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Preface

This book is motivated by the rapidly growing challenges and opportunities on the
road to the sustainable energy services. Present efforts toward integrating clean and
efficient resources are often not aligned with the objectives of the end users nor with
the business strategies needed to make these technologies affordable. The role of
“smart grids” as enablers of such integration remains fuzzy. The main premise in
this book is that the information technology (IT) in its broadest sense of the word
could play a major role in overcoming these problems and in integrating these new
resources according to the consumers’ specifications. The design of IT architectures
to support the functionality of given electric grids for aligning the characteristics
of the existing and new resources with the demand needs is the key challenge. The
trade-off between the IT complexity and the cost relative to the potential benefits is
a major underlying question. To the best of our knowledge this is the first com-
prehensive model-based treatment demonstrating through systematic simulations
that the existing and new resources could be integrated for meeting users’ needs
according to their preferences and within the prespecified cost ranges for electricity
service. As such, the book represents first-of-its-kind proof-of-concept that it is,
indeed, possible to utilize very diverse resources in alignment with customers’
preferences while meeting prespecified societal goals. The mathematical treatment
for the proposed concepts is not extensive. Mathematical problem formulations are
used only to the extent needed to pose the new approach and to contrast it with
the currently used approaches. The objective is, instead, to briefly summarize the
concepts and then illustrate the potential game-changing outcomes using as realistic
data gathered for the electric energy systems in the Azores Islands of Portugal.

The vision put forward is a result of the efforts by the team of over dozen
researchers who, at one point of time or the other, have worked closely with the
coeditors of this book. The three coeditors themselves have collaborated for nearly
one decade. They hope to convince the reader that green future electric energy
systems cannot be determined by looking solely at the coarse capacity estimates
and the characteristics of individual technologies. Instead, a systems approach to
enhancing today’s planning and operating practices is required to begin to utilize
the hidden potential of many distributed clean resources. If done right, this would
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viii Preface

lead to achieving much higher system-level efficiency than it is currently achieved
even in systems with conventional and fully controllable technologies.

The new technologies considered are small hydro-, geothermal-, wind-power
plants, photovoltaics (PVs), electric vehicles (EVs), and fast controllable stor-
age, like flywheels and stationary batteries. When equipped with the embedded
model-based sensing, communications, and decision-making algorithms, these
new resources can be coordinated with the adaptive load management (ALM)
automation on the customers’ side to provide just-in-time (JIT) and just-in-place
(JIP) value directly contributing to flexible and efficient asset utilization. One good
measure of system-level efficiency is the system load factor which is defined as the
ratio of average energy consumed and the peak demand. It is demonstrated in this
book that the achievable system load factor by means of IT-enabled flexible asset
utilization is significantly higher than today’s system load factor. To the contrary,
if new technologies are deployed as mandated by the regulators without enhancing
today’s operating and planning industry practices it will be very difficult to manage
the new resources efficiently and reliably.

This book reports on our work in progress toward IT-enabled electricity services.
The concepts are demonstrated by simulating electric power systems in two Azores
Islands, Flores and Sao Miguel. We are truly encouraged by the results obtained
as they demonstrate that it is possible to manage uncertainties created by the
intermittent resources, such as wind power and PVs, without relying on excessively
large amounts of expensive storage and on expensive and polluting diesel fuels
currently used on these islands. Perhaps the most important message in this book
is that it is not effective to pre-commit to the deployment of certain fixed capacity
of renewables without understanding the characteristics of the existing resources
and the demand characteristics and customers’ preferences. Targets like deployment
of prespecified capacity of renewable resources could become difficult to justify
without designing new methods for their integration. As with everything else,
it is necessary to assess long-term potential costs and benefits which may be
brought about by the new resources. Unique to the electric energy systems, the
cost/benefit analysis is critically dependent on the operating methods for utilizing
these resources. In this book we present a possible framework for assessing possible
technologies, for designing IT to enable their effective utilization and, notably, for
utilizing efficiency brought about by the interdependence of various technologies.
The emphasis is on potential savings from deploying predictive look-ahead decision
methods under uncertainties and on the multi-temporal risk management.

The most effective solutions are nonunique. Possible trade-offs between complex
software methods (predictions and look-ahead decision making for managing future
uncertainties dynamically), on the one side, and the novel adaptive hardware
technologies for managing imbalances created by the intermittent resources, on
the other side, are truly striking. The need for expensive fast-responding storage
can be greatly offset by predicting wind fluctuations and scheduling slower, less
expensive resources. The complexity of JIT and JIP system operations and planning
by the single utility is likely to become overwhelming. Instead, it is envisioned in
this book that an interactive IT-enabled framework could facilitate flexible system
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management; much distributed intelligence is embedded into system users and
minimal coordination is required by the utility system operators. This change of
operating paradigm requires fast automation to prevent extremely fast instabilities
following forced equipment outages, as well as to make the dynamic system
response robust with respect to various uncertainties. In order to achieve this, it
becomes critical to establish new mathematical models, analysis, and control design.
Qualitatively different methods for managing fast small wind power fluctuations
are needed than when managing fast large wind power surges or large prolonged
wind power deviations from the predicted levels. While relatively small flywheels
or batteries can be used to reduce wear and tear of the slow mechanically con-
trolled generators, it becomes necessary to rely on power-electronically controlled
equipment for managing large wind surges of short duration; finally, to compensate
imbalances created by the prolonged wind power deviations it becomes necessary to
use larger flywheels and storage. Moreover, the control capacity required to manage
these imbalances during the time window needed for the more conventional slower
resources to respond greatly depends on the sensing, communications, and control
logic used for automatic control.

We close by pointing out that we are at the very cusp of what promises to be a
major era of IT innovations for future electric energy systems. As one of our industry
friends pointed out, we are in the midst of once-in-fifty-years opportunity to make
major innovations in today’s electric energy industry. This must be done with clear
sense of how systems work today and with a real appreciation of the fact that the
most effective solutions are likely to be the result of many diverse technologies,
software and hardware, complementing each other for meeting complex customers’
preferences. These are no longer just needs for uniform uninterrupted electricity
service. Customers differ in so many ways with respect to both their needs and
preferences, as well as with respect to their ability to respond to the technical and
economic signals. We have had fun testing otherwise highly theoretical concepts
using realistic data from the Azores Islands. We are grateful for the opportunity
given to us by having this information to illustrate recent concepts from our research
on how much cleaner Azores Islands could become without increasing the actual
cost and with full awareness of customers’ characteristics.

On behalf of all authors Marija Ilić wishes to thank Professors Jose’ M.F. Moura
and Ernest J. Moniz for suggesting to study Azores islands. She also thanks her
colleagues Joao A.P. Lopes, Stephen Connors and Dan Spang for sharing early on
what they knew about various data sources. This book would have not happened
without the help by Filipe R.G. Mendonça and António J. L. A. Furtado from
Electricite de Azores (EDA). May the tale of the beautiful Azores Islands always
warm all of our hearts.

Pittsburgh, PA, USA Marija Ilić
College Station, TX, USA Le Xie
Pittsburgh, PA, USA Qixing Liu





Prologue

This book is a first example of what may become possible when one combines
physical infrastructures, like complex electric energy systems and their power grids,
with on-line information technologies, such as widespread sensing, communica-
tions, and control. The book demonstrates how data-driven distributed decisions
with minimal coordination among generation, electricity users, electric power grid,
and the operators and planners, offer choice and system-level social benefits at the
same time.

To illustrate this potential, the authors introduced end-to-end models of two
test bed electric power grids in the Azores Islands in a form that is appropriate
for information technology design and that enables the desired analysis of the
performance of these systems. The data provided and made available by the
Electricidade dos Aores (EDA) is greatly appreciated. Having now these data and
models, one can begin a systematic approach to IT and cyber design and compare
different proposed solutions.

Looking forward, I see at least three major challenges:

First, the eternal challenge of how to further validate the concepts proposed in the
book with test beds with hardware in the loop. This will better prepare the ground for
technology transfer of the dynamic monitoring and decision systems (DYMONDS)
framework presented in this book. One way could be working during long summer
days in the EDA control center to further test what is proposed here. The path to
deploying systems solutions is not well plowed and learning from the experts who
operate the system and comparing their actions with what IT-based methods suggest
is invaluable. At the same time, it is important to show practitioners how embedded
IT can be used and is useful. This is no small step.

Second, now that a first proof-of-concept is available, how can one proceed
and generalize the framework to other islands? As shown in the book, the need
for hardware and software enhancements to support sustainable electricity services
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is system conditions dependent. It is not optimal in any respect to deploy a pre-
specified capacity of renewable resources. How much is needed, where and how
should it be integrated into the legacy power system is not the same for every
island. In addition, perhaps, the methodology for finding answers to these questions
can be generalized. Having a formal approach for assessing and utilizing the best
mix of technologies by all minimally coordinated stakeholders to meet the desired
performance is potentially very powerful.

Finally, would it be possible to use the same framework to enhance the
performance of continental power systems, and if so what types of improvements
are possible and how to find the most effective hardware and software methods?
The fundamentally distributed interactive approach put forward in this book offers
the beginning of a framework that has the potential to scale to large power
interconnected electric grids such as those of the US, China, Europe.

This project is a first seed that explores the potential of making electricity ser-
vices in the Azores Islands sustainable by means of flexible data-driven embedded
IT. Hopefully, the end-to-end models and data described in this book can be used by
other researchers to grow the IT and software infrastructures to further improve the
performance of the electric grid.

This project is a partnership between Carnegie Mellon and Instituto Superior
Técnico through the Carnegie Mellon—Portugal Program. The Carnegie Mel-
lon—Portugal Program partners Carnegie Mellon University and nine Universities
in Portugal. It is managed by the Information and Communications Technologies
Institute (ICTI), www.cmuportugal.org. The Carnegie Mellon—Portugal Program
is supported by the Fundaçõ para a Ciência e a Tecnologia (FCT), Portugal. We
acknowledge the support of FCT to the Program that made this project possible.

Carnegie Mellon University José M.F. Moura
Philip and Marsha Dowd University Professor
Director, ICTI@CMU

www.cmuportugal.org
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19 Transient Stabilization in Systems with Wind Power . . . . . . . . . . . . . . . . . . 491
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Chapter 1
The Case for Engineering Next-Generation
IT-Enabled Electricity Services at Value

Marija Ilić

1.1 Introduction

This chapter recognizes that it is not sufficient to have abundant energy resources;
it is equally if not more important to have a system in place that manages
them and distributes them reliably and efficiently. Given the overall complexity
of today’s physical electric energy systems, it is suggested that IT could play a
key role in having such a system in place. However, the computer methods and
automation in today’s electric energy industry are generally viewed as having
second-order effects on the quality and cost of electricity service. Investment
planning and operations target the building of sufficient capacity to ensure long-term
adequacy for the forecast system demand, and at the same time, to serve customers
reliably and securely, without affecting them adversely even during the worst-
case forced equipment outages. Assuming accurate system demand forecast, and
typical economies of scale supporting the building of central large power plants and
large-scale transmission and distribution (T&D) infrastructure to reduce long-term
cost, it is easy to understand the overall lack of relying on on-line measurements
and control. The main value of these technologies, generally referred to as IT,
comes from providing flexible, just-in-time (JIT) adaptation to the changing system
conditions and also from enabling economies of values from multiple usage of the
same hardware, known as economies of scope. The industry is risk averse and will
build more and have a slightly larger operating reserve, just in case conditions are
not as anticipated, instead of relying on JIT and multiple use of the same equipment.

Perhaps an additional reason for the electric power industry not having relied
on automation extensively in the past is the complexity of its design needed to

M. Ilić (�)
Department of Electrical and Computer Engineering, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213, USA
e-mail: milic@ece.cmu.edu

M. Ilić et al. (eds.), Engineering IT-Enabled Sustainable Electricity Services,
Power Electronics and Power Systems 30, DOI 10.1007/978-0-387-09736-7 1,
© Springer Science+Business Media New York 2013
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guarantee its performance. It is hard for power engineers to trust automation and
not have direct control of their assets in an environment in which synchronized
monitoring is not in place, manufacturers’ data is hard to test, and the physical laws
governing complex geographically vast interconnected power networks generally
lead to untractable, non-closed form models. At the same time, the very complexity
of forecasting system demand and scheduling generation so that power can be
delivered to the right, often distant, geographical locations (at the right time to
maintain synchronism) has led to the gradually increased use of computer software
and automation in today’s utilities over the past several decades. The software tools
have become invaluable to system operators in control centers and planners in their
daily decision-making. Reconciling this complexity of designing the right software
for predictable performance, with the growing needs for software that helps manage
the complexity of the physical system, is not an easy balance to strike. Deciding
what to leave to the operators and what to automate is an equally if not more difficult
problem than deciding which new equipment to build and use.

The challenge of deploying the right IT has recently taken on a new importance
with the efforts to make the most out of the available energy resources in sustainable
ways. Moreover, there are pressures to utilize all system assets, both existing and
new, as efficiently as possible. As these efforts are being pursued, it is becoming
exceedingly difficult to directly relate any technical innovation, hardware or soft-
ware, to quantifiable performance improvements. Yet, it is clear that new models,
communications, sensors, computer software, and automation will be needed to
integrate and utilize many diverse energy resources; in this book we refer to these
technologies in a general way as IT.

To help overcome the inherent complexity of designing IT for well-understood
performance, we first briefly review how the grid is operated today and highlight
what are the implied assumptions and related hidden inefficiencies. Once this is
understood, it becomes more straightforward to identify the limitations of the
computer algorithms and automation used by the industry today, which were
developed to support given industry practice.

In this chapter, one possible approach to reviewing today’s industry practice is
taken by stating the overall operations and planning objective of today’s industry and
by formulating this objective as a mathematical problem first. Once this formulation
is stated, it becomes possible to discuss the fundamental roots of the complexity. Of
course, the power grid was not designed by solving this overly complex problem.
It has, instead, evolved, almost mushroomed, over a very long time by adding new
utility-specific assets needed to solve subproblems as they surfaced. When it was
predicted that demand would grow, more power plants were built, and the T&D
system was built to enable power delivery. Operations were also relatively simple as
the scheduling of slow plants was done first, and these plants stayed on while some
faster power plants had to adjust their power output as the system load varied in real
time. This is sometimes referred to as “horizontal scheduling (over time).”

In this chapter it is shown how starting from the single operations and planning
problem one can decompose this complex problem into several operations and
planning subproblems. Furthermore, it is discussed how the single operations
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subproblem can be thought of as comprising several operations tasks commonly
performed by utilities today using separate stand-alone computer applications. This
decomposition process is done by making many implied assumptions in practice for
simplification purposes. These assumptions are identified with the goal of proposing
what can be enhanced, and why as more IT becomes available, it is needed to
manage increasingly complex industry problems.

The modeling and analysis of today’s operating and planning practice, and
identifying its hidden inefficiencies related to implied assumptions, is the first step to
posing formally the evolving changes in future systems with unconventional energy
resources–renewable power and demand response, in particular. The material in
this chapter is basic to explaining why it is becoming increasingly important to
support the operations of the physical system with a carefully designed IT system.
A full treatment of this subject is, of course, a huge undertaking and far beyond the
objectives of this chapter. Nevertheless, it is essential to understand these questions
at least conceptually in order to establish the link between the potential technical
problems in systems with a high penetration of wind and solar power and the basic
enhancements needed to overcome these potential problems. New technologies
should be deployed with a good sense of what their potential benefits are, and at
choice.

This chapter is written with the goal in mind of discussing what needs innovation
and why, and it is organized as follows. In Sect. 1.2 we summarize today’s
industry approach to balancing generation and demand. This is done by considering
the multi-temporal characteristics of system demand and by reviewing currently
used power generation planning, scheduling, and automated control methods for
supplying system demand. In Sect. 1.3 we review the problem of secure and reliable
delivery of power. We mathematically pose the notion of a secure operating region
by using a general model which has the form of high-order coupled differential
algebraic equations (DAE) obtained by subjecting the system demand and power
plant dynamics to basic electric network laws. Generation can be delivered by a
complex electric power grid as long as there is no “network congestion,” namely, as
long as the system states remain within the secure operating region. Computing
a secure operating region exactly is a very complex problem and it is typically
not done by the utilities. Instead different engineering assumptions are made
when assessing the security of the grid. These assumptions help approximate the
computation of the secure region. One of the most frequent approximations used
for assessing whether the system will be secure is by reformulating the constrained
DAE model as a constrained DC power flow model; the approximations leading
to a DC power flow representation of a secure region are briefly summarized.
Understanding these assumptions and their implications is key to identifying what
needs to be changed, why, and how. In particular, it is illustrated in Chap. 2 how
some possible unique characteristics of future candidate technologies could play a
major role in enabling more efficient system operations within the secure region by
making it possible to relax the assumptions leading to hidden inefficiencies.

We next formally pose the single operations-planning problem in today’s power
industry in Sect. 1.4 as a complex stochastic optimization problem subject to the
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constraint that the solution be in a secure and reliable operating region. This is
followed in Sect. 1.5 by the discussion of how, under certain assumptions, this
problem can be decomposed into operations and planning stochastic optimization
subproblems. In Sect. 1.5.1 we discuss the objectives of short-term scheduling for
optimizing available generation. This must be done by operating securely as defined
in Sect. 1.3. We then show in Sect. 1.5.2 how further simplification of the short-term
scheduling problem leads to the commonly used deterministic DC optimal power
flow (DC OPF) problem for scheduling the least-cost generation. In Sect. 1.5.3 we
pose the generation and transmission investment subproblem and review notions
of long-run marginal cost in the context of optimal investments. In Sect. 1.5.4,
we specifically review the problem of optimal generation investment and optimal
technology selection. We review in Sect. 1.7 the evolution of computer methods
and automation currently used for planning and operations. Finally, in Sect. 1.8,
we stress the need for relaxing some key assumptions and the relevance of their
relaxation in enabling sustainable electric energy services at value in future electric
energy systems and set the basis for introducing our dynamic monitoring and
decision systems (DYMONDS) framework for next-generation IT in future electric
energy systems. The approach is formalized in Chap. 2 as a possible approach to
overcoming the key assumptions made in today’s industry and the basis for an
interactive IT-enabled platform which lends itself to supporting sustainable socio-
ecological energy systems (SEESs) [4].

1.2 Operations and Planning Approach in Today’s Electric
Energy Systems

In preparation for stating mathematically later in this chapter a single overall
objective of electric energy systems operations and planning, we first briefly review
the multi-temporal characteristics of system demand and the key role of generation
planning, scheduling, and control in today’s industry. While both operations and
planning have been done with the single objective of supplying demand reliably and
as inexpensively as possible, the actual methods used are much simpler than solving
the complex single problem, and they draw on the multi-temporal separation of
generation supplying system demand.

1.2.1 Multi-temporal Characterization of System Demand

One way of explaining how the single planning and operations problem is decom-
posed into several subproblems and is implemented by the industry is by looking at
the characteristics of system demand. System demand is an aggregate composition
of many diverse loads, spanning industrial, commercial, and residential customers.
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Fig. 1.1 A sketch of interconnections of power plants and main loads on Flores [8], Chap. 3

At present, utilities do not monitor accurately the temporal profiles of individual
loads. Instead, methods are used to forecast the entire system load, which is assumed
to be geographically distributed roughly according to the historic peak loads. Shown
in Fig. 1.1 is a sketch of the power grid interconnecting geographically distant major
loads to the power plants on Flores [8], Chap. 3. It can be seen that the major system
load on Flores is distributed at several geographical locations and that there are
many small loads connected to many more nodes in the network.

The system load has multi-temporal components which are predictable with high
accuracy, multi-temporal hard-to-predict components, and continuous fast fluctua-
tions superimposed on top of discretized load components. Predictable system load
components typically exhibit several periodic patterns. Shown in Figs. 1.2 and 1.3
are the annual and daily system demand variations on Flores [8], Chap. 4. These are
drawn from representative days of the year and may vary considerably with the day
selected.
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Fig. 1.4 Discretization of the annual system demand on Flores

For operations simplification system demand is usually thought of as being
decomposed into several temporal components. Shown in Fig. 1.4 is the same
annual system demand on Flores as in Fig. 1.2, discretized into minimum monthly
components.

Similarly, shown in Fig. 1.5 is the same daily load on Flores as shown in Fig. 1.3,
now discretized into hourly and 10-min minimum values. It is indicated that the
predictable real power demand variations can be represented as comprising forecast
annual component P̂d[Y ∗TY ], forecast daily component [D ∗ TD] changing at each
[D∗TD], hourly component P̂d [H ∗TH ] changing every [TH ], and/or forecast 10-min
[M ∗ TM] component P̂d [M ∗ TM]. The discretization of the annual system demand
can be refined into seasonal, monthly, and even weekly components. For illustration
purposes, we show only the monthly discretization. For planning purposes utilities
often characterize their system demand using load duration curves; these represent
the number of intervals of interest when the system demand is low, medium, and
high, respectively.

Hard-to-predict system demand components are superimposed on the predictable
components. These deviations are minute-by-minute power fluctuations ΔPd[m∗Tm]
and/or second-by-second power fluctuations ΔPs[s ∗ Ts]. In today’s industry these
are not monitored in real-time operations. Shown in Fig. 1.6 is a sample hourly
predictable component [M ∗ TM] and in Fig. 1.7 a discretization of the actual
[M ∗TM] load component into its hard-to-predict minute [m∗Tm] and second [s∗Ts]
components within each [M ∗TM] 10-min intervals.
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Based on this multi-temporal decomposition, one can express system demand as
follows1:

Pd(t) = P̂d[Y ∗TY ]+ P̂d[H ∗TH]+ P̂d[M ∗TM]+ΔPd[m∗Tm]

+ΔPd[s∗Ts]+w(t) (1.1)

Today’s computer applications and automation assume that predictable system
demand components (.̂) can be forecasted with relatively high accuracy and that
the components Δ( ) are hard to predict; component w(t) represents the differ-
ence between the continuous system demand and all its discretized components,
predicted and hard to predict; this is typically a white noise around the combined
discretized forecast components and hard-to-predict components. In what follows
we use this temporal decomposition as the basis for the simplifications made in
today’s operations and planning industry practice.

1.2.2 Basic Generation Planning, Operations, and Control

In today’s industry the demand is primarily balanced by controlling the real
power generation output PG and the terminal voltage of power plants VG. Every

1Depending on the potential system demand use, more detailed annual, seasonal, monthly, and
weekly forecasts can be made. Here, for simplicity and without loss of generality, only the annual,
hourly, and 10-min forecast components are modeled.
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conventional power plant is equipped with a governor that controls real power sent
to the system, and with a rotor excitation system that controls the terminal voltage of
a power plant. Shown in Fig. 1.8 is the basic sketch of the structure of the generators,
interconnected via the T&D power grid to the loads. It can be seen that both the
governors and automatic voltage regulators (AVRs) are the local primary controls
of generators.

Shown in Figs. 1.9 and 1.10 are sketches of a generator-turbine-governor
(G-T-G) and an AVR as the primary controllers responsible for balancing today’s
electric power grid [9]. The governor controls the valve position a which, in turn,
lets more or less steam pass through and converts it to mechanical power which,
when applied to the generator rotor, is converted into electric power generation PG.
Similarly, an AVR is a local feedback which responds to deviations in the terminal
voltage of the generator from its set point and attempts to keep it as given. This is
done by applying more or less excitation to the rotor coils of generator e f d .
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1.2.3 Multi-temporal and Multi-spatial Complexity
of Managing Today’s Electric Energy Systems

Today, the computer applications and automation for balancing generation and
demand during normal operations are organized hierarchically with respect to both
time and geography/space. The objective of a hierarchical approach is to make the
problem more manageable.

It is important to understand, in order to identify the future need for IT in electric
energy systems, that today’s system is never at an equilibrium. Both the supply-
demand imbalance and the resulting frequency and voltage changes are driven
by the constantly changing demand at different rates as shown in (1.1). Recall
from Figs. 1.4 and 1.5 that system demand has several natural periodicities: hourly,
diurnal, weekly, and seasonal. This sets the basis for viewing system operations
as a process which repeats at different rates as the demand forecast becomes
more accurate closer to real time. The complex operation and planning to balance
supply and demand at a near-real-time rate requires annual investment decisions,
generation scheduling decisions, and automation. To manage the overwhelming
temporal complexity, hierarchical simplifications are made with respect to both
time and space [9]. To manage inter-temporal complexity, a single operations and
planning problem is usually decomposed into operations and long-term investment
subproblems as described in Sect. 1.4 below. The operations problem is further
decomposed into several tasks, as described in Sects. 1.7 and 1.8 later in this chapter.

The geographical/spatial complexity in large-scale electric grid interconnections
which span over several states is twofold: (1) the horizontal complexity of coordi-
nating utilities in different countries for regional- and interconnection-level efficient
use of resources while respecting the sub-objectives of the utilities and countries and
(2) the vertical complexity within each country and its utility of coordinating the
EHV/HV transmission system sub-objectives with the sub-objectives of the MV/LV
distribution systems.

The hierarchical approach to managing temporal complexity is discussed
next. This is followed by a discussion of today’s approach to managing
spatial/geographical complexity.

1.2.4 Multi-temporal Approach to Balancing Generation
and Demand

Basically, short-term generation scheduling assumes a given demand forecast, while
automation responds to small frequency and voltage deviations caused by hard-to-
predict demand fluctuations around the short-term demand forecast. Accordingly,
generation scheduling is done in a feed-forward way to supply predictable demand
components (ˆ), while demand deviations Δ(.) are balanced with automated feed-
back such as automatic generation control (AGC) and primary stabilization.
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Least-cost generation scheduling in today’s industry evolves around balancing
forecast demand components (ˆ). This is done by adjusting governor set points
ω ref

G [H ∗TH ] and/or ω ref
G [M ∗TM] of the dispatchable power plants so that the least-

cost generation balances the forecast system demand an hour ahead [H ∗TH ] and/or
10 min ahead of time [M ∗TM], as the system demand becomes known with higher
accuracy.

Understanding these temporal simplifications is key to identifying what needs to
be changed, why and how, as well as what the possible unique characteristics are of
future candidate technologies for enabling system operations within a secure region
without having to resort to strong separation between the feed-forward and feedback
designs.

1.2.5 Generation Scheduling

There are common simplifications made in operations when attempting to balance
supply and demand closer to real time. Generation unit commitment and planned
maintenance are done weekly and seasonally. The least-cost generation dispatch
of ramp-rate-limited plants which are already up and running is done hourly each
[H ∗ TH ] time interval for H = 1, 2, . . .. Some utilities adjust their fast-responding
power plants even closer to real time each 10 min [M ∗ TM], where M = 1, 2, . . ..
Given forecast demand P̂d[[H ∗ TH ] a ramp-rate limited dispatch is done to adjust
the least-cost real power generation at hour [H ∗ TH ] so that the supply meets the
forecast demand and that the system is secure in the sense of power flow constraints
(equality constraints) and equipment inequality constraints being met at each time
step [H ∗TH ]. The results of the economic dispatch are implemented by adjusting
the set points of dispatchable power plants ω ref

Gi [H ∗TH ] to control generated power
PG[H ∗TH ] as desired. While there is no knob on the G-T-G system to directly control
the real power generated, it can be shown that there is a one-to-one relationship
between the set point of the governor and the power generated. Strictly speaking,
this relationship is a three-way relationship, known as a G-T-G droop characteristic;
however, as long as the system frequency is close to nominal, this relationship is
unique [9].

1.2.6 Regulation and Stabilization

At present, very fast fluctuations in frequency and voltage are stabilized in a
feedback automated manner by means of governor controllers, as well as by
means of AVRs and power system stabilizers (PSSs) [2, 10]. Recently, flexible AC
transmission systems (FACTS) have become more common for stabilizing these
fluctuations. Most of today’s power plants have both governor and AVR stabilizers,
and some have PSSs. Today’s automation is based on primary- and secondary-level



1 The Case for Engineering Next-Generation IT-Enabled Electricity Services at Value 15

control of the governors and AVRs. Shown in Figs. 1.6 and 1.7 is a sketch of hard-to-
predict deviations around demand forecast Δ(.). Depending on the time interval over
which forecast is made and on the type of forecast methods used, the amplitude of
these deviations may vary. The better the forecast, the less need for feedback control
and fast storage.

Feedback must be designed to compensate very quickly the effects of these
disturbances in AC power networks. AGC and automatic voltage control (AVC)
regulate quasi-stationary minute-by-minute power imbalances by means of the
participating power plants adjusting their governor set points ω ref

Gi [m∗Tm] and AVR
set points V ref

G [m ∗ Tm], respectively. Similarly, the primary controllers, governors,
and AVRs are expected to stabilize fast frequency deviations ωGi[s ∗ Ts] and
voltage deviations VG[s ∗ Ts] away from the quasi-stationary values ω ref

Gi [m ∗ Tm]
and V ref

G [m∗Tm], respectively. Today’s frequency standard is such that the power
imbalance between two consecutive dispatch intervals [M ∗TM] and [(M + 1) ∗TM]
crosses zero at least once [3]. The implied assumption is that the system dynamics
fully settle to the frequency and voltage set points of the governors and AVRs in
between the scheduling intervals [M ∗TM].

At present AGC is used to adjust the set points of the governor controllers on fast
power plants by responding to the second-by-second frequency deviations caused
by the total supply-demand imbalance. The implementation of AGC requires a
supervisory control data acquisition (SCADA) system. Smaller systems, typically
islands and stand-alone micro-grids, do not have AGC. Instead a few of their
fast power plants have proportional-integral (PI) governor controllers; the integral
control is capable of controlling steady-state error around the nominal frequency.
Some systems only have proportional governor controllers and resort to the system
operator curtailing demand to maintain frequency if/when it exceeds prepecified
industry standards.

1.3 Objectives of Secure Operations in Today’s Industry

In actual operations it is essential to ensure that power can be delivered to the right
locations and that sufficient power is generated to supply, almost instantaneously,
the demand given in (1.1). This is because today’s power systems have very
little storage and are operated as AC systems in which no major supply-demand
imbalances are allowed. To introduce a mathematical notion of secure operations,
we briefly summarize a general dynamical model of today’s power systems next.

1.3.1 Dynamical Model of an Interconnected Power System

The dynamics of a conventional power system can be modeled by a set of coupled
DAEs [7,9]. This model is obtained by combining the dynamics of turbine-generator
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dynamics with the dynamics of the primary generator controllers (the governors
and AVRs). Each turbine-generator-governor-AVR plant can be modeled as a set
of differential equations whose states are the local states of power plants xGi and
the states of their local controllers. Currently used controllers of power plants sense
the deviations in local output variables yGi away from the set point values of these
output variables yref

Gi and stabilize these deviations back to zero.
Specific generation technologies have different states xGi and parameters PG.

Independent of particular technology, the closed-loop dynamics of each power plant
can be expressed in terms of the plant’s own states, the set points of the directly
controlled local output variables and the interaction variables zGi between the power
plant and the rest of the system. In later chapters of this book, particularly in
Chaps. 14–17, specific models of the power plants on Flores and São Miguel are
derived and analyzed. For now, we mention that typically controlled output variables
yref

Gi in conventional power plants are the set point frequency of a governor ω ref
Gi and

the terminal voltage V ref
G , respectively. Typical coupling variables zGi between the

power plant and the network are the direct and quadrature axis generator currents
iG,di and iG,qi. Using this notation, a dynamical model of a single power plant
independent of technology can be expressed as

dxGi(t)
dt

= fGi(xGi(t),zGi(t),y
ref
Gi (t),PG(t)) (1.2)

This dynamic is subject to the network real power and reactive power balancing
equations at all nodes known as the power flow equations [9] resulting in a set of
DAEs that represent a model of the interconnected power system as follows2:

dx(t)
dt

= f (x(t),z(t),yref(t), pG(t)) (1.3)

g(x(t),z(t),d(t), pgrid(t)) = 0 (1.4)

with

f (x(0),z(0),d(0), pgrid(0),0) = 0 (1.5)

The notation without subscripts is used to denote a vector of variables in the entire
system. This model is used in the next subsection to mathematically pose a general
notion of secure operations.

2Observe that specific grids have different topologies and line parameters pgrid(t). For a more
detailed derivation of the DAE model of today’s electric power system, see [9], Chap. 4.
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1.3.2 Secure Operating Region

Secure operation in today’s industry is generally characterized in terms of available
transfer capability (ATC). The ATC can be formulated by defining a set of vector
quantities θ (t) = [x(t),z(t),d(t)] for each of which the power network satisfies
all quasi-stationary and transient operational requirements both for the existing
network topology and for the set of contingency-degraded network topologies [7].
The system response to changes is defined by the DAE model given in (1.3)–(1.5)
above. To define and compute a secure operating region, even for small systems,
normally requires a sequence of simulations which vary the generation level until it
becomes impossible to meet the security constraints.

However, most utilities do not compute the secure region on-line. Instead,
off-line studies are performed to screen for the worst-case critical contingencies.
These critical contingencies can be caused by a combination of complex nonlinear
phenomena such as (1) the nonexistence of a system equilibrium as topology and
grid parameters pgrid vary; (2) transient stability problems caused by not being
able to move from the normal equilibrium to the new equilibrium if a disturbances
lasts longer than the so-called critical clearing time; and/or (3) a non-robust, small-
signal unstable equilibrium following the disturbances. For detailed analysis of these
typical operating problems in a small two-bus system [9], see Chap. 4, pp. 198–210.
For an introduction to the concepts and structure of comprehensive power system
dynamics in large-scale systems, see [9], Chap. 7, pp. 391–497.

A detailed treatment of operating problems caused by nonlinear system dynam-
ics, including voltage-related problems, is far beyond the objectives of this chapter.
Mathematical models for Flores and São Miguel islands are derived and analyzed
in Chaps. 15, 16, 17, and 19 of this book. For the purposes of identifying often
hidden assumptions made in today’s industry practice, it is important to keep in
mind the major step made in replacing computation of secure operating regions
by the conservative constraints as defined in [7], Chap. 2, and the typical DC
power flow constraints used to monitor system congestion when dispatching power.
Utilities pressed hard to make the most out of their T&D systems have begun
to consider more accurate computation of secure regions by performing transient
stability assessment and dynamic security analysis.

We stress that these methods are analysis-oriented and are not capable of
identifying the most effective corrective actions and/or change of automation logic
as conditions vary. Reviewed in Chap. 2 are the potential effects of optimized cor-
rective actions and carefully designed automation methods which would contribute
to a broader range of secure operating conditions over which generation scheduling
can be done. These are illustrated in Chap. 13 and 18 for the islands of Flores and
São Miguel.
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1.3.3 Approximate Approach to Ensuring Secure Operations

Assuming that AGC, AVC, and system stabilization during normal conditions
respond as expected, it becomes possible to further simplify the objective of
ensuring secure operations. Instead of keeping track of the entire dynamics starting
at a given time t = 0, typical least-cost scheduling is done today in an entirely static
manner.

This is to say that a power system operates in a secure region where everything is
stable at each scheduling instant t = [H ∗ TH ] and/or each [M ∗ TM]. The quantity
x(t) is the dynamic equations state vector (machine and load dynamics and the
primary control), while z(t) is the power flow state vector (real power P and reactive
power Q injections, voltage magnitudes V and voltage phase angles δ , real power
flows Pl , and reactive power flows Ql in each line l). The vector d(t) stands for the
disturbance and parameter vector which, in its most general form, can be assumed
to represent all bus load model parameters as well as all fault and contingency
data, machine parameters, and any other system parameters. Equations (1.3)–(1.5)
model the AC power flow and the system dynamics for the existing topology and
for all possible contingency network topologies and system dynamics as well. The
disturbance vector d(t) describes all disturbances including faults, load changes
(w(t) in (1.1)), and outages during which the system must remain stable. In addition
to the stability requirements, the system variables must satisfy a number of quasi-
stationary operational inequalities in line flows, voltage, and frequency limits. Both
the steady-state and the stability requirements can be expressed in the form

h(x(t),z(t),d(t), t) ≤ 0 (1.6)

Then the security region S can be defined as the set of quasi-stationary states
θ [H ∗ TH ] = [x[H ∗ TH ],z[H ∗ TH ],d(t)] which satisfy (1.3)–(1.6) for the set of
disturbances defined by d(t), within each scheduling interval [H ∗ TH ] ≤ t ≤
[(H + 1)∗TH], namely,

S =

{
θ |dx(t)

dt
= f (θ (t), t);h(θ (t), t) ≤ 0)

}
(1.7)

Throughout this book modeling and simulations are done for Flores and São Miguel
to test whether during certain disturbances the system remains in a secure region.
Parts IV–VI, in particular, present a detailed modeling of the system dynamics in
the electric power systems on these islands. Of particular interest is the design of the
scheduling and automation to ensure that for given disturbances the system remains
in a secure operating region.

Available transmission capacity can be thought of as the maximum power
transfer limit within the requirements of the security region, and it can be defined by

TC([H ∗TH]) = max
θ∈S

TC(θ [H ∗TH ]) (1.8)
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Equations (1.3)–(1.5) take on the form

f (x([H ∗TH ]),z[H ∗TH ],d[H ∗TH ]) = 0 (1.9)

g(x[H ∗TH ],z[H ∗TH],d[H ∗TH]) = 0 (1.10)

and

h(x[H ∗TH ],z[H ∗TH],d[H ∗TH])≤ 0 (1.11)

The dynamics of power plants (1.3) are approximated by so-called unit ramp rates
R which state that power generated by a particular power plant can change within
certain range per hours, namely

|[PG[H + 1]∗TH]−PG[H ∗TH ]|< R (1.12)

It is discussed later in this chapter how the basic functionalities of today’s
computer applications and automation can be understood by combining the demand
representation shown in (1.1) with (1.3)–(1.6). Given the initial condition at time
t = 0, any secure state must satisfy the DAE model defining system response to
these disturbances, the inequality constraints specific to hardware such as generation
limits,the thermal line flow limits, and the equipment voltage limits.

1.3.4 The Most Frequent Characterization of a Secure
Operating Region

As explained above, it is routinely assumed when performing real power economic
dispatch that the system frequency has settled back to the nominal conditions and
that it has become possible to directly relate power generation output PG[H ∗ TH ]
by adjusting the set point of governor ω ref

Gi [H ∗ TH ]. This leads to the problem of
computing constrained nonlinear equations (1.3)–(1.5) on-line to ensure a secure
operating region at each scheduling instant [H ∗ TH ]. At present, there are hardly
any effective methods for computation of these equilibria for realistic size electric
power grids. It is more frequent to compute the AC power flow equations. However,
over wide operating ranges and for different grid topologies, even computing AC
power flow solutions is prone to numerical problems. Because of this, further
major simplifications are typically made when scheduling generation for the forecast
demand. These simplifications are reviewed next.

To start with, when scheduling real power generation, it is assumed that the
schedule does not significantly affect voltages VGref[K ∗TH ]; it is assumed that these
are maintained at their nominal values (typically 1 pu) by means of the AVRs. This
assumption, together with linearization of the real power flow equations, results in
DC power flow equations. These are routinely used when screening for the critical
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equipment outages which may violate the secure region requirements and create
grid “congestion.”

As a result, an overly simplified characterization of the secure operating region
is derived using real power line flow sensitivities with respect to power injections
Fl(PG(t)− Pdi(t)) so that: (1) the total real power generated should supply total
forecast system demand, (1.13); (2) the real power line flows should be smaller than
the proxy line flow limit determined using off-line stability studies, (1.14); and (3)
the real power generation should be within its capacity limits (1.15).3 The real power
line flow sensitivities with respect to power injections are known as the distribution
factors and are easily computed using network parameters and topology.

∑
i

PG(t) =∑
i

PDi(t) (1.13)

and
Fl(PG(t)−PDi(t))≤ KT

l,proxy (1.14)

and

PG(t)≤ KG
Gii (1.15)

PG(t) and KG
Gi denote the real power generated by power plant i and its maximum

capacity, respectively. PDi(t) is the real power load at bus i. Fl(t) and KT
l,proxy denote

the real power flow in line l at time t and the proxy line flow capacity of line l at
time t, respectively.

Ensuring that dispatched power can be delivered without congestion is done
primarily by dispatching real power within the real power proxy line limits KT

l,proxy
obtained by off-line studies to ensure no voltage- or stability-related problems.
These assumptions underlie today’s security-constrained unit commitment (SCUC)
and security-constrained economic dispatch (SCED) software, used by system oper-
ators in control centers for implementing secure dispatch during normal conditions.
Hidden inefficiencies inherent in this software are discussed next.

1.3.5 The Key Hidden Inefficiency: Replacing Thermal Line
Flow Limits with Proxy Line Flow Limits

Observing (N-1) reliability criteria amounts to an approximate screening of all
possible equipment failures, one at a time, and finding the critical ones. Some
utilities perform on-line screening of all contingencies to find those which are likely
to violate the proxy line flow limits. AC power flow analysis is done next only for
these critical contingencies to ensure that they are implementable. If they are not, the
thermal line limits are modified and the proxy limits determined to ensure that there
will be no power flow problems in the actual operations. SCUC and SCED are done

3For this derivation, see [5].
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to dispatch real power within these proxy limits. Utilities are gradually recognizing
the conservativeness of defining proxy limits in terms of the worst-case contingency
and observing them in operations. They are beginning to deploy new software that
enables the maximization of transfer limits by computing corrective actions to be
taken in case a contingency occurs. Corrective actions are generally based on an
operator’s knowledge of the system, and are implemented adjusting the real power
generation of a few key power plants. As a rule, no voltage schedules of controllable
T&D equipment, generators’ AVR settings, nor reactive power/voltage settings on
the demand side are optimized to support most economic real power delivery. As a
result, thermal line flow limits are often replaced by these proxy limits because the
latter ensure stable and secure operations during both normal and equipment outage
conditions.

In the remainder of this chapter we use the constrained DC power flow equations
which are obtained through the approximations described above. It is critical for
identifying the major inefficiencies in today’s industry practice to recognize that
this use of constrained DC power flow equations when scheduling generation to
meet forecast system demand subject to observing the proxy limits is fundamentally
conservative. Instead of designing corrective actions for adjusting the set points of
voltage- and flow-controllable equipment, as well as and the power outputs of other
available power plants, to support the secure operation of the system as a whole, the
worst-case approach is taken that the state is not allowed to enter a region which
is not secure without relying on corrective actions. The implications of using a
worst-case DC power flow-based approach to try to ensure secure operations are far
reaching. It is illustrated throughout this book how this assumption can be relaxed
by means of enhanced IT.

Under the same assumptions discussed above, the constrained DC power flow
is generally written in its static form and used to dispatch the least-cost real power
generation at each dispatch interval [H ∗ TH ]. Equations (1.13)–(1.15), therefore,
hold under the assumptions made for each time [H ∗ TH ] and are restated here for
purposes of further discussion in this chapter and in the book as

∑
i

PG[H ∗TH ] =∑
i

PDi[H ∗TH ] (1.16)

and

Fl(PG[H ∗TH ]−PDi[H ∗TH ])≤ KT
l,proxy[H ∗TH]

4 (1.17)

and

PG[H ∗TH ]≤ KG
Gi (1.18)

4Observe that the proxy line limit generally varies with the operating conditions; at present, there
are no on-line computations of this proxy line flow limit.
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For purposes of further discussion, we refer to the real power generated at times
[H ∗TH ] for H = 1, 2, . . . as the quasi-stationary sequence of power dispatched on
an hourly basis.5

1.3.6 Multi-spatial Approach to Balancing Generation
and Demand

A typical interconnected T&D power grid is very complex. Its voltages span from
765 kV to 110 V in US regions. The power plants and diverse loads are made by
different manufacturers, and their parameters are not standardized. This makes the
on-line monitoring and management of a typical regional power pool, or even of a
large utility, a very difficult task. In particular, as generation is scheduled to supply
time-varying demand while the network topology constantly varies for one reason or
the other, the task of ensuring that the power can be delivered securely and reliably
is hard. Because of this, complex interconnected networks are decomposed both
horizontally and vertically, in much the same way as multi-temporal decompositions
are done to simplify the problem of balancing supply and demand. The horizontal
decomposition is mainly based on the organizational boundaries between the
different utilities, while the vertical decomposition is done between the EHV/HV
and MV/LV transmission and distribution networks, respectively.

Monitoring and managing horizontally organized utilities within a given large
electric interconnection is not done systematically in today’s industry. There has
been an ongoing effort both in the USA and Europe to coordinate the monitoring
and management of electrically interconnected utilities in different states and/or
countries for reliability reasons. Many blackouts over the decades can be traced back
to this problem of poor on-line coordination of electrically interconnected systems.
More recently, there has been a major industry effort in the USA to coordinate the
“seams” between different control areas for a more efficient utilization of available
resources.

The problem of horizontal boundaries within an interconnected electric system
has taken on a qualitatively new meaning as different investors in renewable
technologies ask to connect to the existing utility-owned grid. Questions arise
regarding both the most efficient technical integration and also the economic and
policy incentives.

Both the horizontal and vertical decomposition of an interconnected power grid
require approximate models of grid parts not of direct interest. The technical and
economic implications of actual, often implied, approximations made could be very
complex and far reaching. The network constraints in (1.4) state that both the real
and also the reactive power balance must balance at each node in the given power
grid.

5In traditional electric power systems literature a constrained DC power flow is often written
without any reference to time, as each time sample [H ∗TH ] is viewed as the power flow static
steady-state solution.
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1.3.7 Hidden Inefficiency Caused by Uncoordinated Objectives
of EMS and DMS Control Centers

In today’s industry, there exists a major separation between the energy and
distribution management systems (DMS). When an EHV/HV energy management
system (EMS) schedules generation to supply a forecast system demand, only the
load at the substation level is estimated. Because of this, variations within the
distribution network system, including the distribution system topology, distributed
energy resources (DERs), and demand response, are not visible to the EMS
operator. Similarly, when a DMS operates the distribution network equipment and
resources, it is assumed that anything connected to the substation is an infinite
power source. Feed-forward ramp-rate-limited economic dispatch by the EMS
centers is performed at the pool level, generally comprising several utilities.6 AGC
is performed at each control area (utility) level with the intent of balancing the
slow hard-to-predict demand fluctuations ΔPd [m ∗ Tm]. This level is referred to in
the European literature as the secondary-level system balancing. Finally, very fast
demand fluctuations ΔPs[s ∗ Ts] are compensated for by local primary controllers,
mainly governors and AVRs.

The DMS centers are currently being implemented in the USA. In Europe these
exist, but no near-real-time SCADA information is used for corrective actions
within the distribution network systems. It is described in Chap. 2 and illustrated
throughout this book that DMS-coordinated demand response and use of DERs
will become key to efficient and reliable electricity services. Learning customer
profiles, accounting for the effects of DERs, and communicating both these things
to the EHV/HV system operators will become the basic means for implementing
both reliable and more efficient electricity services with active demand participation
at value.

1.4 Operations and Planning as a Single Decision-Making
Problem

A possible mathematical formulation of the single operations and planning problem
in the regulated electric power industry can be found in [12, 15]. This formulation
is reviewed here as the basis for discussing state-of-the-art methods and also
changes in industry objectives leading to a new problem formulation in Chap. 2.
It is suggested that this problem can be posed as a composite decision-making
problem under uncertainties. It comprises an annual decision-making problem
regarding investment in new generation capacity at location i and of type a KG

ia ,

6Control areas have recently been restructured and are managed by a single Independent System
Operator (ISO) in areas where power is provided competitively. Conceptually, the same ramp-
limited dispatch is performed as in the existing power pools.
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investment in new transmission line l of thermal capacity KT
l,thermal, as well as

near-real-time decision making on how much existing generation i of technology
type a to schedule Pia so that the total long-term expected cost to customers is
minimized. This optimization must observe all physical network constraints and
enable secure operations. A mathematical formulation of this problem is restated
next for completeness and for identifying necessary enhancements in the changing
industry.

Neither the computer applications currently used by the system operators and
planners nor today’s automation were implemented with this complex objective in
mind. They have, instead, evolved slowly over time on an as-needed basis while
making many simplifying assumptions. A summary of the IT evolution that has
led to today’s electric power industry is given later in this chapter, in Sect. 1.7. To
identify key simplifications which should be relaxed as the next-generation software
and IT are designed, we start by posing the complex overall industry objective first.
We refer frequently in this chapter and throughout the book to this single operations
and planning objective as the industry performance benchmark.

Notation

KT
l (t) is the amount of installed transmission capacity for line l.

KG
ia(t) is the amount of installed generation capacity for technology a at node i.

IT
l (t) is the rate of investment in transmission capacity for line l.

IG
ia(t) is the rate of investment in generation capacity for technology a at node i.

CT
l (K

T
l , I

T
l , t) is the cost of investment i in line l.

CG
ia(K

G
ia , I

G
ia , t) is the cost of investment in technology a at node i.

Pia(t) is the production with technology a, at node i, during period t.
cia(t) is the cost of this production, excluding capacity costs.
ri is a random variable reflecting the uncertainty of demand consumption.
Ui(Pdi(t),ri(t)) represents the utility function of consuming power Pdi(t) at node i
during period t.
Fl(Pia(t)−Pdi(t)) represents the flow on line l for the given vector of net injections
Pi(t).
ρ is a discount rate.

1.4.1 Problem Formulation

Social welfare is defined as the difference between the consumers’ utility and the
production cost. The cost function includes both transmission costs and generation
costs. The problem can be stated as follows [13]:
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maxIT
l ,IG

ia ,Pia
E ∑i

∫ T
t0

e−ρtUi(Pdi(t),ri(t))dt

−∑i,a
∫ T

t0
e−ρt

(
cia(t,Pia(t))+CG

ia(K
G
ia(t), I

G
ia(t), t)

)
dt

−∑l
∫ T

t0
e−ρt

(
CT

l (K
T
l (t), I

T
l (t), t)

)
dt (1.19)

subject to:

dKT
l

dt
= IT

l (t),K
T
l (t0) = KT

l t0

dKG
ia

dt
= IG

ia(t),K
G
ia(t0) = KG

iat0

IT
l (t)≥ 0

IG
ia ≥ 0

Pia(t) ∈ S(Pd(t)) (1.20)

The initial capacity of the lines and generation are KT
l,thermal(0) = KT

l,thermal,0

and KG
ia(0) = KG

ia,0, respectively. In this formulation we differentiate between the

systems-limited secure line capacity KT
l and the line capacity itself. It is the lower

of the thermal- and systems-limited capacity of the line which is observed when
performing the optimization given in (1.19).

The optimization period is T and it corresponds to the longer of the two time
intervals over which the generation or transmission investments are valued. KG

ia(t)
and KT

l (t) are state variables. The variables are the rate of investment in transmission
capacity, the rate of investment in generation capacities, and the injection of power
at each node. The utility function parameters and forecast load Pdi(t) are the
disturbance inputs. The control is bounded by the set of constraints described above.
A set of Lagrange multipliers is associated with each set of constraints.

This problem formulation, despite its apparent complexity, captures many well-
known trade-offs relative to the efficiency of the power industry. First, the discount
rate reflects the time value of money. Everything being equal, it is better to spend
money now than later. Thus, the investment timing balances the trade-off between
the costs and benefits over time. Second, this formulation shows that different
technologies at different locations can be used to produce power. Thus, for a given
load duration curve, the ratio between variable costs and capacity costs for each of
these generation resources determines the optimal pattern and mix of generation.
Third, generation capacity can be substituted for transmission capacity. The trade-
off between saving on generation costs and investing in transmission capacity is
also encapsulated in the problem. The level of transmission capacity is not based
on the maximum yearly flow. A trade-off between the costs of congestion and the
costs of transmission capacity must be considered. Finally, the problem stated above
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is an uncertain problem. The stochastic formulation reflects the value in flexible
investment under uncertainties.

This optimization problem given in (1.19)–(1.20) is a very complex multi-
temporal stochastic control problem; while investment decisions are made less
frequently and long into the future, the economic dispatch of available generation
is done closer to real time. This single operations-planning problem is hardly ever
solved. Instead, it can be used by the regulators after the fact to evaluate how well
the utilities have performed, and how they should be rewarded in the future. This
formulation can be used to select an “optimal” investment as a break-even point
between the capital cost in new investment, on the one hand, and the cumulative
inefficiency which will result if the investment is not made, on the other hand
[1,11,12]. This notion of optimal investment is a powerful means of selecting among
different investment options in the electric energy industry, as discussed in Chap. 2
and illustrated throughout this book.

To relate this complex performance objective to the role of different computer
applications used by today’s electric power industry, we explain next how under cer-
tain assumptions this single operations-planning problem can be decomposed into
operations and planning subproblems. We stress that it is possible to systematically
derive reduced-order models for solving the short-term optimization subproblems
key to generation operation and maintenance (O&M) cost minimization, assuming
a given generation and transmission capacity; similarly, it is possible to make
investment decisions using coarser reduced-order models. In [15] two subproblems
are introduced, and they are restated here because of their fundamental relevance
to understanding the major causes of economic and technical problems that are
cropping up as more intermittent resources are being deployed within the existing
system.

We note that the benchmark optimum formulation requires perfect information
about the demand, resource characteristics, and T&D topology and parameters. The
main problem is that such information does not exist ex ante when the decisions have
to be made. As a consequence, the actual operating and investment cost after the fact
is generally much higher. We will describe in Chap. 2 how enhanced IT, which is
used to make better predictions and to make model-based look-ahead decisions,
could contribute significantly to reducing the overall cost of uncertainties. We
review next how a single operations-planning is decomposed into two subproblems.

1.5 Decomposing a Single Operations-Planning Problem
into Two Subproblems

The single operations-planning problem stated above can be interpreted as a
stochastic optimal control problem for a dynamic model in a standard discrete-time
singularly perturbed form

min
u f ,us

JT (u f ,us,d) (1.21)
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subject to

dx
dt

= g(x,us,d) (1.22)

and

u f ∈ S(us,u f ,x,d) (1.23)

where x = [KG KT ] is the capacity state, u f = [PG], and us = [IT
l IG

i ].
The process of scheduling supply to meet demand in operations typically

happens much faster than the rate at which investment decisions are made. This
observation is the basis for solving the two subproblems as if they were decoupled.
To formally introduce these two subproblems, assume without loss of generality
that the short-term (daily or hourly) decisions are made each hour [H ∗ TH ] and
that investment decisions are made each year [Y ∗ TY ], and Y = 0,1, . . ., where
TH = TY

8640 . The problem defined in (1.19)–(1.20)and Sect. 1.3 can then be restated as
an optimization problem subject to multi-rate discrete-time processes. The objective
function (1.19) takes on the form7

min
IT
l [Y∗TY ],IG

i [Y∗TY ],Pi[H∗TH ]
E

⎧⎨
⎩∑

i

T
TH

∑
k=0

e−ρ [Y∗TY ](ci(kTH ,Pi[H ∗TH ], [H ∗TH])

+∑
i

T
TY

∑
n=0

e−ρ [Y∗TY ]CG
i (K

G
i [Y ∗TY ], I

G
i [Y ∗TY ], [Y ∗TY ])

+ ∑
l

T
TY

∑
n=0

e−ρ [Y∗TY ]CT
l (K

T
l [Y ∗TY ], I

T
l [Y ∗TY ], [Y ∗TY ])

⎫⎬
⎭ (1.24)

subject to

KT
l [(Y + 1)TY ] = KT

l [Y ∗TY ]+ IT
l [Y ∗TY ]TY

KG
i [(Y + 1)TY ] = KG

i [Y ∗TY ]+ IG
i [Y ∗TY ]TY

IT
l [Y ∗TY ]≥ 0

IG
i ≥ 0

Pi[H ∗TH ] ∈ S[H ∗TH ] (1.25)

7Strictly speaking, discretization of the continuous time problem defined in (1.19) and Sect. 1.3 can
only be done as long as there are no dynamic problems in transitioning from the state at [H ∗TH ]
to [(H +1)∗TH ]. As discussed above, in today’s industry, ensuring no dynamic problems amounts
to replacing the thermal line flow limits by more conservative proxy line flow limits. Power-
electronically controlled FACTS and fast storage are shown in Chap. 19 to have major potential
for ensuring no transient stability problems and for contributing to a larger security region.
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Observe that the slow and fast variables are coupled primarily through load
demand (disturbance) dynamics PD[H ∗TH ] and through the requirement that sched-
uled power be in secure operating region S for each [H ∗TH ] ≤ t ≤ [(H + 1) ∗TH].
The multiple periodicity of the load demand sets the basis for the separation of
planning and operations objectives in today’s industry. Planning is the process of
controlling the rate of investments in transmission and generation, IT

l [Y ∗ TY ] and
IG
i [Y ∗ TY ], respectively, so that load demand evolving over longer-term horizons

(years and longer) is served at the lowest possible cost. Similarly, controlling the
use of available generation PG[H ∗TH ] in real-time operations (hourly and shorter)
is done to meet the anticipated hourly demand at the lowest possible cost.

The ultimate objective is to minimize the combined cost of both investments and
operations while meeting the uncertain system load demand Pd(t) given in (1.1).
Theoretical conditions under which the two subproblems are separable and the
implications for suboptimality of the single operations-planning objective defined
over long time horizon T JT have never been studied rigorously in the context
of the electric energy industry. It is explained in Chap. 2 why understanding their
interdependencies will become important in the context of industry changes. In
what follows, we first describe the zeroth order (decoupled) short-term and long-
term stochastic control subproblems for the regulated industry.8

Much the same way as with any other composite control design for singularly
perturbed systems, one must study the conditions under which solving the two
subproblems makes sense. Moreover, inherent in solving the slow control problem
is the optimal solution of the expected fast control problem over the entire time
horizon. The point is made that, by viewing the composite operations/planning
problem as one and decomposing it into simpler, systematically derived dynamic
decision subproblems under relatively unrestrictive conditions, a near-optimal
investment may be possible. This problem formulation is qualitatively different from
the entirely static economic dispatch problem; we discuss this difference next.

1.5.1 Short-Term Coordinated Scheduling: Fast
Decision-Making Subproblem

The composite operations/planning problem formulation is used next to pose the
objectives of short-term transmission operations and planning as two decoupled
near-optimal subproblems evolving at significantly different rates. Assuming that
the network and generation are given over the entire T , a zeroth order fast
control subproblem becomes a decision-making process regarding which units to
turn on and off and how to adjust the power generated in short-term operations.

8Shown in [12] is that much-debated nodal pricing as a proposed means of short-term congestion
pricing is a result of solving the fast control subproblem in near-optimal composite control of the
coupled operations/planning problem. System λ is the short-term spot electricity price.



1 The Case for Engineering Next-Generation IT-Enabled Electricity Services at Value 29

This sub-problem formulation directly follows from the composite optimization
problem under the assumption that TH

TY
� 1. The network topology and parameters,

KT
l [Y ∗ TY ], as well as the generation plants, KG

i [Y ∗ TY ], are given. Assuming
furthermore that the daily economic dispatch process is a moving equilibrium at
optimum clearing price λ [H ∗TH ]), a short-term operating optimization subproblem
is formulated as follows:

min
Pi[H∗TH ]

E

H= T
TH

∑
H=0

n

∑
i=1

ci(Pi[H ∗TH ],Pd [H ∗TH ]) (1.26)

subject to the constraints:

n+nd

∑
i=1

Hli
(
Pi[H ∗TH]−Pdi[H ∗TH ]

)≤ KT
l [Y ∗TY ] : μl [H ∗TH ] (1.27)

Pi[H ∗TH ]≤ KG
i [Y ∗TY ] : σi[H ∗TH ]

λ [(k+ 1)TH] = λ [H ∗TH ]+ cspot(
n

∑
i=1

Pi[H ∗TH ]−
nd

∑
j=1

Pd j [H ∗TH ]) (1.28)

The term λ represents the price of power at an arbitrarily chosen (slack) node. H is
the matrix of the distribution factors [14] and transmission losses are neglected.
Observe that the value of the H matrix is dependent on the choice of a slack
(reference) bus. The term ∑Hliμl reflects the locational differences in optimal
prices. Even though μl is always positive by definition, the term ∑Hliμl can be
positive or negative. The value of λ and the distribution factors matrix depend on
the choice of the arbitrary slack bus. However, the value of nodal prices pi and of the
μl are independent from this choice. The term μl represents the marginal value of the
existing transmission capacity of line l. In other words, it represents the increment
in social welfare that would result from a unit transmission capacity upgrade. This
value is equal to zero, as long as the line is not congested and becomes strictly
positive when the flow on line l is equal to capacity Kl . These formulae provide
the basis for so-called nodal or locational marginal pricing (LMP) in spot electricity
markets where these markets exist.

It is important to recognize that this problem is also a stochastic control
problem; a fast control (decision) variable is the controllable power injected into
individual network nodes in response to the forecast fast random fluctuations in
load demand given in (1.1). This problem is a dynamic control problem that can
be solved using various computing methods. Deterministic approximations are
presently used for short-term operations; these approximations are static tools.
When deterministic assumptions are made, it is not possible to co-optimize the
investment and scheduling decisions; thus, there could be significant suboptimality
due to such approximations.
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1.5.2 Security-Constrained Economic Dispatch: DC Optimal
Power Flow (DC OPF)

The short-term optimization problem given in (1.26)–(1.28) is typically solved as
a static optimization problem each [H ∗TH ] assuming a given Pd[(k+ 1)TH ] for the
next hour and optimizing generation, PG[(H+1)TH ], to meet it at the lowest possible
cost.

min
PG,Pd

n

∑
i=1

Ci(PGi)−Ui(Pdi)

subject to the constraints:

n

∑
i=1

Pi = 0 ;
n

∑
i=1

Hli(PG −Pdi)≤ Kl

Here, a simplified DC load flow approximation is used to express line flow
constraints. Observe that the value of the H matrix is dependent on the choice of a
slack bus. The solution to this constrained optimization problem takes the following
form:

pi =
dCi

dPi
= λ −

L

∑
l=1

Hliμl (1.29)

We note here that the static single-step optimization currently done is suboptimal
relative to the short-term optimization formulated in (1.26) when subject to the unit
ramp rates defined in (1.12). This is because the latter enables one to incorporate
predictions and look-ahead decision methods and therefore to manage uncertainties
more efficiently than the static single-step DC OPF. This observation is the basis
for proposing the new model-based predictive look-ahead economic dispatch that
accounts for ramp rate limits in Part III of this book.

1.5.3 Long-Term Coordination: Optimal Investment
Subproblem

Assuming that real-time optimization can be decoupled from the investment
problem, we consider the more complex, less studied, issue of optimal investments.
Generally speaking, the notion of investment is inherently inter-temporal. By
investing a fixed amount of money today, the centralized utility reduces its costs
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over time. For this reason, uncertainty issues are at the heart of investment theories.
The basic existence of risk is taken into account through the choice of the discount
rate ρ : the more uncertain future payoffs are the higher the discount rate and the
lower the optimal investments. To pose the investment problem as an active risk
management problem, we view it here as a slow optimal control subproblem of the
coupled operations/planning problem given in (1.19)–(1.20) as follows:

min
IT
l [Y∗TY ],IG

i [Y∗TY ]
E

⎧⎨
⎩∑

i

T
TH

∑
H=0
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T
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⎫⎬
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subject to

KT
l [(Y + 1)TY ] = KT

l [Y ∗TY ]+ IT
l [Y ∗TY ]TY

KG
i [(Y + 1)TY ] = KG

i [Y ∗TY ]+ IG
i [Y ∗TY ]TS

IT
l [Y ∗TY ]≥ 0

IG
i [Y ∗TY ]≥ 0 (1.31)

The first term in (1.29) represents cumulative annual dispatch cost; this cost gen-
erally gets optimized using the short term optimization problem described above on
daily basis. It is possible to take into consideration the dependence of this operating
cost by running short-term optimization for candidate generation and transmission
investments; this results in short-run annual cost SRAC (KT

l [Y ∗ TY ],KG[Y ∗ TY ]).
This function gets replaced into (1.29) and then long-term optimization is done over
capital cost investments by taking into consideration different effects of investments
on cumulative annual dispatch cost. This is perhaps the most straightforward
way of decomposing the complex stochastic planning-operations problem into two
subproblems while accounting for their interdependencies.

It is generally assumed in today’s industry that future demand and supply
functions are known with perfect certainty. This setup leaves very little room
for active risk management. Relaxing this assumption will be essential in the
future electric energy industry. Nevertheless, to review the notion of an “optimal
investment” that assumes perfect knowledge, we consider next the problem of
generation investments.
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1.5.4 Optimal Generation Investment Problem

Power is produced using different technologies a. They differ in their marginal cost
ca and their unit cost of capacity CG

a that we assume to be constant. The total
installed capacity for technology a is denoted KG

a . We assume that the demand
curves for different periods are elastic and known with perfect certainty. Let us
denote by Pt(P1

d , . . . ,P
T
d ) the demand function for period t. It is assumed to be a

function of the consumption quantities for all periods in order to take into account
cross-temporal interdependencies. A simpler presentation would make it dependent
on Pd only.

We analyze the investments in generation capacity from a long-term perspective.
Thus, contrary to the economic dispatch problem, the optimal investment problem
considers the total amount of installed capacity as an optimization variable. It is
stated as the following mathematical problem [1]:

max
Pt

a,Pd ,KG
a
∑

t

∫ (L1,...,Pd)

0
Pd(y

1, . . . ,yT )dy−∑
t,a

ca Pt
a −∑

a
CG

a KG
a

subject to

Pt
a ≤ KG

a : σ t
a

∑
a

Pt
a = Pt

d : λt

The Lagrangian associated with this problem is

∑
t

∫ (L1,...,Pd)

0
Pd(y

1, . . . ,yT )dy−∑
t,a

ca Pt
a−∑

a
CG

a KG
a +∑

t

(
∑
a

Pt
a−Pdi

)
+∑

a,t
σ t

a(P
t
a−KG

a )

The necessary optimality conditions are obtained by stating that the first deriva-
tive of the Lagrangian with respect to Pt

a,Pd,KG
a is equal to zero, resulting in

Pt = λ t

∑
t

σ t
a ≤ CG

a ;KG
a

(
∑
t

σ t
a −CG

a

)
= 0

λ t −σ t
a ≤ ca;Pt

a (λ
t −σ t

a − ca) = 0

σ t
a ≥ 0;σ t

a (K
G
a −Pt

a) = 0

This formulation shows that, consistent with the economic dispatch methodol-
ogy, the inexpensive generators are dispatched first and the resulting price Pt is set
equal to the short-run marginal cost.
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Moreover, a combination of the second and third equations shows that the
difference between the price and the cost of dispatched generators σ t

a, when
accumulated over several periods, is equal to the cost of the installed generation
capacity:

∑
t

σ t
a Pt

a =CG
a KG

a (1.32)

Thus, the price paid by consumers reflects the cost of capacity and can be
interpreted as a long-run marginal cost. We should note that this result is a direct
consequence of putting ourselves in a deterministic world. For an interpretation
of these conditions in an uncertain environment, see [12]. Thus, the peak-load
pricing theory, by optimizing with respect to installed transmission capacity, makes
the long-run and cumulative short-run marginal costs equal. The mathematical
condition given in (1.32) defines the optimal investment condition. Any investment
with a capital cost the same as the cumulative cost due to inefficient existing
generation utilization over time T is a nonunique optimal generation investment
candidate. As unconventional candidate technologies a become available, the
cumulative inefficiency of supply meeting demand without such technology is
harder to evaluate. It becomes necessary to account for the value of flexibility of
new candidate technologies, such as storage. Evaluating the potential benefits from
such flexibility is a complex, yet doable challenge.

Several important results follow from the above formulation of the optimal
generation mix.

First, the introduction of several technologies contributes to increasing the total
social welfare since we optimize over a wider range of variables. Moreover, this
increase will be strictly positive due to several effects:

• Cost reduction: By spreading demand over several technologies, fewer of the
most expensive technologies will remain idle during off-peak periods. This gain
may not be completely offset by the higher fuel cost during peak periods.

• Pricing effect: By charging a different price for different periods, this scheme
provides better economic incentives. Consumers may decrease their consumption
at different rates or transfer it to another period.

However, even though introducing more technologies increases the total social
welfare, it may be the case that the optimal installed capacity is zero for one specific
technology and that, consequently, the associated increase in total welfare is null.
An obvious example is the introduction of a new technology with the same cost of
capacity but a higher fuel cost. This enables the introduction of an efficient frontier
of generators on the ca,CG

a plane. This efficient frontier is downward sloping since
a higher fuel cost must be compensated for by a lower capacity cost. This frontier
is also convex, since for any linear combination of two existing technologies to be
implemented, a new technology must have a lower capacity cost, fuel cost being
equal to the composite technology, to be efficient (Fig. 1.11).
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Fig. 1.11 The generation
peak-load pricing efficiency
frontier

1.6 The Challenge of Operating and Planning Future
Electric Energy Systems

As one attempts to propose new computer methods and software for managing
energy resources and demand efficiently and to embed automation in the process for
enhanced performance, it is important to understand that today’s industry approach
has evolved over time as the complexity of the power grids has increased.

There has not been one single industry approach to assessing the trade-offs
between what is built and how the assets are utilized. Instead, as reviewed above,
operations and planning have been considered two separable problems, often
managed by different departments within the same utility. Planning is generally
done to decide among “proven” technologies, typically generation and T&D lines,
to ensure that sufficient generation and transmission capacity is in place to serve
the long-term forecast system demand. Planning is done to ensure that the peak
load is served at all times and that “one day in ten years” uninterrupted service
to customers is ensured. Generation has been considered to be the main means of
supplying demand, and there has not been much differentiation between controllable
and passive T&D equipment and the demand side when deciding how to enforce the
T&D grid in order to deliver power at all times from the generators.

1.6.1 Overcoming Inefficiencies Related to Approximations
of Secure Operating Regions

As discussed above, planning is generally done by optimizing generation invest-
ments, and T&D equipment is generally considered to be an order of magnitude less
costly than generation investments, and it is often designed redundantly very often
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in order to ensure secure delivery. As a result of this worst-case planning approach,
utilities have had considerable generation and T&D reserves; the generation reserves
are not estimated over time; instead, they are defined as the difference between the
generation capacity available and the peak-load expected. As reviewed in Sect. 1.3,
the ability of T&D to deliver power, known as the ATC, is complicated to measure
because it depends on the actual power line flow patterns. It is common to find
statistics documenting the ratio of the average line flow and its thermal rating as the
line utilization. This number is very low, often 30%. However, we stress that looking
at the line’s utilization is a very misleading metrics. Nevertheless, it is important to
stress that the so-called system load factor, defined as the ratio of the peak load and
the average annual load, is very small, under 50% in the United States. Except for a
very small number of electric power systems worldwide, this load factor is typical
and has been decreasing recently.

1.6.2 The Challenge of Implementing Flexible Asset
Utilization

The above numbers point to the conclusion that there exists a considerable
discrepancy between the available resources measured in terms of capacity, and
their actual use in operations. It is important to keep in mind this distinction as
new technologies present themselves in future electric energy systems and societal
objectives change. The fundamental role of IT is to make the most out of the
available assets by adjusting to the ever-changing demand and system conditions.
To help understand the potential of IT in enabling more efficient utilization, we
have reviewed the objective of today’s industry planning and operations as a single
complex problem. Based on this review, and on the implied underlying assumptions,
it can be concluded that it would be possible to enhance its performance solely
by means of a carefully designed next-generation IT. Given the sheer complexity
of electric grids and the diverse generation and demand components connected
to them, it is fundamentally impossible, using today’s methods, to make effective
investment decisions under uncertainties while accounting for the effects of JIT and
JIP technologies, in particular.

Depending on how advanced modeling and decision-making tools are overlayed
with the physical operations of the system, the actual asset utilization will vary
significantly. There are two possible paths forward:

• Identify the most critical assumptions made by today’s EMS and DMS centers
and introduce an approach which systematically relaxes these assumptions,

• Engage in a fundamentally new paradigm that is based on embedding decision-
making tools into (groups of) system users with a significant ability to manage
uncertainties and inter-temporal dependencies at the distributed level; the infor-
mation from the system users is exchanged with the EMS and DMS centers
responsible for ensuring secure grid operations.
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In what follows we summarize the major challenges which must be overcome to
bring about more efficient long-term industry performance measured in terms of the
long-term social welfare given in (1.19). In Chap. 2 we introduce a possible change
of paradigm that we have named DYMONDS.

1.6.3 The Challenge of Managing Low-Probability
High-Impact Events Efficiently

Perhaps the biggest challenge is the management of power grids when forced large
equipment failures occur. Most widespread blackouts have been triggered by such
events. In order to prevent widespread disruption of service during such events,
today’s industry mandates that the system to be designed and operated according
to (N − 1) or at times even (N − 2) reliability criteria. These criteria require that
sufficient generation and T&D reserve be available in standby mode all the time just
in case a forced outage occurs. The typical approach has been to build and operate
the system so that even when what is considered to be the worst-case forced outage
takes place, customers do not get interrupted for at least 30 min following the event.
Many utilities do not rely on adjustments of other available resources during forced
outages. Instead, the utilities have on-line reserve ready to be used.

In this book, we stress that as more stochastic resources get deployed, it is
going to become very hard to assess the worst-case contingency and have sufficient
standby reserves without experiencing major efficiency loss. It is with this in mind
that we stress the need for new computer algorithms capable of drawing on other
key available resources following a forced outage and which do require the same
amount of standby reserve as today. Notably, consumers need to become responsive
to the changing system conditions, and the old concept of viewing system demand
as predictable with high accuracy, and only needing automation to manage zero
mean disturbances during normal conditions, will have to be rethought. Finally,
the behavior of only ensuring that the system is transiently stable during forced
outages by not operating the system closer to stability boundary during normal
conditions is clearly going to have to be modified. It will become necessary to
implement power electronically controlled fast storage in order to stabilize system
response transiently, on the rare occasions when potentially destabilizing outages
occur. We suggest in this book that a careful cost–benefit analysis should be
done to assess if and when operating conservatively on the off chance a forced
outage may occur and should be relaxed by relying on fast nonlinear control and
communications.
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1.7 The Evolution of IT and Its Use in Today’s Industry

The short-term decision-making formulation given in (1.26)–(1.28) and Sect. 1.3
is the least-cost short-term dispatch problem subject to generation being in secure
region S. The overall objective of operating electric energy systems is organized
hierarchically over time as follows:

• Feed-forward computer applications in support of dispatch, unit commitment,
and power dispatch functions that balance predictable demand components (ˆ)

• Feedback automation to ensure that the system operation is stable and within
the quasi-stationary operating conditions when small, hard-to-predict deviations
from forecast demand Δ( ) occur

• The management of low-probability high-impact equipment outages

1.7.1 The Need to Enhance Operations

Individual utilities have long operated their systems with a human operator in the
loop according to predefined rules (nomograms) that are specific to each utility.
However, as utilities have interconnected for economic and reliability reasons, it has
become increasingly difficult for system operators to coordinate their interactions
with neighboring utilities and to manage the effects of the electrical interconnections
on their own systems. The first response to this challenge was to introduce computer
applications capable of scheduling the least-cost available real power generation
to supply the forecast demand while also agreeing to exchange power with the
neighboring unities. The power grid interconnection evolved to share the burden
of standby reserves by means of several electrically interconnected utilities. Only
at later stages did tie lines begin to be used for economic trades between the
utilities. Over time, other computer applications were introduced to screen for
the worst equipment outages, often referred to as “contingencies,” and to help
system operators set the required reserve that would ensure uninterrupted service
to customers even when bad equipment failures occurred. This has resulted in
computer methods for SCED and SCUC. These applications are currently routinely
used today by many utilities when scheduling generation to supply the forecast
demand. Some utilities also use computer algorithms to minimize T&D delivery
losses by adjusting the settings of voltage-controlled reactive power equipment,
such as on-load tap changing transformers (OLTCs) and capacitor banks (CBs).
The current obstacles to implementing loss minimization are lack of accurate on-
line reactive power load and voltage data, as well as the convergence problems
of nonlinear optimization software. Consequently, today’s electric power grids are
typically not optimized for voltage support. Instead, on-line power flow analysis
is performed to test how much power can be transferred without creating voltage-
related technical problems. Once the power flow software fails, the grid is unable to
deliver more real power generation.
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While the generation dispatch software supporting the optimization of generation
to supply forecast demand has become more or less standardized, today’s power
grid automation responding to hard-to-predict disturbances is much less so. When
it comes to automation, the current situation is as follows. All major power plants
have governor and excitation controllers for fast frequency and voltage stabilization.
This control is known as the primary control, and it responds to local deviations of
frequency and voltage from the set values of these controllers. The primary control
does not adapt to the changing conditions. It is, instead, tuned to stabilize local
disturbances caused by a worst-case equipment outage in the rest of the system.

To avoid utility-level minute-by-minute frequency drift away from nominal
frequency that is caused by load deviations from load forecast, two solutions are
practiced at present: (1) equipping several fast power plants with proportional-
integral (PI) primary controllers, and/or (2) relying on an automatic generation
control (AGC) scheme known as the secondary-level control. The AGC responds
to a system-level power imbalance known as the area control error (ACE), which
is a linear combination of frequency deviations and net deviations of power flow
exchanged with the neighboring utilities. The ACE is communicated by the control
center to the power plants participating in the AGC, and these respond in an
automated feedback way by compensating for a prespecified percent of ACE. Using
local PI controllers is simpler and does not require communications between the
plants participating in the AGC and the control center. As a matter of fact, in
small stand-alone island systems control centers are not always in place. Frequency
is regulated by a few proportional-integral (PI) governor controllers and/or by
manual load interruptions when frequency drops exceed the prespecified industry
specifications.

Several large utilities in Europe have implemented utility-level AVC schemes,
often referred to as Secondary Voltage Control; conceptually, these are similar to
the AGC scheme. They are implemented to ensure that voltage deviations remain
within the prespecified industry standards when the reactive power load deviates
from its forecast, much the same as how AGC is a utility-level scheme for frequency
regulation. To avoid complexity, only several critical, pilot-point, load voltages are
monitored and they are regulated to remain constant by adjusting the voltage set
points of the participating power plants in response to hard-to-predict deviations in
reactive power consumption. When the pilot points are selected systematically, the
other load voltages will follow the pilot-point voltages, which remain unchanged
even when reactive power disturbances occur.

Both the primary and secondary controls in today’s utilities are intended to
regulate small, relatively slow deviations in frequency and voltage during normal
conditions. No automation is presently in place that can respond to forced large
equipment outages. Near-real-time, communications-intensive, synchronized mea-
surements are not used at present for transient stabilization or for the prevention
of voltage collapse during large sudden system changes. Except for sporadic
deployment of wide-area measurement systems (WAMS)-based special protection
schemes (SPSs), which attempt to manage the well-understood effects of frequently
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occurring and severe equipment outages, no system-level automation has been
built that ensures transient stabilization and prevents voltage collapse. The main
consequence of this lack of automation is an operator’s inability to use assets
efficiently during normal operations. To ensure that customers are not affected
during these outages, today’s practice is to have sufficient fast spinning generation
reserve and to operate at lower transfer limits in case a worst-case outage occurs. As
the use of power grids continues to develop into something significantly different
from the use for which the grids were initially built, it is becoming increasingly
difficult to operate systems reliably based on the worst-case off-line calculations
and preparations. This all indicates that ultimately a more powerful fast automation,
that can enable the response of many available resources during large outages, will
be needed.

1.7.2 Recent Technological Breakthroughs

Developing an IT that efficiently utilizes assets by means of flexible operations and
planning represents a major theoretical and practical challenge. To start with, there
is, at present, very little that has been done in terms of modeling electric power
system dynamics for operating over very broad ranges of conditions. It is discussed
in Chap. 2 what is needed and why in terms of establishing formal and systematic
models for designing adaptive transient stabilization. We point out here that the
existing models are intended for analysis and do not lend themselves to systematic
adaptive control design for complex dynamic systems. Parameter identification
in these complex models is the second major challenge on the way to powerful
automation. Given the extreme time criticality, the models must be carefully derived
to represent the phenomena being controlled; the effectiveness of adaptive and
nonlinear control in the event of large disturbances is often very sensitive to the
accuracies of models and parameters used.

Very recent breakthroughs in deploying synchronized near-real-time measure-
ments at the system level have created unprecedented opportunities for qualitatively
new ways of managing the effects of large outages in the future. Conceptually,
model verification and parameter identification in complex power systems can be
pursued without disrupting operations; system dynamics can be monitored over
broad ranges of conditions and key parameters can be identified. More than anything
else, confidence in the models can be developed.

The recent North American Synchrophasor Initiative (NASPI) is an attempt
to overcome this major lack of fast synchronized data and provide coordinated
WAMS. The overall small reliance on automation is a result of poor observability
of system-wide dynamic states in the power grid. Major actions are undertaken,
based on off-line studies of the most severe unexpected equipment failures known,
by a human-in-the-loop. The availability of synchronized fast measurements using
synchrophasors gives promise for the first time to system-level WAMS-based
automation. This, in turn, requires rethinking of how this data would be useful for
enhanced operations and control. The broad expectation is that better knowledge
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of near-real-time changes in the system, together with carefully designed software
and automation, will ultimately enable more efficient and reliable utilization of
any given system. The major challenge lies in understanding how a given system
operates today and how to introduce systematically but phased-in software to
support humans decisions and also necessary automation. As with deploying
hardware, there are major trade-offs depending on the solutions selected.

To sum up, today’s operations and control paradigm is at its crossroads. Both
because of new societal needs and also advances in IT, communications, and
sensing, we need to rethink what is being done and where the major payoffs would
be from possible enhancements. In today’s industry the only adjustments—feed-
forward to manage forecast conditions and/or automated feedback in response to
small frequency and voltage fluctuations—are made by the conventional power
plants. There is very little on-line adjustment by the demand or T&D equipment.
Also, it is important for identifying future needs when considering enhanced IT
tools that the dispatch tools not be solely static and deterministic. The AGC is based
on steady-state concepts of frequency being the same everywhere in the system;
AGC is, therefore, not capable of differentiating the effects of electrically distant
controllers. Moreover, the primary stabilization tools, such as governors and AVRs,
are tuned locally one at a time, while representing the rest of the system as a static
Thevenin equivalent. Fundamental problems with using automation of this type
in systems with large, intermittent resources have been discussed throughout this
chapter. We have considered the problem of power system operations and planning
for future electric energy systems by first defining the overall problem for today’s
industry and then discussing further the implied assumptions made in computer
applications and automation. We have suggested that some of these assumptions
must be revisited, and enhanced computer applications must be designed that
support efficient and reliable operations and long-term performance of future
electric energy systems. In Chap. 2, we review the potential role and importance
of IT in the energy-strapped islands of the Azores Archipelago.

1.8 The Need for Enhancing Computer Methods
and Automation

Here we revisit computer algorithms currently used by industry operators to
schedule resources for feed-forward dispatch and unit commitment (operations
Task 1), minimize delivery losses (Task 2), and make power delivery for forecast
conditions feasible (Task 3). We then point out that the automated feedback control
for frequency and voltage regulation and stabilization must be designed more
systematically in order to meet prespecified frequency and voltage quality standards
in systems with many hard-to-predict resources (Task 4). Third, we consider
computer methods needed to ensure reliable service during large unexpected wind
gusts and during equipment failures (Task 5) as an important IT-enabled alternative
to costly overdesign [7].
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The line between the feed-forward and feedback functions is not always easy
to define. It critically depends on the accuracy of the forecast, as well as on the
operating practices, namely, on how well the forecast conditions are managed. In
Chap. 2 we explain that there exist major trade-offs between building capacity
for forecast conditions, on the one hand, and developing an IT that efficiently
balances supply and demand using automation, on the other. This observation
could be viewed as an un-necessary detail, but it is in fact the major rationale
behind the fundamental need to enhance the, just-in-time (JIT), just-in-place (JIP),
and just-in-context (JIC) functionalities brought about by IT and fast storage [4].
Relying on JIT and JIP functionalities is likely to become one of the major means by
which future electric energy systems will be operated both reliably and efficiently.
In this book, we illustrate this claim multiple times by comparing what is doable
with and without such functionalities, all else being equal.

Today’s operations and planning industry approach could be thought of as
comprising at least five major distinct tasks [7], Chap. 2. In the past, we have found
this classification to be particularly useful for understanding how the electric power
grid is operated and what role specific computer applications play. Based on this
experience, we proceed by starting from the same operations task classification.9

Task 1 concerns the Unit Commitment (UC) and Economic Dispatch (ED) of
generation to meet forecast demand P̂d . The basic UC approach uses a 24-h or
longer system demand forecast to select the units that should be on and capable
of generating power. While this forecast is not perfect, it is needed to support UC,
namely, the selection of power generation units which need to be up and running
in preparation for economic dispatch closer to real time. The industry practices and
software used are often system specific and not fully standardized. We consider
UC/ED Task 1 to be the basic supply and demand balancing problem because it
recognizes that different power plants can only increase or decrease their power
generation output at a certain ramp rate; no network constraints are observed. This,
in turn, implies that very slow base-load units, such as nuclear and coal power
plants, cannot turn on/off very quickly. Therefore, they cannot follow rapid demand
variations nor fast wind power changes. These problems require software which
proactively utilizes multi-temporal predictions and optimizes in a look-ahead way
with the best possible predictions. In particular, it becomes necessary to enhance
today’s static SCUC with optimization tools capable of computing when even
slower plants need to be turned on and help balance uncertainties multi-temporally.

Task 2 concerns transmission and distribution (T&D) delivery loss compensation
for the forecast system demand. Because of delivery losses, it is generally necessary
to produce more generation than the forecast demand; and there are many computer
methods for estimating system losses and for scheduling the generation needed to
compensate them. At present this function is performed in the EMS control centers
which estimate losses and schedule extra power to compensate for these estimated

9This classification was initially introduced to align physical system operations with the electricity
market design rules.
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losses. In the future, qualitatively different methods of compensating for delivery
losses, such as distributed resources compensating for their own losses close to the
end users, are likely to be deployed. It is plausible to perform loss compensation
in a distributed way and also to place future distributed resources at locations that
reduce the losses created [6].

Task 3 concerns the delivery feasibility of the generation scheduled to supply
forecast demand. Network constraints are often accounted for closer to real time,
say 1 h or 10 min ahead; the generation power output from the plants that are
already up and running as a result of performing Task 1 is adjusted to ensure that
power delivery is feasible. For purposes of understanding the necessary evolution
that will lead to future electric energy systems, it is important to observe here
that system limitations to delivering the most economically and environmentally
desirable power are quite complex. We illustrate in this book the importance of
relaxing often conservative system delivery limits (the line proxy limits introduced
earlier in this chapter) by implementing near-real-time corrective actions and by
designing the automated control so that it stabilizes system dynamics based on
fast synchronized measurements and communications. We explain and illustrate
in specific chapters of this book how this change from observing the worst-case
operating limits to performing on-line corrective actions and automation enables a
much more efficient utilization of the available transmission and distribution (T&D)
assets than is currently possible.

Task 4 takes into consideration system dynamics and concerns automation that
ensures system-wide stability and an acceptable frequency and voltage quality of
electricity provided to the end users. The hard-to-predict wind power fluctuations
ΔPWG around the forecast component are generally compensated for by using
automatic generation control (AGC) of several fast-responding power plants that
respond to the frequency deviations. Past industry practice has assumed fast and
small near-zero mean demand fluctuations around the system demand forecast.

As more wind power is deployed, it is no longer going to be possible to make
this assumption. As a matter of fact, how much and which type of stabilizing and
regulating resources will be needed in the future will be heavily determined by how
accurate the prediction models are used for feed-forward decision-making and how
efficiently the forecast demand is supplied. The remaining power imbalance will
have to be corrected quickly to prevent instabilities using the automated feedback
control of often expensive storage. We suggest that trade-offs between the wear
and tear of more conventional resources used to provide frequency and voltage
stabilization and regulation, and the cost of power-electronically controlled fast
storage and FACTS, will have to be assessed carefully as different technological
solutions to the problem of persistent wind power fluctuations are being considered.

Task 5 concerns the secure operations of the complex grid during hard-to-predict
equipment failures. Qualitatively new tools are needed for supporting decisions
regarding corrective adjustments on settings of controllable equipment during non-
time critical faults and/or large wind power deviations; introducing such tools
could go a long way toward ensuring reliable service in systems with large wind
penetrations. In this book we illustrate the potential benefits from such corrective
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actions that adjust voltage-controllable T&D equipment and that reduce demand
enough to ensure viable operation.

Finally, software is needed in support of new planning paradigms for investing
in new technologies. We point out that it is particularly important the interde-
pendence of most effective technologies and the operating protocols for utilizing
selected technology in actual operations. Because decisions must be made in
a highly uncertain environment, it is important to have well-defined interactive
protocols for information exchange and for computing the financial incentives for
managing uncertainties. A systematic combination of highly accurate short-term
wind prediction models for economic dispatch and not very accurate long-term
wind prediction models for investment decisions that account for the cumulative
short-term payoffs from candidate technologies are needed to define the best
investments. It is discussed in this book, and illustrated using the Flores and São
Miguel island systems, how long-run marginal bids (LRMB) for deploying the
best candidate technologies in support of wind power integration can be created
by the candidate investors themselves. Long-term decisions by the investors and
by the system operators and regulators must be supported by new software that
enables interactive dialogue and decision-making for selecting and utilizing the best
candidate technologies. Since much of the payoff of different fast technologies (fast
storage, communications, sensing, and computing and control, in particular) comes
from just-in-time (JIT), just-in-place (JIP), and just-in-context (JIC) adjustments,
one of the major challenges concerns the financial incentives at the investment
decision stage needed to value flexibility brought about by such adjustments that are
unique to each given technology. In other words, a fast load following power plant
has a higher value when it comes to compensating for wind power fluctuations, but
it is not currently differentiated from base-load plants. Even more complex is the
challenge of deploying an amount of fast storage that carefully reflects the break-
even point of the capital cost and the cumulative value brought to the system as
a whole. At present, fast-responding energy storage is not compensated for by the
deferral of standby large reserves, but this must be done if a convincing business
case is to be made for otherwise expensive storage. Moreover, as mentioned earlier,
the actual amount and type of storage needed will critically depend on how well
wind power is predicted and also on how dispatch is done under uncertainties
based on this prediction. The better this is done, the less need there will be for
very expensive storage, and, consequently, the lower the overall cost of electricity
services in systems with wind power will be. Much the same way as it is both
challenging and necessary to carefully assess the value of fast-responding hardware,
it is essential to assess the value of the needed analytics and IT to support their
deployment and use. At present IT is not an explicit part of the financial assessments
when planning new investments. Given the potential major enhancements in both the
reliability and efficiency of electricity services by means of systematically designed
IT, we suggest that considerations of new IT as a means of solving problems of
interest should be made equally important as the consideration of hardware such as
fast storage, in particular.
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In summary, it is becoming quite clear that various controllers, placed throughout
the T&D grid, in power plants, and embedded into specific loads of power
consumers, can fundamentally reduce the delivery limits currently imposed on
the existing power grid. It is therefore essential to deploy and utilize the next-
generation IT methods for both feed-forward decision-making and for automation.
The complexity of IT-enabled electricity services requires a major rethinking of the
fundamentals of operating and planning future energy systems.

1.9 Chapter Summary

In this chapter we revisit the overwhelming complexity underlying planning and
operations in today’s electric energy systems. We provide a short summary of how
today’s system is managed and identify common simplifications for managing the
necessary decision processes in a timely manner. We next propose that the opera-
tions and planning of future electric energy systems will become much more com-
plex than they are in the present or have been and that data-driven knowledge
about system changes will become essential. Both industry objectives and available
technologies are such that the current industry paradigm needs rethinking. We claim
that to integrate and utilize new technologies according to the well-understood
objectives and at value, it will become essential to engineer IT-enabled electricity
services. The importance of systems thinking in setting the goals of Information
Technology (IT) design for evolving electric energy systems is discussed by taking
a look at the objectives of today’s operations and planning and the type of software
and automation used to reach these objectives today. We make an assessment of
the underlying assumptions and their implications for achievable reliability and
efficiency, and use the findings to define the need for new and enhanced IT-enabled
operations and control tools for managing evolving system complexity.

Acknowledgements The ideas presented in this chapter draw in part on joint early work with
Professor Francisco Galiana from McGill University in Canada. The ideas have also evolved as
a result of many research efforts with several graduate students, notably Benoit Lecinq and Jean-
Pierre Leotard. The author fondly remembers many hours of working together and acknowledges
the input. The joint early work is cited to the best of the author’s ability.

References

1. M. Crew, P. Kleindorfer, The Economics of Public Utility Regulation (Macmillan, London,
1986)

2. F.P. DeMello, C. Concordia, Concepts of synchronous machine stability affected by excitation
control. IEEE Trans. Apparatus Syst. 88, 316–328 (1968)

3. S. Hoffman, H. Illian, Control performance criteria, in Proceedings of the American Power
Conference, Chicago, IL, 1996



1 The Case for Engineering Next-Generation IT-Enabled Electricity Services at Value 45
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Chapter 2
The Tale of Two Green Islands
in the Azores Archipelago

Marija Ilić

2.1 Introduction

This chapter concerns the next-generation computer methods and automation for
future electric energy systems. In Chap. 1 we have identified the major assump-
tions in today’s operations and planning that make the management of complex
electric energy systems possible. As explained, some of these often hidden as-
sumptions present major roadblocks to the reliable and efficient integration of
new resources and to the seamless participation of electric energy users. These
simplifications are embedded in today’s computer methods and automation, and as
such, they indirectly make it hard to operate unconventional resources. We describe
one possible new IT-enabled framework that supports the relaxing of these hidden
sources of inefficiencies; we refer to this approach as dynamic monitoring and
decision systems (DYMONDS). We show how this approach can be used as the
basis for a paradigm shift toward more data-driven operations and planning in future
electric energy systems.

We start in Sect. 2.2 by briefly summarizing the main motivation for this book,
namely, the challenge of making the electric energy systems of two islands as
green as possible without increasing the long-term service cost. We describe
the characteristics of the electrical power grids, energy resources, and demand
characteristics on the islands of Flores and São Miguel in the Azores Archipelago.
We highlight how electric energy is provided today on these islands and the basic
challenges and opportunities in front of these islands as they consider the evolution
of their electric energy systems.
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We put forward the major premise that it would indeed be possible to transform
their current electric energy systems into sustainable, low-cost systems by means
of a systematic deployment of IT-enabled methods and automation. Illustrating
this premise is the subject of our entire book. To do this, we first summarize
our vision for sustainable socio-ecological energy systems (SEESs) in Sect. 2.3.
We next highlight in Sect. 2.4 the key role of IT-enabled operations and planning in
transforming future electric energy systems into sustainable SEESs. We explain how
a carefully designed IT, and a man-made physical network, can enable the relaxing
of several major assumptions causing hidden inefficiencies in today’s operations and
planning.

In particular, we explicitly relate the role of “smart grids” in the aligning of
temporal, spatial, and contextual resource and user characteristics within a given
governance system. This relation for the first time makes an explicit connection
between the multiple objectives of SEESs and smart grid design principles. We point
out that this general relation can be applied to designing smart grids for any given
electric energy system. The solutions are nonunique, path-dependent, and ultimately
driven by the sustainability multi-objectives and their tradeoffs. However, the basic
idea of aligning the temporal, spatial, and contextual characteristics of both the
energy resources and the users within a given governance system, in order to enable
sustainability by means of carefully-designed IT, is common to any SEES.

The complexity of the models and principles of IT and automation design
needed to induce sustainability requires a systematic approach. One possible way
of proceeding is to identify how better temporal, spatial, and contextual alignments
of resources and users can be achieved by enhancing today’s operations and
planning industry practice, as introduced in Sects. 2.5–2.8. This is basically the
approach taken in this book. In this chapter, we summarize in Sect. 2.10 the methods
proposed for achieving this. Our emphasis is on the enhancements of specific
computer applications and automation made and on explaining how the proposed
solutions fit into the broad framework of smart grid design in support of sustainable
SEESs. We discuss the explicit dependence of sustainable electricity service on data
driven predictions, computer-supported decisions, and automation. The major new
concepts in each chapter contributed to this book are briefly summarized.

We illustrate the key findings reported throughout the book as the first
proof-of-concept IT framework for sustainable SEES. We briefly discuss how these
concepts jointly contribute to a possible IT-enabled implementation of electricity
service at choice reliably while meeting environmental objectives by deploying
more wind and solar power, in particular—and all without an excessive cost
increase for electricity services. Finally, in Sect. 2.11, we briefly describe the first
data repository of real-world data (found in the DVD of this book) as the supporting
source behind the claims made in this book. We close in Sect. 2.12.
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2.2 The Tale of Two Low-Cost Green Azores Islands

As a more specific illustration of the potential for enabling future electric energy
systems with a man-made physical grid and its IT, we consider next two represen-
tative islands of the Azores Archipelago. These islands are presently supplied by
very expensive fuels shipped from faraway places. This makes the energy supply
very expensive and precious. At the same time, the islands are in wind-rich places
and quite sunny. Therefore, their situation begs the question of whether it would
be possible to replace the currently used expensive and polluting fuels with natural
renewable resources, such as wind, solar, geothermal, and hydropower. Being small,
they are potentially great test-beds for what can and cannot be done since cause
and effect in their systems is much more transparent than in the large continental
electric energy systems; the effects of supply and demand imbalance fluctuations
on the quality of frequency and voltage in the electricity services provided are quite
pronounced, and it is conceptually possible to model and analyze these effects.

The above are some of the reasons that have motivated us to use the islands as
real-world test-beds for demonstrating our basic premise that it is fundamentally
possible, through management with IT, and without increasing the long-term cost
of electric energy services, to deploy much more renewable energy than is currently
done. In this book, we have chosen two islands: the largest island in the Azores
Archipelago, São Miguel, and the very small Flores. Flores already has some
wind power plants and has deployed one fast storage flywheel for balancing the
intermittent wind power. Flores also has a small amount of precious controllable
hydropower, which is a clean, large storage capable of compensating for wind power
changes over time.

We challenge ourselves in this book with the question of how much more wind
power capacity does it make sense to deploy on Flores and São Miguel, and why and
how should the new plants be integrated and operated such that they offset the use
of diesel power plants. To begin answering these questions, one needs a systematic
framework with clearly defined performance objectives. Viewed over longer time
horizons, there are multiple performance metrics and they are not always aligned.
In particular, it is important to quantify the expected annual variable fuel cost,
annual emissions cost, annual T&D power delivery loss, unserved load cost, the
cost of wear and tear in power plants following demand variations, the cost of
poor quality of electricity service, and lastly, the capital cost of new investments
and the sunk cost of existing assets if these are to be replaced by the new ones.
A qualitatively new aspect of the changing electric energy industry is that the
cost listed above is much more complicated to assess when deploying large-scale
equipment than in the case of capacity-based worst-case designs. Outcomes are
sensitive to how well economies of scope are extracted and to what the tradeoffs are
between investing in hardware versus increasing short-term asset utilization; smart
grids are the key to increasing short-term asset utilization, all else being equal, and
as such could contribute to relatively low-cost solutions which offset the investments
in high-cost hardware.
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These vastly different costs indicate the need for integrated cost management, in
which coordinated decisions by policy makers, system planners, operators, and the
respective island community should be made to nurture the long-term evolution of
sustainable electric energy services. Methods are needed to compare the long-term
tradeoff between (1) the significant capital cost of investing in wind power plants,
small household- and/or neighborhood-level photovoltaic (PV) panels, efficient
technologies for energy users, plug-in electric vehicle infrastructure, and the IT
infrastructure necessary to keep it all together, and (2) the cumulative long-term
savings from replacing expensive and polluting fuels with renewable energy. It is
clear that this assessment cannot be done with the deterministic capacity-based cost-
benefit analysis currently used by the industry and regulators.

One of the major messages throughout this book is that the tale has a happy
ending if/when one begins to view future electric energy systems as complex SEESs
in which many small effects contribute to solving big problems [4, 15]. Our main
vision is that economies of scope can be achieved by enabling assets with unique
functionalities [16]. Instead of building capacity to ensure unconditional use of
electricity by the customers, it should be built to enable customers to choose at value,
assessed by themselves, if/when it would be beneficial to modernize their electric
energy loads, including a switch to electric vehicles, to respond just-in-time (JIT)
and just-in-place (JIP) to the availability of intermittent power and be rewarded for
doing that. These preferences should be communicated to the policy makers and to
the local utilities that are ultimately responsible for providing the electricity service.

In this environment carefully designed IT tools could become invaluable for
processing collected data for supporting long-term decisions to participate proac-
tively in greening the islands and for enabling near-real-time adaptations as
short-term energy resources change their power availability. This is needed because
it is hard to be flexible without IT. Highly complex domain-specific specialized
sensing, communications, and control automation are needed to ensure that complex
electric energy systems operate reliably and safely and at the same time utilize
existing assets efficiently.

The key challenge is to design a systematic framework for IT-enabled adaptation,
within a complex electric energy system, to the availability of power and well-
understood customer preferences. In this book we contrast what can be done when
considering wind power as a negative load with what can be done when wind
is carefully forecasted and system users adjust to the predicted variations ahead
of time. We contrast further what can be done by combining wind forecast with
controllable hydro available on Flores, with what can be done on São Miguel where
there is no controllable hydropower. On São Miguel one can justify more reliance
on demand response since this is one realistic means of balancing the forecast
wind power; there is no controllable hydropower on São Miguel. To coordinate
the available power with customers it is essential to have systematic protocols
for information exchange at value [3]. We show how much can be achieved by
preprogramming the electric energy use of large users capable of doing this on São
Miguel longer into the future. These common-sense ideas are modeled, simulated,
and illustrated for the first time in this book.
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Notably, what can and cannot be achieved on the two islands critically depends
on how efficiently and reliably power is delivered and what the cost of delivery
infrastructure is. Here again, different computer algorithms, software, and automa-
tion can be put in place to facilitate power delivery. To start with, we show that
the actual location of the wind power plants can make the difference in how much
power is lost in electric wires when delivering the wind power. Once the plants are in
place, one could ask the question about where to place very small dispersed PVs and
clusters of electric vehicles to further minimize delivery losses from faraway larger
wind and conventional power plants. Moreover, the complexity of automation for
balancing hard-to-predict wind power fluctuations away from the forecast output
greatly depends on the relative locations and electrical distances between the large
loads, the power plants, and the newly placed renewable resources.

We discuss in this chapter and illustrate throughout the book the dependence
of the IT infrastructure complexity level on the accuracy of the models and
parameters used for designing the automation. In short, embedded DYMONDS
are needed not only for actuating the response to changing system conditions
but for identifying parameters and updating models in an online environment
for fault-tolerant automation. A related issue concerns the complexity resulting
from the required coordinated system-level communications and control assuming
the models and parameters are known and accurate. The robustness of fast storage
control for preventing blackouts and/or managing major brownouts during large
wind gusts and equipment outages depends to a large extent on the accuracy of
the models and parameters used.

In this chapter we summarize the main approaches we take to design the JIT and
JIP automation that allows our tale of two islands to end happily. For now, we point
out that a deployment of more renewable resources on the islands could lead to sky-
rocketing electric energy infrastructure costs unless a systematic framework is used
to assess what can and should be done, with a clear understanding of the long-term
costs and benefits.

Making islands green without escalating long-term costs requires careful
consideration of the possible nonunique technology portfolio. An in-depth
knowledge of their unique functionalities is needed to design JIT- and JIP-embedded
DYMONDS capable of balancing supply and demand efficiently and reliably. Much
the same way as it is necessary to have a systematic way of deciding which future
hardware assets to build, it is equally important to proceed with an IT infrastructure
based on a quantifiable understanding of the information to be exchanged and
its value.

Low-cost electric energy systems for green islands cannot be achieved by
considering one single “best” energy resource, one single “best” computer appli-
cation, or one “best” storage type. None of these solutions work by themselves
since their value materializes only when they are used at the same time as other
technologies. For example, stand-alone storage has very little value unless it is used
to compensate for hard-to-predict power imbalance. Otherwise, a much less costly
base load energy resource can be used. Economies of scope come into major play.
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Perhaps the most difficult challenge is to have a design of a framework
for supporting an ongoing evolution of the electric energy systems, with well-
understood innovation objectives. The objectives of future electric energy systems
are much beyond strictly technical and economic. They will evolve as the societies
become more aware and accepting of the needs for sustainable SEESs [15].1 The tale
will never end as the societal needs evolve and as new candidate technologies
present themselves over time. The tradeoffs are often hidden depending on time
over which the objectives are attempted.

Instead of policy makers setting goals for deploying specific technologies over a
predefined time horizon, we suggest that it is much more sustainable to consider
dynamic innovative investments over time [12, 17]. Nonunique solutions may
emerge depending on the time frame over which the innovations are made, indirectly
biasing the technology choice. The technological breakthroughs in making small
resources efficient make it possible to evolve today’s electric energy systems,
which rely on conventional generation following demand, into systems in which
generation, consumers, and T&D jointly contribute to sustainable future electric
energy services. The promise of such change presents us with both challenges and
opportunities. The challenge inherent in enhancing today’s operations and planning
paradigm is to facilitate this transformation to an SEES in which the electricity users
are equally as active in the decision making as the producers. Engineering T&D and
its IT-enabled smarts to support such interactive decision making is the main topic of
this book. The really exciting opportunity is to create long-term sustainable SEESs.
We briefly present our vision of SEESs next.

2.3 Sustainable SEESs

One of the main premises in this chapter and in the entire book is that the
objectives of a smart grid should be closely related to the objective of enabling
sustainable energy services. Given the characteristics of the energy resources and
the energy users, and of the governance system (core variables [15]), the design
and operation of the man-made energy delivery system greatly impact how well the
characteristics of the resources and users will be matched. A possible qualitative
and quantitative approach to conceptualizing the role of smart grids is motivated
by the concepts put forward in seminal work as a socio-ecological systems (SES)
framework for sustainability analysis [15]. In particular, the idea of introducing a
common set of variables key to identifying factors that may affect the likelihood of
a particular policy to enhance sustainability in one type and size of resource system
and not in other types is extremely appealing when tackling the problem of the

1A happy tale of two Azores islands is the one which provides a “development that meets the needs
of the present without compromising the ability of future generation to meet their own needs.”
The quote is the working definition of sustainability by the US National Academies.
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Fig. 2.1 Key core- and second-order variables of an SES [15]

governance required to support sustainable electric energy systems as they undergo
their evolution. Sustainability fundamentally means a careful balancing of multiple
objectives such as emissions, cost (O&M and capital), and the business stability of
innovating hardware and software technologies at value [8]. Policies determining
these tradeoffs are critical to both the short- and long-term ability of an SES to
sustain itself [8].

Shown, for the sake of completeness, in Fig. 2.1 is a summary of the core- and
second-order variables characterizing any SES that are believed to affect its
sustainability characteristics most critically, as proposed in the Nobel Prize-winning
framework for water SES [4, 15]. The sustainability of an SES is represented by
the characteristics (second-order variables) of the core variables, and it depends
on (1) the size, productivity, and predictability of the overall resource system; (2)
the mobility of the resource units; (3) the governance system that is in place, in
particular on having collective choice rules; and (4) on the number, leadership, social
norms, and overall knowledge of the system users concerning the characteristics of
the resource system, resource units, and governance system characteristics.

To briefly review our notion of a SEES, consider the simple electric power system
diagram shown in Fig. 2.3. We observe that each energy system, independent of
specific architecture, has the same core variables as the one shown in Fig. 2.1; here
the resource system and units are the generators, the users are the loads (consumers),
and the governance system is a set of operations, planning and economic rules for
managing the resources and users.

We have recently proposed that viewing any future energy system in terms of
its core-, second-, and deeper-order variables, and designing the man-made grid
and IT to induce these variables to lend themselves in the best possible way
to sustainability, is one possible approach to aligning the characteristics of the
energy resources, electric power grid, IT, and policy [4]. The smart grid becomes
consequently a means of implementing the man-made physical power grid and
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Fig. 2.2 Electric power grid and IT as enablers of sustainable socio-ecological energy systems
(SEESs) [4]

its IT in support of a sustainable energy SES. Specific to the energy systems,
shown in Fig. 2.2 are the key core- and second-order variables whose characteristics
determine how sustainable a SEES can be, based on the characteristics of the
resources, users, and governance system.

We stress that how well the characteristics of the resources and users are matched
in time determines the basic quality of service (QoS), efficiency, and environmental
impact of any given SEES. To start with, there exists a very real mismatch between,
for example, the most efficient energy production by specific resources, on one side,
and their typical utilization, driven by the users’ needs and the ability to deliver
the energy to the right place, on the other; this leads to a gross underutilization of
individual generators when performing economic dispatch within an interconnected
power grid, for example. This mismatch highlights the need for caution when
assessing system efficiency based on the attributes of individual components; it is
generally not possible to attain a full efficiency of individual components due to
temporal and spatial network-level constraints.

Similarly, because of the often vast geographical distances between the
components within an SEES, it is generally difficult to deliver energy from the most
desirable energy resources to the users. In reference to Fig. 2.1, energy systems
generally do not have many mobile resources, and this makes their sustainability
sensitive to how well the man-made electric power grids and other energy delivery
means align the production and consumption. Delivery-related constraints often
contribute to significant underutilization of otherwise highly attractive energy
resources. Finally, we point out that mutual temporal and spatial interdependencies
themselves may sometimes also be pronounced within an SEES, and because of
this, it is not possible to manage them separately.
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Fig. 2.3 Two electrically-distant areas on the Island of São Miguel, [13], Chap. 15

2.4 The Key Role of IT in Enabling Sustainable SEESs

Conceiving, designing, and implementing effective IT solutions for enabling sus-
tainable SEESs is not a matter of simply adding on or making minor modifications,
to the existing operating and control practices. Instead, doing it right requires an in-
depth understanding of the electric power systems as complex dynamical systems
and a strong background in the key areas essential for creating an evolutionary
sensing, monitoring, and control design while also keeping in mind the changing
requirements in future electric energy systems. Much must be done to design a
systematic IT that enables the effective integration of large-scale wind power, for
example.

The necessary sensing, communication, and control hardware is already available
and quite cost-effective. Missing are the concepts for embedding intelligence into
such hardware so that the components, by optimizing their own sub-objectives, help
meet the overall goals of the system. These goals are no longer the traditional cost
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minimization subject to many complex physical constraints. Instead, the grid must
serve as an enabler that allows the implementation of multiple tradeoffs ranging
from reliability and QoS to economics and environmental goals.

By assessing the second-order characteristics of the core variables in any SES,
such as a water or energy system, it becomes possible to define how sustainable the
given system is likely to be. The more aligned the temporal, spatial, and contextual
characteristics of the core variables (the resources, users, and governance system)
are, the more sustainable any given SES will be.

In this section, we review how this notion can be used to define sustainable
SEESs as a particular complex system of interest. We suggest that the man-made
electric power network and its IT play the key role in empowering the resources,
users, and the governance system with the monitoring, sensing, prediction, learning,
and adjustment tools for changing conditions necessary to contribute jointly to
sustainable electric energy services. We then suggest a possible DYMONDS
framework with supporting software, as a means of aligning the characteristics of
the energy resources, users, and governance system and making the SEES more
sustainable. Therefore, IT plays a fundamental role in inducing the sustainability of
electric energy systems. We further conjecture that one of the key objectives in the
transformation of today’s energy systems to smart systems capable of meeting short-
and long-term future needs must be to develop methods for the better understanding
and matching of broad SEES attributes, the properties of physical grids, and the
characteristics of both the IT and the governance system.2

To pose the problem of smart grid design and operation, one should start by
first characterizing the energy resources, user preferences, and governance system
much the same way as water systems were characterized using the SES framework
in [15]. This general framework for assessing the sustainability of any SES can be
applied to future energy systems and, in particular, to forming one possible basis
for understanding the role of smart grids and IT in shaping the sustainability of
those systems. Shown in Fig. 2.2 is an energy system viewed as a SES, augmented
by a man-made grid and man-made IT. For any given SEES, the man-made grid
and its IT must be designed so that they induce the core- and second-level variables,
listed in Fig. 2.1, that lend themselves best to an overall sustainable SEES. Our basic
approach is for the system users to internalize the system constraints as much as
possible and transform them into the explicit sub-objectives of a complex dynamical
system. The power grid users, resources, and consumers can adjust to the changing
conditions and/or communicate with the others to align their needs and preferences
with the system-level objectives [10].

2For understanding several qualitatively different architectures of energy systems and the necessary
architecture-specific design of the IT that makes the best use of the available resources, see [4].
Notably, since the starting SEES of each representative architecture is qualitatively different, the
design of the man-made grid and the IT for each one must be different.
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2.5 SES-Based Modeling Framework for Sustainable SEESs

Much the same as in the seminal SES work and its recent applications to water
systems, we are concerned with the creation of a design model for a sustainable
SEES. Relevant models and IT design for sustainable performance strongly depend
on the type of SEES. In order to create an IT design framework for smart grids,
it is essential to establish a sufficiently accurate, yet not too complex, modeling
framework that captures the interdependencies between the SEES, physical grid, IT,
and governance system. We point out that the choice of the key variables depends on
the type of architecture and on the questions the modeling framework is attempting
to answer.

2.5.1 The Need to Model Deeper-Level Variables

In order to induce sustainable just-in-place (JIP) electric energy services by means
of smart grids and their IT, it becomes necessary to extend the concepts of the
general SES sustainability framework to include spatial interdependencies. This
can be done only if the mathematical models capture significant interactions among
the spatially distant resources and users. Therefore, it becomes necessary to model
the spatial interactions between different clusters of delivery system users across a
very large interconnected bulk man-made power grid. It is here that modeling the
physical processes underlying man-made power systems becomes crucial to smart
grid management design for sustainability.

To elaborate, we recall the mathematical models derived in the engineering
literature, with an eye to assessing qualitatively and quantitatively the highly com-
plex, nonlinear interdependencies among the multiple variables used to characterize
electric energy systems [1, 2, 9]. In particular, the physical interaction variables
reflecting the electrical distances between different portions of a large man-made
grid become good candidates for deeper-level variables within an overall SEES and
its man-made grid [2]. It is important to understand that these variables can only
be modeled by careful model reduction of an otherwise very complex electric grid.
Shown in Fig. 2.3 is the island of São Miguel; line connections colored red, green
and white are strong, medium and weak strength lines shown in Fig. 2.4 are the
interaction variables created by a disturbance located in one part of two electrically
distant areas on the island [13], Chap. 15. Interaction variables colored in blue and
green are those of areas 1 and 2, respectively. Matching different patterns of users
and resources in these two electrically distant areas efficiently will require sensing
and control of this interaction variable.

It should be somewhat intuitively clear that the characteristics of second- and
deeper-level variables for hybrid and fully distributed architectures are very different
than the characteristics of these variables in the bulk energy systems reviewed in
Chap. 1 of this book. Consequently, the type of IT that will induce sustainable
performance in these systems is very different. In particular, since these systems will
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Fig. 2.4 Power exchange between two electrically distant areas on São Miguel, [13], Chap. 15

have a significant penetration of small hard-to-predict core variables IT paradigms
supporting peer-to-peer communications and decision making by self-organizing
highly proactive users are likely to support sustainable services with the right
governance in place. Many technologies recognized as smart distribution system
technologies (smart meters and advanced meter infrastructures (AMIs) in particular)
become key to sensing and adapting in a highly distributed way. According to the
general principles of sustainable SEESs, technologies such as distributed storage,
electric vehicles, wind power, and solar power all lend themselves to being highly
capable of becoming part of a sustainable eco-energy system.

Modeling relevant interactions for other than fully regulated large-scale SEES
represents a major R&D future challenge. Even the aggregation of distributed users
and resources is an open question. For example, it is possible to aggregate system
users that have similar temporal characteristics but are dispersed throughout an
electric power grid. It is also possible to aggregate system users that are located
in the same parts of the electric power grid but have vastly different temporal
characteristics. Qualitatively different challenges to IT and DYMONDS design
complexities would arise when attempting to make an SEES sustainable in these
two different situations.

However, given the aggregation of small system users into portfolios of one or
the other type, it is fundamentally possible to generalize the notion of interaction
variables and deeper-order variables for these new architectures as well. More
specifically, a vector of variables internal to the aggregated portion of the system
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is generally a function of its internal states and the decision making that is in place.
The interaction variables, by definition, cannot be affected by internal actions unless
a subsystem is connected to the rest of the system. While this definition is analogous
to the definition for today’s bulk power systems, much work is needed to understand
how the interactions are affected by the new technologies being deployed.

Missing at this time are governance mechanisms which value the just-in-time
(JIT), just-in-place (JIP), and just-in-context (JIC) contributions of these technolo-
gies to a high quality of sustainable energy services. For example, integrating
large amounts of wind power will require highly responsive demand. The power
mismatch between a portfolio of wind and inelastic demand is qualitatively different
from the power mismatch between a portfolio of wind and price-responsive demand,
as they create qualitatively different needs for power produced by the conventional
power plants. In the first case, the need for fast large fluctuations by the natural
gas plants is significantly larger than in the case when demand and intermittent
wind power are coordinated within a single portfolio subsystem. It is not hard
to conclude that the IT design and DYMONDS embedded to implement price-
responsive demand contribute significantly to the sustainability of the overall SEES.
Dispatching conventional power plants in a sustainable way requires the monitoring
and control of a portfolio of wind power and responsive demand.

These are only some of the first examples illustrating the importance of
deeper-order interaction variables within an SEES. To our knowledge, relating the
sustainability of an SEES to the interaction variables within the complex electric
power grid was attempted for the first time in [4]. More work is needed to develop
formal models for the evolving architectures. Also, the deeper-order variables can
be used to assess inefficiencies caused by a lack of coordination. Actual system data
should be used to assess at least order of magnitude inefficiencies.

2.6 Toward an Approach to Designing and Operating Smart
Grids for Sustainable Energy Services

The premise we put forward is that for any given particular type of energy resource
system, the operations and planning engineering practices must ensure that the
deeper-level variables of the man-made electric power grid are such that they align
both the resource and the user characteristics. In simple terms, the interaction
variable needs to be sensed and communicated to the right controllers to induce a
good spatial and temporal matching of resources and users. This requires careful
engineering and governance design. Only then will the likelihood of having a
sustainable complex man-made electric energy grid embedded within the natural
energy resource system be high. This conjecture, recently presented for the first time
in [4], is directly motivated by the work in [15]. We pose the design of a man-made
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electric power grid within the ecological energy resource system as the problem of
inducing the properties of second-level variables in the resource system that are most
likely to be sustainable. To us, this is an exciting novel link that one could use to
carefully design man-made systems in order to make the most out of the available
natural resources [4]. We emphasize that the desired properties can be induced by
starting with models that represent the core- and second-level variables and then
by introducing deeper-level variables specific to the energy systems that capture the
nonlinear interdependencies within the overall system.

Designing a man-made power grid, and accompanying IT, to induce
sustainability using these models amounts to designing a simbiotic energy SES
and a man-made grid-IT system which, jointly, are most likely to have sustainable
properties. Based on this, our proposed approach to modeling and designing
the man-made power grid and its IT for sustainable service becomes basically
a three-step process [4]:

Step 1—Start with the core- and second-level variables to characterize a given
SEES.

Step 2—Define and model deeper-level variables to capture the interdependencies
between the SEES, physical grid, IT, and governance system.

Step 3—Design the physical grid, IT, and governance system to induce sustainabil-
ity by sensing and controlling the interaction (deeper-level) variables so that the
closed-loop system has good JIT, JIP, and JIC functionalities.

Notably, a general SES framework helps define the most adequate IT design
needed for the core subsystem characteristics and their second-level variables to
enable the man-made electric power grid with the functions needed to obtain
an overall sustainable SEES. The actual IT design needs to be done with a
clear understanding of this purpose. A better understanding of the SEES-electric
power grid-IT complex system is key to enhancing both the physical grid and its
intelligence to support SEES in long-term sustainable energy provision.

Using the language of SES, we conclude that the main purpose of IT is to
align the attributes of the resource system, resource units, and users. This is no
small task given the spatial and temporal complexities of near-real-time power
balancing. We illustrate in this book that identifying the predictability of system
users’ characteristics by means of IT techniques is particularly important to the
system design. To enable both choice and system-level performance, temporal and
spatial information must be exchanged about the second-order and deeper-order
variables of the core variables within an SEES. The closer these characteristics are
aligned, the more likely the system is to be long-term sustainable. To us, this has
been a guiding light to revisiting the modeling, decision-making software, SCADA,
and automation in today’s industry, and to identifying the principles enhancing their
performance as new resources are being added.
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2.6.1 The Role of Smart Grids and IT for Sustainable
Energy Delivery

Somewhat unique to the energy systems in which energy is transported via an
electric power grid is the problem of sustainable electric power delivery, since
electric energy resources are generally not mobile. An interactive multilayered IT
framework with much embedded intelligence at all layers (resources and users) with
minimal coordination among the layers could enable a large penetration of wind, in
coordination with responsive demand and other distributed technologies, without
requiring any new large investments in conventional generation or transmission [8].
This is contrary to many estimates and predictions that associate clean sustain-
able energy service with unavoidable, unacceptably high-energy tariffs. Shown in
the same work is a comparison between what is achievable with today’s IT in place
(which relies on old industry rules for bulk power systems) and what is doable by
implementing JIT and JIP energy services. If predictions are used, the volatility
is even further reduced. The interactions are the deeper-level variables discussed
above. There is much research to be done on modeling, communications, and control
design in all types of SEES architectures. We refer to this interactive paradigm
as DYMONDS, which is described in this chapter as a possible IT solution that
supports sustainable energy utilization.

2.7 The Impact of Hidden Inefficiencies
on the Sustainability of SEESs

Recall from Chap. 1 that today’s operations rely on at least five major tasks that are
being performed on line at different rates. In Chap. 2 of [6] system operations was
described as comprising these five basic tasks. We have found this classification
to be particularly useful over the years, and in this book we start with this exact
operations task classification.3 Recall that these operations tasks are:

• Task 1: Economic dispatch of ramp-rate-limited power plants to supply forecast
demand

• Task 2: Delivery loss minimization of dispatched power to the right consumer
locations

• Task 3: Ensuring that power can be delivered without creating network conges-
tion, given the expected equipment status (normal conditions)

3This classification has been particularly useful when relating physical system operations to
electricity market problems.
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• Task 4: Ensuring that frequency and voltage are maintained within prespecified
industry standards during hard-to-predict small demand fluctuations

• Task 5: Ensuring reliable service to customers even during forced large equip-
ment outages

It is described in Chap. 1 of this book how, by making assumptions about
the hierarchical separation of intertemporal dependencies, one can start from a
single operations-planning industry objective and decompose it into operations and
planning subproblems. The operations subproblem is further decomposed into the
five operations tasks listed here. The reasons for these simplifications are both
historic and out of necessity to manage an otherwise extremely complex problem.

We next discuss the effects of these simplifications on the achievable
sustainability of a given SEES. To formalize these interdependencies we recall
from Sect. 2.3 above that the more temporally, spatially, and contextually the
characteristics of the resources and the users are aligned given the rules of the
governance system, the more sustainable an SEES will be.

2.7.1 The Role of the Governance System

The governance system generally defines the performance objectives of the industry
as a whole by requiring a certain QoS and by allowing certain ranges of service
tariffs. Given an SEES and the second-order variables of its resources and users,
different governance systems will lead to qualitatively different sustainability over
time. For example, if the governance system monitors the performance of the
service providers after the fact and does not take into consideration the effects of
inevitable uncertainties at the time of investing or scheduling the existing resources,
the expected performance will be overly optimistic when compared to what is
achievable in practice. Both short- and long-term uncertainties have a huge impact
on which technologies will be deployed and how efficiently the resources and users
are aligned. Moreover, the choice of time horizon over which service providers are
evaluated also has a major impact on long-term sustainability.

Governance systems which rely more on proactive decision making by the
resources and users than on the centralized coordination for managing intertemporal
dependencies under major uncertainties support very different technologies and
outcomes, because risks are managed in a distributed way over many resources and
users and over time as decisions for managing risks are not over prespecified time
for all. Understanding these fundamental interdependencies of core- and second-
order variables is challenging and cuts across many disciplines. It has only been
recently that it has become more critical to assess sustainability of electric energy
systems. With this comes a difficult challenge of crossing discipline boundaries.
Here we are specifically interested in the aspects of the interdependencies which
could help identify how enhancing IT for future SEES could help more sustainable
performance. This more modest task is discussed next.
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2.8 The Key Role of IT for Relating Planning
and Operations Industry Objectives

In the past, integrated resource planning to invest in large equipment was done
for “proven” technologies only. The industry standards have traditionally been
based on capacity-based thinking in order to ensure acceptable QoS even during
very large equipment failures. The decision making has been largely based on
deterministic worst-case performance thinking. Innovative technologies capable of
enabling more efficient service have routinely gone unconsidered. This amounts to
the planning process being a scenario analysis for finding the worst conditions and
overbuilding just in case such an event takes place. In contrast, there has been some
sporadic academic research on optimizing investments by managing of resources
more efficiently in the actual operations; only a handful of utilities have done any
planning with such an approach.

Consequently, significant extra capacity has had to be built to have sufficient
standby reserve for full service during large equipment failures without having to
resort to on-line corrective management of other equipments during the emergency.
Using the SES framework, one can see, after the fact, that the load factor (the ratio
of the average load to the peak load) and the generation utilization factor (the ratio
of the energy used to the capacity rated energy) are generally low. These are possible
quantifiable measures of a lack of alignment between the characteristics of the
resources and the users. Shown in Figs. 2.5 and 2.6 are sketches of typical load
factors for the islands of Flores and São Miguel.

The basic challenge facing new IT methods is how to increase both the load factor
and generation utilization.

2.9 The Key Role of IT for Enabling More Efficient
Operations

The five operations tasks listed above can be made more efficient by inducing a
closer temporal, spatial, and contextual alignment of resources and users within a
given governance system. We first assess these five tasks assuming a fully regulated
governance system. Only the effect of enhanced IT on performance, without any
change in the regulatory rules, is discussed next.

In a nutshell, the separation of operations Tasks 1, 4, and 5 generally leads
to inefficiencies caused by poor knowledge of the intertemporal dependencies.
The more accurate the predictions, the less need there is for fast-responding
generation, automation, and expensive storage. In addition, relaxing the worst-case
deterministic requirement for standby reserve, and relying instead on just-in-time
corrective management by means of other available resources, generally contributes
to major improvements of the load factors and generation utilization factors.
Ensuring efficient spatial alignment by delivering just-in-place generally brings



64 M. Ilić
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about considerable efficiencies in Tasks 2 and 3. Lastly, eliminating spatial network
congestion requires a robust response to disturbances. Because of this, the major
challenge is to design the IT so that both complex spatial inefficiencies and temporal
inefficiencies are reduced.

2.9.1 DYMONDS Approach to Designing IT
for Sustainable SEESs

An IT infrastructure complexity based on the attempt to re-bundle for sustainability
in a centralized way is likely to become explosive as new technologies foreign to
system operators connect to the existing grid. These technologies could connect in
large numbers in the form of small dispersed renewable generation and responsive
demand, and it will become excessively hard for the system operator to know
technology-specific characteristics and to utilize them efficiently and reliably in
synchrony with conventional resources.

To manage this unprecedented temporal and spatial complexity, we have
proposed a multilayered approach to (1) internalizing decision making under
uncertainties by the core components of the SEES (resources, users, governance
system) and (2) exchanging information that aligns their temporal and spatial
characteristics (the second-order and deeper-order variables). Resources, users,
and governance system can either align their characteristics locally in a distributed
way or rely on the others within the SEES to help. The complexity of information
exchange and of the local decision making greatly depends on how much is done
locally. A deployment and utilization of a handful of small distributed energy
resources (DERs) generally does not require much information exchange or
coordination with the rest of the system. The most difficult questions in future
electric energy systems concern orderly scaling up of DERs without creating
problems in operations. Using the language of traditional power industry, protocols
for interconnecting DERs to the existing electric power grid must be introduced so
that these resources are utilized efficiently and reliably. Our general approach is to
design local IT that manages temporal and spatial complexities and uncertainties
in a distributed model- predictive manner, and to require minimal coordination of
the interaction variables that aligns the characteristics of the resources, users, and
governance system that are not already aligned locally. This is the basis for our
envisioned DYMONDS framework. Shown in Fig. 2.7 is our commonly used sketch
of embedded DYMONDS within a complex SEES. As computational complexity
is distributed into different groups of system users and the T&D system, the
alignments of spatial and temporal second-level variables among the core variables
of the once fully regulated governance system begin to occur by internalizing
the intertemporal and the interspatial uncertainties given the predictions about the
second-order and deeper-level variables. This internalization of the sub-objectives
by the groups of core variables shapes the second-order and deeper-order variables.
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Fig. 2.7 DYMONDS architecture of electric energy future systems [4]

The information about these variables is exchanged interactively, and a minimal
coordination of preferences, expressed by the core components in terms of their
second- and deeper-level variables, is carried out in order to align these with the
objectives of the SEES.

2.9.2 IT-Enabled Governance System Evolution
for Sustainable SEESs

This framework ultimately leads to a new IT-enabled governance system in which
the core variables make more complex decisions and have embedded automation
for implementing their own sub-objectives, using a deep detailed knowledge
about their own characteristics and preferences. Learning about the likely system
conditions expressed in terms of second-order and deeper-order variables occurs in a
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distributed way. The look-ahead, model-predictive decision making and automation
occur when the groups of core components define their own ranges of choice for
acceptable solutions. Minimal coordination at the SEES level takes place to align
the ranges of choice by selecting the one which best aligns all the core variables
according to the sustainability of the SEES as a whole. This somewhat abstract
process underlies our DYMONDS framework. Different degrees of distribution
for managing complex temporal and spatial uncertainties require different IT and
automation.

Further work is needed to prove how the evolution of a governance system
into distributed proactive core components, interacting among themselves and
minimally coordinated at the SEES level, results in as optimal solution as possible
for such a complex systems. It is important to recognize that this concept does
not assume perfect information, after the fact, for assessing the performance of the
SEES. Instead, information about the environment is sensed and processed by the
core components for future predictions and decisions about the characteristics of
the second- and deeper-order variables that need minimal coordination. The more
transparent this information about the core components is and further into the future,
the more likely the overall system will be sustainable for the ranges of choice given
by the core variables [3].

This SES interpretation of the fundamentally different benefits from IT-enabled
management of future energy systems can be supported by the formal mathematical
derivation of the bounds on achievable performance created by interactive decision
making within a complex system. The qualitatively new challenge is the design of
adequate IT and automation that makes the most out of the given core variables
within an SEES. This theoretical challenge is far beyond the scope of this chapter.
It will keep the research community busy for some time to come, as it poses
questions to learning in complex network systems while accounting for the multiple
temporal, spatial, and contextual properties of the core variables embedded in the
components of such systems.

In the next section we provide a guided tour of our book by offering sample IT
methods for managing temporal and spatial interdependencies. Of particular interest
is an explanation of how the computer algorithms and automation methods proposed
present some common-sense IT enhancements and why they fundamentally support
more sustainable performance of an SEES as a whole while enabling choice.
The book organization is discussed as it evolves around the ideas of interactive
re-bundling of the five operations tasks and the planning problem into a single
operations-planning task under uncertainties.

2.10 Book Organization

We have organized this book in seven parts. Part I comprising Chaps. 1 and 2
introduces the basic thinking about the role of IT in making future electric energy
systems more sustainable. Part II has two chapters that describe the two island
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systems used in the book to illustrate the potential of the proposed concepts.
Chapter 3 describes the overall electrical system characteristics of Flores and São
Miguel islands in the Azores Archipelago. Chapter 4 provides data about today’s
generation and system demand characteristics for the two islands. Also, the wind
power data for Flores is described and included. This information is used in all the
other chapters to illustrate and compare the various concepts proposed. Use of the
same system data throughout the book contributes to a highly unified information
flow among the groups of otherwise different coauthors.

The remaining parts of the book mainly describe the enhanced IT methods and
automation that are proposed to support the five operations tasks more sustainably
and at choice. The last part of the book revisits the difficult question of re-
bundling the objectives of operations and investment planning subproblems under
uncertainties in order to enable long-term sustainable use of available resources.
We describe how the proposed architecture represents an evolutionary outgrowth
of today’s operations and planning practice by a careful relaxation of key hidden
assumptions. Ultimately, the vision for enhancing IT in support of sustainable
energy services becomes computationally less complex than the one employed by
the industry today, but it requires an interactive information exchange infrastructure
among the different industry groups of core components. A more specific tangible
description of what these concepts mean is summarized next. The emphasis is on
illustrating a few key performance improvements. The details of how this is done
are presented in the specific chapters and parts of the book.

2.10.1 Part III: Predictions and Model-Predictive Look-Ahead
Scheduling for Temporal Alignment in Operations

Part III concerns qualitatively new ways of performing unit commitment in future
energy systems with many intermittent resources and actively participating demand.
These methods are related to Task 1 of the operations methods for balancing supply
and demand, in systems with intermittent resources, without explicitly considering
the network delivery limitation.

2.10.1.1 Economic Dispatch and Unit Commitment Enhancements

Task 1 is the so-called unit commitment (UC) and economic dispatch (ED) task.4

The basic UC approach uses the 24-h or longer system demand forecast to select
units which should be on and capable of generating power. While this forecast is
not perfect, it is needed to support UC, which is the selection of power generation
units that need to be up and running in preparation for economic dispatch closer to

4Operations tasks are based on [6], Chap. 2.
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Fig. 2.8 Flores – Comparison, for the same day, assuming that there is (a) hydro generation with a
reservoir and (b) hydro generation without a reservoir. It is assumed that there are 2 wind turbines
in the system. (a) With the possibility of using hydro resources for peak shaving, diesel generation
keeps steady throughout the day. (b) Without the possibility of using hydro resources for peak-
shaving, diesel generation maintains the balance between demand and generation. The wind power
profile plotted refers to the wind power available, not necessarily the wind power injected into the
grid

real time. The industry practices and software used are often system-specific and not
fully standardized. Part III concerns possible enhancements based on the predictions
and look-ahead model-predictive dispatch.

It is important to understand today’s hidden inefficiency when performing static
economic dispatching in light of the system’s inability to align the temporal
characteristics of power plants with the temporal characteristics of users. This
inability to align the temporal characteristics of resources and users generally leads
to excessive use of fast and expensive load-following units, gas power plants in
particular. Enhancing the ramp-rate-limited dispatch by relying on predictions and
look-ahead dispatch overcomes the need for expensive resources, with IT supporting
predictions and model-predictive dispatch enabling less expensive resources to
supply varying the demand forecast.

In Chap. 5, unit commitment and economic dispatch are performed based on
the computer methods typically used at present. The objective of this chapter is to
provide a benchmark assessment of the impact of wind penetration on the generation
O&M cost. Of particular interest is how much wind power must be “spilled” in order
to balance the supply and demand, given the system demand profile for the islands
studied. It is assumed that the system operator has full knowledge and control of
the generation resources and system demand. Shown in Fig. 2.8 is a representative
simulation of generation dispatch on Flores with seven wind power units [13].

Several follow-up chapters in this part of the book introduce novel ways of
balancing supply and demand in systems with large uncertainties. To start with,
in Chap. 7, we illustrate the use of model-predictive generation dispatch assuming
given system load. A mathematical formulation of look-ahead model-predictive
economic dispatch observes the ramp rates and utilizes the knowledge of predicted
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Fig. 2.9 Generation based on
static dispatch (method 1) on
Flores for Apr 16 [13],
Chap. 7
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Fig. 2.10 Generation based
on (method 2) look-ahead
dispatch (method 2) on Flores
for Apr 16 [13], Chap. 7

maximum wind power generation. For the small island of Flores it is shown
that optimizing hydropower to balance the varying wind forecast enables a more
economic utilization of the overall generation and results in less use of expensive
and polluting diesel power on the island. This is shown for illustration purposes in
Figs. 2.9 and 2.10, in which a comparison of conventional economic dispatch and
look-ahead economic dispatch is seen. It can be concluded from these two figures
that by predicting the wind power and by optimizing over longer time horizons,
it becomes possible to schedule even slower resources, like hydropower on Flores,
and, consequently, require less fast-responding expensive and polluting diesel power
generation.

Figure 2.11 compares generation dispatch by distributed model-predictive
look-ahead dispatch with centralized model-predictive economic dispatch.
An important distinction between centralized model-predictive UC/ED and model-
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Fig. 2.11 Generation based
on distributed look-ahead
dispatch (method 3) on Flores
for Apr 16 [13], Chap. 7

predictive distributed decision making by the system users (the generators and
consumers) is that in the latter the intertemporal constraints, the ramp rates in
particular, are internalized in a distributed way. A comparison of the two dispatch
methods is illustrated in Table 2.1. It can be seen that the simulations show that
the two approaches, namely, the complex centralized look-ahead unit commitment
by all the power plants, performed by the system operator, and the distributed
UC/ED by the system users, result in an almost identical optimum (modulo small
duality gap) [12,13], Chap. 7. Nevertheless, there remain interesting and potentially
relevant alternatives to using distributed UC/ED. These alternatives are presented
in Chap. 10.

2.10.1.2 The New Role of IT-Enabled Demand Participation in Scheduling

The follow-up Chaps. 8 and 9 explore the potential of demand participation in
balancing highly varying wind and hydropower. Chapter 8 in particular provides an
assessment of candidate consumers on Flores and São Miguel whose loads may be
able to participate proactively in balancing supply and demand. It is explained why
refrigeration and air-conditioning on Flores have relatively small potential to affect
the imbalance created by the wind variations (Figs. 2.12 and 2.13). On the other
hand, a more industrial and commercial part of São Miguel could contribute quite
significantly to longer-term, seasonal and annual scheduling (Fig. 2.14). A particular
emphasis is on the relation between the time scale at which demand partici-
pates (multi-annual planning by the regulators and utilities that count on demand
participation and reward the participants accordingly; seasonal agreements with
utilities at well-defined and quantifiable time-of-use (ToU) rates; day-ahead (DA)
and/or real-time (RT) (10 min) dispatch; direct load control (DLC) in emergencies).
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Table 2.1 Daily dispatch
cost comparison ($) for
Flores [13], Chap. 7

Date Method 1 Method 2 Method 3

Jan 16 4,017.11 3,953.94 3,970.28
Apr 16 4,676.08 4,604.45 4,633.94
Jul 16 8,287.53 8,257.15 8,290.98
Oct 15 8,890.01 8,890.01 8,890.01
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Fig. 2.12 Air-conditioning
load based on day-ahead
dispatch for July 16, 2008, on
São Miguel [13], Chap. 9
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Fig. 2.13 Temperature inside
the mall assuming
air-conditioning load dispatch
under day-ahead scheduling
for July 16, 2008, on São
Miguel [13], Chap. 9

The relationship between customers’ tariffs, their energy needs and preferences, and
the IT-enabled participation in energy balancing are discussed.

Chapter 8 summarizes the concept of adaptive load management (ALM) which
is qualitatively different from a more typical DLC. The consumers internalize their
own physical characteristics and preferences for the anticipated electricity prices
and offer simple bids to the system operator regarding how much and at which
hours they would need electricity and how much they are willing to pay for the
services. These bids are binding, and the system operator can count on demand
response to help compensate for wind deviations, for example, at mutually agreed-
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Fig. 2.14 Original and shifted fossil fuel for a Friday and Saturday [13], Chap. 8

upon prices. An important point is made that such agreements could be defined for
time-of-use (TOU) instead of only day or hour ahead. ALM is an important concept
that facilitates both choice by the consumers and selection by the system operator
of the demand bids that will help most to balance the supply.

2.10.1.3 IT-Enabled Efficient Scheduling of Electric Vehicles

Finally, in Chap. 11, the potential of electric vehicles for balancing wind power
deviations on the island of Flores is assessed. Two key observations follow from this
chapter: first, for the islands which burn a great deal of very expensive diesel fuel,
one can make the case that the cost of the infrastructure necessary to implement
electric vehicles would pay off even without accounting for the environmental
costs. Second, the assessment of electric vehicle potential must be done against
an incremental cost that includes the capital cost, rather than just using short-term
marginal cost (Fig. 2.15). The value of EVs compensating for wind power and
displacing the use of very expensive diesel fuel is sufficiently high that it would
make sense to allow wind power to be charging such an incremental (levelized)
cost. This way, a combined investment in wind power plants to replace diesel plants,
and in EVs as the key storage needed to manage volatile wind in a feed-forward
way, becomes a viable subsidy-free business arrangement. Shown in Fig. 2.16 are
typical charging patterns of EVs relative to predicted wind power patterns. It can be
seen that significant cost savings are possible with a smart distributed look-ahead
scheduling of wind power and EVs. Shown in Tables 2.2 and 2.3 are the estimated
cost savings and emission impacts if such new IT-enabled scheduling were in place.
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there is moderate wind and solar power available [13], Chap. 11
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Table 2.2 Total (electricity generation + vehicle emissions) yearly CO2 emissions in kton for
different scenarios [13], Chap. 11

Vehicle scenario

All diesel 50 % 50 % 100 % 100 %
Electricity scenario ICE EVs uncont. EVs cont. EVs uncont. EVs cont.

Current generation mix 8.38 8.08 8.06 7.80 7.76
Moderate wind and solar 6.18 5.37 4.65 4.26 3.05
Aggressive wind and solar 5.52 4.42 3.29 3.13 1.29

Table 2.3 Percentage of spilled renewable generation (wind + solar) for different scenarios

Vehicle scenario

50 % 50 % 100 % 100 %
Electricity scenario No EVs EVs uncont. EVs cont. EVs uncont. EVs cont.

Current generation mix 0 0 0 0 0
Moderate wind and solar (%) 28 21 10 23 8
Aggressive wind and solar (%) 49 42 30 45 29

Recall that the amounts of installed renewables are larger in the case with 100 % EVs by
approximately 20 % [13], Chap. 11

2.10.1.4 DYMONDS-Enabled Azores Islands

In closing, we refer to the prediction and model-predictive look-ahead algorithms
described in Part III that are to be embedded into the distributed decision makers
(the resources and demand), combined with the supporting IT-enabled information
exchange with the system operator, as the DYMONDS modules shown in Fig. 2.7
above [11]. We have illustrated how this framework enables both choice on the
part of the system users, wind power plants, conventional power plants, responsive
demand, and EVs, and also the alignment of all of these with the system operators
and planners responsible for ensuring system-wide performance. The IT signals
needed for the centralized, on the one hand, and distributed, on the other, alignment
of second-order temporal variables between the core variables and the system
operator are qualitatively different. Fundamentally, more processing, sensing, and
decision making takes place at the core variable level when using DYMONDS,
thus requiring minimal information exchange about their second- and deeper-level
variables. In a centralized industry, the control centers require major computer-
intensive algorithms and centralized SCADA and make decisions on behalf of the
core components within an SEES.

2.10.1.5 IT-Enabled Predictions of Temporal Characteristics

The above recently proposed model-predictive look-ahead economic dispatch
critically depends on accurate short-term 10-min wind prediction and load
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prediction [11,12]. It is with this importance in mind that Chap. 6 derives a family of
multi-temporal predictive wind power models using data from Flores. An innovative
approach to decomposing the historic wind power data into their slow, medium, and
fast components, and deriving predictive models for each component separately,
is described. It is illustrated how this approach provides much higher accuracy
than when predicting wind power without such decomposition. The models derived
range from short-term 10-min predictions to 1-h-ahead and 24-h-ahead predictive
models that are needed for data-driven feed-forward look-ahead dispatch. Shown
in Figs. 2.17 and 2.18 is the temporal decomposition of the wind power and load
power signals for the island of Flores [13], Chap. 6. Alternatively, Markov model-
based decision trees are derived for both short- and long-term probabilistic decision
making; an illustration of such a decision tree, this one indicating short-term load
states, is shown in Fig. 2.19. In this chapter long-term predictive models are also
derived, and these can be used for formulating the planning problems for systems
with wind power as discussed in Chap. 20 of this book.

2.10.2 Part IV: Efficient and Feasible Power Delivery During
Normal Operating Conditions

The complexity of balancing the multiple objectives of system operations with
corrective resource management of various equipment is a major challenge that
needs to be assessed in light of SEES sustainability objectives. In Part III, enhanced
IT methods that schedule real power to balance supply and demand by aligning the
temporal characteristics of resources and users within an SEES are introduced. It is
often not possible for the T&D power grid to deliver this optimal power schedule.
The difficulties of aligning resources and users spatially are reflected in a reduced
efficiency of economic dispatch, caused by either delivery losses or the inability of
the physical grid to deliver to the right locations.5

Task 2 concerns delivery loss compensation for the forecast system demand.
Because of delivery losses, it is generally necessary to produce more generation
than the forecast demand. Over the years, many centralized computer methods for
estimating system losses, and for scheduling the generation needed to compensate
for them, have been proposed. In Chap. 12 we illustrate how careful placement of
DERs can reduce delivery losses (operation Task 2) significantly. In operations,
optimizing the set points of voltage-controllable T&D and generation equipment can
contribute to delivery loss reduction. Shown in Chap. 12 is a method for minimizing
transmission losses by DER placement and/or by optimizing T&D and generation
voltage-controllable equipment. These methods are illustrated using the islands of
Flores and São Miguel. Notably, as the industry paradigm shifts, it may become

5This is not a common way of thinking about T&D losses and/or power grid congestion. However,
we find it extremely useful, since it directly provides a measurable way of relating how efficiently
the resources can provide energy to the users.
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Fig. 2.17 Low- medium- and high-frequency components of normalized wind power in Flores
(330 KW capacity) [13], Chap. 6

possible to implement approximate loss compensation by means of the power plants
themselves estimating their contribution to delivery losses and then each of them
producing a bit more real power, without relying on the system operator and the
complex inaccurate allocation of losses.

Task 3 concerns the feasibility of the generation scheduled supplying the forecast
demand. The network constraints are often accounted for closer to real time, say
1 h or 10 min ahead of time. For purposes of understanding the evolution that will
be necessary in future electric energy systems, it is important to observe here that
the system limitations to delivering the most economically and environmentally
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Fig. 2.18 Low-, medium-, and high-frequency components of load power in Flores [13], Chap. 6

desirable power are quite complex.6 We illustrate in this chapter the importance of
relaxing often conservative system delivery limit7 by implementing an IT-enabled
optimization of the set points on the controllable equipment. This is achieved
primarily by enlarging the feasible region of power delivery through an active
optimization of the most effective equipment settings. In Chap. 13, we illustrate
the potential of an AC extended optimal power flow (AC OPF) to be a basic

6Task 3 (optimization of the voltage controllable T&D, generation and demand equipment) can be
interpreted, in light of sustainable SEES IT design, as being particularly important for aligning the
spatial characteristics of the core variables.
7Recall the notion of proxy line flow limit, Chap. 1.
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Fig. 2.19 Load power short-term uncertainty/decision tree [13], Chap. 6

means of implementing corrective resource management in future electric energy
systems [7, 14]. We illustrate how such near-real-time corrective actions contribute
significantly to the efficiency of the power delivery. It is shown in this chapter that a
systematic optimization of voltages as real power generation dispatch is done can be
beneficial for managing both thermal and voltage-related system congestion. This
voltage optimization can be implemented by adjusting the set points of the generator
controllers and the set points of T&D controllable equipment such as onload tap-
changing transformers (OLTCs) and capacitor banks. In the future, the set points of
voltage-controllable DERs could become an important means of managing voltage.
In Chap. 13 we illustrate the potential of AC OPF to bring about less costly dispatch
and power delivery in both Flores and São Miguel.

2.10.3 Part V: Enhanced IT Methods for Intra-dispatch
Automated Frequency and Voltage Regulation and
Stabilization

Part V concerns the challenge of balancing supply and demand during normal
conditions within the intervals when UC/ED is done, operations Task 4 [2]. It
is assumed that the ED is performed every 10–30 min and that intra-dispatch
power deviations are hard-to-predict. In today’s industry intra-dispatch balancing
is done by means of automatic generation control (AGC), which responds to
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frequency deviations caused by power imbalances around the forecast demand.
Smaller power systems, such as islands, may not have AGC; they have, instead, a
few fast-responding units, whose governors are Proportional Integral (PI) controllers
that correct for the time error resulting from the cumulative frequency deviations
around the nominal frequency. Automated voltage control (AVC), which responds
to voltage deviations due to reactive power imbalances in major loads, is much less
frequently used, except in Europe. This is particularly true since, at present, even the
feed-forward scheduling of controllable reactive power resources is not a common
practice.

Both AGC and AVC differ fundamentally from the feed-forward dynamic
scheduling of resources since they are both automated schemes reacting to fre-
quency and voltage deviations caused by inaccurate feed-forward schedules. Their
design rests on the assumption that power imbalances are zero mean around
the forecast values. However, in future electric energy systems with a large presence
of hard-to-predict and hard-to-control DERs, the nature of deviations around the
forecast and look-ahead schedules is likely to change in fundamental ways. Notably,
the deviations may have a significant nonzero mean and would, therefore, require
different methods for balancing intra-dispatch imbalances.

In Chap. 14, we pose the problem of intra-dispatch load following, frequency
regulation, and stabilization as a temporally interdependent design problem. Instead
of using the static notion of ramp rate, it becomes critical to understand the dynamic
capabilities of the different technologies to respond to imbalances at certain rates.
Examples from Flores and São Miguel are used to illustrate different candidate
technologies. In this chapter we begin to differentiate between the load-following
function and the frequency regulation function. The load-following function is the
slower of the two, and it ensures that sufficient mechanical power is produced and
available for balancing load deviations and for frequency regulation. For example, if
UC/ED is performed each half hour, the load-following function could be performed
every 10 min, and the frequency regulation would have the objective of ensuring
frequency quality within 10 min.

Notably, the novel load-following model in this chapter has power generated as
explicit states and is therefore capable of tracking which power plant contributes
how much to ensuring intra-dispatch frequency quality. This has been hard to
do with presently used AGC models, since the steady-state frequency is almost
identical throughout the entire system. One more distinct advantage of working in
the extended state space where phase angles are replaced by the power generated as
states [5] is that new, stationary resources, such as batteries in particular, are easier
to characterize in terms of their power generated. This model is an alternative to
the conventional quasi-stationary power-balancing approach that compensated for
the area control error (ACE) without accounting for the electrical characteristics
of the power grid. Shown in Figs. 2.20 and 2.21 is the locational effect of wind
power disturbance (Fig. 2.22) for a power plant placed at two different locations
on São Miguel. The effect on the regulation power required and the resulting
frequency quality are very different, indicating that the locational effects in systems
with electrically distant connections should be modeled and controlled. In addition,
depending on which power plant follows the wind disturbance, and which is the
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Fig. 2.20 Wind farm placed at Bus-4 on São Miguel [13], Chap. 14
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Fig. 2.21 Wind farm placed at Bus-15 on São Miguel [13], Chap. 14

slack generator, the load-following cost differs qualitatively as shown in Fig. 2.23.
More generally, based on studies in Part V of this book, we arrive at a general
conclusion that the smarter the IT can be in enabling the use of slower technologies
first, the lower the overall cost of managing the system will be.

In Chap. 15, we revisit the objectives of frequency stabilization and frequency
regulation and design criteria needed to ensure that the frequency remains stable and
that it remains within the prespecified industry standards in future electric energy
systems characterized by persistent dynamically fluctuating wind perturbations.
We point out that the steady-state notion of AGC will no longer be adequate to



82 M. Ilić

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

160

180

200

220

Time (minutes)

W
in

d 
P

ow
er

 O
ut

pu
t (

kW
)

<−−−−Wind Power Profile

Forecasted 10 Minute Average
Observed 10 Minute Average

Fig. 2.22 A 10-min-ahead wind power forecast and actual [13], Chap. 14

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Time (s)

C
um

m
ul

at
iv

e 
C

os
t (

$)

System Cost

Cost with Hydro following Wind
Cost with Diesel following Wind

Fig. 2.23 Comparison of cumulative 10 min cost [13], Chap. 14

regulate frequency in such systems, and we propose, as an alternative, a framework
for assessing potential instabilities and systematic methods to stabilize and regulate
frequency. The means to regulate frequency come in the form of the governors
of conventional power plants and, when necessary, fast energy storage devices,
flywheels in particular. The results of this new framework are illustrated using the
Flores and São Miguel island systems. It is concluded, ironically, that the wear-and-
tear costs to the conventional power plants whose governors participate in frequency
stabilization and regulation would become excessive, and it is with this in mind that
“when necessary” the devices—flywheels—are proposed as the main alternative.
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[13], Chap. 15
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The use of synchrophasors as sensors of fast measurements is critical for imple-
menting this enhanced frequency stabilization and regulation control. In Fig. 2.24
the time responses of diesel and hydro generators’ frequency with/without flywheels
participating in frequency control are compared. Improvement in frequency quality
can be seen when flywheels are coordinated so that they compensate for wind
power disturbances and enable prespecified frequency quality. We further compare
the wear and tear to conventional power plants before and after flywheels are
utilized. It is shown in Fig. 2.25 that the diesel generators contribute much less to
the balancing of disturbances after flywheels begin to participate. Therefore, we see
that the wear and tear, caused by fast disturbances, on conventional generators can
be reduced.



84 M. Ilić
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Fig. 2.26 Time response of the system with wind induction generator, large electrical distance
[13], Chap. 16

Next, in Chap. 16, we explore the possibility of using the excitation control
and advanced power system stabilizers (PSSs) of conventional power plants to
stabilize system dynamics excited by persistent fast wind power fluctuations. This
can be done by designing the control of the electromagnetic energy stored in the
rotor windings to stabilize the electromechanical power imbalances responsible
for the frequency fluctuations. Therefore, there is a need to derive and use a
coupled real power-voltage model for such a control design. To fill this need,
a new modeling and control design for the interconnected system is introduced,
and this alternative is illustrated using Flores system. A coupled linearized real
power-voltage model of the interconnected system in standard state space form,
with the phase angle as the key state to be measured and controlled, is derived
for the first time here and combined with the complex model of the wind power
plant [5].

When the electrical distance between the wind and the main power grid is large,
it is essential to have sufficient local wind control. Otherwise, the system becomes
small-signal unstable, even with the excitation control of diesel and hydro power
plants as shown in Fig. 2.26 for the island of Flores. We compare the effects of power
electronics control of the wind power plant (DFIG) and the grid FACTS device
(SVC), as shown in Fig. 2.26.

Finally, in Chap. 17, in order to analyze possible instabilities in future electric
energy systems, we introduce a different state-space model, an extended state-
space-based model in which real power generation is an explicit state. It is shown
how this modeling approach helps to analyze the effect of electrical interactions
between the stable stand-alone dynamic components. Sufficient conditions for
deciding the minimum electrical distance between the power plants are illustrated
to ensure that the plants’ interactions do not become unstable. The dynamics of
Flores and São Miguel are studied, and it is shown that the decoupled real power-
frequency model may indicate that the interconnected system remains stable when
the individual dynamic components are stable. However, the coupled extended
state-space-based real power-voltage model could exhibit small-signal instability
for certain governor gains. The extended state-space model of São Miguel exhibits
interesting network-wide interactions since some parts of the system are strongly
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Fig. 2.27 Unstable frequency response to a small wind power disturbance [13], Chap. 17

coupled and others are weakly coupled. Notably, when new wind power generation
is placed at the locations determined by the loss minimization criteria in Chap. 12,
the interconnected electric power system may exhibit instabilities due to swings
created through the dynamic interactions of power plants. The use of extended state
space indicates that the power generated contributes directly to the power swings
between the different generators and, ultimately, to unstable operations (Figs. 2.27
and 2.28).

This part of the book provides the reader with a family of models and
control/communications designs that might be needed to ensure acceptable dynamic
performance in future electric energy systems within the intra-dispatch intervals.
Based on the simulation results, we conclude that the modeling must be done
systematically to represent sufficiently accurately the subprocesses evolving at
time scales of interest, without neglecting the effects of other subprocesses in
the reduced-order models. Moreover, since this part of the book concerns both
analysis and control design, the models used are in so-called standard state-
space form; generally, the dynamics of state variables are determined by the state
variables, control input, and disturbances. All models used in this part of the book
represent models of the interconnected power grid. As such, they lend themselves
to systematic communications and control design that meets desirable dynamic
performance, as opposed to models that are primarily concerned with analysis of
system response during different scenarios.
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Chap. 17

2.10.4 Part VI: IT-Enabled Corrective Resource Management
for Transient Stabilization and Reliable Operations
During Contingencies

Next, Part VI of this book concerns how to ensure that service is not interrupted
and remains reliable, during forced low-probability high-impact equipment outages.
We observe that ensuring uninterrupted service in systems with a large penetration
of hard-to-predict and hard-to-control resources presents the industry with a major
new challenge. This is fundamentally the case because all industry reliability
standards are currently designed to ensure that during the “worst-case” equipment
failure customers do not get interrupted in major ways. This is generally achieved
by carrying out detailed off-line simulations and finding the worst-case scenarios,
accumulating standby reserve, and operating preventively even during normal
conditions just in case a large equipment outage takes place. This preventive
approach generally results in a dispatch of more expensive generation during normal
conditions; the estimated inefficiencies in some large US utilities are on the order of
20 % of the generation O&M cost.

Relying on more on-line monitoring, and on more flexible and adaptive
adjustments of other available equipment during major equipment failures, could
bring about the most benefits. We describe the cumulative costs associated with
preventive and nonadaptive operations that are currently done for the sake of
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reliability. We strongly recommend that the state-of-art IT be such that it is possible
to implement on-line adjustments for many non-time-critical changes in generation
output and equipment status. We illustrate the potential savings from optimizing the
settings of voltage-controllable generation and T&D equipment, such as automatic
voltage regulators (AVRs), OLTCs, and shunt capacitors (SCs). We show, using
the examples of the electric systems on Flores and São Miguel, how feed-forward
corrective actions in combination with corrective actions during non-time-critical
equipment failure can be used to ensuring reliable services and reduce the amount
of standby reserve (and therefore the cost associated with it) considerably.

In Chap. 18 we consider the idea of reducing standby central generation reserve
in distribution systems with reconfiguration of normally open switches (NOSs) and
of normally closed switches (NOCs) during faults. A very recent algorithm that
utilizes active switching of connection to serve customers according to prespecified
priorities is discussed using distribution power grid on Flores. A detailed analysis
is able to illustrate potential differentiated reliability of service that minimizes the
liability cost paid by the Electricite de Azores (EDA) in case customers have to
be interrupted. A cost-benefit estimate of reconfiguration infrastructure deployment
on Flores is presented. To our knowledge, this is the first analysis of its kind.
Having a systematic method for assessing the cost of reconfiguration infrastructure
that enables differentiated use of DERs in distribution systems is likely to become
critical to implementing differentiated reliability at choice made by the users.
Notably, remote fast communications and control between the control center and
the major substations and DERs will become the staple of future reconfigurable
smart distribution systems.

Next in Chap. 19 we introduce the concept of transient stabilization in systems
with wind power by means of power-electronically controlled fast storage. We sug-
gest that this type of automation will become critical for the prevention of
stability problems in moments when sudden large-amplitude short duration or large-
amplitude persistent deviations of wind power around the predicted outputs occur.
There have already been many occurrences of major electricity service interruptions
in parts of the world where there is a major dependence on wind power. Hard-to-
predict wind gusts are likely to become more frequent as more intermittent wind
power is being deployed. Typical wind gust disturbances are shown in Fig. 2.29.
Short-term high-magnitude wind power perturbation is simulated using a tenfold
increase in the mechanical power input on the wind generator. Figure 2.30 shows a
comparison of the mechanical frequencies of generators (a) without control on the
SVC and (b) with control on the SVC. The frequency is unstable in the uncontrolled
case, while advanced control on the SVC improves the stability of the system.

Today’s approach to managing such events is to drastically reduce power
transfers from the wind power plants to major load centers and avoid transient
stability problems by ensuring that there is sufficient transfer capacity for the worst-
case scenarios. Some other alternatives to managing transient stability problems are
to build new transmission, preferably DC lines. The current state of the art of FACTS
does not lend itself well to ensuring the transient stability of the interconnected
system, as the tuning of FACTS control logic and gain is most frequently done
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Fig. 2.29 Wind disturbances simulated in the Flores example [13], Chap. 19

by representing the rest of the system as an equivalent static Thevenin equivalent.
This, in turn, makes it impossible to model the power swings caused by dynamic
interactions between parts of the system that are spatially far away from each other.
Moreover, today’s FACTS control is generally a linear constant gain control that
does not lend itself to provable stabilization. of nonlinear system dynamics excited
by large faults or large sudden wind power output variations. This approach to
managing large disturbances that cause transient instability is therefore one of the
major obstacles to replacing conventional generation with wind power.8

We propose an alternative design for power-electronically controlled fast storage
to ensure that the interconnected system remains transiently stable, in the case
of a very long wind power failure, until some slower standby resources get on
line and start producing power. We suggest that major savings could be achieved

8The interconnection standards that require, for example, 9 ms ride-through of wind power plants
without disconnecting themselves are fundamentally not implementable. The ability to meet this
standard is system-specific and cannot be guaranteed without testing the wind power plant against
the dynamics of the specific power grid to which the wind power plant would be connected. Even
more fundamental is the problem of excessive requirements for high-gain power electronics design
to fully decouple the closed-loop dynamics of a wind power plant from the rest of the power system.
Of course, this is simple but very costly and often unnecessary. There are no similar requirements
set on conventional power plants when these are interconnected to the power grid.
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magnitude wind perturbation; (a) dashed: without control on the SVC, (b) solid: with control
on the SVC [13], Chap. 19

by considering a power-electronically based control design of fast storage that is
system-specific and intended to manage certain types of disturbances in transiently
stable manner. The proposed FACTS-type control design requires dynamic man-
agement of the reactive energy stored in reactive devices, capacitors, and inductors.
Transient stabilization and/or other fast control of devices capable of storing real
energy remains by and large an open R&D area. The economic implications of
how FACTS control is designed are major and it is with this in mind that we
illustrate the issues and possible control design options and their comparisons. We
also propose using flywheels to manage large prolonged wind gust disturbances.
The full diagram of connecting the flywheel to the power system on Flores island is
depicted in Fig. 2.31. With this diagram and flywheels utilized by means of sliding
mode control, the frequency of the hydro, diesel, and wind generators, as well as
of the flywheel, is shown in Fig. 2.32. It can be seen that the frequency on all the
generators can be stabilized by controlling the flywheel.

In closing, Part VI of this book is most exploratory since it suggests a
qualitatively new approach to ensuring reliable operations while it attempts to
use the least-expensive cleanest resources in normal operations. It is illustrated
how non-time-critical large changes can be managed by adjusting the settings of
many other controllable resources as the major changes occur. The time-critical
events that threaten the transient response, and therefore could potentially lead
to sudden voltage collapse and/or a loss of synchronism, should be managed
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Fig. 2.32 Frequency of (a) the hydro, diesel, and wind generators, and (b) the flywheel, in the
Flores system [13], Chap. 19

with power-electronically controlled fast storage, both FACTS and flywheels. The
time-critical faults can also be managed by smart reconfiguration in distribution
systems. We believe that major breakthroughs are required in the movement toward
modeling the complex fast nonlinear dynamics of the interconnected system and
that they must be followed by a systematic design for nonlinear control and fast
communications support.

2.10.5 Part VII: IT-Enabled Methods for Investing
in New Technologies Under Uncertainties

Finally, Part VII considers methods for ensuring sufficient long-term capacity for
the reliable and efficient provision of electricity services in future electric energy
systems. Planning has become a much more challenging problem than in the
past, given several new sources of major uncertainty. In operations, there is major
uncertainty because the power generated by the intermittent resources is hard-to-
predict and control. Moreover, given the major potential for responsive demand
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Fig. 2.33 Optimal expansion of wind power and fuel oil capacity with 1% (DR1) and 20%
(DR20) demand response, 2008–2028 [13] Chap. 20

and no direct control of the consumers’ load, system operators are facing serious
related risks in addition to better understood long-term load uncertainties and
forced outages. Planning criteria have become multi-objective, and there are major
tradeoffs between planning for long-term reliability, for efficiency, and for meeting
environmental goals. Planning is no longer a matter of utility planners projecting
long-term load growth and building sufficient capacity to meet the highest projected
load peak and having the standby capacity to ensure uninterrupted service during
the failure of the largest power plant. Operations in future electric energy systems
will rarely be limited by generation capacity. Instead, it will be mainly affected by
these new uncertainties in operations, as well as by the transmission and distribution
system’s inability to deliver the power to the right places. Longer-term reliability
goals will be affected by environmental and electricity market rules.

It is therefore no longer possible for the system planner to guess various
uncertainties in a top-down way and then plan centrally. Instead, it will become
essential to engage in interactive planning so that investors in different candidate
technologies internalize various risks and offer well-defined bids to system planners
on how much they are willing to build, at which long-run marginal cost and under
which system integration conditions. Without such information exchange the risk
will be asymmetric and it will be practically impossible to plan for a sustainable
utilization of assets [3]. In Chap. 20 we illustrate a possible dynamic investment
method under uncertainties for investing in wind power. A stochastic decision-
making process weighs the likely payoffs from operations against the capital cost
of investing. An optimal investment is based on finding the break-even point
between the expected cumulative payoffs and the capital investment cost. Shown in
Figs. 2.33 and 2.34 are the results of this investment decision method. The results



92 M. Ilić
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Fig. 2.34 Expected annual generation dispatch with 1% (upper) and 20% (lower) demand
response, 2008–2028 [13], Chap. 20

are the optimal expansion of wind and fuel oils and the expected optimal dispatch,
respectively.

Computer methods that rely on both short- and long-term predictive modeling
must be developed for assessing these payoffs with certain confidence. The com-
plexity of managing multiple risks and their tradeoffs easily becomes overwhelming
when done in a centralized way. In this book we propose that multi-temporal
decisions under uncertainties could be internalized by the candidate investors
themselves. The risks related to the integration rules for scheduling future assets in
a reliable way could be managed by the system operators and planners. In order
to facilitate the integration of new technologies at value in a highly uncertain
environment, it is essential to have well-defined protocols for IT-enabled bidding



2 The Tale of Two Green Islands in the Azores Archipelago 93

information exchange and distributed risk management over time and across various
industry stake holders.

2.11 Data Repository for Flores and São Miguel Islands

The input data necessary for the Flores and São Miguel modeling and simulations
presented in this book is made available in the on-line. The data repository has
been designed in such a way that each folder is self-contained and corresponding
to specific chapters. In the data folder for Chap. 3, the steady-state characteristics
of buses, loads, generators, and branches for the electric power system of Flores
and São Miguel are described. The data set is in standard PSS/E v.23 format. More
detailed steady-state characteristics of generation cost, generator parameters, wind
speed, and wind generation power data are described in Chaps. 4, 5, and 7, which
is associated with simulation presented in Chaps. 4, 5, and 7. Wind power and load
forecast data necessary for Chap. 6 is provided in Chap. 6. The cost input data for
demand and generation dispatch are described in Chaps. 8 and 9 (in support of
the simulations in Chaps. 8 and 9); each demand and generation entity uses this
data in order to calculate their bids to the system operator. The electric vehicle
and solar power generation data necessary for Chap. 11 is presented in Chap. 11.
The dynamical data necessary for the simulations in Parts IV–VI are described in
Chap. 13. The power flow-based system equilibrium used for deriving the linearized
models in Chaps. 15 and 16 is described in a joint Chaps. 15 and 16. The final
Chap. 20 contains the planning parameters used in Chap. 20. In this folder the
discrete distributions for short-term uncertainties in wind power and load used are
provided.

2.12 Chapter Summary

Motivated by the specific problem of enabling the electric energy systems of small
islands to become more sustainable, we start with the more general objective of
making SES sustainable, as introduced by the Nobel Prize winner Elinor Ostrom.
We explain how our extension of this powerful concept of sustainable SEESs helps
identify the key enabling role of a man-made electric power grid and its supporting
IT infrastructure. Notably, the definitions of core-order, second-order, and deeper-
order variables help us pose an IT engineering design for a given man-made electric
energy system according to well-defined quantifiable multi-objectives and their
tradeoffs. These somewhat abstract concepts are related to the enhancements needed
in today’s electric power industry operations and planning practices (identified in
Chap. 1). We propose one such possible systematic IT-enabled enhancement which
we refer to as the DYMONDS framework. Finally, we discuss how this approach
could enable clean low-cost electricity provision to two islands in the Azores
Archipelago. We illustrate the basic ideas in this book in light of such a design
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and highlight a few key results by analyzing our simulations of this framework that
we ran based on sample electric energy system data for these islands. We describe
the first proof-of-concept results based on novel software and automation that we
consider to be essential for providing these islands, electricity services with a clear
understanding of differentiation according to the desired QoS and minimized cost
and environmental impact. The role of energy consumers is highlighted.
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Part II
The Electrical Systems Characteristics of

Two Azores Islands: Flores and São Miguel



Chapter 3
Electrical Networks of the Azores Archipelago

Masoud Honarvar Nazari

3.1 Introduction

The Azores Archipelago consists of nine islands located in the middle of the North
Atlantic Ocean. The western group consists of Flores and Corvo islands; the central
group consists of Graciosa, Terceira, São Jorge, Pico, and Faial islands; and the
eastern group consists of São Miguel and Santa Maria islands (http://en.wikipedia.
org/wiki/Azores). In this chapter, the electrical network of each island is briefly
described. The main focus is on Flores and São Miguel. Therefore, their electrical
networks are explained in detail.

3.1.1 Flores Island

Flores Island is one of the smaller islands of the Azores Archipelago. The population
is approximately 4,000 inhabitants, and its area is around 143 km2 (http://en.
wikipedia.org/wiki/Flores Island (Azores)). Figure 3.1 is a satellite image of the
island.

The electrical network of Flores consists of a 15 kV radial distribution network
with 45 nodes and 44 branches. The total demand of the island is around 2 MW.
More than 50 % of the demand is concentrated in the town of Santa Cruz; around
37 % of the load is situated in the vicinity of the harbor (Lajes Das Flores);
approximately 7 % of the load is located in the town of Ponta Delgada, and the
rest (2–3 %) is dispersed throughout the rest of the island. Figure 3.2 illustrates the
schematic of the distribution network of Flores Island.
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Fig. 3.1 Satellite image of
Flores Island

Fig. 3.2 Electrical network of Flores Island [1]
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Fig. 3.3 Illustrating the location of large loads and power plants and how real power flows

Three small power plants supply the electrical demand. More than 50 % of the
electricity is provided by four diesel generators whose total capacity is 2.5 MW.
Around 35 % of the demand is supplied by four hydropower plants with an overall
capacity of 1.65 MW. Two synchronous wind power plants with a total capacity
of 0.65 MW provide the rest of the demand (15 %). The hydro plants and diesel
generators are located next to the town of Santa Cruz, and the wind plants are
located in the middle of the island far from the major load centers [1]. Figure 3.3
demonstrates where the large loads and power plants are located and how real
power flows in the distribution system of the island. In Appendix A, the steady-
state characteristics of the nodes, loads, generators, and branches of Flores Island
are presented in PTI 23 standard format [1].

Since the electrical network of the island is an AC system, active power needs
to be balanced almost instantaneously. The hydro generator is a reservoir hydro
plant with the ability to store energy. However, the hydro plant has slow dynamic
response and cannot balance active power instantaneously. The synchronous wind
power plant has no governor control and cannot regulate frequency. The diesel plant,
as the only fully controllable power plant, balances demand and supply. The diesel
plant also compensates for active and reactive losses occurring in the system.
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Table 3.1 Critical lines of
Flores Island Ponta Delgada

Vicinity of
harbor

Lines 1–41 Lines 1–17
Lines 41–42 Lines 17–18
Lines 42–43

There is no control center on Flores Island. Therefore, the diesel generator
regulates frequency locally. It is shown in Chap. 17 that using a diesel generator
for frequency regulation has major drawbacks for the system, such as increased
pollution, higher operating costs, and the problem of wear and tear. Alternative
solutions are needed. The parameters of the dynamic model of generators are
presented in Appendix B.

On Flores Island, distribution lines have been over built. Hence, contingencies
due to the reaching of thermal limits are unlikely to occur. However, due to the
strong interaction between the electromagnetic and electromechanical parts of the
generators, small-signal instability can occur on the island. This is modeled in
Chap. 17.

One of the major flaws of the electrical network on Flores is the lack of (N-1)
reliability criteria. Due to the radial structure of the distribution network, if the
line connecting the diesel plant to the center of the island (Fonte de Frade) is
disconnected, a local blackout occurs in the central and southern parts of the island.
Similarly, if the line connecting the diesel plant to the north of the island (Ponta
Delgada) is disconnected, a local blackout occurs in the northern part. The critical
lines are presented in Table 3.1.

In order to improve reliability, we suggest that new wind power plants be installed
in the central and northern parts of the island. Implementing normally open switches
to connect the southern part of the island to the town of Santa Cruz, where the
diesel and hydro plants are installed, could enhance reliability in the south. Since
the harbor of Flores is located in the south, it is essential to improve reliability at
least in the vicinity of the harbor.

3.1.2 Corvo Island

Corvo Island is the smallest island of the Azores Archipelago. The population is
approximately 468 inhabitants (http://en.wikipedia.org/wiki/Corvo Island).
Figure 3.4 is a satellite image of the island.

Corvo has a very small electrical network consisting of a single-line distribu-
tion network with a voltage level of 15 kV. The total demand of the island is
approximately 250 kW. There are no renewable energy resources on Corvo. A diesel
generator with 4 small units provides the electrical demand of the island. The
total capacity of the diesel generator is 536 kW. The generator is located close
to the town of Corvo, the only load center on the island. Figure 3.5 shows the

http://en.wikipedia.org/wiki/Corvo{_}Island
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Fig. 3.4 Satellite image of
Corvo Island

1

CT  Corvo

Fig. 3.5 Electrical network
of Corvo Island [1]
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Fig. 3.6 Satellite image of Graciosa Island

schematic of the distribution network of Corvo. The diesel plant balances active and
reactive power in the system, compensating for losses occurring in the system and
regulating frequency. If the line connecting the diesel plant to the town of Corvo
is disconnected, a blackout will occur on the island. This implies that the (N-1)
reliability criteria are not satisfied on Corvo.

3.1.3 Graciosa Island

Graciosa Island is the northernmost of the central group of the Azores Archipelago.
The island has an area of 60.65 km2 and its population is approximately 4700
inhabitants (http://en.wikipedia.org/wiki/Graciosa). Figure 3.6 is a satellite image
of Graciosa.

Graciosa Island has a 15-kV ring distribution network. The overall demand of
the island is around 2.5 MW, and two generators supply this demand. Around 68 %
of the electricity is provided by a diesel generator. The diesel plant is composed
of 6 smaller units with an overall capacity of 3.43 MW. The rest of the electrical
demand (approximately 32 %) is supplied by a wind power plant consisting of 4

http://en.wikipedia.org/wiki/Graciosa
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smaller units. The overall capacity of the wind plant is 0.8 MW. Figure 3.7 shows
the schematic of the distribution network of Graciosa Island (http://en.wikipedia.
org/wiki/Azores).

Graciosa Island, like most of the smaller islands of the Azores Archipelago, has
no control center for coordinating dispatch on-line. The diesel generator is the only
controllable generator on the island; it balances demand and supply, compensates
for active and reactive power losses, and regulates frequency.

3.1.4 Terceira Island

Terceira Island is one of the larger islands of the Azores Archipelago, with a
population of approximately 56,000 inhabitants in an area of 396 km2 (http://en.
wikipedia.org/wiki/Terceira Island). Figure 3.8 shows a satellite image of Terceira.

The electrical network of Terceira Island is composed of a small transmission
network with a voltage level of 30 kV and a large ring distribution network with
a voltage level of 15 kV. The total demand of the island is approximately 36 MW.
Three small power plants supply the demand.

More than 90 % of the electricity is produced by a large diesel generator
consisting of 10 smaller units. The full capacity of the diesel plant is 61 MW. Around
6 % of the electricity is provided by a wind plant with three smaller units. The overall
capacity of the wind plant is 4.5 MW. The rest of the electricity (around 4 %) is
supplied by three hydro plants with a full capacity of 1.4 MW. Figure 3.9 shows the
schematic of the distribution network of Terceira Island (http://en.wikipedia.org/
wiki/Azores).

Terceira has an advanced control center that handles both generation control and
distribution management. The control center provides the most economical dispatch
for the generators by minimizing the operating costs of the system. It also regulates
frequency by means of automatic generation control (AGC). The advanced control
system helps the island to manage system operations during off-peak hours with a
very large penetration of wind power [2].

3.1.5 São Jorge Island

São Jorge Island is a relatively long thin island with a population of approximately
10,500 inhabitants. The east to west length of the island is 53 km and its north
to south width is 8 km; its area is 237.59 km2 (http://en.wikipedia.org/wiki/S%C3
%A3o Jorge Island). Figure 3.10 shows a satellite image of the island.

São Jorge Island has a 15-kV radial distribution network. The overall demand of
the island is around 4.7 MW, and two generators supply this demand. Approximately
86 % of the electricity is generated by a diesel generator consisting of 7 smaller
units. The full capacity of the diesel plant is 7.09 MW. The rest of the electrical
demand (around 14 %) is supplied by 7 small wind plants with an overall capacity

http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/Terceira{_}Island
http://en.wikipedia.org/wiki/Terceira{_}Island
http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/S{%}C3{%}A3o{_}Jorge{_}Island
http://en.wikipedia.org/wiki/S{%}C3{%}A3o{_}Jorge{_}Island
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Fig. 3.7 Electrical network of Graciosa Island [1]

Fig. 3.8 Satellite image of Terceira Island
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Fig. 3.9 Electrical network of Terceira Island [1]

Fig. 3.10 Satellite image of São Jorge Island

of 1.15 MW. Figure 3.11 shows the schematic of the distribution network of São
Jorge (http://en.wikipedia.org/wiki/Azores).

Due to the long radial structure of the distribution system of São Jorge, voltage
drops across the distribution system. This leads to voltage problems, especially

http://en.wikipedia.org/wiki/Azores
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Fig. 3.11 Electrical network of São Jorge Island [1]

during peak load hours. Installing a reactive power compensator and/or new
generators at the problematic locations could improve the voltage stability of the
island.

3.1.6 Pico Island

Pico Island is in the central group of the Azores Archipelago. Its population is
around 14,800 inhabitants and its area is 447 km2 (http://en.wikipedia.org/wiki/
Pico Island). Figure 3.12 shows a satellite image of Pico.

The electrical network of Pico Island is composed of a small radial transmission
network with a voltage level of 30 kV and a large ring distribution network with a
voltage level of 15 kV. The overall demand of the island is around 7.5 MW, and three
generators supply the demand. Figure 3.13 shows the schematic of the distribution
network of Pico (http://en.wikipedia.org/wiki/Azores).

Approximately 88 % of the electricity is produced by two diesel generators. The
smaller diesel generator has a capacity of 1.23 MW, and the larger diesel plant,
consisting of 5 smaller units, has an overall capacity of 12.16 MW. Around 12 % of
the electricity is provided by a wind farm with 6 wind plants. The overall capacity
of the wind farm is 1.8 MW.

http://en.wikipedia.org/wiki/Pico{_}Island
http://en.wikipedia.org/wiki/Pico{_}Island
http://en.wikipedia.org/wiki/Azores
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Fig. 3.12 Satellite image of Pico Island

Fig. 3.13 Electrical network of Pico Island [1]

3.1.7 Faial Island

Faial Island is in the central group of the Azores Archipelago. Its population is
around 14,900 inhabitants and its area is 173.06 km2 (http://en.wikipedia.org/wiki/
Faial Island). Figure 3.14 shows a satellite image of Faial (http://en.wikipedia.org/
wiki/Faial Island).

The island has a 15-kV ring distribution network. The total electrical demand
of the island is around 9 MW, and six generators supply the demand. Around 89 %

http://en.wikipedia.org/wiki/Faial{_}Island
http://en.wikipedia.org/wiki/Faial{_}Island
http://en.wikipedia.org/wiki/Faial{_}Island
http://en.wikipedia.org/wiki/Faial{_}Island


110 M. Honarvar Nazari

of the electricity is generated by four diesel generators. The full capacity of the
diesel plants is 17 MW. Approximately 9.4 % of the electricity is produced by a
wind plant with a full capacity of 1.8 MW. The rest of the electrical demand (around
1.6 %) is supplied by a small hydro plant with a total capacity of 0.32 MW (http://
en.wikipedia.org/wiki/Azores). Figure 3.15 shows the schematic of the distribution
network of Faial Island.

3.1.8 São Miguel Island

São Miguel Island is the capital, and the largest, island of the Azores Archipelago.
The population of this island is approximately 140,000 inhabitants and the area of
the island is 744.55 km2 (http://en.wikipedia.org/wiki/S%C3%A3o Miguel Island).
Figure 3.16 shows a satellite image of São Miguel.

The electrical system of São Miguel consists of a 60-kV transmission network,
situated in the middle of the island, which connects the large power plants to large
loads. Figure 3.17 illustrates how real power flows in the transmission network.
As shown in Fig. 3.17, two large diesel generators located in the middle of the
island (close to the large loads) produce 75 % of the electrical demand. Two large
geothermal plants provide more than 20 % of the demand. The rest comes from
seven small hydro plants with run-of-the-river hydropower (http://en.wikipedia.org/
wiki/Azores). The capital of the island (Ponta Delgada) is the largest load.

There is a 30-kV and a 10-kV ring distribution network located along the coastal
area. Figure 3.18 shows the schematic of the distribution network of the island and
where the largest loads are located. In Appendix C, the steady-state characteristics
of the nodes, loads, generators, and branches of São Miguel Island are presented in
PTI 23 standard format.

Like the other islands of the Azores Archipelago, São Miguel has an all-AC
electrical system. This requires an almost instantaneous balancing of active power.
On São Miguel, the hydro and geothermal plants are noncontrollable generators, so
they provide base-load power only. It falls on the diesel plants to balance demand
and supply almost instantaneously. In addition, the diesel generators compensate
for active and reactive power losses occurring in the system. The parameters of the
dynamic model of the generators are presented in Appendix D.

São Miguel Island has an advanced control center. The control center provides
generation control and regulates frequency by communicating with the AGC of the
diesel plants. The control center also provides the most economical dispatch for the
diesel generators by minimizing their operating costs. The advanced control system
helps the island to manage system operations during peak hours.

http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/S{%}C3{%}A3o{_}Miguel{_}Island
http://en.wikipedia.org/wiki/Azores
http://en.wikipedia.org/wiki/Azores
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Fig. 3.14 Satellite image of Faial Island

Fig. 3.15 Electrical network of Faial Island [1]
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Fig. 3.16 Satellite image of São Miguel Island

SEPD

SEAE

SEMF

SESR
SELG

Geo2

Geo1

SEFO75%

20%

Diesel

Fig. 3.17 Transmission network of São Miguel Island [1]

Fig. 3.18 Distribution and transmission network of São Miguel Island [1]
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Fig. 3.19 Satellite image of Santa Maria Island

3.1.9 Santa Maria Island

Santa Maria Island is one of the eastern group of the Azores Archipelago. The
population is around 5,600 inhabitants and the area of the island is 96.89 km2 (http://
en.wikipedia.org/wiki/Santa Maria Island). Figure 3.19 shows the satellite image of
the island.

The electrical network of Santa Maria consists of a ring distribution network with
a voltage levels of 6 and 10 kV. The total demand of the island is around 3.5 MW, and
two generators supply this demand. More than 85 % of the electricity is provided by
a diesel generator, consisting of five smaller units, with a total capacity of 5.68 MW.
The rest of the electrical demand (around 15 %) is supplied by a wind farm with
three wind plants. The full capacity of the wind farm is 0.9 MW [1]. Figure 3.20
shows the schematic of the distribution network of Santa Maria.

Appendix A

Appendix A includes the steady-state characteristics of the electric power system of
Flores in PSS/E v. 23. The data is available in the CD attached to the book.

http://en.wikipedia.org/wiki/Santa{_}Maria{_}Island
http://en.wikipedia.org/wiki/Santa{_}Maria{_}Island
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Fig. 3.20 Electrical network of Santa Maria Island [1]

Table B.1 Electromechanical parameters of the diesel plant

Md (MJ/Hz) Dd (MW/Hz) T2 (s) K2 (pu) Rd (pu) Cd (pu)

0.216 0.005 0.6 40 0.03 1
KI (pu) Cc (pu)
10 1

Table B.2
Electromechanical
parameters of the wind plant

Mw (MJ/Hz) Dw (MW/Hz) K pw (pu)

0.089 0.002 2

Appendix B

Electromechanical and electromagnetic parameters of the power plants on Flores are
presented in Tables B.1–B.6. These parameters are estimated based on the data set
provided by Professor Pecas Lopes from INESC Porto [4] and based on the models
used in [3]. The original data set is available in the CD attached to the book. The
bases are Sbase = 1 MVA, Vbase = 0.4 kV, and fbase = 50 Hz.
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Table B.3 Electromechanical parameters of the hydro plant

Mh (MJ/Hz) Dh (MW/Hz) Kq (pu) Kw (pu) Tf (s) rh (pu)

0.2749 0.02 2.78 1.52 −3.6 7
Tq (s) Tw (s) Te (s) Ts (s) rp (pu)
0.72 4 2 0.06 0.06

Table B.4 Electromagnetic parameters of the diesel plant

Tad (s) T fd (s) Tdd (s) Kad (pu) Xdd (pu) X ′dd (pu)

0.2 0.65 2.35 25 8.1479 0.5917
Rd (pu) Ted (s) Ked (pu) Sed (pu)
0.000 0.6544 1 0.105

Table B.5 Electromagnetic
parameters of the wind plant

Tdw (s) Xdw (pu) X ′dw (pu) Rw (pu)

0.661 28.161 3.052 0.0002

Table B.6 Electromagnetic parameters of the hydro plant

Tah (s) T fh (s) Tdh (s) Kah (pu) Xdh (pu) X ′dh (pu)

0.05 0.9 3.5 400 2.399 0.3609
Rh (pu) Teh (s) Keh (pu) Seh (pu)
0.000 0.9 1 0.035

Table B.7 Characteristics of
the plants in Flores Island

Node number in the
original system Capacity (MW) Type of plant

1 2.5 Diesel
1 1.5 Hydro
19 0.6 Wind

Appendix C

Appendix C includes the steady-state characteristics of the electric power system of
São Miguel in PSS/E v.23. The data is available in the CD attached to the book.

Appendix D

Electromechanical parameters of the power plants in São Miguel are presented in
Tables D.1–D.15. These parameters are estimated based on the data set provided by
Professor Pecas Lopes from INESC Porto and Professor Pedro Carvalho from IST
Lisbon and based on the models used in [3]. The bases are Sbase = 100 MVA and
fbase = 50 Hz.
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Table D.1 Electromechanical parameters of the first diesel plant

Md1 (MJ/Hz) Dd1 (MW/Hz) Td1 (s) Kd1 (pu) Rd1 (pu) Cd1 (pu)

5.853 0.704 1.07 40 0.03 1
KI1 (pu) Cc1 (pu)
10 1

Table D.2 Electromechanical parameters of the second and third diesel
plants

Md2 (MJ/Hz) Dd2 (MW/Hz) Td2 (s) Kd2 (pu) Rd2 (pu) Cd2 (pu)

6.473 0.352 1.25 40 0.03 1
KI2 (pu) Cc2 (pu)
10 1

Table D.3 Electromechanical param-
eters of the first geothermal plant

Mgeo1 (MJ/Hz) Dgeo1 (MW/Hz)

2.653 0.298

Table D.4 Electromechanical param-
eters of the second geothermal plant

Mgeo2 (MJ/Hz) Dgeo2 (MW/Hz)

2.331 0.262

Table D.5
Electromechanical
parameters of Hydro 1

Mh1 (MJ/Hz) Dh1 (MW/Hz)

0.2038 0.0036

Table D.6
Electromechanical
parameters of Hydro 2

Mh2 (MJ/Hz) Dh2 (MW/Hz)

0.162 0.0122

Table D.7
Electromechanical
parameters of Hydro 3

Mh3 (MJ/Hz) Dh3 (MW/Hz)

0.1849 0.0033

Table D.8
Electromechanical
parameters of Hydro 4

Mh4 (MJ/Hz) Dh4 (MW/Hz)

0.1424 0.0106
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Table D.9
Electromechanical
parameters of Hydro 5

Mh5 (MJ/Hz) Dh5 (MW/Hz)

0.1424 0.0106

Table D.10
Electromechanical
parameters of Hydro 6

Mh6 (MJ/Hz) Dh6 (MW/Hz)

0.1424 0.0106

Table D.11
Electromechanical
parameters of Hydro 7

Mh7 (MJ/Hz) Dh7 (MW/Hz)

0.0285 0.00051

Table D.12
Electromechanical
parameters of Hydro 8

Mh8 (MJ/Hz) Dh8 (MW/Hz)

0.1216 0.0022

Table D.13
Electromechanical
parameters of Hydro 9

Mh9 (MJ/Hz) Dh9 (MW/Hz)

0.1217 0.0022

Table D.14
Electromechanical
parameters of Hydro 10

Mh10 (MJ/Hz) Dh10 (MW/Hz)

0.1217 0.0022

Table D.15 Characteristics
of the plants in the electric
power system of São Miguel

Node number in the
original system Capacity (MW) Type of the plant

932 32.688 Diesel 1 (SLACK)
933 32.688 Diesel 2
934 32.688 Diesel 3
963 14.8 Geothermal 1
1049 13 Geothermal 2
1666 0.67 Hydro 1
1669 0.8 Hydro 2
1672 0.608 Hydro 3
1675 0.553 Hydro 4
1676 0.553 Hydro 5
1677 0.553 Hydro 6
1680 0.094 Hydro 7
1683 0.4 Hydro 8
1686 0.4 Hydro 9
1687 0.4 Hydro 10
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Chapter 4
Generation and Demand Characteristics
of the Islands of Flores and São Miguel

Jonathan Donadee, Jhi-Young Joo, Remco Verzijlbergh, and Marija Ilić

4.1 Introduction

This chapter describes electrical energy consumption and generation resource data
for two of the Azores islands, namely, Flores and São Miguel. The data presented
here is used as input data in other chapters, which analyze various methods for the
operation of electrical grids. It was important that all simulations in the monograph
use the same basic data so that valid comparisons can be made between the results of
different methods. Energy consumption is described by patterns in the system load,
as well as the composition of the load. The structure of retail electricity tariffs on the
Azores islands is also summarized. Energy supply is described by the composition
of installed generation equipment and their estimated levelized costs of energy
(LCOE). The availability of existing and potential renewable energy resources is
also described. The majority of the primary data and information was provided by
the local regulated utility, Electricity of the Azores (EDA).

J. Donadee (�) • J.-Y. Joo • M. Ilić
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4.2 Load Data

This section describes the source of electrical energy consumption data for each
island and the data’s characteristics. Seasonal differences in load profiles are
analyzed. Other general statistics about consumption on the islands of Flores and
São Miguel are presented as well.

4.2.1 Load Data Preprocessing

Demand for electric energy on Flores and São Miguel islands was derived on
a 10-min timestep using generation output data. Average power output data was
provided by the local regulated utility, EDA, on a half-hour timestep for all
generators for the year of 2008 [1]. The sum of the output across generators is
used as an approximation for system load. In many instances, data for one or
more generators was missing. These instances might be the result of outages or
maintenance. In these cases, aggregate load from another day in the same month and
of the same day of the week is used to replace corrupted data. Because some of the
simulations conducted in later sections investigate physical dynamics on a timescale
faster than half an hour, load data is adjusted to be on a 10-min timestep. System
power consumption is assumed to be constant across the three 10-min timesteps
that compose each half-hour timestep. We made this assumption because we have
no other information about the system load on faster timescales.

4.2.2 Seasons in the Azores

In order to analyze seasonality in electrical energy consumption we define four
seasons in the Azores islands. Based on average daily high temperatures [2], we
grouped months into seasons as shown below in Fig. 4.1: winter consists of January,
February, and March; spring consists of April, May, and June; summer consists
of July, August, and September; and autumn consists of October, November, and
December.

4.2.3 Flores Island Load

For the year 2008, the total electrical energy produced in Flores was 11.6 GWh.
Energy consumption can be allocated by consumer type as shown below in
Fig. 4.2 [3]. EDA statistics show that residential customers used roughly 4.5 GWh of
energy. The load duration curve of our data for Flores Island in 2008 is plotted below
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Fig. 4.1 Monthly average of daily high temperatures for the Azores islands

Fig. 4.2 Energy
consumption by consumer
type for the island of Flores,
2008

in Fig. 4.3. Figure 4.3 shows that the system load is between 1,800 and 1,000 kW
for the vast majority the time. The system reaches a maximum of 1,978 kW and a
minimum of 701 kW.

Plots below show the annual averaged system load pattern, as well as the
averaged seasonal system load patterns for Flores Island. The plots are stratified
into weekdays, Saturdays, and Sundays. A sample day load profile is also plotted
for each season. These Plots (Figs. 4.4–4.12) show that the system load pattern is
dependent on the day of the week. The difference between the load patterns mainly
occurs during working hours between 8 a.m. and 6 p.m.

For these hours, the load is lowest on Sundays and highest on weekdays. There
are also seasonal variations in the load pattern. The peak load occurs before 9 p.m.
during winter and autumn, but occurs after 9 p.m. in spring and summer. Spring has
the lowest peak load, while autumn has the highest peak load.
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Fig. 4.3 Flores Island system load duration curve
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Fig. 4.4 Annual system load profiles for Flores Island

4.2.4 São Miguel Load

For the year 2008, total electrical energy produced in São Miguel was 441 GWh.
Energy consumption can be allocated by consumer type as shown below in
Fig. 4.13 [3]. EDA statistics show that residential customers used roughly 132 GWh
of energy. The load duration curve of our data for São Miguel Island in 2008 is
plotted below in Fig. 4.14. The vast majority of the hours have loads between 70
and 30 MW. The system reaches a maximum load of 73.9 MW and a minimum of
25.4 MW.



4 Generation and Demand Characteristics of the Islands of Flores and São Miguel 123

1800

1600

1400

1200

1000

800

600

400

200

0

S
ys

te
m

 L
oa

d 
(k

W
)

12
:0

0 
A

.M
.

3:
00

 A
.M

.

6:
00

 A
.M

.

9:
00

 A
.M

.

12
:0

0 
P

.M
.

3:
00

 P
.M

.

6:
00

 P
.M

.

9:
00

 P
.M

.

12
:0

0 
A

.M
.

Time of Day

Weekdays
Saturday
Sunday

Fig. 4.5 Winter system load profiles for Flores Island
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Fig. 4.6 Flores Island system load for Jan 16, 2008

Figures 4.15–4.23 show the annual averaged system load pattern, as well as
the averaged seasonal system load patterns for São Miguel Island. The plots are
stratified into weekdays, Saturdays, and Sundays. A sample day load profile is also
plotted for each season. The plot of the annual average system load profile, Fig. 4.15,
shows a very flat system load with three peaks on weekdays and two peaks on
weekends. The three-weekday peaks show up in late morning just before noon,
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Fig. 4.7 Spring system load profiles for Flores Island
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Fig. 4.8 Flores Island system load for Apr 16, 2008

between 1 and 3 p.m., and again in the evening after 6 p.m. The peaks shift with
the seasons as shown in the plots below. In winter and autumn, the evening peak is
highest and occurs well before 9 p.m. In spring and summer, the late morning peak
is highest and the evening peak occurs well after 9 p.m. The charts also show that
the load on São Miguel is much higher on weekdays than weekends. The difference
is most prominent between the hours of 6 a.m. and midnight. The highest demands
of the year occur in the late mornings of summer (Figs. 4.20 and 4.21).
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Fig. 4.9 Summer system load profiles for Flores Island
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Fig. 4.10 System load profile for Flores Island, July 16

4.3 Electricity Generation

Each island in the Azores has its own unique features and resources for energy
generation. This section describes the installed energy generation equipment on
each island as well as potential renewable energy resources. Costs and dynamic
properties of generators are discussed as well as important characteristics of
historical dispatch of the equipment. Generation from wind power is analyzed in
detail in Sect. 4.4.
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Fig. 4.11 Autumn system load profiles for Flores Island

Fig. 4.12 System load profile for Flores Island on Oct 15, 2008

4.3.1 Generation on Flores Island

Flores Island is powered by a fleet of diesel, hydropower, and wind generators.
Table 4.1 shows the power capacity, minimum output, and fuel type of individual
generators installed on Flores Island. In 2008, 52% of energy was produced from
diesel, 31% from hydropower, and 17% from wind power. The energy available
from hydropower and wind power changes significantly by season. Monthly
averages of the daily profile of hydropower output on Flores are plotted below in
Fig. 4.24. Duration curves of hydropower and wind are also shown in Figs. 4.25
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Fig. 4.13 Energy
consumption by consumer
type for the island of São
Miguel, 2008

Fig. 4.14 São Miguel Island system load duration curve for 2008

and 4.26 for the different seasons as defined in Sect. 4.2.2. Wind power generation
on Flores is analyzed in detail in Sect. 4.4.2.

Figures 4.24 and 4.25 show the seasonal variation in availability of hydropower
on Flores Island. November through March appear to have the most hydropower
availability, while the summer months have lower availability. Hydro output in the
summer is below 400 kW for the majority of the hours, while staying between 300
and 800 kW for the vast majority of the winter.

Figure 4.26 below shows the variation in seasonal availability of wind power.
Summer clearly has the lowest wind resource. During the summer there are only 6 h
at maximum output, and the majority of hours have output below 100 kW. The other
3 seasons achieve maximum output for roughly 200 h. Winter and autumn appear to
have the best wind resource availability.

Costs must be derived for planning and operational analyses conducted in this
monograph. The two main costs of power generation can be described as either
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Fig. 4.15 Averaged annual system load profiles for São Miguel Island

Fig. 4.16 Winter system load profiles for São Miguel Island

operations and maintenance cost (O&M) or capital costs. O&M costs consist of fuel
costs and maintenance costs and are dependent on the amount of energy produced
or the number of operating hours. Capital costs are simply the fixed purchase cost of
the equipment. In a regulated energy system, such as in the Azores, unit commitment
and economic dispatch of generators only considers O&M costs and temporal
dynamic constraints, while combined O&M and capital costs must be considered
for planning purposes. If generators operate in a deregulated environment, they must
receive prices high enough to recover both capital and O&M costs in order to stay
in business. If the marginal cost of generation is higher than the average cost of
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Fig. 4.17 System load profile for São Miguel Island on Jan 16, 2008

Fig. 4.18 Spring system load profiles for São Miguel Island

generation, and no generator has market power, then economic theory predicts that
generators would bid their marginal cost. In the case of the Flores Island, UC or ED
could be done simply minimizing the amount of diesel generation used to supply
the load. Diesel fueled generators operate with a constant heat rate and therefore
constant marginal cost per kWh. Hydro- and wind power have no fuel cost and
very low O&M costs compared to diesel. Because of these characteristics of the
generators, because energy generation in the Azores is regulated, and because we
have not obtained detailed information on maintenance costs for hydropower and
wind power, the marginal cost of hydropower and wind power is irrelevant for
economic dispatch or unit commitment in this research.
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Fig. 4.19 System load profile for São Miguel Island on Apr 16, 2008

Fig. 4.20 Summer system load profiles for São Miguel Island

In the tables below we derive relevant costs for the power plants on Flores Island.
For diesel fueled generation, a constant cost per kWh is calculated using recent
spot market prices for fuel [4], cumulative annual energy generated by diesel, and
cumulative annual fuel consumption [3]. LCOE is the cost for hydro and wind that
is most relevant to this study, especially for planning. An annuity cost is calculated
for each technology using equipment purchase and installation cost [5], assumed
lifetimes for equipment, and an assumed interest rate of 5%. The annuity is divided
by expected annual energy production to calculate LCOE (Tables 4.2–4.4).

Another critical piece of information is the maximum rate at which generator
output can change. The ramp rates used in ED and UC simulations are given
below in Table 4.5. Diesel generation is fast enough that power plants can be
started and throttled to maximum power output within a single minute (Personal
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Fig. 4.21 System load profile for São Miguel Island on Jul 16, 2008

Fig. 4.22 Autumn system load profiles for São Miguel Island

communication with a representative of Cummins Diesel, Aug 2011). Wind power
plants can also be controlled to change power output quickly, but the maximum
power, of course, depends on the prevailing wind speed (Personal communication
with a former employee of GE Wind, Aug 2011). The hydropower ramp rate was
found from historical dispatch data for Flores Island. Differences were calculated
between sequential dispatch points, yielding a maximum absolute difference of
5.1% of installed capacity.

A number of simplifying assumptions are made about generation equipment in
simulations throughout the later chapters. Start-up and shutdown cost data was not
available for use in unit commitment, so these costs are ignored. Also, some analyses
treat groups of generators as a single unit.
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Fig. 4.23 System load profile for São Miguel Island on Oct 15, 2008

Fig. 4.24 Monthly average hydropower generation profiles for Flores Islands

4.3.2 Generation on São Miguel

São Miguel currently has no wind power installed and gets only 4.5% of its energy
from hydropower. However, São Miguel obtains nearly 40% of its energy from
geothermal power plants. The remainder of São Miguel’s energy is generated from
heavy fuel oil [3]. Potential wind power for São Miguel is discussed in Sect. 4.4.3.

Seasonal duration curves of geothermal power output are shown below in
Fig. 4.27. This plot shows the sum of the output from São Miguel’s two geothermal
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Fig. 4.25 Seasonal duration curves for hydropower on Flores Island
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Fig. 4.26 Seasonal duration curves for wind power on Flores Island

power plants. During winter, spring, and summer, the power plants consistently
produce over 18 MW. Autumn has the weakest resource availability, yet output is
greater than 20 MW half of the time.

The generation equipment installed on São Miguel is shown below in Table 4.6.
Similar to diesel generators on Flores, heavy fuel oil generators have a constant

heat rate and constant marginal cost of $0.185 per kWh as calculated by an MIT
student researcher [6]. Because of the same arguments made in Sect. 4.3.1, we
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Table 4.1 Data for installed
energy generation equipment
on the island of Flores as of
2008

Power plant Type Pmin (MW) Pmax (MW)

Além-Fazenda Diesel 0.18 0.5
0.18 0.5
0.18 0.5
0.28 0.7

Boca da Vereda Wind 0.33
0.33

Além-Fazenda Hydro 0.371
0.371
0.371
0.76

Table 4.2 Data for
calculation of marginal cost
of diesel generation

Diesel market price ($/l) 0.867

Annual consumption (l) 1,807,879
Annual energy produced (kWh) 6,006,856
Constant marginal cost ($/kWh) 0.261

Table 4.3 Data for
calculation of LCOE for wind

Lifetime (years) 15

Expected annual production (MWh) 22,500
Installation cost (e) 14,500,000
$/e 1.42
Interest rate 5%
LCOE ($/kWh) 0.088

Table 4.4 Data for
calculation of LCOE for
hydropower generation

Lifetime (years) 50

Expected annual production (MWh) 5,120
Installation cost (e) 5,700,000
$/e 1.42
Interest rate 5%
LCOE ($/kWh) 0.087

Table 4.5 Flores Island
maximum generator ramp
rates

Ramp rate (%Pmax/min)

Diesel 100
Hydro 5.1
Wind 67

consider only LCOE of hydro-, geothermal, and wind power. The LCOE of wind
and hydro on São Miguel is assumed to be the same as on Flores in Sect. 4.3.1,
although in reality it would depend on the specific project and realized power output.
Data for the calculation of LCOE of geothermal is shown below in Table 4.7.

Geothermal, which operates at a near constant output; hydropower, which might
not be controllable; and biomass generation, which is very small are considered as
negative load. Historical dispatch data for these power plants is used as negative
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Fig. 4.27 Seasonal power duration curves of geothermal power on São Miguel Island

Table 4.6 Data for installed
energy generation equipment
on the Island of São Miguel
as of 2008

Power plant Type Pmin (MW) Pmax (MW)

Caldeirão Fuel oil 3.848 7.5
3.848 7.5
3.848 7.5
3.848 7.5
8.41 18.165
8.41 18.165
8.41 18.165
8.41 18.165

Agraçor Biomass 0.4
0.4

Túneis Hydro 1.658
Tambores 0.094
Fábrica Nova 0.608
Canário 0.4
Ribeira Quente 0.8
Ribeira da Praia 0.8
Faiã Redonda 0.67
Pico Vemelho Geothermal 13
Ribeira Grande 14.8

load in the later chapters for UC and ED analyses, although the chapters may make
slightly different assumptions. Again, as on Flores, start-up and shutdown cost data
was not available for use in unit commitment, so these costs are ignored. Also,
some analyses treat groups of generators as a single unit. Fuel oil generators have
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Table 4.7 Data for
calculation of LCOE for
geothermal generation

Lifetime (years) 50

Expected annual production (MWh) 83,000
Installation cost (e) 30,000,000
$/e 1.42
Interest rate 5%
LCOE ($/kWh) 0.0281

Table 4.8 Maximum
generator ramp rates

Ramp rate (%Pmax/min)

Fuel oil (7.5 MW) 27
Fuel oil (18 MW) 17

slower cold start-up ramp rates when they transition from off to on, but this level of
complexity is not considered in our simulations. Fuel oil generators are assumed to
have ramp rates shown below as derived by a student researcher [6] (Table 4.8).

4.4 Wind Data

This section describes the sources and methods used to create the data set of wind
power used for various analyses throughout this monograph. First we describe our
source of raw meteorological wind speed data, how it is corrected for missing
data, and then how it is extrapolated to wind turbine hub height. The wind turbine
manufacturer’s data sheets are then used to convert wind speed to wind power. The
wind power is then normalized for use in numerous simulations. Finally we describe
wind power daily profiles, output duration curves, and sample daily profiles for
Flores and São Miguel Islands.

4.4.1 Wind Data Preprocessing

A 10-min normalized wind power data set was created for use in dispatch analyses
in Chaps. 5, 7–9 and for prediction analyses in Chap. 6. Raw wind speed data is
converted to normalized power output for the Enercon E33 330 kW and Enercon
E101 3 MW wind turbines. These models were chosen for our analyses because 2
E33 turbines are already installed on Flores Island, and because the larger E101
would be more appropriate for installation on the island of São Miguel, which
has a system base load of approximately 30 MW. Wind speed data for Flores
and São Miguel Islands was gathered from Instituto de Meteorologica (Portugal
Meteorological Institute), http://www.meteo.pt. Ten minute averaged wind speed
data was measured at a height of 6.8 m at meteorological stations on the two islands.
This data was corrected for missing data, filling in missing data with the average of
neighboring points. The wind data was also adjusted to account for the fact that wind

http://www.meteo.pt


4 Generation and Demand Characteristics of the Islands of Flores and São Miguel 137

0
0

5 10 15 20 25 30

0 5 10 15 20 25 30

Wind Speed (m/s)

1000

2000

3000

4000
Enercon E101

T
ur

bi
ne

 P
ow

er
 (

kW
)

0

100

200

300

400
Enercon E33

T
ur

bi
ne

 P
ow

er
 (

kW
)

Fig. 4.28 Power curves for the two types of wind turbines under consideration

speeds are faster at the higher wind turbine heights. The vertical profile of horizontal
wind speed is often described with the following logarithmic relation (see, e.g., [7]):

U(z) =
v∗

k
ln

(
z
z0

)
(4.1)

U denotes the friction velocity, k the Von Karman constant, and z0 the surface
roughness length. The relation between the wind speed at measurement height zm

and the wind turbine hub height zh is then given by

U(zh) =U(zm)
ln( zh

z0
)

ln( zm
z0
)

(4.2)

For example, using a surface roughness length of z0 = 0.1 m corresponding to a
terrain, zh = 44 m for the Enercon 33 model, and zm = 6.8 m for the measurement
location, Equation (4.2) reduces to

U(zh) =U(zm) ·1.44 (4.3)

Wind speed is mapped to wind power using the wind speed to wind power curve
on the manufacturer’s datasheets [8]. The curves are shown below in Fig. 4.28.
The data is then normalized by dividing each time series of power by the maximum
power output of the matching wind turbine, resulting in data ranging from 0 to 1.
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Fig. 4.29 Flores Island seasonal average wind power profiles normalized for the E33 wind turbine

The Enercon E33 wind turbine specifications were used to create a normalized data
set for Flores Island, while Enercon E101 specifications were used for the island
of São Miguel. When this data is used for simulations in the other chapters, it can
simply be multiplied by the scenario’s installed wind generation capacity to yield
the appropriate wind power time series.

4.4.2 Flores Island Wind Data

A series of plots is presented below showing the final normalized wind power data
for an Enercon E33 turbine on Flores Island. Figure 4.29 shows seasonal averages of
the daily wind power profile. Wind power is generally lowest in the summer months
and highest in the winter months. A diurnal pattern is also apparent, smoothly
reaching a maximum in the afternoon. We can see that there is no hour during any
season where wind power averages over 50% or below 10% of installed capacity.
Figure 4.30 shows the output duration curve of the normalized power. The plot
shows that we assume an E33 turbine would generate electricity near maximum
output for 580 h and have no output for nearly 1,500 h in a year.

Figure 4.31 through Fig. 4.34 show normalized wind power profiles for four
sample days. These profiles show the volatility of wind power on the island. Output
on the January day is mostly high, with a period of quick drops and rises. The April
day in Fig. 4.32 shows a fast transition from a sustained period of low output to a
sustained period of high output. The July day in Fig. 4.33 shows a sustained period
of near-zero output. Figure 4.34 shows wind power quickly transitioning back and
forth between high and low output over the course of a day.
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Fig. 4.30 Flores Island normalized wind power duration curve for the E33 wind turbine

Fig. 4.31 Wind power profile for Flores Island on Jan 16, 2008, normalized to the maximum
output of the E33 wind turbine

4.4.3 São Miguel Island Wind Data

A series of plots is presented below showing the final normalized wind power data
for an Enercon E101 on São Miguel Island. Figure 4.35 shows seasonal averages
of the daily wind power profile. Wind power is generally lowest in the summer
months and highest in the winter months. A diurnal pattern is also apparent,
smoothly reaching a maximum in the afternoon. We can see that the output on winter
afternoons averages over 60% of installed capacity, while output on summer nights
averages between 20% and 30% of installed capacity.
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Fig. 4.32 Wind power profile for Flores Island on Apr 16, 2008, normalized to the maximum
output of the E33 wind turbine

Fig. 4.33 Wind power profile for Flores Island on Jul 16, 2008, normalized to the maximum output
of the E33 wind turbine

Figure 4.36 shows the output duration curve of the normalized power. The plot
shows that we assume an E101 turbine would generate electricity near maximum
output during 1,500 h and have no output for only 360 h in a year. Figure 4.37
through Fig. 4.40 show normalized wind power profiles for four sample days. These
profiles show the volatility of wind power on the island. Figure 4.37 shows wind
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Fig. 4.34 Wind power profile for Flores Island on Oct 15, 2008, normalized to the maximum
output of the E33 wind turbine

Fig. 4.35 São Miguel Island seasonal average wind power profiles normalized for the E101 wind
turbine

power fluctuating from near maximum output down to 20% in the morning when
energy demand is typically increasing. Figure 4.38 shows a day where wind power is
near maximum output for a large portion of the day, but still has fluctuations of 30%
of output within an hour between 9 a.m. and noon. Figure 4.39 shows wind power
spiking up many times, but very briefly, over the course of the day. Figure 4.40
shows a daily profile where there is very little wind power available.
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Fig. 4.36 São Miguel Island normalized annual wind power output duration curve for the E101
wind turbine

Fig. 4.37 Wind power profile for São Miguel Island on Jan 16, 2008, normalized to the maximum
output of the E101 wind turbine

4.5 Electricity Pricing In The Azores

Electricity of the Azores offers two different tariffs depending on the distribution
voltage levels: medium voltage (Média Tensão, MT) and low voltage (Baixa Tensão,
BT). BT is again divided into two different pricings of low voltage normal (Baixa
Tensão Normal, BTN) and low voltage special (Baixa Tensão Especial, BTE). All of
these tariffs offer a fixed rate of price within each of the two to four different blocks
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Fig. 4.38 Wind power profile for São Miguel Island on Apr 16, 2008, normalized to the maximum
output of the E101 wind turbine

Fig. 4.39 Wind power profile for São Miguel Island on Jul 16, 2008, normalized to the maximum
output of the E101 wind turbine

within a day (Tables 4.9 and 4.10). This is a type of time-of-use (TOU) pricing.
MT is applied to the commercial service, public service, industrial, public lighting,
and self-generation sectors of the consumers. All the residential users pay in BT,
along with some users in all of the other sectors mentioned [9]. Apparent power
consumption levels further subdivide the tariffs of BTN.

Table 4.11 shows the BTN tariffs for consumers with a power level greater
than 17.25 kVA. A consumer sector defined as “organizations” with 17.25 kVA and
“other consumers” pay by the same structure of this tariff, but with slightly different
rates. BTN consumers within the power level of 2.3 and 17.25 kVA have three
different tariff structures: simple, two-block and three-block tariffs. Simple tariff
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Fig. 4.40 Wind power Profile for São Miguel Island on Oct 15, 2008, normalized to the maximum
output of the E101 wind turbine

Table 4.9 Retail prices in
four-block MT (medium
voltage), 2011

Fixed term e 1.4401

Capacity e/kW· day
Peak hours 0.2725
Contracted 0.0369

Active energy e/kWh
Periods I, IV Peak hours 0.1099

Shoulder hours 0.0861
Normal off-peak hours 0.0534
Super off-peak hours 0.0499

Periods II, III Peak hours 0.1134
Shoulder hours 0.0879
Normal off-peak hours 0.0555
Super off-peak hours 0.0516

Reactive energy e/kVarh
Provided 0.0191
Received 0.0141

charges a flat rate for any time of the day, which applies to most residential users.
Two-block tariff charges different rates during the peak hours and the others. Three-
block tariff has peak, mid-peak, and off-peak hours. The users with less than 2.3 kVA
pay by a simple tariff with a capacity charge of 1.15e/day and active energy charge
of 0.1188e/kWh. This implies that the small residential users are not yet exposed
to dynamic pricing, but are incented to lower their peak consumptions.

The hour blocks for both MT and BT are shown in Table 4.12. All the data
shown in this subsection is obtained and translated from tariff brochures issued
by EDA in January 2011. There are some interesting points regarding the tariffs
of EDA. First, EDA charges not only for energy, but also for capacity in most
tariffs. Second, for MT (medium voltage) and BTE (low-voltage special), they also
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Table 4.10 Retail prices in
four-block BTE (low-voltage
special), 2011

Fixed term e 0.6531

Capacity e/kW· day
Peak hours 0.5689
Contracted 0.0365

Active energy e/kWh
Peak hours 0.1246
Shoulder hours 0.0967
Normal off-peak hours 0.0591
Super off-peak hours 0.0551

Reactive energy e/kVarh
Provided 0.0224
Received 0.0168

Table 4.11 Retail prices in
three-block BTN
(low-voltage normal)
(>17.25 kVA), 2011

Capacity e/kW· day

Three-block tariff 20.7 0.9354
27.6 1.2328
34.5 1.5302
41.4 1.8276
55.2 2.4224
69.0 3.0172

103.5 4.5042
110.4 4.8016
138.0 5.9912
172.5 7.4782
207.0 8.9652
215.0 9.3100
Active energy e/kWh

Three-block tariff Peak hours 0.2670
Shoulder hours 0.1350
Off-peak hours 0.0708

Table 4.12 Daily cycle for all the supplies in the Azores, 2011

Standard time period in winter Standard time period in summer

Peak 9:30 a.m.–11:00 a.m. Peak 9:00 a.m.–11:30 a.m.
Shoulder 8:00 a.m.–9:30 a.m. Shoulder 8:00 a.m.–9:00 a.m.
Normal off-peak 5:30 a.m.–8:00 a.m. Normal off-peak 5:30 a.m.–8:00 a.m.
Super off-peak 1:30 a.m.–5:30 a.m. Super off-peak 1:30 a.m.–5:30 a.m.

charge for reactive power both supplied and received. Third, the time blocks are
determined very specifically and in detail. It would be interesting to explore how
the MT customers respond to this complex dynamic pricing, for example, what
technologies they use to optimize their energy bills. Also, one can see that winter
has the highest rate due to the climate and the available generation resources by
season (Fig. 4.41).



146 J. Donadee et al.

Fig. 4.41 MT tariff within a day

4.6 Concluding Remarks

Chapter 4 has provided an overview of the electrical energy system on the islands of
Flores and São Miguel. These islands are small isolated systems with large amounts
of renewable energy already in place. The islands also rely on very expensive
diesel and heavy fuel oil thermal generation. Later chapters will investigate methods
of planning and operating these electric grids with the goal of minimizing costs,
emissions, and inefficiencies.
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Chapter 5
Conventional Generation Dispatch Methods
in Systems with Intermittent Resources

Paulo D.F. Ferreira, Pedro M.S. Carvalho, and Luis A.F.M. Ferreira

5.1 Problem Formulation

5.1.1 Mathematical Formulation

The Unit Commitment problem is solved in order to minimize the generation costs
while balancing the supply and demand. Given the cost parameters associated with
different generators (wind being cheapest), the idea is to dispatch the resources
available in a way that minimizes diesel production, allowing more wind power
injection into the grid.

The problem is formulated as

minPGi
,u

48

∑
k=1

CDi(PGi (k) ,x(k) ,u(k)) (5.1)

subject to

x(k) = f (x(k− 1) ,u(k)) (5.2)

where CDi (k) is the total cost of diesel generation at time step k, defined as a function
of power output PGi (k), generator state x(k), and decision u(k). The generator state
at time step k is a function of the actual decision, u(k), and is restricted by its own
situation at previous time step (k− 1). f (k) is a resource function described by a
state transition diagram for the resource.

P.D.F. Ferreira (�) • P.M.S. Carvalho • L.A.F.M. Ferreira
Instituto Superior Tecnico, Technical University of Lisbon, 1049–001 Lisbon, Portugal
e-mail: pdff@ist.utl.pt; pcarvalho@ist.utl.pt; lmf@ist.utl.pt
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The problem could be simplified as

minPGi

48

∑
k=1

α ·PD (k) (5.3)

subject to

48

∑
k=1

PH (k) = A(k) (5.4)

PD (k)+PH (k) = D(k)− P̂Gw (k)−PGg (k)−PHnc (k) (5.5)

|PD (k+ 1)−PD (k) | ≤ R (5.6)

where PD (k) is the diesel power production at time step k, PH (k) is the controllable
hydro production, PHnc (k) is the noncontrollable hydro production, P̂Gw (k) is the
wind production, PGg (k) is the geothermal production (if available), and D(k) is the
demand. A(k) is the power production assigned to controllable hydro plants and R
is the maximum power change allowed to diesel units.

If there are no controllable hydro plants, then A(k) = 0. The details of power
production assignment to controllable hydro plants are in Sect. 5.1.1.2.

This simplified model can be solved through linear programming but does
not consider thermal dynamics. To get more accurate results the UC problem is
solved including the restrictions associated with thermal units. These restrictions
are described in Sect. 5.1.1.1.

The UC with thermal dynamics cannot be solved with linear programming; the
solution is provided instead through dynamic programming.

5.1.1.1 Thermal Dynamics

Thermal units have several constraints that make this model more complex.
The output power that a thermal unit can supply is defined by a non-continuous

function:

PGiout = {0}∪ [Pmin
Gi

,Pmax
Gi

] (5.7)

with Pmin
Gi

> 0.
Also, there are restrictions associated with minimal downtime, since the generator

needs some time to shut down. These restrictions can be defined by the following
function:

If x(k) = 0 & μ (k) = 0, then x(k+ 1) = 0

x(k) = 0 & x(k− 1) = 0 & x(k− 2) = 0 & x(k− 3) = 0 & μ (k) = 1,

then x(k+ 1) = 1

x(k) = 0 & {x(k− 1) 
= 0 ||x(k− 2) 
= 0 ||x(k− 3) 
= 0} & μ (k) = 1,

then x(k+ 1) = 0
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5.1.1.2 Controllable Hydro Dynamics

For the Unit Commitment decision process it is assumed that the outflow/output
power relation of the hydro generation is linear, starting from zero. Based on the
available historical data, it is assumed that the available hydro power output has a
monthly pattern. This monthly pattern allows us to determine the average amount
of power available for each day, which will be applied to peak-shaving. Since there
is no significant change in load behavior for the different days of the week, the
limitations on power production are assumed to be the same.

5.1.1.3 Interruptions

The need for preprogrammed maintenance or the occurrence of unexpected failure,
in hydro, wind, and geothermal production has an impact on the total energy
produced by fuel-powered plants, as well as on the ideal number of green resources
for the system.

The study of the impact of generation interruption is done by randomly gen-
erating interruptions in a chronological simulation, with an average number of
interruptions per year and an average duration.

5.1.2 Data

5.1.2.1 Wind and Load

UC for Flores and São Miguel was run on load and wind data described in Chap. 4.
The load data has three profiles (Wednesday, Saturday and Sunday) for every

month, with a 30-min resolution.
Both Flores and São Miguel data have a 30-min resolution for every day between

January 2008 and December 2008. Detailed data specification is available in the
chapter on the input data.

5.1.2.2 Hydro Constraints

Flores has a hydro plant with a 50,000m3 reservoir. The daily restrictions on energy
production (Table 5.1) were set based on the average monthly production between
1996 and 2004.
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Table 5.1 Flores hydro
plant–restrictions on daily
production

Energy per day
Month [kWh]

January 10.500
February 10.200
March 10.800
April 10.900
May 9.300
June 8.700
July 7.200
August 6.000
September 6.100
October 6.300
November 7.200
December 8.400

5.2 Simulations

5.2.1 Flores

5.2.1.1 Results

Flores has a small power system in which hydro resources contribute significantly.
However, water flow depends on the season, so there is a typical generation pattern
along the course of the year. Figure 5.1 illustrates how this affects the system—in
this case, the lack of water flow is compensated for through the increase in diesel
production.

The thermal dynamics is also depicted. In Fig. 5.2c, at hour 11, the hydro and
wind production is enough to supply the demand. However, diesel production is not
set to zero due to the fact that at least one generator is always needed to compensate
for wind power fluctuations. Because the thermal units cannot be kept running and
set to zero output power (Sect. 5.1.1.1), in some situations there might exist more
power available than the demand. This leads to some power to be spilled out–
typically the wind power is spilled.

The operational challenge of (1) controlling all hydro resources, (2) intermittent
wind power availability, and (3) nonzero thermal units minimum output creates
several difficulties for the integration of noncontrollable renewable resources.
Excess of wind turbines in a small power system will cause wind spill, leading
to a reduction on return of investment. Figure 5.3a illustrates the wind spill due
to an increase in wind turbines in the power system. Figure 5.3b illustrates the
duration curves of diesel production along the course of the year. The increase in
wind turbines reduces the power supplied by diesel-powered generators but this
power amount is never set to zero.

Flores has some hydro resources with reservoirs. This allows the operator to use
them for peak-shaving and/or keeping water on windy days, allowing more wind
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Fig. 5.1 Flores – Comparison, for the same day, assuming that there is (a) hydro generation with a
reservoir and (b) hydro generation without a reservoir. It is assumed that there are 2 wind turbines
in the system. (a) With the possibility of using hydro resources for peak shaving, diesel generation
keeps steady throughout the day. (b) Without the possibility of using hydro resources for peak-
shaving, diesel generation maintains the balance between demand and generation. The wind power
profile plotted refers to the wind power available, not necessarily the wind power injected into the
grid

power to be integrated into the grid. The balance between generation and demand
kept by hydro resources allows for savings in diesel operation. Figure 5.1 illustrates
how hydro resources can be used for peak-shaving. Tables 5.2 and 5.3 show the cost
reduction to diesel operation associated with hydro peak-shaving.

The inclusion of wind turbines in Flores power system is expected to reduce
the costs related to diesel operation. However, due to the impossibility of shutting
down all diesel generators, a significant increase in wind turbines does not mean
an equivalent reduction on diesel costs. Table 5.2 and Fig. 5.3 show that there is a
cost reduction on diesel-powered energy; however, the cost converges to a nonzero
value.

Figure 5.4b and 5.5b illustrates the grid limit for absorbing wind power
generation—the relation between the number of turbines and the wind energy
injected into the grid is not linear.

5.2.1.2 Results Impact of Interruptions

The results presented do not consider the impact of interruptions in hydro and wind
production due to either the need for preprogrammed maintenance or to unexpected
faults. To assess the impact of unit interruptions on the cost, Fig. 5.6 compares
several scenarios:

• No faults [0− 0]
• Four interruptions/year with an average duration of 10 h [4− 10]
• Eight interruptions/year with an average duration of 10 h [8− 10]
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Fig. 5.2 Typical load diagram of Flores for each season of the year, considering 2 wind turbines
available on the grid. The wind profile plotted refers to the wind power available, not necessarily
the wind power injected into the grid. The lack of water flow in summer is compensated for through
an increase in diesel production. In Fig. 5.2c, at hour 7, the hydro and wind production is enough
to supply the demand, but diesel production is not set to zero due to thermal dynamics; this, as
described above, eventually leads to wind spill

The interruptions ratio is applied individually to each generator.
Figure 5.6 shows that the impact of interruptions is residual for annual wind spill,

unless under very extreme conditions (Figure 5.5, [60-10] scenario). The increase in
diesel production needed to compensate for the lack of other resources is less than
7%. Since we use wind spill as a criterion to determine the ideal number of wind
turbines for the grid, one can conclude that the impact of faults on the system does
not need to be considered.
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Fig. 5.3 Duration curves on Flores, considering 4 wind turbines available on the grid as well as
hydro resources with a reservoir. (a) Total wind spill. The total energy spilled by all four turbines,
in this scenario, is about 6% of all energy expected to be produced for the course of 1 year. (b)
Duration curve associated with diesel production. The solid line represents the sum of all the
generators. As expected, the total diesel power never goes to zero, as diesel generation is never
shut down

Table 5.2 Flores – Total diesel costs—2008

Total energy produced [MWh] Cost [USD]

No. wind turb. Reservoir No reservoir Reservoir No reservoir

1 8,063 9,884 2,104,300 2,579,600
2 7,238 8,991 1,889,200 2,346,500
3 6,458 8,235 1,685,400 2,149,300
4 5,955 7,708 1,554,300 2,011,900
5 5,585 7,331 1,457,600 1,913,400
6 5,293 7,025 1,381,600 1,833,600
7 5,039 6,769 1,315,400 1,766,600

Comparison between the scenarios where (1) hydro resources have a reservoir
and (2) no reservoir is available. All groups are assumed to have 26.10c/kWh.
There is a reduction in the cost and the power supplied by diesel units (columns
2 and 4) when the number of wind turbines increases, but that cost converges to
a nonzero value

5.2.2 São Miguel

5.2.2.1 Results

São Miguel also has a small power system, although it is bigger than Flores.
Figure 5.8 illustrates the typical generation diagram of São Miguel. In this

scenario 10 wind turbines are considered to be existent in the system. There is
geothermal generation that has steady output power, with very little capacity to
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Table 5.3 Flores Diesel costs—May to October

Total energy produced [MWh] Cost [USD]

No. wind turb. Reservoir No reservoir Reservoir No reservoir

1 2,821 3,953 736,150 1,031,700
2 2,406 3,537 627,960 923,100
3 2,081 3,149 543,130 822,000
4 1,914 2,913 499,450 760,300
5 1,787 2,769 466,360 722,900
6 1,689 2,656 440,820 693,300
7 1,606 2,558 419,130 667,500

Comparison between the scenarios where (1) hydro resources have a reservoir
and (2) no reservoir is available. All groups are assumed to have 26.10c/kWh.
There is a reduction in the cost and the power supplied by diesel units (columns
2 and 3) when the number of wind turbines increases, but that cost converges to
a nonzero value

Table 5.4 São Miguel Total
oil costs—2008

Total energy
No. wind turbines produced [MWh] Cost [USD]

1 290,090.0 53,667,000.0
5 243,010.0 49,570,000.0
10 193,740.0 35,843,000.0
15 167,260.0 30,943,000.0
20 152,810.0 28,827,000.0
25 146,380.0 26,525,000.0
30 136,390.0 25,231,000.0

All groups are assumed to have 18.5c/kWh. There is a
reduction in the cost and the power supplied by diesel
units (columns 2 and 3) with an increase in the number
of wind turbines, but that cost converges to a nonzero
value

adjust. As with Flores, the variations between the demand and the generation profile
are compensated for through diesel generation.

5.2.2.2 Costs

Similarly to Flores, the introduction of wind turbines into São Miguel power system
is expected to reduce the costs related to diesel operation. As on Flores, due to
the impossibility of shutting down all diesel generators, a significant increase in
wind turbines does not mean an equivalent reduction in diesel costs. However, since
São Miguel has a bigger power system than Flores, it is able to handle more wind
turbines with more nominal power.

Table 5.4 and Fig. 5.9a present the cost reduction with respect to energy produced
by diesel generation. Figure 5.9b illustrates the grid limit for absorbing wind power
generation on São Miguel.
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Fig. 5.4 Flores (a) Total energy produced by diesel units for different numbers of wind turbines
available on the grid. The diesel production does not converge to zero as it is impossible to shut
down all thermal units. (b) Total energy produced by wind generators for different numbers of wind
generators available on the grid. Since there is no possibility of shutting down all diesel generation,
and due to the small size of the power system, an increase in the number of wind turbines means
an increase in wind spill
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Fig. 5.5 Flores (a) Increase of energy by diesel generators due to failure of wind or hydro
resources. The [60–10] fault is included to compare the effect of different fault magnitudes on
the system. (b) Wind spill considering several interruption scenarios. Since the fault regime is
severe, the wind spill drops due to the lack of wind power

5.2.2.3 Results Impact of Interruptions

Similarly to the results presented in Sect. 5.2.1.2, Fig. 5.10 compare several
scenarios:

• No faults [0− 0]
• Four interruptions/year with an average duration of 10 h [4− 10]
• Eight interruptions/year with an average duration of 10 h [8− 10]
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Fig. 5.6 (a) Total energy produced by diesel units for different numbers of wind turbines available
on the grid on Flores. The diesel production does not converge to zero since it is impossible
to shut down all thermal units. The X-axis starts from 1 turbine. (b) Total energy produced by
wind generators for different numbers of wind generators available on the grid. Since there is no
possibility of shutting down all diesel generation, and due to the small size of the power system,
an increase in the number of wind turbines means an increase in wind spill. The X-axis starts from
1 turbine
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Fig. 5.7 (a) Total energy produced by diesel units—May to October. (b) Total energy produced
by wind generators—May to October. The pattern is similar to the annual results

For wind turbines the interruptions ratio is applied individually to each generator.
Figures show that on São Miguel the impact of interruptions is residual for annual

wind spill. The increase in diesel production to compensate for a lack of other
resources is less than 4% for low impact interruptions scenario and less than 6%
for more severe scenario (20-20). Again, since wind spill is used as a criterion to
determine the ideal number of wind turbines for the grid, for this purpose the impact
of faults on the system does not need to be considered.
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Fig. 5.8 Typical load diagram of São Miguel for each season of the year, assuming 10 wind
turbines available on the grid. The wind power profile plotted refers to the wind power available,
not necessarily the wind power injected into the grid. The lack of water flow in the summer has
no impact on diesel production. There is a unit of geothermal production with low output power
regulation—deviations from the balance between demand and generation are compensated for
through diesel generation

5.2.3 Estimation of the Ideal Number of Turbines

Since both Flores and São Miguel have small power systems, the integration of
wind power is limited. It is not always possible to inject all wind power available
into the grid due to the inability to shut down all diesel generation and the existence
of several noncontrollable hydro resources as well as geothermal units.

The reduction of wind power injected into the grid will raise the costs associated
with the operation of these turbines. The levelized cost of energy (LCOE) expresses
the cost of generation energy considering the investment, costs of operations and



162 P.D.F. Ferreira et al.

Table 5.5 S.Miguel Oil
costs—May to October

Total energy
No. wind turbines produced [MWh] Cost [USD]

1 116,860.0 21,619,000.0
5 92,650.0 17,141,000.0
10 69,740.0 12,902,000.0
15 59,940.0 11,088,000.0
20 55,140.0 10,202,000.0
25 51,850.0 9,593,000.0
30 49,610.0 9,179,000.0

All groups are assumed to have 18.5c/kWh. There is a
reduction in the cost and the power supplied by diesel
units (columns 2 and 3) with an increase in the number of
wind turbines, but that cost converges to a nonzero value
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Fig. 5.9 São Miguel (a) Total energy produced by oil units for different numbers of wind turbines
available on the grid on São Miguel. The diesel production does not converge to zero since it
is impossible to shut down all thermal units. The X-axis starts from 1 turbine. (b) Total energy
produced by wind generators for different numbers of wind generators available on the grid. Since
there is no possibility of shutting down all diesel generation, and due to the small size of the power
system, an increase in the number of wind turbines means an increase in wind spill. The X-axis
starts from 1 turbine

costs of maintenance, (5.8). This value is got assuming that the turbine will produce
and sell an expected amount of energy into the grid.

LCOEt =
It +Mt +Ft

Et
(5.8)

With It as investment costs, Mt as operations and maintenance costs for time
period t, Ft as fuel costs, and Et the expected energy sell to the grid. The fuel costs
for wind turbines are zero.

If the energy produced cannot be injected into the grid, the LCOE will rise.
For the estimation of the ideal number of generators we assume that the grid is
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Fig. 5.10 São Miguel (a) Increase in energy output by diesel generators due to failure of wind or
hydro resources. 4 or 8 faults/year dose not significantly impact diesel generation. (b) Wind spill
considering several interruption scenarios. Since the fault regime is severe, the wind spill drops
when wind power decreases

Table 5.6 Ideal number of
wind turbines for Flores,
considering different diesel
and wind LCOE

LCOE [c$/kWh]

Diesel cost [c$/kWh] 5.0 8.8

26.1 7 5
30.0 8 6

Table 5.7 Ideal number of
wind turbines for São Miguel,
considering different oil and
wind LCOE

LCOE [c$/kWh]

Oil cost [c$/kWh] 5.0 8.8

18.5 14 11
25.0 16 12

only interested in having a wind turbine if the LCOE is less than the cost of diesel
operation. We assume that the LCOE for a turbine with any wind spill is 8.8c/kWh.

Tables 5.6 and 5.7 present the ideal number of wind turbines, considering the
LCOE and diesel/oil costs for each island. For instance, with a diesel cost of
26.1c/kWh (Flores), 1 turbine has value if it has a maximum of 66.2% wind spill,
for LCOE = 8.8c/kWh. If the LCOE is 5c/kWh, this value rises to 80% wind spill.
For an oil cost of 18.5c/kWh (São Miguel), 1 turbine has value if it has a maximum
of 52.4% wind spill. If the LCOE is 5c/kWh, this value rises to 72.9% wind spill.

Tables 5.8 and 5.9 present partial wind spill related to the total energy produced
by each turbine. For wind spill purposes only, it is assumed that if all turbines are
available to inject power into the grid, the wind turbines with smaller No. have
priority.
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Table 5.8 Wind spill by
turbines—Flores, 2008

Wind spill [%]

Wind turbine no. Reservoir No reservoir

1 0 0.1
2 0 0.7
3 1.3 19.4
4 22.6 49.8
5 52.1 68.4
6 67.8 78.5
7 76.4 85.0
8 82.2 89.8
9 86.5 93.8
10 90.2 96.9

Comparison between hydro resources with and with-
out reservoirs. An increase in wind spill will raise
the LCOE—if the LCOE equals diesel costs then the
wind turbine might not be attractive to the grid

5.2.3.1 Flores

From Table 5.8 considering a Diesel cost of 26,1c$/kWh one can conclude that for
an LCOE of 8.8c/kWh, the system can handle up to 5 turbines, and for an LCOE of
5c/kWh, the system can handle up to 7 turbines, if hydro resources have reservoirs
available for peak-shaving. Otherwise, the system can handle only 4 turbines for an
LCOE of 8.8c/kWh and 6 turbines for an LCOE of 5c/kWh.

5.2.3.2 São Miguel

From Table 5.9, considering a oil cost of 18,5c$/kWh, one can conclude that for a
LCOE of 8.8c/kWh, the system on São Miguel can handle up to 11 turbines. For a
LCOE of 5c/kWh, the system can handle up to 14 turbines.

5.2.4 Other Scenarios

All the simulations presented are done assuming the thermal units have minimum
output power. This restriction means that the grid is always being at least partially
supplied from fossil-fuel sources even if there is enough power from other sources,
since a thermal source is responsible for maintaining the balance between generation
and demand. This limits the grid capacity to absorb wind and hydro power, so it is
ideal to have thermal generation with low minimal power or fast storage systems.

To evaluate the impact of thermal dynamics, the results of the same grids in the
same scenarios are presented in this section, but with the assumption that the thermal
units do not have minimum output power.
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Table 5.9 Wind spill by
turbine—São Miguel 2008

Wind turbine no. Wind spill [%]

5 17.6
6 20.0
7 22.5
8 26.2
9 30.9
10 39.9
11 50.4
12 59.3
13 65.4
14 69.9
15 74.2
16 77.0
17 80.4
18 82.9
19 84.9
20 86.9

An increase in wind spill will raise
the LCOE—if the LCOE equals
diesel costs then the wind turbine
might not be attractive to the grid
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Fig. 5.11 Flores–Duration curves considering 4 wind turbines available on the grid, hydro
resources with reservoirs, and no minimal output power for thermal units. (a) Total wind spill.
The total energy spilled by all four turbines, in this scenario, is about 1.8% of all energy expected
to be produced during the course of 1 year. (b) Duration curve associated with diesel production.
The solid line represents the sum of all the generators. As expected, now total diesel power goes to
zero, since there are no restraints concerning minimal output power

5.2.4.1 Flores

As expected, the elimination of minimal power constraints helps to reduce wind
spill. Figure 5.11 shows a reduction down to about 1.8%, when originally it was
about 6% (Fig. 5.3).
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Fig. 5.12 São Miguel (a) Total energy produced by oil units—May to October. The diesel
production does not converge to zero since it is impossible to shut down all thermal units. The
X-axis starts from 1 turbine. (b) Energy produced by wind generators—May to October. Since
there is no possibility of shutting down all diesel generation, and due to the small size of the power
system, an increase in the number of wind turbines means an increase in wind spill. The X-axis
starts from 1 turbine
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Fig. 5.13 Flores (a) Total energy produced by diesel units for different numbers of wind turbines
available on the grid. (b) Total energy produced by wind generators for different numbers of wind
generators available on the grid

From Fig. 5.13 and Table 5.10, and comparing them with Fig. 5.2 and Table 5.2,
one can see that the elimination of minimal power constraints allows for savings of
3.3% in diesel production, for 1 turbine, and 9.2%, for 7 turbines in a non-reservoir
scenario. When the possibility of managing the reservoir in some hydro resources is
considered, the savings are 3.3% for 1 turbine and 12.9% for 7 turbines.

Table 5.11 shows the new wind spill values for the scenario in study. As is
argued before, wind spill is used as a criterion for defining the ideal number of wind
turbines for each grid. As the wind spill decreases, the ideal number of wind turbines
increases. Considering a LCOE of 5c/kWhand Diesel cost of8c/kWh, originally the
maximum number was 8 (Table 5.6) and now it is 9 (Table 5.12).
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Table 5.10 Flores–Total diesel costs—2008

Total energy produced [MWh] Cost [USD]

No. wind turb. Reservoir No reservoir Reservoir No reservoir

1 7,799 9,557 2,035,700 2,494,500
2 6,929 8,689 1,808,500 2,268,000
3 6,094 7,859 1,590,700 2,051,400
4 5,463 7,232 1,425,900 1,887,700
5 5,014 6,784 1,308,700 1,770,700
6 4,668 6,435 1,218,300 1,679,500
7 4,386 6,142 1,144,800 1,603,100

Comparison between the scenarios where hydro resources have or do not have
reservoirs with no minimal output power constraints on the thermal units. All
groups are assumed to have 26.10c/kWh. There is a reduction in the cost and
the power supplied by diesel units (columns 2 and 4) with an increase in the
number of wind turbines, but that cost converges to a nonzero value

Table 5.11 Wind spill by
turbine—Flores, 2008

Wind spill [%]

Wind turbine no. Reservoir No reservoir

1 0.0 0.0
2 0.0 0.0
3 0.0 5.2
4 7.3 32.8
5 36.4 57.2
6 58.6 70.7
7 69.9 78.4
8 76.7 84.1
9 81.9 88.0
10 85.7 91.5

Comparison between hydro resources with and
without reservoirs. An increase in wind spill
will raise the LCOE—if the LCOE equals
diesel costs then the wind turbine might not be
attractive to the grid

5.2.4.2 São Miguel

Similarly to Flores, the elimination of minimal power constraints helps to reduce
wind spill (Fig. 5.14). Figure 5.14 illustrates a reduction down to about 8% of
the overall wind generation, whereas originally the wind spill was about 17% of
the overall wind generation (Fig. 5.15).

Comparing Table 5.13, and Table 5.4, one can see that the elimination of minimal
power constraints allows for savings of 5.9% in oil production, for 1 turbine, and
35%, for 30 turbines.
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Fig. 5.14 São Miguel – Scenario where Diesel generation do not have minimal output power –
Duration curves considering 10 wind turbines available on the grid. (a) Total wind spill. The total
energy spilled by all four turbines, in this scenario, is about 8% of all energy expected to be
produced during the course of 1 year. (b) Duration curve associated with diesel production. The
solid line represents the sum of all the generators. As expected, the total goes to zero, since the
thermal generation now has no lower limit
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Fig. 5.15 São Miguel – Original Scenario where Diesel generation have minimal output power –
Duration curves assuming 10 wind turbines available on the grid. (a) Total wind spill. The total
energy spilled by all four turbines, in this scenario, is about 17% of all the energy expected to be
produced in the course of 1 year. (b) Duration curve associated with diesel production. The solid
line represents the sum of all the generators. As expected, the total never goes to zero, as diesel
generation is never shut down

Table 5.14 shows the new wind spill values. Again, the wind spill is used as a
criterion for defining the ideal number of wind turbines for each grid. Similarly to
Flores, the ideal number of wind turbines increased—originally the maximum ideal
number of turbines was 16 (Tables 5.7 and 5.9) and now it is 21 (Table 5.15).
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Table 5.12 Ideal number of wind turbines for
Flores, considering different diesel and wind
LCOE and no mininum output power on diesel
generators

LCOE [c$/kWh]

Diesel cost [c$/kWh] 5.0 8.8

26.1 8 6
30.0 9 7

Table 5.13 São Miguel –
Total oil cost—2008

Total energy
No. wind turbines produced [MWh] Cost [USD]

1 272,970.0 50,499,000.0
5 223,770.0 41,398,000.0
10 170,053.0 31,548,000.0
15 131,890.0 24,400,000.0
20 114,640.0 20,043,000.0
25 98,210.0 18,170,000.0
30 88,580.0 16,388,000.0

All groups are assumed to have 18.5c/kWh. There is a
reduction in the cost and the power supplied by diesel
units (columns 2 and 3) with an increase in the number
of wind turbines, but that cost converges to a nonzero
value

5.3 Discussion

In this chapter, we study the impact of different-sized wind parks on Flores and
São Miguel power systems and estimate the ideal number of wind turbines for
both islands. A Unit Commitment (UC) with dispatch function is used to make the
estimation. We assume that geothermal units and hydro generation without reservoir
behave as negative loads. Hydro plants with reservoir are dispatched for peak-
shaving, observing daily energy production constraints that give priority to wind
power over the power produced by those plants. When there is no storage available,
several diesel units are kept running at minimum power to be able to compensate
for wind fluctuations.

We discuss the integration of a large number of wind turbines into a small
power system such as those on Flores and São Miguel. The wind power injection is
limited by (1) the small size of the power systems, (2) the impossibility of shutting
down all diesel generation, and (3) the existence of geothermal generation and non-
controllable hydro resources. However, the availability of reservoirs for some hydro
resources allows for a wider integration of renewable resources, with a reduction
of costs for diesel operation. We use the wind spill to estimate the optimal number
of wind turbines for each island: between 11 and 16 turbines with 3,030kW for
São Miguel and 5–8 turbines with 330kW for Flores. We also consider the effects
of interruptions of hydro and wind units. For typical values of forced outage rates,
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Table 5.14 Wind spill by
turbine—São Miguel 2008

Wind turbine no. Wind spill [%]

5 4.5
6 9.0
7 12.9
8 15.4
9 17.6
10 20.1
11 24.0
12 29.0
13 38.7
14 48.4
15 56.4
16 61.8
17 66.4
18 69.8
19 72.8
20 76.3
21 78.5
22 80.3
23 81.9
24 83.3
25 84.6

An increase in wind spill will raise
the LCOE—if the LCOE equals
diesel costs then the wind turbine
might not be attractive to the grid

Table 5.15 Ideal number of wind turbines
for São Miguel, considering different oil and
wind LCOE and no minimum output power
on thermal generators

LCOE [c$/kWh]

Oil cost [c$/kWh] 5.0 8.8

18.5 19 14
25.0 21 16

interruptions have no major impact. Finally, for comparison, a study was run where
minimal output power regarding thermal dynamics was not considered. The results
show that on Flores thermal dynamics does not have a significant impact on the
optimal number of wind turbines but makes up for a 9.2% decrease in diesel
consumption in a 7 turbine scenario. On São Miguel thermal dynamics has a
significant impact on the number of turbines and on decreasing oil consumption.
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Chapter 6
Multi-scale Models for Decomposing
Uncertainties in Load and Wind Power

Noha Abdel-Karim and Marija Ilić

6.1 Introduction

The operation and planning of electric power systems have become more
challenging than in the past due to the presence of major new uncertainties and the
risks related to them. These new uncertainties are created by a higher penetration
of hard-to-predict intermittent power generation and by the responsive loads. Also,
in parts of the world where electric power industry restructuring has taken place,
power system operators and planners cannot predict nor control the availability
of nonutility-owned generation. This ongoing and evolving situation is requiring
a fundamental change in operating and planning methods, which can no longer
be static nor deterministic. Instead, much can be gained by proactively learning
the patterns of the dominant uncertainties and using these patterns to predict wind
and load power and then conducting the operations and planning by taking these
predictions into account. For example, instead of assuming an average constant
capacity factor in a wind power plant, wind power prediction needs to be more
dynamic as new information becomes available. Uncertainties in wind and load
power patterns have a major impact on a system operator’s ability to balance
supply and demand by dispatching the least-cost and the cleanest power plants first.
Therefore, new methods for economic dispatch and unit commitment are needed
which use model-based predictions of wind power and demand. The longer-term
the forecast is, the more reliable and efficient the balancing of supply and demand
will be. This is because all the physical components—the power plants and the
consumers—are constrained by their ramp rates as to how fast and by how much
they can change their power produced or consumed. Often the ramp rates vary
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over broad ranges, with nuclear and coal power plants being the slowest, and gas
power plants the fastest, to respond. It is this fundamental inability to respond
instantaneously that makes it very critical, for operations purposes, to forecast
demand and intermittent resources at least 24 h ahead. For operations it is necessary
to have good weekly, monthly, and seasonal predictive models. For planning it
is necessary to have very long-term annual predictive models. When longer-term
predictions are available, it becomes possible to adjust the power outputs even
of the slow-responding power plants so that one avoids the need to schedule
fast-responding expensive units in near real time. In Chaps. 7 and 9 we pose the
problem of least cost economic dispatch and unit commitment by using model-
based predictions of wind power and demand. It is illustrated in these chapters
how look-ahead generation dispatch, subject to ramp constraints which assume
a knowledge of the wind power and demand forecasts, results in the dispatch of
less expensive and less polluting generation. Longer-term predictive models are
essential for avoiding the over- or under-building of new capacity. In Chap. 15
we illustrate how a combined use of long-term and short-term predictive models
for demand and wind power can be used for dynamic investment decisions under
uncertainties. As expected, the further one looks into the future, the harder it is to
have accurate predictive models. Nevertheless, a careful derivation of model-based
long-term predictions generally leads to less risk of over or under-building than the
assumption of a worst-case scenario.

Because actual and real-time generation schedules are correlated with the
accuracies of look-ahead forecasting models, and given power grid characteristics
and system constraints, it becomes unclear (1) whether power system operation
would be able to meet generation requirements and handle power balance within
the look ahead horizon and (2) what scheduling costs would be incurred in order
to achieve that balance. Therefore, providing uncertainty information in order to
improve power system operation becomes an essential need.

The need for predicting wind and load is well recognized, and there exists
a considerable literature on this subject. For example, Rui Bo and Fangxing Li
[1] investigate the impact of load forecast on locational marginal prices (LMPs).
Based on this, they propose a probabilistic model for LMPs. In [2], the author
examines the effects of load forecast uncertainty on bulk power system reliability.
In [3], C. Lindsay Anderson and Judith B. Cardell apply an auto-regressive moving
average model to estimate the next 10-min ahead production level for a hypothetical
wind farm, and they investigate the possibility of pairing wind output with respon-
sive demand to reduce the variability in the net wind output. In [4], the authors
develop an artificial neural network (ANN)-based model to forecast 10-min wind
power changes. D. Hawkins and M. Rothleder [5] describe the potential operational
problems which might be caused by an increased penetration of wind energy in
California. Of particular interest is the impact on the day-ahead-market (DAM) and
hour-ahead-market (HAM). They stress the importance of forecasting accuracy for
unit commitment and ancillary services and the need for additional load following
or supplemental energy dispatch to compensate for the power imbalance caused by
the deviations of actual wind power from the predicted wind power every 5 min.
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The cost of this additional balancing is high as it requires the use of fast-responding
expensive resources. In [6], the authors propose a probabilistic method of estimating
forecasting errors in the Spanish electricity system. They provide an assessment of
the cost of wind energy prediction errors. They propose that wind power generators
should pay the additional cost of wind prediction errors. In [7], Dale Osborn
discusses the impact of wind power on the LMP market in the US midwest area
for different wind penetration levels. The conclusion is made that LMPs decrease
with the increase of wind energy penetration. The authors of [8] introduce a short-
term wind prediction model for both wind speed and wind direction. In our previous
work [9] we present a short-term wind speed prediction model using a linearized
time series model. Wind data is first collected from a weather station at a 10-min
resolution for a period of 1 year. Based on this, a fitted two Weibull distribution
parameter model is derived by performing regression analysis on the logarithms
of the wind speed data. A transformation from Weibull into normal distribution is
then made and linear predictive coefficients calculated by using a finite impulse
response filter (FIR) and infinite impulse response filter (IIR) for the normalized
wind speed random process. Predictive models for 10 min-ahead, 1 h-ahead, 12 h-
ahead, and 24 h-ahead wind speed are derived, and the accuracy of each of these
time-ahead prediction models is analyzed. Based on this analysis it is concluded that
it is possible to represent wind speed signals as discrete time Markov processes since
the accuracy is sufficient only when the most recent sample is used. In this chapter
we introduce models, based on historical data, to be used for different purposes
of operation, planning, and investment decision-making. The specific goal is to
demonstrate how the use of the predictive models enables one to perform economic
dispatch (ED), unit commitment (UC), and overall planning on the Azores island of
Flores. Everything else being equal, it becomes possible to displace more expensive
and polluting diesel power plants with wind power plants when relying on model-
based predictions of wind power rather than only on an average capacity factor.

In this chapter, we derive three different characterizations of wind and load power
uncertainties. We start with a statistical representation of wind and load power
signals. This includes a characterization of load and wind power in terms of fitting
distribution models and an evaluation of the distribution parameters, the mean, and
the variance of the signals. We next derive auto-regression models for 10-min, 1-h
and 24-h forecast models of wind and load power. Finally, we derive Markov models
for the short-term and long-term characterization of the wind and load power, and
obtain the short-and long-term decision trees for stochastic decision-making in
operations and planning. These trees are more detailed than typical binomial trees,
as they have the probabilities of several most likely states and their transitional
probabilities. It is discussed in later chapters how these models can be used for short-
term model-predictive dispatch and unit commitment on a daily basis, as well as how
longer-term annual decision trees could be used for more dynamic and probabilistic
decision-making regarding the best choice of technology to invest in under major
uncertainties.

This chapter is organized as follows: We describe in Sect. 6.2 the multi-temporal
aspects of wind and load power signals and propose a method for a systematic
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decomposition of the actual signals into their high-, medium-, and low-frequency
components. These signals are then transformed back from frequency to a time
domain and used as a basis for deriving predictive models of interest. In Sect. 6.3 a
statistical characterization of load and wind power signals is derived using data from
Flores. In Sect. 6.4 auto-regressive multi-temporal models are derived for predicting
wind and load power 10 min, 1 h, and 24 h into the future. Finally, in Sect. 6.5
we derive both short-term and long-term Markov models which can be used for
probabilistic decision-making in operations and planning, respectively.

6.2 Multi-scale Decomposition-Based Modeling

Given actual 10-min data, we propose an approach to decomposing the Flores data
given to us into signals, with the frequencies defined as follows:

1. Low-frequency signals: For economic development such as long-term policy
adaptation and generation investment (time horizon: many years).

2. Medium-frequency signals: For detecting seasonal weather variations, and there-
fore helpful in assigning midterm generation capacities; these signals influence
electricity market prices and power grid generation planning for a few weeks
with no effect beyond a year.

3. High-frequency signals: For intra day and intra-week variations in regular
generation dispatch, for forced generation outage, and for fast variations of a
few hours, but not beyond a week.

In this section, we first apply the discrete Fourier transform (DFT) to decompose
the available data into low-, medium-, and high-frequency components. We then
perform inverse discrete Fourier transform (IDFT) to change these filtered signals
from frequency to time domain representation. Later in this chapter, the time domain
representation of the decomposed signals is used to derive predictive models of
interest.

6.2.1 Multi-temporal Modeling of Low-, Medium-,
and High-Frequency Signals

In general, a DFT is applied to decompose a signal (load/wind power) into its
short-, medium-, and long-term components. We use this method to compute the
frequencies of interest in wind and load power signals. A DFT X [k], is computed
for the wind/load signal sampled at time [n], x[n]. The DFT is then decomposed into
low-, medium-, and high-frequency components, each of a different frequency index
range as

X [k] = XL[k]+XM[k]+XH[k] (6.1)
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where XL[k], XM[k] and XH[k] are the low-, medium-, and high-frequency compo-
nents, respectively. The DFT applies only to a finite discrete signal (i.e., a sequence
of length “N”)

x[n] for 0 ≤ n ≤ N − 1

where [n] is a discrete time index. The DFT, X [k], is also a discrete sequence of
length “N” and k is a discrete frequency index. The main frequency coefficients for
each component are given by

XL[k] =

{
X [k], 0 ≤ k ≤ ky

0, ky ≤ k ≤ N/2

XM[k] =

{
X [k], ky < k ≤ kd

0, otherwise

XH[k] =

{
X [k], kd < k ≤ N/2
0, 0 ≤ k ≤ kd

(6.2)

The DFT X [k] representation exhibits a complex conjugate symmetry around
k = N/2; hence, all decomposed components in (6.2) have conjugate symmetric
coefficients within N/2 < k ≤ N − 1. The thresholds ky, kw, and kd are the
yearly, weekly, and daily discrete frequency indices and are related to their analog
frequency values by

fy =
fs

8760
=

ky fs

N

fw =
fs

168
=

kw fs

N

fd =
fs

24
=

kd fs

N
(6.3)

where fs = 1 sample/hr is the sampling frequency and N is the sample size in
hourly resolution. Next we take the IDFT of each component in (6.2) and obtain
the aggregated IDFT of (1) in the time domain:

xt [n] = xL[n]+ xM[n]+ xH[n] (6.4)

Each pattern can be used to characterize the behavior of load/wind power for
different purposes. Figure 6.1 shows the time domain decomposed components
of the total load power. Figure 6.2 shows the time domain decomposition of
the normalized wind power of 330 kW. Each decomposed signal is important for
different applications in power systems, e.g., predictions, scheduling, risk analysis,
and investment decisions.

The high-frequency signals for both wind power and load on Flores are used as
input data when we derive predictive models later in this chapter.
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Fig. 6.1 Low-, medium-, and high-frequency components of load power

6.3 Statistical Characterization of Load and Wind Power
Uncertainties

In this section, we obtain a statistical representation of uncertain data. Regression
analysis is used to determine parameters such as mean value and variance.
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Fig. 6.2 Low-, medium-, and high-frequency components of normalized wind power (turbine
capacity of 330 KW)

6.3.1 Statistical Representation of Load Power

The uncertainty associated with load power has always been one of the major
sources of uncertainty in conventional power systems. Given its importance, much
work has been done over the years to develop accurate predictive models of load
power. Here we derive for completeness a statistical representation of load power
and compare it later with a statistical representation of wind power. To start with,
in Fig. 6.3, the load duration curves for Flores MW demand are presented for four
seasons. The upper figure shows the hourly load duration curves for four different
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Fig. 6.3 Load duration curves for all four seasons of 2008

seasonal consumption levels, whereas the lower plot represents the annual 2008
demand. It appears that the greatest utilization of MW is from July to September,
while the lowest capacity utilization rate appears in winter and spring (January–
March, April–June).

Seasonal load variations affect planning decisions on different look-ahead time
horizons. Therefore, seasonal load representation is important when modeling load
uncertainty. Figure 6.4 shows both seasonal and total load histogram and plots.
Near-normal distribution of load is obtained for all seasons at different means and
variances.

6.3.1.1 Load Power Distribution Models

The empirical cumulative distribution function (CDF) for load power random vari-
able (RV) X is evaluated using n samples as a reference distribution for the load data.
Based on the above load statistical outcomes, the normal distribution of load power
is computed and compared with the reference empirical distribution. Moreover, we
add Weibull distribution in order to model the statistical characterization of load RV
and compare it with wind power RV. In general, the Weibull formula is constructed
using linear regression performed between X = ln(x) and, where x is the data (load
power RV), plotted on the horizontal axis, and the resulting CDF metric is on the
vertical axis, plotted on the vertical axis:
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Fig. 6.4 Seasonal and total MW load curves for 2008

Table 6.1 Linear regression Weibull parameters

Standard error Standard error
α β (intercept) (slope) R-square

4.3×10−29 9.01 0.073 0.096 93.6 %

Y = ln(− ln(1− F̂X(x))) (6.5)

The PDF parameters are related to linear regression slope m and Y -intercept C,
as follows:

β = slope = m

α = Exp(Intercept =C) (6.6)

The regression results are shown in Table 6.1 and the empirical, normal, and
Weibull CDFs are plotted in Fig. 6.5.

The multi-temporally decomposed load power signal distributions vary from the
aggregated load distribution in that each decomposed distribution model is filtered
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Table 6.2 Statistical mean
and standard deviation of
decomposed load signals

High Medium Low

μ (Kw) 102 105 1,365
σ (Kw) 73 67.3 62.2

to its corresponding frequency component and omits other frequency signals. For
example, the low-frequency load power signal accounts only for low-frequency
components and omits the medium and high frequencies altogether. Figure 6.6
shows decomposed signal distributions for low-, medium-, and high-frequency load
power signals. Table 6.2 shows the statistical mean and standard deviation of all
decomposed signal distributions.

6.3.2 Statistical Representation of Wind Power

The uncertainty of wind power is more volatile than that of load power; this is due
to the intermittent nature of wind speed and other meteorological factors. Thus, it
is likely to contribute most to the uncertainty of future energy systems. Figure 6.7
shows both seasonal and total wind power distributions. It can be stated that the
Weibull distribution function models the intermittent characteristics of wind power
fairly accurately and can account for long tails in the CDF.



6 Multi-scale Models for Decomposing Uncertainties in Load and Wind Power 181

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

Load (KW)

N
o.

 o
f O

cc
ur

an
ce

High
Decomposed

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

900

1000

Load (KW)

N
o.

 o
f O

cc
ur

an
ce

s 

Medium Decomposed

1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460
0

500

1000

1500

2000

2500

3000

3500

Load (KW)

N
o.

 o
f O

cc
ur

an
ce

s

Low Decomposed

a

c

b

Fig. 6.6 Histogram distribution of (a) high-, (b) medium-, and (c) low-frequency decomposed
load power signals

Table 6.3 Linear regression
Weibull parameters

Standard error Standard error
α β (intercept) (slope) R-square

0.0036 1.16 0.0134 0.003 82 %

6.3.2.1 Wind Power Distribution Models

The empirical, normal, and Weibull CDFs are constructed for wind power data
the same way the functions were constructed in Sect. 6.3.1.1 above. The Weibull
distribution parameters are obtained from linear regression using (6.5) and (6.6).

The regression results are shown in Table 6.3, and the empirical, normal, and
Weibull CDFs are plotted in Fig. 6.8.
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Fig. 6.8 Normal, empirical and Weibull cumulative distribution functions
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6.4 Multi-temporal Prediction Models of Load
and Wind Power

Section 6.4 takes the regression parameters for wind and load power and estimates a
short-term pattern that captures the uncertainties of the stochastic nature of the data
sources for different lookup time horizons 10 min, 1 h, and 24 h for both the load
demand and the wind power of Flores Island [10]. The predictions are evaluated in
the least square error sense, and deviations of the mean forecasting values from the
measured ones show the greater accuracy of load demand prediction outcomes over
wind power prediction outcomes.

In this section, the forecasts of wind and load power signals are used to derive
linear prediction models for the short, medium, and long term. The predictive
model uses distribution parameters, calculated in the above sections, with a linear
predictive coding (LPC) method explained below. The forecast outcomes and the
uncertainties associated with wind and load demand powers are also included.

We present a short-term linear prediction model that uses LPC, FIR, and IRR
filters [9]. About 50,000 normalized wind power and load demand data points for
2008 have been used in 10-min resolutions to obtain prediction coefficients in the
least square sense.

6.4.1 Linear Predictive Coding and Finite Impulse
Response Filters

For short-term load demand and normalized wind power data prediction purposes,
we use LPC, based on the autocorrelation method, to determine the coefficients
of a forward linear predictor. Prediction coefficients are calculated by minimizing
the prediction error in the least squares sense [11]. This method provides the LPC
predictor and its prediction error as follows:

x̂LPC(n) =−
N

∑
i=1

bix(n− i)

eN(n) = x(n)− x̂LPC(n) = x(n)+
N

∑
i=1

bix(n− i) (6.7)

where N is defined as the prediction order (using N past data samples) and the
coefficients {b1, . . . ,bN} are the fitting coefficients which minimize the mean square
(MS) prediction error signal. Yule-Walker (or normal) equations based on an
autocorrelation matrix have been used to compute those prediction coefficients [11].

Figure 6.9 shows how to obtain the output error signal using two equivalent
forms: (a) LPC prediction and subtraction, and (b) direct FIR filter design [9].
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6.4.2 Auto-regressive Model Prediction and Infinite Impulse
Response Filtering

A true stochastic signal can be obtained by multiplying the error signal EN(z)—if it
is known—by the inverse of the FIR filter B−1

N (z), which is now an all-pole IIR filter.
If the error signal is equivalent to white noise for large prediction order N, then the
z-multiplication (i.e., convolution or filtering in discrete time) now yields a signal
that is modeled as a Gaussian auto-regressive (AR) process. Figure 6.10 shows the
AR model block diagram, while the reproduced AR signal is obtained by rewriting
(6.7) in terms of error as

x(n) =−
N

∑
i=1

bi,Nx(n− i)+ eN(n) (6.8)

6.4.3 Linear Prediction Phases

More than 50,000 data samples collected at 10-min intervals have been used in this
short-term prediction. A time reference n = NS has been used which sets the end of
the known data and the start of prediction, where NS ≤ 50,000 and the remaining
samples can be used for tracking the algorithm.

A measurement reporting interval of L samples, and no error in the measurement
or the reporting process, have been assumed. At time epochs n = NS +mL, where
m is an integer, the L measurements x(n−L+1),x(n−L+2), . . .,x(n) are reported
and will be available to use at the next epoch, (NS +mL+ 1). Depending on L, we
have the following extreme cases:

L = 1 : → point estimator case
L = ∞ : → time series case, i.e., no estimation at all
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n
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Training phase / LPC

Update
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Known
data

AR prediction Fig. 6.11 The two phases of
the prediction process

Two prediction phases are defined in our prediction algorithm and can be
summarized as follows:

1. Training phase: Within 0 ≤ n ≤ NS, we apply the LPC algorithm to the true sam-
ples x(0), . . . ,x(NS) in order to obtain the prediction coefficients {1,b1, . . . ,bN}.
Then we filter the same samples using the FIR coefficients {−b1, . . . ,−bN} to
compute the predictor x̂n and true prediction error eN(n) = x(n)− x̂(n)

2. Prediction phase: For n ≥ NS + 1, we apply the AR model of (6.8) after
computing the error estimate êN(n). We use the same prediction coefficients
obtained in the training phase if we are interested in short-term prediction, which
is so in our case. Otherwise, we have to update the coefficients for long-term
prediction.

Figure 6.11 shows the two phases of the prediction process.
In (6.8), we use the true past data at time (Ns). Ns − 1, . . . ,1 to calculate

a prediction for time Ns + 1. However, in the prediction phase, n > Ns, we do
not, according to our algorithm, have all the past data available except at the
measurement update time epochs given by n = Ns +mL, where m is an integer.
At these time epochs, the previous L samples (Ns +mL− 1,Ns +mL− 2, . . . ,Ns +
(m− 1)L) have been already measured and will become available for update. The
value of L can vary from L = 1 (single-point estimator) to L = 6 (1-h estimation) to
L = 144 (24 h estimation). If L goes to infinity, this means no estimation or update
at all.

Now, at other time epochs, n 
= Ns +mL, there will be a number of missing
measurements less than L and more than Ns. At those times we use predicted
samples from the past instead of measurements.

x(n) in (6.8) represents the true past data. Therefore, in this algorithm, we define
another representative signal that contains both the true past data and its updates.
This signal is named reference signal xREF(n), which takes into account the available
measurements at update times (n = Ns +mL) as well as the past predicted samples
at other times (n 
=Ns+mL), to calculate the overall predicted data; this is explained
in the equation below.

In this equation, xREF(n) will be continuously updated in the prediction algorithm

x̂(n) =−
N

∑
i=1

bi,NxREF(n− i)+ eN(n) (6.9)
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where x̂(n) is the predicted signal using either IIR filtering or AR recursion, and
eN(n) is the true prediction error, known if and only if x(n) and x̂(n) are known:

e(n) = x̂(n)− x(n) (6.10)

We formulate the predictor using reference signal xREF(n) and it can be updated
according to the following equation:

If n 
= Ns +mL → xREF(n) = x̂AR

If n = Ns +mL → [xREF(n−L+ 1),xREF(n−L+ 2), . . .,xREF(n)]
= [x(n−L+ 1),x(n−L+ 2), . . .,x(n)]

The following flowchart explains the algorithm steps taken for prediction.

6.4.4 The Resulting Prediction Model for Flores

6.4.4.1 Load Power

An auto-regressive (AR) model prediction, (6.8), has been applied in order to derive
a load prediction model (Fig. 6.12). The model uses the first 6 months of 2008 data
in the training phase to generate the error signal to be used in the 2008 prediction
phase. Figure 6.13 shows 10-min look-ahead load forecasting signals for the month
of January.
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10-Min Load Prediction Model

By subtracting the actual 10-min signal for 1 year and the 10 min predicted signal
based on the LPC formula in (6.8), we obtain the 10-min error for 1 year. Shown in
Fig. 6.14a are the deviations of the actual signals from the predicted signals and the
mean and variance of the true errors e(n) = x̂(n)− x(n) defined in (6.10).

In Fig. 6.14a, it can be seen that the 10 min error can be represented accurately
as a normal distribution, E(t)∼ N(μ ,σ).

The coefficients bi,Nx(n− i) in the LPC-based formula given in (6.8) for 10 min
predictions are shown in Fig. 6.15a. As shown in Fig. 6.11, N is 26,352, which is
half the 10 min data points in 1 year. Half of the available data is used for training,
namely, for deriving coefficients bi,Nx(n− i) for i = 1, . . . ,N; the other half of the
data is used to predict and derive the error in order to check the accuracy of the
model.

Following the method in Sect. 6.4.3 above, the coefficients for the LPC-based
formula are obtained and shown in Table 6.4.
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Fig. 6.14 Resulting prediction coefficients for (a) high-, (b) medium-, (c) low-, and (d) total-
frequency component load power signal

Table 6.4 LPC-based 10 min prediction coefficients

Prediction coefficients b1,N b2,N b3,N b4,N b5,N b6,N

High freq.
bH

i,N −0.96 0.004 0.6 −0.58 0.005 0.45
Medium freq.
bM

i,N −1.66 0.5 0.15 0.026 0 0
Low freq.
bL

i,N −1 0 0 0 0 0
Total signal
bT

i,N −1 0 0.42 −0.42 0 0.2

Therefore, it can be seen that the short-term predicted signal can be
approximated as

P̂H
L (Ns + 10 min) = 0.96PH

L (Ns)− 0.004PH
L (Ns − 10 min)

−0.6PH
L (Ns − 2× 10 min)+ 0.58PH

L (Ns − 3× 10 min)

−0.005PH
L (Ns − 4× 10 min)− 0.45PH

L (Ns − 5× 10 min)+ êH(10 min) (6.11)
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Fig. 6.15 Prediction algorithm flow chart

where P̂H
L is the estimated highly decomposed load power signal. Also, ê(10 min) =

e(10 min−Ns) is the estimated error and we assume that it is the same e(10 min−
Ns) true error calculated in the training phase. Other methods of estimating the error
can be used, including the Gaussian model and the error differential between the
past two samples.

Note that the formula in (6.11) is obtained only using the fast component of the
decomposed signal.

However, if the 10-min LPC-based prediction is done using only the medium-
frequency decomposed model, the coefficients obtained in (6.8) become bM

1,N =
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−1.6 and bM
2,N = 0.5. Only two sufficient coefficients are needed for fairly accurate

prediction of a medium load signal. Therefore, the formula becomes

P̂M
L (Ns + 10 min) = 1.6PM

L (Ns)− 0.5PM
L (Ns − 10 min)+ êM(10 min) (6.12)

Similarly, a fairly accurate prediction of low decomposed signal is presented as
follows:

P̂L
L (Ns + 10 min) = 1PL

L (Ns)+ êL(10 min) (6.13)

where P̂L
L is the estimated low frequency component load signal. Equation 6.13

shows the low component of a load decomposed load power model. Only one
prediction coefficient is needed for accurate prediction of the slow load power trend.
Shown in Fig. 6.15b, c are the medium- and low-frequency coefficients used in the
above formula.

Shown in Fig. 6.15d are the coefficients obtained for predicting actual 10-min
data signals for the aggregated load power.

Here again, to predict the actual signal accurately, it becomes necessary to have
a higher number of coefficients which results in the following formula:

P̂T
L (Ns +10 min) = 1PT

L (Ns)−0.42PT
L (Ns −2×10 min)

+0.42PT
L (Ns −3×10 min)−0.2PM

L (Ns −5×10 min)+ êT(10 min)

(6.14)

where P̂T
L is the estimated aggregate load signal.

It can be concluded that if only medium- and/or low-frequency fluctuations in the
actual signal are important for a particular operating function in system operations,
then the 10 min predictive model can be represented using only two coefficients in
the LPC formula.

Hourly and Day-Ahead Load Prediction Models

Using a similar approach to the one described above, hourly load prediction is
evaluated at every hour time epoch where the data is available to predict. The hourly
prediction model starts at time n = Ns +L, and it continues for L = 6 samples until
another measurement update becomes available at n = Ns +(m+ 1)L. For short-
term prediction, we use the same prediction coefficients, b1, . . . ,bN throughout the
whole prediction phase. Referring to (6.9), the hourly prediction model becomes a
single-point predictor because measurements are available. Equation (6.15) defines
the hourly prediction model for high-frequency decomposed signal:

P̂H
L (Ns + 60 min) = 0.96PH

L (Ns + 50 min)− 0.004PH
L (Ns + 40 min)

+0.6PH
L (Ns + 30 min)− 0.58PH

L (Ns + 20 min)

−0.005PH
L (Ns + 10 min)− 0.45PH

L (Ns)+ êH(60 min) (6.15)
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Fig. 6.16 Normalized values of actual wind power and 10-min and 1-h look-ahead forecasts for
January 16, 2008

A similar example can be made for L = 144 (24 h) or a general form can be
depicted in a flowchart as shown above.

Figure 6.14 shows three look ahead time horizon forecasting results, 10 min,
1 h, and 24 h. On the LHS of the plot, actual and predicted MW loads and their
associated root mean square errors (RMSE) are presented. On the RHS of the plot,
error distribution/histograms with means and standard deviations are presented.

Error distributions for longer look-ahead time forecast show more disturbance
from normal distribution and longer tails. This is expected without updating
forecasting signal to include new available measured values.

6.4.4.2 Multi-scale Decomposed Prediction Coefficients

The prediction parameters, b, used in the Auto-regressive prediction model of (6.8)
and (6.9) are sometimes called autocorrelation parameters; in the auto-regressive
equation (6.8) prediction parameters are obtained from solving Yule-Walker equa-
tions or autocorrelation matrix. Figure 6.16 shows predictive coefficients for low,
medium, high, and total load frequency components signals. Volatility in prediction
coefficients for high decomposed load power is due to the variation between actual
and estimated load signals, and it goes less volatile and loses information when
variances between actual and estimated signals narrowed.
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6.4.4.3 Wind Power

We apply the AR prediction model to a normalized wind power signal on Flores.
Figure 6.16 shows actual, 10-min, and 1-h look-ahead forecasting signals for
January 16, 2008. An overestimation of normalized values dominates the under-
estimation.

However, in Fig. 6.17, normalized wind power forecasting for different look-
ahead time horizons differs in the values assigned to each horizon. This is due to
the seasonal trends of wind power.

The same observation made above for Figs. 6.16 and 6.17 concerning the
utilization of wind power is shown in Fig. 6.18 for the July month and in Fig. 6.19
for October month.

10-Min Wind Prediction Model

Similarly to what we discussed above in Sect. 6.4.4.1 concerning the load prediction,
10-min actual and predicted wind power signals are obtained, see Fig. 6.20, and
the error signal is calculated based on the LPC-based formula of (6.8). Shown in
Fig. 6.21a is the deviation of the actual signals from the predicted signals and the
mean and variance of the true errors e(n) = x̂(n)− x(n) defined in (6.10).
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Fig. 6.21 Resulting prediction coefficients for (a) high-, (b) medium-, (c) low-, and (d) total-
frequency component wind power signals

In Fig. 6.21a, likewise the normal distribution for 10-min load power model, the
10-min error distribution of wind power can be also represented accurately as a
normal distribution E(t)∼ N(μ ,σ).

The coefficients, bi,N(n− i) in the LPC-based formula given in (6.8) for 10-min
predictions are shown in Fig. 6.22. Following the method we used in Sect. 6.4.3
above, the coefficients for the LPC-based formula are obtained and are shown in
Table 6.5.

The short-term wind predicted signal obtained using only the fast component of
the decomposed signal can be approximated as

P̂H
W(Ns + 10 min) = 0.5PH

W(Ns)+ 0.11PH
W(Ns − 10 min)+ êH(10 min) (6.16)

where P̂H
W is the estimated high decomposed wind power signal. Also, as in the

previous sub-section, ê(10 min) = e(10 min − Ns) is the estimated error and we
assume it is the same true error calculated in the training phase while other methods
of estimating the 10-min LPC-based prediction model for decomposed coefficients
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Table 6.5 LPC-based 10-min prediction coefficients

Prediction coefficients b1,N b2,N b3,N b4,N b5,N b6,N

High freq.
bH

i,N −0.5 0.11 −0.05 −0.02 −0.03 −0.03
Medium freq.

bM
i,N −1.28 0.065 0.06 0.005 0.03 0.02

Low freq.
bL

i,N −1 0 0 0 0 0
Total signal

bT
i,N −0.72 −0.08 0.062 −0.02 −0.03 −0.004

at all frequencies are shown in Table 6.5. The dominant coefficients are shown to be
the first 2 coefficients that can sufficiently represent the wind power short prediction
model for all frequency component signals, whereas in the load prediction model,
more coefficients are needed to represent the prediction. Therefore, the medium-
frequency prediction formula becomes

P̂M
W (Ns + 10 min) = 1.28PM

W(Ns)− 0.065PM
W(Ns − 10 min)+ êM(10 min) (6.17)

Similarly, a fairly accurate prediction of a low decomposed signal requires the
following representation:

P̂L
W(Ns + 10 min) = 1PL

W(Ns)+ êH(10 min) (6.18)

where P̂L
W is the estimated low-frequency component load signal. Only one predic-

tion coefficient is needed for an accurate prediction of the slow wind power trend.
Shown in Fig. 6.22b, c are the medium and low frequency coefficients used in the
above formula.

Shown in Fig. 6.22d are the coefficients obtained for predicting the actual 10 min
data signals for actual 2008 wind power.

The prediction model for the actual wind power signal is given as

P̂T
W(Ns + 10 min) = 0.72PT

W(Ns)+ 0.08PT
W(Ns − 2× 10 min)+ êT(10 min) (6.19)

where P̂T
W is the estimated aggregate wind signal. The second term of (6.19) can

be neglected, and therefore, the short-term prediction model for aggregated wind
power can be calculated using the first prediction term plus the error term. This
special model of wind power is the basic introduction of the Markov model, where
the next wind signal value is dependent on the value just before it.

It can be concluded that the 10-min predictive model can be represented using
only two coefficients in the LPC formula.
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Hourly and Day-Ahead Wind Prediction Models

Using similar prediction approach described for hourly load prediction is evaluated
every hour time epoch for wind power prediction. Equation (6.20) defines the hourly
prediction model for high-frequency decomposed signals:

P̂H
W(Ns +60 min) = 0.5PH

W(Ns +50 min)+0.11PH
W(Ns +40 min)+ êH(60 min) (6.20)

A similar example can be made for L = 144 (24 h).
In Fig. 6.21, error distributions for different look-ahead time forecasts are shown

with more disturbances from normal distribution and longer tails for the longer day-
ahead prediction model.

6.4.4.4 Multi-scale Decomposed Prediction Coefficients

The prediction parameters, b, have been calculated by applying in the same way
the auto-regressive equation (6.8) to both wind power and load power. Figure 6.22
shows the predictive coefficients for low, medium and high load frequency compo-
nent load power signals. The prediction coefficients for all decomposed wind power
signals have their highest weights in their first values and drop to zero afterwards.
The prediction coefficient values for the most recent decomposed signals ensure the
Markovian properties that wind power exhibits [9].

6.4.5 Wind and Load Power Forecast Accuracies

The above forecast results for normalized wind and load power are discussed in
units of MW for load power and per unit values for normalized wind power (range
from 0 to 1). In order to compare the forecast outcomes between the two sources of
uncertainties, one metric is to apply the percentage deviation of mean value to both
signals, defined as:

Δ μ = 100× μpx − μ̂px

μpx
(6.21)

where μpx is the mean value of x power (load or normalized wind), Table 6.6.
The deviation of the actual measured values from the mean values of the

forecasted load power is considered negligible compared to the deviation of the
actual normalized values from the forecasted wind. This is understandable, as the
stochastic nature of wind power, and wind power’s volatility over time, is considered
a challenging source of uncertainty while load power follows a homogeneous
predictable pattern over time.
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Fig. 6.22 Predicted vs. actual normalized wind power for (a) 10-min, (b) 1-h, and (c) 24-h look-
ahead time forecasts

Table 6.6 Percentage mean
deviation for different
look-ahead time horizon
forecasts

10 min 1 h 24 h

Δ μPl(%) −0.0139 0.0523 −9.0170
Δ μPw(%) 27.52 62.36 97.8

6.5 Discrete Markov Model

In this section, a Markov model for load and wind power signals is presented. Based
on the results of the forecasting model discussed in the previous section, it has been
shown that both the load demand and wind power, at time t, depend on the previous
value, t−1, for the Markovian model to take place. For that, a quantization process is
carried out to optimize the time step between different state levels for both stochastic
signals. Also, the state and transition probability matrices are evaluated using actual
wind and load data. The transition probabilities show smooth transitions between
the states that point to clustering around the diagonal matrices.

Our previous work in [9] proves that wind power follows a Markovian model.
Here, we illustrate the model process and apply it to multi-scale wind and load
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Fig. 6.23 Forecast root mean square errors for 10-min, 1-h, and 24-h look-ahead time horizons
using 10 min, 1 h, and 24 h past load data

power data. The Markov model, which is defined as the likelihood of the next signal
value in state k, is conditioned on the most recent wind speed value in state m.
Equation (6.22) defines this likelihood—state relationship:

P(Xk = i|Xm = xm,xm−1, . . . ,X1 = j) = P(Xk = i|Xm = xm) (6.22)

The Markovian model is also applicable to load patterns. The value of PL(t + 1)
is conditioned on the value of PL(t). Figure 6.23 shows the RMSE of 10-min, 1-h,
and 24-h look-ahead forecasts using 10 min, 1 h, and 24 h past load power signals.

The least RMSE for all look-ahead load forecast signals is obtained using the
most recent load values. Both 10-min and 1-h look-ahead load forecast RMSEs
increase when using 1 h of recent data and then decrease with higher values than
when using only 10 min of recent data. For the 24-h look-ahead load forecast, the
RMSE goes high with the use of more recent data. This observation opposes the
concept of the accuracy of forecast outcomes increasing with an increase in the
amount of data history used, which is what happens with wind power. The only
explanation is that the distribution of load is less volatile than the distribution of
wind signal, and therefore, adding more data to the forecasting model only adds
noisy/unwanted signals and hence increases the chance of forecast error.

Given that both load and wind power signals follow the Markovian model, a
uniform midrise quantization process is carried out to identify state levels and
state values; this process discretizes the wind/load signals to state levels with
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optimum threshold or cutoff values. Next, we drive the algorithm used to obtain
the optimum value of quantization step (to both Weibull and normal distributions)
which minimizes the mean square quantization error (MSQE) [9].

6.5.1 Design of the Optimum Uniform Quantizer

We implement a midrise uniform quantizer that minimizes the MSQE given a
set of M states; we define X = [X1X2 . . .XM] as a state value vector, and Xt =
[Xt(1)Xt(2) . . .Xt(M− 1)] as a quantized threshold level or partition vector. X is the
original analog wind speed signal and xq is the quantized signal. The quantization
step Δ is defined as

Δ = Xm+1 −Xm = Xt(m+ 1)−Xt(m) (6.23)

The operation of the quantizer is as follows:

xq =

⎧⎨
⎩

X1 , x ≤ Xt(1)
XM , x ≤ Xt(1)
Xm , Xt(m− 1)< x ≤ Xt(m)

(6.24)

6.5.2 State and Transition Probabilities in a Discrete State
Space Markov Model

Given the initial and final boundaries of each state, state probabilities can now be
defined as

P(m) = Pr[xi(m)< x ≤ x f (m)]

= P[x(m)] =

∫ x f (m)

xi(m)
fX (x)dx

= FX(x f (m))−FX(xi(m)) (6.25)

where m = 1,2, . . . ,M, is the state index.
Transition probabilities are calculated based on the counting method discussed

in [12], in which we define:
Ntrans(k|m) ≡ the number of transitions from state m to state k in the time series,

where m is the originating state and k is the next state
Nstate(m)≡ the number of occurrences of state m in the time series signal

where both state and transition counters are related by (6.25) and the total size of
the time series is defined in (6.26).
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Fig. 6.24 Transition probabilities for (a) wind power, (b) load power

Nstate(m) =
M

∑
k=1

Ntrans(k|m) (6.26)

N =
M

∑
m=1

Nstate(m) =
M

∑
m=1

M

∑
k=1

Ntrans(k|m) (6.27)

Using the statistical counter values of Nstate(m) and Ntrans(k|m), the transition and
state probabilities can be statistically computed as

Ptrans(k|m) =
Ntrans(k|m)

Nstate(m)
(6.28)

where, K = 1, . . . ,M

Pstate(m) =
Nstate(m)

N
(6.29)

where, m = 1, . . . ,M. Note that (6.29) represents the statistical (actual) state
probabilities of wind speed signal while (6.24) represents the theoretical state
probabilities defined as normal probability density functions.

We choose 8 states (M = 8) in the Markov model representation of wind and
load power to represent state and transition probabilities within the time series of
the real stochastic data. Figure 6.24 shows the transition probabilities of the 8 states
for load power and wind power. The transitions from state m to state k in wind
power is larger than that of load; this is due to the variable nature of wind power.
Figure 6.24b also shows almost zero dominant transitions between the load power
states, while in Fig. 6.24a, the transitions between states appear more frequently but
are clustered around the diagonal. The probabilities of the 8 states are shown in
Fig. 6.25. The dominant state of wind power appears to be state 1 (Fig. 6.25a) while
the dominant state of load power appears to be state 4 (Fig. 6.25b).
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Fig. 6.25 State probabilities for (a) wind power and (b) load power

6.5.3 Decision Trees for Operation and Planning Models

The propose of this section is to help develop a multi-temporal risk approach by
analyzing short-, medium-, and long-trend risk approaches and uncertainty variables
associated with them. Here, we use the Markovian frequency decomposed model
to construct a decision tree that can be used in many different power system
applications, such as planning and expansion and ancillary services.

In tackling the planning problem, we are interested in the probability that a signal
will be in kth state Y time periods after being in the mth state [13]:

PY (m → k) = P[X(n+ y) = k|X(n) = m] (6.30)

Figure 6.26 shows a color map transition probability matrix for a decomposed
low-frequency load power of Flores Island. The transition from the current state
probability to its next state over time, (6.18), shows the differences in probability
over time.
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Fig. 6.26 Load power annual
state transition probability
plots for the years (a) 2008,
(b) 2009, and (c) 2010

Figure 6.27 shows the long-term uncertainties presented by the low-frequency
decomposed annual wind and load power transition probability/decision tree.
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Both wind and load power long-term transitional probabilities are calculated for
the 8 states; each power state has its own probability. For simplicity, in Fig. 6.26,
we only show the highest state probability (State 1) for the low decomposed wind
power signal.

For short-term uncertainty modeling, transition probabilities and decision tree
matrices are presented for Flores Island load and wind power as shown below.

Figure 6.28 shows 8 states of short-term Markovian state probability distribution
for both Flores Island wind and load power on an hourly basis.
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Decision trees for short-term applications in an electric power system are shown
in Figs. 6.29 and 6.30. For sketching simplicity, the Figures show the highest short-
term Markovian state power. For load power, an uncertainty tree is graphed for the
first power state; for wind power, the fourth power state decision tree is shown.

Probability theory law applies at each probability layer of the decision tree
(∑i Pi = 1). Due to long-term limiting probability theory, multistep probabilities vary
less and get saturated at values that depend on the time series and time steps used in
the Markovian model. The short-term and long-term uncertainties of wind and load
power are of importance to power planners and operators for short-term decisions
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such as spot market, economic dispatch, and unit commitment, and for long-term
decisions such as generation maintenance, scheduling, generation expansion, and
investments.

6.6 Concluding Remarks and Open Questions

It is very important to understand the sources of uncertainty in power systems. In this
chapter, we presented load and wind power uncertainty models by posing short-term
prediction models and Markov representations with associated state and transition
probabilities for them. Linear prediction with FIR and IIR filtering has been used
to predict load power and normalized wind power. The prediction results show
that a small prediction order based on the most recent data is sufficient for good
accuracy. The success of forecast outcomes between the two sources of uncertainties
has been illustrated with the concept of percentage deviation of mean value: the
difference between the forecasted load power and its actual measured values is
considered negligible compared to the difference between forecasted wind and its
actual normalized values. Next, Normal PDFs have been used to discretize the
signal for representation as a discrete Markov process for both load and normalized
wind powers. The state probabilities of the Markov process have been calculated
both statistically (by counting the time series data) and theoretically (by integrating
the modeled signal PDF). Load power transition probabilities show almost zero
values due to the less volatile nature of load signals, while wind power transition
probabilities show a higher rate of transition between states, reflecting the nature
of wind as a power source. Also, the computed transition probability matrix of
the Markov process is shown to be clustered around the diagonal, which indicates
the absence of frequent wind gusts/large load transitions in the time series used.
Decision trees for low decomposed wind power signals are plotted, and the multi-
stage transition probabilities are calculated for use in multi-scale risk analysis for
power system applications.
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Chapter 7
Look-Ahead Model-Predictive Generation
Dispatch Methods

Le Xie, Yingzhong Gu, and Marija Ilić

7.1 Mathematical Formulation of Different Dispatch
Methods

In this chapter, three different dispatch methods are tested and compared in Flores
island. They are (1) physically implementable static dispatch, (2) centralized look-
ahead dispatch, and (3) distributed look-ahead dispatch. The following notations are
used throughout the chapter:

G : Set of all available generators
Gf,Gs : Set of fast and slow conventional generators
Gw : Set of wind energy generators

L̂(k) : Expected demand at time step k
Ci(PGi) : Cost function of generator i
Si(PGi(k)) : Supply bid function of unit i

Pmin
Gi

,Pmax
Gi

: Minimum and maximum generation output

P̂min
Gw

, P̂max
Gw

: Expected minimum and maximum wind generation output at time

step k
Ri : Ramping rate of generator i, i ∈ G
K : Time steps in a look-ahead optimization period
λ (k) : Price of electricity at time step k

L. Xie (�) • Y. Gu
Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX 77843, USA
e-mail: lxie@ece.tamu.edu; gyzdmgqy@tamu.edu

M. Ilić
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Method 1: Physically Implementable Static Dispatch with Inelastic Demand:
In this formulation a simple static dispatch problem which is physically imple-
mentable is formulated as multistage optimization problem. Slow dispatchable
power plants such as hydro units are dispatched hour ahead for the predicted load
and predicted wind generation. This way, no explicit ramping rate exists, and only
security-constrained economic dispatch (SCED) is carried out. Consequently, intra-
hour, it becomes necessary to re-dispatch only fast-responding conventional units
(e.g., diesel generation) in order to balance supply and demand in response to
temporal deviations in wind and load. The mathematical formulation of Problem
1 is as follows:

At each hour H, solve the static economic dispatch problem

min
PG

∑
i∈G\Gw

(Ci(PGi(k))), (7.1)

s.t. ∑
i∈G\Gw

PGi(k) = L̂(k)− ˆPGw(k); (7.2)

Pmin
Gi

≤ PGi(k)≤ Pmax
Gi

, i ∈ G\Gw; (7.3)

The load and wind forecast are obtained from the data specified in Chap. 4. In
principle, the wind forecast function would be based on finite impulse response
filter-based models such as the methods specified in Chap. 6. The result of this

optimization is P∗
G(H) =

[
P∗

Gs
(H) P∗

Gf
(H)

]T
.

Then at each 10-min-interval k, the system operator updates the wind power
forecast and rerun optimization (7.1)–(7.3) assuming the slow generator units’
output stays the same within that hour.

Method 2: Centralized Look-Ahead Dispatch with Inelastic Demand

min
PG

K

∑
k=1

∑
i∈G

(Ci(PGi(k))), i ∈ G (7.4)

s.t.∑
i

PGi(k) = L̂(k), i ∈ G; (7.5)

P̂max
Gw

(k) = g j(P̂
max
Gw

(k− 1)); (7.6)

P̂min
Gw

(k)≤ PGw(k) ≤ P̂max
Gw

(k); (7.7)

Pmin
Gi

(k)≤ PGi(k)≤ Pmax
Gi

(k), i ∈ G\Gw; (7.8)

|PGi(k+ 1)−PGi(k)| ≤ Ri, i ∈ G (7.9)

Here instead of representing wind generation outputs as negative loads, the wind
generation outputs PGr(k) are considered as decision variables. A look-ahead mov-
ing horizon consisting of K samples is chosen over which all generation outputs are
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optimized. Intertemporal constraints such as ramping rates are explicitly modeled in
this formulation, therefore eliminating the need for a two-step optimization stated
above in Problem 1.

Method 3: Distributed Look-Ahead Dispatch with Inelastic Demand
For a given vector of prices λ̂ (k) defined as

[
λ̂ (k) · · · λ̂ (k+K− 1)

]
, each power

producer will solve a local look-ahead optimization problem with the objective of
maximizing its own profits in the next K time steps:

max
PGi (k)

k+K

∑
k+1

λ̂ (k)(PGi(k))− (Ci(PGi(k))) (7.10)

s.t. P̂max
Gi

(k) = gi(P̂
max
Gi

(k− 1)); (7.11)

P̂min
Gi

(k) = hi(P̂
min
Gi

(k− 1)); (7.12)

|PGi(k+ 1)−PGi(k)| ≤ Ri; and, (7.13)

P̂min
Gi

≤ PGi(k)≤ P̂max
Gi

(7.14)

The outcome of the above optimization procedure is vector of quantities sched-

uled PG
∗
i
(k) defined as

[
P∗

Gi
(k+ 1) P∗

Gi
(k+ 2) · · · P∗

Gi
(k+K)

]
. Then, by varying

the price uniformly up and down by x% generator obtains a set of optimal
points corresponding to these perturbed prices by resolving the above formulation.
These solutions are used to create a price sensitivity-based supply vector function
Si(PGi

(k)) around the assumed electricity price. All generators are required to
submit their supply functions to the system operator, and the market clears bids
which are the least generation cost bids needed to balance supply and demand at
time k. The system operator will then solve a static economic dispatch.

7.2 Simulation

7.2.1 Characterizing Different Generators

Generation equipment can be classified by characteristics of cost, physical dynam-
ics, and controllability. Cost of electrical generation can be broken into O&M costs
and capital costs. For unit commitment and economic dispatch, O&M costs are of
primary concern, while capital costs are more important during planning stages.
Diesel and fuel oil generators have nearly constant heat rates, giving a constant
marginal cost related to the price of fuel as estimated in Chap. 4 and shown below in
Tables 7.1 and 7.2. Relative cost is more important for generators that have very low
fuel costs such as wind power, hydropower, and geothermal. Due to the inertia of
rotating masses, throttle characteristics, existence of reservoirs, or communication
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Table 7.1 Aggregated generation parameters for Flores

Pgmax (MW) Pgmin (MW) Ramp rate (%/min) Marginal cost ($/MWh)

Diesel 2.2 0.18 100 261
Hydro 1.8 0 5.10 88
Wind 0.66 0 67 87

Table 7.2 Aggregated generation parameters for St. Miguel

Pgmax (MW) Pgmin (MW) Ramp rate (%/min) Marginal cost ($/MWh)

Oil 102.66 8.41 100 185
Hydro 5.03 0 5.10 87
Wind 30 0 67 88
Geothermal 27.8 0 50 28.1

systems utilized, generators can have different dynamic capabilities. This is of
importance when solving economic dispatch problems which require generators
to change output from one time step to the next. Hydropower and wind power
generators are believed to be able to generate power up to the amount allowed by
the wind or water resource. How fast generation output can change is discussed
thoroughly in Chap. 4 and shown below as the limiting ramp rates in Tables 7.1
and 7.2.

Controllability is also a key characteristic of generation resources. In Flores
Island, hydropower is controllable and may even have some storage capability. In
Sao Miguel island, geothermal and run-of-the-river hydropower generators are not
generally controllable, other than shutting down for maintenance. Wind power and
fossil fuel generators however can be dispatched such that the electric grid can be
balanced.

7.2.2 The Computation of Supply Bids

For the distributed look-ahead dispatch formulation as described in Problem
Formulation 3, all the generators solve 1-hour look-ahead optimization by
perturbing around the vector of expected price λ (k). The expected price λ (k) can be
obtained in day-ahead dispatch process (which, in this chapter, is obtained from the
physically implementable static dispatch). By varying the expected price uniformly
up and down by x%, all the generators calculate optimal points corresponding
to these perturbed prices by resolving the formulation in Problem 3. The typical
supply bid function for diesel, wind, and hydro units is represented in Figs. 7.1–7.6.
These supply curves provided at market participants’ level already internalize the
inter-temporal constraints such as ramping rates. Therefore, at the system operator
level, static economic dispatch results will be physically implementable results.
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Fig. 7.2 Representative supply bids from hydro generation on Flores island

7.2.3 Flores Island Simulation

Figures 7.7–7.18 represent the unit dispatch results in Flores island under the
aforementioned three dispatch methods. In particular, the physically implementable
dispatch (Method 1) results are compared and benchmarked with the results
presented in the previous chapter. Generation output from 4 representative days in
each season are displayed.

In the physically implementable static dispatch, wind generation is treated as
negative loads. Therefore, the wind generation is equal to whatever wind power that
is available. In the MPC based look-ahead dispatch however, the wind generation
becomes an active decision variable instead of an exogenous inputs in the dispatch.
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At times when the cost of using expensive diesel to follow the wind ramping
offsets the relative cost saving from wind generation, it is more economic to the
system to curtail the wind. In the static dispatch, the more expensive diesel unit
generation is dispatched at higher level compared with MPC dispatch. The slower
hydro unit, on the other hand, increases its output in the look-ahead dispatch because
the look-ahead window allows even slower units to follow the fluctuations from
wind and load. Compared with static dispatch which takes wind as negative load,
the MPC -based dispatch may reduce the cheapest wind generation. However, the
MPC dispatch will lead to an overall more economic total generation cost. Table 7.3
shows the daily economic dispatch results from these three dispatch methods. In
Flores island, compared with static economic dispatch methods, the cost savings
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of look-ahead dispatch is approximately 1%. The duality gap between centralized
look-ahead dispatch and the distributed look-ahead dispatch is approximately 0.3%
of the overall objective function. In other words, the look-ahead dispatch could
be implemented in both centralized approach and distributed approach without too
much performance degradation.

Sensitivity of Dispatch Cost Updating Rules of Distributed Look-Ahead Dispatch
We study the impact of different updating rules of distributed look-ahead dispatch
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on the dispatch cost. Whereas in the formulation of Method 3, the initial price vector
λ̂ (k) =

[
λ̂(k) · · · λ̂ (k+K − 1)

]
is assumed to be obtained from day-ahead market

clearing, and stay unchanged for the optimization within that day, there is possibility
of updating the initial price vector λ̂(k+ 1) for the next time step based on the
updated real-time market clearing price at k. Therefore, the initial price vector for
the next time step k+ 1 becomes:

λ̂ (k+ 1) =
[
λ (k+ 1) · · · λ̂(k+K)

]
(7.15)

where λ (k + 1) is the actual real-time market clearing price from the previous
10-min interval dispatch at the system operator level. The updated information
brings about more accurate price forecast for the next time step. In this simulation,



7 Look-Ahead Model-Predictive Generation Dispatch Methods 217

0 50 100 150
0

0.5

1

1.5

2

Time Steps (10 mins)

P
ow

er
 (

M
W

)

Demand
Diesel
Hydro
Wind

Fig. 7.9 Generation outputs
with dispatch Method 1 in
Flores on Jul 16

0 50 100 150
0

0.5

1

1.5

2

Time Steps (10 mins)

P
ow

er
 (

M
W

)

Demand
Diesel
Hydro
Wind

Fig. 7.10 Generation outputs
with dispatch Method 1 in
Flores on Oct 15

however, even if we update the price this way, the dispatch cost of Method 3 stays
the same with the last column of Table 7.3. This is likely due to the fact that there are
only three discretized price points possible in the island (the marginal costs of the
three units). When the system becomes larger, the set of possible clearing prices will
also increase. It would be likely that price updating rules may impact the economic
performance of the distributed look-ahead dispatch .

Sensitivity of Dispatch Cost Savings with Respect to Cost Parameters
We also study the impact of different generation cost parameters on the performance
of different dispatch methods. As specified in the Data Input chapter, we assume that
the short-run marginal cost of wind, hydro, and diesel units in Flores are 87$/MWh,
88$/MWh, and 261$/MWh, respectively. Given this set of marginal cost data, the
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relative economic saving of look-ahead dispatch compared with static dispatch is
approximately 1%. However, if the marginal cost of the wind, hydro, and diesel
units are changed to 5$/MWh, 9$/MWh, and 50$/MWh, respectively, then the
relative economic saving of look-ahead dispatch compared to static dispatch for
the same period of time becomes 20%. Namely, the relative cost difference of
various generating units will have significant impact on the economic performance
difference between static and look-ahead dispatches. This could be explained as
follows: given the same level of loads (loads assumed to be inelastic), the relative
cost saving from look-ahead dispatch is the result of shifting some of the generation
from more expensive units to the less expensive units. It is anticipated that with more
diverse groups of generating units which have broader range of marginal costs, the
potential economic saving from look-ahead dispatch is likely to be higher.
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Flores on Oct 15

7.2.4 St. Miguel Simulation

Figures 7.19–7.22 represent the unit dispatch results in St. Miguel island under the
aforementioned three dispatch methods. In contrast to the Flores island, the hydro
units in St. Miguel are assumed to be run-of-the-river type. In other words, the hydro
units also become non-dispatchable “negative loads.” Table 7.4 shows the daily cost
of economic dispatch under these three methods. For each of the 4 days, the dispatch
cost stays the same across all the three dispatch methods. This is due to the fact that
hydro units are run-of-the-river type, which are not dispatchable as in the case of
Flores. The only dispatchable units in the St. Miguel island are the diesel units.
Since both hydro and wind generation units are less expensive than the diesel units,



220 L. Xie et al.

0 50 100 150
0

0.5

1

1.5

2

Time Steps (10 mins)

P
ow

er
 (

M
W

)

Demand
Diesel
Hydro
Wind

Fig. 7.15 Generation outputs
with dispatch Method 3 in
Flores on Jan 16

0 50 100 150
0

0.5

1

1.5

2

Time Steps (10 mins)

P
ow

er
 (

M
W

)

Demand
Diesel
Hydro
Wind

Fig. 7.16 Generation outputs
with dispatch Method 3 in
Flores on Apr 16

the diesel units always serve as the marginal units in that system. In other words,
the dispatch results will stay unchanged due to the limited set of dispatchable units
in St. Miguel island.

7.3 Discussions and Summary

In this chapter different dispatch methods are tested in Flores and St. Miguel
islands assuming loads are inelastic. The value of incorporating near-term wind/load
forecast information is manifested in more cost-effective dispatch results. The cost
savings from advanced dispatch methods are heavily dependent on (1) the relative
generation cost difference of the power plants in the system and (2) the ramp
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Table 7.3 Daily dispatch
cost comparison ($) for Flores

Date Method 1 Method 2 Method 3

Jan 16 4,017.11 3,953.94 3,970.28
Apr 16 4,676.08 4,604.45 4,633.94
Jul 16 8,287.53 8,257.15 8,290.98
Oct 15 8,890.01 8,890.01 8,890.01

rate capabilities of different units. In Flores island, compared with static economic
dispatch methods , the cost savings of look-ahead dispatch is approximately 1%.
The duality gap between centralized look-ahead dispatch and the distributed look-
ahead dispatch is approximately 0.3% of the overall objective function. In other
words, the look-ahead dispatch could be implemented in both centralized approach
and distributed approach without too much performance degradation.
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Fig. 7.19 Generation outputs
in St. Miguel on Jan 16
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Fig. 7.20 Generation outputs
in St. Miguel on Apr 16

In the case of St. Miguel island, on the other hand, there is limited cost savings
from more advanced dispatch method. This is due to the fact that hydro units are
run-of-the-river type, which are not dispatchable as in the case of Flores. The only
dispatchable units in the St. Miguel island are the diesel units. Since both hydro and
wind generation units are less expensive than the diesel units, the diesel units always
serve as the marginal units in that system. In other words, the dispatch results will
stay unchanged due to the limited set of dispatchable units in St. Miguel island.

One major assumption of simulation in this chapter is that the loads are assumed
to be inelastic. When the loads are assumed to be flexible with respect to electricity
price, the potential cost savings from more advanced dispatch methods are expected
to be higher. In the next chapter we will discuss the economic cost savings when the
advanced dispatch methods are coupled with adaptive load management (ALM).
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Fig. 7.21 Generation outputs
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Fig. 7.22 Generation outputs
in St. Miguel on Oct 15

Table 7.4 Daily dispatch
cost comparison ($)
for St. Miguel

Date Method 1 Method 2 Method 3

Jan 16 122,149.27 122,149.27 122,149.27
Apr 16 99,451.98 99,451.98 99,451.98
Jul 16 114,124.32 114,124.32 114,124.32
Oct 15 168,017.17 168,017.17 168,017.17
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Chapter 8
Assessing the Ability of Different Types of Loads
to Participate in Adaptive Load Management

Jhi-Young Joo, Jonathan Donadee, and Marija Ilić

8.1 Introduction: Adaptive Load Management
for the Islands

Adaptive load management (ALM) is a new way to balance power supply and
demand that captures the economic value each market participant sees. It aims
to find the system optimum by iterating the information between various market
layers and adjusting their energy transactions accordingly [5]. The economic values
that ALM takes come not only from supply entities that are usually expressed as
bid functions but also from individual electric energy consumption demand. The
optimum or suboptimum where these different values clear is recognized as the
system price. Ideally, price is a signal of the system that tells where the system
is balanced, given different values that every entity of the system (i.e., end-users,
power-producing units, load aggregators) takes for energy transactions. In other
words, each entity of the system contributes to the clearing price by informing the
system what value it is willing to take for its own energy transaction. Once the price
is settled by considering all these values, each entity responds to the settled price by
adjusting its transaction quantity. For example, in the case of a generating unit, the
unit gives its bid functions to the system to tell how much it is willing to produce
at a certain price. The system/market operator takes all bid functions from every
participating generator and clears the market price. When the generators receive this
information about the market-clearing price, they adjust their production according
to the price and their bids. The same procedure takes place on the demand side as
well, with the demand functions telling the system how much each demand entity is
willing to pay for a certain amount of energy.
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Even though the power systems in the Azores islands are not operated by a
market mechanism and vertically integrated, the operational criteria come from the
cost of operating the generators. Also, while there are not any load aggregators
or mediators that represent the end-users’ value of electricity on the market, the
end-users do respond to the tariffs that their bills are based on. This implies
that even when the market is not explicitly run in the Azores’ systems, we can
capture the long-run or short-run costs of producing energy and the value of
consuming energy for the end-users, in order to optimize system operations and
planning.

To design the right demand response program for the islands, we explore various
ways of adjusting the demand to reduce the costs of installing or producing electric
energy in the systems in both the long and short run. Some types of demand can be
adjusted with respect to the cost or price of producing electricity, while others may
not be very flexible. The design process to utilize demand most efficiently on the
islands can be summarized in three steps.

The first step is to use more energy when electricity is abundant and available,
and to suppress consumption when it is not, in both the long run and short run. For
long-run optimization, we analyze the correlation between wind power and the loads
and explore the benefit of shifting the load according to the availability of wind.
For short-run operations, we give an hourly expected operational cost to responsive
loads as a price signal to help them adapt to the availability of power.

The second is to relate the uncertainty of the supply with the rate of response of
the demand. In order to operate volatile generation resources, such as wind power,
more efficiently in the short run, it is important for the suitable loads to obtain the
signal of supply availability (i.e., price) and respond to it within the right period
of time. For the loads that are less uncertain and can be shifted, such as loads that
operate particular machinery in a bakery or a factory, generation resources with
less volatility can be scheduled to supply their needs. Intermittent resources may be
more suitable for more flexible and uncertain loads that can respond quickly within
a certain range.

This brings us to the third step: to relate the physical characteristics of the loads
to the time interval of the system dynamics. The storage effect time constant, or
the period of time that the load can withhold its consumption without violating its
physical constraints, is crucial when designing the right demand response program
framework for a particular type of load. This also leads us to categorize loads with
respect to their own suitable time scales.

With all these ideas in mind, we try to find the right program and signal
for various types of demand. It is also important to note that within the ALM
framework, controlled demand should not compromise the end-users’ utility of
consuming energy. We also show this point in the demand response schemes that
we suggest and in the numerical examples.
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8.2 Characterizing Different Loads

8.2.1 Candidate Loads for Adaptive Load Management

In order to see a significant impact in terms of the magnitude of the demand
reduction or shift, we first investigate if the largest consumers in the system are
flexible at all and which of their loads can be controlled. Another way to have
effective demand control is to aggregate small flexible loads. We explain in more
detail later what types of loads should be used and scheduled at which points in
time over the course of the whole dispatch in the long and short terms.

We look at the types of loads on Flores and São Miguel and generalize the idea
of utilizing different types of loads on different dispatch time scales, or shifting the
loads in the longer term.

8.2.1.1 Flores

Since the climate is very mild throughout the islands, and there are not many
large business and commercial end-users on Flores, we explore the possibility
of aggregating small residential loads. A 2004 analysis of energy consumption
in the Azores attributes roughly 42 % of residential consumption to household
refrigerators [3]. Residential loads are a large part of the total energy consumption
on all the islands. We use ALM to model on Flores as price-responsive loads.

8.2.1.2 São Miguel

The largest end-users in São Miguel are mostly commercial or industrial: a large
shopping mall and a cement company with an electricity bill of around 50,000
Euros a month are among them. Shopping malls generally consume most of their
electricity on lighting and air-conditioning. While lighting is not so flexible in terms
of load adjustment since lights need to be consistently on during business hours, air-
conditioning is; the air-conditioning load can be adjusted as long as the people in
the mall feel comfortable with the temperature. There are also a few other industrial
end-users that have potential demand resources: a dairy farm that runs boilers and a
pig farm that runs biofuel plants using animal waste and sells the surplus electricity
to the EDA (Electricidade dos Açores; the utility company of the Azores).

Smaller end-users include small businesses and residential homes. Potential
demand resources of these users are air-conditioning, lighting and laundry loads
in hotels, and refrigeration loads in large grocery stores. An average three-star hotel
with 200 rooms and a grocery store both pay about 4,000 Euros a month. Residential
users have small appliances such as dehumidifiers and refrigerators. Since the
climate in the Azores is very moderate, the air-conditioning load, especially from
the residential sector, is not significant; only 2.4 % of residential houses have
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air-conditioning. However, due to the humid winters, about 30 % of residential
households use dehumidifiers at that time of year [6].

8.2.2 Which Loads to Use When

We note that there is no one fast solution that applies to every type of load
to be utilized as a demand resource. First, the different physical and economic
characteristics of the loads define the suitable time frame for the optimal demand
control frame. The physical characteristics of the loads to consider include storage
availability of any type (does the load have thermal/electric storage that can shift
its consumption?) and the storage time constant (how long can the load withhold
consumption?).

The economic characteristics of loads have more to do with the end-
users’ use of the loads, e.g., the temperature/humidity setpoints of the
air-conditioners/dehumidifiers, or the maximum/minimum energy consumption
limits that an end-user would allow or set for a certain appliance. This information
can be included in a demand function as price elasticity/sensitivity of demand by
calculating the optimal energy usage with respect to different prices. For example,
air-conditioning loads with different temperature deviation bands show different
price sensitivities of demand [5].

There are also various factors, such as regulations on emission or noise, business
hours, and labor laws, that can affect the controllability of the loads. All these
different factors determine which types of technology are suitable, and when and
how to schedule them for ALM. Then the questions are, what is the right framework
to include these various characteristics of demand, the individual objectives of better
operating the system, and the global objectives of minimizing cost and emissions,
and utilizing more renewable energy resources? Certainly there is no one-size-fits-
all solution for this. In this chapter, however, we attempt to answer this question by
examining the current tariff system in the Azores and proposing a new framework
for operating the system with flexible demand. The reason we examine the tariff
is because the price of electricity is what drives the end-users to adjust their
consumption behavior.

The bottom line of our approach is to apply different frameworks for demand
response according to the time intervals and time scales of different types of loads;
in other words, more deterministic, pre-programmable or schedulable loads (e.g.,
factory operation schedules, A/C, dehumidifiers) can be scheduled ahead of time
whenever the necessary information is available. This information includes not
only the demand side and its characteristics but also system conditions such as
wind power forecast. On the other hand, more unpredictable, volatile, and fast-
changing loads (e.g., refrigerators, dehumidifiers) can be adjusted in real-time if
there exists an adequate two-way communication infrastructure between the loads
and the system. However, we also understand that the only current framework in the
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islands to induce more demand response is the tariff that charges different prices
by season for different time blocks within a day (shown in Chap. 4), which can be
categorized as time-of-use (TOU) pricing.

8.2.3 End-Users’ Response to Current Tariff and Energy
Policies, and the Alternatives

End-users (especially large industrial users) are already responding to the current
TOU by (1) shifting their loads to cheaper time blocks, (e.g., a dairy company
running its boilers at night, even when it has to pay the labor force overtime) and (2)
installing more energy-efficient equipment (e.g., a big grocery store replacing light
bulbs in the refrigerators with LED lights). Also, in the Azores, intensive energy
consumers are required by law to reduce their energy consumption by 6 % in 6
years. In response to this longer time scale energy savings plan, large industrial end-
users are trying to curtail their energy bills. However, there are some end-users that
are not able to shift their loads, due to problems such as regulatory issues and/or
the characteristics of their loads. For example, a pig farm that also runs a cookie
manufacturing business cannot run its fodder production machines at night because
of noise regulations, even though electricity is cheaper at night. It can and does,
however, run cookie mills at night.

The current TOU system is shown in Fig. 4.41 in Chap. 4 for MT (medium
voltage level). It is not clear how the rate for each time block is calculated. The
system operators for the Azores simply take the end-user rates that the regulatory
body responsible for the whole Portuguese electric power system imposes. From
observing the rates shown in Fig. 4.41, it seems that the tariff is designed to suppress
demand during peak hours by imposing a higher rate. The time blocks also change
by season, reflecting the general seasonal operation conditions. However, it is not
clear whether this tariff is effective even in terms of the operational cost. The tariff
is applied across all the islands, and the system conditions and/or the generation
resource mix are quite different depending on the island. Therefore, it is not very
cost-efficient to impose a one-size-fits-all tariff on the Azores as a whole.

We suggest that this tariff can improve by deciding on the rates for every
season, month, the cost of the generation resources unique to each island, and
the information available on the system condition and the changing demand. This
information can include the availability of the generation resources, especially that
of wind and hydro, and the change in demand conditions, e.g., anticipated changes in
the manufacturing schedules of large industrial end-users. We call this tariff “better
time-of-use (TOU)” pricing.

The accuracy or credibility of wind power forecasts can differ significantly in
different time frames, especially if the system aims to operate on a large portion
of wind power that is dispatchable. Therefore, modifications in system operations
and planning are needed ahead of time with respect to the different predictions
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of how much wind power is available. This can be done on a seasonal, monthly,
weekly, and/or daily basis. The right signal that depends on available information
about system conditions along each of these different time lines, should be sent to
the flexible loads. The signals can be the expected value of the marginal cost of
system generation, local marginal prices, or prices that incorporate the availability
of renewable resources. The system operator should, in designing the signal, also
consider the general price responsiveness of the loads so that the responsive loads
can most efficiently respond to system conditions at different time scales.

The right signal for the responsive loads depends on the regulatory constraints
(market existence and price tariffs to the end-users), system operation conditions and
priorities (deploying more wind, reducing gas emissions, generation resource mix),
and the technology of the loads to be deployed (the response/communication rate
of the loads). In the case of the Azores where they do not have a real-time market,
a communication system/infrastructure between the loads and the wind availability
can be constructed to exploit more wind in real time and make the loads respond to
it promptly.

In order for ALM to work, the system operation/scheduling and the tariff designs
should consider the following: (1) the value of energy to the users, (2) the forecast
accuracy at different times and the dependency of designing the time line of
scheduling/operation on the forecast, and (3) the physical characteristics of the
loads.

Demand functions capture the information on how the users value their energy
usage [5]. A demand function characterizes the relationship between price and
demand and tells what the marginal demand is for a given price, or how much the
optimal willingness to pay is for an additional unit of a given level of demand. This
is an important piece of information that can be incorporated into system operations
in order to reflect the economic value of energy as seen from the demand side.

For forecast accuracy and the dependency of time lines on it, the current goals of
the Azores to include more renewable generation resources should heavily integrate
this information into system operations and optimization. For example, how much
wind should be scheduled before a season, a day ahead or an hour ahead will
determine how much of the generation and demand resources available can be
scheduled and dispatched at what point over the time horizon.

Finally, the physical characteristics of the loads should be determined in accor-
dance with the time scales and intervals of the scheduling of the resources. The
questions to consider include the following: how long is the storage time constant
of each load? How fast can it respond and communicate with the system or the price
signal? Can it be scheduled a day ahead? Can it be adjusted flexibly in real time?

These three factors in combination determine the optimal framework to incorpo-
rate demand and renewable resources as much and as efficient as possible.
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8.3 Types of Adaptive Load Management Frameworks
for Different Loads

The scheduling of the adaptive loads for ALM should be done in a way such that
the loads with higher uncertainty and the loads that cannot be well-predicted and
prescheduled pay for the corresponding cost of the risk to the system operation.
Loads that can be planned ahead with higher certainty should be scheduled in
advance so as to be met with lower-cost base generation. On the other hand, the
more volatile and uncertain loads are adjusted or simply met by generation resources
that are more expensive and fast ramping.

In accordance with this idea, we categorize the loads into several different groups
with respect to their physical characteristics and to the time lines. We give examples
of loads that can be scheduled in each of long and short time scales.

8.3.1 Better Time-of-Use (Long-Term Scheduling)

This section analyzes the potential for reduction in fossil fuel-supplied electric
energy by simply scheduling energy consumption over a long time horizon. In a
hypothetical scenario where 33 MW of wind power have been installed on São
Miguel, we quantify the possible benefits of some energy consumption being
moved from weekdays to weekends. The benefits of such a shift are analyzed
probabilistically because of the random nature of wind power. The factors that
influence the size of these benefits are also analyzed. It is proposed that energy
consumers and producers can negotiate an agreement on how to share the benefits
and risks of such a shift.

8.3.1.1 Motivating Load Shifting

Other parts of this monograph suggest that it is economical to install large amounts
of wind power in the Azores, even to the point where the sum of renewable energy
generation often exceeds the system load. To reduce the amount of fossil fuels
burned, energy consumption should be shifted to times when there is an excess
of renewable energy from times when it does not meet the total load. As shown
in Chap. 4, wind power shows steady daily and seasonal patterns on average,
but is highly variable over the course of any particular day. Without the use of
communication and control systems, it is difficult for energy consumers to react
to real-time wind power conditions and shift consumption times. Because of this
difficulty, we will investigate the use of long-term scheduling to reduce the amount
of wind power that goes unused or is “spilled” on average.

Chapter 4 shows that electricity demand is generally higher on the weekdays than
on the weekends, yet the day of the week does not affect wind power. This leads to
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a situation where the load exceeds the output of clean energy sources more often on
weekdays than on weekends. More importantly, essentially free wind power is more
likely to go unused on the weekends. Our method for estimating the average wind
power spilled on weekdays and weekends is described next.

Using historical generation dispatch data from São Miguel in 2008 and nor-
malized wind data scaled to a proposed capacity, we can calculate the amount of
wind power that would likely be spilled in each half hour of the year. The wind
power is scaled to represent a power output with an installed capacity of 33 MW. If
hydropower and geothermal power are assumed to be uncontrollable, then we only
need to compare wind power with fossil fuel power. The formula below calculates
the wind that would be spilled at each time step of the year:

max{WindPower−OilPower,0}. (8.1)

Based on this method, we find that an average of 42.75 MWh of wind power is
spilled per weekday, while an average of 53.82 MWh of wind power is spilled on
each weekend day. This indicates an opportunity to reduce the amount of fuel burned
and wind spilled by shifting consumption to the weekends. Next, we propose one
way that energy consumption might be rescheduled, and estimate how much this
would reduce the wind power spillage.

8.3.1.2 Investigation of Load Shifting

In this section we describe how load shifting can work in practice, propose a method
for quantifying the benefits of such a shift, and describe the results of our method
when applied to São Miguel.

When energy consumers shift their loads, they face an opportunity cost of not
behaving as they would have otherwise preferred. For example, workers at energy-
consuming companies may ask to be paid extra for working on Saturday while
taking Friday off because it breaks up their weekend. However, if it reduces the
amount of fuel that electricity suppliers must burn, there is savings that can be paid
out to shifting consumers. Energy suppliers and consumers can negotiate long-term
contracts outlining how much consumers are paid each month for their shifting.

Because future wind power and consumption both contain uncertainty, fuel
savings from shifting will have a number of possible outcomes. The negotiated
payment to consumers could be the actual fuel savings from shifting, or a smaller
but certain payment, depending on how much risk each party is willing to accept.
For these negotiations to succeed, the parties should be aware of the value of the
load shifting. The parties would most likely want to know the mean, variance, and
distribution of savings outcomes for each month. We now describe our method for
determining this information.

To quantify the benefits of shifting energy consumption from weekdays to
weekends, we need data sets of fossil fuel energy consumed under the baseline
and shifted load conditions. The 2008 load data described in Chap. 4 is used as the
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Fig. 8.1 Original and shifted fossil fuel generation for a Friday and Saturday

baseline load data. The baseline data is then altered to create a shifted consumption
data set. It is assumed that 5 different electricity-consuming firms each agree to
shift consumption from one weekday to Saturday every week. Each of the 5 firms
shifts load from a different weekday. The firms are assumed to have a constant
consumption of 1 MW between the hours of 9 a.m. and noon, and again from 1
p.m. until 6 p.m. The hours were chosen because they are typical working hours
and because one can see a dip in the weekday system load profile during the lunch
hour from noon to 1 p.m. For each weekday of the year, 1 MW is subtracted from
the load data during these hours. For each Saturday of the year, 5 MW of load is
added during these hours. The data sets are then modified to represent the energy
consumption supplied by fossil fuel. This is done by subtracting the hydropower,
geothermal, and biogas energy from the load data sets. The plots below show the
final electricity consumption supplied by fossil fuels over the course of a Friday
and Saturday. Figure 8.1 shows a plot of the baseline scenario and the shifted load
scenario.
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For our probabilistic analysis, we need an understanding of the dependences of
the wind and load data. Load and wind speed are both determined in large part by
weather patterns. This makes load or wind speed highly correlated with themselves
in the preceding and following days. However, over the time scale of a week, which
is the scale that weather systems can be thought to change on, the correlation dies
off. This means that we can consider single weeks of wind or load data as contiguous
observations, but that weeks of data are independent of each other. Also, it is hard
to think of a mechanism by which wind speed would strongly affect the load at any
single point in time more than other predictors such as temperature or time of day.
Therefore, we can also consider load and wind speed as independent of each other.
This allows us to use the wind data from multiple years and increase the number of
observations used in the estimation procedure. One of the largest determinants of
both load and wind is the season of the year, as shown in Chap. 4. Therefore, we
need to quantify the savings separately for each month of the year.

The data we use for the estimation consists of the baseline and shifted load fossil
fuel energy use, as well as the wind power data, from the years 2008, 2007, and
2004. The normalized wind power data described in Chap. 4 is multiplied by 33 to
scale it to the proposed installed capacity of 33 MW. All of the data is split into
weeklong observations, starting at 12:00 midnight each Sunday. A week of data is
associated with the month in which its Sunday lies. This gives us between 3 and 5
weeks of fossil fuel energy and between 9 and 15 weeks of wind for each month.

For each month of the year, we estimate the fuel savings per week by shifting the
load. For each weeklong observation of fossil fuel energy use, we loop through all
the observations of wind power from the same month and subtract the wind power
from the fossil fuel energy. At each time step, the maximum of this difference or
zero is the amount of fossil fuel energy that would still be required if 33 MW of
wind power generation had been installed on the island. This is done for both the
baseline and shifted load scenarios. The residual fossil fuel energy in the shifted
load scenario is subtracted from that of the baseline scenario. This value is summed
over all the time steps in the week to obtain an observation of the weekly fossil fuel
energy savings from shifting. Histograms of the resulting savings observations are
shown below in Fig. 8.2. These histograms show the distribution of possible savings
outcomes for each month.

All of the histograms, except for April, have dominant modes near zero. None of
the histograms show instances where Oil Power increases by more than 10 MWh,
but some months have multiple instances of reductions of greater than 35 MWh.

The mean and standard deviation of the weekly savings are calculated for each
month and shown in Table 8.1. The far right column of Table 8.1 titled Mean hourly
benefit per firm is calculated by multiplying the mean fossil fuel energy savings
by the cost of oil generation on São Miguel as calculated in Chap. 4, 185$/MWh,
dividing it among the five firms, and then dividing it by the number of hours in the
working day, 8. This is the average amount of money per hour that the electricity
supplier would be able to pay to each of the load shifting firms. Even for the
large positive values, this may or may not be an appealing offer, depending on the
preferences of the firm’s management and employees.



8 Assessing the Ability of Different Types of Loads to Participate in Adaptive . . . 235

−5 0 5 10 15 20 25
0

2

4

6

8

10

12

14

MWh of Oil Power Avoided per week
January

F
re

qu
en

cy
 (

W
ee

ks
)

Jan

−10 0 10 20 30 40
0

5

10

15

20

MWh of Oil Power Avoided per week
February

F
re

qu
en

cy
 (

W
ee

ks
)

Feb

−10 0 10 20 30 40
0

5

10

15

20

MWh of Oil Power Avoided per week
March

F
re

qu
en

cy
 (

W
ee

ks
)

Mar

−20 −10 0 10 20 30 40
0

2

4

6

8

10

12

MWh of Oil Power Avoided per week
April

F
re

qu
en

cy
 (

W
ee

ks
)

Apr

−10 0 10 20 30 40
0

5

10

15

MWh of Oil Power Avoided per week
May

F
re

qu
en

cy
 (

W
ee

ks
)

May

−10 −5 0 5 10 15 20
0

5

10

15

20

25

30

MWh of Oil Power Avoided per week
June

F
re

qu
en

cy
 (

W
ee

ks
)

Jun

a b

c d

e f

−5 0 5 10 15 20 25 30
0

10

20

30

40

50

MWh of Oil Power Avoided per week
July

F
re

qu
en

cy
 (

W
ee

ks
)

Jul

−10 −8 −6 −4 −2 0 2
0

10

20

30

40

50

60

MWh of Oil Power Avoided per week
August

F
re

qu
en

cy
 (

W
ee

ks
)

Augg h

Fig. 8.2 MWh of oil-generated energy avoided each month
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Fig. 8.2 (continued)

Table 8.1 The mean and standard deviation of the weekly savings for each month, 2008, on São
Miguel

Mean fossil fuel Standard deviation Mean hourly benefit
Month energy savings (MWh/week) of fuel savings (MWh/week) per firm ($/hour)

January 7.91 6.87 36.58
February 8.53 12.26 39.46
March 14.39 14.61 66.54
April 16.06 14.16 74.26
May 8.59 12.86 39.72
June 2.56 4.90 11.86
July 1.55 3.87 7.16
August −0.25 1.37 −1.18
September 3.91 5.93 18.1
October 6.68 11.53 30.91
November 5.87 8.47 27.13
December 0.23 7.56 1.05
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8.3.2 Day-Ahead Scheduling and Real-Time Adjustment

For day-ahead scheduling, the loads can submit one of two different types of
information to the system. First, some loads can inform the system of their
price-responsiveness. Deterministic or pre-programmable loads such as automated
machinery operations in a factory, or loads that have storage with a longer time
constant such as air-conditioning or water heating, can be grouped in this category.
With respect to the anticipated price that is either given by the system operator
or calculated by the end-user, the load aggregator, or the electricity distributor,
a demand function can be calculated based on this price information [5]. The
minimum and maximum energy consumption constraints should also be included
in addition to the price sensitivity information of the load sent to the system.

Another form of information that the loads can exchange with the system
operator for day-ahead scheduling is the energy minutes/hours. This is to notify
the system how many kilo or megawatts of energy the end-user plans to use each
hour on the following day. The loads that have a predetermined amount of energy
usage within a time interval are more suitable to give this information to the system.
The end-users with this type of load can notify the system operator the minimum
amount of energy that they must consume, which is an inelastic demand for the hour.
If the market mechanism develops, the end-users can also attach a price that they
are willing to pay for this demand and bid into the market.

Now, with the day-ahead scheduling done with the more certain and predictable
loads with the cheapest and schedulable generation resources, the demand should
still be met with the next least expensive supply of reserve in real time. The day-
ahead scheduled loads may or may not have contracts with hard constraints (e.g.,
a high penalty if the goal is not met). Regardless, there is always some degree of
uncertainty surrounding the predicted or prescheduled demand. Also, the scheduled
day-ahead demand may not be physically implementable by every scheduled load
in every hour.

The real-time adjustment of flexible loads should therefore have real-time
information exchange between the status of the loads and the system optimum. More
unpredictable loads, or loads that have storage with a shorter time constant than a
time interval of day-ahead scheduling (e.g., refrigerators), are suitable for this real-
time adjustment scheme. Price sensitivity with respect to the real-time price/signal,
such as wind availability, that reflects the status of the system should be sent to the
system operator from the loads. The minimum and maximum energy constraints
calculated from the current status of the load (e.g., the current temperature inside a
refrigerator or the current motor speed of a dryer) should also be communicated to
the system operator, so that the system dispatch of this adjustable load is within the
physical limits and the end-users’ preferences of the particular loads.
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8.3.2.1 Data Preparation for Dispatch with Price-Responsive Demand

Flores: Calculating the Demand Functions of Refrigerators

For the year of 2008, the total electric energy produced on Flores was 11.6 GWh.
The statistics of the system operator show that residential customers used roughly
4.5 GWh of energy. Knowing the percentage of residential consumption that is used
for refrigeration, we can calculate the annual energy consumption of household
refrigerators. Because refrigerators run constantly, we can divide the annual con-
sumption by the number of time steps to get the energy per unit of time. On Flores,
the estimated aggregate energy consumption of refrigerators is 35.7 kWh per 10 min,
or a constant load of 214.2 kW. Because the duty cycle of refrigerators is 50 % [1],
35.7 kWh represents the consumption when half of all the refrigerator compressors
on the island are running. Therefore, ALM assumes that the maximum amount of
energy that can be consumed in a 10-min period by price-responsive refrigerators
is double this number, or 71.4 kWh per 10 min. In terms of instantaneous power,
assuming constant consumption over the period, this is equivalent to a load of
428.4 kW.

For ALM-enabled refrigerators to participate in energy markets, a physical model
must be used to derive the demand functions for energy. First, we model the
temperature dynamics of an individual refrigerator. We assume a linear temperature
increase/decrease according to the on/off state of the compressor, within the
maximum and minimum temperature bounds [7]. We assume both the cooling and
warming time constants to be 20 min [1]. The minimum temperature bound is 3◦C,
and the maximum is 8◦C:

T (t) = Ti + at with

⎧⎨
⎩

a = acooling =
(Tmin−Tmax)

τcooling

a = awarming = (Tmax−Tmin)
τwarming

.
(8.2)

Based on the uncontrolled dynamics of the refrigerator’s temperature in 8.2 from
[4], we derive the temperature dynamics of the refrigerator with control allowed.
This yields

T (t1)−T (t0) = (t1 − t0)

{
60u

(t1 − t0)P
∗ ad +

(
1− 60u

(t1 − t0)P

)
∗ au

}
(8.3)

where t1 and t0 are the final and initial time points, T (·) is the temperature in the
refrigerator at a given time step, P is the power rating [kW] of the refrigerator, and
ad and au are the heat transfer rates [◦C/min] for the cooling and warming periods,
respectively. u is the electric energy input [kWh] within the time period.

Second, giving this temperature dynamic equation as a constraint and u in
the equation above as the control variable, we solve an optimization problem of
minimizing the total energy cost. The 10-min interval electricity prices of a day are
given as input, and the price is denoted as p in the following problem formulation:
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min
u

144

∑
k=1

p[k]u[k] (8.4)

subject to T [k+ 1] = T [k]+ 10

{
6u
P

∗ ad +

(
1− 6u

P

)
∗ au

}

Tmin ≤ T [k]≤ Tmax ∀k

umin ≤ u[k]≤ umax ∀k.

This optimization problem can be transformed into simple linear programming
with an equality constraint and minimum and maximum bounds. By solving this
optimization with respect to the given set of 144-by-1 vector p, we obtain an optimal
energy usage for the whole time horizon of the day.

Third, in order to obtain the price sensitivity of this individual refrigerator load,
we repeat the same optimization with respect to different price settings. We obtained
the different values of optimal energy usage at each time step by perturbing the
expected price given by ±10 % and ±20 %. This way, we have five different pairs
of price and demand at each time step. We interpolate, for each time step, these
five points of price and demand quantity to obtain a demand function, which is the
relation between the demand quantity and the price that the demand is willing to
pay. We assume a linear (first-order polynomial) demand function. The details for
calculating a demand function and the overall idea of ALM can be found in [5].

The price sensitivity of demand calculated this way corresponds to only a portion
of the whole system demand. Therefore, in order to include this in the economic
dispatch of the system, the demand sensitivities for an individual refrigerator were
scaled to coincide with the value of the total refrigeration load size, which was
214.2 kW according to our calculation.

The price sensitivities of a refrigeration load for a day were calculated with the
expected price at each time step of the day.

The resulting price sensitivities of demand on April 16, assuming two wind
turbines installed (with a total wind capacity of 0.66 MW), are shown in Fig. 8.3.
Demand function slopes indicate the level of the demand’s sensitivity with respect to
the price. Note that a higher value, or a value closer to zero, of the demand function
slope indicates a higher price sensitivity of demand, i.e., a more elastic demand with
respect to the price.

The overall tendency in this study is that a higher price induces the demand to be
more inelastic to price. Also, an interesting point to note is that at the time points
where there is an abrupt change in price level, such as at the first time step (0:00 a.m.
in Fig. 8.3) and around hour 18 (5:50 p.m. in Fig. 8.3), the demand was inelastic with
respect to the price. At Point 1, the optimal demand was fixed to be at its maximum
level, while at Point 2 the inelastic optimal demand was the minimum bound. This
shows that look-ahead optimization works with respect to the price and adjusts the
demand based on the price forthcoming. Demand functions at some representative
time points are plotted in Fig. 8.4.
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Fig. 8.3 Expected market price and the corresponding demand function slopes on April 16, 2008
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Fig. 8.4 Demand functions at 0 a.m., 0:30 a.m., 12 p.m., 5:50 p.m., and 9 p.m. on April 16, 2008

Flores: Calculating the Demand Functions of an Air-Conditioning Load
in a Shopping Mall

A large shopping mall recently opened on São Miguel. Since the climate of
the Azores is very moderate, as shown in Fig. 8.5, we find that there is little
air-conditioning usage there, except for perhaps big commercial buildings and
offices. Therefore, based on estimations of the physical parameters of the shopping
mall building, we simulated the air-conditioning usage of the shopping mall and
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attempted to prove how ALM can help move forward the efficient and clean use of
electric energy.

The detailed procedure is as follows: we first obtain the market price data from
the economic dispatch for the given day. Then we calculate the optimal energy usage
for 24 hour with respect to the price. Note that we optimize the energy usage based
on the whole 24-hour horizon instead of one interval at a time; we call this look-
ahead optimization. Besides calculating the optimal hourly energy usage, we also
calculate the price sensitivity of demand by obtaining the optimal energy usage with
respect to a slightly perturbed value from the expected price.

For the representative summer day of July 16, 2008, we first obtain the
operational cost of energy in 10-min intervals from the system. We take this as the
hourly price input of the optimization problem for controlling the air-conditioning
system inside the mall. We assume that the mall is open from 11 a.m. to 10 p.m.,
so the thermostat is set to be 21◦C during those hours. We also assume that for 1 h
both before and after business hours, the mall shop owners and staff will prepare for
opening or closing, so we set the temperature setpoints at 22◦C for those hours. We
assume that the initial temperature is 22◦C, and we set the last temperature setpoint
to go back to this initial state, too.

Since the weather temperature is close to the setpoints throughout the day,
and the inertia factor of the indoor temperature is large because of the vast
area of the mall, the largest heat sources are the lighting and people. Therefore,
we attempt to estimate the values of the heat sources first. The recommended
illumination for supermarkets is 750 lux or lumen/m2, and this intensity of light
will emit approximately 25 W of heat per meter squared, according to the following
equation:1

1All the equations and parameters regarding the heat sources and the temperature from them were
taken from The Engineering Toolbox (http://www.engineeringtoolbox.com).

http://www.engineeringtoolbox.com
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P = b/(ηeηrls) (8.5)

where

P : installed electric power (W/m2 floor area)
b: recommended light level (lux, lumen/m2)
ηe: light equipment efficiency
ηr: room lighting efficiency
ls: emitted light from the source (lumen/W).

The total land area of the shopping mall is estimated to be about 25,000 m2. Since
the mall has two stories, the total floor area is 50,000 m2, and the total emitted heat
is 1.25 MW.

The heat emitted from the people in the stores is estimated at 220 btu/hr per
person, which is equivalent to 4.795 joules/hr per person. Assuming there are about
300 persons in the mall at all business hours, the total heat that people emit will be
4.795 × 300 J/3,600 s= 0.4 W. This is negligible compared to the heat emitted from
the lighting; therefore, we only consider the heat from the lighting.

Since we have a dynamic equation of the temperature inside a building with a
heating/cooling system, we are interested in how much this heat will raise the indoor
temperature. The amount of heat needed to heat a subject from one temperature level
to another can be expressed as follows:

Q = cpm dT (8.6)

where
Q: amount of heat (kJ)
cp: specific heat (kJ/kg·K)
m: mass (kg)
dT : temperature difference between hot and cold sides (K).

In one hour, the heat from the lighting will emit 4,500 MJ. The volume of
the air in the shopping mall, assuming the height of the whole building (two-
story) is 30 m, is 25,000 m2× 30 m= 750,000 m3. The air density at 20◦C is
1.204 kg/m3, so the mass of the air in the mall is 903,000 kg. Applying these values
to the equation above, we have 4,500,000 kJ= 1 kJ/kg·K × 903,000 kg × dT , and
dT = (4,500/903)K= 4.98 K= 4.98◦C. Therefore, when the lights are on in the
shopping mall, the indoor temperature will rise by 4.98◦C in an hour, or 0.83◦C
in 10 min, without any temperature control.

Based on all these estimations and the temperature dynamics of the air-
conditioning system [2], the resulting indoor temperature dynamic equation
becomes
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T [k+ 1] = εT [k]+ (1− ε)(Tout[k]+ γu[k]) (8.7)

T [k]: the indoor temperature at hour k
Tout[k]: the outdoor temperature at hour k
u[k]: the electric energy usage of the air-conditioning system at hour k
ε: air inertia factor calculated to bee−τ/TC where τ is the time interval
and TC is the time constant (equal to the total thermal mass divided by the thermal
conductivity)
γ: steady-state temperature gain (− for cooling, + for heating)

during the closed hours, and +4.98 is added to the right-hand side for business hours
due to the heat emitted. The specific values of the parameters are calculated based
on [2]. The optimization of the whole time horizon of 24 h can be formulated as

min
u ∑

k∈open

{α p[k]u[k]+ (1−α)(T [k]−Tset[k])
2}+ ∑

k∈closed

α p[k]u[k] (8.8)

subject to T [k+ 1] = εT [k]+ (1− ε)(Tout[k]+ γu[k])+ 4.98 for k ∈ open hours

T [k+ 1] = εT [k]+ (1− ε)(Tout[k]+ γu[k]) for k ∈ closed hours

umin ≤ u[k]≤ umax∀k.

Note that the objective functions are different depending on the hours when the
desired temperature is set (open hours) or not (closed hours). Figure 8.6 shows the
difference in the calculated optimal energy usage between the look-ahead approach
and static optimization. Static optimization is defined here as adjusting the electric
energy usage according to the expected temperature only at the very next time
step. Static optimization is a more myopic temperature control than look-ahead
optimization, and does not include price information in its optimization. In this
Fig. 8.6, one can see that look-ahead optimization has a lower peak than the static
approach, and the energy usage during peak hours is shifted to the off-peak hours.
This is more obvious in Fig. 8.7. With look-ahead optimization, we can observe
that they pre-cool the air before business hours when the electricity price is cheaper
(Fig. 8.8). For this simulated day alone, the look-ahead approach cost 127 Euros less
than the static approach.

8.3.3 Direct Load Control

Direct load control is also an option to utilize flexible demand most efficiently.
Loads that can be interrupted on short notice and for a short period of time are good



244 J.-Y. Joo et al.

0 5 10 15 20 25
0

50

100

150

200

250

300

350

hour

kW
h

static
look−ahead

Fig. 8.6 Optimal energy usage with different optimization methods

0 5 10 15 20 25
16

17

18

19

20

21

22

23

hour

° C

static
look−ahead
setpoint

Fig. 8.7 Controlled indoor temperature with different optimization methods

candidates for this. On São Miguel, dehumidifiers fit this description. End-users
should notify the system operator about how much of their loads can be curtailed and
the maximum disconnection time allowed for the loads. Depending on the contract,
they may also want to specify how long in advance they would like to be notified
before any upcoming curtailment.

According to a report on the energy use of the residential users on São Miguel,
14.2 % of residential households on São Miguel have their dehumidifiers on most of
the time during the winter [6]. This means that the number of dehumidifiers running
in residential homes would be about 7,570. Since an average dehumidifier consumes
about 0.5 kW, the amount of power consumed by the dehumidifiers at a random
moment would be 3,785 kW. This is a substantial amount of power considering
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Table 8.2 Comparison of different tariffs

Tariff Description

Time-of-use Rates fixed within a season
Better time-of-use Better representation of seasonal or monthly changes

of generation and demand resources
Transitional tariff between the current one and the more advanced
and detailed day-ahead scheduling and real-time adjustment

Induce large loads to schedule to shift to lower-cost periods
Day-ahead scheduling Loads that can be scheduled a day ahead by quantity

(physical commitment)
or that can give information about price sensitivity
(financial contract)

Day-ahead scheduling Real-time two-way communication with the appliance and the +

Real-time adjustment system operation
Loads that can respond promptly within a time step of the real-
time operation

that the peak capacity in winter is about 60–70 MW. Assuming that turning off the
dehumidifiers for about 10 minutes will not discomfort end-users much, the system
operator can consider shaving small spikes of oil dispatch (shown in Fig. 7.19 in
Chap. 7), such as around 7:20 a.m., 10:30 a.m., 12:20 p.m., 2:00 p.m., 3:10 p.m.,
and 11:50 p.m. Turning off oil generators for 10 minutes five times each day can
save about 700 Euros a season.

8.4 Discussions and Summary

In this section, we attempted to select the right types of loads for demand response
on the islands of Flores and São Miguel. We recognize that there are many different
types of loads that are suitable for a certain framework of demand response with the
system dispatch or longer-term scheduling. Table 8.2 summarizes the overall view
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of the possible tariffs or dispatch frameworks and the corresponding loads that are
suitable for each of them.

Each of the demand response technologies has different costs and savings
associated with it. Real-time adjustment demand dispatch requires near real-time
communication and control devices on both the end-users’ and the system operator’s
premises, while the longer-term demand scheduling by better time-of-use may not
require any investment in sophisticated infrastructure. Therefore, in order to evaluate
fully the potentials of the demand response programs suggested, further research on
the trade-off between the investment costs and the benefit of each scheme should
follow this work.
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Chapter 9
Look-Ahead Model-Predictive Generation
and Demand Dispatch for Managing
Uncertainties

Jhi-Young Joo, Yingzhong Gu, Le Xie, Jonathan Donadee,
and Marija Ilić

9.1 Formulation of Dispatch with Price-Responsive Demand

In this chapter, we take the formulation of Problem 3—the distributed look-ahead
dispatch of Chap. 7—and modify it to fit elastic or price-responsive demand. Price-
responsive demand takes the anticipated price of electricity as the input for its
optimization over a time horizon. As we discussed in Chap. 8, the time horizon that
a certain load or end user oversees varies according to the physical characteristics
of the load and the needs and preferences for the use of electric energy. This section
discusses economic dispatch with price-responsive demand over the course of a day.

The sensitivity of demand to price is formulated as a demand function. The
demand functions of different loads are calculated with respect to their unique
physical dynamics and attributes as discussed in Chap. 8. Given these demand
functions, we can construct quadratic benefit functions that are analogous to the
quadratic cost functions of supply by integrating the demand functions [1]. The
following notations are used for the formulation:

G: set of all available generators

Gr: set of intermittent energy generators

Z: set of load zones

L̂z(k): expected demand at load zone z time step k
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M. Ilić et al. (eds.), Engineering IT-Enabled Sustainable Electricity Services,
Power Electronics and Power Systems 30, DOI 10.1007/978-0-387-09736-7 9,
© Springer Science+Business Media New York 2013

247

mailto:jjoo@andrew.cmu.edu; jdonadee@andrew.cmu.edu; milic@ece.cmu.edu
mailto:gyzdmgqy@gmail.com; lxie@ece.tamu.edu


248 J.-Y. Joo et al.

Ci(PGi): cost function of generator i

Bz(Lz(k)): benefit function of load z consuming Lz(k)

Pmin
Gi

,Pmax
Gi

: minimum and maximum output of generator i

P̂min
Gj

, P̂max
Gj

: expected minimum and maximum wind
generation output at time step k, j ∈ Gr

g j(P̂Gj ): forecast of available output for generator j

Ri: ramping rate of generator i, i ∈ G

K: number of time steps in the optimization period

F,Fmax: vector of line flows and their limits

min
PG,L

K

∑
k=1

(∑
i∈G

(Ci(PGi(k)))− ∑
z∈Z

(Bz(Lz(k)))) (9.1)

s.t.∑
i∈G

PGi(k) = ∑
z∈Z

Lz(k);

P̂max
Gj

(k) = g j(P̂
max
Gj

(k− 1)), j ∈ Gr;

P̂min
Gj

(k) = h j(P̂
min
Gj

(k− 1)), j ∈ Gr;

P̂min
Gj

(k)≤ PGj (k)≤ P̂max
Gj

(k), j ∈ Gr;

0 ≤ Lz(k),z ∈ Z;

Pmin
Gi

(k)≤ PGi(k)≤ Pmax
Gi

(k), i ∈ G\Gr;

|PGi(k+ 1)−PGi(k)| ≤ Ri, i ∈ G; and,

|F(k,P,L)| ≤ Fmax ∀k

We apply this economic dispatch with elastic demand to the price-responsive
loads that we calculated in Chap. 8 and compare the results. We apply this dispatch
to two different schemes, as explained in Chap. 8. Day-ahead scheduling resembles
the market clearance from markets in many operational regions in the USA.
End-users or load-serving entities (or power producers) submit their demand (or
supply) bid before the day of clearance. They optimize their bid with respect to an
anticipated price signal since the price is only determined after the market is cleared
with all the supply and demand bids. They calculate the demand/supply bids for the
next day at every time step; the interval of each time step is set by the system/market
operator.
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Fig. 9.1 The procedure of real-time adjustment with ALM[2]

Real-time adjustment is a more advanced demand response framework that
we propose be used in real-time energy operation. Assuming an adequate com-
munication infrastructure, and the control of small devices such as refrigerators
on the end-users’ premises, the end-users’ appliances and the system operator
communicate every time step in the real-time market (e.g., 5 or 10 min) to exchange
real-time price signals and the price sensitivity of the demand based on the current
physical status of the appliance. The procedure of real-time adjustment is shown in
Fig. 9.1.

9.2 Simulation

We discuss the simulation results of the dispatch with elastic loads for both Flores
and São Miguel. Both the day-ahead scheduling and real-time adjustment methods
are simulated and presented in this section. The simulations were conducted for each
island, with different candidate loads for ALM that were determined in Chap. 8. The
time interval for all the simulations is 10 min, and optimization is done for a day or
24 hours.
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9.2.1 Dispatch with Refrigerators on Flores

Calculating the demand functions as shown in Chap. 8, we calculate the optimal
dispatch for four seasonally representative days in 2008. As in the generation
dispatch of the Flores system, described in Chap. 7, the power supply sources on
Flores consist of diesel, hydro, and wind power generators. The same marginal costs
were used for these simulations, too.

9.2.1.1 Day-Ahead Scheduling

The algorithm of day-ahead scheduling is identical to what is shown in Chap. 7,
except that now we have an additional unit “elastic demand” also bidding into the
system. The procedure of getting the demand bids was explained in Chap. 8, and the
system dispatch formulation is shown in Sect. 9.1. In the simulations for the Flores
system with the refrigerator loads, we assume that the aggregate refrigeration load
acts as one large refrigerator. In other words, we do not include an algorithm that
aggregates multiple refrigerators with different temperature statuses. The results
of the system dispatch with this algorithm are shown for the four seasonally
representative days in Figs. 9.2–9.5.

Issues with day-ahead scheduling

The dispatch results for day-ahead scheduling do not keep track of the physical
state of the elastic load at each time step, and thus the cleared dispatch can be
physically infeasible. The bids that are submitted by market participants are based
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on expected price, but cannot be forecast by the amount of energy to be consumed.
The bid curves are highly dependent on the current state of a market participant.
If the state of a participant deviates from the state calculated ahead of the actual
consumption, then the current and future bid functions are not guaranteed to be
feasible or representative of the current price sensitivity. The first instance where the
market clears at something other than the expected price will cause this deviation.

Using the day-ahead scheduling described above and the model of ALM-enabled
refrigerators described in Chap. 8 results in the violation of temperature bounds
for the price-responsive refrigerator. Figures 9.2–9.5 show the generation dispatch
resulting from using this day-ahead scheduling algorithm. The price-responsive load
consumes less than in the inelastic case at nearly all the time steps, as shown by the
gap between the stacked generation output and the baseline load. Figure 9.6 shows
how the modeled temperature state of ALM-enabled refrigerators would evolve
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if operated according to the dispatch results. The refrigerator temperature model
should only be considered valid within a reasonable proximity to the minimum and
maximum temperature bounds, so one should disregard the resulting temperature
evolution after the maximum temperature constraint has been violated. Still the
results clearly show that day-ahead scheduling dispatch results in an inadequate
amount of energy consumption to satisfy the temperature constraints. This pushes
one toward the use of the real-time adjustment algorithm where a new bid curve is
formulated at each time step using the current state of a market participant.

9.2.1.2 Real-Time Adjustment

In real-time adjustment dispatch, we overcome the problems of day-ahead schedul-
ing by making a loop between the elastic load dispatch and the physical dynamics
of the elastic load, i.e., the temperature of the refrigerator. At each time step, once
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the system operator clears the market, ALM uses the energy dispatched from the
system to calculate the temperature of the refrigerator at the next time step. Now the
demand bid function of the next time step will be calculated in the same way as the
system dispatch with day-ahead scheduling, but with a specific initial temperature
calculated from the systems dispatch to the price-responsive load. This process
is iterated at every time step so that the dispatched energy amount follows the
temperature dynamics of the refrigerator across the time horizon. Figures 9.7–9.10
show that the total amount of energy consumed over a day is close to the daily
consumption of the baseline load. Figure 9.11 shows the evolution of the refrigerator
temperature when using this real-time adjustment algorithm. We note that the
temperature is kept within the bounds of 3–8 ◦C in this real-time adjustment case.

9.2.2 Dispatch with an Air-Conditioning Load on São Miguel

We calculated the air-conditioning load in the shopping mall described in Chap. 8,
optimizing the load with the anticipated operational cost for July 16, 2008.
Compared to the total load, the air-conditioning load was insignificant in terms of
the magnitude. However, as shown in Chap. 8, if the price signal given to the end
user reflected the true cost of the system operations, then the savings from shifting
the load during peak hours to off-peak were considerable at least from the end user’s
perspective.

São Miguel has four different sources of generation: oil, hydro, wind, and
geothermal, as described in Chap. 7.
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9.2.2.1 Day-Ahead Scheduling

The generation and demand dispatch results of day-ahead scheduling are shown in
Fig. 9.12. As can be noted, the elastic demand is very small. The air-conditioning
load is separately plotted in Fig. 9.13.

As pointed out in the previous simulations for Flores, day-ahead scheduling
dispatch results can be infeasible for the load. Therefore, the resulting temperature
change in the mall is plotted in Fig. 9.14 assuming that the air-conditioning system
follows the day-ahead scheduling dispatch. As with the results from the day-ahead
scheduling on Flores, the results on São Miguel also turn out to be infeasible. This is
more obvious in a much warmer weather temperature setting, as shown in Fig. 9.15.
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9.2.2.2 Real-Time Adjustment

The algorithm for real-time adjustment on Flores was applied to the system on São
Miguel as well for the air-conditioning load in the mall. The resulting generation
and demand dispatch, the air-conditioning load, and the temperature change inside
the mall are shown in Figs. 9.16, 9.17, and 9.18, respectively. We note that with this
algorithm, the temperature inside the mall is kept close to the desired temperature
set points.
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9.3 Discussions and Summary

In this chapter, demand and generation dispatch on the islands of Flores and
São Miguel were presented. Two distinct algorithms for this dispatch day-ahead
scheduling and real-time adjustment were analyzed. By comparing the results of
these two methods, we conclude that timely information exchange between the
demand unit and the system operator is crucial for two reasons. First, the demand
can be adjusted within tolerable bounds due to accurate energy consumption limits
based on the current physical status of the load. Second, the system can guarantee
the commitment of the participating load by obtaining accurate energy consumption
limits and load flexibility.

This implies that a successful demand response program for greening a system
requires far more than simply getting more end users or loads enrolled. An adequate
communication and control infrastructure is crucial for both the end-users’ and the
system operator’s objectives. The time interval and the duration of the communi-
cation between the loads and the system must be well designed depending on the
types of loads.
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2. J.-Y. Joo, M. Ilić, Multi-temporal risk minimization of adaptive load management in electricity
spot markets, Innovative Smart Grid Technologies (ISGT Europe), 2nd IEEE PES International
Conference and Exhibition, December 2011, pp. 1–7, 5–7



Chapter 10
Counterexamples to Commonly Held
Assumptions on Unit Commitment and Market
Power Assessment

Wolfgang Gatterbauer and Marija Ilić

10.1 Centralized Versus Decentralized Unit
Commitment (UC)

This first subsection disproves the commonly held assumption that, in theory and
under the condition of perfect information, decentralized and centralized UC would
lead to the same power quantities traded and, hence, to the same optimal social
welfare [1]. We see that, even in the absence of any uncertainties, independent
optimization of the individual performance objectives by the decentralized market
participants can lead to lower efficiency than centralized minimization of total
operating cost.1

10.1.1 The Standard Argument: Centralized
UC is identical to Decentralized UC

Mathematically, a centralized economic dispatch is the problem of minimizing
the total generation cost, using the quantities produced by each of the possible
generators as decision variables such that total generation equals total demand QD

[1]. Using the variables Qi and Ci for the quantities produced and the cost incurred

1This result concerns short-term supply optimization for a given demand and does not consider
long-term investment issues.
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by generator i, respectively, and the variable n for the total number of available
generators, we can write the problem as

min
Q

n

∑
i=1

Ci(Qi) s.t.
n

∑
i=1

Qi = QD.

This basic version of an unconstrained economic dispatch remains indeterminate.
An economically motivated condition for solving this problem is the equal incre-
mental condition

δC1

δQ1
= . . .=

δCn

δQn
= λ .

The term λ is known as the short-run marginal cost (SRMC) and, at the optimum,
all unit marginal costs are equal to it. Using ui as a binary variable that determines
whether the generation unit i is turned on or off at a given moment, the basic
centralized unit commitment problem without start-up costs or minimum up/down
time constraints is

min
u,Q

n

∑
i=1

uiCi(Qi) s.t.
n

∑
i=1

Qi = QD.

Following the Lagrangian relaxation method, we first form the Lagrangian function

L(u,Q,λ ) =
n

∑
i=1

ui(Ci(Qi)−λ Qi)+λ QD.

By minimizing this last equation over Q, we obtain the conventional economic
dispatch equal incremental condition from above which permits us to solve for Q in
terms of λ , the system incremental cost. Rewriting the Lagrangian as

L(u,λ ) =
n

∑
i=1

ui(Ci(Qi(λ ))−λ Qi(λ ))+λ QD

and using the Lagrangian method to minimize L(u,λ ) with respect to u gives us the
switching curve law or the average cost rule

ui =

{
1 if Ci −λ Qi < 0

0 if Ci −λ Qi > 0,



10 Counterexamples to Commonly Held Assumptions on Unit Commitment . . . 263

that is, the unit i is turned on if the average cost Ci
Qi

< λ and off otherwise. Once on,
a conventional economic dispatch is used to adjust to demand changes if these are
monitored more frequently [1].

With competitive bilateral transactions taking place in a decentralized economic
dispatch and each party’s objective being the maximization of its individual profit,
the decentralized problem is

max
Qi

πi(Qi).

Here πi(Qi) = PQi −Ci(Qi) stands for the profit made by the market participant i
through some sort of trading process, given price P. Thus, under perfect conditions,
when the market converges to a single electricity price, one can maximize πi by
setting marginal cost equal to price:

δC1

δQ1
= . . .=

δCn

δQn
= P.

The process of bilateral decisions will stabilize P at the system-wide economic
equilibrium under a perfect information exchange among all market participants.
This result is simply obtained by each market participant optimizing its own profit
for the assumed exogenous market price P [1]. In the decentralized unit commitment
setting, all generator owners are assumed to be price takers in a competitive market
place. Each participant makes a unit commitment decision typically for each hour
one day ahead, before knowing the actual spot price. After the spot price of a
respective hour is known, the generator decides how much power to sell in order
to maximize profit. The only control for generator i is ui, whether to turn on or off
at a given hour. The expected generation level Q̂i may be regarded as a function
of the control ui and the expected price P̂. In the case of deterministic prices and
ignored start-up costs and must-run time constraints, a generator’s profit while
on is π̂i,on = P̂Q̂i −Ci(Q̂i). The generator will turn on only if π̂i,on > 0, which is

equivalent to Ci(Q̂i)

Q̂i
< P̂, which is exactly the average cost rule used for coordinated

unit commitment [1].
Based on this derivation, current teaching is that, under perfect market

assumptions and when neglecting start-up costs and intertemporal time constraints,
individual power producers would schedule the same power units in a decentralized
market as would a central system operator in a coordinated market. Thus, both
centralized and decentralized UC should lead to the same power quantities
traded, the same minimum operating cost, and, with given inelastic demand, to the
same total social welfare optimum. The performance objectives of the individual
market participants (to maximize profits) and the objective of a centralized
entity (to maximize social welfare by minimizing operating cost) would then
be equivalent [1].
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10.1.2 The Counterexample: The “Tragedy”
of Decentralized UC

We next prove that centralized and decentralized UC are, in general, not
economically equivalent. Under certain conditions, some generators would not self-
schedule to prevent loss; those units, however, would be scheduled by a PoolCo-type
market (or a “social planer”) to minimize overall operating cost and, in turn, would
receive fixed operating costs to prevent them from loss. These situations are missed
by the previous argument, as the average cost rule does not always lead to the total
social welfare optimum that a centralized operator strives for.

To prove this claim by example, we derive the strict conditions under which this
situation takes place in the case of two generators with quadratic operating cost
Ci(Qi) = aiQ2

i + biQi + ci. We consider only one particular hour for which demand
QD is given. In the case of inelastic demand, the total social welfare optimum is
attained by minimizing total operating cost. Without loss of generality, we consider
generator 2 to be the one that would not self-schedule in order to avoid loss when
bidding marginal costs. Three conditions must hold simultaneously in order to
produce the specific situation:

1. Generator 1 makes profit, independent of generator 2 participating during the
hour or not: C1(Q1)

Q1
< P.

2. Generator 2 incurs loss if it is scheduled and receives no extra payment:
C2(Q2)

Q2
> P.

3. The total cost for satisfying the given load is smaller if both generators operate
instead of only generator 1: C1(Q1)+C2(Q2)<C1(QD).

Performing some mathematical operations that are described in more detail in [2]
and [3], we obtain the following three conditions on the demand which, if fulfilled,
lead to different units scheduled and, hence, different economic outcomes from
either centralized or decentralized UC:

QD > Qminπ1 := max

⎡
⎣ (a1 + a2)

√
c1
a1
+ b1−b2

2

a2
,

√
c1

a1

⎤
⎦ ,

QD < Qmaxπ2 :=
(a1 + a2)

√
c2
a2
+ b2−b1

2

a1
,

QD > QminC :=

√
(a1 + a2)c2 +

b2−b1
2

a1
.

Table 10.1 and Fig. 10.1 provide an illustrative example with numbers and
graphs. Parameters for generator 2 stem from a best quadratic fit to heat rate data



10 Counterexamples to Commonly Held Assumptions on Unit Commitment . . . 265

Table 10.1 Example generator parameters (a), resulting demand conditions (b), and higher prices
and total operating cost with decentralized instead of centralized UC for example demand of 800
MW (c)

G1 G2

a [$/MW2/h] 0.0092 0.0026
b [$/MWh] 9.3 17
c [$/h] 1200 390

(a)

Qminπ1 [MW] 361
Qmaxπ2 [MW] 915
QminC [MW] 652

(b)

D.UC CUC
P [$] 24.02 18.55

G1 G1+G2 G1 G2

Qi [MW] 800 800 503 297
Ci [$/h] 14,528 13,874 8,197 5,677
πi [$/h] 4,688 963 1,123 -160

(c)
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Fig. 10.1 Situation with centralized UC leading to lower operating cost than decentralized UC:
Market supply functions (a), generator operating cost function (b), individual operating costs and
revenues following marginal cost bids (c), and total operating cost (d)
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of the thermal plant “Morro Bay 4” published in [4] and an assumed fuel price of 2
$/MBtu. The parameters were slightly changed for generator 1 in order to create a
sample situation.

10.1.3 Discussion

The literature gives several examples of cases in which individual objective func-
tions are not aligned with those of the overall social welfare. The most often cited
example was given by Hardin in The Tragedy of the Commons [5]. Another one is
Braess’ article on traffic networks [6] in which he gives an example in which drivers’
attempt to minimize their transit times leads to increased congestion and increased
traffic times for all participants. Braess’ paradox has become an important issue
in the context of queuing networks [7]. In power systems, however, the commonly
held assumption is still that, at least in theory, a centralized and a decentralized
UC should lead to the same power quantities traded and to the same optimal
social welfare. The performance objectives of the individual market participants are
considered equal to the one of minimizing total operating cost [1, 8, 9].

The important implication of the example given before is that, even in the
absence of load uncertainties and intertemporal constraints, decentralized UC does
not necessarily lead to the same maximized welfare as centralized decision making.
The reason is that, under certain circumstances, several generators can supply the
load at a lower overall cost than the subset of generators that would make positive
profits in a market setting if switched on during the hour.

In the Pennsylvania–New Jersey–Maryland and the New York electricity
markets, the ISO (Independent System Operator) offers a voluntary unit
commitment service, based on three-part bids, allowing generators to bid actual
operating costs more precisely and permitting a more efficient unit commitment.
Generators may also self-schedule their own units, but they may also allow the ISO
to determine the most economic unit commitment for their plants. Participating
generators are guaranteed recovery of their start-up and minimum generation
costs in the event they fail to recover these costs from the prices received in the
ISO-coordinated markets [10, 11]. This mechanism eliminates the uncertainty of
whether a generator will be committed only to lose money, and it allows for a more
efficient dispatch. The quadratic cost curve example shows how a PoolCo-type
market would work more efficiently than a power exchange (for which the one-part
bids result in some inefficiency).

It is important to note that the conclusions here focus on the short run, in that
they do not take into account the long-term motivational effects of a decentralized
commitment on investment decisions and the possible entry of new firms or gener-
ating plants. The literature gives several qualitative arguments why a decentralized
commitment process might be preferable despite the better overall efficiency of the
centralized process [11, 12].
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10.2 Marginal Cost Bidding and Market Power

This second subsection illustrates that a generator owner’s optimum bid sequence
for a centralized wholesale market under a decentralized UC regime is generally
above marginal cost even in the complete absence of market power. This result
challenges economic literature stating that market prices above marginal cost would
unambiguously indicate gaming and the abuse of market power.

10.2.1 An Illustrative Model

We will use a simple model to show how prices above marginal cost arise in a
decentralized UC scheme as a natural consequence of the decentralized decision
process and intertemporal constraints. We deploy the dynamic programming for-
mulation from [13] for calculating a generator’s optimal bidding strategy in the
presence of a price forecast with given standard variation. For simplification, we
consider a generator whose marginal operating cost is constant over the output
range: MC = b. The owner can offer electricity by submitting a bid to a centralized
market for each hour and is scheduled if the bid price turns out to be lower than or
equal to the market price. We neglect the case of the generator being the marginal
unit and scheduled for less than full output. Because of the constant marginal cost,
the most efficient way to operate the generator is to either produce full output QG

or nothing and to use a flat bid curve. In addition to variable costs, the generator
incurs fixed operating cost c for every hour of operation regardless of whether it
is producing electricity or not and also start-up cost cu and shutdown cost cd. As
intertemporal constraint, once the generator is switched on, it has to remain in that
state for at least 2 hours, during which it incurs the fixed operating cost. If the
generator gets scheduled for 1 hour but not for the other, it still incurs the fixed
operating cost c for the second hour as well. Hence, the generator has to internalize
these intricacies when it is bidding into an hourly market. The generator does not
know the market prices when bidding but has some knowledge about the probability
distribution of the prices, which are considered to be exogenous variables, not
influenced by the behavior of the generator.

We now consider the specific situation in which only 2 successive hours have
price distributions above MC (Fig. 10.2a). The problem of finding the optimal bids is
drastically simplified and can be solved in a closed form. In this special example, the
sum of the fixed costs can be united into one term total incurred fixed cost ctot = cu+
cd + 2c which will be incurred once the generator starts up. This aggregation does
not change the optimal strategy but simplifies the formulation. Fixed nonoperating
costs, such as sunk capital costs, which are incurred regardless of the generator
producing output or not during 1 h, do not affect the optimal decision and can be
disregarded. For the numerical calculation, we assume that prices can have only a
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Fig. 10.2 Marginal cost and hourly predicted prices for the next day (a) and assumed discrete
price distribution of two relevant hours (b)

limited number of discrete values during the two hours and are uncorrelated: Pk ∈
{P̂k − 2Δ , P̂k −Δ , P̂k, P̂k +Δ , P̂k + 2Δ} (Fig. 10.2b).

10.2.2 Profit Optimization in a Competitive Market

In order to find the optimal bidding sequence, the profits for all possible combina-
tions of bid heights have to be compared:

J = max
x1,x2

[J (x1,x2)]

with {(x1,x2) |(x1,x2) = (Pi,Pj)} and (Pi,Pj) being possible prices for the 2 hours.
In order to calculate the expected profit for the bid combinations, all possible price
outcomes have to be compared:

J (x1,x2) = ∑
Pi|Pi≥x1

∑
Pj |Pj≥x2

p(P1 = Pi)p(P2 = Pj) ((Pi +Pj − 2b)QG − c)

+ ∑
Pi|Pi≥x1

∑
Pj |Pj<x2

p(P1 = Pi)p(P2 = Pj) ((Pi − b)QG − c)

+ ∑
Pi|Pi<x1

∑
Pj |Pj≥x2

p(P1 = Pi)p(P2 = Pj) ((Pj − b)QG − c) .

Whereas finding the optimal bid sequence in our example is still possible, this task
becomes increasingly intractable when optimizing for more periods. The time for
calculation increases exponentially with the number of periods.

Table 10.2 shows an illustrative example. The optimum bids are not only higher
than the marginal cost but also higher than the average operating cost. In addition,
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Table 10.2 Example of optimal bids being above MC: Prices (a), generator cost (b), expected
profits for different bid sequences (c).

Price distributions
P̂1 60
P̂2 50
Δ 2
p(Pk = P̂k ±2Δ ) 0.19
p(Pk = P̂k ±Δ ) 0.16
p(Pk = P̂k) 0.30

(a)

Generator
MC 50
QG 1
c 4
cu 1
cd 1
ctot 10

(b)

Bid Sequence Exp. Profit
(58,52) or (60,54) 1.172
(58,54) 1.154
(56,50) or (56,52) 1.080
(60,56) or (62,56)
(60,52) 0.927

(c)

we see that the optimum bids vary between different hours and are dependent on the
assumed forecast prices and related price dynamics.

10.2.3 Discussion

Many of the recent papers on assumed market power abuse in deregulated elec-
tricity markets assume that market participants bid their true marginal costs in
a competitive market if no market power is exerted. However, in the context of
bidding decisions of power plants, which not only incur MC but also start-up
and shutdown costs and minimum commitment constraints, these assumptions are
not valid. Generators bid higher than MC, not because they can exercise market
power, but because of intertemporal constraints and uncertainties about prices of
consecutive hours.

The literature disagrees as to what exactly constitutes market power but generally
agrees that it has to do with actively raising the prices at which one is willing to
sell output (one’s price offer) above MC in order to change the market price [14]
(“If suppliers exercise market power, prices could be higher than marginal costs.”).
MC include both the variable costs due to fuel and the other variable operating
and maintenance costs. For example, [15] states that “The fundamental measure of
market power is the margin between price and the marginal cost of the highest cost
unit necessary to meet demand. (. . . ) if no firm were exercising market power, then
all units with marginal cost below the market price would be operating.”

In the formulation of this chapter, the power producer is modeled as a price taker.
He has assumptions about the probability distributions of prices for certain hours.
His bidding decision does not affect the prices and, hence he has no market power.
Nevertheless, his optimum bids deviate from MC. It is, therefore, not market power
that creates prices above MC but the necessity to incorporate start-up and shut-
down constraints in the presence of uncertain prices. The generator in the example
responds to the simple economic incentive of maximizing profits given uncertain
prices. As a result, the competitive price does not equal marginal cost at peak periods
under competition, and therefore simple price-cost margin studies cannot confirm
the exercise of market power. We thus conclude that above MC bids of generators



270 W. Gatterbauer and M. Ilić

do not necessarily indicate the exercise of market power. Especially in times when
prices are very volatile, generators have to bid above marginal costs in order to take
account of the possibility of being scheduled for one hour and not the following one.

10.3 Summary and Take-Aways

By adopting the perspective of an individual market participant in a decentralized
UC regime and simulating economically optimal behavior, we could draw the
following two conclusions:

1. Coordination Value: Decentralized UC does not lead to the same short-time
efficient economic outcome as centralized UC, even in the theoretical case of
perfect information. The non-obvious reason is that, under certain load and cost
conditions, the overall minimum operating cost to supply a given demand could
be achieved with some generators switched on which would not operate in a
completely decentralized market. The consequence of this observation does not
limit itself to electricity markets only, but can be considered a more general
situation where the performance objectives of the individual market participants
are not equal to the one of minimizing total production cost, quite analogous to
the Tragedy of the Commons.

2. Market Power: Above marginal costs in electricity markets are a necessary
consequence of the decentralized decision making under uncertainty and do not
necessarily indicate gaming in the presence of market power. The reason is that
generators face intertemporal time constraints not common in other industries.
As a consequence, and in contrast to economic teaching, price taking generators
have to bid above marginal cost in order to internalize the uncertainties of being
on but not selling any power into the market into their bids.

The results of this chapter were published in [2]. More details and an extended
optimization algorithm that also considers intertemporal correlation between price
forecast errors can be found in [3].
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Chapter 11
The Role of Electric Vehicles in Making Azores
Islands Green

R.A. Verzijlbergh, M.D. Ilić, and Z. Lukszo

11.1 Introduction

Environmental, as well as economical and geopolitical concerns, continue to drive
the transition to energy systems that are less dependent on fossil fuels. In the case
of islands or isolated communities, there are additional logistic challenges related
to importing all necessary fuels. The Portuguese islands the Azores are therefore an
interesting case to investigate an all green energy system. Next to this, the notion
of a green island is almost a metaphor for sustainable energy systems in general
because it touches upon the very essence of sustainable development: to be able
to meet one’s needs with the resources that nature provides. This idea will be the
guiding perspective of the research that is described in this chapter, which partially
builds on the work described in [1].

The focus of this chapter will be on Flores: with approximately 4,000 inhabitants
one of the smallest of the Azores island. The island does not have a large industrial
sector; so most of its fossil fuel use and related emissions are caused by electricity
generation and transport. The main fuel for both is diesel, since the island’s thermal
power plant is diesel powered and so is the majority of the cars. Hence, when
renewable energy sources are used for electricity generation and diesel powered cars
are replaced by electric vehicles (EVs), a significant reduction in emissions could
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be realized. In this chapter we will explore how intermittent renewable generation
and EVs have the potential to be a successful combination. The main idea is that
the EVs can adjust their energy needs to the availability of wind and solar power,
thereby reducing both the need for back-up diesel generation and the amount of
curtailed renewable energy.

This chapter is structured as follows: first the model of the system and description
of various relevant data are given. The results will focus on three different generation
scenarios and the comparison between the situation with and without controlled
charging of the EVs will be made. Our main objective criterion is the amount
of emitted CO2 in the various scenarios, but we invoke economic feasibility by
assessing the amounts of spilled energy too.

An important requirement for intelligent EV charging is the existence of an
IT infrastructure that makes active control of EVs possible. We will assume in
the remainder of this text that such an infrastructure is in place. Furthermore,
we emphasize that this chapter has a slightly different perspective than most
other chapters in this book. While most simulations described in previous and
later chapters are based on current system parameters, our focus is on future
situations with very high penetrations of renewables and EVs. Although we base our
simulations as much as possible on current system parameters and meteorological
data, we are inevitably making strong modeling assumptions about future wind and
solar generation as well as the penetration of EVs. Hence, this chapter should be
understood to investigate the potential of EVs in combination with high wind and
solar.

11.2 Simulation

11.2.1 Electricity Demand and Conventional Generation

The island of Flores is one of the smallest islands in the Azores, measuring 143km2.
Its 4,000 inhabitants are responsible for a peak load of about 2 MW (see [2] for
details of the electricity system of Flores). Electricity generation is done by a
thermal diesel plant (2.3 MW installed capacity), hydro (1.5 MW), and wind power
(0.6 MW). Typical demand and generation profiles are given in [2]. These profiles
show that the availability of hydro power depends strongly on the season: in winter
and spring there is much more hydro power available, due to the typical seasonal
precipitation trend that is present on the Azores.

In this study we are interested in large penetrations of renewable energy sources
and the effect of EVs as responsive demand to smoothen out fluctuations in
renewable generation. We will therefore model the “normal” demand (not from
EVs) as exogenous and we will subtract renewable generation from demand, to
obtain the residual demand which has to be met by diesel generation. We simplify
further to ignore ramping rates and start-up costs, so that the diesel generators
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Hydro

Diesel

Fig. 11.1 Dispatch
according to merit order. As
the residual demand changes
in time, the point moves
along the merit order

respond immediately when there is a shortage of renewable generation. Finally,
we ignore all constraints resulting from the network. The least cost centralized
economic dispatch then takes the following form:

minimize
PGi

∑
i∈G\Gr

Ci(PGi(k))

subject to ∑
i∈G\Gr

PGi(k) = ∑
z∈Z

Lz(k)− ∑
j∈Gr

PGj (k)
(11.1)

where PGi(k) denotes the output of generator i at discrete time step k, Ci the marginal
costs associated with the output level PGi , G the set of all generators, Gr the set of
all renewable generators, and Z the set of all loads z.

In the remainder of this chapter we will often consider the residual demand,
defined as

Q = ∑
z∈Z

Lz(k)− ∑
j∈Gr

PGj(k) (11.2)

According to (11.1) the plants are dispatched simply according to the merit order,
as Fig. 11.1 shows schematically. Figure 11.2 shows how this dispatch model works
out for the typical days in each season. The fact that we model the diesel generators
with infinite ramping rates and no start-up costs leads to the dispatch of very small
amounts of diesel generation. Most notably in the typical winter day, the difference
between the actual dispatch [2] and the modeled dispatch (Fig. 11.2) becomes clear.
Nevertheless, our simplified dispatch model resembles the actual dispatch quite
well. As can be seen in Fig. 11.2, we also assume that hydro power is adjustable
with an infinite ramping rate up to a maximum capacity that depends on the season.

11.2.2 Wind and Solar Generation

The availability of wind and solar power shows a similar strong seasonal depen-
dence, depicted in Fig. 11.3. This figure suggests that it could be beneficial to
supplement wind generation by solar, to overcome periods in summer with low
wind output. Some preliminary simulations have indeed confirmed that this is the
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Fig. 11.2 Electricity demand and modeled dispatch of different generation types on 4 typical days
in each season

Table 11.1 Sizes of installed
generation capacities in
different scenarios in MW

Generation scenario Wind Solar Hydro Diesel

Current generation mix 0.6 0 1.4 2.3
Moderate wind and solar 2.7 1.4 1.4 2.3
Maximum wind and solar 4.1 4.0 1.4 2.3

These numbers are for the case with 50% EVs. For the cases
with no EVs and 100%, the amount of installed wind and solar
are roughly 20% smaller and larger, respectively

case; so we will consider in the remainder of the text three generation scenarios,
listed in Table 11.1. As described in previous chapters, wind power has been
modeled based on meteorological time series of wind speed and where a model
of the Enercon E33 wind turbine combined with a logarithmic wind profile have
been used to convert wind speed measurements to wind power output (see also
[3–5]). The solar power output has been modeled in a simplified manner using
measurements of solar radiation on the island of Terceira [6,7], since data for Flores
were not readily available. All details regarding placement and orientation of PV
panels have been ignored, and the solar radiation time series have been converted
to solar power by normalizing the radiation series and multiplying by the installed
capacity. Hence, if e.g. the installed solar capacity is 2 MW, the maximum value
of the modeled solar power time series is also 2 MW. Furthermore, since no solar
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Fig. 11.3 Seasonal dependence of availability of renewable energy sources and demand

data from the year 2008 was readily available, we use the 2009 time series. By
doing so, we effectively ignore the correlation on the short time scales (hours to
days) between wind and solar. One could speculate that these would normally be
inversely correlated: in periods of high winds (often associated with low pressure
systems) there will be lower insolation than in periods with low winds (associated
with high pressure systems). This inverse correlation is also suggested by Fig. 11.3,
which shows this effect on the seasonal timescale. So although our model is clearly
a crude approximation of solar power production, one could argue that we even
underestimate the complementarity of solar and wind because in our simulations
the inverse correlation between wind and solar is not present. Summarizing, we
emphasize that it is not our intention to model solar generation in detail. Rather,
we are interested in finding out whether solar generation can play some role to
complement wind and hydro energy because of the seasonal trends in the availability
of these resources.

11.2.3 Transportation Data

Modeling the effect of EVs on the power system requires detailed knowledge
about driving patterns of the EVs. Since specific EV data are, given the still low
penetration of EVs, only very scarcely available, we will model the EV usage based
on current driving statistics of normal passenger cars. Driving behavior statistics
of the Azores were described in [8], but the specific data that are needed for
the EV charging model were, however, not readily available. We will therefore
use a dataset of Dutch driving behavior that is described in [9] based on [10]
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Fig. 11.4 Comparison of car arrival times at home between the Dutch data and the Azores (a) and
distribution of arrival times and daily driving distances in the Netherlands (b)

instead. A comparison between the arrival times of the Azores data set and the data
representing the Netherlands shows that the patterns are more or less similar, see
Fig. 11.4a. Moreover, the average daily driving distance of 34 km was equal between
the Netherlands and the Azores.

The distribution of home arrival times and daily driving distance of the dataset
that has been used is shown in Fig. 11.4b. Based on these data we have also
constructed the uncontrolled charging profiles that we use for comparison with the
controlled charging case. More details about the driving data and the uncontrolled
charging profiles can be found in [9].

11.2.4 Price Signal

The approach we take to model the behavior of the EVs assumes that there exists
a real-time price signal, since the EVs will base their charging schedule on the
expected price for electricity. This price should somehow reflect the marginal costs
of the marginal production unit. In a system with high penetrations of renewables,
this poses a problem due to the fact that many renewable energy technologies have
practically zero marginal cost. Furthermore, in a liberalized market environment,
generators recover their capital costs in a number of hours when the electricity price
is higher than their marginal generation costs. Important for capital cost recovery
of peak generators are thus the periods with high prices due to a (threatening)
shortage of generation with market prices approaching the price of non-served
energy. Alternatively, a system operator could pay a capacity payment when hours
with non-served energy are unacceptable.

While we recognize the complexity of how electricity prices emerge in various
electricity systems, in this study we are mostly interested in the role of EVs and
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therefore take a simplified and pragmatic approach to model the electricity price
based on a number of simple economic arguments. First we note that the price
should be related to the shortage of renewable generation (i.e., the residual demand:
demand minus baseload and renewable generation), since that has to be met by the
diesel generators. Furthermore, yearly average prices should be such that the capital
costs of the production units can be recovered. Also, somehow the cost of diesel
generators and the value of non-served energy should be reflected in the price.

Based on these arguments, we take a rather heuristic approach and model the
electricity price as exponentially depending on the residual demand, which in a way
mimics the merit order of power plants. Note that the shortage can be negative when
there is a surplus of generation. The price is then given by the following formula:

λ (t) = AebQ(t) (11.3)

with λ denoting the real-time electricity price and Q(t) the residual demand (or
shortage) as defined in (11.2).

The values of the constants A and b are thus related to capital costs of the
renewable energy technologies, the marginal costs of the diesel generators, and also
to the value of non-served energy. Another way of interpreting (11.3) is by seeing
it as a long run marginal cost (LRMC) curve. The LRMC of a certain technology
consists of both the marginal cost of generation and the capital costs which have
to be recovered in the expected number of hours that this generation technology
will be dispatched in its lifetime. A back-up diesel generator that is expected to
operate only a few hours per year therefore has much larger LRMC, although its
short run marginal costs may be similar to other diesel generators. According to
micro-economic theory, either in a centrally planned system or a perfect market, so
much generation capacity will be built that the LRMC of the next plant would be
higher than the value of non-served energy. It therefore makes sense to model the
real-time price based on the LRMC curve. Figure 11.5 shows this schematically,
with the value of non-served energy added to the merit order.

By curve fitting and some trial and error, it was found that values of A = 1 and
b = 5 produce electricity price profiles that fulfill the criteria outlined above. With
these values, the yearly average price equals the capital costs of a modern wind
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Fig. 11.6 Modeled electricity price in a typical summer period of 5 days

turbine. The latter depends again on many factors such as size, location, and capacity
factor, but here a rather conservative value of 100$/MWh is chosen [11]. As an
example the modeled electricity price for a period in summer is shown in Fig. 11.6.
Compared to typical wholesale electricity prices, these prices might appear quite
high, but it should be noted that this period has the highest prices of the whole year,
due to relatively high demand and low wind and hydro power output. The average
price in this year is around 100$/MWh. To place these prices into perspective it is
also good to recall that with diesel prices over $ 3 per Gallon (as of May 2011 [11]),
marginal costs of a typical diesel generator are in the range of 250–300 $/MWh.

11.2.5 Charging Model

This section will briefly describe the model used for the controlled charging of the
EVs. The description of the model is similar as presented in [1], but for better
readability we repeat most of the description here. An illustrative result for a
single EV is given to facilitate understanding of the functioning of the model. It
is emphasized that EVs base their optimal charging schedule based on anticipated
price, so we implicitly assume that accurate predictions of load, wind, and solar are
available. We do not take into account uncertainty in these predictions.

The optimal charging of an EV can conveniently be described using a discrete
time state-space model of the following form:

xk+1 = fk(xk,uk,wk), k = 0,1, . . . ,N − 1. (11.4)
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That is: the next state of state variable xk depends on the control uk and a disturbance
wk where the discrete-time horizon lies at k = N. For the problem at hand, x denotes
the battery state of charge (SOC), u denotes the charging power when the car is
plugged in and we model the discharge of the battery while driving as a disturbance
w without paying further attention to the details of the electro motor. Furthermore,
the charge efficiency is assumed to be one, so we are ignoring the losses associated
with charging. In [12] a round trip efficiency of over 95% is reported, which makes
the error we are making small.

With this assumption, (11.5) simply becomes:

xk+1 = xk + ukΔt −wk, k = 0,1, . . . ,N − 1. (11.5)

The task is to find the sequence of uk that minimizes the charge costs within
the constraints that are prescribed by the battery limits as well as the transportation
needs. In other words, this means that a driver can always make his planned trip.

The optimal charge schedule can be found by a deterministic dynamic pro-
gramming algorithm, see e.g. [13]. The algorithm can be described as a recursive
algorithm that starts with the cost of the final step and then proceeds backwards until
the optimal policy is found that minimizes the costs of the total trajectory. Following
[13], the algorithm is given by the following equations. Starting with the cost of the
final step:

JN(xN) = gN(xN) (11.6)

where g denotes the cost function. The cost of the intermediate steps (also known as
cost-to-go) is given by:

Jk(xk) = min
uk∈Uk(xk)

{gk(xk,uk,wk)+ Jk+1( fk(xk,uk,wk))}, k = 0,1, . . . ,N − 1

(11.7)
Then the cost of the last step J0(x0) denotes the optimal cost J∗(x0) and the policy
π∗ = {u∗0, . . . ,u

∗
N−1} where u∗k(xk) minimizes for each k and xk the cost of (11.7) is

optimal.
In our case, since we have a deterministic setup and we are optimizing over the

horizon of a whole year, this cost of the final step does not really affect the solution,
because an empty battery is not a permitted intermediate state anyway. A linear
function that assigns a cost to the final state of the battery according to:

gN =C(1− xN) (11.8)

with C any large enough number works well and ensures the battery is charged at
the final step.

The cost of the intermediate steps is given by:

gk(uk) =

{
λ (k)ukΔt if uk ≥ 0

(λ (k)−Cdegr)ukΔt if uk < 0
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Fig. 11.7 Electricity price, battery state evolution, and optimal policy for a single EV during a
period of 4 days with both low and high prices. Note that discharges due to driving are only visible
in the battery state and not in the control

These cost functions express that a car charges against the real-time electricity
price and gets paid the same price if it delivers back to the grid, but it does so
at the cost of degrading its battery. The battery degradation costs are assumed to
be constant here (not a function of discharge power or depth) and have a value of
$4.2ct/kWh served. This value was found experimentally as described in [12]. This
formulation also allows to easily incorporate other tariff structures where there is a
difference between consuming and supplying electricity to or from the grid.

Figure 11.7 shows for a single car the electricity price, the optimal control, and
the battery state as determined by the model. It can be seen that the model acts as a
sort of bang–bang controller, where the battery is charged/discharged at the power
limits when the prices are right. This is in line with the results described in [14],
where a more advanced battery model has been used.

Since our goal is to simulate the simultaneous effect of all EVs on the island,
the model is run for a large number of EVs where each car has its own technical
characteristics. Furthermore, each EV has its own driving characteristics (departure
time, arrival time, and daily driving distance), and we assume that each day of the
year it repeats the same driving cycle. The battery and charging characteristics also
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vary per EV and are sampled from a Gaussian distribution around the following
average values: Ebattery = 24kWh, Pmax = 3kW, and Pmin =−1kW with a standard
deviation of 10% of the average values. The EV efficiency is taken to be 5km/kWh.

Since the combined effect of a large number of EVs alters the electricity demand
substantially (in fact this is precisely what we are interested in: the effect on the
demand) and hence on the real-time price, we run the charging model sequentially
where for each car the new expected electricity price is recalculated based on the
change in demand of the previous car:

u∗(i+ 1) = f (λ (Q+u∗(i)), i = 1, . . . ,Ncars − 1 (11.9)

where the boldface notation is now used to indicate that a vector with values for all
time steps is used. In other words, this means that we do not model the EVs as price
takers. Figure 11.8 shows the aggregate demand of a number of EVs as modeled by
(11.9) and modeled as price takers. It is clear that the effect of the EVs on demand
and hence price cannot be ignored.



284 R.A. Verzijlbergh et al.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

R
es

id
ua

l D
em

an
d 

(M
W

)

without EVS

with EVs controlled

with EVs uncontrolled

100 101 102 103 104 105 0 2000 4000 6000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (Days) Hours

R
es

id
ua

l D
em

an
d 

(M
W

)

No EVs
EVs Uncontrolled
EVs Controlled

a b

Fig. 11.9 Residual demand in three scenarios for the moderate wind and solar scenario and 1,000
EVs in a 5-day spring period (a) and the load duration curves (b)

11.3 Results

11.3.1 Demand and Generation

As stated in the previous sections, the EVs will charge based on electricity price,
which in turn is depending on the residual demand. It is therefore instructive to first
show the effects of controlled EV charging on the residual demand which is to be
met by diesel generation. Figure 11.9a shows the residual demand in a typical spring
period for the controlled EV case, the uncontrolled EV case, and the case without
EVs. It can be seen that the EVs reduce the peak of residual demand and, more
markedly, they fill the periods with negative residual demand by absorbing much
more renewable energy generation. The effect for the whole year can be seen in
Fig. 11.9b where the load duration curves of residual demand are shown. Recalling
that positive residual demand has to be met by diesel, whereas negative residual
demand means spilled energy, these load duration curve clearly demonstrate the
positive effect of the EVs.

The dispatch of the different generation technologies is shown in Fig. 11.10 for
the typical spring period. Again, here it can clearly be seen that the EVs significantly
reduce the use of the diesel generators and profit more from renewable energy
generation if it is present. Another observation is that even in the situation with
controlled EVs, there is still spilled wind or solar energy at some hours, which is
not surprising considering the relatively large installed capacities of wind and solar
in comparison with the demand.

Next we consider the scenario with maximum wind and solar penetration
and a high number of EVs: 2,000. The residual demand profile for the typical
spring period is shown in Fig. 11.11a and the residual demand duration curve in
Fig. 11.11b.
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Fig. 11.12 Use of different generation types for a period in spring with 2,000 EVs in different
scenarios for the case with maximum wind and solar distribution

The residual demand curves show that there are now far more situations with
a surplus of renewable generation. Again, the EVs manage to absorb a significant
portion of this surplus. Nonetheless, an even larger share of renewable generation
has to be spilled. It is interesting to note that the maximum amount of diesel power
needed in the controlled EV scenario is even smaller than in the case with only
1,000 EVs. This is an important observation in regard to the amount of back-up
generation required in systems with high penetrations of renewable energy sources.
The total amount of diesel dispatched is significantly smaller too, which is as
expected since there is much more renewable generation. Figure 11.12 shows the
different generation technologies for the typical spring period. The amount of spilled
wind and solar is now significant, indicating that it becomes less efficient when more
capacity is already in place.
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Table 11.2 Total (electricity generation + vehicle emissions) yearly CO2 emissions in kton for
different scenarios

Vehicle scenario

Electricity All diesel 50%EVs 50%EVs 100%EVs 100%EVs
scenario ICE Uncont. Cont. Uncont. Cont.

Current generation mix 8.38 8.08 8.06 7.80 7.76
Moderate wind and solar 6.18 5.37 4.65 4.26 3.05
Aggressive wind and solar 5.52 4.42 3.29 3.13 1.29

11.3.2 Effects on Emissions

From the obtained time series of dispatched diesel generation, the CO2 emissions
can be calculated in a straightforward manner, assuming that the diesel generator
emits 0.7 ton/MWh [15]. We will compare the total emissions of the island under
different electricity generation and vehicle scenarios. Currently the fleet of roughly
2,000 passenger cars is mostly powered by an internal combustion engine (ICE)
fueled with diesel with a typical emission of 150 g/km [16]. Table 11.2 gives an
overview of the total emissions in the various scenarios.

The most important conclusion from this table is the large emission reduction
potential that EVs offer in combination with renewable generation. In the most
aggressive scenario, the total reduction of CO2 emission is more than 85% compared
to the current situation. In this scenario, the value of controlled charging is also the
most prominent: a reduction of more than 60% (from 3.13 to 1.29 kton), only due to
shifting the energy needs of the vehicles.

The table shows also that with the current generation mix (dominated by diesel),
replacing ICE diesel cars with EVs leads to only modest emission reductions. This
number is, however, quite sensitive for the typical values of the emissions of the
diesel generators and diesel cars that have been used here. If one would consider
the change in efficiency of diesel generators with respect to their optimal operating
point, there could possibly be more reductions with the current generation mix.

11.3.3 Optimal Wind and Solar Mix

It is instructive to compare the cost-effectiveness of investments in wind and solar
generation with respect to the emissions of CO2. By varying the amount of installed
wind and solar and running the model for the whole year for each combination,
the emissions as a function of installed wind and solar have been determined. To
take into account that wind has lower total levelized costs than solar [11], the extra
capacity of solar has been scaled according to the ratio of levelized costs, so that
one unit of capacity of wind has the same costs as one unit of capacity in solar.
In terms of MW, the maximum capacity value of 3 corresponds to roughly 4 MW
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Fig. 11.13 CO2 emissions as a function of installed wind and solar capacity in both the controlled
(a) and uncontrolled scenario (b). Also shown are the line of the optimal mix and lines of equal
investment. The units of wind and solar capacity are dimensionless and are such that the maximum
of 3 correspond to the maximum values listed in Table 11.1

(see Table 11.1) for both technologies. Figure 11.13a, b shows the resulting CO2

emission as a function of installed wind and solar capacity for the case with 1,000
EVs (controlled and uncontrolled).

Since one unit of wind has the same costs as one unit of solar, the lines given by
wind+ solar = Const. denote the lines of a certain investment. The values of wind
and solar where these lines are minimal then correspond to the optimal distribution
of a given amount of investment in new capacity.

So in both the uncontrolled and the controlled EV charging scenario, it is better
to invest in more wind capacity first. At some point, however, building more wind
leads to much more spilled generation and it is better to diversify the generation mix
by adding some solar, despite the fact that this is roughly two times more expensive.
An interesting observation is that the optimal mix depends on whether or not there
is controlled charging of EVs in place. In the controlled EV scenario, the EVs are
able to avoid spilling energy much longer, so here it is beneficial to build more of
the cheaper wind capacity. But even in this case, at some point it becomes more
beneficial to invest in extra solar instead of building more wind.

To understand the results on the cost-effectiveness of new wind and solar
generation, it is useful to invoke the amount of spilled renewable energy (hydro
has not been counted as such). Table 11.3 lists the amount of spilled renewables
in the different considered scenarios. It is important to notice that in the current
generation mix there is never any spilling of wind or solar, but this is partly a result
of the fact that we did not include start-up or ramping costs of diesel generators.
In practice, some diesel generators will probably be kept running while wind is
spilled, for reliability reasons and because the start-up costs will be higher than the
saved fuel costs. The table also shows that in the moderate wind and solar scenario,
the EVs are very effective to avoid spilling wind or solar. At some point though,
there is simply too much extra energy to absorb and the amount of spilled energy
starts to increase dramatically. Considering cost-effectiveness, it is good to compare
Table 11.3 with the levelized cost of wind, solar, and diesel. As stated before, with
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Table 11.3 Percentage of spilled renewable generation (wind + solar) for different scenarios

Vehicle scenario

Electricity 50% EVs 50% EVs 100% EVs 100% EVs
scenario No EVs Uncont. Cont. Uncont. Cont.

Current generation mix 0 0 0 0 0
Moderate wind and solar 28% 21% 10% 23% 8%
Aggressive wind and solar 49% 42% 30% 45% 29%

Recall that the amounts of installed renewables are larger in the case with 100% EVs by
approximately 20%

current diesel prices, the marginal costs of diesel generators are in the order of
250–300 $/MWh. In [11], levelized cost of wind and solar are roughly 100 and
200 $/MWh, respectively. This means that if 60% of all wind is spilled, it is still
cheaper than diesel generation. For solar this is the case if 20% is spilled. These
numbers strongly suggest that it does not only make sense to invest in wind and
solar from an environmental point of view, but also from an economical.

11.4 Conclusions and Discussion

The work described in this chapter has explored the potential of EVs in reducing
CO2 emissions on the island of Flores. The key to this potential is the fact that
a large fleet of EVs can adjust its demand based on the predicted availability of
wind and solar generation. This study has shown that the value of controlled EV
charging increases dramatically with the amount of intermittent generation installed.
Although not able to avoid the dispatch of diesel generation completely, the capacity
of the back-up units can be reduced significantly and, moreover, the use of them is
very limited. The emission reduction potential of EVs has been found to possibly
be up to 85% compared to the case with the current generation mix and diesel
fueled vehicles. However, this reduction and especially the effect of the optimal
scheduling of EV charging is strongly dependent on the accuracy of the forecasts;
so we emphasize that this value should be regarded as an upper bound. Furthermore,
we have neglected issues related to reliability and dynamic stability, which could
lead to spinning reserve requirements of back-up diesel generation.

Related to the economic feasibility of renewable generation, controlled charging
of EVs lowers the amount of spilled renewable energy considerably, especially in a
moderate extra wind and solar generation scenario. At the highest levels of wind and
solar capacities, there is roughly 30% of spilled renewable energy, but a comparison
of the costs of wind, solar, and diesel suggests that it is still beneficial to build these
levels of wind and solar. The optimal (in the sense of cost-effectiveness with respect
to CO2 reduction) mix of wind and solar was found to be dependent of whether
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or not there is controlled charging of EVs. The general picture was that it is most
optimal to build more wind capacity initially, but after some point it becomes more
beneficial to add solar power.

An important aspect of an electricity system where EVs are to fulfill the role as
grid storage and responsive demand is the right price signal to do so. In systems with
high penetrations of renewables, this implies that a real-time price which reflects
the shortage or surplus of renewable generation is critical. Using a real-time price
based on long-term marginal cost curve was found to give the right incentives. In
the system under consideration in this study, the marginal cost of the back-up diesel
generators is high enough so that the degradation costs of EV batteries delivering
energy back into the grid are no real obstacle for EVs to temporarily provide energy
when needed.

Although this study has not specifically considered automated generation control
for frequency regulation or other ancillary services to be provided by EVs, one could
argue that, with the right price incentives, these sort of services can also be provided
by EVs. In our study we have not considered possible effects of EV charging on the
networks. Future research should provide more insight in these topics.

Other interesting venues for future research would be to include uncertainties in
the forecasts of electricity price and driving behavior in the model and have a more
advanced representation of the battery physics. Analyses of long time series of wind
and solar generation in combination with vehicle fleet developments could provide
more insights on issues related to the planning of new generation capacity.
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05/MAC/2.3/A1).
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Part IV
Efficient and Viable Power Delivery
During Normal System Conditions



Chapter 12
Optimal Placement of Wind Power Plants
for Delivery Loss Minimization

Masoud Honarvar Nazari

12.1 Introduction

The dissipation of power delivery in distribution and transmission networks imposes
large social and environmental costs. These costs are closely related to the average
price of electricity, the characteristics of electric power systems, and the technology
of the power plants. In isolated electric power systems, like those of the Azores
Archipelago, these costs can be much higher than in continental power systems,
such as that of the US. As an illustration, the average price of electricity on Flores
is around $174 per MWh, while the average price of electricity in the USA is about
$94 per MWh. Therefore, a 1 MWh loss in the distribution system of Flores costs
1.85 times more than a 1 MWh loss in the distribution system of the US. This implies
that minimizing power delivery losses is an indispensable step toward economic and
environmental sustainability for the Azores Archipelago.

In general, there are several conventional approaches to minimizing power
delivery losses. The most well-known and commercialized method is implementing
shunt and/or series capacitors in order to cancel out reactive currents through the
lines. In this chapter, we show that using capacitor banks eliminates only a small
portion of the power delivery losses, since reactive currents through the lines only
contribute to about 20% of the losses. On the other hand, small-scale power plants,
such as wind plants, can significantly reduce losses by producing both real and
reactive power.

In Sect. 12.2, we investigate loss minimization on Flores. Our technical findings
illustrate that by optimizing voltage settings and output powers of the available
power plants, about 35% of the power delivery losses can be eliminated. Further-
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more, we investigate a scenario in which 20 % of the available diesel generation
is replaced by generation from new wind power plants that are optimally located
in the distribution system of the island. The results indicate that up to 57 % of the
distribution losses can be eliminated by strategically locating the new wind power
plants and optimally utilizing them in coordination with other generators. In the
next step, the voltage profile of the distribution system of Flores is investigated
using three different scenarios. The results show that when all the power plants are
controlling their terminal voltage, a very flat voltage profile is obtained.

In Sect. 12.3, we close the chapter with a brief discussion of needs for developing
a systematic framework that can assess the optimum locations and the methods
of utilizing the new wind power plants that will achieve the results discussed
throughout the chapter.

12.2 Power Delivery Losses on Flores

The electric network on Flores consists of a 15-kV radial distribution network
with 45 nodes and 44 branches. Total demand on the island is around 2 MW. Four
diesel power plants provide more than 50 % of the electric energy. Around 35 %
of the demand is supplied by four hydro plants, and two synchronous wind plants
provide the rest (approximately 15 %). Figure 12.1 illustrates the schematic of the
distribution network on Flores. In this model, the diesel generator is located at
the reference node. The hydro plant is located next to the diesel generator, and the
wind plant is located in the middle of the island.
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Fig. 12.1 Schematics of the distribution network on Flores Island [1]
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Table 12.1 Average cost
of producing electricity for
different power plants on
Flores [1]

Costs ($/MWh)

Diesel plant 261
Hydro plant 88
Wind plant 87

The difference between the system shown in Chap. 3 and the one shown in
Fig. 12.1 is that here a switch with the reactance and resistance of 0.04 pu connects
the hydro plant to the diesel generator. Power flow analysis for Flores demonstrates
that more than 2 % of the power delivery is dissipated in the distribution network.
This accounts for approximately a 1 MWh loss of energy per day and a 365 MWh
waste of electric energy per year.

Given the average price of electricity on the island ($174/MWh), 2 % power
delivery losses cost the island more than $61,000 per year. Table 12.1 demonstrates
the average cost of producing electricity for the different power plants. The 2%
losses also cause more than 117 tons of CO2 emissions per year; the average CO2

emissions on Flores are 0.32 tons/MWh. In the next section, we explore possible
approaches to minimizing these power delivery losses.

12.2.1 Possible Approaches to Minimizing Losses on Flores

In this sub-section, two main approaches to minimizing the power delivery losses
are studied: (1) optimizing voltage settings and output powers of the available
generators and (2) optimizing the location and utilization of new small-scale power
plants such as wind and/or solar plants. The second approach is motivated by the
fact that the general policy of Electricidade Dos Acores (EDA) is to make the
Azores Islands green. Therefore, it is expected that in the future diesel plants will be
replaced by renewable sources of energy such as wind power plants. Consequently,
optimal placement of the new plants will be a key factor in loss minimization.

The first step in minimizing power delivery losses is to carry out an AC optimum
power flow (AC OPF) for the original system (shown in Fig. 12.1). The objective
function of the optimization algorithm is to minimize total distribution losses by
optimally scheduling voltage settings and output powers of the available power
plants. The control variables of the optimization algorithm are the voltage and
phase angles of the generators (VG and δG). The mathematical representation of
the optimization algorithm is presented in (12.1)–(12.7) [2, 3, 5].

Minimize
VG,δG

PLoss =
NG

∑
i=1

P(i)
G

(
δG,δL,VG,VL

)− NL

∑
j=1

P( j)
L

(
δG,δL,VG,VL

)

Subject to:

(12.1)
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Pi −V 2
i Gii −

NG+NL

∑
j = 1
j 
= i

∣∣Vi

∣∣ ∣∣Vj

∣∣(Gi jcos(δi − δ j)+Bi jsin(δi − δ j)
)
= 0

(12.2)

Qi +V 2
i Bii −

NG+NL

∑
j = 1
j 
= i

∣∣Vi

∣∣ ∣∣Vj

∣∣(Gi jsin(δi − δ j)−Bi jcos(δi − δ j)
)
= 0

(12.3)

P(i)
min ≤ P(i)

G ≤ P(i)
max ∀ i ∈ NG (12.4)

Q(i)
min ≤ Q(i)

G ≤ Q(i)
max ∀ i ∈ NG (12.5)

P2
i +Q2

i ≤ S2
i ∀ i ∈ NG (12.6)

V ( j)
min ≤

∣∣Vj

∣∣≤V ( j)
max ∀ j ∈ NG +NL (12.7)

Here NG is the number of generator nodes and NL is the number of load nodes in
the system. In addition, VL and δL are the voltages and phase angles of the system
loads.

The results of AC OPF illustrate that more than 35 % of the distribution losses
could be eliminated by optimizing the voltage settings and output powers of the
available power plants on the island. This would mean more than 146 MWh energy
savings per year, which would save the island more than $24,500 per year. Moreover,
it would reduce CO2 emissions by 46.8 tons per year.

The second approach to minimizing losses is based on strategically locating
the new wind power plants. Here, we investigate a scenario in which 20 % of
the diesel generation is replaced by new wind power plant generation. The wind
plants are synchronous generators with the ability to produce both real and reactive
power. Given the average production of the diesel generators (1 MW), the average
generation of the new wind power plants should be around 200 kW or about 10 %
of the overall demand.

In order to find the optimum locations for the new wind plants, an optimization
algorithm, fully elaborated in [4, 7] is carried out. Figure 12.2 shows the optimal
locations for the new wind plants, highlighted by the green rectangle. Note that
optimizing these locations would reduce losses by 57 %, saving the island about
$36,800 per year and reducing CO2 emissions by 70 tons per year.

Placing the new wind plants at optimal locations would also increase reliability
of the system. For example, if the line connecting the diesel plant to the center of
the island is disconnected (Line 1–17 or 17–18), the wind power plants can supply
loads in the center and south parts of the island.

Since the average cost of producing electricity with diesel generators is about
3 times larger than that with wind power plants, offsetting 20 % of the diesel
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Fig. 12.2 Schematics of the optimal area of locating new wind plants

generation with wind generation, furthermore, would result in a 10 % reduction in
the total cost of electricity. Therefore, the total dollar savings to the island would be
more than $250,000 per year. About 15 % of the overall savings is due to reducing
losses and more than 85 % is due to the offsetting of diesel generation with wind
generation.

Moreover, overall CO2 emissions would be reduced by about 1300 tons per year.
Around 5 % of the reduction would be due to reducing the delivery losses and more
than 95 % would be due to the offsetting of diesel generation with wind generation.

12.2.2 Comparison Between Small-Scale Power Plants
and Capacitor Banks

In this sub-section, we show that shunt and/or series capacitors cannot notably
reduce power delivery losses, whereas small-scale power plants, such as syn-
chronous wind plants, can significantly eliminate losses by offsetting real and
reactive currents. To this end, we explore first the effects of active and reactive
currents on power delivery losses. We see in Fig. 12.3 that active currents through
the lines are about two times larger than reactive currents. Since power delivery
losses are related to the square of the current, the losses due to active currents (Pr)
are four times larger than the losses due to reactive currents (Px).
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Fig. 12.3 Active and reactive current profile through the lines

Fig. 12.4 Distribution losses due to active and reactive currents

In other words, reactive currents contribute to only 20 % of the losses; active
currents cause the rest (80 %). This implies that installing shunt and/or series
capacitors, which compensate for reactive currents only, can eliminate only a small
portion of power delivery losses.

On the other hand, small-scale power plants can offset both real and reactive
currents through the lines and therefore reduce a large portion of the power delivery
losses. We have shown in the previous section that by producing 10 % of the demand
with strategically placed and utilized wind power plants about 57 % of the power
delivery losses can be eliminated.

In general, minimizing power delivery losses has profound social and en-
vironmental advantages. Therefore, using AC OPF-based dispatch to gain such
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advantages, which would otherwise not be possible, is an indispensable step toward
sustainability of Flores. To this end, EDA needs to implement both SCADA and
computer tools such as AC OPF for computing the on-line voltage adjustments
and the output power of the generators. Given that today the distribution power
system on Flores does not rely on on-line monitoring and dispatch, it is essential to
understand the necessity of doing this in order to allow the transformation of Flores
into a green and sustainable island.

12.2.3 Improvement of the Voltage Profile on Flores

In this sub-section, we investigate the effect of automatic voltage control of the wind
power plants on the improvement of the overall voltage profile of the island. To
this end, three main scenarios are assessed: (1) operating the available wind plants
without voltage control, (2) operating the available wind generators with voltage
control, and (3) strategically locating and utilizing the new wind power plants. In
the third scenario, all the wind plants have automatic voltage control.

In general, there exists an acceptable voltage range for electric distribution
systems. Violating this limit can damage electrical equipment or diminish its life
expectancy. In the worst case, this can lead to overall voltage collapse. Hence, from
the perspective of consumers, an ideal voltage profile is a flat voltage profile with a
voltage level of 1 pu throughout the distribution system [6]. In this condition, all the
electrical equipment operates at the nominal voltage (1 pu), and therefore, the risk
of damage is minimized.

Investigating the voltage profile of the island in the three scenarios shows that in
Case 1 the wind power plant absorbs the reactive power. Therefore, voltage drops
in the vicinity of the plant. In Case 2 the wind plant controls its terminal voltage at
1 pu. As shown in Fig. 12.5, in this scenario the overall voltage profile of the system
is much closer to the idea scenario.

In Case 3 all the power plants adjust their terminal voltage to 1 pu. Figure 12.6
illustrates the voltage profile of the system for all the scenarios. The technical results
show that a voltage profile closest to the ideal is obtained when all the plants adjust
their terminal voltage.

12.3 Conclusions and Future Outlook

In this chapter, we highlight that by strategically placing new wind power plants
and optimally operating them in coordination with other generators about 57 % of
the power delivery losses can be eliminated from the distribution system of Flores.
This would result in energy saving per year of more than 220MWh. In addition, it
would save the island more than $250,000 per year and reduce CO2 emissions by
1,300 tons per year.
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Fig. 12.5 Voltage profile of the island with and without voltage control for the wind power plant

Fig. 12.6 Voltage profile of the island in three different scenarios

Our technical findings furthermore illustrate that loss reduction highly depends
on the location and voltage settings of the power plants. We show that capacitor
banks can eliminate only a small portion of the power delivery losses, while wind
power plants with automatic voltage regulators can significantly reduce power
delivery losses by offsetting both real and reactive currents through the lines.

In order to improve voltage profile and minimize the risk of voltage collapse, all
wind plants need to be equipped with automatic voltage regulators whose set points
should be optimized as conditions vary. This helps the system to maintain a flat
voltage profile throughout the distribution system.
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While the utility studies are being carried, and new candidate power plants are
being considered, it is essential to develop a systematic framework that assess the
optimal locations and utilization methods for the new power plants in order to
minimize power delivery losses and maximize environmental sustainability.
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Chapter 13
Toward an Extended AC OPF-Based Approach
to Wind Power Integration and Pricing

Marija Ilić and Jeffrey H. Lang

13.1 Introduction

The challenges and opportunities presented to operators and planners of today’s
electric power systems are multifold. Supplying demand with continuously varying
resources such as wind and solar power requires tools for predicting and dispatching
available resources in a look-ahead manner; this is needed to best manage ramp rates
at which power outputs can change. Methods for this are discussed in Part III of this
book. It is observed that the simplest way of managing rates is to internalize these
as part of generation marginal cost [1,2]. If this is done, then the remaining challenge
is power delivery from intermittent resources to the consumers. In this chapter
we consider the problem of power and voltage dispatch in systems with intermittent
resources assuming that the ramp rate of the power plants is internalized when
generation-cost functions are created, as described in Part III of this book. As new
intermittent resources begin to replace conventional power plants, it is necessary
to carry out an on-line resource management of all the available dispatchable
equipment. Voltage optimization is critical during operations to enable delivery
of most economic real power generation. In particular, it is necessary to make the
following decisions:
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• Given an existing system, how to operate new power plants without experiencing
power delivery problems.

• Given an existing system, how much new, renewable, generation to build and at
which locations.

• Assess the effect of different pricing rules for integrating renewable resources
on long- and short-term economic efficiency and the ability to recover capital
investment cost.

We start in Sect. 13.2 by showing that resource management can be implemented
using an AC OPF as the key software as conditions vary. The use of an AC
OPF instead of DC OPF helps optimize voltage-controllable T&D and generation
equipment.1 This is important since the wind power plants often consume significant
reactive power even when they do not produce real power. Similarly, solar power
plants could distort the voltage profile without system-wide voltage dispatch [7].
In particular we stress that it is no longer possible to dispatch well real power
without optimizing the schedules for voltage settings of automatic voltage regulators
(AVRs) on power generators and the schedules for voltage-controllable T&D
equipment, such as on-load tap changing transformers (OLTCs) and/or controllable
shunt capacitors.

Today’s rules for voltage dispatch are based on the system operator’s knowledge
of the system and on extensive off-line power flow analyses for ensuring that the
system remains reliable during the “worst-case” conditions. Both the operator’s
insights about power grid’s ability to deliver power reliably with the newly added
wind and/or solar power plants and the notion of the “worst-case” scenario are
challenging at present. The combinatorial aspect of many possible conditions
as the intermittent resources vary makes it impossible to define the worst-case
scenario. Similarly, the system operator has very little experience in operating
the grid with these new resources. Therefore, it becomes necessary to rely on more
flexible technologies such as on-line dispatch of available resources, generation,
and T&D equipment when managing the ever-changing system conditions. At least
in principle, any technology which is capable of ensuring uninterrupted service as
conditions vary should be considered to be a plausible means of supplying demand
in future electric energy systems as suggested in Section 13.3.

In Sect. 13.4 we consider the electric power system in Flores island for several
seasonal peak load conditions and for seasonal availability of intermittent power
generation, such as geothermal, hydro-, and wind power. We first illustrate the use

1Over time the notions of AC OPF have evolved. The early theoretical formulations [4] are not
always practiced by the industry [5]. Moreover, the choice of decision variables is often selected
for the specific performance objectives. For example, real power transfer across large electrical
distances and the least-cost generation dispatch are as a rule optimized by dispatching real power
only. On the other hand, voltage dispatch is used to minimize delivery losses only. It is possible
to create simple counterexamples that show how optimizing real power for least-cost generation
and optimizing voltage for loss minimization is sub-optimal to optimizing both real power and
voltage for the purposes of both maximizing real power transfer and minimizing generation cost.
The outcomes are generally system specific.
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of an AC XOPF for computing optimal voltage and optimal real power generation
dispatch for those different generation and demand profiles. We then illustrate
the use of AC XOPF for assessing the effects of replacing the existing diesel
power plants by wind and/or solar power plants. Notably, we illustrate the trade-off
between (1) dispatching wind power plants as must-run power plants and paying
their O&M marginal cost, (2) dispatching wind power plants according to their
levelized marginal cost and paying them accordingly, and (3) comparing (1) and
(2) when payments are based on locational marginal pricing (LMPs). Depending on
which of these pricing mechanisms is used, the value of candidate technologies will
be very different. This is an important issue, and AC XOPF can be used to study
the implications of these regulatory rules on long- and short-term social welfare,
on generators’ revenues and profits, and on customers’ payments for electricity
services. Most generally, none of these can be directly interpreted to support feed-
in tariff rules. We observe that it is indeed possible to deploy and utilize new
technologies at well-defined value as long as marginal cost internalizes the costs
associated with each technology.

In Sect. 13.5 we use the electric power system of São Miguel island to illustrate
the use of AC XOPF for optimizing the voltage set points for generators and on-load
tap-changing transformers (OLTCs). We show how these optimal schedules vary
with different seasons. We close by summarizing our main findings, recommenda-
tions, and open future issues. System data used in this chapter is made publicly
available together with the other data in this book and can be used for further
research and comparisons with other software presently used by the industry and/or
under development. The numerical results are intended for illustration purposes only
since further discussion with Electricite de Azores (EDA) engineers is needed to
make sure that the data used is consistent with the data known to them. The objective
is, again, to illustrate how one can proceed to explore different options and their
effects on managing network congestion and not on specific numerical findings.

13.2 Basic Needs for Corrective Resource Management
by Means of an AC XOPF

As electric power systems are required to support line power flow patterns which
vary significantly over time, and/or are qualitatively different from the power
flows anticipated when the system was built, the complexity of ensuring delivery
within predefined voltage and thermal line limits becomes increasingly challenging.
The highly combinatorial nature of what must be done by the system operator to
avoid grid “congestion” makes it almost impossible to pre-program set points of the
controllable equipment. Instead, as conditions vary, different combinations of con-
trolled equipment require adjustments necessary to support reliable delivery of the
least expensive and the cleanest power to the customers.
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This chapter is concerned with methods for power and voltage dispatch which
optimize a given system objective without violating hardware limits, such as
minimum and maximum bus voltages and thermal line flow limits. This must
be done so that both real and reactive power flows are balanced at each bus
in the system. Given generation and demand dispatch obtained using ramp-rate-
limited unit commitment/economic dispatch (UC/ED), industry practice has been
to perform AC power flow analysis and check whether the steady-state solution is
within pre-specified limits. A major problem arises when the solution is outside the
acceptable limits and/or the AC power flow fails to converge; the latter is most often
the case.2 Resolving this problem requires decision-making software tools to find
the best combination of what must be adjusted within the complex system to ensure
that an AC power flow solution exists within the physical network limits.

Therefore, there exists a clear need for using AC OPF-based scheduling instead
of AC power flow-based analyses. This distinction between the role of AC OPF
and AC power flow, as decision and analysis tools, respectively, for managing
network congestion is often blurry. We stress that having decision-making tools
which find the best solution measured in terms of total generation cost, for example,
is key to utilizing efficiently the available resources without creating steady-state
power delivery problems. It is with this observation in mind that this chapter is
written to illustrate how resources on today’s Azores islands of Flores and São
Miguel can be utilized efficiently based on carefully computed adaptations of set
points on controlled generation and T&D equipment. These adaptations must be
done during both “normal” operations when the equipment status is as expected
and during “abnormal” conditions when unexpected forced equipment failures take
place and/or during large wind power variations. In this chapter we illustrate the
use of AC OPF for ensuring reliable and efficient asset utilization as seasonal
generation and loads vary. The AC OPF-based mitigation methods for non-time-
critical forced outages are in principle very similar to the scheduling methods during
normal conditions, as long as the AC OPF can be performed to compute the most
critical adjustments on line. In this chapter we assume that sufficient automation
is in place to ensure that the system remains stable over the operating ranges of
interest. This assumption implies that as generation and demand change, system
dynamics transition from one steady-state to the next without experiencing stability
problems.3

2See Part III for UC/ED review and its use for dispatch in the Azores islands.
3See Chap. 19 concerning automation for stabilizing dynamic transitions following large time-
critical outages.
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13.2.1 An Extended AC OPF Problem (AC XOPF)

An extended AC XOPF is fundamentally based on optimizing a cost function of
interest subject to all network and equipment constraints. In particular, an AC XOPF
can be characterized as follows:

• Having the ability to find a solution within specified network and hardware
constraints

• Having the ability to optimize with respect to all available decision variables,
such as real power generation, demand, and T&D voltage-controllable equipment

• Providing support of effective resource management according to several opti-
mization objectives, such as economic dispatch, loss minimization, management
of extreme voltages, maximum loadability into large load areas, and maximum
power transfer [6]

• Providing as part of its output optimization sensitivities for assessing the effects
of voltage constraints on performance objective of interest (optimization sensi-
tivities with respect to voltage constraints (OSVs); optimization sensitivities with
respect to real power generation constraints (OSPs); optimization sensitivities
with respect to reactive power constraints (OSQs); and optimization sensitivities
with respect to line flow constraints (OSFs))

• Providing as part of its output LMPs, which are sensitivities of the performance
objective with respect to power injection change at each node in the network

Appendix A contrasts the use of such AC XOPF to today’s use of DC OPF. We show
that the DC OPF solution cannot be implemented without further adjustments
because it does not observe real power generation limits, bus voltage limits, nor
reactive power flow balance. Because of this, either it typically requires iterative
reductions of optimal real power generation until the AC power flow solves or it
requires actions by the system operator. In both cases the performance obtained
is suboptimal by the time these adjustments are made. The second major cause
of suboptimality comes from not optimizing voltage-dispatchable equipment while
optimizing real power generation. We illustrate in this chapter the use of an AC OPF
for on-line resource management in the electric systems of Flores and São Miguel.
Results for both optimal real power and voltage dispatch are shown.

13.3 From Analysis to Optimization

are being presented with a variety of diverse energy resources, such as wind and
solar power, adjustable load, and controllable T&D equipment. These new energy
resources and controllable equipment offer opportunities to operate power grids in
a different way as “smart grids”; the near real-time sensed data can be used for
adjusting controllable equipment as system conditions vary. The measurements/data
necessary to control a smart grid are becoming more readily available as syn-
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chrophasors are being deployed in large numbers. Also, remote control of T&D
equipment in new substations is becoming possible. At the same time, system
integration and operations of these unconventional components represent multifold
challenges, such as (1) lack of necessary data, (2) lack of robust software for timely
decision-making given on-line SCADA data, (3) lack of remote monitoring and
control of dispatchable equipment, such as controllable capacitors and OLTCs, and
(4) lack of incentives to utilize these resources efficiently. Conditions vary with the
status of the equipment and with constantly changing load and renewable power
generation, decisions must be made on-line. Notably, making the most out of these
new technologies requires system-level resource management, and this is generally
very complex. It is generally difficult for the system operators to decide in an on line
setting what should be the key adjustments. To make this possible it is necessary
to provide engineers and other decision makers with software tools which can
facilitate use of near real-time measurements, process them, and advise the operators
regarding the most effective actions to take.

We stress the fact that an iterative process between running DC OPF to optimize
real power dispatch and checking whether this dispatch ensures an AC power flow
solution within the voltage limits is too combinatorial and often fails to converge.
An AC XOPF provides answers to what else must be adjusted simultaneously and
in an optimized way to enable the feasible and the least-cost generation dispatch.

Finally, an important use of AC XOPF is to provide insights about how the LMPs
within a spatially vast complex power network with diverse resources connected to
different nodes vary as a function of grid-related limitations. At present we have very
little understanding and insights about this dependency. We show later in this chapter
the trade-off between doing adjustable resource management, using central cheap
generation and/or distributed generation in the island of Flores. As we move forward
with relying on distributed resources, computer software for assessing these options
will become essential. Notably, an AC XOPF capable of adaptively switching
between using different performance metrics is essential for reconciling reliability
and efficiency on-line when system conditions and topology change significantly
over time [6].

13.4 AC XOPF-Based Dispatch in Flores

In this section we illustrate the use of an extended AC OPF in Flores island to show
the results of network-constrained dispatch during normal conditions assuming
different O&M costs of wind power. A 45-bus radial distribution system model is
used to illustrate how AC power flow-constrained dispatch of existing power plants
could be optimized as more wind power plants are built. We also examine the best
locations to replace existing diesel power plants so that the LMPs on the island are
the lowest.

Shown in Fig. 13.1 is a partial one-line diagram of a Flores electric power system.
It can be seen that the existing hydro and diesel power plants are connected to two
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Fig. 13.1 One-line diagram of Flores electric power grid

major electrically close nodes numbered 1 and 46. While in the real system the
two power plants are next to each other, the simulations performed here model
the breaker connection between the diesel plant at node 1 and the hydro plant at
node 46 as a very small impedance. A blue symbol + in this diagram indicates that
the node is connected to more nodes on the same feeder beyond the scope of the
figure. The spatial load distribution in Flores is shown in Fig. 13.2. The power unit
base for this system is 10 MVA.

The AC input data for this system are made publicly available as part of this
book. It can be seen in this input data file that the system begins with 12 islanded
nodes. These nodes are disconnected for further discussion here. To illustrate the
potential use of AC XOPF during normal operations, we consider the problem of
minimizing generation dispatch cost assuming different costs of wind power.

Before starting to analyze different cases, we point out that at present there are
major issues concerning the integration of wind and solar power relative to using
central generation. The concerns are (1) possible technical problems leading to
being unable to physically operate the system with the new resources because of
not having feasible solutions within the hardware limits defined in (13.1)–(13.7)
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and/or maximum power transfer limitations to balancing real and reactive power
at all nodes, as defined in (13.8)–(13.9) and (2) to reward new technologies for
their contribution to reliability and efficiency.4 At present, the LMPs are only used
at the EHV/HV wholesale level, and there are no retail prices which differentiate
among distributed energy resources (DERs) located below the substation level.
Three qualitatively different approaches for pricing wind power in operations are
as follows (1) wind power bids are based on incremental wind power cost; (2)
wind power bids are only O&M cost-based, like for conventional power, and it is
expected that wind power plants would recover their capital cost in operations; and
(3) wind power bids are only O&M cost-based, but there are feed-in tariffs which
help offset capital cost. It is becoming necessary, however, to quantify the value
of DERs to reliability and efficiency. This need is particularly pronounced in small
confined systems like microgrids and islands.

To illustrate these issues three qualitatively different cases are considered:

• Case 1: Existing power plants, incremental cost of wind power similar to the cost
of hydro

• Case 2: Existing power plants, incremental cost of wind power significantly
lower than the cost of hydro

• Case 3: Diesel power plant replaced by inexpensive wind power plant of the same
capacity

4The equations referred to are in the Appendix A.
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13.4.1 Optimal Dispatch of Existing Generation in Flores:
Expensive O&M Wind Power (Case 1)

The O&M cost assumed for diesel, hydro, and wind power is 261 $/MWh,
88 $/MWh and 87 $/MWh, respectively. These costs are used in all other chapters in
this book, and the rationale for choosing them is described in Chaps. 4 and 11. Wind
power plant is located at bus 19, hydro power plant at bus 46, and diesel power
plant at bus 1. Total system load is 0.1697 pu, total generation is 0.1706 pu. Shown
in Figs. 13.3 and 13.4 are the results of using AC OPF in this case. It can be seen
in Fig. 13.5 that there is no need to dispatch diesel power generation in this case;
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Fig. 13.5 Geographical distribution of LMPs in Flores; wind power O&M cost 88 $/MWh

wind power plant is fully dispatched to its capacity of 0.0 5 pu, and the remaining
generation is produced by the wind hydro power plant at bus 46. The corresponding
generation dispatch cost is $ 168.50 per given hour.

Consequently, all LMPs shown in Fig. 13.5 are near the highest marginal cost
of the unit scheduled, in this case, hydro power plant. Notably, when voltages
are allowed to vary between 0.95 and 1.05 pu, the effect of these constraints and
of the nodal reactive power balance constraints is negligible. The optimal voltage
profile obtained within these limits are shown in Fig. 13.4. Buses 1, 19, and 46
are generators supporting system voltage. There are no capacitors modeled in this
system.

As introduced above, several key optimization sensitivities are available from the
output of the AC XOPF used here. In this case, the optimization sensitivities with
respect to the power limit at each node i (OSPi) show that an increase of wind power
at node 19 would further reduce the total generation cost. The generation OSP19

is −1.74 $/pu and indicates that an increase of 10 MW capacity would further reduce
total generation cost by $1.74, namely, by roughly 1 %. Moreover, the only non-
negligible optimization sensitivity with respect to voltage (OSV) is at node 1 and
it is OSV1 is −0.22 $/pu, and it implies that to reduce total generation cost by $
0.22 one would need to increase the voltage by 1 pu. This is insignificant and not
feasible since voltages must remain within relatively tight limits. This is confirmed
by re-running the AC OPF with slightly relaxed voltage limits on bus 1 from 1.05
to 1.1 pu. No significant cost difference is seen.

It is also interesting and important to understand how optimization sensitivities
with respect to real power (OSPi) at non-generation nodes could affect cost
reduction. It can be seen from Fig. 13.5 that the highest LMPs are at load buses
39 and 40. These are the same nodes found in Chap. 12 to be the locations where
new DERs should be placed to reduce delivery losses in Flores. The relatively small
differences in LMPs between those at the generation locations and those at the far
away load nodes are attributable in this case primarily to the delivery losses. The
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delivery losses are less than 1 % of total load (0.1319 MW delivery loss) when
voltage is optimized. It is important to note that total generation cost is almost
the same ($168.04 per hour) as the fixed load charges ($169.98 per hour) and the
difference is largely attributed to delivery losses. The difference between the total
generation cost and load charges in later cases will be more pronounced.

It can be concluded based on our simulations of this case that Flores power
grid is not limited in its ability to deliver the least-cost generation during normal
conditions when all equipment is functioning. The determining cost factor is simply
the availability of less expensive generation. The most significant optimization
sensitivity is with respect to power generation (OSPi) limit at bus number 19 to
which the wind power plant is connected; this means that placing more wind at the
same location would decrease the cost. It is −1.74 $/MW, meaning that in order
to decrease the total generation cost of 168.95 $/MWh by $1.74 one would need
to connect 10 MW more generation wind power at bus 19. On the other hand,
the highest OSPs are at loads connected to buses 39 and 40 and they are around
−90 $/pu. This means that in order to decrease total generation cost by $90 one
would need to adjust the load at this bus by 10 MW, or place a large inexpensive
DER at that location.

13.4.2 Optimal Dispatch of Existing Generation in Flores;
Low-Cost O&M Wind Power (Case 2)

Case 2 has exactly the same optimization objectives, and the allowed voltage limits
are the same as in Case 1. The only difference is that the O&M wind generation
cost is 50 $/MWh instead of 88 $/MWh. The resulting total generation cost is
significantly reduced to $145.87 per hour. However, the fixed load charges, if based
on LMPs, in this case are much higher than the total generation cost, namely, they
are about the same as in Case 1 ($169.98 per hour). The merchandise surplus (MS)
is caused by the LMPs at load buses remaining almost the same as in Case 1, and it
amounts to $1.735 per hour; the MS is attributable to the LMP differences caused by
the delivery losses. The generation revenue is $168.90 per hour, and the generation
profit is high, around $23.03 per hour. The system generation profit is much higher
than in Case 1. All LMPs are the same as in Case 1, but the O&M costs are different.
This results in higher generation revenue of the cheapest power plant connected
to bus 19. Here, again, the power grid is not limiting, and the same generation is
dispatched. Therefore, as expected, the only difference is seen in the settlement
costs.

Finally, a comparison of optimization sensitivities with respect to reactive power
(OSQs) for Cases 1 and 2 shown in Figs. 13.6 and 13.7, respectively, indicates that
they are slightly different.
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Fig. 13.6 Geographical distribution of OSQs in Flores, wind power O&M cost 50 $/MWh
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13.4.3 Diesel Power Plant Replaced by Inexpensive Wind
Power Plant of the Same Capacity (Case 3)

This case considers a scenario in which a large amount of expensive diesel power
currently connected to 1 is replaced by inexpensive wind power (50 $/MWh) and
the same inexpensive wind power plant is connected to node 19 as in Case 1. In
this case the optimal economic dispatch results in a much lower total generation
cost of $95.58 per hour than in Cases 1 and 2; however, the generation revenue is
almost the same and the system load charges are only slightly higher because of
slightly increased delivery loss. The generator connected to bus 19 will produce at
full capacity of 0.06 pu, and the generator connected to bus 1 would produce the
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remaining 0.13 pu. All generator LMPs would be 50 $/MWh, and all load LMPs
would be very close to 50 $/MWh (ranging from 51.73 $/MWh at buses 40, 39, and
38 to 50 $/MWh at the three generator locations).

The assessment in the entire section is done assuming fully predictable wind
power generation. Since this is not realistic, further analysis of cost of uncertainties
created by wind power deviations from its predictable patterns is needed.

13.4.4 The Effects of Electricity Pricing on Economic
Outcomes

Based on the observations in Cases 1–3 above, it can be concluded that the effects
of location choice for inexpensive wind power integration in Flores on O&M
generation cost are not significant. However, the selection of pricing mechanism are
shown to be significant. In particular, in Cases 2 and 3, while the total generation
cost is not very different, the generation profits and revenues collected, as well as
the payments by the electricity users, could be qualitatively different depending on
whether wind power is paid using levelized cost or only O&M cost. Therefore, the
ultimate ability of wind power plants to recover their capital cost depends on their
location and the overall amount of inexpensive generation available. If all power
is provided by the inexpensive resources, the generation revenue and profit will
be insignificant. In this case, either LMPs created by higher costs of other power
plants or incremental marginal cost (which includes capital cost) should be allowed
to recover the cost. The LMP-based pricing mechanism charges load the LMPs at
their locations, and generators are paid the LMPs at their own locations. Assuming
such pricing mechanisms, for a given system, and a typical annual load profile, one
could compute the breakeven wind power capacity which can be built so that its
cost is recovered. This breakeven point depends on other LMPs in the system and
cannot be estimated by the wind power plant itself without an estimate of what
LMPs will be.

Everything else equal, load charges depend on the locations and the electrical
characteristics of the system to which renewable resources are connected. For the
island of Flores, typical load charges vary in the range of $160–$170 per hour, for
any combination of resources. This includes having a large capacity of inexpensive
wind power close to the users. The total generation cost is the lowest, but the load
charges cannot be reduced significantly because the marginal hydro unit sets the
LMPs. In Cases 1–3 there is no sufficient generation to supply the entire demand
with inexpensive wind power generation. For the case of Flores, total generation
cost can be reduced depending on how much inexpensive generation is available.
On the other hand, the rate at which generators can recover their capital cost based
on their profits (difference of revenue and cost) is definitely dependent on other
available generation, system demand, and the electrical characteristics of the grid.
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Similarly, the actual load charges paid by the customers will depend on the
combination of available generation and the electrical grid characteristics. As policy
decisions are made regarding wind power tariffs these factors should be taken into
consideration. It is possible to estimate the “optimal” investment and location of new
power plants by considering them as replacements of the existing more expensive
power plants, which would guarantee that the expected total cost of new power
plants would be recovered over certain prespecified time. While the locational
aspects of LMPs make it more complicated to compute such investments, it is
worthwhile performing such planning studies to ensure the lowest possible long-
term social welfare maximization.

13.5 AC XOPF-Based Dispatch for São Miguel Island

In this section a large 2000-bus meshed-radial power system model of the São
Miguel island grid is used to illustrate how grid constraints change with seasonal
variations in geothermal power and system demand. We describe the use of an AC
XOPF-based approach for optimizing resources in two different seasons, winter
and summer, using the data of São Miguel island. We compute optimal resource
management for both seasons and illustrate the need for different dispatch strategies
in each season. For completeness, we include the power flow data used in this
chapter for São Miguel Island in the publicly available data accompanying this book.
In this system data only several transmission and distribution lines are assumed
to be thermally limited. Several transformers are modeled as the OLTCs having
voltage-controlling capabilities. They are considered to be a potential means of
helping support the voltage profile on the island by changing their tap ratios.
Also, generator voltages are assumed to be voltage-controlled by adjusting the set
points of their AVRs. The AVRs of generators and OLTCs are the main voltage-
controlled equipment on the island. It is assumed that all power plants can control
their real power generated within the minimum and maximum limits. The hydro-
and geothermal power plants have different maximum power generation limits in
different seasons, as documented in Chap. 4 of this book. Similarly, the peak and
minimum forecast system demand vary with seasons.

The cost and locations of the generations within the 2,000 bus network power
system representation of São Miguel electric system are shown in Fig. 13.8. Physical
variables are in per unit (pu) with a power base of 100 MVA. The O&M cost is given
in 100 $/MWh. For the island of São Miguel, the O&M cost of diesel-, hydro-,
and geothermal power is 185 $/MWh, 88 $/MWh, and 28.10 $/MWh. Clearly, given
these O&M costs, it is beneficial for this island to build more geothermal power;
most recently two new 900 kW wind power plants were built and are already in
operations; they are not part of the analysis in this book. They are located in the
Graminhais facility, the Northeast part of the island. Voltage-controlled transformers
and their ratio ranges are shown in Fig. 13.9.
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Fig. 13.8 Characteristics of generators on the island of São Miguel

13.5.1 Results of Using AC XOPF to Optimize Economic
Efficiency

In this section we use the AC XOPF to compute optimal real power generation
and optimal set points of voltage-controlled equipment to ensure that the forecast
demand is met in the least-cost manner. The total generation cost of supplying
demand by scheduling the least expensive units is generally considered to be the
basic measure of short-term economic efficiency. Extensions of this objective to
include environmental constraints can also be done [8]. We show that the optimal
voltage profile and real power generation are different for winter and summer load
and generation, in particular. Moreover, we show that the total generation cost
depends on the type of scheduling performed and on the line flow limits observed.
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Fig. 13.9 Characteristics of voltage-controlled transformers on the Island of São Miguel

13.5.2 Dependence of Generation Dispatch and Its Cost
on Control Equipment Used

To illustrate the potential use of an AC XOPF for adjusting voltage-controlled T&D
and generation equipment in support of efficient economic dispatch, we consider
the following cases:

• Case 1: Maximum load winter case
• Case 2: Maximum load summer case

We next describe the resulting voltage profile, optimal real power generated, total
generation cost, and LMPs for these two cases. We illustrate their dependence on
the observed network constraints and on the type of voltage-controllable T&D and
generation equipment optimized. The two cases are qualitatively different in terms
of load served and maximum geothermal and hydropower generation available.
The load is somewhat higher in summers, primarily because of tourism. Also,
maximum available real power generation capacity from geothermal plants is higher
in the summer than in the winter. In what follows we summarize the results of using
an AC OPF for dispatching optimally generation available in each season.
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13.5.3 Economic Dispatch and Its Cost for Maximum Load
Winter Case (WC)

The binding thermal line constraint for this case is found to be the 10-kV line
connecting buses 1,887 and 1,714. A portion of São Miguel electric network in
the vicinity of this line is shown in Fig. 13.10. To begin, it is not possible to
fully supply load when this thermal limit is observed. It becomes necessary to
partially shed load or relax some of the network constraints. Longer term, it is
necessary to deploy smaller-scale distributed generation at some key locations in
order to serve loads in that area without overloading the distribution equipment.
For purposes of further analysis, we demonstrate the effects of thermal limits on
power dispatched and its cost while observing thermal line flow limits given in
(13.5) for all lines except for this low-voltage line. Minimum and maximum voltage
limits at all buses in the system as defined in (13.4) and 13.3) are set to 0.95 and
1.05 pu, respectively. Settings of voltage-controlled transformers shown in Fig. 13.9
have nominal transformer ratio of 1. For this case the total hourly generation cost
shown in (13.10) is $10,394. Total AC line losses are 0.0106 pu and total real power
generated is 0.63056 pu and total load served is 0.620146 pu. Total reactive power
generated is 0.12288 pu. Total AC line reactive power losses are −0.03208 pu,
and total transformer reactive power losses are 0.017559 pu. Optimized voltage
load profile of 60 kV generators, optimized voltage profile of all buses, loads and
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Fig. 13.11 Optimized voltage profile of generators; 1887-1714 thermal line flow limit ignored
(WC)
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Fig. 13.12 Optimized voltage profile of all buses; 1887-1714 thermal line flow limit ignored (WC)

generators, real power generated, and electricity prices are shown in Figs. 13.11–
13.14, respectively. Generators are ordered as shown in Fig. 13.8. It can be seen that
by using AC XOPF, it is possible to maintain all voltages within the prespecified
operating limits. Two most expensive oil generators are scheduled to full capacity
of 0.32 and 0.22 pu, respectively. The resulting LMPs of these generators are shown
in Fig. 13.14. The generation output and LMPs of other generators are also shown
in this figure.

Notably, LMPs of many generators are higher than the O&M cost of the marginal
diesel power plant which is 185 $/MWh as shown in Fig. 13.14. This means that
the effect of various network constraints jointly contribute in a non-negligible way
to the locational price increase. The AC XOPF used for analysis in this chapter
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[9] indicates that the solution has several binding voltage constraints. In particular,
optimization sensitivities with respect to both real and reactive power injections
(OSPs and OSQs, respectively) at different low-voltage buses are quite high.

13.5.4 Use of AC XOPF for Managing the Effects of Critically
Congested Lines

The optimization sensitivities with respect to flows (OSFs) indicate that a small line
connecting nodes 1887-1714 is thermally limited; moreover, it becomes necessary
to adjust settings of OLTCs to obtain a solution within the given voltage limits.
Most of the runs in this section for the maximum load winter case are made with the
thermal limit disabled. The effects of optimizing set points of OLTCs are illustrated
in the next section for the maximum load summer case. Interestingly, when the
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limiting line 1887-1714 is taken out of operations, the AC power flow is easily
obtained and the resulting total economic dispatch cost is $10,400 per hour at peak
load. In Sects. 13.5.6 and 13.6 below we illustrate the use of other performance
objectives available in an AC XOPF to find the alternative relaxation of line flow or
voltage limits which help solve the power flow. Finding such actions gives system
operator other options since some of the hardware limits are not necessarily hard
limits.

13.5.5 Economic Dispatch and Its Cost for Maximum Load
Summer Case (SC)

Shown in Figs. 13.15–13.17 are the optimized voltages at all buses, optimal power
dispatched, and LMPs for the case when the thermal line flow limit is not observed
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Fig. 13.17 Locational marginal prices of generators with 1887-1714 line limit observed (SC)

on line 1887-1714, and transformer ratio of controllable generators is set to 1. The
total generation cost in this case is $ 9,147 per hour. The total power generated
is 0.69045 pu and power consumed is 0.6773 pu. Three expensive generators are
dispatched at about 0.147 pu output each, and the rest of the power is produced by
the geothermal power plants at buses 1,049 and 963 producing about 0.1 pu power.
The highest LMPs are, similar to the winter load case, at the low-voltage 10 kV
buses. The highest LMPs are $208./MWh at buses number 494 and 294. The highest
optimization sensitivity with respect to voltage constraint is OSV1049 =−1.610, and
with respect to real power is OSPi is −15710 $/pu at one of the 60-kV generators.
The highest LMPs are at 6.3 kV low-voltage load buses numbered 1600-1615 in the
input data.

13.5.6 Use of AC XOPF for Relaxing Voltage Limits
for Reliability

Another option for minimizing economic dispatch cost when the critical thermal
line limit prevents power flow solution within the prespecified limits is to first find
the key limits which should be relaxed. Once this is found, an economic dispatch
minimization can be attempted within the relaxed limits [6]. This use of different
performance objectives is made possible by an AC XOPF, such as the one used
in this chapter [9]. In this case the first performance objective is to minimize the
voltage limit which must be relaxed in order to ensure that power flow converges
within these relaxed limits. The use of an AC XOPF for this purpose is referred to as
the manage extreme voltage (MXV) function in the AC XOPF used. Alternatively
another performance objective would determine the amount by which the critical
line flow limit itself should be relaxed can be used to find by how much in this
case the thermal limit of line 1887-1714 should be relaxed to find a power flow
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solution. The desired objective function is referred to in the AC XOPF used for
simulations in this chapter as the optimal branch flows (OBF). We point out that
having these new functions for relaxing prespecified limits first is an important
feature as more sensing and management of T&D equipment becomes available.
In particular, having so-called dynamic line rating sensors (DLRs) will enable more
adaptive use of equipment. Trade-offs between reliability and efficiency benefits
obtained from relaxing equipment limits, on one side, and the reduced lifetime of the
equipment need to be assessed to make the most out of available resources at value.
These alternative actions are particularly suited during short-term emergencies.

13.5.7 Effects of Optimizing Tap Transformer Voltage Settings

In order to assess the potential of optimizing set points of voltage-controlling
transformer ratios, a network-constrained economic dispatch is run when observing
all thermal line limits, including line limit for 1887-1714 congested line. Simula-
tions have shown that when ratios are kept fixed, it is not possible to supply the
entire load without relaxing some other constraints. It is possible to build more
distributed generation, but in the actual operations only partial load shedding is
possible by either allowing for load voltage limits to exceed prespecified limits
and/or by selectively reducing load served.

Notably, when the ratios of voltage-controlled transformers are optimized, it
becomes possible to serve the entire load without having to relax any prespecified
thermal or voltage limits. The results of this optimization are shown in Figs. 13.19
and 13.20. Also, shown in Fig. 13.21 are the optimized settings for controllable
transformers when thermal line limit of line 1887-1714 is taken into consideration.



13 Toward an Extended AC OPF-Based Approach to Wind Power Integration . . . 327

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

Generation dispatch in pu

Minimum generation
capacity in pu

Maximum generation
capacity in pu

Fig. 13.19 Real power generated with 1887-1714 line limit observed (SC)

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LMPs($/MWh)

GenCost($/MWh)

Fig. 13.20 Locational marginal prices of generators with 1887-1714 line limit observed (SC)

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1 2 3 4 5 6 7 8 9 10 11 12

Volt-min(pu)

Volt-max(pu)

Volt-opt(pu)

Fig. 13.21 Optimal ratios with 1887-1714 line limit observed (SC)
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The total generation cost is increased only very slightly to $9,157/hour when
compared to the case when the line limit is not observed. These simulations show
that it is indeed possible to have both reliable and very efficient dispatch when
selectively adjusting the settings of controllable T&D equipment. When running
AC power flow analyses without adjusting settings of OLTCs, the scenario is simply
labeled as being “improperly posed” because power flow fails to converge. On the
other hand, an AC XOPF seeks the most effective adjustments over all controllable
equipment and manages to find a feasible power flow solution. The value of voltage-
controlled T&D equipment is, therefore, not only for reducing delivery losses, as it
is commonly thought to be. As illustrated here, this equipment plays a key role in
enabling reliable solutions.

13.6 Use of an AC XOPF to Maximize Physical Efficiency
of Power Delivery: Loss Minimization

An AC XOPF is used next to minimize delivery losses. The results should be
compared to the results obtained above when optimizing for economic efficiency.
While the equipment limits within which the power delivery can be made are the
same in these two optimizations, the optimized real power and voltage are very
different because the cost functions are not the same. The minimum power delivery
generally requires higher generator voltage settings. This is not the case when
optimizing for economic efficiency which requires dispatch from the least-cost and
cleanest resources first, independent from the resulting delivery losses created.

13.6.1 Dependence of Delivery Losses on T&D Equipment
Adjustments

An AC XOPF was run to illustrate the effects of optimizing voltage-controllable
T&D equipment on loss optimization. Shown in Figs. 13.22 and 13.23 are optimized
real power generation and voltage in support of loss minimization. It can be seen by
comparing Figs. 13.18 and 13.22 that minimizing T&D losses in São Miguel results
in higher generation by all three expensive diesel power plants and in the reduced
use of one of the inexpensive and clean geothermal power units when compared to
the economic dispatch results. As expected, this leads to lower economic efficiency
measured in terms of total generation cost than when scheduling is done for
optimizing economic efficiency. Also, it can be seen in Fig. 13.23 that the generator
voltages needed to minimize delivery losses are very close to the high voltage limits
allowed. This comparison highlights an important distinction between physical
delivery efficiency and economic efficiency in future electric energy systems.

In summary, when voltage settings on both generators and OLTCs are optimized
for loss minimization, the minimum loss achieved is 1.253 MW (AC line losses)
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and the transformer losses are negligible. All voltages are kept between 0.95 and
1.05 pu. Total generation needed to meet load of 67.73 MW is 69.04 MW. Even
with all voltage-controllable equipment optimized the OSF of the 10 kV line 1887-
1714 is significant, namely, −8.25 $/pu. This clearly indicates that the line thermal
limit prevents a fully solved power flow. Attempting either economic efficiency
or physical efficiency requires that this thermal limit be increased by building a
stronger line. The most sensitive voltages are at buses 1049, 1048, and 1659, and
they are around−1.98 $/pu; this means that increasing the upper voltage limit at this
buses would help further reduction of delivery losses. It is important to observe that
several low voltage buses (01NMD, 01NM7, and 039K5) have voltage limits set too
high; this is reflected in their OSVs being positive. The OSPs are most significant
at buses 1680 and 1683, and they are around −5.68 $/pu. They indicate that placing
small power sources, PVs, for example, at these locations may help reduce system
losses as well. There are also several other buses enumerated 1670-1680 at which
placing small PVs may also reduce system losses. Finally, placing more reactive
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power support at several power plants (geothermal at bus 963; and hydro at 1666,
1672, 1680, and 1683) could help reduce system losses. This effect is not very major
as the OSQs at these buses are only around −0.5 $/pu; therefore, building more
capacitors would not solve the problem.

13.7 Concluding Remarks

Based on the simulations above, it can be concluded that the use of AC XOPF-
based dispatch of real power generation and T&D and generation voltage-controlled
equipment offers an important approach to utilizing the assets efficiently while
ensuring that all equipment and network constraints are met. It is shown that
optimization of mechanically switched transformer ratios could improve reliability
by helping maintain thermal line flows within the prespecified limits. This ensures
that the least-cost and the cleanest possible generation is utilized. The use of AC
XOPF-based optimization of all controllable equipment is shown to lead to lower
cost of generation dispatch during summer when demand is higher than during
winter. This is a result of combined optimization of voltage and larger maximum
hydro power capacity. For complex systems it is effectively impossible to find the
best combination of controllable equipment and optimal setting without relying on
a powerful nonlinear optimization tool such as AC XOPF. This point is greatly
confirmed by comparing the optimized ratios of voltage-controlled transformers
when a thermal limit of a critically congested line is observed and when it is relaxed.

While the corrective on-line approach to adjusting settings of controllable T&D
and generation equipment is shown to be potentially very useful for efficient and
reliable delivery of clean and inexpensive power, the actual implementation of
AC OPF power flow should be pursued with care. In particular, only the most
effective control actions should be implemented to ensure that most of the benefit
is achieved in timely manner and without adjusting equipment with small effects
on performance. The AC OPF used for optimizing adjustments in this chapter
has useful features of showing the highest optimization sensitivities with respect
to different candidate controllers. The same optimization sensitivities can be used
to decide on the best locations for placing many small distributed generation
resources and controllers as the system evolves. A particularly interesting question
concerns locating the best places for low voltage photovoltaics and the calculation of
cost-effective investments in solar power to help further reduce the economic
dispatch cost.

Finally, the use of on-line corrective adjustments of the existing controllable
equipment generally requires more frequent resetting of mechanically switched
T&D equipment and leads to some wear-and-tear and shortened lifetime of this
equipment. While this is generally not optimal when viewed from the long-term
investment point of view, it is necessary to compare the cost of wear-and-tear with
the lost opportunity cost from not utilizing system resources efficiently. In principle,
there exists a break-even point at which the two become equal. Deviations from this
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optimal use of controllable equipment invariably lead to worsened long-term system
performance. It is important to use AC OPF-based simulations to understand the
trade-offs between different software and hardware solutions.

Appendix A: An Extended AC OPF (AC XOPF)-Based
Dispatch for Future Electric Energy Systems

As the electric power systems are required to support power flow patterns which
vary significantly over time, and/or are qualitatively different from the power flows
anticipated when the system was built, the complexity of ensuring delivery within
predefined voltage and thermal limits becomes increasingly challenging. The highly
combinatorial nature of what must be done by the system operator to avoid grid
congestion makes it almost impossible to find a single set of adjustments needed by
the controlled equipment. Instead, as conditions vary, a combination of controlled
equipment needs adjustments to support delivery of the least expensive and cleanest
power to the customers.

In operations the main problem is how to adjust the set points of controllable
generators (power generated and voltage) and of controllable T&D equipment
(transformers, capacitor banks) so that the least-cost and cleanest generation is used
to the greatest extent possible. Even more complex are decisions concerning how to
adjust loads and at which locations in the grid to differentiate among their unique
needs and preferences. On-line decisions should also be made about which soft
limits, such as thermal line limits dependent on weather, to temporarily relax, and
by how much, given technologies such as DLRs.

The problem of optimal network-constrained dispatch is well known, and its
formulation can be found throughout the literature. While all formulations draw on
the early AC OPF formulations [4], the many software implementations are diverse
and formulated with different objectives and under different assumptions. To avoid
confusion, we briefly summarize the problem formulation of what we refer to as an
AC XOPF next.

As discussed earlier in this chapter, an AC XOPF should have several new
characteristics, when compared to today’s optimization tools in order to advise
system operators seamlessly about the state of system and the actions to take and
reasons for such actions. These characteristics are restated and described in some
detail next.

• An AC XOPF should be capable of computing a solution within all hardware and
network constraints.

• An AC XOPF should have the ability to optimize with respect to all available
decision variables, such as real power generation, demand, and T&D voltage-
controllable equipment.

• An AC XOPF should be able to provide support of effective resource
management according to several optimization objectives, such as economic
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dispatch, loss minimization, management of extreme voltages, maximum
loadability into large load areas, and maximum power transfer [6].

• An AC XOPF should provide as part of its output optimization sensitivi-
ties for assessing the effects of voltage constraints on performance objective
of interest such as Optimization Sensitivities with respect to voltage con-
straints (OSVs); Optimization Sensitivities with respect to Real Power Gen-
eration constraints (OSPs); Optimization Sensitivities with respect to Reactive
Power constraints (OSQs); and Optimization Sensitivities with respect to Line
Flow constraints (OSFs)).

• An AC XOPF should provide as part of its output LMPs, which are Optimization
Sensitivities of Performance Objective with respect to Power Injections at each
node in the network.

AC XOPF Must Optimize with Respect to All Available
Decision Variables

Optimizing with respect to all available variables is numerically challenging.
The AC XOPF used for simulations in this chapter is numerically robust; this feature
is essential when one needs on-line decisions. In early implementations of AC OPF
programs, it was typical to optimize with respect to the subset of the decision
variables of interest. In particular, when optimizing the decision variables are real
power injections. Similarly, when optimizing delivery losses, voltage controllable
T&D equipment is optimized. An AC XOPF generally out-performs such AC OPFs
because it generally finds a combination of adjustments which is an optimal mix of
both real power injections and the voltage-controllable equipment.

AC XOPF Must Satisfy all Hardware and Network Constraints

A typical electric power system is characterized by defining5:

• The capacity and rate of response of power plants
• The loads
• The transmission lines and their thermal limits
• Switching equipment, such as controllable capacitor shunts and phase-angle

regulators

5The transient response is not considered here; therefore, no dynamic equations are offered to
define this. The assumption is that the transitions from one state to the next are stable. For more
detailed treatment of secure operating regions which account for system dynamics see Chaps. 2
and 2 of this book.
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• Power-electronically switched devices, such as DC lines and Flexible AC
Transmission Systems (FACTS)

• Network connections, topology, and parameters of the above listed individual
hardware

More specifically, the characterization of individual components and the network
constraints, respectively, is as follows:

• The constituent relations of all grid components must be satisfied.

(a) Each generator i is characterized as a component whose real power output
can be set to any value PGi within the physical capacity of the generator,
namely, the minimal permissible power Pmin

Gi and the maximum possible
power Pmax

Gi , for all generators i. Simultaneously, each generator can maintain
constant voltage (magnitude) VGi at its terminals as long as there is enough
reactive power generation within the minimum and maximum limits Qmin

Gi
and Qmax

Gi . These constraints are expressed as

Pmin
Gi ≤ PGi ≤ Pmax

Gi (13.1)

Qmin
Gi ≤ QGi ≤ Qmax

Gi (13.2)

V min
Gi ≤ VGi ≤V max

Gi (13.3)

If these limits are violated, the under- and/or overvoltage protection of a
power plant will disconnect the power plant from the rest of the system for
safety.

(b) Each load j is characterized as a sink of constant real and reactive power PL j

and QL j , respectively. The voltage magnitude VL j at the bus where the load is
connected is allowed to vary within the prespecified minimum and maximum
limits V min

L j and V max
L j , namely,6

V min
L j ≤VL j ≤V max

L j (13.4)

(c) Each transmission line connected between buses i and j is characterized by
its lumped parameters, resistance Ri j, reactance Xi j and shunt capacitance
Bi j, and by its thermal line flow limit Fmax

i j .7

Fmin
i j ≤ Fi j ≤ Fmax

i j (13.5)

6These limits are specified strictly for the purpose of ensuring that the customer power quality
specifications are met. Depending on the type of load and the degree of aggregation, more
complicated load characterization can be used, such as voltage- and frequency-dependent real and
reactive power consumption of the load. Also, an important open question concerns representation
of the load participating for the purposes of demand-side management.
7The power flow is limited in both directions. The Fmin

i j defines the thermal limit in the opposite
direction.
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Similar flow limits must be observed for transformers. Flow limits can be
real, reactive, or apparent power.

Depending on the time over which the line constraint would be active,
the line flow limit can be lower or higher. Typical ratings for thermal line
limits are known as the normal (A), long-term emergency (B), and short-
term emergency (C) line ratings and are more relaxed for shorter durations.8

In particular, ratings B and C are used during equipment outage, and rating
A during normal prolonged operations. For purposes of discussion in this
chapter, it is important to differentiate these limits, which are defined by
the properties of the line, from the line flow transfer limits introduced for
purposes of avoiding system problems.

(d) Each controllable shunt capacitor is characterized by its electrical parameters
and its control logic. Today’s practice has been to pre-program the settings
based on off-line worst-case studies and, less frequently, for normal, peak,
and low load conditions. For the purposes of this chapter it is important to
observe that the susceptance of the shunt capacitors has control limits

Cmin
i ≤Ci ≤Cmax

i (13.6)

(e) Each controllable transformer is characterized by its electrical variables and
its control logic; today’s practice has been to pre-program the settings based
on off-line worst-case studies and, less frequently, for normal, peak, and low
load conditions. Each transformer has limits to its range of controllable
transformer ratios

Rmin
i j ≤ Ri j ≤ Rmax

i j (13.7)

• Network power flow constraints must be satisfied at all nodes. Theses state that
real power Pi injected into any bus i which is the sum of power generated PGi,
consumed by the load PLi and by the shunt PShi must equal to the sum of real
power line flows Fi j flowing away from the bus into the network according to

Pi = PGi −PLi−PShi = Σ j ∈CiFi j (13.8)

Similarly, the reactive power balance at each bus must be met. The net reactive
power injected into the node i, which is the algebraic sum of reactive power
generated at the node QGi, reactive power consumed by the load QLi and by the
shunt QShi, must equal the sum of reactive power line flows Qi j flowing away
from the bus into the network:

Qi = QGi −QLi −QShi = Σ j ∈CiQi j (13.9)

8Rating A is a normal conditions rating; ratings B is a long-term emergency rating; rating C is a
short-term emergency rating. All ratings are weather dependent. More recently DLR sensors are
beginning to be used to estimate actual ratings as whether conditions vary.
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Implied by current industry, rules and regulations is the requirement that all
equality and inequality constraints (13.1)–(13.9) above must be simultaneously met
for network protection not to disconnect pieces of equipment whose inequality
constraints are violated and for the network as a whole to balance and stay
interconnected. This must hold for any network topology for protection not to
activate.9

Conditions-Dependent Selection of Performance Objectives

It is fairly straightforward to observe that there are potentially many combinations
of power injections and voltage settings that meet the above system constraints for
a given power network, such as the Flores or São Miguel electric power grids.
Typically, the larger the network, the larger is the number of such combinations.
We recommend the use of an AC XOPF for on-line adjustments of set points of
controllable equipment in order to find the best combinations of adjustments as
system conditions vary. We recommend that more flexible software is needed to
select what is “the best” as system conditions vary. This raises the question of how
to select appropriate performance objectives as discussed next.

The selection of performance objective (cost function) for doing optimization
in electric power systems has long been an open problem [10, 11]. The key reason
underlying this issue comes from often conflicting objectives in operations and in
between operations and planning. It was illustrated in this chapter, for example,
that maximizing physical efficiency of delivery does not give the same real power
generation and voltage dispatch as when maximizing economic efficiency, such
as total generation cost. Most common approach has been to consider the role of
T&D voltage controllable equipment when optimizing delivery loss and to consider
real power generation when optimizing economic efficiency. Most recently, the
economic efficiency has been attempted by utilizing the cleanest resources first. It is
straightforward to show that using the cleanest resources as must-run generation
(negative load) does not necessarily lead to the lowest O&M generation cost [2].

Given these often conflicting performance objectives, as the complexity of
operating future electric energy systems increases, it is becoming necessary to
adaptively change decision-making objectives and make the most out of the
available resources. In particular, this means that the most effective performance
objective should be selected to manage the most dominant problem at the time [6].

9Current industry practice is to ensure that the constraints are met, that is, there exists a feasible
steady-state network solution even when any single (or double) equipment becomes disconnected
from the power network. Moreover, the reliability standards typically require that actions be
taken so that within 30 min the system is brought back to normal, even without the equipment
which has failed. Part IV of this book only concerns corrective methods for efficient and feasible
operations during normal conditions, namely in the absence of equipment outages. Meeting
reliability objectives is the subject of Part V of this book.
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Since reliability always comes first, it is essential to first perform corrective actions
to ensure reliable operations as conditions change. However, instead of scheduling
preventively according to the (N − 1) criteria, it is becoming necessary to compute
adjustments on-line in real time as conditions vary and to implement the key
adjustments. It is described in Sect. 13.5.6 why is this necessary. For example, when
a line gets disconnected this typically leads to thermal overloads in neighboring
lines. By simply recognizing that the line rating can be increased for a short time
when needed, it becomes possible to perform an AC XOPF and find the feasible
power flow solution. In this case neither economic dispatch nor loss minimization is
effective cost functions. Instead, one can minimize the locations where the line flow
limit needs adjustment; the appropriate AC XOPF objective function is basically
the total sum of deviations from the given line flow limits; in the AC XOPF used
in this chapter this function is known as the OBF (optimize branch flow) function
[9]. Similarly, when there is a reliability problem caused by not having a power
flow solution within the given voltage limits, a performance objective should be
used to enable finding a solution within the minimally relaxed voltage limits. In the
AC XOPF used in this chapter, this function is referred to as the maximize extreme
voltage (MXV) [9].

Ultimately, as IT enhancements reach the stage that fast automation is placed
to ensure stable transitions over a broad ranges of conditions, one can envision
corrective resource management adaptation of set points for controllable equipment
during both normal and abnormal conditions. The automation will be working at the
much faster rate to ensure stable transitions between the quasi-stationary changes
caused by variations in input and non-time critical equipment status changes.
Notably, the equipment status itself could be used as a means of best managing
what is available at the time.10

By way of a mathematical illustration, this chapter uses economic dispatch as the
primary performance metric. Minimizing the generation-cost performance objective
J can be expressed mathematically as the objective of minimizing

J = Σ jc j(PG, j) (13.10)

Here, c j(PG, j) stands for the operations and maintenance (O&M) generation cost
of power plant G j. An AC OPF problem is basically the problem of finding this
minimum of (13.10) subject to all of the constraints given above in (13.1)–(13.9)
by optimizing within the allowable ranges real power generation PG, j, set points
of AVRs on generators VG, j, and voltage set points VL,k at load buses k which are
directly controlled by the on-load-tap-changing transformers (OLTCs) and capacitor
banks (CBs).

As new technologies are deployed, it is important to keep in mind that DERs
generally can be used for producing additional generation, to compensate for

10See Parts V and VI for detailed description of possible automation for managing most likely
faults and large wind gusts without losing synchronism and/or experiencing voltage collapse.
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reactive power, and to support voltage at their locations. This multiple functionality
of solar and wind power, for example, is hard to coordinate in actual operations.
To overcome this problem, it is necessary to have IT tools for deciding what
must be done when and by how much. Perhaps the most challenging problem
when selecting the complexity of control for these new resources is that relative
incremental benefits from smarter technologies are system-dependent. Because of
this, a systematic AC XOPF is needed to identify the most critical constraints, to
select performance objective as conditions vary and to compare benefits of candidate
solutions. The software used in today’s industry generally does not lend itself to such
functionalities.

An AC XOPF Must Provide Optimization Sensitivities
for Finding the Most Effective Adjustments

The optimization sensitivities with respect to equality and inequality constraints
characterizing a complex power grid are a powerful means of identifying the
most critical causes of reliability and/or efficiency problems. The use of these
optimization sensitivities is illustrated in the earlier part of this chapter. For example,
the deficiencies in real power, reactive power, voltage, and thermal capacity of
the lines are measured in terms of optimization sensitivities with respect to real
power (OSPs), optimization sensitivities with respect to reactive power (OSQs),
optimization sensitivities with respect to voltage (OSVs), and optimization sensitiv-
ities with respect to flows (OSFs), respectively. While using the AC XOPF, we have
found these to be invaluable in explaining the optimization results and for making
recommendations for enhancements, both in operations and/or in planning [12].

13.7.1 An AC XOPF Must Provide LMPs for Electricity
Pricing

In several parts of the world, today’s electricity is provided competitively. Instead
of using generation cost, bids are offered by the generators, and these are cleared on
daily, hourly, or even a 10-min basis. On-line pricing is based on so-called LMPs. A
LMP at bus i is the optimization sensitivity with respect to the change in injection
Pi at this node computed at the optimum total cost given in (13.10), namely,

LMPi =
δJ
δPi

(13.11)

Generators are paid for their power generated based on the LMPs at the grid location
where they are connected. System generation revenue is the sum of these payments
to all scheduled generators. System generation profit is the difference between the
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generation revenue and the total O&M generation cost. Similarly, loads pay for
their power consumed based on the LMPs at the grid locations to which they are
connected. System load charges represent the sum of payments made by all loads.

The difference between system load charge and system generation revenue is
known as the merchandise surplus (MS). It is known that the MS obtained using
DC OPF is always nonnegative. However, there is very little understanding of
how actual locations of power plants affect the financial settlements (merchandise
surplus, generation profit, load charges) when an AC XOPF is computed and why.
Furthermore, there are no electricity pricing mechanisms at present that would
rely on AC XOPF-based clearing of power bids. We have recently proposed that
computing incentives for voltage support, for adding real power sources, for adding
reactive power sources, and for enhancing line flow limits can be computed in an
on-line setting using LMPs to identify the economic cost of certain constraint, and
then using OSVs, OSPs, OSQs, and OSFs to allocate the right incentives to the
right enhancements [12,13]. Finally, a combination of new performance objectives,
such as MXV and OBF with their optimization sensitivities, provides incentives for
relaxing voltage and line flow limits in operations to ensure reliability.

Today’s Industry Approach to Implementing
Network-Constrained Dispatch

The network-constrained AC OPF dispatch is a non-convex optimization problem
subject to nonlinear constraints. It has been difficult to numerically solve because of
convergence problems and problems with not being able to find a feasible solution.
Moreover, a typical result of an AC OPF solution indicates that all available controls
must be adjusted, which makes it impractical to implement on-line. As such, AC
OPF is presently not used on-line by the utilities. Instead, a security-constrained
DC OPF is used which has the same performance objectives (13.10), but voltage
constraints (13.4), (13.3), and reactive power constraints (13.2), as well as reactive
power balance equations (13.9) are not observed. The only observed constraints
are the real power balance equations (13.8) linearized around a given equilibrium
and the real power generation constraints given in (13.1).

Importantly, the line power flow thermal limits (13.5) needed to ensure that the
transmission equipment does not overheat and become damaged are modified by so-
called proxy line flow limits. These are obtained by carrying out extensive off-line
simulations annually when planning new equipment and at the operations planning
stage, when scheduling routine equipment maintenance, in order to account for the
constraints which do not appear explicitly in the DC OPF problem formulation.
Most of the simulations used are analysis based. No systematic optimization of
resources is executed at the planning and/or operations planning stages. Instead,
for the forecast demand, a sequence of AC power flows is carried out to identify
the line flow proxy limit so that the omitted constraints are met. In particular, the
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thermal line flow limit (13.5) is replaced by a proxy line flow limit which is intended
to ensure that no voltage-reactive power problems occur for the scenarios of interest.
Thus, less conservative thermal line flow constraints shown in (13.5) are routinely
replaced by generally more conservative line flow limits as follows:

Fmin,proxy
i j ≤ Fi j ≤ Fmax,proxy

i j (13.12)

Similarly, procedures are put in place to limit the load voltages to

V min,proxy
L j ≤VL j ≤V max,proxy

L j (13.13)

for a subset of loads which are considered to be critical for ensuring no
voltage-reactive power delivery problems. The modified limits (13.12) and (13.13)
are then observed when the real power generation is dispatched during operations.

We stress that the use of these proxy limits can be problematic because when
conditions occur that were not previously simulated, AC power flow analysis will
indicate that there is either no solution due to reactive power-voltage problems
and/or the reactive power and voltage-related constraints are not met. In either case
it becomes infeasible to implement the result of DC OPF-based economic dispatch.
As a result, it becomes necessary to iterate in a suboptimal and often heuristic way
between solving the DC OPF and obtaining AC power flow solution with updated
real power generation to check whether an acceptable voltage-reactive power
profile can be found. Iterative modifications are carried out based on the system
operator’s knowledge of the specifics of the simulated electric power network. This
iterative process often fails to converge and/or results in a suboptimal solution when
compared to the one which can be obtained by solving a full AC OPF problem.
Recently, progress has been made toward having a robust AC OPF software for
meshed transmission networks and potential benefits from using it are reported
in [14]. Notably, the use of DC OPF does not allow for explicitly optimizing the
settings of voltage-controlling equipment. This represents one of the major missed
opportunities for supporting efficient economic dispatch.

Summary

Today’s practice is to perform extensive power-flow-based scenario analyses and
determine technical limits regarding the locations and the amount of wind power
plants that can be installed without creating operating problems. A typical result of
these studies is a recommendation to build new T&D lines and modernize existing
substations. This approach is suboptimal and it requires significant computational
effort to try all possible scenarios and solutions that would prove to be suboptimal.
In this chapter we propose, instead, that prior to deciding to build new lines,
optimization methods should be used to consider non-transmission alternatives to
supporting wind and solar power plant integration. In particular, software should
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be used for on-line scheduling of the existing and new resources so that real power
can be delivered to the greatest number of users, at the lowest possible cost without
creating technical delivery problems. It is suggested that an extended AC Optimal
Power Flow (AC XOPF) can be used as a basic means for (1) computing the
most effective schedules as conditions change during operations, (2) for assessing
potential value of candidate new plants, and (3) for reinforcing the T&D system to
enable efficient and reliable use of newly added resources. We illustrate the potential
use of AC XOPF for seasonal dispatch of resources in the electric power systems of
Flores and São Miguel in the Azores Islands.

Acknowledgment The authors appreciate use of the New Electricity Transmission Software
Solutions (NETSS), Inc AC XOPF program for demonstrating potential of corrective actions for
enabling efficient and technically feasible delivery of the cleanest and the least expensive power
for the Azores Islands.
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11. M. Ilić, X. Liu, C. Vialas, Some optimality notions of voltage profile for the steady-state
operation of electric power systems, in Proceedings Symposium Bulk Power Systems, Voltage
Phenomena III: Voltage Stability and Security, Davos, 1994
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Part V
Enhanced Methods for Intra-dispatch

Automated Balancing of Hard-to-Predict
Wind Power Fluctuations



Chapter 14
Modeling and Control Framework to Ensure
Intra-dispatch Regulation Reserves

Nipun Popli and Marija Ilić

14.1 Introduction

In this chapter we propose a model-based control framework for generating the
real-power needed to follow the sustained wind power deviations within each
dispatch interval. A quasi-stationary model is derived that explicitly states the
dependence of real power output of conventional generators as states on nonzero
mean wind power variations as disturbances. This model is obtained by subjecting
the steady-state droop characteristics of generators to real-power flow constraints.
No thermal line flow congestion is modeled.

Next, the model is utilized to design the control of set points on conventional
governors. The readjusting of governor set points is in response to sustained wind
ramps, and it could be viewed as the slowest tertiary-level automated load-following
function. The wind power output is modeled as a negative load and varies around its
long-term average 10-min forecast.

Our proposed approach is qualitatively different than the faster secondary-level
balancing function known as Automatic Generation Control (AGC). The task of
AGC is to ensure prespecified short-term frequency standards. Treating frequency
deviations as a system output, AGC responds on a much shorter second-by-
second timescale to frequency offsets resulting from faster wind power fluctuations.
However, the control we propose is intended to balance the wind power deviations
on a longer time horizon, specifically on a minute-by-minute basis, resulting in
acceptable mid- and long-term frequency. Intra-dispatch wind variations are hard
to predict accurately. The objective is to ensure sufficient fast regulation reserves
so that AGC can balance fast fringe fluctuations in wind power output. Therefore,
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any effect of sustained surplus or shortage in scheduled wind power output,
forecasted 10-min ahead of time, can be offset without requiring extremely fast
generation resources. It is suggested that the proposed wind-following function can
be automated to respond to varying wind power profiles with a feedback control.
Nevertheless, if generation resources are scheduled on an hourly basis, the intra-
dispatch real-power balancing control scheme can be implemented every 10 min
in a feed-forward predictive way. In this chapter we illustrate only the automated
non-predictive version of intra-10-min real-power balancing, on the islands of
Flores and São Miguel. For the given conventional generation control on these
islands, the efficacy of combined intra-dispatch and AGC in reducing frequency
deviations within a dispatch interval is notably better than when conventional AGC
is implemented. If intra-dispatch real-power balancing is to result in prespecified
frequency response, we illustrate that compared to conventional AGC, combined
intra-dispatch and AGC requires less expensive fast reserves.

14.2 Problem Overview

The balancing of electricity supply and demand requires a two-pronged approach.
First, generation resources are scheduled based on predictions, primarily of load and
wind. As the decision variables from scheduling are obtained, the set points of the
conventional generators are readjusted to ramp up/down their power outputs to the
scheduled values in a feed-forward way. As reviewed in Chaps. 7 and 9, the dispatch
of generation resources involves a maximization of social welfare on a longer
time horizon, without taking into account intra-dispatch wind ramps. Therefore,
scheduling alone will not ensure that acceptable quality of power is delivered to the
end users. Subsequent to dispatch, a real-time balancing of the mismatch between
the actual demand and the scheduled supply must be achieved through feedback
control actions. In the previous chapters, balancing functions involved the optimum
utilization of conventional resources on a 10-min timescale, with the 10-min average
wind power output assumed to be known ahead of time. To balance intra-10-min
temporal variations in wind speed, which are not known ahead of time, we now
propose a control model to follow hard-to-predict sustained variations in the wind
power output. Only the conventional generation technologies are considered for
intra-dispatch balancing, i.e., hydro- and diesel power plants.

14.2.1 The Challenges of Intra-dispatch Power Balancing

While balancing intra-dispatch supply-and-demand error in real time, the system
operator faces two critical challenges. These are summarized below:

1 Lack of Intra-dispatch Wind Speed Information: The control functions for real-
power balancing include frequency stabilization, frequency regulation, and
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Fig. 14.1 10-Min ahead wind power forecast and actual wind power output

wind/load power following. These closed-loop control schemes balance the
hard-to-predict real-power supply-and-demand mismatch over multiple time
horizons. Also, closed-loop control can be either feed-forward or feedback.
Feed-forward control is a proactive approach to ramp up/down the balancing
resources in anticipation of power imbalances, such as varying load patterns,
based on historical data and very short-term predictions. For example, if intra-
10-min wind speed data is available, one can predict, using the forecast models
described in Chap. 6, minute-by-minute variations in wind speed. Therefore,
with the availability of wind speed information on a much shorter timescale,
it becomes possible to extend the feed-forward approach in order to balance
anticipated intra-10-min variations in wind power. Alternatively, the feed-back
control loop is a reactive approach to balance stochastic/white noise or fringe
fluctuations with a tolerable nonzero mean around the load. In general, the higher
the accuracy of the forecast and shorter the timescale of the predictions, the
lower the reliance on feedback closed-loop AGC. Subsequently, less regulation
reserves will be required for non-predictive balancing approach or feedback
control. However, due to the fact that there is typically a lack of accurate intra-
10-min wind speed information, it is critical to ensure sufficient balancing
reserves for short-term fluctuations as well as for long-term sustained variations
in wind. The difference between the actual and predicted wind power outputs for
Flores is shown in Fig. 14.1.

2. Island-Type System with High Wind Penetration: In large continental
power networks, for the purpose of frequency stabilization and regulation,
spinning reserves are shared among multiple balancing authorities through
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interconnecting tie-lines. The reserves are relieved once the affected control
area corrects its power shortage or surplus through AGC. Presently, wind power
penetration in large-scale electric power networks is low. Wind supplies only
a small fraction of the total demand. Wind fluctuations are, therefore, typically
modeled as stochastic disturbance, even though their deviations are not white
noise [1]. However, a full spectrum of problems arises if significantly high
percentage of wind generation penetrates an island network, such as the Azores.
Today, wind generation accounts for 14 % of the total installed capacity on
Flores. At times, the scheduled wind is as high as 21 % of the system load.
To plan sustainably for future demand, it is expected that additional wind
generators will be installed. For stand-alone island networks with limited
conventional resources, which have high wind penetration and lack external
support through tie-lines, it is imperative that real-power balancing control
be redesigned systematically. Since intra-dispatch wind variations will be much
more pronounced in this kind of setting, the conventional hypothesis of modeling
wind fluctuations as zero mean deviations may not be valid for Flores. As more
wind connects to island networks, it will be hard to meet mid- and long-range
frequency standards through AGC alone.

Based on the discussion so far it is apparent that the operational challenges to
maintain a close to nominal frequency in the Azores networks, i.e., 50 Hz, are
qualitatively different from conventional frequency control problem. Generation
resources are limited for intra-dispatch supply-demand error balancing. Since the
Azores Islands are not electrically connected to each other, a lack of stabilization
support from adjoining networks is also a fundamental limitation. Therefore,
fast-responsive generators are needed in these networks, particularly those with
combustion turbine technology such as diesel power generation. Although unsus-
tainable, they are essential for the reliable operation of the Azores. A novel approach
is thus required to ensure the effective implementation of all control actions, i.e.,
stabilization, regulation, and wind/load following, with a minimal use of combustion
generators, i.e., diesel plants.

14.3 Granularity of Scheduling and Balancing Wind

The preceding section provides a qualitative description of the challenges
to real-time balancing of the supply-demand error. To interpret the effect of
scheduling on error balancing explicitly, we now illustrate the consequences of
inaccurate wind forecasts and scheduling errors on the amount of reserves required
for intra-dispatch power balancing. Figure 14.1 depicts three curves. Plotted over
five dispatch intervals, i.e., 50 min, they represent 10-min-ahead wind power
forecasts based on wind speed predictions, the observed 10-min average wind
power output, and the actual wind power output profile. The step plots are based on
the available 10-min average wind speed measurements and 10-min wind speed
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Fig. 14.2 Flores: scheduling error due to lack of intra-10 min wind speed information

predictions obtained from the forecast models (Chap. 6). Based on these plots, we
re-summarize the challenges to intra-dispatch real-power balancing:

1. An inaccurate prediction of wind power output will lead to an error in dispatch.
This will result in the under- or over-scheduling of conventional generators
(Fig. 14.2).

2. Intra-10-min variations in wind power output are not only large but sustained as
well. These can no longer be treated as white noise deviations. Also, unlike load
ramps, it is hard to define intra-dispatch wind ramps.

These two factors will have profound effects on the balancing of the
intra-dispatch supply-demand mismatch. A detailed interpretation of these
challenges is covered in the following subsections.

14.3.1 Feed-Forward Generation Schedule

Before we begin to describe the effect of scheduling error on intra-dispatch power
balancing, let us summarize the scheduling approach proposed in the preceding
chapters. Under the assumption that wind speed has memory, or that it behaves like a
state, 10-min-ahead wind speed forecast is made and an average wind power output
for the dispatch interval is predicted. Out of the two generation dispatch algorithms,
static dispatch and look-ahead dispatch (Chap. 7), the latter results in least-cost
scheduling since it takes into account the predicted average wind generation
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Fig. 14.3 Flores: persistent frequency deviations in the system

over 10 min. Analogously, while scheduling the load, adaptive load management
(Chap. 8) accounts for price-responsive demand in the system. When implemented
in tandem, model predictive control and adaptive load management effectively
balance the long-term temporal variations in system demand and wind power output.
This is on a timescale ranging from 10 min to 1 h (Chap. 9). With least-cost dispatch
as the primary objective, the maximum utilization of renewable resources without
spillage, particularly of the forecasted wind generation, determines the schedule
of conventional generators and price-responsive demand. This is to ensure a full
utilization of the predicted wind power output. However, an error in wind speed
predictions, short term as well as long term, will result in intra-dispatch real-power
imbalances:

e10
W = P̂10

W −P10
W (14.1)

Equation (14.1) is a mathematical representation of wind forecast error. Here,
e10

W represents prediction error in average wind power output over 10 min. P̂10
W and

P10
W denote the predicted average wind generation and the observed or measured

average wind generation, respectively. Figure 14.1 summarizes the prediction error
in wind generation for Flores. For some dispatch intervals, the forecast error e10

W is
larger than 70 kW. In addition, the system operator may experience error in the load
forecast as well. Nevertheless, given the rich load data history available to the system
operator, daily demand curves can be predicted with a high degree of accuracy.
However, if wind generation is to be scheduled as a negative load, a very accurate
wind speed forecast is necessary to support its increasing penetration reliably.
Figure 14.2 illustrates possible cases of scheduling error based on the anticipated
wind power output on Flores. For each case, corresponding offsets in the system
frequency are shown in Fig. 14.3 if the set points of the governors are not readjusted
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between 0 and 10 min. An underprediction of wind power generation leads to over-
frequency operation of the system within the 10-min interval. Similarly, in the case
of an overprediction of wind power output, under-frequency operation of the system
results.

14.3.2 Conventional AGC (AGC)

In order to ensure quality of service (QoS) to customers, the forecast error (e10
W)

and sustained minute-by-minute temporal variations in wind generation must be
balanced. One possible way to offset these nonzero mean real-power imbalances is
to implement the conventional generation control scheme by utilizing fast secondary
regulation reserves [2]. Most utilities regulate the system frequency by using
the tried-and-tested concept of area control error (ACE). ACE represents load-
generation mismatch in a control area. The offsets in frequency and tie-line flows
are bundled into ACE signals, simplifying the task of regulating frequency and inter-
area exchange through a single control input. The fast regulation reserves respond
to signals communicated from the control center. Equation (14.2) is a mathematical
representation of area control error. �Ti represents the error in net tie-line flow into
ith control area, with the error being the actual minus the scheduled tie-line flow
exchange. Similarly,� f represents the actual frequency minus scheduled frequency
of the control area. βi is the control area’s frequency bias setting in MW/0.1 Hz,
represented with a negative sign:

ACEi =�Ti − 10βi� f (14.2)

In the case of an island-type network, there are no tie-line interconnections.
Therefore, the term �Ti does not exist. The above mathematical formulation for
ACE will change for the Azores. There will only be one control area with i = 1:

ACEIsland =−10β� f (14.3)

Large continental utilities estimate the value of ACE every few seconds. The rate
of sensing varies for different ISOs. For example, in American utilities it is
mandatory to sample ACE at least every 6 s. The updated control is implemented
over a 1-min period, communicating the weighted ACE signal. This may be seen as
a low-pass filter for intra-dispatch balancing, capturing only the sustained supply-
and-demand mismatch. Real-power imbalances are expected to be highly volatile in
the Azores. Therefore, a higher rate of sampling and updating of the ACE signals
will be needed. Also, the regulation capacity for feedback control is limited on the
Azores Islands, and only a small error in supply and demand can be balanced. In the
case of a surplus wind power, diesel units can be ramped down quickly. However,
it may not be possible to ramp them up beyond their rated capacity in response
to a large scheduling error (e10

W) and sustained intra-dispatch variations in wind.
For example, on Flores, even though the installed capacity of the diesel generation
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Fig. 14.4 Island-1: sustained frequency deviations even with AGC

exceeds total demand, it is not plausible to have all four diesel units online 24 h
a day. This is particularly the case when there is a shortage of combustion fuel,
such as when the sea is too rough to allow oil imports to arrive. In the worst-case
scenario, the islands have to withstand the problem of an oil shortage for a week
or two. In Fig. 14.2, let us take the case where the system operator under-schedules
conventional generation resources by overpredicting the wind power output. Over
the next 10 min, we aim to compensate for the wind power shortage with a limited
capacity of fast regulation reserves. Figure 14.4 shows that when the regulation
reserves have been utilized completely, frequency deviations are still as large as
0.15 Hz. The North American Electric Reliability Councils, control performance
standards state that ACE or power imbalance within a control area must cross
zero every 10 min. Such standards are hard to achieve in the Azores by means of
conventional generation control, as reflected in the sustained frequency deviations
in Fig. 14.4.

From the discussion so far, it is now clear that the deviations in wind power can be
filtered into two components. These are fast second-by-second fluctuations and slow
but sustained minute-by-minute variations (Fig. 14.5). The high cost of operation
and limited balancing capacity of diesel units make them unviable for tracking of
slow variations. On Flores, a possible approach is to ramp controllable hydro on a
minute-by-minute basis within each dispatch interval. Compared to the secondary-
level function of AGC, the generation output of the hydro unit can be increased on a
much slower timescale to balance the wind as well as the load ramps. Diesel units or
AGC reserves respond on a second-by-second basis to ensure short-term frequency
quality. Moreover, they are much needed for contingency conditions such as wind
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gusts or a sudden loss of wind turbines due to a voltage drop. Therefore, it is not
prudent to balance wind and load ramps through fast regulation reserves. These fast
reserves are required for worst-case scenarios to ensure the reliable operation of an
island-type network and must be preserved to the greatest extent possible.

14.4 Managing Wind Variations: A Qualitative Outline

For systems with high wind penetration, spatial and temporal variability in
wind should be taken into account while balancing intra-dispatch variations and
scheduling error in wind power:

(a) Spatial Variability: The planning of balancing reserves must be based upon the
electrical distances between the balancing units and the sources of disturbances,
i.e., wind farms. One may observe potentially larger imbalances at locations
where the installed wind capacity is high. The mapping of spatially nonuniform
penetration of wind may not be of much significance for the small Flores
network, where the impedances of the wires between different nodes are of
the same order. However, it is critical for large island networks. For example,
São Miguel’s power network spreads over a large geographical area with 1,900
buses. Some of the generator nodes in the São Miguel’s network are weakly
interconnected as the admittance of electrical wires connecting them is low.
As a result they can be modeled as a set of weakly coupled subsystems.
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Fig. 14.6 Quasi-static control updates between consecutive schedules

A decentralized intra-dispatch power balancing approach is needed in such
a case. In order to map location-based variations in wind power output, it is
imperative that network constraints be taken into account. Thereafter, spatially
differentiated or even decentralized intra-dispatch real-power balancing can
be implemented. It can be supported by means of PMUs and dedicated
communication between the balancing unit and the source of disturbance.

(b) Temporal Variability: Intra-dispatch wind variations will span over multiple
timescales. A balancing over all time horizons is essential for reliable operation.
For intra-dispatch balancing, wind variations are filtered into two components,
shown in Fig. 14.5. Firstly, there are large but slow sustained variations sampled
every [K] seconds, where K equals 30 s. A quasi-stationary control approach
can be applied to balance this slow component. As shown in Fig. 14.6, the
reference setpoints of the slow generators on Flores, particularly controllable
hydro, can be updated every 30 s in response to intra-dispatch quasi-stationary
wind variations. The rationale behind the choice of K = 30 is explained in
next section. Secondly, there are fast fringe fluctuations around the slow wind
variations. Fast regulation reserves, or AGC units such as a diesel plant,
flywheels, dVars, electric vehicles, and batteries, respond to fringe fluctuations
in wind power output; this is covered in subsequent chapters (Chaps. 15 and 16).
These fluctuations are assumed to stabilize before the slow quasi-static control
scheme responds, the model for which is described in the next section.
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14.5 Proposed Intra-dispatch Balancing Approach

Next we propose a quasi-static control approach for following sustained intra-
dispatch wind variations on Flores. Before the control framework is derived, it is
necessary to revisit the concept of steady-state droop characteristics.

14.5.1 Steady-State Droop and Gain of a Generator

For synchronous generation technologies, the standard state-space model of their
governor-turbine-generator (GTG) is a dynamical controller represented by a set
of ordinary linear differential equations. To derive the steady-state droop charac-
teristics, and hence the quasi-stationary control framework, the primary dynamics
are assumed to be stabilizable. In other words, the derivatives of the states are set to
zero and the steady-state droop of the generator obtained. Numerically, a generator’s
droop is the rate of change of its rotational speed with respect to the change
in its power output. The generator’s power output is represented by a three-way
relation [3]:

ωG [K] = aω ref
G [K]−σssPG [K] (14.4)

Variables PG, ω ref
G , and ωG refer to the power output, governor frequency

set points, and the rotational frequency of the prime mover, respectively. Equa-
tion (14.4) is obtained from the linearized GTG model. Therefore, the states
represent deviations from their nominal values. σss is the steady-state droop
characteristics of the generator; the coefficient a also depends on the generation
technology. The droop σss determines the governing action of a generator. It rep-
resents the sensitivity of generator frequency ωG with respect to any change in its
power generation PG, at a constant set point value ω ref

G . σss in turn determines the
frequency bias of the island-type network, i.e., β parameter in Eq. (14.3). However,
before β is calculated, the steady-state gain Gss of all controllable generators must
be estimated. Parameter β can thereafter be obtained by adding the gains of all N
controllable generators in the network:

Gss =
1

σss
(14.5a)

− 10β = (Gss1 +Gss2 +Gss3 + · · · +GssN ) (14.5b)
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Equation (14.6) represents the closed-loop primary dynamical model of GTG for
a hydropower plant:
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0
0

⎤
⎥⎥⎥⎦PG

(14.6)

The state variables for the hydro governor are ωGh for the generator frequency,
q for the penstock flow, and v and a for the governor droop and the gate position,
respectively. Mh and Dh are the inertia and damping constants. Te and Ts represent
the time constant of the valve-turbine gate system and the servomotor gates,
respectively. rh and r′ are the permanent speed droop and the transient speed droop
of the hydro generator, respectively. eh, kq, kw, Tf, Tq, and Tw are all ratios of
constants of the standard hydro turbine [4]. Now the rate of update of the set point
ω ref

G , i.e., 30 s, is relatively slow with respect to the closed-loop primary dynamics.
This is much slower than the rate at which the gate position a can be changed.
The gate position controller is the slowest component of the dynamical controller
[Eq. (14.6)] with a time constant of approximately 4 s. Therefore, the transients of
the hydropower plant settle to steady-state before the reference set point of the
governor is updated. Following is the steady-state droop characteristic of hydro,
arrived at by assuming the primary dynamics to be stabilizable:
(

eh +Dh − kqTq

Tf
+

kqTq

rhTw
− kw

rh

)
ωG [K] =

(
kqTq

rhTw
− kw

rh

)
ω ref

G [K]−PG [K] (14.7)

The primary dynamical equation for diesel or a combustion turbine can be
represented as:
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State variables ωGd and VCE represent the generator’s frequency and fuel
controller. Variables WF and WFdot represent the fuel flow, while Md and Dd are the
inertia and damping constants. More details about the model can be found in [5, 6].
By assuming the primary dynamics to be stabilizable, a three-way relation between
can be derived for a diesel generator as well:

(
Dd +

cKDa
γ

)
ωG [K] =

(
cKDa

γ

)
ω ref

G [K]−PG [K] (14.9)
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Fig. 14.7 Qualitative
representation of steady-state
droops

14.5.2 Droop Characteristics of Generators on Flores

The steady-state droop of controllable generators can be figuratively represented as
a straight line, with a slope as a negative of its steady-state gain Gss. Figure 14.7
is a qualitative representation of the droops for diverse balancing technologies on
Flores. While flywheels can be much more responsive compared to conventional
units, they have limited reserves. Therefore, to balance sustained intra-dispatch wind
variations, we consider only the droops of conventional technologies. The steady-
state gains or droops of controllable hydro and diesel generators on Flores can be
summarized as:

GHydro
ss =

1

σHydro
ss

=

(
eh +Dh − kqTq

Tf
+

kqTq

rhTw
− kw

rh

)
(14.10a)

GDiesel
ss =

1
σDiesel

ss
=

(
Dd +

cKDa
γ

)
(14.10b)

Based on the generator’s parameters, we now evaluate and compare these gains
for hydro and diesel plants on Flores:

GHydro
ss =

1

σHydro
ss

= 0.4485 (14.11a)

GDiesel
ss =

1
σDiesel

ss
= 10.005 (14.11b)
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Or, alternatively it can be concluded that:

GDiesel
ss = (22.305)GHydro

ss (14.12)

If the set points of diesel and hydro plants are not adjusted in response to intra-
dispatch imbalances, the diesel generator can produce about 22 times more power
than the hydro plant for a given frequency offset.

14.6 Proposed Quasi-Stationary Balancing Model

As described in Sect. 14.4, the spatial variability in wind generation must be mapped
for the purpose of differentiating real-power imbalances at multiple locations.
We propose a control model that utilizes local power output as measurements [7].

14.6.1 Seamless Integration of Heterogeneous
Balancing Resources

A control scheme with generation power outputs as state variables is critical for
incorporating novel regulation technologies like batteries and electric vehicles.
Unlike conventional synchronous generators, these technologies lack a prime mover
and do not have frequency as state variable. For the purpose of intra-dispatch
power balancing, these generation resources can only be modeled through their
power output. Hence, for this reason, our model is based on the power output of
the balancing resources as state variables. Assuming a decoupling between real
and reactive power, the following sensitivity matrix can be obtained for real-power
balancing: [

PG [K]

PL [K]

]
=

[
JGG JGL

JLG JLL

][
δG [K]

δL [K]

]
(14.13a)

Here, δ represents the phase angles of the buses and subscript L signifies the
load buses [3]. Equation (14.13a) can be rewritten in terms of only the generator bus
phase angles δL

1:

PG [K] =
(
JGG − JGLJ−1

LL JLG
)

δG [K]+ JGLJ−1
LL PL [K] (14.13b)

It is critical to note that PG is a column vector and consists of conventional
generation technology as well as wind farms. Denoting the term (JGG−JGLJ−1

LL JLG)
as KP, Eq. (14.13b) can be reformulated as:

1All variables represent deviations from their nominal values for a given equilibrium point.
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[
PGC [K]

PW [K]

]
=

[
KPGCGC

KPGCW

KPWGC
KPWW

][
δGC [K]

δW [K]

]
(14.14a)

Subscripts GC and W refer to conventional generators and wind farms, respec-
tively. Now eliminating δW since PW or intra-dispatch sustained wind variations are
to be modeled as disturbances:

PGC [K] =
(

KPGCGC
−KPGCWK−1

PWW
KPWGC

)
δGC [K]+KPGCWK−1

PWW
PW [K] (14.14b)

A relation between the bus angle and the frequency of the conventional generator
can be derived in a causal way:

δGC [K + 1] = δGC [K]+TtωGC [K] (14.15)

The three-way droop equation and the network constraints over two time steps K
and K + 1 lead us to following state-space model:

PGC [K + 1] = APGC [K]+Bω ref
GC

[K]+W (PW [K + 1]−PW [K]) (14.16)

The matrices A and B are (n − 1)-dimensional square matrices, where n is the
number of controllable balancing resources within the network. Their numerical
values depend on GTG’s parameters and the sensitivity matrix of real power with
respect to the bus angles.

14.6.2 Mid- and Long-Term Stability

The system matrix A in Eq. (14.16) is represented as:

A = In−1 −αTtσ (14.17)

I represents an identity matrix. The parameter α equals (KPGG −KPGWK−1
PWW

KPWG)
in Eq. (14.14b). Tt , a scalar, is the sampling rate of 30 s. The diagonal matrix
σ represents the steady-state droops of (n − 1) controllable generators. Since
Eq. (14.16) is a discrete-time state-space model, the eigenvalues of matrix A must
be less than unity. This is to ensure mid- and long-term system stability.

14.6.3 Intra-dispatch Balancing: Control Gain

Based on the structure of system matrix A, as well as the control objective, there can
be multiple ways of designing the gain for intra-dispatch real-power balancing:
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14.6.3.1 Tracking Wind Variations

One possible approach of designing the control gain is to track quasi-static variation
in wind power output. This can be achieved by having the following control input:

ω ref
GC

[K] =−B−1W (PW [K]−PW [K − 1]) (14.18)

In Eq.(14.18), the set points of the governors (ω ref
G ) are updated in response

to (PW [K]− PW [K − 1]). The wind variations are balanced with a delay. Since
Eq. (14.18) represents a delayed response of the generation resources to the sus-
tained wind variations, error will always exist. The residual real-power error will be
balanced by the slack generator or by AGC units in a distributed way. Therefore, for
the purpose of tracking, communication between balancing resources and source of
disturbances is needed.

14.6.3.2 Ensuring Long-Term Stability

As described in the preceding subsection, long-term system stability can be ensured
only if eigenvalues of system matrix A are less than unity magnitude. The matrix A is
dependent on the parameters α , Tt , and σ . The network constraints, i.e., how much
power can be delivered by the balancing resources to the sources of disturbance,
are represented by matrix α . Similarly, the sampling time Tt is chosen so that the
transients of the dynamical controller stabilize before reference points are updated.
The steady-state droop matrix σ of controllable generators is technology dependent.
As per Eq. (14.17), long-term system stability is determined by these three factors.

For the case when the matrix A has eigenvalues greater than unity magnitude,
it is not possible to track wind variations with an unstable system. Therefore, the
tracking input described in Eq. (14.18) cannot ensure long-term system stability.
A similar observation of long-term instability was noticed in Flores. With two
controllable generators, i.e., n = 2, there can be two possible system matrices
of unity dimension (n − 1), one each for the case when either the controllable
hydro plant or the diesel generator is used for intra-dispatch power balancing.
The eigenvalues of matrix A, when the hydro plant and the diesel generator serve as
intra-dispatch balancing resource, are −8.35× 1002 and −36.48, respectively.

In such a case, an alternative is to design a feedback gain for a stable system.
For example, a discrete linear-quadratic regulator to design control input ω ref

GC
[K]

minimizes the quadratic cost function:

J =
α

∑
K=1

(
ωGC [K]T QωGC [K]+ω ref

GC
[K]T Rω ref

GC
[K]

)
(14.19)

The objective is to minimize locational frequency offsets as well as the cost of
control. Matrices Q and R are the state and control weighting matrices, respectively.
The matrices must be so chosen as to reflect the relative quality of service and the
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cost of balancing at different nodes. For example, at the locations where frequency
offsets are expected to be larger or where a better quality of service is needed, the
corresponding diagonal element in the matrix Q should be relatively high. Similarly,
for expensive balancing resources such as diesel, the corresponding elements in
the R matrix must reflect the high cost of control. The gain k obtained by solving
discrete-time Riccati equation is used to design the input as:

ω ref
GC

[K] =−(k)(ωGC [K]) (14.20)

Therefore, the generators respond to the deviations in their frequency. The devi-
ations in the frequencies are a result of wind variations (PW[K + 1]−PW[K]). This
may be seen as output-based closed-loop stable power balancing. The communica-
tion among balancing resources will be determined by the structure of closed-loop
matrix (A−B× k).

14.6.3.3 Tracking Wind Variations with a Stable System

On Flores there is just one balancing resource (i.e., n− 1 = 1). Therefore, the only
option of designing a gain is to provide full-state feedback using discrete linear
regulator gain and stabilize the system. However, for large networks there can be
multiple balancing resources with (n− 1) > 1. If the system is unstable to begin
with, some of the balancing resources can be deployed to just ensure long-term
system stability. Subsequently, other balancing technologies can be used for tracking
of wind variations based on their electrical proximity to sources of disturbances:

PG [K + 1] = APG [K]+BStabω ref
GC1

[K]+BTrackω ref
GC2

[K]+W (PW [K + 1]−PW [K])

(14.21)

Here, the input ω ref
GC1

stabilizes the system. Similarly, the sustained wind power

variations are tracked through the input ω ref
GC2

. This can be one possible approach
to design control gain for a large island like São Miguel which has three diesel
generators (n = 3).

14.7 Enabling Sustainable Integration of Wind on Flores

Through simulations we now illustrate the efficacy of the quasi-stationary control
framework to track sustained wind variations on Flores. To ensure long-term
stability for Flores with (n− 1 = 1), discrete-time Riccati equation gain (k) was
designed for intra-dispatch power balancing. While equal weights were chosen for
frequency offsets (ωGC) for the case of hydro and diesel as balancing resources,
the cost of control through diesel was chosen to be ten times as much as that of
a hydropower plant. The control gain was estimated through an infinite horizon
solution of the Riccati equation to ensure provable performance over a time horizon
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Fig. 14.8 Intra-dispatch wind power output profile on Flores

as long as 10 min. The discrete-time Riccati equation gain (k) was (7.84) when hydro
was used for intra-dispatch power balancing. Similarly it was (−0.09) when diesel
unit balanced intra-dispatch wind variations. Figure 14.8 shows a possible profile of
wind power output between two consecutive dispatches that the Flores network was
subjected to.

Figures 14.9 and 14.10 depict the frequency deviations and power outputs when
hydro and diesel generators are alternately used for balancing sustained wind
variations. The simulations reflect long-term frequency deviations at the generator
buses over 10 min. Since a balancing resource cannot follow wind variations
accurately, a residual error will always exist. Therefore, a fraction of the real-
power mismatch will be balanced by AGC or the slack bus. In Fig. 14.9, while
the hydro follows the wind variations, the residual power imbalance is corrected
by diesel since it serves as a reference bus. Similarly, when diesel is following wind
(Fig. 14.10), hydro responds as a slack bus. For the slack bus or the reference bus, the
power output is a result of generator droop, and there is no change in the frequency
set point. With the steady-state gain of hydro unit GHydro

ss being smaller than that
of diesel unit GDiesel

ss by a factor of 22, the frequency offset in Fig. 14.10 is larger
as compared to that in Fig. 14.9. Hence, the technology with low gain, i.e., hydro,
must be used for tracking slow variations in wind, and the technology with high gain
must be used as the AGC unit. Wind can be balanced in a much cheaper and more
environmentally cleaner way if the hydro is slowly ramped up to follow wind and
diesel unit balances residual error.
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Fig. 14.9 Hydro unit balancing intra-dispatch wind variations
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Fig. 14.10 Diesel unit balancing intra-dispatch wind variations
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14.8 Electrical Distances: Effects on Intra-dispatch
Power Balancing

Electrical wires act as transporter of energy between different nodes. The electrical
distance between two nodes is numerically equal to the transmission time in
microseconds, i.e., the duration of travel of an electromagnetic wave through them.
The transmission time depends on the impedances of the electrical wires. Therefore,
power transferred from one end to another is based on system conditions such as bus
angles, voltages, and wire impedances. Ensuring enough generation capacity does
not guarantee power delivery to the load. On Flores, the impedances of electrical
wires between different nodes are of the same order. The generator nodes are
strongly coupled to the wind farm. If the impedance of the electrical connections
between the source of disturbance and the balancing resources on Flores was weak,
different generator power outputs would result for the purpose of intra-dispatch real
power balancing. Figure 14.11 illustrates the change in power output of the hydro
and diesel generators, subject to wind variations in Fig. 14.8, if the impedances of
connection between the wind farm and the conventional generators were reduced by
a factor of 5.

In contrast, on São Miguel, the electrical impedances between the nodes differ
significantly. While planning wind farms on São Miguel, the electrical distance
between the wind farms and the conventional balancing resources must be taken
into account. The island has only three controllable diesel generators on bus 1,2,
and 3. If São Miguel operators plan to integrate wind, they must carefully select its
location in the network, in order to ensure efficient balancing of intra-10-min wind
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Fig. 14.11 Generator outputs for weakly connected wind farm on Flores
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Fig. 14.12 Wind farm built at bus 4 on São Miguel
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Fig. 14.13 Wind farm built at bus 15 on São Miguel

variations. Different power output profiles for the diesel generators on São Miguel
will result if the wind turbines are built at different locations. The wind power output
profile shown in Figs. 14.8, 14.12, and 14.13 depicts the power generated by diesel
generators for two possible scenarios, i.e., when the wind farm is built at bus 4 or
at bus 15.
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14.9 Intra-dispatch Demand Response

Motors or inductive loads form a large component of utility demand: typically
40–60 %. Similarly, in the Azores, various kinds of induction motor loads can be
found. With their aggregate inertia being high, they can contribute significantly to
intra-dispatch balancing through real-time demand response as well as direct load
control. It is imperative to identify and classify inductive loads based on their type
(residential/commercial/industrial), size (large/small based on power consumption),
time-scale or rate of response to system imbalances, and willingness to participate.
For the purpose of scheduling demand based on the customer’s willingness to
pay, such physical attributes of the loads in the Azores have been described in
Chap. 8. Once scheduled, these load characteristics can be further utilized to balance
intra-dispatch supply-demand error.

To implement the concept of real-time demand response, it is critical to relate
the timescales of the load response to those of the system imbalances. For example,
to balance sustained variations (Fig. 14.8), the system operator can possibly utilize
large commercial and industrial loads as well as a large aggregate of small
residential loads. There are two ways to implement intra-dispatch demand response.
First, it is possible for loads, utilizing frequency sensors embedded in variable speed
drives, to act as balancing resources through homeostatic control. The induction
motor loads can be converted into variable speed drives like constant power and
constant torque based on the utility of the end user. The second way to implement
intra-dispatch demand response is direct control of the load by the system operator.
While the first approach can be applied to all kinds of inductive loads, small
or large, the second approach is more useful for noninductive or resistive loads
such as lighting in shopping malls. Also, direct load control is practical for large
induction motors (industrial loads) if the system operator wishes to refrain from
initial investment expenditure on load automation or the embedding of sensors.
Likewise, the automation of small induction motors to variable speed drives, through
sensors and power electronics, is the only way of implementing intra-dispatch
demand response at the household level. On Flores, household refrigerators account
for 42 % of residential consumption. Always online, these loads can serve as a
large aggregate for short-run intra-dispatch balancing reserve. Experiments prove
that freezer temperatures rise by one and a half degrees Celsius following 30 min
of power deficit. Refrigerators are designed to handle the fast on/off switching of
cycles. By controlling their switching cycles, significant levels of short-term power
balancing capacity can be achieved. However, it is critical to note that only short-
term variations in wind power can be balanced by refrigeration load (Fig. 14.5), not
long-term sustained variations (Fig. 14.8). Nevertheless, long-term sustained intra-
dispatch wind power variations can be balanced by direct or automated control of
commercial and/or industrial loads. For example, on São Miguel island, a shopping
mall with large air-conditioners, cement factory with a substantial motor load for
the cutting/grinding/sieving/mixing of raw material, a dairy farm that runs boilers,
refrigeration loads in grocery stores, and laundry (washer, dryer) loads in hotels
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are potential candidates for the balancing of sustained intra-dispatch wind power
variations. Particularly, air-conditioners can be employed for power balancing in
ten of seconds or less. Their input power can be quickly adjusted through power
electronics, and switching its operating state within a short period of time will not
significantly affect the end user’s comfort level [8, 9].

Intra-dispatch demand response can cut down on reserve requirements. Besides,
the response of small distributed inertia in the network can be much faster as
compared to controlling the prime mover of the slow hydro unit or the fast but
expensive diesel unit. Recently, modeling and control principles were introduced
to support the implementation of demand response in frequency regulation in
[10]. The authors refer to their model as Automatic Generation and Demand
Control (AGDC). To plan balancing reserves for the future, the frequency response
characteristics of smart loads in the Azores can be taken into account [11]. Also,
there must be incentives for the consumer to buy frequency responsive Smart
Appliances. This is due to the fact that there is much interest in beginning to rely
on demand side response to compensate for hard-to-predict wind variations in the
system.

14.10 Summary

A possible control design for cost-effective intra-dispatch real-power balancing
is illustrated for two islands in the Azores. Wind speed variations span over
multiple timescales. Our objective is to balance intra-10-min sustained deviations
in wind power between two consecutive dispatch actions. Of particular interest is
the balancing of nonzero mean energy offset in wind power from its forecast or
scheduled value. A high degree of efficiency can be achieved if sustainable natural
cycles of conventional generators align with those of wind fluctuations. Conse-
quently, the system cost can be minimized and the quality of service enhanced.
To increase system efficiency in the Azores, within a non-congested network, the
natural timescales of diesel and hydro generator response must align with those of
wind power deviations. Hence, for balancing purposes, conventional power plants
available on the islands must be utilized judiciously. Economic and environmental
sustainability can be increased seamlessly if this is done.

Based on the results for Flores, it is evident that a prudent approach is to
balance error on a 10-min horizon through slow technology, i.e., a hydropower plant.
By utilizing wind forecasts, the potential of slower technologies can be harnessed to
correct real-power imbalances on longer time horizons. Then fast fringe fluctuations
around the prediction error can be balanced by diesel power plants. The advan-
tages are twofold. First, hydro is economically and environmentally sustainable.
In addition, the wear and tear on an expensive diesel plant can be minimized.
Figure 14.14 illustrates how much can be saved if the timescale of balancing
resources aligns with the timescales of the wind variations. It represents cumulative
cost over intra-dispatch time period of 10 min to follow wind variations on Flores
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0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Time (s)

C
um

m
ul

at
iv

e 
C

os
t (

$)
System Cost

Cost with Hydro following Wind
Cost with Diesel following Wind

Fig. 14.14 Comparing cumulative cost over 10 min

(Fig. 14.8). As shown, it is much cheaper to balance sustained intra-dispatch wind
variations with the sustainable and cheap hydropower plant (blue curve) than with
the diesel generator (red curve). Cumulatively, the savings would be much more
over the longer time horizons of months or years. Furthermore, additional savings
can be achieved through intra-dispatch demand response. Other potential balancing
resources include storage devices which are capable of responding much faster
than conventional generators. New balancing resources, such as EVs, flywheels,
and batteries, where the response rate is on a much shorter timescale, require
decentralized approach proposed in this chapter and higher order models. More has
been written about the storage devices in subsequent chapters.
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Chapter 15
Stabilization and Regulation of Small
Frequency Fluctuations by Means of Governor
and Flywheel Control

Qixing Liu, Milos Cvetković, and Marija Ilić

15.1 Potential Frequency Problems in Systems with High
Wind Penetration

As the interest to deploy more wind power in future electric energy systems
increases, there is a growing concern that the ever-changing electric energy systems
will encounter new operating problems not common in electric power systems with
conventional power plants. These problems may show up either as unacceptable
deviations of nominal frequency and therefore poor power quality, or even as more
frequent interruptions of electricity services. Wind fluctuations and the resulting
frequency deviations can vary over time in amplitude, rate of change, and duration.
An illustration of such fluctuations is shown in Fig. 15.1. Moreover, as more
conventional fossil-fuel type power plants are replaced by wind power plants, there
are growing concerns about the decrease of inertia and damping in such systems;
this may, in turn, lead to a much more sensitive system response to disturbances and
even to instability of the system. Possible unstable system response to persistent,
low-amplitude wind disturbances has become a concern to the large continental
electric power utilities as more wind power is being deployed. These instability
problems may become even more pronounced in the small-scale island-type electric
power systems studied in this chapter. Figures 15.2 and 15.3 show one-line diagram
representation of the electric grid interconnecting generators on Flores and São
Miguel [1], respectively.1 These systems are potentially unstable when highly

1These one-line diagrams include the effects of loads after a topological model reduction is
performed to eliminate the load buses; see appendices in this chapter.
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Fig. 15.2 One-line diagram of Flores Island power system

fluctuating renewable power resources are connected to the existing grids; both
small system inertia and lack of spinning reserve units may contribute to the stability
problems. Because of these potential problems, it is necessary to assess the stability
of these systems and enhance the control of the existing power plants as well as
the control of newly added storage, such as flywheels. In this chapter we recognize
this need and proceed by first briefly summarizing the state of the art of today’s
frequency stabilization and regulation and describing why the existing control may
be inadequate for ensuring stable and high-quality service in systems with a high
penetration of wind power.
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Fig. 15.3 One-line diagram of São Miguel Island power system

15.2 Typical Methods for Frequency Stabilization
and Regulation in Today’s Electric Energy Systems

The frequency stabilization and regulation approaches used in today’s electric
energy systems are hierarchical; the primary control is local and intended to stabilize
fast frequency fluctuations, and the secondary control, also known as automatic
generation control (AGC), is intended to ensure that there are no cumulative net
power imbalances at the utility level. Each conventional generator has a speed
governor which responds to deviations in local frequency from its set point either as
a proportional (P) or as a proportional-integral (PI) controller [2–6].

To identify why today’s primary and secondary controls may be inadequate for
managing persistent wind power fluctuations, we first recall that the dynamics of the
states in each generator i can be represented in terms of its state variables xGi ∈RGi

and the coupling variables xi j of generator i with directly connected generators j.
The primary controller reacts continuously to local frequency deviations from the
reference frequency. This dependence can be written as a set of linearized ordinary
differential equations (ODEs) of the form given in Eq. (15.1) as follows:

ẋGi = AGixGi +BGiuGi + ∑
j∈N, j 
=i

Ai jxi j, (15.1a)

uGi = −KGiCGi(xGi −xref
Gi ). (15.1b)
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The control uGi is defined as the primary control input which locally stabilizes the
generator component by placing the eigenvalues of the closed-loop matrix

ÃGi =AGi −KGiCGi

to the left side of the complex plane.
However, today’s primary control is designed as a localized control in which

the dynamic interactions of component i with the rest of the system are not
considered. It is shown later in this chapter that the state-space dynamic model of the
interconnected system comprising all generators has a system matrix Asys given in
the form of Eq. (15.2). At least in principle, it is possible that when the off-diagonal
entries Ai js are large, reflecting strong interactions between the various system
components, the system matrix may become unstable even when the diagonal blocks
are stabilized individually by using decentralized primary controls Eq. (15.1b).

Asys =

⎡
⎢⎢⎢⎣
ÃG1 A12 · · · A1n

A21 ÃG2 · · · A2n
...

...
. . .

...
An1 An2 · · · ÃGn

⎤
⎥⎥⎥⎦ . (15.2)

It is possible, therefore, that fully decentralized primary control which does not
account for dynamic interactions with the rest of the system is unable to ensure the
overall stability of the interconnected system. Therefore, it will become necessary
to assess the stability of the interconnected system in future electric energy
systems and not only tune individual controllers for meeting stand-alone stability
requirements. Moreover, since the stabilizing control is typically proportional (P)
and not proportional integral (PI), each time disturbance occurs, the system remains
stable but settles to another frequency equilibrium away from the desired nominal
frequency. In order to eliminate this steady-state error and return the frequency back
to the nominal value needed to ensure service at the desired frequency quality, the
secondary control (AGC) is used. The objective of AGC is to maintain system
frequency and interarea power exchange as they are prescheduled by adjusting
the steady-state reference value xref

Gi of all participating generators in a manner of
integral control.

However, in future electric energy systems with an increasingly high penetration
of variable renewable resources, the steady-state equilibrium-based assumption
becomes hard to justify because the persistent disturbances created by the renewable
resources will cause fluctuations in the system states and the steady state will never
be reached. Therefore, the secondary control may not be adequate for frequency
regulation in these systems. Moreover, as more and more conventional fossil-
fuel synchronous generator units are being replaced by smaller distributed energy
resources, the remaining synchronous generator units will have smaller inertia
and damping. The off-diagonal terms in matrix Asys will become relatively larger
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than the diagonal terms, and this is likely to affect the stability of the entire
interconnected system. In short, today’s frequency control and regulation logic may
not be sufficient to meet the frequency stability and frequency quality specifications
of the evolving electric energy systems. It is therefore crucial to rethink the dynamic
standards for both component- and system-level responses in order to integrate
renewable sources without sacrificing the quality of electricity service.

In this chapter we first derive a state-space model of the future electric energy
systems in Sect. 15.3. This model is used to propose a systematic stabilization
and regulation approach capable of managing low-amplitude persistent wind power
fluctuations (type A), in Fig. 15.1 in Sect. 15.4.1. This approach is illustrated in the
electric energy systems of Flores and São Miguel in Sect. 15.5. It is shown that the
complexity of sensing and communications varies according to the design criteria
and with qualitatively different operating conditions. In this framework, newly
developed technologies, such as phasor measurement units (PMUs) and fast energy
storage devices, such as flywheels, are shown to be critical to the implementation of
systematic control that doesn’t entail excessive wear and tear .

15.3 Dynamic Model of Linearized Frequency Dynamics
in State-Space Form

Our module-based approach to modeling the frequency dynamics of systems with
wind power plants builds upon the modeling approach in [7]. Each linearized model
of a conventional generator takes on the general form given in Eq. (15.1). We review
here that a synchronous machine-type wind power plant model takes on a similar
form.2 When represented as a negative load, the wind power plant is simply modeled
as a disturbance, much the same way as load disturbances are modeled in [7]. All
the modules are then interconnected by using linearized real power flow equations
as network constraints. In what follows only models of synchronous generator-type
modules presently installed on Flores and São Miguel Islands are presented. The
approach can be extended to include the dynamics of many other resources and to
model the electric energy systems of any given topology.

15.3.1 State-Space Form of Stand-Alone Generator Modules

The modeling of generator modules is briefly introduced below. Each model is
written in the form of ODEs, Eq. (15.1), and can be derived for any generation type.

2In this chapter the induction machine-type wind power plant is not considered. For this, see
Chaps. 16 and 19.



376 Q. Liu et al.

15.3.1.1 State-Space Model of a Stand-Alone Diesel Generator

The model of a diesel generator [8] written in standard state-space form is as
follows:

ẋGd = ÃGdxGd +BGduGd +CpdΔPGd , (15.3)

where the states, control, and component matrices are defined as

xGd =
[

ΔδGd ΔωGd ΔmBd
]T

,

uGd = Δω ref
Gd ,

ÃGd =

⎡
⎢⎢⎢⎢⎢⎣

0 ω0 0

0 −Dd

Md

1
Md

KICdKd

ω0Td
−CdKd

TdRc
− 1

Td

⎤
⎥⎥⎥⎥⎥⎦
,

BGd =

⎡
⎢⎢⎣

0
0

CdKd

TdRc

⎤
⎥⎥⎦ ,

Cpd =

⎡
⎢⎣

0
− 1

Md

0

⎤
⎥⎦ .

The state variables ΔδGd , ΔωGd , and ΔmBd correspond to the voltage phase angle
deviation, speed deviation, and change in diesel engine consumption. Δω ref

Gd is the
adjustment of the reference value of the diesel’s speed-governor system, which is
usually utilized for secondary frequency control. ω0 is the rated angular velocity
(120π rad/s in the US power systems). Md and Dd stand for the inertia and damping
coefficient, respectively. Cd and Kd are the transfer function coefficients for the fuel
system. Td is the time constant of the fuel system. ΔPGd refers to the electrical power
output of the generator, which is defined as the coupling of the generator with the
rest of the system. Matrix Cpd is the coupling matrix for the coupling variable.

15.3.1.2 State-Space Model of a Stand-Alone Hydro Generator

The standard state-space model of hydro generator is [9]

ẋGh = ÃGhxGh +BGhuGh +CphΔPGh, (15.4)

where the states, control, and matrices are defined as

xGh =
[

ΔδGh ΔωGh Δqh Δvh Δah
]T

,

uGh = Δω ref
Gh,
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ÃGh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω0 0 0 0

0 −eH +Dh

Mh

kq

Mh
0 − kw

Mh

0
1
Tf

− 1
Tq

0
1

Tw

0 0 0 − 1
Te

a
Te

0 −Gp

Ts
0

1
Ts

− rh + r′

Ts

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BGh =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

Gp
Ts

⎤
⎥⎥⎥⎥⎥⎦
,

Cph =

⎡
⎢⎢⎢⎢⎢⎣

0
− 1

Mh

0
0
0

⎤
⎥⎥⎥⎥⎥⎦
.

The state variables Δqh, Δvh, and Δah denote the penstock flow, the governor droop,
and the gate position of the hydro generator, respectively. eH ,kq, kw, Tf , Tq, and Tw

are constants reflecting state interdependence within the hydro turbine. Te stands
for the time constant of the valve-turbine gate system. Ts is the time constant of the
servomotor gates. rh and r′ are the permanent speed droop and transient speed droop
of the hydro generator. Gp represents the feedback gain of the speed governor.

15.3.1.3 State-Space Model of a Stand-Alone Wind Generator

The module of a wind generator varies with respect to the generation technology that
is deployed in the system. It can be an induction generator, a synchronous generator,
or a directly connected negative load. In this chapter, the wind generator is assumed
to be either a synchronous generator or a negative load. The model of a synchronous
wind power generator with no pitch control is introduced as the following Eq. (15.5).
Wind power considered as a negative load will be discussed in the next subsection.

ẋGws = ÃGwsxGws +CpwsΔPGws, (15.5)

where the states and matrices are defined as

xGws =
[

ΔδGws ΔωGws
]
,

ÃGws =

[
0 ω0

0 − Dws
Mws

]
,

Cpws =

[
0

− 1
Mws

]
.
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15.3.1.4 State-Space Model of Uncontrolled Stand-Alone Generators in
the Azores Islands

São Miguel Island, in particular, has several geothermal power and run-of-the-river
hydro power plants. These plants have no primary governor control. The dynamic
model of geothermal generators is

ẋGge = ÃGgexGge +BGgeuGge +CpgeΔPGge, (15.6)

where the states and matrices are defined as

xGge =
[

ΔδGge ΔωGge
]
,

ÃGge =

[
0 ω0

0 − Dge
Mge

]
,

Cpge =

[
0

− 1
Mge

]
.

The run-of-the-river hydro generators are modeled as

ẋGrh = ÃGrhxGrh +BGrhuGrh +CprhΔPGrh, (15.7)

where the states and matrices are defined as

xGrh =
[

ΔδGrh ΔωGrh

]
,

ÃGrh =

⎡
⎣0 ω0

0 −Drh

Mrh

⎤
⎦ ,

Cprh =

[
0

− 1
Mrh

]
.

15.3.2 Load Modules

Load deviations ΔPL(t) around the forecast load PL(0) create disturbances in the
dynamics of the interconnected power system. One can consider ΔPL(t) to be
a hard-to-predict deviation in demand and/or a hard-to-predict deviations in the
renewable source located at the load bus. When a renewable power source is thought
of as a negative variable load, it injects random power disturbances into the grid.
Therefore, the actual load PL(t) can be represented as

PL(t) = PL(0)+ΔPL(t). (15.8)



15 Stabilization and Regulation of Small Frequency Fluctuations. . . 379

15.3.3 Flywheel Module

A detailed dynamical model of a flywheel is introduced in Chap. 19. The flywheel
participates in frequency control and regulates the system as a control device that
absorbs power from or provides power to the system in order to compensate for
disturbances. Theoretically speaking, this device is not able to absorb or provide
power instantaneously because it has its own dynamics. However, in practice, since
the time constant of a flywheel is much smaller than the mechanical time constants
of the conventional generating units, it is justifiable to neglect the dynamics of the
flywheel and assume that it can instantaneously adjust its power output. A flywheel
can be then assumed to be a controllable negative load. We define ΔPf as the
flywheel power output that will enter the system model as a control input variable.
The control matrix of the flywheel installed on the ith generator is defined as

B f i =−Cpi.

15.3.4 Network Constraints

Both the dynamics of generators and load deviations are related via electric power
network constraints. When modeling systems with low-amplitude disturbances,
which is the main focus of this section, the linearized real power flow equations are
sufficient accurate models of the power grid constraints. The real power injections
are grouped into those from the generator buses PG and the load buses PL that
include both wind and flywheel injections. The linearized real power flow equations
around the operating point can then be written as [10]

ΔPG = JGGΔδG +JGLΔδL (15.9a)

−ΔPL = JGLΔδG +JLLΔδL, (15.9b)

where

Ji j =
∂Pi

∂δ j

∣∣∣∣
δ j=δ∗j

, i,j ∈ {G,L}

are the Jacobian matrices evaluated at the given operating point. ΔδL stands for the
phase angle deviations on the load buses. Assuming that JLL is invertible under
normal operating conditions, we can substitute ΔδL from (15.9b) to (15.9a) and
obtain the system-level algebraic network coupling equation:

ΔPG =KpΔδG +DpΔPL, (15.10)
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where

Kp = JGG −JGLJ
−1
LL JLG (15.11a)

Dp = −JGLJ
−1
LL . (15.11b)

15.3.5 Modeling of the Interconnected System

The dynamic model of the interconnected system with n generators is composed of
the individual generator modules and the network constraints (15.10). The full-state-
space model with the n generator modules and m flywheels explicitly connected has
the following form:

ẋ = Ãx+BuG+B fu f +Fw, (15.12)

where vector uG stands for the reference value adjustments ωref
G on the primary

controllers and vector u f is the control variable of the flywheel. w are the
disturbances to the interconnected system. They are explicitly expressed as

x =
[

xT
G1 xT

G2 . . . xT
Gn

]T
,

uG =
[

uT
G1 uT

G2 . . . uT
Gn

]T
,

u f =
[

uT
f 1 uT

f 2 . . . uT
f m

]T
,

w = ΔPL.

The following equations show the derivation of the matrices:

Ã =

⎡
⎢⎢⎢⎣
ÃG1 0 · · · 0

0 ÃG2 · · · 0
...

...
. . .

...
0 0 · · · ÃGn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Cp1 0 · · · 0

0 Cp2 · · · 0
...

...
. . .

...
0 0 · · · Cpn

⎤
⎥⎥⎥⎦KpSδ ,

B =

⎡
⎢⎢⎢⎣
BG1 0 · · · 0

0 BG2 · · · 0
...

...
. . .

...
0 0 · · · BGn

⎤
⎥⎥⎥⎦ ,
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B f =

⎡
⎢⎢⎢⎣
B f 1 0 · · · 0

0 B f 2 · · · 0
...

...
. . .

...
0 0 · · · B f m

⎤
⎥⎥⎥⎦ ,

F =

⎡
⎢⎢⎢⎣
Cp1 0 · · · 0

0 Cp2 · · · 0
...

...
. . .

...
0 0 · · · Cpn

⎤
⎥⎥⎥⎦Dp.

The matrix Sδ comprises 0’s and 1’s, and it is used to extract the state variables δG

from the system states x:

δG = Sδx. (15.13)

15.4 Enhanced Frequency Stabilization and Regulation
Framework

In this section we propose a framework to enhance the frequency stabilization
and regulation of future electric energy systems. This framework can be used to
support the stable operation of future systems with renewable energy sources. The
newly developed sensing and energy storage technologies are shown to be key to
implementing the proposed control framework.

15.4.1 Our Proposed Control Framework

A general flowchart (Fig. 15.4) is used to illustrate the framework which is hier-
archical. The stabilization of stand-alone components first, and the interconnected
systems second, is considered. The stabilization process is described below:

Check to see if the stand-alone components are stable. If they are, design the
stabilization using flywheels. This will reduce the wear and tear caused by extensive
tuning of the governor-turbine systems of the conventional generators. If the
components are not stable, the stabilization design can either use the component’s
local control or rely on the control of the other components via coordination. If
coordinated control is preferred for designing the control at the interconnected
system level to stabilize the unstable modes; if local control is preferred, do so at
the component level (and then design the stabilization using flywheels as described
above).



382 Q. Liu et al.

Start

Step1: Stand Alone
Components Stable?

Step 3: Stabilization via
Flywheel to Reduce

Wear-and-tear

Step 2.2: Stabilizationby
Using Component’s

Own Control

Step 2:
Coordination?

Step 2.1: Global
Stabilization and

Regulation by Using
Components’ Own

Control

No

Yes
No

Yes

Step 4: Interconnected
System Stable?

Step 7: Regulation
via Flywheel to

Reduce Wear-and-
tear

Step 6: Frequency
Regulation by Using
Components’ Own

Control

No

End

Step 5.2:
Decentralized

High-gain
Stabilization

No

Yes

Step 5.1: Full
Measurement?

No

Step 5.1.1: Output
Feedback-based
Secondary Level
Stabilization and

Regulation

Step 5.1.2: Fullstate
Feedback-based
Secondary Level
Stabilization and

Regulation

Step 5: Communication
Fully Reliable?

Yes

Yes

Fig. 15.4 An enhanced frequency stabilization and regulation framework for systems with
renewable energy sources and new control technologies

Check to see if the entire interconnected system is stable. If it is, design the
frequency regulation by using the components’ own control. If it is not, design a
coordinated control at the system level when the communication is fully reliable. If
the entire system is equipped with full measurement, design a linear optimal control-
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based full-state feedback control for both stabilization and regulation; if the entire
system is not equipped with full measurement, design a linear optimal control-based
output feedback control.

If communication fails, however, design a high-gain control, at the component
level, to stabilize the interconnected system, and then design the frequency regula-
tion by using the components’ own control.

The final step in all these, no matter what route it has taken so far, is to design the
frequency regulation using flywheels in order to reduce the wear and tear caused by
governor-turbine systems in fast frequency regulation service.

Step 1: Check to see if each of the stand-alone components is stable. If yes, go to
Step 3; otherwise, go to Step 2.

Step 2: To stabilize the unstable components, the design can either use the compo-
nent’s local control or rely on the control of other components via coordination.
If the coordinated control is preferred, go to Step 2.1; otherwise, Step 2.2.

Step 2.1: At the interconnected system level, design the control to stabilize the
unstable modes. Go to Step 7.

Step 2.2: At the component level, design the control to stabilize the unstable modes.
Go to Step 3.

Step 3: In order to reduce the wear and tear caused by extensive tuning on the
governor-turbine systems of conventional generators, design the stabilization
using flywheel devices.

Step 4: Check to see if the entire interconnected system is stable. If yes, go to Step
6; otherwise, go to Step 5.

Step 5: A coordinated control at the system level is designed when the communica-
tion is fully reliable (Step 5.1). If communication fails, a decentralized high-gain
control is designed at the component level for backup purposes (Step 5.2).

Step 5.1: If the entire system is equipped with full measurement, design a full-state
feedback control (Step 5.1.1); otherwise, design an output feedback control (Step
5.1.2).

Step 5.1.1: Design a linear optimal control-based full-state feedback control for both
stabilization and regulation. Go to Step 7.

Step 5.1.2: Design a linear optimal control-based output feedback control for both
stabilization and regulation. Go to Step 7.

Step 5.2: At the component level, design a high-gain control to stabilize the
interconnected system. Go to Step 6.

Step 6: Design the frequency regulation by using the components’ own control. Go
to Step 7.

Step 7: In order to reduce the wear and tear caused by utilizing governor-turbine
systems in fast frequency regulation service, design the frequency regulation
using flywheel devices.
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15.4.2 Stabilization Control Approaches

In this subsection we introduce three qualitatively different control logics that could
be utilized in the general framework for different objectives.

15.4.2.1 Eigenvalue Placement

In Step 2.2, the eigenvalue placement technique can be applied to design localized
stabilization for unstable components by using their own primary controls. This
design can be based on the component dynamic model in Eq. (15.1), which adjusts
the feedback control gain KGi such that the eigenvalues of the closed-loop system
matrix are all located on the left side of the complex plane.

In Step 3, an extra control input u f i is added to the component model, and
the control can be designed by using the same eigenvalue placement technique as
described above.

15.4.2.2 High-Gain Decentralized Control

In Step 5.2, High-gain decentralized control is designed on the component level to
stabilize the entire interconnected system. The component dynamic model (15.1)
can still be used to design the control in this case except that a high-gain factor
gGi(�1) is added ahead of KGi, which is illustrated as

uGi = −gGiKGiCGi(xGi −xref
Gi ). (15.14)

To choose gGi and obtain guaranteed interconnected system stability, one can refer
to literatures that develop sufficient conditions for stabilizing the interconnected
system by using decentralized control [11, 12].

15.4.2.3 Coordinated Stabilization and Regulation

In Steps 2.1, 5.1.1, 5.1.2, 6, and 7, coordinated stabilization and regulation can be
implemented by using either the set-point adjustments on the primary control of the
components or flywheel energy storage devices via linear optimal control techniques
such as linear quadratic regulator (LQR)-based full-state feedback control and/or
output feedback control. These controls are introduced below.
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15.4.2.3.1 LQR-Based Full-State Feedback Control

First, LQR-based full-state feedback control is designed on the interconnected
system model (15.12).

minimize
uG,u f

J =
1
2

∫ ∞

0
{xTQx+[uG,u f ]

TR[uG,uG]}dt

subject to ẋ=Ax+BuG+B fu f , (15.15)

where matrixQ is positive semi-definite, which assigns the weights for the quadratic
error of the state variables, and matrix R is positive definite which defines the cost
of the generator control input uG and the flywheel control input u f . By solving this
optimization problem we can attain the feedback control gains as

uG =−KLQR
G x,

u f =−KLQR
f x.

15.4.2.4 LQR-Based Interaction Variable Output Control

Second, LQR-based output feedback control is implemented by using an inter-
actions variable (IntV)-based enhanced-AGC approach which we proposed in
earlier work [7]. The IntV of an interconnected system za is defined as the linear
combination of the full states of the system:

za = Tax, (15.16)

where row vector Ta is characterized with the singularity property that

TaA= 0.

The singularity is due to the linear dependence of the network coupling constraints.
Then the dynamic equation of the IntV (no control applied yet) can be written as

ża = TaFw, (15.17)

which is only driven by the disturbances.
In [7], IntV za is shown to represent the interconnected system’s dynamics in

response to disturbances w. More deeply, by integrating the two sides of Eq. (15.17),
we show that IntV za stands for the energy mismatch which will cause deviations in
stored kinetic energy as well as frequency. An LQR-based output feedback control
is designed to minimize the IntV of the system over a long time horizon and
consequently keep the IntV and frequency around the nominal value.
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Fig. 15.5 Communication infrastructure of the decentralized control logics. (a) Control with
conventional generators. (b) Control with flywheels

minimize
uG,u f

J =
1
2

∫ ∞

0

(
zT

a Qaza +[uT
G,u

T
f ]R[uT

G,u
T
f ]

T)dt

subject to ẋ=Ax+BuG+B fu f

uG =−K IntV
G za

u f =−K IntV
f za. (15.18)

In this output feedback control, IntV is used as a feedback signal to drive the
controller. In practice, za can either be obtained by measuring all the state variables
and using Eq. (15.16) or by measuring the dominant disturbances w and integrating
Eq. (15.17). These two methods give the same za but require a qualitatively different
amount of sensing and communications.

15.4.3 Communication Complexity and Control Cost Analysis

The underlying communication infrastructures of the control logics introduced
in Sect. 15.4.2 are illustrated in Figs. 15.5 and 15.6. It can be shown through
comparison between these figures that the decentralized control logics require much
less complicated communications than the coordinated control logics. Decentralized
control locally measures the rotational frequency of the generator and communicates
to either the speed governor or the flywheel devices for stabilization. Coordinated
control requires all generators to upload their state variables information to a cen-
tralized control center where the control signals are generated and then distributed
back to the conventional generators and/or the flywheel devices (Fig. 15.6).
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Fig. 15.6 Communication infrastructure of the coordinated control logics with full-state or output
feedback. (a) Control with conventional generators. (b) Control with flywheels

Regarding the cost of these control logics, using flywheel devices is much more
expensive than using the speed governors of conventional generators due to the
high cost of the energy storage devices. Nevertheless, there still exists the trade-
off between the cost of purchasing the expensive storage devices and the cost of the
wear and tear of conventional generators. When large amounts of renewable energy
sources are integrated, wear and tear can occur due to the overuse of speed governors
in order to compensate for the output power variation of the renewable generators
and the high-gain control that stabilizes the entire system. Another alternative is
to use excitation control to manage the fast disturbances. This will be discussed in
Chap. 16.

15.4.4 The Role of Phasor Measurement Units

In the proposed framework for frequency stabilization and regulation , the role of
PMUs is pronounced. To implement the coordinated control approach, the states
of rotor angle deviations ΔδG need to be measured as part of the feedback signals.
However, obtaining this measurement is not possible unless PMUs are installed. The
rotor deviations angle ΔδG is characterized as an integral of rotational speed ΔωG:

ΔδG(t) = ΔδG(t0)+
∫ t

t0
ΔωGdτ.

Consequently, in order to obtain an accurate and synchronized measurement of the
ΔδG(t) of the entire system at any given time t, it is critical to have a unified time
reference with which only PMUs are equipped.
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15.5 Stabilization and Regulation of Flores and São Miguel
Islands

In this section, two electric power systems are studied to illustrate the proposed
frequency stabilization and regulation framework. In the first case, the small electric
power system of Flores (Fig. 15.2) is studied. The relatively larger electric power
system of São Miguel (Fig. 15.3) is considered as the second case.

15.5.1 Flores Island Case

The sensitivity matrices Kp and Dp and parameters of the dynamic components are
included in Appendices B and D. They are obtained by using the linearized model
in Eqs. (15.9)–(15.11). The equilibrium of the linearization is given in the data file
for Chap. 15 online. The current wind power capacity of the island is 0.66 MW,
which is approximately 13% of the entire electric power capacity. A high-gain
PI control is installed on the diesel generator to manage both frequency stability
and the steady-state error of the frequency after disturbances; therefore, no AGC is
installed for this system. The persistent disturbances due to the uncertainty of the
wind are plotted in Fig. 15.7 for a 1-min duration. The wind generator modeled as
synchronous generator and as negative load are studied separately and compared in
the following.
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Fig. 15.7 Wind power disturbances under current penetration level
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Table 15.1 Eigenvalues of the dynamic components

Generator components Eigenvalues of the components

Diesel −0.03, −0.8238±9.867i
Hydro 0, −126.71,−1.3742,−0.0330,−0.4606
Wind 0, −0.0215

Table 15.2 Eigenvalues of the dynamic components with a flywheel
as local control

Generator components Eigenvalues of the components

Diesel −0.03,−0.8349±9.867i
Hydro 0, −126.7109,−1.3741,−0.0447,−0.4606
Wind 0, −0.1288

Table 15.3 Eigenvalues of the interconnected system

Eigenvalues

Interconnected Flores system
without local flywheel

0.03±32.73i, −126.71,−0.65±9.83,
−0.17±2.86i,−0.03,−1.39,−0.46

Interconnected Flores system
with local flywheel

0.07±32.73i,−126.71,−0.67±9.83,
−0.18±2.87i,−0.03,−1.39,−0.46

15.5.1.1 Case 1: Flores System with the Wind Generator Modeled as a
Synchronous Machine

To enhance the frequency stabilization and regulation of the test system by following
the proposed framework, we first check the stability of the dynamic components,
which are the diesel, hydro, and wind generators. Table 15.1 shows the eigenvalues
of the components.

We then add local flywheel devices in Step 3 as extra damping to improve the
frequency stability and reduce the wear and tear on the conventional generators.
The resulting eigenvalues are shown in Table 15.2.

In Step 4, we check the stability of the interconnected system. From the
eigenvalues of the interconnected system (listed in Table 15.3), it can be concluded
that the system is stable in both cases with or without the local flywheel control
added in Step 3; however, adding the local flywheels can increase the stability
margin of the system.

Step 6 is skipped since a high-gain PI control has already been implemented on
the diesel so no AGC is needed, which can also be seen from Fig. 15.8. The black
dash dotted plots in this figure indicates a satisfactory performance of the PI control
on maintaining the stability and quality of frequency.

In Step 7 we use flywheel devices to support the frequency regulation and reduce
the wear and tear caused by overuse of the diesel generator. In Fig. 15.9, we can see
by comparing the plots for system with and without flywheel for regulation that part
of the disturbances is picked up by the flywheel after it is installed and the use of the
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Fig. 15.8 Time response of frequency on Flores Island, Case 1: system with synchronous wind
generator. (a) Diesel generator. (b) Hydro generator. (c) Wind generator
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Fig. 15.9 Output of diesel and flywheel in response to frequency deviations, Case 1: system with
synchronous wind generator. (a) Output of diesel generator. (b) Output of flywheel

Table 15.4 Eigenvalues of the dynamic components

Generator components Eigenvalues of the components

Diesel −0.03,−0.8238±9.8670i
Hydro 0,−126.7109,−1.3742,−0.0330,−0.4606

conventional diesel generator for this fast adjustment is reduced. The green dashed
lines in Fig. 15.8 show that the frequency deviations can be further reduced by the
flywheel devices.

15.5.1.2 Case 2: Flores System with the Wind Generator Modeled
as a Negative Load

In this section, the wind power is modeled as negative load. We repeat the steps
in the previous subsection for enhancing the frequency stability and quality of
the Flores Island system. Table 15.4 shows the eigenvalues of the stand-alone
components which are still stable in this case.
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Table 15.5 Eigenvalues of the dynamic components with flywheel as
local control

Generator components Eigenvalues of the components

Diesel −0.03,−0.8349±9.8679i
Hydro 0,−126.7109,−1.3741,−0.0447,−0.4606

Table 15.6 Eigenvalues of the interconnected system

Eigenvalues

Interconnected Flores system −0.64±5.14i,−126.71,−0.19±18.54i,
without flywheel −1.39,−0.03,−0.46

Interconnected Flores system −0.65±5.14i,−126.71,−0.2±18.54i,
with flywheel −1.39,−0.03,−0.46
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Fig. 15.10 Time response of frequency on Flores Island, Case 2: system with negative load wind
generator. (a) Diesel generator. (b) Hydro generator

We then add flywheel devices as in Step 3 as an extra damping to improve
frequency stability and reduce the wear and tear on the conventional generators.
The resulting eigenvalues are shown in Table 15.5.

The eigenvalues of the interconnected system are listed in Table 15.6, and it can
be concluded that the system is stable both with or without the flywheel as local
control.

Step 6 is skipped since a high-gain PI control has already been implemented on
the diesel so no AGC is needed, which can also be seen from Fig. 15.10. The black
dash dotted plots in this figure demonstrate the satisfactory performance of the PI
control in maintaining the stability and quality of frequency.

In Step 7 we use flywheel devices to support frequency regulation and reduce the
wear and tear caused by overuse of the diesel generator. In Fig. 15.11, we can see
by comparing the plots for system with and without flywheel for regulation that part
of the disturbances is picked up by flywheel after it is installed and the use of the
conventional diesel generator for this fast adjustment is reduced. The green dashed
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Fig. 15.11 Output of diesel and flywheel in response to frequency deviations, Case 2: system with
negative load wind generator. (a) Output of diesel generator. (b) Output of flywheel

lines in Fig. 15.10 show that the frequency deviations can be further reduced by
the flywheel devices. It can also be seen from comparing Figs. 15.8 and 15.10 that
when the wind generator is modeled as a synchronous generator with its dynamics
included in the system dynamics, less frequency oscillation is observed. This is
because the response of frequency to the disturbances slows down when additional
inertia of wind synchronous generator is added to the system.

15.5.2 São Miguel System

In this subsection, the frequency stabilization and regulation of the São Miguel
electric power system are studied. This system has an averge demand around
65 MW, with 3 large diesel power plants, 2 medium geothermal plants, 3 large hydro
plants, 1 medium hydro plant, and 6 small hydro plants providing the electricity. The
hydro plants are run-of-the-river hydroelectric generators and providing electricity
based on the availability of the stream. The geothermal power plants provide
electricity based on the availability of heat. There are no advanced governor controls
in these hydro/geothermal power plants for frequency stabilization and regulation.
Therefore, it is crucial to investigate their frequency stability and quality in order
to ensure the QoS of the island’s power supply. Moreover, since no wind power is
currently penetrated to this system, it is worthwhile to research the frequency quality
that results when the potential wind power plants are placed at different locations
of the system. By comparing these different results, we can recommend the best
location for future wind integration.
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Table 15.7 Eigenvalues
of the dynamic components
with a flywheel as local
control

Generator components Eigenvalues of the components

Diesel 1 −0.3000,−0.3988±25.6047i
Diesel 2 −0.3001,−0.3191±20.8188i
Diesel 3 −0.3001,−0.3191±20.8188i
Geothermal 1 0, −0.0461
Geothermal 2 0, −0.0461
Large hydro 0, −0.0461
Medium hydro 0, −0.0462
Small hydro 0, −0.0462

Table 15.8 Eigenvalues of the interconnected system

Eigenvalues

São Miguel system −0.023±2793.553i,−0.0231±2388.333i,−0.023±1615.891i,
−0.072±636.276i,−0.076±382.897i,−0.023±129.450i,
−0.023±104.737i,−0.023±99.096i,−0.023±51.791i,
−0.123±37.930i,−0.023±41.004i,−0.028±20.908i,
−0.079±19.790i,−0.042±14.381i,−0.166±10.822i,
−0.3,−0.883,−0.799

First of all, we examine the stability of both the generator components and
the interconnected system by following the general framework we propose in
Sect. 15.4. The sensitivity matrices Kp of the system are shown in Appendix D. The
eigenvalues of the stand-alone dynamic components and the interconnected system
are shown in Tables 15.7 and 15.8. Since all the eigenvalues are placed either at
zero or the left-hand side of the complex plane, the stand-alone components and the
interconnected system are stable.

15.5.2.1 Relevance of Electrical Distances

We then introduce wind integration into our study on the future energy system of São
Miguel. By using the simulation results, we show that the frequency quality and the
infrastructure of the frequency regulation system will qualitatively differ depending
on the different locations that wind power connects to. The persistent disturbances
depicted in Fig. 15.7 for 1-min duration are assumed to be the disturbances caused
by wind power to the future São Miguel system.

We compare the cases in Figs. 15.12–15.14, which are as follows: wind connects
to diesel, wind connects to geothermal, and wind connects to hydro. It is seen
that when wind is connected to the diesel generator or geothermal generator bus
connecting to the diesel generator with small electrical distances, the frequency
fluctuations caused by wind disturbances fall within the acceptable range. This is
because the PI controllers on diesel generators are able to pick up the close-by power
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Fig. 15.12 Time response of frequency on São Miguel Island with wind connected to diesel.
(a) Diesel frequency. (b) Geothermal frequency. (c) Large and medium hydro frequency. (d) Small
hydro frequency

deviations. On the other hand, when the wind is connected to the hydro generator
buses, high-magnitude frequency oscillations occur in the hydro generators. This
is due to the fact that hydro generators are not equipped with any governor-
turbine control and the disturbances are connected electrically far from the diesel
generators.

Following the frequency stabilization and regulation framework proposed in
this chapter, the sensing, communications, and control infrastructure needs to be
designed differently with respect to the choice of wind integration locations. When
wind power is connected to diesel or thermal generator buses, deploying a flywheel
with coordinated control will reduce the wear and tear caused by overuse of the
diesel generators. When wind is connected to hydro generator buses, implementing
a flywheel with coordinated control will reduce the frequency oscillations on hydro
generators. We designed the controls corresponding for each scenario and show the
simulation results below:
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Fig. 15.13 Time response of frequency on São Miguel Island with wind connected to geothermal.
(a) Diesel frequency. (b) Geothermal frequency. (c) Large and medium hydro frequency. (d) Small
hydro frequency

In Fig. 15.15, it is seen that when a flywheel is implemented to support frequency
regulation, diesel power output and therefore the wear and tear on diesel generators
are reduced. In Fig. 15.16, by comparing the two frequency regulation cases of with
flywheel and without flywheel, we can see that the high oscillations in the hydro
generators are significantly smoothed when a flywheel is utilized.

15.5.3 Conclusions

In this chapter, a general framework is proposed to enhance frequency stabilization
and regulation performances when there is a large amount of wind power penetra-
tion. The next step of this work is to implement the framework with large-scale
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Fig. 15.14 Time response of frequency on São Miguel Island with wind connected to hydro.
(a) Diesel frequency. (b) Geothermal frequency. (c) Large and medium hydro frequency. (d) Small
hydro frequency

electric power systems. Many more problems will appear in that scenario. As was
discussed, the LQR-based control approach needs a large sensing and communica-
tion effort to bring about satisfactory performance. As the system increases in size,
the communication system may reach its capacity, causing communication delay in
the feedback control loop that consequently degrades the control performance. The
approach relying on more distributed control infrastructure becomes necessary to
overcome the problem caused by communications with high complexity. The high
cost of flywheels also needs to be taken into consideration. If the system does not
have enough flywheels installed, coordinating the control areas with large amounts
of wind and the areas with large amounts of cheap, fast conventional generating
units could serve as a possible substitution.
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Fig. 15.15 Diesel output in São Miguel system with wind connected to diesel
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15.6 Appendix A

15.6.1 Network Topology Reduction

A systematic approach to network topology reduction is presented in this appendix.
The parameters of the reduced topology networks of Flores and São Miguel are
given.

The network topology reduction procedure starts by converting constant power
loads to constant impedance loads on all the buses one is trying to remove from the
network. The loads are converted using

Ẑli =
V 2

i

Ŝ∗li
i = 1 . . .nb, (15.19)

where V is the value of the bus voltage calculated as the solution of the power flow
and nb the number of buses we would like to reduce.

Kirchhoff’s First Law can be written for all the nodes to be removed from the
system topology. Subscript i is used to indicate those buses.

0 = ∑
j
(V̂i − V̂j)Ŷi j j = 1 . . .ntli (15.20)

The number of branches going in/out from node i is ntli .
Kirchhoff’s First Law can be written for all the boundary nodes as well. The

boundary nodes are the ones which will exist in the new reduced topology, but the
impedances of the branches going in/out of them might change. Subscript k is used
to indicate all such nodes.

Îk = ∑
j

(V̂k − V̂j)Ŷk j j = 1 . . .nred
tlk (15.21)

Current Ik is the current injected into boundary node k from the side of the network
which will not be reduced, while ntlred

k
is the number of branches going in/out of the

boundary node toward the buses which will be reduced.
These two equations can be rewritten in the matrix form.
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Table 15.9 Flores reduced topology admittance matrix

Bus 46−Hydro 1−Diesel 19−Wind

46−Hydro 12.5− j12.5 −12.5+ j12.5 0
1−Diesel −12.5+ j12.5 15.116− j13.908 −2.4959+ j1.3779
19−Wind 0 −2.4959+ j1.3779 2.5726− j1.3957

The base values are Sb = 10 MVA and Vb = 15 kV

Table 15.10 Mapping of the generator
buses of the Flores Island system from
the original system to the reduced system

Bus 46 Becomes Bus 3
Bus 1 Stays Bus 1
Bus 19 Becomes Bus 2

0 = AV̂i +BV̂k

Îk =CV̂i +DV̂k

(15.22)

where Vi is the vector of the voltages of the buses to be reduced while Vk is the vector
of the voltages of the boundary buses. The first equation can be solved for Vi, and
the solution can be inserted into the second equation.

Îk = (D−CA−1B)V̂k (15.23)

Therefore, the admittance matrix of the reduced network is Y = D−CA−1B. By
inspecting the elements of this matrix, one can reconstruct the values of branches
connecting the boundary buses as well as the new shunt impedances on boundary
buses.

15.6.2 Flores Island Power System Equivalent Model

Flores Island power system is shown in Fig. 15.2.
Flores Island power system reduced topology admittance matrix is given in

Table 15.9.
Starting from Table 15.9, the equivalent network topology of the Flores Island

power system, Fig. 15.2, can be determined. The following bus mapping is used
(Table 15.10).

The equivalent impedances are
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Table 15.11 Equilibrium of the transmission system of Flores power system

Voltage Magnitude (p.u.) Phase angle (◦)

V3 0.997 0.18
V1 0.995 0
V2 0.98 1.03

Power inj Active (MW) Reactive (MVAr)
Ŝ3 0.7 −0.08
Ŝ1 0.58 1.058
V̂2 0.6 −0.29

Table 15.12 Mapping of
generator buses of São
Miguel Island system from
the original system to the
reduced system

Bus 932 Becomes Bus 1
Bus 933 Becomes Bus 2
Bus 934 Becomes Bus 3
Bus 963 Becomes Bus 4
Bus 1049 Becomes Bus 5
Bus 1666 Becomes Bus 6
Bus 1669 Becomes Bus 7
Bus 1672 Becomes Bus 8
Bus 1675 Becomes Bus 9
Bus 1676 Becomes Bus 10
Bus 1677 Becomes Bus 11
Bus 1680 Becomes Bus 12
Bus 1683 Becomes Bus 13
Bus 1686 Becomes Bus 14
Bus 1887 Becomes Bus 15

Yeq22 = 0.0767− j0.0178,

Yeq12 = 2.4959− j1.3779,

Yeq11 = 0.1201− j0.0301,

Yeq13 = 12.5− j12.5,

Yeq33 = 0+ j0.

The equilibrium of this system is given in Table 15.11.

15.6.3 São Miguel Power System Equivalent Model

Generator buses of São Miguel power system are mapped as follows (Table 15.12).
São Miguel power system reduced topology admittance matrix is given in

Tables 15.13 and 15.14. This reduced topology admittance matrix corresponds to
the one-line diagram from Fig. 15.3.



15 Stabilization and Regulation of Small Frequency Fluctuations. . . 401

T
ab

le
15

.1
3

R
ea

lp
ar

to
f

Sã
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Sã
o

M
ig

ue
lr

ed
uc

ed
to

po
lo

gy
ad

m
it

ta
nc

e
m

at
ri

x

B
us

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1

15
−1

.0
1E

+
3

1.
00

E
+

3
0

0
0

9.
11

E
+

0
0

0
0

0
0

0
0

0
0

14
1.

00
E

+
3

−1
.0

0E
+

3
0

0
0

0
0

0
0

0
0

0
0

0
0

13
0

0
−3

.3
6E

−1
2.

56
E
−1

0
0

4.
64

E
−2

9.
42

E
−3

6.
48

E
−3

7.
48

E
−3

3.
85

E
−3

2.
30

E
−3

8.
41

E
−5

6.
48

E
−4

6.
82

E
−4

12
0

0
2.

56
E
−1

−4
.3

0E
−1

0
0

1.
17

E
−1

2.
24

E
−2

1.
55

E
−2

7.
48

E
−3

3.
95

E
−3

2.
53

E
−3

1.
53

E
−4

1.
21

E
−3

1.
07

E
−3

11
0

0
0

0
−2

.0
0E

+
3

1.
00

E
+

3
1.

00
E

+
3

0
0

0
0

0
0

0
0

10
9.

11
E

+
0

0
0

0
1.

00
E

+
3

−1
.0

1E
+

3
0

0
0

0
0

0
0

0
0

9
0

0
4.

64
E
−2

1.
17

E
−1

1.
00

E
+

3
0

−1
.0

0E
+

3
7.

43
E
−1

5.
15

E
−1

6.
94

E
−2

3.
98

E
−2

4.
06

E
−2

3.
93

E
−3

3.
64

E
−2

2.
76

E
−2

8
0

0
9.

42
E
−3

2.
24

E
−2

0
0

7.
43

E
−1

−3
.0

1E
+

0
1.

69
E

+
0

5.
48

E
−2

3.
69

E
−2

1.
40

E
−1

4.
14

E
−3

1.
81

E
−1

1.
22

E
−1

7
0

0
6.

48
E
−3

1.
55

E
−2

0
0

5.
15

E
−1

1.
69

E
+

0
−2

.5
8E

+
0

3.
66

E
−2

2.
46

E
−2

9.
16

E
−2

2.
86

E
−3

1.
17

E
−1

7.
93

E
−2

6
0

0
7.

48
E
−3

7.
48

E
−3

0
0

6.
94

E
−2

5.
48

E
−2

3.
66

E
−2

−3
.4

4E
+

0
2.

01
E

+
0

9.
61

E
−1

2.
54

E
−2

8.
79

E
−2

1.
77

E
−1

5
0

0
3.

85
E
−3

3.
95

E
−3

0
0

3.
98

E
−2

3.
69

E
−2

2.
46

E
−2

2.
01

E
+

0
−3

.8
8E

+
0

1.
34

E
+

0
3.

70
E
−2

1.
22

E
−1

2.
49

E
−1

4
0

0
2.

30
E
−3

2.
53

E
−3

0
0

4.
06

E
−2

1.
40

E
−1

9.
16

E
−2

9.
61

E
−1

1.
34

E
+

0
−1

.4
6E

+
1

6.
92

E
+

0
3.

68
E

+
0

1.
40

E
+

0

3
0

0
8.

41
E
−5

1.
53

E
−4

0
0

3.
93

E
−3

4.
14

E
−3

2.
86

E
−3

2.
54

E
−2

3.
70

E
−2

6.
92

E
+

0
−1

.0
1E

+
3

1.
00

E
+

3
9.

42
E
−1

2
0

0
6.

48
E
−4

1.
21

E
−3

0
0

3.
64

E
−2

1.
81

E
−1

1.
17

E
−1

8.
79

E
−2

1.
22

E
−1

3.
68

E
+

0
1.

00
E

+
3

−2
.0

1E
+

3
1.

00
E

+
3

1
0

0
6.

82
E
−4

1.
07

E
−3

0
0

2.
76

E
−2

1.
22

E
−1

7.
93

E
−2

1.
77

E
−1

2.
49

E
−1

1.
40

E
+

0
9.

42
E
−1

1.
00

E
+

3
−1

.0
1E

+
3

T
he

ba
se

va
lu

es
ar

e
S b

=
10

0
M

V
A

an
d

V
b
=

60
kV



15 Stabilization and Regulation of Small Frequency Fluctuations. . . 403

15.7 Appendix B

15.7.1 Sensitivity Matrices of Flores Island Power System

The sensitivity matrices Kp and Dp of Flores Island when wind power generator is
modeled as a negative load are given respectively in Table 15.19 and

Kp =

[
12.9062 −12.9062
−12.9068 12.9068

]

Dp =

[
1.0368

0

]
.

The sensitivity matrices Kp and Dp of Flores Island when wind is modeled as a
synchronous generator are given as

Kp =

⎡
⎣ 14.3346 −1.4284 −12.9062

−1.3777 1.3777 0
−12.9068 0 12.9068

⎤
⎦

Dp = 0.

15.8 Appendix C

15.8.1 Parameters of the Flores Island Power System

The characteristics of the electric power plants in Flores Island are listed in
Table 15.15.

Electromechanical parameters of the plants in Flores Island are presented in
Tables 15.16–15.18. In addition, dynamic parameters of the electromagnetic parts
of the plants are presented in Tables 16.14–16.16 in Chap. 16. The bases are
Sbase= 1 MVA, Vbase= 0.4 kV, and fbase= 50 Hz (Table 15.19).

Table 15.15 Characteristics of the plants in Flores Island power system

# Node in the reduced
system

# Node in the original
system Capacity (MW) Type of plant

1 1 2.5 Diesel (slack)
2 19 0.6 Wind
3 46 1.5 Hydro
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Table 15.16 Electromechanical parameters of the diesel power plant

Hd (s) Dd (p.u.) T2 (s) K2 (p.u.) Rd Cd (p.u.) KI (p.u.) Cc (p.u.)
11.53 0.25 0.6 40 0.03 1 10 1

Table 15.17 Electromechanical
parameters of the wind power plant

Hw (s) Dw (p.u.)

9.33 0

Table 15.18 Electromechanical parameters of the hydro power plant

Hh (s) Dh (p.u.) eh (p.u.) Kq (p.u.) Kw (p.u.) Tf (p.u.) Tq (s) Tw (s) Te (s) Ts (s) rp rh

21.59 11.85 −10.85 2.78 1.52 −3.6 0.72 4 2 0.06 0.6 7

15.9 Appendix D

15.9.1 Sensitivity Matrices of São Miguel Island Power System

The sensitivity matrices Kp and Dp of the decoupled active power flow of São
Miguel Island are shown respectively in Table 15.19 and

Dp = 0

15.10 Appendix E

15.10.1 Parameters of the São Miguel Island Power System

The characteristics of the electric power plants in São Miguel Island are listed in
Table 15.20.

Electromechanical parameters of the plants in São Miguel Island are presented
in Tables 15.21–15.27. For medium and small hydro plants, the total inertia and
damping of the plants are presented. In order to calculate the inertia and damping
of each plant, one can scale down the parameters base on the capacity of the plant.
Sbase = 100 MVA, Vbase = 1 kV, and fbase = 50 Hz.
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Table 15.20 Characteristics of the plants in São Miguel Island power system

# Node in the reduced
system

# Node in the original
system Capacity (MW) Type of plant

1 932 32.688 Diesel 1 (slack)
2 933 32.688 Diesel 2
3 934 32.688 Diesel 3
4 963 14.8 Geothermal 1
5 1049 13 Geothermal 2
6 1666 0.67 Hydro 1
7 1669 0.8 Hydro 2
8 1672 0.608 Hydro 3
9 1675 0.553 Hydro 4
10 1676 0.553 Hydro 5
11 1677 0.553 Hydro 6
12 1680 0.094 Hydro 7
13 1683 0.4 Hydro 8
14 1686 0.4 Hydro 9
15 1687 0.4 Hydro 10

Table 15.21 Electromechanical parameters of the first diesel power plant

Hd (s) Dd (p.u.) T2 (s) K2 (p.u.) Rd Cd (p.u.) KI (p.u.) Cc (p.u.)

9.9662 0.186 1.07 40 0.03 1 10 1

Table 15.22 Electromechanical parameters of the second diesel power plant

Hd (s) Dd (p.u.) T2 (s) K2 (p.u.) Rd Cd (p.u.) KI (p.u.) Cc (p.u.)

12.9036 0.204 1.25 40 0.03 1 10 1

Table 15.23 Electromechanical
parameters of the first geothermal
power plant

Hgeo (s) Dgeo (p.u.)

37.7667 0.1992

Table 15.24 Electromechanical
parameters of the second
geothermal power plant

Hgeo (s) Dgeo (p.u.)

14.7919 0.078

Table 15.25 Electromechanical
parameters of the large hydro power
plant (hydro 4–6)

HhL (s) DhL (p.u.)

1.8201 0.0096
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Table 15.26 Electromechanical
parameters of the medium hydro
power plant (hydro 2)

HhM (s) DhM (p.u.)

0.6924 0.0037

Table 15.27 Electromechanical
parameters of the small hydro power
plant (hydro 1, 3 and 7–10)

HhS (s) DhS (p.u.)

3.3256 0.0176

References

1. M. Nazari, Electrical networks of the Azores Archipelago, in Chapter 3 of Engineering
IT-Enabled Sustainable Electricity Services: The Case of Low-Cost-Green Azores Islands,
Springer, 2013.
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Chapter 16
The Role of Enhanced Voltage Control in
Stabilizing Dynamics of Electric Energy Systems

Qixing Liu, Milos Cvetković, and Marija Ilić

16.1 Introduction

For assessing possible stability problems in systems with high wind power pene-
tration, it is insufficient to model only the real power-frequency dynamics when
attempting to select the most effective stabilizing controllers. The candidate con-
trollers are the governors of conventional power plants, the blades control of wind
power plants, fast energy storage (flywheels, batteries of various types), Flexible
Alternating Current Transmission System (FACTS) devices, the excitation systems
of conventional power plants, and the Doubly Fed Induction Generator (DFIG)
voltage control of wind turbines. The list of controllers is likely to become even
more diverse in the future and very different from the governor and excitation
control of conventional power plants. Given these choices, it is critical to develop a
more systematic framework than in the past for designing primary control in order to
manage specific types of disturbances and have quantifiable performance metrics for
assessing the potential of different types of controllers and their logic. In this chapter
we consider only small fast wind power fluctuations of the same type as in Chap. 15.
We next recall the main conclusion in Chap. 15 that managing such disturbances by
means of governor control or energy storage, such as flywheels, leads to wear-and-
tear with the former and high cost on storage devices with the latter. This leads us
to consider more systematically in this chapter the potential of fast voltage control
by means of rotor excitation in conventional power plants, DFIG in wind power
plants, and/or FACTS-based voltage control on wind power plants. Dynamic VAR
(D-VAR) is one such representative FACTS voltage controller typically used for
squirrel cage induction machines in wind power plants. The objective is to explore
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whether voltage control will be sufficient to stabilize the effects of very fast wind
power fluctuations and have governors control slower disturbances only. Moreover,
the stabilization of all relevant states in the coupled frequency–voltage dynamics
is of interest. Recently, there have been operating problems in systems with wind
power plants caused by the plants disconnecting themselves from the grid or by
unacceptable voltage fluctuations in parts of the system. These problems cannot
be modeled, analyzed, or controlled using the decoupled real power-frequency
dynamical model of the interconnected grid.

In order to explore the potential of controlling persistent wind fluctuations by
means of voltage control, the coupled frequency–voltage dynamic model is derived
first in Sect. 16.4. This model is used next in Sects. 16.5 and 16.6 for analyzing
the stability of the interconnected grid and for posing the control design problem
of stabilizing potentially unstable dynamics. This, in turn, protects governors from
excessive wear-and-tear, and eliminates the need for expensive storage.1

16.2 State of the Art of Coupled Frequency–Voltage
Stabilization Approaches

Each conventional power plant generally has two primary controllers: the governor
and the Automatic Voltage Regulator (AVR). The governor controls how much
mechanical power is applied to the rotor shaft of a generator. The governor control
logic generally requires major components, such as valves, to change their positions.
This in turn, creates wear-and-tear problems. The high-gain bang-bang fast on-
off adjustments of the prime mover output are normally prevented in order to
protect the mechanical parts of the generator from the wear-and-tear problems. The
AVR, on the other hand, stabilizes the terminal voltage of the generator using fast
power-electronically controlled excitation control applied to the rotor windings of a
generator. More recently many power plants have become equipped with Power
Systems Stabilizers (PSSs) responding to voltage deviations as supplementary
signals to the AVR [1]. The PSS, jointly with the AVR, is used to ensure small-
signal stabilization of the fast frequency–voltage dynamics.

In contrast to the conventional power plants, the intermittent resources do not
have a standardized primary control yet. It is common for many intermittent power
plants to directly apply the mechanical torque created by the wind to the generator
shaft. Only recently it has become clear that the dispatch of wind power involving
decisions of how much wind power to store or provide leads to lower generation
costs than when wind is sent to the power grid as it becomes available. This is
illustrated in earlier chapters of this book [3]. Similarly, we show in this chapter that
a carefully designed control of wind power plants in between the dispatch intervals

1Storage is needed, as shown in Chap. 19, when managing a wind power disturbance of significant
energy deviations.
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is especially critical in order to ensure that no stability problems arise in future
electric energy systems [4]. However, blade control of wind power plants is prone
to major wear-and-tear problems; this results in shortened lifetime of the plants. For
this reason, it is better to rely on a less damaging stabilization of system dynamics
in response to persistent wind power fluctuations. Two basic alternatives are (1) PSS
-type control of the wind power plant and (2) coordinated compensation for wind
disturbances by other fast resources—flywheels and batteries in particular—which
do not have as many wear-and-tear problems. PSS-type control of an induction
machine wind power plant could be either a D-VAR- or DFIG-type design (shown in
the Appendix). It is fundamentally impossible to implement the latter without fast
synchronized communications. Synchrophasors, Wide Area Measurement System
(WAMS)-based special protection system (SPS) have recently become possible
means of implementing such coordination. Prior to the recent availability of syn-
chronized fast measurements, standards for power system dynamics have required
that each conventional power plant have primary controllers and also be able to
ensure stand-alone stability.

However, one serious issue remains even when the stand-alone power plants
are stable. The robustness of stabilizing control with respect to the operating
equilibrium conditions is not always guaranteed. We show in this chapter that
the given model around different operating conditions may exhibit instability of
the interconnected system even though the system was tuned to have stand-alone
stable modules for a typical equilibrium. At present all primary controllers are
decentralized and do not account for the explicit dynamic interactions between
the various controllers. So the non-robustness with respect to the equilibrium
conditions and/or parameter uncertainties remains a major issue, which is likely
to become more serious as different nonstandard components get deployed into the
grid. This problem was recognized long ago. Several controllers, ranging across
High-Voltage Direct Current (HVDC) transmission, the On-Load Tap Changer
(OLTC) transformer, and the Static VAR Compensator (SVC) could not be tuned
simultaneously without destabilizing the interconnected system dynamics. As many
new controllers get deployed within relatively small electrical distances in smart
grids this once rare potential problem is likely to become very prevalent. A brute
force solution to this issue is to equip each (group of) power plants with a controller
which nearly decouples the interactions from the rest of the system. Assuming such
protocol is in place, and each (group of) components implements sufficient control
to decouple itself and cancel out the effects of the other (groups of) components,
the interconnected system will remain stable. However, some of these solutions
are extremely cost-ineffective. The decentralized decoupling control of large-scale
network systems of this type has had a very long history of theoretical developments,
but it has never been deployed in a systematic way. In addition to the infrastructure
cost which is sometimes hard to quantify and, therefore, hard to justify, a serious
technical problem concerns the specifications of the ranges of disturbances which
any given (group of) controllers would be capable of decoupling from the rest
of the system. Moreover, if some fail to control, the system as a whole becomes
less controllable and it is no longer possible to guarantee stable performance using
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decentralized control. Some striking examples of this problem have been the voltage
collapse-related blackout occurrences caused by some key power plants reaching
saturation in their voltage control, and generators behaving not as PV plants in
steady state (with well controlled voltage), but rather as PQ loads whose voltage
is no longer controllable. This loss of control by some primary controllers leads to
qualitatively different interaction variables which are caused by instabilities in the
voltage dynamics.

In order to compare the performances of different control alternatives for a given
system, it is essential to start with a model of the interconnected system in the
standard state-space form. This is an open problem, since a coupled frequency–
voltage linearized model in the standard state-space form is not readily available
for a general electric power system topology. So in this chapter we derive this kind
of model, using the Flores Island system as the illustration. Further generalizations
are possible. Based on the standard state-space model, we explore the impact on
system small-signal stability caused by different wind generator technologies and
qualitatively different electrical distances between the wind generator and the main
power grid. Proper control strategies are suggested for the scenarios in which small-
signal instability exists.

16.3 Flores Island Power System

The Flores Island power system has 46 buses, and its current electricity demand is
provided by a diesel power plant (capacity: 2.5 MW), a hydro-power plant (capacity:
1.5 MW) and a wind power plant (capacity: 0.66 MW) [2]. Figure 16.1 shows

Yeq33

Yeq22

Yeq13

Yeq12

Yeq11
Synchronous Wind Plant

Hydro
Plant

Diesel Generator

Bus3

Bus2

Bus1

Fig. 16.1 One-line diagram of Flores Island power system
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the reduced one-line diagram of this system. In order for the system to deploy
more environmentally friendly wind generation as a substitute for the conventional
diesel generation, the impacts of the wind generator on system performance needs
to be assessed and managed. In this chapter, we focus mainly on the potential
stability problems of the coupled electromechanics and electromagnetics which are
caused by integration of wind power plants. In light of the existing wind generation
technologies, two scenarios will be discussed:

• The system with an induction machine wind power generator
• The system with a synchronous wind power generator

16.4 PV Linearized Coupled Power System Model
With Wind Power Generator Dynamic Model

In this section, the dynamic models of generator components of the Flores power
system and a model of the interconnected system are introduced in the standard
state-space form. These models are in the form of linear Ordinary Differential
Equations (ODEs) derived by linearizing a previously introduced power system
model [5]. This model uses a form of nonlinear ODEs since it was primarily
introduced for modeling the response of the system to very large disturbances
(models and parameters given in Appendix) around a particular equilibrium.

16.4.1 Wind Generator Modeled as an Induction Machine

In the dynamic model of the wind induction generator, we represent the generator
as a DFIG which has excitation control inputs on the rotor of the induction machine.
We assume that there is no pitch control on the mechanical part of the wind
generator. In standard state-space form, the linearized model is written as

ẋw = Awxw +Bwuw +Cw
PExEw +Cw

PIIw +Cw
PCOIωCOI, (16.1)

where xw represents the system states. uw refers to the rotor winding excitation
control inputs of the DFIG. xEw, Iw, and ωCOI are defined as the variables
contributing to the coupling of the induction machine and to the rest of the system.
These couplings are contributed by voltages behind the transient reactance (xEw)
which are state variables of the system, the stator current (Iw), and the center of
inertia frequency (ωCOI). The specifications of the dynamic model are shown below:

xw =
[

Δδw Δωw ΔE ′
Dw ΔE ′

Qw

]T

uw =
[

Δe f d Δe f q
]T
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Table 16.1 Variables of the wind induction generator

Variable(s) Description

Δδw and Δωw Rotor angle and speed of the wind induction machine
ΔE ′

Dw and ΔE ′
Qw Voltages behind the transient reactance in the network reference frame

ΔIDw and ΔIQw Stator currents in the network reference frame
Δe f d and Δe f q Rotor winding excitation control inputs of the DFIG
ωCOI Center of inertia frequency, defined as ωCOI = ∑i∈G Miωi, G stands for

synchronous generators
Mw and Dw Inertia and damping coefficient of the wind induction machine

xEw =
[

ΔE ′
Dw ΔE ′

Qw

]T

Iw =
[

ΔIDw ΔIQw
]T

Aw =

⎡
⎢⎢⎢⎢⎣

0 ω0 0 0

0 −Dw

Mw
0 0

Lw
11 Lw

12 Lw
13 Lw

14
Lw

21 Lw
22 Lw

23 Lw
24

⎤
⎥⎥⎥⎥⎦ , Bw =

⎡
⎢⎢⎢⎣

0 0
0 0

Lw
18 Lw

19
Lw

28 Lw
29

⎤
⎥⎥⎥⎦

Cw
PE =

⎡
⎢⎢⎣

0 0
Lw

31 Lw
32

0 0
0 0

⎤
⎥⎥⎦ , Cw

PI =

⎡
⎢⎢⎣

0 0
Lw

33 Lw
34

Lw
15 Lw

16
Lw

25 Lw
26

⎤
⎥⎥⎦ , Cw

PCOI =

⎡
⎢⎢⎢⎢⎣

−ω0

−Dw

Mw
Lw

17
Lw

27

⎤
⎥⎥⎥⎥⎦ .

The physical meanings of the variables can be seen in Table 16.1. The Δ stands for
the deviations around an equilibrium. The elements Lws of the system matrices are
shown in Appendix.

16.4.2 Wind Generator Modeled as a Synchronous Machine

In this subsection, a linearized model of the synchronous wind generator is derived.
It is assumed that there is no pitch control on the mechanical part of the wind
generator: this is consistent with the modeling in the previous subsection. To control
the frequency–voltage dynamics, the IEEE Type I exciter [6] as well as a linear
feedback PSS are deployed for control of the terminal voltage and rotor rotating
speed. In the standard state-space form, the linearized model is written as

ẋws = Awsxws +Bwsuws +Cws
PExEws +Cws

PI Iws +Cws
PCOIωCOI, (16.2)

where xws represents the system states. uws stands for the PSS control input Vws,pss.
xEws, Iws, and ωCOI are defined as the variables contributing to the coupling of the
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Table 16.2 Variables of the wind power synchronous generator

Variable(s) Description

Δδws and Δωws Rotor angle and speed of the wind synchronous machine
ΔE ′

Dws and ΔE ′
Qws Voltages behind the transient reactance in the network reference frame

ΔIDws and ΔIQws Stator currents in the network reference frame
Δe f dws Rotor excitation control inputs of the exciter
ωCOI Center of inertia frequency of the system contributed by the

synchronous generators
Mws and Dws Inertia and damping coefficient of the wind power synchronous machine

synchronous machine to the rest of the system. These coupling variables are voltages
behind the transient reactance (xEws), the stator current (Iws), and the center of inertia
frequency (ωCOI). The details of the dynamic model are shown below:

xws =
[

Δδws Δωws ΔE ′
Dws ΔE ′

Qws ΔVRws Δe f dws ΔVFws

]T

uws = Vws,pss

xEws =
[

ΔE ′
Dws ΔE ′

Qws

]T

Iws =
[

ΔIDws ΔIQws

]T

Aws =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω0 0 0 0 0 0

0 −Dws

Mws
0 0 0 0 0

Lws
11 Lws

12 Lws
13 Lws

14 0 Lws
17 0

Lws
21 Lws

22 Lws
23 Lws

24 0 Lws
27 0

0 0 Lws
41 Lws

42 − 1
TAws

0 −KAws

TAws

0 0 0 0
1

TEws
−KEws +SEws

TEws
0

0 0 0 0
KFws

TFws ∗TEws
−KFws(KEws +SEws)

TFwsTEws
− 1

TFws

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bws =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

−KAws

TAws
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cws
PE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Lws

31 Lws
32

0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cws

PI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Lws

33 Lws
34

Lws
15 Lws

16

Lws
25 Lws

26

−Lws
42X ′

d Lws
41X ′

d

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cws

PCOI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω0

−Dws

Mws
Lws

18

Lws
28

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The physical meanings of the state variables can be seen in Table 16.2. The elements
Lwss of the system matrices appear in the Appendix.
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16.4.3 Hydro Generator

The hydro generator is a synchronous generator with an excitation control on the
rotor as well as speed-governor equipped with a proportional controller. A third-
order model is employed to represent the dynamics of governor-turbine. The IEEE
Type I exciter and linear feedback PSS, which were used for modeling wind
synchronous generator, are adopted to model the hydro synchronous generator as
well.

ẋh = Ahxh +Bhuh +Ch
PExEh +Ch

PIIh +Ch
PCOIωCOI, (16.3)

where xh represents the states of the generator. uh stands for the PSS control input
Vh,pss. xEh, Ih, and ωCOI are defined as the variables contributing to the coupling of
the synchronous machine to the rest of the system. These couplings are carried on
voltages behind the transient reactance (xEh), the stator current (Ih), and the center
of inertia frequency (ωCOI). The specifications of the dynamic model are shown in
the following:

xh =
[

Δqh Δvh Δah Δδh Δωh ΔE ′
Dh ΔE ′

Qh ΔVRh Δe f dh ΔVFh

]T

uh = Vh,pss

xEh =
[

ΔE ′
Dh ΔE ′

Qh

]T

Ih =
[

ΔIDh ΔIQh
]T

Ah =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tq

0
1

Tw
0

1
Tf

0 0 0 0 0

0 − 1
Te

r′h
Te

0 0 0 0 0 0 0

0
1
Ts

rh + r′h
Ts

0 −Gp

Ts
0 0 0 0 0

0 0 0 0 ω0 0 0 0 0 0
kq

Mh
0 − kw

Mh
−Dh

Mh
0 0 0 0 0 0

0 0 0 Lh
11 Lh

12 Lh
13 Lh

14 0 Lh
17 0

0 0 0 Lh
21 Lh

22 Lh
23 Lh

24 0 Lh
27 0

0 0 0 0 0 Lh
41 Lh

42 − 1
TAh

0 −KAh

TAh

0 0 0 0 0 0 0
1

TEh
−KEh +SEh

TEh
0

0 0 0 0 0 0 0
KFh

TFh ∗TEh
−KFh(KEh +SEh)

TFhTEh
− 1

TFh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 16.3 Variables of the hydro synchronous generator

Variable(s) Description

Δqh, Δvh and Δah Penstock flow, governor droop, and gate position of the hydro governor-turbine
Δδh and Δωh Rotor angle and speed of the hydro synchronous machine
ΔE ′

Dh and ΔE ′
Qh Voltages behind the transient reactance in the network reference frame

ΔIDh and ΔIQh Stator currents in the network reference frame
Δe f dh Rotor winding excitation control inputs of the exciter
ωCOI Center of inertia frequency of the system contributed by the

synchronous generators
Mh and Dh Inertia and damping coefficient of the hydro synchronous machine

Bh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

−KAh

TAh
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ch
PE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

Lh
31 Lh

32
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ch
PI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

Lh
33 Lh

34
Lh

15 Lh
16

Lh
25 Lh

26
−Lh

42X ′
d Lh

41X ′
d

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ch
PCOI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−ω0

−Dh

Mh
Lh

18b
Lh

28
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The physical meanings of the state variables can be seen in Table 16.3. The elements
Lhs of the system matrices are shown in the Appendix.

16.4.4 Diesel Generator

The diesel generator is a synchronous generator with an excitation control on the
rotor as well as speed governor equipped with a proportional-integral (PI) controller.
A second-order model is employed to represent the dynamics of the governor-
turbine. The IEEE Type I exciter and the linear feedback PSS models, which were
used with the wind and hydro synchronous generators in the previous sections, are
adopted to the mode of the diesel synchronous generator as well.

ẋd = Adxd +Bdud +Cd
PExEd +Cd

PIId +Cd
PCOIωCOI, (16.4)

where xd represents the states of the generator. ud stands for the PSS control input
Vd,pss. xEd , Id , and ωCOI are defined as the variables contributing to the coupling
of the synchronous machine to the rest of the system. These coupling variables are
voltages behind the transient reactance (xEd), the stator current (Id), and the center
of inertia frequency (ωCOI). The specifications of the dynamic model are shown as
follows:
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Table 16.4 Variables of the wind synchronous generator

Variable(s) Description

ΔmBd and ΔPcd Fuel rate and fuel control of the diesel generator
Δδd and Δωd Rotor angle and speed of the diesel synchronous machine
ΔE ′

Dd and ΔE ′
Qd Voltages behind the transient reactance in the network reference frame

ΔIDd and ΔIQd Stator currents in the network reference frame
Δe f dd Rotor winding excitation control inputs of the exciter
ωCOI Center of inertia frequency of the system contributed by the

synchronous generators
Md and Dd Inertia and damping coefficient of the diesel synchronous machine

xh =
[

ΔmBd ΔPcd Δδd Δωd ΔE ′
Dd ΔE ′

Qd ΔVRd Δe f dd ΔVFd

]T

ud = Vd,pss

xEd =
[

ΔE ′
Dd ΔE ′

Qd

]T

Id =
[

ΔIDd ΔIQd
]T

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tdd

−CdKd
Tdd

0 − Cd Kd
Tdd Rd

0 0 0 0 0

0 0 0 KId 0 0 0 0 0
0 0 0 ω0 0 0 0 0 0
1

Md
0 − Dd

Md
0 0 0 0 0 0

0 0 Ld
11 Ld

12 Ld
13 Ld

14 0 Ld
17 0

0 0 Ld
21 Ld

22 Ld
23 Ld

24 0 Ld
27 0

0 0 0 0 Ld
41 Ld

42 − 1
TAd

0 −KAd
TAd

0 0 0 0 0 0 1
TEd

−KEd+SEd
TEd

0

0 0 0 0 0 0 KFd
TFd∗TEd

−KFd(KEd+SEd)
TFdTEd

− 1
TFd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−KAd
TAd

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cd
PE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

Ld
31 Ld

32
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cd
PI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

Ld
33 Ld

34
Ld

15 Ld
16

Ld
25 Ld

26
−Ld

42X ′
d Ld

41X ′
d

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cd
PCOI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−ω0

− Dd
Md

Ld
18

Ld
28
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The physical interpretation of the state variables can be seen in Table 16.4. The
elements Lds of the system matrices are shown in the Appendix.
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16.4.5 Network Coupling Constraints

The dynamic components in the interconnected system have to satisfy the network
coupling constraints. In this subsection, we apply the network constraints equations
proposed in [7] to model the interactions among the generator components intro-
duced in the previous subsections.

In general, Kirchoff’s current law (KCL) has to hold for any electrical power
grid, which yields the following equation:

Î = ŶV̂, (16.5)

where the complex voltage vector V̂ and the complex current vector Î refer to the
bus voltages and net current injection on each bus. Ŷ is the admittance matrix of the
interconnected system.

The proposed network coupling model [7] assumes that all constant real power
and reactive power loads (PQ loads) in the interconnected system can be equiv-
alently represented as constant admittances in the study of short-term stability
problems. This assumption allows PQ loads to be represented as constant admittance
loads and to include the load admittances into the grid’s admittance matrix.

With an admittance matrix that incorporates load admittances, the KCL requires
that the net current injection be zero at any bus not connected to a voltage source.
As a result, Eq. (16.5) can be rewritten as

[
ÎG

0

]
=

[
ŶGG ŶGL

ŶLG ŶLL

][
V̂G

V̂L

]
. (16.6)

We then solve ÎG out of the equations and obtain

ÎG =
(

ŶGG − ŶGLŶ
−1
LL ŶLG

)
V̂G (16.7)

by defining

Yr = ŶGG − ŶGLŶ
−1
LL ŶLG,

and Ȳr for Yr incorporating the transient reactance of all generators. To obtain Ȳr,
we first define a diagonal matrix Ztr with the transient reactance of all the generators
as the diagonal elements. Then Ȳr can be given as

Zr = Ȳ−1
r

Ȳr = = (Zr +Ztr)
−1 .
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We can write the network constraints in the network reference frame as

[
ID

IQ

]
=

[
Ḡr −B̄r

B̄r Ḡr

][
E′

D

E′
Q

]
, (16.8)

where Ḡr and B̄r are the real part and imaginary part of Ȳr, respectively.

16.4.5.1 Center of Inertia (COI) Frequency

Dynamic equations of the three generators are coupled in one more way and that
is through the electrical frequency of the grid. In this chapter, we choose to define
electrical frequency in one of the following two ways: either as a weighted sum
of the frequencies of all three generators if the wind generator is represented as a
synchronous machine, Eq. (16.9); or as a weighted sum of frequencies of the diesel
and hydro if the wind generator is represented as an induction machine, Eq. (16.10).

ωCOI =
Mhωh +Mdωd +Mwωw

Mh +Md +Mw
(16.9)

ωCOI =
Mhωh +Mdωd

Mh +Md
(16.10)

16.4.6 Model of the Interconnected System

The standard state-space model of interconnected system is obtained by combining
the generator modules [Eq. (16.1) or (16.2), (16.3), and (16.4)] and the network
coupling constraints [Eq. (16.8)] to obtain

ẋ = Ax+Bu, (16.11)

in which x contains the state variables of all generator components and u is
comprised of the control input variables of all generators. A and B are the system
matrix and control input matrix, respectively. For the Flores power system with its
induction wind generator, the variables and matrices are defined as

x =
[

xT
h xT

d xT
w

]T
,

u =
[

uT
h uT

d uT
w

]T
,
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A =

⎡
⎣Ah 0 0

0 Ad 0
0 0 Aw

⎤
⎦+

⎛
⎝
⎡
⎣Ch

PE 0 0
0 Cd

PE 0
0 0 Cw

PE

⎤
⎦+

⎡
⎣Ch

PI 0 0
0 Cd

PI 0
0 0 Cw

PI

⎤
⎦
[

Ḡr −B̄r

B̄r Ḡr

]⎞
⎠SE

+

⎡
⎣Ch

PCOI 0 0
0 Cd

PCOI 0
0 0 Cw

PCOI

⎤
⎦Sω ,

B =

⎡
⎣Bh 0 0

0 Bd 0
0 0 Bw

⎤
⎦ . (16.12)

SE and Sω are the selection matrices containing 0s and 1s that select the state
variables corresponding to voltages ΔE ′

D{·} and ΔE ′
Q{·} and the speed Δω{·}.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E ′
Dh

E ′
Qh

E ′
Dd

E ′
Qd

E ′
Dw

E ′
Qw

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= SEx,

⎡
⎣ ωh

ωd

ωw

⎤
⎦= Sωx.

When the Flores system is equipped with a synchronous wind generator, the
variables and matrices can be similarly written to those of the Flores power system
equipped with an induction wind generator. The variables and matrices in this case
are then defined as

x =
[

xT
h xT

d xT
ws

]T
,

u =
[

uT
h uT

d uT
ws

]T
,

A =

⎡
⎣Ah 0 0

0 Ad 0
0 0 Aws

⎤
⎦+

⎛
⎝
⎡
⎣Ch

PE 0 0
0 Cd

PE 0
0 0 Cws

PE

⎤
⎦+

⎡
⎣Ch

PI 0 0
0 Cd

PI 0
0 0 Cws

PI

⎤
⎦
[

Ḡr −B̄r

B̄r Ḡr

]⎞
⎠SE

+

⎡
⎣Ch

PCOI 0 0
0 Cd

PCOI 0
0 0 Cws

PCOI

⎤
⎦Sω ,

B =

⎡
⎣Bh 0 0

0 Bd 0
0 0 Bws

⎤
⎦ . (16.13)
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16.5 Stability Analysis in Flores Systems Characterized by
Small Electrical Distances Between Wind and Diesel

In this section, the small-signal stability of the Flores power system is investigated
through simulation studies. The electrical distances used in this section are represen-
tative of the actual Flores system, in which the electrical distance between the wind
power plant and the diesel power plant is small. It is shown how the deployments
of different wind generation technologies and voltage excitation controls affect the
overall system dynamic behaviors. The specific control devices and techniques are
introduced in the Appendix.

16.5.1 Wind as an Induction Machine

We first examine the small-signal stability of the stand-alone generators.
In Table 16.5, the eigenvalues of the induction wind, synchronous hydro, and
diesel generators are listed. Table 16.6 shows the eigenvalues of the interconnected
system. The results indicate that the stand-alone components and interconnected
system are small-signal stable regardless of the availability of exciter control on the
synchronous generators. If no exciter control is applied to any of the generators, the
overall stability is mainly maintained by the speed governor control.

Table 16.5 Eigenvalues of stand-alone components when induction wind generator is deployed

Generator components Eigenvalues of the components

Without exciter Wind −1.5129 ± 5.1966i, −0.0054, 0
Diesel −0.8 ± 9.865i, -0.077, -0.425, -0.425, 0
Hydro −126.71, -1.3742, -0.46, -0.033, -0.286, -0.286, 0

With exciter Wind −1.5129 ± 5.1966i, -0.0054, 0
Diesel −42.2242, -4.5256 ± 11.0913i, -0.8005 ± 9.8652i,

−1.0475, −0.4255, -0.0767, 0
Hydro −126.71, -40.85, -5.12 ± 8.48i,

−1.37, −1.09, -0.03, -0.46, -0.29, 0

Table 16.6 Eigenvalues of the interconnected system when induction wind generator is deployed

Type of system Eigenvalues of the components

System with no exciter control −126.711,−1.554±16.934i,−7.978±7.900i,−8.249,
−1.607±4.417i, −4.119,−1.39,−0.46,−0.531,−0.367,
−0.274,−0.077,0,0

System with exciter control −126.711,−41.134,−1.508±16.958i,−14.08,
−5.239±9.459i−7.576±7.508i,−9.014,−1.588±4.373i,
−4.169,−1.391,−1.096,−0.754,−0.46,−0.282,−0.177,
−0.077,0,0
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Table 16.7 Eigenvalues of stand-alone components when synchronous wind generator is de-
ployed

Generator
components Eigenvalues of the components

Without exciter Wind −1.5129,−1.5129,−0.0054,0
Diesel −0.8±9.865i,−0.077,−0.425,−0.425,0
Hydro −126.71,−1.3742,−0.46,−0.033,−0.286,−0.286,0

With exciter Wind −43.2703,−4.5855±12.9286i,−0.9689,−1.5129,−0.0054,0
Diesel −41.576,−4.8448±9.9426i,−0.8005±9.8652i,

−1.0575,−0.4255,−0.0767,0
Hydro −126.71,−40.87,−5.11±8.52i,

−1.37,−1.06,−0.033,−0.46,−0.29,0

Table 16.8 Eigenvalues of interconnected system when synchronous wind generator is deployed

Type of system Eigenvalues of the components

System with no exciter control −126.711,−1.554±16.834i,−1.773±4.875i,−5.37±2.416i,
−4.255,−1.39,−0.736.−0.5,−0.46,−0.205,−0.278,
−0.077,0

System with exciter control −126.711,−43.61,−40.93,−37.14,−1.533±16.838i,
−8.747±14.476i,−14.036,−13.914,−5.061±8.905i,
−1.182±5.602i,−4.338,−0.669±3.127i,−1.391,−1.097,
−1.021,−0.585,−0.46,−0.294,−0.077,−0.198,0

In order to investigate the system response to small disturbances, we apply a
0.01 pu step-change disturbance to the wind mechanical power input and simulate
the system response. The response of the speed governor outputs of the diesel and
hydro generators is shown in Fig. 16.2. By comparing the two cases, we can draw the
conclusion that when the Flores system is equipped with exciter control, the voltage
deviations from the same disturbance can be reduced and the system becomes more
stable in response to small disturbances. Frequency stability is ensured in both cases
but the wear-and-tear on the speed governor is reduced when exciter control is
implemented.

16.5.2 Wind as a Synchronous Machine

The small-signal stability of the Flores system with synchronous wind generator
integrated is studied in this subsection. Following the logic of the previous
subsection, we first show in Tables 16.7 and 16.8 the eigenvalues of the stand-alone
generators and the interconnected system, respectively.

The same conclusion is drawn as in the previous subsection for the small-
signal stability of the stand-alone components and the interconnected system. Speed



424 Q. Liu et al.

0 10 20 30 40 50 60
50

50.001

50.002

50.003

50.004

50.005

50.006

50.007

Time(sec)

F
re

qu
en

cy
 (

H
z)

fh
fd
fw

0 10 20 30 40 50 60
50

50.001

50.002

50.003

50.004

50.005

50.006

50.007

Time(sec)

F
re

qu
en

cy
 (

H
z) fh

fd
fw

0 10 20 30 40 50 60
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

Time(sec)

E
D

 D
ev

ita
tio

ns
 (

p.
u.

) EDh

EDd

EDw

0 10 20 30 40 50 60
−20

−15

−10

−5

0

5
x 10

−4

Time(sec)

E
D

 D
ev

ita
tio

ns
 (

p.
u.

)

EDh

EDd

EDw

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6

7
x 10

−3

Time(sec)

E
Q

 D
ev

ia
tio

ns
 (

p.
u.

)

EQh

EQd

EQw

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6
x 10−3

Time(sec)

E
Q

 D
ev

ia
tio

ns
 (

p.
u.

) EQh

EQd

EQw

0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Time(sec)

G
ov

er
no

r 
O

ut
pu

ts
 (

p.
u.

)

qh

mBd

0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Time(sec)

G
ov

er
no

r 
O

ut
pu

ts
 (

p.
u.

)

qh

mBd

a

c

e

g h

f

d

b

Fig. 16.2 Time response of the system with wind induction generator, small electrical distance.
(a) Frequency: without exciter. (b) Frequency: with exciter. (c) Deviations of ED: without exciter.
(d) Deviations of ED: with exciter. (e) Deviations of EQ: without exciter. (f) Deviations of EQ: with
exciter. (g) Governor outputs: without exciter. (h) Governor outputs: with exciter
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governor control contribute the most significantly to the system stability when no
exciter control is implemented.

In order to investigate the system response to small disturbances, we apply a
0.01 pu step-change disturbance to the wind mechanical power input and simulate
the system response, which is shown in Fig. 16.3. A comparison of the two cases
reveals that the voltage deviations as well as the speed governor wear-and-tear of
the system are significantly reduced when exciter control is implemented. Hence
the small-signal stability is enhanced with exciter control.

16.6 Stability Analysis in Systems with Large Electrical
Distances Between Wind and Diesel

In this section, we analyze the small-signal stability of the Flores power system with
large electrical distances between the wind generator and the diesel generator. The
electrical distance used in this section is ten times larger than the actual electrical
distance between the wind generator and diesel generator in the Flores system. The
impact of electrical distance on the stability of the interconnected system is assessed.
Different technologies for controlling the wind generator are also illustrated with
their enhancement of system stability compared via simulation studies.

16.6.1 Wind as an Induction Machine

We assume that all the synchronous generators studied in this subsection are
equipped with exciter control, and we focus on comparing the alternatives for
controlling the wind induction machine. Specifically, the technologies of DFIG and
SVC will be investigated. For the Flores system with these alternative controls, the
corresponding eigenvalues of stand-alone generator components and the intercon-
nected system are listed in Tables 16.9 and 16.10, respectively.

As can be seen from the eigenvalues in the tables, the interconnected system
is unstable, with one positive eigenvalue, 1.195, when there is no control on the
wind induction generator, even though exciter controllers are installed on diesel and
hydro generators and the stand-alone components are stable. The selective modal
analysis method [8] is applied to compute the contribution of each state variable to
this unstable eigenvalue. Table 16.11 gives the participation factor corresponding
to the unstable eigenvalue λ = 1.195. The states of the mechanical rotating speed
(Δωw) and voltages (ΔE ′

Dw and ΔE ′
Dw) contribute most to the unstable mode. This

is because no voltage control is applied to the wind generator to produce sufficient
reactive power and the reactive power, generated by diesel and hydro barely affects
the voltage of the wind generator due to the large electrical distance.
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Fig. 16.3 Time response of the system with wind synchronous generator, small electrical distance.
(a) Frequency: without exciter. (b) Frequency: with exciter. (c) Deviations of ED: without exciter.
(d) Deviations of ED: with exciter. (e) Deviations of EQ: without exciter. (f) Deviations of EQ: with
exciter. (g) Governor outputs: without exciter. (h) Governor outputs: with exciter
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Table 16.9 Eigenvalues of stand-alone components when induction wind generator is deployed

Generator components Eigenvalues of the components

No control on wind Wind induction −1.5129±12.7549i,−0.0054,0
Diesel −42.2019,−4.5367±11.0532i,

−0.8005±9.8652i,−1.0478,−0.4255,
−0.0767,0

Hydro −126.71,40.85,−5.12±8.48,−1.37,
−1.09,−0.46,−0.29−0.03,0

DFIG on wind Wind induction −1.5129,−1.5129,−0.0054,0,0
Diesel −42.0567,−4.6082±10.8036i,

−0.8005±9.8652i,−1.0498,−0.4255,−0.0767,0
Hydro −126.71,−40.85,−5.12±8.47i,

−1.37,−1.09,−0.033,−0.46,−0.29,0

SVC on wind Wind induction −1.5129±6i,−0.0054,0
Diesel −42.0567,−4.6082±10.698i,−0.8005±9.8652i,

−1.0507,−0.4255,−0.0767,0
Hydro −126.71,−40.85,−5.12±8.47i,

−1.37,−1.09,−0.033,−0.46,−0.29,0

Table 16.10 Eigenvalues of interconnected system when wind induction generator is deployed

Type of system Eigenvalues of the components

System with no control on wind −126.711,−41.372,−37.124,−1.448±16.955i,−14.07,
−6.421±10.436,−5.392±9.6i,−0.945±4.7i,−4.128,
−1.391,−1.093,−0.754,−0.46,−0.289,
−0.179,−0.077,0,0,1.195

System with DFIG on wind −126.711,−41.31,−37.13,−1.516±16.838i,−5.149±9.446i,
−14.06,−3.428±7.647i,−1.867±4.391i,−4.153,
−3±0.741i,−1.391,−1.092,−0.551±0.058,
−0.46,−0.27,−0.18,−0.076,0

System with SVC on wind −126.711,−41.29,−37.14,−1.517±16.822i,−5.15±9.45i,
−17.96,−14.06,−5.15±9.46i,−1.844±6.626i,−4.153,
−1.522±3.75i,−4.193,−1.39,−1.09,
−0.46,−0.526,−0.272,−0.076,−0.185,0,0

In comparison, when DFIG or SVC controls are implemented on the wind
generator, the interconnected system can be stabilized. Linear proportional feedback
control, which responds to the terminal voltage of the wind generator, is applied
to both devices. The performances of these two control approaches are shown
and compared in Fig. 16.4. The stability of the interconnected system is ensured
by means of both DFIG control and SVC control. The use of a governor on the
synchronous generators is also limited.
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Fig. 16.4 Time response of the system with wind induction generator, large electrical distance.
(a) Frequency: no control on wind. (b) Frequency: DFIG on wind. (c) Frequency: SVC on wind.
(d) ΔED: no control on wind. (e) ΔED: DFIG on wind. (f) ΔED: SVC on wind. (g) ΔEQ: no control
on wind. (h) ΔEQ: DFIG on wind. (i) ΔEQ: SVC on wind. (j) Governor outputs: no control on
wind. (k) Governor outputs: DFIG on wind. (l) Governor outputs: SVC on wind
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Table 16.11 Participation
factors of the unstable
eigenvalue λ = 1.195

State variable Participation factor

Δqh −0.0000+0.0000i
Δvh 0.0000−0.0000i
Δah 0.0000−0.0000i
Δδh −0.0046+0.0000i
Δωh 0.0020−0.0000i
ΔE ′

Dh −0.0002−0.0000i
ΔE ′

Qh −0.0194+0.0000i
ΔVRh −0.0000−0.0000i
Δe f dh −0.0019+0.0000i
ΔVFh 0.0008−0.0000i
ΔmBd −0.0091−0.0000i
ΔPcd −0.0013+0.0000i
Δδd 0.0060+0.0000i
Δωd 0.0007+0.0000i
ΔE ′

Dd −0.0001+0.0000i
ΔE ′

Qd −0.0007+0.0000i
ΔVRd −0.0000+0.0000i
Δe f dd −0.0010−0.0000i
ΔVFd 0.0005+0.0000i
Δδw 0
Δωw 0.8021−0.0000i
ΔE ′

Dw 0.2065+0.0000i
ΔE ′

Qw 0.0197+0.0000i

16.6.2 Wind as an Synchronous Machine

We assume that all the generators in this subsection are equipped with exciter
control. Recall that the main objective of this chapter is to evaluate the effect of
control on voltage dynamics to enhance the stability of the interconnected system
and reduce the wear-and-tear on the speed governor. We focus on simulating the
scenarios in which the PSS control is deployed on the wind synchronous generator
to enhance system stability and reduce the oscillations on both the diesel and
hydro generators. Here, all the PSS controllers on these synchronous generators
are designed in a linear proportional feedback fashion in response to the generator’s
rotating speed deviation. The eigenvalues of concern corresponding to the scenarios
are presented in Tables 16.12 and 16.13.

Since no eigenvalue has positive real part. The stand-alone components and
interconnected system are small-signal stable regardless of the deployment of PSS
control on the wind generator. We then compare the time response of the system
in the two scenarios and evaluate the performance of PSS control. In Fig. 16.5,
we show that with PSS control on the wind generator, the oscillations on the state
variables, including the responses of the diesel and hydro speed governors, are
significantly reduced. The results show that, by using our proposed approach, the
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Table 16.12 Eigenvalues of stand-alone components when synchronous wind generator is de-
ployed

Generator
components Eigenvalues of the components

No control on wind Wind −48.8165,−1.8030±20.1186i,
−0.9878,−1.5128,−0.0054,0

Diesel −41.1109,−5.0725±9.0497i,
−0.8005±9.8652i,−1.0671,−0.4256,−0.0767,0

Hydro −126.71,40.87,−5.11±8.52,−1.37,
−1.09,−0.46,−0.29−0.033,0

PSS on wind Wind −48.8165,−1.8030±20.1186i,−0.9878,−1.5128,
−0.0054,0

Diesel −41.1109,−5.0725±9.0497i,−0.8005±9.8652i,
−1.0671,−0.4256,−0.0767,0

Hydro −126.71,40.87,−5.11±8.52,−1.37,
−1.09,−0.46,−0.29−0.033,0

Table 16.13 Eigenvalues of the interconnected system when wind induction generator is deployed

Type of system Eigenvalues of the components

System with no control on wind −126.711,−48.88,−40.964,−37.149,−2.752±20.677i,
−1.556±16.742,−14.07, −5.159±8.805,
−7.248,−1.085±5.309i,−4.515,−0.627±2.542,,
−1.39,−1.097,−0.879,−0.426,−0.46,−0.289−0.232,
−0.077,0

System with PSS on wind −126.711,−48.67,−40.964,−37.149,−2.21±20.44i,
−1.556±16.742,−14.08,−5.159±8.805,−7.48,,
−1.07±5.309i,−4.515,−1.27±2.43,−1.39,−1.097,−0.868,
−0.411,−0.46,−0.289,−0.232,−0.075,0

wear-and-tear on the mechanical part of the generator can be lessened by using
control on the electromagnetic part.

16.7 Comparison and Discussion

The simulation results show that in three out of the four scenarios, the intercon-
nected system is small-signal stable. The stability across the different scenarios
indicates that in normal operation conditions, there is a certain stability margin in
the Flores power system. However, small-signal instability can still occur when an
induction wind generator is installed with a large electrical distance to the main
power grid; in this case, the system can be stabilized when controls are applied to the
wind generator. This result sheds light on future consideration of renewable energy
integration. A standard for interconnected system dynamics is crucial. It is critical
to take the dynamics of the renewable energy components, as well as the electrical
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Fig. 16.5 Time response of the system with wind synchronous generator, large electrical distance.
(a) Frequency: no control on wind. (b) Frequency: PSS on wind. (c) ΔED: no control on wind.
(d) ΔED: PSS on wind. (e) ΔEQ: no control on wind. (f) ΔEQ: PSS on wind. (g) Governor: no
control on wind. (h) Governor: PSS on wind
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distance between the renewable source and the main power grid, into consideration.
If the overall system with renewable energy components is unstable, alternative
renewable generator technologies, a relocation of renewable components, or an
application of control should be considered in order to have a stable interconnected
system.

16.8 Conclusions

This chapter studies small-signal stability problem in electric power grids with
variable wind penetration. The main focus of the chapter assesses power system
small-signal stability by using a coupled (electromechanics and electromagnetics)
linearized dynamic model. In the previous chapter we have shown how the wear-
and-tear of governor equipment is inevitable if frequency stabilization is to be
achieved by using only these devices. On the other hand, flywheels are the
expensive alternative. This chapter, however, shows alternatives deployed as voltage
controllers. It is shown that the use of excitation control on generators, enhanced by
power system stabilizers (PSS), improves the frequency response to small-signal
wind disturbances. However, the problem of voltage instability can appear in the
coupled model when not enough controllers are installed on the wind generator. The
static VAR compensator (SVC) and Doubly Fed Induction Generator (DFIG) are
used to control the system dynamics and ensure small-signal stability. A comparison
is made between systems with small and large electrical distances between the wind
generators and the conventional generators.
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Appendix

Equilibrium of the Flores Island Power System

The equilibrium of the Flores Island power system in which wind generator is
represented using a synchronous machine is shown in Fig. 16.6. A linearized model
for one of the simulations in this chapter is derived around this equilibrium.
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Hydro Generator Dynamic Model

The hydro generator is represented with a two-axis synchronous generator model.
The two-axis synchronous generator model is described using four states: d-axis E ′

D
and q-axis E ′

Q component of voltage behind the transient reactance, the rotor angle
position δ , and the angular frequency of the rotor ω .

In order to be connected with other machines, the two-axis synchronous gener-
ator model has to be transformed from a rotating reference frame into a network
reference frame. This is done by using the Park/Blondel transform. The two-axis
synchronous machine model in the network reference frame is given with the
following set of equations:

Ė ′
D = −T1E ′

D −T2(E
′
D cos(2δ )+E ′

Q sin(2δ ))

+X1IQ −X2(ID sin(2δ )− IQ cos(2δ ))

−ωb(ω −ω0)E
′
Q

+
1

T ′
d0

cos(δ )e f d

Ė ′
Q = −T1E ′

Q −T2(E
′
D sin(2δ )−E ′

Q cos(2δ ))

−X1ID +X2(ID cos(2δ )+ IQ sin(2δ ))

+ωb(ω −ω0)E
′
D

Fig. 16.6 Equilibrium of the FLores Island power system
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+
1

T ′
d0

sin(δ )e f d

δ̇ = ωb(ω −ω0)

ω̇ =
1
M
(Tm − (E ′

DID +E ′
QIQ)−D(ω −ωCOI))

V̇R = − 1
TA

VR +
KA

TA

(
V ref −V −VF

)

Ė f d =
1

TE

(
VR − (KE + SE)E f d

)

V̇F = − 1
TF

VF +
KF

TF
Ė f d (16.14)

The voltage behind the transient reactance and the current of the generator are
given in the network reference frame. The parameters of interest in these equations
are

T1 =
1
2

(
1

T ′
d0

+
1

T ′
q0

)

T2 =
1
2

(
1

T ′
d0

− 1
T ′

q0

)

X1 =
1
2

(
xd − x′d

T ′
d0

+
xq − x′q

T ′
q0

)

X2 =
1
2

(
xd − x′d

T ′
d0

− xq − x′q
T ′

q0

)
(16.15)

The linearized model of the hydro generator is

Δq̇h = − 1
Tq

Δqh +
1

Tw
Δαh +

1
Tf

Δω

Δv̇h = − 1
Te

Δvh +
r′h
Te

Δαh

Δα̇h =
1
Ts

Δvh +
rh + r′h

Ts
Δαh − Gp

Ts
Δω

ΔĖ ′
D = Lh

13ΔE ′
D +Lh

14ΔE ′
Q +Lh

11Δδ +Lh
12Δω +Lh

17Δe f d

+Lh
15ΔID +Lh

16ΔIQ +Lh
18ΔωCOI

ΔĖ ′
Q = Lh

23ΔE ′
D +Lh

24ΔE ′
Q +Lh

21Δδ +Lh
22Δω +Lh

27Δe f d

+Lh
25ΔID +Lh

26ΔIQ +Lh
28ΔωCOI
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Δδ̇ = ωbΔω −ωbΔωCOI

Δω̇ =
kq

Mh
Δqh − kw

Mh
Δαh − Dh

Mh
Δω +Lh

31ΔE ′
D

+Lh
32ΔE ′

Q +Lh
33ΔID +Lh

34ΔIQ +
Dh

Mh
ΔωCOI

ΔV̇Rh = Lh
41ΔE ′

D +Lh
42ΔE ′

Q − 1
TAh

ΔVRh − KAh

TAh
ΔVFh

− TAh

KAh
ΔVh,pss−Lh

42X ′
dΔID +Lh

41X ′
dΔIQ

Δė f dh =
1

TEh
ΔVRh − KEh + SEh

TEh
Δe f dh

ΔV̇Fh =
KFh

TEhTFh
ΔVRh − KFh(KEh + SEh)

TFhTEh
Δe f dh − 1

TFh
ΔVFh (16.16)

Diesel Generator Dynamic Model

The diesel generator is represented with a two-axis synchronous generator model.
The two-axis synchronous generator model is described using four states: d-axis E ′

D
and q-axis E ′

Q component of voltage behind the transient reactance, the rotor angle
position δ , and the angular frequency of the rotor ω .

In order to be connected with other machines, the two-axis synchronous genera-
tor model has to be transformed from a rotating into a network reference frame. This
is done by using the Park/Blondel transform. The two-axis synchronous machine
model in the network reference frame is given with the following set of equations

Ė ′
D = −T1E ′

D −T2(E
′
D cos(2δ )+E ′

Q sin(2δ ))

+X1IQ −X2(ID sin(2δ )− IQ cos(2δ ))

−ωb(ω −ω0)E
′
Q

+
1

T ′
d0

cos(δ )e f d

Ė ′
Q = −T1E ′

Q −T2(E
′
D sin(2δ )−E ′

Q cos(2δ ))

−X1ID +X2(ID cos(2δ )+ IQ sin(2δ ))

+ωb(ω −ω0)E
′
D

+
1

T ′
d0

sin(δ )e f d

δ̇ = ωb(ω −ω0)
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ω̇ =
1
M
(Tm − (E ′

DID +E ′
QIQ)−D(ω −ωCOI)

V̇R = − 1
TA

VR +
KA

TA

(
V ref −V −VF

)

Ė f d =
1

TE

(
VR − (KE + SE)E f d

)

V̇F = − 1
TF

VF +
KF

TF
Ė f d (16.17)

The voltage behind the transient reactance and the current of the generator are given
in the network reference frame. The parameters of interest in these equations are

T1 =
1
2

(
1

T ′
d0

+
1

T ′
q0

)

T2 =
1
2

(
1

T ′
d0

− 1
T ′

q0

)

X1 =
1
2

(
xd − x′d

T ′
d0

+
xq − x′q

T ′
q0

)

X2 =
1
2

(
xd − x′d

T ′
d0

− xq − x′q
T ′

q0

)
(16.18)

The linearized model of the diesel generator is

ΔṁBd = − 1
Tdd

ΔmBd − CdKd

Tdd
ΔPcd +

CdKd

TddRd
Δω

ΔṖcd = KIdΔω

ΔĖ ′
D = Ld

13ΔE ′
D +Ld

14ΔE ′
Q +Ld

11Δδ +Ld
12Δω +Ld

17Δe f d

+Ld
15ΔID +Ld

16ΔIQ +Ld
18ΔωCOI

ΔĖ ′
Q = Ld

23ΔE ′
D +Ld

24ΔE ′
Q +Ld

21Δδ +Ld
22Δω +Ld

27Δe f d

+Ld
25ΔID +Ld

26ΔIQ +Ld
28ΔωCOI

Δδ̇ = ωbΔω −ωbΔωCOI

Δω̇ =
kq

Md
Δqd − kw

Md
Δαd − Dd

Md
Δω +Ld

31ΔE ′
D

+Ld
32ΔE ′

Q +Ld
33ΔID +Ld

34ΔIQ +
Dd

Md
ΔωCOI
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ΔV̇Rd = Ld
41ΔE ′

D +Ld
42ΔE ′

Q − 1
TAd

ΔVRd − KAd

TAd
ΔVFd

− TAd

KAd
ΔVd,pss−Ld

42X ′
dΔID +Ld

41X ′
dΔIQ

Δė f dd =
1

TEd
ΔVRd − KEd + SEd

TEd
Δe f dd

ΔV̇Fd =
KFd

TEdTFd
ΔVRd − KFd(KEd + SEd)

TFdTEd
Δe f dd − 1

TFd
ΔVFd (16.19)

Wind Generator Dynamic Model

The wind generator is represented with either a two-axis synchronous generator
model or a two-axis induction generator model. Both models are described using
four states: d-axis E ′

D and q-axis E ′
Q component of voltage behind transient

reactance, the rotor angle position δ and the angular frequency of the rotor ω .

Wind as an Induction Machine

In order to be connected with other machines, the two-axis induction generator
model has to be transformed from a rotating into a network reference frame. This is
done by using the Park/Blondel transform. The two-axis induction machine model
in the network reference frame is given with the following set of equations:

Ė ′
D = −T1E ′

D −T2(E
′
D cos(2δ )+E ′

Q sin(2δ ))

+X1IQ −X2(ID sin(2δ )− IQ cos(2δ ))

−ωb(ω −ω0)E
′
Q

−2ωb(ω −ω0)E
′
Q

+e f d cos(δ )− e f q sin(δ )

Ė ′
Q = −T1E ′

Q −T2(E
′
D sin(2δ )−E ′

Q cos(2δ ))

−X1ID +X2(ID cos(2δ )+ IQ sin(2δ ))

+ωb(ω −ω0)E
′
D

+2ωb(ω −ω0)E
′
D

+e f d sin(δ )+ e f q cos(δ )

δ̇ = ωb(ω −ω0)
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ω̇ =
1
M
(Tm − (E ′

DID +E ′
QIQ)−D(ω −ωCOI) (16.20)

The voltage behind the transient reactance and the current of the generator are
given in the network reference frame. The parameters of interest in these equations
are

T1 =
1
2

(
1

T ′
d0

+
1

T ′
q0

)

T2 =
1
2

(
1

T ′
d0

− 1
T ′

q0

)

X1 = 1
2

(
xd−x′d

T ′
d0

+
xq−x′q

T ′
q0

)

X2 = 1
2

(
xd−x′d

T ′
d0

− xq−x′q
T ′

q0

)
(16.21)

The linearized model of the wind generator is

ΔĖ ′
D = Lw

13ΔE ′
D +Lw

14ΔE ′
Q +Lw

11Δδ +Lw
12Δω +Lw

18Δe f d

+Lw
19Δe f q +Lw

15ΔID +Lw
16ΔIQ +Lw

17ΔωCOI

ΔĖ ′
Q = Lw

23ΔE ′
D +Lw

24ΔE ′
Q +Lw

21Δδ +Lw
22Δω +Lw

28Δe f d

+Lw
29Δe f q +Lw

25ΔID +Lw
26ΔIQ +Lw

27ΔωCOI

Δδ̇ = ωbΔω −ωbΔωCOI

Δω̇ = −Dw

Mw
Δω +

Dw

Mw
ΔωCOI +Lw

31ΔE ′
D +Lw

32ΔE ′
Q

+Lw
33ΔID +Lw

34ΔIQ (16.22)

Wind as a Synchronous Machine

In order to be connected with other machines the two-axis synchronous generator
model has to be transformed from a rotating into a network reference frame. This
is done by using the Park/Blondel transform. The two-axis synchronous machine
model in the network reference frame is given with the following set of equations:

Ė ′
D = −T1E ′

D −T2(E
′
D cos(2δ )+E ′

Q sin(2δ ))
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+X1IQ −X2(ID sin(2δ )− IQ cos(2δ ))

−ωb(ω −ω0)E
′
Q

+
1

T ′
d0

cos(δ )e f d

Ė ′
Q = −T1E ′

Q −T2(E
′
D sin(2δ )−E ′

Q cos(2δ ))

−X1ID +X2(ID cos(2δ )+ IQ sin(2δ ))

+ωb(ω −ω0)E
′
D

+
1

T ′
d0

sin(δ )e f d

δ̇ = ωb(ω −ω0)

ω̇ =
1
M
(Tm − (E ′

DID +E ′
QIQ)−D(ω −ωCOI)

V̇R = − 1
TA

VR +
KA

TA

(
V ref −V −VF

)

Ė f d =
1

TE

(
VR − (KE + SE)E f d

)

V̇F = − 1
TF

VF +
KF

TF
Ė f d (16.23)

The voltage behind the transient reactance and the current of the generator are
given in the network reference frame. The parameters of interest in these equations
are

T1 =
1
2

(
1

T ′
d0

+
1

T ′
q0

)

T2 =
1
2

(
1

T ′
d0

− 1
T ′

q0

)

X1 =
1
2

(
xd − x′d

T ′
d0

+
xq − x′q

T ′
q0

)

X2 =
1
2

(
xd − x′d

T ′
d0

− xq − x′q
T ′

q0

)
(16.24)
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The linearized model of the wind generator is

ΔĖ ′
D = Lws

13ΔE ′
D +Lws

14ΔE ′
Q +Lws

11Δδ +Lws
12Δω

+Lws
18Δe f d +Lws

19Δe f q +Lws
15ΔID +Lws

16ΔIQ +Lws
17ΔωCOI

ΔĖ ′
Q = Lws

23ΔE ′
D +Lws

24ΔE ′
Q +Lws

21Δδ +Lws
22Δω

+Lws
28Δe f d +Lws

29Δe f q +Lws
25ΔID +Lws

26ΔIQ +Lws
27ΔωCOI

Δδ̇ = ωbΔω −ωbΔωCOI

Δω̇ = −Dws

Mws
Δω +

Dws

Mws
ΔωCOI +Lws

31ΔE ′
D

+Lws
32ΔE ′

Q +Lws
33ΔID +Lws

34ΔIQ

ΔV̇Rh = Lh
41ΔE ′

D +Lh
42ΔE ′

Q − 1
TAh

ΔVRh − KAh

TAh
ΔVFh

− TAh

KAh
ΔVh,pss−Lh

42X ′
dΔID +Lh

41X ′
dΔIQ

Δė f dh =
1

TEh
ΔVRh − KEh + SEh

TEh
Δe f dh

ΔV̇Fh =
KFh

TEhTFh
ΔVRh − KFh(KEh + SEh)

TFhTEh
Δe f dh − 1

TFh
ΔVFh (16.25)

Network Parameters

The network topology parameters are given in Table 16.14. The base values are
Sb = 10 MVA and Vb = 15 kV. The loads are represented as constant impedance
loads.

Table 16.14 Three bus
system parameters

t. line. From hydro to diesel From diesel to wind

R (pu) 0.04 0.3071
L (pu) 0.04 0.1695
Cch (pu) 0.0080 0.00446
Load Bus diesel Bus wind
R (pu) 7.8749 12.4954
L (pu) 2.3049 3.6506
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Dynamic Parameters of Generators

The generator data is given in Table 16.15 with respect to base power Sb = 10 MVA
and base voltage Vb = 0.4 kV.

Type 1 IEEE Exciter

The parameters of all the exciters are the same and are given in Table 16.16. The
block diagram of the exciter is shown in Fig. 16.7.

Table 16.15 Generator data Generator Hydro Diesel Wind

xd (pu) 2.399 8.15 28.161
xq (pu) 1.4375 8.15 28.161
x′d (pu) 0.3609 0.5917 3.052
x′q (pu) 0.1875 0.5917 3.052
T ′

q0 (s) 3.5 2.35 0.661
T ′

d0 (s) 3.5 2.35 0.661
H (s) 2.159 1.133 0.233
D (pu) 0.02 0.005 0

Fig. 16.7 Type 1 IEEE exciter

Table 16.16 Parameters of
exciters

Parameter Value

KA (pu) 400
TA (s) 0.02
KE (pu) 1.3
TE (s) 1
SE (pu) 0.1667
KF (pu) 0.03
TF (s) 1
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Fig. 16.8 Static VAR
compensator (SVC)

Controller Design

The controllers used in Sect. 16.5 are the following. The excitation controller is a
standard IEEE type 1 exciter [9] whose parameters are given in Table 16.16. The
parameters of excitation control are the same in all the simulations in this chapter.
T hydro and diesel generators are equipped with this kind of exciter, but the wind
generator does not have an excitation voltage controller.

The excitation system is upgraded with a proportional gain power system
stabilizer in Sect. 16.4.2. The equation of the stabilizer is

Δvi
pss =−Ki

pss(ω
i −ω ref) (16.26)

where the gain of the hydro and diesel stabilizers are Kh
pss = 150 and Kd

pss = 10,
respectively. Superscript i can be either h, which stands for hydro, or d, which stands
for diesel. The reference frequency is the desired electrical frequency of the network.

The controllers used in Sect. 16.6 are the following. The same exciters are kept
as in the previous section (without power system stabilizers) and on the same
generators: hydro and diesel.

In Sect. 16.4.1, SVC, Fig. 16.8, and DFIG, Fig. 16.9, are used to control the
disturbances in two independent simulations. The SVC controller is a linear PI
controller which reacts to the deviation in the wind generator bus voltage VW .
Therefore, the firing angle of SVC is

Δα = KPsvc(VW −V ref
W )+KIsvc

∫
(VW −V ref

W )dt (16.27)

where the gains of the controller are KPsvc = 1 and KIsvc = 1.
DFIG control is designed in a similar fashion. A linear PI controller that reacts

to the deviation in wind bus voltage magnitude is implemented. Excitation voltage
eW

f q changes according to a PI control law, while eW
f d stays constant.

ΔeW
f q = KPdfig(VW −V ref

W )+KIdfig

∫
(VW −V ref

W )dt (16.28)

where the gains of the controller are KPdfig =−10 and KIdfig =−10.
In Sect. 16.4.2, an excitation control system is added to the synchronous wind

generator. The exciter parameters are the same as for the other generators. A power
system stabilizer is added on top of the exciter. A power system stabilizer controller
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DFIG

Fig. 16.9 Doubly fed induction generator (DFIG)

is given in Eq. (16.26) where superscript i can take one of the following three values:
h hydro, d diesel, or w wind. The parameters of these stabilizers are Kh

pss = 50,
Kd

pss = 10, and Kw
pss = 50 (Table 16.17).

Equilibrium of the Flores Power System in Different
Simulations
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Table 16.17 Equilibrium of the Flores power system for the following simulations: (sim.1) small
electrical distance between diesel and wind with an induction wind generator, (sim.2) small
electrical distance between diesel and wind with a synchronous wind generator, (sim.3) large
electrical distance between diesel and wind with an induction wind generator and an SVC attached
to the wind generator bus, and (sim.4) large electrical distance between diesel and wind with an
induction DFIG wind generator

Sim.1 Sim.2 Sim.3 Sim.4

E ′
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E ′
Dd (pu) 1.0410 0.9697 0.998 1.004

E ′
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E ′
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ωh (pu) 1 1 1 1
ωd (pu) 1 1 1 1
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Chapter 17
Small-Signal Stability Analysis of Electric Power
Systems on the Azores Archipelago

Masoud Honarvar Nazari

In this chapter, a structure-based coupled real-power voltage dynamic is introduced
for assessing small-signal stability when the Azores Archipelago has a high
penetration of renewable energy resources. The small-signal stability of the Azores
is investigated with and without considering the coupling of real-power and voltage
dynamics. The decoupled scenario results illustrate that the system is stable in
response to small perturbations. On the other hand, in the coupled scenario, due
to strong interactions between the electromagnetic and mechanical parts of the
power plants, frequency oscillations, which lead to small-signal instability, are
exaggerated. The main conclusion is that tuning the governor control of the plants
without considering the coupling of real-power and voltage dynamics can lead to
system stability problems.

17.1 Introduction

A system is small-signal stable if it can regain an operating equilibrium after a
small perturbation. In electric systems, perturbations occur due to changes in the
loads, fluctuations in intermittent resources, or variations in the output power of
the conventional power plants. If an electric system cannot maintain its stability, an
overall blackout can occur.

Small-signal stability is an essential issue for the robustness and resilience
of modern electric energy systems. It is more critical for systems with a high
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penetration of renewable energy resources, since the intermittency of these
resources can intensify frequency oscillations . The electric energy systems in
the Azores Archipelago are real-world examples of modern electric energy systems
with a large penetration of renewable energy resources such as wind, hydro, and
geothermal. In fact, small-signal stability is a major concern when renewable energy
resources provide a large portion of the electricity. There have been several reports
of outage in the islands brought on by stability issues [1, 2].

In order to ensure the dynamic stability of the islands, it is essential to (a) intro-
duce a sufficiently detailed dynamic model to assess the small-signal stability of the
islands with their large penetration of distributed generators (DGs), (b) determine
potential instability problems and identify the main causes of the instabilities, and
(c) design an automatic control to enable the large penetration of DGs while at the
same time ensuring the electrical stability of the islands. This chapter intends to
model and analyze the small-signal stability of the two islands of Flores and São
Miguel.

In Sect. 17.2, four scenarios concerning the dynamic stability of Flores are
studied: (1) assuming the decoupling of real-power and voltage dynamics and
treating fluctuations of wind as a bounded real-power disturbance to the system,
(2) assuming the decoupling of real-power and voltage dynamics and modeling the
dynamics of the wind plant as a synchronous generator, (3) assuming the coupling
of real-power and voltage dynamics and treating fluctuations of wind as a bounded
real-power disturbance, and; (4) assuming the coupling of real-power and voltage
dynamics and including the dynamic model of the wind plant.

The technical findings illustrate that small-signal instability can occur when the
governor control (GC) of the DGs is tuned without accounting for interactions
between the mechanical and electromagnetic dynamics.

In Sect. 17.3, the small-signal stability of São Miguel is investigated assuming
the decoupling of real-power and voltage dynamics. The results illustrate that slow
modes of oscillation exist in the system. This is attributed to the weak inter-
connection between the thermal plants (diesel/geothermal) and hydro plants.

In Sect. 17.4, three main solutions to enhance the stability of the electrical
systems in the Azores Archipelago are discussed: (1) implementing high-gain
control in the hydro plants, (2) installing power system stabilizers (PSSs) in the
controllable plants to stabilize frequency oscillations , and (3) using fast flywheel
energy storage to increase damping. In Sect. 17.5, we close the chapter with a brief
discussion of the overall findings.

17.2 The Small-Signal Stability of Flores

The main focus of this section is the problem of small-signal stability on Flores on a
typical winter day with a sufficient availability of wind and hydro power. As shown
in Fig. 17.1, wind and hydro are the two main sources of energy during the winter on
Flores, and more than 50 % of the electricity is produced by these resources. Due to
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Fig. 17.1 Illustration of the availability of wind and hydro power on a typical winter day [1]

the intermittent nature of these resources, however, the distribution system is more
vulnerable to frequency and/or voltage instability.

In order to assess the frequency and voltage dynamics in response to small
disturbances, it is essential to model the electric power grid dynamics of the island
first. The electric energy system of the island has three distributed generators and
many loads which are interconnected by the distribution network.

17.2.1 Generator Models Used

The dynamics of the generators are represented with state-space models. In general,
a generator includes a mechanical and an electromagnetic part. For conventional
plants such as a diesel generator, the mechanical part consists of a prime mover,
rotating mass, and a governor control (GC) system. Equation (17.1) illustrates the
state-space model of the mechanical part of a diesel plant:

d
dt

⎡
⎣ωG

mB

PC

⎤
⎦=

⎡
⎢⎢⎣

−Dd
2Hd

Cc
2Hd

0
−Cd Kd

Td Rc

−1
Td

−CdKd
Td

−KI 0 0

⎤
⎥⎥⎦
⎡
⎣ωG

mB

PC

⎤
⎦+

⎡
⎢⎣

−1
2Hd

0
0

⎤
⎥⎦PG +

⎡
⎣ 0

0
KI

⎤
⎦ω ref

G (17.1)

In this model, ωG is the frequency, mB is the fuel rate, and PC is the governor con-
trol. In addition, Hd and Dd are the inertia and damping coefficients, respectively.
Cd and Kd are the transfer function coefficients for the fuel system, Td is the time
constant of the fuel system, and KI is the integral gain of the GC system [3].
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The electromagnetic part of the diesel plant is coupled to the mechanical sub-
system by the magnetic field of the machine air gap [4,5]. For a diesel generator, the
electromagnetic part consists of a synchronous machine and an excitation control.
Equation (17.2) represents the state-space model of the electromagnetic subsystem:

d
dt

⎡
⎢⎢⎣

VR

e f d

e′q
VF

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
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−KaKf
TaTf

−Ka
Ta

Ka
Ta

1
Te

−(Ke+Se)
Te

0 0

0 1
Td

− 1
Td

0

0
k f

T 2
f

0 −1
Tf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

VR

e f d

e′q
VF

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
0

−(xd−x′d)
Td

0

⎤
⎥⎥⎥⎦ id +

⎡
⎢⎢⎢⎣

Ka
Ta

0
0
0

⎤
⎥⎥⎥⎦V ref

G (17.2)

In this model, VR is the regulator voltage, e f d is the field excitation, e′q is the
machine voltage behind the direct transient impedance, and VF is the feedback
voltage (the voltage of the compensator) [6]. In addition, id is the reactive current
out of the generator, and V ref

G is the reference value for the generator terminal voltage
[6, 7]. Note that if the effects of damper winding are neglected, then e′q = VG since

VG =
√

e′q
2 + e′d

2 and e′d = 0 [6].
Likewise, the dynamics of the mechanical parts of a hydro plant are presented in

Eq. (17.3). The electromagnetic aspects of the hydro plant have a similar state-space
model to those of the diesel generator [Eq. (17.2)]:

d
dt
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⎢⎢⎣
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G (17.3)

Here, q is the penstock flow, v is the governor droop, and a is the gate position.
Moreover, Ta, Tf , and Td are the time constants of the hydro plant. Ts is the time
constant of the servomotor, and rh and r′ are the permanent and transient speed
droop, respectively [8].

A wind plant is a synchronous machine connected to the grid through a power
electronic interface. The mechanical part of the plant consists of a rotating mass and
a wind turbine with a pitch control system. Equations (17.4) and (17.5) illustrate
the dynamics of the rotating mass and the wind turbine, respectively. As shown
in Eq. (17.6) the electromagnetic part includes a synchronous machine without
excitation control:

dωG

dt
=

1
2Hw

Pm − Dw

2Hw
ωG − 1

2Hw
PG (17.4)
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where

Pm =−KmωG (17.5)

and

de′q
dt

=
−1
Td

e′q +
−(xd − x′d)

Td
id (17.6)

Here, Pm is the mechanical power, DW is the damping coefficient, and Km is the
proportional gain of the pitch control system [9]. The data for the state-space models
shown in Eqs. (17.1)–(17.6) are available in Appendix B.

Considering Eqs. (17.1)–(17.6), the general state-space model of the mechanical
and electromagnetic subsystems of each generator take on the form

dxP
LC

dt
= AP

LCxP
LC +CPPG (17.7)

dxQ
LC

dt
= AQ

LCxQ
LC +CQid (17.8)

Here xP
LC and xQ

LC are the state variables of the mechanical and electromechanical
subsystems, respectively.

17.2.2 Network Dynamics

In this chapter, it is assumed that loads are static. Changes in loads are modeled as
disturbances to the grid. Furthermore, the distribution system is modeled by a set of
power flow equations [8]. Its dynamics are modeled by a Jacobian matrix [5]:

d
dt

⎡
⎢⎢⎣

PG

iGd
PL

iLd
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[
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⎤
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where
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∂VG

∂QG
∂δG

∂QG
∂VG

⎤
⎦ (17.10)

J2 =

⎡
⎣ ∂PG

∂δL

∂PG
∂VL

∂QG
∂δL

∂QG
∂VL

⎤
⎦ (17.11)



450 M. Honarvar Nazari

J3 =

⎡
⎣ ∂PL

∂δG

∂PL
∂VG

∂QL
∂δG

∂QL
∂VG

⎤
⎦ (17.12)

J4 =

⎡
⎣ ∂PL

∂δL

∂PL
∂VL

∂QL
∂δL

∂QL
∂VL

⎤
⎦ (17.13)

17.2.3 Dynamic Model of the Interconnected System

Neglecting the dynamics of the loads, the state-space equation of the coupling
variables (PG and iGd ) takes on the form

dPG

dt
= K p11SωGxP

LC +K p12

(
1
Td

Sef d −
1
Td

Se′q

)
xQ

LC

+K p12
−(xd − x′d)

Td
id +Dp11

dPL

dt
+Dp12

diLd
dt

(17.14)

diGd
dt

= K p21SωGxP
LC +K p22

(
1
Td

Sef d −
1
Td

Se′q

)
xQ

LC

+K p22
−(xd − x′d)

Td
id +Dp21

dPL

dt
+Dp22

diLd
dt

(17.15)

with SωG , Sef d , and Se′q relating ωG = SωGxP
LC, e f d = Sef d xQ

LC, and e′q = Se′qxQ
LC,

respectively
Matrices K p and Dp are defined as follows:

[
J1 − J2J−1

4 J3
]
=

[
K p11 K p12

K p21 K p22

]
(17.16)

[
J2J−1

4

]
=

[
Dp11 Dp12

Dp21 Dp22

]
(17.17)

The desired dynamic model for Flores is obtained by adding Eqs. (17.14)
and (17.15) to (17.17) and (17.18) and by ordering the state variables as internal
state variables of the DGs and their coupling variables. This model lends itself to
an intuitive understanding of the decentralized nature of distribution systems with a
high penetration of distributed generators:

d
dt

⎡
⎣X1

X2

X3

⎤
⎦=

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎡
⎣X1

X2

X3

⎤
⎦+

⎡
⎣γ1

γ2

γ3

⎤
⎦ (17.18)

where Xi, Aii, Ai j, and γi are defined as
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Xi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xP(i)
LC

xQ(i)
LC

P(i)
G

iG(i)
d

⎤
⎥⎥⎥⎥⎥⎥⎦

(17.19)

Aii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

AP(i)
LC 0 CP(i) 0

0 AQ(i)
LC 0 CQ(i)

K p(ii)11 SωG K p(ii)12

(
1
Td

Sef d − 1
Td

Se′q

)
0 K p(ii)12

−(xd−x′d)
Td

K p(ii)21 SωG K p(ii)22

(
1
Td

Sef d − 1
Td

Se′q

)
0 K p(ii)22

−(xd−x′d)
Td

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17.20)

Ai j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

K p(i j)
11 SωG K p(i j)

12

(
1
Td

Sef d − 1
Td

Se′q

)
0 K p(i j)

12
−(xd−x′d)

Td

K p(i j)
21 SωG K p(i j)

22

(
1
Td

Sef d − 1
Td

Se′q

)
0 K p(i j)

22
−(xd−x′d)

Td

⎤
⎥⎥⎥⎥⎥⎥⎦

(17.21)

γi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

Dp(i)11
dPL
dt +Dp(i)12

diLd
dt

Dp(i)21
dPL
dt +Dp(i)22

diLd
dt

⎤
⎥⎥⎥⎥⎥⎥⎦

(17.22)

Neglecting load dynamics leads to a new topology for the island. The equiv-
alenced power system is obtained by adding a switch with a reactance and
resistance of 0.04 pu between the diesel and hydro plants and calculating the
equivalenced admittance between the plants or between a plant and ground. Note
that the equivalenced admittance is obtained by the coupling matrix (Yeqi j = K pi j).
Figure 17.2 illustrates the one-line diagram of the equivalenced power system for
Flores. In the next sections, the system stability of Flores is explored in four main
scenarios.

17.2.4 Decoupled Real-Power Voltage Dynamic Model:
Treating Wind as a Disturbance

Considering a decoupling of real-power and voltage dynamics and neglecting the
dynamics of the wind plant, result in a simpler dynamic model for the island, shown
in Eq. (17.19):

d
dt

[
X ′

1
X ′

2

]
=

[
A′

11 A′
12

A′
21 A′

22

][
X ′

1
X ′

2

]
+

[
γ ′1
γ ′2

]
(17.23)



452 M. Honarvar Nazari

Fig. 17.2 One-line diagram of the equivalenced power system for Flores

where X ′
i , A′

ii, A′
i j, and γ ′i are defined as

X ′
i =

⎡
⎣xP(i)

LC

P(i)
G

⎤
⎦ (17.24)

A′
ii =

⎡
⎣ AP(i)

LC CP(i)

K p(ii)G SωG 0

⎤
⎦ (17.25)

A′
i j =

[
0 0

K p(i j)
G SωG 0

]
(17.26)

γ ′i =

[
0

Dp(i)L
dPL
dt

]
(17.27)

Matrices K pG and DpL are described as [6]

K pG = JGG − JGLJ−1
LL JLG (17.28)

DpL =−JGLJ−1
LL (17.29)

where

JGG =
∂PG

∂δG
JGL =

∂PG

∂δL
JLG =

∂PL

∂δG
JLL =

∂PL

∂δL
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Fig. 17.3 Frequency deviation in the diesel and hydro plants after a small perturbation (0.01 pu)

The numerical data of the dynamic models are available in Appendix B. Note
that the governor control of each plant is designed so that the system matrix of the
stand-alone plant (A′

ii) is stable in response to small perturbations.
An eigenvalue analysis of the system in this scenario shows that all the

eigenvalues lie in the left-hand side of the complex plane. Figure 17.3 illustrates
the oscillations in frequency of the diesel and hydro plants after a small disturbance
on the island. The disturbance is a 0.01 pu decrease in wind power.

As shown in Fig. 17.3, the frequency of the hydro generator oscillates around its
operating point, but it settles gradually. The oscillations result in smaller fluctuations
in the frequency of the diesel plant. After the disturbance, the diesel generator
increases its output power to balance the real-power mismatch. On the other hand,
the hydro plant cannot ramp up rapidly, but it oscillates around the equilibrium point
due to its non-minimal phase margin property. Figure 17.4 illustrates the deviations
in the output power of the plants. The results illustrate that the system is oscillatory
stable.

In order to measure the strength of the electrical interaction between the plants,
the coupling matrix (K p) is calculated. Figure 17.5 demonstrates the 3-D plot of
the coupling matrix. The depth and horizontal axes of the figure represent the x-
and y-axis of the coupling matrix, respectively. The z axis illustrates the strength of
the coupling (K pi j). As shown in Fig. 17.5, the diesel and hydro plants are strongly
coupled. This explains why oscillations in the hydro plant make the diesel generator
oscillatory as well [10, 11].
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Fig. 17.4 Deviations in the output power of the power plants after the perturbation

Fig. 17.5 3-D plot of the coupling matrix for the decoupled real-power voltage dynamic model

17.2.5 The Decoupled Real-Power Frequency Model

In this subsection, the small-signal stability of the island is studied by modeling the
dynamics of the synchronous wind plant shown in Eqs. (17.4) and (17.5). The results
illustrate that when the wind plant is poorly tuned or has no pitch control system, the
overall fluctuations of frequency are exaggerated (shown in Fig. 17.6). In general,
implementing a pitch control system increases the damping of the wind plant and
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Fig. 17.6 Frequency deviation of the generators when the wind plant has no pitch control system

Fig. 17.7 Frequency deviation of the generators when the wind plant is equipped with a
proportional pitch control system

lessens frequency oscillations. Figures 17.7 and 17.8 demonstrate the deviations
of output power and the frequency of the power plants when the wind plant has a
proportional pitch control system (gain= 2 pu). The results illustrate that the system
has stable oscillatory response.
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Fig. 17.8 Deviations in the output power of the generators when the wind plant is equipped with
a proportional pitch control system

As shown in Fig. 17.7, after a small disturbance (a 0.01 pu increase in load),
the frequency of the wind plant deviates, but it returns to the equilibrium point
gradually. The hydro plant shows a different dynamic behavior. Due to its non-
minimal phase margin characteristics, it has fast oscillations around the equilibrium
point, and damps very sluggishly. On the other hand, the diesel plant has robust
dynamic behavior because of its fast integral control system. The diesel plant is
compensating real-time oscillations in real power.

In general, using the diesel generator for frequency regulation and to compensate
for fast fluctuations of real power can cause wear and tear in the governor control
of the plant. It can also increase the operating and maintenance costs of the plant
and increase emissions. In [12] it is shown that if gas turbines are operated to
compensate for fast fluctuations of intermittent energy resources such as wind, their
CO2 emissions may increase up to 20 % and their NOx pollutions rise by 50–70 %
compared to full power steady-state operation levels. Similarly, it is expected that in
a fast ramping of the diesel plant, its CO2 and NOx emissions increase significantly.

In order to investigate the effect of the electrical interaction between the plants
on system stability, the coupling matrix is calculated. The numerical results are
available in Table 17.3. Figure 17.9 illustrates the 3-D plot of the coupling matrix
and shows that the electrical interaction between the wind and diesel plants is weak
but that the diesel and hydro plants are strongly coupled.
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Fig. 17.9 3-D plot of the
coupling matrix for the
decoupled real-power voltage
dynamic model

17.2.6 The Coupled Real-Power Voltage Dynamic Model:
Treating Wind as a Disturbance

Neglecting the coupling between real-power and voltage dynamics may lead to an
optimistic assessment of system stability. This section examines the small-signal
stability of Flores considering a coupling of real-power and voltage dynamics. The
wind plant is treated as a negative load, and its dynamics are neglected. Note that
governors of the plants are designed based on the decoupled model.

The result of stability analysis demonstrates that with a small disturbance (a 0.01
pu increase in load), the frequency of the hydro plant deviates from the nominal
point (50 Hz). These oscillations are exacerbated due to the strong interaction
between the mechanical and electromagnetic parts of the plant. This leads to a
frequency instability of the hydro plant. As shown in Figs. 17.10 and 17.11, the
instabilities of the hydro plant make the diesel generator unstable. Therefore, the
full system is unstable in response to small perturbations.

In order to determine the main cause of instabilities, a participation factor-based
analysis, fully elaborated in [13], is carried out. The results show that the coupling
variables (PG and iGd ) play the main role in instabilities. Comparing the coupling
matrix with that of the decoupled scenario illustrates that the coupling between the
plants is stronger in the coupled case.

17.2.7 The Coupled Real-Power Voltage Dynamic
Model with Wind Power Dynamics Included

In this sub-section, the coupled real-power voltage dynamic model on Flores
containing the dynamics of all the power plants is explored. Here, the wind plant
is modeled as a synchronous generator with a proportional pitch control system.
Governors of the diesel and hydro power plants are designed based on the decoupled
model. The state-space model of the entire system is presented in Eq. (17.18).
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Fig. 17.10 Frequency deviation of the power plants after a small disturbance in the system

Fig. 17.11 Deviations in the output power of the power plants after the disturbance

The result of eigenvalue analysis illustrates that the stand-alone hydro plant has
two eigenvalues in the right-hand side of the complex plane. These eigenvalues
appear in the eigenvalues of the full system and lead to unstable response for the
entire island. Table 17.2 shows the eigenvalues of the full system and the sub-
systems. Note that due to modeling the reference generator, a zero eigenvalue exists
in the full system.
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Fig. 17.12 Dynamic response of the diesel, hydro, and wind generators after the disturbance

Fig. 17.13 Deviations in the output power of the generators after the disturbance

The interaction between the electromagnetic and mechanical parts of the hydro
plant exaggerates the oscillations and makes the plant unstable. This instability
penetrates across the island and leads to system-wide instability. Figures 17.12
and 17.13 demonstrate variations in the frequency and output power of the power
plants after a disturbance. Similar dynamic behavior is reported in [2]. The
instabilities found in these scenarios can be avoided by carefully designing the
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governor control and excitation control of the plants based on the coupled real-
power voltage dynamic model.

Comparing the coupling matrix of the full system with those of the previous
scenarios illustrates that the coupling between the power plants (K pi j) and the
self-coupling K pii are larger if the interaction between real-power and voltage
dynamics is considered. The numerical values of the coupling matrix are available
in Table 17.4. In summary, our findings demonstrate that if the governor control and
excitation control of the power plants are designed without considering the coupling
between real-power and voltage dynamics, small-signal instability may occur in the
system.

17.3 Small-Signal Stability on São Miguel

São Miguel is the largest island in the Azores Archipelago with an average demand
of around 65 MW. Three large diesel generators, two medium-size geothermal
plants, and ten small hydro plants supply the demand. The hydro plants are run-
of-river hydroelectric generators and provide electricity based on the availability
of the stream. These plants do not have advanced governor control and cannot
participate in frequency regulation. The geothermal plants produce electricity based
on the availability of steam. Both the hydro and geothermal plants supply base-load
power. Figure 17.14 illustrates the role of each technology in providing the daily
electricity of the island during the spring. As shown in Fig. 17.14, around 40 % of
the electricity is provided by renewable sources of energy, and the rest is provided
by conventional power plants (the diesel generators).

[MW]
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40
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20

10

0
0:00 4:00 8:00 12:00 16:00 20:00 0:00

Geothermal Hydro Diesel

Fig. 17.14 Illustration of the availability of geothermal and hydro power on a typical spring
day [1]
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Fig. 17.15 3-D plot of the coupling matrix of São Miguel for the decoupled real-power voltage
dynamic model

The diesel plants are the only fully controllable generators on the island. They
balance the supply and demand and regulate frequency. In order to model the
dynamics of the island, it is essential to pose the dynamics of each power plant first
by modeling its prime mover, governor control , excitation control, and synchronous
machine. The diesel plants have similar state-space models to the ones shown in
Eqs. (17.1) and (17.2). On the other hand, the geothermal and hydro plants have
no governor control and excitation control systems. Therefore, their mechanical
part contains of a rotating mass, and their electromagnetic subsystem includes a
synchronous machine. Equations (17.30) and (17.31) represent the general structure
of the state-space model of these plants:

dωG

dt
=

1
M

Pm − D
M

ωG − 1
M

PG (17.30)

de′q
dt

=
−1
Td

e′q +
−(xd − x′d)

Td
id (17.31)

On São Miguel, loads are modeled as noncontrollable elements, and their
dynamics are modeled as a disturbance to the system. The dynamics of the
generators are coupled via the distribution network. The strength of the coupling
between generators is calculated by the sensitivity of active and reactive power with
respect to rotor angle and voltage. This is similar to calculating, as shown in the
previous section, the Jacobian matrix of the island. Since the dynamics of loads are
neglected, a reduced Jacobian matrix needs to be calculated in order to obtain the
coupling between generators. Figure 17.15 illustrates the 3-D plot of the reduced
coupling matrix. The numerical values of the reduced coupling matrix are presented
in Table 17.6.
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As shown in Fig. 17.15, there is strong coupling between the diesel generators
and the geothermal plants. However, the hydro plants have very weak coupling
to either of these plants. Some hydro plants are strongly coupled to each other,
but some are weakly connected to the rest of the system. In general, the coupling
between generators is identified by the location of the generators and the electrical
distance between the plants. Those plants electrically close to each other are strongly
coupled, and those electrically far from each other are weakly coupled.

Figure 17.16 illustrates the schematic of the one-line diagram of São Miguel.
This model presents the reduced dynamic model of the island. The equivalent
admittance between the plants is equal to the coupling between them (Yeqi j =
K pi j). In Fig. 17.16, the equivalent admittance is colored in red for strong coupling
(K pi j > 100 ), green for moderate coupling (7 < K pi j < 100), and white for weak
coupling (K pi j < 7). In addition, the equivalent admittance is neglected for very
weak coupling (K pi j < 0.05).

Simulating the small-signal stability of the island demonstrates that due to weak
coupling between the hydro plants and the thermal plants (diesel/geothermal), a
slow mode of oscillation exists between the two clusters. Figures 17.17 and 17.18
demonstrate the variations in frequency and output power of the plants after a small
perturbation on the island.

17.4 Possible Solutions to Enhance the Stability of Electrical
Energy Systems in the Azores Archipelago

There are at least three major approaches to enhancing small-signal stability in the
Azores Archipelago. The first method implements high-gain control for the hydro
plant. Using high-gain control makes the plant faster and enables it to cancel out
the effects of strong coupling. This solution is only applicable to Flores since the
hydro plant on Flores is controllable. The main drawback of high-gain control is
fast valving, which results in wear-and-tear problems as well as higher operating
and maintenance costs for the plant [12].

Another approach to improving stability in the Azores Archipelago is to install
a power system stabilizer (PSS) on the controllable plants. A PSS applies enhanced
damping to the system by incorporating itself with the excitation system of the plant.
A PSS can cancel out the oscillations between the mechanical and electromagnetic
parts of the plant. In general, using a PSS to stabilize frequency oscillations can
eliminate the wear-and-tear problem and reduce the overall pollution caused by the
fast ramping of the diesel plants.

The third possible way to increase robustness is to implement fast flywheel
storage next to critical plants such as the hydro and wind plants. A flywheel
increases the damping of the plant and minimizes the effects of disturbances. In
[2] it is shown how installing a 350 kW/5 kWh flywheel can improve the dynamic
stability on Flores. As mentioned earlier, the oscillations between the mechanical
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Fig. 17.17 Deviations in the output power of the generators after the disturbance

Fig. 17.18 Deviations in the output power of the generators

and electromagnetic parts of the plants exaggerate frequency oscillations. Therefore,
the optimal control strategy for the control system of the flywheel is to compensate
for disturbances in both active and reactive power. Specific control designs are
introduced in Chaps. 15 and 16.
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17.5 Conclusions and Future Outlook

This chapter shows that the large penetration of renewable energy resources in
the Azores Archipelago may increase frequency oscillations and lead to small-
signal instability unless advanced control strategies such as high-gain control or
PSS are implemented. In addition, the findings illustrate that neglecting the strong
interactions between the electromagnetic and mechanical parts of the plants can lead
to an overly optimistic assessment of system stability. These interactions exaggerate
overall frequency oscillations. Therefore, if the governor control of the plants is
designed based on the decoupled model, the system may become very sensitive to
even small perturbations.

Our findings, furthermore, demonstrate that the result of small-signal stability
analysis is sensitive to the parameters of the system such as the inertia and the
damping of the plants. Thus, for accurate stability analysis it is essential to precisely
estimate the parameters of the system.

In general, it is not appropriate to use diesel generators to compensate for fast
frequency oscillations because this can increase CO2 and NOx emissions, wear and
tear on the governor control system, and operating and maintenance costs.

In order to ensure small-signal stability in the Azores Archipelago, three main
solutions are suggested for consideration. The first approach is based on designing
high-gain control for the hydro plants. The second approach implements a PSS on
controllable plants in order to increase the overall damping of the system. The last
solution is to install fast flywheel storage next to intermittent resources such as wind
plants to enhance the damping of the plants.
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appreciates the help of the EDA in providing technical data for the Azores Islands. Financial
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17.6 Appendix A

Appendix A presents equilibrium point, coupling matrix (K p), and eigenvalues of
Flores Island. In addition, the coupling matrix of São Miguel Island is presented in
Table 17.9.
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Table 17.1 Eigenvalues of the decoupled real-power voltage dynamic model

The whole system Diesel generator Wind plant Hydro generator

1.0e+02× −0.6845+31.3998i −3.4586 1.0e+02×
(−1.1772 −0.6845−31.3998i −0.8353 (−1.1772
−0.0068+0.3140i −0.3086 −0.0002+0.0174i
−0.0068−0.3140i −0.0000 −0.0002−0.0174i
−0.0346 −0.0133
−0.0002+0.0173i −0.0050)
−0.0002−0.0173i
−0.0133
−0.0084
−0.0030
−0.0050
0.0000)

Table 17.2 Eigenvalues of the coupled real-power voltage dynamic model

The whole system Diesel generator Wind plant Hydro generator

1.0e+02× −45.0995 −55.1861 1.0e+02×
(−0.1100+0.9898i −0.6271+31.4737i −1.4642+2.5122i (−1.1772
−0.1100−0.9898i −0.6271−31.4737i −1.4642−2.5122i −0.1100+0.9898i
−1.1772 −4.0688+17.2365i −1.1878 −0.1100−0.9898i
−0.6805 −4.0688−17.2365i −0.0809
−0.0063+0.3149i −0.3187 0.0014+0.0235i
−0.0063−0.3149i −0.0499 0.0014−0.0235i
−0.3955 0.0000 −0.0136
−0.0406+0.1722i −0.0050
−0.0406−0.1722i −0.0002
−0.0148+0.0251i
−0.0148−0.0251i
0.0002+0.0241i
0.0002−0.0241i
−0.0135
−0.0118
−0.0029+0.0047i
−0.0029−0.0047i
−0.0030
−0.0050
−0.0004
−0.0000
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Table 17.3 Coupling matrix
of Flores Island in the
decoupled scenario

Bus 1 Bus 2 Bus 3

Bus 1 13.9058 −1.4076 −12.4982
Bus 2 −1.3464 1.3464 0
Bus 3 −12.5017 0 12.5017

Table 17.4 J1 matrix of
Flores Island in the coupled
scenario

JBus1
1 JBus2

1 JBus3
1

JBus1
1 13.9058 −1.4076 −12.4982

JBus2
1 −1.3464 1.3464 0

JBus3
1 −12.5017 0 12.5017

Table 17.5 J2 matrix of
Flores Island in the coupled
scenario

JBus1
2 JBus2

2 JBus3
2

JBus1
2 15.0207 −2.4883 −12.5017

JBus2
2 −2.5220 2.4887 0

JBus3
2 −12.4982 0 12.5018

Table 17.6 J3 matrix of
Flores Island in the coupled
scenario

JBus1
3 JBus2

3 JBus3
3

JBus1
3 −14.9806 2.4788 12.5017

JBus2
3 2.5126 −2.5126 0

JBus3
3 12.4982 0 −12.4982

Table 17.7 J4 matrix of
Flores Island in the coupled
scenario

JBus1
4 JBus2

4 JBus3
4

JBus1
4 13.9056 −1.4073 −12.4982

JBus2
4 −1.3461 1.3461 0

JBus3
4 −12.5017 0 12.5017

Table 17.8 Power flow solution (equilibrium point) of Flores Island

Bus number in the Bus number in the V phase P gen Q gen
original system equivalent system Names [pu] [rad] [pu] [pu]

Bus 1 Bus 1 Diesel 1 0 0.06739 0.0747
Bus 19 Bus 2 Wind 1 -0.01225 0.06 0.05391
Bus 46 Bus 3 Hydro 1 0.00014 0.07 -0.06999

17.7 Appendix B

Electromechanical and electromagnetic parameters of the power plants in Flores
are presented in Tables 17.10–17.16. These parameters are estimated based on the
data-set provided by Professor Pecas Lopes from INESC Porto [14, 15] and based
on the models used in [16].The bases are Sbase= 10 MVA, Vbase= 0.4 kV, and
fbase= 50 Hz.
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Table 17.10 Electromechanical parameters of the diesel plant

Md (MJ/Hz) Dd (MW/Hz) T2 (s) K2 (pu) Rd (pu) Cd (pu)

0.216 0.005 0.6 40 0.03 1
KI (pu) Cc (pu)
10 1

Table 17.11
Electromechanical
parameters of the wind plant

Mw (MJ/Hz) Dw (MW/Hz) K pw (pu)

0.089 0.002 2

Table 17.12 Electromechanical parameters of the hydro plant

Mh (MJ/Hz) Dh (MW/Hz) Kq (pu) Kw (pu) Tf (s) rh (pu)

0.2749 0.02 2.78 1.52 −3.6 7
Tq (s) Tw (s) Te (s) Ts (s) rp (pu)
0.72 4 2 0.06 0.06

Table 17.13 Electromagnetic parameters of the diesel plant

Tad (s) T fd (s) Tdd (s) Kad (pu) Xdd (pu) X ′dd (pu)

0.2 0.65 2.35 25 8.1479 0.5917
Rd (pu) Ted (s) Ked (pu) Sed (pu)
0.001 0.6544 1 0.105

Table 17.14
Electromagnetic parameters
of the wind plant

Tdw (s) Xdw (pu) X ′dw (pu) Rw (pu)

0.661 28.161 3.052 0.002

Table 17.15 Electromagnetic parameters of the hydro plant

Tah (s) T fh (s) Tdh (s) Kah (pu) Xdh (pu) X ′dh (pu)

0.05 0.9 3.5 400 2.399 0.3609
Rh (pu) Teh (s) Keh (pu) Seh (pu)
0.001 0.9 1 0.035

Table 17.16 Characteristics of the plants in Flores Island

Node number in the
46-node system

Node number in the
reduced system Capacity (MW) Type of plant

1 1 2.5 Diesel
19 2 0.6 Wind
46 3 1.5 Hydro

17.8 Appendix C

Electromechanical parameters of the power plants in São Miguel are presented in
Appendix C (Tables 17.17–17.31). These parameters are estimated based on the
dataset provided by Professor Pedro Carvalho from IST Lisbon and based on the
models used in [14]. The bases are Sbase= 100 MVA and fbase= 50 Hz.
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Table 17.17 Electromechanical parameters of the first diesel plant

Md1 (MJ/Hz) Dd1 (MW/Hz) Td1 (s) Kd1 (pu) Rd1 (pu) Cd1 (pu)

5.853 0.704 1.07 40 0.03 1
KI1 (pu) Cc1 (pu)
10 1

Table 17.18 Electromechanical parameters of the second and third diesel plants

Md2 (MJ/Hz) Dd2 (MW/Hz) Td2 (s) Kd2 (pu) Rd2 (pu) Cd2 (pu)

6.473 0.352 1.25 40 0.03 1
KI2 (pu) Cc2 (pu)
10 1

Table 17.19 Electromechanical parameters
of the first geothermal plant

Mgeo1 (MJ/Hz) Dgeo1 (MW/Hz)

2.653 0.298

Table 17.20 Electromechanical parameters
of the second geothermal plant

Mgeo2 (MJ/Hz) Dgeo2 (MW/Hz)

2.331 0.262

Table 17.21
Electromechanical
parameters of Hydro 1

Mh1 (MJ/Hz) Dh1 (MW/Hz)

0.2038 0.0036

Table 17.22
Electromechanical
parameters of Hydro 2

Mh2 (MJ/Hz) Dh2 (MW/Hz)

0.162 0.0122

Table 17.23
Electromechanical
parameters of Hydro 3

Mh3 (MJ/Hz) Dh3 (MW/Hz)

0.1849 0.0033

Table 17.24
Electromechanical
parameters of Hydro 4

Mh4 (MJ/Hz) Dh4 (MW/Hz)

0.1424 0.0106

Table 17.25
Electromechanical
parameters of Hydro 5

Mh5 (MJ/Hz) Dh5 (MW/Hz)

0.1424 0.0106
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Table 17.26
Electromechanical
parameters of Hydro 6

Mh6 (MJ/Hz) Dh6 (MW/Hz)

0.1424 0.0106

Table 17.27
Electromechanical
parameters of Hydro 7

Mh7 (MJ/Hz) Dh7 (MW/Hz)

0.0285 0.00051

Table 17.28
Electromechanical
parameters of Hydro 8

Mh8 (MJ/Hz) Dh8 (MW/Hz)

0.1216 0.0022

Table 17.29
Electromechanical
parameters of Hydro 9

Mh9 (MJ/Hz) Dh9 (MW/Hz)

0.1217 0.0022

Table 17.30
Electromechanical
parameters of Hydro 10

Mh10 (MJ/Hz) Dh10 (MW/Hz)

0.1217 0.0022

Table 17.31 Characteristics of the plants in the electric power system of São Miguel

Node number in the
original system

Node number in the
reduced system Capacity (MW) Type of plant

932 1 32.688 Diesel 1 (slack)
933 2 32.688 Diesel 2
934 3 32.688 Diesel 3
963 4 14.8 Geothermal 1
1049 5 13 Geothermal 2
1666 6 0.67 Hydro 1
1669 7 0.8 Hydro 2
1672 8 0.608 Hydro 3
1675 9 0.553 Hydro 4
1676 10 0.553 Hydro 5
1677 11 0.553 Hydro 6
1680 12 0.094 Hydro 7
1683 13 0.4 Hydro 8
1686 14 0.4 Hydro 9
1687 15 0.4 Hydro 10
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Chapter 18
Toward Reconfigurable Smart Distribution
Systems for Differentiated Reliability of Service

Siripha Junlakarn and Marija Ilić

18.1 Introduction

Distribution systems are usually designed to be radial. In other words, a substation
usually has only one path by which it can deliver power to end users. Thus, when a
fault occurs around an upstream feeder, downstream end users behind the fault loca-
tion are left unsupplied. Reconfiguration of the system is one possible method that
could create a new route to supply power to the downstream customers. However,
a distribution system may need to be upgraded by adding more Normally-Closed
Switches (NCSs) and Normally-Open Switches (NOSs) to reconfigure the system
and to deliver power to the right users during faults. When NCSs and NOSs are
installed in the distribution system, they can improve system reliability by supplying
customers selectively from the Distributed Generations (DGs) located closer to the
end users. The process of reconfiguring the distribution system to connect DGs to
the selected customers is often referred to as islanding. While promising, islanding
operation has not been deployed widely since there are still many operational issues
which must be solved to ensure safety while performing system maintenance and/or
restoration in systems with DG. In [1], the authors suggest that the utility must
redesign its protection system, control of DGs, and post-islanding reconnection
schemes before implementing any islanding. Moreover, coordination of switching
in islanded mode requires suitable communication systems since state detection,
including both islanding and grid reconnection detections, requires transferring
information based on state of the distribution system. Many techniques of islanding
detection have been developed, and they are reviewed in [2]. Notably, protection
systems in distribution systems should change to adaptive protection and become
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capable of responding to a change in system conditions or requirement in real time
[3]. In this chapter we consider the decision tools for enhancing today’s distribution
systems with new NOSs and NCSs to enable implementation of differentiated
reliability of service. As an illustration, we show the results of simulating this
method using the distribution system on the island of Flores.

18.2 Illustration of the Need for Reconfiguration
in the Island of Flores

The distribution system on the island of Flores is connected to diesel, hydro, and
wind power plants. The capacities of the diesel, hydro, and wind power plants
are 2.5 MW, 1.5 MW, and 0.6 MW, respectively. The generation costs of diesel,
hydro, and wind are 180 $/MWh, 88 $/MWh, and 87 $/MWh, respectively. Here,
we consider the diesel and hydro power plants as central generation and the wind
power plant as DG.

The system loads are classified into two types: public and private. We assume
that public loads do not have critical reliability requirements and that they can
be interruptible. On the other hand, private loads are defined as priority loads
since they need high reliability and are willing to pay for it. These private loads
may have an agreement with the utility to be served when the faults occur in the
system; if the utility cannot live up to the agreement, it has to pay compensation.
This compensation is defined as an interruption cost. For illustration purposes,
the interruption cost for public and private loads is assumed to be $0 and $2,100
per kWh, respectively. The maximum system load is taken to be 1,978 kW, and the
minimum system load is 701 kW.

In the Flores distribution system, two NOSs already exist in the system. One is
located between buses 6 and 16 and the other between buses 25 and 40. We assume
that circuit breakers are already installed in the system as shown in Fig. 18.1. When
considering the topology of the system, we find that the critical fault area is the
feeder between the diesel power plant and bus 18. This feeder is the main path that
delivers power to most of the customers in the system.

When a fault occurs in this critical area, circuit breakers no. 4, 5, 7 and 8 will
open to isolate the area, and DG will supply customers in the area as shown in
Fig. 18.2. However, wind energy (DG) is unreliable, and its capacity is probably
not enough to supply all the loads in the entire feeder. To utilize wind energy, the
system needs to install NCSs to disconnect some of the loads and provide power to
only some selected customers, not all customers. This is done to keep generation and
load balanced in the feeder. Thus, installing more NCSs and NOSs would become
a means to make the reconfiguration effective and improve the reliability of the
system. In the next section, we show a possible method for selecting the optimal
locations of new NCS and NOS.
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Fig. 18.2 The configuration of the Flores distribution system when a fault occurs in a critical
fault area

18.3 A Possible Method for Selecting Best Locations of NCSs
and NOSs to Minimize the Interruption Cost
to Customers

In a distribution system, installing NOSs and NCSs can reduce the duration of
outages and the number of unsupplied loads during power outages. This can be
done by opening NCSs to isolate the fault area and by closing NOSs to create other
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routes that supply the healthy part of the system. In addition, if there is DG in the
distribution system, the islanding operation scheme can form when an outage occurs
at the main substations. Given the DG limited capacity, the distribution utility can
use these switches to reconfigure the system to supply priority customers. In other
words, these switches can be used to implement the differentiated reliability service
to different customers. These switches can be opened and closed to reconfigure the
system in order to supply customers who need critical service or who are willing
to pay more for high reliability during power outages. Thus, the optimal switch
placement can improve and differentiate the reliability services of a distribution
system.

The optimal switch placement is a nonlinear and discrete combinatorial prob-
lem. Heuristic algorithms and deterministic methods such as mixed-integer linear
programming can be used to solve this problem. Algorithms may consider both
technical and economic factors by minimizing the cost of investment and the cost of
customer service outages. Most of the proposed algorithms are currently designed
to improve the reliability of the system.

For example, C.H. Lin et al. propose the immune algorithm to find the optimal
locations of line switches that can provide cost-effectiveness to a distribution
automation system [4]. The algorithm attempts to minimize the total cost of cus-
tomer service outages and investments. The customer interruption cost is estimated
by statistically analyzing service outages, comprising the number of customers
unsupplied and the outage duration time for each fault contingency. Moreover, the
interruption costs are differentiated among the different types of customers.

A. Esteban and A. Alberto use fuzzy dynamic programming to solve a mul-
ticriteria optimization. The formulation takes technical, regulatory, and economic
aspects into account to determine the optimal number and placement of section-
alizing switches [5]. The algorithm tries to minimize the total cost of investment,
maintenance, and power interruption by including the requirement of reliability
indexes as constraints. The power interruption costs are classified by the different
types of customers.

A. Abiri-Jahromi et al. apply mixed-integer linear programming to determine
the location of sectionalizing by minimizing the costs of investment, installation,
annual operation and maintenance, and customer outage [6]. The cost of customer
outage is calculated from the system expected outage cost to customers (ECOST),
which is the reliability index typically used by distribution utilities. This index
considers all possible contingencies, the different customer types, and also their
damage functions.

Here, we propose an algorithm to find the optimal location to install NCSs and
NOSs. The algorithm attempts to minimize the investment cost of the switches
and the annual interruption cost when a power outage occurs. A greater number
of NCSs and NOSs installed in the system will increase the number of new
configurations for supplying power to customers. However, this also increases the
infrastructure investment cost. Thus, the decision is based on a trade-off between
the cost of investment and the number of new configurations for supplying power.
In the proposed method, we differentiate between the reliability choices to different
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customers. Private loads are customers who are willing to pay for being supplied
during power outages. If the utility cannot supply power to these customers,
the utility has to pay them compensation. This compensation is defined as the
interruption cost. The proposed algorithm is to minimize the infrastructure and
interruption cost as shown in (18.1). In other words, the algorithm finds the switch
locations that increase the number of alternative routes that can supply private loads
in order to decrease interruption cost.

minimize (No. of Switch×CSwitch)+ (yr×
No.ofLoadPoint

∑
i=2

Punsupplied,i× ICi)

subject to
No.ofLoadPoint

∑
i=2

Psupplied,i ≤ PDG

No.ofLoadPoint

∑
i=2

(Psupplied,i +Punsupplied,i)≤ TL.

(18.1)

where CSwitch is cost of switch, yr is the number of years for the investment plan,
Punsupplied,i is the unsupplied load (MW) at bus i, ICi is the interruption cost of load
at bus i, Psupplied,i is the supplied load at bus i, PDG is the capacity of a DG connected
to the network, and TL is the total load in the system. In addition, the location of
switch must ensure to provide routes that can supply power to loads.

To estimate the annual interruption cost, we assume that a fault can occur with
equal probability at 44 buses in one year. The algorithm finds the locations of
switches such that when a fault occurs at any bus in the system, these switches
can enable a configuration that preferentially distributes power to private loads.
However, after supplying the private loads, if the remaining power is enough to
supply other loads, those switches enable a configuration that also supplies other
loads. Thus, the annual interruption cost will be the sum of the interruption costs due
to possible single faults at any of the 44 buses. The interruption cost of private and
public loads is assumed to be $2,100 and $0 per kWh, respectively. The investment
plan for this analysis spans 10 years, and each NCS or NOS costs $5,000. We use a
genetic algorithm to search for the optimal switch placement.

To supply power to priority customers, the Flores distribution company should
install more NCSs and NOSs. The possible locations for installing NCSs and NOSs
in the system are shown in Fig. 18.3.

The resulting optimal number of switches to install in the system is 20,
and their optimal locations are shown in Fig. 18.4. For the original system, the
annual interruption cost is $67,709. However, if we install those 20 switches,
the interruption cost will significantly decrease to $16,585 per year, as shown in
Table 18.1. Even though the total cost of the original and modified system seems
not considerably different in the 10 years of investment plan, in a long run, the
interruption cost of modified system is lower than that of original system.
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Fig. 18.3 A single line diagram of the distribution on the island of Flores with the locations of
switches
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Table 18.1 Comparison of total costs between the original and modified system

Original system Modified system
No. of installed switches 0 20
Switch cost 0 20×$5,000 = $100,000
Total interruption cost $67,709/year × 10 year = $677,090 $16,585/year × 10 year = $165,850
Total cost $677,090 $265,850

After installing NCSs and NOSs at the optimal locations, the system operator
can operate the NCSs and NOSs to change the configuration of the system, if a fault
occurs in a critical fault area, so that power can be provided to priority customers.
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Fig. 18.5 The configuration of the Flores distribution system when the system has installed NCSs
and NOSs at optimal locations and a fault occurs in a critical area

As shown in Fig. 18.5, the system can close the NOSs connecting between buses 16
and 27, buses 25 and 40, and buses 29 and 45. This configuration can provide power
to most customers, except for the loads at buses 17 and 18, which are in the fault
area [7].

18.4 Reserve Requirement for Differentiated Reliability
of Service

In this section, we consider a possible method to reduce the reserve margin of
central generation. The reserve margin of generation is the additional capacity that
generation can provide when customers use more energy than the system normally
supplies. Also, a high reserve margin is required for the high reliability of service.
However, a high reserve margin of generation means that a utility needs to invest
more money to expand the generation capacity. One means to decrease the reserve
margin of central generation and improve the reliability of a system is to connect
DG to the system. Moreover, DGs cooperating with demand response (DR) and
reconfiguration can possibly improve the operation of the system.

To illustrate these new possibilities, we will show numerical examples of four
possible solutions:

I. Service provided by central generation
II. Service provided by central generation with DR

III. Service provided by central generation including DG
IV. Service provided by central generation including DG with DR
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In the Flores distribution system, the hydro and diesel power plants represent
central generation, and the wind power plant represents DG. Economic dispatch is
taken into account in this analyzes. For DR, we assume that public loads would
agree to reduce their normal power usage by up to 80 % of their peak usage when
a fault occurs and private loads would reduce their normal power usage by up to
20 %. Additionally, the solutions using DR, Solution III and Solution IV, will work
well with a reconfiguration of the system by using NCSs and NOSs.

For each solution, we analyze the cases when the system loses central generation
units as the following: (1) the system losing hydro generation, (2) the system losing
diesel generation, and (3) the system losing both hydro and diesel generations.

18.4.1 Estimation of Reserve Margin Requirements

The generation on the island of Flores comes mainly from the diesel power plant.
This power plant is reliable and has sufficient capacity to supply all loads on
the island. However, the cost of generation is very high. On the island, the other
generation options are hydro and wind. Although their generation costs are lower
than that of diesel, they tend not to be reliable since they are intermittent energy
resources. As a simplification, we will assume that all power plants are available
whenever the system operator calls for power.

In Solutions I and II, when the system loses both central generation units, all
customers are not supplied. On the other hand, in Solutions III and IV, DG can
solve this problem. DG is used to supply power to customers when the system loses
both central generation units. The amount of DG capacity depends on how much
customers value reliability and are willing to pay for it. Furthermore, it should be
noted that the generation cost of DG is lower than that of central generation. Thus,
to meet the possible lowest generation cost, DG will be chosen to produce power
during normal conditions.

Solution I: Service Provided by Central Generation with No DR
When the system loses one of its central generation units, another one should have
a sufficient reserve margin to supply all customers in the system. Moreover, the
generation unit that is still online should have enough capacity to cover the peak
load.

According to the 2008 Flores load profile, the peak load was 1.978 MW. Thus,
the hydro and diesel generation units should each have a capacity of at least
1.978 MW to cover the peak load and supply all customers when the other unit goes
down. Without increasing capacity of central generation units, loss of one central
generation unit, either the hydro or diesel plant, would interrupt electricity service
to some customers.

Solution II: Service Provided by Central Generation with DR
Under normal conditions, the total capacity of both central generation units should
at least cover the peak load of 1.978 MW. Both central generation units should have
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Table 18.2 Summary of generation capacity, based on the load profile of the Flores distribution
system, 2008, and assuming that all power plants will be available all the time

Solution
Capacity of hydro
generation 

Capacity of diesel
generation

Capacity of wind
generation

Total capacity on
Island

I 1.978 MW 1.978 MW − 3.956 MW
II 0.989 MW 0.989 MW − 1.978 MW
III − − 1.978 MW 1.978 MW
IV 0.557 MW 0.557 MW 0.864 MW 1.978 MW

the same capacity of 0.989 MW so that when the system loses one of the central
generation units, the other one is still able to supply half the customers. Moreover,
according to the definition of DR, when a fault occurs in the system, all customers
are required to reduce their energy usage. According to the 2008 Flores load profile,
the peak load when applying DR was 0.864 MW, which is within the capacity of
each central generation unit under normal conditions. Thus, the 0.989 MW capacity
of each central generation unit would be sufficient to supply all customers under
normal conditions and when the system loses one of the central generation units.

Solution III: Service Provided by Central Generation Including DG
In Solution III, if the system does not use DR and all customers want to be supplied,
the capacity of DG will theoretically be an amount that covers the peak load of
1.978 MW. This will make the DG capacity sufficient to supply all customers in the
system when the system loses both central generation units. In addition, since the
generation cost of DG is lower than that of central generation, DG can be utilized to
supply all customers under normal conditions without relying on central generation.
However, this may not be practical since there are many other factors that are
not taken into account, such as the uncertainty or reliability of DG in generating
electricity.

Solution IV: Service Provided by Central Generation Including DG with DR
In Solution IV, if the system uses DR, the capacity of DG will decrease to 0.864 MW,
which is the peak load when applying DR. In this solution, the system still relies on
central generation since the system requires some power from central generation to
supply customers under normal conditions. The capacity of each central generation
unit is 0.557 MW.

The generation capacity, including the reserve margin for the 4 solutions, is
summarized in Table 18.2. Solution IV—DGs collaborating with DR and recon-
figuration—can decrease the reserve margin of central generation, and this solution
seems to be the most practical. However, these numerical examples are based on
the assumption that all power plants will be available all the time, which is not true
in reality, of course. Also, it should be noted that these numbers are the minimum
capacity of each generation and that they cover the peak load only in the year 2008.
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2000

1800

1600

1400

1200

600
0 1000 2000 3000 4000 5000

Hours
6000 7000 8000 9000

800

1000

S
ys

te
m

 L
oa

d 
[k

w
]

Fig. 18.6 The configuration of the Flores distribution system when the system has installed NCSs
and NOSs at optimal locations and a fault occurs in a critical area

18.4.2 Effect of DG Cost on Reserve Requirements

The strategy of the estimation of reserve margin will change if the generation cost
of DG is higher than that of central generation. In the event that this happens, DG
will be utilized to supply customers only during normal condition peak loads. Thus,
the capacity of the central generation units should be estimated first. Based on the
2008 data for Flores, the total energy produced on the island was 11.6 GWh, and the
peak load was 1.978 MW. Thus, we can calculate the load factor of the system as
follows:

LoadFactor =
TotalEnergy1year(MWh)
PeakLoad(MW)× 8,760h

=
11,600MWh

1.978MW× 8,760h
= 0.67 (18.2)

We assume that the central generation should supply 90 % of overall loads.
Thus, from the load duration curve in Fig. 18.6, the total capacity of both central
generation units should cover the average power, 1.324 MW, while the capacity of
DG will be 0.654 MW in order to supply peak load. However, the system may need
to increase the capacity of DG to 0.864 MW, which is the peak load when applying
DR, so that DG will have enough capacity to supply customers when both central
generation units are disconnected from the system.
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18.4.3 Impact of Intermittent Energy Resources on Generation
and Energy Not Supplied Cost

In the estimation of the reserve margin, we consider that all power plants will be
available all the time. However, in practice, hydro and wind are intermittent energy
resources. Therefore, in this section, we will take the uncertainty of hydro and
wind energy into account and study the impact of intermittent energy resources
on generation and ENS cost. In this section, the capacities of the diesel, hydro,
and wind power plants are 2.5 MW, 1.5 MW, and 0.6 MW, respectively. Moreover,
according to the data for Flores in 2008, the hydro and wind power plants supplied
high energy in winter and low energy in summer. Thus, the data from January 16 is
chosen to represent when hydro and wind power plants supply high energy, while
the data from July 15 is selected to represent when hydro and wind plants supply
low energy. However, the hydro and wind power plants did not reach their maximum
capacities for generating electricity. The costs of generation for diesel, hydro, and
wind are $180, $88, and $87, respectively. In addition, the interruption costs for
public and private loads are $0 and $2,100 per kW, respectively.

The generation cost and ENS cost are estimated over a period of 30 days for
each case, and they are also estimated when the prices of wind are $87 and $0. In
addition, this can be done as in the previous section, creating four possible solutions:
I. central generation, II. central generation with DR, III. central generation including
DG, and IV. central generation including DG with DR. The hydro and diesel
power plants represent central generation, and the wind power plant represents
DG. The solutions serving DR—Solution III and Solution IV—are implemented
by reconfiguring NCSs and NOSs. The results are shown in Tables 18.3 and 18.4.

Table 18.3 shows the generation cost, ENS cost, and the amount of ENS of
Solutions I–IV when the hydro and wind power plants supply “high” energy. When
the hydro power plant is disconnected from the system, all loads will be supplied by
the diesel power plant, which has sufficient capacity. For this case, the generation
costs of Solutions II–IV are better than that of Solution I. However, when the diesel
power plant is disconnected from the system, the capacity of the hydro power plant
is not enough to supply all customers, as shown in Solution I. Connecting DG to
the system can increase the power to supply more loads, as shown in Solution
III. Although the ENS of Solution III decreases from the ENS of Solution I, the
generation cost of Solution III is higher than that of Solution I because there is the
additional generation cost from DG if the wind price is $87. Solution III would
have been better off if the wind price had been $0. For Solutions II and IV, both
solutions are better than Solution I in terms of generation cost, ENS cost, and ENS.
This is the result of applying DR. Applying DR reduces the power usage of all
customers and then distributes the difference to customers who are willing to pay
for it. In Solution IV, there is no ENS cost and ENS since applying DR decreases
the power usage of all customers to within the capacity of the hydro and wind power
plants. This enables all customers to have energy to use during the disconnection of
the diesel power plant. In the case that both the hydro and diesel power plants are
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Table 18.3 Hydro and wind power plants supply “high” energy
Solution I Solution II Solution III Solution IV

Disconnected 
generation Generation cost Generation cost

Generation cost Generation cost
Wind
price

Wind 
price

Wind 
price

Wind 
price

$87 $0 $87 $0
Hydro $183,891 $80,292 $163,221 $143,884 $59,622 $40,286
Diesel $42,507 $39,254 $61,843 $42,507 $39,032 $19,695
Both $0 $0 $19,337 $0 $19,337 $0

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

Hydro - - - - - - - -
Diesel $10 M 538,588 $0 18,757 $0 316,328 - -
Both $846 M 1 M $677 M 446,069 $379 M 799,357 $210 M 223,809

Table 18.4 Hydro and wind power plants supply “low” energy
Solution I Solution II Solution III Solution IV

Disconnected 
generation Generation cost Generation cost

Generation cost Generation cost
Wind 
price

Wind 
price

Wind 
price

Wind 
price

$87 $0 $87 $0
Hydro $187,002 $81,651 $186,293 $185,629 $80,941 $80,278
Diesel $11,323 $11,323 $11,986 $11,323 $11,986 $11,323
Both $0 $0 $663 $0 $663 $0

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

ENS 
cost

ENS 
(kWh)

Hydro - - - - - - - -
Diesel $590 M 910,229 $418,133 324,945 $574 M 902,604 $402 M 317,320
Both $860 M 1 M $688 M 453,615 $844 M 1 M $672 M 445,990

disconnected from the system, we estimate the generation cost, ENS cost, and ENS
when the system loses both power plants for 30 days. Installing DG and applying
DR can help the system save a huge amount of money. Also, DG and DR improve
the reliability of the system.

Table 18.4 shows the generation cost, ENS cost, and the amount of ENS of
Solutions I–IV when the hydro and wind power plants supply “low” energy. When
the hydro power plant is disconnected from the system, all loads will be supplied by
the diesel power plant. This is similar to the result when the hydro and wind power
plants supply “high” energy. The diesel power plant has a capacity large enough to
supply all loads when the system loses the hydro power plant. However, when the
diesel power plant is disconnected from the system, the power from the hydro power
plant or even from the wind power plant is very small and will not be enough to
supply all customers. In this case, the ENS cost and ENS are quite high. Applying
DR would help defray the ENS cost and ENS, but not by much; the numbers are
almost the same.

In the case that the hydro and diesel power plants are both disconnected from
the system, connecting DG and applying DR will not help to supply many more
customers. Scarce energy from the hydro and wind power plants would resemble
when the system loses both the hydro and wind generation units.
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18.5 Required Reconfiguration to Enable Differentiated
Reliability

In the previous section, we estimate the possible reserve margin that would be
sufficient to supply all customers when losing central generation units. Also,
we mentioned that the use of DR should be coordinated with reconfiguring the
system by using NCSs and NOSs. The reconfiguration is necessary in enabling
differentiated reliability since it provides new routes to delivery power to end users.
Importantly, if the capacity of generation is not adequate, the reconfiguration could
disconnect some loads so that the limit power will be sufficient to supply to priority
customers.

In this section, we will explain how the reconfiguration of the system can improve
reliability service and how it enables differentiated reliability when the capacity of
generation is not enough to all customers. Reconfiguration of the system allows
customers to have more choices for their power service. Moreover, with advances in
control, communication, and sensing technology, it has become possible to provide
customers with differentiated levels of reliability. One way to provide differentiated
levels of reliability is a deployment of NCSs and NOSs. During power outages, a
utility can use NCSs and NOSs to reconfigure the networks in order to find a new
route to supply priority customers.

To provide differentiated reliability options for customers, a utility may offer the
customers different reliability insurance options [8]. The utility guarantees that these
customers will be supplied according to the insurance option each one chooses. If
the distribution utility is unable to supply the power laid out in the agreement to
these customers due to an outage or an operational mistake, the distribution utility
will compensate these customers. This compensation is defined as the customer’s
“interruption cost.”

This methodology is based on optimal system reconfiguration that minimizes
the interruption cost when guaranteeing a supply of power to priority customers as
shown in (18.3). If the power supply is sufficient for all customers, the approach
will find a configuration of distribution networks such that as many customers as
possible are supplied. However, if the power supply is insufficient for all customers,
the approach will seek a configuration that distributes power to priority customers.
A genetic algorithm is developed to search for the optimal configuration for any
given fault and DG capacity. The algorithm seeks to minimize the following
objective function [7]:

minimize
No.ofLoadPoint

∑
i=2

Punsupplied,i × ICi

subject to
No.ofLoadPoint

∑
i=2

Psupplied,i ≤ PDG

No.ofLoadPoint

∑
i=2

(Psupplied,i +Punsupplied,i)≤ TL. (18.3)
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Fig. 18.7 Optimal configuration for winter load profile

where Punsupplied,i is the unsupplied load (in MW) at bus i, Psupplied,i is the supplied
load at bus i, PDG is the capacity of a DG connected to the network, and TL is the
total load in the system. In addition, the optimal configuration must be a feasible
configuration of distribution networks.

Examples of optimal configuration when the system loses both central generation
units are shown in Figs. 18.7 and 18.8. The solid line is the route by which DG will
deliver power to customers. The filled spots mean that the switch will be closed,
and the empty spots mean that the switch will be open. In these examples, we give
the capacity of DG as 0.7 MW. We select load profiles in both winter and summer
to show the results. The total load during the winter is 1.688 MW, and the total
load during the summer is 1.482 MW. The optimal configuration for the winter
load profile is shown in Fig. 18.7. The total supplied load is 0.555 MW and the
interruption cost for one hour is $525. For the summer load profile, the optimal
configuration is shown in Fig. 18.8. The total supplied load is 0.598 MW, and the
interruption cost for one hour is $495.

18.6 Conclusion

In this chapter we have considered the possibility of remote topology reconfig-
uration in a distribution system to ensure required reliability. First, for a given
distribution system, an optimal placement of NOSs and NCSs is selected so that
the cost of these switches combined with the infrastructure cost paid to customers
by the utility is minimized. Next, given this new ability to reconfigure the system,
several ways of providing reliable service are considered. In the island of Flores, it
was found that without using wind power plant (DG) or increasing capacity of the
hydro plant, loss of central diesel power plant would interrupt electricity service to
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some customers. However, a systematic reconfiguration of distribution system—to
enable the use of DG and/or DR on the island—would facilitate differentiation for
reliability of service. In particular, the private customers (including critical services,
like hospitals, senior citizens) would be served by delivering power from a DG first.
The remaining available power would be served to the other users.

In closing, we illustrate proof-of-concept implementation of differentiated re-
liability of service by means of remote distribution system reconfiguration. It is
critical to have an off-line optimization algorithm for selecting the customers to be
connected when central generation is lost.

References

1. R. Caldon, A. Stocco, R. Turri, Feasibility of adaptive intentional islanding operation of electric
utility system with distributed generation. Elec. Power Syst. Res. 78(12), 2017–2023 (2008)

2. P. Mahat, Z. Chen, B. Bak-Jensen, Review on islanding operation of distribution system with
distributed generation, in Proceedings of 2011 Power and Energy Society General Meeting,
2011 IEEE 24–29 July pp. 1–8

3. Y. Zhang, M. Prica, M.Ilic, O.K. Tonguz, Toward smarter current relays for power grids, in
Proceedings of 2006 Power Engineering Society General Meeting,2006 IEEE

4. C.H. Lin, C.S. Chen, H.J. Chuang et al., Optimal switching placement for customer interruption
cost minimization, in Proceedings of 2006 Power Engineering Society General Meeting, 2006
IEEE

5. A. Esteban, A. Alberto, Optimal selection and allocation of sectionalizers in distribution
systems using fuzzy dynamic programming. Energ. Power Eng. 2(4), 283–290 (2010)

6. A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania, M. Mosleh, Optimized sectionalizing
switch placement strategy in distribution systems. IEEE Trans. Power Delivery 27(1), 362–
370 (2012)

7. S. Junlakarn, M. Ilic, Distribution system reliability options and minimizing utility liability.
IEEE Transa. Smart Grid (in the process of submission)

8. E. Fumagalli, J.W. Black, I. Vogelsang, M. Ilic, Quality of service provision in electric power
distribution systems through reliability insurance. IEEE Trans. Power Syst. 19(3), 1286–1293
(2004)



Chapter 19
Transient Stabilization in Systems
with Wind Power

Milos Cvetković, Kevin Bachovchin, and Marija Ilić

Potential of Nonlinear Fast
Power-Electronically-Switched Storage

19.1 Transient Stabilization Problems in Systems with High
Wind Penetration

The transient stability of today’s electric power systems is an important and
highly complex problem. With an increasing amount of power being supplied by
unpredictable renewable energy sources, it has become extremely difficult to predict
and prevent outages. In the case of a small power system, such as on Flores, high
wind penetration can cause serious stability problems. The response of the system
to large wind disturbances is governed by nonlinear dynamics. Therefore, it is very
important to use adequate nonlinear control in order to ensure reliability under such
circumstances.

Furthermore, efforts to increase the efficiency of the grid by operating closer to
stability boundaries can cause the grid response to be unreliable in the case of unpre-
dicted events. Building additional infrastructure, which only provides support in the
rare cases of equipment failure and faults, is expensive. Also, operating the system
suboptimally in order to guarantee stability or satisfy regulatory requirements is
inefficient. An inexpensive and efficient solution would be to use existing power-
electronically switched devices controlled by more advanced transient stabilizing
algorithms. In case this is still insufficient, new fast controllers of storage devices
and flywheels should be considered prior to building new transmission lines.
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Large disturbances and high energy faults are considered in transient stability
studies. The system is said to be transiently stable if all its generators can preserve
synchronism for a predefined set of disturbances. In other words, the mechanical
frequencies of all the generators in a power system have to stay close to each other.
Critical clearing time is defined as the longest duration of the fault in which the
system can preserve stability.

Power electronic devices have great potential for stabilizing the system response
to fast, unpredictable, high energy level disturbances. This chapter gives an overview
of possible control designs for stabilization using power electronics and highlights
their pros and cons. Flexible AC Transmission System (FACTS) devices are used
to show the potential of power-electronically switched devices. These devices are
located in the transmission part of the system. They are primarily used to redirect
the flows of power if they are connected in series or to provide voltage support to
the system if they are connected in shunt.

The main part of a power-electronically switched device is the reactive element:
the capacitor and/or inductor. A connection with the grid is made through a set of
interconnected thyristor switches. The fundamental characteristic of such a device is
its ability to actively change its own equivalent impedance as seen from the network
side. It is able to do so very quickly because the switching speed is in the range
of a few kHz. The control logic will drive such a device to behave either as a
current/voltage source or as a variable impedance. Regardless of the way the control
is designed, the device is able to react in a fast and timely manner to any unpredicted
major disturbance. For this reason, FACTS devices can improve reliability.

Flywheel energy storage systems are also considered for stabilization purposes.
A flywheel energy storage system stores mechanical energy by accelerating a rotor.
The flywheel accelerates to store energy and decelerates to supply energy to the
grid. The direction of power is controlled using thyristor switches.

A fundamental difference between flywheels and FACTS is that the former stores
active power while the latter stores reactive power. However, as will be shown later
in this chapter, both can be used to stabilize the system in the event of disturbances.
Flywheels are more appropriate for lengthy disturbances because they have a higher
energy capacity than FACTS devices.

Sensing and communication play a significant role in achieving desirable
control performance on these fast time scales. The controller needs to be updated
frequently with accurate information. Phasor measurement units (PMUs) show a
fast and reliable way to acquire needed information. Of course, locally implemented
control has an advantage over global control. However, designing transient stability
control for FACTS devices and flywheel energy storage systems using only local
measurements is an interesting and challenging problem, which will be explained in
subsequent sections.
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19.2 The Flores Power System and High Energy
Disturbances

19.2.1 Flores

The island of Flores is taken for demonstration purposes. The three-bus-reduced
topology network of Flores introduced in Chaps. 15 and 16 is again used in this
chapter. The same loading of the system is used as in Chap. 4. For completeness, the
parameters of Flores are listed again in this section.

The forty-seven bus Flores system has been reduced to a three-bus system by
using the standard network topology reduction method. The resulting three-bus
equivalent is shown in Fig. 19.1. The only three preserved buses are the generator
buses, bus 1 with a diesel generator, bus 2 with a wind generator, and bus 3 with a
hydro generator.

The parameters of the three-bus system are given in per units in Table 19.1.
The base values are Sb = 10[MVA] and Vb = 15[kV]. The loads are represented
as constant impedance loads.

19.2.2 Large Disturbances

Two types of large disturbances are considered in this chapter: high-energy wind
perturbation and equipment failure. A high-energy wind perturbation can be either
a short-term high-magnitude wind power perturbation or a long-term low-magnitude
wind power perturbation. A failure of the equipment is simulated as a short circuit

Fig. 19.1 Three-bus Flores
equivalent system

Table 19.1 Three-bus
system parameters

T. line. From 3 to 1 From 1 to 2

R[pu] 0.04 0.3071
L[pu] 0.04 0.1695
Cch[pu] 0.0080 0.00446

Load Bus 1 Bus 2
R[pu] 7.8749 12.4954
L[pu] 2.3049 3.6506
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Fig. 19.2 Wind disturbances simulated in the Flores example

on either the hydro or the diesel power plant bus. Figures 19.2 and 19.3 show two
wind power disturbances and two equipment failures.

All of the disturbances are large enough such that control actions have to
be designed accordingly in order to preserve system stability. The small signal
perturbation control and linearization methods described in Chaps. 15 and 16
are ineffective in stabilizing the system response to these large disturbances, so
nonlinear modeling and nonlinear control techniques must be used.

19.3 Possible Ways of Meeting Transient Stability
Requirements in Systems with High Wind Penetration

In today’s systems, control of FACTS devices is implemented locally by linear
controllers using linearized models [3] and is primarily used for voltage control and
power transfer enhancement. This control is effective for the stabilization of small
disturbances, but it generally fails to transiently stabilize large disturbances. The
inaccuracy of the linearized model is unacceptable when the system is perturbed far
away from its equilibrium.

No real-world attempts have been made yet to deploy a FACTS nonlinear
controller for transient stabilization (or at least the authors of this chapter are
not aware of any). The reason for this has been the lack of accurate sensing and
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Fig. 19.3 Equipment failure simulated in the Flores example

communication so far. Therefore, the few theoretical nonlinear control designs that
exist have never been actually implemented. Today, when technical achievements
make transient stability control possible, some of the existing nonlinear control
methods can be compared to the newly established ones.

One of the most interesting nonlinear controller designs, from a decade back,
is presented in [1]. A Control Lyapunov Function (CLF) for the stabilization of
high-magnitude oscillations is proposed. A controller designed according to this
method relies on the minimization of an energy function. However, the controller
uses nominal network topology and does not incorporate any information about the
disturbance. Therefore, the region of attraction of the energy function is relatively
small, compared to the energy level of large disturbances, and the controller does
not perform transient stabilization well. A useful property of this energy function is
that it allows decentralized control implementation.

A qualitatively new approach to stabilizing a power system using the energy
function is introduced by the authors of this chapter in [2] and further explored in
[4, 5]. An energy-based analysis shown in these earlier works leads to a FACTS
controller which can perform well when dealing with the problem of transient
stability. The fundamental difference between this approach and the one proposed
in [2] is the control objective. In this case, the controller is not trying to reduce the
entire increment of the system energy caused by the large disturbance. Instead, it is
shifting the energy increment from some devices to others. Less strict requirements
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on control will result in an increase of the region of attraction. Therefore, the
controller will be able to keep synchronism between generators for a longer period
of time.

On the other hand, a side effect of the control is a very rapid change of the
states that are not directly controlled. In particular, the energy increment is moved
from generators to FACTS devices and is temporarily stored there. Therefore, the
currents in FACTS’ inductors and voltages across FACTS’ capacitors will increase
rapidly. FACTS devices usually do not have any dissipative elements, and therefore,
they cannot consume energy and cancel out a disturbance entirely. Eventually, their
energy accumulation reaches their limits. Therefore, there exists an upper bound to
the size of the disturbance FACTS devices are able to handle.

19.4 Transient Stabilization Using FACTS

This section explains how FACTS devices can be used in the stabilization of large
disturbances on short time scales.

19.4.1 FACTS as Low Energy Storage Devices

An analysis of the fundamental physical processes driving the energy accumulation
of FACTS is presented in this section. The goal is to show that FACTS can be used
to store the energy changes caused by disturbances for short intervals.

This goal requires a precise and multi-temporal dynamic model of FACTS. Time-
varying phasors are used to capture the desired dynamics.

19.4.1.1 Time-Varying Phasor Model of the Static Var Compensator

Time-varying phasors can be used to model and capture transients of wires and
transmission lines as well as the internal capacitors and inductors of FACTS
devices. Time-varying phasors assume a constant frequency of the network, while
the magnitude and the phase angle of the phasor vary with time. The time scale
separation between the slowly changing network frequency and the fast voltage and
current magnitude fluctuations allows us to remove the carrier and to consider only
the dynamics of the phasor on short time scales. A formal derivation of the time-
varying phasor dynamic models of different power-electronically switched devices
is presented in [8] and [9]. The appendix shows the derivation of the time-varying
phasor dynamic model of an SVC.

A shunt FACTS device, specifically a Static Var Compensator (SVC), is used
in this chapter to show the potential of power-electronically switched devices to
control large disturbances. Its structure is shown in Fig. 19.4 and its natural dynamic
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Fig. 19.4 Static Var
Compensator (SVC)

model in the time domain is given in (19.1). Variable α is the switching variable
and the control input. It is equal to 1(0) if the switch is closed(open). Every value
in between 1 and 0 can be considered based on the time interval during which the
switch remains closed with respect to one full cycle of the electrical frequency:

v̇(t) =
1
C
(itl(t)− i(t))

i̇(t) =
α(t)

L
v(t) (19.1)

The time-varying phasor model of the same device is given in (19.2). The phasors
are given in Cartesian coordinates, and this coordinate system is referred to as
the network reference frame. Letters D and Q are used to mark direct (real) and
quadrature (imaginary) components of the phasor in the network reference frame:

V̇D(t) =
1
C
(ItlD(t)− ID(t))+ωVQ(t)

V̇Q(t) =
1
C
(ItlQ(t)− IQ(t))−ωVD(t)

İD(t) =
α(t)

L
VD(t)+ωIQ(t)

İQ(t) =
α(t)

L
VQ(t)−ωID(t) (19.2)

19.4.1.2 SVC Energy Capacity

The energy accumulation potential of the SVC from Fig. 19.4 is illustrated using an
SVC with the parameters given per unit in Table 19.2. The base values are Sb =
10[MVA] and Vb = 15[kV]. Switching signal α remains constant throughout this
section and its value is α = 0.5.
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Table 19.2 SVC parameters SVC

C[pu] 0.3
L[pu] 2.5

Table 19.3 Equilibrium of
the SVC for given simulations

Direct Quadrature

V0 [pu] 0.9676 −0.2339
I0[pu] −0.4677 −1.9353
Itl [pu] 0.2341 0.9677
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Fig. 19.5 (a) Constant current and (b) constant power disturbance (plotted with respect to Sb =
1[MVA] and Vb = 15[kV])

The behavior of the SVC is investigated in two cases. In the first case, the
SVC is modeled without dynamics. The capacitor and the inductor are represented
as constant impedances, and currents and voltages change instantaneously. In the
second case, the time-varying phasor dynamic model of the SVC is used, as
expressed in (19.2).

At the beginning of simulations, the SVC is in equilibrium. The equilibrium
values are given in Table 19.3.

The disturbance is modeled as the step change in the current of the transmission
system, as shown in Fig. 19.5a. This is a constant current disturbance. The new
current value is Idist

tlD = 0.52719[pu] and Idist
tlQ = −0.12742[pu], and the disturbance

lasts from t = 0.1[s] to t = 0.45[s]. Figures 19.6a and 19.7a show the response of the
SVC energy and its first derivative, respectively. The energy and its first derivative
are calculated using the following equations:

νsvc =
1
2

C(Ṽ 2
D + Ṽ 2

Q)+
1
2

L(Ĩ2
D + Ĩ2

Q)

ν̇svc = psvc =C(ṼDV̇D + ṼQV̇Q)+L(ĨDİD + ĨQİQ) (19.3)
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(plotted with respect to Sb = 1[MVA] and Vb = 15[kV])

where the tilde symbol represents the deviation of the variable from its equilibrium,
for example, ṼD =VD −VD0.

If the SVC is modeled without dynamics, ν̇svc = 0 and νsvc will have a sequence
of discrete values. A different input current during the disturbance will mean that
there is a different equilibrium and the energy of the SVC will be different. Indeed,
the SVC energy is equal to zero if the disturbance is not present and higher than
zero if the disturbance is present.

Figures 19.6a and 19.7a show that the behavior of the energy and its first
derivative is much richer if the SVC is modeled using time-varying phasors.

The second important type of disturbance is a constant power disturbance. The
real power input to the SVC is changed from zero to P = 5.4[MW], while the
reactive power input remains the same, as shown in Fig. 19.5b. The duration of
the disturbance is the same as the duration of the constant current disturbance.
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A constant power disturbance will make the currents and voltages of the SVC
vary in time even if the system is not modeled using the time-varying phasor
dynamic model. The reason for this is simple. The LC circuit behaves like an
oscillator, exchanging the additional energy between the inductor and the capacitor
even after the disturbance has been cleared. Therefore, no equilibrium exists and a
model which does not capture dynamics cannot be used. Figures 19.6b and 19.7b
show the responses of the SVC energy and its first derivative.

A constant power disturbance can be both a real and a reactive power disturbance.
Figures 19.8–19.10 show the behavior of the SVC energy and its first derivative
for three different values of reactive power disturbance. One thing is clear: the
reactive power disturbance does not affect the amount of energy accumulated in
the SVC. However, there is no clear connection between the size of the reactive
power disturbance and the oscillations in energy, or else that connection is highly
nonlinear.
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The constant real power disturbance P = 5.4[MW] (Q = Q0) is used to show how
the power of the disturbance and the size of the SVC affect the energy accumulation.
The energy increment is shown in Fig. 19.11a. The corresponding SVC voltage is
given in Fig. 19.12a. In the second scenario, the real power is increased from zero to
10.8[MW] for the same time period, and the energy response is shown in Fig. 19.11b
while the corresponding SVC voltage is given in Fig. 19.12b. In the third case,
the SVC inductor is changed to L = 2[pu] (the disturbance is 5.4[MW]), and the
responses are shown in the same figures under (c).

The first thing one notices is that the SVC is actually able to store real power.
However, the states of the SVC cannot reach an equilibrium. In other words, the
SVC stores energy only in a limit cycle mode. This also is the main limitation of
using the SVC as a storage device. The other power system states will have to cycle
if the SVC is to be used as a storage device, and this is why its long-term usage may
cause fluctuations in the network. However, on shorter time scales, in the case of
large disturbances, these fluctuations might be desirable if they oppose instabilities.

The second important phenomenon is that if the magnitude of the power
increases, the magnitudes of the accumulated energy and voltage also increase, but
the waveforms remain the same. Therefore, the limit on how much energy the SVC
can accumulate will be determined only by the characteristics of the material the
SVC is made of. Thyristor switches are the most sensitive in this case and the entire
equipment rating is based on their rating.

On the other hand, the size of the inductor and the capacitor will determine the
shape of the waveform. In other words, it will determine the limit cycle and the
trajectory of the SVC states. This trajectory is of high importance in determining
how much a FACTS device can improve stability. However, the best possible choice
for the size of the SVC inductor and capacitor depends on other system constants
and cannot be found if the time constants of other devices are not considered.
Therefore, it is a problem of high complexity and will be addressed in future work.
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19.4.2 Nonlinear Multi-temporal Dynamic Model
of a Power System

The fast dynamics of other devices (transmission lines, generator stator windings,
constant impedance loads) has to be captured if the effects of FACTS are to be seen
on the entire system. Time-varying phasors are used as a modeling tool for this
purpose.

Time-varying phasors have rarely been deployed in the assessment of overall
system stability. There are a few reasons for this. First, they increase the complexity
of the dynamic model by adding dynamic states which would otherwise be
considered algebraic. Second, the controllers for transient stabilization used in
the past, such as the excitation system on synchronous generators, were not able
to respond quickly enough to the error given by this model. Third, no real-time
synchronized measurements on the fast time scales of kHZ were available in the
past. Today, the latter two technical issues have been overcome with the use of
PMU sensing and power electronic controllers. The first issue can be resolved by
using systematic model reduction once the controller has been designed. At any
rate, the complexity of the model is an acceptable price for ensuring the stability of
the power grid on all time scales and against very fast and large disturbances .

Time-varying phasors can benefit system modeling in another way. If the trans-
mission grid is modeled using this concept, then the system model has an ordinary
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differential equation (ODE) form, regardless of the load model one chooses. Using
the traditional approach to modeling the transmission system involves algebraic
equations, and the entire system model therefore has a differential algebraic
equation (DAE) form. It is a well known fact that the variety of methodologies
used to design a controller for a nonlinear ODE system model is much greater than
for a DAE model. Therefore, the ODE model with time-varying phasors has an
advantage over a DAE model when it comes to designing a controller for predictable
performance.

Finally, time-varying phasors ensure the preservation of the system topology.
Each of the time-varying phasor dynamic equations describes the dynamics of a
certain physical device. Consequently, the need for network topology reduction
disappears.

Incorporating the wind power plant model, taken from [6], with the time-varying
phasor models of FACTS and wires yields (19.4):

ψ̇di = −idi rsi − vdi +ωsψqi

ψ̇qi = −iqi rsi − vqi −ωsψdi

ψ̇Di = −iDi rDi +(ωs −ωi)ψQi
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ψ̇Qi = −iQi rQi − (ωs −ωi)ψDi

δ̇i = ωi −ωs

ω̇i =
1
Ji
(Tmi −Tei)

Tei = ψqi idi −ψdi iqi[
ψdi ψqi ψDi ψQi

]T
= Li ∗

[
idi iqi iDi iQi

]T
(19.4)

The synchronous machine model, taken from [7], is expressed in (19.5):

ψ̇di = −idirsi − vdi +ωsψqi

ψ̇qi = −iqirsi − vqi −ωsψdi

ψ̇ fi = −i fir fi + v fi

ψ̇Di = −iDirDi

ψ̇Qi = −iQirQi

δ̇i = ωi −ωs

ω̇i =
1
Ji
(Tmi −Tei)

Tei = ψqi idi −ψdi iqi[
ψdi ψqi ψ fi ψDi ψQi

]T
= Li ∗

[
idi iqi i fi iDi iQi

]T
(19.5)

Li is the machine inductance matrix relating the flux linkages and the currents in the
coils.

Rotor position in both generator models is described with respect to a reference
angle δs. Angular frequency ωs is the reference angular frequency. The angular
frequency reference is chosen as the center of inertia reference. This concept is
well known and can be found in the literature [14]. According to this concept,
reference frequency can be found as the weighted sum of mechanical frequencies of
all generators, (19.6):

ωs =
∑i Jiωi

∑i Ji
(19.6)

The ODE model of the interconnected system will not be presented here due to
limited space. The derivation of the dynamic model using time-varying phasors and
the model itself can be found in [2]. The equilibrium of the full dynamic model of
the Flores power system is given in the appendix.
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19.4.3 Energy-Based Transient Stabilization Control
Using FACTS

The impact of FACTS on transient stability in response to high-energy fluctuations
is only short term because of the devices’ inability to dissipate energy. A FACTS
device functions well as a short-term storage device which can accumulate energy
for up to a few seconds, depending on its size, the size of the disturbance, the
nominal conditions, and the inertia of the generators. During that period the
inductors and capacitors of the FACTS device are being constantly filled with
the energy created by the disturbance. Once the disturbance ends, the stored energy
is returned back to the system in a gradual decrease of the FACTS energy level.

The control law which implements this action is based on a representation of the
physical energy inside the system. A physical energy function is used to describe
the energy level of all devices.

In the case of a physical state power system model, the energy function can be
found by summing the energy expressions of all devices. The energy of a capacitor
and the energy of an inductor are given using the following two expressions:

νC =
1
2

C(Ṽ 2
D + Ṽ 2

Q)

νL =
1
2

L(Ĩ2
D + Ĩ2

Q) (19.7)

The energy of a rotating machine is composed of the energy of rotation and the
electromagnetic energy stored in the stator and rotor windings. The number of
windings is nL, while the generator inertia is denoted by J. The energy is given
by the following expression:

νmach =
1
2

Jω̃2 +∑
nL

νL (19.8)

The energy function of all major devices in a power system can be represented
using just these few energy expressions. Machines, lumped parameter represented
transmission lines, FACTS, and loads represented as machines or impedances have
similar energy expressions. These are also the devices considered in this study so
far. The system energy function ν(x) is

ν(x) = ∑
i

νCi(ṼiD,ṼiQ)+∑
i

νLi(ĨiD, ĨiQ)+∑
i

νroti(ω̃i,δi)

= νem(x)+νrot(x) (19.9)

Here νem(x) represents the electromagnetic energy stored in inductors and
capacitor, while νrot(x) represents the energy of the moving rotor.
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Lyapunov theory offers steps for designing a controller that will minimize the
energy of a disturbance. According to this theory, a candidate for the energy function
of a closed-loop system ẋ = f (x) is a function ν(x) > 0 for which ∀x ∈ M except
in finite number of points x0 in which ν(x) = 0 where ‖x− x0‖ ≤ M. If it holds that
ν̇(x)< 0 except in x0 in which ν̇(x) = 0 the function ν(x) is an energy function.

Points x0 do not necessarily have to be the equilibrium points. They can be
a trajectory the system is trying to follow. This is the case with our proposed
transient stabilizing controller. As already noted, FACTS devices cannot dissipate
energy, and therefore the objective of its transient stabilizing controller should be
to redirect energy so that the generators stay in synchronism as long as possible.
This implies reshaping the energy function ν(x), keeping in mind that the function
should still satisfy all conditions. The best way to achieve this is by controlling the
first derivative of ν(x).

Observe that the energy function has two parts, one belonging to the electromag-
netic energy of the inductors and capacitors νem and the second belonging to the
energy of rotation νrot. The first part is controlled by FACTS, and its value should
increase while FACTS accumulate the energy created by the disturbance.

The first derivative of the energy function is calculated as

ν̇(x) = ν̇em(x)+ ν̇rot(x)

= ν̇diss(x)+ ν̇exch(x)+ ν̇acc(x) (19.10)

Each of the terms in (19.10) has a functional meaning. The derivative of the energy
of dissipation ν̇diss(x) shows the power of dissipation with respect to the equilibrium,
and it is equal to

ν̇diss(x) = −∑
i

Rtli(ItliD ĨtliD + ItliQ ĨtliQ)

−∑
i

rsi(idi ĩdi + iqi ĩqi)

−∑
i

rri(iDi ĩDi + iQi ĩQi)

−∑
i

r fi iFi ĩFi

−∑
i

Diω̃i
2 (19.11)

The exchange of energy between components is captured by the exchanged power
ν̇exch(x), and it is equal to

ν̇exch(x) = −∑
i

v fi ĩFi

−∑
i

ViD(ĨGiD +∑
j

sgn(d)Ĩtli jD − ĨLiD)
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−∑
i

ViQ(ĨGiQ +∑
j

sgn(d)Ĩtli jQ − ĨLiQ)

+∑
i

ṼiD(IGiD +∑
j

sgn(d)Itli jD − ILiD)

+∑
i

ṼiQ(IGiQ +∑
j

sgn(d)Itli jQ − ILiQ) (19.12)

where d = 1 if the direction of the current is into the bus and d =−1 if the direction
of the current is out of the bus. The accumulation of energy inside the elements with
memory is represented with ν̇acc(x), and it is equal to

ν̇acc(x) = ∑
i

Ltli(ĨtliD ItliQ − ĨtliQItliD)

+∑
i

Cbusi(ṼiDViQ − ṼiQViD)

+∑
i

Lsvci(ĨsvciD IsvciQ − ĨsvciQ IsvciD)

+∑
i

Csvci(ṼsvciDVsvciQ − ṼsvciQVsvciD)

+∑
i
(ψqi ĩdi −ψdi ĩqi) (19.13)

The goal of the control is to make sure that the power accumulated in these
elements matches the power disturbances. If this happens, the entire disturbance
energy will be accumulated in the electromagnetic elements and the rotational
energy of the generators will be unaffected. Therefore, the control error signal e(t)
can be written as

e(t) = ν̇ ref(t)− ν̇acc(t) = Pref(t)− ν̇acc(t) (19.14)

For tracking purposes, the reference is taken to be the additional power created
by the disturbance. In the case of wind fluctuations it is the difference between the
expected and the actual wind power. In the case of a fault it is the power imbalance
created by the fault.

The energy function control in its fundamental form requires a full state
feedback. However, after analyzing the energy level of the different devices, it is
noticed that the energy accumulated in the transmission lines is low. Therefore,
the number of states required in the control algorithm can be reduced only to that
number of states accumulating high amounts of energy. If this simplification is
made, then the control law becomes the output feedback.



508 M. Cvetković et al.

19.4.4 Communication Requirements and Control Limitations
of FACTS

Based on the above proposed controller design, it is plausible to use FACTS
devices to transiently stabilize system response to large disturbances. However, the
implementation of this controller must be carefully considered, as discussed below.

19.4.4.1 Communication Requirements

The electromagnetic energy is mostly accumulated inside FACTS devices and large
generator windings. Therefore, information about accumulated energy of these
devices has to be transferred to the controllers on FACTS. As already stated, PMUs
provide sensing fast enough to capture the relevant deviations of the generator states.
The communication channels have to be fast enough in delivering this information to
the controllers. A small analysis on how a delay in communication affects controller
performance is given in [4].

It is desirable, in fast control applications such as this one, that the controllers be
decentralized. Because they are based on the energy accumulation, the controllers
do not need to communicate with each other. However, the energy accumulated in
the generators has to be measured or estimated accurately at the location of the
controller in order to make the controller completely decentralized. This is a topic
that will be explored in future work.

19.4.4.2 Fundamental Limitations of FACTS Controllers

FACTS do not have any resistive or dissipative elements. Therefore, their effect in
response to disturbances can only be temporary. This is the first and most important
limitation.

The second limitation is the amount of energy FACTS devices are able to
accumulate. This property correlates directly with the time interval during which
the control is effective. The more energy FACTS is able to accumulate, the longer it
will preserve system stability. The limitation on the energy accumulation of FACTS
is determined by the maximum rating of the capacitor voltage and inductor current.
Exact rating specifications remain an open question for future work.

19.4.5 Energy-Based Control of SVC in the Flores
Power System

The SVC from Table 19.2 is placed on the wind generator bus in order to stabilize
the system. With the controller on the SVC, the response of the system to the
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Fig. 19.13 Mechanical frequency of all generators in the system during a short-term high-
magnitude wind perturbation: (a) dashed (without control on the SVC), (b) solid (with control
on the SVC)

disturbances given in Figs. 19.2 and 19.3 is shown in the figures of this section.
The control on the generator side is not the topic of this chapter, and therefore, the
mechanical power inputs to all generators are taken as constants. The mechanical
power of the wind turbine is an exception because it changes as the disturbance
changes. The voltage on the hydro and diesel generators is controlled using the
standard IEEE type 1 exciter with standard parameters. The exciter model is given
in the Appendix.

19.4.5.1 SVC-Based Stabilization of High-Energy Wind Disturbances

Short-term high-magnitude wind power perturbation is simulated using a tenfold
increase in the mechanical power input on the wind generator. Figure 19.13 shows
a comparison of the mechanical frequencies of generators (a) without control on
the SVC and (b) with control on the SVC. The uncontrolled case is unstable while
control on the SVC improves the stability of the system.

It is interesting to show how the voltage magnitude of the three buses changes as
a consequence of the control actions. Figure 19.14a shows high voltage spikes on
the time scales which are not visible without time-varying phasors. The same fast
voltage reaction to the SVC control actions helps improve the system stability. This
observation can also be made by looking at the electrical power output of the three
generators, shown in Fig. 19.14b.
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The short-term high-magnitude wind power disturbance is further simulated to
show the comparison of the control laws introduced in Sect. 19.3. Figure 19.15
shows both the total energy and the total electromagnetic energy accumulated in
the system when different control laws are used. The total energy ν(x) is calculated
using (19.9), while the total electromagnetic energy νem(x) is equal to the sum
of the energies of all the electromagnetic elements in the system, including the
transmission lines, FACTS, loads, and generator windings.

The difference between the accumulated electromagnetic energy, shown in
Fig. 19.15b, in the case when the system is controlled by energy-based control,
as opposed to the system being under other controls, is obvious. The accumulated
electromagnetic energy is much higher in the first case. This is a consequence of the
control law that tries to increase this energy, while at the same time reducing the
energy accumulated in rotation.
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Fig. 19.16 Mechanical frequency of all generators in the system during a long-term low-
magnitude wind perturbation: (a) dashed (without control on the SVC), (b) solid (with control
on the SVC)

The total system energy, shown in Fig. 19.15a, is lower in the case with an
energy-based controller. The reason for this is the following. A high accumulation
of electromagnetic energy means that high current and voltages exist. The higher
these are, the bigger the dissipation is inside the resistive elements. Therefore, the
total accumulated energy quickly decreases.

Long-term low-magnitude wind power perturbation is simulated using a two
and a half-fold increase in the mechanical power input on the wind generator. The
system slowly becomes unstable during this disturbance. Figure 19.16 shows the
comparison of the mechanical frequencies of generators (a) without control on the
SVC and (b) with control on the SVC. The uncontrolled case is clearly unstable.
The frequency of all the generators is stabilized by using the proposed controller.

19.4.5.2 SVC-Based Stabilization of Large Disturbances Caused by Faults

The first major equipment failure is simulated as a short circuit on the hydro
generator bus. Figure 19.17 shows the comparison of the mechanical frequencies
of generators (a) without control on the SVC and (b) with control on the SVC. In
both cases the frequency returns to equilibrium. By looking only at the frequency, it
is not easy to conclude anything about the stability. Therefore, Fig. 19.18 shows how
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the rotor angles behave during and after the fault. There is a very large difference
between the uncontrolled and the controlled case. Clearly, the uncontrolled case is
unstable.

Another interesting case can be considered. It is the one in which the transmission
line between the diesel and the wind bus is removed, physically dividing the power
system into two systems. The critical frequency belongs to the diesel generator
in that case, and the controller on the SVC is helpless to prevent the instability.
However, it can shape the wind frequency response before the system reaches its
critical clearing time, as shown in Fig. 19.19.

Based on the above simulations, it can be concluded that FACTS devices can
stabilize the system in response to high energy disturbances during time intervals
when more conventional SVC control cannot. The size of the disturbance the
FACTS devices are able to deal with will depend on their accumulation capacity.

19.5 Transient Stabilization Using Flywheels

Flywheel energy storage systems have several advantages compared to FACTS
devices. Flywheels’ ability to permanently store mechanical energy can help in
system stabilization during disturbances. This section will first introduce the concept
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Fig. 19.20 Interface between the power grid and the flywheel

of sliding mode control applied to flywheels. Then using flywheels for stabilization
in response to wind disturbances on the Flores system is analyzed. Stabilization
using flywheels will first be analyzed by treating the wind generator as a pure
disturbance and then by including the full dynamics of the entire system.

19.5.1 Introduction to Flywheel Energy Storage Systems

Flywheels are one of many mechanisms that can be used for storing energy. A
flywheel energy storage system stores mechanical energy by accelerating a rotor,
called the flywheel, to a very high speed. A flywheel energy storage system consists
of the flywheel itself and the electric machine that the flywheel is connected
to. When used in power system applications, high-speed power electronics will
interface between the electric machine and the power grid as shown by Fig. 19.20.
When the flywheel stores energy from the power grid, the electric machine acts
as a motor, and the flywheel accelerates. Conversely when the flywheel supplies
energy to the power grid, the electric machine acts as a generator and the flywheel
decelerates. Flywheels can be used in many power systems applications, such as
frequency stabilization, uninterruptible power supply, and reactive power control.

The amount of energy stored in the flywheel at any time is given by

W = 0.5Jω2 (19.15)

where ω is the rotational velocity and J is the moment of inertia of the flywheel.
For a simple flywheel of radius r whose mass M is concentrated at the rim, the

moment of inertia is simply

J = Mr2 (19.16)

When the flywheel is rotating, the tensile stress at the rim is

σ = ρω2r2 (19.17)

where ρ is the mass density of the flywheel.
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The amount of energy a flywheel can store is determined by the maximum tensile
stress the flywheel can withstand, which depends on the specific material used. The
maximum energy the flywheel can store can be expressed as

Wmax =
0.5Mσmax

ρ
(19.18)

Due to this energy limitation, often an array of flywheels is used as opposed to
one single flywheel.

It is of interest to compare flywheels to other storage devices. Other storage
alternatives include chemical batteries, pumped hydro, thermal energy storage,
hydrogen, and compressed air energy storage. One drawback to flywheels is that
they typically have lower energy capacities than other storage alternatives as shown
in Table 19.4 [12]. Also as Fig. 19.21 shows, flywheels are more costly than other
storage alternatives for supplying a specific amount of power for a lengthy amount
of time. For these reasons, other storage alternatives are more suitable than flywheels
for large-scale power applications.

For small-scale applications, such as frequency regulation, flywheels have many
benefits. Flywheels have an efficiency of around 85%, which is higher than for other
storage alternatives in Table 19.4 [12]. This efficiency is measured by the percentage
of the initial energy that is recovered when discharging immediately after charging.
The main sources of loss are from windage, which can be reduced by running the
flywheel in a vacuum, and from the bearings that support the flywheel, which can
be reduced by using magnetic instead of mechanical bearings.
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Table 19.4 Comparison of energy storage alternatives [12]

Type of
storage

Efficiency
(%)

Reasonable
energy
capacity (J)

Construction
time (years)

Lifetime
(years)

Number
of cycles

Reverse
time (s)

Flywheel 85 109 3 20 Unlimited 0.1
Batteries 80 Not constrained 2 10 500 0.01
Pumped hydro 80 1013 8 50 Unlimited 10
Thermal 75 1011 12 30 Unlimited Tens of

minutes
Hydrogen 50 1012 3 25 Unlimited 360

Flywheels are very well suited for applications in which the power demand
changes quickly because flywheels have an extremely small reverse time, which
allows power to be delivered or consumed practically on demand. Among the energy
storage types in Table 19.4, only chemical batteries have a reverse time as small as
flywheels. Advantages of flywheels compared to chemical batteries are that they
have twice the lifespan and they are not limited to a certain number of charge-
discharge cycles. Finally flywheels are also environmentally benign.

19.5.2 Concept of Sliding Mode Control Applied to a Flywheel

Sliding mode control is a nonlinear variable structure control method where the
feedback control law is not a continuous function of time, but rather switches from
one continuous structure to another. Sliding mode control can be used to control the
amount of electric torque supplied to a flywheel.

If the flywheel is connected to a permanent magnet synchronous machine
(PMSM), the dynamic equations governing the flywheel energy storage system
are [10]

Te = J
dω f

dt
+Dω f (19.19)

vqs = rsiqs +L
diqs

dt
+ω f Lids +ω f λm (19.20)

vds = rsids +L
dids

dt
−ω f Liqs (19.21)

Te =
N
2

λmiqs (19.22)

The constant D is the damping coefficient of the flywheel and the electric
machine associated with the rotational movement. Because flywheel energy storage
systems typically operate in a vacuum, the damping coefficient is negligible, and it
is assumed in this chapter that D is zero.
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Table 19.5 Flywheel energy
storage system
parameters [10]

Moment of inertia J 0.63 kg m2

Number of poles N 2
Back-EMF constant λm 5.95 V/krpm
Winding resistance rs 8.17 mΩ
Winding inductance L 91.3 μH

When Te is positive, the PMSM acts as a motor and the flywheel will accelerate.
Conversely, when Te is negative, the PMSM acts as a generator and the flywheel
will decelerate.

The mechanical power Pmech delivered to the flywheel is

Pmech = Teω f (19.23)

The flywheel energy storage system model can be represented in state-space form
as follows:

ẋ = Ax+Bu

y = Cx (19.24)

where

x = [iqs ids ω f ]
T

u = [vqs vds]
T

y = [iqs ids ω f ]
T (19.25)

A =

⎡
⎢⎢⎢⎢⎣

−rs

L
−ω f −ids − λm

L
ω f −−rs

L
iqs

Pλm

2J
0 0

⎤
⎥⎥⎥⎥⎦ (19.26)

B =

⎡
⎣

1
L 0
0 1

L
0 0

⎤
⎦ (19.27)

C =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (19.28)

The parameters used are specified in Table 19.5.
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Fig. 19.22 Sliding mode control, iqs response

In order to control the electric torque supplied by the PMSM, it is necessary to
be able to control iqs to a desired value. Sliding mode control can be used to drive
iqs and ids to the desired values by a fast switching of vqs and vds. [11]

Let i∗qs and i∗ds denote the desired values of iqs and ids. The switching function is
then given by

sds = i∗ds − ids (19.29)

sqs = i∗qs − iqs (19.30)

The voltage inputs are then controlled by the following nonlinear control law:

vds =V0 ∗ sign{sds} (19.31)

vqs =V0 ∗ sign{sqs} (19.32)

where V0 is a constant DC voltage. Thyristor switching in a bidirectional converter
can be implemented in order to switch the values of vqs and vds almost instanta-
neously.

For an example of sliding mode control , let V0 = 20 V, i∗ds = 0 A, and i∗qs is −5 A
from 0 < t < 0.5−4 s, 5 A from 0.5−4 < t < 1.5−4 s, −5 A from 1.5−4 < t < 2.5−4 s,
and 5 A from 2.5−4 < t < 3.0−4 s. Initial conditions of all state variables are zero.
Figures 19.22, 19.23, 19.24, and 19.25 show the time response of iqs, ids, ω f , and
Te, respectively.
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Fig. 19.23 Sliding mode control, ids response

Fig. 19.24 Sliding mode control, ω response
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Fig. 19.25 Sliding mode control, electric torque response

As can be seen from the figures the desired values i∗qs and i∗ds are reached
extremely quickly (on the order of 10−4 s) with sliding mode control . The response
of the mechanical variable, ω f , is much slower than the electrical variables. When
iqs is positive, ω f increases while when iqs is negative, ω f decreases.

It should be noted that in order for sqs to decay to zero, sqs and the time derivative
of sqs must have opposite signs. Analogously, in order for sds to decay to zero, sds

and the time derivative of sds must have opposite signs. Mathematically in order for
these two conditions to be met, the DC voltage V0 must be sufficiency large such that

V0 > |Li∗ds

dt
+Rids−Lω f iqs| (19.33)

V0 > |Li∗qs

dt
+Riqs+Lω f ids +λ0ω f | (19.34)

19.5.3 Sliding Mode Control Representing the Wind Generator
as a Disturbance

We will now consider the Flores island system shown in Fig. 19.1. We will consider
the two types of wind disturbance shown in Fig. 19.2. In this subsection, we will
represent the wind generator as a pure disturbance while in the next subsection, we
will include the full dynamics of the entire system.



19 Transient Stabilization in Systems with Wind Power 521

Fig. 19.26 Speed of the flywheel in response to a short wind disturbance

When treating the wind generator as a pure disturbance, the amount of power
that should be supplied to the flywheel is determined by the deviation in the power
output of the wind generator. If the power output of the wind generator is too high,
then power should be supplied to the flywheel and the flywheel should accelerate.
Alternatively, if the power output of the wind generator is too low, then power should
be taken from the flywheel and the flywheel should decelerate.

For the short-term high-magnitude wind disturbance shown in Fig. 19.2, ΔPwind

is 5.4 per unit, or 5.4 MW from t = 0.1 s to t = 0.45 s. For the long-term high-
magnitude wind disturbance, ΔPwind is 0.9 per unit, or 0.9 MW after t = 0.1 s. The
flywheel should be controlled to absorb the wind disturbance power:

Pfly = ΔPwind (19.35)

The desired electric torque supplied to the flywheel is controlled by the sliding
mode control. The torque will have to vary following the variations in speed of the
flywheel in order to control the power supplied to the flywheel:

T ∗
e =

ΔPwind

ω f
(19.36)

Using this control, Figs. 19.26–19.29 show the response of the flywheel in
response to the short disturbance. The responses are shown in both regular units
and in the per unit system.

It can be seen that the flywheel stores energy and increases speed during the
wind disturbance between t = 0.1 s and t = 0.45 s. Since the flywheel’s speed
is increasing, the electric torque decreases in order to maintain constant power
delivery to the flywheel. By t = 0.45 s, the flywheel’s speed has increased to
around 2,500 rad/s. After t = 0.45 s, since the wind disturbance is over, the flywheel
maintains a constant speed, and neither receives nor delivers power.
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Fig. 19.27 Electric torque exerted on the flywheel in response to a short wind disturbance

Fig. 19.28 Power delivered to the flywheel in response to a short wind disturbance

Fig. 19.29 Energy stored in the flywheel in response to short wind disturbance
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Fig. 19.30 Speed of the flywheel in response to a long wind disturbance

Fig. 19.31 Electric torque exerted on the flywheel in response to a long wind disturbance

Figures 19.30–19.33 show the response of the flywheel in response to the long
disturbance. The responses are shown in both regular units and in the per unit
system.

It can be seen that the flywheel is constantly accelerating after t = 0.1 s. Since
the flywheel’s speed is increasing, the electric torque decreases in order to maintain
constant power delivery to the flywheel. By t = 3 s, the flywheel’s speed has
increased to around 2,900 rad/s.

There is, however, a limit to the length of a wind disturbance the flywheel can
stabilize for, which is based on the maximum amount of energy the flywheel can
store. Typically, the maximum amount of energy that the flywheel energy storage
systems can store is around 109 J [12]. Therefore, for the long wind disturbance
magnitude considered in this chapter, the flywheel could absorb power for around
1,000 s before the energy limit is reached.
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Fig. 19.32 Power delivered to the flywheel in response to a long wind disturbance

Fig. 19.33 Energy stored in the flywheel in response to a long wind disturbance

19.5.4 Sliding Mode Control Using the Full Dynamic Model
of the Interconnected System

It is now of interest to combine the flywheel with the rest of the Flores power grid.
Figure 19.34 illustrates this combination.

In the new power electronics design interfacing between the flywheel and the
wind generator, there are four switches and two capacitors [13]. The four switches
act as a bidirectional switch that controls the polarity of the small capacitor. The
large capacitor is included in the design to ensure that the voltage across the wind
generator remains close to constant even as the polarity of the small capacitor
changes.

The four switches open and close at a very high frequency relative to the rest of
the power grid. Therefore, two time scales will be used: t, which is the fast time
scale, and τ , which is the slow time scale.
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Fig. 19.34 Full diagram connecting the flywheel to Flores

When switches S1A and S1B are closed, the differential equation governing the
voltage across the small capacitor is

i3 =Cs
dv+cs

dt
(19.37)

Alternatively, when switches S2A and S2B are closed, the differential equation
governing the voltage across the small capacitor is

i3 =−Cs
dv−cs

dt
(19.38)

Using state-space averaging, the voltage across the small capacitor can be
expressed in the slow time scale τ as follows:

v̄cs(τ) =
v+cst

++ v−cst
−

t++ t−
(19.39)

For the flywheel, the direct component of the current through the stator windings
ids is assumed to be zero for simplification. Therefore, the flywheel differential
equations become

Te = J
dω f

dτ
(19.40)

vqs = rsiqs +L
diqs

dt
+ω f λm (19.41)

Notice that the differential equation governing the electrical variable iqs is in the
fast time scale t, while the differential equation governing the mechanical variable
is in the slow time scale τ .

There are several coupling equations connecting the state variables of the
flywheel and the power electronics with the state variables of the rest of the system.
The coupling equations are in the slow time scale τ .

The voltage across the wind generator, by Kirchoff’s voltage law, is

vw(τ) = v̄cs(τ)+ vcl(τ) (19.42)
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Fig. 19.35 Frequency of (a) the hydro, diesel, and wind generators, and (b) the flywheel, in the
Flores system

Additionally, by Kirchoff’s current law,

i1(τ)+ iw(τ) = i2(τ) (19.43)

i2(τ) = i3(τ)+ iqs(τ) (19.44)

The rest of the power system is modeled as explained in Sect. 19.4.2.
The first disturbance in Fig. 19.2, the short-term high perturbation of wind, is

used in the following simulations. Figure 19.35a shows the frequencies of all three
generators when the system is controlled using a flywheel. In order to make the
nominal frequency of the flywheel 1 pu, the parameter λm is tuned to be 0.9644 pu.
As can be noticed, the frequency of the wind generator does not drop. The reason for
this is that the control logic behind the flywheel is based on stabilization, while the
control logic of the FACTS devices is regulation based. In the case of the flywheel,
the reference for the control is zero current flowing into the flywheel (i∗qs = 0 A).
Therefore, the flywheel does not try to accumulate the energy of the disturbance as
the FACTS devices did.

Figure 19.35b shows the frequency of the flywheel. Figure 19.36 shows the
response of the voltage of the three buses and the electrical power output of the
three generators.

19.6 Conclusions

This chapter has shown the potential of power-electronically switched devices to
stabilize a power system in response to disturbances. Since FACTS devices cannot
permanently store energy, they can only stabilize the system for a limited amount of
time. If longer-term stabilization is necessary, then flywheels are a good alternative.
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Fig. 19.36 (a) Voltage and (b) electrical power of the hydro, diesel, and wind generators in the
Flores system controlled by flywheel

An open question remains concerning a systematic method for determining the
specifications of the inductors and capacitors in FACTS devices needed to tran-
siently stabilize a large disturbance of a given type. A fundamental understanding
of the effects of very fast switching in the nonlinear dynamics of future electric
energy systems will be addressed in future work.
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Grid Research Center for their financial support which made this work possible.

19.7 Appendix A

19.7.1 Derivation of SVC Time Varying Phasor Model

The derivation presented here is similar to the more strict and formal derivation
of time varying phasor dynamic models introduced in [8] and [9]. SVC dynamic
equations in time domain are given below while the SVC structure is shown in
Fig. 19.4.

v̇(t) =
1
C
(itl(t)− i(t))

i̇(t) =
α(t)

L
v(t)

The equations can be rewritten using time varying phasor representation for each
variable.
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d
dt
(V (t)cos(ωt +θ (t))) =

1
C
[Itl(t)cos(ωt +ψtl(t))

− I(t)cos(ωt +ψ(t))]

d
dt
(I(t)cos(ωt +ψ(t))) =

α(t)
L

V (t)cos(ωt +θ (t))

After the trigonometric identities are introduced, carrier functions sin(ωt) and
cos(ωt) can be removed by grouping the terms next to each of them. Dependence
on time has been omitted for easier notation.

d
dt
(V cosθ ) =

[
1
C
(Itl cosψtl − I cosψ)+ωV sinθ

]

d
dt
(V sinθ ) =

[
1
C
(Itl sinψtl − I sinψ)−ωV cosθ

]

d
dt
(I cosψ) =

[α
L
(V cosθ )+ωI sinψ

]

d
dt
(I sinψ) =

[α
L
(V sinθ )−ωI cosψ

]

The final form of the time varying phasor SVC dynamic model in Cartesian
coordinates becomes

V̇D =
1
C
(ItlD − ID)+ωVQ

V̇Q =
1
C

(
ItlQ − IQ

)
−ωVD

İD =
α
L

VD +ωIQ

İQ =
α
L

VQ −ωID

where subscripts D and Q indicate direct (real) and quadrature (imaginary) compo-
nent of a phasor, respectively.

19.7.2 Flores System Equilibrium

All equilibrium values are given with respect to base power base Sb = 10[MVA].
The equilibrium values of the generator, shown in Table 19.6, are given using
Vb = 0.4[kV]. Stator current Igs is given in the network reference frame, while rotor
damper Igr and field winding IgF currents are given in the rotor reference frame. The
equilibrium values of the transmission system, shown in Table 19.7, are given using
Vb = 15[kV].
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Table 19.6 Equilibrium of
the generators of Flores
power system

Generator Hydro Diesel Wind

IgsD [PU] 0.06643 0.06219 0.06916
IgsQ [PU] −0.00321 −0.02082 0.03340
IgrD [PU] 0 0 0.05735
IgrQ [PU] 0 0 0.02705
IgF [PU] −0.48134 −0.15584 NA
δ [rad] −0.1270 0.2466 −2.0342
ω[PU] 1 1 1.004
Vr [PU] 1.1258 1.4855 NA
E f d [PU] 0.9753 1.2397 NA
Vf [PU] 0 0 NA

Table 19.7 Equilibrium of
the transmission system of
Flores power system

Component Real−D Imag−Q

VH [PU] 0.9724 −0.2201
VD[PU] 0.9698 −0.2227
VW [PU] 0.9676 −0.2339
ItlHD [PU] 0.06548 −0.00716
ItlDW [PU] 0.02056 0.02528
IlD [PU] 0.10580 −0.05924
IlW [PU] 0.06631 −0.03809
Isvc[PU] −0.04677 −0.19353

19.7.3 Type 1 IEEE Exciter

Equations of the type 1 IEEE exciter used in this chapter are

V̇r =− 1
TA

Vr +
KA

TA

(
V ref −V −Vf

)

Ė f d =
1

TE

(
Vr − (KE + SE)E f d

)

V̇f =− 1
TF

Vf +
KF

TF
Ė f d

where Vr, E f d and Vf are the states of the exciter, V terminal voltage and V ref =
1[PU] the terminal voltage reference. The parameters of both exciters in Flores (on
hydro and diesel generators) are the same, as shown in Table 19.8.

19.7.4 Dynamic Parameters of Generators

Generator data is given in Table 19.9 with respect to base power base Sb = 10[MVA]
and base voltage Vb = 0.4[kV].
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Table 19.8 Parameters of
exciters

Parameter Value

KA[PU] 400
TA[s] 0.02
KE [PU] 1.3
TE [s] 1
SE [PU] 0.1667
KF [PU] 0.03
TF [s] 1

Table 19.9 Generator data Generator Hydro Diesel Wind

Ld [PU] 2.4 8.15 28.156
LD[PU] 2.4 8.15 29.2
LF [PU] 2.581 8.447 NA
Lq[PU] 1.437 8.15 28.156
LQ[PU] 1.437 8.15 29.2
Lad [PU] 2.038 7.556 27.075
La f [PU] 2.038 7.556 NA
Ld f [PU] 2.038 7.556 NA
Laq[PU] 1.212 7.556 27.075
rs[PU] 0.015 0.016 0.113
rr[PU] 0.05 0.055 0.119
r f [PU] 0.003 0.0031 NA
H[s] 2.159 1.133 0.233
D[PU] 0.02 0.005 0
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Chapter 20
Generation Planning Under Uncertainty
with Variable Resources

Audun Botterud, Noha Abdel-Karim, and Marija Ilić

20.1 Introduction

In this chapter we discuss generation expansion planning in systems with variable
resources. The variability and uncertainty in renewable resources like wind and solar
power pose new challenges from a long-term planning perspective. There is clearly
a need to introduce cleaner sources of electricity generation for environmental
reasons. However, at the same time, system reliability must be maintained while
trying to minimize the total cost of meeting the electricity demand. We use a
stochastic dynamic optimization model to analyze optimal expansion decisions
considering uncertainty in wind power generation as well as future load. In a case
study, we focus on the São Miguel Island and investigate how the uncertainty and
variability in wind power and load impact optimal expansion decisions in the long
run. We show that wind power is a cost-efficient expansion alternative on São
Miguel, but that some dispatchable generation is also needed to compensate for the
variability and uncertainty in wind power. We also analyze how demand response
contributes to change the optimal portfolio of supply resources.
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20.2 Modeling Framework

We build on the optimization model for generation expansion in electricity markets
first proposed in [1, 2] and later expanded in [3]. The original model was inspired
from real options theory for investments under uncertainty [4] and also from the
theory of peak-load pricing [5]. We extend the model to consider wind power
as an expansion candidate, and we represent the wind power variability in the
system dispatch. Whereas the model developed in [1–3] was originally intended to
analyze generation expansion decisions in restructured electricity markets, we now
assume that the expansion decisions are made through centralized planning with the
objective of maximizing social surplus in the system.

The generation expansion planning problem is formulated as a stochastic dy-
namic programming (SDP) problem. SDP has been used for generation expansion
planning within the regulated industry in the past [6, 7], but typically for thermal or
hydrothermal systems without consideration of variable renewable resources such as
wind and solar energy. We differentiate between short- and long-term uncertainties
in the generation expansion framework, as outlined below. We focus on generation
expansion planning in this chapter. Detailed operational constraints and the impact
of the transmission network are therefore not considered.

20.2.1 SDP Formulation with Short- and Long-Term
Uncertainties

The overall problem for a centralized planner considering investing in new power
generation can be stated as an optimization problem over a planning horizon of T
years, as shown in (20.1)–(20.5).The objective is to maximize the sum of discounted
social surplus over the planning horizon, considering supply costs and consumer
benefits. We use a 1-year time resolution and assume that investments can only take
place at the beginning of each year. In order to handle the value of a plant beyond
the planning horizon, we adjust the investment costs according to its lifetime and the
length of the planning period assuming a constant annuity. Hence, the termination
payoff, gT in (20.4), is simply the expected social surplus in the last period under
the condition that no new investment is made:

J0(x0, l0) = max
u0,...,uT−1

E
ωl

{T−1

∑
k=0

[(1+ r)−k.gk(xk, lk,uk,ωs)]

+(1+ r)−T .gT (xT , lT ,ωs)

}
(20.1)

xk+1 = xk + uk−lt+1 (20.2)

lk+1 = lk +ωl,k (20.3)
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gT (xT , lT ,ωs) = gT (xT , lT ,ωs|uT = 0) (20.4)

xk ∈ Ωx,k, lk ∈ Ωl,k, uk ∈ Ωu,k, ωs ∈ Ωωs , ωl,k ∈ Ωωl ,k (20.5)

where

J0(x0, l0) Expected social surplus over planning period, period 0 [M$]
gk(xk, lk,uk,ωs) Expected net social surplus function, period k [M$/year]
gT (xT , lT ,ωs) Termination surplus, period T [M$/year]
xk Total new capacity of wind and thermal power (state variable) [MW]
lk Average annual load (state variable) [MW]
uk New capacity of wind and thermal power (decision variable) [MW]
ωs Short-term uncertainty (wind power and load)
ωl,k Long-term uncertainty (annual change in average load) [MW]
r Risk-adjusted discount rate [%]
lt Construction lead time [years]
Ωx,l,u,ωs,ωl Discrete feasible sets for x, l, u, ωs, ωl

The short- and long-term uncertainties differ in respect to how they influence the
optimal investment decision. The long-term uncertainties are correlated from year
to year, and according to real options theory, there may be a value for the planner
in waiting to see how these uncertainties unfold. This is because the future looks
different depending on which state you move to from one year to the next. We
represent the average annual load as a long-term uncertainty, since this will have
an important impact on future generation costs. The average load is modeled as a
binary Markov tree (Fig. 20.1). The model could be extended to also include other
long-term uncertainties (e.g., fuel prices) with a similar representation, although this
would increase the state space of the model.

In contrast to the long-term uncertainties, the short-term uncertainties in the
model are not correlated from year to year. Hence, the planner has no incentive
to wait for these uncertainties to be revealed. Availability of renewable resources,
inflow to hydropower stations, unit outages, and weather-driven fluctuations in load
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will typically be the most important short-term uncertainties influencing the system
operation. We consider short-term uncertainties in wind power and load in this
chapter. The short-term uncertainties will still influence the investment strategy,
since they influence the dispatch and generation costs. Furthermore, different
technologies are exposed to different levels of short-term risks. In our model we
maximize the sum of expected social surplus over the planning horizon. The short-
term uncertainties (ωs) only have an effect on the net expected payoff function
within the periods (gk), while the long-term uncertainties (ωl) influence the state
transitions. The short- and long-term uncertainties are assumed to be uncorrelated.

Since the long-term uncertainty in load is represented as a discrete Markov tree
and the annual expected payoffs are additive, we can solve the investment problem
using SDP. We use a backward SDP algorithm with discrete time and states, as
described in [8], to find the solution to the problem, based on the standard iterative
Bellman equation in (20.6).

Jk(xk, lk) = max
uk∈Ωuk

{
gk(xk, lk,uk,ωs)

+(1+ r)−1. E
ωl,k

[Jk+1( f (xk, lk,uk,ωl,k))]
}

(20.6)

The net expected payoff function in time step k, gk, represents the annual social
surplus from electricity generation. gk depends on the installed capacity of different
generation technologies, the load, and the expansion decisions at time step k. gk

is also a function of the short-term uncertainties in wind power and load, which
influence the system dispatch as explained below.

20.2.2 Supply, Demand, and Dispatch Algorithm

Electricity supply is represented with an aggregate supply curve consisting of new
and existing (old) generation technologies, as is illustrated in Fig. 20.2. The first
step on the supply curve represents wind power, which has a low variable cost and
uncertain availability. Hence, the length of the first step of the supply curve, x′1,new, is
a stochastic variable, which depends on the short-term uncertainty for wind power,
as shown in (20.7). The short-term uncertainty in wind power consists of a set of
discrete realizations of availability factors for wind power, rw′, for each of three
demand subperiods within the year. The wind power availability for one realization,
m, is given by

x′1,new,k,m = rw′
mx1,new,k =

⎡
⎢⎣

rw′
m,1

rw′
m,2

rw′
m,3

⎤
⎥⎦ .x1,new,k (20.7)
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Fig. 20.3 Demand curves for the three subperiods. VOLL is value of lost load

The second step on the supply curve, X1,old, represents baseload generation with
low operating cost and a fixed capacity. The third and fourth steps of the supply
curve consist of new and old capacity of dispatchable peaking generators, x2,new

and X2,old. Note that the old peaking capacity is assumed to have higher operating
cost than the new technology, represented by the increasing marginal cost curve
for X2,old.

The annual demand is divided into three subperiods: base (1), medium (2), and
peak demand (3), as illustrated in Fig. 20.3. A part of the demand within each
sub period, Li,flex, is assumed price responsive up to a certain price level, Pflex,max.
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We assume a constant proportion between the maximum subperiod demands in the
model, as described in (20.8). Furthermore, the price responsive parts of demand
are fixed fractions of the maximum demands, i.e., Lflex,k = cL,flex × Lmax,k, where
cL,flex is a constant which applies to all three subperiods. Consequently, the demand
curves for all three subperiods can be described by the state variable for load, lk,
in addition to the constant parameters for prices and loads. In the case study, we
analyze the impact of varying the fraction of price flexible demand, cL,flex:

Lmax,k =

⎡
⎣L1,max,k

L2,max,k

L3,max,k

⎤
⎦= cL.max. lk =

⎡
⎣ cL1,max

cL2,max

cL3,max

⎤
⎦. lk (20.8)

where

Lmax,k Vector for maximum subperiod demand, period k [MW]
cL,max Vector for subperiod demand constants

Short-term uncertainty in demand is represented in an equivalent manner to
the short-term uncertainty in wind power. The state variable for demand, lk, is
multiplied with a relative demand factor, rd′, as shown in (20.9). The relative
demand factors follow a discrete probability distribution, which represents the
deviations from the average demand in each subperiod. Hence, the relative demand
factor represents both variability and uncertainty for demands within the subperiods.
The subperiod demand constants, cL,max, combined with the discrete distributions
for relative demand factors, rd′, give a representative probabilistic representation of
the fluctuations in load over the course of the year:

l′k,n = rd′
n. lk =

⎡
⎢⎣

rd′
n,1

rd′
n,2

rd′
n,3

⎤
⎥⎦. lk (20.9)

We assume a merit order dispatch for the system, as illustrated in Fig. 20.4. This
ensures that the system is dispatched to minimize the operating cost. Quantities and
prices, which are equivalent to marginal costs, are calculated for each subperiod.
Note that if there is insufficient generation capacity available to supply the fixed part
of demand, load curtailment will take place. In contrast, in situations with surplus
supply, wind curtailment may be necessary if the wind power generation is higher
than the demand. The dispatch heuristic consists of a looping structure, which is
repeated for each realization of the short-term uncertainties for wind and demand.
The uncertainties in wind power and demand will cause horizontal shifts in the
supply and demand curves, respectively. For each year, expected prices, quantities,
costs, and the resulting social surplus are calculated over all combinations of the
discrete realizations of the short-term uncertainties in wind power and demand.
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Fig. 20.4 Merit order dispatch in three subperiods with marginal prices P1, P2, P3

The total expected social surplus over the year is used as the payoff, gk, in the
SDP expansion algorithm to find the optimal expansion strategy in the initial year,
as explained above.

20.3 Case Study

We use the model to analyze generation expansion on São Miguel. The optimization
model is used to find the optimal expansion decision at the beginning of each year
with a 10-year planning horizon. We simulate the optimal expansion plan over a
period of 20 years, assuming that the realized load growth equals the expected
growth in the binomial tree for load (Fig. 20.1). The case study assumptions and
results are presented below.

20.3.1 Assumptions

Parameters for supply and demand are summarized in Table 20.1. For supply,
the existing generation fleet on São Miguel consists of geothermal power (40%),
hydropower (4.5%), a small amount of power from biomass, and the remainder
being met by heavy fuel oil generators, as explained in Chap. 4. There is no
wind power installed on the island. In this chapter, we use the same assumption
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Table 20.1 Supply and demand parameters for São Miguel

Supply Value Unit Demand Value Unit

Xold [0 72] MW VOLL 3500 $/MWh
MCnew [0 180] $/MWh Pflex,max 350 $/MWh

MCmin [NA 185] $/MWh cL,max [0.689 1.289 1.623]

MCmax [NA 215] $/MWh cL,flex 0.01 or 0.20

icnew [2300 1000] $/kW ld [4784 3000 1000] Hours

Ωμ [0/9 0/5] MW linit 28.52 MW

nt [15 20] Years lgrowth 2.7 MW/year

lt [1 1] Years lsdv 1.5 MW/year

r 5 % p.a. pu, pdn 0.5

Table 20.2 Levelized cost analysis of candidate power plants

Wind power Fuel oil Unit

Capacity factor 46 20 50 80 %
Investment cost 55.0 50.4 20.2 12.6 $/MWh
Operating cost 0.0 180.0 180.0 180.0 $/MWh
Total cost 55.0 230.4 202.2 192.6 $/MWh

as in previous chapters that geothermal, hydropower, and biomass are negative
loads. Hence, the only existing technology modeled in the supply curve is fuel oil
generators , assumed to have an operating cost of between 185 and 215 $/MWh, in
line with assumptions in previous chapters. The two expansion alternatives are wind
power and additional combustion turbines with fuel oil. We assume that the planner
has the options to investment in 9 MW of wind power and/or 5 MW of fuel oil
generation in each year. Of course, not investing at all is an additional option. Note
that wind power, x1,new, has a relatively high investment cost but zero operating cost.
In contrast, fuel oil-fired generation, x2,new, has a low investment cost, but very high
operating cost. A simple levelized cost analysis of the two technologies is shown in
Table 20.2. Wind power is assumed to have a capacity factor of 0.46, in line with the
wind power data from Chap. 4. This is a very high capacity factor, indicating that
the wind conditions are very good on São Miguel. The levelized cost calculation
is done for different capacity factors for the fuel oil plant. This is a dispatchable
plant, and its utilization is not known at the time the expansion decisions are made.
Table 20.2 shows that for all capacity factors, the levelized cost for the fuel oil
plant per kWh is much higher than for wind power. This is because of the high
cost of fuel oil on the island. However, the availability of wind power is stochastic,
whereas the combustion turbine is assumed to have a constant availability. The
generation expansion model considers the differences in availability between the
two technologies and factors this into the analysis to find the optimal expansion
decisions.

The net load duration curve is shown in Fig. 20.5. The original load duration
curve, before the non-dispatchable resources are subtracted, is also shown for
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Fig. 20.5 Load duration curves (total and net load) for São Miguel in 2008

comparison. With the exception of the peaking hours, the difference between the
two curves is relatively constant. This indicates that the generation from geothermal,
hydro, and biomass mainly serves as baseload in the system. We use the net load
duration curve to estimate parameters for the demand curve representation in the
expansion model. The lengths of the base, medium, and peak demand sub periods
are set to 4,784, 3,000, and 1,000 h accordingly. The subperiod demand constants,
cL,max, in Table 20.1 are derived by taking the average of the loads in the three
sub periods. The expected value and standard deviation of the annual load growth
is estimated based on historical data from 2000 to 2008 [9]. In this period, the
mean load grew on average 2.7 MW/year with a standard deviation of 1.5 MW/year.
Hence, the parameters lgrowth and lsdv are set to 2.7 and 1.5, respectively (Table 20.1).
The value of lost load is assumed to be 3,500 $/MWh, and the highest price on the
flexible part of the demand curve is set to 350 $/MWh. In the case study, we use two
different assumptions for the amount of flexible demand, i.e., that either 1 or 20%
of the load is price responsive.

The short-term uncertainties in wind power and demand influence the expected
dispatch and payoffs within each year. The probability distribution for the relative
wind availability factors (Fig. 20.6) shows that the wind power resources are best
in the medium demand subperiod, followed by the peak and base subperiods. For
demand (Fig. 20.7), the base period has the widest range, which is expected since
this is the longest subperiod and therefore covers a wider distribution of demands.
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Fig. 20.6 Discrete distributions for relative wind availability factors, rw′

The distributions for the medium and peak periods are relatively similar, although
the steep upper part of the net load duration curve (Fig. 20.5) is also reflected in
the peak distribution. We assume that the demand and wind power uncertainties
are independent. With 10 realizations of each uncertainty, the dispatch routine is
run 100 times for each year, i.e., for each combination of load and wind power
realizations. Note that both distributions remain constant in the expansion planning
model. This is clearly a simplification, since load behavior is likely to change over
time. Furthermore, the best wind resources are likely to be built first, and this would
impact the wind availability for consecutive expansions. Geographical dispersion of
wind power plants would also influence the distributions for the total wind resources
on the island.

20.3.2 Results

We run the optimal expansion model for the time period 2008–2028. Expansion
decisions are made at the beginning of each year based on a 10-year planning
horizon. The simulated average load growth is assumed to follow the expected
value of 2.7 MW/year. Below, we present results for optimal capacity expansion,
the resulting dispatch of the different technologies, the amount of load and



20 Generation Planning Under Uncertainty with Variable Resources 545

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load factor

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Base
Med
Peak

Fig. 20.7 Discrete distributions for relative demand factors, rd′

wind curtailment in the system, and the marginal costs in each of the demand
subperiods, which in turn could be used for pricing purposes. We run two sets
of simulations, i.e., with either 1% or 20% price responsive demand. Finally, we
also conduct a sensitivity analysis of how the optimal generation expansion and
curtailment levels change with the expected load growth.

Generation Expansion and Dispatch

The optimal expansion plan (Fig. 20.8) shows that the majority of the new capacity
is wind power . The wind power expansion is driven by the low cost of wind
power compared to fuel oil-fired power plants (Table 20.2). Most of the new
fuel oil capacity is added in the last 10 years of the simulation period. At this
point, additional thermal capacity is needed to compensate for the uncertainty and
variability in wind power. In fact, with low demand response (DR1), the fuel oil
capacity grows at about the same rate as the wind power capacity in the last 10
years. Increasing the amount of demand response (DR20) leads to lower capacity
expansion overall, particularly for the fuel oil technology. Furthermore, the increase
in thermal capacity occurs about 5 years later compared to DR1. This is because the
price responsive demand acts a flexible and dispatchable resource, which reduces
the need for dispatchable generation.
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demand response, 2008–2028

The resulting annual dispatch for all the generation technologies in the system is
shown in Fig. 20.9. Geothermal and hydro generation is subtracted from the load,
as explained above, and therefore has constant generation throughout the simulation
period. Wind generation increases rapidly to meet between 35 and 40% of the total
load in the system. The new fuel oil generation increases towards the end of the
planning horizon. The main effect of increasing the demand response is that the
total load decreases and also that less fuel oil generation is being dispatched. The
higher demand response also allows for a slightly higher fraction of load being met
by wind power.

Curtailment of Load and Wind Power

The short-term uncertainty in wind power must be compensated by flexible supply
and demand resources in the system. The likelihood of being able to meet the fixed
part of the demand increases by investing in more thermal capacity with constant
availability. However, the more expansion of such resources, the less they are used.
Hence, there is a trade-off between the investment cost of new capacity and the
cost of curtailment in the system. The social surplus objective in the expansion
model considers this trade-off in finding the optimal expansion plan. Figure 20.10
shows that load curtailment starts occurring a few years into the simulation period
and eventually reaches a level of more than 5 GWh in the case with low demand
response. This is close to 1% of the total fixed demand in the system. More demand
response reduces the amount of load curtailment to about half, as the flexible part
of the demand curve responds to high prices before load curtailment becomes
necessary.
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Fig. 20.9 Expected annual generation dispatch with 1% (upper) and 20% (lower) demand
response, 2008–2028

Wind power is attractive from a cost perspective, given its low levelized cost.
However, as the amount of installed wind capacity increases, there is a chance that
wind power exceeds the load so that wind power curtailment becomes necessary.1

In this case, there is a trade-off between meeting the load with cheap wind energy

1In this expansion study, we assume that wind power alone can meet the demand when sufficient
wind power is available. In reality, some thermal units may be required to stay online to provide
certain ancillary services to the system. If so, wind curtailment would happen more frequently than
under the assumptions used in this case study. The impact of more detailed operational constraints
(e.g., unit commitment) on generation expansion with renewable resources is studied in more detail
in [10, 11].
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Fig. 20.10 Expected annual curtailment of load and wind power with 1% (DR1) and 20% (DR20)
demand response, 2008–2028

and the need for curtailing the wind power in surplus situations. Figure 20.10 shows
that wind power curtailment increases rapidly during the first 7–8 years of the
simulation period. At this point the wind curtailment reaches approximately 16–
17% of total dispatched wind generation, which appears to be an equilibrium level,
as it stays at this level throughout the rest of the period. Demand response leads to
slightly less wind power curtailment, since the pace of wind power expansion is a bit
slower in this case (Fig. 20.8). Note that with the representation of demand response
in the model, the dispatched load can only be reduced.2

The generation model considers the trade-offs discussed above and maximizes
the sum of consumer and producer surpluses (i.e., the social surplus) over the short-
and long-term uncertainties. An important finding from the analysis is that some
curtailment of both load and wind power is optimal under the current assumptions.
However, the optimal level of wind power curtailment is clearly much higher than
the desired load curtailment, as shown in Fig. 20.10.

Marginal Costs of Generation (Prices)

We also analyze the impact of the optimal expansion plan on the marginal cost of
generation. The marginal costs of generation in the subperiods can be interpreted
as system prices and could possibly be used to determine dynamic rates or even for
real-time pricing. Figure 20.11 shows that the prices are the same in all three demand

2An alternative demand representation, which allows for demand increase during low load periods
through price response and/or load shifting, would contribute to reduce the level of wind power
curtailment. Introduction of energy storage would have a similar effect by storing surplus wind
energy for use during high loads.
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Fig. 20.11 Expected prices, or marginal cost of generation, with 1% (upper) and 20% (lower)
demand response, 2008–2028

subperiods at the outset of the simulation period. This is because the original fuel
oil generation (X2,old) is always the marginal technology in the original system. The
expansion of wind power leads to a significant reduction in the prices during the base
period. At the same time, the peak price increases dramatically. This is because load
curtailment starts occurring in the peak period during some realizations of the short-
term uncertainty. The expected price is therefore influenced by the value of lost
load (VOLL), assumed to be $3,500/MWh. The average price during all subperiods
remain at or below $200/MWh. The main effects of more demand response are that
the peak price increase occurs later and that the average price is lower towards the
end of the simulation period.
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Fig. 20.12 Total expansion of wind power and fuel oil capacity for the period 2008–2028 with
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Sensitivity Analysis: Load Growth

Finally, we investigate the impact of the annual load growth in the system, varying
lgrowth between 0 and 3.375 MW/year. Figure 20.12 shows that even with no load
growth, it is optimal to invest in substantial amounts of wind power to reduce the
overall cost of the electricity supply. The wind power capacity increases more or
less as a linear function of load growth. In contrast, substantial expansion of fuel
oil generation only takes place at the higher load growth levels. Demand response
reduces the need for new capacity, particularly thermal generation. Figure 20.13
shows that wind curtailment takes place for all simulated load growths, whereas load
curtailment only occurs for higher load growths as there is no load curtailment in
the original system. Higher demand response leads to reductions in the curtailments
of both wind power and load.

20.4 Conclusion

In this chapter we have used a stochastic dynamic optimization model to analyze
generation expansion with variable resources. The case study of the São Miguel
Island shows that wind power is an attractive investment alternative on this
island, due to the low cost in comparison with thermal generation from fuel oil.
However, some dispatchable thermal generation is still needed to compensate for the
variability and uncertainty in wind power. The dispatch results show a significant
curtailment of wind power during surplus conditions as the amount of wind power
capacity increases. A small amount of load curtailment during scarcity situations
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Fig. 20.13 Total expected curtailment of load and wind power for the period 2008–2028 with 1%
(DR1) and 20% (DR20) demand response

is also optimal from a social surplus perspective. Furthermore, the change in the
capacity mix leads to much higher differences between the marginal system costs
during periods of high and low demand. Wind power brings down the marginal cost
during low load periods, whereas scarcity situations with load curtailment lead to
much higher expected marginal costs during peak-load periods. The average annual
marginal costs remain relatively stable. The utility company and regulator would
have to decide on how much of the increased price variability to pass on to end
users. Our results show that an increase in the amount of price responsive demand
from 1 to 20% of total demand has several advantages. A more flexible demand
side leads to a large reduction in the need for new thermal generation capacity, as
demand helps accommodate variability and uncertainty in wind power through its
response to prices. More demand response also leads to less curtailment of wind
power and load and to a slightly higher share of wind power in the overall system
dispatch.

The generation expansion model used in this chapter focuses on the impact
of long- and short-term uncertainties on the optimal investment decisions. The
detailed operational constraints analyzed in previous chapters are not included in
the expansion analysis. In future work, we are planning to improve the uncertainty
representation by incorporating the decomposition methods for load and wind
uncertainty from Chap. 6 into the SDP framework. We will also consider the impact
of diversity in wind resources on the aggregate probability distribution for wind
power. Furthermore, we will consider adding more operational constraints (e.g., unit
commitment and operating reserves) into the dispatch algorithm, to better represent
the operational impacts of variable generation on planning decisions for generation
expansion.
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