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Preface

The engineering of multi-agent systems (MAS) is a multi-faceted, complex task. These
systems consist of multiple, autonomous, and heterogeneous agents, and their global
behavior emerges from the cooperation and interactions among the agents. MAS have
been widely studied and implemented in academia, but their full adoption in industry is
still hampered by the unavailability of comprehensive solutions for conceiving, engi-
neering, and implementing these systems.

Although much progress has been made in the development of MAS, the systematic
engineering of large-scale MAS still poses many challenges. Even though various
models, techniques and methodologies have been proposed in the literature, researchers
and developers are still faced with the common questions:

– Which architectures are suitable for MAS?
– How do we specify, design, implement, validate and verify, and evolve our

systems?
– Which notations, models, and programming languages are appropriate?
– Which development tools and frameworks are available?
– Which processes and methodologies can integrate all of the above and provide a

disciplined approach to the rapid development of high-quality MAS?

Existing approaches address the use of common software engineering solutions for
the conception of MAS, the use of MAS for improving common software engineering
tasks, and also the blending of the two disciplines to conceive MAS-centric develop-
ment processes.

The International Workshop on Engineering Multi-Agent Systems (EMAS) pro-
vides a comprehensive venue where software engineering, MAS, and artificial intel-
ligence researchers can meet, discuss different viewpoints and findings, and share them
with industry. EMAS was created in 2013 as a merger of three separate workshops
(with overlapping communities) that focused on the software engineering aspects
(AOSE), the programming aspects (ProMAS), and the application of declarative
techniques to design, program, and verify MAS (DALT). The workshop is traditionally
co-located with AAMAS (International Conference on Autonomous Agents and
Multiagent Systems) which in 2016 took place in Singapore. The previous editions
were held in St. Paul (LNAI 8245), in Paris (LNAI 8758), and in Istanbul (LNAI 9318).

This year the EMAS workshop was held as a one-and-a-half-day event. Fourteen
papers were submitted to the workshop and after a double review process, ten papers
were selected for inclusion in this volume. All the contributions were revised by taking
into account the comments received and the discussions at the workshop. Among them,
the paper “How Testable Are BDI Agents? An Analysis of Branch Coverage” by
Michael Winikoff, also appears in LNAI 10002 [N. Osman and C. Sierra (Eds.),
AAMAS 2016 Ws Best Papers, LNAI 10002, pp. 90–106, 2016, DOI: 10.1007/
978-3-319-46882-2_6], since it was selected as the best paper of the workshop, while



the paper “Augmenting Agent Computational Environments with Quantitative Rea-
soning Modules and Customizable Bridge Rules” by Stefania Costantini and Andrea
Formisanom also appears in LNAI 10003 [N. Osman and C. Sierra (Eds.), AAMAS
2016 Ws Visionary Papers, LNAI 10003, pp. 104–121, 2016, DOI: 10.1007/
978-3-319-46840-2_7], because it was selected as the most visionary paper of the
workshop. The volume includes two extended versions from the AAMAS 2016
demonstration abstracts, namely, “PriGuardTool: A Web-Based Tool to Detect Privacy
Violations Semantically,” by Nadin Kokciyan and Pinar Yolum, and “Using Automatic
Failure Detection for Cognitive Agents in Eclipse,” by Vincent Jaco Koeman, Koen
Victor Hindriks, and Catholijn Maria Jonker.

We would like to thank the members of the Program Committee for their excellent
work during the reviewing phase. We also acknowledge the EasyChair conference
management system that –as usual– provided support for the workshop organization
process. Moreover, we would like to thank the members of the Steering Committee of
EMAS for their valuable suggestions and support.

November 2016 Matteo Baldoni
Jörg P. Müller
Ingrid Nunes

Rym Zalila-Wenkstern
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nDrites: Enabling Laboratory Resource
Multi-agent Systems

Katie Atkinson1, Frans Coenen1, Phil Goddard2,
Terry R. Payne1, and Luke Riley1,2(B)

1 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
{atkinson,coenen,payne,l.j.riley}@liverpool.ac.uk

2 CSols Ltd., The Heath Business & Technical Park,
Runcorn, Cheshire WA7 4QX, UK

{phil.goddard,luke.riley}@csols.com

Abstract. The notion of the multi-agent interconnected scientific lab-
oratory has long appealed to scientists and laboratory managers alike.
However, the challenge has been the nature of the laboratory resources
to be interconnected, which typically do not feature any kind of agent
capability. The solution presented in this paper is that of nDrites, smart
agent enablers that are integrated with laboratory resources. The unique
feature of nDrites, other than that they are shipped with individual
instrument types, is that they poses a generic interface at the “agent
end” (with a bespoke interface at the “resource end”). As such, nDrites
enable the required inter-connectivity for a Laboratory Resource Multi
Agent Systems (LR-MAS). The nDrite concept is both formally defined
and illustrated using two case studies, that of analytical monitoring and
instrument failure prediction.

1 Introduction

Analytical laboratories form a substantial industry segment directed at chemical
analysis of all kinds (clinical, environmental, chemical, pharmaceutical, water,
food etc.). Supplying this marketplace is a $100B per annum industry. Labora-
tory instruments come in many forms but are broadly designed to undertake a
particular type of chemical analysis. Examples of laboratory instrument types
include: inductively coupled plasma mass spectrometers (to determine metal
concentrations) and Chromatography systems (to determine organic concen-
trations). Such laboratory instruments, although usually “front-ended” by a
computer resource of some kind, typically operate in isolation. This is because
the interfaces used are specific to individual instrument types (of which there
are thousands) and individual manufacturers. The industry acknowledges that
there are significant benefits to be gained if instruments, of all kinds, could
“talk” to each other and to other devices [12,25]; an ability to support remote
monitoring/managing of instruments would on its own be of significant benefit.
A potential solution is the adoption of a Multi-Agent Systems (MAS) approach

c© Springer International Publishing AG 2016
M. Baldoni et al. (Eds.): EMAS 2016, LNAI 10093, pp. 1–21, 2016.
DOI: 10.1007/978-3-319-50983-9 1



2 K. Atkinson et al.

to laboratory resource interconnectivity: a Laboratory Resource Multi Agent
System (LR-MAS).

However, at present, there is no simple way whereby the LR-MAS vision can
be realised. This is not only because of the multiplicity of different interfaces
for different models, but also the complex mappings, translations and manipu-
lations that have to be undertaken in order to achieve the desired interconnec-
tivity. Even when just considering specific laboratory instruments, rather than
the wider range of laboratory resources, there are many thousands of models
being sold at any one time and a huge variety of legacy systems still in routine
use. The limited connectivity that exists is largely focused on what are known
as Laboratory Instrument Management Systems (LIMS); systems that receive
and store data from instruments (for later transmission to laboratory clients)
and manage wider laboratory activities. Some software does exist to facilitate
connectivity, for example the L4L (Links for LIMS) software package produced
by CSols Ltd1 (a provider of analytical laboratory instrument software); but
this still requires expensive on-site visits by specialist engineers to determine the
desired functionality and the nature of the bespoke interfacing. All this serves to
prevent the adoption of MAS capabilities within the analytical laboratory indus-
try, despite the general acknowledgement that large scale MAS connectivity will
bring many desirable benefits [12,25].

The technical solution presented here is that of “smart agent enablers” called
nDrites; an idea developed as part of a collaboration between CSols Ltd and a
research team at the University of Liverpool, directed at finding a solution to
allow the realisation of the LR-MAS vision. The nDrite concept is illustrated
in Fig. 1. As shown in the figure, nDrites interact, at the “resource end”, in
whatever specific way is required by the laboratory resource type in question;
whilst at the other end nDrites provide generic interaction. Note that in the
figure, for ease of understanding, the nDrite is shown as being separated from
the laboratory resource (also in Fig. 2), in practice however nDrites are integrated
with laboratory resources. Thus nDrites provide system wide communications
so as to allow agents to interact with laboratory resources to (say): (i) determine
the current state of an entire laboratory system, (ii) determine all past states
of the system (system history) or (iii) exert control on the laboratory resources
operating within a given laboratory framework. Thus, in general terms, nDrites
are a form of intelligent middleware that facilitate LR-MAS operation. The main
advantage offered is that of cost. The idea is to build up a bank of nDrites,
one per instrument type, that are integrated and shipped with the individual
instruments in question. This will then alleviate the need for expensive on-site
visits and provide the desired LR-MAS connectivity. The research team already
have nDrites in operation with respect to two instrument types (a plasma auto-
sampler and an inductively coupled plasma mass spectrometer (ICP-MS)2).

1 http://www.csols.com/wordpress/.
2 The autosampler is manufactured by Teledyne CETAC Technologies, http://www.

cetac.com, while the ICP-MS is manufactured by Perkin-Elmer, http://www.
perkinelmer.com/.

http://www.csols.com/wordpress/
http://www.cetac.com
http://www.cetac.com
http://www.perkinelmer.com/
http://www.perkinelmer.com/
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Fig. 1. nDrite smart agent enabler

The main contributions of this paper are thus: (i) the concept of nDrite smart
agent enablers that facilitate multi-agent laboratory resource interconnectivity,
(ii) the associated formalism that provides for the generic operation of nDrites,
and (iii) two case studies illustrating the utility of the nDrite concept (the first
currently in production, the second under development). The rest of this paper
is organized as follows. In Sect. 2 some related work to that presented in this
paper is considered. The proposed Laboratory Resource Multi-Agent System
(LR-MAS) framework, including the nDrite concept, is presented in Sect. 3. In
Sect. 4, we detail how the different parts of the LR-MAS link together, includ-
ing how the nDrites handle the communication aspects of the system and how
agents are viewed within LR-MAS. The operation of the framework is then illus-
trated using two case studies describing particular nDrite applications. The first
(Sect. 5) is an analytical monitoring case study agent, the second (Sect. 6) is a
resource monitoring application agent that operates using a data stream classi-
fier. The paper concludes with some discussion in Sect. 7.

2 Previous Work

The notion of the pervasive, service rich and interconnected scientific laboratory
has long appealed to scientists and laboratory managers of all kinds [12,25].
Many scientific laboratory processes have traditionally involved using a num-
ber of separate, but interconnected tasks, performed by different systems and
services (often bespoke) with little support for automated interoperation or
holistic management at the laboratory level. To facilitate this interconnectiv-
ity, early work was directed at service oriented infrastructures using Grid (and
later, Cloud) computing [10,11,17,27], whereby laboratory equipment, high-
performance processing arrays, data warehouses, and in-silico scientific mod-
elling was wrapped, and managed, by a service-oriented client [10,11]. The main
focus was that of a “service marketplace” used to discover different services [32]
and to schedule or provision their use, as well as to provide support for tasks such
as: security [3], notification [19], and scheduling [27]. The need for intelligent,
autonomous support for such Grid infrastructures has been well documented
[10,11,16,21,27, inter alia].

The Grid Computing based laboratory infrastructure idea has now been
superseded by the emergence, and wide-scale adoption, of Web Services, and
consequently MAS, which exploit many of the standards used for the web, and
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resolved many problems of interoperability between organisations that can effect
grid based approaches. This migration was essential to mitigate some of the
pragmatic challenges with the interconnection of services within an Open Agent
Environment [33]; however, the flexible interoperation of systems and services
(developed by different stakeholders with different assumptions) is still a chal-
lenge. This motivated the adoption of a wrapper-based approach to support wide
spread usability within the nDrite concept.

The laboratory instrument MAS vision thus provides for the automation of
process models and workflows [31,32]; sequences of processes that can occur both
serially and in parallel to achieve a more complex task. The laboratory work-
flow concept has been extensively researched. The fundamental idea is that of
a collection of software services, whereby each service is either a process (often
semantically annotated [10,16,32]), or manages and controls some laboratory
resource. Such workflows are typically orchestrated using editors or AI-based
planning tools [32], resulting in either an instantiated workflow (one where the
specific service instances are identified and used) or in an abstract workflow
(one where the instantiation of the services themselves is delayed until execu-
tion time). Stein et al. [27,28] explored the use of an agent-based approach
to automatically discover possible service providers where abstract services are
defined within a workflow, by using probabilistic performance information about
providers to reason about service uncertainty and its impact on the overall work-
flow. The idea was that by coordinating their behaviours, agents could “re-plan”
if the providers of other services discovered problems in their provision, such as
failure, or unavailability. An interesting aspect of this workflow planning app-
roach was the use of autonomously requesting redundant services for particularly
critical or failure-prone tasks (thus increasing the probability of success). How-
ever, to facilitate the notion of autonomous control, the services themselves need
to be endowed with the necessary capabilities to be self monitoring (and thus
self aware), discoverable, and communicable [23].

The notion of agents supporting the management of laboratory services
through interoperation and workflow (either defined a-priori or dynamically at
runtime) is only possible if the agents describe and publish their capabilities,
using some discovery mechanism [9]. Although many formalisms (such as UDDI,
JINI, etc.) have been proposed to support white and yellow page discovery sys-
tems, the discovery of agent-based capabilities based on knowledge-based for-
malisms describing inputs, outputs, preconditions and effects was pioneered by
Sycara et. al. in the work on LARKS [29], and later with the Profile Model within
OWL-S [1] and the machinery required to discover them [24]. However, before
these descriptions and their underlying semantics can be defined, a formal model
of the agent capabilities, and their properties should be modelled.

In the above previous work on the automation of process models and work-
flows using MAS technology, it was assumed that communication services would
either be provided by some common or standardised interfaces or through some
kind of mediator [30]. However, as noted in the introduction to this paper, there
is no agreed communication standard currently in existence, nor is there likely to
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be so; whilst currently available mediators are limited to bespoke systems such
as CSols’ L4L system. Hence the nDrite concept as proposed in this paper.

There have been other studies directed at connecting agents to environments,
although not necessarily in the context of the laboratory instrument setting pro-
posed here, where the interfaces are integral to, and shipped with, individual
laboratory instruments. The instruments thus have a built in agent connectiv-
ity potential. For example, in [4] a generic environment interface standard is
proposed that is founded on an interface intermediate language that has a num-
ber of similar properties to those characterised by the nDrite concept proposed
in this paper. They illustrate their interface with respect to Multi-Agent Based
Simulation (MABS). In [2], the properties for large-scale “open” multi-agent sys-
tems is also emphasised, and the requirements for such systems identified. The
THOMAS abstract architecture is described, whose usage is illustrated using a
travel agency MAS example. In [22], the focus is on the notion of the “arte-
facts” for MAS such that the ad-hoc engineering of “agent societies” can be
realised. All of these systems [2,4,22] are presented at a higher level of abstrac-
tion to the work described in this paper, and thus, whilst they all share a level of
generality, it is difficult to draw direct comparisons with the multi-agent inter-
connected scientific laboratory at which the work presented in this paper is
directed. Also, unlike the nDrite concept, the proposed systems do not appear
to have been used in a commercial setting; whereas the work presented in this
paper is very much commercially focused. The proposers adopted a bottom-up
approach whereby we started with two instruments that we wish to connect and
built up from there. The result is a commercial product that at time of writing
was already being shipped within laboratory instruments. A similar bottom-up
approach was adopted in [20], in the domain of automated negotiation, where
the observation was made that many automated negotiators are intended for a
specific domain of application. To address this issue, and instead of adopting
a high level generic approach as suggested in [2,4,22], an alternative generic
mechanism is proposed, GENIUS (General Environment for Negotiation with
Intelligent multi-purpose Usage Simulation), directed specifically at the domain
of automated negotiation.

3 The Laboratory Resource Multi-agent System
(LR-MAS) Framework

A high level view of the proposed nDrite facilitated Laboratory Resource Multi-
Agent System (LR-MAS) framework is presented in Fig. 2. Referring to this
figure we have a number of laboratory resources, all connected to nDrites (dashed
lines). The resources shown in the figure include: (i) two laboratory instruments
(such as auto-samplers, laser ablation systems, mass spectrometers, and so on),
(ii) a Laboratory Instrument Management System (LIMS) and (iii) a “links for
LIMS” system (CSols’ legacy mechanism for achieving instrument connectivity
to LIMS, but still in operation as indicated by the dotted line). The figure also
shows two users and a number of agents. Four of these agents are connected
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Fig. 2. nDrite facilitated Laboratory Resource Multi-Agent System (LR-MAS)
configuration

directly to one or more nDrites; two provide linkages between pairs of labora-
tory resources while two others are simply “front ends” to resources. The two
remaining agents are application agents, not directly connected to nDrites, one is
an Instrument Failure prediction agent and the other an Analytical Monitoring
agent. We introduce Ag to denote the set of all possible agents in a LR-MAS,
where Ag = {ag1, ag2, . . . , agn}. It should also be noted that the vision presented
in Fig. 2 is a high level one, in practice the connectivity/operation will be more
restrictive for reasons of data confidentiality and business efficacy.

As noted in the introduction to this paper the interconnectivity between
agents and laboratory resources in our LR-MAS is facilitated by the nDrite
smart agent enablers (see Figs. 1 and 2). The nDrites can be considered to be
wrappers for laboratory resources in the sense that they “wrap” around a labo-
ratory resource to make the laboratory resource universally accessible within the
context of a MAS (LR-MAS). As such, nDrites can be viewed as being both the
agent actuators and sensors for the laboratory resources with which they may be
paired. This section provides detail of the nature of nDrites. More specifically,
a formalism is presented to enable the LR-MAS vision given above. Subsect. 3.1
presents the formalism with respect to laboratory resources while Subsect. 3.2
presents the nDrite formalism both from a sensor and actuator perspective.
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3.1 The Laboratory Resources Multi Agent System Model

As already noted, individual laboratories comprise a number of laboratory
resources. We introduce the set of laboratory resources as L = {L1, L2, . . . , Ln}.
Each laboratory resource has a set of one or more actions that the labora-
tory resource can perform. The complete set of possible actions that laboratory
resources can perform is denoted by Ac = {α1, α2, . . . , αn}. To find the set of
actions an individual resource Li can perform we use the partial action func-
tion LRact: L �→ 2Ac. Given that there are many different types of laboratory
resources (laboratory instruments, robots, data systems, and so on) resources can
be grouped into a set of categories T = {T1, T2, . . . , Tn}, where each Ti is some
subset of L (Tj = {Lp, Lq, . . . , Lz}). Each category is referred to as a laboratory
resource type. Thus ∀Tj ∈ T , Tj ⊆ L and ∀Li ∈ Tj , Li ∈ L. The intersection of
the actions of all laboratory resources of a particular laboratory resource type
are called the critical actions for that type, denoted Ac∩Tj where for type Tj :⋂

∀Li∈Tj
LRact(Li) = Ac∩Tj . Note that individual resources can feature other

individual actions that are not shared through the critical action set.

3.2 nDrites

The principal function of nDrites is to provide MAS connectivity without expos-
ing the detailed operation of individual laboratory resources of many different
kinds and the many different data formats. Recall that laboratory instruments
are produced by many different vendors each using proprietary data formats;
there are no standardised language or communication protocols for these differ-
ent resources. Therefore, as noted previously, nDrites are used as wrappers for
laboratory resources so as to create a standardised method for retrieving data
from, and exerting control over, every nDrite enhanced laboratory resource. As
such, nDrites can be viewed as both actuators and sensors. A formal definition of
the operation of nDrites is presented in the remainder of this sub-section; firstly
in the context of nDrites as actuators and secondly in the context of nDrites as
sensors.

nDrites as Actuators. The set of nDrites are denoted as Den =
{D1,D2, . . . , Dn}. The set of possible nDrite actions that the complete set of
nDrites Den can expose is Dc = {δ1, δ2, . . . , δn}. The following partial nDrite
action function defines the set of nDrite actions that a given nDrite can expose
DenAct: Den �→ 2Dc. Some nDrite actions may only be possible with respect
to particular laboratory resources, others will be critical actions shared across
a single laboratory resource type or a number of types. To find the set of lab-
oratory resource types to which an nDrite action may be applied we use the
function pos: Dc �→ 2T . Note also that actions may be sequenced, by an agent,
so as to define workflows.

Each nDrite action δi requires a corresponding action object, which details
all the necessary parameters for δi to operate successfully. The set of nDrite



8 K. Atkinson et al.

action objects (that are provided to functions that perform actions) is Oa =
{oa1, oa2, . . . , oan}. Each nDrite action object has a class type in the sense that
each object belongs to a class which in turn defines the nature of the object. The
set of nDrite object class types is given by Ot = {ot1, ot2, . . . , otn}. The class type
of each nDrite action object is found by the following function type: Oa �→ Ot.
To find out which class type is required for each nDrite action δi, we use the
object requirement function req: Dc �→ Ot (we assume only one object type is
required for each nDrite action).

Recall that individual laboratory resources are likely to perform individual
actions in different ways. Hence, at the resource end, nDrites have bespoke inter-
faces (see Fig. 1). As such, nDrites are paired with individual laboratory resources
(recall Fig. 2). An nDrite Dj and a laboratory resource Li that are connected
together are thought of as an agent enabling pair : AEPk = (Li,Dj). The set of
all agent enabling pairs is defined as AEP = {AEP1, AEP2, . . . , AEPn}.

Consequently, given an nDrite-laboratory resource pairing, the nDrite func-
tionality can be mapped onto the resource functionality. Additionally, note that
an nDrite action δi for an nDrite may also include additional software only
actions. A software only action is an operation performed internally to the
nDrite itself with no engagement with its paired laboratory resource (for exam-
ple “return the nDrite identification number”). The set of software only actions
are S = {s1, s2, . . . , sn}. Therefore nDrite actions map onto zero, one or many
laboratory resource actions and zero, one or many software only actions3. To
find the set of laboratory resource and/or software only actions that occur
when an nDrite action is called, we use the partial nDrite exposure function
exp: Aep × Dc �→ 2Ac ∪ 2S . Given Li ∈ Tk then ∀δk where Tk /∈pos(δk), the
following holds: exp((Li,Dj), δk) = ∅. That is, zero laboratory resource and
software only actions occur when an nDrite action δk is attempted to be invoked
on an nDrite that cannot perform it. Should an nDrite Dj want to perform
an action ac ∈ Ac on its paired laboratory resource Li, then it calls the func-
tion Perform(ac, Li). Should an nDrite Dj want to perform an action ac ∈ S
on itself, then it calls the function Perform(ac,Dj). In both cases a Boolean
is returned to indicate whether the action was successful (true) or not (false).
We do not describe in detail what occurs in the Perform function due to the
bespoke interface with the laboratory resource.

This completes the discussion on nDrites as actuators for agent based soft-
ware. In summary, nDrites can expose all possible actions that a laboratory
resource can provide, as well as expose more software only actions. Additionally,
nDrites can lower the computational burden for associated agents by exposing
sequences of software and laboratory resource actions. In this manner, nDrites
enhance the capabilities of the laboratory resources that they are attached to.
Of course, for agents to trigger nDrites to perform functions, the agents must
know what nDrite actions each nDrite provides.

3 Note that the number of exposed nDrite actions can therefore be greater than the
number of instrument actions.
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Inspired by [6], the LR-MAS is divided into containers where each container
has three services that allow for agents to find out: (a) what nDrites there are;
(b) how to communicate with each nDrite; and (c) what each nDrite can do.
The three services are the following (which are not shown in Fig. 2):

(a) White pages service: Manages the container by registering and deregistering
nDrites and agents from it. Provides unique identifiers to each registered
component. Also can provides information about the name and ID of each
agent/nDrite, where an agent/nDrite is located and what type each nDrite
is (e.g. autosampler, ICP-MS instrument, etc.). Therefore agents can request
information regarding a specific nDrite or multiple nDrites of the same type.

(b) Message processing service: Handles the internal and external messaging of
the container. An agent/nDrite needs to know the location of this service to
connect to the container (who will then inform the white pages that a new
component would like to be connected). The external messaging functional-
ity depends on the specific implementation of the service but can be email,
SMS, service to service communication, etc.

(c) Yellow pages service: Records the functionality that each nDrite of the con-
tainer wants to advertise. Agents can therefore access this yellow pages to
search for a specific capability within the container.

nDrites as Sensors. For agents to work correctly with nDrites (and therefore
the laboratory resources they are connected to), nDrites need to not only be
actuators but also sensors. Therefore nDrites map laboratory resource actions
into objects that can be understood in our LR-MAS. Previously we mentioned
that nDrites, in their actuator role, receive nDrite action objects, which are
required for nDrites to perform actions. Concurrently nDrites act as sensors
and produce nDrite sensor objects. The set of nDrite sensor objects are Os =
{os1, os2, . . . , osn}. Each object has a class type, where the set of object class
types are defined as Ot = {ot1, ot2, . . . , otn} (note that this is the same definition
as object types for nDrite action objects). The type of each sensor object is
found by the following function type: Os �→ Ot. The set of sensor objects that
an nDrite maps a set of laboratory resource actions onto, is found using the
function Sen: 2Ac × N �→ 2Os, where the natural number represents the current
time point.

Every nDrite Dj collects the nDrite sensor objects it generates in an associ-
ated nDrite sensor database (SDBj)4 that grows monotonically over time (time-
point t = 1 occurs when the nDrite is turned on). Depending on the end users
needs, nDrite sensor databases can be local to the nDrite itself, sit on a labora-
tory server, or be in the cloud. The sensor database is defined as:

Definition 1. nDrite Sensor database: The database SDBj for an agent
enabling pair (Li,Dj) holds a set of nDrite objects Osi (where Osi ⊆ Os), that

4 Additionally there exists an nDrite action database for an nDrite Dj , denoted ADBj ,
which holds nDrite action objects.
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have been generated by Dj because Li has performed the actions LAc (where
LAc ⊆ Ac).

SDBt
i =

{∅ iff t = 0,
SDBt−1

i ∪ Sen(LAc, t) iff t > 0 and Sen(LAc, t) 	= ∅,

For nDrites to be sensors for agents, an agent needs to be able to access the
objects in the nDrites database. Therefore, included in the software only actions
of each nDrite are the following database access functions:

– GetObjectsByOccurancesi(2Ag × 2Ot × N) �→ 2Os. Returns to the given
agent, the most recent n objects of the given object types that occurred in the
SDBi where n ∈ N.

– SubscribeToObjectsi(2Ag × 2Ot × N). Causes ag ∈ Ag to subscribe to
receiving automatic updates concerning sensor objects, saved by nDrite Di in
its database SDBi, which are of the desired object types. This subscription
occurs until the given timepoint n ∈ N.

– UnSubscribeFromObjectsi(2Ag×2Ot×N). Causes ag ∈ Ag to unsubscribe
to receiving automatic updates concerning sensor objects, saved by nDrite Di

in its database SDBi, which have the desired object types. This subscription
occurs until the given time point n ∈ N. If n = 0, then the agent is completely
unsubscribed.

Additional functions required for the nDrites to operate successfully as agent
sensors are as follows:

– GetSubscribersi(2Ot) �→ 2Ag. Receives a set of object types and returns
the set of agents that have subscribed to these object types.

– GetNextAction(L × N) �→ Ac. Receives a single laboratory resource and a
time limit n ∈ N, and returns the next laboratory action that occurs before
the timelimit. If the laboratory resource performs no recognised action within
the time limit then null is returned.

– Connected(2Ac × 2Ac) �→ {true, false}. Returns whether the first set of lab-
oratory resource actions are connected to the second set of laboratory resource
actions (true) or not (false). The two sets are connected if: (i) they form a
series that can be converted into an nDrite sensor object; or (ii) they form a
series that, when further nDrite sensor objects are added, can be converted
into an nDrite sensor object. Also, true is returned if the first set of labora-
tory resource actions are the empty set. False is returned if the second set of
laboratory resource actions are the empty set or if both sets are empty.

– nDriteAdvertisingObjectsi(2Ot) → {true, false}. Returns whether Di

is advertising that it can update the agents on the given set of object types
(true) or not (false). Again, it is assumed that this advertisement is performed
using a yellow pages agent.

– CollectSensorObjectsi(N) → 2Os. Returns the objects from the data-
base SDBi that have occurred since the time point n ∈ N.
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4 The Laboratory Resource Multi Agent System
Implementation

In the previous section, the formalism of the laboratory resource multi agent
system (LR-MAS) was detailed. This section concentrates on how the different
sections of LR-MAS link together. Subsect. 4.1 details the messages that are sent
between the nDrites and agents. Subsects. 4.2 and 4.3 builds on the formalism to
show: (i) how nDrites, in their role of agent actuators, handle incoming messages;
and (ii) how nDrites, in their role as agent sensors, produce messages that get
sent to agents. The section is then completed with Subsect. 4.4 which gives a
brief definition for LR-MAS agents.

4.1 Communications

So far we have shown that nDrites have the available functionality to be agent
actuators and sensors. As nDrites are separate software entities to agents, there
needs to be a communication mechanism available for the agents to utilise the
actuator and sensor capabilities of the nDrites. In this section we detail the
message syntax between nDrites and agents. Note that the associated message
syntax for agent to agent communication is considered to be out of scope with
respect to this paper, however this can clearly be achieved using a FIPA com-
pliant Agent Communication Language (ACL).

The LR-MAS given in Fig. 2 features a set of communicating entities (agent-
nDrite pairs). Messages are sent between these entities, from the set of possible
messages, denoted by M = {m1,m2, . . . ,mn}. Each message contains:

(a) meta deta, denoted by MD;
(b) A set of nDrite actions and nDrite action objects pairs5, denoted NAOP ,

where a single pair is indicated by the tuple 〈δi, oak〉;
(c) A set of nDrite sensor objects (NSO).

We assume that the meta data must include two functions Sender and
Receiver that returns an entity in either the set of nDrites Den or the set
of agents Ag.

Definition 2. An nDrite system message is a tuple denoted mi =
〈MD,NAOP,NSO〉 where the following holds:

1. Receiver(MD) ∈ Ag ∪ Den
2. Sender(MD) ∈ Ag ∪ Den
3. If Receiver(MD) ∈ Ag then Sender(MD) ∈ Den
4. If Receiver(MD) ∈ Den then Sender(MD) ∈ Ag
5. If NAOP 	= ∅ then ∀〈δi, oak〉 ∈ NAOP the following holds:

(a) δi ∈ Dc; (b) oak ∈ Oa; (c) oak ∈ req(δi)
6. NSO ⊆ Os

5 nDrite action object pairs are the objects that are saved in the nDrite action database
(ADB).
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Thus an nDrite system message must have a designated receiver and sender
(conditions 1 and 2). One out of the sender and receiver must be an agent,
while the other must be an nDrite (conditions 3 and 4). For each nDrite action
object pair (NAOP ), the nDrite action called for must be valid (condition 5(a)),
the paired nDrite action object must be valid (condition 5(b)) and the paired
nDrite action object must be required by the nDrite action they are paired with
(condition 5(c)). Finally, the nDrite sensor objects NSO that are provided must
be part of the sensor object set Os (condition 6). This completes our discussion
of the communication model of our LR-MAS. In the following two sub-sections
we discuss how both nDrites and agents operationalise these messages.

4.2 Sending Messages to nDrites

In the context of nDrite’s as agent actuators, the nDrites will have to deal
with many incoming messages from agents. In Algorithm 1, we present our gen-
eral nDrite procedure for dealing with an incoming message. The algorithm starts
with the message being unpacked (line 5). Then two sets are initialised, one for
the set of nDrite actions that complete successful (line 6) and another for the
nDrite actions that do not complete successfully (line 7). As nDrites are pro-
viding wrappers for laboratory resources (instruments, LIMS, etc.), an nDrite
action can fail through no fault of the nDrite software. For example, a labo-
ratory instrument’s hardware could be faulty, or the server that hosts a LIMS
could fail. Therefore each nDrite records which actions have succeeded and which
have failed (so as to help the error recovery process for the agents within our
LR-MAS).

The first thing an nDrite should check when a message is received, is whether
it was the intended receiver (line 13 in Algorithm 1). If it was not the intended
receiver the message is ignored (line 14), otherwise the message is processed (line
16 onwards). When processing the message, the nDrite takes one nDrite Action-
object Pair (〈δ, oak〉) at a time (line 17). If this nDrite can perform the required
nDrite action δ, and the required nDrite action object has been received (line 18),
then δ is processed. Whenever an nDrite action object pair is to be processed, this
is saved into the nDrite action database, denoted ADB (line 20), so that a record
of the system history is available. The nDrite processes δ by converting it into a
sequence of laboratory resource and software actions via the exp function (line
22). If the next action acq is a software action, then it is performed on the nDrite
(line 24), otherwise it is performed on the laboratory resource (line 26). The
boolean complete stores details on whether acp completed successfully. Therefore
this Perform function neatly hides any limitations/constraints of the resources.
That is, if the instrument is currently fully functional and idle, the action acp
will be performed successfully and true will be returned. If the instrument is
busy, then the Perform function will return false. If the instrument is faulty,
then the Perform function will also return false, and so on.

If any of the actions from the exp function are unsuccessful, then the original
nDrite action δ and information on the error (i.e. if the instrument is busy or
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Algorithm 1. The nDriteReceive algorithm that handles an incoming
message for the nDrite Dj that is paired with the laboratory resource Li.

1: function nDriteReceive(mi)

2: Input: 〈mi〉; where mi is the received message.

3:
4: begin;

5: mi = 〈MDi, NAOPi, ∅〉; // Unpack the message. No sensor objects from agents

6: succ = ∅; // Set of successful actions

7: fail = ∅; // Set of failed actions

8: p = 0; // Integer count variable for nDrite actions

9: t = 0; // Current timestamp that automatically updates

10: complete = false; // Boolean that notes whether the last action completed or not

11: osj ⊂ Os; // nDrite sensor object defined

12:
13: if Receiver(MDi) �= Dj then

14: return null; // If this nDrite is not the intended recipient then quit

15: end if

16: while p < |NAOP | do

17: 〈δ, oak〉p ∈ NAOP ;

18: if δ ∈ DenAct(Dj) and (oak = req(δ)) then

19: q = 0; // Integer count variable for individual actions

20: ADBt
j = ADBt−1

j ∪ 〈δ, oak〉p;
21: while q < |exp((Li, Dj), δ)| do

22: acq ∈exp((Li, Dj), δ);

23: if acq ∈ S then

24: complete =Perform(acq, Dj); // I.e. acq is a software only action

25: else

26: complete =Perform(acq, Li); // I.e. acq is a laboratory resource action

27: end if

28: if complete = true then

29: 〈δi, error information〉 ∈ fail;

30: else

31: 〈δ, success information〉 ∈ succ;

32: end if

33: q + +;

34: end while

35: else

36: 〈δi, error information〉 ∈ fail;

37: end if

38: p + +;

39: end while

40: fail, succ ∈ osj ; // Add the success and fail information to an nDrite sensor object

41: mj = 〈MDj , ∅, {osj}〉; // Add sensor object to return message

42: Receiver(MDj) = Sender(MDi);

43: Sender(MDj) = Receiver(MDi);

44: Send mj ;

45: end;

unresponsive or faulty etc.) is added to the list of nDrite actions that failed (line
29). Otherwise the original nDrite action δ is added to the list of nDrite actions
that succeeded (line 31). This process continues until all the nDrite actions in
the NAOP set have been dealt with (line 16).

Finally, the nDrite builds and sends a message mj to inform the agent of
what actions succeeded and what failed (lines 40 to 44). Note that these mes-
sages are automatically sent, so an agent does not have to subscribe to these
nDrite sensor objects.
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4.3 Sending Messages to Agents

In the context of nDrites operating as sensors for agents, Algorithm 2 presents
the general nDrite sensor algorithm. The algorithm takes as input the laboratory
resource Li that is pared with the nDrite Dj . Therefore the agent-enabling pair is
set as (Li,Dj). The algorithm begins by launching a database monitoring thread
(line 9), the purpose of which is to monitor this nDrite’s sensor database and
send updates to the subscribing agents once sensor objects of the correct type
appear in the database (this thread is described in more detail later). The main
function then processes series of laboratory resource actions until termination
(line 10). The Φ variable holds the current laboratory resource action series that
is being recorded6. This action series is initially set to empty (line 8).

When processing an action series the first laboratory resource action is added
to the current action series, as the Connected function always returns true when
the current series is empty (line 12 and 13). Next the nDrite checks whether it
advertises that it can update agents on the nDrite sensor objects that would
appear from the conversion of the current action series (line 23). If this is the
case, then these converted objects are added to the nDrite’s sensor database
(line 24), which is monitored through the nDriteMonitorDB function. Next
the nDrites waits until timelimit for the next laboratory resource action in
the series to occur (line 11). If non occurs before timelimit then the laboratory
resource action will be set to null (the current action series has been completed),
so Connected will return false (line 12) and the action series will be broken
(line 20 and 21). Conversely if another laboratory action is found within the time
limit (line 11), then if Connected returns true, the new action αp is added to
the series Φ and the process continues (lines 13 and 14). If Connected returns
false, then αp is not added to the current series, which completes (line 16), and
instead, αp becomes the first action of a new series (lines 17 and 18).

The nDriteMonitorDB thread continues to run until the nDrite terminates.
The first part of the continuous loop, collects nDrite sensor objects into Γ , which
have occurred in this nDrite’s database since the last time it checked (line 33).
The last check time is then updated (line 34). For every nDrite sensor object osi
found (line 35), and for each agent agj that subscribes to updates concerning
the objects of the type type(osi) (line 36), a message is sent to each agent agj
to inform it of the update (lines 37 to 39).

Algorithms 1 and 2 both reside within the nDrite but they do not neces-
sarily have to be connected, that is the agents do not necessarily have to per-
form an action through the nDriteReceive algorithm and then observe the
results through the nDriteMonitor algorithm. For example a results moni-
toring agent may only be interesting in receiving updates when more samples

6 A laboratory resource action series can be processed by the nDrite as a collection.
An example is sample analysis by a laboratory instrument. Single instrument actions
can be: move to the next sample; send this sample for analysis; record sample results;
move to next sample; etc. These basic actions maybe useful to some agents who want
real time updates but other agents maybe “satisfied” to just have information on
the collection of actions, once the sample analysis is complete.
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Algorithm 2. The nDriteMonitor algorithm allows the nDrite Dj to
monitor the laboratory resource Li and convert any laboratory resource
actions into LR-MAS understandable nDrite sensor objects. Once con-
verted, the nDrite will update any agents that have subscribed to these
nDrite sensor object types.

1: function nDriteMonitor(Li)
2: Input: 〈Li〉; where Li is the Laboratory resource to monitor.
3:
4: begin;
5: p = 0; // Integer count variable for nDrite action

6: t = 0; // Current timestamp that automatically updates

7: timelimit // A predefined integer to wait for the next lab resource action
8: Φ = ∅; // Laboratory action series initialised

9: start nDriteMonitorDB() in new thread
10: while nDrite not terminated do
11: αp = GetNextAction(Li, timelimit)

12: if Connected(Φ, {αp}) then

13: Φp = αp; // Action is added to action series

14: p ++;
15: else if αp �= null then
16: Φ = ∅; // This action series has ended

17: Φ0 = αp; // A new action series is initialised with the last action

18: p = 1;

19: else
20: Φ = ∅; // This action series has ended
21: p = 0;

22: end if
23: if nDriteAdvertisingObjects(type(Sen(Φ, t))) then

24: SDBt
j = SDBt−1

j ∪ Sen(Φ, t);
25: end if

26: end while
27: end;
28:
29: function nDriteMonitorDB()
30: begin;

31: Integer s = 0; // Last timestamp checked

32: while nDrite not terminated do
33: Γ = CollectObjects(s);
34: s = current time;
35: for each osi ∈ Γ do
36: for each agj ∈ Subscribers(type(osi)) do

37: mk = 〈MD, ∅, {osi}〉;
38: Sender(MD) = Dj ; Receiver(MD) = agj ;

39: send mk;
40: end for
41: end for

42: end while

43: end;
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have been analysed by an instrument and may not be interested in scheduling
these samples itself. In this case the agent would subscribe to the results objects
of the instrument nDrite through the SubscribeToObjects function detailed
previously. Then the nDrites’s nDriteMonitor algorithm would update the
agent on new sample results when they occur.

4.4 Definition of LR-MAS Agents

From the foregoing it is clear that the possibilities for LR-MAS agents are exten-
sive. Consequently no assumptions regrading the structure of a LR-MAS agent
are made here. At a highlevel, LR-MAS agents are structured as follows:

Definition 3. An LR-MAS agent is an autonomous software component that:

– Takes as input messages of the form 〈MD,NAOP,NSO〉
– Sends messages of the form 〈MD,NAOP,NSO〉
It is assumed that agents have an interpretation function that will map incoming
messages to zero or more agent actions. Additionally why an agent would build
an nDrite action object is entirely up to them, be it because of a trigger from a
user’s input or a trigger from a incoming message. Individual agents can perform
a variety of tasks that are only limited by the nDrite actions implemented. The
current classes of agent focused on for production are:

1. System Configuration Agents: This type of agent seeks to configure and con-
nect laboratory resources with a minimal assistance from an installer or lab-
oratory personal. For instance, this type of agent could smoothly connect
two previously unconnectable resources and/or perform automatic ontologi-
cal mapping between laboratory resources.

2. Analytical Monitoring Agents: This type of agent monitors results from the
analysis of samples in the LR-MAS and notes how they were obtained. Issues
discovered can be attempted to be rectified automatically or the approriate
lab personnel can be contacted.

3. Instrument Monitoring Agents: This type of agent monitors data related to
failures of the laboratory resource and records each failure’s resolution. Over
time this will allow learning algorithms within the agent to accurately predict
the issues that tend to lead to failures, the failure types that might occur and
on what timescale they are likely to occur.

In the following two sections, we give two real world examples (case studies) of
nDrite usage (the two App agents shown in Fig. 2).

5 The Analytical Monitoring Case Study

The analytical monitoring case study is focused on the “AutoDil agent” currently
in operation. The AutoDil agent uses two nDrites: (i) an Inductively Coupled
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Plasma Mass Spectrometer (ICP-MS) instrument nDrite, denoted by Dicp, and
(ii) an autosampler nDrite7, denoted by Das.

Teledyne CETAC technologies8 have produced an autosampler named the
ASX-560 that has a new automatic dilution hardware extension named the SDX.
The problem is that many ICP-MS instruments do not recognise the SDX and
so these ICP-MS instruments cannot communicate with the SDX to make use of
it. By wrapping the ASX-560 and the SDX with an autosampler nDrite Das and
wrapping a variety of ICP-MS instruments with an ICP-MS instrument nDrite
Dicp, the SDX hardware for automatic dilution can now be used with ICP-MS
instruments that have no knowledge of it. This is possible through the AutoDil
agent that connects the two nDrites Das and Dicp, and monitors the interaction
between them.

The main purpose of the AutoDil agent is to make sure any samples from
the ASX-560 autosampler that are found to be “over-range” by the ICP-MS
instrument are rediluted automatically by the SDX and sent for reanalysis to
the ICP-MS via the ASX-560.

An ICP-MS analyses many samples one after the other. A collection of sam-
ples is know as a run. When a run has been completed many laboratory resource
actions have been performed, which are converted by the ICP-MS nDrite Dicp

(through Dicp’s nDriteMonitor function), into a results run nDrite sensor
object of the type otrr.

For the AutoDil agent agad to do its job, it must subscribe to nDrite sensor
objects of the type otrr from the ICP-MS instrument nDrite Dicp. Note that
Dicp will have advertised that it can update agents with respect to objects of
the type otrr, thus nDriteAdvertisingObjects({otrr}) = true. When agad
receives an nDrite sensor object osrx of type otrr, then it should analyse osrx
to see if any samples in the results run need redilution. Whenever agad finds
samples that require redilution, it:

1. Builds an nDrite action object oax that includes information on the dilution
amounts for each sample and calls the AddDilutions nDrite action in Das

by constructing the message mp = 〈MD, 〈AddDilutions, oax〉, ∅〉, where
Receiver(mp) = Das and Sender(mp) = Agad.

2. Builds an nDrite action object oay that includes information on which
samples to be reanalysed and calls the SetupRun nDrite action in Dicp

by constructing the message mp = 〈MD, 〈SetupRun, oaj〉, ∅〉, where
Receiver(mp) = Dicp and Sender(mp) = Agad.

After performing both (1) and (2), the agad waits for new objects from the ICP-
MS nDrite, which may include information on samples that required further
dilution.

The nDrites will deal with messages (1) and (2) through their
nDriteReceive function. The nDrite Das will convert the nDrite action
AddDilutions through the exp function, to actions that its paired ASX-560

7 An autosampler automatically feeds a liquid sample into an ICP-MS instrument.
8 http://www.teledynecetac.com/.

http://www.teledynecetac.com/
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autosampler can understand. The purpose of these converted actions will be to
tell the ASX-560 autosampler and the SDX which samples require what level
of dilution. The nDrite Dicp will convert the nDrite action SetupRun, again
through the exp function, to actions that its paired ICP-MS instrument can
understand. The purpose of these actions will be to tell the ICP-MS instrument
what samples it should load from the autosampler (and therefore what data it
will be collecting). The nDrites will then report to agad what actions were suc-
cessful. If all were successful then the autoDil agent knows that it should soon
expect another results run nDrite sensor object osry of type otrr, which will hold
information on the diluted samples.

6 The Instrument Failure Prediction Case Study

The second case study is an instrument failure prediction scenario where a ded-
icated instrument monitoring agent (see Fig. 2) is used to predict instrument
failure using a data stream classifier trained for this purpose (as proposed in
[5]). This agent is currently under development. This agent will have the capa-
bility to connect to many nDrites, including the nDrites that the AutoDil agent
connects to.

Instrument failure within scientific and analytic laboratories can lead to
costly delays and compromise complex scientific workflows [26]. Many such fail-
ures can be predicted by learning a failure prediction model using some form
of data stream mining. Data stream mining is concerned with the effective, real
time, capture of useful information from data flows [13–15]. A common appli-
cation of data stream mining is the analysis of instrument (sensor) data with
respect to some target objective [7,8]. There is little work concerning the idea
of using data stream mining to predict the failure of the instruments (sensors)
themselves other than [5] which describes a mechanism whereby data stream
mining can be applied to learn a classifier with which to predict instrument
failure. In our LR-MAS, an instrument failure prediction app agent implements
the mechanism of [5] by communicating with other agents, which are in turn
connected to nDrites (referred to as Dendrites in [5]).

7 Conclusions

This paper has described a mechanism whereby the well documented benefits
of MAS can be realised in the context of analytical laboratories where labo-
ratory resources are not readily compatible with the technical requirements of
MAS. The proposed solution is the concept of nDrites, “smart agent enablers”,
that at one end feature bespoke laboratory resource connectivity while at the
other end feature a generic interface usable by agents of all kinds. The vision
is that of a Laboratory Resource MAS (LR-MAS). The operation of nDrites
was fully described in the context of: laboratory resources, nDrites as agent
actuators, nDrites as sensors, the adopted communication mechanisms and the
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associated agents. The utility of nDrites was illustrated using two case stud-
ies: (i) an analytical monitoring case study with respect to an “AutoDil agent”
currently in operation; and (ii) an instrument failure prediction case study, fea-
turing an instrument monitoring agent, that is currently under development. The
nDrite concept, as presented in this paper, has now been fully implemented. A
subsidiary company has been created, DendriteLabs, whose core business is the
production of nDrites. To date, over 200 licenses for nDrite enabled “auto sam-
plers” and “inductively coupled plasma mass spectrometry” instruments have
been sold.
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Hübner, J.F., Pokahr, A.: An interface for agent-environment interaction. In:
Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS (LNAI), vol. 6599,
pp. 139–158. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28939-2 8

5. Atkinson, K., Coenen, F., Goddard, P., Payne, T., Riley, L.: Data stream min-
ing with limited validation opportunity: towards instrument failure prediction. In:
Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 283–295. Springer
International Publishing, Cham (2015). doi:10.1007/978-3-319-22729-0 22

6. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology. Wiley, New York (2007)

7. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instru-
mentation data to system states: a building block for automated diagnosis and
control. In: Proceedings 6th Symposium on Operating Systems Design and Imple-
mentation, pp. 231–244 (2004)

8. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real
time data mining-based intrusion detection. Inf. Fusion (Spec. Issue Distrib. Sens.
Netw.) 9(3), 344–354 (2008)

9. Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Proceed-
ings 15th International Joint Conference on Artificial Intelligence (IJCAI 1997),
pp. 578–583 (1997)

10. De Roure, D., Jennings, N.R., Shadbolt, N.: The Semantic Grid: A Future e-Science
Infrastructure. Grid Computing-Making the Global Infrastructure a Reality, pp.
437–470 (2003)

http://dx.doi.org/10.1007/3-540-48005-6_27
http://dx.doi.org/10.1007/11839354_33
http://dx.doi.org/10.1007/978-3-642-28939-2_8
http://dx.doi.org/10.1007/978-3-319-22729-0_22


20 K. Atkinson et al.

11. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets Brawn: why Grid and Agents
need each other. In: Proceedings 3rd International Conference on Autonomous
Agents and Multi-Agent Systems, New York, USA, pp. 8–15 (2004)

12. Frey, J.G., De Roure, D., schraefel, M.C., Mills, H., Fu, H., Peppe, S., Hughes, G.,
Smith, G., Payne, T.R.: Context slicing the chemical aether. In: Proceedings 1st
International Workshop on Hypermedia and the Semantic Web, Nottingham, UK
(2003)

13. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Record 34(2), 18–26 (2005)

14. Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B., Stahl, F.: Data stream
mining in ubiquitous environments: state-of-the-art and current directions. Wiley
Interdisc. Rev. Data Min. Knowl. Discovery 4(2), 116–138 (2014)

15. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall,
Boca Raton (2010)

16. Gil, Y.: From data to knowledge to discoveries: Artificial intelligence and scientific
workflows. Sci. Program. 17(3), 231–246 (2009)

17. Hamdaqa, M., Tahvildari, L.: Cloud computing uncovered: a research landscape.
Adv. Comput. 86, 41–85 (2012)

18. Jacyno, M., Bullock, S., Geard, N., Payne, T.R., Luck, M.: Self-organising agent
communities for autonomic resource management. Adapt. Behav. J. 21(1), 3–28
(2013)

19. Lawley, R., Luck, M., Decker, K., Payne, T.R., Moreau, L.: Automated negotiation
between publishers and consumers of grid notifications. Parallel Process. Lett.
13(4), 537–548 (2003)

20. Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.:
GENIus: an integrated environment for supporting the design of generic automated
negotiators. Int. J. Comput. Intell. 30(1), 48–70 (2012)

21. Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A.,
Lord, P., Martin, A., Milanesi, L., Moller, S., Schroeder, M., Luck, M.: Agents
in bioinformatics, computational and systems biology. Briefings Bioinform. 8(1),
45–59 (2007)

22. Omicini, A., Ricci, A., Virol, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008)

23. Payne, T.R.: Web services from an agent perspective. IEEE Intell. Syst. 23(2),
12–14 (2008)

24. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, pp. 333–347. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6 26

25. Schraefel, M.C., Hughes, G., Mills, H., Smith, G., Payne, T., Frey, J.: Breaking
the book: translating the chemistry lab book into a pervasive computing lab envi-
ronment. In: Proceedings SIGCHI Conference on Human Factors in Computing
Systems, 24–29 April, Vienna, Austria (2004)

26. Stein, S., Payne, T.R., Jennings, N.R.: Flexible QoS-based service selection and
provisioning in large-scale grids. In: Proceedings of UK e-Science All Hands Meet-
ing, HPC Grids of Continental Scope (2008)

27. Stein, S., Payne, T.R., Jennings, N.R.: Flexible selection of heterogeneous and
unreliable services in large-scale grids. Philos. Trans. Royal Soc. A: Math. Phys.
Eng. Sci. 367(1897), 2483–2494 (2009)

28. Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using
redundancy and advance reservations. IEEE Trans. Serv. Comput. 4(2), 125–139
(2011)

http://dx.doi.org/10.1007/3-540-48005-6_26


nDrites: Enabling Laboratory Resource Multi-agent Systems 21

29. Sycara, K., Widoff, S., Klusch, M., Lu, J.: LARKS: dynamic matchmaking among
heterogeneous software agents in cyberspace. Auton. Agents Multi-Agent Syst.
5(2), 173–203 (2002)

30. Szomszor, M., Payne, T.R., Moreau, L.: Automated syntactic medation for web
service integration. In: Proceedings IEEE International Conference on Web Ser-
vices, Chicago, USA (2006)

31. Wassink, I., Rauwerda, H., Vet, P., Breit, T., Nijholt, A.: E-BioFlow: different
perspectives on scientific workflows. In: Elloumi, M., Küng, J., Linial, M., Murphy,
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Abstract. We recall the key abstractions and models on which the
major approaches to software specification rely, using Meyer’s forces
of computation as dimensions of comparison. Based on the identified
strengths and lacks, we introduce data-awareness and of norm-awareness
as recommended properties, explaining the advantages they bring about.
We show that multiagent systems are a good candidate for the develop-
ment of a data- and norm-aware programming, tracing directions for the
realization of multiagent systems that are data and norm-aware. Finally,
we report and comment some proposals from the multiagent systems
literature that, though developed independently and not inserted in an
organic framework, already face specific aspects that are relevant to bring
about norm and data-awareness.

1 Introduction

One of the key characteristics of agents is their situatedness [41,50,51], i.e. the
fact that an agent is immersed in an environment, be it social or physical, that
it perceives, senses, and acts upon. Despite the centrality of situatedness, most
studies in the research area on multiagent systems are focussed only on features
of agents, while those that put forward the need of representing the environment
either (1) disregard the plurality of data, thus typically relying on a propositional
representation, as explained in [36], or (2) do not provide a representation of
the process by which data evolve in a form that can be reasoned about, as we
underline in this work.

We advocate that, in order for agents to be capable of dealing with richer
data representations that go beyond the propositional case, it is necessary to rely
on an information system through which data can, for instance, be aggregated
or information can be extracted (data awareness). The environment, for what
concerns its being used by the agents, should be specified on top of building
blocks that amount to semantically meaningful chunks of data, which evolve as
a consequence of the agents’ actions. The description of how data evolve should
c© Springer International Publishing AG 2016
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be provided by the environment to its agents as a body of norms. This would
allow agents to deliberate how to act and which goals to pursue also in terms of
expectations about the evolution of the environment (norm awareness). Gather-
ing from proposals like [6,18], we propose to describe the environment in terms
of data information models and data lifecycles, that are to be made available
to the agents in their deliberation process. A data information model specifies
the structure of the information, a data lifecycle, instead, specifies data state
transitions. Finally, it is capitol that data-awareness and norm-awareness are
realized in a way that does not compromise the agents’ deliberative capabilities.
Problems may, in fact, arise when no bound is placed on the number of tuples
that can be added to database relations as the computation goes on [5,36].

Let us make a couple of examples. In a propositional setting, it is common
to consider an order as pertaining to an interaction session. Combining different
orders of a same client into a single shipping procedure would be positive in
various respects (to reduce pollution, to save money, to make the client happy by
receiving everything in one box), but the exhibition of such a behavior requires to
distill information from the data specifying the different orders, to associate the
orders to the single client, and to know that all orders follow a same evolution,
whose description should be available to the agents in a form that can be reasoned
about. Only such kind of awareness would provide the agents the means to adapt
their behavior to the cases which are captured by the actual data. Similarly, in
a warehouse that received various orders concerning items of a same kind, and
that will undergo some packaging process, it would be more efficient to first
pick all the items up (probably they will be on the same shelf) and only after
start to pack them up. Instead, in a propositional setting the pick-and-pack can
only occur one item at a time, introducing a considerable waste of time. Of
course, it is always possible to hard-code some optimization procedure in the
agents’ behaviors but the interesting thing would be that the agents adapted
autonomously, after reasoning on data, without any hard-coding.

To explain our point, we start the paper by recalling the key abstractions and
models on which the major approaches to software specification rely, including
both the ones developed by the research area on multiagent systems and those
proposed by other research communities. We provide an organic view by rely-
ing on Meyer’s three forces of computation [33] as reference dimensions, along
which all the considered proposals are positioned. To this aim, Sect. 2 introduces
Meyer’s forces of computation, while Sect. 3 overviews approaches to software
specification, ranging from functional decomposition to multiagent systems.

Based on the strengths and lacks emerged in this part of the paper, Sect. 4
introduces data-awareness and norm-awareness as recommended properties,
showing that multiagent systems are a good candidate for the development of a
data- and norm-aware programming. It explains the advantages brought about
by this vision, tracing directions to the realization of multiagent systems that
are data and norm-aware. Section 5, then, reports and comments some proposals
in the multiagent systems literature that, though developed independently and
not inserted in an organic framework, face specific aspects that are relevant to
bring about norm and data-awareness. Conclusions end the paper.
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2 Meyer’s Forces: Processor, Action and Object

We decided to use Meyer’s forces of computation as a common ground for
comparing the different proposals because they provide a neutral touchstone,
unrelated to any specific programming approach or modularization mechanism.
According to Meyer, three forces are at play when we use software to perform
some computations (see Fig. 1): processors, actions, and objects. A processor can
be a process or a thread (in the paper we use both the terms processor and
process to refer to this force); actions are the operations that make the compu-
tation; objects are the data to which actions are applied.

Fig. 1. Meyer’s three forces of computation [33, Chap. 5, p. 101].

A software system, in order to execute, uses processes to apply certain actions
to certain objects. The form of the actions depends on the considered level of
granularity: they can be instructions of the programming language as well as
they can be major steps of a complex algorithm. Moreover, the form of actions
conditions the way in which processes operate on objects. Some objects are built
by a computation for its own needs and exist only while the computation pro-
ceeds; others (e.g., files or databases) are external and may outlive individual
computations. In the following we analyse the most important proposals con-
cerning software modularization, showing how they (sometimes implicitly) give
more or less strength to Meyer’s forces, and the drawbacks that follow.

3 From Functional Decomposition to MAS

It becomes apparent that processor and object are the two principal forces along
which most approaches to software modularization have been developed so far,
while the action force remained subsidiary to one or another.
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Functional Decomposition. The top-down functional decomposition is probably
the earliest approach to building modularized software; it relies on a model that
puts at the center the notion of process; namely, the implementation of a given
function is based only on a set of actions made of instructions, provided by the
programming language at hand, possibly in combination with previously defined
functions [33]. Top-down functional decomposition builds a system by stepwise
refinement, starting with the definition of its abstract function. Each refinement
step decreases the abstraction of the specification. With reference to Fig. 1, the
approach disregards objects/data, just considered as data structures that are
instrumental to the function specification and internal to processes. Actions are
defined only in terms of the instructions provided by the programming language
and of other functions built on top of them (subroutines), into which a process is
structured. All in all, this approach is intuitive and suitable to the development
of individual algorithms, in turn aimed at solving some specific task, but does not
scale up equally well when data are shared among concurrent processes because
it lacks abstractions to explicitly account for such data and their corresponding
management mechanisms.

Object-Orientation. The Object-Oriented approach to modularization results
from an effort aimed at showing the limits of the functional approach [33].
Objects (data) often have a life on their own, independent from the processes
that use them. Objects become, then, the fundamental notion of the model. They
provide the actions by which (and only by which) it is possible to operate on
them (data operations). This approach, however, disregards processes and their
modularization both internally and externally to objects. Internally, because
objects provide actions but have a static nature, and are inherently passive:
actions are invoked on objects, but the decision of which operations to invoke
so as to evolve such objects is taken by external processes. This also implies
that there is no decoupling between the use of an object and the management
of that object. Externally, because the model does not supply conceptual notions
for composing the actions provided by objects into processes, and there is no
conceptual support to the specification of tasks, in particular when concurrency
is involved.

Actor Model, Active Objects. The key concept in the actor model [30] (to which
active objects are largely inspired) is that everything is an actor. Interaction
between actors occurs only through direct asynchronous message passing, with
no restriction on the order in which messages are received. An actor is a compu-
tational entity that, in response to an incoming message, can: (1) send a finite
number of messages to other actors; (2) create a finite number of new actors;
(3) designate the behavior to be used in response to the next incoming message.
These three steps can be executed in any order, possibly in parallel. Recipi-
ents of messages are identified by opaque addresses. Interestingly, in [30] Hewitt
et al. state that “We use the ACTOR metaphor to emphasize the inseparability
of control and data flow in our model. Data structures, functions, semaphores,
monitors, [. . . ] and data bases can all be shown to be special cases of actors.
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All of the above are objects with certain useful modes of behavior.” The actor
model decouples the sender of a message from the communications sent, and this
makes it possible to tackle asynchronous communication and to define control
structures as patterns of passing messages.

Many authors, such as [34,37,46], noted that the actor model does not
address the issue of coordination. Coordination requires the possibility for an
actor to have expectations on another actor’s behavior, but the mere asyn-
chronous message passing gives no means to foresee how a message receiver
will behave. For example, in the object-paradigm methods return the computed
results to their callers. In the actor model this is not granted because this sim-
ple pattern requires the exchange of two messages; however, no way for spec-
ifying patterns of message exchanges between actors is provided. The lack of
such mechanisms hinders the verification of properties of a system of interacting
actors. Similar problems are well-known also in the area that studies enterprise
application integration [1] and service-oriented computing [45], that can be con-
sidered as heirs of the actor model and where once again interaction relies on
asynchronous message passing. There are in the literature proposals to overcome
these limits. For instance for what concerns the actor model. [37] proposes to use
Scribble protocols and their relation to finite state machines for specification and
runtime verification of actor interactions. Instead, in the case of service-oriented
approaches, there are proposals of languages that allow capturing complex busi-
ness processes as service compositions, either in the form of orchestrations (e.g.
BPEL) or of choreographies (e.g. WS-CDL).

The above problem can better be understood by referring to Meyer’s forces.
The actor model supports the realization of object/data management processes
(these are the internal behaviors of the actors, that rule how the actor evolves),
but it does not support the design and the modularization of processes that per-
form the object use, which would be external to the actors. As a consequence,
generalizing what [14] states about service-oriented approaches, the modular-
ization supplied by the actor model, while favoring component reuse, does not
address the need of connecting the data to the organizational processes: data
remains hidden inside systems.

Business Processes. Business processes have been increasingly adopted by enter-
prises and organizations to conceptually describe their dynamics, and those of
the socio-technical systems they live in. Modern enterprises [13] are complex,
distributed, and aleatory systems: complex and distributed because they involve
offices, activities, actors, resources, often heterogeneous and geographically dis-
tributed; aleatory because they are affected by unpredictable events like new
laws, market trends, but also resignations, incidents, and so on. In this light,
business processes help to create an explicit representation of how an enterprise
works towards the accomplishments of its tasks and goals. More specifically, a
business process describes how a set of interrelated activities can lead to a pre-
cise and measurable result (a product or a service) in response to an external
event (e.g., a new order) [49]. Business processes developed for understanding
how an enterprise work can then be refined and used as the basis for developing
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software systems that the enterprise will adopt to concretely support the execu-
tion of its procedures [13,24]. In this light, business processes become workflows
that connect and coordinate different people, offices, organizations, and soft-
ware in a compound flow of execution [1]. Among the main advantages of this
process-centric view, the fact that it enables analysis of an enterprise functioning,
it enables comparison of business processes, it enables the study of compliance
to norms (e.g. [27]), and also to identify critical points like bottlenecks by way of
simulations (e.g., see iGrafx Process1 for Six Sigma). The adoption of a service-
oriented approach and of web services helps implementing workflows that span
across multiple organizations, whose infrastructures may well be heterogeneous
and little integrated [1,45].

On the negative side, business processes, by being an expression of the process
force, show the same limits of the functional decomposition approach. Specifi-
cally, they are typically represented in an activity-centric way, i.e., by emphasiz-
ing which flows of activities are acceptable, without providing adequate abstrac-
tions to capture the data that are manipulated along such flows. Data are sub-
sidiary to processes.

Artifact-centric Process Management. The artifact-centric approach [6,14,18]
counterposes a data-centric vision to the activity-centric vision described above.
Artifacts are concrete, identifiable, self-describing chunks of information, the
basic building blocks by which business models and operations are described.
They are business-relevant objects that are created and evolve as they pass
through business operations. They include an information model of the data,
and a lifecycle model, that contains the key states through which the data
evolve, together with their transitions (triggered by the execution of correspond-
ing tasks). A change to an artifact can trigger changes to other artifacts, possibly
of a different type. The lifecycle model is not only used at runtime to track the
evolution of artifacts, but also at design time to understand who is responsible
of which transitions.

On the negative side, like in the case of the actor model, business artifacts
disregard the design and the modularization of those processes that operate on
them. Moreover, verification problems are much harder to tackle than in the
case where only the control-flow perspective is considered. In fact, the explicit
presence of data, together with the possibility of incorporating new data from
the external environment, makes these systems infinite-state in general [14].

Agents and Multiagent Systems. In [41,51], agents are defined as entities that
observe their environment and act upon it so as to achieve their own goals. Two
fundamental characteristics of agents are autonomy and situatedness. Agents are
autonomous in the sense that they have a sense-plan-act deliberative cycle, which
gives them control of their internal state and behavior; autonomy, in turn, implies
proactivity, i.e., the ability of an agent to take action towards the achievement of
its (delegated) objectives, without being solicited to do so. Agents are situated

1 http://www.igrafx.com/.

http://www.igrafx.com/
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because they can sense, perceive, and manipulate the environment in which
operate. The environment could be physical or virtual, and is understood by
agents in terms of (relevant) data. From a programming perspective, it is natural
to compare agents to objects. Agent-oriented programming was introduced by
Shoham as “a specialization of object-oriented programming” [42]. The difference
between agents and static objects is clear. Citing Wooldridge [51, Sect. 2.2]:
(1) objects do not have control over their own behavior2, (2) objects do not
exhibit flexibility in their behavior, and (3) in standard object models there is
a single thread of control, while agents are inherently multi-threaded. Similar
comments are reported also by other authors, like Jennings [31]. However, when
comparing agents to actors, the behavioral dimension is not sufficient: [51, p. 30]
reduces the difference between agents and active objects, which encompass an
own thread of control, to the fact that “active objects are essentially agents that
do not necessarily have the ability to exhibit flexible autonomous behavior”. In
order to understand the difference between the agent paradigm and objects it
is necessary to rely on both the abstractions introduced by the agent paradigm,
that are that of agent and that of environment [50]. Such a dichotomy does
not find correspondence in the other models and gives a first-class role to both
Meyer’s process and object force (see Fig. 2). Processes realize algorithms aimed
at achieving objectives, and this is exactly the gist of the agent abstraction
and the rationale behind its proactivity: agents exploit their deliberative cycle
(as control flow), possibly together with the key abstractions of belief, desire,
and intention (as logic), so as to realize algorithms, i.e., processes, for acting
in their environment to pursue their goals3. Contrariwise, active objects and
actors do not have goals nor purposes, even though their specification includes
a process. As we said, they are a manifestation of the object force. In the agent
paradigm the manifestation of the object force is the environment abstraction.
The environment does not exhibit the kind of autonomy explained for agents
even when its definition includes a process. Its being reactive rather than active
makes the environment more similar to an actor whose behavior is triggered by
the messages it receives, that are all served indistinctly.

The A&A meta-model. Despite the centrality of situatedness in the definition
of agents, most of the research in multiagent systems typically focuses on the
abstraction of agent only, completely abstracting away from the notion of envi-
ronment. Proposals like [22,50] overcome this limit by introducing first-class
abstractions for the environment, to be captured alongside agents themselves.
In particular, [50] states that “the environment is a first-class abstraction that
provides the surrounding conditions for agents to exist and that mediates both
the interaction among agents and the access to resources.” This proposal brought
to important evolutions like the A&A meta-model [38] and its implementation
CArtAgO [39].
2 This is summarized by the well-known motto “Objects do it for free; agents do it
because they want it”.

3 Summarizing, objects “do it” for free because they are data, agents are processes
and “do it” because it is functional to their objectives.
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Normative Multiagent Systems. A fundamental step towards raising the value of
the action force is brought by normative multiagent systems [8,32], which take
inspiration from mechanisms that are typical of human communities, and have
been widely studied in the research area on multiagent systems. According to [8]
a normative multiagent system is: “a multiagent system together with norma-
tive systems in which agents on the one hand can decide whether to follow the
explicitly represented norms, and on the other the normative systems specify
how and in which extent the agents can modify the norms”. Initially the focus
was posed mainly on regulative norms that, through obligations, permissions,
and prohibitions, specify the patterns of actions and interactions agents should
adhere to, even though deviations can still occur and have to be properly consid-
ered [32]. More recently, regulative norms have been combined with constitutive
norms [7,15,19], which support the creation of institutional realities by defining
institutional actions that make sense only within the institutions they belong to.
A typical example is that of “raising a hand”, which counts as “make a bid” in
the context of an auction. Institutional actions allow agents to operate within an
institution. Citing [19], the impact on the agent’s deliberative cycle is that agents
can “reason about the social consequences of their actions”. In this light, going
back to Meyer’s forces, if agents are abstractions for processes and environments
for objects, then norms are abstractions of the action force (see Fig. 2) because
norms model actions and, thus, condition the way in which processes operate on
objects. In fact, norms specify either institutional actions, or the conditions for
the use of such actions, consequently regulating the acceptable behavior of the
agents in a system. This view is also supported by the fact that norms concern
“doing the right thing” rather than “doing what leads to a goal” [48].

4 Need of Data and Norm Awareness

Reality is complex even in simple settings because it involves data, and data
are related and compose semantically meaningful chunks of information. The
realization of systems where a set of autonomous and heterogeneous parties can
interact effectively, leveraging the richness of the data they create and manip-
ulate through their actions, requires, on the one hand, data-awareness and, on
the other hand, a specification of the rules by which data evolve, that agents
should take into account to decide if and how to act (norm-awareness). These
two kinds of awareness should be seamlessly integrated in the system through
appropriate abstractions.

Of the many approaches to the specification and modularization of software
that we have discussed, multiagent systems are particularly promising. One key
aspect in this respect is the fact that, differently than in the other approaches, the
action force is not ancillary to the process force nor to the object force. Actions
are the capabilities agents have to modify their environment. The process force is
mapped onto a cycle in which the agent observes the world (updating its beliefs),
deliberates which intentions to achieve, plans how to achieve them, and finally
executes the plan [11]. Beliefs and intentions are those components of the process
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Fig. 2. Rereading Meyer’s forces.

abstraction that, with reference to Fig. 2, create a bridge respectively towards the
object/data force (i.e., the environment) and the action force. Beliefs concern
the environment. Intentions lead to action [51], meaning that if an agent has
an intention, then the expectation is that it will make a reasonable attempt to
achieve it. In this sense, intentions play a central role in the selection and the
execution of action. This independence of the action force from the other two
is what enables the use of norms as an abstraction of the action force and, so,
to model the specification of data lifecycles by way of norms. Note that, even
though in general data-awareness and norm-awareness are orthogonal to BDI
notions, it is natural to think of agents as BDI agents for a seamless integration
of all the aspects of deliberation, including the awareness of data and of their
lifecycles.

While in functional decomposition actions are produced by refining a given
goal through a top-down strategy, intentions are a means by which the action force
is put in relation to the process force. Thus, while in other approaches actions are
hard-coded, so to say, in the process, an agent’s deliberative process is indepen-
dent of the actions it uses and, in particular, it can concern also actions by other
agents. So, for instance, consider a setting where the order lifecycle is available
to the agents in a way that can be reasoned about. An agent, who is handling
part of the lifecycle of an order, may conclude that, since it has to pick up three
items in the warehouse, since each such item will have to be packed, since all pack-
agings are performed by a same other agent, and since one of its goals is saving
energy, it is preferable to first pick them all up and only then deliver them to the
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other agent. Data-awareness here is awareness that three items of a same kind are
requested. Norm-awareness that items are picked because each of them is part of
some order, whose lifecycle says that after being picked they will be packed. Again
data-awareness allows our agent to know that the orders are different and that all
parcels are to be made by a same other agent.

Notice that approaches that rely on the object force do not provide the abstrac-
tions that allow realizing the warehouse example because they do not foresee
an abstraction like that of agent (not even of process). Consequently, object-
orientation associates operations to data, but the paradigm did not push the study
towards a normative representation. Similarly, while business artifacts provide
both a rich description of their data and their lifecycle, they do not provide any
link to a corresponding normative understanding, thus making impossible for the
agents (could any be defined) to leverage this knowledge for reasoning about how
to act. On the other hand, artifacts in the A&A model are radically different from
the business artifacts because they do not come with an explicit information model
for data, and they do not exhibit data lifecycles. Thus, this information cannot be
exploited at design time, nor at runtime, to reason about which actions should be
taken towards the achievement of the agent goals.

Fig. 3. Data-aware and norm-aware multiagent system.

Another reason that makes agents promising is that agents already show the
capability of tackling norms. This is due to the fact that, since in the agent
paradigm each agent is an independent locus of control, coordination means are
deemed as essential towards regulating the overall behavior of the system. As it
is well underlined in [31], the agent-based model allows to naturally tackle the
issue of coordination by introducing the concepts of interaction protocol [16], and
that of norm [26,48]. These concepts are at the heart of the design of multiagent
systems. The deliberative cycle of agents is affected by the norms and by the
obligations these norms generate as a consequence of the agents’ actions. In
principle, each agent is capable to adapt its behavior to (local or coordination)
changing conditions, e.g., by re-ranking its goals based on the context or by
adopting new goals, and free to do it or not. Institutions and organizations
are a way to realize functional decomposition in an agent setting. Intuitively,
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an institution is an organizational structure for coordinating the activities of
multiple interacting agents, that typically embodies some rules (norms) to govern
participation and interaction. In general, an organization adds to this societal
dimension a set of organizational goals, and powers to create institutional facts or
to modify the norms and obligations of the normative system [7]. Agents, playing
roles, must accomplish the organizational goals respecting the norms. The limit
is that, despite the centrality of norms, a holistic proposal where constitutive
norms are used to specify both agent actions and data operations, and where
regulative norms are used to create expectations on the overall evolution of the
system (agents behavior and environment evolution) is yet to be developed.

Data and Norm-aware Multiagent Systems. A data-aware and norm-aware mul-
tiagent system, see Fig. 3, should involve a group of agents and of business arti-
facts with the following characteristics. Agents interact with each other and with
the environment by creating and modifying data which belong to an information
system and that are reified by business artifacts. The conceptual model of the
information system is described in terms of the norms that regulate the evolution
of such data. Norms express data lifecycles, i.e. they capture how data pass from
one state to another as a consequence of actions that are performed by some
agent. The conceptual model is available to the interacting agents in a form that
allows agents to reason on it. The agents are aware of the current state (of the
lifecycle) of the data, and thus of the tasks expected of them and of their parties.
At design time, norms would provide a programming interface between agents
and their environment, given in terms of those state changes that are relevant
in the environment.

5 Steps Towards Data and Norm Awareness

Data- and norm-awareness, in the sense introduced in this paper, are not yet
realized in multiagent systems but the literature already contains independent
efforts that tackle specific aspects of this direction of research, which, thus, fit
in the picture we have drawn. Interestingly, many of such works focus on social
commitments which emerge as currently occupying a central position in the
junction between norms and data.

A first example is provided by the JaCaMo+ platform [3], which allows Jason
agents [10] to engage commitment-based interactions [43], in turn reified as
CArtAgO [38] artifacts (both agents and artifacts are first-class elements in the
design of the multiagent system). JaCaMo+ artifacts implement the social state
of the interaction, which is the social environment in which agents act, and pro-
vide the roles that are then enacted by the agents. The explicit representation of
the social state enables the realization of a data-aware approach, where the data
are the events occurring in the social state, while social commitments provide
the information necessary to agents in their interaction. A social commitment
C(x, y, s, u) captures that agent x (debtor) commits to agent y (creditor) to
bring about the consequent condition u when the antecedent condition s holds.
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Antecedent and consequent conditions are conjunctions or disjunctions of events
and commitments. The interesting point about commitments is that they have
a lifecycle [47]: a commitment is null right before being created; active when
it is created; active has substates conditional (as long as the antecedent condi-
tion did not occur), and detached (when the antecedent condition occurred, the
debtor is engaged in the consequent condition of the commitment); an active
commitment can become: pending if suspended; satisfied, if the engagement is
accomplished; expired, if it will not be necessary to accomplish the consequent
condition; terminated if the commitment is canceled when conditional or released
when active; and finally, violated when its antecedent has been satisfied, but its
consequent will be forever false, or it is canceled when detached (the debtor
will be considered liable for the violation). JaCaMo+ explicitly represents the
states of the commitments, allowing the agents to take also this information into
account in their reasoning. Commitments in JaCaMo+ belong to the social state
and are shared by the interacting agents as resources. So, they are information,
that is created and evolves along the interaction with event occurrence, and that
contributes to the specification of the environment in which the agents operate.
In this light, the social state can be seen as a special kind of business artifact
in the sense of [6,14,18]. JaCaMo+ allows specifying agent programs as Jason
plans, whose triggering events amount to the change of the state of some com-
mitment [2]. Suppose, to make an example, that the commitment goes to the
state “detached” and that this event triggers a plan in the agent which is the
debtor of that commitment: the connection between the commitment and the
associated plan is not only causal (event triggers plan), but rather the plan is
explicitly attached to the commitment, in the sense that its aim is to satisfy the
consequent condition of the commitment (norm-awareness).

An independent proposal, i.e. [20], then shows how commitments lifecycle
can be captured by a set of norms. It explains the advantages of this view which
are: (1) enabling agents to take into account the evolution of commitments in
their reasoning; (2) allowing the customization of the commitment lifecycle to
the needs of particular application contexts. This proposal fits the understanding
of norm-awareness we have explained and it provides evidence of the advantages
of a norm-centered description of data evolution.

de Brito et al. [21] explain the limits of current approaches to artificial insti-
tutions, e.g. [25], basically residing in the fact that proposals always remain at
an abstract level that does not account for the tight connection between the
institution and its environment. So, for instance, the institution will say that
“the winner of an auction is obliged to pay its offer, otherwise it is fined” with-
out specifying aspects such as what an agent should do to become the winner
of the auction, how payments are made, or how a fine is applied. The work
overcomes the limit of the traditional approaches by allowing a specification of
regulations that is based on facts occurring in the environment (an aspect that
we interpret as data-awareness). The important consequence is that in this way,
the institution does not depend on agents informing about norm violation, goal
achievement, role adoption, etc. for the relevant information is obtained from
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the environment. In [21], situated artificial institutions are specified in terms of
norms and constitutive rules. Norms are based on status functions, like winner,
payment. Constitutive rules state the conditions for an element of the environ-
ment to carry a status function. For example, if the environment has an auto-
matic teller machine implemented by an artifact, an operation in such artifact
could count as the payment.

Other works make proposals for going beyond the propositional representa-
tion, which characterizes most studies on multiagent systems, underlining the
importance of putting information in the centre. In particular, the Cupid lan-
guage [17] provides a sophisticate and information-centric representation that
distinguishes between a schema (what occurs in a specification) and its instances
(what transpires and is represented in a database), reserving the term commit-
ment only for schemas. This avoids the inadequacy of first-order in representing
commitment instances by relying on relational database queries. The advan-
tages, brought to the analysis of properties of a data-aware approach are proved
in DACMAS [36], which incorporates commitment-based MASs but in a data-
aware context. In general, in presence of data transition systems become typically
infinite-state [14]. On the one hand, this is due to the fact that there is no bound
on the number of tuples that can be added to database relations as the computa-
tion goes on. On the other hand, even when the number of tuples does not exceed
a certain threshold, it is possible to populate them using infinitely many different
data objects. Interestingly, when a DACMAS is state-bounded, i.e., the number
of data that are simultaneously present at each moment in time is bounded,
verification of rich temporal properties becomes decidable. Notably, this shows
that, by suitably controlling how data are evolved in the system, it is possible
to make agents data-aware without compromising their reasoning capabilities
[5,36]. A language for representing norms that guarantees a priori the decidabil-
ity of property analysis would be a great advancement being the tool that agents
need to reason and decide which action to take, thus leveraging their autonomy.
JaCaMo [9], simpAL [40], JaCaMo+ [2] are existing platforms for the develop-
ment of MAS that have the right potential for developing the view depicted in
Fig. 2. The next step would be the introduction of information-centric artifacts,
whose lifecycle and data evolution are realized by way of query languages that, as
for DACMAS [36], guarantee decidability when certain constraints are met. For
commitment-based platforms, the Cupid [17] language would provide analogous
features.

From an ontological perspective, Guarino and Guizzardi [28,29] discussed the
importance of relationship reification and its connection with events/ processes.
This work provides further foundation to our vision in connection to the specifi-
cation of the conceptual model of an environment, seen as an information system.
What this proposal currently lacks of is a methodology that will help designers
to specify conceptual models. The literature on Agent-Oriented Software Engi-
neering, on the other hand, proposes many methodologies. Briefly, SODA [35] is
an agent-oriented methodology for the analysis and design of agent-based sys-
tems, adopting a layering principle and a tabular representation. It focuses on
inter-agent issues, like the engineering of societies and environment for MAS,
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and relies on a meta-model that includes both agents and artifacts. GAIA [52]
is a methodology for developing a MAS as an organization. Tropos [12] is a
requirements-driven methodology for developing multiagent systems, while [4,23]
allow building declarative business process specifications in a norm-oriented fash-
ion, see for instance. Although the last two methodologies do not consider data
lifecycles in general, but rather rely on commitments and constraints, they are
good candidates for extensions to a vision where norms, that capture the evolu-
tion of data, are composed into the specifications of multiagent system that are
data and norm-aware. One viable direction to reach this purpose is to gather
from the proposal in [44] for the realization of norm-governed socio-technical
systems. Suitable methodologies should also be provided for programming the
agents. In this respect, a starting point could be CoSE [2], a commitment-driven
methodology for programming agents in presence of business-artifacts, that reify
relationships captured as commitments.

6 Final Remarks

In this work, we have discussed the need for data-aware and norm-aware multia-
gent systems. In particular, we identified the importance of providing norm-based
representations of the data lifecycles and of specifying the conceptual model of
the underlying information system in terms of such norms. We have also com-
mented some recent works that, independently, move along this direction facing
one aspect or another.

One of the reasons of going towards data- and norm-awareness is the convic-
tion that this will bring benefits to the design and implementation of software.
The capability given to agents to take into account the data lifecycles in their
reasoning process will provide the capability of reasoning about abnormal con-
ditions in the environment, and decide how to react to them. This will enrich
the already available capability agents can be equipped with of reasoning about
deviations from their expected behavior. So, in principle, the robustness of the
system, intended as the ability to react appropriately to abnormal conditions,
would be increased. The fact that data structure and lifecycles are explicitly
represented in a way that can be reasoned about makes also the agents and
their environment more decoupled, reducing the need of customizing agent pro-
grams when the environment changes. This increases both the extendibility and
the reusability of all the components of the MAS. Last but not the least, data-
awareness joint with a norm-based representation will enable a fully fledged
range of verifications, and will also help modularizing the verification of proper-
ties inside a MAS, with a positive impact on the correctness of software.
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Abstract. Trace expressions are a compact and expressive formalism
for specifying complex patterns of actions. In this paper they have been
used to model medical protocols and to generate agents able to execute
them, also adapting to the context dynamics. To this aim, we extended
our previous work on “self-adaptive agents driven by interaction proto-
cols” by allowing agents to be guided by trace expressions instead of the
less concise and less powerful “constrained global types”. This extension
required a limited effort, which is an advantage of the previous work as
it is relatively straightforward to adapt it to accommodate new require-
ments arising in sophisticated domains.
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1 Introduction and Motivation

The demographic changes in our societies are causing an explosion of care
requests and, as a consequence, of the healthcare expenses.

Care requests for minor problems that could be managed without the direct
intervention of a doctor divert the healthcare resources from more serious situ-
ations. One possible solution to this problem, addressed since the beginning of
the millennium, is Remote Patient Monitoring (RPM [9]) which consists in the
remote and distributed monitoring of a specific category of patients in order to
limit the number of visits to doctors and hospitals.

Health telematics can play a major role in improving the lives of patients
[16], particularly in the weaker sections of the society including disabled, elderly
and chronically ill patients [34]. Mobile health-monitoring devices offer great
help for such patients who may afford good healthcare without having to visit
their doctor on a regular basis. These technologies bring potential benefits to
both the patient and the doctor; doctors can focus on priority tasks by saving
time normally spent with consulting chronically ill patients, and patients can be
properly looked after whilst remaining in their environment without having to
make tiring and time-consuming visits.
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From a technological point of view, RPM requires a low level physical
infrastructure made up of sensors and a software middleware monitoring the
sensors output and implementing rules for warning either the patient or the
doctor, or both, if the pattern of perceived data diverges from the expected
pattern for that patient. In order to achieve its goals, the middleware should:

1. manage data coming from decentralized and heterogeneous sensors;
2. support the addition and removal of sensors and other components at runtime;
3. be adaptive to changes taking place in the environment and in the care pro-

tocols that must be adopted;
4. interact with the human beings involved in the RPM process by means of a

user friendly interface;
5. be fault tolerant.

A multiagent system (MAS) with one agent in charge of each patient and
one of each doctor involved in the RPM process seems a very natural choice
to implement a middleware satisfying all these requirements, due to the MAS
intrinsic structure where each agent has incomplete information or capabilities
for solving the problem, there is no global system control, data is decentralized,
computation is asynchronous, the system is open and highly dynamic [24]. Con-
sistently with a holonic approach to MAS engineering and development [22], the
agent in charge of the patient (Patient’s Agent, PA in the sequel) might be a
MAS as well, with one agent in charge of each sensor, one agent in charge of
the user interface, one agent in charge of the identification of threats based on
sensory input, and so on.

The PA should monitor the behavior of the patient and the data coming
from the sensors he/she wears, and should verify that they are consistent with a
known “protocol”. A simple protocol could be, for example, “if the blood pressure
is below a given threshold, then the patient should sit down for 10 min, the
saturation sensor should be switched on, and the heartbeat monitoring frequency
should be increased”. The PA should be able to make actions in the patient’s
environment in order to ensure that the protocol is followed. For example if, by
checking data coming from the blood pressure sensor, the PA realizes that the
value is below the expected threshold, then it should ask the patient, via its user
friendly interface, to sit down for ten minutes. Since the protocol guiding the
patient’s treatment can change over time, the PA should be able to dynamically
move from one protocol to another, upon request of some trusted entity like the
doctor. This protocol switch might take place also when sensory input shows
a situation not compliant with the protocol. For example if, by checking data
coming from the motion sensor, the PA realizes that the patient did not remain
seated as long as required, it should immediately detect a protocol violation; it
might then switch to a higher priority protocol, involving for example the doctor.
To summarize, the PA should be driven by the protocol and should be able to
adapt to new situations by changing the followed protocol when needed.

In our recent research [3] we designed and implemented a framework for
protocol-driven self-adaptive agents, where agents are characterized by one
interaction protocol specified using constrained global types [2,6] and by some
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components that should be directly implemented in the underlying agent frame-
work, be it JADE [10], Jason [12], or any other else.

Being protocol-driven means that the agent behaves according to a given
protocol expressed in some suitable formalism. In each time instant, the protocol-
driven agent can make only those internal choices which are allowed by the
protocol in the current state. In case of events which depend on external choices,
the agent can only verify whether the event that took place is compliant with the
protocol or not (“runtime verification”). Deciding what to do after a violation
has been detected is up to the MAS designers and developers and might range
from switching to some special protocol for dealing with highly critical situations,
to adopting some self-repair actions, to notifying a human supervisor, or even
to excluding the faulty agent from the MAS.

In our work, the protocol specification is interpreted and the only framework-
dependent pieces of code are the functions for generating protocol-compliant
actions and for projecting one global protocol specification onto a single agent.
The agent interpreter that calls these functions is framework-dependent as well.
Actually, we implemented the “generate” and the “project” functions in Prolog
once and for all, and we exploited the Prolog code for both the JADE and the
Jason implementations of the protocol-driven interpreter. A characterizing fea-
ture of our approach is hence that we do not produce any protocol-dependent
agent code into any agent-oriented programming language. This gives us the
flexibility that meta-programming ensures, demonstrated for example by the
easiness in implementing protocol switch: protocols can be exchanged and mod-
ified at run-time, being first class entities.

In this paper we extend the framework presented in [3] by allowing protocols
to involve events of any kind and not just communicative ones. The extended
framework is made more usable by allowing protocols to be expressed using
“trace expressions” [7]. We show how the extended framework can be profitably
adopted to specify medical protocols and to monitor them. We believe that our
framework can serve as the basis for implementing a Remote Patient Monitoring
software middleware. The motivating scenario that we consider is that of new-
borns who may suffer from hypoglycemia and the protocols we have implemented
are based on medical literature [30].

The paper is organized in the following way: Sect. 2 discusses the related
work, Sect. 3 introduces the background knowledge for understanding the pro-
tocol modeling and the experiments presented in Sect. 4, and Sect. 5 concludes.

2 Related Work

In the last years, the exploitation of MASs in the e-Health scenario has become
more and more widespread, as discussed for example in [11]. E-Health systems
pose many challenges and requirements, such as:

– context and location awareness are to be smoothly integrated, i.e., the access
and the visualization of health-related information always depends on the
overall contexts of the patient and of the user [14],
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– fault-tolerance, reliability, security and privacy-awareness are a must in order
to accommodate the strict requirements of all healthcare applications,

– effective mobile devices are to be used to provide access to relevant health-
related information independently of the current physical location and physical
condition of the user, and

– unobtrusive sensor technology is needed to gather the physiological informa-
tion from the patient without hampering her daily life.

The first requirement immediately recalls “situatedness” and the others are
closely related with features of agents and MASs that, albeit not being strictly
characterizing ones, are considered relevant ones and widely studied in the agent-
oriented literature (see for example [17,25,32] for fault-tolerance, reliability, and
security in MASs, respectively; [15] for issues related with distributed coordi-
nation of mobile agents; [27] for the relationships between MASs and sensor
networks, just to cite some recent works). It comes with no surprise that many
ubiquitous and pervasive e-Health systems are designed and realized using MAS
abstractions and technologies [8,23,35].

According to [20], MASs in the e-Health context are used in the following
categories of applications: assistive living ; diagnosis; physical monitoring ; and
smart-emergency. The scenario we take under consideration in this paper falls
in the third category, where the aim is the continuous monitoring of patients at
home [29].

In [16] a system architecture consisting in a Java-based agent for each human
role (e.g. doctors, patients) is presented. Within that framework, agents reside in
three areas: the patient’s mobile device (e.g. smart phone or PDA with Internet
connectivity); the healthcare personnel’s mobile device (e.g. for nurses or para-
medics); and the mobile and static servers (which may be a wireless connected
notebook or an enterprise server computer). Our case study is close to that one
since we devise one protocol-driven agent for each human role as well.

A framework for representing in formal terms how clinical guidelines1 are
realized through the actions of individuals organized into teams is presented
in [36]. The authors emphasize that the flexibility to deviate from the guideline
recommendations is indispensable if we are to build workflow systems that will be
accepted by the medical community. Even if the aim of our work is different from
that one, they share some ideas, in particular regarding the reuse of plans (which,
in our approach, are protocols), the team based definition (“global protocol
definition” in our approach), and the flexibility of changing protocol at runtime.

In [13,18] the authors describe the GPROVE framework for specifying med-
ical guidelines2 in a visual way and for verifying the conformance of the guideline
execution w.r.t. the specification. Except for the part regarding the visual repre-
sentation of guidelines, that work is very close to ours, in particular as far as the
verification that generated events do not lead to discrepancies with the models
1 Clinical guidelines are special types of plans realized by collective agents.
2 Medical guidelines are clinical behavior recommendations used to help and support

physicians in the definition of the most appropriate diagnosis and/or therapy within
determinate clinical circumstances.
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is concerned. The most relevant difference is when verification is performed: in
[13,18] the verification is performed on a log file generated during the execu-
tion (a posteriori). In our work, agents are pro-actively driven by the protocol
when it is up to them to decide what to do, and they verify that the protocol
is respected when an event relevant for the application is intercepted. In other
words, our agents accommodate runtime verification of perceived events with
protocol-compliant action selection. The verification task is carried out while
the agent is running, differently from [13,18].

Another work similar to ours is [31] where the SUAP project, a MAS to sup-
port and monitor prenatal care, is presented. SUAP manages electronic health-
care records of pregnant women: it models, monitors and provides advice on
prenatal protocols, and models a simple referencing protocol based on preg-
nancy risks. In that work protocols are defined by a set of rules and there are
protocol agents which monitor data related to appointments and exam results
to identify situations in which protocols must be applied. In [31] protocols can
not change during the execution: this represents the main different of that work
w.r.t. ours.

3 Self-adaptive Protocol-Driven Agents

In [3] we presented a framework for implementing self-adaptive protocol-driven
agents.

In this section we summarize that work and we present some extensions which
make the framework more general and flexible, consistently with the extensions
to the protocol formalism described in [7]. In [3], in fact, the protocol could
involve communicative actions only and hence could be only used to drive the
communicative behavior of the agents. In this paper we move a step forward,
changing the framework implementation to cope with protocols where any kind
of perceived events can be modeled. The limited effort for realizing this extension
should be seen as a strength of our previous work, rather than a limitation of
the current one.

Protocol-driven agents are characterized by an interaction protocol or, more
in general, by a given “pattern of events and actions” specified in some suit-
able formalism, and by a knowledge base, a message queue, and an environment
representation. As we make no other assumption on the agent architecture, our
framework is as general as possible and could be implemented in any underlying
environment or programming language where these three components are avail-
able (namely almost all the agents frameworks, be them BDI-oriented like Jason
or not BDI-oriented like JADE).

The internal agent architecture, shown in Fig. 1, supports a combined app-
roach to correct behavior generation (when the choice of what to do is up to the
agent) and runtime verification (when the choice of what to do is made by the
agent environment, and the agent must verify that it is protocol-compliant).

For supporting a protocol-driven approach to agent programming, a formal-
ism for expressing protocols must exist together with a generate function for
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Fig. 1. Internal architecture of a protocol-driven agent.

identifying the allowed actions for moving from the current state of the protocol
to the next one. What differentiates the behavior of each agent are the select
policy to select the action to perform among the allowed ones, and the react
policy to react to perceived events. Two more policies must be defined to state
how to manage unexpected events and which cleanup actions to perform before
switching from the currently executing protocol to the new one. Protocol switch
is one of the major features of our approach, allowing agents to self-adapt to new
situations by changing the current protocol upon reception of “switch requests”.
Those agents that have the power to cause a protocol switch, named controllers,
must be explicitly stated by the agent and may change over time. Each agent
can change the currently executing protocol by requesting a protocol switch to
itself. Each agent Ag is also able to project a global description of a protocol
involving many agents onto a local version by keeping only events that involve
Ag itself.

The protocol-driven interpreter implements a cycle where it first checks if
there is a protocol switch request and if it can be managed in the current state
of the protocol. If yes, and if the protocol switch sender is a system controller,
a protocol switch is performed after some cleanup operations. If no protocol
switch is foreseen in that moment, the protocol-compliant actions are generated
and one of them is selected for being executed. The environment representation
and knowledge base are updated accordingly and the protocol moves to the next
state. In case the perceived event was not foreseen by the protocol, it is managed
according to the unexpected policy.

The MAS architecture is shown in Fig. 2. The protocol library may be either
external, like in the figure, or hard-wired in the controller (either the doctor or
the protocol-driven agent itself, in our case study) knowledge base. This makes
little difference both from a logical and from a practical point of view. Protocols
in the library always take a global perspective (namely, a perspective where all
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Fig. 2. Architecture of a self-adaptive MAS.

the parties involved in the protocol are managed in a homogeneous way, without
taking the point of view of one of them). The local protocol for each agent can
be automatically obtained from the global one by projection. This allows the
whole MAS to respect the global protocol by construction, as the local protocol
executed by each agent is obtained from the global one and is consistent with it.

Trace expressions. Trace expressions are a specification formalism expressly
designed for runtime verification; they are an evolution of global types [6] and
have been continuously refined and consolidated during the last 4 years [2,4,7,19,
28]. Trace expressions build on top of the “event” notion. An event is something
which takes place in the environment and which can be either generated or
observed by the agents. It may be either a communicative event, like in [3], or
any other event like the perception of some value from a sensor, the observation
of some phenomenon in the environment, the expiration of a deadline.

Events. In the following we denote by E a fixed universe of events. An event e1
might be, for example, “The body temperature sensor (BTS) perceived a value
of 38.2◦ at time 15.32”. Another similar event e2 might be “BTS perceived a
value of 39.0◦ at time 7.15” and e3 might be “BTS perceived a value of 36.5◦ at
time 22.43”.

Event types. To be more general, trace expressions are built on top of event
types (chosen from a set ET), rather than of single events; an event type denotes
a subset of E. For example, an event type ϑ might be “BTS perceived a value
greater than 38◦ in the afternoon”. It is easy to verify that e1 has type ϑ, whereas
neither e1 nor e3 have. Grouping actual events into event types is convenient
to specify trace expressions without dealing with all the possible values that
variables in an event might assume. For example, a trace expression could model
the rule “If BTS perceived a value greater than 38◦ in the afternoon, then send
a message to the doctor”. This rule involves the event type ϑ which, from an
implementation viewpoint, can be expressed by means of the has type predicate.
An example is provided in Sect. 4.
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Trace expressions. A trace expression τ represents a set of possibly infinite event
traces and is defined on top of the following operators:

– ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε (the empty trace is represented by lambda in the concrete language
representation).

– ϑ:τ (prefix ), denoting the set of all traces whose first event e has type ϑ
(e ∈ ϑ), and the remaining part is a trace of τ (: symbol in the concrete
representation).

– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2 (* symbol).

– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2 (/\
symbol).

– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2 (\/ symbol).
– τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces in τ1 with the

traces in τ2 (| symbol).

To support recursion without introducing an explicit construct, trace expres-
sions are regular (a.k.a. rational or cyclic) terms and can be represented by a
finite set of syntactic equations, as happens, for instance, in most modern Prolog
implementations where unification supports cyclic terms.

As an example, T = ϑ:T is equivalent to the infinite but regular term
ϑ:ϑ:ϑ:ϑ: . . . Supposing that e is the only event having type ϑ (e ∈ ϑ), the only
trace represented by T is the one consisting of infinite occurrences of e, eω. The
lack of a base case for this recursive definition is not a problem, as trace expres-
sions are interpreted in a coinductive way in order to represent infinite traces of
events.

Quoting [33], “intuitively, a set A is defined coinductively if it is the greatest
solution of an inequation of a certain form; then the coinduction proof principle
just says that any set that is a solution of the same inequation is contained in A.
Dually, a set A is defined inductively if it is the least solution of an inequation
of a certain form, and the induction principle then says that any other set that
is a solution to the same equation contains A”. Coinduction is thus the mathe-
matical dual to structural induction; coinductively defined types are known as
codata and are typically infinite data structures, such as streams. The seman-
tics of Coinductive Logic Programming that we exploit in our implementation
is discussed in [5].

To make another example of recursive definition, T1 = (ϑ:T1∨ε) represents
the set of traces {ε, e, ee, eee, . . . , eω}. Here, the base case is given by the possi-
bility (∨ operator) for T1 to rewrite into ε after any number of rewriting steps,
which leads to the generation of e traces of any length, from 0 to ω.

The semantics of trace expressions is specified by the transition relation δ ⊆
T × E × T, where T denotes the set of trace expressions. As it is customary, we
write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the trace expression τ1 specifies the
current valid state of the system, then an event e is considered valid iff there
exists a transition τ1

e→ τ2; in such a case, τ2 will specify the next valid state
of the system after event e. Figure 3 defines the rules for the transition function
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(prefix)
ϑ:τ

e→ τ
e∈ϑ (or-l)

τ1
e→ τ ′

1

τ1∨τ2
e→ τ ′

1

(and)
τ1

e→ τ ′
1 τ2

e→ τ ′
2

τ1∧τ2
e→ τ ′

1∧τ ′
2

(shuffle-l)
τ1

e→ τ ′
1

τ1|τ2 e→ τ ′
1|τ2

(cat-l)
τ1

e→ τ ′
1

τ1·τ2 e→ τ ′
1·τ2

(cat-r)
τ2

e→ τ ′
2

τ1·τ2 e→ τ ′
2

ε(τ1)

Fig. 3. Operational semantics of trace expressions. The ε(τ) side condition means that
τ can move into the empty trace expression; e ∈ ϑ means that event e has type ϑ.

(or and shuffle rules have a symmetric or-r and shuffle-r version where τ2 moves,
instead of τ1).

Template Trace Expressions. In order to write complex protocols in a com-
pact and readable way, in [19] we extended global types with templates which
allow parameters inside the protocol definition. In this paragraph we introduce
template trace expressions which extend the notion of template global types.

Template trace expressions are a meta-formalism: they must be applied to
some arguments in order to obtain normal trace expressions. Parameters are
present in the template trace expression definition only.

Let us consider the following template trace expressions definition, model-
ing infinite loops of request reception and management each involving the same
server and one different client. The loops, modeled by the SERVERT subproto-
col, must be composed using the shuffle (|) operator. The client instances are
represented, in the template trace expressions definition, by the variable var(1):

SERVERT = receive_request(var(1)): (serve_request(var(1)): SERVERT),

MAIN = finite_composition(|, SERVERT, [var(1)])

This definition says that the MAIN protocol consists of a finite composition via
the shuffle operator of the SERVERT subprotocols, each of which will be character-
ized by having a ground client value instead of the var(1) variable. The template
trace expression definition must be applied as shown in the code fragment below:

apply(MAIN,[t(var(1),[client1,client2,client3])],INSTANTIATED_MAIN)

The apply predicate takes as input the values that var(1) must assume in
each instantiation of the SERVERT subprotocol, client1, client2, client3 in the
example, and returns a ground value for the INSTANTIATED MAIN variable, namely
SERVER1|(SERVER2|SERVER3) where

SERVER1 = receive_request(client1):(serve_request(client1):SERVER1),

SERVER2 = receive_request(client2):(serve_request(client2):SERVER2),

SERVER3 = receive_request(client3):(serve_request(client3):SERVER3)

The value associated with INSTANTIATED MAIN can be projected and used for
protocol-driven behavior.

The advantage of using template trace expressions is that they are more
compact and easy to design and understand than their “unfolding”, and that
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the set over which the variables range can be decided at runtime, hence allowing
the agents to implement a limited form of dynamic protocol generation.

As an example, if the clients involved in the protocol were fifty, client1,

client2, ..., client50, the template trace expressions definition would remain
the same as before. Only its application would change into

apply(MAIN,[t(var(1),[client1,client2,...,client50])],INSTANTIATED_MAIN)

allowing the protocol developers to write a very compact description instead
of a 50 lines long specification (assuming to have one line for each SERVERX =

receive request(clientX):(serve request(clientX):SERVERX) subprotocol).

Implementation details. With respect to the implementation described in
[3], we made minor changes to the protocol-driven agent interpreter and to the
project function to cope with the presence of generic events in the protocol,
instead of communicative events only. The new implementation of our protocol-
driven agents runs on top of both Jason and JADE. The agent interpreter is
driven by the δ transition function described before and is implemented in Pro-
log. Since Jason can directly integrate Prolog code, the interpreter has been
easily embedded into Jason agents. As far as JADE is concerned, we used a
bidirectional Java-Prolog interface to make JADE agents behave according to
Prolog rules.

The δ transition function is implemented by Prolog clauses defining a “next”
predicate which are in a one-to-one correspondence with the δ transition rules,
for a total of about 20 LOC (Lines Of Code). The generate function requires
only a few lines of Prolog code, to collect all the solutions provided by next. The
projection algorithm amounts to 60 lines of Prolog code, and the management of
templates and their application required less than 200 LOC. Besides these Prolog
predicates which are independent of the underlying framework, we had to develop
some ad-hoc code both for JADE and for Jason, for linking the interpreter code
with the agents behavior. In both cases, the required LOCs were less than 200.

4 Modeling Medical Protocols for Hypoglycemia in the
Newborns

The human beings involved in our case study are doctors and newborns suffer-
ing from hypoglycemia. Each of them is associated with a protocol-driven agent.
We assume that each baby can be equipped with sensors able to change the
protocol-driven agent knowledge base after perception of sensory input such as
temperature, heartbeat, pressure, O2 saturation, movement, and so on. For exam-
ple, if the patient has tremors, the movement sensor will update the knowledge
base of the protocol-driven agent with information about the perceived tremors;
this update will “fire” a move into a new protocol state where the successive
foreseen events are those expected when the newborn has tremors. If the per-
ceived event is instead an exceptional one and raises an emergency, a protocol
switch might take place for allowing the agent to abandon the normal protocol
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it is following, and adopt an exceptional one suitable for managing the excep-
tional event. Finally, if the event is unknown, the agent will start following its
own unexpected events policy. Event perception may cause the agent to per-
form other actions, defined by its react policy. Besides defining which events are
expected in a given state, the protocol also asserts which actions are allowed. If
the allowed actions are more than one, the agent will select one among them by
using its select policy3.

Fig. 4. Doctor-patients architecture.

The protocol-driven agent associated with newborns might need to commu-
nicate something to the patient or, to be more precise, to the patient’s parents.
To achieve this goal it may print some message onto a screen positioned near to
the newborn. The parents can follow the monitoring process and the intervention
instructions like, for example, the request to inject a dose of glucose solution.
Hypoglycemia management does not require a constant presence of a doctor but
needs an ongoing monitoring of some vital parameters, falling in the “patient
monitoring at home” scenario discussed in Sect. 1.

3 In our prototypical implementation, these policies are the default ones: unexpected
events are discarded, no reaction is associated with perceived events, and selection
selects the first action returned by the generate function.
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Fig. 5. Patient’s protocols execution.

For sake of readability, in the sequel we will consider the situation where
there are 1 doctor and N patients (Fig. 4), even if the protocols can be easily –
and has been – generalized to M doctors.

The doctor’s agent is driven by a single protocol while the patients’ agents
may be driven, in each time instant, by one of the three protocols below:

– standard protocol, which models the situation where the newborn has no symp-
toms of the disease;

– severity 1 protocol, associated with the lowest severity level of the disease;
– severity 2 protocol, associated with the highest severity level of the disease.

Figure 5 shows part of the interactions among the patients and doctors proto-
cols. Protocol switches are fired by reception of a switch request from a trusted
agent. Each agent may send a switch request to itself upon perception of an
exceptional event, and this allows us to model in a neat and simple way event
perception as a trigger of a protocol switch. For sake of readability, not all the
messages involved in the protocols are shown Fig. 5. In particular, switch requests
from a patient agent to itself are omitted.
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Doctor protocol. The protocol DP of the agent associated with the doctor is con-
veniently represented by a template trace expression (the trace expression associ-
ated with the DoctorPatientProtocol logical variable, which will be replicated as
many times as necessary during the application stage) consisting of the union (\/
operator) of three sub-protocols describing three mutually exclusive situations
that the agent can experience. The event types appearing in the protocol may be
communicative ones. In this case, for sake of readability, we prefix their name by
msg. The first argument of communicative event types will be instantiated with
the sender of the message and the second with the receiver. The agent associated
with the doctor has the power to request a protocol switch to the patient’s agent.
A protocol switch in the patient may take place also in response to sensory input,
as anticipated before and described in more details later. A switch request is
modeled by the switch request(Sender,Receiver,NewProtocolIdentifier) event
type.

– Ok sub-protocol: if the doctor agent receives a message reporting that the
glucose level in the blood of its patient is ok, then things are going on in
the right way: the agent moves to the DoctorPatientProtocol state again
(: operator, modeling sequence) and continues to monitor;

– SevereProblem sub-protocol: if the doctor agent receives a message reporting
that the glucose level in the blood of its patient is too low, then it sends a proto-
col switch request to the patient (switch request(var(doctor), var(patient),

severity2) bringing the patient’s protocol to severity2) and continues to mon-
itor (namely, it moves to the DoctorPatientProtocol again thanks to the con-
catenation operator, *);

– SwitchedToSeverity1 sub-protocol: if the doctor agent receives a message
reporting that the patient has switched its protocol to severity1 (communica-
tive event type msg switched to severity1(var(patient),var(doctor))), then
the situation requires a more careful monitoring as it might change into a
severe health status:

• if the agent either receives a message reporting that the patient has
tremors or he/she is irritable (TremorsOrIrritability sub-protocol), then
it either sends a protocol switch request bringing the patient’s protocol to
severity2, or it asks the patient’s agent to continue to monitor without
switching to the severity2 protocol;

• if, before or after the messages related to either tremors or irritability (|
models the occurrence of events in any order), the doctor’s agent receives
a message from the patient (or from his parents) reporting an interven-
tion request (InterventionRequest sub-protocol), then the agent commu-
nicates this request to the doctor using the screen.

In both cases, the agent can move to the “standard” monitoring state modeled
by the trace expression associated with DoctorPatientProtocol.
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trace_expr_template(doctor_protocol, DP) :-

DoctorPatientProtocol = Ok \/ SevereProblem \/ SwitchedToSeverity1,

Ok = msg_ok_glucose(var(patient),var(doctor)):DoctorPatientProtocol,

SevereProblem =

msg_too_low_glucose(var(patient),var(doctor)):SwitchToSeverity2,

SwitchedToSeverity1 = (msg_switched_to_severity1(var(patient),var(doctor))

:(TremorsOrIrritability|InterventionRequest))*DoctorPatientProtocol,

SwitchToSeverity2 =

(switch_request(var(doctor),var(patient),severity2) \/

msg_continue_monitor(var(doctor),var(patient)))*DoctorPatientProtocol,

TremorsOrIrritability =

(msg_tremors(var(patient),var(doctor)):lambda \/

msg_irritability(var(patient),var(doctor)):lambda)*SwitchToSeverity2,

InterventionRequest =

msg_intervention_request(var(patient),var(doctor)):

print_intervention_request(var(patient),var(interface)):lambda,

DP = finite_composition(|, DoctorPatientProtocol,

[var(patient),var(doctor),var(interface)]).

During the application stage, var(patient) varies on the patients (for exam-
ple [patient1, patient2, patient3]), var(doctor) varies on the doctors (for
example, doctor1 if we want to keep the scenario as simple as possible) and
var(interface) varies on the artifacts in the MAS that can act as an interface
between the humans involved in the loop and the system. For example, we might
decide that messages that the patients must see are printed on a screen named
screen1. We could also send messages to more than one artifact, for example to
[local-screen, doctor-mobile-phone, father-mobile-phone, mother-email]4.
The code for the instantiation of the template trace expression above is

apply(DP, [t(var(patient), [patient1, patient2, patient3]),

t(var(doctor), [doctor1]),

t(var(interface), [screen1])],

INSTANTIATEDPROTOCOL)

Patient standard protocol. The StandardProtocol trace expression models three
situations, corresponding to three sub-protocols:

– Ok sub-protocol, modeling the normal situation where the perceived glucose
level is ok (event type ok glucose(var(patient)), representing a perception
event); the doctor is informed (msg ok glucose(var(patient),var(doctor)))
and the protocol moves to the situation modeled by StandardProtocol.

– TooLowGlucose sub-protocol: the perceived event has type
too low glucose(var(patient)); the agent in charge of the patient informs the
doctor (msg too low glucose(var(patient),var(doctor))) and then it receives
either a message from the doctor saying to continue to monitor, or a protocol
switch request.

4 In the Jason implementation discussed later on, we modeled these artifacts as
“dumb” agents which can receive FIPA-ACL messages. This was an easy and quick
way to build a working prototype including all the relevant MAS components, with-
out needing to actually implement Java classes for the artifacts in the system.
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– OtherSymptoms sub-protocol: in case the patient has tremors or he/she
is irritable (perception event types irritability(var(patient)) and tre-

mors(var(patient))), then a switch of the patient agent to the severity1

protocol is required: the agent informs the doctor and then sends a switch
request to itself; if the symptoms are convulsions, apnea, or irregular breath-
ing, then the patient agents switches to the severity2 protocol by sending the
switch request(var(patient),var(patient),severity2) message to itself.

trace_expr_template(standard_protocol, Standard) :-

StandardProtocol = Ok \/ TooLowGlucose \/ OtherSymptoms,

Ok = ok_glucose(var(patient)):

msg_ok_glucose(var(patient),var(doctor)):StandardProtocol,

TooLowGlucose = too_low_glucose(var(patient)):

msg_too_low_glucose(var(patient),var(doctor)):

(msg_continue_monitor(var(doctor),var(patient)):StandardProtocol)

\/ switch_request(var(doctor),var(patient),severity2):lambda)),

SwitchToSeverity1 =

msg_switched_to_severity1(var(patient),var(doctor)):

switch_request(var(patient),var(patient),severity1):

lambda,

LightSymptoms =

((irritability(var(patient)):lambda) \/ (tremors(var(patient)):lambda))

* SwitchToSeverity1,

SevereSymptoms =

((convulsions(var(patient)):lambda) \/

(apnea(var(patient)):lambda) \/

(irregular_breathing(var(patient)):lambda)) *

(switch_request(var(patient),var(patient),severity2):lambda),

OtherSymptoms = LightSymptoms \/ SevereSymptoms,

Standard = finite_composition(|,StandardProtocol,

[var(patient),var(doctor)]).

To make an example of how an event type can be defined, the has type

definition of too low glucose(Patient) is given below:

has_type(percept(Patient,plasma_level_glucose(PlasmaLevel)),

too_low_glucose(Patient)) :-

hours_after_birth(Patient,HoursBirth),

((HoursBirth >= 1, HoursBirth <= 2, PlasmaLevel < 28);

(HoursBirth >= 3, HoursBirth <= 47, PlasmaLevel < 40);

(HoursBirth >= 48, HoursBirth <= 72, PlasmaLevel < 48)).

This predicate associates the percept(Patient, plasma level glucose

(PlasmaLevel)) event (first argument of the has type predicate), modeling the
perception of the glucose level in the plasma, to the too low glucose(Patient)

event type (second argument). The glucose level is too low (body of the rule
defining has type, namely the logical expression after the :- symbol where “,”
stands for “and”, and “;” stands for “or”) either if the perceived plasma glucose
concentration level is less than 28 mg/dL and the baby is born less than 2 h ago,
or if the plasma glucose concentration is less than 40 mg/dL and the baby is
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born between 3 and 47 h ago, or if the plasma glucose concentration is less than
48 mg/dL and the baby is born between 48 and 72 h ago. These data are based
on medical literature.

For space constraints we do not show the severity1 protocol. A fragment of
the severity2 protocol is shown below and the most relevant aspect is that, if
during the execution of this protocol a low level of glucose is perceived, then a
message is prompted on the screen associated with the patient, asking for an
intravenous injection of glucose solution, and the intervention of the doctor is
requested. Since the patient is following a severity2 protocol, this means that
he/she is in an almost critical situation. For this reason, even in case the glu-
cose level is ok, the high-frequency and high-severity monitoring continues to go
on (NormalGlucose = ok glucose(var(patient)):Severity2Protocol). When the
doctor will be confident enough that the most critical period has been over-
come, he/she will explicitly send a protocol switch request to the patient, to roll
back to the normal or lower severity protocol (not shown).

trace_expr_template(severity2, T) :-

Severity2Protocol=

TooLowGlucose \/ NormalGlucose,

NormalGlucose =

ok_glucose(var(patient)):Severity2Protocol,

TooLowGlucose =

too_low_glucose(var(patient)):

intravenous_inj_glucose_sol(var(patient), var(interface)):

CheckGlucoseAfterInjection,

..........

Implementation in Jason

The doctors’ and patients’ agents driven by the protocol introduced in the pre-
vious section have been implemented on top of Jason. We run tests with up to
10 patients and 3 doctors, as shown in Fig. 6.

Figure 7 shows a portion of a run involving only one doctor and one patient,
to make it easier to follow the protocol evolution. The patient1 agent has just
received a protocol switch request from the doctor1 agent, due to a low glucose
level in the patient’s blood; the switch request cannot be managed immediately,
so the agent saves it. When patient1 can implement the required protocol switch,
it has to project the new protocol to follow (in this case the severity 2 protocol)
onto itself. The message “Instantiated protocol” is printed after the protocol
projection and switch have completed. After that, patient1 sends a message to
the screen1 agent, which simulates a user interface in this simplified scenario,
that will print the message: “An intravenous injection of a 10% glucose solution
is necessary”; this message will be read by the parents who will do the injection.

We simulated different situations where different sensory input was perceived
by the patients’ sensors, hence changing the course of actions and reactions, in
order to test both our infrastructure and the protocols we have designed and
implemented.
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Fig. 6. Protocol execution in Jason: the MAS configuration is shown in the background.

Fig. 7. Protocol execution in Jason: protocol switch request.

5 Conclusions and Future Work

The features of an autonomous software agent make the agent metaphor
extremely suitable to describe, design, and implement RPM systems made up of
Patient’s Agents in charge of the monitored patients.

However, there are other features not characterizing intelligent agents that
must be taken into account for developing models, methodologies, and software
infrastructures for RPM applications, including user friendliness, knowledge-
intensity, and runtime verification ability: the RPM system should continuously
verify that the pattern followed by perceived sensory data is compliant with the
expected medical protocol; in order to do so, it should implement a protocol-
driven behavior, with a run-time verification mechanism embedded in it.

The work presented in this paper addresses that issue in order to start
building the framework for “FRIENDLY & KIND systems (Human-friendly
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Knowledge-INtensive Dynamic Systems)” that we designed with an oncologi-
cal doctor [1]. FRIENDLY & KIND systems (F&Ks) extend the notion of MASs
by providing flexible access to dynamic, heterogeneous, and distributed sources
of knowledge in a highly dynamic computational environment consisting of com-
putational entities, devices, sensors, and services available in the physical envi-
ronment, in the Internet, and in the cloud. F&Ks are driven by terminological,
bridge, and pattern rules. Terminological rules ensure interoperability among the
F&K components by defining a common domain vocabulary. Bridge rules con-
nect knowledge sources together and provide devices for selection, abstraction
and conflict resolution among them. Pattern rules can be verified at run-time
to guarantee that the system actual dynamics conforms to the expected one.
Finally, an F&K must present a human-friendly interface.

Trace expressions are a compact and expressive formalism suitable for mod-
eling pattern rules in F&Ks and exploiting the pattern rule (a.k.a. protocol)
representation for driving the agents behavior. The advantage of using trace
expressions w.r.t. other pattern and business process formalisms, is that they
are already integrated on top of two widespread agent frameworks, Jason and
JADE, and might be integrated on top of others, with limited effort, thanks to
the interpreted approach. In fact, many agent-oriented frameworks are either
based on logic programming like [21,26], or can integrate Prolog code thanks to
the existing interfaces between Prolog and most programming languages.

As far as the expressive power of trace expressions is concerned, in [7] we
have formally compared trace expressions with Linear Temporal Logic (LTL), a
formalism widely adopted in runtime verification, and we have proved that for
the purpose of runtime verification, trace expressions are strictly more expressive
than LTL: trace expressions are able to specify context-free and non context-
free languages, while LTL is not. Although the protocols discussed in this paper
are simple enough to be specified using regular languages, the ability of trace
expressions to specify context-free and non context-free languages gives a great
advantage over other widely used formalisms, in any application domain where a
high modeling expressive power is required included the e-Health one. Also, their
ability to model patterns involving general events rather than communicative
events only turned out to be a key feature to cope with the hypoglycemia in the
newborns scenario. We would not have been able to model this scenario using
our previous work on constrained global types, as we missed the notion of “event
generated by a sensor” there.

The future developments of our work will be mainly devoted to study which
kind of properties of a protocol expressed using the trace expression formalism
can be verified statically. Static verification would be particularly relevant for
F&Ks in the e-Health domain, where reliability is a main goal to achieve.
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Abstract. In order to reduce debugging effort and enable automated
failure detection, we proposed an automated testing framework for detect-
ing failures in cognitive agent programs in previous work. This approach
is based on a minimal set of temporal operators that enable the speci-
fication of test conditions with sufficient expressiveness for detecting all
failures in an existing failure taxonomy. We also introduced an accord-
ing approach for specifying test templates that supports a programmer in
writing tests. In this demonstration paper, the automated test framework
for the Goal agent programming language that has been created for the
Eclipse platform is introduced, with a focus on its practical aspects, i.e.,
how to use it to detect failures in cognitive agents. As fault localization
is an important follow-up to failure detection, the integration of the test
framework in the existing source-level debugger for Goal is discussed
as well. In addition, an empirical evaluation of the automated testing
framework implementation for Goal is presented based on the work of
almost 200 novice agent programmers.

1 Introduction

In order to reduce debugging effort and enable automated failure detection, we
proposed an automated testing framework for cognitive agent programs that pro-
vides support for detecting frequently occurring failure types in [17]. Automated
testing yields a reduction in the effort needed to detect a failure and is more
effective than manual code inspection methods [20].

A failure is an event in which a system does not perform a required func-
tion within specified limits [13]. Failures thus are manifestations of undesired
behaviour. They are caused by a fault, an incorrect step, process, or data defin-
ition in a program [13] or mistake in a program [22]. Upon detecting a failure, a
programmer needs to locate and correct the fault that causes the failure.

In general, different techniques for detecting failures of program code are
available, ranging from inspection of source code and logs to automated testing

An earlier version of this paper was demonstrated at the 2016 AAMAS conference
and was published in its proceedings [18].
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tools [20]. The need for debugging techniques and test approaches for agent-
oriented programming has been broadly recognized [2,4,5]. Techniques for agent-
oriented programming need to be based on the underlying agent paradigm
[19,23]. However, this is a significant challenge, as they should for example take
into account that agents execute a specific decision cycle and operate in non-
deterministic environments [1,3,12].

In previous work [17], we introduced a test language based on two basic tem-
poral operators, and use this language to specify test templates for detecting
failure types. These test templates refine a failure taxonomy introduced pre-
viously in [22]. A test approach has also been specified that explains how to
instantiate test templates and derive test conditions for specific failure types.
The main steps of this approach are (i) to define success in terms of functional
requirements, (ii) to test cognitive state updating, and (iii) to classify failures
that concern actions and goals. The developed testing framework thus provides
a systematic approach for detecting failures in cognitive agent programs.

This paper is organized as follows. Section 2 introduces the automated test
framework for the Goal agent programming language [8] that has been created
for the Eclipse platform, with a focus on its practical aspects, i.e., how to use
it to detect failures in cognitive agents. As fault localization is an important
follow-up to failure detection, the integration of the test framework in the exist-
ing source-level debugger for Goal [15,16] is discussed in Sect. 3. In Sect. 4 some
implementation details are highlighted, and in Sect. 5 this concrete implemen-
tation is evaluated. Finally, Sect. 6 concludes this paper with recommendations
for future work.

2 Automated Testing of Cognitive Agents

Manual testing, using, for example, a debugger to identify differences between
observed and intended behaviour, is not the most efficient failure detection
method. It also heavily relies on the programmer to identify the failure and
does not support performing the same test repeatedly. The automated test-
ing framework [17] for Goal [8] in Eclipse that we introduce in this section
facilitates running tests repeatedly at no additional costs, reducing the total
debugging effort. We also provide test templates for writing tests for specific
aspects of an agent program such as event processing and action selection, and
an according test approach for deriving such test templates given some ini-
tial functional requirements. We assume the reader is familiar with the basic
concepts of cognitive agents, such as beliefs, goals and percepts, and refer to
[8] for more details about the Goal language itself. A classic Blocks World toy
example1 will be used to demonstrate the testing framework in this section.

1 See https://github.com/eishub/blocksworld for a description of this environment,
and https://github.com/goalhub/agents/tree/master/src/main/goal/BlocksWorld
for the agent system that is used as an example here.

https://github.com/eishub/blocksworld
https://github.com/goalhub/agents/tree/master/src/main/goal/BlocksWorld
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2.1 Modules as Basic Unit for Testing

As is important for any other testing framework, it is important to identify what
the unit that will be tested should be. A testing framework for agent programs,
for example, should not focus on the knowledge that an agent uses. That would
be reinventing the wheel as developers can already use existing (unit) testing
frameworks for the underlying KR technology used by an agent program. For
example, when using SWI Prolog, a developer should use the available unit
testing framework PlUnit [21] to test Prolog programs. Testing at the level of
individual goals or rules is too fine-grained and also not that useful. Writing
tests for individual rules, for example, would not only result in more test than
source code, but even worse, would not focus on the failures that need to be
detected. A more suitable level is the aggregate level that collects multiple rules
in a single unit. We therefore focus on modules as units for testing.

2.2 Test Language

Tests are programs themselves that we write in a test language. The test
language is built on top of the Goal programming language and re-uses parts
of that language. The language provides support for two main tasks: setting up
a test and specifying which test conditions should be evaluated. The grammar
of the test language is specified in Table 1.

Test Conditions. Test conditions are built on top of the cognitive state queries
that are used in program rules. A condition done(action) can be used to test
whether some action has just been performed. We call cognitive state queries
and conditions of the form done(action) also state conditions.

Table 1. The test language grammar.
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A test condition is a temporal condition that expresses that something should
happen always, never, eventually, or when some other condition has been true
before. Test conditions are of the form:

– always sc , which means that the state condition sc should continuously
(always) hold while executing a module.

– never sc , which means that the state condition sc should never hold while
executing a module.

– eventually sc , which means that the state condition sc should hold at least
once during the execution of a module.

– sc1 leadsto sc2 , which means that whenever the state condition sc1 holds,
some time thereafter the state condition sc2 should hold.

The conditions alwayssc and never sc can be used to specify safety conditions,
i.e., things that always or never should occur. The conditions eventually sc and
sc leadsto sc can be used to specify liveness conditions, i.e., things that are
supposed to occur sooner or later after something else has happened. eventually
sc is a shorthand for true leadsto sc .

Test Setup. A test needs to specify everything that is needed for the test. The
first thing that is needed is a multi-agent system (MAS) specification. A MAS file
is used by Goal to launch an environment, and to launch and connect agents to
this environment. As an example, we will test for a failure to handle ‘incomplete’
goals of our agent. We need to include the MAS we want to test:

use BlocksWorld as mas.

With our test we will show that something we want to happen eventually
actually never happens. Our agent operating in the Blocks World should move
a block in order to achieve its goal but does not do it. We thus want our test to
fail. But to show that something will never happen takes a long time. We will
instead be satisfied if our agent does not move the block within a window of 1 s.
This is a reasonable time window because the agent is very fast and we will use
a problem with only 8 blocks. We can use a time out to ensure termination
of the test after a specified time. A time out is global and specifies how much
time (in seconds) is allowed to pass before the entire test should be completed.
If a time out happens, the test is aborted. It is useful to note that a test that is
aborted does not always fail. A test that is aborted only fails if at least one test
condition failed (see below). We add a time out as follows:

timeout = 1.

Test Programs. A test is a program that specifies what should be done. First, a
test should make clear which agents should take part in a test. Not all agents of
a MAS have to be part of a test. The agents that take part in a test need to be
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referenced explicitly in a test program by naming them using their ids. These
agents are launched when the test is started and automatically connected to an
environment, if available, to receive percepts from and perform actions in that
environment.

In a test we can also execute only part of an agent and even make the
agent do things it would not otherwise do. The latter is useful for modifying
the cognitive state of an agent and prepare it as desired for the test. Although
we can execute the program code of an agent it does not need to be executed.
Instead, the testactions that are specified in an agenttest clause (see Table 1)
are performed when the test is run. Test actions can be preparatory actions do
action for, e.g., initializing an agent’s state, where action can be a combo
action that consists of one or more actions that are available to the agent. Test
actions can also be instructions do id to execute a module with name id . We
want the stackBuilder agent to execute as is, which we can achieve by “doing”
the stackBuilder module that is used as main module (the same name is used
to name the agent and the module used as main module in this example):

stackBuilder {
do stackBuilder.

}

It is important to note that modules that are used as init or event modules
will also be executed like they usually would during agent cycles (see Fig. 1).

An agent test can also be shared by multiple agents by listing all agent
names that should perform the test actions separated by commas. By specifying
multiple agent tests it is possible to define different actions for different agents,
which will then be executed in parallel.

Finally, a condition until sc can be associated with a module (or an action
but that is not very useful) that terminates execution when the state condition
sc holds. An agent test thus determines which actions and modules are executed
and when they should be terminated.

Tests for Modules. The most important part of writing a test is specifying the
conditions that should be evaluated while executing a module. The conditions
that should be evaluated when a module is executed are specified by a test id
with statement, where id is a module name. It is possible to associate a pre-
condition pre{sc }, a post-condition post{sc }, and an in-condition in {tc+}
with the module test. The pre-condition of a module is a state condition sc that
should hold when a module is entered (otherwise, the test fails). Similarly, a post-
condition is a state condition sc that should hold when a module is exited. An
in-condition tc is a temporal test condition that specifies which behaviour is
expected of a module while it is executed.

We want to check whether our agent will move a block at some point in
time during the execution of its main module. More precisely, we want to know
whether at some point in time the agent will perform the action move(b8,X)
where X can be any other block or the table. We can use the eventually operator
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Fig. 1. The structure and decision cycle of a Goal agent [8].

for this. As temporal conditions are specified as in-conditions, and we want to
evaluate the stackBuilder module, we get the following module test:

test stackBuilder with

in { eventually done(move(b8,X)). }

Test Evaluation. By putting everything together, we get our first test. We
need to add one use clause to indicate that the module stackBuilder is used:

use BlocksWorld as mas.

use stackBuilder as module.

timeout = 1.

test stackBuilder with

in { eventually done(move(b8,X)). }

stackBuilder {
do stackBuilder.

}

Because we do not want our agent to fail because there is no block 8, we moreover
made sure that a block 8 that sits on top of block 1 to the MAS we developed.
For completeness, the goal of the agent is:
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on(b1,b5), on(b2,table), on(b3,table), on(b4,b3),

on(b5,b2), on(b6,b4), on(b7,table).

Note that this goal does not include block 8.
A run or trace of an agent program consists of a (finite or potentially infi-

nite) sequence of cognitive states of the agent. Test conditions associated with a
module are evaluated on (partial) traces generated by that module. These con-
ditions are assigned one of three values: undetermined, passed, or failed. Initially,
all test conditions of a module have the value undetermined. The pre-condition
of a module, if specified, is evaluated on the current state when entering the
module and assigned passed when the condition succeeds, and failed otherwise.
Similarly, the post-condition is evaluated on the current state when a module is
exited. The value of an in-condition is (re-)evaluated every time the cognitive
state of the agent changes while the module is being executed.

Now it is time to run our test. We refer to the User Manual [11] for instruc-
tions on how to do this. The test’s output will look like this:

test failed:
test: ...\BlocksWorld2Agents\incompleteGoal.test2g
mas: ...\BlocksWorld2Agents\BlocksWorld.mas2g
module ‘stackBuilder’ did not complete successfully
during the test of agent ‘stackBuilder’ because:
In-condition(s) failed: ‘eventually done(move(b8, X))’.

We have identified a failure in our program: the agent never moves block 8 (at
least not within the 1 s window that we used).

2.3 Test Templates

Test templates facilitate writing tests. Test templates also help increase the
coverage of aspects that need testing. We introduce test templates for all aspects
of an agent program. The test templates are split into three main categories:
templates for percepts with labels that start with P, templates for goals with
labels that start with G, and templates for actions with labels that start with
A. We briefly introduce the templates here and discuss how to use them in the
next section.

P-Templates: Failures in Percept Processing. In order to support various
options for percept processing, we distinguish between the four percept types2.
and associate specific test templates with each type, based on the assumption
that the percept information needs to be made persistent in the agent’s belief
state one-to-one. Test conditions for percepts should be associated with the
module that processes the percept. This is usually a module used as either init
2 See Sect. 6.10 of the Goal Guide [10] for more details on percept types in Goal.
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or event module. This ensures the templates are evaluated while percept are
processed in the module. Because the event module is executed once each cycle
of the agent, in order to not violate the test conditions, percepts must have been
processed and beliefs updated accordingly at the end of that module.

Template P-once: concerns percepts p that are only received once, typically when
the agent is launched to inform about static information such as locations on
maps. The test template expects that after receiving the percept, it will be made
persistent such that the agent believes it. This templates should be associated
with a module used as as init module.

percept(p ) leadsto bel(p )

Template P-always: concerns percepts about facts p that are always received
when p is true. This also implies that if such a percept is not received that p
does not hold. The test template therefore consists of two test conditions. The
first is the same as the condition of the P-once template. The second condition
says that when p is not perceived, which indicates that p does not hold, a belief
p should be removed (if present).

percept(p ) leadsto bel(p )

not(percept(p )), bel(p ) leadsto not(bel(p ))

Template P-on-change: concerns percepts p(t) that are sent only when the
parameters t of a percept p change. A percept loc(place), for example, might
be sent only when an agent’s location changes.

percept(p(t )) leadsto bel(p(t ))

percept(p(s )), bel(p(t ), not(s = t )) leadsto not(bel(p(t ))

Template P-on-change-with-negation: concerns percepts p that are received once
when p becomes true, and percepts not(p) that are received once when p
becomes false (again). For example, in(room) is received when an agent enters
a room, and not(in(room)) is received when it leaves again.

percept(p ) leadsto bel(p )

percept(not(p )), bel(p ) leadsto not(bel(p ))

G-Templates: Failures in Goal Management. There are five failure tem-
plates that concern the management of goals. Each of these categories, with the
exception of G4, suggests that a reason for (not) having a goal has not been
adequately taken into account.
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Template G-adopted (G1): concerns a goal p that the agent should adopt because
of some reason sc. If the agent does not adopt the goal when the reason holds,
this template will identify the failure.

sc leadsto goal(p )

Template G-reconsideration (G2): concerns a goal p that should be reconsidered
and dropped for reason sc. If an agent does not drop the goal when sc holds,
a failure to drop a goal that should be dropped is identified. The agent did not
adequately reconsider the goals that it has.

sc leadsto not(goal(p ))

An agent would normally reconsider its goals if the environment has changed
outside the control of that agent. Failures of this type would therefore most likely
only occur in dynamic environments or in a multi-agent context.

Template G-incorrect (G3): concerns a situation in which there is a reason sc for
not adopting or having a goal. This template can be viewed as the counterpart
of the template G-adopted. Instead of a liveness (leadsto) condition we use a a
safety (never) condition here.

never goal(p ), sc

Template G-duplicate (G4): concerns a single-instance goal that should be
instantiated at most once. Some goals should only occur once and it should never
be the case that the goal is instantiated twice. For example, an agent might have
a goal in(‘RoomA1’) of visiting a room but should never have another goal of
the same form, e.g., in(‘RoomB1’), at the same time.

never goal(p( s ) ), goal(p( t ) ), not(bel(s = t ))

Template G-maintain (G5): concerns a situation in which sc is a reason why an
agent should have a goal p, and should maintain it for that reason. This template
can be viewed as the counterpart of template G-reconsideration that requires an
agent to reconsider, i.e. to not maintain a goal.

never not(goal(p )), sc

A-Templates: Failures in Action Selection. The final two templates con-
cern failures in the action selection strategy of an agent. An agent may have a
reason to perform an action but not do so, or, vice versa, may have a reason to
not perform an action but do so nevertheless.
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Template A-selected (A1): concerns an action action that the agent is should
select because of reason sc. Failure to meet this test condition suggests that
some reason for selecting an action has not been adequately taken into account.

sc leadsto done(action )

Template A-incorrect (A2): concerns a situation sc in which an action action
should never have been selected. A failure to meet the test condition suggests
that something happened that should never have happened. This template can
be viewed as the counterpart of the previous template.

never (done(action )), sc

2.4 Test Approach

The test templates provide a useful starting point for writing tests. They facili-
tate a structured approach to testing an agent. Here we introduce a systematic
test approach that consists of a number of concrete steps. The main steps of this
approach are:

1. define success in terms of functional requirements,
2. test cognitive state updating, and
3. classify failures that concern actions and goals.

We also provide guidelines for instantiating the templates for a specific appli-
cation. These guidelines suggest ways, for example, for finding specific reasons
for instantiating the state conditions sc that need to be filled in the G- and
A-templates. For this purpose, it is important to be able to retrieve relevant
information from the sources that we have available. Table 2 lists information
resources that are particularly useful for writing tests.

Table 2. Information sources for testing [17].

Source Type of Information

Agent program (comments) Clues for reasons & design

Agent trace (screen, logs) Observable behaviour

Agent design & specification Functional requirements

Environment (documentation) Percepts, actions available
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Step 1: Defining Success. The first step is to identify functional require-
ments from available agent design documentation (see Table 2). These require-
ments define success and provide a concrete method for checking that a program
does what it is supposed to do. A program can be considered free of failures if
it meets requirements. In order to automatically check this, functional require-
ments must also be specified in the test language. Typically, these requirements
will be associated with a module modname that is used as main module. We can
specify functional requirements as the pre-, post-, or in-conditions of this module
using test modname with statements, or by adding a test action of the form do
modname until sc .

Using a test action is particularly useful for checking that some overall objec-
tive sc is realized. If the objective is achieved, the test action will be automat-
ically terminated. A timeout should be specified to guarantee termination in
case sc would never occur. For example, the requirement or objective to pickup
and deliver a sequence of packages [p1,...,pn] can be specified by do modname
until bel(delivered([p1,...,pn])).

Step 2: Testing Cognitive State Updating. What an agent decides to
do depends to a large extent on the content of its cognitive state. Test con-
ditions also depend on the evaluation of state conditions on the cognitive
state of an agent. If these state conditions incorrectly succeed or fail because
the updating of the state of an agent has not been implemented correctly,
tests will also very likely fail for unclear reasons. For example, a condition
neverdone(putDown),not(bel(in(Room))), which says that a package should
never be put down when not in a room, could fail just because the beliefs about
in(Room) are not updated correctly. It is therefore important to first make sure
that the updating of an agent’s state works as expected.

Identify the Percepts, Actions, and Goals used in a MAS. As a preparatory step,
it is useful to collect all percepts that may be received and the actions that may
be performed from environment documentation (see Table 2). Similarly, all goals
that an agent may have should be collected from the agent program code.

Validating Percept Processing. The first step now is to instantiate the appro-
priate test templates P-once , etc. for each percept based on their type. Tests
should be repeated sufficiently often as percepts generated will differ per run, if
only because environments are more often than not non-deterministic. To gain
confidence that percepts are correctly handled, it is important to check against
the list of actions created above whether a sufficient variation of actions has been
performed during runs, as different actions often yield other percepts.

Check Single-Instance Goals. Based on program design, and intended use of goals
in comments in a program (see Table 2), for example, and using the overview of
goals in the ontology, the subset of goals that are single-instance goals should
be identified. For each of these goals, the test template G-duplicate should be
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instantiated and associated as an in-condition with the module where the goal
is adopted. If these initial tests succeed, this will give a high level of confidence
that cognitive states are updated correctly.

Step 3: Classifying Failures. Instantiating the remaining template types
requires some understanding of the program design and the agent’s behaviour
in order to be able to instantiate the required state conditions sc.

Action Failures. For identifying action related failures, A-templates should be
instantiated with actions and a state condition needs to be identified that pro-
vides a reason, i.e. a state condition sc, for (not) selecting it. For the template
A-selected (respectively, A-incorrect), the question is in which situations sc an
action should (never) be executed. The instantiated conditions should be asso-
ciated as in-conditions with the module(s) where the action might (not) be
selected. There are two basic approaches for identifying the conditions sc.

First, by inspecting the agent program, clues may be obtained for
useful state conditions sc. In particular, the conditions of rules can be
useful, as they typically indicate reasons for selecting an action. For
example, a condition bel(in(‘DropZone’), holding(Block)) that trig-
gers execution of an action putDown suggests that an agent should exe-
cute putDown when it is holding a block in the ‘DropZone’. By using
this condition for sc, we can instantiate template A-selected as follows:
bel(in(‘DropZone’), holding(Block))leadstodone(putDown).

This approach is already able to detect failures, e.g., in case the rule order
prevents the rule for putDown from ever being applied. Similarly, by negating
conditions found in a program, we can find useful conditions for instantiating
A-incorrect. It is important to note that this works only if the condition used
must always hold if the action is selected. This is not always the case, but when
it can be assumed, this approach provides a useful starting point. Moreover,
you can consider how weakened or strengthened variants of conditions used in
program rules can be used in test conditions.

Alternatively, if an action failure is suspected because, for exam-
ple, a functional requirement is not satisfied, observing an agent’s behav-
iour may provide clues for identifying a useful condition sc for instan-
tiating a test template for that action. Suppose that a requirement
bel(in(Room)) leadsto not(bel(in(Room))) formulated in step 1 fails. That
is, an agent does not always leave a room after entering it. If we now
observe that the goTo action is never performed, we can conclude that
we have identified a failure to select this action. To confirm this by a
test, we can use the template A-selected and instantiate sc with the
reason for leaving and action with the goTo action. This would give:
bel(in(Room), not(Room=OtherRoom)) leadsto done(goTo(OtherRoom)).We
can repeat this line of reasoning until a root cause for the failure has been iden-
tified.
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Goal Failures. The approach for instantiating G-templates, apart from identify-
ing the goal that might cause the failure, is similar to that for A-templates. The
questions that you should ask for each of the templates are:

– G-adopted : for which sc should a goal p be added?
– G-reconsideration: for which sc should a goal p be dropped?
– G-incorrect : for which sc should a goal p never be added?
– G-maintain: for which sc should a goal p never be removed?

The instantiated conditions should be associated as in-conditions with the mod-
ule(s) that are related to the goal.

As an example, we create a test for a goal in(Room). We assume that this
goal is adopted by a rule with the following condition: bel(room(Place)),
not(bel(visited(Place))). This condition suggests that the agent should
adopt (multiple) in(Room) goals for each room that it has not visited before.
By using the goal and this condition for sc to instantiate the template G-
adopted, we get: bel(room(Place)),not(bel(visited(Place))) leadsto
goal(in(Place)).

This rather straightforward approach of re-using rule conditions can already
provide an effective method for detecting failures, e.g., in case the rule order
prevents the rule from ever being applied. Similarly, the negations of condi-
tions found in a program can sometimes be used to instantiate the template
G-incorrect to obtain useful test conditions. This approach for instantiating G-
incorrect only works if the condition must hold whenever the goal is adopted,
e.g., if an agent never wants to go to rooms it has visited before. A similar
approach can be used for the templates G-reconsideration and G-maintain.

2.5 Debugging, Testing, and Fault Localisation

It is important to realize that the way in which agents are executed can make a
difference for testing. For example, agents that are executed using the automated
testing framework are never paused, whilst debugging agents with a debugger
by pausing and/or stepping a program may result in agent behaviour that is
different from an agent that is executed without pausing it. Moreover, each run
can produce different behaviour (and thus failures) because of non-determinism
in the agent (e.g., due to random rule order evaluation), the environment, or exe-
cuting multiple agents. You should therefore always run the same tests multiple
times in different scenarios to gain assurance that the agents work as expected.

When a failure is detected, i.e., a test fails, the fault must be located. The
program location where the agent is at when the test failed is indicated by the
testing framework. Although it is often the case, it is not always true that this
location also is the fault location, i.e., the place of the actual error in the code.
If the fault is not located immediately, additional debugging is needed using a
debugger. In particular, faults related to actions that are performed but should
not have been performed are usually more difficult to locate. In the next section,
debugging cognitive agents specifically will be discussed.
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3 Debugging a Multi-agent System

This section explains how debug a Goal MAS. Debugging is the process of
detecting, locating, and correcting faults in a program. Compared to other pro-
gramming paradigms, agent-oriented programming introduces several specific
challenges [9]. In this introduction, we briefly discuss the relevant background
for debugging cogntive agents, based on previous work [15]. Next, in the subsec-
tions, all practical details are presented (i.e., how to use the debugger).

An agent’s decision cycle provides a set of points that the execution can be
suspended at, i.e. breakpoints. These points do not necessarily have a corre-
sponding code location. For example, receiving a message from another agent is
an important state change that is not present in an agent’s source, i.e., there is
no code in the agent program that makes it check for new messages. Thus, two
types of breakpoints can be defined: code-based breakpoints and (decision) cycle-
based breakpoints. Code-based breakpoints have a clear location in an agent
program. Cycle-based breakpoints, in contrast, do not always need to have a
corresponding code location. Together, these are referred to as the set of pre-
defined breakpoints. When single-stepping through a program, these points are
traversed. A user is also be able to mark specific locations in an agent’s source at
which execution will always be suspended, even when not explicitly stepping. To
facilitate this, the debugger identifies such a marker (e.g., a line number) with
the nearest code-based breakpoint. These markers are referred to as user-defined
breakpoints. A user is also be able to suspend execution upon specific decision
cycle events, especially when those do not have a corresponding location in the
source. Such an indication is referred to as a user-selectable breakpoint.

A user is able to control the granularity of the debugging process. In
other words, a user can navigate the code in such a way that a specific fault can
be investigated conveniently. For example, skipping parts of an agent program
that are (seemingly) unrelated in order to examine (seemingly) related parts in
more detail. This is supported by three different step actions: step into, step
over, and step out. At any breakpoint, a detailed inspection of an agent’s
cognitive state is facilitated. In addition, support for evaluable cognitive
state expressions is provided, allowing a user to pose queries about specific
rule parts to identify which part fails. Modifying the agent’s cognitive state is
supported as well.

3.1 Stepping an Agent

A paused agent can be single-stepped. This means that the agent will execute
until the next pre-defined breakpoint is reached. For each such breakpoint, there
is a specific result of a stepping action (i.e., the flow of stepping). In Fig. 2,
this flow for the step into and step over actions on each breakpoint has been
illustrated. For readability, the step out action has been left out3. Note that the
broken edge indicates a link to the event module. After the event module has

3 We refer to Koeman et al. [15] for more details on the step out action.
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Fig. 2. The flow of step into and step over actions for a Goal agent. A ‘User-spec.
Action’ indicates an action that has been defined in an action specification (act2g file),
whilst a ‘Built-in Action’ is something like insert or adopt [15]. (Color figure online)

been processed, depending on the rule evaluation order, either the first rule in
the module or the rule after the performed action will be evaluated. In addition,
a module’s exit conditions might have been fulfilled at this point as well, which
means that the flow may return to the action combo in which the call to the
exited module was made. Note that the stepping flow is heavily influenced by
the rule evaluation order and/or exit conditions in general.
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3.2 User-Defined Breakpoints

User-defined breakpoints are line-based. They can be set in Eclipse at any time
(i.e. also whilst running a MAS) by double-clicking on the line number you want
to break at, on which a red marker will appear. When double-clicking on this
red marker again, a yellow marker appears. Finally, when double-clicking on this
yellow marker, the marker (and thus the breakpoint) will be removed entirely.
These coloured markers indicate the two different types of user-defined break-
points that are supported.

A red marker indicates a regular breakpoint. A user-defined breakpoint
will be set on the first module entry, rule condition, or pre-condition that can be
found after the indicated line. A yellow marker indicates a conditional break-
point. A user-defined breakpoint will be set on the first action(combo) that can
be found after the indicated line. This means that if the condition of the action
(i.e., of the rule) does not hold, the breakpoint will not be reached. When a
user-defined breakpoint is reached during execution, the agent will always be
paused (even when not explicitly stepping).

3.3 User-Selectable Breakpoints

Goal has a single user-selectable breakpoint: the achievement of a goal. When
stepping an agent, by default, the execution will be paused when a user-selectable
breakpoint occurs. This behaviour can be modified (i.e., turned on or off) in the
preferences. The stepping flow after a user-selectable breakpoint is dictated by
the existing (surrounding) node. For example, achieving a goal is only possible
after either executing an action or applying a post-condition, so the stepping
actions from the relevant node will be used when stepping away from a goal-
achieved breakpoint.

3.4 State Inspection

Each time the execution is suspended (i.e., a breakpoint is reached), the code
that is about to be executed is highlighted, and any relevant evaluations (i.e.,
the possible values of variables referenced in a rule) of this highlighted code
are displayed (on the right side). An example can be seen in Fig. 3. Additional
messages are displayed in the evaluation window as well, for example when an
agent has been terminated.

In addition, when paused, the cognitive state of an agent is displayed at the
top-right, split in four tabs: beliefs, goals, messages, and percepts. Searching is
possible in all of these views. Note that both the displayed cognitive state and
the interactive console (see the next paragraph) use the agent that is currently
selected in the agent overview (at the top-left).

3.5 Interactive Console

A single ‘interactive console’ is provided in which both cognitive state queries
(e.g. bel or goal) and actions (e.g. delete or drop) can be performed in order
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Fig. 3. An example of how a rule evaluation is displayed in the Goal debugger [15].

to respectively inspect or modify the displayed cognitive state. All solutions
for a query are shown in the interactive console as a list of substitutions for
variables. For actions, one needs to make sure that they are closed, i.e., have no
free (unbound) variables. It is possible to execute a user-defined (environment)
action as well when the environment is running.

3.6 Watch Expressions

It is also possible to continuously evaluate and thus inspect one or more cognitive
state queries whilst a system is running by using so-called ‘Watch Expressions’.
The evaluation of each expression will be shown for all agents, and is updated
every tenth of a second.

3.7 Logging

In debug mode, the bottom area contains various tabs for inspecting agents and
the actions they perform. Besides the main console tab, an action history tab
is present that provides an overview of actions that have been performed by all
(running) agents. In addition, when an agent is launched, a dedicated console is
added for that agent for inspecting various aspects of the agent program during
runtime.

Main Console. The main console shows all important messages, warnings and
errors that may occur. These messages include those generated by Goal at
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runtime, but possibly also messages produced by environments and other com-
ponents.

Action History. The action history tab shows the actions that have been per-
formed by all running agents that are part of the multi-agent system. These
actions include both user-defined actions that are sent to the environment as
well built-in actions provided by Goal.

Agent Consoles. Upon launching an agent, a dedicated tab is added for that
agent. This tab typically contains more detailed information about the agent.
The exact contents of the tab can be customized through the preferences. Various
items that are part of the reasoning cycle of an agent can be selected for viewing.
If checked, related reports will be produced in the console of an agent.

Customizing the Logging. The logging can be customized in the preferences.
A timestamp with millisecond accuracy can be added to each printed log. The
action history and dedicated logging tabs for agents can also be turned on or
off here. It is also possible to write all logs to separate files. These files will be
stored in a directory within the currently executed project. Logs for each agent,
the action log, warnings, results from Goal log actions etcetera are all written
to separate files.

4 Testing GOAL Agents in the Eclipse IDE

The automated testing framework for Goal [8] has been embedded in the
Goal agent programming plug-in4 for Eclipse. This plug-in provides a full-
fledged development environment for agent programmers, integrating all agent
and agent-environment development tools in a single well-established setting [16].
The Eclipse platform is based on an open architecture that allows for building
on top of well-known existing frameworks [6]. By using Eclipse and the DLTK
framework [7], for example, a state-of-the-art editor for Goal has been created,
which forms a solid foundation for further tools. The Goal language itself has
been recently updated to use a more modular approach, i.e., better facilitating
re-use. In addition, a source-level debugger for agents has been fully implemented
in the plug-in based on previous work [15]. The test framework has been inte-
grated into this source-level debugger, facilitating for example the inspection of
an agent’s state as soon as a test condition has failed, as illustrated in Fig. 4.
The new modular approach of the Goal agent programming language also bet-
ter facilitates the testing of individual, separate pieces of functionality.

In the plug-in there are several examples embedded that can be used to
demonstrate this test framework. Most of these are based on educational envi-
ronments5 that include an assignment for (novice) agent programmers.
4 See http://goalhub.github.io/eclipse for a demonstration(video) of the testing frame-

work implementation and instructions on how to install Goal in Eclipse.
5 All (educational) agent environments are available at https://github.com/eishub.

http://goalhub.github.io/eclipse
https://github.com/eishub
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Fig. 4. An example of how test failures are displayed in the source-level debugger.

5 Evaluation

An empirical investigation was performed on a large set of solutions handed in by
novice Goal agent programmers, who were working in a total of 94 pairs. These
pairs were given the same assignment6, for which they had to develop a single
agent together. At three fixed points in time, they were asked to (voluntarily)
send us their work up till that point; only the third (and final) version was
actually graded. This set-up specifically allowed us to investigate failures in
non-final submissions through a set of evaluations (i.e., using test conditions we
formulated based on the assignment), accompanied by a short questionnaire.

In Table 3, the descriptive statistics of the automated evaluations using test
conditions are presented. Notice that at each deadline, more students sent in
their work. In addition, when the agent programs grow larger towards the final
deadline, the number of P-failures (i.e., failures in percept processing) decreases
each time, whilst there is a simultaneous increase in both A- and G-failures7.
Failures in goals seem closely related to failures in actions, most likely because
failures in goal management often cause problems in action selection.

Table 3. Descriptive statistics of the evaluations on the student assignments at each
of the three hand-in moments (see Sect. 2.3 for descriptions of the failure types).

Failure Type Mean Std. Dev. N

P-failures (1) 1.8 1.5 29

G-failures (1) 0.5 0.6 “ ”

A-failures (1) 2.3 1.4 “ ”

P-failures (2) 0.9 1.0 64

G-failures (2) 2.7 2.1 “ ”

A-failures (2) 4.0 2.2 “ ”

P-failures (3) 0.5 0.8 94

G-failures (3) 3.7 1.4 “ ”

A-failures (3) 4.5 2.2 “ ”

6 See https://github.com/eishub/BW4T and/or Jonhson et al. [14].
7 Note that missing functionality was not considered a failure in these evaluations.

https://github.com/eishub/BW4T
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Table 4. Descriptive statistics of questionnaire answers at each of the three hand-ins.

Question Mean Std. Dev. N

Hours spent (1) 3.6 2.3 29

Hours spent (2) 5.4 2.2 64

Hours spent (3) 14.0 4.5 94

Time spent on testing 19 % 16 % 94

Effectiv. of testing 1.1 0.8 ””

In Table 4, the descriptive statistics of the questionnaires that student pairs
filled in at each deadline are given. They were asked to report the total number
of hours spent on the assignment at each hand-in, and at the final deadline the
percentage of that time they spent on testing and how effective they found the
agent testing framework (on a Likert scale of 0–3). Interestingly, the amount of
time spent on testing is quite high (and also quite different per student pair), but
the effectiveness of the testing framework is not that high. A qualitative evalu-
ation of the feedback that students could provide at the final hand-in indicated
some problems. The most frequently occurring feedback was:

– Tests can take a long time to complete.
– Failures can be hard to reproduce.
– A full integration of the testing results in Eclipse is missing (i.e., there is only

console output currently).

Most of these problems are related to the environment in which the agent oper-
ated, as it could only run at a certain maximum speed, and by default randomly
generates the world in which the agent operates. This indicates that agent envi-
ronments also require changes specifically to facilitate reproducible and repeat-
able testing. Moreover, even though an integration of the testing in the source-
level debugger exists, students would like to see more integration of the testing
results in Eclipse itself.

Finally, a correlation analysis of the number of hours spent on the assignment
(and the percentage of time spent on testing) with the amount of failures in the
different categories supports the conclusion that initially most of the failures are
in the P category, whilst in the end most of the failures are in the G and A
categories.

6 Conclusion

In this paper, we showed how our automated testing framework for cognitive
agents facilitates the detection of failures and aids in the localization of faults.
In previous work [17], we have proposed an automated testing framework for
cognitive agents and an associated test approach based on test templates for
frequently occurring failure types. By using a concrete implementation of the
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testing framework for the Goal agent programming language, an integration
with the existing source-level debugger was created within the Eclipse environ-
ment, thus fully implementing the design within a state-of-the-art setting. This
implementation and its source are publicly available, and used in this paper in
order to illustrate concrete examples of its use and provide insight into practical
implementation details that may be valuable for the adaptation into other agent
programming languages.

An empirical investigation on a large set of solutions handed in by novice
Goal agent programmers lead to several interesting results, suggesting direc-
tions for future work. For instance, students spent a considerable amount of time
on testing, indicating the importance of proper support for this task. However,
some problems were present in the current implementation, mostly related to the
fact that an external environment was used, causing problems for both repro-
ducibility and (fast) repetition. In addition, the evaluation showed that action
failures were present most, and therefore tools that can explain why actions were
performed might be useful.
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Abstract. Online social networks contain plethora of information about
its users. While users enjoy sharing information online, not all informa-
tion is meant to be seen by the entire network. Managing the privacy of
users has become an important aspect of such online networks. An impor-
tant part of this is detecting privacy violations and notifying the users
so that they can take appropriate actions. While various approaches for
detecting privacy violations exist, most of the approaches do not have a
running tool that can exhibit the principles of its underlying approach.

This paper presents PriGuardTool, a Web-based tool that can
detect privacy violations in online social networks. Each user is repre-
sented by a software agent in the system that first collects user’s privacy
concerns, explicitly specified as what types of content are meant to be
seen by which audience. The system represents these privacy constraints
as commitments between the user and the online social network. The
user constraints are converted into commitments automatically by the
agent. The system then monitors which commitments are violated based
on the content shown to users, such that a violated commitment repre-
sents a privacy violation in the system. While checking for violations, the
effects of posts on the system as well as the semantic relations and rules
are considered. We evaluate PriGuardTool by using various real-life
scenarios and real data that have been collected over Facebook. Our ini-
tial results show that realistic privacy violations can be detected using
PriGuardTool.

Keywords: Privacy · Online social networks · Commitment · Ontology

1 Introduction

Privacy is the right of an individual to express herself selectively. An individual
may prefer to expose certain information about herself to a certain group of
others, but may choose to hide another set of information. This right is difficult to
maintain on the Web since information can propagate easily. It is even worse on
online social networks since different users can share content about an individual,
without expecting an explicit confirmation from the individual. This results in
tremendous privacy violations to take place [5].
c© Springer International Publishing AG 2016
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Consider the following examples: A user herself misconfigures the system and
reveal unintended content (e.g., the user shares holiday pictures with colleagues
when not intending to); or a friend of a user shares a content not knowing
that the user would not want the content online (e.g., a friend shares a picture
where the user is drunk). These simple examples show that both a user herself or
friends can take simple actions that lead to privacy violations. More importantly,
sometimes the privacy violations are more subtle. In order to be discovered,
they require various pieces of information to be put together. For example, a
user does not reveal her location but shares a picture that has an embedded
geotag. Any software that can process the geotags can help others discover the
user’s location [6]. Sometimes, the information needed to decipher the violations
is not that straightforward. For example, looking at two friends check-ins to a
remote island could signal that they are together. Inferring this information,
when neither have explicitly specified it, could easily violate their privacy. In
all cases, the users seek tools that will help them to preserve their privacy and
catch privacy breaches if any, so that they can take an action.

Most of the existing commercial systems on the Web allow a user to specify
constraints on her own posts only and enforce them. However, this does not nec-
essarily avoid privacy violations. That is, if a user does not want her colleagues
to see her holiday pictures but her group holiday picture is shared publicly by
a friend, her privacy is still violated. Various approaches to deal with privacy
violations exist in the literature. One set of approaches aim to prevent privacy
violations in the first place [15]. The approaches that employ argumentation
or negotiation techniques among users to reach agreements before sharing con-
tent fall into this category [9,17,25]. Another set of approaches aim to detect
privacy violations. This set of approaches represent user’s privacy constraints
formally and try to find out if the network evolves into a state where these
constraints are violated. An important work is that of Hu et al., where privacy
concerns are represented as multiparty access control rules [7]. Their work is
based on a social network model, a multiparty policy specification scheme and a
mechanism to enforce policies to resolve multiparty privacy conflicts. They ben-
efit from Answer Set Programming (ASP) to represent their proposed model.
Another important work is that of Carminati et al. that studies a semantic web
based framework to manage access control in OSNs by generating semantic poli-
cies [3]. Their proposed social network operates according to agreed system-level
policies. In a similar line, we have previously proposed a semantic meta-model
for representing agent-based online social networks [12]. We further proposed a
model PriGuard that represents privacy constraints as commitments between
users and the online social network, which are widely-used constructs for model-
ing interactions between agents [26]. This paper formally describes PriGuard-
Tool, a Web-based tool that implements PriGuard model that detects privacy
violations and notifies users to take an action.

PriGuardTool is a privacy management system. It enables users to enter
their privacy constraints and then to check for privacy violations at desired
times, similar in principle to virus checks. The privacy constraints capture a
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user’s expectation from the network; e.g., a user may not want her colleagues to
see her pictures but might be fine if friends see them. A privacy violation can
happen explicitly (e.g., if the user shares a picture with colleagues by mistake)
or implicitly (e.g., if the actions of the user or the others lead colleagues to
have access to the picture). PriGuardTool is equipped to check for both
kinds of privacy violations. Implicit violations are especially difficult to detect
because they require inferences to be made. To deal with this, PriGuardTool
uses ontologies to represent knowledge and semantic rules, then it can check for
violations both on the ontologies and on the inferred knowledge. To demonstrate
its workings, we have implemented it so that it can work on real data that are
extracted from Facebook. That is, a user can login with her Facebook credentials,
allow the tool to download all her data (which are converted to an ontology),
and check for privacy violations there.

The rest of this paper is organized as follows: Sect. 2 explains our approach for
detecting privacy violations in online social networks. Section 3 develops the prin-
ciples behind our developed tool. Section 4 explains in detail the design choices
made to implement the proposed tool. Section 5 evaluates the tool in the context
of a real online social network. Section 6 discusses the work in relation to other
approaches for managing users’ privacy in online social networks, and several
limitations of current work.

2 Background: PriGuard Approach

PriGuard is a commitment-based model for privacy-aware online social net-
works [12] that enables users to detect privacy violations. Each user in the social
network is represented by an agent that is responsible for keeping track of the
user’s privacy constraints and checking for violations when needed. The online
social network is defined by the set of relationships, content types and a set of
semantic rules. The set of relationships pertains to the users (e.g., friend, col-
league, and so on). The content types capture allowed contents (e.g., picture,
check-in, text, and so on). The semantic rules capture how the social network
operates (e.g., content can be reshared, contents are shown selectively, and so
on). A snapshot of the online social network captures the agents, their relation-
ships and the content in the online social network. Even for a single snapshot,
one can focus on different views of it. For example, the global view of the system
would contain all the content of all the agents in the system; while a smaller,
local view can contain the content shared by a single agent last month. Pri-
Guard uses views to check if privacy of users are violated or not. Depending on
the view, the extent of privacy check can be managed.

In PriGuard, the social network domain is formally defined using Descrip-
tion Logics (DL). The domain consists of concepts (e.g., Agent), relations (e.g.,
isFriendOf ) and individuals names (e.g., :alice)1. On the other hand, there is a

1 We denote a Concept with text in mono-spaced format, a relation with italic text,
and an :individual with a colon followed by text in mono-spaced format.
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need for semantic rules so that a social network can operate accordingly. In Pri-
Guard, the semantic rules are specified as Datalog rules. These Datalog rules
capture the fundamental operations of OSN, independent from specific users. For
example, sharesPost(X,P) → canSeePost(X,P) is a Datalog rule, which states
that an agent can see the posts that it shares. In this rule, sharesPost and
canSeePost are predicate symbols; X and P are universally quantified variables.

While the OSN has its operation rules, the users have privacy expecta-
tions from the system. These privacy expectations are captured with conditional
commitments [22,26]. Informally, conditional commitments represent a contract
between two parties, such that each party commits to realizing certain predi-
cates. In terms of privacy, this maps to a situation where a user commits to
specifying information about friends, colleagues, and so on correctly and the
OSN commits to ensuring the correct set of individuals will be shown the con-
tent (based on user’s specification). A commitment is denoted as a four-place
relation: C(debtor ; creditor ; antecedent ; consequent). The debtor is committed
to the creditor to bring about the consequent if the creditor brings about the
antecedent. First, each user specifies her privacy concern. Second, the agent trans-
forms such a privacy concern into a commitment so that it can later be verified.
Consider the following example:

Example 1. Charlie shares a concert picture with everyone and tags Alice in
it. However, Alice does not want other users to see her pictures.

Here, Alice has a privacy concern such that she does not want to be seen by
others. She does not have any control on what is shared by her friends. After Alice
specifies her concern, Alice’s agent (:alice) generates a commitment between
:alice and the social network operator. The antecedent of the commitment
describes the individuals affected by the commitment (e.g., agents except Alice)
and the content that the commitment is about (e.g., pictures). The consequent
of the commitment says whether the specified individuals should see or not see
the content. Overall, Alice only promises to share content on this online social
network if the online social network promises not to reveal information about
her whereabouts.

A commitment violation occurs, when the antecedent holds but not the con-
sequent. In another words, the social network operator fails to bring about the
consequent. This signals a breach of privacy. To detect such commitment vio-
lations, each agent computes under which conditions a commitment would be
violated and generates a violation statement. For example, people seeing Alice’s
pictures would violate Alice’s commitment that is in an active state (i.e., the
antecedent is achieved).

Agents use the domain information, the semantic rules, the view informa-
tion and the violation statements to detect privacy violations. Then, each agent
reports the detection results; it depends on the creditor of the commitment (e.g.,
the user) to take an action accordingly.
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3 PriGuardTool

PriGuardTool is a Web-based tool that implements PriGuard model [12].
We use ontologies to capture the domain, view, and the semantic rules of the
social network.

Domain: The social network domain is represented using PriGuard ontology
specified in OWL 2 Web Ontology Language [18]. PriGuard model is a DL
model, which can be completely defined in an OWL 2 ontology. In this ontol-
ogy, there are classes that define domain concepts, object properties that relate
individuals and data properties that describe individual-specific properties. For
example, Agent is a class, which describes a set of users in the social network.
:alice and :bob might be individuals that are elements of Agent class. These two
individuals can be connected to each other via the object property isFriendOf .
:alice can have a name “Alice Kingsleigh”, which is described by the data
property hasName.

In a social network, it is important to model the users, the relationships
between users and the posts being shared by the users. As mentioned before,
users are represented as Agent individuals in the ontology. The relationships are
defined as object properties between agents. isConnectedTo is the most general
property that defines a connection between two agents. However, it is possible
to describe more specific relationships such as isColleagueOf . Post class is the
most general class to represent a post. In an ontology, one can define complex
classes. For example, we use complex classes to model specific posts such as
LocationPost, which can be defined as: Post � ∃hasLocation.Location (posts that
have at least one location). Each post is initialized by an agent (hasCreator).
Moreover, an agent can share posts (sharesPost) and see posts (canSeePost).
A post can be about an agent (isAbout). Posts can include textual, visual or
locational information represented as Text, Medium and Location respectively.
Mediums can include geotags (hasGeotag). A Post is related to these classes via
hasText , hasMedium and hasLocation properties. A person can be mentioned in
a text (mentionedPerson), tagged in a medium (taggedPerson) or at a location
(withPerson). Each post can be associated with contextual information (Context)
as well. A specific Audience is meant to see a post. hasAudience relates audience
individuals to post individuals. Hence, members of this audience are described
by the use of hasMember property.

View: In PriGuard ontology, a view is a set of class assertions (e.g., ClassAsser-
tion(Agent :alice)) and object property assertions (e.g., ObjectPropertyAsser-
tion (isFriendOf :alice :charlie)). In Table 1, we show the system view for
Example 1. We use the abbreviations CA and OPA for ClassAssertion and
ObjectPropertyAssertion respectively. The view of Example 1 is specified in
functional-style syntax. At this particular view, :charlie creates and shares a
post (:pc1) including a medium (:picConcert), an :audience with :alice, :bob,
:diane as members and a person tag of :alice. The relationships are defined as
follows: :alice, :bob and :charlie are friends of each other; :diane is a friend of
:bob. The remaining assertions include the class assertions for each instance.
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Table 1. System view of Example 1 :charlie shares a post :pc1

CA(Agent :alice) CA(Agent :bob)

CA(Agent :charlie) CA(Agent :diane)

CA(Post :pc1) CA(Picture :picConcert)

CA(Audience :audience)

OPA(isFriendOf :alice :bob) OPA(isFriendOf :alice :charlie)

OPA(isFriendOf :bob :charlie) OPA(isFriendOf :bob :diane)

OPA(sharesPost :charlie :pc1) OPA(hasAudience :pc1 :audience)

OPA(hasMedium :pc1 :picConcert) OPA(taggedPerson :picConcert :alice)

OPA(hasMember :audience :alice) OPA(hasMember :audience :diane)

OPA(hasMember :audience :bob) OPA(hasCreator :pc1 :charlie)

DL Rules: A social network needs a set of semantic rules to operate. Recall
that, in PriGuard, rules are defined as Datalog rules. OWL 2 is an expressive
language to represent some Datalog rules as DL rules. For example, consider the
rule r7 in Table 2. This rule states that a post that includes a geotagged picture
is an instance of LocationPost class in the ontology. The remaining DL rules are
as follows. If an agent shares a post, then the agent can see it (r1). An agent
can see a post if it is in the audience of that post (r2). If an agent creates a post
then this post is about that agent (r3). Similarly, a post is about an agent if the
agent is tagged at a specific location (r4), in a medium (r5) or mentioned in a
text (r6). If an agent is tagged in a picture and shares another post by declaring
its location then the location information of other agents tagged in that picture
is revealed as well (r8).

Table 2. Example semantic rules as Description Logic (DL) rules

r1: sharesPost � canSeePost

r2: hasMember− ◦ hasAudience− ◦ R sharedPost � canSeePost

r3: hasCreator � isAbout

r4: hasLocation ◦ withPerson � isAbout

r5: hasMedium ◦ taggedPerson � isAbout

r6: hasText ◦ mentionedPerson � isAbout

r7: Post � ∃hasMedium.∃hasGeotag.Location � LocationPost

r8: R locPost ◦ sharesPost− ◦ taggedPerson− ◦ hasMedium− ◦ sharesPost− � isAbout

Commitments: Users input their privacy concerns via PriGuardTool inter-
face as depicted in Fig. 1. The user can specify her privacy concerns regarding
medium posts, location posts and posts that the user is tagged in. For each cate-
gory, the user declares two groups of people: one group that can see that category
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and a group that cannot. If the user specifies conflicting privacy concerns (e.g.,
a user is part of both groups), the agent adopts a conservative approach to min-
imize privacy violations to occur; i.e., it finds conflicting users and move them
to the group that cannot see the content.

Fig. 1. Alice declaring her friends to not see her medium posts.

PriGuard ontology is used to semantically describe the commitments.
Table 3 shows the commitments that Alice is in involved in. Since current OSNs
are centralized, our commitments are among users and the OSN operator (:osn).
Recall that Alice wants to be the only one who can see her medium posts (see
Example 1). Hence, two commitments are generated C1 and C2. In C1, :osn

promises :alice to show her medium posts to :alice. In C2, :osn promises
:alice to not reveal her medium posts to others.

Table 3. Commitments for Example 1

Ci <Debtor; Creditor; Antecedent; Consequent>

C1: <:osn; :alice; X==:alice, isAbout(P, :alice),
MediumPost(P);

canSeePost(X, P)>

C2: <:osn; :alice; Agent(X),not(X==:alice),isAbout(P,

:alice),MediumPost(P);
not(canSeePost(X, P))>

Violation Statements: After all the semantic inferences are made by the use
of PriGuard ontology and DL rules, the agent should be able to query this
knowledge to detect privacy violations in the social network. A violation state-
ment is a statement wherein a commitment would be violated. Here, agents
use SPARQL queries to represent commitment violations. In another words, a
violation statement is mapped to a SPARQL query.

SPARQL is a way of querying RDF-based information [21]. Note that ontolog-
ical axioms can also be seen as RDF triples. In a SPARQL query, there are query
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variables, which start with a question mark (e.g., ?x), to retrieve the desired
results. We only focus on SELECT queries with filter expressions NOT EXISTS
and EXISTS to represent violation statements. Recall that the antecedent of a
commitment includes information about agents that are the target audience of
the commitment, and the set of posts being shared. The consequent of a com-
mitment specifies whether agents could see or not the content. In the antecedent,
each predicate of arity two is mapped into a RDF triple. For example, isAbout(P,
:alice) is transformed into “?p osn:isAbout osn:alice”. Each predicate of arity
one is mapped into an rdf:type triple. For example, Agent(X) is transformed
into “?x rdf:type osn:Agent”. Equality or non-equality expressions become FIL-
TER expressions in SPARQL. For example, not(X ==:alice) is transformed
into “FILTER (?x != osn:alice)”. The consequent of a commitment is mapped
into a FILTER EXISTS or FILTER NOT EXISTS expression in SPARQL. If the
consequent of a commitment is positive, then this commitment is violated if the
consequent does not hold and the antecedent holds; i.e., it is mapped to FILTER
NOT EXISTS expression. Otherwise, it is transformed into a FILTER EXISTS
expression. For example, the consequent of C2 is not positive (not(canSeePost(X,
P))) hence it is transformed into “FILTER EXISTS { ?x osn:canSeePost ?p }”.

A complete SPARQL query is shown in Table 4. The PREFIX declares
a namespace prefix. osn prefix shows where to find PriGuard ontology for
querying. This SELECT query declares two query variables (?x and ?p) to be
retrieved. The core part of the query is defined in the WHERE block, which
consists of four triples (one is used in a filter expression). This query returns the
set of posts that can be seen by agents except Alice.

:charlie shares a post :pc1, which includes a picture of :alice and :charlie.
The audience is set to everyone. :alice checks for possible privacy viola-
tions. PriGuardTool finds the corresponding commitments: C1 and C2. C1

is not violated since Alice can see her posts. However, the violation state-
ment of C2 (as shown in Table 4) holds in the system with the substitutions
{?x/{:bob, :charlie}} and {?p/:pc1}. Here, a privacy violation occurs because

Table 4. The violation statement of C2
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Alice and Charlie have conflicting privacy concerns; i.e., one wants to keep it
personal while the other prefers sharing it with everyone. Thus, it is not possible
to fulfill both of their concerns at the same time.

4 Implementation

We have implemented PriGuardTool as a Web application2. We have used
PHP for the front-end development and Java for the back-end development.
PriGuardTool is able to work with various social networks. For this, a gateway
should be developed for user authentication and data collection. Here, we decided
to work with Facebook since it is widely used around the world. We integrated
Facebook Login to our web application to enable user authentication. We also
implemented a Facebook gateway to collect data from Facebook users.

Figure 2 shows the information flow of PriGuardTool. The tasks are rep-
resented as rectangles. A human task is depicted as a task with a figure on top
while the other tasks are automated tasks. The solid arrows represent the flow
between tasks. The data operations are shown as dashed arrows. First, the user
logs into the system by providing her Facebook credentials. The tool collects
the user data and stores in a database (MongoDB). The user inputs her privacy
concerns, which are stored as a JSON document. These privacy concerns are
transformed into commitments between the user and the social network (Face-
book) operator, and the corresponding violation statements (SPARQL queries)
are generated as well. On the other branch, Generate Ontologies task takes
care of reading user data from MongoDB, creating and storing ontologies in
MongoDB. Detect Privacy Violations task uses SPARQL queries and the user’s
ontologies to monitor the social network for privacy violations. Finally, the user
is shown a list of posts that violate her privacy if any. Then, the user can take
an action such as modifying a post (e.g., removing a person from the audience
of that post). Once the user logs out from the system, the tool removes the user
data and the generated ontologies. This ensures that no information remains in
the database after the detection is completed.

Data Collection: We extract information about the user from Facebook by the
use of Facebook Graph API3. We request the following login permissions: email,
public profile, user friends, user photos, user posts. These permissions allow us
to collect information about Facebook posts together with the comments and
likes of other users. We use MongoDB4, which is an open-source document-
oriented database, to keep the extracted information. Graph API supports the
exchange of JSON documents, and it becomes reasonable to store the user data
as a JSON document in MongoDB. Note that we only extract information of
the user, which may be shared by the user itself or by a friend of the user (i.e.,
the user is tagged in a post shared by a friend).

2 http://mas.cmpe.boun.edu.tr/priguardtool.
3 https://developers.facebook.com/docs/graph-api.
4 https://www.mongodb.com/.

http://mas.cmpe.boun.edu.tr/priguardtool
https://developers.facebook.com/docs/graph-api
https://www.mongodb.com/
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Fig. 2. PriGuardTool implementation steps

Facebook Graph API (v2.5) enables extraction of some information of a user,
such as the user’s posts, the comments on the posts or the likes of the posts.
However, it does not allow us to extract some important information about the
users, such as the list of friends of a user. Further, it is not possible to extract any
information about the posts of other users. As another limitation, one cannot
extract information about user-defined lists (e.g., if the user has a family list, it
is not possible to get users that belong to that list). We analyze the collected
information of the user so that we can come up with an approximate list of
friends. For this, we analyze the interactions of other users with the user. For
example, if a person makes a comment about a post shared by the user, then
we consider this person as being a friend of the user. So, this list includes more
users than the actual list of friends of the user. Consider the user N3 in Table 5.
The actual number of friends for this user is 671. However, by analyzing the
interaction data of the user, we come up with a list of 1060 users. Since the
constructed list is only a partial view of the social network, our tool may not
detect all of the violations. Moreover, the approximate list of friends may contain
users who are not actual friends of the user (e.g., a friend of friend of the user
will be included in the approximate list as a result of liking a post of the user).
In such cases, the tool can report false positive violations. For example, if the
user does not want her content to be seen by her friends, the tool can report
a violation where a friend of friend of the user sees her content. However, if
PriGuardTool was a service of the online social network with access to more
information, such false positives would not take place.

Ontology Generation: Recall that PriGuardTool makes use of ontologies
to keep information about the social network domain and the user. The user
data, which is a JSON document, should be transformed into class and property
assertions in PriGuard ontology. This transformation is realized by a Java
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application, which parses a JSON document and generate an ontology for the
user. We use Apache Jena5, which is an open-source Java framework to work
with ontologies. The user may choose to check for privacy violations for a subset
of her posts. Hence, ontologies of different sizes can be generated per request.

Note that the ontology generation module can take a long time if the user
has lots of friends and posts. Hence, we adopt multi-threading to generate large
ontologies. It is important to keep large ontologies in a database since privacy
violations can also be detected offline. The maximum size of document that can
be stored in MongoDB is 16 MB. We use GridFS specification in MongoDB,
which divides a document into various chunks that are stored separately as
documents.

Fig. 3. Alice checks the posts that violate her privacy.

Detection Results: The users input their privacy concerns to detect privacy
violations on Facebook as shown in Fig. 1. Once the user checks for violations,
a list of posts that violate the privacy of the user are displayed on the Web
application. For example, Alice did not want Bob and Charlie to see her medium
posts. When she checks for violations, she is notified that Charlie’s post violates
her privacy as shown in Fig. 3. Here, Alice can get in touch with Charlie so that
he modifies or removes this post since she is not the owner that post.

PriGuardTool can be used in two modes: online and offline. In both modes,
agents use the user data to generate an ontology, which is loaded into memory
for checking privacy violations. In online mode, PriGuardTool only considers
posts that have been shared about the user in last three months. We do this to
return recent privacy violations first in a short time. However, in offline mode,
privacy violations are detected by the use of large ontologies. The user can also
check the detection results that have been computed in offline mode. Then, the
user can try to minimize the privacy violations to occur by modifying the posts
if possible.

5 https://jena.apache.org/.

https://jena.apache.org/
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5 Evaluation

In the context of privacy, it is difficult to evaluate approaches and tools since
there are no established data sets. Moreover, privacy is subjective hence it
becomes difficult to talk of a gold standard that works for all. One way to go
about this is to create synthetic data. However, ensuring that the synthetic data
will adhere to real life properties is also difficult. Instead of working with syn-
thetic data, it is ideal to work with real users. For this, we show the applicability
of PriGuard approach in a Web application that is integrated to Facebook.

5.1 Experiments with Facebook Users

To evaluate our PriGuardTool implementation, we have worked with real
data of Facebook users. We have collected data from Facebook users who used
our tool to protect their privacy. Here, we generate five ontologies regarding
the user data. The first four ontologies include posts shared last one month,
three months, six months and last year. The fifth ontology includes the latest
five hundred posts shared by the user. Additionally, the users specified their
privacy concerns, which were translated into commitments. Then, the user agents
checked for commitment violations in generated ontologies to report privacy
violations.

We perform our experiments on Intel Xeon 3050 machine with 2.13 GHz
and 4 GB of memory running Ubuntu 14.04 (64-bit). In Table 5, we present the
evaluation results for three Facebook users. Each user inputs a privacy concern
such that she chooses five people who should not see her medium posts. Then, the
user checks for privacy violations. The user agent transforms this privacy concern
into a commitment. Then, the user agent searches for commitment violations and
reports if any.

Table 5. Results for Facebook users

Nx(Friend#, T otalPost#) 1mo. 3mo. 6mo. 12mo. All

N1(293, 123) Post number 2 9 27 47 123

Violation number 1 8 25 43 100

Detection time (s) 0.65 1.21 5.5 11.36 26.08

Ontology gen. time (s) 1.2 2.24 4.6 6.34 11.12

N2(590, 1894) Post number 5 19 51 134 500

Violation number 5 14 37 89 332

Detection time (s) 3.07 5.16 18.48 70.87 696.51

Ontology gen. time (s) 2.33 6.51 10.79 18.07 33.7

N3(1060, 2945) Post number 18 77 124 330 500

Violation number 9 44 69 164 237

Detection time (s) 3.28 76.74 187.53 783.06 1285.73

Ontology gen. time (s) 3.34 9.85 16.23 41.23 67.14
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The users have different numbers of friends and posts (N1, N2 and N3). For
each generated ontology of the user, we give information about the number of
posts and the number of detected violations. Moreover, we measure the time
that it takes to detect violations and to generate the corresponding ontology.
For example, the user N2 has 590 friends and 1894 posts. Her ontology includes
information about posts shared in last six months. This ontology was gener-
ated in 10.79 s from the 51 posts she has made on Facebook. The tool detected
37 privacy violations regarding the user’s privacy concerns. The detection took
18.48 s. Whenever the social network of a user is small in size, the time for gen-
erating an ontology and detecting violations is less. For example, it takes only
11.12 s to generate an ontology for N1 and 26.08 s for detecting 100 violations
when we consider all posts. However, it takes longer when users are part of a
large network. Even if the ontology generation time is reasonable (i.e., 67.14 s to
generate the largest ontology for N3), the detection takes a long time since the
axiom number in the ontology increases as the result of ontological reasoning.
For example, for N3, the detection took approximately 20 min. Hence, such a
detection should be done in offline mode if the detection is not achieved in a
distributed manner as we do here. In online mode, the tool can report results in
less than 80 s (considering that the user N3 is a very active user) since we only
consider posts shared in last three months. The user can then check the privacy
violations and try to minimize them. She can modify the post attributes if she
is the owner of the violating post. Otherwise, she can contact the post’s owner
to modify that post or to remove it completely.

5.2 Variations on Example Scenarios

We introduce two more examples that demonstrate privacy violations in an
online social network. The first example requires multiple posts to be processed
together to identify a privacy violation. We show that PriGuardTool can
detect this successfully. The second example contains a privacy violation that
can only be detected by processing non-structured data about the post (e.g., the
image or text). In its current form, PriGuardTool cannot accommodate such
processing and thus cannot detect the violation.

Consider the following example that shows how a privacy violation occurs
indirectly in the presence of other users’ posts.

Example 2. Bob shares a picture where he tags Diane. After a while Diane
shares her location in a post. Alice and Charlie, who are friends of Bob, get to
know Bob’s location. However, Bob did not want to reveal his location.

In Example 2, a privacy violation occurs through inference. By combining
Bob’s post with Diane’s post, one can infer Bob’s location (see the inference
rule r8). However, in order to detect such violations, we should be able to collect
Diane’s posts as well. In the current implementation, we focus on collecting
the user’s data. For this example, Diane’s post would not be extracted since
it does not have any explicit tag for Bob. Note that PriGuardTool is able
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to detect violations of different types by the use of semantic rules when data is
available. Another solution would be to integrate PriGuardTool to Facebook.
In another words, if PriGuardTool ran as an internal application rather than
an external one, then it would have access to the data and detect the privacy
violation easily.

In the following example, the user shares a post that includes textual infor-
mation, which reveals the location of the user.

Example 3. Bob shares a status message: “Hello Las Vegas, nice to finally meet
you!”. This message is shared with his friends.

In Example 3, Bob discloses his location himself. Hence, a privacy breach
occurs because of the user itself. However, such a privacy violation cannot be
identified by PriGuardTool because current agents do not analyze textual
information to extract meaningful information. That is, a human can easily
understand that Las Vegas is a city and that Bob is currently there. However,
an agent would need to use Natural Language Processing (NLP) tools to find
that Las Vegas is a location name, and the post being shared is indeed a location
post. Thus, his friends reading this message would be violating Bob’s privacy.
This task is not straightforward in the context of privacy. An agent can recognize
entities in a text by the use of external tools. However, it is unknown how these
entities would affect the privacy of the user. We leave this point as a future work.

6 Discussion

This paper describes PriGuardTool, which is a concrete implementation of
PriGuard, a semantic approach for detecting privacy violations in OSNs. Pri-
GuardTool allows a user to specify her privacy constraints using a Web-based
interface. The specified constraints are then converted into commitments. The
tool then checks for commitment violations in a given system, which signals a
privacy breach.

6.1 Related Work

While various approaches for privacy management exist, the number of tools is
scarce. CoPE is a collaborative privacy management system that is developed
to run as a Facebook application [24]. The idea is that each post is co-owned
by multiple users that are affected by the post; e.g., because the individual is
tagged or mentioned in the post. First, each co-owner specifies her own privacy
requirement on a particular post. Then, the co-owners vote on the final privacy
requirement on the post. The post is shared accordingly.

FaceBlock is an application designed to preserve the privacy of users that use
Google Glass [20]. Given that interactions happen more seamlessly with wearable
devices, it is possible that an individual takes a picture in an environment and
shares it without getting explicit consent from others in the environment. To
help users manage their privacy, FaceBlock allows users define their privacy
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rules with Semantic Web Rule Language (SWRL) and uses a reasoner to check
whether any privacy rule is triggered. If so, FaceBlock obscures the face of the
user before sharing the picture.

PriNego [9,17] and PriArg [11] are systems that have been built over the
same framework. Users’ privacy constraints are represented with SWRL rules.
PriNego is a negotiation framework that allows users to negotiate their privacy
constraints before a post is shared. At each iteration of the negotiation, a given
post is updated based on privacy concerns of the users. For example, after the
negotiation is done, the post might have fewer members in its audience list
or fewer individuals tagged. PriArg uses argumentation to facilitate agreement
among users. It enables users to attack each other’s privacy concerns with infor-
mation they provide (i.e., arguments). At the end of the argumentation, whether
a post will be shared or not is decided.

Kafali et al. develop PROTOSS [8], where the privacy agreements are again
represented with commitments. However, in that work, the commitments are
taken from the user as opposed to being generated as we have done here. Further,
the system evolution is being tested for violations rather than the current state
of the system. PROTOSS uses model checking hence in a given state of the social
network, all the possible states are generated. In PriGuardTool, we are only
concerned with a single state of the system, we can detect violations much faster
and with less memory requirements then them.

Akcora, Carminati and Ferrari develop a graph-based approach and a risk
model to learn risk labels of strangers; e.g., friends of friends [1]. The intuition is
that these will enable them to detect individuals who are likely to violate privacy
constraints. Our focus is not on identifying potential individuals that can view
private data but on detecting violations through interactions on the OSN.

Liu and Terzi address the privacy problem in OSNs from the user’s per-
spective [16]. They propose a model to compute a privacy score of a user. The
privacy score increases with the sensitivity and visibility of the revealed infor-
mation. Sensitivity is specific to a profile item while visibility of a profile item
depends on the privacy settings of the user. It would be interesting to capture
these concepts in PriGuard ontology and make inferences based on that.

Squicciarini et al. propose PriMa (Privacy Manager), which supports semi-
automated generation of access rules according to the user’s privacy settings and
the level of exposure of the user’s profile [23]. They further provide quantitative
measurements for privacy violations. Quantifying violations is an interesting
direction that we want to investigate further. Our use of an ontology can make
it possible to infer the extents of the privacy violation, indicating its severity.

Fang and LeFevre propose a privacy wizard that automatically configures
the user’s privacy settings based on an active learning paradigm [4]. Their app-
roach is based on the user’s privacy preferences while we consider the privacy
preferences of the user and her social graph. Moreover, we focus on detecting
privacy violations that would happen because of conflicting privacy concerns of
the users.
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Krishnamurthy points out the need for privacy solutions to protect the user
data from all entities who may access it [14]. He suggests that OSN users should
know what happens to their privacy as a result of their actions. For this, a Face-
book extension called Privacy IQ is developed where users can see the privacy
reach of their posts and the effect of their past privacy settings. PriGuardTool
is similar to this work in that we can also compare the user’s privacy expecta-
tions with the actual state of the system. However, our major contribution is on
detecting privacy breaches that take place because of interactions among users
and inferences on information.

6.2 Limitations and Future Developments

The main obstacle we faced in adapting PriGuardTool to Facebook was that
the current Facebook API does not allow a user to obtain much of the infor-
mation she sees programatically. For example, a user can see her list of friends
when she logs in to Facebook, but she cannot get the same list using the API.
Hence, we could only construct a partial list of friends using information such as
comments, tags, and so on. Although most of the time, the constructed informa-
tion was sufficiently accurate, it would have been much easier if the agent could
access the information to begin with.

In this work, we assume that users are able to input their privacy concerns
in a fine grained way. However, users have difficulties to specify their privacy
concerns even if they have the necessary tools [4]. To solve this problem, one
approach would be to conduct user studies to understand the user needs better.
As a result, we can design better user interfaces that guide the users in specifying
their privacy expectations. Another approach would be to learn the privacy
concerns of the user automatically [10,19]. This would minimize the user burden
and errors by suggesting privacy configurations.

The current system supports commitments between a user and the online
social network. However, in principle, if the online social network itself sup-
ports a distributed architecture (e.g., GnuSocial6), then individual users will
be responsible for managing their content and thus the system would have to
support commitments among users. This would lead to interesting scenarios and
could serve as a natural domain to demonstrate operations on commitments. For
example, Bob could commit to Alice not to share her pictures and then follow up
with his friends to ensure that Alice’s pictures are not shared. This could lead to
multiple commitments being merged and manipulated to preserve privacy and
give rise to composition of commitments for representing realistic scenarios [2].

Another important improvement could be to detect privacy violations in a
distributed manner. The current implementation receives a state of the system
and checks for possible violations in that state. A distributed implementation
could help process the state considerably faster. This would enable the tool to
be used online easily.

6 https://gnu.io/social/.

https://gnu.io/social/
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21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16 (2009)

22. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell.
Law 7(1), 97–113 (1999)

23. Squicciarini, A.C., Paci, F., Sundareswaran, S.: PriMa: a comprehensive app-
roach to privacy protection in social network sites. Ann. Telecommun./Annales
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Abstract. In multi-agent systems, agents interact by sending and receiving
messages and the actual sequences of message form interaction structures
between agents. The development process and the resulting description of the
organization of an agent (in order to handle several ongoing interactions) are
comprehensive and complex. Abstraction in the form of protocols and agent
roles (for internal organization of agents) support these interaction structures:
The development process becomes efficient and flexible—and the description
becomes understandable. The abstractions protocol and agent roles are sup-
ported by a simple and expressive application framework.

Keywords: Multi-agent system � Protocol � Agent role � Reactive and
proactive role � Application framework � Qualities at development time

1 Introduction

Agents are active, autonomous, and smart, i.e. among others capable of reactive and
pro-active behavior [1]. A multi-agent system consists of a number of agents inter-
acting with one-another—and to successfully interact, agents require the ability to
cooperate, coordinate, and negotiate with each other. The description of the interaction
structure between agents is complex because an agent is engaged in a number of
ongoing interactions with other agents. Because typically no support is available for
structuring this internal organization of an agent, the development process is less
efficient and less flexible, and the resulting description becomes less understandable.

The use of abstractions to describe observations is essential for our understanding:
“Without abstraction we only know that everything is different” [2]. Therefore, the
intention is to contribute with abstractions to support important qualities during
development time (including modelling and programming). We describe interactions
by protocols that relate agent roles of agents. Protocols and agent roles are abstractions,
i.e. by these concepts the developer can conceive and describe the organization
structure of an agent as well as the interaction structure between agents. By introducing
abstraction including exemplification, composition and specialization the description
process becomes efficient and flexible as well as the resulting description becomes
understandable.

Protocols and agent roles, that capture the interaction structure between agents, are
supported by an object-oriented application framework [3] with agents, reactive role,
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proactive role and message. The underlying agent model and the application framework
are illustrated by the Contract Net [1]. The model and the application framework are
evaluated and related work is presented.

2 Agent Model

Reactive and Proactive Roles. Agents communicate by sending and receiving mes-
sages representing events as illustrated in Fig. 1. An agent consists of a varying number
of reactive and proactive roles. Reactive and proactive roles are abstractions for internal
organization of an agent and messages are sent from and received by these roles. If a
message is sent to the agent itself a default reactive role of the agent receives the
message.

The roles of an agent execute one at a time and in a non preemptive way [4], i.e. they
exhibit cooperative multitasking, in which case a role can self-interrupt and voluntarily
give up control. Reactive and proactive roles are stereotypes but combinations can be
described. Each reactive and proactive role has a list of messages to be handled on a
first come first served basis. A reactive role repeats the execution of an action to take
care of its list of messages whenever the handling of the previous message is completed
and the awaiting message list is not empty. A proactive role consists of a single
execution of an action that takes care of pausing as well as waiting and handling
messages until its purpose is completed.

Protocols. A protocol describes a process where an initiator initializes the interaction
by sending messages to a number of participants where after these participants may
reply to the initiator as part of the interaction, etc. The protocol takes place between
proactive roles of agents. The protocol and the proactive roles together form abstrac-
tions over an interaction structure between the involved agents.

Figure 2 illustrates a protocol P between proactive roles R1 and R2 in agents A1 and
A2. Role R1 initializes the interaction by sending a message M1 to role R2. Role R2

Agent Agent Role (Reactive Role or Proactive Role)

…

Message

…

Receiving Role Sending Role

Fig. 1. Agents organized by reactive and proactive roles.
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replies with message M2 to R1. In this manner a protocol between R1 and R2 may
describe a continued interaction between R1 (from A1) and R2 (from A2). The protocol
illustrated in Fig. 2 is similar to the coroutine mechanism of SIMULA [5] in the sense
that a role sends a message, immediately suspends itself and the receiving role is
resumed.

Example: Contract Net. Figure 3 illustrates the Contract Net with a collection of
stickmen. Each stickman in the collection can, at different times or for different tasks,
be involved in several simultaneous tasks as both manager and contractor. When a
stickman gets a composite task (or for any reason cannot solve its present task), it
breaks the task into subtasks (if possible) and announces them (acting as a manager),
receives bids from potential contractors, and then possibly awards a contractor. If no
bids are received after a given period of time the manager gives up the negotiation. If a
bid is not awarded after a given period the contractor gives up the negotiation.

A model for the Contract Net includes: A protocol is set up with a proactive role for
the manager agent (the initiator) and a proactive role for each of the contractor agents
(the participants). A manager maintains a negotiation by initiating an interaction with a
number of contractors. A contractor receives a task announcement and may reply with
a bid to the manager. Having received bids the manager chooses among these and may
reply with an award to the chosen contractor in which case a contract is established.

A1

M2

A2

M1

M3

P

R2 R1

Fig. 2. Illustration of protocol and proactive roles

Problem Recognition Task Announcements

Awarding Bidding

Fig. 3. Illustration of contract net
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3 Framework Overview

Figure 4 illustrates the conceptual model of the application framework with
Agent_System that is specialized to another application framework Util-
ity_System (to support various protocols with the Contract Net as an example) that
in turn is used in the application Test_System. The contents of and relations
between Agent_System, Utility_System and Test_System are described in
the following sections.

4 Application Framework: Agent System

Figures 5, 6 and 7 show extracts of the textual version of the application framework
Agent_System with classes and methods shown in grey. Figure 5 shows class
Agent_System with abstract classes Agent, Protocol and Agent_Message.
Class Agent has abstract classes ReActive_Role and ProActive_Role (ex-
tending class Agent_Role). Class ProActive_Role is extended to classes
Initiator and Participant both related to class Protocol. In addition classes
ReActive_Role and ProActive_Role include the abstract method Act(…).
The Act(…) method of class ReActive_Role returns a delay until next invocation

ProActive Role

ParticipantInitiator

Agent Role

1 *

1

ReActive Role

Agent System

ContractorManager

Utility System

Agent Protocol

CN ProtocolUtility Agent

ContractorManager

Test System

Test Agent

Agent Message

CN Message

Fig. 4. Conceptual Model showing the contents of and relations between Agent System,
Utility System and Test System
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and is invoked repeatedly with the next message as parameter while messages are
waiting. The Act() method of class ProActive_Role is invoked only once and its
execution may include pausing, awaiting messages, etc. until its execution is com-
pleted. Abstract methods newInitiatorRole and newParticipantRole are
used by Protocol to instruct actual specializations of Agent to instantiate actual
specializations of Initiator and Participant. Class Protocol instantiates
and starts the execution of InitiatorRole (with the Protocol object as
parameter) for InitiatorAgent and of ParticipantRole for each of the
ParticipantAgents.

Fig. 5. Application framework: Agent_System

Fig. 6. Interaction methods of class Agent_Role
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Figure 6 shows extracts of selected interaction methods of class Agent_Role
(inherited by ReActive_Role and ProActive_Role):

• rolePause(…), the role pauses for a period of time
• roleAwait(), the role waits until a message is received and then returns the

message
• replyMessage(…), a message is sent to a role of another agent as a reply to a

message received from that role
• handleMessage(), the next waiting message is returned (if any and else null)

Class Protocol sets up the protocol between agent roles—the Initiator and
the Participants agents. Figure 7 shows extracts of the interaction methods related
to the protocol:

• initiateProtocol(…), the Initiator sends a message am to a Par-
ticipant to initialize the protocol.

• replyProtocol(…), either the Initiator or a Participant send a
message ram in reply to message am received within the protocol.

5 Application Framework: Utility System

Class Agent_System can be used directly to construct a multi-agent system with
reactive and proactive agent roles and protocols. We choose to extend
Agent_System to another abstract class Utility_System to illustrate an
example of an abstract protocol—the Contract Net. Classes Utility_System is
then specialized in class Test_System as an actual use.

Overview and class CN_Protocol. Figure 8 shows the ingredients of the spe-
cialization of Agent_System to Utility_System: Protocol is specialized to
CN_Protocol and the proactive roles Initiator and Participant to Man-
ager and Contractor, respectively. Classes Manager and Contractor specify
their own Act() method according to the Contract Net. And each of these Act()
methods makes use of additional methods (shown as dotted) to be implemented in the
actual use of the Utility_System.

Figure 9 illustrates how Utility_System and Utility_Agent extend
Agent_System and Agent, respectively. Class Protocol is extended to
CN_Protocol that initializes a Manager role for the Initiator agent and a
Contractor role for each of the Participant agents.

Fig. 7. Methods initiateProtocol and replyProtocol
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When a Protocol is instantiated as shown in Fig. 10 its constructor initializes
ManagerRole through the executing agent and ContractorRoles through
otherAgents.

ParticipantInitiator

1 *

1
Protocol

CN Protocol

ProActive Role

… Act(…)

Manager Contractor

… Act(…) { … } … Act(…) { … }

…

Agent Role

… initiateProtocol(…) {…}
… replyProtocol(…) {…}

…

Fig. 8. Specialization of Agent_System to Utility_System

Fig. 9. Utility_System with CN_Protocol
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Class Manager. Figure 11 shows abstract class Manager as an extension of
Initiator. Method Act() of class Manager uses the abstract methods (hot spots
cf. [6]) in italics (implemented in Test_System).

Figure 12 shows the actual sequencing in the Act() method of class Manager—
illustrated by the comments: Prepare and send offers, Wait a while until
bids have arrived, Collect received bids, Select a bid and pre-
pare and send an award.

Fig. 10. Creation of a CN_Protocol

Fig. 11. Class Manager

Fig. 12. Method Act() of Manager
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Class Contractor. Figure 13 shows abstract class Contractor as an extension
of Participant. Method Act() of class Contractor uses the abstract methods
in italics (implemented in Test_System).

Figure 14 shows the actual sequencing in the Act() method of class Con-
tractor—illustrated by the comments: Wait to receive an offer, Possibly
prepare and send a bid, Wait to receive an award, Possibly receive
and handle the award.

Class CN_Message. Figure 15 shows CN_Message as an extension of
Agent_Message where CN_Task represents the actual task to be undertaken (with
respect to Offer, Bid and Award) and CN_Kind enumerates the actual message
types in Contract Net.

Fig. 13. Class Contractor

Fig. 14. Method Act() of Contractor
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6 Test System

Figure 16 shows Test_System, as an extension of Utility_System where class
Test_Agent extends Utility_Agent. The abstract methods newInitia-
torRole and newparticipantRole are implemented to return objects of the
actual Manager and Contractor classes specialized from Manager and Con-
tractor of Utility_Agent. Classes Manager and Contractor implement
the abstract methods from Figs. 11 and 13, respectively.

The protocol using the OFFER, BID and AWARD messages is simple and therefore
the structures of the roles illustrated in Figs. 12 and 14 are simple too. But these roles
would remain simple if they involved additional interaction, i.e. such as re-announcing
subtasks, continued negotiations about details, etc. A Test_Agent involved in
several simultaneous contract negotiations would not complicate the description but
only require additional instantiations of the existing protocol.

Figure 17 is a snapshot of the dynamic flow of messages between agents. This
feature is a part of the application framework, i.e. it is general although it is parame-
terized with the actual extension of the framework—in this case Contract Net. For each
agent, i.e. for Test_Agent 2 there is a column of messages sent Messages Out: 6
and received Messages In: 6 showing total number of messages and a list of actual

Fig. 15. Classes CN_Message, CN_Task and CN_Kind

Fig. 16. Test_System with Test_Agent
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messages. The actual messages are colored to indicate the status of a message, i.e. sent,
received, forwarded, handled and to be removed. It can be seen from Fig. 17 that
TEST_Agent 2 sends offer 5 that is received by TEST_Agent 1; TEST_Agent
1 replies with bid 5 that is received by TEST_Agent 2; TEST_Agent 2 replies
with award 5 that is received by TEST_Agent 1. This protocol is similar to the M1,
M2, M3 protocol illustrated in Fig. 2.

7 Evaluation

We evaluate the proposed application framework with respect to the complexity of the
resulting description of the interaction structure between agents—in terms of the
Protocol and Agent_Role abstractions.

Each of the n agents in the Contract Net example may send an offer to the n-1 other
agents that may reply back etc.:

• Without some kind of protocol abstraction we assume each agent has one (typically
reactive) role, i.e. n roles in total. However such a role has to manage up to
n ongoing interactions (one of which is between up to n agents) each with their own
state of the interaction. Without the protocol abstraction each role takes care of
n interactions.

• With the CN_protocol abstraction each agent has a Manager role and sends an
offer to n-1 other agents each with a Contractor role, i.e. in total n roles. When
n agents send an offer this becomes n2 roles in total. However each role is simple as
illustrated in Figs. 12 and 14 because each role is involved in exactly one
CN_protocol, i.e. the state of the interaction is captured by the role. With the
CN_protocol abstraction each role takes care of 1 interaction.

In summary the agent model and framework are simple and understandable but still
expressive. By the abstractions Protocol and Agent_Role we substitute the usual

Fig. 17. Flow of messages between agents (Color figure online)
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complexity of describing the handling (including state and progress) of several simul-
taneously ongoing interactions by simple, statically structured protocols and roles.

By identifying protocol and agent roles in the Contract Net we classify the inter-
action and the contributions of the agents by means of CN_protocol, Manager and
Contractor. However, abstraction includes not only classification but also spe-
cialization and composition: We may see CN_protocol, Manager and Con-
tractor as a general description of the Contract Net, so that specialized versions of
Contract Net can be described by specializations of each of these abstractions, e.g.
CN_protocol_X, Manager_X and Contractor_X. Similarly, another more
extensive protocol can be composed by using the Contract Net as a part protocol by
using CN_protocol, Manager and Contractor in the description of this
protocol.

Classes Protocol, Initiator and Participant together form abstractions
over an interaction structure. Initiator and Participant are local to an Agent
in order to have access to the local state of the Agent. Alternative solutions may be
inspired from Kristensen [7] where Association is a central abstraction over interaction
sequences and integrate activities and roles of concurrent autonomous entities.

8 Discussion

Historically, the proposed framework is motivated by and discussed during the research
projects FLIP and DECIDE—however, the intention was not to construct resulting
MAS software during these projects. The FLIP project [8] investigates a transportation
system including moving boxes from a conveyor belt onto pallets and transporting
these pallets in the high bay area of the LEGO® factory with AGVs, no human
intervention and only centralized control. A toy prototype includes agents in the form
of LEGOBots based on a LEGO® MindstormsTM RCX brick extended with a PDA
and wireless LAN. The DECIDE project [9] includes a number of real applications:
Control of a baggage handling system in a larger airport in Asia; Intelligent control of
handling material with recipes in productions processes; Coordination and planning of
large vehicle transports at a shipyard; Design and implementation of a very flexible
packing machine. These applications illustrates that the complexity of the interaction
structure between agents needs to be supported by structurally simple and expressive
abstractions.

The proposed application framework has been used and subsequently revised in
courses about agent oriented programming. The course includes the construction of a
multi-agent system based on the application framework. The task is to design and
implement the management of the evolution of a collection of animal parks. A solution
is to use reactive roles to react to incoming messages concerning actual changes—and
proactive roles to support buying and selling animals by negotiating with other agents.
The experience includes that the complexity of the interaction structure of simple
toy-like multi-agent systems is overwhelming, because the basic interaction sequence is
simple but the management of several simultaneously ongoing interaction sequences is
complicated.
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Abstraction. The application framework is available in Java [10] and applications
may be described and executed by the application framework [11]. For an agent we
describe Protocols and Agent_Roles (supported by abstract classes in the
application framework)—a Protocol describes which Agent_Roles of agents
participate in the interaction—an Agent_Role describes the actual contribution of an
agent to the interaction structure of the Protocol. Protocols and Agent_Roles
are described at development time. At runtime actual instances of Protocols and
Agent_Roles are created and deleted when appropriate.

Protocol and Agent_Role are abstractions, i.e. exemplification, composition
and specialization are supported [12, 13]:

• exemplification, i.e. protocols and agent roles may be instantiated
• composition, i.e. whole protocols and agent roles may be described by means of part

protocols and agent roles
• specialization, i.e. more special protocols and agent roles may be described from

descriptions of more general protocols and agent roles

Qualities. Qualities for modeling time, programming time and runtime are
well-known in programming languages—either for specific languages and languages in
general e.g. [14–16]. However, no general framework exists for characterizing qualities
of language constructs. The qualities discussed in the literature are often interlinked or
overlapping—and an inherent property of qualities is, that some of these are
conflicting.

Among the qualities mentioned in the literature, abstraction is a quality itself. The
abstractions Protocol and Agent_Role do not necessarily support runtime effi-
ciency—rather the intention of these abstractions is the support understandability by
being simple and expressive. Instead of qualities at runtime we focus on the devel-
opment process, i.e. we are concerned about qualities at development time (i.e. mod-
eling and programming time). Also we do not include for example the qualities
maintainability and reusability that are closely related to abstraction quality. For rea-
sons of simplicity we focus on the following qualities:

• Understandability: The clarity and the sAt development time implicity of the
designed models and described programs. We see simplicity and readability as
aspects of understandability.

• Efficiency: The effort needed to develop software by using abstractions. In general,
efficiency may be in conflict with understandability.

• Flexibility: The ability to easily change various aspects within the model or pro-
gram. In general, flexibility supports both efficiency and understandability.

Exemplification. At development time exemplification of protocols and agent roles
especially supports

• Understandability: By classifying agent interactions by protocols and agent roles we
achieve some understanding and the protocols or agent roles express our under-
standing. As illustrated the agent interactions in the Contract Net are classified by
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CN_Protocol, Manager and Contractor described as abstract classes in
Utility_System and as classes in Test_System.

• Efficiency: By exemplification we save time because no redesign and programming
task is necessary—the classifications by protocols and agent roles are prepared only
once. As illustrated objects of CN_Protocol, Manager and Contractor are
instantiated in Test_System.

Composition. At development time composition of protocols and agent roles espe-
cially supports

• Understandability: By having the whole protocol or the whole agent role described
by the various part protocols or part agent roles the form and content of the whole
protocol or whole agent role are more conceivable. As an illustration the method
createBid(…) of class Contractor of Test_System may itself include
several cases of the Contract Net because this Contractor itself has to initiate a
number of offers in the form of subtasks to a number of subcontractors needed to
complete the actual task—thus this Contractor becomes a whole Contractor
agent role with a number of part Manager agent roles.

• Efficiency: The composition of a whole protocol or whole agent role from part
protocols and agent roles makes the description process simple and straightforward
—i.e. the simplicity from the divide-and-conquer principle. As an illustration the
description process of method createBid(…) of class Contractor of
Test_System as a whole Contractor agent role with a number of part
Manager agent roles becomes simple and straightforward because the abstractions
CN_Protocol, Manager and Contractor are available in Util-
ity_System and are used as part protocols and agent roles.

Specialization. At development time specialization of protocols and agent roles
especially supports

• Flexibility: Specialization of protocol and agent role is seen as structural parame-
terization (i.e. not parameterization by means of variables and values), i.e. at
development time specialization enables flexible description of additional protocols
and agent roles by parameterizing existing protocols and agent roles. As illustrated
classes Protocol, Initiator and Participant in Agent_System are
specialized to CN_Protocol, Manager and Contractor in
Utility_System.

• Understandability: When protocols and agent roles are related by specialization, the
program becomes easier to comprehend due to the underlying conceptual model.
Simultaneously the model or program typically becomes smaller but more complex
and thus less understandable. As illustrated the conceptual model of the Contract
Net formed by CN_Protocol, Manager and Contractor in Util-
ity_System as specializations of Protocol, Initiator and Partici-
pant in Agent_System makes the model more comprehensible, but the actual
program becomes slightly more complex and less understandable.
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9 Related Work

The proposed application framework is for implementing protocols and agent roles, i.e.
for describing abstractions and using these in concrete applications. The purpose of
Odell et al. [17] is modelling of agent interaction protocols in AUML as a set of UML
idioms and extensions. In Mazouzi et al. [18] the purpose is to specify, validate and
evaluate interaction protocols expressed as recursive colored petri nets. The purpose of
Baldoni et al. [19] is to experiment with the enhancement of object orientation with
agent-like interaction including protocol and role introduced in the powerJava
extension of Java to allow session-aware interactions. In Wang et al. [20] the purpose is
to load interaction protocols dynamically through role, action and message ontologies,
process description with decision-making rules and a three-layer agent architecture.
Dialogue games are the basis for agent interaction protocols for convincing through
arguments—in Atkinson et al. [21] by formal definition of the PARMA protocol—in
McBurney et al. [22] by a categorization of types of dialogue games with examples of
protocols.

The use of object-oriented languages for creating frameworks with concepts from
multi-agents is well known, as well as the notion of protocol, agent role, reactive and
proactive agents. But the actual form of protocol, reactive and proactive roles of agents
and their inclusion in the application framework is original. A protocol is between one
initiator and several participants, i.e. the initiator sends a message to the participants
that may send a message back to the initiator, i.e. the initiator communicate with each
of the participants but the participants do not communicate together. Protocols may be
organized with part-protocols to support that a participant (as part of an ongoing
protocol) may be initiator of a part-protocol.

Reactive and proactive roles are related to behaviours in JADE [23] and plans in
JACK [24]: In JADE the agent life-cycle is described by behaviors by extending the
Behaviour class. An agent can execute several behaviors in parallel. However,
behavior scheduling is not preemptive, but cooperative—and everything occurs within
a single Java thread. In JACK an agent will look for the appropriate plans to handle
goals and events. The plan (an abstraction above object-oriented constructs) inherits
from a Plan class that implements the plan´s base methods and the underlying
functionality. Neither behaviors nor plans support the notion of reactive and proactive
role explicitly but may be utilized to expose similar behavior. In JADE cre-
ateReply()creates a new message properly setting the receivers and various fields
used to control the conversation. In JACK reply(received, sendBack) sends a
message back to an agent from which a previous message has been received without
triggering a new plan.

JaCaMo [25, 26] includes a conceptual model for the interaction component, a
programming language to specify the interaction, and how this is integrated with the
organization and the environment of the multi agent system platform. The interaction is a
first class abstraction and part of the platform. Protocols allow the specification, devel-
opment, and execution of the interaction not considering only agents, but also the
environment and the organization. The result is that the interaction is a separated com-
ponent, avoiding specifying the interaction inside the code of agents or other
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components. 2COMM [27] (as well as 2COMM4JASON [28] and 2COMM4-
JADE [29]) support the development of commitment-based interaction protocols.
2COMM is a step towards realizing a programmable communication channel by means
of artifacts and its implementation relies on the JADE and CArtAgO frameworks.
Commitment protocols are embodied into artifacts which are used by the interacting
agents—the artifacts form the social layer of the multi-agent system and implement
interaction protocols. Agents do not exchange messages directly but use the operations
provided by the artifacts. The artifact explicitly provides a role that is decoupled from the
interacting agent, instead of attaching it into an agent behavior or of forming agent types
by atomic roles. JaCaMo and 2COMM focus on specific aspects and forms of interaction
in general multi agent systems, are integrated on existing platforms, and support among
others maintainability, modularity and reusability. In comparison our application
framework extends the object-oriented paradigm with facilities for modeling and pro-
gramming message interaction in simple multi agent systems, supports only interaction
between agents, and models the interaction by experimental abstractions for protocol and
agent role.

10 Summary

Typically, the description of the interaction structure between agents is complex
because an agent has to organize (in order to receive messages and reply to these
messages accordingly) a number of ongoing interactions with other agents. Because of
the lack of support for structuring this organization, the development process is neither
efficient nor flexible, and the description becomes less understandable. By introducing
abstraction including exemplification, composition and specialization the description
process becomes efficient and flexible as well as the resulting description becomes
understandable. The development time (including modelling and programming) is
supported explicitly by abstractions natural to the interaction structure and the resulting
description becomes organized accordingly. Therefore, the proposed application
framework with abstractions supporting protocols based on agent roles offer simple and
expressive description of multi-agent interaction structures.
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3 Federal University of Santa Catarina, Florianópolis, SC, Brazil
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Abstract. In this paper we propose a model for designing Belief-Desire-
Intention (BDI) agents under the principles of modularity. We aim to
encapsulate agent functionalities expressed as BDI abstractions into
independent, reusable and easier to maintain units of code, which agents
can dynamically load. The general idea of our approach is to exploit
the notion of namespace to organize components such as beliefs, plans
and goals. This approach allowed us to address the name-collision prob-
lem, providing interface and information hiding features for modules.
Although the proposal is suitable for agent-oriented programming lan-
guages in general, we present concrete examples in Jason.

Keywords: Agent-oriented programming · Modularity · Namespace

1 Introduction

In the last decades, several programming paradigms have arisen, often presented
as an evolution of their predecessors, and with the main purpose of abstracting
more complex and larger systems in a more natural and simpler way. Partic-
ularly, the Agent-Oriented-Programming (AOP) paradigm has been promoted
as a suitable option to deal with the challenges arising when developing mod-
ern systems. This paradigm offers high-level abstractions which facilitate the
design of large-scale and complex software systems, and also allows software
engineers to employ a suite of well-known strategies for dealing with complexity,
i.e., decomposition, abstraction and hierarchy.

These strategies are usually applied at the Multi-Agent-System (MAS) level
[8,15,19]. However, even a single agent is intrinsically a complex system, hence its
design and development should consider the above mentioned strategies. Regard-
ing this, the principle of modularity applied to individual agent development can
significantly improve and facilitate the construction of agents.

c© Springer International Publishing AG 2016
M. Baldoni et al. (Eds.): EMAS 2016, LNAI 10093, pp. 117–135, 2016.
DOI: 10.1007/978-3-319-50983-9 7



118 G. Ortiz-Hernández et al.

In this paper, we present an approach for programming agents following the
principle of modularity, i.e., to develop agent programs into separate, indepen-
dent, reusable and easier to maintain units of code. In order to support modu-
larity, we identify three major issues to be addressed: (i) a mechanism to avoid
name-collision, (ii) fulfilling the information hiding principle, and (iii) providing
module interfaces.

Our contribution is to address these issues by simply introducing the notion
of namespace in the AOP paradigm. In the context of BDI languages, which is
the focus of this paper, the novelty of our approach is that it offers a syntactic
level solution, independent of the operational semantics of some language in
particular, which simplifies its implementation.

The rest of this paper is organized as follows: related and previous work
are presented in Sect. 2; our proposal is described in Sect. 3; we explain details
of implementation in Sect. 4 and offer an example in Sect. 5; an evaluation is
presented in Sect. 6; finally, we discuss and conclude in Sects. 7 and 8 respectively.

2 Related Work

There exist much work supporting and implementing the idea of modularity in
BDI languages. An approach presented by Busetta et al. [6] consists in encap-
sulating beliefs, plans and goals that functionally belong together in a common
scope called capability. The programmer can specify a set of scoping rules to say
which elements are accessible to other capabilities. An implementation is devel-
oped for JACK [17]. Further, Braubach et al. [3] extend the capability concept to
fullfill the information hiding principle by ensuring that all elements in a capa-
bility are part of exactly one capability and remain hidden from outside, guaran-
teeing that the information hiding principle is not violated. An implementation
for JADEX [4] is provided. Both approaches propose an explicit import/export
mechanism for defining the interface.

The modules proposed by Dastani and Steunebrink [12] are conceived as
separate mental states. This modules are instantiated, updated, executed and
tested using a set of predefined operations. Executing a module means that the
agent starts reasoning in a particular mental state until a predefined condition
holds. This approach is extended by Cap et al. [7], by introducing the notion
of sharing scopes to mainly enhance the interface. Shared scopes allow modules
posting events, so that these are visible to other modules sharing the same scope.
These ideas are conceived in the context of 2APL [10] and an implementation is
described in [11].

Also following the notion of capability, Madden and Logan [21] propose a
modularity approach based on XML’s strategy of namespaces [5], such that each
module is considered as a separate and unique namespace identified by an URI.
They propose to handle a local belief-base, local goal-base and local events-queue
for each module, and then to specify, by means of an export/import statement,
which beliefs, goals and events are visible to other modules. In this system, there
is only one instance of each module, i.e., references to the exported part of the
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module are shared between all other modules that import it. These ideas are
supported by the Jason+ language, implemented by Logan and Kiss [9].

Another work tackling the name-collision issue is presented by Ortiz et al. [23].
They use annotations to label beliefs, plans and events with a source according to
the module to which they belong. In this approach, modules are composed by a
set of beliefs, plans and a list of exported and imported elements. Both imported
and exported elements are added to a unique common scope. An implementation
of this approach is developed as a library that extends Jason.

In Hindriks [16], a notion of module inspired by what they call policy-based
intentions is proposed for GOAL. A module is designated with a mental state
condition, and when that condition is satisfied, the module becomes the agent
focus of execution, temporarily dismissing any other goal. They focus on isolating
goals/events to avoid the pursuit of contradictory goals.

In Riemsdijk et al. [26], modules are associated with a specific goal and they
are executed only to achieve the goal for which they are intended to be used. In
this approach, every goal is dispatched to a specific module. Then all plans in
the module are executed one-by-one in the pursuit of such goal until it has been
achieved, or every plan has been tried. This proposal is presented in the context
of 3APL [13].

A comparative overview of these approaches is given in Table 1. All solutions
tackle the name-collision problem, providing a mechanism to scope the visibility
of goal/events to a particular set of elements, e.g., plans. They also offer different
approaches for providing the interface of modules. However, not all of them fulfill
the information hiding principle.

It is also worth mentioning that all those approaches propose some particular
operational semantics tied to the AOP language in which they have been con-
ceived and implemented. The proposal that we present in this paper provides a
mechanism to address those issues independently of the operational semantics.

3 Modules and Namespaces

A module is as a set of beliefs, goals and plans, as a usual agent program, and
every agent has one initial module (its initial program) into which other modules
can possibly be loaded. We refer to the beliefs, plans and goals within a module
as the module components (cf. Fig. 1).

Modularity is supported through the simple concept of namespace, defined
as an abstract container created to hold a logical grouping of components. All
components can be prefixed with an explicit namespace reference. We write
zoo::color(seal,blue) to indicate that the belief color(seal,blue) is asso-
ciated with the namespace identified by zoo. Furthermore, note that the belief
zoo::color(seal,blue) is not the same belief as office::color(seal,blue)
since they are in different namespaces.

Namespaces are either global or local. A global namespace can be used by
any module; more precisely, the components associated with a global namespace
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Table 1. The columns represent existing features in the surveyed approaches, in respect
to the issues mentioned in Sect. 1. The abbreviations stand for: (IL) implementing
language; (IS) the approach is independent of the language’s operational semantics;
(IH) fulfills the information hiding principle; (NC) provides a mechanism to deal with
the name-collision issue. The last column refers to the general notion used to provide
an interface.

Approach IL IS IH NC Interface’s mechanism

Busetta et al. [6] JACK ✗ ✓ ✓ Explicit import/export

Braubach et al. [3] JADEX ✗ ✓ ✓ Explicit import/export

Dastani and Steunebrink [12] 2APL ✗ ✗ ✓ Set of predefined operations

Cap et al. [7] 2APL ✗ ✗ ✓ Sharing scopes

Madden and Logan [21] Jason+ ✗ ✓ ✓ Explicit import/export

Hindriks [16] GOAL ✗ ✗ ✓ Mental-state condition

Riemsdijk et al. [26] 3APL ✗ ✗ ✓ Goal dispatching

Ortiz et al. [23] Jason ✗ ✗ ✓ Unique-common scope

Our proposal Jason ✓ ✓ ✓ Global namespaces

Module

Belief Plan Goal

Namespace

Global Local

* * 1

assoc

init

1..*

Component
1

load

Agent

Fig. 1. Proposed model for modularity.

can be consulted and changed by any module. A local namespace can be used
only by the module that has defined the namespace.

We introduce the notion of abstract namespace of a module to denote a
namespace whose name is undefined at design-time, and will be defined at run-
time when the module is loaded. To indicate that a component is in a mod-
ule’s abstract namespace, the prefix is simply omitted, e.g., a belief written as
taste(candy,good) is in an abstract namespace and its actual namespace will
be defined when the module is loaded.

The module loading process involves associating every component in the
abstract namespace of the module with a concrete namespace, and then simply
incorporating the module components into the agent that loaded the module.
Therefore, a concrete namespace must be specified at loading time to replace
the module’s abstract namespace.
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When a module (the loader) loads another module (the loaded), they interact
in two directions: the loader imports the loaded module components associated
with global namespaces and the loader extends the functionality of the module
by placing components in those namespaces. Figure 2 illustrates the interaction
when a module A loads some module B.

Fig. 2. The interaction between modules.

A module is formally defined as a tuple:

mod = 〈bs, ps, gs〉
where bs = {b1, . . . , bn} is a set of beliefs, ps = {p1, . . . , pn} is a set of plans, and
gs = {g1, . . . , gn} a set of goals. As shown in Fig. 1, each of these components
is associated with a namespace. We use subscripts to denote the elements of a
module, e.g., modbs stands for the beliefs included in module mod.

3.1 Syntax

As in many programming languages, we use identifiers to refer to the mod-
ule components, i.e., its beliefs, plans and goals. Since the syntactic identifiers
depend on the programming language and our proposal is intended to be lan-
guage independent, we propose to extend the syntax of identifiers allowing a
namespace prefix:

〈id〉 :: = [ 〈nid〉 :: ] 〈natid〉

where nid is a namespace identifier and natid is used to denote the native identi-
fiers of some AOP language. For example, a belief formula like count(0), whose
identifier is count, can be written ns2::count(0) to associate the belief with
namespace ns2.

We use a syntactical name-mangling technique1 to associate every component
in the abstract namespace of a particular module to a concrete namespace and
to bring support for local namespaces. Restriction access to local namespaces is

1 A technique used in programming languages, which consists in attaching additional
information to an identifier, typically used to solve name conflicts.
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Algorithm 1. The mangling(src, nid) function associates each compo-
nent in the abstract namespace of a module program src with a concrete
namespace nid and renames local namespaces with an internally generated
identifier.
1 begin

Input: src : a module program
Input: nid : a concrete namespace

2 mod = parse(src)
3 foreach id ∈ ids(mod) do
4 if ns(id) is an abstract namespace then
5 replace id by nid::id in mod

6 if ns(id) is local then
7 replace id by #nid::id in mod

8 return mod

implemented by replacing every local namespace identifier in the components of
a particular module by an internally created identifier. This is generated in such
a way that it is not a valid identifier according to the grammar of the native
language. For instance, if ns2 is the identifier of a local namespace, the mangling
function renames ns2::color(box,blue) to #ns2::color(box,blue), where
#ns2 is an invalid identifier and thus no developer can write a program that
accesses this belief. We use #nid to denote a mapping from nid to an internally
generated identifier, unique in the module program where it is being used. The
mangling function is described in Algorithm1. To avoid cluttering the notation,
we define an auxiliary function ids(mod) = {id1, . . . idn} that gets all identifiers
id that are in the components bs, ps, and gs of module mod and function ns(id)
gives the namespace of identifier id.

3.2 Loading Modules

We represent an agent state as a tuple ag = 〈B,P,G, . . .〉, where B =
{b1, . . . , bn} stands for the agent’s belief base, P = {p1, . . . , pn} a plan library
and G = {g1, . . . , gn} the goals of the agent.2 All identifiers used in the beliefs,
plans and goals are prefixed with a proper namespace. The dots symbol (. . .) is
used in the agent tuple to denote the existence of other components proper of
the agent’s mental state (such as intentions, mail box, etc.) that are not relevant
for the purpose of presenting our proposal.

2 Sometimes when referring to intentional agents, a distinction between desires and
intentions is highlighted to focus on the commitment of the agent towards some
goal. In the agent state we do not take commitment into consideration; a goal g ∈ G
can be either a desire or an intention. However, a goal g ∈ gs in some module is
considered as an initial goal.
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When an agent loads a module, it incorporates the module components,
i.e., beliefs, plans and goals, into its own belief base, plan library and goals,
respectively. A namespace must be specified at loading time to replace the mod-
ule’s abstract namespace with a concrete namespace. A transition rule (Load)
presents the dynamics of loading a module in a particular namespace. The con-
dition (upper part) stands for the action load(src,nid) that takes a module
program src and a namespace nid as parameters. This rule executes the man-
gling function on the module and incorporates the module components into the
agent’s current state, already associated with a proper namespace identifier.

(Load)
load(src,nid)

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉
where: mod = mangling(src, nid)

B′ = B ∪ modbs
P ′ = P ∪ modps
G′ = G ∪ modgs

The agent’s initial module is loaded in what we call the default namespace.
This is a predefined global namespace whose identifier is default. The initial
module program determines the initial belief base, plan library and goals of the
agent. We use src0 to denote the initial module program. The next transition
rule (Init) describes the agent’s initialization.

(Init)
src0

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉
where: mod = mangling(src0, default)

B′ = modbs
P ′ = modps
G′ = modgs

4 Implementation

We present the implementation of our proposal in Jason [2], a Java-based inter-
preter for an extended version of AgentSpeak(L) [24]. An agent program in
Jason is defined as a set of initial beliefs bs, a set of initial goals gs and a set
of plans ps, where each b ∈ bs is an atomic grounded formula (initial beliefs
may also be represented as Prolog style rules). Every plan p ∈ ps has the form
te : ctx ← body, where te stands for a triggering event defining the event that
the plan is useful for handling. A plan is considered relevant for execution when
an event which matches its trigger element occurs, and applicable when the
condition ctx holds. The element body is a finite sequence of actions, goals and
belief updates. Actions in Jason can be external or internal. An external action
changes the environment, unlike an internal action which is executed internally
to the agent. Jason allows the developer to extend the parsing of source code by
implementing user-customized directives.
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The basic syntactical construct of a Jason program is the atomic formula,
which as in logic programming has the form p(t1, . . . , tn), where p is the functor,
and each ti denotes a term that can be either a number, list, string, variable, or
a structure that has the same format of a positive literal. We say then that each
p in a Jason program is a Jason identifier. For instance, a plan such as:

+!go(home) : forecast(sunny) ← walk to(0,0).

contains the following identifiers: go, home, forecast, sunny and walk to.
We have extended the syntax of Jason identifiers to allow a namespace pre-

fix.3 Since Jason identifiers are used for beliefs and goals, by prefixing them with
a namespace these components are scoped within a particular namespace.4 So,
a plan written as:

+!ns1::go(home) : ns2::forecast(sunny) ← +b.

will consider only an achievement-goal addition event +!go(home) in namespace
ns1, and a belief forecast(sunny) in namespace ns2; beliefs and goals in other
namespaces are thus not relevant for this plan. Terms within a literal are not
changed when a module is loaded. However, terms can be explicitly prefixed
with a namespace. A term prefixed with :: is in the abstract namespace (e.g. in
forecast(::sunny) the term sunny is associated with the abstract namespace).

Jason keywords (e.g., source, atomic, self, tell, . . . ), strings and numbers
are handled as constants and are not associated with namespaces.

The Jason internal action .include and parsing directive include were
extended with a second parameter to implement the dynamics of loading a mod-
ule as presented in Sect. 3.2. The first argument is the file with the module’s
source code and the second argument the global namespace used to replace the
abstract namespace. A parsing directive namespace/2 is provided to define the
type of the namespace (local or global) and as a syntactic sugar to facilitate the
namespace association of components, so that the identifiers enclosed by this
directive will be associated with the specified namespace.

The beliefs related to perception are placed in the default namespace, and
thus also the corresponding events (external events generated from perception).
This solution keeps backward compatibility with previous source code, since the
initial module is loaded in the default namespace and the previous version of
Jason does not have modules other than the initial one.

5 Example

This section illustrates our proposal for modules in more detail showing an imple-
mentation of the Contract Net Protocol (CNP) [25]. The modules initiator

3 For the unification algorithm used by Jason, we can simply consider the namespace
prefix as being part of the predicate symbol of the literal.

4 Plans are also scoped within a namespace given that their triggering events are based
on beliefs or goals.
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and participant (Codes 5 and 6) encapsulate the functionality to start and
participate in a CNP, respectively. The multi-agent system is composed of the
initiator agents bob and alice, whose initial module code is presented in codes
1 and 2 respectively; and the participant company A and company B (Codes 3
and 4). In this implementation, every CNP instance takes place in a different
namespace to isolate the beliefs and events of each negotiation.

Agent bob statically loads the module initiator twice (lines 1–2) using the
directive include/2. This agent starts two CNP’s for tasks build(park) and
build(bridge) (initial goals in lines 4–5) in namespaces hall and comm. Each
goal is handled by the module instance loaded in the same namespace where the
goal is posted.

1 {include("initiator.asl",hall)}
2 {include("initiator.asl",comm)}
3

4 !hall::startCNP(build(park)).
5 !comm::startCNP(build(bridge)).
6

7

8

9

10

11

12

Code 1. bob.asl

1 !start([fix(tv),fix(pc),fix(oven)]).
2

3 +!start([]).
4 +!start([fix(T)|R])
5 <- .include("initiator.asl",T);
6 .add_plan(
7 {+T::winner(W)<-
8 .print("Winner to fix",T,"is",W)
9 });

10 // sub-goal with new focus
11 !!T::startCNP(fix(T));
12 !start(R).

Code 2. alice.asl

Agent alice starts multiple CNP’s. It uses the internal action .include/2
for dynamically loading the module initiator. It starts one CNP for each task
in a given list of tasks (line 5). Agent alice extends the functionality provided by
the module initiator to print in the console the winner as soon as it is known.
Namely, it adds one plan to the same namespace where the module is loaded
(lines 6–9).

Agent company A participates in all CNPs. It loads the module participant
in every namespace where it listen that a CNP has started (note that the
namespace in line 2 of code 3 is a variable). The agent customizes the mod-
ule by adding beliefs in the same namespace where the module is loaded (lines
3–4). The module uses these beliefs to decide what tasks can be accepted and
how much to bid (cf. lines 6–7 of Code 6).

Agent company B plays participant only for CNPs started by agent bob,
and taking place in namespaces hall or comm. When a CNP starts under these
conditions, it loads the module participant in the corresponding namespace.
The beliefs in lines 8–9 and the plan added in lines 14–19 extend the functionality
of the module by setting the strategy for bidding and accepting tasks. This
company only accepts tasks for building and its bid depends on the namespace
in which the CNP is being carried on. Directive namespace/2 in line 1 defines the
local namespace supp. This namespace encapsulates the beliefs used to estimate
the final price of tasks (lines 2–5), so that they are inaccessible to other modules.
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Fig. 3. The namespaces of agent alice during its execution.

The initiator module provides functionality to start a CNP. It starts with
a forward declaration of the local namespace priv in line 1. The namespace
of startCNP (line 11) is abstract and a concrete namespace is given when the
module is loaded (cf. lines 1–2 and 5 of Codes 1 and 2, respectively). Because the
namespace given to startCNP is global (as defined by the loader), this module is
exporting the plan @p1. The identifiers without an explicit namespace between
lines 30 and 55 will be placed in the local namespace priv. This is used to
encapsulate the module’s internal functionality, so that the plans to carry out
contracts and announcements are only accessible from within this module (as
illustrated in the line 23). Similarly, the beliefs added to memorize the current
state of the CNP and the rule in lines 4–8 are private and will not interfere or
clash with any other belief of the agent. However, a loader module can retrieve
the current state of the CNP by means of plans @p2 and @p3. Figure 3 illustrates

1 +N::cnpStarted[source(A)]
2 <- .include("participant.asl", N);
3 +N::price(_,(3*math.random)+10);
4 +N::acceptable(fix(_));
5 !N::joinCNP[source(A)].
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Code 3. company A.asl

1 {begin namespace(supp,local)}
2 price(bridge,300).
3 price(park,150).
4 gain(hall,1.5).
5 gain(comm,0.8).
6 {end}
7

8 hall::acceptable(build(_)).
9 comm::acceptable(build(_)).

10

11 +N::cnpStarted[source(bob)]
12 : .member(N,[hall,comm])
13 <- .include("participant.asl",N);
14 .add_plan({
15 +?N::price(build(T),P)
16 : supp::gain(N,G)
17 <- ?supp::price(T,M);
18 P=M*(1+G)
19 });
20 !N::joinCNP[source(bob)].

Code 4. company B.asl
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the relation (imports and extends) between the modules alice and initiator
using the same notation of Fig. 2.
1 {namespace(priv,local)} //Forward definition
2

3 // character :: forces a term to be considered in the abstract namespace
4 priv::all_proposals_received
5 :- .count(::introduction(participant)[source(_)],NP) &
6 .count(::propose(_)[source(_)], NO) &
7 .count(::refuse[source(_)], NR) &
8 NP = NO + NR. // participants = proposals + refusals
9

10 // starts a CNP
11 @p1 +!startCNP(Task)
12 <- .broadcast(tell, ::cnpStarted); // tell everyone a CNP has started
13 // this_ns is a reference to the namespace where this module is loaded
14 // in this example is the namespace where the CNP is being performed
15 .print("Waiting participants for task ",Task," in ",this_ns,"...");
16 .wait(3000); // wait participants introduction
17 +priv::state(propose); // remember the state of the CNP
18 .findall(A, ::introduction(participant)[source(A)], LP);
19 .print("Sending CFP for ",Task," to ",LP);
20 .send(LP,tell, ::cfp(Task)); //send call for proposals to participants
21 // wait until all proposals are received for a maximum 15secs
22 .wait( priv::all_proposals_received, 15000,_);
23 !priv::contract(this_ns).
24

25 // to let the agent to query the current state of the CNP
26 @p2 +?cnp_state(S) <- ?priv::state(S). @p3
27 +?cnp_state(none).
28

29 {begin namespace(priv)}
30 //.intend(g) is true if the agent is currently intending !g
31 +!contract(Ns) : state(propose) & not .intend(::contract(_))
32 <- -+state(contract); // updates the state of CNP
33 .findall(offer(Price,A), Ns::propose(Price)[source(A)], L);
34 .print("Offers in CNP taking place in ",Ns," are ",L);
35 L \== []; // constraint the plan execution to at least one offer
36 .min(L,offer(WOf,WAg)); // sort offers, the first is the best
37 +Ns::winner(WAg);
38 !announce_result(Ns,L);
39 -+state(finished).
40

41 // nothing todo, the current phase is not propose
42 +!contract(_).
43 -!contract(Ns)
44 <- .print("CNP taking place in ",Ns," has failed! None proposals");
45 -+state(finished).
46

47 +!announce_result(_,[]).
48 // announce to the winner
49 +!announce_result(Ns,[offer(_,Ag)|T]) : Ns::winner(Ag)
50 <- .send(Ag,tell, Ns::accept_proposal); // notify the winner
51 !announce_result(Ns,T).
52 // announce to others
53 +!announce_result(Ns,[offer(_,Ag)|T])
54 <- .send(Ag,tell, Ns::reject_proposal);
55 !announce_result(Ns,T).
56 {end}

Code 5. initiator.asl

The participant module has a plan to join a CNP by sending an intro-
duction message to the agent playing initiator in the corresponding namespace.
When a call for proposals is received, an offer is sent back only if the task is
supposed to be accepted, otherwise the agent replies with a refuse message (lines



128 G. Ortiz-Hernández et al.

6–13). The accepted tasks and the amount to bid are not provided in the module
(lines 6, 7 and 13). They are meant to be defined by a loader module that can
extend every instance of this module to specify both tasks to be accepted and
the strategy for bidding (e.g. as in modules company A and company B).
1 // participating in CNP
2 +!joinCNP[source(A)]
3 <- .send(A,tell, ::introduction(participant)).
4

5 // Answer to Call For Proposal
6 +cfp(Task)[source(A)] : acceptable(Task)
7 <- ?price(Task,Price);
8 .send(A,tell, ::propose(Price));
9 +participating(Task).

10

11 +cfp(Task)[source(A)] : not acceptable(Task)
12 <- .send(A,tell, ::refuse);
13 .println("Refusing proposal for task ", Task, " from Agent ", A).
14

15 // Answer to My Proposal
16 +accept_proposal : participating(Task)
17 <- .print("My proposal in ",this_ns," for task ", Task," won!").
18 // do the task and report to initiator
19 +reject_proposal : participating(Task)
20 <- .print("I lost CNP in ",this_ns," for task ",Task,".").

Code 6. participant.asl

6 Evaluation

We developed a non-modular version of the CNP to compare with the version
presented in Sect. 5. Then, we performed five extensions to both versions. The
first consists in modifying the vocabulary used by agents for communication. The
second modifies the protocol so that every agent specifies the limit of CNP’s in
which it is able to participate simultaneously. In the third, initiator agents set
a deadline for the call for proposals. The fourth adds one more agent playing
initiator and four participants with their own acceptable tasks and strategy to
bid. Finally, in the fifth only acceptable proposals are announced.

The comparison among the versions is shown in Table 2. The abbreviations
stand for: (num) extension number; (ags) number of agents; (I) number of agents
playing initiator; (P) number of agents playing participant; (eds) the number of
files edited; (m) modular version, i.e., developed using our approach; (n) non-
modular version; (adds) blocks of code added; (dels) blocks of code deleted;
(chgs) changes in a line of code. The size of the implementation was calculated
after compressing the source files with a zip utility. The initial size is given in
bytes, then a percentage representing the increment is given. The extensions are
progressive and each is compared against the previous.

For instance, to accomplish extension 2 of the modular version (starting from
extension 1), we added six blocks of code and changed two lines across a total
of four files, which increased the size of the system programs in 8.2% (i.e., 190
and 195 more bytes than initial implementation and extension 1, respectively)
when compared with its previous extension. To extend the corresponding non-
modular version, three files were edited to add twelve blocks of code and perform
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six changes in different lines, increasing the program size in 7% (i.e., 224 and
199 more bytes than initial implementation and extension 1, respectively). The
number of agents remained the same in both versions. Total row summarizes the
updates and the increase along all extensions of the system. If the same file had
to be edited during two different editions it is counted twice.

Table 2. Comparison of the CNP across a series of extensions.

num Extension ags eds Size Updates

adds dels chgs

I P m n m n m n m n m n

Initial implementation 2 3 - - 2359 2864 - - - - - -

1 Update communication vocabulary 2 3 2 5 −0.5% 0.8% 0 0 0 0 15 37

2 Participants set a limit of CNP’s 2 3 4 3 8.2% 7.0% 6 12 0 0 2 6

3 Initiators set a deadline 2 3 3 2 2.1% 1.5% 3 4 0 0 1 2

4 Add more participants 3 7 5 5 50.6% 85.9% 48 126 0 0 0 0

5 Participants are not notified if lose 3 7 2 10 −1.3% −6.6% 0 0 2 10 0 0

Total - - 16 25 59.1% 88.6% 57 142 2 10 18 45

The results show that the modular version required a total of 77 updates
(57 additions, 2 deletions and 18 changes) against the non-modular for which
197 updates were necessary. In this particular case study we are reducing the
maintainability effort by 60% (120 updates less). We can conclude that a project
developed using our approach is easier to maintain.

This results can be analyzed in terms of the Don’t repeat yourself (DRY)
principle.5 Our proposal enforces this principle since it represents a mechanism
to avoid the repetition of code in several parts of the system. In contrast to the
non-modular version, where every component implementing the functionality of
the protocol is repeated in the program of each agent, the higher the number
of participant agents (interested in different tasks and having distinct bidding
strategies) the greater the count of repetition occurrences. For instance, if some
change is performed in the protocol, even as simple as the way in which par-
ticipants introduce themselves, the change have to be propagated to the source
code of every agent participating in the CNP’s.

We made some initial effort in comparing our proposal with the usual
include directive in previous releases of Jason. Due to the chosen metrics and
example, the difference appeared negligible. In future work we will consider other
metrics and examples where the difference to a version with the old include direc-
tive might be more significant. In any case, it should be emphasized that clearly
the old directive does not solve the problem of name collision nor supports infor-
mation hiding. For instance, if an agent tom already uses price/2 (e.g., to record

5 A principle of software development with the purpose of reducing the repetition of
information [18], so that a modification of any single element of a system does not
require a change in other logically unrelated elements.
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the prices for supplies), when it includes the source file implementing the CNP
(using an include without support for namespaces), since the belief price/2 is
also used by the CNP implementation to determine the bids, a name-collision
arises and the resulting behavior is unexpected.6 For solving this, it is neces-
sary either to change the name of the belief used by tom to record the prices
of supplies, or that one used in the CNP implementation. Note that the latter
alternative implies updating every agent using the source file implementing the
CNP.

The following section overviews how this proposal for modules addresses the
issues mentioned in Sect. 1; and highlight some of its properties, as well as the
major differences of our approach over related work mentioned in Sect. 2.

7 Discussion

The notion of namespaces adapted to the context of BDI-AOP languages is
suitable to address the main issues related to modularity. For instance, the
name-clashing problem is tackled by associating each component to a unique
namespace, enabling the programmer to write qualified names for disambiguat-
ing references to components.

The interface is provided through the concept of global namespace, which
supports both importing components and extending the functionality of mod-
ules. The notion of abstract namespace allows dynamic association of module
components to namespaces, thus the same module can be loaded several times
in different namespaces and also multiple modules can be loaded into the same
namespace to compose a more complex solution. The local namespaces permit
programmers to encapsulate components which facilitates independent develop-
ment of modules. Moreover, loading modules at runtime can be seen as dynamic
updating, i.e., the acquisition of new capabilities without stopping its execution.

The main difference of our approach resides in the strategy adopted to achieve
modularity. On the one hand, the strategy adopted in this paper consists in log-
ically organizing component names in the agent’s mental state, by attaching
additional information to their identifiers. On the other hand, approaches men-
tioned in Sect. 2, in general, are based in mechanisms for dealing with multiple
mental states inside the agent, in which modules are active components of the
operational semantics of the language, i.e., new transition rules are needed for
handling multiple belief bases, plan libraries and/or event queues in the same
reasoning cycle. The latter strategy leads to solutions that are more difficult to
implement, in contrast to ours, which brings a syntactic level solution, so that it
can be implemented in several BDI languages by simply extending their parsers.

6 This is also reported by Madden and Logan [21] from the experience of using the
usual include directive available in previous releases of Jason for the development
of a large-scale multi-agent system [20].
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7.1 Module Relationships

Next, we discuss how our approach is suited to construct association, composition
and generalization relationships between modules as defined and analyzed for
capabilities by I. Nunes in [22], as well as some principles from Object-Oriented
programming.7

Association. There exists an association between a loader module and a loaded
module when the execution of at least one plan of the loader requires a goal,
whose plan to achieve it, is part of the loaded module. According to [22], asso-
ciation promotes high cohesion by allowing to modularize functionality that
addresses different concerns into separate modules.

An example of association is illustrated by Codes 7 and 8. The module one
loads module A and executes one of its plans. The module is loaded using a local
namespace to avoid breaking the information hiding principle. In this relation-
ship A is not aware of one.

1 {namespace(ia,local)}
2

3 +!do <- .include("A.asl",ia);
4 !ia::inc(2).

Code 7. one.asl

1 count(0).
2

3 +!inc(S) : count(X)
4 <- -+count(X+S).

Code 8. A.asl

Composition. It is a stronger relationship than association. As stated in [22]
there exist situations in which the loaded module uses components of the loader
module. This increases the coupling between modules, but allows to model the
notion of containment ensuring the information hiding. We missed this type of
relationship in our implementation, because we stand for passing information as
arguments, when sharing information from loader to loaded is necessary. In this
way, the information hiding principle is not broken and the coupling is reduced.

However, it is possible to model the composition relationship described by
I. Nunes using namespaces, by simply adding a symbol to reference the abstract
namespace of the loader module.

We provide an example in Codes 9 and 10. The module B access to belief
rate/1 in module two. The resulting output of executing plan do/0 in module
two will be counter 1. The symbol ◦ is used to refer the loader ’s abstract
namespace.8

7 The concept of capability and modules are quite similar, since both are composed
of a set of beliefs, plans and goals [3,6], the relationships identified for capabilities
can be applied to our notion of modules as well.

8 This can be supported by extending the mangling function (c.f. algorithm 1) in order
to replace the ◦ symbol by the corresponding namespace at loading time.
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1 {namespace(ib,local)}
2

3 rate(0.50).
4

5 +!do <- .include("B.asl",ib);
6 !ib::inc(2);
7 ?ib::count(X);
8 .print("counter ",X).

Code 9. two.asl

1 count(0).
2

3 +!inc(S) : count(X)
4 <- ?◦::rate(R);
5 -+count(X+S*R).
6

Code 10. B.asl

Cardinality. Since the same module can be loaded in multiple namespaces while
each instance conserves its individual beliefs, it is also possible to represent the
cardinality in modules associations. For example, at Codes 2 and 5 in Sect. 5,
module bob loads one instance of initiator for each contract net protocol it
starts, so that each negotiation maintains its own state.

Visibility. Local namespaces can be used to keep components private within a
module, and global namespaces to share components between all modules. How-
ever, sometimes it results useful to share components only among the instances
of the same module, e.g., in order to avoid replicating the same information sev-
eral times. It is possible to model this, by introducing a new level of visibility
for namespaces (besides global and local). For instance, a module namespace will
be accessible only from within all instances of the same module. Comparably to
the class visibility level from the Object-Oriented programming as implemented
by the modifier static in Java.

Multi-inheritance. This can be modeled as the union of modules. Typically
this union is meant to form a new module which encapsulates a more complex
and specialized behavior, while reusing beliefs, plans and goals from other mod-
ules.

In the following example (Codes 11 and 12), the module C inherits B by
including all its components in the same namespace (line 9). The parent ’s local
namespaces of each module (if exist) still hidden from the child module, and
vice-versa. The inclusion of the parent module is performed at the end of the
source code, in order to override the already existing plan inc/1 in A. This latter
works in the particular case of Jason because, by default, the first plan listed in
the code is selected for execution, in the case that multiple applicable plans to
achieve the same goal exist. A more sophisticated solution for AgentSpeak(L)-
style languages is presented by A. Dhaon and R. Collier in [14]. Their method
consists in customizing the selection function used for the interpreter to select
the next plan for execution, and thus disambiguate which plan must be executed
when the same plan is implemented in different levels of the module’s hierarchy.

Dynamic extension of modules can be performed too by using the notion of
namespaces, in Code 2 at lines 6–9, the functionality of module initiator (c.f.
code 5) is extended. This is useful in the case that the programmer desires to
extend the functionality for only one instance without creating a new module.
A similar mechanism is used in Java through the concept of anonymous classes.
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A related approach for constructing inheritance relationships between mod-
ules in the realm of logic programming, that can be adapted as a more general
solution for modeling multi-inheritance in Agent-Oriented programming, is pre-
sented by Baldoni et al. in [1]. They use a modal operator instead of namespaces
to group rules, then a set of logic implications establishes the inheritance rela-
tionship between modules. However, it should be carefully analyzed in order
to evaluate its feasibility before adopting it in the context of Agent-Oriented
programming.

1 {namespace(ic,local)}
2

3 +!init
4 <- .include("C.asl",ic);
5 !ic::inc(2);
6 !ic::mult(2);
7 ?ic::count(X);
8 .print("counter "X).
9

Code 11. three.asl

1 //belief count/1 is inherited from A
2 +!mult(T) : count(X)
3 <- -+count(X*T).
4

5 //overrides plan inc/1 in A
6 +!inc(S) : count(X)
7 <- -+count(X+1).
8

9 {include("A.asl")}

Code 12. C.asl

8 Conclusion

In this paper we have presented a solution for programming BDI Agents under
the principles of modularity, and we explored the assumption that the notion
of namespace is enough to address the main issues related to modularity, such
as avoiding name-collisions, following the information hiding principle and pro-
viding an interface. We have exemplified the properties and feasibility of the
approach using the Jason language.

It is future work to provide an unload mechanism that removes components
from modules that are no longer used by the agent. We also aim to implement the
approach in other languages to further evaluate the generality of the approach.
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Abstract. This paper presents ARGO, a customized Jason architecture
for programming embedded robotic agents using the Javino middleware
and perception filters. Jason is a well known agent-oriented programming
language that relies on the Belief-Desire-Intention model and implements
an AgentSpeak interpreter in Java. Javino is a middleware that enables
automated design of embedded agents using Jason and it is aimed to
be used in the robotics domain. However, when the number of percep-
tions increases, it may occur a bottleneck in the agent’s reasoning cycle
since an event is generated for each single perception processed. A pos-
sible solution to this problem is to apply perception filters, that reduce
the processing cost. Consequently, it is expected that the agent may
deliberate within a specific time limit. In order to evaluate ARGO’s per-
formance, we present some experiments using a ground vehicle platform
in a real-time collision scenario. We show that in certain cases the use of
perception filters is able to prevent collisions effectively.

1 Introduction

Agents are autonomous and pro-active entities situated in an environment and
are able to reason about what goal to achieve, based on its perceptions about the
world [22]. In robotics, an agent is a physical entity composed of hardware, con-
taining sensors and actuators, and software that is responsible for its reasoning.
The Belief-Desire-Intention model (BDI) [3] is a cognitive approach for reasoning
based on how information from the environment and the goals an agent has can
activate predefined plans in order to try to achieve these goals. Jason [2] is an
Agent-Oriented Programming Language (AOPL) that implements an AgentS-
peak interpreter in Java, adopting the BDI cognitive architecture. However, pro-
gramming robotic agents using Jason is a difficult task because a bottleneck can
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occur in the agent’s reasoning cycle when the robot updates its belief base with
perceptual information.

Javino [14] is a middleware that enables automated design of embedded
agents using Jason. It allows agents to communicate with microcontrollers in
hardware devices, e.g. Arduino. Both Javino and Jason can run embedded in a
single-board computer such as Raspberry Pi (connected with n devices). How-
ever, when using several sensors, the agent’s belief base generates events for each
perception, which may compromise the robot execution time. In [20], perception
filters were used to minimize the cost effects of processing all perceptions in sim-
ulation systems using Jason. The results showed that filters are able to improve
agent’s performance significantly.

Thus, in this paper, we present a customized Jason architecture for program-
ming embedded robotic agents named ARGO1, which uses a layered robot archi-
tecture separating the hardware from the reasoning agency. In ARGO, Javino
enables processing data coming from sensors as perceptions in ARGO’s agent
reasoning cycle. Then, one can restrict the list of perceptions delivered by Javino
based on filters designed by the agent’s programmer. The main contribution of
ARGO is to enable the use of perception filters for programming robotic agents,
which reduces the cost of processing perceptions in BDI. Moreover, ARGO allows
an agent to decide when to start or to stop perceiving, to fix the interval between
each perception and to control the perceptual behavior by using Jason internal
actions to filter perceptions at runtime.

In order to evaluate ARGO’s performance, we also present some experiments
using a ground vehicle platform in a real-time collision scenario constructed. We
applied the experimental design methodology described by [12] to test and to
statistically verify that in certain cases the use of perception filters reduces BDI
processing time, thus preventing collisions effectively.

The rest of the paper is structured as follows. We briefly present in Sect. 2
the Jason framework and the Javino middleware, and then explain how we can
construct embedded robotic agents with these frameworks. In the sequence, per-
ception filters are discussed in Sect. 3. We then present ARGO architecture and
its implementation in Sect. 4. Our experiments, including the case study, the
experimental design and our results, are presented in Sect. 5. In Sect. 6, we dis-
cuss related work. Finally, in Sect. 7 we present our conclusions and further
research.

2 Programming BDI Agents

2.1 Jason

Jason [2] is an interpreter for an extended version of AgentSpeak [17], which is
an abstract AOPL based on a restricted first-order language with events and
actions. Created to allow the specification of BDI agents, Jason implements the

1 Download available at http://argo-for-jason.sourceforge.net.

http://argo-for-jason.sourceforge.net
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operational semantics of AgentSpeak and provides a platform for the develop-
ment of multi-agent systems.

A Jason agent operates by means of a reasoning cycle that is analogous to
the BDI decision loop [2]. First, the agent receives a list of literals representing
the current state of the environment. Then, the belief base is updated based
on the perceptions received. Each change in the belief base generates an event
that is added to a list to be used in a posterior step. The interpreter checks for
messages that might have been delivered to the agent’s mailbox. These messages
go through a selection process to determine whether they can be accepted by the
agent or not. After that, one of the generated events is chosen to be dealt with
and when it is selected, all the plans related to that event are selected. From these
plans, a new selection is made to separate which of them can be executed given
the current state of the environment. If more than one plan can be executed, a
function selects which one will be executed. If the agent has many different foci
of attention, a function chooses one intention among those for execution. The
final step is to execute the first non-executed action from the selected intention.

2.2 Javino

Javino is a library for both hardware and software that implements a protocol
for exchanging messages between the low-level hardware (microcontrollers) and
the high-level software (programming language) with error detection over serial
communication [14]. There are some communicating libraries in the literature,
such as RxTx Library and JavaComm, based on serial ports. However, these
libraries do not provide error detection and they use byte-to-byte communica-
tion. In both cases, the programmer needs to implement a message controller on
the hardware layer in order to avoid losses.

The format of a message used in a communication by Javino is composed of 3
fields: preamble, size and message content. The preamble (2 bytes) identifies the
beginning of a message that arrived through a serial port. The size field (1 byte)
is calculated before any transmission informing the size of the message. The field
message content (up to 255 bytes) carries the message to be sent.

Both the preamble and size fields identify errors in case of loss or collision
of information during the message transmission. When a message arrives on
the serial port, the receiver (either software-side or hardware-side) verifies the
preamble. If it is correct, the receiver then counts the size of the message content
field and compares it with the value of size field: if they don’t match, the message
is discarded. In the case of incomplete messages, the receiver also discards the
message. Javino provides three different operation modes:

– the Send Mode assumes a simplex message transmission by software to hard-
ware. It uses the sendCommand(port, msg) method to send a message to the
hardware-side. This method returns a boolean value which gives a feedback
about the successful transmission to the microcontroller. This feedback is nec-
essary because the port serial can be locked by other concurrent transmissions.
The software-side do not wait for answers from the hardware;
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– the Request Mode assumes a half-duplex transmission between software to
hardware, where the hardware sends an answer message. It uses the request-
Data(port, msg) method, that sends a message to the hardware-side through
a serial port and returns a boolean value which checks if there is any answer
sent by the hardware-side. The user is supposed to implement an answer mes-
sage in the hardware-side using the availableMsg() method, that verifies if it
exists a valid message from software-side, the getMsg() method, that gets the
message sent by software-side and the sendMsg(msg) method, that sends a
message to software-side;

– the Listen Mode assumes a simplex transmission by hardware to software. It
uses the listenHardware(port) method to check if there is any message sent by
the hardware-side. The Request and Listen modes get messages from hardware
using the getData() method.

The Javino’s protocol aims to be multi-platform and can be implemented
using any programming language. The hardware-side library may be used in
microcontrollers such as ATMEGA, PIC or Intel families. The software-side
library may be coded in Java or in another programming language. In [14],
it was developed a Java library for the software-side and an Arduino library for
hardware-side. In this case, Javino requires both Python and pySerial installed
to manage the serial port of an operational system.

2.3 Embedding Robotic Agents

Some previous research have tried to integrate robotic reasoning into hardware
by using BDI agents. In [9], a framework was presented to provide a way of
programming agents using AgentSpeak in Unmanned Aerial Vehicle in a simu-
lator. The authors in [4] proposed an aquatic robot which uses Arduino together
with BeagleBoard who could move from point-to-point deviating from obstacles.
However, the reasoning was centralized on a computer using a Wi-Fi communi-
cation with the robot. All the decisions were sent to BeagleBoard and retrans-
mitted, by serial communication, to Arduino, which held sensors and actuators.
Another work published in [1] presented a grounded vehicle, which used Arduino
and Jason to control sensors and actuators using a Java library for communica-
tion between the hardware and the Jason’s environment. However, the agent’s
reasoning was still running on the computer. The messages to the hardware-
side were sent from an Arduino connected to a USB port computer to another
Arduino embedded on the robot using radio transmitters.

The work in [19] showed that it was possible to use BDI agents on embedded
systems employing single-board computers. However, it was not presented an
infrastructure to integrate BDI agents in a robot. Therefore, they simulated the
environment on a computer to execute the decisions taken by the BDI agent.

Finally, a robotic agent platform using both Javino and Jason framework was
presented in [14], which was an improvement of the platform presented in [1].
The authors used Raspberry Pi and Arduino together to provide a fully embed-
ded BDI agent reasoning on a robot. In this case, Javino was integrated into



140 C.E. Pantoja et al.

the agent’s simulated environment and the agent used a Jason external action
to request the perceptions and a Jason internal action to control the actuators.
In this architecture, the agent is responsible for controlling both sensors and
actuators that are connected to the Arduino board and it is embedded in Rasp-
berry Pi. The Arduino boards are connected to the USB ports of Raspberry
Pi, thus, the agents use Javino to get perceptions from sensors and act with
the actuators plugged in Arduino. The architecture worked in embedded robotic
agents. However, according to the authors, when using too many sensors or plans
in Jason code the agent’s reasoning suffered a delay due to the cost of processing
perceptions in Jason. We believe that using filters to overcome this issue could
reduce the time employed in perceptions processing in BDI.

3 Perception Filters

3.1 Filtering Perceptions

Filtering perceptions is a widely discussed topic in MAS and Robotics. Some
works try to provide an agent vision mechanism, which limits the agent range
of vision simulating the human eye behavior such as [13]. In classical robotics,
Kalman filters are often used to provide robot vision, playing an important role
in the development of robotic platforms [5].

In [13], the authors present a technique for perceiving objects using Multi-
agent Based Simulation (MABS), when agents are situated in open environ-
ments. The agents do not have access to all perceptions available in the simu-
lated system. Adversely, they only have access to partial information about the
environment determined by their vision sensor range area (modeled as a cone
like the human eyes range of view). So, an agent can perceive only what is within
the cone area in front of it and its decisions are based on what it can percept
in the simulated system. The agent vision algorithm eliminates unseen items
that are not in the sensor area and detects visually obstructed objects (objects
that are completely behind another object). The algorithm verifies if an object is
too far from the agent position: if this distance is less than a pre-defined range,
the object is perceived, otherwise, it is not processed as a perception. The algo-
rithm then verifies if part of an object is within the vision cone. In this case,
the object is perceived. Finally, the algorithm verifies if the object is witinh the
agent’s vision cone and it is not obstructed to be perceived. If it is obstructed,
the object is not perceived. The algorithm has as an input the environment’s
objects, and it returns the ones perceived by the agent. The work is specific for
MABS where all the objects are pre-defined in the simulated system. So, if it is
desirable to extend the solution to a real robotic domain, one needs to identify
objects in the real world using a camera. The camera image can be considered
as the agent’s vision sensor. However, in order to use thise mechanism coupled
with a BDI agent, like Jason, it would be necessary to transform the objects
perceptions in Jason’s beliefs.
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Kalman filters variants are used for many problems in the robotic domain
such as robot controlling, object tracking, data estimation and prediction, simul-
taneous localization and mapping (SLAM), visual navigation, among others. In
robot vision for object detection and tracking, a Kalman Filter can be used to
identify an object and track it based on a series of images, for instance captured
from a camera. Path following can be obtained in a static road segment detecting
the distance and the angle between the robot and a line using Kalman filters [5].
Since Kalman filters are based on mathematical approaches, they could also
be used along with Jason in internal actions or in Jason’s environment. In the
same way, the objects perceived in the environment have to be transformed into
Jason’s beliefs.

3.2 Perception Filters in Jason

In order to identify the critical points for performance in the Jason reasoning
cycle, the work in [20] used a profiling tool to analyze a piece of Jason code.
By measuring memory and CPU usage, the authors verified that two sections of
the code were more time-consuming: the Belief Update Function (BUF) and the
method responsible for the unification of variables in the plans and rules. These
two methods generated a bottleneck, and depending on the specification of the
agent, those methods could take up to 99% of reasoning time.

Given that Jason’s default implementation assumes that everything that an
agent can perceive in the environment will be part of its perception list, they
proposed the inclusion of a perception filter between the perceive function and
the update of beliefs before starting the reasoning cycle. This filter is respon-
sible for analyzing the perception list received and for removing from the list
those literals that are not interesting for the agent. This is done through filters
defined by the agent designer which are described in XML format files and define
restrictions on the predicate, variables and annotations of the beliefs.

Let us suppose a robotic agent that represents his beliefs about the environ-
ment by predicates like p(d, v), where predicate p identifies the sensor, d the side
of the robot where the sensor is located and v the value acquired by perception.
An example of such a perception is shown in Fig. 1.

1 temperature(right ,36)
2 temperature(back ,38)
3 light(left ,143)
4 distance(front ,227)
5 distance(right ,30)

Fig. 1. Example of perception list represented as beliefs.

An example of filter that is used in the experiments Sect. 5.1 is shown in
Fig. 2. This filter would remove all the perceptions originated from the tempera-
ture and light sensors and would also remove the perceptions from the distance
sensors that are not in the front of the robot.
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1 <?xml version ="1.0"? >
2 <PerceptionFilter >
3 <filter >
4 <predicate >temperature </predicate >
5 </filter >
6 <filter >
7 <predicate >light </predicate >
8 </filter >
9 <filter >

10 <predicate >distance </predicate >
11 <parameter operator ="NE" id="0"> front
12 </parameter >
13 </filter >
14 </PerceptionFilter >

Fig. 2. Example of perception filter.

Since the agent’s intentions may change, the perceptions that are relevant
for the agent may also change. To reflect these changes, a new Jason internal
action called change filter was also proposed in [20]. This action receives as a
parameter the name of an XML file with the specific rules for the perceptions,
and sets it as the current filter so that in the next reasoning cycle, the agent
receives perceptions according to its new interests.

4 ARGO

4.1 Overview of a Robot’s Architecture Using Javino

A robotic agent is an embedded system where software and hardware components
are integrated to provide sensing and operating abilities in real-time environ-
ments. For this, it is necessary to employ an architecture capable of facilitating
the robot construction and programming. Hence, we propose an architecture for
programming robotic agents where it is possible to design the robot platform
independently from the reasoning agency, and then to integrate them using a
protocol for serial communication.

The robot platform must be composed of sensors and actuators coupled to
microcontrollers, where all the desired actions that the robot can perform in
the environment and the percepts it can capture from sensors are programmed.
In this case, our architecture translates raw data into a format for high-level
programming language in the firmware, resulting in a performance gain for the
agent’s reasoning. Javino’s protocol is responsible for sending these percepts
using the serial port of the microcontroller. In this architecture, it is possible
to use any kind of microcontrollers whereas it employs a library compliant with
Javino’s protocol. Afterwards, a MAS programming language is employed to
allow the cognitive control of the robot platform. The chosen program language
should be able to host the existing versions of Javino’s protocol or to implement
a new one. An overview of the architecture is shown in Fig. 3.
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The architecture is composed of three layers: hardware, firmware and rea-
soning. The hardware layer is responsible for mounting the robot platform, sen-
sors, actuators and connecting them with respective microcontrollers employed.
A single-board computer is used to connect all microcontrollers using USB and
will be responsible for hosting the MAS. The firmware layer provides all actions
that a robot can execute including procedures for both sensors and actuators
and they are programmed directly in the microcontroller. Basically, these pro-
cedures send prepared raw data as percepts for the reasoning layer and receive
agent’s messages to perform some action, both using serial communication and
the hardware-side of Javino’s protocol.

Fig. 3. Overview of a robot’s architecture using Javino.

The reasoning layer represents the MAS’s programming using a high-level
language. The middleware in software-side transmits received percepts from ser-
ial port to the agent and sends action messages to the firmware layer. Depending
on the AOPL chosen, it is possible to integrate received percepts directly into
the agent’s reasoning cycle or to use some structure to control the perception
flow. As the architecture allows many microcontrollers in a robot platform, a
strategy for capturing those percepts should be implemented. For example, it is
possible to read all available serial ports one by one and after that to update the
agent’s percepts or to allow the agent decide which serial port it desires to use
at a particular moment. Note that an agent cannot access more than one serial
port at a time and more than one agent cannot access the same serial port at
the same time.

In most of the commercial platforms, programmers do not have access to
implementation details or they have to use an interface as a middleware for
controlling the robot; on the other hand, these platforms also present a suite of
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functions to help in robot motion and planning. Our approach aims to be an
architecture for open robot design to be used in cases where the programmer
needs freedom to build his own prototype, using open platforms such as Arduino.
The architecture is not bound neither to the MAS programming language, which
can be interchanged, nor to the hardware adopted. However, it is necessary to
adjust the raw data translation to percepts in the firmware layer, if the AOPL
is changed.

4.2 ARGO Architecture

In the reasoning layer of our proposed robot architecture, it is necessary to
adopt an AOPL which will be responsible for the cognitive reasoning of the
robot platform. For this, we propose a customized Jason’s architecture named
ARGO employing perceptions filters and Javino integrated into Jason agent’s
reasoning cycle.

The BDI in Jason implies a high cost of processing the perceptions since for
each one of the received literals an event is generated. In complex codes, plans
may be added in running time, and a quite large intention stack is generated.
In these cases, if the robotic agent has to achieve a goal within a time limit, it
may not succeed. Our idea is to apply perception filters in these cases, so as to
enable the agent to deliberate in time, in order to act in such critical applica-
tions. ARGO aims to be a practical architecture for programming automated
embedded agents using BDI agents in the robotics domain.

In a MAS using ARGO, there are two types of agents which can be employed:
ARGO agents and common agents provided by the Jason framework. An ARGO
agent is able to directly control the actuators at runtime and it receives percep-
tions from the sensors automatically within a pre-defined time interval. Once
the agent has received perceptions, it can filter them based on its actual config-
uration. It is also able to change its filters at runtime based on its needs (the
same can occur when accessing its devices).

An ARGO agent is able to communicate with others common Jason agents,
but only ARGO agents can control devices and receive perceptions from the
real world. Because of this characteristic of the architecture, ARGO agents can
send their received perceptions to other agents: they can either delegate for Jason
agents the reasoning about these perceptions if i desirable or process all incoming
percepts by themselves. In the first case, the ARGO agents are dedicated only
to activate/deactivate devices, to get perceptions and to distribute perceptions
to other agents instead of overcharging their reasoning by processing all received
and filtered perceptions. In the latter case, a delay in some action response can
occur if the processing cost of reasoning with the received perceptions is higher
than the expected response time for example. An overview of ARGO can be seen
in Fig. 4.

An agent can assume to be an ARGO agent by defining the Argo architecture
in the MAS design; otherwise, the standard agent architecture of Jason is auto-
matically defined. An ARGO agent is supposed to connect to one or more devices
at runtime by choosing which serial port it wants to access (until the limit of
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Fig. 4. ARGO overview.

127 serial ports); however it can only use one port at a time, for both sensing
and acting. Besides that, different ARGO agents must not use the same serial
port at the same time, because when exists a competition for communicating at
the same port, there may be a data loss [8].

4.3 Internal Actions

As mentioned before, an ARGO agent has the ability to control devices at run-
time. It means that it can evolve in the real world using the robot’s actuators
and sensors. In practice, the agent controls devices using serial communication
by choosing a serial port where the desired component is connected. Once defined
the serial port, the agent can start receiving perceptions or can send a command
to an actuator.

However, if the serial port is fixed for an agent, it will not be able to change
it or to connect to other devices. Another issue is the perceiving ability: a Jason
agent receives perceptions from sensors in every BDI cycle, even when it does not
need them. Since an agent is an autonomous entity, we believe that an ARGO
agent has to be able to decide when to perceive the real world at runtime. This
means that the agent can start and stop perceiving from sensors when needed
or it can define an interval for receiving these perceptions. Similarly, it can also
directly control the actuators by defining at runtime which serial port to use.
Moreover, bu using the ARGO architecture perception filtering technique, an
agent can change at runtime its filters based on its needs, hence customizing its
perception policy.

Therefore, we propose five internal actions for programming agents in Jason
along with ARGO architecture. A Jason’s internal action is a kind of action that
is used to extend the agent capabilities. The proposed internal actions are:

1. limit(x): defines the sensing interval, where x is a value in milliseconds;
2. port(y): defines which serial port should be used by the agent, where y is a

literal representing the port identification, e.g. COM8;
3. percepts(open—block): decides whether or not to perceive the real world;
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4. act(w): sends to the hardware an action, represented by literal w, to be
executed by a microcontroller;

5. change filter(filterName): defines the filter to constrain perceptions in
runtime, where filterName is the name of the XML file containing the filter
constraints.

4.4 Customizing Jason for ARGO

In Jason’s reasoning cycle, as mentioned in Sect. 2.1, the agent gets its percepts
from the simulated environment provided by Jason. We extended the reason-
ing cycle of Jason, shown in Fig. 5, to providing a customized architecture for
ARGO agents. First, Javino middleware is now responsible for getting percepts
coming from low-level layers and sends them to the perceive step. Before being
incorporated in the belief base, percepts can be filtered based on the agent’s
active filter. Then, filtered perceptions are processed and the reasoning cycle
flows up to the act step, where the agent can perform basic Jason’s actions or
an action to control the actuators of the robot, which once more involves Javino
middleware.

In order to create ARGO architecture, it was necessary to customize Jason
framework, in particular by extending the AgArch class. This class is responsible
for the Jason’s native architecture and provides a list of perceptions sent by the
Jason’s environment in Java and the communication with other agents [2]. In
the extended architecture, Javino middleware was inserted as a communication
bridge to the hardware sensors and actuators. Besides that, the serial port iden-
tification had to be added to the native AgArch class in order to define to which
serial port the Javino has to communicate.

Fig. 5. ARGO reasoning cycle.
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In the TransitionSystem class, two new attributes blocked and limit were
created, as well as a new function realWorldPerceptions. The blocked attribute
is responsible for blocking or unblocking the perceptions and the limit attribute
specifies a time interval for perceiving the real world (data from sensors). The
realWorldPerceptions verifies in each cycle (i) if the percepts are blocked; or (ii)
if the time limit for the next perception has been reached. If the percepts are
not blocked and the time limit was reached, Javino requests the percepts from
sensors and sends them to the perceive method in Agent class.

Before the agent processes the percepts coming from Javino, they can be
filtered using the method filter also implemented in the Agent class. In this
case, all agents have the ability to filter percepts, because this method was
implemented in the native Agent class. The modifications executed do not change
Jason’s original functionality, except for the simulated environment which is not
used since Javino gets the percepts from the real world. We opted for creating a
customized architecture instead of an infrastructure because the later one obliges
all agents to be ARGO agents.

5 Experiments

5.1 Case Study

In order to evaluate the overall architecture and to assure the impact of the
perception filter, we assembled a robot composed of four distance sensors, four
light sensors, four temperature sensors, an Arduino board and an Arduino 4wd
chassis. A sensor of each type was placed in each of the four sides of the robot
(front, back, right and left). The robot was placed on a flat surface two meters
away from a wall. When started, the robot would perceive the environment and
move forward at a constant speed2 until the distance to the wall was less than a
specified value. As soon as it perceived that the distance was smaller, the robot
should stop. The robot can be seen in Fig. 6.

Fig. 6. The robot used in the experiments.

2 The speed is about 10 cm/s and it is not used in the experiments since it is constant.
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5.2 Experiment Design

The experiment presented was designed based on the experimental design guide-
lines presented in [12]. According to the author, the goal of a proper experimen-
tal design is to obtain the maximum information with the minimum number of
experiments. The procedure separates the effects of various factors that might
affect the performance and allows to determine if a factor has a significant effect
or if the observed difference is simply due to random variations caused by mea-
surement errors and/or parameters that were not controlled. It is important to
define the meaning of four terms:

1. Response Variable is the outcome of an experiment. In the experiments exe-
cuted, the response variables are the processing time taken by the agent to
stop after perceiving the wall and the distance it stopped from the wall;

2. Factors are the variables that affect the action response variable. Factors can
be Primary or Secondary. Primary factors are those whose effects need to
be quantified while secondary factors are those that impact the performance
but whose impact we are not interested in quantifying. The primary factors
chosen for this experiments were the distance the agent should stop from the
wall, the time interval for receiving the perceptions and the filter used;

3. Levels are the values that a factor can assume. The factors and levels used
are presented in Table 1;

4. Replication is the repetition of all or some experiments. If all experiments in
a study are repeated three times, the study is said to have three replications.

Table 1. Factors and levels used for the experiment

Factor Levels

Distance 40 cm 80 cm 120 cm

Perception interval 20ms 35ms 50 ms

Filter No filter Front Side Front Distance

The three filter levels represent the filter configurations that were used. “No
filter” represents that the ARGO architecture did not make use of the perception
filters, “Front Side” represents that the filter removed all the perceptions, except
the ones from the sensors present on the front side of the robot. “Front Distance”
represents that the filter removed all the perceptions, except the ones from the
distance sensor present on the front side of the robot. Three executions were
conducted for every combination of levels in Table 1.

5.3 Implementation

The agent has an initial belief that represents the distance limit from the wall
that the robot should stop. It has also an initial intention that leads to a config-
uration plan, where it is defined both the serial port to which the Arduino board
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is connected and the perception interval limit. We ran experiments varying this
value using 20 ms, 35 ms and 50 ms. Perceptions are then unblocked, since ini-
tially perception is blocked by default. The next action activates the filter that
is responsible for filtering every perception except those from the front sensor of
the robot. We ran experiments using a filter for all sensors except for the dis-
tance sensor in the front of the robot, and another round of experiments using
no filters at all. The last action of the plan is an achievement action for a plan
responsible for starting moving the robot.

The first action of the start plan is a message for the microcontroller to
activate the motors and to move ahead. A belief with a status indicating that
the robot is moving ahead is then added to the belief base of the agent. An
achievement action for the moving plan is performed by the agent. The moving
plan is responsible for verifying if the received filtered perception of the front
distance sensor of the robot is greater than the initial belief of the distance limit.
If so, the agent sends a message to the microcontroller to keep moving ahead.
Otherwise, the robot crossed the distance limit and should stop. For this end,
the agent sends a message to the microcontroller to stop the motors of the robot.

Some plans for using the temperature sensors and the light sensors were also
provided. In this cases, when the perceptions of these both sensors are received,
the agent sends a message to the microcontroller to turn on/off a specific led
light positioned on each side of the robot, which informs when the received values
crossed the limit specified in the agent code (in this case 100 for the light and
25◦C for temperature). The agent code is shown in Fig. 7.

In our case, we used a single agent for controlling the robot, because we
employed only one microcontroller where all the sensors and the robot’s motors
were connected to. If more than one agent tries to connect to the same serial
port, conflicts arise. However, the architecture is sufficiently flexible to alow to
develop a MAS for controlling the robot; in such a case, each employed ARGO
agent could be responsible for controlling a kind of sensor (light, distance, and
temperature), and the robot would be equipped with three microcontrollers.

5.4 Results

The first response variable analyzed was the distance the agent stopped from the
wall. Figure 8 shows the results of all possible value combinations of the different
factors presented in Table 1. Bars that do not appear in the Figure mean that
the agent collided with the wall.

One should notice initially that in all cases, the agent that didn’t filter its
perceptions collided with the wall (there is no any blue bar in the Figure). In
some cases, for instance the distance limit 120 cm, the agent with front side filter
arrived eventually to stop before the wall; however, in these cases it stopped
always closer to the wall when compared to the agent that used front distance
filtering.

The agent using front distance filtering outperformed the others in quite all
the experiments, and it was able to successfully stop before hitting the wall
in all the experiments when the distance limit was 80 cm or 120 cm. Since this
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1 value (40).
2 !config.
3
4 +! config: true <-
5 .port(COM5);
6 .limit (20);
7 .filter(byValue );
8 .percepts(open);
9 !start.

10
11 +! start : true <-
12 .act(front);
13 +status(front );
14 !moving.
15
16 +! moving: dist(f, X) &
17 value(J) & X>J &
18 status(front) <-
19 .act(front);
20 !moving.
21
22 +! moving: dist(f, X) &
23 value(J) &
24 X<=J & status(front) <-
25 .act(stop).
26
27 -!moving <-
28 !! moving.
29
30 +light(X,Y) : Y>100 <-
31 .act(ledLightOn ).
32
33 +light(X,Y) : Y <=100 <-
34 .act(ledLightOn ).
35
36 +temp(X,Y) : Y>25 <-
37 .act(ledTempOff ).
38
39 +temp(X,Y) : Y<=25 <-
40 .act(ledTempOn ).

Fig. 7. Agent code.

agent focuses only in perceptions coming from the front sensor, Jason’s internal
mechanism generates less events, and the agent can thus reason faster than an
agent without any filter. However, in some experiments (for example, distance
limit 40 cm and perception interval 50), neither agent could avoid the collision.

The second response variable analyzed was the elapsed time taken by the
agent to stop after perceiving the wall. For this experiment, we calculated the
variation assigned to each factor, as detailed in [12]. This statistical analysis is
useful to check which factors are responsible for the differences in the response
variable. The calculated values are presented in Table 2.
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Fig. 8. Distance to the wall after stopping.

Table 2. Variation assigned to each factor in the analysis of the response time.

Factor Variation attributed

Distance Limit (L) 1,415%

Perception Interval (I) 0,165%

Filter (F) 88,965%

Interaction between L and I 0,525%

Interaction between L and F 3,715%

Interaction between I and F 0,265%

Interaction between L and I and F 1,725%

Error 3,285%

The results confirm the importance of the perception filter in reducing the
processing time, since almost all variation was attributed to this factor. This
result suggests that ARGO architecture, by integrating Javino and the percep-
tion filters, can be used for developing embedded robotic agents in a way that
the agent can benefit from the BDI architecture with a smaller influence of one
of its major drawbacks that would be the high processing time.

6 Related Work

Robot architectures usually deal with platforms, sensors, actuators, program-
ming language and reasoning mechanisms. One challenge is how to integrate
these components in a way that a robot can deliberate to perform a task with-
out failing to accomplish its goal. In [21] the authors propose a cognitive control
architecture integrating knowledge representation of sensory and cognitive rea-
soning of a robotic agent using GOAL. The architecture consists of four decou-
pled layers: robot platform, robot behavioral control, environment interface and
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cognitive control. The robot platform employed was the humanoid NAO and it
used URBI as middleware for interfacing with the robot’s hardware via TCP/IP
protocol. The robot behavioral control layer is responsible for processing sensory
data and monitoring and executing behaviors. Besides, this layer communicates
(using TCP/IP) with the reasoning and the robot platform layer, transmitting
sensory data and actions execution respectively. The interface layer uses a trans-
lation mechanism between the sensory information acquired from the behavioral
layer and the percepts sent to the cognitive layer. This layer is necessary because
symbolic and sub-symbolic information can use different languages. The mecha-
nism is based on a standard template using XML files mapping, which indicates
how to map data but also when to do it. The cognitive control layer uses GOAL
[10], which is a logic-based programming language for cognitive agents.

Similarly, ARGO’s architecture also divides the robot programming into lay-
ers, separating sensory data from the agent’s reasoning. We exploit the advan-
tages of Jason extending it for programming robotic agents. ARGO provides
three layers to be programmed: hardware, firmware and agent reasoning. Our
proposed architecture provides a support for exchanging the hardware and the
firmware without concerning with the reasoning layer; furthermore, it is possible
to change the agent programming language without changing either the hardware
or the firmware. This is possible because Javino is responsible for exchanging
serial messages between these layers, and it does not link them to each other.
We do not provide a translation mechanism in high-level layers because of the
processing cost, which can affect the robot efficiency. However, the translation
from raw data into percepts is done in the firmware layer. Since ARGO aims to
be used in open platforms, the programmer must code the firmware layer. For
commercial platforms such as NAO and Lego Mindstorms, a percepts mapping
process must be provided.

Some other works also use Jason for this end, such as [15,16]. In [16],
CArtAgO [18] is used as the functional layer for providing artifacts that rep-
resent sensors and actuators of a robot, and Jason is used as the reasoning
layer. Despite using artifacts, which is an interesting abstraction for the devices
employed, the authors use a simulator named Webots and do not embed the
MAS. In [15], the authors provide a Jason extension for ROS named Rason.

Javino’s protocol provides a mechanism for avoiding noisy data in communi-
cation between the firmware and the reasoning layer. However, we do not treat
noisy data coming directly from sensors, when they provide well-formed but
wrong values. In [7], the authors present a programming language for cognitive
robots and software agents using the 3APL [11] language, which implements a
deliberation cycle for selecting and executing practical reasoning rule statements
and goal statements. They also provide an architecture consisting of beliefs,
goals, actions and practical reasoning rules as a mental state. The beliefs rep-
resent the robot’s percepts of an environment. The authors focused only on the
programming constructs, they do not provide information about how a robot
platform should interact with the high-level language.
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In [6], a Teleo-Reactive (TR) extension for programming robots is presented,
supported by a double tower architecture which provides a percepts handler
that atomically updates the BeliefStore (a repository of beliefs). After that, the
architecture reconsiders all rules affected by this change. The authors assert that
actions and percepts can be dispatched through ROS interface to the robot plat-
form. TR extension uses low-level procedures written in procedural programming
languages for sensorial data and actuators actions. Concerning implementation,
they used Qu-Prolog, simulators and Lego Mindstorms robots.

ARGO has the same intention of facilitating the programming of robotic
agents providing a mechanism for automatically updating the agent’s belief base.
The TR extension provides an inhibition process of some behaviors in response
to percepts while ARGO provides a runtime process for filtering percepts that
are not needed at a specific moment. Filtering perceptions in ARGO prevents
unnecessary event triggering in the deliberative cycle of Jason, therefore, the
agent deliberation should be more efficient.

7 Conclusions and Further Work

According to our studies, we concluded that using perception filters in appli-
cations where the response time is critical is an essential feature for agents
developed in Jason. For this end, we have proposed the ARGO architecture.
Perception filters enhance ARGO performance and make it practical feasible
since it reduces significantly the perception processing and the events generated
for each perception. Hence, it is a major feature in the ARGO architecture. How-
ever, in some applications, we believe that a delay in responses for perceptions
processing can be tolerated and do not interfere with the goal of the MAS (i.e.
applications where the response is not time-bounded).

In the ARGO architecture, an agent in a MAS can control different microcon-
trollers since the programming layer is independent of the microcontroller choice.
This is an important issue because it is not bonded to a specific microcontroller
technology allowing mixing other microcontrollers to a single prototype. More-
over, it is not bonded even to the MAS implementation, since it is possible to
change the MAS code without changing the microcontroller code. This is possi-
ble because the microcontrollers run separately and they communicate with the
MAS using serial communication. Basically, every ARGO agent requests per-
ceptions or send actions acquiring a serial port connected to a microcontroller
using Javino. This creates an uncoupled development environment for proto-
types and robotic platforms using Jason framework, thus offering different ways
of controlling low-cost boards with agents for several purposes.

In a MAS using ARGO it is possible to merge common agents (default agents
from Jason framework) and ARGO agents (customized architecture) into a single
project, but separating some responsibilities. Since just ARGO agents can get
perceptions from the real world, a design issue may be raised: is it a better
solution that uses only ARGO agents, possibly overcharging some ARGO agents
or to delegate to common agents some processing information and deliberation
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responsibilities, thus isolating ARGO agents only to sensing and acting functions.
We leave these questions as future work.

In order to achieve the customized architecture, some modifications were
performed in the Jason framework. However, they do not change the original
Jason functionalities, because they are just used for ARGO agents. Hence, there
is no difference between the Jason framework and the ARGO architecture when
a MAS uses using only common agents. The ARGO customized architecture
benefits from the Jason framework extensibility ability to provide custom made
architectures.

In our experiments, we show that applying the perception filter together with
Javino reduces significantly the time of processing perceptions in Jason. In a real-
time collision scenario, where the agent had to reason and stop before colliding
with an obstacle placed at 120 cm, 80 cm, and 40 cm, the experiments showed
the agent was able to stop before colliding only by using perception filters. The
ARGO architecture aims to provide programming structures that allow coding
robotic agents using Jason. It means that an agent can decide when to act and to
perceive at runtime. Furthermore, it is able to change perceptions filters based
on its needs, and to decide what device it will be connected to at a certain time
during its execution.

For future work, we intend to extend the ARGO architecture for program-
ming multi-robot systems through a communication protocol between robotic
agents. Moreover, it is necessary to test ARGO in different domains and apply
robotics technics such as SLAM. We will also intend to provide other hardware-
side libraries, for instance for PIC and Intel families.
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2 Institut Supérieur de l’Électronique et du Numérique, Lille, France

ferdinand.piette@yncrea.fr

Abstract. Ambient Intelligence (AmI) and Internet of Things (IoT)
are promising fields for the application of Multi-Agent Systems (MAS).
A specific MAS application, described through a video doorkeeper sce-
nario in this paper, is the deployment and the configuration of distrib-
uted applications on a hardware infrastructure in ambient systems. It
requires the modelling of the available infrastructure and of the deploy-
able applications, respecting a domain ontology, which can then be used
by reasoning tools to find the hardware entities that can support the
running of the application in the existing infrastructure. It also requires
a distributed architecture that allows this solution to be scalable and to
provide mechanisms to enhance privacy. In this paper, we discuss this last
point. We describe the use of goal-driven agents and show how the MAS
architecture and organisation allow for the privacy of the infrastructure
resources to be enhanced.

Keywords: Applicative paper · Multi-agent system · Ambient
Intelligence · Goal-driven agents · Agent design · Privacy management ·
Deployment

1 Deployment of Smart Applications

AmI research focuses on the improvement of human interactions with smart
applications [13]. These improvements are made possible by the proposal of
frameworks and platforms that facilitate the development of context-aware and
dynamic applications. These platforms offer mechanisms to build such applica-
tions by handling data and events [16,18] or by wrapping hardware and software
capabilities into agents [9,14]. However, it is often assumed that an underly-
ing interoperable hardware and energy infrastructure already exists [22]. Mean-
while, the Internet of Things (IoT) aims to provide a global infrastructure for the
information society, enabling advanced services by interconnecting physical and
virtual “things” based on existing and evolving interoperable information and
communication technologies [17]. The main challenge of the IoT is to achieve full
interoperability of interconnected devices while guaranteeing the trust, privacy
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and security of communications [4]. However, a gap exists between AmI and the
IoT. Indeed, because of the heterogeneity of such systems, it is difficult to have
horizontal communication between connected devices. Present applications use
devices that are vertically connected, from the device to an external server that
collects and processes the data. The available commercial products are usually
not directly interoperable. Moreover, this approach raises privacy questions: the
user does not own his data any more, so privacy cannot be guaranteed. Hence,
to fill this gap between IoT and AmI applications, adequate deployment mecha-
nisms are required. We addressed the deployment problem in [23] by proposing
to model the available hardware infrastructure and the needs of the applications
using graphs that describe the various entities, their relations and properties. For
deploying an application on the infrastructure, we proposed an extended graph
matching algorithm for finding the hardware entities of the infrastructure that
fulfil the requirements of the distributed application. However, this solution was
centralised, which makes it unsuitable for real systems that need to take into
consideration, among others, privacy and scalability. To address these issues, we
propose a multi-agent-based distributed deployment software. Through its mod-
ularity, the multi-agent paradigm facilitates the local processing of data and
guarantees the autonomy of the different parts of the hardware infrastructure,
thus enhancing the privacy and robustness of the software.

This paper is organised as follows. Section 2 shows similar works that use
agents for the deployment of applications and privacy management. Section 3
presents a scenario that illustrates the deployment of applications and introduces
the different key aspects of our solution. The next sections show that multi-agent
systems are a well-adapted paradigm to handle the distributed aspect and ensure
resource privacy. We detail this multi-agent architecture of our solution (Sect. 4)
and the behaviour of each kind of agent using a goal-directed approach (Sect. 5).
At last, Sect. 6 explains some implementation specificities and presents the first
results. We conclude by presenting the next steps of this work.

2 Related Work

Several works address the deployment problem. Braubach et al. [6] propose a
deployment reference model based on a MAS architecture (e.g. agent services)
for deploying MAS applications. As an agent is a software entity, the deployment
of agents does not have to deal with the high heterogeneity of hardware enti-
ties. Some other works in the service-oriented architectures (SOA) community
[3] reason on deployment patterns, that specify the structure and constraints of
composite solutions on the infrastructure, in order to compose services. The cited
paper refers not to the localisation of resources and installation of software, but
rather to the binding of existing resources in order to provide the desired compo-
sition of services. This is realised using a centralised pattern-matching algorithm
that takes into account the various requirements for the given service. Flissi
et al. [15] propose a meta-model for abstracting the concepts of the deployment
of software over a grid. All these works have shortcomings when considering
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their use for deploying AmI applications on the IoT infrastructure. Some do not
take into consideration the heterogeneity of the hardware and software, as well
as the interaction between the two layers (i.e. software and hardware). Others
do not tackle the privacy problem. And some propose centralised solutions that
are not scalable for real life AmI applications. Our MAS approach takes these
problems into consideration: scalability is handled thanks to the agent structure;
the autonomy of agents, organisation and privacy policies provide resource pri-
vacy; and heterogeneity is supported by the description of the system and the
reasoning mechanisms that find projections of applications on the infrastructure.

Privacy in multi-agent systems has already been well explored. Such et al.
[27] categorise research on data privacy on different levels: collection, disclosure,
processing and dissemination. Multi-agent system specificities have been used
to propose different manners of handling the data privacy. Some works focus
on norms [5,20] and privacy policies [12,28,29], checked by agent brokers to
control the disclosure of the data. Other works [24,26] use social relationships
like trust, intimacy or reputation to select the agents with which data can be
shared. Trusted third parties are already used in [1,11,21] in order to anonymise
the data or the metadata (e.g. IP address, receiver or sender identity), and also
to check disclosure authorisations. At last, some works [2] focus on integrating
secure communication in the agent platforms by using well known encryption
protocols. All these works use MAS in order to provide data privacy. In our
work, as explained in Sect. 4, we take advantage of MAS properties to handle
the privacy of the hardware resources and of the structure of the system. The
data privacy of the deployed applications is left to the developer who can use
one of the cited methods.

3 Scenario

The scenario we use in this paper highlights the dynamic deployment of distrib-
uted applications. Mr Snow uses a video doorkeeper for dependant persons (e.g.
visually impaired) application in his home. When someone rings at the door, the
image of the entrance camera is displayed on a screen near Mr Snow, making
sure he can properly see the person. He can then discuss with the person and
decide whether or not to remotely open the door.

It is Saturday morning and Mr Snow is waiting for a parcel that will be
delivered to his home at any time. While he is grooming himself in the bathroom,
his neighbour, Mr Den, rings the door. The smart house, aware that Mr Snow
is in his bathroom, selects the connected mirror of the bathroom, instead of
any of the other display screens of the house, as a support to display the image
stream of the entrance camera. Mr Snow, not being able to receive his guest,
informs him, thanks to the microphone in the mirror, that he will meet him in
an hour. After getting ready, Mr Snow goes to his neighbour. In the middle of
their conversation, he is notified on his smartphone that an unkonwn man rings
at his door again. He decides to display the image of this man on Mr Den’s
television to ask him if he recognises the guest since his smartphone screen is
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to small. By default, Mr Snow does not have the right to use any devices that
he does not own, but Mr Den has authorised him to access the television when
he is at home. The doorkeeper application is redeployed dynamically to use
the requested hardware entities. Neither Mr Snow nor his neighbour know the
visitor. Mr Snow decides to activate the microphone of the camera which allows
him to learn that the unknown person is the expected transporter, who he can
now go and see in person.

The important point in this scenario is not the video doorkeeper application,
but the way it is deployed dynamically in the environment, considering the user’s
context. The scenario shows two deployment situations: (1) the application was
deployed for use in the user’s own home infrastructure, but in a less usual place:
the bathroom; (2) the application was deployed on the infrastructure of another
user, as the necessary access rights had been granted. We can isolate five main
needs of the system:

1. The system has to find which hardware entities to use in order to launch the
desired application. These entities have to respect hardware requirements and
contextual constraints such as the user location.

2. Once the hardware entities have been chosen, the system has to deploy the
application or some part of it on the infrastructure. In the scenario, the appli-
cation can be divided into two parts. The first one monitors the door bell of
the house and is automatically deployed when a user chooses to launch the
video doorkeeper application. When someone rings the door, the second part
of the application, the one which will display the image stream of the camera
on a screen near the user, is deployed. It is the deployment of the second part
that interests us.

3. The system has to undeploy (part of) the applications. In the scenario, when
the user ends the communication with the guest, the second part of the video
doorkeeper application should be undeployed and the corresponding resources
released.

4. The system has to monitor the environment: get contextual information about
the user location or the current amount of bandwidth of a communication
channel for instance. If an inconsistency between the hardware infrastruc-
ture properties and the requirements of an application is detected, another
deployment of the application (or some parts of it) should be planned.

5. At last, a user has to manage the hardware entities he owns. He can also use
hardware entities of others if he has the required permissions (as described in
Sect. 4.2). However, he does not have access to information on the structure
of the infrastructure he does not own.

The first need is already discussed in our previous work [23] and later improved
in a distributed version of the algorithm that finds the hardware entities of
the infrastructure that can support the deployment of an application, based
on their descriptions. The second and third needs involve interactions with the
real environment in order to configure the hardware entities. The fourth need
also involves interactions with the environment to sense its properties and state.
At last, the fifth need raises the question of the privacy of hardware resources:
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how can the system guarantee that users cannot have information about the
hardware entities of others?

The multi-agent system we describe in this paper is used to deploy appli-
cations on an available hardware infrastructure, to monitor the system and to
maintain its consistency. As we describe below, the agents are in charge of the
high level reasoning, while artifacts correspond to tools for interacting with the
environment. The decentralisation of MAS is an asset to enhance resource pri-
vacy. Indeed, the description of the hardware infrastructure can be split into
agents so that no global knowledge exists. Then the agents can be organised
to apply sharing policies and guide the deployment of the applications. At last,
cooperation between agents allows to find solutions of the deployment even if no
local solution exists.

With these observations, we can establish the different roles of the system.
These roles will be associated with the different entities of the MAS.

1. Interact with a user
2. Maintain the consistency of an application
3. Find a projection of the requirements of an application on the infrastructure

graph
4. Interact with the environment to configure hardware entities and deploy appli-

cations
5. Sense the environment properties
6. Update the description of the environment
7. Manage sharing policies and resource privacy

4 Multi-agent Architecture

Our scenario highlights several necessary specificities of the deployment software.
This software has to dynamically deploy and undeploy distributed AmI applica-
tions in an environment that is also dynamic: when a visitor rings the doorbell,
the deployment of the video doorkeeper should start, considering the available
hardware entities and the location of the user, in order to choose the most rel-
evant screen for displaying the image of the camera. Given its the distribution
and openness that characterize the AmI domain, privacy is a very important
characteristic of the deployment software. Privacy is defined by Alan Westin
[30] as the claim of individuals, groups or institutions to determine for them-
selves when, how and to what extent information about them is communicated.
In this scenario, we focus on resource privacy since the data manipulated by the
deployment solution concerns hardware resources. Mr Snow is the owner of the
hardware entities in his house and he does not want unauthorised persons to use
or even know of the existence of these resources. At last, autonomy and robust-
ness of the system are also very important specificities: if my neighbour’s system
failed, mine should continue to work normally and should not be impacted.

As the required software demands distribution, privacy, context management,
autonomy and robustness, we identified MAS as a suitable solution. Through its
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modularity, this paradigm facilitates a local processing of the data and guar-
antees the autonomy of the different parts of the hardware infrastructure, thus
handling aspects of privacy and robustness. To solve the dynamic deployment
problem, we use the graph representation for the hardware infrastructure from
our previous work [23]. Nodes represent hardware entities or relations between
these entities and properties can be attached to each node. The requirements
of the deployable applications are also described using such graphs. A graph
matching algorithm can then be used on the available infrastructure graph to
find the entities that can support the running of the application.

In the next sub-sections, we present the modelling of agents and the agent
organisation for our deployment solution, while focusing on the encapsulation of
resource privacy.

4.1 Agents and Artifacts

The deployment software involves the user deploying applications on an
infrastructure. Three types of agent were therefore defined to represent and
clearly separate each of the parties in handling the deployment: User Agent,
Application Agent and Infrastructure Agent. A fourth type of agent was intro-
duced for providing organisation capabilities and enhancing resource privacy:
the Infrastructure Super Agent. For each type of agent we identified the main
goals, that will be described in Sect. 5:

An Infrastructure Agent deals with a part of the global hardware
infrastructure. It uses the graph representation of this available infrastructure
[23] (hardware entities, relations and properties). This graph representation is
never shared with other agents. To deploy an application, an Infrastructure Agent
has to find a projection (possibly partial) of the hardware requirements of the
application on the infrastructure (role 3, as identified above). The agent may
need to cooperate with other agents to complete the projection if no local solu-
tion can be found. This infrastructure description is updated (role 6) when the
agent receives information about the current state and properties of the real
infrastructure. At last, as the infrastructure description is not shared with the
other agents, the Infrastructure Agents have to manage the authorization levels
and the sharing policy (role 7).

An Application Agent manages an entire application during its runtime
(role 2). It has a graph-based description of the application that expresses its
hardware requirements and the way the hardware entities should be used (con-
figuration, software deployment, ...). If the hardware requirements of parts of the
deployed application are no longer respected during its runtime, then the agent
will plan another deployment of these parts by interacting with Infrastructure
Agents. An example of such graph is represented in Fig. 1: the upper part rep-
resents the functionalities of the application and the bottom part shows their
hardware requirements.

The User Agent is attached to a user and saves his preferences and his
context. It is the interface between the user and the other agents (role 1). Each
user is represented in the MAS by his own agent. This one handles the user’s
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requests for the deployment or undeployment of applications and creates the
associated Application Agents.

The Infrastructure Agents can be grouped to form sub multi-agent systems.
These groups are represented by an Infrastructure Super Agent . From an
outside point of view, a Infrastructure Super Agent is seen as a regular Infrastruc-
ture Agent. It acts as a proxy between the agents inside and outside of the group.
It is then easier to abstract groups of agents and make then invisible from the
outside. It results on a multi-scale organisation that helps to enhance resource
privacy by hiding information about the structure of it sub-organisations.

Fig. 1. Example of a basic application graph

In addition to these four classes of agent, we also propose two classes of
artifact which are resources and tools that can be instantiated and/or used by
agents in order to interact with the environment [25]:

Deployment artifacts [15] can be used by the Infrastructure Agents in
order to effectively deploy/undeploy some parts of an application, or configure
hardware entities so that they can be used by the application (role 4).

Monitoring artifacts provide useful contextual information to the MAS
(role 5) such as the location of a user or the current available bandwidth of a
communication channel. This information helps the agents keep their application
or infrastructure descriptions up to date.

4.2 Sharing Policies

To improve privacy by controlling the use of resources, we also propose shar-
ing policies. User Agents can be authorised, by the owner of some hardware
infrastructure, to use some parts of its infrastructure, and cooperate with the
associated Infrastructure Agents or Super Agents, to deploy applications. If a
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User Agent is not authorised by the Infrastructure (Super) Agent, it cannot use
the hardware resources proposed by this agent. These authorization levels are
defined by the owner of each Infrastructure (Super) Agent. The Administrator
level is defined to identify these owners. With this level, a user can manage the
other authorization levels, configure or create sub-organisations of Infrastructure
Agents (by implicitly instantiating Infrastructure Super Agents) and has access
to every hardware entity managed by the agent. When an administrator creates a
sub-organisation, he is automatically the administrator of the new Infrastructure
Super Agent.

4.3 Deployment

The deployment is started by a user, through his User Agent. The latter then
creates an Application Agent that will handle the deployment and the monitor-
ing of the application. This agent chooses among the authorized Infrastructure
(Super) Agents the ones it will ask for the deployment of parts of the application.
The concerned Infrastructure Agents try to find the hardware entities that will
support the deployment of the application. If a partial projection is found, the
agent will cooperate with other authorized agents in order to complete the pro-
jection. Once such projection is found, the concerned agents effectively deploy
the application through the deployment artifacts. The monitoring artifacts pro-
vide the Infrastructure Agents with information about the environment. When
some properties change, these agents notify all the Application Agents that have
inconsistent applications. These ones can decide to plan another deployment of
some parts of the application.

Figures 2 and 3 show the interaction between an Application Agent and the
Infrastructure Agents in order to get a projection of the application and to
effectively deploy this application. As stated before, the current Infrastructure
Agent (“Infra Agent Actor” in the figures) may need to request other agents
(“Infra Agent Delegate”) to handle a part of the deployment.

4.4 Scenario Illustration

Figure 4 shows the agent structure of the doorkeeper scenario. The description of
the infrastructure is split into three Infrastructure Agents. The first one manages
the hardware entities located in the living room of Mr Snow, like the television
set. The second one manages the entities of the bathroom like the connected
mirror. These two agents are grouped behind an Infrastructure Super Agent
representing the house of Mr Snow. And the last one manages the house of
the neighbour. Similarly, the Infrastructure Agent managing the house of Mr
Snow’s neighbour can be a super agent, regrouping several Infrastructure Agents
(or other sub-super agents) to manage more finely the house. The advantage
of such organisation is that it is easy to abstract groups of agents and make
them invisible from the outside, resulting in a multi-scale organisation that helps
improve privacy. Indeed, Mr Snow knows about his own Infrastructure Agents
(bathroom and living room), but he does not have to know anything about the
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Fig. 2. Infrastructure Agent: get a projection of a part of the application

details of Mr Den’s infrastructure organisation. If he wants to interact with his
neighbour’s house, he has to interact with Mr Den’s Infrastructure Super Agent –
provided that the right access rights were granted, as described below –, without
knowing the real number of agents managing Mr Den’s house, and reciprocally.

We also find two Application Agents. The first one manages the video door-
keeper application; when a visitor rings the doorbell, this Application Agent
triggers the deployment of the video interaction functionality. The second one
manages the application which provides the location of the Mr Snow inside his
own house to his own Infrastructure Agents. The contextual location information
is useful for deploying other applications. Indeed, the display screen of the video
doorkeeper application has to be chosen near the user. Then, we have two User
Agents. The first one is the interface between the deployment software and Mr
Snow, and the second one is owned by Mr Snow’s neighbour. At last, we have
a certain number of deployment artifacts that can configure the display screens,
the cameras, or deploy software on devices (TV box, connected mirror etc.).

In this scenario, three authorisation levels are defined: the administrator level,
the regular user level and the guest level. With the regular user level, the agent
has access to the resources of the Infrastructure (Super) Agent but it cannot
reconfigure authorisation levels or agent organisation. With the guest level, the
agent has a restricted access to the resources. Only the resources considered as
non critical by an administrator are allowed to be shared. These authorisation
levels are not limited to three and can be modified by the administrator of
the Super Agent. In the video doorkeeper scenario, Mr Snow’s User Agent is
a Regular user for his home Infrastructure Super Agent, but it is just a Guest
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Fig. 3. Infrastructure Agent: deploy a part of an application

to his neighbour’s home Infrastructure Super Agent. As such, it has only access
to the television of Mr Snow’s neighbour. This ensures the privacy of the other
resources of Mr Den. The Application Agents have the same authorisation level
as the User Agent that creates them. They can interact with the authorised
Infrastructure Agents in order to effectively deploy their application.

4.5 Summary

In this section, we defined the multi-agent system architecture. User, Application
and Infrastructure Agents were defined in order to provide a clear separation.
Infrastructure Super Agents were introduced to allow the creation of hierarchical
organisations of Infrastructure Agents. Sharing policies were defined to control
the use of the hardware resources of the infrastructure. The authorizations based
on these sharing policies define the organisation and the possible acquaintances
for the agents of the MAS.

The agent decomposition encapsulates a part of the privacy mechanism.
Indeed, the graph representation of the available hardware infrastructure man-
aged by an Infrastructure Agent is only known by this agent and is never
shared with others. Moreover, the architecture used helps keep a clear sepa-
ration between the applicative part, managed by the Application Agents, and
the hardware part, monitored by the Infrastructure Agents. As agents only have
a local view of the system, the privacy is enhanced. Privacy policies can allow
or prevent the sharing of resources to User Agents. This results in privacy by
design.
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Fig. 4. Agent organisation

5 Agents’ Behaviour

The four types of agent presented in the previous section were designed using
a goal-based model due to its benefits to the autonomy and robustness of the
application [10]. Goals are specified by describing their associated plans: higher
level goal plans describing relationships between goals and lower level action
plans for concrete actions. This goal-based representation is based on the Goal-
Plan Separation (GPS) approach [8], where each agent has a main goal plan (i.e.
plan without any actions, so only decisions, perceptions and goal adoptions) that
describes the top level behaviour, which can be pursued using other goal plans
or directly action plans (i.e. plan without any goal adoptions). This approach
helps handle agent complexity through a multi-level description, from top level
abstract behaviours with goals to concrete action plans. Using goal-plans also
has the advantage of specifying the relationships between goals in a plan format.

Plans are represented using a flowchart notation we adapted for modelling
goal-driven agents (Fig. 5). The notation contains the main elements that allow
for the behaviours of agents to be defined. Event perceptions (wait), decision
nodes and iterators (ForEach) can be used in any type of plan. Action nodes are
specific to action plans and goal adoptions (parallel or synchronous) are specific
to goal plan. Parallel executions are launched when adopting goals. For this
application, we considered a simple goal model (similar to a perform goal [7])
where a goal is successful (“S”) when the plan executing for it ends with “End
ok”. This allowed us to keep a simple goal life-cycle appropriate for using in our
application, while still benefiting from the features of the goal-based design.
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Fig. 5. Flowchart nodes for efficiently describing the plans of goal-driven agents

We continue by describing in detail the agents of the system. Since the
Infrastructure Super Agent is only a proxy between the agents of the group
it represents and the other agents outside this group, its implementation is not
detailed here. In what follows, PXi−j are the plans for a goal GXi.

5.1 User Agent

The User Agent acts as an interface between the user and the deployment MAS.
The main goal plan of the User Agent (Fig. 6) waits for user input and, depend-
ing on the received request, adopts the necessary goal, corresponding to the
agent functions identified in Sect. 4.1. The goal plan of GU1 (Fig. 7) creates an
Application Agent, wait for a confirmation and adopt a goal that monitor the
Application Agent.

Fig. 6. User Agent : main goal plan Fig. 7. User Agent : goal plan for GU1

5.2 Application Agent

The Application Agent is created by a User Agent. It tries to deploy a pre-
cise application by cooperating with one or more known Infrastructure (Super)
Agents, from which it does not need to have any infrastructure details.
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Fig. 8. Application Agent : main goal plan

Fig. 9. Application Agent : goal plan for GA1: “Launch application part”

Upon its creation, an Application Agent execute its main goal plan (Fig. 8).
The goal GA1 that deploy an initial functionality (Fig. 9) is adopted and the
agent waits for internal events for new deployments or undeployments.

The deployment is done in two steps: first the agent obtains a deployment
solution from Infrastructure Agents via GA1.1 and then it requests the deploy-
ment according to this solution through GA1.2. The Application Agent sends a
list of the requirements described in the application graph to the Infrastruc-
ture Agent and the solution it receives contains the list of requirements that
could be fulfilled. Note that the reply does not contain any actual infrastructure
details, which is important for the privacy of the infrastructure. It can be seen
(Fig. 10) that the agent may need to call multiple Infrastructure Agents in order
to obtain a complete deployment solution. Indeed an Infrastructure Agent tries
to find in its own infrastructure the hardware entities that match the require-
ments of the application. However, if these requirements only partially match,
the Infrastructure Agent will return a partial solution to the Application Agent.
In this case, the latter will call another Infrastructure Agent that will continue to
match the requirements of the application. Once a solution has been found, the
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Application Agent interacts again with the concerned Infrastructure Agents to
effectively deploy the functionalities of the application: plan PA1.2 simply sends
messages and waits for a confirmation (Fig. 11). The plan for the undeployment
of a part of the application (GA2) is similar to the plan that deploy a part of the
application (GA1.2). The plan for the redeployment of a part of the application
(GA3) only undeploy this part first and deploy it again. After a functionality was
deployed, the agent monitors it through GA0 and wait for a message from the
Infrastructure Agents that tells that a part of the application is inconsistency
(e.g. changing infrastructure availability, changing user location).

Fig. 10. Application Agent : plan for
GA1.1: “get projection of application
part”

Fig. 11. Application Agent : plan for
GA1.2: “deploy application part”

Note here that the Application Agents only handle the application deploy-
ment. The application itself is in charge of its own actions, data and privacy.

5.3 Infrastructure Agent

An Infrastructure Agent receives requests from Application Agents that it tries to
satisfy (Fig. 12). Only requests originating from known User Agents are treated,
in other words only applications from agents that were granted one of the levels
of authorisation are accepted.

When it receives a request for a deployment solution, the Infrastructure Agent
uses the graph matching algorithm to determine if it can fulfil the requirements
of the request (Fig. 13) using the devices it manages. The algorithm takes into
consideration the levels of authorisation of the involved User Agents. If it cannot
produce a complete solution, the Infrastructure Agent requests the help of other
agents in its group, but without informing the Application Agents. In this way,
the components of the infrastructure remain private. If a complete solution is
eventually produced and the Infrastructure Agent is given the order to deploy
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Fig. 12. Infrastructure Agent : main goal plan

the application, it will dispatch the deployment tasks to its own deployment
artifacts as well as to any other Infrastructure Agents that were included in the
final solution. In case any of these requests fails (e.g. an artifact malfunctions),
the whole application is undeployed and the Application Agent is informed, which
will cause it to restart the deployment procedure.

In parallel with the request handling, the agent also adopts GI1 which listens
for agent and artifact information in order to manage the graph the devices
corresponding to the Infrastructure Agent. In case of an inconsistency (e.g. Mr
Snow leaves Mr Den’s home, so any display he used there are no longer relevant
for the application), the agent informs the Application Agents that it will need
to redeploy the concerned parts of their applications.

6 Implementation and Experimentations

A demonstration model of the deployment software has been developed in an
apartment replica attached to our laboratory. This home replica implements
various scenarios applied to home care for dependent persons, including the pre-
sented scenario. These scenarios are using commercial connected devices tweaked
to be horizontally connected, thanks to the deployment software.

Our goal is to run the MAS on different devices like smartphones or embedded
systems with few resources. Most of existing regular MAS platforms like Jade
for instance are memory-consuming and Java-oriented platforms [19]. They are
not suitable for our purpose. That is why we designed our own MAS platform
in JavaScript. Indeed, web technologies are fully interoperable and the agents
can easily be run on devices like smartphones or the Raspberry Pi. Visualisation
and interfaces are also JavaScript web applications. The agents embed a moni-
toring and debugging web server that proposes interfaces for interacting with it.
The effective deployment is handled by deployment artifacts. The demonstration
model handles ssh and puppet artifacts in order to deploy and run software on
UNIX systems (computers, micro-computers, Unix-based devices etc.). We also
implemented a specific deployment artifact that configures the frame rate of IP
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Fig. 13. Infrastructure Agent : plan for GI2: “compute application projection”

cameras. In this implementation we mostly used IP devices. We also integrated
EnOcean devices. These devices, however, are handled by a hard-coded gateway
that extends the IP network to EnOcean devices. Next stage will be to handle
multiple means of communication by automatically deploying gateways or prox-
ies between the devices when needed. At last, the agent implementation was,
in first place, not obvious. The multi-level GPS approach made it intuitive to
develop.

For these experiments, we generated random infrastructure and application
graphs for which we varied the number of nodes, the average number of edges
and the average number of properties each node has. We only considered the
infrastructure-application pairs for which at least one complete projection solu-
tion exists. In the graphs depicted below, each point is the median execution time
obtained by running the algorithm on 100 randomly-generated infrastructure-
application pairs. A random graph generation was introduced in order to evaluate
the MAS performances independently of the application domain. Then, the prop-
erties of the application and infrastructure graph in the context of smart-homes
were extracted and correlated with the general results.
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Figure 14 shows the variation of the computation times with the sizes of
the application and infrastructure graphs for only one infrastructure agent. The
execution time shows a moderate increase with respect to the infrastructure size
variation. However, it grows fast with the application graph size.

Fig. 14. The execution times of the projection algorithm executed for various
infrastructure and application sizes.

Figure 15 represents the variation of the execution times with size of the
infrastructure and application graph shared amoung different number of agents.
We can note that it is not efficient to let an agent manage only few infrastructure
nodes. In that case, a lot of time is lost in the cooperation process.

Fig. 15. The execution times of the graph-matching algorithm for various size of
infrastructure, application and number of agents.

These experiments show that the algorithm can be used with real applica-
tions and smart environments. Indeed, the computation time grows fast with
the size of the application graph, however, applications do not have an impor-
tant number of nodes. Contrariwise, the global infrastructure graph can grow
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rapidly, but we have seen that the computation time evolves reasonably. For
example, the application from the scenario in Sect. 3 contains 23 nodes, while
the infrastructure is made of more than 50 nodes shared amoung 3 agents. The
average number of edges between the nodes is between 2 and 3.

This realisation helps us to figure out the difficulties of handling the hetero-
geneity of hardware entities. We are now able to handle applications through an
AppStore for Smart Homes. These applications can be automatically deployed
in a real environment, using the available hardware devices, and including mech-
anisms to ensure privacy management of the resources. This provides a concrete
base for the implementation of a complete middleware for the deployment of
distributed applications in a smart environment.

7 Conclusion and Future Work

In this paper, we presented a multi-agent solution for reasoning on the dynamic
deployment of distributed applications in ambient systems. We described the
modelling of the system and presented the specifications of the goal-based agents.
We illustrated the MAS using a context-aware video doorkeeper scenario. In
this scenario, a doorkeeper application is dynamically deployed in order to route
the video stream of the entrance hall camera to a relevant screen, near the
user, thanks to contextual information about his location. Even if smartphones
are nowadays the favorite interface of the users, we are convainced that multi-
modal interactions have to be proposed. The devices and the interfaces has to
be selected considering the context. Other scenarios to help people with reduce
mobility has been inplemented using the apartment replica we used.

The MAS proposed in this paper contains four classes of goal-directed agent
to handle a clear separation between the hardware and software layers and to
ensure resource privacy in ambient systems. In order to preserve the privacy
of the resources, the graph models of the infrastructure are handled locally by
the concerned agents. The use of MAS made it possible to introduce privacy
measures at architecture and organisation level, on top of which we were able to
add a user-defined privacy policy mechanism. This was an important criterion
for the choice of the agent paradigm since in the domain of Ambient Intelligence
there are often different infrastructure owners that need to ensure the privacy of
their resources. The separation between the applicative and the infrastructure
layers, together with the decentralised approach also enhance the robustness
of the solution. The clearly delimited entities, with either virtual (the appli-
cations) or physical (users, infrastructure elements) correspondents, guided the
agentification. The use of a goal-based representation for agents together with
the Goal-Plan Separation approach facilitated the modelling task. The specific
plan notation was efficient in describing the agent plans both during design and
for presentation purposes.

In terms of future work, for the deployment software, data privacy in the
deployed applications should also be taken into consideration in addition to the
resource privacy discussed here. We would like to facilitate the local process-
ing and storage of the data by defining data privacy policies which should be
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facilitated by the modularity of the MAS. This would impact the reasoning on
the deployment: the hardware entities would have to be filtered with respect to
this new data privacy policy. In the interest of the engineering of multi-agent
systems, we are studying the goal-based modelling approach with GPS agents
and the plan notation for the extension towards a development methodology for
robust software.
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Abstract. User supplied domain control knowledge in the form of
hierarchically structured agent plans is at the heart of a number of
approaches to reasoning about action. This knowledge encodes the “stan-
dard operating procedures” of an agent for responding to environmen-
tal changes, thereby enabling fast and effective action selection. This
paper develops mechanisms for reasoning about a set of hierarchical
plans and goals, by deriving “summary information” from the condi-
tions on the execution of the basic actions forming the “leaves” of the
hierarchy. We provide definitions of necessary and contingent pre-, in-,
and postconditions of goals and plans that are consistent with the condi-
tions of the actions forming a plan. Our definitions extend previous work
with an account of both deterministic and non-deterministic actions, and
with support for specifying that actions and goals within a (single) plan
can execute concurrently. Based on our new definitions, we also specify
requirements that are useful in scheduling the execution of steps in a
set of goal-plan trees. These requirements essentially define conditions
that must be protected by any scheduler that interleaves the execution
of steps from different goal-plan trees.

1 Introduction

User supplied domain control knowledge in the form of hierarchically structured
agent plans is at the heart of a number of approaches to reasoning about action.
This knowledge encodes the “standard operating procedures” of an agent for
responding to environmental changes, thereby enabling fast and effective action
selection. Various lines of previous work have exploited such control knowledge,
including multi-agent coordination [6,7], interleaved plan execution in single-
agent systems [16,17], heuristic approaches to speeding up classical planning
[2,4,11], and approaches to synthesising desirable primitive and abstract plans
[8,12].

This paper develops mechanisms for reasoning about a set of hierarchical
plans and goals, by deriving “summary information” from the conditions on the
execution of the basic actions forming the “leaves” of the hierarchy. We provide
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definitions of necessary and contingent pre-, in-, and postconditions of goals and
plans that are consistent with the conditions of the (possibly nondeterministic)
actions forming a plan. Such information is useful when writing agent programs,
e.g. when deciding which goal-plan tree is the minimally interfering “building
block” to include within a new plan in order to bring about a desired postcon-
dition. In addition to summarising the “static” properties of a single goal-plan
tree, we also define requirements that are useful in scheduling the execution of
steps in a set of goal-plan trees. While goal-plan trees are most commonly used
to represent a BDI agent’s domain knowledge, the mechanisms we present could
equally be used to represent and reason about the executability of Hierarchi-
cal Task Network (HTN) planning [10] structures, e.g., to synthesise new HTN
recipes from existing task networks. HTN and BDI systems are closely related
in terms of syntax and semantics, making it possible to translate between the
two representations [14].

The paper extends the most closely related strands of work in the literature,
i.e., [6,7,16,17] in two main ways. Like us, these authors also derive summary
information from a set of hierarchical plans, and use that information to find a
schedule for the concurrent execution of a given set of top-level goals. Our first
extension is an account of both deterministic and non-deterministic primitive
actions, and the second is the ability to specify that actions and goals within
a (single) plan can execute concurrently. We also contribute novel correspond-
ing definitions for the conditions that must be protected by any scheduler that
interleaves the execution of steps from different goal-plan trees.

The remainder of this paper is organised as follows. In Sect. 2 we discuss
closely related work from the literature. In Sect. 3, we define the ‘static’, neces-
sary and contingent conditions of actions, plans and goals. Then, in Sect. 4 we
define the corresponding ‘dynamic’ notions, which specify the conditions that
must be taken into account when scheduling. Finally, in Sect. 5, we conclude
and identify directions for future work.

2 Related Work

Our approach is closely related to two previous strands of work in the litera-
ture. The first is that of Clement et al. [6,7], where algorithms are presented
for deriving “summary” information from developer-defined hierarchical plans
belonging to the agents in a multi-agent system. The derived knowledge is then
used to find a schedule that coordinates the activities of the agents at run time.
The work of Thangarajah et al. [15–17] is similar, though they focus on the
single-agent case. They describe an approach based on summary information
that coordinates the various goal-plan trees of a single agent, in order to exploit
positive interactions between them and to avoid negative interactions, both of
which involve reasoning about necessary and possible (summary) conditions of
different ways of achieving a goal. They give algorithms for scheduling goal-
plan trees, e.g., to determine whether a newly adopted (sub)goal will definitely
be safe to execute without conflicts, or will definitely result in conflicts. In the
latter case, Thangarajah et al. suspend the goal until it is safe to execute it.



178 Y. Yao et al.

An important difference between the work of Thangarajah et al. and that of
Clement et al., is that Thangarajah et al. define the necessary post-condition
of a goal or plan as the effects that are necessarily brought about at any (even
an intermediate) stage during the goal’s or plan’s possible executions, whereas
Clement et al. define a necessary post-condition as those effects that necessar-
ily hold at the end of all executions. We incorporate both these notions in our
approach: our definition of a necessary postcondition of a plan or goal in Sect. 3
is similar to the necessary postconditions of Clement et al., and the notion of
execution conditions that must hold for the successful execution of a set of goal-
plan trees we present in Sect. 4 is similar to the necessary postconditions of
Thangarajah et al. Another important difference involves the treatment of cases
where a plan step makes a ‘descendant’ (sub)plan associated with a later plan
step inapplicable. Clement et al. assume that such conflicts can be resolved dur-
ing the scheduling phase, by inserting an available (concurrent) plan—possibly
one belonging to a different agent—that asserts a suitable post-condition.1 We
disallow such conflicts, and define a “local” notion of a contingent condition
which does not rely on other concurrent plans.

Our work is also related to that of de Silva et al. [9], who focus on how
summary information could be used for the synthesis of “abstract plans”. In [9],
the authors describe how both the strands of work described above could be
extended to support agent programs that include variables, i.e., to a restricted
first-order language. While the approach of de Silva et al. also supports basic
actions, the actions they consider are deterministic and cannot be executed in
parallel with other actions. In contrast, our approach is sufficiently general to
allow the parallel execution of (nondeterministic) actions and subgoals.

3 Goal-Plan Trees

As in [15,17] we use goal-plan trees to represent the relations between goals,
plans and actions, and to reason about the interactions between intentions. The
root of a goal-plan tree is a top-level goal2 (goal node), and its children are
the plans that can be used to achieve the goal (plan nodes). Plans may in turn
contain subgoals (goal nodes), giving rise to a tree structure representing all
possible ways an agent can achieve the top-level goal.

In [15,17] goal-plan trees contain only goals and plans. We extend their defin-
ition of goal-plan trees to allow primitive actions in plans in addition to subgoals
as in [21,23,24]. Plans thus consist of a sequence of steps, where a step is either
a primitive action or a subgoal, or a parallel composition of plan steps.3 Parallel

1 This assumption is related to the Modal Truth Criterion [5]. See also [24], where
scheduling the concurrently executing plans of a single agent is used to recover from
action failures.

2 We assume a procedural interpretation of goals (‘goals to do’ rather than goals to
achieve a state). It is straightforward to adapt the definitions below for declarative
goals.

3 The goal-plan trees in [21,23,24] do not include parallel constructs.
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〈GoalType〉 ::= 〈GoalTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈Plans〉

〈GoalTypeName〉 ::= 〈Label〉
〈Plans〉 ::= 〈PlanTypeName〉 (, 〈PlanTypeName〉)∗

〈PlanType〉 ::= 〈PlanTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈PlanBody〉

〈PlanTypeName〉 ::= 〈Label〉
〈PlanBody〉 ::= 〈ExecutionStep〉 (; 〈ExecutionStep〉)∗

〈ExecutionStep〉 ::= 〈ActionTypeName〉 | 〈GoalTypeName〉
| (〈ExecutionStep〉 ‖ 〈ExecutionStep〉)

〈ActionType〉 ::= 〈ActionTypeName〉 〈Precondition〉 〈In-condition〉 〈Postcondition〉
〈ActionTypeName〉 ::= 〈Label〉

〈Precondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗

〈In-condition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗

〈Postcondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗

〈Condition〉 ::= 〈Statement〉 | NOT 〈Statement〉
〈Statement〉 ::= string | 〈Variable〉 = 〈Value〉

〈Label〉 ::= unique string
〈Variable〉 ::= unique string

〈Value〉 ::= string

〈GoalInstance〉 ::= 〈InstanceName〉 〈GoalType〉
〈PlanInstance〉 ::= 〈InstanceName〉 〈PlanType〉

〈ActionInstance〉 ::= 〈InstanceName〉 〈ActionType〉
〈InstanceName〉 ::= 〈Label〉

Fig. 1. BNF Syntax of goal-plan trees with actions

composition is supported by BDI agent systems such as JACK [20] and HTN-like
planning systems such as RETSINA [13].

Figure 1 shows the BNF syntax of our extended goal-plan trees. A GoalType
is a template for a goal. A GoalInstance is created when an agent chooses to
pursue a particular instance of goal-type. Similarly, a PlanType is a template
for a plan, and a PlanInstance is created when the agent executes a particular
plan. In addition, we introduce an ActionType as a template for an action, and
an ActionInstance is created when a particular action is chosen for execution by
the agent. GoalTypeName, PlanTypeName and ActionTypeName are labels that
indicate the type of the goal, the plan or the action respectively. Plans represents
the set of plan-types that may be used to satisfy a goal of the corresponding
GoalType.

Goals, plans and actions have pre-, in-, and postconditions. Pre- and post-
conditions specify respectively the states of the environment which must hold
immediately before the action, plan, or goal is executed, and which are brought
about by executing the action, plan, or goal. In-conditions specify the states of
the environment which must hold for the duration of the execution of the action,
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plan, or goal. In-conditions of plans and goals are thus relevant when their asso-
ciated actions are interleaved or overlapped, and in-conditions of actions are
relevant when they are overlapped.

We model the environment using a set of propositions Φ, and define pre-, in-
and postconditions of a goal-plan tree node η (an action, plan or goal) as sets of
literals (elements of Φ+ = Φ ∪ {¬p | p ∈ Φ}) as follows.

Precondition: a precondition is a set of literals φ = pre(η), φ ⊆ Φ+ that must
be true for η to begin execution (where η is an action or plan), or for η to be
achieved (where η is a goal).

In-condition: an in-condition is a set of literals υ = in(η), υ ⊆ Φ+ that must
hold during the execution of η (where η is an action or plan), or during the
pursuit of η (where η is a goal); if any of the literals in υ becomes false during
execution, the action, plan or goal is aborted with failure.

Postcondition: a postcondition (or effect) is a set of literals ψ = post(η),
ψ ⊆ Φ+ that are or may be made true by executing η (where η is an action
or plan), or by achieving η (where η is a goal).

We distinguish two types of pre-, in- and postconditions: necessary and con-
tingent. A necessary (or universal) condition must hold for all executions of an
action or plan or for all ways of achieving a goal, while a contingent (or exis-
tential) condition must hold for some executions of the action or plan or some
ways of achieving the goal. We denote the necessary and contingent precondi-
tions as pren(η) and prec(η), where η is an action, plan or goal, and stipulate
that pre(η) = pren(η) ∪ prec(η). Similarly, we denote necessary and contingent
in-conditions as inn(η) and inc(η), and necessary and contingent postcondi-
tions as postn(η) and postc(η), and stipulate that in(η) = inn(η) ∪ inc(η) and
post(η) = postn(η) ∪ postc(η). The necessary and contingent postconditions of
an action, plan, or goal are always disjoint, and the same applies to necessary
and contingent in-conditions, and to necessary and contingent preconditions.

While the relevant pre-, in- and postconditions form part of the definition of
an action, the conditions of plans and goals are derived from the conditions of
their actions and subgoals (in the case of plans) and from plans to achieve the
goal (in the case of goals). We give formal definitions of necessary and contingent
conditions for actions, plans, and goals in the sections below.

3.1 Actions

Actions are the basic steps an agent can perform in order to change its environ-
ment. Actions may be deterministic or non-deterministic. Deterministic actions
have a single outcome (postcondition), while the execution of a non-deterministic
action results in one of a set of possible outcomes (set of postconditions).

The precondition of an action α, pren(α) = φ, is always necessary (and
prec(α) = ∅). The in-condition of an action, inn(α) = υ, is also necessary
(and inc(α) = ∅). Deterministic actions have a single postcondition ψ. The
necessary postcondition of a deterministic action α is defined as postn(α) = ψ,
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and the contingent postcondition is defined by postc(α) = ∅. The execution
of a non-deterministic action results in one of a set of possible postcondi-
tions {ψ1, . . . , ψn}, ψi ⊆ Φ+. The necessary postcondition of a non-deterministic
action α is defined as postn(α) =

⋂
ψi ∈ {ψ1, . . . , ψn}, and the contingent post-

condition is defined by postc(α) =
⋃

ψi ∈ {ψ1, . . . , ψn}\postn(α).4 We assume
that action specifications are consistent in the sense that each possible out-
come of an action is itself consistent, i.e., that ψi �|= ⊥, 1 ≤ i ≤ n, and that
execution of an action does not invalidate the in-condition of the action, i.e.,
inn(α) ∪ postn(α) ∪ postc(α) �|= ⊥.5

3.2 Plans

A plan π consists of a sequence of actions, subgoals, and parallel compositions
of actions and subgoals. That is, a plan is of the form π = α1; . . . ;αm, where
each αi is either an action, a subgoal or a parallel composition β1‖ . . . ‖βk, where
each βi is either an action or a subgoal. In the interests of generality, we make
no assumptions about the execution of a parallel composition of actions and
subgoals: steps β1, . . . , βk may be executed in parallel, i.e., they may overlap in
any of the ways defined in [1], or their execution may be arbitrarily interleaved.
For example, if βi is an action and βj a subgoal, then βi may be interleaved
with the actions appearing in the goal-plan tree for βj . However, we require
that there are no conflicts between the pre-, in- and postconditions of β1, . . . , βk

and, as a result, the overall postcondition of the parallel composition is “stable”,
i.e., for each βi, βj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i �= j, the necessary and contingent
postconditions of βi must be consistent with the necessary and contingent pre-
in- and postconditions βj .

More precisely, the necessary postcondition of a parallel composition α =
β1‖ . . . ‖βk is defined as the union of the necessary postconditions of each of its
parallel steps (which, as above, are assumed to be “non-conflicting”):

postn(α) =
k⋃

i=1

postn(βi).

The contingent postcondition of a parallel composition is defined similarly,
except that we exclude any contingent postcondition literal of a step if it is
also a necessary postcondition of some other step, i.e.,

postc(α) =
k⋃

i=1

postc(βi)\postn(α).

However, the definition of the necessary pre- and in-conditions of a parallel
composition must to take into account the necessary and contingent postcondi-
4 Note that this means the necessary conditions of an action may differ from its con-

tingent conditions.
5 For entailment, we sometimes treat a a set of literals as the conjunction of the literals

in the set.
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tions of steps that may establish—by virtue of how steps may be interleaved or
overlapped—the pre- and in-conditions of other steps, i.e.,

conn(α) =
⋃

i∈{1,...,k}

(
conn(βi)\

⋃

j∈{1,...,k}\{i}
(postn(βj) ∪ postc(βj))

)
,

where con is either pre or in. That is, the necessary in-conditions of steps that
may be established by interleaving of other steps in the parallel composition are
not considered necessary. Finally, the contingent pre- (resp. in-) conditions of a
parallel composition are the contingent pre- (resp. in-) conditions of the parallel
steps, together with the necessary pre- (resp. in-) conditions of its steps that
may be established by other steps. That is, necessary in-conditions that may
be established by interleaving of other steps in the parallel composition become
contingent. Formally, we define

conc(α) =
k⋃

i=1

(
conc(βi) ∪ conn(βi)

)\conn(α),

where con is either pre or in.
We can now define the necessary and contingent pre-, in- and postconditions

of plans. The necessary precondition of a plan π = α1; . . . ;αm is defined as

pren(π) = pren(α1) ∪
m⋃

i=2

⎡

⎣pren(αi)\
i−1⋃

j=1

postn(αj) ∪ postc(αj)

⎤

⎦ ,

that is, the necessary preconditions of steps that are not established by the
necessary or contingent postconditions of previous steps. Necessary preconditions
must hold for all executions of π.6 Note that we do not assume that a plan
establishes all the preconditions of the steps in the plan. For example, a plan to
make coffee may assume that the agent is in the kitchen and that there is coffee
in the kitchen. However, we do assume that each plan π ensures a ‘free-choice’
among its ‘descendant’ plans (plans that achieve the subgoals of π). For example,
a plan to make coffee should not cause the agent to leave the kitchen before the
coffee is made, as that would then invalidate one or more subplans, e.g. one that
grinds the coffee. More precisely, for any step αk in a plan π = α1; . . . ;αn,
if there is an earlier step αi (i < k) and a literal l ∈ postn(αi) such that
∼ l ∈ pren(αk)∪prec(αk)∪ inn(αk)∪ inc(αk), then there is also an intermediate
step αj (i < j < k) with ∼ l ∈ postn(αj) ∪ postc(αj), where ∼ l = ¬p if l = p
and ∼ l = p if l = ¬p.

If π contains non-deterministic actions or subgoals, it may also have contin-
gent preconditions, i.e., preconditions which may have to be established depend-
ing on the outcome of a non-deterministic action (if the outcome of the action
6 As we are concerned with the executability of plans rather than their applicability

in a particular context, we do not include the context condition (belief context) of
a plan specified by a developer to be part of its precondition. However, in a well-
formed plan, the necessary precondition should form (part of) the context condition
of the plan.
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fails to achieve the precondition of a later action in the plan) or the choice of plan
to achieve a subgoal. Thus, the contingent precondition of a plan π = α1; . . . ;αm

is defined as prec(π) = prec(α1) ∪
m⋃

i=2

⎡

⎣
(
prec(αi)\

i−1⋃

j=1

postn(αj)
)

∪
((

pren(αi)\
i−1⋃

j=1

postn(αj)
) ∩

i−1⋃

j=1

postc(αj)
)
⎤

⎦.

That is, the possible preconditions of each step not established by necessary
postconditions of previous steps, and the necessary preconditions of each step
that are (possibly) established by contingent postconditions of previous steps,
but not by their necessary postconditions. Observe that sets pren(π) and prec(π)
are mutually exclusive by definition.

The necessary in-condition of a plan π = α1; . . . ;αm is defined as

inn(π) =
m−1⋃

i=1

(inn(αi) ∩ inn(αi+1)).

That is, a necessary in-condition of a plan π is an in-condition that is necessary
for two or more consecutive steps in π. The rationale for this definition arises
from the role of in-conditions in scheduling. The in-condition of an action α
specifies which other actions may be scheduled in a parallel with the action
without negative interactions—only actions α′ whose postcondition does not
result in a negative interaction with the in-condition of α may be scheduled in
parallel with α. When reasoning with summary information at the plan level, we
seek to detect situations where the parallel or interleaved execution of actions
in a plan π′ may result in a negative interaction between the postcondition of
an action in π′ and the in-condition of actions in π′.

The contingent in-condition of a plan π = α1; . . . ;αm is defined as

inc(π) =
m⋃

i=1

(
inc(αi) ∪ inn(αi)

)\inn(π).

Finally, we define the necessary and contingent postconditions of a plan. The
necessary postconditions of a plan π = α1; . . . ;αm is defined as

postn(π) = {l | ∃i : l ∈ postn(αi)∧∀j ∈ {i, . . . , m} :∼ l �∈ postn(αj)∪postc(αj)}.

That is, the necessary postconditions of each step not ‘undone’ by the necessary
or contingent postconditions of later steps. The contingent postcondition of a
plan π = α1; . . . ;αm is defined as postc(π) = post1c(π) ∪ post2c(π), where

post1c(π) = {l | ∃i : l ∈ postc(αi) ∧ ∀j ∈ {i, . . . , m} :∼ l �∈ postn(αj)}
and

post2c(π) = {l | ∃i : l ∈ postn(αi) ∧
∃j ∈ {i, . . . ,m} :∼ l ∈ postc(αj) ∧
∀j ∈ {i, . . . ,m} :∼ l �∈ postn(αj)}.
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That is, the contingent postcondition of a plan is either a contingent post-
condition of a step that is not ‘undone’ by the necessary postcondition of a later
step, or a necessary postcondition of a step that may be ‘undone’ by a contin-
gent postcondition of a later step. Observe that sets postn(π) and postc(π) are
mutually exclusive by definition.

3.3 Goals

A goal γ is associated with a set of plans π1, . . . , πn that achieve γ, and the pre-,
in- and postconditions of γ are derived from this set of associated plans. For
simplicity, we stipulate that goals with the same GoalType as γ do not appear
in the goal-plan tree rooted at γ.7

The necessary pre-, in- and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conn(γ) =
n⋂

i=1

conn(πi),

where con is either pre, in or post . That is, necessary pre-, in-, or postconditions
must hold respectively before, during, or after all ways of achieving γ.

The contingent pre-, in-, and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conc(γ) =
n⋃

i=1

conc(πi) ∪
⎡

⎣
n⋃

j=1

conn(πj)\conn(γ)

⎤

⎦

where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ).

The definitions above capture the relationship between the pre-, in- and
postconditions of actions, plans and goals in a goal-plan tree. The conditions for
actions define which propositions must be true before, during and after either all
executions of an action (necessary conditions), or some execution of the action
(contingent conditions). The conditions for plans define which propositions must
be true before, during and after either all executions of a plan, or some execution
of the plan. The necessary preconditions of a plan specify the states in which the
plan is applicable. The conditions for goals define which propositions must be
true before, during and after either all means of achieving a goal or some means
of achieving a goal.

7 This is a standard assumption in computing summary information e.g., [6,7,16,17].
The assumption can be relaxed, but the definitions of conditions below become more
complex.
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4 Execution Conditions

In the previous section, we defined the necessary and contingent conditions for
the execution of a single goal-plan tree. In this section, we consider information
relevant to the execution of a set of goal plan trees.

If an agent always executes at most one goal-plan tree at a time, e.g., it exe-
cutes its intentions in first-in-first-out order, then the execution conditions are
the same as those given in Sect. 3. However, in many application domains, an
agent’s goal-plan trees comprising a system or an agent’s user supplied domain
knowledge are executed in parallel. For example, in many BDI agent architec-
tures, the plans comprising the agent’s intentions are executed in parallel, e.g.,
by executing one step of an intention at each cycle in a round robin fashion [3,20].
Interactions between interleaved steps in plans in different goal-plan trees may
result in conflicts, i.e., the execution of a step in one plan makes the execution
of a step in another concurrently executing plan impossible.

Given a set of goal-plan trees, the scheduling problem is to determine which
step of which goal-plan tree to execute next, so as to minimise the number of
execution conflicts.8 Scheduling aims to minimise the number of plan failures
resulting from choices made by the agent regarding the order of execution of a
set of goal-plan trees, thus allowing the largest number of goals to be achieved.9

Our aim here is not to solve the scheduling problem; for example, we do not con-
sider the problem of which plan an agent should adopt for a given (sub)goal—this
is the concern of deliberation scheduling. Rather, we focus on defining conditions
that must or may hold on all possible future executions of a set of goal-plan trees.
As such, the conditions we define should be taken into account by any sched-
uler, but are neutral with respect to the actual form of deliberation scheduling
adopted. It turns out that, in our setting, the information relevant for schedul-
ing differs from the conditions on the wellformedness of a goal-plan tree defined
in the previous section. The definitions of execution conditions below therefore
depart from those in, e.g., [15,16].

To define the execution conditions for a goal-plan tree, we need some auxiliary
notions. Given a set of goal-plan trees T = {τ1, . . . , τn}, an execution context
for T is a set of pairs I = {(τ1, ρ1), . . . (τn, ρn)}, where each ρi defines the
set of possible future execution paths for τi. Each ρi corresponds to the point
execution has reached in the goal-plan tree τi, and hence the possible paths
future execution of τi may follow. (I essentially corresponds to the intentions of
a BDI agent.) Initially, each ρi points to the top-level goal of the corresponding

8 Scheduling may also be used to maximise the number of positive interactions between
goal-plan trees, as in, e.g., [17,24]; we do not consider positive interactions here.

9 Plans may fail for reasons that are outside the control of the agent, e.g., due to
changes in the environment, or actions of other agents violating the conditions of
a plan. Several approaches, e.g., [18,19,21] have been proposed which attempt to
avoid such failures. However, the information about goal-plan trees required by these
approaches (essentially the the percentage of world states for which there is some
applicable plan for any subgoal within an intention) is different from that required
for scheduling, and we do not consider them further here.



186 Y. Yao et al.

goal-plan tree τi. As execution of τi proceeds, plans are selected, restricting the
possible future execution paths to a subtree of τi captured by ρi. In the interests
of brevity, and where no confusion can arise, we shall refer to possible future
execution paths simply as possible execution paths.

An initial set of possible execution paths ρ0 for a goal-plan tree τ is a
sequence (πi, α1), . . . , (πi, αk), where πi = α1; . . . ;αk is the selected plan for
the top-level goal of τ . As execution progresses, a set of possible execution
paths ρ = (π1, α1), (π2, α2), . . . , (πm, αm) evolves as follows. The successor set
of possible execution paths ρ′ of ρ is (π2, α2), . . . , (πm, αm) if α1 is an action,
and ρ′ = (π′

1, α
′
1), . . . , (π

′
1, α

′
n), (π2, α2), . . . , (πm, αm) if α1 is a subgoal γ1 and

π′
1 = α′

1; . . . ;α
′
n is the plan selected for γ1. Only sets of possible execution paths

which are the initial set of possible execution paths in τ (corresponding to the
top-level of goal of τ) or are obtained by the progression step described above
are sets of possible execution paths in τ .

We can now define the necessary and contingent execution conditions of an
execution context. Informally, the necessary execution conditions of a set of
possible execution paths ρi, are those conditions that must hold or be achieved
at some point in all possible future executions of a goal-plan tree τi starting from
ρi, and the contingent execution conditions are those conditions that must hold
or be achieved at some point of time in at least one possible future execution
(but not all executions) of τi starting from ρi. When executing the set of goal-
plan trees in T in parallel, such execution conditions must be protected—if the
execution conditions of two sets of possible execution paths ρi and ρj intersect,
then interleaving steps in ρi and ρj may result in conflicts.

4.1 Actions

As actions are atomic, the necessary and contingent execution conditions of an
action α are identical to the corresponding necessary and contingent conditions
for α (we denote execution conditions with a ∗):

con∗
n(α) = conn(α) con∗

c(α) = conc(α)

where con∗
n and conn are either pre∗

n and pren , in∗
n and inn or post∗

n and postn
respectively, and similarly con∗

c and conc are either pre∗
c and prec , in∗

c and inc

or post∗
c and postc.

4.2 Plans

The necessary and contingent execution conditions of a plan π differ from the
corresponding necessary and contingent conditions for π. As steps in plans in
different goal-plan trees may be arbitrarily interleaved, we need to protect all
the preconditions in a plan, even if they are established by a preceding step in
the same plan, as the condition may be invalidated by a step in a plan in another
goal-plan tree.
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The necessary execution pre-, in- and postcondition of a parallel composition
α = β1‖ . . . ‖βk is therefore the union of the necessary execution conditions of
each βi, i.e.,

con∗
n(α) =

k⋃

i=1

con∗
n(βi)

where con∗
n is either pre∗

n , in∗
n or post∗

n.
The contingent pre-, in- and post- execution conditions of a parallel compo-

sition is also defined as the union of contingent execution conditions of each βi,
except that we exclude any contingent postcondition literal of a step if it is also
a necessary postcondition of some other step, i.e.,

con∗
c(α) =

k⋃

i=1

con∗
c(βi)\con∗

n(α).

The necessary and contingent execution preconditions of a plan (or plan
suffix) π = α1; . . . ;αm are therefore given by

pre∗
n(π) =

m⋃

i=1

pre∗
n(αi) pre∗

c (π) =
m⋃

i=1

pre∗
c (αi)\pre∗

n(π).

Similarly, the postconditions of interest are no longer the ‘eventual’ postcon-
ditions of the plan, since the postcondition of an action αi ‘undone’ by a later
step αj , i < j in π may be ‘visible’ to a step in a plan in another goal-plan tree.
The necessary and contingent execution postconditions of π are therefore given
by

post∗
n(π) =

m⋃

i=1

post∗
n(αi) post∗

c(π) =
m⋃

i=1

post∗
c(αi)\post∗

n(π).

In contrast, the necessary and contingent execution in-conditions of π are
the same as the necessary and contingent in-conditions of π: in∗

n(π) = inn(π),
in∗

c(π) = inc(π). (Since inn(π) and inc(π) define conditions that must hold
between the execution of steps in π, they also apply to the interleaving of plan
steps.)

4.3 Goals

As with plans, the necessary and contingent execution conditions of a goal γ
associated with plans π1, . . . , πn differ from the corresponding necessary and
contingent conditions for γ. (The conditions of goals are defined in terms of the
conditions of their associated plans.)

The necessary pre-, in- and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗
n(γ) =

n⋂

i=1

con∗
n(πi),
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where con is either pre, in or post . That is, necessary pre-, in-, or post- execution
conditions must hold respectively before, during, or after all ways of achieving γ.

The contingent pre-, in-, and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗
c(γ) =

n⋃

i=1

con∗
c(πi) ∪

⎡

⎣
n⋃

j=1

con∗
n(πj)\con∗

n(γ)

⎤

⎦ ,

where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ).

4.4 Sets of Execution Paths

We can now define the necessary and contingent execution conditions of a set of
possible execution paths ρ = (π1, α1), . . . , (πk, αk) of a goal-plan tree τ . These
conditions can be used to reason about possible conflicts that may arise in the
execution of each pair of goal-plan trees in a set of goal-plan trees.

The necessary execution precondition of a set of possible execution paths ρ
is given by

pre∗
n(ρ) =

k⋃

i=1

pre∗
n(αi).

That is, we must protect the necessary preconditions of all steps in ρ. The
contingent execution precondition of ρ is given by

pre∗
c (ρ) =

k⋃

i=1

pre∗
c (αi)\pre∗

n(ρ).

Contingent preconditions are those that may need to be established during exe-
cution, depending on the choice of plan to achieve a goal.

The necessary execution in-condition of a set of possible execution paths ρ
is given by

in∗
n(ρ) =

k⋃

i=1

in∗
n(αi) ∪

k⋃

i=1

inn(πi).

That is, we must protect the in-conditions of all steps in ρ, and in addition we
also need to protect the in-conditions of all currently executing plans in ρ. The
contingent execution in-condition of ρ is given by

in∗
c(ρ) =

k⋃

i=1

in∗
c(αi) ∪

k⋃

i=1

inc(πi)\in∗
n(ρ).
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The necessary and contingent execution postconditions of a set of possible
execution paths ρ is given by

post∗
n(ρ) =

k⋃

i=1

post∗
n(αi) post∗

c(ρ) =
k⋃

i=1

post∗
c(αi)\post∗

n(ρ).

Finally, the necessary execution conditions of a set of possible execution paths
ρ are given by

cond∗
n(ρ) = pre∗

n(ρ) ∪ in∗
n(ρ) ∪ post∗

n(ρ),

and the contingent execution conditions of ρ are given by

cond∗
c(ρ) = pre∗

c (ρ) ∪ in∗
c(ρ) ∪ post∗

c(ρ).

Conflicts may occur when we have complementary literals in the execution
conditions of two sets of possible execution paths, ρi and ρj , i.e., when

∃ l ∈ cond∗
x(ρi) ∧ ∼ l ∈ cond∗

x(ρj),

where cond∗
x is either cond∗

n or cond∗
c . Clearly, there are different cases. For

example, conflicts between the necessary execution conditions of two execution
paths may be a more serious problem than conflicts between contingent execution
conditions.

If no conflicts (as defined above) occur between two sets of possible execu-
tion paths ρi and ρj , then the next step in either (or both) ρi and ρj may be
safely executed. On the other hand, if there are conflicts between the two sets of
possible execution paths, then we could still interleave their execution such that
they do not interfere with one another, e.g., by borrowing techniques from [16].
For example, if the conflict between ρi and ρj is due to complementary literals
in in∗

n(ρi) and post∗
n(ρj), then we could delay the execution of ρj until ρi pro-

gresses to a point where there is no longer a conflict with ρj . This is because ρj
might otherwise interfere with the in-condition of a plan that is currently being
pursued.10 If the conflict between ρi and ρj is due to complementary literals in
pre∗

c (ρi) and post∗
c(ρj), an optimistic approach would be to first execute ρj until

it progresses to a point where a conflict no longer occurs with ρi, and only then
begin executing ρi. This assumes that either execution of ρj does not actually
bring about the conflicting literal, or that if it is brought about, execution of
ρi is such that the conflicting contingent precondition is not required, or a step
within ρi itself asserts the negation of the conflicting literal.

10 Note that if ρi and ρj are considered in order of the priority of the associated top-
level goal (or ties are broken arbitrarily), deadlock (as defined in [15,16]) cannot
arise, even if there are complementary literals in in∗

n(ρj) and post∗
n(ρi). However,

this may result in conditions of the lower priority set of possible execution paths
being violated. In such cases, more sophisticated intention scheduling techniques,
e.g., [21,22] may be able to find an interleaving that protects the conditions of both
sets of possible execution paths.
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5 Conclusion and Future Work

This paper has provided definitions of pre-, in-, and postconditions of actions,
plans, and goals, for an extended goal-plan tree that supports the execution of
steps (goals and actions) in parallel, as well as the specification of both deter-
ministic and non-deterministic actions. Our definitions essentially capture ‘sta-
tic’ and ‘dynamic’ notions of conditions, which are derived from the primitive
ones specified within the basic actions that form plans. We believe that ‘static’
properties defined by our notions will facilitate authoring agent programs, partic-
ularly because it is important to know the properties of the individual “building
blocks” (goal-plan trees) that are available when composing a new plan. Our
‘dynamic’ notion of execution conditions specify those conditions that must be
protected by any scheduler when interleaving two or more goal-plan trees.

We foresee two main directions for future work. First, we could allow for a
step in a plan to necessarily invalidate one or more (though not all) ‘descendant’
(sub)plans of a later step, and accordingly extend our notions of the necessary
and contingent postconditions of a plan. This extension would involve identifying
which postconditions in the later step are never asserted due to the conflict (and
are thereby neither necessary nor contingent postconditions), and which ones are
always asserted due to the conflict, by virtue of certain descendant plans always
being inapplicable. Second, we could explore how to generate a schedule for
interleaving two or more goal-plan trees while respecting execution conditions.
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Abstract. There are many examples where large amount of data might
be potentially accessible to an agent, but the agent is constrained by
the available budget since access to knowledge bases is subject to fees.
There are also several activities that an agent might perform on the web
where one or more stages imply the payment of fees: for instance, buy-
ing resources in a cloud computing context where the objective of the
agent is to obtain the best possible configuration of a certain application
withing given budget constraints. In this paper we consider the software-
engineering problem of how to practically empower agents with the capa-
bility to perform such kind of reasoning in a uniform and principled way.
To this aim, we enhance the ACE component-based agent architecture
by means of a device for practical and computationally affordable quan-
titative reasoning, whose results actually determine one or more courses
of agent’s actions, also according to policies/preferences.

1 Introduction

There are many examples where large amount of data might be potentially
accessible to an agent, but the agent is constrained by the available budget since
access to knowledge bases is subject to fees. There are also several activities that
an agent may perform on the web on behalf of an user where one or more stages
imply the payment of fees. An important example is that of buying resources in
a cloud-computing context, where the objective of the agent is to obtain the best
possible configuration for performing certain tasks in the sense of maximizing
performance and minimizing costs, that can anyway stay withing given budget
constraints. The work [33] identifies the problem that an agent faces when it has
limited budget and costly queries to perform. In order to model such situations,
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the authors propose a special resource-aware modal logic so as to be able to
represent and reason about what is possible to do with a certain available budget.
The logic can be adapted to reason separately about cost and time limitation,
though an integration is envisaged. Interesting as it is, this work constitutes a
good starting point but it presents two problems: (i) such kind of modal logic is
computationally hard (though this aspect is not discussed in the aforementioned
paper) and thus it can hardly constitute the basis for practical tools; (ii) the
axiomatic system of [33] allows one to prove that something can or cannot be
achieved within a certain cost. However, an agent needs, in general, to become
aware of how goals might possibly be achieved, and should be enabled to choose
the best course of action according to its own policies/preferences.

In this paper we tackle some issues related to this problem. First, we consider
the software-engineering problem of how to practically empower agents with the
capability to perform such kind of reasoning in a uniform and principled way.
Second, we consider the adoption of a reasoning device that enables an agent,
which may have several costly objectives, to establish which are the alternative
possibilities within the available budget, and to select, based upon its preferences,
the goals to achieve and the resources to spend, and finally to implement its
choice.

Concerning the first aspect, we enhance the Agent Computational Environ-
ment (ACE) framework [13], which is a software engineering methodology for
designing intelligent logical agents in a modular way. Therefore, in this paper we
refer to agent-oriented languages and frameworks which are rooted in Compu-
tational Logic. Modules composing an agent interact, in ACE, via bridge rules
in the style of the Multi-Context Systems (MCS) approach [7,8,10]. Such rules
take the form of conjunctive queries where each conjunct constitutes a sub-
query which is posed to a specific module. Thus, the result is obtained by com-
bining partial results obtained from different sources. The enhancements that
we propose here for ACE are based upon the flexible agent-tailored modali-
ties for bridge rules application and for knowledge elaboration defined for the
DACMACS framework (Data-Aware Commitment-based managed Multi-Agent-
Context Systems), which is aimed at designing data-aware multi-agent-context
systems [14,15]. There, bridge rules are proactively triggered upon specific con-
ditions and the obtained knowledge is reactively elaborated via a management
function which generalizes the analogous MCS concept.

Second, we extend ACEs so as to include modules for specialized forms of
reasoning, including quantitative reasoning. For this kind of reasoning we sug-
gest to adopt the RASP framework [16,17,19], which is based upon Answer Set
Programming (ASP) and hence it is computationally affordable and reasonably
efficient. We show the suitability of such approach by discussing a case study,
that will constitute the leading example throughout the paper.

A strong innovation that this paper proposes is that, after obtaining from
a reasoning module the description of possible courses of actions, bridge rules
“patterns” can be specialized and activated so as to put them into action. This
feature is made possible by an enhanced flexible ACE semantics.
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The resulting framework can be seen as a creative blend of existing technolo-
gies, with some relevant formal and practical extensions. Partially specified bridge
rules and their dynamic customization and activation is an absolute novelty and
constitutes a relevant advance over MCSs versions, applications and extensions:
in fact, bridge rules have been so far conceived as predefined, ground and not
amenable to any adaptation. Beyond quantitative reasoning, such more general
bridge rules may constitute a powerful flexible device in many applications.

The paper is organized as follows. Section 2 presents a case study that will
constitute the leading example throughout the paper. In Sect. 3 we discuss the
quantitative reasoning device we suggest to exploit. Sections 4 and 5 present the
enhanced ACE framework and illustrate, on the case study, the dynamic cus-
tomization of bridge rules. Section 6 introduces the extended ACE semantics and
for completeness we provide in Sect. 7 an actual RASP formalization. Concluding
remarks are given in Sect. 8.

2 Specification of the Case Study

In this section we provide the specification of a case study which we will adopt
in the rest of the paper for the illustration of the proposed enhancements to
the ACE framework. In Sect. 7 we will present a realistic implementation in a
specific existing approach for quantitative reasoning, shortly introduced in the
next section.

We consider a student, that will be represented by an agent which can be seen
as her “personal assistant agent”. Upon completing the secondary school, she
wishes to apply for enrollment to an US university. Each application has a cost,
and the tuition fee will have to be paid in case of admission and enrollment. The
student has an allotted maximum budget for both. Thus the agent, on behalf
of the student, has to reason about: (i) the universities to which an application
will be sent; (ii) the university where to enroll, in case a choice can be made.

Actually, the proposed case study is seen as a prototype of a wide number of
situations where two kinds of quantitative reasoning are required:

1. The cost of knowledge, as in practical terms a student applies in order to
know whether she is admitted.

2. Reasoning under budget limits, as a student may send an application only if:
(i) she can afford the fees related to the application; (ii) in case of admission,
she can then afford the tuition fees.

If a solution is found considering her preferences and her budget, she will
then be able to apply and, if admitted, to enroll. In case more than an option is
available, a choice is required so as to select the “best” one according to some
criteria.

Without any pretension to precision, we consider the steps that a student
has to undergo in order to apply for admission:

1. Pass the general SAT test.
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2. Pass the specific SAT test for the subject of interest (such as Literature,
Mathematics, Chemistry, etc.)

3. In case of foreign students, pass the TOEFL test.
4. Fill the general application on the application website (that we call

collegeorg).
5. Send the SAT results to the universities of interest.
6. Complete the application for the universities of interest.

All these steps are subject to the payment of fees, which are fixed (the fee
is independent of the university) for steps 1–4 and depend upon the selected
university for steps 5–6. In the example we assume that the student has a budget
for the application (say 1500 US dollars) and a limit about the tuition fee she is
able to pay (say 22000 US dollars per year). However, she has a list of preferred
universities, and within such list she would apply only to universities whose
ranking is higher than a threshold. Additionally, since she likes basketball, all
other things being equal (ceteris paribus) she would prefer universities with the
best rankings of the basketball team.

3 Resource-Based Reasoning

In the case study, the student’s personal assistant agent needs the support of
some kind of quantitative reasoning module. Such module should in general be
able to provide the agent, given one or more objectives, with a description of
the different ways of achieving the objectives while staying within a budget.
A desirable property of the reasoner would be that of allowing preferences and
constraints to be expressed about objectives to achieve and modalities for achiev-
ing them. A mandatory requisite is the ability to perform such reasoning in a
computationally affordable way.

In knowledge representation and reasoning, forms of quantitative reasoning
are possible, for example, in Linear Logics and Description Logics. For Linear
Logic in particular, several programming languages and theorem provers based
on its principles exist (cf. [16] for a discussion). In this paper we adopt RASP
(Resource-based ASP) [17,19], which has in fact been proven in [18] to be equiv-
alent to an interesting fragment of Linear Logic, specifically, to an empowered
Horn fragment allowing for a default negation that Linear Logic does not provide
(though still remaining within an NP-complete framework). RASP extends ASP,
which is a well-known logic programming paradigm where a program may have
several “models”, called “answer sets”, each one representing a possible interpre-
tation of the situation described by the program (cf., among many, [29]). In par-
ticular, RASP explicitly introduces in ASP the notion of resource, and supports
both formalization and quantitative reasoning on consumption and production
of resources. RASP also provides complex preferences about spending resources
(and in this it is different from the several approaches to preferences that have
been defined for ASP, see e.g., [2,6,11,25] and the references therein). Compared
with the “competitors”, RASP represents possible different uses of a resource
and non-determinism in general by means of different answer sets, rather than
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exploring the various possibilities via backtracking in a Prolog-like fashion. The
RASP inference engine is based upon publicly available ASP solvers [35] that are
remarkably well-performing and subject of intensive research and development.
After the seminal work of [34] one can mention [1,22,26,28,31,32], among the
most recent developments. Specifically, RASP execution is based upon a front-
end module called Raspberry which translates RASP programs (via a non-trivial
process, see [19] for the details) into ASP. The resulting program can be executed
by common ASP solvers.

As a side note, we observe that the clasp ASP solver allows one to add exter-
nal functions to ASP programs. This is done by defining deterministic functions
in a scripting language such as lua or python. Relying on this possibility, one
might envisage a re-implementation of the RASP framework exploiting such fea-
ture of this specific ASP solver, instead of performing a translation from RASP
into ASP, as done in Raspberry. Another recently proposed extension of ASP is
H-ASP [12], where propositional reasoning is combined with external sources of
numerical computation. The main aim of H-ASP is to allow users to reason about
a dynamical system by simulating its possible evolutions along a discretized time-
line. The external computations are used to compute the system transitions and
may involve both continuous and discrete numerical variables. The expressive
power of the resulting framework directly depends on the kind of numerical
tasks one integrates, and the computational complexity can exceed NP. Clearly,
thanks to the generality of ACE, one could integrate modules based on H-ASP
in the ACE framework, similarly to what done for RASP. However, in the case
of RASP we stay within NP and directly rely on common “pure-ASP” engines
without the need of integrating (and encoding) further computational services.

We are not aware of other reasoning frameworks that combine logic and
quantitative techniques, apart from the one proposed in [33], which however is
not implemented and, as mentioned, in its present form can hardly admit a com-
putationally affordable version. So, there is nowadays no competitor approach
to RASP in practical logic-based quantitative reasoning and its applications in
agent systems.

4 Enhancing the ACE Framework

The ACE framework as defined in [13] considers an agent as composed of:
(1) the “main” agent program;
(2) a number of Event-Action modules for Complex Event Processing;
(3) a number of external contexts the agent can access in order to gather

information.
ACE is therefore a highly modular architecture, where the composing mod-

ules communicate via bridge rules (to be seen below) in the style of Multi-
Context Systems (MCSs) [7,8,10]. MCSs constitute in fact a particularly inter-
esting approach for modeling information exchange among heterogeneous sources
because, within a neat formal definition, it is able to accommodate real hetero-
geneity of sources by explicitly representing their different representation lan-
guages and semantics. The same holds for ACEs, where: external contexts are
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understood as in MCS, i.e., they can be queried but cannot be accessed in
any other way; and where “local” agent’s modules (main agent program and
event-action modules) can be defined in any agent-oriented computational-logic-
based programming language, such as, e.g., DALI, AgentSpeak, GOAL, 3APL,
METATEM, KGP, etc. (see [3–5,20,21,24,27,30] and the references therein), or
also in other logic formalisms such as, e.g., ASP (see [29] and the references
therein).

In the present setting, we augment the framework with a set of Reasoning
Modules, say R1, . . . , Rq, q ≥ 0, that we see as specialized modules which are
able to perform specific forms of reasoning by means of the best suitable formal-
ism/technique/device. Among such modules we may have quantitative reasoning
modules. Therefore, an (enhanced) Agent Computational Environment A is now
defined as a tuple

〈
A,M1, . . . ,Mr, C1, . . . , Cs, R1, . . . , Rq

〉

where module A is the “basic agent”, i.e., an agent program written in any
agent-oriented language. The “overall” agent is obtained by equipping the basic
agent with the following facilities. The Mis are “Event-Action modules”, which
are special modules aimed at Complex Event Processing, that allow the agent to
flexibly interact with a complex changing environment. The Rjs are “Reasoning
modules”, which are specialized in specific reasoning tasks. The Cks are contexts
in the sense of MCSs, i.e., external data/knowledge sources that the agent is able
to query about some subject, but upon which it has no further knowledge and
no control: this means that the agent is aware of the “role” of contexts in the
sense of the kind of knowledge they are able to provide, but is unable in general
to provide a description of their behavior/contents or to affect/modify them in
any way.

Interaction among ACE’s components occurs via bridge rules, inspired by
those in MCS. They can be seen as Datalog-like queries where however each
sub-query can be posed to a different module. In MCS, bridge rules have, in
general, the following form:

s ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm).

The meaning is that the rule is applicable and s can thus be added to the
consequences of a module’s knowledge base whenever each atom pr, r ≤ j,
belongs to the consequences of module cr (that can be a context or an event-
action module, or the basic agent), while instead each atom pw, j < w ≤ m, does
not belong to the consequences of cw. Practical run-time bridge-rule applicability
will consist in posing query pi to context ci. In case for some of the cis the
context is omitted, then the agent is querying its own knowledge base. The part
(c1 : p1), . . . , (cj : pj) is the positive body of the rule, while the remaining part is
the negative body.

We introduce the following restriction on bridge rules bodies: the basic agent
A can query any other module (and, clearly, if it is situated in a MAS context
it can communicate with other agents according to some kind of protocol). The
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Mis and the Ris can query external contexts and the basic agent. Contexts can
only query other contexts, i.e., they cannot access agent’s knowledge. We also
assume (for simplicity and without loss of generality) that bridge-rule heads are
unique, i.e., there are never two bridge rules with the same head.

In Managed MCSs the conclusion s, which represents the “bare” result of the
application of the bridge rule, becomes o(s) where o is a special operator, whose
semantics is provided by a module-specific management function. The meaning
is that the result computed by a bridge rule is not blindly incorporated into
the “target” module knowledge base. Rather, it is filtered, adapted, modified
and elaborated by an operator that can possibly perform any elaboration, e.g.
evaluation, format conversion, belief revision. To the extreme, the new knowledge
item can even be discarded if not deemed to be useful.

In the basic agent we adopt, with suitable adaptations, the special agent-
oriented modalities introduced in DACMACS. There, bridge-rule activation and
management-function application has been adapted to the specific nature of
agent systems. First, while bridge rules in MCSs are conceived to be applied
whenever applicable (they can be seen, therefore, as a reactive device), DAC-
MACS provides a proactive application upon specific conditions. Second, the
incorporation of bridge rule results via the management function is separated
from bridge-rule application. In particular, bridge-rule application is determined
by a trigger rule of the form

Q enables A(x̂)

where: Q is a query to agent’s internal knowledge-base and A(x̂) is the conclusion
of one of agent’s bridge rules. If query Q (the “trigger”) evaluates to true, then
the bridge rule is allowed to be applied. A trigger rule is proactive in the sense
that the application of a bridge rule is enabled only if and when the agent during
its operation concludes Q. The bridge rule will be actually applied according to
agent’s internal control modalities, and will return its results in x̂. The result(s)
x̂ returned by a bridge rule with head A(x̂) will then be exploited via a bridge-
update rule of the following form (where β(x̂) specifies the operator, management
function and actions to be applied to x̂):

upon A(x̂) then β(x̂)

We propose a relevant improvement concerning bridge rules. In particular, in
MCSs bridge rules are by definition ground, i.e., they do not contain variables:
in [9], it is literally stated that [in their examples] they “use for readability and
succinctness schematic bridge rules with variables (upper case letters and ‘ ’ [the
‘anonymous’ variable]) which range over associated sets of constants; they stand
for all respective instances (obtainable by value substitution)” where however
such “placeholder” variables occur only in the pis while instead the cis (contexts’
names) are constants. This is a serious expressive limitation, that we have tackled
in related work. In fact, we admit variables in both the pis in bridge-rule bodies
and in the head s, to be instantiated at run-time by the queried contexts. We
also admit contexts in the body to be selected from a directory according to
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their role. Here, we propose a further relevant enhancement: we allow contexts
occurring in the body of the bridge rules of the main agent A to be instantiated
via results returned by ACE’s other modules. Such bridge rules will have this
form:

s ← (C1 : p1), . . . , (Cj : pj), not (Cj+1 : pj+1), . . . , not (Cm : pm).

where each Ci can be either a plain constant (as before) or an expression of the
form mi(ki) that we call context designator, which is a term where mi can be
seen as a(n arbitrary) meta-function indicating the required instantiation, and
ki is a constant that can be seen as analogous to a Skolem constant. Such term
indicates the kind of context to which it must be substituted before bridge-
rule execution, so it might be, for instance, university(u), student data(sd),
treatment database(d), diagnostic expert system(de). There is no fixed format,
rather it is intended as a designation of the required-for knowledge source, that
can be either a knowledge repository or a reasoning module.

A bridge rule including context designators will be indicated as a bridge rule
pattern, as it stands for its versions obtained by substituting the designators with
actual contexts’ names. Bridge-rule instantiation may be performed by an agent
also by means of bridge-update rules, that are in charge of replacing designators
with actual suitable knowledge sources. We assume that bridge-update rules’
conclusions β(x̂) are, in general, conjunctions, possibly including actions of the
following distinguished forms:

(i) record(Item), which simply adds Item to A’s knowledge base; Item can be
either the “plain” bridge-rule result, or it can be obtained by processing
such result via the evaluation of other atoms in β(x̂);

(ii) incorporate(Item), which performs some more involved elaboration for
incorporating Item into A’s knowledge base. Notice that incorporate is
meant as a distinguished predicate, to be defined according to the specific
application domain; in particular, it is intended to implement some proper
form of belief revision.

(iii) instantiate(S ,mi(ki),L) which, for every bridge rule ρ with head matching
with S, considers the context designator mi(ki) and a list L of constants,
and generates as many instances of ρ as obtained by substituting mi(ki)
(wherever it occurs) by elements of L. A bridge rules will be potentially
applicable whenever all contexts in its body are constants, i.e., whenever
all context designators, if present, have been replaced by actual contexts’
names.

(iv) enable(S ,Q), which enables the application of a potentially applicable
bridge rule ρ whose head matches with S and with associated trigger rule of
the form Q enables S. It does so by generating its trigger, i.e., by adding
Q as a new fact.

The combination of the introduction of both context designators and the
instantiate actions extends the expressiveness of the bridge-rule approach: even
allowing variables in place of contexts’ names would not allow for the specific
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customization performed here. The purpose of defining context designators as
terms is that of avoiding the requirement of the involved domains to be finite. In
fact, context designators can denote values in an infinite domain, where, however,
a finite number of instantiate actions generates a finite number of customized
bridge rules. Notice that the computational complexity of the overall framework
depends upon the computational complexity of the involved modules. In [8,9]
significant sample cases are reported.

5 Case Study: Bridge Rules Customization
and Application

In order to explain the features that we have introduced so far we apply them
to the case study. The agent acting on behalf of a prospective college student
would for instance include the following trigger rule:

wish to enroll(Universities,Budget) enables
chooseU (Universities,Budget ,Selected UniversitiesL)

The meaning is that the agent is supposed to be able to conclude at some
stage of its operation wish to enroll(Universities,Budget), where Universities is
the list of universities which are of interest for the student, and Budget is the
budget which is available for completing the application procedure. Whenever
this conclusion is reached, the trigger rule is proactively activated, thus enabling
a suitable bridge rule. This bridge rule exploits a quantitative reasoning module
and might correspond to this simple bridge rule pattern, where however there is
the relative context designator qr mod(mymod) to be instantiated.

chooseU (Universities,Budget ,Selected UniversitiesL) ←
qr mod(mymod) : chooseU (Universities,Budget ,Selected UniversitiesL)

Let us assume that the agent somehow (dynamically) instantiates this des-
ignator, e.g., to the name of a RASP module rasp mod , thus obtaining:

chooseU (Universities,Budget ,Selected UniversitiesL) ←
rasp mod : chooseU (Universities,Budget ,Selected UniversitiesL)

The RASP module, invoked via a suitable plugin, will return its results in
Selected UniversitiesL, that will be a list representing the potential options for
sending applications while staying within the given budget. A relevant role is
performed by the corresponding bridge-update rule, which may have the form:

upon chooseU (Universities,Budget ,Selected UniversitiesL) then
preferred subject(Subject),
instantiate(apply(Univ ,ResponseUniv),myuniv(u),Selected UniversitiesL),
nearest sat center(Sc), nearest toefl center(Tc),
instantiate(general tests(Subject ,R1 ,R2 ,R3 ), sat center(sc), [Sc]),
instantiate(general tests(Subject ,R1 ,R2 ,R3 ), language center(lc), [Tc]),
enable(general tests(Subject ,R1 ,R2 ,R3 ), enabledgentest)
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By evaluating the sub-queries from left to right, as it is usual in Prolog, this
rule will determine the preferred subject Subject , and via an instantiate action
it will create several copies of a bridge rule which finalizes the application (see
below), namely one copy for each university included in Selected UniversitiesL.
Notice that such bridge rules are not enabled yet. Then, the bridge-update rule
finds the contexts’ names Sc and Lc of nearest SAT and language-test cen-
ters respectively, where the student may perform the tests. The subsequent two
instantiate actions, together with the enable action, will instantiate and trigger
a suitable bridge rule pattern (shown below). The trigger part is, in particular:

enabledgentest .
enabledgentest enables general tests(Subject ,R1 ,R2 ,R3 )

which, as said, enables a bridge rule obtained by the following bridge rule pattern
via its specialization to contexts’ names Sc and Lc. This bridge rule will take
care of performing the general tests (among which the language certification)
and filling the general part of the application:

general tests(Subject ,R1 ,R2 ,R3 ) ← sat center(sc) : general SAT test(R1 ),
sat center(sc) : specific SAT test(R2 ),
language center(lc) : language certification(R3 ),
collegeorg : fill application

Each test will return its results, which are then dynamically recorded, when-
ever available, by the bridge-update rule:

upon general tests(Subject ,R1 ,R2 ,R3 ) then record(test res(R1 ,R2 ,R3 ))

The recording of test results enables, via the following trigger rule, the appli-
cation of the bridge rules, one for every selected university Univ , each of which
will: send test the test results to that university; finalize the university-specific
part of the application; wait for the response, returned in ResponseUniv .

upon test res(R1 ,R2 ,R3 ) then apply(Univ ,ResponseUniv)

The bridge rule pattern from which such bridge rules are obtained is:

apply(Univ ,ResponseUniv) ← test res(R1 ,R2 ,R3 ),
myuniv(u) : send test results(R1 ,R2 ,R3 ),
myuniv(u) : complete application(ResponseUniv)

The corresponding bridge-update rules, of the form

upon apply(Univ ,ResponseUniv) then record(response(Univ ,Response))

will record the responses, to allow a choice to be made among the universities
that have returned a positive answer. Finally, enrollment must be finalized (code
not shown here). Notice that, in the above bridge rules, some elements in the
body implicitly involve the execution of specific actions (such as the payment of
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fees) that may take time to be executed, and may also involve user intervention
(e.g., the student must personally and practically go to perform the SAT and
TOEFL tests). Such actions have to be specified in the internal definition of
the involved module(s), while user interventions emerge from the interaction
between the agent and the user. For lack of space we do not discuss plan revision
strategies (that might be needed in case of failure of some of the above steps),
to be implemented via agent’s reactive and proactive features.

6 Semantics

In order to account for heterogeneity of composing modules, in MCSs and then
in DACMACSs and in ACEs each module is supposed to be based upon a specific
logic. Reporting from [8], a logic L is a triple (KBL;CnL;ACCL), where KBL

is the set of admissible knowledge bases of L. A knowledge base is a set of KB-
elements, or “formulas”. CnL is the set of acceptable sets of consequences, whose
elements are data items or “facts”. Such sets can be called “belief sets” or simply
“data sets”. ACCL : KBL → 2CnL is a function which defines the semantics of
L by assigning to each knowledge-base a set of acceptable sets of consequences.

For any of the aforementioned frameworks, consider an instance A =
〈A1, . . . , Ah〉 composed of h distinct modules, each of which can be either the
basic agents, or an event-action module, or a reasoning module, or an external
context. Each module is seen as Ai = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi

is the module’s knowledge base and bri is a set of bridge rules. A data state of
A is a tuple S = (S1, . . . , Sh) such that each of the Sis is an element of Cni, i.e.
a set of consequences derived from Ai’s knowledge base according to the logic in
which module Ai is defined.

When modules are not considered separately, but rather they are connected
via bridge rules, desirable data states, called equilibria, are those where bridge-
rule application is considered. In MCSs, equilibria are those data states S where
each Si is acceptable according to function ACCi associated to Li, taking how-
ever bridge rules application into account. Technically, a data state S is an
equilibrium iff, for 1 ≤ i ≤ n, it holds that Si ∈ ACCi(mngi(app(S), kbi)). This
means that if one takes the knowledge base kbi associated to module Ai, con-
siders all bridge rules which are applicable in data state S (i.e., S entails their
body), applies the rules, applies the management function, it obtains exactly Si

(or at least Si is one of the possible sets of consequences). Namely, an equilibrium
is a data state that encompasses the application of bridge rules. In dynamic envi-
ronments however, this does not in general imply that a bridge rule is applied
only once, and that an equilibrium, once reached, lasts forever (conditions for
reachability of equilibria are discussed in literature, see [23] and the references
therein). In fact, contexts are in general able to incorporate new data items, e.g.,
as discussed in [10], the input provided by sensors. Therefore, a bridge rule is in
principle re-evaluated whenever a new result can be obtained, thus leading to
evolving equilibria.

As DACMACS and ACEs are frameworks for defining agents and multi-agent
systems, the interaction with the external environment and with other agents
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goes beyond simple sensor input and must be explicitly considered. This is done
by assuming, similarly to what is done in Linear Temporal Logic, a discrete,
linear model of time where each state/time instant can be represented by an
integer number. States t0, t1, . . . can be seen as time instants in abstract terms,
though in practice we have ti+1 − ti = δ, where δ is the actual interval of time
after which we assume a given system to have evolved.

Consider then a notion of updates: for i > 0, let Πi = 〈ΠiA1 , . . . , ΠiAh
〉

be a tuple composed of finite updates performed to each module and let
Π = Π1,Π2, . . . be a sequence of such updates performed at time instants
t1, t2, . . .. Let UE , for E ∈ {A1, . . . , Ah}, be the update operator that each module
employs for incorporating the new information, and let U be the tuple composed
of all these operators. Notice that each UE , i.e., each module-specific operator,
encompasses the treatment of both self-generated updated and updated coming
from interaction with an external environment.

In this more general setting data states evolve in time, where a timed data
state at time T is a tuple ST = (ST

1 , . . . , ST
h ) such that each ST

i is an element of
Cni at time T . The timed data state S0 is an equilibrium according the MCSs
definition. Later on however, transition from a timed data state to the next
one, and consequently the definition of an equilibrium, is determined both by
the update operators and by the application of bridge rules. A bridge rule ρ
occurring in each composing module is now potentially applicable in ST iff ST

entails its body. However, in the basic agent a potentially applicable bridge rule is
applied only when it has been triggered by a trigger rule of the form seen above,
i.e., if for some T ′ ≤ T we have that ST ′ |= Q. In any event-action module M
instead, a potentially applicable bridge rule is applied only if the module is active,
i.e., if ST ′ |= trM , where trM is an event expression which triggers the module
evaluation (cf. [13]). Therefore, a timed data state of M at time T +1 is an equi-
librium iff, for 1 ≤ i ≤ n, it holds that ST+1

i ∈ ACCi(mngi(App(ST ), kbT+1
i )),

where kbT+1
i = Ui(kbTi ,Πi

T ) and App is the extended bridge-rule applicability
evaluation function. The meaning is that an equilibrium is now a data state
which encompasses bridge rules applicability (with the new criteria) on the
updated knowledge base. So, contexts now evolve in time, where we may say
that A0

i = (Li; kbi; bri) as before, while AT
i = (Li; kbTi ; bri). As discussed in [14],

if both the update operators and the management functions preserve consistency
of modules, then conditions for existence of an equilibrium (at some time T ) are
unchanged w.r.t. MCSs and DACMACS.

Notice that, for each bridge rule which is triggered (and so is applicable) at
time T ′ the state when it is actually applied is not necessarily T ′, nor T ′ + 1. In
fact, a bridge rule becomes potentially applicable whenever a data state entail
its body. So, the actual procedural sequence is the following:

– ST ′ |= Q for some trigger rule concerning bridge rule with conclusion A(x̂),
and then such a rule is executed at some time T ′′ ≥ T ′.

– At time T ≥ T ′′ the results will be returned by the modules which are queried
in the rule body; the case where T ′ = T , i.e., the bridge-rule body succeeds
instantaneously, is an ideal extreme which is hardly the case in practice. In
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fact, internal and external modules may take some (a priori unpredictable)
amount of time for returning their results.

– At time T , bridge-rule results will be elaborated by the management function,
in our case implemented by the bridge-update rule.

The important aspect that allows us to smoothly incorporate enhanced ACE
features in this semantics is that knowledge base updates in an agent are not
necessarily determined from the outside. Rather, (part of) an update can also
be the result of proactive self-modification. So, the generality and flexibility
of ACE’s semantics allows us to introduce advanced features without needing
substantial modifications.

In particular, we consider bridge rule patterns as elements of agent’s knowl-
edge base. A bridge rule pattern will produce new bridge rules only when its
context designators will be instantiated. Such instantiation can be seen as a
part of a self-modification, i.e., it can be seen as an update. Therefore, for the
main agent we now have A0

i = (Li; kbi; bri) and AT
i = (Li; kbTi ; brTi ), where at

each subsequent time the set of bridge rule associated to the module can be aug-
mented by newly generated instances. The other definitions remain unchanged.
This limited though effective semantic modifications constitute, in our opinion,
a successful result of the research work that we present here. In fact, we obtain
more general and flexible systems without significantly departing from the origi-
nal MCSs’ semantics, and this grants our approach a fairly general applicability.

7 Case Study: RASP Implementation

Below we discuss how to represent in RASP the case study discussed in
Sect. 2. We do not report the full code, that the reader can find on the web
site http://www.dmi.unipg.it/formis/raspberry/ (section “Enrollment”) where the
solver Raspberry can also be obtained.1 Our aim is to have a glance at how RASP
works, and to demonstrate that the proposed approach is not only a more general
architecture than basic ACE, but it has indeed a practical counterpart.

RASP code clearly must include a list of facts defining the universities to
which the students is potentially interested, the SAT subjects (in general),
and the SAT subjects corresponding to Courses (or Schools) available at each
university.

% Universities

university(theBigUni). university(theSmallUni).

university(thePinkUni). university(theBlueUni).

university(theGreenUni).

% SAT subjects

sat_subject(literature). sat_subject(mathematics).

sat_subject(chemistry).

1 Raspberry, the grounder gringo (v.3.0.5), and the solver clasp (v.3.1.3) are used
as follows: raspberry 2.6.5 -pp -l3 -n 15000 -i enrollment pref.rasp > enrollment pref.asp

gringo-3.0.5 enrollment pref.asp | clasp-3.1.3 0.

http://www.dmi.unipg.it/formis/raspberry/
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% SAT subjects in each University

availableSubject(theBigUni, S) :- sat_subject(S).

availableSubject(theGreenUni, S) :- sat_subject(S).

availableSubject(theSmallUni, mathematics).

availableSubject(thePinkUni, mathematics).

availableSubject(thePinkUni, literature).

availableSubject(theBlueUni, mathematics).

availableSubject(theBlueUni, chemistry).

Below we then list: the tuition fees and the maximum fee allowed; the university
rankings and the minimum required; the basketball team ranking, as it consti-
tutes an additional evaluation factor.

% Tuition fees

tuitionFee(theBigUni, 21000). tuitionFee(theSmallUni, 16000).

tuitionFee(thePinkUni, 15000). tuitionFee(theBlueUni, 25000).

tuitionFee(theGreenUni, 15000).

% Constraint C1: Tuition fee cannot exceed this threshold

maxTuition(22000).

% University reputation ranking R

reputation(theBigUni, 100). reputation(theSmallUni, 90).

reputation(thePinkUni, 80). reputation(theBlueUni, 75).

reputation(theGreenUni, 60).

% Constraint C2: R must be higher than this threshold

reputationThrs(70).

% BasketballTeam Ranking

extraRank(theSmallUni, 10). extraRank(theBigUni, 10).

extraRank(thePinkUni, 8). extraRank(theBlueUni, 8).

extraRank(theGreenUni, 6).

The RASP fact below states that we have 1500 dollars, sum intended here as
the budget available for completing applications. In general, symbol ‘#’ indicates
that an atom represents a resource. The constant before ‘#’, here ‘dollar’, indi-
cates the (arbitrary) name of the resource. The number after the ‘#’ indicates
an amount. In case of a fact, this amount is available initially, and can be then
(in general) either consumed or vice versa incremented, as in RASP resource
production can also be modeled.

% Budget for the application procedure

dollar#1500.

Now, the subject of interest and (if applicable) the status as foreign prospec-
tive students are indicated. Concerning the English language, nothing needs to
be done if the student is not foreign, otherwise the TOEFL fee must be payed
for performing the required test (we remind the reader that this RASP program
evaluates the necessary expenses, so it is concerned with fees).

% My_subject

my_subject(mathematics).
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% Omit the following fact if not foreign:

foreign.

% Language prerequisite

languageReqOK :- not foreign.

languageReqOK :- testTOEFLfee, foreign.

The universities where to potentially apply are derived according to the pre-
ferred subject, and the constraints concerning the university ranking and tuition
fee. The student can apply if some university meeting the required requisites is
actually found.

% Filtering of Universities

canApply(U,S) :- university(U), my_subject(S), reputation(U, R),

availableSubject(U, S), reputationThrs(Th), R > Th,

maxTuition(M), tuitionFee(U, Tu), Tu < M.

canApplyForSubject(Subj) :- canApply(Univ,Subj).

canApply :- canApply(Univ,Subject).

We now introduce proper RASP rules that perform quantitative reasoning,
specifically by considering the fees for the different kinds of tests. The reader
can ignore the prefix [1-1] which means that whenever the rule is applied, or
“fired”, this is done only once. This specification is not significant here, whereas
it is useful in the description of more complex resource production/consumption
processes.

% 1) General SAT test, fee1 fixed

[1-1]: testSATfeeGen :- dollar#300, canApply.

% 2) Disciplinary SAT test, fee2 fixed

[1-1]: testSATfeeSbj(mathematics) :-

dollar#170, canApplyForSubject(mathematics).

[1-1]: testSATfeeSbj(literature) :-

dollar#180, canApplyForSubject(literature).

[1-1]: testSATfeeSbj(chemistry) :-

dollar#150, canApplyForSubject(chemistry).

[1-1]: testSATfeeSbj(physics) :-

dollar#160, canApplyForSubject(physics).

% 3) For foreign student, TOEFL fee3 fixed

[1-1]: testTOEFLfee :- dollar#200, foreign, canApply.

% 4) Collegeorg application, fee4 fixed

[1-1]: testCollegeOrg :- dollar#130, canApply.

A general rule with head testGeneralDone then establishes whether all gen-
eral tests have been considered. If the available budget is too low and so no
applications can issued, then no money is actually spent. Otherwise, the costs
related to potential applications and the remaining amount (if any) are com-
puted. Clearly, this code (omitted here) performs a quantitative evaluation and
does not execute actual actions, which are left to the agent.

At this point, the Raspberry RASP solver can compute all solutions which
maximize the number of applications. Solutions can be further customized with
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respect to the constraints. For instance, the standard #maximize ASP statements
allow one to prefer universities with the best ranking and, in case of equivalent
solutions, the ones with the best basketball team ranking (see the full code in
the web site mentioned earlier, for the details on how to optimize the solution
and enforce student preferences).

With the given facts, the best preferred solution provided by Raspberry
involves applying to thePinkUni and theBigUni, with a total rating (sum of
the two rankings) of 180 for the universities and 18 for the basketball teams.

If omitting maximization, there is a second solution which involves applying
to thePinkUni and theSmallUni, with a total rating (sum of the two rankings)
of 170 for the universities and 18 for the basketball teams.

The RASP module always returns the remaining (not spent) amount which
is 90 dollars in the former case and 120 dollars in the latter one. Then, the agent
might in general choose the best solution. However, it might instead choose
another one based upon other criteria not expressed in the RASP program, i.e.,
geographic location or acceptance rates or maybe lesser expense, in case there
would be relevant differences.

8 Concluding Remarks

The contribution of this paper is twofold. First, we have demonstrated, also by
means of a practical example, how quantitative reasoning can be performed in
agent-based frameworks. Second, we have enhanced modular approaches inspired
to MCSs with partially specified bridge rules, that can be dynamically cus-
tomized and activated according to agent’s reasoning results. The approach
of this paper is fairly general, and can be thus adapted to several application
domains and to different agent architectures. Since no significant related work
exists, our approach to coping with the cost of knowledge and the cost of action
is relevant in a variety of domains, from logistics to configuration to planning,
which are particularly well-suited for agents and MAS. An important application
that we envisage is planning in robotic environments, where agents are embod-
ied in robots that have limited resources available (first of all energy) and must
complete their tasks within those limits, while possibly giving priority to the
most important/urgent objectives.
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31. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Proceedings of KR 2012 (2012)

32. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014)

33. Naumov, P., Tao, J.: Budget-constrained knowledge in multiagent systems. In:
Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) Proceedings of AAMAS
2015, pp. 219–226. ACM (2015)
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Abstract. Before deploying a software system, it is important to assure
that it will function correctly. Traditionally, this assurance is obtained
by testing the system with a collection of test cases. However, since agent
systems exhibit complex behaviour, it is not clear whether testing is even
feasible. In this paper we extend our understanding of the feasibility of
testing BDI agent programs by analysing their testability with respect to
the all edges test adequacy criterion, and comparing with previous work
that considered the all paths criterion. Our findings include that the
number of tests required with respect to the all edges criterion is much
lower than for the all paths criterion. We also compare BDI program
testability with testability of (abstract) procedural programs.

1 Introduction

When any software system is deployed, it is important to have assurance that it
will function as required. Traditionally, this assurance, encompassing both vali-
dation and verification1, is obtained by testing, and there has been work on tools
and techniques for testing agent-based systems (e.g. [9,11,14,15,24]). However,
there is a general intuition that agents exhibit behaviour that is complex. More
precisely, due to the need to handle dynamic and challenging environments,
agents need to be able to achieve their objectives flexibly and robustly, which
requires richer and more complex possible behaviours than traditional software.
Therefore, a key question is whether agent systems are harder, and possibly even
infeasible, to assure by testing.

Before proceeding further we need to define what we mean by a program being
testable. Rather than define testability as a binary property, we define it as a

This paper has originally been published in N. Osman and C. Sierra (Eds.),
AAMAS 2016 Ws Best Papers, LNAI 10002, 2016.
c© Springer International Publishing AG 2016
N. Osman and C. Sierra (Eds.): AAMAS 2016 Ws Best Papers, LNAI 10002,
pp. 90–106, 2016.
DOI: 10.1007/978-3-319-46882-2 6

1 More precisely: “software quality assurance (SQA) is a set of activities that define
and assess the adequacy of software processes to provide evidence that establishes
confidence that the software processes are appropriate and produce software prod-
ucts of suitable quality for their intended purposes.” (ISO/IEC TR 19759:2015(E),
pp. 10–15).

c© Springer International Publishing AG 2016
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numerical measure of the effort required to test a program2. Specifically, given
a program and a test adequacy criterion [13], we consider the testability of a pro-
gram to be the smallest number of tests that would be required to satisfy the cri-
terion. For example, given the (very simple!) program “if c then s1 else s2”, then
we need two tests to cover all edges in the control-flow graph corresponding to this
program, which satisfies the “all edges” test adequacy criterion (defined below),

The all paths and all edges test adequacy criteria are defined with respect to
a control-flow graph. A given program P corresponds to a graph where nodes
are statements (or, for agents, actions), and edges depict the flow of control:
a node with multiple outgoing edges corresponds to a choice in the program.
A single test corresponds to a path through the program’s control-flow graph from
its starting node to its final node (we assume that there is a unique start node S
and a unique end node E, which can be easily ensured). The all paths criterion
is satisfied iff the set of tests in the test suite T cover all paths in the control flow
graph. The all edges criterion is satisfied iff the set of paths in the test suite T cov-
ers all edges in the control-flow graph [13]. The all edges criterion is also referred
to as “branch coverage”.

Given the importance of assurance, and the focus on testing as a means of
obtaining assurance3, there has been surprisingly little work that has considered
whether testing agent systems is even feasible. In fact, the only work that we
are aware of that considers this question is the recent work by myself & Crane-
field4 [20,21], which investigated the testability of Belief-Desire-Intention (BDI)
agent programs with respect to the all paths test adequacy criterion. Winikoff &
Cranefield concluded that BDI agent programs do indeed give rise to a very large
number of possible paths (see left part of Table 1), and therefore they concluded
that whole BDI programs are likely to be infeasible to assure via testing5. However,
they do acknowledge that the all paths criterion is known to be overly conserva-
tive, i.e. it requires a very large number of tests. Specifically, all paths subsumes a
wide range of other criteria, including all edges (e.g. see Fig. 7 of Zhu et al. [25] and
Fig. 6.11 (p. 480) of Mathur [13]). This means that the question of whether (whole)
BDI agent programs can be feasibly tested is still open. This paper aims to address
this question by considering testability with respect to the all edges [13] test ade-
quacy criterion. The all edges criterion is regarded as “the generally accepted min-
imum” [12]. In essence, previous work [20] has provided an upper bound (“if we

2 We focus on system testing. See [20, Sect. 7] for a discussion of different forms of test-
ing.

3 There is also a body of work on formal methods (primarily model checking) as a means
of assurance [3,6–8,10,16,23]. However, despite considerable progress, these are not
yet ready to handle realistic programs (e.g. see [8]).

4 To avoid confusion between this paper and the earlier work, I will refer to my earlier
work with Stephen Cranefield as “Winikoff & Cranefield” in the remainder of this
paper.

5 They also compared BDI programs with procedural programs, and found that BDI
programs are harder to test than equivalently sized procedural programs, with respect
to the all paths criterion.
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use a strong criterion, then it’s this hard”). This paper provides a lower bound (“if
we use a weaker criterion, than it’s this hard”).

The remainder of this paper is structured as follows. We (briefly) review BDI
agent programs in Sect. 2. Section 3 is the core of the paper: it derives equations
that compute for a given BDI program P the number of tests that are required to
satisfy the all edges criterion. We then use these equations to compare testability
(with respect to all edges) with testability with respect to all paths (Sect. 4). We
also compare all edges testability for BDI programs with all edges testability for
(abstract) procedural programs, in order to answer the question of whether BDI
programs are harder to test than procedural programs with respect to the all edges
criterion (Sect. 5). Finally, in Sect. 6 we conclude.

2 Belief-Desire-Intention (BDI) Agents

The Belief-Desire-Intention (BDI) model [4,5,18] is widely-used, and is realised in
many agent-oriented programming languages (AOPLs) (e.g., [1,2]). It provides a
human-inspired metaphor and mechanism for practical reasoning, in a way that is
appropriate for achieving robust and flexible behaviour in dynamic environments.

A BDI agent program Π consists of a sequence of plans π1 . . . πn where each
plan πi consists of a triggering goal6 gi a context condition ci and plan body bi. The
plan body is a sequence of steps si1 . . . simi

with each step being either an action
or a sub-goal.

Due to space limitations, we give an informal summary of the semantics. For-
mal semantics can be easily defined following (e.g.) [17,19,22]. These semantics
are common to the family of BDI programming languages (e.g. PRS, dMARS,
JAM, AgentSpeak, JACK). A BDI program’s execution begins with a goal g being
posted. The first step is to determine the subset of relevant plans ΠR ⊆ Π which
is those plans πi where the plan’s trigger gi can be unified with g. The second
step is to determine the subset of applicable plans ΠA ⊆ ΠR which is those plans
πi where the plan’s context condition ci holds with respect to the agent’s current
beliefs. The third step is to select one of the applicable plans πj ∈ ΠA. The body bj
of the selected plan πj is then executed. The execution is done step-by-step, inter-
leaved with further processing of goals (and belief updates as information from
the environment is received).

An important aspect of BDI execution is failure handling. A step in a plan
body can fail. For an action, this can be because the action’s preconditions do
not hold, or due to the action simply not proceeding as planned (the environment
is not always benign!). For a sub-goal, failure occurs when there is no applicable
plan. When a plan step fails, the execution of the sequence of steps is terminated,
and the plan is deemed to have failed.

A common way of dealing with the failure of a plan πi which was triggered by
goal g is to repost the goal g, and select another plan instance. More precisely, ΠA

is re-computed (since the agent’s beliefs might have changed in the interim), but
6 For the purposes of this paper we ignore other possible plan triggers provided by some

AOPLs, such as the addition/removal of belief, and the removal of goals.
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with πi excluded. A plan (instance) that has failed cannot be selected again when
its triggering goal is reposted.

For the purposes of the analysis of this paper we consider a BDI agent program
to be defined by the grammar below. This grammar simplifies from real BDI agent
programs in a number of ways. Firstly, instead of a plan body having sub-goals g,
with the relevant and applicable plan sets being derived from the plan library Π,
we instead associate with each (sub-)goal g a set of plans7 denoted gP (where P is
a set of plan instances). Because we have done this, we do not need to represent the
plan library: a BDI program is simply a single (possibly quite complex) expression
in the grammar below. Secondly, we follow Can [22] in using an auxiliary “backup
plan” construct to capture failure handling. Finally, we elide conditions: since the
all edges criterion considers control-flow, we do not need to model the conditions
that are used to decide which edge to take in the control flow graph.

We therefore define a BDI program P using the grammar:

P :: = a | g{P∗} | P1;P2 | P1�P2

where a is an action (and we use a1, a2, a3, . . . to distinguish actions), gP is a (sub-
)goal with associated plans P = {P1, . . . , Pn} (a set of plans), P1;P2 is a sequence,
and P1 � P2 represents a “backup plan”: if P1 succeeds, then nothing else is done
(i.e. P2 is ignored), but if P1 fails, then P2 is used. Any BDI program with given
top-level goal can be mapped into a BDI program in this grammar. Note that this
grammar does not capture some of the constraints of BDI programs (e.g. that a
goal cannot directly post a sub-goal).

3 All-Edge Coverage Analysis

This section is the core of the paper. It derives equations that answer the question:
“how many test cases (paths) are required to cover all edges in the control-flow
graph corresponding to a given BDI program?”.

Recall that a BDI agent program P can be either an action a, a sub-goal gP ,
a sequence (“;”), or an alternative (“�”). We consider each of these cases in turn.
For each case we consider how the construct is mapped to a control-flow graph,
and then how many paths are required to cover all edges in the graph.

S . . . P . . .

Y

N

E

One important feature of
BDI programs is that the exe-
cution of a BDI program (or
sub-program) can either suc-
ceed or fail. A failed execu-
tion triggers failure handling.
We represent this by mapping
a program P to a graph (see
right) where there is a start

7 For the moment we avoid specifying whether P is the set of relevant plans or applicable
plans. The analysis in the next section considers both cases.
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node S, the program P is mapped to a graph that is reachable from S, and that
has two outgoing edges: to Y (corresponding to a successful execution) and N
(corresponding to a failed execution). There are edges from Y and N to the end
node E.

Note that there is an important difference between the notion of a test for a
conventional program and for an agent system. In a conventional program a test
corresponds to the setting up of initial conditions, and then the program is started
and runs. However, in an agent system (or, more generally a reactive system), the
running system continues to interact with its environment, and so a test is not just
the initial conditions, but also comprises the ongoing interactions of the system
with its environment. One consequence of this is that conditions are controllable.
If an agent system tests condition c at a certain point in time, and then tests that
condition again later, then in general the environment might have changed c, and
so we assume that all conditions can be controlled by the test environment. This
means that, for instance, if we have a test (i.e. path) that involves two subsequent
parts of the graph, G1 and G2, then the specific path taken through G2 can be
treated as being independently controllable from that taken through G1.

We now seek to derive equations that calculate the smallest number of paths
from S to E required such that all edges appear at least once in the set of paths.

In order to do this, it turns out that we need to also capture how many of
these paths correspond to successful executions (go via Y ) and how many go via
N . Notation8: we define p(P ) to be the number of paths required to cover all edges
in the graph corresponding to program P . We also define y(P ) (respectively n(P ))
to be the number of these paths that go via Y (respectively N). By construction
we have that p(P ) = y(P ) + n(P ).

Let us now consider each case in turn. The base case of a single action a is
straightforward. In the graph above it corresponds to the sub-graph P being a
single node a. To cover all edges in the graph we need two test cases: one path
S-a-Y -E and one S-a-N -E. This reflects that an action a can either succeed or
fail, and therefore requires two tests to cover these possibilities. Formally we have
that p(a) = 2, and that y(a) = n(a) = 1.

S

S1 . . . P1 . . .

Y1 . . . P2 . . .

N

Y2

E

p(P1;P2)

p(P1)

y(P1)

n(P1)

p(P2)
n(P2)

y(P2)

n(P1;P2)

y(P1;P2)

Next we consider P1;P2. Suppose that
a sub-program P1 requires p(P1) tests
(i.e. paths) to cover all edges, with n(P1)
of these tests leading to the failure of P1,
and the remaining y(P1) tests leading to suc-
cessful execution of P1. Since P1 is put in
sequence with P2, we have the control flow
graph on the right.

We seek to derive an equation forp(P1;P2)
(and for y(P1;P2) and n(P1;P2)) in terms of
the properties of P1 and P2. Let us firstly consider the case where y(P1) ≤ p(P2).
In this case if we have enough tests to cover the edges of the sub-graph correspond-
ing to P2, then these tests are also sufficient to cover all edges of P1 that result in a

8 Colour is used to assist readability, but is not essential.
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successful execution of P1 (which lead to P2). So to cover all edges of P1 we need to
add in enough tests to cover those executions that are failed, i.e. n(P1). Therefore
we have that:

p(P1;P2) = n(P1) + p(P2) (1)
y(P1;P2) = y(P2) (2)
n(P1;P2) = n(P1) + n(P2) (3)

We now consider the case wherey(P1) ≥ p(P2). In this case if we have enough tests
(i.e. paths) to cover the edges of the sub-graph corresponding to P1, then these
tests are also sufficient to cover all edges of P2. We therefore have thatp(P1;P2) =
p(P1) = n(P1) + y(P1).

However, when considering y(P1;P2) and n(P1;P2) things become a little
more complex. Since y(P1) > p(P2), the edge from the sub-graph corresponding
to P1 that goes to the sub-graph corresponding to P2 has more tests traversing it
than are required to cover all edges of P2. In effect, this leaves us with “excess”
tests (paths), and we need to work out how many of these excess paths should be
allocated to successful executions of P2 (i.e. y(P2)), and how many to n(P2).

Consider the following example. Suppose that P1;P2 is such that9 P1 requires
5 tests to cover all edges (four successful, and hence available to test P2, and one
unsuccessful), and where P2 only requires 2 tests to cover all edges. In this situa-
tion there are two additional tests that are required to test P1 and which proceed
to continue executing P2. These two extra tests could correspond to failed execu-
tions of P2, to successful executions of P2, or to one successful and one failed exe-
cution. This means that, if we annotate each edge with the number of times that
it is traversed by the set of tests10, then the edge from Y1 to the P2 sub-graph is
traversed 4 times, since the edge from P1 to Y1 traversed 4 times. The edge from
P2 to Y2 could have either a 1, 2, or 3, and similarly the edge from P2 to N could
have either 3, 2, or 1 (see Fig. 1).

Returning to the analysis, in this case, where y(P1) > p(P2), we define ε1 +
ε2 = y(P1)−p(P2). Then if we annotate each edge with the number of times that
it is traversed by the tests, then the annotation on the edge from Y1 to P2 would
be p(P2)+ε1+ε2. If we now consider the edges from the sub-graph corresponding
to P2, then the edge to N (the number of executions where P2 failed) would be
annotated with n(P2)+ε2 and the edge to Y2 would be annotated with y(P2)+ε1.
This gives us the following equations:

p(P1;P2) = n(P1) + y(P1) (4)
y(P1;P2) = y(P2) + ε1 (5)
n(P1;P2) = n(P1) + n(P2) + ε2 (6)

where ε1 + ε2 = y(P1) − p(P2)
9 E.g. P1 = a1 � a2 � a3 � a4 and P2 = a5.

10 Note that for any internal node, the sum of annotations on incoming edges must equal
the sum of annotations on outgoing edges, since all paths begin at S and terminate
at E.
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Merging these cases with Eqs. 1, 2 and 3, we obtain the following. Derivation:
for y() and n() observe that Eqs. 2 and 3 are in the case where y(P1) ≤ p(P2)
and hence ε1 = ε2 = 0, reducing the equations below to Eqs. 2 and 3, and
if y(P1) > p(P2) then the equations below are identical to Eqs. 5 and 6. For
p(P1;P2) observe that if y(P1) ≤ p(P2) then the equation below reduces to Eq. 1,
and that if y(P1) > p(P2) then the equation below reduces to Eq. 4.

p(P1;P2) = n(P1) + max(y(P1),p(P2))
y(P1;P2) = y(P2) + ε1

n(P1;P2) = n(P1) + n(P2) + ε2

where ε1 + ε2 = max(0,y(P1) − p(P2))

Note that we don’t have deterministic equations that compute n(P1;P2) and
y(P1;P2). Instead, we have equations that permit a range of values, depending
on how we choose to allocate the excess paths represented by ε1 + ε2 between the
successful and unsuccessful executions of P2.

S

S1 P1

N1 P2

Y

N2

E

p(P1;P2)

p(P1)

n(P1)

y(P1)

p(P2)
y(P2)

n(P2)

y(P1;P2)

n(P1;P2)

Turning to P1 � P2 we
perform a similar analy-
sis. Note that the control
glow graph for P1 � P2

has the same structure as
that of P1;P2 except that
N and Y are swapped
(see Figure to the right).
The simple case is when
n(P1) ≤ p(P2), in which
case the number of paths
required to test (i.e. cover
all edges of) P2 also suffices to cover edges in P1 when P1 fails (for P1�P2 it is when
P1 fails that P2 is used). For this case we therefore have p(P1�P2) = y(P1)+p(P2)

S

S1 . . . P1 . . .

Y1 . . . P2 . . .

N

Y2

E

5

5

4

1

2 + 2

3, 2, 1

1, 2, 3

4, 3, 2

1, 2, 3

Fig. 1. Example for P1 = a1 � a2 � a3 � a4 and P2 = a5.
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p(a) = 2 y(a) = 1 n(a) = 1

p(P1; P2) = n(P1) + max(y(P1),p(P2))

y(P1; P2) = y(P2) + ε1

n(P1; P2) = n(P1) + n(P2) + ε2

where ε1 + ε2 = max(0,y(P1) − p(P2))

p(P1 � P2) = y(P1) + max(n(P1),p(P2))

y(P1 � P2) = y(P1) + y(P2) + ε3

n(P1 � P2) = n(P2) + ε4

where ε3 + ε4 = max(0,n(P1) − p(P2))

p(g{P}) = 1 + p(P ) y(g{P}) = y(P ) n(g{P}) = 1 + n(P )

p(gP) = 1 +
∑

Pi∈P
y(Pi) + max(n(Pi),p(gP\{Pi}))

y(gP) =
∑

Pi∈P
y(Pi) + y(gP\{Pi}) + εi

n(gP) = 1 +
∑

Pi∈P
n(gP\{Pi}) + ε′

i

where εi + ε′
i = max(0,n(Pi) − p(gP\{Pi}))

p(/ gP) = 1 +
∑

P∈P
p(P )

y(/ gP) =
∑

P∈P
y(P )

n(/ gP) = 1 +
∑

P∈P
n(P )

Fig. 2. Equations to calculate p(P ),y(P ) and n(P ) when P is relevant plans. For

applicable plans delete the grey shaded “ 1 + ”.

and y(P1 � P2) = y(P1) + y(P2) and n(P1 � P2) = n(P2). Similar analysis for the
more complex case gives the equations in Fig. 2.

Finally, we consider goals. We begin with the simple case: a goal with a single
relevant plan g{P1}. In this case either the goal immediately fails (due to the plan’s
context condition failing), or the plan is executed. If the plan is executed, then
the goal succeeds exactly when the plan succeeds. Therefore we have: n(g{P1}) =
1+n(P1), and y(g{P1}) = y(P1), and p(g{P1}) = 1+p(P1). In the case where P1 is
applicable, then the context condition cannot fail, and we simply have n(g{P1}) =
n(P1) and p(g{P1}) = p(P1).

For a goal with two relevant plans g{P1,P2} (henceforth abbreviated g2), there
are three non-overlapping possibilities: the plan fails immediately (neither context
condition is true), or the first plan is selected, or the second plan is selected. If
a plan is selected, then the plan is executed with the other plan as a (possible)
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backup option. Informally we can describe this as

g2 = fail or P1 � gP2 or P2 � gP1

(where gP is short hand for g{P}). Which leads to the following equations.

p(g2) = 1 + p(P1 � gP2) + p(P2 � gP1)
y(g2) = y(P1 � gP2) + y(P2 � gP1)
n(g2) = 1 + n(P1 � gP2) + n(P2 � gP1)

In the case where we are dealing with applicable plans, the only difference is that
the “1+” in the equations for p(g) and n(g) is deleted, since the plan cannot fail.
This can be generalised for a goal with k plans (details omitted) resulting in the
equations in Fig. 2.

3.1 Removing Failure Handling

We now briefly consider what happens if we “turn off” failure handling, This is
an interesting scenario to consider, because the all paths analysis of Winikoff &
Cranefield [20] found that turning failure handling off reduced the number of tests
required enormously. We use /g to denote a goal where failure handling is not used.

We firstly observe that without failure handling the equation for /g{P} remains
unchanged from g{P}, since if the sole plan P fails, then there is no remaining plan
available to recover.

However, for /g{P1,P2} the equations are different. Instead of having (infor-
mally) g2 = fail or P1 � gP2 or P2 � gP1 , we have simply /g2 = fail or P1 or P2.
Therefore the corresponding equations are simply: p(/g2) = 1 + p(P1) + p(P2),
and y(/g2) = y(P1) + y(P2), and n(/g2) = 1 +n(P1) +n(P2). These generalise for
/gP (where P denotes a set of plans), yielding the equations in Fig. 2. As before,
for P being the applicable plans, remove the “1 + ” from the equations.

3.2 Simplifying for Uniform Programs

In order to compare with the all paths analysis of Winikoff & Cranefield [20] we
consider uniform BDI programs, as they did. A uniform BDI program is one where
all plan bodies have j sub-goals, all goals have k plans, and the tree is uniformly
deep.

g2 d = 2

p11 . . . pj1 d = 1

gl1 . . . gk1 d = 1

p10 . . . pj0 d = 0

...

...

Applying these assumptions allows the
equations to be simplified, since all sub-
goals of a plan (respectively plans of a
goal) have identical structure, and are
hence interchangeable.

For example, in the equation forp(P1;P2),
P1 and P2 are identical, so instead of
p(P1;P2) = n(P1)+max(y(P1),p(P2)) we
have p(P ;P ) = n(P ) + max(y(P ),p(P )).
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Now, since p(P ) > y(P ), we can replace
max(y(P ),p(P )) with p(P ). Therefore, we have that p(P ;P ) = n(P ) + p(P ).
Since p(P ) = y(P )+n(P ) this is just n(P )+y(P )+n(P ) = y(P )+2n(P ). This
generalises to more than two sub-programs in sequence. Similar simplification can
be applied to the other cases, yielding the equations shown in Fig. 3 (ignore the
last four equations for the moment).

However, uniform programs (as used by the all paths analysis [20]) actually
have a mixture of actions and goals in plans, i.e. a plan (that is not a leaf) is of the
form P = a; g; a; g; a (for k = 2), not g; g. This means we need to derive equations
for this form.

We begin by deriving p(a; g),y(a; g) and n(a; g), using the simplification that
ε1 = ε2 = 0, since y(P1) = y(a) = 1 and hence p(P2) ≥ 1 so max(0,y(P1) −
p(P2)) = 0.

p(a; g) = n(a) + max(y(a),p(g)) = 1 + p(g) (since p(g) > y(a) = 1)
y(a; g) = y(g) (since p(g) > y(a) = 1)
n(a; g) = 1 + n(g)

We then define p1 = a; g; a and derive p(p1),y(p1) and n(p1). In deriving y(p1)
and n(p1) we derive the upper and lower bounds (recall that the equations in Fig. 2
specify a range, depending on how we split “excess” (y(P1) − p(P2)) between ε1
and ε2). We work out the upper bound for y(P1) (respectively n(P1)) by assigning
all the excess to ε1 (respectively ε2). We derive equations under the assumption
that y(a; g) > 1, and hence y(a; g) ≥ p(a) = 2. This assumption holds when goals
have more than one plan (i.e. j > 1), which is the case in Table 1.

p((a; g); a) = n(a; g) + max(y(a; g),p(a))
= n(a; g) + y(a; g) = p(a; g) = 1 + p(g)

y((a; g); a) ≤ y(a) + max(0,y(a; g) − p(a))
= 1 + y(a; g) − 2 = y(g) − 1

y((a; g); a) ≥ y(a) = 1
n((a; g); a) ≤ n(a; g) + n(a) + max(0,y(a; g) − p(a))

= (1 + n(g)) + 1 + (y(a; g) − 2) = n(g) + y(g) = p(g)
n((a; g); a) ≥ n(a; g) + n(a) = (1 + n(g)) + 1 = 2 + n(g)

We then note that p2 = a; g; a; g; a can be defined as p2 = (a; g); p1, and, more
generally, pk+1 = (a; g); pk.

p(pk+1) = n(a; g) + max(y(a; g),p(pk))
= n(a; g) + p(pk) (since p(pk) ≥ y(a; g))
= 1 + n(g) + p(pk)
which can be generalised to
= k × (1 + n(g)) + 1 + p(g)

y(pk+1) ≤ y(pk) + max(0,y(a; g) − p(pk))
= y(pk) (since p(pk) ≥ y(a; g))
so eventually we just get y(p1) which is . . .
= y(g) − 1
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y(pk+1) ≥ y(pk) ≥ y(pk−1) ≥ 1
n(pk+1) = n(a; g) + n(pk) + max(0,y(a; g) − p(pk))

= (1 + n(g)) + n(pk) (since p(pk) ≥ y(a; g))
= k × (1 + n(g)) + n(p1)

The yields the last four equations of Fig. 3, which are required to calculate the
testability of uniform BDI programs. Note that in the last equation, since n(p1) ≥
2 + n(g) and n(p1) ≤ p(g), we also have a range for n(pk).

4 All-edges vs. All-paths

In the previous section we derived equations that tell us how many tests (paths)
are required to ensure adequate coverage of a BDI program with respect to the
all edges criterion. We now use these equations to compare the all edges criterion
against the all paths criterion. We know that the all paths criterion requires more
tests to be satisfied, but how many more? Since comparing (complex) formulae
is not easy, we follow the approach of Winikoff & Cranefield, and instantiate the
formulae with a number of plausible values, to obtain actual numbers that can be
compared. We use the same scenarios (i.e. parameters) that they used.

In order to derive the All Edges numbers in Table 1 the equations of Fig. 2
were implemented as a Prolog program that computed (non-deterministically) the
values of p(P ),y(P ) and n(P ) for any given BDI program P . Additionally, code
was written to generate a uniform BDI program P , given values for j, k, and d.
This was used to generate the full uniform program P for the first three cases in
Table 1, and then compute p(P ) for the generated BDI program. The last case
exhausted Prolog’s stack.

Additionally, the equations of Fig. 3 were implemented as a Scheme program
that computed p(),y(), and n() for given values of j, k, and d. These were used
to calculate values of p(). These values matches those computed by the Prolog
program for the first three cases, and provided the values for the fourth case (d = 3,
j = 3, k = 4 for which Prolog ran out of stack space).

Table 1 contains the results for these illustrative comparison cases (ignore the
rightmost column for now). The left part of the Table (Parameters, Number of
goals, plans, and actions, and All Paths) are taken from the all paths analysis of
Winikoff & Cranefield [20]. The right part (All Edges) is the new numbers from
this work.

Comparing the results we make a number of observations. Firstly, as expected,
the number of tests required to adequately test a given BDI program P with
respect to the all edges test adequacy criterion is lower than the number of tests
required with respect to the all paths criterion. However, what is interesting is
that the numbers are very much lower (e.g. a few thousand compared with more
than 2 × 10107). Specifically, the number of tests required with respect to the all
edges criterion is sufficiently small to be feasible. For instance, in the third case
(j = 2, k = 3, d = 4) where the (uniform) BDI program has 259 goals and 518
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p(P1; . . . ; Pj) = y(P ) + j × n(P )

y(P1; . . . ; Pj) = y(P )

n(P1; . . . ; Pj) = j × n(P )

p(P1 � . . . � Pk) = n(P ) + k × y(P )

y(P1 � . . . � Pk) = k × y(P )

n(P1 � . . . � Pk) = n(P )

p(g{P}) = 1 + p(P )

y(g{P}) = y(P )

n(g{P}) = 1 + n(P )

p(gP) = 1 + |P| × (y(P ) + p(gP\{Pi}))

y(gP) = |P| × (y(P ) + y(gP\{Pi}))

n(gP) = 1 + |P| × n(gP\{Pi})

p(/ gP) = 1 + |P| × p(P )

y(/ gP) = |P| × y(P )

n(/ gP) = 1 + |P| × n(P )

p(pk+1) = k × (1 + n(g)) + 1 + p(g)

y(pk+1) ≤ y(g) − 1

y(pk+1) ≥ 1

n(pk+1) = k × (1 + n(g)) + n(p1)

Fig. 3. Equations to calculate p(P ),y(P ) and n(P ), simplified for uniform programs,
where pk+1 denotes a program of the form a; g; a; . . . a; g; a with k + 1 goals (k ≥ 0).

plans, corresponding to a non-trivial agent program, the number of required test
cases is less than 1600.

However, it is worth emphasising that the all edges criterion, even for tradi-
tional software, is regarded as a minimum. Additionally, it can be argued that
agents, which are situated in an environment that is typically non-episodic, might
be more likely than traditional software to be affected by the history of their inter-
action with the environment [20, Sect. 1.1], which means that the all paths crite-
rion is more relevant (since a path includes history, and requiring all paths insists
that different histories are covered when testing).

We now turn to consider the four cases under All Edges, i.e. the effects of dis-
abling failure handling, and allowing goals to fail even when there are remaining
plans. Whereas a key finding of Winikoff & Cranefield was that failure handling
made an enormous difference, in our analysis we found the opposite. This does not
reflect a disagreement with their analysis, but a difference in the characteristics
of all paths vs. all edges. Adding failure handling has the effect of extending paths
that would otherwise fail. This means that enabling failure handling increases the
number of paths. However, for the all edges criterion, we do not need to cover all
paths, only all edges, so the additional paths created by enabling failure handling
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do not require a commensurate increase in the number of tests required to cover
all edges.

Finally, we consider the difference between the set of plans associated with
a goal being the relevant and being the applicable plan set. Interestingly, this
makes a difference, and surprisingly, in some cases it makes more of a difference
than enabling failure handling! For example, in the third example case (j = 2,
k = 3, d = 4) where more tests are required without failure handling (1037) than
with failure handling, but where the plans are the applicable plan set (808). Note
that the all paths analysis considered the j plans associated with each goal to be
applicable.

Table 1. Comparison of All Paths and All Edges analyses. The first number under
“actions” (e.g. 62) is the number of actions in the tree, the second (e.g. 13) is the num-
ber of actions in a single execution where no failures occur. For All Edges there are four
numbers: the first two are the (normal) case where failure handling is used to re-post a
goal in the event that a plan fails. The next two are the case where failure handling is
disabled, so if a plan fails, the parent goal fails as well. The columns labelled “relev.”
and “applic.” are where the plans associated with a goal are respectively the relevant
plans (so a goal can fail even though there are still untried plans), and the applicable
plans.

Params Number of . . . All Paths All Edges All Edges q(Q)

p(g) p(/g)

j k d Goals Plans Actions n✔(g) n✘(g) Relev. Applic. Relev. Applic.

2 2 3 21 42 62 (13) 6.33 × 1012 1.82 × 1013 141 78 85 64 62

3 3 3 91 273 363 (25) 1.02 × 10107 2.56 × 10107 6,391 2,961 469 378 363

2 3 4 259 518 776 (79) 1.82 × 10157 7.23 × 10157 1,585 808 1,037 778 776

3 4 3 157 471 627 (41) 3.13 × 10184 7.82 × 10184 10,777 4,767 799 642 627

5 BDI vs. Procedural

The previous section considered the question of whether testing BDI agent pro-
grams was hard. We now consider the question of whether it is harder, i.e. we com-
pare the number of tests required to adequately test a BDI agent program (with
respect to the all edges criterion) with the number of tests required to adequately
test an equivalent-sized (abstract) procedural program.

We choose to compare equivalently-sized programs for the simple reason that,
in general, a larger program (procedural or BDI) will require more tests. So in
order to compare procedural and BDI programs we need to keep the size fixed.
The particular measure of size that we use is the number of primitive elements,
actions for BDI programs, primitive statements for procedural programs.

Following Winikoff & Cranefield [20] we define an abstract procedural program
as (we use Q to avoid confusion with BDI programs P ):

Q :: = s | Q + Q | Q;Q
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In other words, the base case is a statement s, and a compound program can be a
combination of programs either in sequence (Q1;Q2), or as an alternative choice
(Q1+Q2). Note that for our analysis we do not need to model the condition on the
choice, so the program “if c then Q1 else Q2” is simply represented as a choice
between Q1 and Q2, i.e. Q1+Q2. Note that loops are modelled as a choice between
looping and not looping (following standard practice [13, p. 408] we only consider
loops to be executed once, or zero times). Mapping these programs to control-flow
graphs is straightforward, and a program is mapped to a single-entry and single-
exit graph.

We now consider how many tests (i.e. paths) are required to cover all edges
in the graph corresponding to a procedural program Q. We denote this number
(i.e. the testability of program Q with respect to the all edges criterion) by q(Q).
There are three cases. In the base case, a single statement, a single path suffices to
cover both edges. In the case of an alternative, each path either traverses the sub-
graph corresponding to Q1, or the sub-graph corresponding to Q2. Therefore the
number of paths required to cover all edges in the graph corresponding to Q1 +
Q2 is the sum of the number of paths required for each of the two sub-graphs,
i.e. q(Q1 +Q2) = q(Q1)+q(Q2). Turning to a sequence Q1;Q2, suppose that we
require q(Q1) tests to cover all edges in Q1, and, respectively, q(Q2) paths to cover
all edges in Q2. Note that each path traverses the sub-graph corresponding to Q1,
and then continues to traverse the sub-graph corresponding to Q2. This means
that each path “counts” towards both Q1 and Q2, so the smallest number of paths
that might be able to cover all edges is just the maximum of the number of paths
required to test each of the two sub-graphs (q(Q1;Q2) = max(q(Q1),q(Q2))).

However, this assumes that paths used to cover the part of the control-flow
graph corresponding to Q1 can be “reused” effectively to cover the Q2 part
of the graph. This may not be the case, and since conditions are not control-
lable (the environment cannot change conditions while the program is running),
we cannot make this assumption. So although it might be possible that only
max(q(Q1),q(Q2)) tests (i.e. paths) would suffice to cover all edges in the con-
trol flow graph corresponding to Q1;Q2, it may also be the case that more tests
are required. In the worse case it might be that the set of tests designed to cover
all edges of Q1 all take the same path through Q2, in which case we would require
an additional q(Q2) − 1 tests to cover the rest of the sub-graph corresponding to
Q2. This yields the following definition:

q(s) = 1
q(Q1;Q2) ≥ max(q(Q1),q(Q2))
q(Q1;Q2) ≤ q(Q1) + q(Q2) − 1

q(Q1 + Q2) = q(Q1) + q(Q2)

We define the size of a program Q (denoted by |Q|) as being the number of
statements. It can then be shown that for a procedural program Q of size m it is
the case that q(Q) ≤ m.
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Lemma 1. q(Q) ≤ |Q|.

Proof by induction: Base case: size 1, so Q = s, and q(s) = 1 ≤ 1. Induction:
suppose q(Q) ≤ |Q| for |Q| < m, need to show it also holds for |Q| = m. Observe
that q(Q1;Q2) < q(Q1 + Q2), so we only need to show that q(Q1 + Q2) ≤ |Q1| +
|Q2|, and the case for q(Q1;Q2) then follows. So, consider the case where Q =
Q1 + Q2, hence q(Q) = q(Q1) + q(Q2). By the induction hypothesis we have
that q(Q1) ≤ |Q1| and q(Q2) ≤ |Q2| and so q(Q1 + Q2) = q(Q1) + q(Q2) ≤
|Q1| + |Q2| = |Q|. ��

In other words, the number of paths (tests) required to cover all edges is at
most the number of statements in the program. By contrast, to cover all paths,
the number of tests required is approximately 3m/3 [20, p. 109].

The rightmost column of Table 1 shows the number of tests (paths) required to
test a procedural program Q of the same size as the BDI program in question for
that row. Following Winikoff & Cranefield, we define size in terms of the number
of actions (BDI) and statements (procedural), so, for example, the first row of
Table 1 concerns a BDI goal-plan tree containing 62 actions (with j = k = 2 and
d = 3), and a procedural program containing 62 statements.

We observe that the case with no failure handling and where P is applicable
plans (i.e. the rightmost of the four numbers) is very close to q(Q). On the other
hand, enabling failure handling does, for some cases, result in significantly more
tests being required to adequately test the program. For example, 6,391 vs. 363,
or 10,777 vs. 627. Both these cases have j = 3, whereas for the other two cases
where j = 2 the difference is smaller. So we conclude that, especially where failure
handling exists (which is the case for most BDI agent programming languages),
and where goals have multiple plans available, then testing a BDI agent program
is indeed harder than testing an equivalently-sized procedural program.

6 Conclusion

We considered the question of whether testing of BDI agent programs is feasible by
quantifying the number of tests required to adequately test a given BDI agent pro-
gram with respect to the all edges criterion. Our findings extend the earlier analy-
sis of this question with respect to the all paths criterion to give a more nuanced
understanding of the difficulty of testing BDI agents.

One key conclusion is that the number of tests required to satisfy the all edges
criterion is not just lower (as expected) but very much lower (e.g. > 2 × 10107 vs.
around 6, 400). Indeed, the number of tests required is sufficiently small to be fea-
sible, although we do need to emphasise that all edges is generally considered to be
aminimal requirement, and that there are arguments for why it is less appropriate
for agent systems.

We also found that the introduction of failure handling did not make as large
a difference for the all edges criterion, as it did for the all paths analysis.

When comparing BDI programs to procedural programs, our conclusion lends
strength to the earlier result of Winikoff & Cranefield. They found that BDI agent
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programs were harder to test than equivalently sized procedural programs (with
respect to the all paths criterion). We found that this is also the case for the all
edges criterion, but only where goals had more than two plans.

Our overall conclusion is that BDI programs do indeed seem to be harder to
test than procedural programs of equivalent size. However, whether it is feasible
to test (whole) BDI programs remains unsettled. The all paths analysis (which
is known to be pessimistic) concluded that BDI programs could not be feasibly
tested. On the other hand, the all edges analysis (known to be optimistic) con-
cluded that BDI programs could be feasibly tested. Further work is required.

Other future work includes applying these calculations to real programs, and
continuing the development of formal methods for assuring the behaviour of agent-
based systems [3,6–8,10,16,23].
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