that can infl uence a record throughout its life cycle. However complex the
retention rules are, at some point each record must be “disposed of,” and, consequently, the meaning of
disposition can also depend on a specifi c set of rules. The Add-On Pack provides a way to specify two
kinds of disposition rules, called disposition instructions. It does this by defi ning two content types. The
Global Event Disposition Instruction defi nes a list item that is triggered by an event in the global events
list. The Record Event Disposition Instruction defi nes a list item that is triggered by a date column on an
individual record instance. Using these content types and their associated lists, the records manager
can set up disposition rules that can then be applied to records by associating them with record catego-
ries. The installed timer jobs take care of locating any affected records by fi nding records that match
those categories and then examining and processing any associated disposition instructions.

Global Event Disposition Instruction
The Global Event Disposition Instruction content type includes a title, description, and number of units
(Days, Months, or Years) used to calculate the disposition period. The actual disposition is specifi ed
using a choice fi eld that can have one of the following values:

Destroy ❑

Transfer ❑

Destroy After Transfer ❑

If Transfer is selected, there is also a fi eld for recording the destination path.

The Global Event Disposition Instruction content type includes a lookup fi eld for selecting the global
event that will trigger the retention period. When the instruction is processed, the specifi ed event is
examined to determine whether it has occurred, and the retention period is calculated based on the
disposition offset and units specifi ed in the instruction. If the retention period has elapsed, then the
associated records are added to the list of records that are ready to be processed.

Record Event Disposition Instruction
The Record Event Disposition Instruction content type operates similarly to the Global Event Disposition
Instruction, except that it is triggered by a date column in the record itself. The set of date columns
you can use are determined by the presence of special fi eld types that are installed along with the
Add-On Pack. When the timer job runs, it looks at the column type specifi ed in the instruction and then
searches for matching column types in the affected records. Once a matching column type is located,
the date value is used to determine whether the retention period has elapsed for that record.

The Add-On Pack defi nes three additional content types to support cutoff processing. These are
described in the following sections.

87620c16.indd 40587620c16.indd 405 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

406

Chapter 16: The DoD 5015.2 Add-On Pack

Global Period Cutoff Instruction
Global Period Cutoff Instructions are useful for applying disposition rules on calculated dates that depend
on a time period. A typical example would be the periodic disposition of fi nancial records at the end
of each fi scal year. Instead of calculating the cutoff period for a given record based on the date that the
record was created, a Global Period Cutoff Instruction enables the disposition rule to be applied to all records
that were created anytime during the fi scal year. Placing the rules in the cutoff instruction allows the
disposition rules to be modifi ed without having to change the records themselves. The cutoff instruction
simply includes a title, description, and a lookup to the Global Period object to which it applies.

Global Event Cutoff Instruction
The Global Event Cutoff Instruction content type is used to apply disposition rules for event-based reten-
tion periods when the event applies to a category.

Folder Event Cutoff Instruction
The Add-On Pack allows global events to be associated with folders. This provides a location-based
disposition mechanism whereby the disposition rules are applied to all records contained in the folder
when the global event period ends. The Folder Event Cutoff Instruction content type allows the records
manager to set up a cutoff that is also based on the folder’s Global Event trigger. Thus, whenever the
event is triggered, the cutoff instruction is applied.

Record Categories
The Add-On Pack creates a special content type for defi ning record categories. This content type is pro-
vided as part of the File Plan Builder, which is simply a set of lists that are pre-confi gured to enable the
creation of these special list items. The true power of the Record Category content type comes from its
ability to reference multiple disposition instructions through a lookup fi eld that searches for all of the
available disposition rules that have been created in the site.

This is where you start to see the “big picture” and everything starts to fall into place with the Add-On
Pack. By using record categories, you can create groups of disposition instructions and associate them
with other objects, such as records and folders, and the workfl ows and timer jobs included in the Add-On
Pack will apply them consistently to the affected records. It adds that extra layer of indirection that pro-
vides the fl exibility needed to address real-world scenarios. Since record categories behave as aggregate
instruction sets that are applied to groups of records at once, they are also a convenient place to include
other information that can be used to control how those records are processed, for example, whether
the records associated with the category should be treated as permanent records and are therefore pre-
vented from being deleted, or whether they are marked as vital records that require periodic review.
Consequently, additional fi elds are included within the content type to accommodate these indicators.

Vital Records
Vital records are special records that are considered critical for the continuity of an organization. If
the organization suffers a catastrophic event, these are the records that will be examined by foren-
sic accountants and others involved in the aftermath. These are things like property deeds, fi nancial
instruments, and the like.

87620c16.indd 40687620c16.indd 406 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

407

Chapter 16: The DoD 5015.2 Add-On Pack

DoD 5015 requires that a certifi ed records management system must provide a means for designating
certain users or groups to routinely review and manage vital records for the organization. Thus, there
must be a way to designate a particular folder or category as one that contains vital records and to assign
them to particular users or groups. This is done using a special fi eld called a Vital Records Indicator, which
is added to a Record Folder, along with another fi eld that specifi es the amount of time between reviews of
vital records and the user ID or the name of the group responsible for reviewing the records in the folder.

Supplemental Markings and Access Constraining Columns
The term supplemental markings refers to the idea that certain documents carry special processing instruc-
tions in the form of markings that are intended only to control their processing and handling, and not to
specify how they are classifi ed. Specifi cally, the DoD 5015 standard requires that a certifi ed software sys-
tem support the use of supplemental markings to grant access to individual records for designated users
and groups. This feature is part of the record-level security requirement. Two forms of record-level secu-
rity are supported: supplemental markings and access control columns (or access constraining columns).

Supplemental markings are created as items in the Supplemental Markings list. The user specifi es the
name of the marking and the list of users and groups who will be allowed to assign the marking to
a record. Once created and assigned to a record, the specifi ed users and groups will be the only ones
allowed to view the record after the Advanced Access Control timer job runs and updates the item-level
permissions on the corresponding records.

Users can also use the Item Level Access Control page to declare columns as “access constraining.”
Once a column is declared as access constraining, its value must be chosen from a predefi ned selection
list specifi ed by the Records Center administrator. A special list is provided to enable the administrator
to add values for these columns and to associate users and groups with specifi c values.

Record Relationships
Record relationships are used to link records together in a hierarchy or in a sequence. The Add-On Pack
defi nes the following three relationships by default:

Succession ❑ — One record supersedes another.

Rendition ❑ — One record is a copy of another.

Attachments ❑ — One record is attached to another.

The user creates and manages record relationships by creating a Record Relationship Template item
in the Record Relationship Templates list of the Records Center site. Two types of template are avail-
able — hierarchical or peer. A hierarchical relationship is a directed relationship between two records,
whereas a peer relationship is undirected. The template itself consists of a title, description, and custom
text that is used to describe the relationship in views where the record relationship is displayed. For
example, if a new relationship template with the title “Cross Reference” is created, then the custom text
might be entered as “a cross reference with” to indicate how the records are related to one another.

Once the template has been created, the new relationship will appear in the list of avail-
able relationships that is presented when the user clicks on the hyperlink displayed by the
RecordRelationshipsFieldControl.

87620c16.indd 40787620c16.indd 407 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

408

Chapter 16: The DoD 5015.2 Add-On Pack

Enhanced Search
The enhanced search functionality provided by the Add-On Pack includes the following additional fea-
tures, which are not found in the standard Records Center:

The ability to specify the order in which selected properties are displayed for users, and the ❑

ability for users to specify which properties they wish to see

The ability to search within the current result set ❑

The ability of administrators to confi gure the default properties available for searching ❑

The ability to search on null and blank columns and to use wildcard characters ❑

This functionality is implemented in the RecordSearch.aspx application page that is installed into the
Layouts folder. Figure 16-1 shows the user interface that end-users see after the administrator has con-
fi gured record search fi elds.

Figure 16-1: Enhanced record search page.

End-users will see an error page until the record search fi elds are confi gured.

To confi gure the search fi elds, an administrator must open the “Manage Record Center Search” link from
the Site Settings page. This page, shown in Figure 16-2, displays a list of managed search columns that can
be selected for inclusion on the search page. Now, when the user navigates to the record search page, the
property dropdown will display only the columns that have been provisioned by the administrator.

87620c16.indd 40887620c16.indd 408 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

409

Chapter 16: The DoD 5015.2 Add-On Pack

Figure 16-2: Record search fi eld confi guration page.

Installing the Add-On Pack
The Add-On Pack comes as a Windows installer (MSI) fi le that is run on any web server in the SharePoint
farm. To run the installer, you must be logged in as a Farm Administrator. When the installer is executed,
it deploys a SharePoint solution package called DoD_5015_2_Add_On_Pack to every web application in
the farm. The solution package, in turn, installs and activates the features needed to provide the addi-
tional functionality required by the solution.

To install the Add-On Pack, perform the following steps:

 1. Download the installation package from the Microsoft Download center at www.microsoft.
com/downloads/. You can search for “Offi ce SharePoint Server 2007 DoD 5015.2 Resource Kit.”

 2. Run the MSI fi le on any machine in the SharePoint farm. You must be logged in as a Farm
Administrator in order to run the installer. You can double-click on the installer from Windows
Explorer, or run it from a command line to specify either of two command-line parameters.
Specifying /SkipAdd True on the command line will prevent the installer from adding the solu-
tion to the Farm solution store. Specifying /SkipDeploy True will add the solution to the Farm,
but will not automatically deploy it.

87620c16.indd 40987620c16.indd 409 9/2/09 10:22:32 AM9/2/09 10:22:32 AM

410

Chapter 16: The DoD 5015.2 Add-On Pack

Keep in mind that there are three steps involved in the installation of the Add-On Pack. First, there is
the machine-level installation, which copies the DLLs onto the SharePoint Server. The second part is
the SharePoint installation, which adds the solution to the SharePoint farm, thereby making it avail-
able for deployment. Specifying /SkipAdd True performs only the machine-level installation, requiring
the solution package to be installed manually. Finally, there is the actual SharePoint deployment step,
which occurs after the solution package is added to the farm. Specifying /SkipDeploy True performs
only the machine-level and the SharePoint installation, so that the solution shows up in the Central
Administration web site but is not automatically deployed.

 3. Once the solution is deployed, create a new Records Center site based on the default site defi ni-
tion. The site collection feature should automatically activate. If you already have a Records
Center site created, you will have to activate the site collection feature manually. This feature
must be activated before the web-level features are activated, and you must be logged in as a
Farm Administrator in order to activate it.

 4. Activate the web-level features on the Records Center site to create the custom lists and pre-
populate them with default values. The Add-On Pack only supports activation in the root web
of the site collection. There are two features that can be activated. The Web Components feature
sets up the lists and data, and the E-mail Router feature installs a custom router that can handle
e-mail records submitted from an Exchange 2007 managed folder.

The Web Components feature must be activated before the E-mail Router feature and may only be acti-
vated from the command line using STSADM.

When you install the Add-On Pack and create a Records Center site, it looks like any other Records
Center site until you activate the web-scoped features. Then it takes on different characteristics because
of the specialized lists and other components that are enabled. Although the site collection features are
activated automatically when the solution is deployed, the web-scoped features have to be activated
manually after creating the site. Figure 16-3 shows the home page of an enhanced Records Center site.

Figure 16-3: Enhanced Records Center home page.

87620c16.indd 41087620c16.indd 410 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

411

Chapter 16: The DoD 5015.2 Add-On Pack

The Components Installed by the
Add-On Pack

The Add-On Pack installs the following components that together provide the extended functionality
needed for DoD 5015.2 compliance:

The RecordCenterRouter feature ❑

The RecordCenterAddonPack web feature ❑

The RecoredCenterAddonPack SiteWorkfl ows feature ❑

Custom fi eld types ❑

Custom fi eld controls ❑

Content types ❑

Timer jobs ❑

Workfl ows ❑

STSADM commands ❑

The following sections describe each component and the functionality it provides.

The RecordCenterRouter Feature
The RecordCenterRouter feature is a web-scoped feature that is activated on the Records Center site. It
includes an activation dependency on the Records Center Add-On Pack web feature so that it cannot
be activated without the rest of the Add-On Pack components installed. This feature installs a custom
router that provides the extended record routing logic required by the DoD 5015 standard.

See the section at the end of the chapter entitled, “The Records Center E-mail Router,” for more infor-
mation about how the router works.

The RecordCenterAddonPack_Web Feature
The RecordCenterAddonPack web feature is responsible for installing most of the other components
used by the Add-On Pack. It also double-checks upon activation to make sure that the feature is being
activated by a user with Farm Administrator privileges. Also during activation, the feature performs
some additional checks to ensure that the required components have all been installed properly and
that the custom lists have been populated with default values. For instance, the default groups, roles,
and relationships are pre-populated with data, and special web properties are added to the SPSite and
SPWeb objects associated with the Records Center site so that the other components can access them.

Once the basic components have been set up, the feature activation code creates the task and history lists
needed by the DoD 5015.2 workfl ows and then creates the necessary workfl ow associations and sets up
the workfl ow templates so that they appear on the corresponding lists. Finally, it installs the custom timer
job components that are used to periodically check each list for items that require special processing.

87620c16.indd 41187620c16.indd 411 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

412

Chapter 16: The DoD 5015.2 Add-On Pack

The RecordCenterAddonPack_SiteWorkfl ows Feature
The RecordCenterAddonPack_SiteWorkfl ows feature installs the custom workfl ows and InfoPath forms
used by the Add-On Pack. There are three primary workfl ows and one auxiliary workfl ow installed by
the feature to support cutoff approval, disposition, and vital records review. The individual workfl ows
are described in detail in the section below entitled, “Workfl ows.”

Custom Field Types and Field Controls
In order to enable the enhanced functionality needed by various features, the Add-On Pack creates
several custom fi eld types that are used to handle special requirements imposed by the DoD 5015.2
specifi cation. Field types in SharePoint behave like data types in a programming language. They defi ne
the type and format of data that can be stored in a column attached to a list item. Certain features of
the DoD 5015.2 specifi cation require that default values are provided for fi elds associated with a record.
This applies to choice fi elds, text fi elds, and user selection fi elds. Other features of the Add-On Pack
require the pre-selection of lookup values so that records managers are not required to set them manu-
ally. Similarly, certain fi elds must be marked read-only. The following table lists the custom fi eld types
that are installed by the Add-On Pack to provide these capabilities:

Field/Control Type Description

DefaultingChoiceField,
DefaultingLookupField,
DefaultingTextField,
DefaultingUserField

Automatically checks if the fi eld is associated with a record folder
or category and sets itself to the appropriate default value.

ExtendedDateTimeField Adds support for converting null date values to text
and for rending the value in HTML. Also overrides the
GetValidatedString routine to provide better date validation
logic.

ParentFoldersLookupField Ensures that the control is only placed on valid pages within the
Records Center site, and then populates a DropDownList control
with the names of parent record folders relative to the current
page within the site.

ReadOnlyDateTimeField,
ReadOnlyLookupField,
ReadOnlyTextField

Sets the ControlMode to SPControlMode.Display to render the
control as read-only.

RecordRelationshipsField Displays record relationships in a modal dialog, allowing the
user to select items from the list.

RecordRoutingField Performs a query to obtain the list of pending e-mail records and
displays them in a DropDownList along with the target folder
URL for each item.

RecordVersionsField Displays record versions in a modal dialog, allowing the user to
select items from the list.

87620c16.indd 41287620c16.indd 412 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

413

Chapter 16: The DoD 5015.2 Add-On Pack

Content Types
The Add-On Pack creates several content types that control the functionality of various components.
In many cases, the components check whether the item being acted on is based on one of these content
types (see following table):

Content Type Description

Access Constraining
Column

Allows the user to defi ne a choice value for an access-constraining
column.

Correspondence Record Use this content type for records that are communications between
people. The Email Record content type is a child of this type.

Email Record All e-mail records submitted to the Records Repository should be of
this type.

Folder Event Cutoff
Instruction

Creates a cutoff instruction that is triggered by an event trigger on a
category’s folders.

Global Event Cutoff
Instruction

Creates a cutoff instruction that is triggered by an event from the
Global Events list.

Global Period Cutoff
Instruction

Creates a cutoff instruction that causes cutoff to reoccur every time a
global periods ends.

Nonelectronic Record All non-electronic records submitted to the Records Repository
should be of this type. The physical storage of these records is man-
aged outside the electronic repository.

Record Category Defi nes a record category for the site.

Record Category On
Record Folders List

Items of this type are used to navigate to the correct category so that
users can add a folder in that category.

Record Folder Container Creates a container for record folders.

Record Folder Provides a way to group records together so that their disposition
occurs simultaneously.

Record All records submitted to the Records Repository should be of this
type or a child of this type.

Timer Jobs
Much of the functionality provided by the Add-On Pack is handled using SharePoint Timer Jobs. This
allows the specialized processing to be scheduled independently so they don’t affect the performance
of the Records Center.

E-mail Record Processing Timer Job ❑ — This job searches for pending e-mail records and sched-
ules them for review.

87620c16.indd 41387620c16.indd 413 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

414

Chapter 16: The DoD 5015.2 Add-On Pack

Folder Hold Timer Job ❑ — This job is responsible for ensuring that folder holds are applied to
all records contained in the folder.

Cutoff Approval Job ❑ — This job is responsible for initiating the Cutoff Approval workfl ow for
all affected folders and categories.

Record Local Events Job ❑ — The Add-On Pack allows you to extend the content types used to
declare records by inheriting from the types it creates in the Records Center. When extending
one of these content types, you may add a date column or one of the extended date columns
used to specify “Record Local Events.” This timer job searches for any such extensions and
updates the hidden list of fi eld names that defi ne Record Local Events.

Advanced Access Control Job ❑ — This job is responsible for updating the declared record per-
missions that are determined by Access Control columns and Supplemental Markings. When
this job runs, it enumerates over all sites in all site collections of the farm in search of any site for
which advanced access control has been enabled and then processes them. This determination is
made based on the presence of a Boolean property that is added to the property bag of the site
when the Add-On Pack web feature is activated.

Vital Records Review Job ❑ — This job is responsible for initiating the Vital Records Review
workfl ow.

Workfl ows
The following table lists the workfl ows that are included in the Add-On Pack. The sections that follow
describe each workfl ow in greater detail.

Workfl ow Description

Cutoff Approval
Workfl ow

This workfl ow facilitates the cutoff process. Cutoff allows records man-
agers to batch expiration so that records are processed in groups.

Cutoff Approval Reverse
Workfl ow

This workfl ow facilitates the cutoff approval reversal process.

Disposition Approval
Transfer

This workfl ow is used to facilitate the transfer or deletion of a record
based on its current disposition instruction. It is auto-started by the
expiration framework.

Vital Record Review
Workfl ow

This workfl ow facilitates the periodic review of vital records. If the
vital record indicator fi eld is set to Yes, then items in a given folder will
undergo a periodic review.

The Cutoff Approval Workfl ow
The Cutoff Approval workfl ow is included in the Add-On Pack to allow records with specifi c cutoff
dates to be approved for processing. This workfl ow facilitates the regular review of records that should

87620c16.indd 41487620c16.indd 414 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

415

Chapter 16: The DoD 5015.2 Add-On Pack

be handled according to cutoff rules by assigning cutoff approval tasks or notifying the appropriate
persons if there are no records that meet the cutoff criteria. The fl owchart shown in Figure 16-4 illus-
trates the processing steps involved in the workfl ow.

Start

Records to
Process?

Yes No

Records to
Process?

No Yes

Got Records to Cut Off

Update Task

Create Cutoff Approal
Task

Complete Cutoff
Approval Task

Complete Cutoff
Rejection Task

End

Update Last
Cutoff Date

Write No Records to
Cutoff to Audit

Send No Records to
Cutoff E-mail

OnTaskCreate:Set
Permission

OnTaskChanged:
Check Completion

Cutoff Date
Approved?

Yes No

Figure 16-4: Cutoff Approval workfl ow.

The Cutoff Approval Reverse Workfl ow
The Cutoff Approval Reverse workfl ow is used to reverse the cutoff approval process for an item. This
workfl ow simply invokes the ReverseCutoff method of the Cutoff Approval workfl ow, which searches
through all of the web sites in the farm that have been enabled for cutoff approval to locate the record folder
or record category associated with the item. It then resets the fi ling status to Open and clears the cutoff date.

87620c16.indd 41587620c16.indd 415 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

416

Chapter 16: The DoD 5015.2 Add-On Pack

The Disposition Approval Transfer
The Disposition Approval Transfer workfl ow facilitates the transfer or deletion of a record based on its cur-
rent disposition instruction. The disposition of a record may occur independently of any statically defi ned
retention period and may be repeated periodically, depending on the type of disposition and the instruc-
tions it contains. The workfl ow assigns tasks based on the current permissions associated with the record
as well as other factors. Figure 16-5 shows the processing steps involved in the workfl ow.

Start

Records
Manager Group

Exists?

Yes

Records to be
Dispositioned?

Disposition
Approval Task
Completed?

Yes

No

Yes

No

Get Records to
Dispostion Approval

Log No Records
Manager Group

End

Create Disposition Task

Long Task Assigned

OnTaskCreated:
Set Permission

OnTaskChanged:
Update Disposition

Approval Task

Long Task Completed

Complete
Approval Process

Log No Records
to Disposition

Log Workflow
Completed

Figure 16-5: Disposition Approval Transfer.

The Vital Record Review Workfl ow
The Vital Record Review workfl ow facilitates the periodic review of records contained in folders that
have the vital record indicator fi eld set to Yes. Figure 16-6 shows the processing logic for this workfl ow.

87620c16.indd 41687620c16.indd 416 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

417

Chapter 16: The DoD 5015.2 Add-On Pack

Start

Task
Completed?

No

Yes

Yes

Create Vital
Record Review Task

Log Rollback

Log Task Assigned

End

Log Workflow Initiated

OnTaskCreate:
Set Permission

OnTaskChanged:
Check User

Rollback Vital Review
Task Changes

Update Vital
Record Review Task

Complete Vital
Record Review Task

Log Task
Completed

Log Workflow
Completed

Valid
User?

No

Figure 16-6: Vital Record Review workfl ow.

STSADM Commands
The Add-On Pack installs a complete set of STSADM commands that enable administrators to work
with the enhanced features of the Records Center. All of the commands ending in Schedule take a
single -schedule parameter of the form “Every ## minutes between <start> and <end>”,
where the start and end values specify a minute between 0 and 59. For example, “every 30 minutes
between 0 and 59” would cause the job to run every half-hour. The following table lists the STSADM
commands:

Command Description

SetFolderHoldsProcessingJobsSchedule Schedules the Folder Hold timer job.

SetVitalRecordsReviewSchedule Schedules the Vital Records Review job.

Continued

87620c16.indd 41787620c16.indd 417 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

418

Chapter 16: The DoD 5015.2 Add-On Pack

Command Description

SetRecordLocalEventsListSchedule Schedules the job that updates the Record Local
Events list.

SetAdvancedAccessControlSchedule Schedules the Advanced Access Control job.

SetCutoffApprovalSchedule Schedules the Cutoff Approval job.

SetEmailRecordProcessingSchedule Schedules the Email Record Processing job.

RunJob This command is provided to enable the execu-
tion of any of the Add-On Pack timer jobs. The
syntax of the command is “stsadm -o run-
job -jobname job”, where job is one of
Holds, VitalRecordReview, Cutoff, or
AdvancedAccessControl.

TruncateAuditLog This command is provided to enable records
management to truncate the audit log, optionally
placing the raw audit entries in a fi le for archival
purposes. A date can be provided, which is the date
before which audit entries are removed.

The Records Center E-Mail Router
The Add-On Pack installs a special router for handling e-mail records that are submitted from an
Exchange 2007 managed folder in Outlook 2007. This router is needed to ensure that the DoD 5015.2
requirements relating to e-mail records are enforced. In particular, the router handles the case where
the e-mail message and all its attachments are fi led as a single record. Listing 16-1 shows the base
implementation of the Records Center router.

Listing 16-1: Records Center router implementation

public RouterResult OnSubmitFile(string recordSeries, string sourceUrl,
string userName, ref byte[] fileToSubmit, ref RecordsRepositoryProperty[]
properties, ref SPList destination, ref string resultDetails)
{
 SPWeb parentWeb = destination.ParentWeb;
 parentWeb.Site.AllowUnsafeUpdates = true;
 parentWeb.AllowUnsafeUpdates = true;
 SingleRecordRouter router = null;
 string label = GetLabel(GetDictionary(properties));
 RoutingType type = RoutingType.Default;
 try
 {
 type = (RoutingType) Enum.Parse(typeof(RoutingType), label, true);

87620c16.indd 41887620c16.indd 418 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

419

Chapter 16: The DoD 5015.2 Add-On Pack

 }
 catch (Exception)
 {
 }
 switch (type)
 {
 case RoutingType.SubmitAsOne:
 router = new SingleRecordRouter();
 break;

 case RoutingType.SubmitSeparately:
 router = new MultipleSeparateRecordRouter();
 break;

 case RoutingType.SubmitAsBoth:
 router = new MultipleRecordRouter();
 break;

 default:
 router = new DefaultRecordRouter();
 break;
 }
 try
 {
 router.Store(parentWeb, fileToSubmit, userName);
 }
 catch
 {
 if (router != null)
 {
 router.Dispose();
 }
 router = new DefaultRecordRouter();
 router.Store(parentWeb, fileToSubmit, userName);
 }
 finally
 {
 router.Dispose();
 }
 parentWeb.AllowUnsafeUpdates = false;
 parentWeb.Site.AllowUnsafeUpdates = false;
 return 1;
}

The router fi rst calculates the routing type by examining the submitted routing label, which can indi-
cate that the person submitting the record wants to submit the e-mail message by itself, together with
its attachments, or both. There is also the option of processing the record normally using the default
routing mechanism. If there is a problem storing the record using one of the specialized routing meth-
ods, then the default method is used. If storing the message as a single record, the router fi rst checks to
ensure that the submitted fi le is, in fact, an e-mail message. It then adds the message content as a new
fi le to the Records Pending Routing list.

87620c16.indd 41987620c16.indd 419 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

420

Chapter 16: The DoD 5015.2 Add-On Pack

Summary
The DoD 5015 specifi cation is widely considered the “gold standard” for evaluating records man-
agement software systems. In May 2007, the U.S. Department of Defense Joint Interoperability Test
Command tested the new functionality added to the MOSS 2007 Records Center by the DoD 5015.2
Add-On Pack and awarded certifi cation, making it the baseline for DoD 5015.2 compliance on the
SharePoint platform. This chapter introduced the DoD 5015.2 Add-On Pack as an example of how the
default Records Center site defi nition can be extended to accommodate more exacting records manage-
ment requirements such as those imposed by DoD 5015.

The Add-On Pack installs several features and components into the MOSS environment. These compo-
nents work together to provide the extended functionality required by the 5015.2 standard. We exam-
ined the necessary steps for installing and confi guring the Add-On Pack and explored its features and
components to see how they work and also to use them as reference points for implementing similar
features in other solutions.

87620c16.indd 42087620c16.indd 420 9/2/09 10:22:33 AM9/2/09 10:22:33 AM

A
access

constraining, 407
content, 88–90
control, 88

ACLs, 89
Action, 240, 400
Actions, 400
.ACTIONS, 396–401
activities. See also role/activity modeling

information, 11
role/activity modeling, 8–12
workfl ow, 377–380

Add, 305, 306
AddToHold, 306
Aliases, 104
All, 256
AllowDeletion, 104, 105
Annual Report, 172, 175, 177
Application Management, 171
Application Pool Recycler, 21
ApplyHold, 380
APPPOOL, 162
Archive, 245
args, 305
artifacts, 13–14
.ASCX, 224–225
ASP.NET, 225
ASPX, 97

fi le plans, 164
submission, 172

AssemblyName, 55, 306
Asset Tracking, 135–136
attribute classes, 56, 59–63
attributes, 218
AttributeTargets, 56
Audit History, 110–112
Audit Viewer, 262–271
auditability, 3, 11
AuditEntry, 272
AuditEntryField, 265

AuditHistory.aspx, 273–274
AuditHistoryGrid, 274
AuditHistoryGrid.Refresh, 274–276
auditing

content types, 277–279
policy, 255–279
Records Center, 262–276
web parts, 262–271

AuditMaskChange, 260
AuditViewerWebPart, 274
<authorizedType>, 396
AuthorizeToUpdate, 258–259
AvailableContentTypes, 54

B
Bar Coded, 151
Barcode, 283–284
BarcodePolicy, 288
BeforePrint, 230
behavior, 43, 97
bool, 106
Brief, 125–126, 128, 172
browser utility, 51–55
btnExecute_Click, 168–169
btn_Submit_Click, 189
BuiltInExpirationAction, 248
ButtonSection, 166
byte(), 106
Bytes, 106

C
C#, 33, 72, 142
CAML. See Collaborative Application Markup

Language
CAML.NET Intellisense, 22–23
Catch, 326–327, 328
Category, 14
Category, 42, 112
Central Administration, 171, 197, 243
CheckBoxTemplate, 186

Index

87620bindex.indd 42187620bindex.indd 421 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

422

CheckIn

CheckIn, 256, 260
check-in, 67–68
CheckOut, 256, 260
check-out, 67–68
child, 197
ChildDelete, 256, 260
ChildMove, 261
CHOICE, 61
classes, 142–157, 217–223. See also wrapper classes

attribute, 56, 59–63
schema, 36–37

ClassName, 55, 306
code-beside model, 33
Collaborative Application Markup Language (CAML)

content types, 48–51
FieldRef, 59
FilePlan.xsn, 157–158
keyword queries, 306
schema, 48
SchemaXml, 209, 214
XML, 47

ColumnInfo, 264, 265–271
ColumnInfo Update, 268
ComputeExpireDate, 239
Configuration, 103
Configure Exchange, 359
content

access, 88–90
managed, 363–366
modeling, 3–14
security, 83–91
validation, 325–353

Content Type Explorer, 53
Content Type gallery, 173–174
content types, 42–63, 150–152

auditing, 277–279
child, 197
document libraries, 45, 153
DoD 5015.2 Add-On Pack, 413
ECM, 39, 97
encapsulation, 42, 46
folders, 285
Global Event Disposition

Instruction, 405
Global Period Cutoff Instructions, 406
hierarchy, 45–46
lists, 65
physical records, 154, 282–283
policy, 205
policy statement, 198

sample, 64
SPItemEventReceiver, 64
traditional fi le plans, 125–129
XML, 47, 152

ContentTypes, 53–54
Contract, 172
ControlMode, 412
Copy, 256, 261
Create, 124, 288
CreateContentTypes, 150–152, 249
CreateFromListItem, 35
CreateItemQuery(), 303
Custom, 261
custom, 245
custom routing, 25, 108, 307–323

fi le plans, 322–323
requirements identifi cation, 16

CustomAction, 162
customData, 200
CustomExpirationAction, 240–243, 248
CustomSettingsControl, 225
CustomXMLPart, 231
cut off processing, 404–406
Cutoff Approval, 414–415
Cutoff Approval Reverse, 415

D
DataTable, 265, 267, 274
DateCalculator, 240
DateTime, 177, 296
Default, 104
default expiration actions, 103, 105
Default Record Series, 105
Delete, 245, 248, 256, 261, 276
Department of Defense. See DoD 5015.2 Add-On Pack
dependencies, 86–87, 384
Description, 104, 105
de-serialization, 144–146, 167

wrapper classes, 142
XML, 33

Designer, 6
DesignerType, 401
destinationSPList, 319
diagnostic tracing, 21
_dic_RepositoryUsersGroup, 104
differencing engine, 65
disposition, 15, 404–406
Disposition Approval, 105
Disposition Approval Transfer, 416

87620bindex.indd 42287620bindex.indd 422 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

423

ExpirationAction.cs

Document, 150, 153
document(s)

categories, 16
check-out, 66, 67–68
groups, 16
metadata, 4
MOSS, 97
properties, 41–42
Records Center, 11
sessions, 67
sources, 16–17
uploads, 66
users, 11
versioning, 67

document libraries, 40–42
content types, 45, 153
holding zone, 104
I/O, 96
property storage, 108
Record Routing Table, 281
submissions, 92, 175, 178
traditional fi le plans, 125–129
Unclassifi ed Records, 105
versioning, 82

document parser, 42, 112, 115, 296
document retention policy statement, 46
DocumentGrid.cs, 182–186
DocumentGrid_RowDataBound, 187
DoD 5015.2 Add-On Pack, 19–20, 403–420

content types, 413
timer job, 413–414
workfl ow, 414–417

.DOTX, 97
DropDownList, 412
DVDs, 285
dynamic fi le plans, 15, 117, 130–169

expiration policies, 245–253
workfl ow, 388–391

E
ECB. See Edit Control Block
ECM. See Enterprise Content Management
ECM Starter Kit, 372–373
ECM2007, 23–25
ECM2007.ContentTypes, 24
ECM2007.CustomRouting, 309
ECM2007.DocumentGrid, 188
ECM2007.FeatureWizard, 28–31
ECM2007.InformationPolicy, 288

ECM2007.InformationPolicy.

SharePointPolicyFeature, 218
ECM2007.OfficialFileSend, 188
ECM2007.PrinterControlPolicyFeaure, 224
ECM2007.RecordsManagement, 25, 310
ECM2007.Versioning, 25, 79
ECM.InformationPolicy, 24
Edit Control Block (ECB), 157, 171

auditing, 271
File Plan Execution, 158
JavaScript, 296
Send To, 109

Edit Properties, 42
elements.xml, 180–182, 273
e-mail, 355–369
E-mail Router, 410
EnableBarcodePolicy, 381
EnableLabelPolicy, 381
EnableViewState, 186
encapsulation, 42, 46

ECM, 39
encryption, 91
End Date, 128
enhanced search, 408–409
Enterprise Content Management (ECM), 21

access control, 88
content types, 39, 97
encapsulation, 39
workfl ow, 372, 396

Eval, 334, 350
event handler, 185, 187
event receiver, 52, 154–157
EventData, 259
EventsDeleted, 261
Excel, 6, 13, 382
Excel Markup Language (ExcelML), 260

Holds Reports, 302
ExcelML. See Excel Markup Language
Exception, 329–330
Exchange, 357–368
Exchange Management Console, 357
ExchangeManagementShell, 360–363
Execute, 401
ExecuteFilePlan, 380
Expiration, 246
expiration actions, 240–243
expiration formulas, 238–239
expiration policies, 245–253
Expiration Policy Feature, 203, 235–236
ExpirationAction.cs, 252–253

87620bindex.indd 42387620bindex.indd 423 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

424

ExpirationFormula

ExpirationFormula, 246–248
ExpirationFunction, 246–248
ExpirationPeriod, 246–248
ExpirationPolicy, 246
ExpirationPolicy.cs, 250–251
ExpirationPolicyFeature, 246
ExpirationPolicyFeature.cs, 249–250
Expression, 328, 350
extensibility, 44, 203

payload, 97
extension methods, 71

C#, 72
.NET Framework, 72
versioning metrics, 79–82

F
feature stapling, 118
Feature Wizard, 179
FeatureActivated, 287, 309, 313, 317
FeatureReceiver.cs, 222
SPFeatureReceiver, 100

FeatureDeactivating, 223, 313, 317
FeatureId, 214, 239, 244
FeatureReceiver, 159–162, 287
FeatureReceiver.cs, 222, 322, 345–346
FEATURES, 179
feature.xml, 180, 286
Field, 22, 401
FieldBind, 401
FieldDataType, 330
FieldExpression, 328–329
FieldExpression.cs, 335–336
FieldRangeExpression, 328–329
FieldRef, 59–63
FieldRefAttribute, 24, 61
FieldValidator, 225
File Plan, 137–142
fi le plan(s), 14–17

ASPX, 164
custom routing, 322–323
execution, 164–169
expiration policies, 245
physical records, 154
Records Center, 146–149
schema, 132–134
traditional, 125–130
Visual Studio, 140

File Plan Execute, 164–166

File Plan Execution, 131, 158, 167
File Plan gallery, 131, 157–163
FileLeafRef, 181
FilePlan, 132, 322

data source, 140
de-serialization, 144–146, 167
Exchange, 359, 364–365
serialization, 142–144

FilePlan.ConfigureExchange, 365, 366
FilePlan.cs, 142
FilePlanEx.cs, 144
FilePlan.Load, 167
FilePlan.xsd, 142
FilePlan.xsn, 157–158
FileTrackingRouter, 316
FilteringRouter, 310–313
FilteringRouter.OnSubmitFile, 311–314
Financial Document, 125, 129
Financial Statement, 172
folders

content types, 285
document libraries, 40
managed, 357–363
Outlook 2007, 368
physical records, 284–286

forced check-out, 66
forms

File Plan, 137–142
Forms Designer, 36

InfoPath, 135–137
Visual Studio, 138

G
GAC. See Global Assembly Cache
GenerateAuditReport, 381
GetHoldItemIndex(), 303
GetRecordRoutingCollection, 95
GetValidatedString, 412
GLBA. See Gramm-Leach-Bliley Act
Global Assembly Cache (GAC), 25, 32
Global Event, 404, 406
Global Event Disposition

Instructions, 405
Global Period, 404
Global Period Cutoff Instructions, 406
Gramm-Leach-Bliley Act (GLBA), 20
grid, 267
GUID, 48

87620bindex.indd 42487620bindex.indd 424 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

425

IWizard

H
Health Insurance Portability and Accountability Act

(HIPAA), 17, 20
helper methods

validation, 340–341
Helpers, 56
HIPAA. See Health Insurance Portability and

Accountability Act
History List, 105
Hold, 298–301
Hold Reports List, 298
holder, 56
holding zone, 104–105

metadata, 103
Hold.RemoveHold, 304
holds

programs, 302–303
Records Management, 295–306

Holds List, 105, 297
Holds Reports, 297, 302
Hold.SetHold, 303
HoldsField, 296, 298, 304
HoldsFieldControl, 296, 298
HoldStatusField, 296, 298
HoldStatusFieldControl, 298
HTML, 49–51

I
ID, 181
ID=”1”, 103
IDE. See Integrated Development Environment
IExpirationAction, 203, 240
IExpirationFormula, 203, 237, 238
IISRESET, 317
IMAGES, 179
InfoPath, 134–142

Forms Designer, 135–137
SQL, 138
submission, 137
template, 138
WS, 138
XML, 131, 138, 141
XSL, 134

information
activities, 11
integrity, 3

policy, 195–233
spreadsheets, 15
workfl ow, 11

Information Policy. See policy
Information Rights Management (IRM), 90–91
InputFormControl, 166
InputFormSection, 166
Install, 215, 222
Installer

.NET Framework, 239
Installer, 228, 309
InstallProjectTemplate.bat, 31
InstallUtil, 204, 215, 217, 309
Installutil.exe, 239–40
Integer, 177
Integrated Development Environment (IDE), 382
IntelliSense, 22–23, 48
InvalidOperation, 205
I/O

document libraries, 96
IPolicyFeature, 25, 200–201, 236
IPolicyFeature

.OnGlobalCustomDataChange, 202
IPolicyFeature.ProcessListItem, 202
IPolicyFeature

.ProcessListItemRemove, 202
IPolicyFeature.Register, 202
IPolicyFeature.Unregister, 202
IPolicyResource, 236
IProcess, 306
IRM. See Information Rights Management
IRouter, 25, 308, 311
IRouter.OnSubmitFile, 108
ISAPI, 92, 198
ISharePointObject, 24, 55, 56
ISharePointPolicy, 24, 205
ISharePointPolicyFeature, 24, 209
ISharePointPolicyResource, 24, 212–216
IsHoldEnabled, 296
Item, 150, 153
Item Level Access Control, 407
ItemAdded, 151, 154–157, 218, 296
ItemAdding, 104, 296, 346
ItemDeleting, 104, 296
ItemEventReceiver, 24, 219, 221
ItemUpdated, 218
ItemUpdating, 104, 296, 346
IWizard, 28

87620bindex.indd 42587620bindex.indd 425 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

426

JavaScript

J
JavaScript, 296

K
keyword queries, 306
Keywords, 42

L
Label, 225
Labeled, 151
LAYOUTS, 179, 224
LayoutsPageBase, 166
level, 74
life cycle

content, 4–5
content access, 88, 89–90
payload, 46
policy, 200–202

list(s)
content types, 65
permissions, 85
SPFile, 65

ListInstance, 158–159
ListItem, 334
ListItemValidator, 327, 332, 342, 350
Load, 144
LoadPostData, 227
Location, 104
location, 108
location-based records management systems, 2
LogicalExpression, 328–329
Lookup, 177

M
mailbox policy, 366–367
Managed By, 105
managed content, 363–366
Managed Folder Assistant, 357, 367–368
managed folders, 357–363
Management of Electronic Records (MoReq), 20
Match, 326–327, 328
Matter, 125–126
maxOccurs, 327
m_customData, 225
Messaging Records Management (MRM), 355–369

metadata
content type defi nition, 47
content types, 42, 43
document libraries, 40
documents, 4
encapsulation, 42
holding zone, 103
offi cial records, 2
RecordsRepositoryProperties, 318
SPListItemVersion, 73
users, 11
validation, 391–395
XML, 176

Microsoft Offi ce SharePoint Server (MOSS)
Auditing Policy, 255
content types, 45
documents, 97
Records Management, 97–115
Records Repository, 14–15
site provisioning, 117
versioning, 65

Microsoft.Office.Interop.Word

.Document, 231
Microsoft.Office.Policy, 92, 198, 217
Microsoft.Office.Policy.dll, 310
Microsoft.Office

.RecordsManagement, 92, 310
Microsoft.Office.RecordsManagement

.Holds, 297
Microsoft.Office.RecordsManagement

.InformationPolicy

IPolicyFeature, 200–201
Microsoft.Office.RecordsManagement

.InformationPolicy.Policy, 198
Microsoft.Office.RecordsManagement

.Internal, 306
Microsoft.Office.RecordsManagement

.PolicyFeatures, 237
Microsoft.Office.RecordsManagement

.PolicyFeatures.Expiration, 239
FeatureId, 244

Microsoft.Office.RecordsManagement

.RecordsRepository, 103, 308, 310
Microsoft.Office.RecordsManagement

.SearchAndProcess, 304–305
Microsoft.SharePoint, 310
Microsoft.SharePoint.OfficialFile, 171
Microsoft.SharePoint

.WorkflowActions, 379–380

87620bindex.indd 42687620bindex.indd 426 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

427

policy

Microsoft.SharePoint

.WorkflowActions.dll, 375
minOccurs, 327, 328
MoReq. See Management of Electronic Records
MOSS. See Microsoft Offi ce SharePoint Server
moss.development, 363
Motion, 125–126, 128, 172
Move, 256, 261
MRM. See Messaging Records Management
MSBuild, 21
multiple records, 179–193

N
Name, 328, 400
namespace, 44
nested class, 219
.NET

attribute classes, 56
workfl ow, 373
wrapper classes, 33
XML, 22, 24

.NET Framework
extension methods, 72
Installer, 239
VSTA, 138

.NET Refl ector, 51–52, 56, 373, 375
New Managed Custom Folders, 358
New Project Wizard, 230
None, 256
Note, 296

O
Offi cal File Web Service, 92–96, 171
OfficalFileCore.SubmitFile, 106
Official Message, 365
offi cial records, 1–17

content modeling, 3–14
fi le plans, 14–17
metadata, 2
workfl ow, 376–381

OfficialFileCore, 92
OfficialFileCore.SubmitFile, 92
OfficialFileResult.InvalidArgument, 107
OfficialFileSelect.aspx, 188–189
OfficialFileSelect.cs, 190–193
OfficialFileSend.aspx, 187
OnCustomDataChange, 212, 221

OnInit, 185, 186, 267
OnSubmit, 316
OnSubmitFile, 311, 318, 351
out String, 106
Outlook 2007, 368

P
PageIndexChanging, 270
Parameter, 400, 401
params, 74
ParserEnabled, 112
partial wrapper classes, 35
payload, 43, 44. See also XML

extensibility, 97
life cycle, 46

payload, 219
PDF, 40
Period Ending Date, 128
Period Starting Date, 128
permission levels, 83–84
permission manifest, 88
permissions, 83–87

Active Directory, 6
contributor, 105
dependencies, 86–87
inheritance, 84
list, 85
personal, 85
records manager, 17
site, 86
submission, 172–173

personal permissions, 85
physical records, 281–294

content types, 154, 282–283
fi le plans, 154
folders, 284–286
ItemAdded, 154–157
workfl ow, 292–294

PhysicalRecord, 287
PhysicalRecordsFeature, 289–291
policy

adherence, 3
auditing, 255–279
Barcode, 283–284
content types, 205
custom features, 203–232
identifying, 15–16
life cycle, 200

87620bindex.indd 42787620bindex.indd 427 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

428

policy (continued)

policy (continued)
mailbox, 366–367
retention, 235–279
reusable components, 203–216
utility method, 206
virtual property, 206
XML, 16

Policy, 205
schema, 198–200
XML, 198

Policy Confi guration, 243
policy features, 236

classes, 217–223
custom settings, 224–229
schema, 206–212
XML, 208

policy resources, 212–216, 236
schema, 213–214

policy statement, 46, 91
content types, 198
Create, 288

PolicyManifest, 205
Press Coordinator, 9
primitive activities, 377–380
PrinerPolicySettings.ascx, 224
print, 216
print monitor add-in, 229–232
PrintControlPolicyNamespace, 218
PrinterPolicyEventReceiver, 219
PrinterPolicyFeature, 218, 220
PrinterPolicyFeature.cs, 228
PrintPolicySettings, 225
ProcessAndReport, 302
processing layer, 103
Processing Results, 181–182, 186
ProcessItem, 305
ProcessList, 79
ProcessListItem, 211, 221
ProfileChange, 256, 261
programmatic, 245
programs

holds, 302–303
Records Center, 122–124
submissions, 177–178
versioning, 71–82

properties
demotion, 41–42, 112–115
documents, 41–42
promotion, 41–42, 112–115
standard, 42
storage, 108–110

Properties, 106
properties, 350
Properties subfolder, 176
ProposalValidationRules.xml, 326–327
Provision, 124
ProvisionAssembly, 103
ProvisionClass, 103
provisioning layer
Setup, 103
workfl ow, 105

R
ReceiverAssembly, 286
ReceiverClass, 286
record(s). See also offi cial records; physical records

multiple, 179–193
vital, 406–407

Record Relationship Templates, 407
Record Routing, 105
Record Routing List, 105
Record Routing Table, 104, 129–130, 177

document libraries, 281
SPListItem, 347
storage, 281

Record Type, 14, 125–126
Record Type, 181
RecordCenterAddonPack_SiteWorkflows, 412
RecordCenterAddonPack_Web, 411
RecordCenterRouter, 411
RecordRelationshipsFieldControl, 407
RecordRouting, 177
Records Center

auditing, 262–276
building and confi guring, 117–170
components, 103–106
documents, 11
e-mail, 363
E-mail Router, 418–419
fi le plans, 146–149
fi le processing, 106–115
holds, 296
programs, 122–124
site defi nition, 102–103
template, 15
users, 11

Records Management, 92, 99–100
custom actions, 100–101
holds, 295–306
MOSS, 97–115

Records Pending Submission, 104, 107

87620bindex.indd 42887620bindex.indd 428 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

429

SendToOffi cialFile.aspx

Records Repository, 94, 117–170
MOSS, 14–15
populating, 171–194

Records Repository Users Group, 103, 104
RecordSeries, 348, 351
RecordSeriesCollection, 103, 105
recordSeriesName, 106
RecordSpecification, 145–146, 167, 246, 322
CreateContentTypes, 249
schema, 132–134

RecordSpecification

.CreateContentTypes, 150–152
RecordSpecification.Execute, 145, 149–150
RecordsRepositoryProperties, 318
RecordsRepositoryProperty, 94, 310, 350
RecordsRepositoryProperty[], 106
RecordsSpecification, 169
RedirectingRouter, 317–322
ref, 108, 308
Register, 210
RejectFile, 309
RemoveFromHold, 380
RemoveHold, 304
Reporting.aspx, 259
reports, 45

auditing, 259–261
ResourceType, 214, 239, 240
resultDetails, 106, 309
ResultTemplate, 186–188
retention, 14, 235–279
ReverseCutoff, 415
Rights Management Services (RMS), 12, 90–91
RMS. See Rights Management Services
role/activity modeling, 6–14

activities, 8–12
artifacts, 13–14
discovery process, 12–13
example, 10–12
responsibilities, 8–12
RMS, 12

roles, 7–8
content access, 88–89
identifying, 15

Router, 322
RouterResult, 309
RouterResult

.SuccessCancelFurtherProcessing, 107
RoutingList, 351
RowDataBound, 185
Rule, 327, 328

RuleDesigner, 400
RunInstaller, 215

S
SafeControl, 270
<SafeControls>, 396
Sarbanes-Oxley (SOX), 11, 20
SaveDocument, 320
schema

CAML, 48
classes, 36–37
content types, 48
fi le plans, 132–134
FilePlan, 132
living specifi cation, 33
Policy, 198–200
policy features, 206–212
policy resources, 213–214
RecordSpecification, 132–134
validation, 327–330
Visual Studio, 33, 36–37
XML, 131

Schema Editor, 33
SchemaChange, 256, 261
SchemaXml, 55, 209, 213, 214
sealed class, 52
Search, 257, 261
Search & Process, 304–306
Search Keyword, 306
SearchAndProcessItem, 305–306
SecGroupCreate, 261
SecGroupDelete, 261
SecGroupMemberAdd, 261
SecGroupMemberDel, 261
SecRoleBindBreakInherit, 261
SecRoleBindInherit, 261
SecRoleBindUpdate, 261
SecRoleDefBreakInherit, 261
SecRoleDefCreate, 261
SecRoleDefDelete, 261
security, 17. See also permissions

content, 83–91
Security Confi guration, 197
SecurityChange, 257
Select, 181–182, 186
Self-Validating Proposal, 342–347
Sells, Chris, 36
Send To, 109
SendToOfficialFile.aspx, 171

87620bindex.indd 42987620bindex.indd 429 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

430

SendToRecordsRepository

SendToRecordsRepository, 380
Sentence, 400
sentViaSMTP, 106
SequenceActivity, 384
serialization

classes, 142–157
FilePlan, 142–144
wrapper classes, 142–144
XML, 202

sessions, 67
SetExpirationPolicy, 380
SetHold, 303, 304
Setup, 103
SetupExchangeFolder, 364
Shared Documents, 174
Shared Records Repository, 7
SharePoint Developer Network, 20
SharePoint Farm, 171
SharePoint Features Project, 21
SharePointContentType, 56, 57–59, 152, 287
SharePointList, 24, 289
SharePointObject, 24, 56, 204
SharePointPolicy, 24, 288
SharePointPolicyFeature, 25, 220, 222, 228
SharePointPolicyResource, 25, 214–216, 238
SharePointRouter, 25, 311, 313
SimpleFeature.vstemplate, 26–27
SimpleFeature.zip, 31, 32
Site, 262
Site Collection Policies, 197
site defi nition, 102–103
site permissions, 86
site provisioning, 117
<site url>/_vti_bin/

officialfile.asmx, 93
Skills Manager, 10
Solution Explorer, 140
Source Url, 104
sourceUrl, 106
SOX. See Sarbanes-Oxley
SPAudit, 256
SPAuditEntry, 259, 265
SPAuditEntryGrid, 265, 274
SPAuditEventType, 260–261
SPAuditItemType, 261
SPAuditLocationType, 261
SPAuditMaskType, 256
SPAuditQuery, 265, 271

SPBasePermissions

.UpdatePersonalWebParts, 85
SPContentType, 52, 56
SPControlMode.Display, 412
SPDocumentLibrary, 41
SPFarm, 54
SPFeatureReceiver, 100, 287
SPFieldMultiChoiceValue, 303, 304
SPFile, 65

de-serialization, 167
serialization, 144

SPFileLevel, 74
SPFile.SendToOfficialFile, 171
SPFileVersion, 73
SPGridView, 181, 263
AuditHistory.aspx, 273
SPAuditEntryGrid, 265
ViewState, 269

SPItemEventDataCollection, 333, 335
SPItemEventProperties, 344
SPItemEventReceiver, 24, 64
SPList, 24, 40
location, 108
ref, 308
SPDocumentLibrary, 41

SPListEx, 25
SPListItem, 72, 348

Record Routing Table, 347
serialization, 144
versioning metrics, 73–74

SPListItemCollection, 72, 74–79, 303
ECM2007.Versioning, 79
SetHold, 304

SPListItemCollectionEx, 25
SPListItemCollectionEx.cs, 74–79
SPListItemVersion, 72–73
SPLongOperation, 168, 189
SPLongOperation.End, 169
spreadsheets, 12, 15
SPRoleAssignment, 83
SPSecurity

.RunWithElevatedPrivileges, 269
SPSite, 54, 222, 264
SPTraceView, 21
SPWeb, 54, 106, 169
SPWebApplicationBuilder, 124
SPWebApplicationBuilder.Create, 124
SPWeb.CreateDefaultAssociatedGroups, 84
SPWebProvisioningProvider, 103

87620bindex.indd 43087620bindex.indd 430 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

431

User Name

SQL, 138
standard properties, 42
Start Date, 128
StartWorkflow, 245
statement, 45–46. See also policy statement
Statement, 125–126, 129
static fi les, 15
storage

auditing, 258
properties, 108–110
Record Routing Table, 281
RecordSpecification.Execute, 150
requirements, 17

String, 106
STSADM, 417–418
STSDEV, 21
Subject, 42, 112, 128
submissions

ASPX, 172
document libraries, 92, 175, 178
forms, 137
InfoPath, 137
multiple records, 179–193
Offi cal File Web Service, 95–96
permissions, 172–173
programs, 177–178
Records Repository, 94
Setup, 103

SubmitFile, 106, 108, 308, 310
SuccessCancelFurtherProcessing, 309
SuccessContinueProcessing, 309
supplemental markings, 407
System.Attribute, 56
System.Configuration.Install, 24, 310
System.Configuration.Installer, 215
System.Management.Automation, 359
System.Web, 217
System.Web.UI.WebControls.WebParts

.WebPart, 263
<System.Workflow.ComponentModel

.WorkflowCompiler>, 396
System.Xml.Serialization.

.XmlSerializer, 144

T
Task List, 105
Team Builder, 9
TEMPLATE, 224
Template, 182

TemplateField, 186
templates

Form Designer, 138
Hold Reports, 302
InfoPath, 138
Records Center, 15
Visual Studio, 25–32
vstemplate, 26

Text, 177, 296
Text File, 224
TextBox, 225, 227–228
TextBoxPrinters, 225
this, 72
ThisAddIn_Startup, 230
timer job

DoD 5015.2 Add-On Pack, 413–414
expiration, 243–244

time-span, 245
Title, 42, 104, 105
ToString(), 250
ToStringEx, 72
TrackingRouter, 313–317
treeview, 55
TrustedPrintersFieldName, 218
Try, 326–327, 328
12 hive, 25, 92, 198
12/TEMPLATE, 179
12/TEMPLATE/FEATURES, 99
12/TEMPLATES/FEATURES/fields, 49
12/TEMPLATE/SiteTemplates/offile, 102
Type, 329–330
TypeSpecifier, 330

U
ULS tracing, 21
UnaryLogicalExpression, 328
Unclassifi ed Records, 105
Undelete, 257, 261
Uninstall, 215
Unregister, 210
Update, 257, 261, 265
uploads, 66
URL

Offi cal File Web Service, 171
virtual paths, 68

U.S. regulations, 19–20
User, 296
user, 177
User Name, 105

87620bindex.indd 43187620bindex.indd 431 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

432

userName

userName, 106
using, 72, 79, 218, 314

V
ValidateContent, 312
ValidateListItem, 381
ValidateManifest, 198
ValidateMetadata, 312
Validating Router, 347–353
ValidatingRouter.cs, 352–353
validation

components, 330–341
content, 325–353
metadata, 391–395
schema, 327–330
Self-Validating Proposal, 342–347
Setup, 103
workfl ow, 391–395
XML, 325–326

ValidationFailed, 340
ValueType, 329
ValueType.cs, 337–340
VB.NET, 33
version history, 65
versioning, 64–82

document libraries, 82
metrics, 72–82
MOSS, 65
programs, 71–82
SPFile, 65

VersioningTestConsole.cs, 79–82
View, 257, 261
ViewState, 269
virtual methods, 209
virtual paths, 68
virtual property, 206
Visio, 6, 12

workfl ow, 382
Visual Studio, 20
.ASCX, 224–225
custom tools, 36–37
dependencies, 384
fi le plans, 140
Forms Designer, 138
IntelliSense, 48
schema, 33, 36–37
template, 25–32
12 hive, 25

WSS.XSD, 22
XML, 32–33
XSD.EXE, 33, 142

Visual Studio Extensions for SharePoint, 21
Visual Studio Tools for Offi ce (VSTO), 138, 216
vital record indicator, 416
Vital Record Review, 416–417
vital records, 406–407
VSTA, 138
vstemplate, 26
VSTO. See Visual Studio Tools for Offi ce

W
Web, 106
Web Components, 410
web parts

auditing, 262–271
personal permissions, 85
Setup, 103

Web Service Defi nition Language (WSDL), 171
Web Services (WS), 11, 138, 356
WebTemplateId, 289
WEBTEMPOFFILE.XML, 102
Windows PowerShell, 358, 359
Windows SharePoint Services (WSS), 21, 39–97

site defi nition, 102
WizardExtension, 28
Word, 14, 40, 67, 112–113, 229–232
workfl ow, 16, 105, 371–401

Cutoff Approval, 414–415
Designer, 6
Disposition Approval, 105
Disposition Approval Transfer, 416
DoD 5015.2 Add-On Pack, 414–417
ECM, 372
modeling, 381–382
.NET, 373
offi cial records, 376–381
physical records, 292–294
primitive activities, 377–380
Setup, 103
validation, 391–395
Visio, 382
Vital Record Review, 416–417

Workfl ow Activity Library, 383–386
Workfl ow Design Wizard, 396–401
WorkflowExpirationAction, 248
wrapper classes, 142

87620bindex.indd 43287620bindex.indd 432 9/2/09 10:22:47 AM9/2/09 10:22:47 AM

433

xs:string

Employee, 33–36
.NET, 33
partial, 35
serialization, 142–144

WS. See Web Services
WSDL. See Web Service Defi nition Language
WSP Builder, 21
WSS. See Windows SharePoint Services
WSSACTIONS.XSD, 397–401
WSS=prefix, 310
WssTask, 380
WSS.XSD, 22

X
XML, 13–14, 16, 198
AuditEntry, 272
CAML, 47
content types, 47, 152
customData, 200
DataTable, 274
de-serialization, 33
document libraries, 40
File Plan, 141
GetRecordRoutingCollection, 95
InfoPath, 131, 138, 141
for maximum fl exibility, 32–36

metadata, 176
namespace, 44
.NET, 22, 24
OnCustomDataChange, 212
policy features, 208
property storage, 108
Schema Editor, 33
serialization, 202
validation, 325–326
virtual property, 206
Visual Studio, 32–33

XMLDocument, 33, 219, 331, 344
XPath, 33
XPathNodeIterator, 95
xs:annotation, 22
xs:choice, 246
.xsd, 33
XsdClassGenerator, 36, 142, 167
xsd:dateTime, 176
XSD.EXE, 33, 142, 322, 332
XSD.exe, 246
xs:enumeration, 330
XSL, 134
XSLT, 49–51, 260
xs:sequence, 328
xs:string, 22–23, 327

87620bindex.indd 43387620bindex.indd 433 9/2/09 10:22:48 AM9/2/09 10:22:48 AM

87620badvert.indd 43487620badvert.indd 434 9/2/09 10:23:02 AM9/2/09 10:23:02 AM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning SharePoint 2007 Administration:
Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server 2007
ISBN: 978-0-470-12529-8
SharePoint MVP Göran Husman walks you through everything from planning and installation to configuration and administration so you
can begin developing a production environment.

Beginning SharePoint 2007: Building Team Solutions with MOSS 2007
ISBN: 978-0-470-12449-9
This book provides detailed descriptions and illustrations of the functionality of SharePoint as well as real-world scenarios, offering
coverage of the latest changes and improvements to Microsoft Office SharePoint Server 2007.

Building Dashboards for Windows SharePoint Services 3.0 using SharePoint Designer 2007
ISBN: 978-0-470-48566-8
In this e-book only downloadable Wrox Blox, you’ll learn how to create powerful Dashboards for Windows SharePoint Services 3.0. It
introduces Web Part Pages and out-of-the box Web Parts available in WSS, how to use Web Part Connections to add interactivity in
Dashboards, and you’ll create advanced Dashboard Views using the Data Form Web Part available with SharePoint Designer 2007.

Professional SharePoint 2007 Design
ISBN: 978-0-470-28580-0
This book outlines all of the steps and considerations a developer should understand in order to design better looking and more successful
SharePoint implementations.

Professional SharePoint 2007 Development
ISBN: 978-0-470-11756-9
A thorough guide highlighting the technologies in SharePoint 2007 that are new for developers, with special emphasis on the key areas of
SharePoint development: collaboration, portal and composite application frameworks, enterprise search, ECM, business process/workflow/
electronic forms, and finally, business intelligence.

Professional Microsoft SharePoint 2007 Reporting with SQL Server 2008 Reporting Services
ISBN: 978-0-470-48189-9
Build customized reports quickly and efficiently with SQL Server 2008 Reporting Services for SharePoint sites and this unique guide.
Developers, you’ll learn report development and deployment; SharePoint or SQL Server Reporting Services administrators, you’ll see how
to leverage SharePoint to use SQL Server Reporting Services in SharePoint Integrated Mode.

Professional SharePoint 2007 Web Content Management Development
ISBN: 978-0-470-22475-5
Use this book to learn such things as optimal methods for embarking on web content management projects, ways to implement sites with multiple
languages and devices, the importance of authentication and authorization, and how to customize the SharePoint authoring environment.

Real World SharePoint 2007: Indispensable Experiences from 16 MOSS and WSS MVPs
ISBN: 978-0-470-16835-6
This anthology of the best thinking on critical SharePoint 2007 topics is written by SharePoint MVPs—some of the best and most recognized
experts in the field. Some of the topics they cover include: Branding, Business Data Connector, Classified Networks, Forms-based Authentication,
Information Rights Management, and Zones and Alternate Access Mapping.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

John Holliday

Managing Official Records with
Microsoft® Office SharePoint® Server 2007

Professional
SharePoint® 2007
Records Management Development

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Create successful records management
solutions from the start

 $49.99 USA
 $59.99 CAN

Building effective records management solutions on the SharePoint
platform requires a comprehensive development strategy that integrates
out-of-the-box components (document libraries, content types, and
information policy) with more specialized custom components that
can be applied at any stage of the content lifecycle. This helpful book
introduces content modeling as an integral part of the development
process and guides you through the creation of a reusable set of
enterprise content management components that are designed
specifically for records management.

• Shows you how to quickly create and manage information policies to
control document retention, build custom routers, manage electronic
mail records, and more

• Walks you through creating executable file plans that can be applied
to multiple records management scenarios

• Introduces invaluable techniques for setting up an effective records
management development environment

• Addresses methods for ensuring that incoming records have valid
content and metadata

• Reviews building a custom workflow activity library with built-in
support for records management

• Offers advice for installing and configuring the DoD 5015.2 Addon Pack
and demonstrates how to use it to deploy DoD 5015.2 compliant solutions

John Holliday is an independent consultant and Microsoft MVP for Office SharePoint
Server 2007 with more than 25 years of professional software development and
consulting experience.

Wrox Professional guides are planned and written by working programmers to
meet the real-world needs of programmers, developers, and IT professionals. Focused
and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all
designed to help programmers do a better job.

Business Applications/Microsoft Office

SharePoint
® 2007

Records M
anagem

ent D
evelopm

ent

Holliday

Professional

	Professional SharePoint 2007 Records Management Development: Managing Official Records with Microsoft Office SharePoint Server 2007
	Credits
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Official Records
	What Are Official Records?
	Core Records Management Principles
	Content Modeling
	Developing a File Plan
	Summary

	Chapter 2: Preparing for Records Management Development
	Understanding Current U.S. Regulations
	Setting Up Your Development Environment for Maximum Productivity
	Summary

	Chapter 3: SharePoint Tools for Managing Records
	Document Libraries
	Content Types
	Versioning
	Content Security
	The Records Management Object Model and API
	The Official File Web Service
	Summary

	Chapter 4: The MOSS 2007 Records Center
	The Records Management Feature
	The Records Center Site Definition
	Records Center Components
	Records Center File Processing
	Summary

	Chapter 5: Building and Configuring a Records Repository
	Creating the Records Center Site
	Working with Traditional File Plans
	Building and Using Dynamic File Plans
	Summary

	Chapter 6: Populating the Records Repository
	Submitting Individual Records
	Submitting Multiple Records
	Summary

	Chapter 7: Information Management Policy
	Information Policy Architecture
	Policies, Policy Features, and Policy Resources
	Building Custom Policy Features
	Summary

	Chapter 8: Information Policy and Record Retention
	The Expiration Policy Feature
	Creating Custom Expiration Formulas and Actions
	The Expiration Timer Job
	Planning for Retention
	Summary

	Chapter 9: Information Policy and Record Auditing
	Understanding Auditing in SharePoint
	Using the Auditing Policy Feature
	Auditing in a Records Center Site
	Extending the File Plan Schema to Support Auditing Policy
	Summary

	Chapter 10: Managing Physical Records
	Physical Records and List Items
	Physical Records and Folders
	Automating the Process
	Physical Records and Workflow
	Summary

	Chapter 11: Suspending Record Processing Using Holds
	The Holds Architecture
	Creating and Removing Holds
	The Search & Process API
	Summary

	Chapter 12: Building and Deploying Custom Routers
	Building Custom Routers
	Extending the File Plan Schema to Support Custom Routing
	Summary

	Chapter 13: Maintaining Record Integrity
	Building a Content Validation Framework
	Summary

	Chapter 14: Managing Electronic Mail Records
	Summary

	Chapter 15: Using Workflow to Manage Records
	A SharePoint Workflow Primer
	Official Records, Workflow, and Complexity
	Workflow Modeling
	Building a Workflow Activity Library
	Building Workflow Activities for Records Management
	Extending SharePoint Designer to Use Records Management Workflows
	Summary

	Chapter 16: The DoD 5015.2 Add-On Pack
	Requirements Addressed by the Add-On Pack
	Installing the Add-On Pack
	The Components Installed by the Add-On Pack
	The Records Center E-Mail Router
	Summary

	Index

