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Preface

The contributions of this book are based on the lectures of the 2°¢ NCN
Pedagogical School, that was held in Murcia during the last week of Septem-
ber 2000. This School is the second in series of Pedagogical Schools in the
framework of the European TMR project “Nonlinear Control Network”
(http://www.supelec.fr/1ss/NCN). We would like to thank the TMR Pro-
gram for the financial support which, in particular, helped numerous young
researchers from all over Europe in attending the School.

The School was organized around four courses, that are reflected in the
four Parts of the present book. The goal of the different courses was to give
a pedagogical introduction to four important research areas in the nonlinear
control world, and this has been also the spirit in the writing of the different
chapters of this book. The book is then organized in four Parts which exhibit
a different internal structure, reflecting to a great extent the different styles
of its authors. The four Parts are:

1. The Differential Algebraic Approach to Nonlinear Systems
2. Nonlinear Quantitative Feedback Theory

3. Hybrid Systems

4. Physics in Control

Every Part is presented by an informal introduction where the corre-
sponding topic is emphasized as a whole, which somehow simplifies these
introductory words. Finally, the editors would like to acknowledge the help
of Miguel Moreno and Joaquin Cervera in the organization of the Schoal,
and explicitly express their gratitude to all the authors contributing to this
volume.

Murcia, Gif-sur—Yvette, Alfonso Banos
December 2000 Franc¢oise Lamnabhi-Lagarrigue
Francisco J. Montoya

Other books already published in this NCN series:

o Stability and Stabilization of Nonlinear Systems, (D. Aeyels, F. Lamnabhi-
Lagarrigue, A.J. van der Schaft, Eds.), LNCIS 246, July 1999, ISBN 1-
85233-638-2.

¢ Nounlinear Control in the Year 2000, (A. Isidori, F. Lamnabhi-Lagarrigue,
W. Respondek, Eds.), 2 volumes, LNCIS 258 & 259, November 2000,
ISBN 1-85233-363—4 & ISBN 1-85233- 364-2.
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Introduction

Differential algebraic methods have been used in nonlinear control theory
since 1985 and have led to a deeper understanding of the underlying con-
cepts, and to definitions of useful new concepts. Although flatness is princi-
pally not tied to differential algebra, probably the most important outcome of
this approach is the notion of differential flatness. Broadly speaking, differen-
tially flat systems are those that admit a complete, finite and free differential
parametrisation. This means that flat systems can be described by a finite
set of variables whose trajectories can be assigned independently. The class
of differentially flat systems, hence, generalises the class of linear controllable
systems. Its importance is due to two facts: On the one hand, many mathe-
matical models of technological processes have been shown to be flat systems;
on the other hand, for the flat systems powerful and simple systematic meth-
ods are available for the motion planing and the design of feedback laws for
stable trajectory tracking. Finally, this notion can be most fruitfully gener-
alised to linear and nonlinear infinite dimensional systems, in particular to
boundary controlled distributed parameter systems and linear or nonlinear
systems with delays.

These chapters are thought to give an introduction to the differential
algebraic approach to nonlinear systems, with an emphasis on differential
flatness, and to show the bridges to linear and nonlinear infinite dimensional
systems. Herein, the linear systems of finite or infinite dimension are treated
in a module theoretic framework, the “linear analogue” of differential algebra.
Concepts and methods are illustrated on an important number of technolog-
ical applications.
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Philippe Martin!, Richard M. Murray?, and Pierre Rouchon!
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California, USA.

Abstract. Flat systems, an important subclass of nonlinear control systems in-
troduced via differential-algebraic methods, are defined’in a differential geometric
framework. We utilize the infinite dimensional geometry developed by Vinogradov
and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety,
i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field.
After recalling the definition of a Lie-Bicklund mapping, we say that two systems
are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are
those systems which are equivalent to a controllable linear one. The interest of such
an abstract setting relies mainly on the fact that the above system equivalence
is interpreted in terms of endogenous dynamic feedback. The presentation is as
elementary as possible and illustrated by the VTOL aircraft.

1 Introduction

Control systems are ubiquitous in modern technology. The use of feedback
control can be found in systems ranging from simple thermostats that reg-
ulate the temperature of a room, to digital engine controllers that govern
the operation of engines in cars, ships, and planes, to flight control systems
for high performance aircraft. The rapid advances in sensing, computation,
and actuation technologies are continuing to drive this trend and the role of
control theory in advanced (and even not so advanced) systems is increasing,.

A typical use of control theory in many modern systems is to invert the
system dynamics to compute the inputs required to perform a specific task.
This inversion may involve finding appropriate inputs to steer a control sys-
tem from one state to another or may involve finding inputs to follow a desired
trajectory for some or all of the state variables of the system. In general, the
solution to a given control problem will not be unique, if it exists at all, and
so one must trade off the performance of the system for the stability and
actuation effort. Often this tradeoff is described as a cost function balancing
the desired performance objectives with stability and effort, resulting in an
optimal control problem.

This inverse dynamics problem assumes that the dynamics for the system
are known and fixed. In practice, uncertainty and noise are always present in
systems and must be accounted for in order to achieve acceptable performance
of this system. Feedback control formulations allow the system to respond to
errors and changing operating conditions in real-time and can substantially
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affect the operability of the system by stabilizing the system and extending
its capabilities. Again, one may formulate the feedback regulation problems
as an optimization problem to allow tradeoffs between stability, performance,
and actuator effort.

The basic paradigm used in most, if not all, control techniques is to exploit
the mathematical structure of the system to obtain solutions to the inverse
dynamics and feedback regulation problems. The most common structure
to exploit is linear structure, where one approximates the given system by
its linearization and then uses properties of linear control systems combined
with appropriate cost function to give closed form (or at least numerically
computable) solutions. By using different linearizations around different op-
erating points, it is even possible to obtain good results when the system is
nonlinear by “scheduling” the gains depending on the operating point.

As the systems that we seek to control become more complex, the use
of linear structure alone is often not sufficient to solve the control problems
that are arising in applications. This is especially true of the inverse dynamics
problems, where the desired task may span multiple operating regions and
hence the use of a single linear system is inappropriate.

In order to solve these harder problems, control theorists look for differ-
ent types of structure to exploit in addition to simple linear structure. In this
paper we concentrate on a specific class of systems, called “(differentially)
flat systems”, for which the structure of the trajectories of the (nonlinear)
dynamics can be completely characterized. Flat systems are a generalization
of linear systems (in the sense that all linear, controllable systems are flat),
but the techniques used for controlling flat systems are much different than
many of the existing techniques for linear systems. As we shall see, flatness is
particularly well tuned for allowing one to solve the inverse dynamics prob-
lems and one builds off of that fundamental solution in using the structure
of flatness to solve more general control problems.

Flatness was first defined by Fliess et al. [6,9] using the formalism of
differential algebra, see also {13] for a somewhat different approach. In dif-
ferential algebra, a system is viewed as a differential field generated by a
set of variables (states and inputs). The system is said to be flat if one can
find a set of variables, called the flat outputs, such that the system is (non-
differentially) algebraic over the differential field generated by the set of flat
outputs. Roughly speaking, a system is flat if we can find a set of outputs
(equal in number to the number of inputs) such that all states and inputs
can be determined from these outputs without integration. More precisely, if
the system has states z € R*, and inputs u € R™ then the system is flat if
we can find outputs y € R™ of the form

Yy = h(x,u,ﬁ,...,um)
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such that

=0y, - y?)
oy, 9, -,y 9).
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More recently, flatness has been defined in a more geometric context,
where tools for nonlinear control are more commonly available. One approach
is to use exterior differential systems and regard a nonlinear control system
as a Pfaffian system on an appropriate space [17]. In this context, flatness
can be described in terms of the notion of absolute equivalence defined by E.
Cartan [1,2,23].

In this paper we adopt a somewhat different geometric point of view,
relying on a Lie-Bicklund framework as the underlying mathematical struc-
ture. This point of view was originally described in [7,10,11] and is related to
the work of Pomet et al. [20,19] on “infinitesimal Brunovsky forms” (in the
context of feedback linearization). It offers a compact framework in which
to describe basic results and is also closely related to the basic techniques
that are used to compute the functions that are required to characterize the
solutions of flat systems (the so-called flat outputs).

Applications of flatness to problems of engineering interest have grown
steadily in recent years. It is important to point out that many classes of
systems commonly used in nonlinear control theory are flat. As already noted,
all controllable linear systems can be shown to be flat. Indeed, any system
that can be transformed into a linear system by changes of coordinates, static
feedback transformations (change of coordinates plus nonlinear change of
inputs), or dynamic feedback transformations is also flat. Nonlinear control
systems in “pure feedback form”, which have gained popularity due to the
applicability of backstepping [12] to such systems, are also flat. Thus, many
of the systems for which strong nonlinear control techniques are available
are in fact flat systems, leading one to question how the structure of flatness
plays a role in control of such systems.

One common misconception is that flatness amounts to dynamic feedback
linearization. It is true that any flat system can be feedback linearized using
dynamic feedback (up to some regularity conditions that are generically sat-
isfied). However, flatness is a property of a system and does not imply that
one intends to then transform the system, via a dynamic feedback and ap-
propriate changes of coordinates, to a single linear system. Indeed, the power
of flatness is precisely that it does not convert nonlinear systems into linear
ones. When a system is flat it is an indication that the nonlinear structure
of the system is well characterized and one can exploit that structure in de-
signing control algorithms for motion planning, trajectory generation, and
stabilization. Dynamic feedback linearization is one such technique, although
it is often a poor choice if the dynamics of the system are substantially dif-
ferent in different operating regimes.
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Another advantage of studying flatness over dynamic feedback lineariza-
tion is that flatness is a geometric property of a system, independent of co-
ordinate choice. Typically when one speaks of linear systems in a state space
context, this does not make sense geometrically since the system is linear only
in certain choices of coordinate representations. In particular, it is difficult to
discuss the notion of a linear state space system on a manifold since the very
definition of linearity requires an underlying linear space. In this way, flatness
can be considered the proper geometric notion of linearity, even though the
system may be quite nonlinear in almost any natural representation.

Finally, the notion of flatness can be extended to distributed parame-
ters systems with boundary control and is useful even for controlling linear
systems, whereas feedback linearization is yet to be defined in that context.

This paper provides a self-contained description of flat systems. Section 2
introduces the fundamental concepts of equivalence and flatness in a simple
geometric framework. This is essentially an open-loop point of view.

2 Equivalence and flatness

2.1 Control systems as infinite dimensional vector fields

A system of differential equations
= f(z), ze€e XCR" (1)

is by definition a pair (X, f), where X is an open set of R® and f is a smooth
vector field on X. A solution, or trajectory, of (1) is a mapping ¢t + z(¢) such
that

e(t) = f(z(t)) vt =0

Notice that if  ~ h(z) is a smooth function on X and ¢ = z(t) is a trajectory
of (1), then

d _on

Shia(t) = 3 =

(a(t)) - 4(6) = 5

(z(t) - f(z(t))  Vt>0.
For that reason the total derivative, i.e., the mapping

Oh
z 8—(37) - f(z)
is somewhat abusively called the “time-derivative” of A and denoted by h.
We would like to have a similar description, i.e., a “space” and a vector
field on this space, for a control system

&= f(z,u), (2)
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where f is smooth on an open subset X x U C R® x R™. Here f is no longer
a vector field on X, but rather an snfinite collection of vector fields on X
parameterized by u: for all u € U, the mapping

z > fulz) = f(2,u)

is a vector field on X . Such a description is not well-adapted when considering
dynamic feedback.

Tt is nevertheless possible to associate to (2) a vector field with the “same”
solutions using the following remarks: given a smooth solution of (2), i.e., a
mapping t — (z(t), u(t)) with values in X x U such that

&(t) = f(z(t),u(t))  VE20,
we can consider the infinite mapping
t s £(t) = (z(t), u(t),u(t),...)

taking values in X xU xR, where R% = R™ xR™ x... denotes the product
of an infinite (countable) number of copies of R™. A typical point of R is
thus of the form (u!,u?,...) with u* € R™. This mapping satisfies

£(t) = (f(a(®),u(®), u(t),i(t),...)  ¥t>0,
hence it can be thought of as a trajectory of the infinite vector field

(z,u,ul,...) = F(z,u,u, . ) = (Fflz,u),ut,d?,. )

on X x U x R%. Conversely, any mapping

t = £(t) = (), u(t),u’(t),...)

that is a trajectory of this infinite vector field necessarily takes the form
(z(t),u(t),u(t),...) with £(t) = f(x(t),u(t)), hence corresponds to a solution
of (2). Thus F'is truly a vector field and no longer a parameterized family of
vector fields.

Using this construction, the control system (2) can be seen as the data
of the “space” X x U x R together with the “smooth” vector field F' on
this space. Notice that, as in the uncontrolled case, we can define the “time-
derivative” of a smooth function (z,u,u',...) — h(z,u,u?,... ,u*) depend-
ing on a finite number of variables by

h(z,u,ut,... ,u**) = Dh-F

_ Oh oh |, Oh
= 32 f(x,u)+au 1 +6u1-u + e

The above sum is finite because h depends on finitely many variables.
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Remark 1 To be rigorous we must say something of the underlying topology
and differentiable structure of RS to be able to speak of smooth objects [24].
This topology is the Fréchet topology, which makes things look as if we were
working on the product of k copies of R™ for a “large enough” k. For our
purpose it is enough to know that a basis of the open sets of this topology
consists of infinite products Uy x Uy x ... of open sets of R™ and that a
function is smooth if it depends on a finite but arbitrary number of variables
and is smooth in the usual sense. In the same way a mapping ¢ : K7 — R
s smooth if all of its components are smooth functions.

RS° equipped with the Fréchet topology has very weak properties: useful
theorems such as the implicit function theorem, the Frobenius theorem, and
the straightening out theorem no longer hold true. This is only because RSP
is a very big space: indeed the Fréchet topology on the product of k copies of
R™ for any finite k coincides with the usual Euclidian topology.

We can also define manifolds modeled on R using the standard ma-
chinery. The reader not interested in these technicalities can safely ignore
the details and won’t loose much by replacing “manifold modeled on R 7 by

“open set of R .

We are now in position to give a formal definition of a system:

Definition 1 A system is a pair (9, F) where M is a smooth manifold,
possibly of infinite dimension, and F' is a smooth vector field on 9.

Locally, a control system looks like an open subset of R* (« not necessarily
finite) with coordinates (&;,...,&,) together with the vector field

§r F(§) = (F1(8),... , FulE))

where all the components F; depend only on a finite nunibey of coordinates.
A trajectory of the system is a mapping ¢ — £(t) such that £(¢) = F(£(F)).

We saw in the beginning of this section how a “traditional” control system
fits into our definition. There is nevertheless an important difference: we lose
the notion of state dimension. Indeed

z = f(z,u), (z,u) e X xUCR*xR™ (3)
and

T = f(z,u), U= 4
now have the same description (X x U x R F), with

F(z,u,u', .. ) = (f(z,u),u',u?,...),

in our formalism: ¢ + (x(f),u(t)) is a trajectory of (3) if and only if ¢t
(z(t),u(t),u(t)) is a trajectory of (4). This situation is not surprising since
the state dimension is of course not preserved by dynamic feedback. On the
other hand we will see there is still a notion of input dimension.
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Example 1 (The trivial system) The trivial system (RX, F,), with co-
ordinates (y,y,y?,...) and vector field

Fu(y, 9% ) =y y%, )

describes any “traditional” system made of m chains of integrators of arbi-
trary lengths, and in particular the direct transfer y = u.

In practice we often identify the “system” F(x,%) := (f(z,u),u!,u?,...)
with the “dynamics” & = f(z,u) which defines it. Our main motivation for
introducing a new formalism is that it will turn out to be a natural framework
for the notions of equivalence and flatness we want to define.

Remark 2 It is easy to see that the manifold 9N is finite-dimensional only
when there is no input, i.e., to describe o determined systern of differen-
tial equations one needs as many equations as variables. In the presence of
inputs, the system becomes underdetermined, there are more variables than
equations, which accounts for the infinite dimension.

Remark 3 Our definition of a system is adapted from the notion of diffi-
ety introduced in [24] to deal with systems of (partial) differential equations.
By definition a diffiety is a pair (9, CTIN) where M is smooth manifold,
possibly of infinite dimension, and CTIN is an involutive finite-dimensional
distribution on M, i.e., the Lie bracket of any two vector fields of CTIN is
itself in CTON. The dimension of CTIN is equal to the number of independent
variables.

As we are only working with systems with lumped parameters, hence gov-
erned by ordinary differential equations, we consider diffieties with one di-
mensionol distributions. For our purpose we have also chosen to single out a
particular vector field rather than work with the distribution it spans.

2.2 Equivalence of systems

In this section we define an equivalence relation formalizing the idea that two
systems are “equivalent” if there is an invertible transformation exchanging
their trajectories. As we will see later, the relevance of this rather natural
equivalence notion lies in the fact that it admits an interpretation in terms
of dynamic feedback.

Consider two systems (9, F) and (M,G) and a smooth mapping ¥ :
M — N (remember that by definition every component of a smooth mapping
depends only on finitely many coordinates). If ¢ — £(¢) is a trajectory of
(O, F), re.,

Ve, £(t) = F(E@®)),
the composed mapping t — ((t) = ¥ (£(t)) satisfies the chain rule
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The above expressions involve only finite sums even if the matrices and vec-
tors have infinite sizes: indeed a row of %'I—’ contains only a finite number
of non zero terms because a component of ¥ depends only on finitely many
coordinates. Now, if the vector fields F' and G are ¥-related, i.e.,

v

€ - F(&)

which means that ¢t — ((¢) = #(£(t)) is a trajectory of (M, G). If moreover ¥
has a smooth inverse @ then obviously F,G are also ®-related, and there is a
one-to-one correspondence between the trajectories of the two systems. We
call such an invertible ¥ relating F' and G an endogenous transformation.

Definition 2 Two systems (M, F) and (N, G) are equivalent at (p,q) € Mx
N if there exists an endogenous transformation from a neighborhood of p to
a neighborhood of q. (M, F) and (N, G) are equivalent if they are equivalent
at every pair of points (p,q) of a dense open subset of M x N.

Notice that when 9t and 9% have the same finite dimension, the systems are
necessarily equivalent by the straightening out theorem. This is no longer
true in infinite dimensions.

Consider the two systems (X xU xR, F') and (Y xV xR, G) describing
the dynamics

i=flz,u), (r,u)€ X xUCR"xR" (5)
y:g(y,'()), (yav)€YXVCRTXRS. (6)

The vector fields F, G are defined by

F(z,u,ut,...) = (f(z,u),u',u?,...)

G(y,v,vt,...) = (g(y,v),v!, 0%, L),
If the systems are equivalent, the endogenous transformation ¥ takes the
form

U(z,u,ul,...) = (W(z,a),B(z,0),8(z,8),...).

Here we have used the short-hand notation @ = (u,u!,... ,u*), where k is

some finite but otherwise arbitrary integer. Hence ¥ is completely specified
by the mappings v and 3, i.e, by the expression of y,v in terms of z,7.
Similarly, the inverse @ of ¥ takes the form

®(y,v,v,...) = (o(y,0),aly, V), &(y,0),...). *
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As & and @ are inverse mappings we have
Ylely,0),a0y,9) =y e(¥(z,0),8(z,0) =«
Blely,v),aly,v)) = v a(y(z,7), B(z,0)) = u.
Moreover F' and G W-related implies
flely,v),aly,0)) = De(y, o) - 5(y, )

where g stands for (g,v',...,v*), i.e, a truncation of G for some large
enough k. Conversely,

9(¥(z, %), By, W) = DY(z,7) - f(y, D).
In other words, whenever ¢ — (z(t), u(t)) is a trajectory of (5)
ter (y(t),0(t) = (p((®),T@(?), a(z(t),u(t)))
is a trajectory of (6), and vice versa.
Example 2 (The PVTOL) The system generated by
X = —uysinf + guq cosf
Z=wuj;cosh +cussinf — 1
6 = uy.
is globally equivalent to the systems generated by
i = —&€sind, o = Ecosf — 1,
where & and 6 are the control inputs. Indeed, setting

X = (I,Z,i‘,é,(),é) and Y= (ylay%y.lay.?)
U= (ulaUQ) V= (ga())

and using the notations in the discussion after definition 2, we define the
mappings ¥ = (X, U) end V = (X, U) by

T —€sinf
= | z2+ecosf = up — €62
Y(X,U) = & — el cosd and (X, U) = < 0 )

Z —¢elfsinf

to generate the mapping ¥. The inverse mapping ¢ is generated by the map-
pings X = (Y, V) and U = a(Y, V) defined by

y1 +esinf
Yo — s.cos()
7y . | Y1 Hebcosh —_ [(E+¢eb?
(Y, V) = iy — c6sinf and alY,V) = ( i
6

6
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An important property of endogenous transformations is that they pre-
serve the input dimension:

Theorem 1 If two systems (X x U x R, F) and (Y x V x R®,G) are
equivalent, then they have the same number of inputs, i.e., m = s.

Proof. Consider the truncation $, of & on X x U x (R™)¥,

B, X xU x (REY 5V x V x (RS)#
(ZL',U.,UI,... 7uk+ﬂ) > ((p,a,d,... 7a(”))7

i.e., the first p+ 2 blocks of components of ¥; k is just a fixed “large enough”
integer. Because ¥ is invertible, ¥, is a submersion for all p. Hence the
dimension of the domain is greater than or equal to the dimension of the
range,

n+mk+p+1)>s(p+1) Yu >0,
which implies m > s. Using the same idea with ¥ leads to s > m.

Remark 4 Our definition of equivalence is adapted from the notion of equiv-
alence between diffieties. Given two diffieties (M, CTIN) and (N, CTN), we
say that a smooth mapping ¥ from (an open subset of) 9 to M is Lie-
Backlund if its tangent mapping T satisfies TH{CTM) C CTN. If more-
over ¥ has a smooth inverse & such that TY(CTN) C CTM, we say it is a
Lie-Backlund isomorphism. When such an isomorphism ezists, the diffieties
are said to be equivalent. An endogenous transformation is just a special
Lie-Bdcklund isomorphism, which preserves the time parameterization of the
integral curves. It is possible to define the more general concept of orbital
equivalence [7,5] by considering general Lie-Bdcklund isomorphisms, which
preserve only the geometric locus of the integral curves.

2.3 Differential Flatness

We single out a very important class of systems, namely systems equivalent
to a trivial system (R, F;) (see example 1):

Definition 3 The system (9N, F) is flat at p € I (resp. flat) if it equivalent
at p (resp. equivalent) to a trivial system.

We specialize the discussion after definition 2 to a flat system (X x U x
R F') describing the dynamics

&= f(z,u), (z,u)e X xU CR"* xR™,

By definition the system is equivalent to the trivial system (RS°, F;) where
the endogenous transformation ¥ takes the form

F(z,u,ul,...) = (hiz,0), h(z,T), h(z,T),...), (7)
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In other words ¥ is the infinite prolongation of the mapping k. The inverse
& of ¥ takes the form

() = (@), 8®),B7),---)-
As @ and ¥ are inverse mappings we have in particular
o(h(z,7)) =z and o(h(z,0)) = u.

Moreover F' and G &-related implies that whenever ¢ > y(t) is a trajectory
of y = v ~i.e., nothing but an arbitrary mapping—

te (2(t),u(®) = (@), BEE))

is a trajectory of Z = f(z,u), and vice versa.
We single out the importance of the mapping h of the previous example:

Definition 4 Let (MM, F) be a flat system and ¥ the endogenous transfor-
mation putting it into a trivial system. The first block of components of ¥,
i.e., the mapping h in (7), is called a flat (or linearizing) output.

With this definition, an obvious consequence of theorem 1 is:

Corollary 1 Consider a flat system. The dimension of a flat output is equal
to the input dimension, i.e., s = m.

Example 3 (The PVTOL) The system studied in example 2 is flat, with
= h(X,U) :=(z —esinb, z + € cos 6)

as a flat output. Indeed, the mappings X = () and U = a(g) which generate
the inverse mapping ® can be obtained from the implicit equations

(yr —2)* + (y2 — 2)> = €2
(i =)+ 1) = (y2—2)§1 =0
(42 + 1) siné + §j; cosf = 0.

We first solve for x,2,0,

VUi + (G2 +1)2
o + 1
Z=yste (Yo )

43 + (2 +1)?
= arg(glagZ + 1)7

and then differentiate to get z, 2, 0,u in function of the derivatives of y. Notice
the only singularity is §j? + (42 + 1)% = 0.
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2.4 Application to motion planning

We now illustrate how flatness can be used for solving control problems.
Consider a nonlinear control system of the form

z = f(z,u) zeR*, ueR™
with flat output
y = hiz,u,1,...,ul").

By virtue of the system being flat, we can write all trajectories (z(#),u(t))
satisfying the differential equation in terms of the flat output and its deriva-
tives:

e =09, ..,y
u=ay,y, .., y'?9).
We begin by considering the problem of steering from an initial state to

a final state. We parameterize the components of the flat output y;, ¢+ =
1,...,m by

- ZAij/\j (t)v (8)
J

where the A;(¢), j = 1,..., N are basis functions. This reduces the problem
from finding a function in an infinite dimensional space to finding a finite set
of parameters.

Suppose we have available to us an initial state 2y at time 79 and a final
state g at time 7. Steering from an initial point in state space to a desired
point in state space is trivial for flat systems. We have to calculate the values
of the flat output and its derivatives from the desired points in state space
and then solve for the coeflicients A;; in the following system of equations:

): 22 AizA;(70) vi(tr) = 225 AigAi(7y)
: : (9)
V) = T, A0 () 10y = T, 400 ().
To streamline notation we write the following expressions for the case of
a one-dimensional flat output only. The multi-dimensional case follows by

repeatedly applying the one-dimensional case, since the algorithm is decou-
pled in the component of the flat output. Let A(t) be the ¢ +1 by N matrix

Aij (1) = AP (8) and let
Wi (70),- - 11 (10))

Wi (rp)s -y (75)) (10)
(T, 75)-

Eﬁ| Eﬁl
[ —
5‘

<'-§|\:]
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Then the constraint in equation (9) can be written as

j= <jé;‘jg) A=:AA. (11)

That is, we require the coefficients A to be in an affine sub-space defined by
equation (11). The only condition on the basis functions is that A is full rank,
in order for equation (11) to have a solution.

The implications of flatness is that the trajectory generation problem
can be reduced to simple algebra, in theory, and computationally attractive
algorithms in practice. In the case of the towed cable system [16], a rea-
sonable state space representation of the system consists of approximately
128 states. Traditional approaches to trajectory generation, such as optimal
control, cannot be easily applied in this case. However, it follows from the
fact that the system is flat that the feasible trajectories of the system are
completely characterized by the motion of the point at the bottom of the
cable. By converting the input constraints on the system to constraints on
the curvature and higher derivatives of the motion of the bottom of the cable,
it is possible to compute efficient techniques for trajectory generation.

2.5 Motion planning with singularities

In the previous section we assumed the endogenous transformation

¥(z,u,ur,...) = (h(z,u), h(z, @), h(z,T), .. )

generated by the flat output y = h(x,%) everywhere nonsingular, so that we
could invert it and express z and u in function of y and its derivatives,

W0 00) = (z,u) = $(y, 9, ..., 4.

But it may well be that a singularity is in fact an interesting point of op-
eration. As ¢ is not defined at such a point, the previous computations do
not apply. A way to overcome the problem is to “blow up” the singularity by
considering trajectories ¢ — y(¢) such that

= ¢(y(),9(1),. ..,y (1)

can be prolonged into a smooth mapping at points where ¢ is not defined.
To do so requires a detailed study of the singularity. A general statement
is beyond the scope of this paper and we simply illustrate the idea with an
example.

Example 4 Consider the flat dynamics

T1 =u1, & =usul, Lz = ToUl,
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with flat output y = (z1,z3). When u1 = 0, i.e., 1 = O the endogenous
transformation generated by the flat output is singular and the inverse map-
ping
N s daii—
(yvyvy)k“*(117-7727-7737?117“2): yl,!—{z,ymyhy?yl .3y1 2 ,
n Yy
is undefined. But if we consider trajectories t — y(t) := (a(t),p(a(t))), with
o and p smooth functions, we find that
dp . 2p 3
:l:lg(t) B %(G(t)) . O'(t) 1'/'21'/1 . glyg B F(O’(t)) e (t)

MO0 and 7 B

hence we can prolong t — ¢(y(t),y(t),§(t)) everywhere by

t— <a(t), gg(a(t)), p(o(t)), a(t), P(o(t))).

The motion planning can now be done as in the previous section: indeed, the
functions o and p and their derivatives are constrained at the initial (resp.
final) time by the initial (resp. final) point but otherwise arbitrary.

For a more substantial application see [21,22,9], where the same idea was ap-
plied to nonholonomic mechanical systems by taking advantage of the “nat-
ural” geometry of the problem.

3 Feedback design with equivalence

3.1 From equivalence to feedback

The equivalence relation we have defined is very natural since it is essentially a
1—1 correspondence between trajectories of systems. We had mainly an open-
loop point of view. We now turn to a closed-loop point of view by interpreting
equivalence in terms of feedback. For that, consider the two dynamics

"t:f(zvu)*) (.’E,u)EXxUCRanm‘
g=g(y,v), Wv)eEY xVCR xRk.

They are described in our formalism by the systems (X x U x R®, F) and
(Y x V x R®,G), with I and G defined by

Fla,uut,...) = (flo,u),ul u,. )

Gy,v,v',...) = (gly,v),v",v%,...).
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Assume now the two systems are equivalent, i.e., they have the same trajec-
tories. Does it imply that it is possible to go from z = f(z,u) to ¥ = g(y,v)
by a (possibly) dynamic feedback

z=al(z,z,v), z€ZCR

u = K(z? z’ U)J
and vice versa? The question might look stupid at first glance since such a
feedback can only increase the state dimension. Yet, we can give it some sense

if we agree to work “up to pure integrators” (remember this does not change
the system in our formalism, see the remark after definition 1).

Theorem 2 Assume © = f(z,u) and ¥ = g(y,v) are equivalent. Then z =

f(z,u) can be transformed by (dynamic) feedback and coordinate change into
y=g(y,v), v=v', o' =% .. , V=w

for some large enough integer . Conversely, y = g(y,v) can be transformed
by (dynamic) feedback and coordinate change into

= f(z,u), uw=u', o'=4* ... |, W=w
Jor some large enough integer v.

Proof (Proof [13].). Denote by F and G the infinite vector fields representing
the two dynamics. Equivalence means there is an invertible mapping

®(y,7) = (p(y,v), a(y, D), a(y,0),...)

such that
F($(y,7)) = D8(y,7).G(y, ). (12)
Let § := (y,v,v!,...,v*) and w := v**!. For y large enough, ¢ (resp. a)

depends only on § (resp. on § and w). With these notations, ¢ reads
&(§,w) = (p(#), a(§,w), &(y, W), ... ),

and equation (12) implies in particular
f (@), (g, w)) = Do(§)-§(5, w), (13)

where § := (g,v',...,v*). Because & is invertible, ¢ is full rank hence can be
completed by some map 7 to a coordinate change

g oy) = (0(@), 7))
Consider now the dynamic feedback
u= a7 (z,2),w))
2= Dn(¢7 (2, 2)).4(67 (z,2),w)),
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which transforms £ = f(z,u) into

z — f . f(xaa(¢_1(x7z);w))
(2) = e = (oot o) oo i )
Using (13), we have
(S0 ) — f(w(.ﬂ),a(ﬂ,w))) _ (Dso(ﬂ) (i) — Do(i) 5
f(¢(y)aw) = < Dﬂ(ﬂ)g(ﬂ,’w) = Dﬂ(ﬂ)) g(y,w) —D¢(y).g(y,w).
Therefore f and § are ¢-related, which ends the proof. Exchanging the roles

of f and g proves the converse statement.

As a flat system is equivalent to a trivial one, we get as an immediate conse-
quence of the theorem:

Corollary 2 A flat dynamics can be linearized by (dynamic) feedback and
coordinate change.

Remark 5 As can be seen in the proof of the theorem there are many feed-
backs realizing the equivalence, as many as suitable mappings m. Notice all
these feedback explode at points where ¢ is singular (i.e., where its rank col-
lapses).

Further details about the construction of a linearizing feedback from an
output and the links with extension algorithms can be found in [14].

Example 5 (The PVTOL) We know from example 3 that the dynamics
Z = ~uy sinf + cug cosd
Z=ujcosfh +eussinf — 1
6 = uy
admits the flat output
y = (x—esinf, z +ecosh).
It is transformed into the linear dynamics

y§4) = V1, ygﬂ = V2

by the feedback
€ = —v;sinf + vy cos b + £6°
U = €+ 692

-1 .
Uy = _{(Ul cos + vy sin 0 + 2£6)

and the coordinate change
(2,2,6,%,2,6,6,6) = (y,3,§:y?).

The only singularity of this transformation is € = 0, i.e., §2 + (§ + 1) = 0.
Notice the PVTOL is not linearizable by static feedback.
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3.2 Endogenous feedback
Theorem 2 asserts the existence of a feedback such that

z = f(z,x5(z, z,w))

14

z = alz,z,w). (14)
reads, up to a coordinate change,

y=g,v), v=2v, ... , *=w (15)

But (15) is trivially equivalent to y = g(y,v) (see the remark after defini-
tion 1), which is itself equivalent to z = f(z,u). Hence, (14) is equivalent to
& = f(z,u). This leads to

Definition 5 Consider the dynamics ¢ = f(z,u). We say the feedback
u = k(z,z,w)
z =a(z,z,w)

is endogenous if the open-loop dynamics £ = f(x,u) is equivalent to the
closed-loop dynamics

& = f(z,s{z,z,w))
z =a(z,z,w).
The word “endogenous” reflects the fact that the feedback variables z and w

are in loose sense “generated” by the original variables z, % (see [13,15] for
further details and a characterization of such feedbacks)

Remark 6 It is also possible to consider at no extra cost “generalized” feed-
backs depending not only on w but also on derivatives of w.

We thus have a more precise characterization of equivalence and flatness:

Theorem 3 Two dynamics ¢ = f(z,u) and §y = g(y,v) are equivalent if and
only if £ = f(z,u) can be transformed by endogenous feedback and coordinate
change into

y=g(y,v), o=, ... , *=w (16)
for some large enough integer v, and vice versa.

Corollary 3 A dynamics is flat if and only if it is linearizable by endogenous
feedback and coordinate change.

Another trivial but important consequence of theorem 2 is that an en-
dogenous feedback can be “unraveled” by another endogenous feedback:
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Corollary 4 Consider a dynamics

z = f(z,k(z,z,w))

z =a(z,z,w)
where

u = k(x, z,w)

2 = a{x,z,w)

s an endogenous feedback. Then it can be transformed by endogenous feedback
and coordinate change into

&= f(z,uw), w=4u', ... , @ =w. amn

for some large enough integer p.

This clearly shows which properties are preserved by equivalence: properties
that are preserved by adding pure integrators and coordinate changes, in
particular controllability.

An endogenous feedback is thus truly “reversible”, up to pure integrators.
It is worth pointing out that a feedback which is inwvertible in the sense of
the standard —but maybe unfortunate- terminology [18] is not necessarily
endogenous. For instance the invertible feedback z = v, u = v acting on the
scalar dynamics £ = u is not endogenous. Indeed, the closed-loop dynamics
& =wv, % = v is no longer controllable, and there is no way to change that by
another feedback!

3.3 Tracking: feedback linearization

One of the central problems of control theory is trajectory tracking: given
a dynamics £ = f(z,u), we want to design a controller able to track any
reference trajectory ¢ — (z,(t),u,(t)). If this dynamics admits a flat output
y = h(z, %), we can use corollary 2 to transform it by (endogenous) feedback
and coordinate change into the linear dynamics y#*1) = w. Assigning then

vi= gD (1) - KA
with a suitable gain matrix K, we get the stable closed-loop error dynamics
Ayt = _ K Ag,
where y(t) := (2,(t),u,(t)) and § := (3,9, ...,y*) and A€ stands for £~ ().

This control law meets the design objective. Indeed, there is by the definition
of flatness an invertible mapping

2(y) = (¢(@),2@®),a(),---)
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relating the infinite dimension vector fields #(z,%) := (f(z,u),u,u*,...) and
G(%) = (y,¥*,...). From the proof of theorem 2, this means in particular

v = oG (1) + A7)
= o(7r (1)) + Ry (y-(t), A7) Af
Z'r(t) + Rép(yr(t); Agj)Agj

il

and
u = (i () + Aj, —K Af)

e (1) + Ra(y ™ (1), Af). (éy;m)

fl

Il

Ai
~ (1+1) ~ Y
W) + Ralir (0,500, a5, 40). (%),
where we have used the fundamental theorem of calculus to define
1
R,(Y,AY) = / Dp{Y +tAY)dt
0
1
Ro(Y,w, AY, Aw) = / DalY + tAY,w + tAw)dt.
0

Since Ay — 0 as ¢ — oo, this means z — z,(t) and u — wu,(t). Of course
the tracking gets poorer and poorer as the ball of center §.(¢) and radius Ay
approaches a singularity of . At the same time the control effort gets larger
and larger, since the feedback explodes at such a point {see the remark after
theorem 2). Notice the tracking quality and control effort depend only on the
mapping @, hence on the flat output, and not on the feedback itself.

We end this section with some comments on the use of feedback lineariza-
tion. A linearizing feedback should always be fed by a trajectory generator,
even if the original problem is not stated in terms of tracking. For instance,
if it is desired to stabilize an equilibrium point, applying directly feedback
linearization without first planning a reference trajectory yields very large
control effort, when starting from a distant initial point. The role of the tra-
jectory generator is to define an open-loop “reasonable” trajectory -i.e., sat-
isfying some state and/or control constraints— that the linearizing feedback
will then track.

3.4 Tracking: singularities and time scaling

Tracking by feedback linearization is possible only far from singularities of
the endogenous transformation generated by the flat output. If the reference
trajectory passes through or near a singularity, then feedback linearization
cannot be directly applied, as is the case for motion planning, see section 2.5.
Nevertheless, it can be used after a time scaling, at least in the presence
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of “simple” singularities. The interest is that it allows exponential tracking,
though in a new “singular” time.

Example 6 Take a reference trajectory t — y.(t) = (o(t),p(c(t)) for ex-
ample 4. Consider the dynamic time-varying compensator u; = £6(t) and

& =wv16(t). The closed loop system reads
! 7 ro_ 1
Ty =¢§, Ty =u, Tz =2 § =i

where ' stands for d/do, the extended state is (z1,%2,23,£), the new control
is (v1,v2). An equivalent second order formulation is

no__ no_. 2
Ty =wv, T3 =u” + T201.

When £ is far from zero, the static feedback us = (va — T2v1) /€2 linearizes
the dynamics,
zf =v, x§ = vy

in o scale. When the system remains close to the reference, £ = 1, even if for
some t, o(t) = 0. Take

v1 =0 = sign(o)a; (§ — 1) — ax(z1 — o)

Uy = fg’% — sign(o)a; <x2§ — %)) — ay(zs — p) (18)

with ay > 0 and as > 0, then the error dynamics becomes exponentially
stable in o-scale (the term sign(o) is for dealing with 6 <0 ).

Similar computations for trailer systems can be found in [8,5].

Notice that linearizing controller can be achieved via quasi-static feedback
as proposed in [4].
3.5 Tracking: flatness and backstepping

Some drawbacks of feedback linearization We illustrate on two simple
(and caricatural) examples that feedback linearization may not lead to the
best tracking controller in terms of control effort.

Example 7 Assume we want to track any trajectory t — (xr(t),ur(t)) of
i=-z-2*+u, zeER
The linearizing feedback

u=2z+2z° - kAT + &, ()
= u,(t) + 3z, () Az® + (1 + 3z2(t) — k) Az + Az?

meets this objective by imposing the closed-loop dynamics At = —kAx.
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But a closer inspection shows the open-loop error dynamics
At = — (14 322(t)) Az — Az® + 3z, (t) Az® + Au
= —Az (1 + 3z2(t) — 3z, (t) Az + Az?) + Au
is naturally stable when the open-loop control u := u,(t) is applied (indeed

1+ 3z%(t) — 3z, (t) Az + Ax? is always strictly positive). In other words, the
linearizing feedback does not take advantage of the natural damping effects.

Example 8 Consider the dynamics
.’i&‘l = Uy, .’t‘zIUz(l—ul),

for which it is required to track an arbitrary trajectory t = (z,(t),ur(t))
(notice u,(t) may not be so easy to define because of the singularity uy = 1).
The linearizing feedback

uy; = ~kAz; + .’i?lr(t)
w = —kAxy + .’i&‘gr(t)
T 14 kAIl e jﬁlr(t)

meets this objective by imposing the closed-loop dynamics Az = —kAxz. Un-
fortunately us grows unbounded as u; approaches one. This means we must in
practice restrict to reference trajectories such that |1—uy.(t)| is always “large”
—in particular it is wmpossible to cross the singularity— and to a “small”
gain k.

A smarter control law can do away with these limitations. Indeed, consid-
ering the error dynamics

A.’ij‘l = Au1

Axy = (1 —u1,(t) — Auy) Aug — ua,(t) Aug,

and differentiating the positive function V(Az) = %(Am? + Azl) we get
V = Aug(Azy — ugr () Aza) + (1 — ugn(t) — Aug) Ay Ausy.
The control law

Auy = —k(Azy — ug, (8) Axs)
Au2 = ~(1 - Ulr(t) — A’U,l)A.TQ

does the job since
V= —(Azy ’U,Qr(t)AZ'Q)2 — (1 = ugn(t) - Aul)Aarz)Q <0.

Moreover, when uy,(t) # 0, V is zero if and only if ||Az|| is zero. It is thus
possible to cross the singularity —which has been made an unstable equilibrium
of the closed-loop error dynarmics— and to choose the gain k as large as desired.
Notice the singularity is overcome by a “truly” multi-input design.
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It should not be inferred from the previous examples that feedback lineariza-
tion necessarily leads to inefficient tracking controllers. Indeed, when the tra-
jectory generator is well-designed, the system is always close to the reference
trajectory. Singularities are avoided by restricting to reference trajectories
which stay away from them. This makes sense in practice when singularities
do not correspond to interesting regions of operations. In this case, designing
a tracking controller “smarter” than a linearizing feedback often turns out to
be rather complicated, if possible at all.

Backstepping The previous examples are rather trivial because the control
input has the same dimension as the state. More complicated systems can be
handled by backstepping. Backstepping is a versatile design tool which can be
helpful in a variety of situations: stabilization, adaptive or output feedback,
etc ([12] for a complete survey). It relies on the simple yet powerful following
idea: consider the system

-i':f(l',g), f($0,§0)20

£=u,
where (z,&) € R* xR is the state and u € R the control input, and assume we
can asymptotically stabilize the equilibrium ¢ of the subsystem & = f(x, &),
i.e., we know a control law £ = «a(z), a(zp) = & and a positive function
V(z) such that

V = DV(z).f(z,a(z) <0.

A key observation is that the “virtual” control input € can then “back-
stepped” to stabilize the equilibrium (z¢,&y) of the complete system. Indeed,
introducing the positive function

W(2,8) = V(@) + 5(6 ~ a(@))

and the error variable z := £ — a(x), we have
W = DV (z).f(z,a(z) + 2) + z(u ~ a(z,§))
=DV (z).(f(z,(z)) + R(z,2).z) + z(u — Da(z).f(z,¢))
=V+ z(u~ Da(z).f(z,€) + DV (2).R(z,2)),

where we have used the fundamental theorem of calculus to define

laf
Rz, h ::/ —{z,x + th)dt
@)= [ Harm

(notice R(z,h) is trivially computed when f is linear in €). As V is negative
by assumption, we can make W negative, hence stabilize the system, by
choosing for instance

u = —z+4 Da(z).f(z, &) — DV (z). Rz, z).
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Blending equivalence with backstepping Consider a dynamics §y =
g(y,v) for which we would like to solve the tracking problem. Assume it is
equivalent to another dynamics & = f(z,u) for which we can solve this prob-
lem, i.e., we know a tracking control law together with a Lyapunov function.
How can we use this property to control ¥ = g(y,v)? Another formulation
of the question is: assume we know a controller for £ == f(z,u). How can we
derive a controller for

= flz,k(z, z,v))

z = alx, z,v),

where u = k(z,z,v),z = a(z, z,v) is an endogenous feedback? Notice back-
stepping answers the question for the elementary case where the feedback in
question is a pure integrator.

By theorem 2, we can transform & = f(z,u) by (dynamic) feedback and
coordinate change into

y=g(y,v), v=2v, ... | H=w. (19)
for some large enough integer n. We can then trivially backstep the control
from v to w and change coordinates. Using the same reasoning as in sec-
tion 3.3, it is easy to prove this leads to a control law sclving the tracking
problem for z = f(z,u). In fact, this is essentially the method we followed
in section 3.3 on the special case of a flat £ = f(z,u). We illustrated in
section 3.5 potential drawbacks of this approach.

However, it is often possible to design better —though in general more
complicated— tracking controllers by suitably using backstepping. This point
of view is extensively developed in [12], though essentially in the single-
input case, where general equivalence boils down to equivalence by coordinate
change. In the multi-input case new phenomena occur as illustrated by the
following examples.

Example 9 (The PVTOL) We know from example 2 that

I = —uysin@ + cus cosf
Z = uycosl + cugsin@ — 1 (20)
é:u2

is globally equivalent to
i1 = —¢sind, yo = Ecosf — 1,

where € = uy + €62, This latter form is rather appealing for designing a
tracking controller and leads to the error dynamics

i

Ay
A

~€sinf + £,(t) sin 6,.(¢)
cost — &-(t) cos 0,(t)
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Clearly, if 8 were a control input, we could track trajectories by assigning
—=€sinf = a1 (Ayr, Agr) + G1r (1)
§cos = az(Ayz, AY2) + §2,(t)

for suitable functions a1, as and find a Lyapunov function V(Ay, Ay) for the
system. In other words, we would assign

£ =Z(Ay, Ay, §r(t) == V(g + §10)2 + (ag + §ar )2
0 = O(Ay, Ay, i (1)) = arg(ar + 1, @2 + for).

(21

The angle 6 is a priori not defined when £ =0, i.e., at the singularity of the
flat output y. We will not discuss the possibility of overcoming this singularity
and simply assume we stay away from it. Aside from that, there remains a
big problem: how should the “virtual” control law (21) be understood? Indeed,
it seems to be a differential equation: because y depends on 8, hence = and
@ are in fact functions of the variables

xajjazy‘éigaésyT(t)vyT(t)ng(t)'

Notice £ is related to the actual control u, by a relation that also depends
on 8.

Let us forget this apparent difficulty for the time being and backstep (21)
the usual way. Introducing the error variable ky = 0 — @(A1 AV TA (t)) and
using the fundamental theorem of calculus, the error dynamics becomes

A = a1 (Ayr, A1) — ki Rsin (0(Ay, A9, (1)), k1) E(Ay, Ay, §: (1))
Affa = as(Dy1, &) + K1 Reos (O(Ay, Ag, (1), k1) Z(Ay, Ay, i (1))
Iz.'/l = 9 - @.(K/l,Ayv‘AyvyT(t))yg"s) (t))

Notice the functions

_ inh

Ryin(@, h) = sinxCOSh 1 sin
h—-1 mh

Reos(z, h) = cosxgsh—— — sin 2

are bounded and analytic. Differentiate now the positive function
( y . 1 .
Vi(AQy, Ay, k1) = V(Ay, Ay) + inf

to get

OV, OV
T 90y T Ay,
ov . ov

EA—Z/QAyg + m(oq + K1 Reos =) + 51 (0 —O)
ov ov )

=V + (9—@+m (RCOSBAyl ~RSin8Ay2>

Vl (al - NleinE) +

n
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where we have omitted arguments of all the functions for the sake of clarity.
If 8 were a control input, we could for instance assign

LI
94y o 94y
=0 (K'l, Ay, Ay> 'i)r (t), yy('z) (t)> s

o get Vi = V- k2 < 0. We thus backstep this “virtual” control law: we
introduce the error variable

Ky = 0 — Oy (K1, Ay, Ay, (1), ¥!P (1))

together with the positive function

—
=
—

9 = —K1 + @ — K1 (Rcos

. . 1
‘/Q(Ay>Ay>K'1>K'2) =W (Ay,Ay, K’l) + 5”’%

Differentiating

Vo =V 4 k1 (—ky + &) + ka(va —~ )

= Vi + Kolug — O + K2),

and we can easily make i negative by assigning

uy 1= O (K1, K2, Ay,Ay,y,(t),yfng)(t),yﬂ“(t)) (22)
for some suitable function O,.

A key observation is that Oy and V, are in fact functions of the variables

z,%,2, 2,979,“(25), . ,yi‘l)(t),

which means (22) makes sense. We have thus built a static control law

w = Z(z,1,2,%,60,0,y.(t), - (), . () + £6°

uy = 6y (:c,:'L', z, é,6,9, yr(t),. .. ,y£4) (t))
that does the tracking for (20). Notice it depends on y,.(t) up to the fourth
derivative.
Example 10 The dynamics

T =uy, Fo=ux3(1—wu1), <3=us,

admits (z1,x2) as a flat output. The corresponding endogenous transforma-
tion is singular, hence any linearizing feedback blows up, when u; = 1. How-
ever, it is easy to backstep the controller of example 8 to build a globally
tracking static controller

Remark 7 Notice that none the of two previous examples can be linearized by
static feedback. Dynamic feedback is necessary for that. Nevertheless we were
able to derwe static tracking control laws for them. An explanation of why
this is possible is that a flat system can in theory be linearized by a quasistatic
feedback [3] —provided the flat output does not depend on derivatives of the
input-.
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Backstepping and time-scaling Backstepping can be combined with lin-
earization and time-scaling, as illustrated in the following example.

Example 11 Consider example / and its tracking control defined in exam-
ple 6. Assume, for example, that & > 0. With the dynamic controller

E=vio, w =£&6, ug= (v — x2u1)/E°

where v1 and vy are given by equation (18), we have, for the error e = y—y,,
a Lyapunov function V (e, de/do) satisfying

dV/do < —aV (23)

with some constant a > 0. Remember that de/do corresponds to (€ — 1,196 —
dp/do). Assume now that the real control is not (u1,uz2) but (4 = wy, ug).
With the extended Lyapunov function

W =Vie,de/do) + %(ul —£6)?

we have
W=V +(w — & — &6)((ur — £0).

Some manipulations show that

: L joV av 8V 4V
V= (u; —6¢) <8—61— + 5{;232 + é-%qu) + U—CE

(remember € = v16 and (v1,vq) are given by (18)). The feedback (b > 0)

wyp = — <8V ov + QZU2§> +£d+§6 —bluy — £6)

hASUITLAAISN
Jey  Oey dely

achieves asymptotic tracking since W < —aoV — b(uq — £6)2.

Conclusion It is possible to generalize the previous examples to prove that
a control law can be backstepped “through” any endogenous feedback. In
particular a flat dynamics can be seen as a (generalized) endogenous feedback
acting on the flat output; hence we can backstep a control law for the flat
output through the whole dynamics. In other words the flat output serves as
a first “virtual” control in the backstepping process. It is another illustration
of the fact that a flat output “summarizes” the dynamical behavior.

Notice also that in a tracking problem the knowledge of a flat output is
extremely useful not only for the tracking itself (i.e., the closed-loop problem)
but also for the trajectory generation (i.e., the open-loop problem)



Flat Systems, Equivalence and Feedback 31

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

E. Cartan. Sur Péquivalence absolue de certains systémes d’équations
différentielles et sur certaines familles de courves. Bull. Soc. Math. France,
42:12-48, 1914. Also in (Euvres Compleétes, part II, vol. 2, pp.1133-1168, CNRS,
Paris, 1984.

E. Cartan. Sur lintégration de certains systémes indéterminés d’équations
différentielles. J. fir reine und angew. Math., 145:86-91, 1915. Also in (Buvres
Complétes, part I, vol. 2, pp.1164-1174, CNRS, Paris, 1984.

E. Delaleau and J. Rudolph. Decoupling and linearization by quasi-static feed-
back of generalized states. In Proc. of the 3rd European Control Conf., pages
1069-1074, Rome, 1995.

E. Delaleau and J. Rudolph. Control of flat systems by quasi-static feedback
of generalized states. Int. Journal of Control, 71:745-765, 1998.

M. Fliess, J. levine, P. Martin, F. Ollivier, and P. Rouchon. Controlling non-
linear systems by flatness. In C.I. Byrnes, B.N. Datta, D.S. Gilliam, and C.F.
Martin, editors, Systems and control in the Twenty-First Century, Progress in
Systems and Control Theory. Birkhauser, 1997.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Sur les systémes non linéaires
différentiellement plats. C.R. Acad. Sci. Paris, 1-315:619-624, 1992.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Linéarisation par bouclage
dynamique et transformations de Lie-Bicklund. C.R. Acad. Sci. Paris, 1-
317:981-986, 1993.

. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Design of trajectory stabi-

lizing feedback for driftless flat systems. In Proc. of the 3rd European Control
Conf., pages 1882-1887, Rome, 1995.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of non-
linear systems: introductory theory and examples. Int. J. Control, 61(6):1327—
1361, 1995.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Nonlinear control and diffi-
eties, with an application to physics. Contemporary Mathematics, 219:81-92,
1998.

M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. A Lie-Backlund approach
to equivalence and flatness of nonlinear systems. IEEE AC, 44:922-937, 1999.
M. Krsti¢, 1. Kanellakopoulos, and P. Kokotovi¢. Nonlinear and Adaptive Con-
trol Design. John Wiley & Sons, Inc., 1995.

Ph. Martin. Contribution d Uétude des systémes différentiellement plats. PhD
thesis, Ecole des Mines de Paris, 1992.

Ph. Martin. An intrinsic condition for regular decoupling. Systems & Control
Letters, 20:383-391, 1993.

Ph. Martin. Endogenous feedbacks and equivalence. In Systems and Networks:
Marthematical Theory and Applications (MTNS’98), volume II, pages 343-346.
Akademie Verlag, Berlin, 1994.

R. M. Murray. Trajectory generation for a towed cable flight control system.
In Proc. IFAC World Congress, pages 395-400, San Francisco, 1996.

M. van Nieuwstadt, M. Rathinam, and R.M. Murray. Differential flatness and
absolute equivalence. In Proc. of the 33rd IEEE Conf. on Decision and Control,
pages 326-332, Lake Buena Vista, 1994.



32

18.

19.

20.

21.

22.

23.

24.

Philippe Martin et al.

H. Nijmeijer and A.J. van der Schaft. Nonlinear Dynamical Control Systems.
Springer-Verlag, 1990.

J.B. Pomet. A differential geometric setting for dynamic equivalence and dy-
namic linearization. In Workshop on Geometry in Nonlinear Control, Banach
Center Publications, Warsaw, 1993.

J.B. Pomet, C. Moog, and E. Aranda. A non-exact Brunovsky form and dy-
namic feedback linearization. In Proc. of the 31st IEEE Conf. on Decision and
Control, pages 2012-2017, 1992.

P. Rouchon, M. Fliess, J. Lévine, and Ph. Martin. Flatness and motion plan-
ning: the car with n-trailers. In Proc. ECC’93, Groningen, pages 1518-1522,
1993.

P. Rouchon, M. Fliess, J. Lévine, and Ph. Martin. Flatness, motion planning
and trailer systems. In Proc. of the 32nd IEEE Conf. on Decision and Control,
pages 2700-2705, San Antonio, 1993.

W.M. Sluis. Absolute Equivalence and its Application to Control Theory. PhD
thesis, University of Waterloo, Ontario, 1992.

V.V. Zharinov. Geometrical Aspects of Partial Differential Equations. World
Scientific, Singapore, 1992.



Flat Systems: open problems, infinite
dimensional extension, symmetries and catalog
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Abstract. This chapter is devoted to open problems and new perspectives on flat
systems, including developments on symmetries and distributed parameters systemns
based on examples of physical interest. It contains a representative catalog of flat
systems arising in various fields of engineering.

1 Checking flatness: an overview

1.1 The general problem

Devising a general computable test for checking whether ¢ = f(z,u),z €
R*,u € R™ is flat remains up to now an open problem. This means there
are no systematic methods for constructing flat outputs. This does not make
flatness a useless concept: for instance Lyapunov functions and uniform first
integrals of dynamical systems are extremely helpful notions both from a
theoretical and practical point of view though they cannot be systematically
computed.

The main difficulty in checking flatness is that a candidate flat output
y = h{z,u,...,ul")) may a priori depend on derivatives of u of arbitrary
order r. Whether this order r admits an upper bound (in terms of n and
m) is at the moment completely unknown. Hence we do not know whether a
finite bound exists at all. In the sequel, we say a system is r-flat if it admits
a flat output depending on derivatives of u of order at most r.

To 1llustrate this upper bound might be at least linear in the state dimen-
sion, consider the system

() (az) .
Ty = Uy, Ty = U2, I3 = U1Uy

with a; > 0 and a9 > 0. It admits the flat output
yo=as+ (D Y g =,
=1

hence is r-flat with 7 := min(a,,as) — 1. We suspect (without proof) there
is no flat output depending on derivatives of u of order less than r — 1.
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If such a bound «(n,m) were known, the problem would amount to check-
ing p-flatness for a given p < k(n,m) and could be solved in theory. Indeed, it

consists [36] in finding m functions hq,..., h,, depending on (z,u,... ,ul?))
such that
dim span {d:x:l, cydan, duy, . dug, dBS ,th,‘{)}OSMS” =m{v + 1),

where v := n + pm. This means checking the integrability of the partial
differential system with a transversality condition

dz; Adh A ... AdRY) =0, i=1,...,n
du; Adh A ... AdR™) =0, ji=1,...,m
dh A ... AdR®) #£0,

where dh(#) stands for dh{* A. . .AdRY) . Tt is in theory possible to conclude by
using a computable criterion [3,59], though this seems to lead to practically
intractable calculations. Nevertheless it can be hoped that, due to the special
structure of the above equations, major simplifications might appear.

1.2 Known results

Systems linearizable by static feedback. A system which is linearizable
by static feedback and coordinate change is clearly flat. Hence the geometric
necessary and sufficient conditions in [26,25] provide sufficient conditions for
flatness. Notice a flat system is in general not linearizable by static feedback,
with the major exception of the single-input case.

Single-input systems. When there is only one control input flatness re-
duces to static feedback linearizability [6] and is thus completely characterized
by the test in [26,25].

Affine systems of codimension 1. A system of the form

n—1

a'::fo(m)+2ujgj(x), z e R,

j=1

i.e., with one input less than states and linear w.r.t. the inputs is 0-flat as
soon as it is controllable [6] (more precisely strongly accessible for almost
every ).

The picture is much more complicated when the system is not linear w.r.t.
the control, see [37] for a geometric sufficient condition.

Affine systems with 2 inputs and 4 states. Necessary and sufficient
conditions for 1-flatness of the system can be found in [58]. They give a good
idea of the complexity of checking r-flatness even for r small.
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Driftless systems. For driftless systems of the form z = Y 1", fi(z)u;
additional results are available.

Theorem 1 (Driftless systems with two inputs [39]) The system

= f (a:)ul -+ fg(z)u2

is flat if and only if the generic rank of Fy. is equal to k+2 fork=10,... ,n—
2n where Ey := span{f1, f2}, Ex+1 := span{ Ey,[Ex, Ex]}, k > 0.

A flat two-input driftless system is always 0-flat. As a consequence of a result
in [49], a flat two-input driftless system satisfying some additional regularity
conditions can be put by static feedback and coordinate change into the
chained system [50]

&1 = uy, T2 =uz, &3z==Tau, ..., Lp = Tpo1Ul

Theorem 2 (Driftless systems, n states, and n — 2 inputs [40,41])

n—2

T = Zuifi(z), reR*

2=1

is flat as soon as it is controllable (i.e., strongly accessible for almost every ).
More precisely it is O-flat when n is odd, and 1-flat when n is even.

All the results mentioned above rely on the use of exterior differential
systems. Additional results on driftless systems, with applications to non-
holonomic systems, can be found in {76,75,72].

Mechanical systems. For mechanical systems with one control input less
than configuration variables, [63) provides a geometric characterization, in
terms of the metric derived form the kinetic energy and the control codistri-
bution, of flat outputs depending only on the configuration variables.

A necessary condition. Because it is not known whether flatness can be
checked with a finite test, see section 1.1, it is very difficult to prove that a
system is not flat. The following result provides a simple necessary condition.

Theorem 3 (The ruled-manifold criterion [66,12]) Assume = f(z,u)
is flat. The projection on the p-space of the submanifold p = f(z,u), where
x 18 considered as a parameter, is a ruled submanifold for all z.

The criterion just means that eliminating u from & = f(z,u) yields a set of
equations F'(z,%) = 0 with the following property: for all (z,p) such that
F(z,p) = 0, there exists a € R*, a # 0 such that

YAeR, PFlz,p+ra)=0.



36 Philippe Martin et al.

F(z,p) = 0 is thus a ruled manifold containing straight lines of direction a.
The proof directly derives from the method used by Hilbert [23] to prove

2
the second order Monge equation d—zé = (%) is not solvable without inte-
g q dz dz

grals.

A restricted version of this result was proposed in [73] for systems lin-
earizable by a special class of dynamic feedbacks.

As crude as it may look, this criterion is up to now the only way —except
for two-input driftless systems— to prove a multi-input system is not flat.

Example 1 The system

Ty =ur, G2 =g, da = (un)? o+ (ug)?

is not flat, since the submanifold p3 = p? +p3 is not ruled: there is no a € R?,
a # 0, such that

YA€ R ps + Aaz = (p1 + Aa1)® + (p2 + Aan)?.

Indeed, the cubic term in A implies ay = 0, the quadratic term a; = 0 hence
as = 0.

Example 2 The system &3 = &2 + &2 does not define a ruled submanifold of
R3: it is not flat in R. But it defines a ruled submanifold in C3: in fact it is
flat in C, with the flat output

y = (z3 — (21 — TV ~1)(z) + 22/ —1), z, + 332\/~—1)

Example 3 (The ball and beam [21]) We now prove by the ruled mani-
fold criterion that

# = —Bgsinf + Bré?
(mr? + J + Jp)0 = 7 — 2mri6 — mgr cos 6,
where (7‘,7",0,9) s the state and T the input, is not flat (as it is a single-
mput system, we could also prove it is not static feedback linearizable, see
section 1.2). Eliminating the input T yields
F=v, U, =—Bgsind+ Bré?, 0 =u

which defines a ruled manifold in the (f,vr,é,bg)—space for any r,v,.,0, vy,
and we cannot conclude directly. Yet, the system is obviously equivalent to

F=v, U= —Bgsinf+ BTQQ,

which clearly does not define a ruled submanifold for any (r,v,,0). Hence the
system is not flat.
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2 Infinite dimension “flat” systems

The idea underlying equivalence and flatness —a one-to-one correspondence
between trajectories of systems— is not restricted to control systems described
by ordinary differential equations. It can be adapted to delay differential sys-
tems and to partial differential equations with boundary control. Of course,
there are many more technicalities and the picture is far from clear. Never-
theless, this new point of view seems promising for the design of control laws.
In this section, we sketch some recent developments in this direction.

2.1 Delay systems

Consider for instance the simple differential delay system
T1(t) = z22(t), Ea(t) = z1(t) — za(t) +ul(t —1).

Setting y(t) := z;(t), we can clearly explicitly parameterize its trajectories
by

() =y(t), =) =y@), u@)=§lt+D+ylE+1)=ylt+1),

In other words, y(t) := z1(¢) plays the role of a“flat” output. This idea is
investigated in detail in [43], where the class of d-free systems is defined (4 is
the delay operator). More precisely, [43,45] considers linear differential delay
systems

M(d/dt,$)w =0

where M is a (n — m) X n matrix with entries polynomials in d/dt and &
and w = (wy,... ,w,) are the system variables. Such a system is said to be
d-free if it can be related to the “free” system y = (y1,... ,ym) consisting of
arbitrary functions of time by

= P(d/dt, 6,6 1)y
= Q(d/dt, 6,6 Hw

where P (resp. Q) is a n X m (resp. m X n ) matrix the entries of which are
polynomial in d/dt, § and 6 1.

Many linear delay systems are §-free. For example, (t) = Az(t) + Bu(t —
1), (A, B) controllable, is §-free, with the Brunovski output of & = Az + Bv
as a “é-free” output.

The following systems, commonly used in process control,

:Z{M}“j(s)’ i1 p

1+ 7

(s Laplace variable, gains K7, delays 47 and time constants 7/ between uj
and z;) are d-free [56]. Other interesting examples of é-free systers arise from
partial differential equations:
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Example 4 (Torsion beam system) The torsion motion of a beam (fig-
ure 1) can be modeled in the linear elastic domain by

026(z,t) = 820(z,t), =€ [0,1]
3:0(0,t) = u(t)

where 0(z,t) is the torsion of the beam and u(t) the control input. From
d’Alembert’s formula, 6(z,t) = ¢(x +t) + Y(z ~ t), we easily deduce

26(t,z) =gt +z—-1) gt —z+ ) +yt+z -1 +yt-2+1)
2u(t) =g+ 1)+ 4t —1)—gt+1)+9lt~ 1),

where we have set y(t) := 0(1,t). This proves the system is §-free with 6(1,t)
as a “0-flat” output. See [46,15,18] for details and an application to motion
planning.

=0(1,1)
O(x, t)

u(t)

0

Fig. 1. torsion of a flexible beam

Many examples of delay systems derived from the 1D-wave equation can
be treated via such techniques (see [8] for tank filled with liquid, [14] for the
telegraph equation and [57] for two physical examples with delay depending
on control).

2.2 Distributed parameters systems

For partial differential equations with boundary control and mixed systems of
partial and ordinary differential equations, it seems possible to describe the
one-to-one correspondence via series expansion, though a sound theoretical
framework is yet to be found. We illustrate this original approach to control
design on the following two “flat” systems.
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Example 5 (Heat equation) Consider as in [30] the linear heat equation

0i0(z,t) = 020(x,t), =z €[0,1) 1)
9:0(0,1) =0 (2)
0(1,t) = u(t), (3)

where 6(x,t) is the temperature and u(t) is the control input. We claim that

y(t) := 6(0,t)

is a “flat” outpui. Indeed, the equation in the Laplace variable s reads

s0(z,s) = 0"(z,s) with 6'(0,s) =0, 6(1,s)=a(s)

(' stands for 8, and " for the Laplace transform), and the solution is clearly
0(z, s) = cosh(z/5)i(s)/ cosh(y/s). As 6(0,s) = G(s)/ cosh(y/3), this implies

a(s) = cosh(v/s) §(s) and O(z,s) = cosh(zy/3) §(s).

Since cosh /s = S5 51/(2i)!, we eventually get

i=

+o00 (1)
- : yU(t)
O(z,t) = ;:1 z’ @) (4)
+o00 (i)
_ v ur)
u(t) = 2 Qi (5)

In other words, whenever t — y(t) is an arbitrary function (i.e., a trajectory
of the trivial systemy = v), t — (0(z,t),u(t)) defined by (4)-(5) is a (formal)
trajectory of (1)-(3), and vice versa. This is exactly the idea underlying the
definition of flatness. Notice these calculations have been known for a long
time, see [77, pp. 588 and 594].

To make the statement precise, we now turn to convergence issues. On
the one hand, t — y(t) must be a smooth function such that

JK,M >0, Vi>O0,Vtelt,t1], |yW@)] < MEK)*

to ensure the convergence of the series (4)-(5).

On the other hand t — y(t) cannot in general be analytic. Indeed, if the
system 1is to be steered from an initial temperature profile 0(x,tq) = ao(z) at
time ty to a final profile 8(x,t1) = ay(x) at time t1, equation (1) implies

vt e [0,1),¥i >0, y(t) =8/0(0,t) = 826(0, 1),
and in particular

Vi>0,  yW(t) =07 a0(0) and y () =0 ai ().
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If for instance ap(x) = ¢ for all x € {0,1] (i.e., uniform temperature profile),
then y(to) = ¢ and y'V(ty) = 0 for all i > 1, which implies y(t) = ¢ for all t
when the function is analytic. It is thus impossible to reach any final profile
but ay(z) = ¢ for all T € [0,1].

Smooth functions t € {tg, t1] — y(t) that satisfy

3K,M>0, Vi>O0, Iy @ (8)] < M (K1)

are known as Gevrey-Roumieu functions of order o [62] (they are also closely
related to class S functions [20]). The Taylor expansion of such functions is
convergent for o < 1 and divergent for o > 1 (the larger ¢ is, the “more
divergent” the Taylor expansion is ). Analytic functions are thus Gevrey-
Roumieu of order < 1.

In other words we need a Gevrey-Roumieu function on [to,t;] of order
> 1 but < 2, with nitial and final Taylor expansions imposed by the initial
and final temperature profiles. With such a function, we can then compute
open-loop control steering the system from one profile to the other by the
formula (4).

For instance, we steered the system from uniform temperature 0 att =0
to uniform temperature 1 at t = 1 by using the function

0 ift <0
1 ift>1
fot exp(—1/(r(1 — 7))")dr
i exp(=1/(r(1 = 7))7)dr

R3¢t~ y() =

if t € (0,1],

with v = 1 (this function is Gevrey-Roumieu functions of order 1 + 1/v).
The evolution of the temperature profile 8(x,t) is displayed on figure 2 (the
Matlab simulation is available upon request at rouchon@cas.ensmp.fr).

Similar but more involved calculations with convergent series corresponding
to Mikunsiriski operators are used in [16,17] to control a chemical reactor and
a flexible rod modeled by an Euler-Bernoulli equation. For nonlinear systems,
convergence issues are more involved and are currently under investigation.
Yet, it is possible to work —at least formally- along the same line.

Example 6 (Flexion beam system) Consider with [29] the mized system

pFu(z,t) = pwi(t)u(z,t) - EISu(z,t), =z €]0,1]
I3(t) — 2w(t) <u, Bru>(t)

S(f) =
w(t) I+ <u,u>(t)

with boundary conditions

u(0,t) = 9,u(0,t) =0, A2u(1,t) = (1), ABu(1,1) = In(t),
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Fig. 2. evolution of the temperature profile for ¢t € [0, 1].

where p, EI,1; are constant parameters, u(z,t) is the deformation of the

beam, w(t) is the angular velocity of the body and <f, g>(t fo of(z,t)g(x, t)dx.
The three control inputs are I (t), I2(t), I3(t). We clazm that

y(t) == (02u(0,t), B3u(0,t),w(t))

is a “flat” output. Indeed, w(t), I (t), I2(t) and I3(t) can clearly be expressed
in terms of y(t) and u(x,t), which transforms the system into the equivalent
Cauchy-Kovalevskaya form

u(0,t) =0
EI0%u(z,t) = py2(t)ul, t) — pdlu(z, t) d 9:u(0,) =0
pu(z,t) = pys(t)u(z,t) — pdiu(z, an 82u(0,1) = 11 (1)
O3u(0,t) = ya(2).
Set then formally u(z,t) = :og (t)%, plug this series into the above sys-

tem and identify term by term. This yields

ap = 0, ay = 0, as = yi, ag = yYa,
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and the iterative relation Vi > 0, Ela;iq4 = py3a; — pi;. Hence for all i > 1,

14 .

ag; =0 Aditp = E(y§a4i~2 — Q4i—2)
14 .

agit1 =0 Q4443 = E(ygauq — d4i-1).

There is thus a 1-1 correspondence between (formal) solutions of the system
and arbitrary mappings t v+ y(t): the system is formally flat.

3 State constraints and optimal control

3.1 Optimal control

Consider the standard optimal control problem

T
min J(u) :/ L(z(t),u(t))dt
u
0
together with ¢ = f(z,u), 2(0) = a and =(T') = b, for known a,b and T.
Assume that ¢ = f(z,u) is flat with y = h(z,u,... ,ul”) as flat output,

37:<P(y,--~ay(q)), u:a(y,...,y(q)).

A numerical resolution of min, J(u) a priori requires a discretization of the
state space, i.e., a finite dimensional approximation. A better way is to dis-
cretize the flat output space. Set y;(t) = Ef’ A;;Aj(t). The initial and final
conditions on x provide then initial and final constraints on y and its deriva-
tives up to order q. These constraints define an affine sub-space V' of the
vector space spanned by the the A;;’s. We are thus left with the nonlinear
programming problem

T
: — 2 )
mip 74) = [ LGty aly, Pt
where the y;’s must be replaced by Ellv A1),

This methodology is used in [563] for trajectory generation and optimal
control. It should also be very useful for predictive control. The main expected
benefit is a dramatic improvement in computing time and numerical stability.
Indeed the exact quadrature of the dynamics ~corresponding here to exact
discretization via well chosen input signals through the mapping a— avoids
the usual numerical sensitivity troubles during integration of & = f(z,u)
and the problem of satisfying =(T) = b. A systematic method exploiting
flatness for predictive control is proposed in [13]. Se also [55] for an industrial
application of such methodology on a chemical reactor.
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3.2 State constraints and predictive control

In the previous section, we did not consider state constraints. We now turn
to the problem of planning a trajectory steering the state from a to b while
satisfying the constraint k(z,u,...,u®) < 0. In the flat output “coordi-
nates” this yields the following problem: find T > 0 and a smooth function
[0,T] 3 t & y(t) such that (y,...,y'?) has prescribed value at t = 0 and T
and such that V¢t € [0,T], K(y,... ,y®))(t) <0 for some v. When ¢ = v =0
this problem, known as the piano mover problem, is already very difficult.

Assume for simplicity sake that the initial and final states are equilibrium
points. Assume also there is a quasistatic motion strictly satisfying the con-
straints: there exists a path (not a trajectory) {0,1] 3 ¢ — Y (o) such that
Y'(0) and Y (1) correspond to the initial and final point and for any o € [0, 1],
K(Y(0),0,...,0) < 0. Then, there exists T > 0 and [0,T] 3 t ~ y(¢) solu-
tion of the original problem. It suffices to take Y (n(¢/T)) where T is large
enough, and where 7 is a smooth increasing function [0,1] 3 s — 5(s) € [0, 1],
with n(0) = 0, n(1) = 1 and £2(0,1) =0 for i = 1,... ,max(q,v).

In [65] this method is applied to a two-input chemical reactor. In [61] the
minimum-time problem under state constraints is investigated for several me-
chanical systems. [70] considers, in the context of non holonomic systems, the
path planning problem with obstacles. Due to the nonholonomic constraints,
the above quasistatic method fails: one cannot set the y-derivative to zero
since they do not correspond to time derivatives but to arc-length deriva-
tives. However, several numerical experiments clearly show that sorting the
constraints with respect to the order of y-derivatives plays a crucial role in
the computing performance.

4 Symmetries

4.1 Symmetry preserving flat output

Consider the dynamics & = f(z,u), (z,u) € X xU C R* x R™. It gen-
erates a system (F,9), where M := X x U x R® and F(z,u,u’,...) =
(f(z,u),ut,u?,...). At the heart of our notion of equivalence are endoge-
nous transformations, which map solutions of a system to solutions of another
system. We single out here the important class of transformations mapping
solutions of a system onto solutions of the same system:

Definition 1 An endogenous transformation &, : M — M is a symmetry
of the system (F,0M) if

VE = (z,u,ut,. . ) €M, F(P,(8)) = DP,(€) - F(¢).

More generally, we can consider a symmetry group, i.e., a collection (@Q)gea
of symmetries such that Vg,,g; € G, Py, o ,, = Pg,4g,, where (G, %) is a
group.
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Assume now the system is flat. The choice of a flat output is by no means
unique, since any endogenous transformation on a flat output gives rise to
another flat output.

Example 7 (The kinematic car) The system generated by
T =wujcosf, y=wupsind, 6= Ug,

admits the 3-parameter symmetry group of planar (orientation-preserving)
isometries: for all translation (a,b)’ and rotation « , the endogenous mapping
generated by

X =zcosa —ysina+a

Y =zsina+ycosa+b

O=0+a
Ulzul
U2:u2

is a symmetry, since the state equations remain unchanged,
X =U cos 6, Y = U, sin @, 6 =Us.

This system is flat z := (z,y) as a flat output. Of course, there are in-
finitely many other flat outputs, for instance z := (z,y-+<). Yet, z is obviously
a more “natural” choice than Z, because it “respects” the symmetries of the
system. Indeed, each symmetry of the system induces a transformation on the

flat output 2

21 Z X Z1Cosa — zZosina + a

P> = = .

29 Zs Y zisina + zocosa + b
which does not involve derivatives of z, i.e., a point transformation. This
point transformation generates an endogenous transformation (z,%,...)
(Z,Z,...). Following [19], we say such an endogenous transformation which
is the total prolongation of a point transformation is holonomic.

On the contrary, the induced transformation on Z

Z1 Z X Z1 cosa+(51 —~Z)sina+a

- | 5 = =1 . . ~ S Iy .

Z2 Zy Y+ X Zysina + Zg cosa + (21 — Z3)sina + b
is not a point transformation (it involves derivatives of zZ) and does not give
to a holonomic transformation.

Consider the system (F,91) admitting a symmetry &, (or a symmetry
group (459)966,). Assume moreover the system is flat with h as a flat output

and denotes by ¥ = (A, hh,.. .) the endogenous transformation generated
by h. We then have:
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Definition 2 (Symmetry-preserving flat output) The flat output h pre-
serves the symmetry @, if the composite transformation $o P, o w1 is holo-
nomac.

This leads naturally to a fundamental question: assume a flat system admits
the symmetry group (¢g)g€G. Is there a flat output which preserves (¢g)g€G?

This question can in turn be seen as a special case of the following prob-
lem: view a dynamics & — f(z,u) = 0 as an underdetermined differential
system and assume it admits a symmetry group; can it then be reduced to a
“smaller” differential system? Whereas this problem has been studied for a
long time and received a positive answer in the determined case, the under-
determined case seems to have been barely untouched [54]. Some connected
question relative to invariant tracking are sketched in [69].

4.2 Flat outputs as potentials and gauge degree of freedom

Symmetries and the quest for potentials are at the heart of physics. To end
the paper, we would like to show that flatness fits into this broader scheme.

Maxwell’s equations in an empty medium imply that the magnetic field
H is divergent free, V- H = 0. In Euclidian coordinates (z1,z2,x3), it gives
the underdetermined partial differential equation

0H, O0H, N OH;

(9.’171 + (9.’172 (9.’133 =0

A key observation is that the solutions to this equation derive from a vector
potential H = V x A : the constraint V - H = 0 is automatically satisfied
whatever the potential A. This potential parameterizes all the solutions of
the underdetermined system V - H = 0, see [60] for a general theory. A is a
priori not uniquely defined, but up to an arbitrary gradient field, the gauge
degree of freedom. The symmetries of the problem indicate how to use this
degree of freedom to fix a “natural” potential.

The picture is similar for flat systems. A flat output is a “potential”
for the underdetermined differential equation & — f(z,u) = 0. Endogenous
transformations on the flat output correspond to gauge degrees of freedom.
The “natural” flat output is determined by symmetries of the system. Hence
controllers designed from this flat output can also preserve the physics.

A slightly less esoteric way to convince the reader that flatness is an
interesting notion is to take a look at the following small catalog of flat
systems.

5 A catalog of flat systems

We give here a (partial) list of flat systems encountered in applications.
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5.1 Holonomic mechanical systems

Example 8 (Fully actuated holonomic systems) The dynamics of a holo-
nomic system with as many independent inputs as configuration variables is

d /6L oL .
P (8_q> T M(q)u + D(q, q),

with M (q) invertible. It admits q as a flat output —even when %— is singular—:
indeed, u can be expressed in function of q, ¢ by the computed torque formula

w=st (5 (%) -5 - v

If q is constrained by c(q) = 0 the system remains flat, and the flat output
corresponds to the configuration point in c¢(q) = 0.

Example 9 (Planar rigid body with forces) Consider a planar rigid body
moving in a vertical plane under the influence of gravity and controlled by two
forces having lines of action that are fized with respect to the body and inter-
sect at a single point (see figure 8) (see [78]).

z R
Fig. 3. A rigid body controlled by two body fixed forces.

Let (z,y) represent the horizontal and vertical coordinates of center of
mass G of the body with respect to a stationary frame, and let 6 be the coun-
terclockwise orientation of a body fized line through the center of mass. Take
m as the mass of the body and J as the moment of inertia. Let g ~ 9.8 m/sec?
represent the acceleration due to gravity.

Without loss of generality, we will assume that the lines of action for
Fy and Fy intersect the y axis of the rigid body and that Fy and Fy are
perpendicular. The equations of motion for the system can be written as

mi = Fycosf — Fysin @
mi = Fysinf + Fs cosf — mg
Jé:T'Fl.
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The flat output of this system corresponds to Huyghens center of oscilla-
tion [12]

J J
— —siné, — cos ).
(z —sin y+ . cos )
This example has some practical importance. The PVTOL system, the
gantry crane and the robot 2kw (see below) are of this form, as is the simplified

planar ducted fan [52]. Variations of this example can be formed by changing
the number and type of the inputs [{8].

Example 10 (PVTOL aircraft) A simplified Vertical Take Off and Land-
ing aircraft moving in a vertical Plane [22] can be described by

I = —uy sinf + eus cos b
Z = u;cosf + cuysinf — 1

HZUQ.

A flat output is y = (x —esinb, z + £ cos ), see [38] more more details and
a discussion in relation with unstable zero dynamics.

Pendulum

Z
0 Y motor
laboratory
X frame

C,
molor

Fig. 4. The robot 2kn carrying its pendulum.

Example 11 (The robot 2k7 of Ecole des Mines) In [31] a robot arm
carrying a pendulum is considered, see figure 4. The control objective is to
flip the pendulum from its natural downward rest position to the upward po-
sition and maintains it there. The first three degrees of freedom (the angles
61,0,603) are actuated by electric motors, while the two degrees of freedom of
the pendulum are not actuated.

The position P = (x,y,2) of the pendulum oscillation center is a flat
output. Indeed, it is related to the position 5 = (a,b,c) of the suspension
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point by

(z—a)(z+g)=3(z—¢)
(y=b)(Z+g) =iz —¢)
(—a)? +(y -6+ (z-0? =0,

where 1 is the distance between S and P. On the other hand the geometry of
the robot defines a relation (a,b,c) = T (81, 62,03) between the position of S
and the robot configuration. This relation is locally invertible for almost all
configurations but is not globally invertible.

Example 12 (Gantry crane [12,35,33]) A direct application of Newton’s
laws provides the implicit equations of motion

mi = -1 sn8 z=Rsinf+ D

mZ = ~T cosf + myg z = Rcos#,

where z,z,0 are the configuration variables and T is the tension in the cable.
The control inputs are the trolley position D and the cable length R. This
system is flat, with the position (x,z) of the load as a flat output.

Example 13 (Conventional aircraft) A conventional aircraft is flat, pro-
vided some small aerodynamic effects are neglected, with the coordinates of
the center of mass and side-slip angle as a flat output. See [36] for a detailed
study.

Example 14 (Towed cable system) Consider the dynamics of a system
consisting of an aircraft flying in a circular pattern while towing a cable with
a tow body (drogue) attached at the bottom. Under suitable conditions, the
cable reaches a relative equilibrium in which the cable maintains its shape
as it rotates. By choosing the parameters of the system appropriately, it is
possible to make the radius at the bottom of the cable much smaller than the
radius at the top of the cable. This is illustrated in Figure 5.

The motion of the towed cable system can be approximately represented
using o finite element model in which segments of the cable are replaced by
rigid links connected by spherical joints. The forces acting on the segment
(tension, aerodynamic drag and gravity) are lumped and applied ot the end of
each rigid link. In addition to the forces on the cable, we must also consider
the forces on the drogue and the towplane. The drogue is modeled as a sphere
and essentially acts as a mass attached to the last link of the cable, so that
the forces acting an it are included in the cable dynamics. The external forces
on the drogue again consist of gravity and aerodynamic drag. The towplane is
attached to the top of the cable and is subject to drag, gravity, and the force
of the attached cable. For simplicity, we simply model the towplane as a pure
force applied at the top of the cable. Our goal is to generate trajectories for
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q1 L

qn

[
Ry

Fig. 5. Towed cable system and finite link approximate model.

this system that allow operation away from relative equilibria as well as tran-
sition between one equilibrium point and another. Due to the high dimension
of the model for the system (128 states is typical), traditional approaches to
solving this problem, such as optimal control theory, cannot be easily applied.
However, it can be shown that this system is differentially flat using the po-
sitton of the bottom of the cable as the differentially flat output. Thus all
feasible trajectories for the system are characterized by the trajectory of the

bottom of the cable. See [47] for a more complete description and additional
references.

We end this section with a system which is not known to be flat for

generic parameter value but still enjoys the weaker property of being orbitally
flat [11].

Example 15 (Satellite with two controls) Consider with [{] a satellite
with two control inputs uy,us described by
Wiy = Uy
Wo = Us
w3 = aWiw?
@ = wy cosf + w3 sin 6 (6)
§ = (w1 sin @ — w3 cosd) tan @ + wa
(w3 cosf — wr sin b)

Y = :

COS ¢
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where a = (Jy — Jo)/Js (J; are the principal moments of inertia); physical
sense imposes |a| < 1. Eliminating u;, uz and wy,ws by

5 o sin @ S
wy = %i and we =60+ Ysinyp
s

ytelds the equivalent system

- A N </>—w3sin9
w3 = a(f +1bs.1n ¥) R (N
¢:w3-<ps1n0 (8)

cospcosf

But this system is in turn equivalent to

cos (1) cos p — (1 + a)ye sin) + sin 0(p + ap? sin g cos )
+0(1 — a)(¢cosf — Psinf cos ) = 0

by substituting ws = ¥ cospcosf + ¢sind in (7).

When a = 1, 8 can clearly be expressed in function of p,¢ and their
derivatives. We have proved that (6) ts flat with (¢, ¥) as a flat output. A
stmilar calculation can be performed when a = —1.

When |a| < 1, whether (6) is flat is unknown. Yet, it is orbitally flat [64].
To see that, rescale time by & = w3; by the chain rule © = ox' whatever the
variable =, where ' denotes the derivation with respect to o. Setting then

wy = wl/wg, We 1= wg/w(;, w3 = —l/awg,

and eliminating the controls transforms (6) into

¢ = w;cosf+sinf
8" = (@, sinf — cos®) tan @ + 9

_ (cosf —w; sinf)

¢I

cos

The equations are now independent of a. This implies the satellite with a # 1
is orbitally equivalent to the satellite with a = 1. Since it 1s flat when a = 1
it is orbitally flat when a # 1, with (p,v) as an orbitally flat output.

5.2 Nonholonomic mechanical systems

Example 16 (Kinematics generated by {wo nonholonomic constraints)
Such systems are flat by theorem 2 since they correspond to driftless systems
with n states and n — 2 inputs. For instance the rolling disc (p. 4), the rolling
sphere (p. 96) and the bicycle (p. 330) considered in the classical treatise on
nonholonomic mechanics [51] are flat.



Flat Systems: new perspectives 51

Fig. 6. n-trailer system (left) and 1-trailer system with kingpin hitch (right).

Example 17 (Mobile robots) Many mobile robots modeled by rolling with-
out sliding constraints, such as those considered in [5,50,76] are flat. In par-
ticular, the n-trailer system (figure 6) has for flat output the mid-point P,
of the last trailer azle [68,12]. The 1-trailer system with kingpin hitch is also
flat, with o rather complicated flat output involving elliptic integrals [67,10],
but by theorem 1 the system is not flat when there is more than one trailer.

Example 18 (The rolling penny) The dynamics of this Lagrangian sys-
tem submitted to a nonholonomic constraint is described by

Z = Asing + ug cosy

§j = —Acosy +ujsing

P = uz
Zsingp = ycosyp

where z,y, are the configuration variables, A is the Lagrange multiplier of
the constraint and ui, ug are the control inputs. A flat output is (z,y): indeed,
parameterizing time by the arclength s of the curve t — (z(t), y(t)) we find

dy

. . L
Eg: u; = s, UQZK‘(S)S_‘_—_S:

ds

z .
COS(P:a—S—, SN =

where k is the curvature. These formulas remain valid even if u; = us = 0.

This example can be generalized to any mechanical system subject to m flat
nonholonomic constraints, provided there are n — m control forces indepen-
dent of the constraint forces (n the number of configuration variables), i.e.,
a “fully-actuated” nonholonomic system as in [5].

All these flat nonholonomic systems have a controllability singularity at
rest. Yet, it is possible to” “blow up” the singularity by reparameterizing
time with the arclength of the curve described by the flat output, hence to
plan and track trajectories starting from and stopping at rest as explained
in [12,68,10].
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5.3 Electromechanical systems

Example 19 (DC-to-DC converter) A Pulse Width Modulation DC-to-
DC converter can be modeled by

B

N

. T
iy = (w17 +

where the duty ratio u € [0,1] is the control input. The electrical stored energy

S tput [71,27]
y.—2C Y7 s a flat outpu ,217].

Example 20 (Magnetic bearings) A simple flatness-based solution to mo-
tion planning and tracking is proposed in [34]. The control law ensures that
only one electromagnet in each actuator works at a time and permits to reduce
the number of electromagnets by a better placement of actuators.

Example 21 (Induction motor) The standard two-phase model of the in-
duction motor reads in complex notation (see [32] for a complete derivation)

Rsis + 1/;‘3 = Ug s = Lgig + Mejngir
Reiy + 9, =0 Yr = Me ™4, + Ly,

where Y, and iy (resp. Yy and i, ) are the complex stator (resp. rotor) fluz and
current, 8 is the rotor position and j = /—1. The control input is the voltage
us applied to the stator. Setting v, = pel®, the rotor motion is described by
&2 n . :
J‘d‘gz— = —R:p a — TL(G,G),

where 11, is the load torque.

This system is flat with the two angles (6, a) as a flat output [{2] (see [7]
also for a related result).

5.4 Chemical systems

Example 22 (CSTRs) Many simple models of Continuous Stirred Tank
Reactors (CSTRs) admit flats outputs with a direct physical interpretation in
terms of temperatures or product concentrations [24,1], as do closely related
biochemical processes [2,9]. In [65] flatness is used to steer a reactor model
from a steady state to another one while respecting some physical constraints.
Inf44], flatness based control of nonlinear delay chemical reactors is proposed.

A basic model of a CSTR with two chemical species and any number of
ezothermic or endothermic reactions is

&1 = filz1,z2) + g1(z1,22)u

T3 = faz1,x2) + g2(21, T2)u,
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where z1 is a concentration, o o temperature and u the control input (feed-
flow or heat exchange). It is obviously linearizable by static feedback, hence
flat.

When more chemical species are involved, a single-input CSTR 1s in gen-
eral not flat, see [28]. Yet, the addition of another manipulated variable often
renders it flat, see [1] for an example on a free-radical polymerization CSTR.
For instance basic model of a CSTR with three chemical species, any number
of exothermic or and two control inputs is

&y = fi(z) + g1 (2)us + ¢} (z)ue
&2 = fo(x) + g3 (z)u1 + g3 (z)us
is = f3(x) + g5 (zx)ur + g5 (x)us,

where x1,Ty are concentrations and x3 s a temperature temperature and
uy,us are the control inputs (feed-flow, heat exchange, feed-composition, . ..
). Such a system is always flut, see section 1.2.

Example 23 (Polymerization reactor) Consider with [74] the reactor

: Cm — Hi Cm
m:_’m_sh T A o~ - mcma i3 87T
¢ . <1+5u1+MmCm) 4 R (Com, Ciy G, T)

. Ci, 1 C;
Ci = -k, (THC; e {14 E——T ) —
(TYCs + uq v ( +€ﬂ1+Mmcm) .
- Cs, Cs 1 Cy
C, = ey Tfma oLt S B
Ty + T (1+5u1+MmCm) T

. — 1 M1
= - m m Cm7 i) §) - T A r -
i M R ( C;,Cs,T) <1+E,u1+MmCm) -

T = ¢(CY7’M Ci,Cs,/Ll,T) + alT]
Ty = fs(T, T;) + aguy,

where uy,uy are the control inputs and Cpn,, , M, €, 7,C;, , Cs, , Cs, , 'V,
a1, ay are constant parameters. The functions Ry, k;, ¢ and fg are not well-
known and derive from experimental data and semi-empirical considerations,
involving kinetic laws, heat transfer coefficients and reaction enthalpies.

The polymerization reactor is flat whatever the functions R,,, ki, ¢, fs
and admits (Cs, C; — Ci; Cs, MyCr + p1) as a flat output [66].
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Introduction

Quantitative Feedback Theory (QFT) has been developed since the sixties
around the work of Isaac Horowitz. Today it is one of the recognized tech-
niques for designing practical control systems in many technological areas.
Its most important properties are:

1. Design to Specifications. The plant parameters and the disturbace uncer-
tainties to be combatted by feedback design, and the performance speci-
fications to be achieved despite these uncertainties, are basic ingredients
of the control problem.

2. Rigourous and Systematic Design. Relatively simple step by step design,
mainly in the frequency domain, easile do—able by ordinary, practical
designers.

3. Cost of Feedback. Great emphasis on this issue, specially in terms of loop
bandwith and sensor noise effects, and their minimization.

4. Design transparency. Farly in the design process, and at each step, the
principal trade-offs are highly visible. The designer can choose between
them as he proceeds, such as bandwith vs. compensator complexity, or
competing sensor in multiloop design.

This Part of the book, consisting of a unique chapter, will give an in-
troduction to the fundamentals of QFT overall, and then concentrate on
uncertain nonlinear control systems. The basic idea of one technique is to
convert the uncertain nonlinear (time-varying) control problem in an equiv-
alent uncertain linear time invariant control problem. The solution for the
resulting LTI design problem is guaranteed to solve the original nonlinear
problem. Thus, relatively simple LTI design is used in most of the design.
In a second technique, specially suited for plant disturbance attenuation, the
uncertain nonlinear (time-varying) plant is converted into a combination of
a simple LTI plant and equivalent disturbances. Schauder fixed point theo-
rem provides a mathematically rigorous foundation of the different design
methods.

For simplicity, the chapter will be mostly devote to the single-input
single-output case. The reader is directed to [14], [16], [29], and references
therein for further study of the topic, including the multivariable case.



Fundamentals of Nonlinear Quantitative
Feedback Theory

Isaac Horowitz! and Alfonso Bafios?

! Dept. Electrical Engineering, University of California at Davis, USA
2 Dept. Infomética y Sistemas, Universidad de Murcia, Murcia, Spain

1 The Concept of Control in Technology

Examples: (1) Construct a system for production of sulfuric acid of X +
0.1% purity, at the rate of Y &+ 1% units per hour, with a single coordinated
command input to the plant and a single plant output; denoted as SISO
system.

(2) A system for production of sulfuric acid simultaneously with 5 by-
products, with purities of X1 £z, Xo+24,..., Xg Lt 2z, at rates of r; & f}, 7o+
f2,...,mr¢=x f¢ units per hour. Both the desired purities and the rate commands
are subject to change. It is required that after any such command change is
made, the entire system should be operating at the new commands within H
hours. This is a multiple input, multiple plant output (MIMO) System.

1.1 The Plant and its Problems

Assume excellent Chemical Engineers design the above plants, tune them
carefully to achieve the defined objectives. Next, quoting from a Trade Joumal,
”We step out for a coffee break. When we return the system is in disorder,
not operating properly. The reason is: Uncertainty, Disturbances, Variations
in raw material and catalyst purities, etc. We don’t know with sufficient
precision the chemical formulae, the reaction rates, the sensitivities to tem-
perature, pressure, etc.” These can all be lumped together under plant un-
certainty.

But we can guantify the uncertainty: the plant input-output relations
y = P(u), known only as a member of a set P = {P}, the disturbance d
known only as a member of a set D = {d}. The greater the uncertainty, the
larger are these sets.

1.2 Feedback Control is a Solution

Assume there exist sensors with accuracy at least as great as the tolerances on
the output. For the SISO system, two degrees of freedom {(loop compensator
G, prefilter F' in Fig. 1, which is one of many possible canonical structures),
must be available to the designer.
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Fig. 1. A SISO Two Degree of Freedom (TDF) Structure, for a SISO Plant

Assume P is Linear Time Invariant (LTI), so using transforms, and for
n=01in Fig. 1,

_ P(s)D(s)+ P(s)G(s)F(s)R(s)
V) = = P5)602)5. () )

We show how feedback can solve the uncertainty problem. In Eq.(1),
choose G' large enough so that 1 + PGS, =~ PGS,, where the argument s has
been dropped by simplicity, giving

_PD+PGFR D | FR

e
! PGS. T~ ds. TS

(2)

Choose G large enough to make the disturbance term D/GS. as small
as desired. Then the only significant part of the output ¥ is FR/S.. The
prefilter F' is available to obtain the desired Y. Henceforth, we assume S, = 1,
because G' and F' can be otherwise modified to compensate for S.. Thus, the
desired plant outputs can be obtained, despite large plant uncertainties and
disturbances.

In Fig. 1, the system transfer function is T = Y/R = FGP/(1 + GP).

Define the sensitivity of T' to the plant transfer function P as S = %, with
the result
S=1/(14+L) (3)

where L = G'P is called the loop transmission, which is the fundamental feed-
back synthesis tool. By making it large enough, over a large enough frequency
range, the closed-loop feedback system can be made as insensitive as desired
to plant uncertainty (up to the sensor accuracy). But it is impossible to make
the system more accurate at any frequency than the sensor accuracy at that
frequency. In fact, infinite loop transmission is needed at any frequency to
achieve sensor accuracy (prove this, [16], ch. 1 }. But there is a price to pay
for these benefits of Feedback, to be studied in Sec. 5.



Fundamentals of Nonlinear QFT 65

1.3 History of Feedback Control

Feedback Control was practiced in ancient cultures, for example in the Baby-
lonian irrigation system. Maxwell considered the Stability problem, which is
present in all practical feedback systems. But a scientific, engineering design
theory for linear time invariant (LTI) Feedback Amplifiers, is due to H. W.
Bode (11]. Much of it is applicable to LTI feedback control. The earliest
systematic feedback control design theory seems to be that developed for the
Radar Gun Control problem in World War 2. In the U.S. it was soon being
taught as a graduate servomechanisms course. But it was quite qualitative,
and ignored the sensitivity problem to plant uncertainty . The reason is that
the radar system has inherently only one degree of fredom (ODF). Thus in
Fig. 1, the loop compensator G acts directly on the error between the trans-
mitter (r) and the target (y), so F' = 1, and the system transfer function
T = L(1+ L). The sensitivity function of Eq.(3) is still S = 1/(1+ L) , giving
T=1-25.

Is(ju;hg\’{ /ﬁ/% 0,
2 [s(jm)]<l7 /'

T(w)
BW_-.643w///

A e Wy =1
BW= 1. 272 lun\ fWrw £-707
: 2

wx

_ £="5
-1.2 —

-04 (o] 0.4 o8

Fig. 2. In ODF system, |S| > 1 (worse than in open loop system, for a significant
frequency range)

Thus, a desired system sensitivity (to plant uncertainty) cannot be achieved,
unless it is fortuitously equal to 1 — T'(s). The consequence is illustrated in
Fig. 2, where a second order T'(s) = w?/(s*+2fwps+w?) is plotted for s = jw
(i.e. frequency response), in the complex plane, for 3 values of damping fac-
tor £. The same plot displays the sensitivity S(jw) to the plant, by using
the point O’ = (1,0) as the origin, (because S = 1 — T for ODF systems, so
S is the vector from T to the point 0’ = (1,0). |S(jw)| increases from zero
at w = 0, until it is 1.0 at w, (a type I system is assumed here, for which
L(0) = c0). It is more than 1 for w > w,. Note that the system (half-power)
bandwidth (BW) is > 1 for all T'(s) whose £ < 1. For the general, any or-
der T'(s), the sensitivity is > 1 for all w whose T (jw) lies outside the unit
circle centered at 0' = (1,0). All practical feedback systems certainly have an
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excess > 2 of poles over zeros, so must therefore have an w range outside
this |S(jw}] = 1 circle, in which their sensitivity S to the plant is > 1. The
smaoller the damping factor, the larger is this |S(jw)| > 1 range, where the
systems transfer function is more sensitive to plant uncertainty than that of
an open loop (no feedback) system (step response overshoot is sensitive in this
frequency range).

Classical (Frequency Response) and Modern (State Space, LQR,
Observers) Control have same Highly Inadequate Objectives For
many years (to 1985), most feedback control research, whether Classical (Fre-
quency Response), or ”Modern” (State Space, LQR, Observer theory, etc.)
was devoted to One Degree of Freedom(ODF) systems, even though the ODF
constraint did not necessarily exist for their specific system. This was likely
due to the heritage of the Radar Gun Control problem. No design theory was
therefore developed by any of these design methods to exploit the additional
degree of freedom available in Fig. 1, which permits independent design of
T'(s) and sensitivity S(s). These apparently radically different techniques dif-
fered only in terminology and mathematical language. Classical strived for an
acceptable System Frequency Response, which of course involves both poles
and zeros of the system transfer function 7'(s). Modern strived for acceptable
system eigenvalues (poles of T'(s)). The zeros were either neglected, which of
course is an inadequate representation of T'(s). Or it was assumed there were
no finite zeros, which means significant loss of freedom in choice of T'(s). For
some years Modern Control theory assumed all the states could be measured.
Later, observers were used, one for each state that could not be measured.
Of course, this involved dynamic compensation, spoiling the claim that one
of the advantages of LQR design was its use of only real compensators (but if
these real numbers had magnitudes > 1, they were really unrealizeable infi-
nite bandwidth amplifiers). For both Classical and Modern design techniques,
the objectives would be obtained only at fixed nominal plant parameter val-
ues. Neither Classical nor Modern developed any theory for coping with Plant
Uncertainty. The objectives of both were thus essentially the same, except that
Modern tended to neglect system zeros. Also, Modern is much less realistic in
terms of Systermn Constraints. But Modern was much more "Mathematical”
oriented {22]. Both assumed that adaptive, i.e. nonlinear loop compensation
(G was needed to cope with nontrivial plant uncertainty. But even the adaptive
structures that were considered tended to be ODF. The following statement
by R. Kalman, Father of Modern Control theory, was typical (-1956):

“ 1t 1s generally taken for granted that the dynamic characteristics of the
process will change only slightly under any operating conditions encountered
during the lifetime of the control system. Such slight cbanges are foreseen and
are usually counteracted by using feedback. Should the changes become large,
the control equipment as originally designed may fail to meet performance
specifications. "
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But even the adaptive theory was flawed. There was no engineering design,
i.e. no statements of uncertainty and of specifications, followed by systematic
design procedure for their achievement. Nonlinear feedback structures were
presented with Qualitative Sensitivity reduction properties, but design was
by cut and try [21].

1.4 Quantitative Feedback Design Theory (QFT)

First QFT design paper was in 1959 [23]. It emphasized that Feedback in
Control was required principally because of Plant Uncertainty. Therefore,
Quantitative formulation of Plant Uncertainty and of Performance Specifica-
tions was essential, and it presented systematic design procedures for their
achievement,.

To counteract Kalman’s statement of inability of ordinary (LTT) feedback
to cope with significant Plant Uncertainty, a design example with over 100:
1 Plant Uncertainty, was presented. A design for the X15 pitch control with
1000 to 1 Uncertainty over the entire frequency range (up .to Mach 6 and
100,000 feet) was published in 1964. The Flight Dynamics Lab of the Wright
Patterson Air Force Base had categorically stated that LTI Feedback could
not cope with such huge Plant Uncertainty.. The Author of the above de-
sign was labeled as Anti-Adaptive = Personna Non Grata. QFT advanced
into SISO Multiple-Loop Systems, Digital Systems, Non-minimum Phase and
Open loop Unstable systems, even to Plants with both right half-plane zeros
and poles, as well as to Multiple Input -Multiple Output Systems.

QFT especially emphasized the Cost of Feedback, in terms of Loop Band-
width and Sensor Noise effects. A very important advance was made in 1975
to rigorous design for uncertain linear time-varying systems [17], and in
1976 to nonlinear systems [18] . An important feature of these design tech-
niques, is that an ordinary control engineer, with hardly any knowledge of
nonlinear mathematics, but with knowledge of LTI feedback design, can read-
ily execute quantitative design for highly uncertain and complex nonlinear
plants, to achieve exact system specifications.

An important point is that it is not necessary to have a mathemati-
cal model of the nonlinear plant [9,25]. Numerous applications were made,
manyby Master Students, some with no previous knowledge of Feedback the-
ory, to SISO and MIMO designs for LTI and nonlinear plants in advanced
Flight Control,in automatic self-adjustment of aircraft damaged in flight, in
Robotics, design of several types of automatic welding machines [9], in Forest
regulation, in highly ill-conditioned 2 by 2 distillation column [16], in nonlin-
ear process control, and recently to its first attempt at Irrigation Canal Flow
control, with 5 to 1 improvement over the best design heretofore by PID.
One Master student succeeded in longtitudinal 2 by 2 flight control stability
design for the X29 Forward Swept Aircraft, for which the Plant was both
nonminimum-phase and unstable. This problem had been abandoned as im-
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possible by both Grummann Aircraft and Minneapolis-Honeywell, both with
considerable Government funding.

2 Rigorous QFT Techniques for Design of Uncertain
Nonlinear and Time—Varying Feedback Systems

The essential idea in first technique [18], is to replace the Nonlinear/Time-
Varying Plant set W = {W} (a set due to plant uncertainty), by some
equivalent LTI plant set P, = { P}, for which LTI design is applicable.

For example, W is a steering system to be used for a specified range of
car models, and specific range of road types, which gives a nonlinear plant set
W = {W}. The cars will be driven by a variety of drivers, who will apply a
range of command inputs R = {r} to the steering system. There is specified
a set of acceptable transfer functions T = {T'}. Thus, an acceptable output
Y due to any command R in R, is Y (s) = T(s)R(s), for T in T. Consider
any pair (R, W) in R x W. It is required that the system output Y (s) be
equal to T'(s)R(s), for some T in T. This is depicted in Fig. 3—a.

A crucial step is the derivation of an equivalent LTI plant set P, = {P},
as follows. The technique is applicable to problems for which the following
steps can be executed: i)Choose any pair (R, T) in R x T giving an acceptable
output Y (s) = T(s)R(s), with inverse transform y(t), ii)Choose any W in
W and solve for u(t) = W~1(y(t)), i. e. the input of W which gives the
output y(t) (it is assume that every W in W is invertible so u(t) is unique),
iii)Define the LTI-equivalent plant P(s) = Y (s)/U(s), being U(s) the Laplace
transform of u(t). Repeating over all Rin R, T in T, and W in W, the result
is a LTI-equivalent plant set P¢ = {P}. Thus if R, T, and W have ny, na,
and n3 members, then P, has ny X ns X n3 members. In practice, at least T
has uncountable members, and so have realistic R and W.

Next consider the following LTI problem (Fig. 3-b). There is given the
command input set R, the LTI plant set P, and the OK tranfer function
set T. For each R in R, and P in Py, the closed loop output must be Y (s) =
T(s)R(s) for some 7" in T. This is analogous to the original problem in Fig.
3-a, except that nonlinear set W is replaced by the LTI set P.. For a large
class of such LTI problems, a design in QFT is executable, 1. e. a pair of
controllers F'(s) and G(s) can be found for that purpose. And it can be
proven that the same pair F(s), G(s) solves the original nonlinear design
problem, that is for each W in W and each R in R, the output is guaranteed
to be Y (s) = T'(s)R(s) fos some T in T.

Outline of proof (See [18,20] for details). Schauder fixed point theorem is
used: a continuous mapping of a convex compact set of a Banach space into
itself has a fixed point. There are several choices of Banach spaces, but one in
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the transform domain is convenient. Choose the set T compact and convex
in it. Pick any (R, W) pair and define the mapping over T

_ FP(T,R)G
1) = 1+ P(TG

where P(T, R) is the mapping from T x R to P, given by P(T, R) = TR/U,
where U is the Laplace transform of w = W'y, and Y = TR is the Laplace
transform of y. In the mapping @, since R is fixed, U is a function of T'. It
can be rewritten as
FGTR/U(T)
1+ GTR/U(T)

(4)

(T) = (5)

We must prove that ¢(T") is continuous and maps T into itself. Continuity
is a rather technical condition and it is satisfied under mild asumptions (see
[18,20] and [1]). To prove that ¢(T") maps T into itself, note that TR/U =
Y/U, which is precisely the definition of P in P,. But F and G have been
designed so that Y = T'R, T'in T for all P in P,. Hence $(7") maps every T
into T, and thus @ has a fixed point T, with

FGT*R/U*

T =1rarrvr (6)

giving as a result that U* = G(FR — T*R). Here U* = U(T™) is the input
u* = W~1(y*) in the time domain, being y* the inverse transform of Y* =
T*R. Thus, Y* is also the output of the nonlinear original closed loop system
in Fig. 3-a, and since the fixed point 7* is in the set T, the output is in the
OK output set for this (R, W) pair. The same ¢ mapping can be made for all
(R, W) pairs. It is therefore essential that the same (F,G) pair be a solution
of the LTT-equivalent problem, for all P in P,. Recall that P, was generated
by performing the steps: i) Y = RT for each R in R, T in T, ii)for each such
y (inverse transform of Y), u(t) = W=1y(¢) is found for each W in W, and
iii) P(s) =Y (s)/U(s), being U the Laplace transform of u.

A simplication to the above treatment is to consider only a impulse ref-
erence. It is not difficult to show by means of block transformations (Fig.
3-c,d) that a valid design for the augmented nonlinear plant R™"WR, for an
impulse reference and for the OK output set T, is also valid for a nonlinear
plant W, for a reference set R and an OK output set TR. Note that due
to the fact that W is non linear, in general R"'WR # W. The Schauder
mapping is defined on the set T, and a similar reasoning applies but now the
set of commands is part of the set of nonlinear plants.

Schauder theorem does not guarantee a unique solution, but if each of the
elements W, F, G is one to one, then the solution must be unique. The above
must be applicable for all the nonlinear plants in set W. In response to any
nonlinear plant w in W, the output must be ¥ = 7', with 7" a member of the
OK set T.
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Fig. 3. The SISO nonlinear problem: a)find F(s), G(s) so that y is in TR for all w
in W, R in R; b) quivalent LTI problem; c)-d) equivalent problem for an impulse
reference and plant set R™'WR.

In practice, it is therefore important for the designer to include all con-
ceivable command inputs which may be applied to the system in its lifetime.
This can include perturbations on normal command inputs (Sec. 6). It is
important to emphasize that this is not a technique for epprozimating any
specific nonlinear system by a linear one. The representation of the nonlin-
ear plant set W, by P, is exact set equivalence with respect to sets R, T
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(or alternatively the representation of Pegr-iwr 1 by its Pe, is exact set
equivalence with respect to T).

Set equivalence suffices, because the Quantitative Feedback design prob-
lem is inherently a problem of sets: guarantee that the output belongs to a
specific set, for all members of a command input set and a nonlinear plant
set. It is important to include the qualification that the equivalence is only
with respect to sets R, T . Our design is not guaranteed for command inputs
not in set R. But this is good Engineering. It would be silly to try to design
a car steering system to respond to video signal commands.

It is not compulsory that QFT be used to solve the LTI-Equivalent prob-
lem. Any technique may be used, even cut and try , but it is essential that it
be properly solved. The QFT technique can do so for a large problem class,
in fact for any LTI problem which is solvable by LTI compensation. Also, and
very important, the designer can tell, just from examination of P, whether
the LTI equivalent problem is solvable for the given T set, by means of LT1
compensation.

In the following, the nonlinear QFT techuique is further formalize, start-
ing with the study of asymptotic values for pedagogical purposes. A general
validation result is also developed for a class of nonlinear systems, based on
restrictions on the set of acceptable outputs, in such a way the the resulting
equivalent problem is solvable in the linear QFT framework.

2.1 Asymptotic Tracking

Although the asymptotic behavior of the closed loop system can be viewed as
a particular case, its detailed analysis in this Section can illustrate the basic
ideas to be used in the more general case developed above. As it will be seen,
the asymptotic behavior of nonlinear QFT designs explains to a great extent
the practical validity of the technique. A single but illustrative example is
used here to develop the main points of the technique.

Consider the electrical circuit of Fig. 4-a, where the nonlinear resistor G
has a characteristic given by Fig. 4-b, and C is assumed to be the unity.

The input-output dynamics is given by the ordinary differential equation

g+ (1+ay®()y(t) = u(t),y(0) =0 (7)

where a € [0,2]. When the TDF feedback structure is used to control this
system, the control law is given by

U(s) = G(s)(F(s)r(s) — g(s)) (8)

where " stands for Laplace transform. Assuming that the closed loop system
is stable, the asymptotic value of the output y{oco) is given by

(1+ ay*(00))y(o0) = G(0)(F(0)r(c0) —y(o0)) 9)
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Fig. 4. a)Electrical circuit, b)uncertain nonlinear resistor

that is, y(co) can be obtained as the real solution to the third order algebraic
equation

ay®(c0) + (1 + G(0))y(c0)) = G(0)F(0)r(c0) =0 (10)

By simplicity of notation G(0) and F(0) are substituted by Go and Fp,
while y(oo) and r(oo) are substituted by yoo and r. Since the equation is
polynomial, the solution can be computed using the root locus technique,
being 1/a the parameter; that is, the solutions can be obtained as the root
locus of

- 1
LA+ Go)y(00) =Goloree L o1y 5 o) (11)
a Y3 a

1+

The result is given in Fig. 5 (for Gg = 12, Fy = 1.18, ro = 1), where the
real-valued branch, going from the pole at the origin to the zero, will be the
output asymptotic value for the different values of the uncertain parameter
a. Then, it can be seen that the asymptotic value of the output is relatively
close to the reference for those dc-gain values of the compensators. This is
an analysis result.

From a control point of view, the question would be how to use the
controller, that is Gy and Fp, to bound the values of y(oo) according to
the specifications for any value of a € [0,2]. yo will be upper bounded by
GoForee /(1 + Go), and lower bounded by the real solution of the algebraic
equation (3.4) for a = 2, which in general may be hard to compute in closed
form.

Given closed loop output steady-state specifications such as ¥oo € [Y1,005
Yu,00), OF equivalently dc-gain closed loop transfer functions specifications in
the form of Ty € [Ty, Two], the design problem can be reformulated as the
computation of Gy and Fy such that

< T, o= Jue (12)
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and the real solution of 2y3, + (1 + Go)yeo — GoForeo = 0 verify

(13)

Nonlinear QFT Solution The problem given by (12) and (13) consists of
the resolution of two nonlinear algebraic equations for the two unknowns Gy
and Fy. QFT approachs the problem using Schauder’s fixed-point theorem.
The complete solution follows the following steps:

1. Definition of the set of acceptable outputs: asymptotic values of closed
loop acceptable outputs for references with ro, = 1, are assumed to be in the
interval

A, =[0.9,1.1] (14)

2. Computation of the equivalent linear family (ELF): a set of linear sys-
tems is defined using each acceptable output and its corresponding input. In
the example,

ELFy = {‘ZE iuoo = (1 + ayzo)yooayoo € Alaa € {052]} = [0297 1] (15)

3. Definition of the closed loop mapping &: substituting the nonlinear
system by the set ELFy, the linear closed loop output yr o is given by

PoGoFy

YL,oo = I—{—_]B(_)-G—STOO’PO € ELFO (16)
that is
Y (G F Go F.
ay? - 040
YL = Y)Y - L B(Yoo) (17)

1+m%°§:mGo N 1+ay§o+G0 -
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Thus, y7,,00 = #(Yoo) defines a mapping between the set of acceptable outputs
and the set of closed loop outputs for every Gy and Fy.

4. Design based on the application of Schauder’s fized-point theorem: the
theorem states that ”a continuous mapping from a compact and convex sub-
set of a Banach space into itself has a fixed point”. Applied to the example,
since A; is convex and compact subset of the real numbers, ¢ is continu-
ous, and ¢(A;) C A;, provided that the linear equivalent problem satisfy
specifications, then the mapping ¢ has a fixed point in A;.

5. Validation of the design: the fixed point will be the output of the non-
linear closed loop system. This can be deduced from the following reasoning:
the fixed point y*s must verify

GoFp

_ 18
1+ay*§o +Go ( )

Y*oo

but this is exactly the identity that must satisfy the closed loop output corre-
sponding to the nonlinear control problem. Then by construction, a solution
to the equivalent linear problem is also a solution to the original nonlin-
ear problem. Note that the fixed point will depend, in general, on uncertain
parameters and the reference.

TDF solution to the equivalent linear problem QFT translates a non-
linear robust control problem to a linear robust control problem, which may
be solved using any robust control technique. In particular, linear QFT is a
good candidate for solving the equivalent linear problem. Using again the ex-
ample, the (asymptotic) linear control problem can be stated in the following
way: compute Gg and Fp such that

P()G()FO

Lobofo 0 9
T RG, € 091] (19)

for each Py € [0.29, 1]. Here, it is clear the utility of the two degrees of freedom
structure, that is Fy and Gy. A key step is the use of logarithms to solve the
problem, that is

( PyGoFy
lo

—_— —0.046,0.041 20
1+ POG()) €l ] (20)

In terms of logarithms, the problem is to find values of Fy and G such that

P()G()FO G()FO
T ) = log . 21
ng{loa.%(Q,l] log (1 + P0G0> lOg (1 -+ G() < 0.041 ( )

, PyGoFo 0.29G o Fo
log [ 2200 ) _ o [ 22020 ) o 046 22
Poclozo,] 8 (1 n P0G0> o8 (1 +0.29Go (22)
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Since

Alog (fiag) o= tog (£ - log (P2G8E) =

—1 Gq 1 0.29G, (23)
=108\ 17Go ) ~ g(1+o.2900)

the design problem (for the steady-state) is finally given by the inequality

I+Go 1+0.29Go

1+0.29 1+G
09—0—23‘0—0—(l < Fo < 11—05&

{log (82-) ~tog (~9—29—@L) < 0.087 (21)

A 7economic” solution to the problem is Gy = 10.1 and Fy = 1.2.

SDF Solution to the equivalent linear problem . A single degree of
freedom structure can also be used to solve the equivalent linear control
problem. In this case the problem, using a similar development to the TDF
structure, 1s to find Gg such that

PyGg

m € {0.9,11] (25)

for every Py € [0.29,1]. A single analysis shows that Gy must satisfy the
inequalities

0.29G G
{19885 > 09:8- < 11 (26)

from where we finally obtain that Gy > 31. Note that the use of a single
structure leads to a less economic controller than the linear QFT (TDF)
solution.

Validation of the nonlinear QF T design A first property of QFT designs
is that they are "economic” solutions to the linear equivalent problem. The
two key points have been the use of the TDF structure and the logarithmic
analysis of specifications. Now the question is whether the linear QFT design
is also an economic design for the original nonlinear problem.

For the nonlinear control problem, Schauder’s fixed-point theorem guar-
anties that the output, which is the fixed point, belongs to the set of ac-
ceptable outputs. However, it is not clear if the output takes values in some
subset of the set of acceptable outputs or in the whole set, for different values
of the uncertain parameters. In the example, it is not known a priori if yxeo
takes values in [0.9, 1.1] or in some subinterval, meaning a more conservative
design. This limitation of nonlinear QFT relies upon the fact that it is a
solution of the problem given by (24), while the original problem is given by
(12) and (13).
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The QFT solution, given by Gy = 10.1 and Fp = 1.2, results using (12)
and {13) in that the output of the nonlinear control system is in the interval

Yoo € [0.95,1.00] C [0.9,1.1] (27)

showing that in this case, the design is also "economic” for the original non-
linear system. A more detailed analysis of the fixed point values for each
value of a, and its relationship with the output y*., is given in Table 1 and
Fig. 6. For some values of the uncertain parameter a, values of ELFy, linear
closed loop outputs ¥y, o, and nonlinear closed loop outputs yx., are shown.

[a] ELFo | yrco |y*oo]
0] {4 {1.09} 1.09
0.5[[0-62,0.71][[1.04, 1.06]| 1.05
1 [[0.45,0.55][[0.99, 1.02]1.01
1.5][0.35, 0.45]{[0.93, 0.98][ 0.87
2 {[0-29, 0.38][[0.90, 0.95][0.95

Table 1. Fixed points for different values of the parameter a

Note that since yxo, must belong to the interval defined by the outputs
Y*oo, the result is not overly conservative. This fact is basically related with
the structure of the plant uncertainty, which in this case is given by the
intervals defined by ELFy. Since the same control effort, that is Gy, is used
to map the uncertainty in £ LFy with the uncertainty in the output yx,,, one
may expect good results for the nonlinear control problem if the uncertainty
is similar to the exhibited by ELFy in this example.

More general reference inputs In the above design, only the case roo = 1
is considered. In this Section we extend the design to consider more general
references. The (linear) specification for the asymptotic value of the output
is defined as the set

Ay = [0.9,1.1)req (28)

where in general ro, may take values different to 1. This specification means
steady output values between the 90% and the 110% of the steady reference
value. In this case, the equivalent linear family is given by

ELFy = {zﬁ [Uoo = (1 + ay2,)Yoos Yoo € Ar,a € [0,2)] } (29)
o0

where the elements of ELF, depends on 7. In particular, they are intervals
of the form [a,, 1], being a, dependent on 7, . Using the method exposed in
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previous Sections, we arrive to the problem of finding Gy and Fp to satisfy
the following inequalities:

14+Gy 14+0.29Gg

0.9(1+a-Go Too < FD < 1.1 E};Go Too

D.QQQTGO

{ log (—Gﬂ—) —log (—QQQL) < 0.087,Va, (30)

A solution for different values of r is given in next Table. Note that the
control effort grows with increasing values of the reference, since the control
system is nonlinear.

Lroo l ELF() I Go LF() l
0,1]][0.29,1] | 10.1 | 1.2
0,3]][0-17,1] [ 21.2 |1.15
[0.5]{[0.016, 1]|283.5] 0.9

Table 2. dc-gains Go and Fp for different asymptotic references values

2.2 Tracking

This Section considers the problem of designing a controller according to
the TDF structure, such that some closed loop tracking specifications are
achieved, taking into account not only asymptotic values. The design method
closely follows the steps given in Section 2, but following a more formal
approach. The material presented in this Section is based on the seminal
works [17,18] and [1].
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The core concept of nonlinear QFT is the replacement of the nonlinear
robust control system design problem with a linear one, that is "equivalent”,
in the sense that a controller obtained for the linear problem will work for
the original nonlinear problem. This is known as the validation problem in
the QFT literature.

We consider the case of an uncertain, invertible, NLTV plant represented
by set W. This set is parameterized by 8 € @, we use the notation Wy :
U — Y, which is an invertible NLTV plant with inverse W, 1 and define the
NLTV plant set as W = {Wp : U - Y|6 € O}.

The Equivalent Linear Family of Plants To introduce the concept of
equivalent linear family of plants (ELF) first consider a single NLTV plant
W :U = Y.P(AR), the ELF or family of linear plants equivalent to W with
respect to the OK output set Ap, is defined as follows. Consider first the case
in which the nonlinear plant is not uncertain. For each acceptable output
y € A, we choose (by some method) an invertible LTI mapping PY : U - Y.
That is, for each r € R we define a mapping v, : A, = (U — Y) such that
PY := «,(y) is determined for each acceptable output y € A,. The set P(4g),
the ELF of W with respect to Ag, is then defined as

P(Ag) = U VrAr (31)

reR

For the general case in which the nonlinear plant is uncertain, for each
6 € O we construct an ELF of LTI plants. That is, we define a mapping
P} :U — Y and a family of linear plants

PG(AR) = U Vr,0Ar (32)
reR

is generated for each 8§ € @ and for each r € R. The linear equivalent family
for the NLTV plant set W is then defined as

P(Ag) = | Ps(4r) (33)
fco

At this point, we also note that the substitution of a nonlinear plant Wy
by a linear equivalent P} in the TDF feedback system leads to the relation

Yr.e = Pg(GF?" - Gy,{,,g) (34)

which defines a closed loop mapping ¢, : A, — Y such that yr ¢ = ¢, ¢(y),
where yy, ¢ is the output of the TDF system and =, y, and 0 selects the plant
as Poy = ¢r,0(y)-

We now identify two conditions useful in studying a potential ELF:



Fundamentals of Nonlinear QFT 79

i)the equivalence condition:
PY(W,'y) =y,¥8 €6 (39)

and

ii)the continuity condition: the closed loop mapping ¢, ¢ is continuous on
A,,V8 € @, and Vr € R.

A General Validation Theorem. Given P(Ag), the ELF of W defined
above, a key question is the feasibility of a controller K = (F,G) for the
(possibly time-varying) NLTV plant set W, when it is feasible for the entire
ELF P(Ag). It is understood that a feasible controller for a set of plants
is capable of achieving design specifications for any plant of the set. More
formally, K € I'(P, R, Ag) if the output of the TDF feedback system with
controller K and plant P is in the set A, for any r € R and any P € P.

The question is: does K € I'(P(AR), R, Ar) imply that K € I'(W, R, Ag)?
If this question can be answered in the affirmative we have a technique for
translating a nonlinear control problem into a robust linear control problem.
A solution to this validation problem is given in the following theorem: ” As-
sume that for each r € R the set A, is a convex compact subset of a Banach
space Ys. If P(AR) is an ELF of the NLTV plant set W with respect to Ag
chosen so that conditions i) and i1) are satisfied, then K € I'(P(Ag), R, Ag)
= K € I'(W,R, Ap).

A proof is given in [1}, strongly based on early ideas of {17,18]. The proof
involves an application of the Schauder fixed point theorem to the closed loop
mapping ¢, ¢. Thus the continuity of this mapping is a key requirement. The
above result reduces the validation question to one of defining an ELF and
then testing conditions i) and ii) defined above. This result is very general
and applies to any mapping ¢, ¢ with the two desired properties. Note that
in addition nothing has been said about the controller K = (F,G), it does
not have to be necessarily linear. Also the ELF does not have to be linear.

The result is about to translate an uncertain nonlinear control problem in
a uncertain (usually linear) control problem. The appoach followed by QFT
has been to choose a LTI transformed control problem easily integrated in
the LTI QFT technique. In the following, a possible election of ¢, 4 in the
framework of QFT is given.

Nonlinear QFT solution Given the general framework for validation of
linear control of uncertain NLTV plants developed above, the QFT approach
to robust nonlinear control can be analyzed as a particular case. Next we
use the validation results developed above to demonstrate the validity of the
nonlinear QFT approach. We begin by introducing some assumptions and
identifying the ELF used in nonlinear QFT. Here the space RHy ., =U =Y
is chosen as the input and output signals space. Us = Ys = RHo(C RHy) is
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the Banach space of stable signals Ys, given by the set of stable and strictly
proper real-rational complex functions.

Allowable Nonlinear Plants. An uncertain NLTV plant W is a parame-
terized set of NLTV plants Wy : U — Y, where 8 € ©. The individual NLTV
plants must satisfy the following assumptions:

P1) Each plant Wy must be representable by mapping from RH; . to
RH?,e

P2) Each plant Wy must be invertible with inverse W, ™! continuous over
Ar

P3) (High frequency linear behaviour) Each plant Wy can be represented
by an ordinary differential equation of the form

Yy () + £, V@), y(@0), 8 0) = K(O)u'™ £, (MY (1), .., u(t), t;0)(36)

where
limy_ory™ () + f (" (2), o, y(8),1:60) = limyo+y™ (1) (37)
limy_o+ K (0)ul™ + fo(™ Y (1), ... u(t), t;0) = lim,_o+ K(0)ul™ (38)

Vy € Ag, and Yu € W, ' Ap.

The invertibility condition P2 is needed in the procedure for obtaining
the ELF described below. The continuity condition in P2 is needed to insure
that condition ii) above can be satisfied. Condition P4 is related with the
fact that the nonlinear plant must be well approximated by a linear plant
at high frequencies in order to obtain a feasible LTI QFT solution of the
equivalent linear problem. This restriction can be avoided in many cases by
the use of a nonlinear precompensator {16,19] although this extension will
not be described here.

The Set of Acceptable Outputs. For each r € R, the set of acceptable
outputs A, satisfies the following conditions:

0O1) The set A, is a compact and convex subset of the Banach space
Ys(= RH,)

02) The set W' A, must be a subset of Ug(= RHa)

03) Any function y, in A, has a fixed relative order ¢, such as n — m <
e < ey, where eyr is a constant upper bound depending on r.

Both requirements O1 and O3 are necessary to apply Schauder fixed point
theorem in the solution of the validation problem. According to O3 and P3,
it is straightforward to show that all plants in ELF are strictly proper with
relative order n-m. Condition 02 is included to insure that the linear design
would not have to be internally unstable.
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The Equivalent Linear Family. The equivalent linear plant family is
obtained using transfer functions representing input-output pairs obtained
from the given NLTV plant. That is, for each acceptable output y € A,
corresponding to r € R, and for each § € ©, P} is defined as a LTI mapping
with the transfer function given by

y(s)
u(s)

where v = W, 'y. Thus P(A,), the family of equivalent linear plants with
respect to A,, is defined as

By(s) =

(39)

P(4) = {9 = U =W, My v e 0, € 4, | (10)

With assumptions P1-P3 and 01-O3 the NLQFT approach is valid in
the sense of that the resulting LTI controller will provide satisfactory robust
control of the original uncertain NLTV plant. The result can be stated as:
given an uncertain NLTV plant set W satisfying assumptions P1-P3, let us
define for each input r sets of acceptable outputs A, satisfying assumptions
01-03, and P(A,) as the ELF of W with respect to A,; if, in addtion,
G(s)F(s)r(s) has relative degree greater than or equal to ey,, then K €
I'(P(AR), R, Ag) = K € I'(W, R, AR).

2.3 Stability

This question is usually defined as ”what happens in a system when it suffers
from small changes, in plant, in compensators, in inputs, etc?. The classi-
cal question is whether the system is infinitely sensitive to changes from an
equilibrium situation. If the sensitivity is finite to any such small changes
then we have Bounded input Bounded output (BIBO) stability, with respect
to the particular (infinitesimally) small deviation. Since apriori the plant is
uncertain, there is really no need to consider small changes of open plant
set, nor of compensation G, since it is in cascade with the plant. If one is
nevertheless concerned with these, simply make the plant uncertainty a bit
larger. If serious plant changes during operation may occur in practice, one
can include uncertain time-varying plants in the equivalent plant set with
many different scenarios (see later for an uncertain time-varying plant set
example). It is only necessary that one can work backwards from the desired
output, to solve for the plant input u, to derive one more member of Pe.
With respect to changes in the command or other inputs, infinite variety
of departures from equilibrium can be postulated. (1) The command input
R is a member of a set which has been defined for t in [0,#;), but at ¢,
its character changes abruptly by addition of another signal. No matter, in-
clude the total as another member R, of R, providing of course that one
wants the system response to R, be in {T'R,,VT € T}. Of course, one may
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want nonlinear closed loop system response, 1.e different T sets for different
R sets. One could even want such nonlinear system response for systems
with LTI Uncertain Plants. Very little (Sec. 11.4 in [16]) has been done of
this nature. One can include any number of such signals. (2) One could de-
mand ”Time-Varying” type of system response functions, whether for LTI
or Nonlinear/Time-Varying Plants. This can be done. It requires a Linear
Time-Varying Prefilter F.

Classical stability techniques have been modified for application to the
stability problem of QFT Nonlinear design. This approach has been pioneered
by Bafios and Barreiro [2,7].

There is a second Nonlinear QFT design technique, wherein the uncertain
nonlinear time-varying plant set is replaced by an ”equivalent” disturbance
set de = {d.}, plus a very simple LTI Plant of form k/s™, with n the order
of the nonlinear plant; d, a function of the nonlinear plant and of the output
specifications. This technique is best suited for nonlinear plants which are lin-
ear with respect to their highest derivative. It is extraordinarily well suited
to handle the disturbance attenuation problem, for nonlinear or LTI Uncer-
tain plants, because of its very simple plant uncertainty. It will be shown
{Sec. 6), how this technique can be used to establish ” Quantitative Bounded
Input-Bounded OQutput Stability”.

Special attention should be paid to noise. In considering a noise signal
added to a command input, note that it is filtered by the prefilter F', be-
fore entering into the feedback loop and applied to the nonlinear plant. The
designer will find that F' tends to be a low-pass filter with bandwidth approx-
imately that of the desired closed-loop system response. Such a noise signal
N, can be treated as a deterministic signal, N F(s), and a reasonable number
of samples are used. It will be seen that sensor noise is of much concern, be-
cause in feedback systems dealing with troublesome plants and disturbances,
such noise signals tend to be amplified over a large frequency range. This is a
very important cost of feedback, which may be too high, as to force modifica-
tion of the desired benefit of feedback, or more complex feedback structures,
such as use of internal sensors [16].

In Section 6, we analyze two techniques for designing stabilizing con-
trollers in nonlinear QFT. The first technique is based on the adaptation
of absolute stability results, while the second uses a equivalence disturbance
approach.

Relation to Describing Function The Describing Function is also a re-
stricted equivalence representation, but unlike the Pe technique, it is approxi-
mate even for the restricted situation. The input (to the nonlinear w) consists
of a set of sinusoid inputs, over given frequency and amplitude ranges. Only
the stead-state fundamental component of the output is used. Despite this
narrow restriction, and its use only in an approximate manner, it is often very
useful for stability analysis, especially for hard nonlinearities such as satura-
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tion, coulomb friction, hysteresis. The dual input describing function is less
restrictive, in assuming the sum of two signals as input, and their respective
component outputs.

The describing function technique can be easily incorporated in the non-
linear QFT framework ([13],{4]), giving in general less conservartive (but
approximate) results than absolute stability criteria. All these approaches
have been unified under a common QFT framework ([4]), allowing a very
transparent tool for analyzing the differents types of stability restrictions
and associated control effort.

The describing function can also be very useful for special situations,
specially for oscillating adaptive systems, but it can not be used for finding
system responses, where the P,-technique is exact and rigorous, providing
quantitative design for highly uncertain nonlinear plants.

3 Design Examples for the P.—LTI Plant Equivalent
Method

The following two examples only describe derivation of the LTI P, sets. The
balance of the design, whereby F, G are chosen to satisfy the specs. for P, is
postponed until the detailed LTI QFT method (for LTI Plants), is presented
in Sec. 4.

3.1 Design Example 1 (LTV Plant)

Plant: y = w(u) : d—yd@- + m(t)y(t) = k(t)u(t), where m(t) = A + Be 9,
and 56/k(t) = E + Je—tt,

Uncertainty: A, E € [1,4], B € [2,5], a,b € [.2,1]. The parameters A4, ..,b
though uncertain are fixed, but uncertain time-variations of m, k are present.
This is a means of modelling uncertain time variations of plant parameters.
Some m(t), k(t) are shown in Figs. 7. The plant is time varying with uncertain
rates of variation.
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Fig. 7. Linear Time-varying (LTV) uncertain plant
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Performance specifications: The closed-loop system to be designed is LTV
because the plant is LTV. The differential equation relating system output
to input has LTV terms. In response to a system impulse input at ¢t = ¢t;, r =
0(t —t,), the system output y(¢,, 7) is a function of both ¢, and of 7 =t —¢,.
y(tz,t) = 0, for t < t,. It is usually denoted as y(t;,7). In a LTI system,
output y is a function of ¢ only, so fixed ¢, = 0 may be assumed. However,
we can make the above system perform like a LTT system, by specifying an
acceptable impulse response set A, whose elements are independent of ¢, so
are "time invariant”.

Six second-order models for the impulse response, Y(s) = w,/(s* +
28wns + w?, were used to generate the OK set of Fig. 8: (wn,£) = (3,.6),
(4,1), (3,1), (4,2), (2.3,1), (6,2). The integrals of the impulse responses are
shown in Fig. 8-b, as we are accustomed to this form. The set T is obtained
from their transforms with respect to 7 = t — t;, shown in Fig. 8-c. Their en-
velopes are used for the upper and lower w-domain bounds of the OK system
transfer function set T = {T'(s)}.

Fig. 8. Tolerances of System Response

The OK T set is independent of ¢, so it is easy to obtain the LTI Equiv-
alent, P(s) = Y (s)/U(s) which is a function of (a)the six plant parameters
FE, J, A, B, a, b, (b)the A parameters {,w,, and (c)the command input in-
stant ¢,. We used the six (£,wy,) pairs of (b), the two extreme values of the 6
elements of (a) and eleven values of ¢, : (0,.2,.5,1, 2, 5,10, 20, 50, 100, 200), a
total of 6 x 26 x 11 = 4224 runs. This is easily programmed on the computer
to plot directly the numerical values of the LT] equivalent P(jw) for any de-
sired w, giving the equivalent LTI sets P(jw), needed for execution of QFT
LTI design. Some of are shown in Fig. 9 for a number of w values,and are
called plant templates. A "nominal LTI plant” Py was chosen with nominal
parameters: A = E =4, B=F =5 a=b=1,andt, =0,{ =1, w, = 4.
We postpone further design to Sec. 4, where QFT LTI design is presented.

It 1s worth noting that if so desired, we could design in the performance
sense, a Linear Time Varying (LTV) system, by specifying the acceptable
output set A as a function of T: A(T), as in Fig. 10, with continuity of
A with respect to T'. Then, one could proceed as previously, at a sufficient
number of discrete values of 7.
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Fig. 10. LTV system type Specifications

3.2 Nonlinear Design Example with LTI Output Specifications

The plant relation is

W . k1y2(t) + k’zd!;g ) =1 (41)

where k1, k2 € [1,10] are independently uncertain. The command input set
R consists of steps of amplitude M € [1,4]. The bounds on the unit step
response to be attained for all W are shown in Fig. 11-a. The bounds on T
were obtained by using a second order model for the OK system ”transfer
function”: T(s) = w?/(s? + 26wms + w2), with resulting OK (§,w) range
shown in Fig. 11-b, which is translated into bounds on |[T'(jw)|.

B(Y)

Alt)

© 1 2 3

Fig. 11. Bounds on T'(s) parameters: £, wn
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To generate equivalent LTI Pe use 1/P(s) = Us/Y (s), u{t) = kyy? +
kody/dt , so 1/P = ks + k1 Lapl(y?)/Y (s). Find y from Y {(s) = T{(s)M/s,
square it to give

(5 4+ 2EN)(s% + 4&xs + 4)2)

PO asls 280 + 462 1 432) + 237, B (35 4 46)

(42)

which is a function of the plant’s k;, kz and of its output &, w,, M, including
the sign of M (due to y? in W). It is easy to check P(s) at w = 0 and infinity
because these correspond to f at infinity and zero. As t = oo, dy/dt — 0
so u — ki1y® = kyM?, while y — M, so the set {P(0) = Y(0)/U(0)} =
{1/(k1 M)}, and the set P(0) consists of two subsets 180 apart due to M > 0
and M <0.Ast — 0, u = koy so U(oo) = kasY (00), giving P(o0) = 1/(kzs)
with angle -90, for the entire set. The P(w) in Fig. 12 are characteristic of
a plant set, some (not all) of whose members have a RHP pole. This is the
effect of k1y? in kedy/dt + k1y? = u when y and dy/dt are < 0, but kyy? is
> 0. In a LTI system with term k;y rather than k;y?, both terms are then
negative during the initial (small t) part of the response. Analytically, it is
evident from the coefficients of s and of s° in the denominator of P(s) above:
2w2[(4€wnky + 3k; M)s + 4k Méw,). When M < 0, the last term is < 0 and
when 3k w,|M| > 4€wnks both coefficients are < 0. It turns out that the P
instability is likeliest at 3/ < 0, [M|k; maximum, k; and w, minimum. The
balance of the design follows usual QFT LTI principies. Thus, the LTI Plant
Equivalent can be unstable, even if the nonlinear original does not appear to
be so.
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Fig.12. LTI Pewa

3.3 A Second Nonlinear QFT Technique: Replacement of
Nonlinear Plant Set by an Equivalent Disturbance Set and a
Simple, Uncertain LTI Plant

This technique is especially suited for handling disturbance signals entering
into any point in the plant, but for simplicity, assume it enters at the plant
input as in Fig. 13.
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In Fig. 13-a, D = {d} is the set of disturbances to be attenuated, to
achieve output y in A = {a}, an acceptable set, for all plants in set W = {w}.
The bounds defined on a in A are as follows. Let the differential equations w
in W be of order n. There must be assigned bounds on the derivatives of a(t)
from zero order to order n — 1. These are performance bounds, and will gen-
erally be small. D is a set of functions of bounded variation, with magnitude
bound, so certainly includes all realistic signals (see [19] for mathematical
details). We work backwards from the output y = a € A. The input to
the plant is z = v(y), v = w™?}, y = w(z). We divide z(¢) into two parts:
z1{t), z2(t). The first, z;, is associated with a "linear” part of z, and the
second, x,, with all of the nonlinear part and possibly some linear part.

aned d(t) de=-x2

.‘1'

Nonlinearity as d.

x-w-ly)=x] +32

Fig. 13. Nonlinear System and Equiv. Disturbance-LTI System

We demonstrate with an example:
w: i+ A%y + By® = ka (43)

Let kz; = §j, kzo = A%+ By>. Another possibility is kz; = §+Ey+Jy, kzy =
A%j+ By3 — Ey+ Jy. There is an infinitude of ways to split z between z1, z3.
We prefer the first. Let P(s) = k;/s* and replace Fig. 13-a by 13-b, in which
P is a LTI plant and d. = —z2 is an ”equivalent disturbance”, in order that
z, d and y are the same in Fig. 13. The two figures are then ”equivalent”
with respect to z, d, y; 1 = z + d,, so in general

de =z —2 = -2 (44)

here d, = —(A%) + By®)/k. From the viewpoint of d, as input and y as
output, there is no difference between Figs. 13. It is impossible to distinguish
between them, if the only measurements allowed are of z, d, y. However,
the design problems are radically different for the two. In Fig. 13-a one has a
nonlinear time-varying (NLTV) problem, which can be horrendous, especially
for the kind of uncertain plant, disturbances and performance demanded
below. In 13-b, one has a LTI plant with only & uncertainty, and an additional
disturbance d., which is a function of the plant output y and the nonlinear
plant parameters k, A, B. The performance specifications demand that the
resulting output y(¢) is a member of an acceptable set A = {a}, so each
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combination of (a(t), k, A, B) generates a different d.(t). Thus, the pair of sets
(A, W) generate a set d of equivalent disturbances. This is a well-defined
disturbance set if we properly define A and W. The external disturbance
d is in general, a member of a set D. The two sets D and de are summed
to give dy = {d; = d + d.}, the total disturbance set. So we see that Fig.
13-b constitutes an ordinary LTI disturbance attenuation problem with only
gain k uncertainty in the LTI plant P, subjected to a disturbance d; which
can be any member of the set dy. This is a standard QFT LTI disturbance
attenuation problem: choose G to guarantee that for all P € P, d; € dg,
the output y is a member of the acceptable set A. Obviously, this Fig. 13-b
problem is far, far easier than the NLTV uncertainty problem of Fig. 13-a.
This problem is solvable because the d; of dy have the same form of bounds
as the a of A.

The vital point is that for a very large problem class, the solution (G) of
the LTT disturbance attenuation (d¢,P, A) problem of Fig. 13-b, is guaran-
teed to solve the original NLTV disturbance attenuation (D, W, A) problem
of Fig. 13-a.

Just as in the first QFT nonlinear method, this is proven by means of
Schauder fixed point theorem. As in the first QFT nonlinear technique, it
is not difficult to formulate A as a convex, compact set in a Banach Space.
Define, in Fig. 13-b, H(s) = P/(1+ PG) = Lapl.(h(t)). For fixed d;, w, define
the potential Schauder mapping over A:

&(a) = h*dy, (45)

with dy = d — z2, zo a function of a and * indicating convolution. In a
properly designed system, this is a continuous mapping, and to satisfy the
equivalent L, TT problem, ¢ must map the set A into itself, giving a fixed
point a; = h * (d — T24), which corresponds in transform language (with
Lapl. indicating Laplace transform)to [(1 + PG)/P]Lapl.(aq) = d;. The left
side is: (1/P)Lapl.(aq) + GLapl.(ay), which in the time domain is, z;4 — 2,
of Fig. 13-b, giving, z,, = z +d; = z of Fig. 13-b, and proves that z, is
a solution of the nonlinear Fig. 13-a. If each element w, G is 1:1, then the
solution is unique. An important point is that if the nonlinear plant w is of
order n, then bounds on z2 from zero to n — 1 order must exist, in order that
d. exists, which has been done. But one more condition must be satisfied in
order that A = {a} is a Banach space, [19], the n'® derivative of a(t) must
be bounded, the precise value unimportant. This can be guaranteed, because
of the order of the plant.

It is essential that the LTI problem be solved, for only then does ¢ map
A into itself. In practice, the designer need not worry over the details of the
proof. The precautions needed to make A a convex, compact set in a Banach
space, and for @ to map A into itself, are normally automatically satisfied in
the QFT LTI disturbance attenuation technique.
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3.4 Example

Problem Statement: There 1s a set of time-varying nonlinear plants W =
{w}, y = w(u),

Bt +1
t+1

Uncertainty: B € [-5,5], k € [10,40], wo € [1,2], m € [5,1.5], F €
[-2,10]. Clearly w is unstable to a large input class for a significant plant
parameter range.

Specifications: The disturbance set D = {d} at plant input is defined by
D = {|d| < Do = 100}. Any realistic disturbance belongs to a class of such
form, i.e. of bounded magnitude.

The Acceptable output set: A = {a} is the set of continuous functions
defined on t in (0,00), with |a(t)] < ag = 0.2, and |da(t)/dt] < a1 = 5.
A may appear overdefined, as in many cases bounds on y may suffice. The
reason for its inclusion will soon be seen.

The LTI Equivalent: Replace the time-varying, nonlinear Fig. 13-a by the
LTI input-output equivalent of Fig. 13-b as foliows. Let x = w1y = z; + =,
where z; = P~1y is associated with the LTI P of Fig. 13-b, and z, = 2 — 2,
is the balance. Here P(s) = k/s? (i.e. kz; = d®y/dt? ). Then Fig. 13-b is an

i+ y"y? + (1 + Esinwot)y® = ku (46)

input-output equivalent of Fig. 13-a if d. = —=z,. Replace y by a of A to
generate de, giving d. a function of w and a:
Bt+1
—kd, = kx, = : ++1 a™a® + (1 + Esinwgt)a® 47

which gives the properties of d.. Since the relation between d and y is not
known, ag,a; are used for a, da/dt in (13), giving k|de|mas = 5 x 51.5 x 22 +
(1+10) x .23 = 2.32, 50 |de|maz = -23 < |d|mas = 100, and will be ignored,
letting the total |d;| < 100. Thus, bounds on both y and dy/dt were needed
in order to derive the bound on d.. This explains the bound on da/dt. We
are confining ourselves in these notes to NLTV differential equations wherein
the leading derivative in the output y and the leading derivative in input u,
appear linearly, as in this example (this class can be enlarged [19]). Then P
in the LTI equivalent plant of Fig. 13-b must involve the highest derivatives of
y and u. For this class d. can be, in general, a function of all the lower states.
Therefore bounds on all these lower states are needed in order to derive the
bound on d,.. This explains the bounds on @ and da/dt in this example. The
formal proof of this technique requires much more precise definition of A
(see previous reference). But these need not concern the practical designer.
He needs only to set bounds on all the states which appear in d., in order
to be able to define d., even though he may not really care what the values
are of the higher states. The lower the bounds, the smaller is maxz(|d.|), so
it would appear desirable to assign small values to ag, a1,..., but remember
that it is essential to solve the LTI problem of Fig. 13-b, i.e. guarantee that
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the output y satisfies the bounds assigned on A. The more stringent these
bounds are, the larger the magnitude and bandwidth of G in Fig. 13-b, will
have to be. Of course, some of the bounds are dictated -after all, disturbance
attenuation is the reason for applying feedback around the NLTV plant, but
for those states of which there is no concern, the designer should use the
highest bounds which do not significantly affect the magnitude of the total
d.

3.5 Solution of the Equivalent LTI Disturbance Attenuation
Problem

It is imperative the LTI problem is solved, for only then is it guaranteed
that the same G solves Fig. 13-a. Part of this solution, guaranteeing that
lyl < ap = .2 is quite easy for this class of problems. In Fig. 13-b,

_ DP
14+ PG

where H = P/(1 + PQ), d¢ = d + de, so y = d; * h. Suppose h(t) =
Lapl.7'(H(s)) is as shown in Fig. 14. What input d(t), bounded by Dg,
gives an extreme output? By considering the mechanics of graphical con-
volution, it is obvious that dz(—t) in Fig. 14 is the one. It is clear that if
J = [ h(t)dt is fixed, then the extreme output is minimized by having
h(t) > 0 for all ¢ (or < 0 for all t), i.e., the step response of h(t) should have
no overshoot. If so, the peak output is JDg, with

= D,H (48)

_ P(0) _ 1
1+ P0)G(0)  G(0) (49)

J = H(0)

Fig. 14. The Convolution of H and d; gives the output

Here the extreme d; is a step function of magnitude 100, requiring 100J <
.2, 30 G(0) > 800 if there is no overshoot in the step response of P/(1+ PQG).
As a safety factor, we take G(0) = 750. Of course L(s) = P(s)G(s) must
be shaped for stability over all P (here only k uncertainty), making the
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problem much easier than the usual shaping of L. The technique for this
purpose is presented later (Sec. 5), so only the final result is given. Nominal
Po(s) = 10/s? is used with G = 750 x 1700? z2dstismr . Nichols plots
of L for k = 10,40 are shown in Fig. 15. We have to also guarantee that
|dy/dt] < a1 = 5. Simulations (LTI) over the k uncertainty range verified
that this was indeed so. If the result had been different, we could simply
increase the bandwidth of G, and if necessary its magnitude, to achieve this.
Or it might be simpler to increase the value of a1, because its effect on total
d is slight. Some cut and try may be required for a; control. In the case of
a fourth order NLTV plant, we would have also bounds on the second and
third derivatives of y to satisfy in the LTI design. It is guaranteed (if the LTI
plant is minimum-phase and satisfies the conditions applicable to LTI plants)
that such bounds can always be satisfied (see above reference).
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Simulations. A large number of nonlinear simulations of the original NLTV
problem were done. Despite much effort we could not find inputs (in the de-
fined class) which gave outputs that violated the performance specs. Steps
were applied at different time instants. It did not make much difference in
the response. Disturbances d = M sin(wgt), (Mt)exp™5, with M = 150,500,
and the same ones applied at ¢t = 5, gave very similar outputs. The reader is
encouraged to experiment with all kinds of esoteric disturbances, satisfying
|d|maz < 100. He should find it is impossible to find any resulting in |y| > .2
for any value of t € (0, 00).

4 QFT LTI Design for the Tracking Problem

Fig. 1, redrawn here as Fig. 16, is the basic structure. The LTI Plant P
is uncertain, known only to be any member of a set P. The designer is
free to choose LTI prefilter F' and loop compensator G, to ensure that the
system transfer function T' = F PG/(1+ PG) satisfies assigned specifications.
Those on magnitude M (w) = |T'(jw)| suffice in minimum-phase systems, for
example those in Fig. 17, in decibel units (201og;o(M)). This gives an OK
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set M for |T'(jw)| , to be achieved for all P € P, with b(w), a(w) the upper
and lower bounds on M.

re
F(s)|— a —a YO
n(?)—b-ﬂ (s) T——.- (s) o— P(s) > TY(')
g

Fig.16. LTI TDF (Two Degrees of Freedom) Structure
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F and G are to be chosen. It is highly desirable to be able to pick one at
a time, easily done by considering the variation in log|T|. Thus,

Alog|T(jw)| = AlL(jw)/(1 + L(jw)] (50)

thereby eliminating F. The purpose of G in L = PG is to ensure that the
variation §(w) = b(w) — a(w), allowed in M(w) = |T(jw)| in Fig. 17, is not
exceeded at each w, so it is worth making a plot of é{w}, in Fig. 18.
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The Logarithmic Complex Plane (Nichols chart, Fig. 19) is a highly trans-
parent, excellent medium for visualizing the design procedure for the above
purpose. It consists of loci of constant M = |T'|, and Arg(T) in the logarith-
mic L plane: Angle(L) in degrees, M agnitude(L) in db (201og,, |L]). Arg(T)
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is not needed. It is easy to see that in certain regions, very large changes in
L cause very little change in M. For example, let |L| range from 15 to 75 db
(factor of 1000 arithmetic) and Angle(L) from —90 to —270; the resulting
maximum change in M is only —2 db. The designer soon obtains intimate
understanding of the relations between L and variation of M.

Fig. 19. Nichols Chart

4.1 STEP 1: Plant Templates (P) and Loop Templates (L = PG)

Display the Plant Uncertainty on the Nichols Chart. For example, P(s) =
{k/(As®* + Bs + C),k € [1,4], A€ [1,4], B € [-2,2], C € [1,6.25]}.

Detailed design is done in the frequency domain. At each w, P(jw) is a
complex number. Because of plant uncertainty, there is a set of plants, so at
each w, we get a set of complex numbers, which we call the plant template
P(jw). For example, at w == 3rad/s, the plant template is given by the set of
complex numbers shown in Fig. 20: P(53) = {k/(-9A+ j3B + C)k € [1,4],
A€ [1,4], Be[-2,2],C €[1,6.25]}.

Fig. 18 allows variation 6(3) = 15.3 db. in M (3) = |T(43)|. Find the
bounds on L(3j3) to assure this. Since L = PG varies with P, it is convenient
to choose a nominal Py, giving a nominal Ly = PyG, for this purpose.
Values used here for nominal plant are: k = 1, A =4, B =2, C = 6.25, so
1/Py = 4s% 4+ 25 + 6.25, for s = j3.

The nominal Py (which corresponds to the nominal Ly = PnG value), is
marked N in Fig. 20. Note that the template of L = PG, is isometric to the
template of P: The template L(jw) is obtained by shifting the plant template
P(jw), by Angle(G(jw)) horizontally, by |G (jw)| vertically. Its shape and size
is the same as the plant template P.
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Fig.20. Plant template at w =
3rad/s

4.2 STEP 2: Bounds on the Nominal Ly (jw)

The nominal loop Ly (jw) is our design tool. By making it sufficiently large,
a huge plant template can be forced into a very small T(jw) template, i.e
the loop transmission is the means by which large plant uncertainty can be
translated into small system transfer function uncertainty. But large L is
expensive (Sec. 5), so we seek the smallest possible Ly which satisfies the
specifications. Simply manipulate the plant = loop template on the Nichols
chart, until (at any fixed angle), the minimum |L y| is found which satisfies the
specs. It is seen that this |Ly|min is a function of Angle(Ly). The resulting
curve is called the Bound B(jw) on Ly (jw). B(w) for w = .1, .55, 1, 2, 3,
5, 10, 50 are shown in the Nichols Chart of Fig. 23. Of course, the computer
can be programmed to find the bounds. It is a good idea for the novice to
do a few by hand. We indicate one possible procedure by finding. A point on
B(3), whose template is shown in Fig. 20, and for which 4§(3) = 15.3 db in
Fig. 18.

A point on B(3): Pick any value of angle for the bound on Ly (j3), say
—20. Set the point N of the template at —20, at location Trial 1 in Fig.
21. Check the M loci and thereby ascertain that the variation is from —8
db to —40 db = 32 db, which greatly exceeds the allowed 15.3 db variation
of Fig. 18. So for Trial 2, we move the L Template much higher, as shown.
Now the M variation is from 0.08 db to —2.9 db = —3 db, much less than
the permitted 15.3 db. In the Trial 3, the variation in M is from —15.3 to
.1, very close to that permitted, which we use: Point N of Trial 3, in the
Nichols chart, is a point on B(3). Thus, if Angle(Ln(j3)) = —20 degrees,
then |Lx(j3)] must be on or above this point N. We next try a different
angle for Ly (j3), say —50 degrees, and repeat the above search, to find the
minimum | Ly (73)] at angle of —50 degrees.
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Some plant templates P(jw) are shown in Fig. 22. For w = 2 it is semi-
infinite in magnitude and is 360 wide, typical of a plant whose poles wander
from left-half plane into right half-plane, crossing the imaginary axis. At
w = 0.2, P(50.2) has two separate parts.

4.3 STEP 3: The Universal High-Frequency Bound UH(wB)

For w > 100, the templates P(jw) are almost vertical lines, because P(s) is
close to k/s? at such large s, so P uncertainty is closely that of k only. In this
frequency range the allowed M variation is larger than the plant uncertainty.
It is in fact essential that this be so at large enough w, otherwise L{jw) is
not allowed to — 0(—oodb) as w — co. In fact, Bode (the Feedback Amplifier
pioneer), proved long ago, that on the average (over the arithmetic w range),
the feedback benefit (sensitivity reduciion in db),is zero in any practical feed-
back system (one whose L has an excess of poles over zeros > 2). This means
that if sensitivity reduction is obtained in one frequency range, it must be
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balanced by some other range, in which the sensitivity > 1, i.e. worse than
in an open loop system. In the Two Degrees of Freedom (TDF) system (Sec.
2), we have at least control of the frequency range in which |S| > 1. We can
postpone it to high enough frequency, in which it is of no matter, because
|T(jw)| is so small there. Say it is from —~30 db to —76 db (46 db range),
even though the plant uncertainty is only 40 db. The equivalent in the time
domain is that at small ¢ the step response of the plant can vary, say between
107% and 10~* due to plant uncertainty. But for the closed loop system, the
variation is twice as much, say between .5 x 1077 and 10~°. However, in the
One Degree of Freedom (ODF) system, we have seen (Fig. 2), that we have
no control over the frequency range where |Sens.| > 1. It is determined by
the system transfer function, and tends to occur in a significant frequency
range.
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But sensitivity to the plant is not the only matter of concern. There is
also the effect of disturbances D, say entering at u in Fig. 1, the plant input,
giving system output DP/(1 + L), which is precisely DP multiplied by the
sensitivity, which may be too large to bear; certainly so if the disturbance is
at the plant output in Fig. 1, for it is then D /(I + L). We have been assuming
that here disturbances are not the major problem (see Sec. 7), where they are
assumed to be the major problem). But we see that they cannot be totally
ignored. We must therefore add an additional constraint in this ”higher”
frequency range, which we can recognize by the specifications allowing us
to have Ly increasingly approach —1, where the sensitivity S = 1/(1 + L)
becomes very large. This new constraint, is called the v constraint.

v constraint: |L/(1 4 L)| < + Typical v value is 2.3 db, corresponding
to a damping factor of 0.707 for a second order system. A more conservative
constraint is that |\S| = |1/(1 + L)} be less than a chosen v value. At high
enough frequency, the v constraint dominates and determines the bounds on
nominal Ly. The combination of the « constraint, and the fact that in the
higher range the plant template is a fixed vertical line (because P approach
k/s™, so there is only the uncertainty of k), leads to universal high frequency
bound (UHw B): find the v magnitude locus in the Nichols Chart, i.e. the locus
for which |L/(1+ L)} = #, for example, in Fig. 24, the locus LK JUV XW' for
v = 2.3 db. Project this locus downward by the amount of the & uncertainty,
which is the length of the verlical line X X'. This gives the entire UHwB
as LKJW'HW XVUOL (proof is left to the reader). Part of this Universal
Boundary is shown in Fig. 23, for our present problem. Some prefer to use
the sensitivity function [S| = |1/(1 + L)| < 7 as the « constraint.

4.4 STEP 4: Find Ly (jw) which Satisfies its Bounds B(w)

Computer programs have been written for this purpose. But it is a good idea
for the beginner to do a few problems by hand. We only present the results
here for this example. There was chosen (Figs. 25-26)

9.5 x 8.5 x 2807 s+ 14

L
N () 14 (s + 8.5)(s% + 1.2 x 280s + 2802)

(51)

The other L; shown in Figs. 26 were chosen later (Sec. 5) to illustrate
the Cost of Feedback, which we will discuss later. All of them satisfy the
bounds of Fig. 23, but they differ considerably in complexity of the resulting
loop compensator G, and in the associated Cost of Feedback, which is a very
important practical concept to be discussed in Section E.
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Fig. 25. Bode plots of Lx

4.5 Design of Feedback Controller G(s) and Prefilter F(s)
G(s) = Ly(s)/Pn(s) is available from Ly, giving

9.5 x 8.5 x 2807 (5 + 14)(45% + 25 + 6.25)
B 14 s(s +8.5)(s% + 1.2 x 280s + 2802)

G(s) (52)
which has an excess of one pole over zeros. Thus, we have chosen G, (as-
sociated with Ly = PnG), but this is only one of the two degrees of free-
dom . G has been chosen to assure that the allowed wariation in |T(jw)l,
Mmae — Mmin = 6(w) of Fig. 18, is satisfied for all w. But this is insufficient.
For example, suppose that at some w,, the specification dictate M, = 2
db, Muin = —5 db, giving §{w,) = 7 db, and suppose that G(jw,) is such
that at this frequency, My, = —3 db, My, = —9 db, with variation of
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Fig. 26. Other designs to illustrate Cost of Feedback

6 < 7 db. Even though the variation specification has been satisfied, the M
specification has not been satisfied. Since |T'| = |F|M, the function of F is to
fit the actual OK variation inside the M specification. This is achieved here
by assigning bounds on |F(jw,)|: minimum value = 4 db = -5 — (-9) db,
maximum value = 5 db = 2 — (—=3) db. Note that this free range for |F| of
5 —4 = 1 db is precisely the amount of overdesign of G(jw,), which gave a
variation of 6 db, when 7 db variation was allowed by the specifications.

In this example, using Ly, a few of the resulting bounds of |F'(jw)| were
w=01l:—-4to 4yw=.5:-23t0ol4w=1:-36t0o.95w=2:-92to
-3w=35: —25 to —4. This pair of bounds on |F(jw)|, is shown in Fig. 27.

F(s) = W is a simple function which satisfies these bounds.

//-——_\L\ ‘
0 _TT" —< UpperBound on F(a )
DB Lower Bourxs on IF (j )i

5 F cnosen
Fis)= s+3R|+75

-1( -
.1 N \ 10 RPS(w)j Fig.27. Bounds on
[F(Gw)l

4.6 Simulations

Step responses for over 300 cases were checked. They all satisfied the spec-
ifications. Note that the plant is unstable over part of its parameter range.
This has no effect on performance. Fig. 28-a shows unit step responses for 81
unstable cases, Fig. 28-b for 81 stable cases, Fig. 28-c for 27 cases of a pair
of plant poles on imaginary axis. They are indistinguishable. It is interesting



100 1. Horowitz and A. Banos

to see the mechanism whereby the system is stable for both the unstable and
stable plant cases. Fig. 29 shows the Nyquist encirclements which prevail
for the 3 plant cases of: (a)unstable P(s) with two right half plane poles,
(b)stable P(s), and (c)pair of poles on imaginary axis (giving semi-infinite
plant template).

e b
P Sap responses for 81: cases of ppen Joop stable L

0l b

.

Fig. 28. Step responses

g

j .

a) b)
Fig. 29. Nyquist Plots

Figs. 30-a,b,c shows simulations of the same 3 classes of L(j(w) on the
Nichols Chart. Fig. 31-a presents the system output due to unit disturbances
entering directly at the system output, so output y(0) = d(0), because no
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practical feedback can be instantaneous, as it would require infinite loop
bandwidth. The larger the loop bandwidth, the faster the feedback acts to
attenuate the disturbance. Fig. 31-b presents the effect of unit step d entering
at the plant input. Note its small scale. In this TDF structure of Fig. 16,
the available feedback benefits are: (1)to decrease the sensitivity of tracking
response to plant uncertainty, and (2)attenuation of disturbances entering
the plant. Both of these benefits are entirely determined by the single L(s),
so cannot be realized independently. One or the other may dominate at any w
value. So, both problems should be quantitatively considered. We will present
QFT Disturbance Attenuation in Sec. 7; only note here that it is fairly simple
when done in w domain.

5 Cost of Feedback: Sensor Noise Effect, Loop
Bandwidth, w cut-off

The tremendous reduction of the effect of plant uncertainty, achievable by
large Ly, may tempt the designer to be extravagant in choosing Ly. But
there is a price to pay. In Fig. 32, consider the effect of sensor (at plant
output) noise N, at plant input U,. Although noise is a random process, we
can treat it adequately for our purpose as a deterministic signal. The effect
is

poolh_ G G G 1 53
N 1+L L PG P

in range in which |L] 3> 1. So in this w range, we have no control over T},.
This is generally the low frequency range contained within the bandwidth of
T'(jw). It is not the w range of importance for this sensor noise problem.

The problem is in the w range in which |L| is small, so 1 + L = 1, for then

L

T, ~G= iz (54)

In this range, the sensor noise is amplified by the amount in which |L] >
|P|. Both L and P tend to be small in this range, but G = L/P tends to
be large. We illustrate the importance of the Sensor Noise Amplification by
means of various design examples.

Fig. 33 presents the results of 4 different designs for the same problem,
satisfying the same bounds. GG; has one zero, one pole (1,1) -impractical. G, =
(1,2). G5 = (5,8). G. = (12,15). Which is the better design? If complexity of
G is the only criterion, then G2 is the best design. But over nearly all of the
frequency range shown in Fig. 33, the sensor noise is highly amplified, with
maximum amplification of 130 db (arithmetic 10%, over a million). To find
rms effect of the sensor noise, if it is white and Gaussian, this must be squared,
and integrated over the arithmetic w range, and its square root taken. The
result is enormous. The design would be impractical, unless the sensor noise
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Fig. 30. Nichols plots

is very small. By adding 4 more zeros, and 6 more poles to L, one obtains the
very much smaller G3, whose maximum arithmetic value is & 10%, a very great
improvement over G, in terms of sensor noise effect. If we use the much more
complex conditionally stable design with additional 7 zeros and 7 poles, there
is much more sensor noise reduction, maximum < 30, and over frequency
range of 100 rad/s, instead of 10,000 rad/s. The difference is enormous. So the
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Fig. 31. Effect at output of plant disturbance:a)at output, b)at input
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answer to the question ”which is the better design?” is, "that it depends on
the sensor noise”. QFT is very transparent and highly visible, in this tradeoff
available to the designer between compensator complexity and sensor noise
effect.

Fig. 33. Comparison of more
economic but more complex
designs

Fig. 34 ( [16], p. 188) presents another example, involving the X15, first
explorer of upper space, in which the speed could vary between mach 0.1
and mach 6, and altitude from ground to 100,000 feet. The uncertainty is
60 db (1000) over the entire frequency range. The design is quite complex.
In the first QFT design G; has 2 zeros, 5 poles. In the second G3 has 7
zeros, 10 poles. The third and most economical design with respect to sensor
noise effect has G3 with only 3 zeros, 6 poles, but this is due to use of
scheduling, explained as follows: The factors causing the plant uncertainty
can be measured by air data measurements which can be related to the
plant parameters, and much of their variation cancelled by adjustments of a
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scheduling compensator. This was used here to eliminate some of the plant
uncertainty, and makes the feedback design much more economical in loop
bandwidth requirements. However, the US Air Force and NASA were then
caught up in the adaptive fad (in fact its principal promoters), and would not
exploit this well known tool. in order to demonstrate the power of Adaptive
systems, which was a great failure.

O

d o aul ® 10, 1000

Fig. 34. X-15 designs

Finally, we return to Fig. 35, in which the Trade-Off between design com-
plexity and sensor noise effect is again displayed. The first design Ly has 1
zero, 4 poles; L2 has 4 zeros, 7 poles; L3z has 5 zeros, 9 poles; and L4 has
5 zeros, 11 poles.

1 l ]

X107
-2

‘TN‘Z LN2
1

.‘)\,,
/ 4
o /200 N 400

Fig. 35. Trade-off between design complexity and bandwidth economy

5.1 Graphical Ddisplay of the Sensor Noise Effect. Loop
Bandwidth and cut—off Frequency

A second important cost of feedback, is its bandwidth multiplication effect,
which is illustrated by the above LTI problem of Figs. 16-31. We use here
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the concept of bandwidth to indicate the w range over which the function is
effective, and over which we must be certain that it truly has its theoretical
value. If we use the —5 db point, then from Fig. 17, the bandwidth range is
from 0 to ~ 8 rad/s. One is not much concerned with the behavior of a system
a few octaves past its bandwidth, if we know it is decreasing in magnitude.

Let us now consider the ”bandwidth” of the loop transmission L, which is
the basic function which controls the system sensitivity to plant uncertainty.
Over what frequency range must we be certain of the validity of our theoretic
paper design value of L? For we must not forget the fragility of theoretical
models. A resistor R is the model of a piece of metal wire, but at high
enough frequency, its model becomes more complex, eventually the partial
differential equations of Maxwell must be used. We might happily concentrate
on mathematical optimization, leading us to operate at high frequencies at
which the presumed model R is far from valid.

To answer this vital question, we should first seek the optimum L function,
in order to be fair. The optimum is defined as follows (Quantitative Feedback
Design has led us to bounds on Ly, the nominal loop function): suppose we
choose a specific excess ef, of poles over zeros for Ly = PnG, ef, = ep +eg,
the excess of poles over zeros of the plant P and of the compensator G.
The value of e should at least be 1, because any practical transfer function
must go to zero at infinity. Trade-off considerations between complexity of
G and sensor noise effect (previously discussed) determine our choice of eg.
The larger its value, the smaller the sensor noise effect. Assume eg has been
accordingly chosen, giving er. Hence, at high enough w, Ln(s) = k/s®* at
large s.

L,pt, the optimum Ly, is defined as that which satisfies the Bounds on Ly
with minimum value of k. It has been shown ( [16], Sec. 10.5), that for a large
class of bounds, L,p; lies on its Bounds at all w values, that such an Ly exists
(if necessary, only in the limit), and is unique. This information is valuable to
the designer, as it tells him what to aim for, and how far he is from optimum
design. Furthermore, thanks to the Hilbert-Bode integrals relating magnitude
and phase of analytic functions, the designer can at any point in his Loop
Shaping, find the improvement possible by further sharpening of his design,
and judge whether is worth the effort and the resulting greater Compensator
(G) complexity. As deduced by QFT, the typical form of |L,p(jw)| vs w, in
the crucial high frequency range (which is the important range for cost of
feedback), is shown in Fig. 36 as [L|.

It is encouraging that H. W. Bode [11], the Master of Feedback Ampli-
fier theory, who was deeply concerned with the loop bandwidth and cut-off
Frequency problem, has the same high w characteristic. This figure is very
revealing. The crossover frequency w,, is defined as that at which |L| is zero
db, so cuts the horizontal log w axis. For (approximately) w > w,, the sensor
noise is amplified at all frequencies for which |L,p:| > |P|, so we have labeled
this region ’cost of feedback’. The cut-off frequency (wey:) is defined as the
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last corner (or break) frequency of Ly (jw). Its great importance lies in that
design effort can be relazed for w > weye. We need not pay much attention
to L for w > wew, just as we need not pay attention to T(jw) beyond its
bandwidth, if we know their magnitudes are decreasing thereafter. The great
importance of weyt lies in that we must be sure of the numbers upon which our
paper design is based, and upon which practical hardware design with all its
trouble and expense will be built, at least up to weyt, and preferably for several
octaves beyond it. It is easy to be careless and optimistic when one consid-
ers the great sensitivity reduction and disturbance attenuation achievable by
feedback, that one forgets the high price that must be paid for its benefits.
In Fig. 36, note the typical, often huge difference between wr (bandwidth of
T), and weyt. In an open-loop (no feedback) design, the designer need concern
himself only for a few octaves beyond wr. In a demanding feedback design,
it is best he does so for a few octaves beyond wey. The latter may be several
decades larger, say 1000 Hertz for wey, instead of 10 Hertz for wr. Modern
Control theory has been notoriously indifferent to this vitally important Cost
of Feedback (see specially p. 290 of [20]).

dB

SENSITIVITY
FUNCTION

N oT/T
AFIP

Fig. 36. Sensitivity function is very insensitive to cost of feedback

The following might be worth pursuing. Consider the important factors
and ratios involved in the cost and benefits of feedback: such as: (1)the ratio
of amount of plant uncertainty U(P), which can vary greatly vs. w, (2)the
permissible uncertainty in closed-loop response, possibly the allowed variation
in the latter’s bandwidth U(T"). Another factor: the ratio weu to wr, as
discussed in last paragraph. It would be valuable to the designer, if such a
universel ratio could be found between benefits and costs. There do exist
many Quantitative Feedback Designs, whose data could be used for such an
investigation. But we should warn the potential investigator, that he should



Fundamentals of Nonlinear QFT 107

first learn OFT thoroughly, in order to obtain deep understanding of the
trade-offs in the Feedback Control Problem.

5.2 The Sensitivity Function (Design Tool of H) is Highly
Insensitive to Cost of Feedback

It is interesting that Bode [11] invented the sensitivity function, which is
1/(I+ L) in SISO systems, and derived for it some important theorems, such
as the Equality of Positive and Negative Feedback Areas (i.e. in practical feed-
back systems, there is zero average feedback benefit, Fig. 2). However, as a
design tool, he used exclusively the loop transmission L, because that is what
must be actually built in practice, and because it directly gives the cost of
feedback in terms of the highly important cut-off frequency w.;. Both Classi-
cal Feedback Control theory, and Modern Control theory (State Space, LQR,
Observers) which followed, ignored the uncertainty and sensitivity problem.

In the early 1980s, there emerged H,, which was a significant positive
advance in Modern Control theory, because it did seriously concern itself
with the sensitivity of the feedback system to plant uncertainty. However,
it used the sensitivity function, 1/(1 + L), as its principal design tool, and
continues to do. It would not have done so, if it had paid any attention to
the cost of feedback, because the seunsitivity function is highly insensitive
to the cost of feedback, so is an exceedingly poor tool for its minimization.
In fact Hy designs (including at least one which received a Best Practical
Paper Award from the IEEE Control Society) tend to have infinite cost of
feedback. The poor insensitivity of the sensitivity function is seen as follows:
In Fig. 36, note that in the frequency region with high cost of feedback, |L|
is very small, so 1 + L is very insensitive to L. Thus, suppose we have a
choice of |L| = .05, or .005 (with |P| less than either, as is very often so
in practical design. This makes a big difference (factor of 10) in the sensor
noise effect at that frequency, so the designer using L as the synthesis tool
(Bode, QFT) recognizes its importance. He can’t miss it. But the difference
for the sensitivity function between these choices is at most only between
111.05 and 111.005, approximately 4.5% (hardly noticeable in the sensitivity
locus in Fig. 36), instead 1000% for QFT.

Most of the more recent Control techniques (Hoo, Fuzzy design, neural
networks) continue to ignore the cost of feedback. This is unfortunate for
the advancement of genuine (Quantitative) Feedback theory. The reason is
that awareness of the high cost of feedback, would motivate study of ways of
decreasing the cost. Such awareness has inspired QFT to develop practical
Quantitative design techniques for Multiloop Systems, which often permit
fantastic reduction in sensor noise effect, at the price of additional sensors.
It has led QFT, for the same purpose of cost of feedback reduction, to a
special nonlinear device (First Order Reset Element-FORE), to Oscillating
Adaptive systems (used by Minn. Honeywell for the X15, but unaccompanied
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by any Quantitative Design theory), and to other cost of feedback reduction
techniques.

6 Stability of QFT Nonlinear Synthesis Technique

The robust stability of feedback systems is a hard problem even for the case of
(finite dimensional) linear time-invariant systems, where there are no known
tests for the general case ( [20], [10]). As it can be expected, for the nonlinear
case the situation is still more complicated. Here we consider two approches: i)
the adaptation of classical absolute stability results to QFT synthesis ([2,7]),
and ii) the use of an equivalent disturbance method ([6]).

Adaptation of absolute stability results Consider a Lur’e-type non-
linear feedback system, Fig. 37, given by the feedback interconnection of a
linear uncertain system H (s), including the feedback compensator G, and a
nonlinear system N satisfying a sector condition. Since the goal is to obtain
frequency domain restrictions for GG, there exists a clear connection with the
classical absolute stability work (see for example [30] for a clear exposition
of the absolute stability problem). Closed-loop stability is defined as I/0 sta-
bility from any input entering additively to the feedback system to the rest
of signals. Our sense of I/0 stability is finite gain L stability. More formally,
a mapping H : Ly, — Ly . is finite gain L, stable if for every input z € Lo,
the output y = Hx € Ly and, in addition, |jy|lz < a|lz}|z + B for some finite
constants «, .

Pl
= GJPZ—J
. B

N/

Fig.37. The Lur’e type nonlinear system: G is the feedback compensator, F;,
i =1,..,4 are (possibly uncertain) LTI blocks of the plant, and NV is the nonlinear
block of the plant

The nonlinear plant is supposed to be given by (possibly uncertain) linear
and nonlinear subsystems, where, in addition, the nonlinear subsystem satis-
fied a sector condition. For the sake of completness some definitions follows.
Suppose a mapping ¢ : R, x R — R, and a,b € R being a < b, then ¢ €
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Conic Sector [a,b] or simply & € sector(a, D] if i) $(¢,0) = 0, Vt € R, and ii)
a < &(t,z)/x <bVz#0,t€R;let Dia,b] be the disk in the complex plane
which is centred on the real axis and whose circumference passes through the
two points —1/a and —1/b.

In the following, the adaptation of the Circle Criterion is given to cope
with plant uncertainty. It will be referred to as the robust Circle Criterion.
Related work about robust absolute stability can be found in [8] and refer-
ences therein. Most of the material of this Section is taken from [2], where
in addition some other criteria such as the Popov Criterion are also explored.
Only the SISO case is considered here. For extensions of this work to the
multivariable case see [7]. Conditions given by the robust Circle Criterion
take a rather simple form, given as a set of linear inequalities from which
a set of boundaries can be computed using, for example, the ideas given in
[12].

If the nonlinear plant P of Fig. 1 is given by a combination of series, par-
allel or feedback interconnections of linear and nonlinear blocks, closed loop
system stability can be always inferred from the stability of the equivalent
Lur’e system of Fig. 37, where the linear subsystem is a Linear Fractional
Transformation (LFT) of the compensator G, that is

P2(s)G(s)P4(s)
1+ P3(s)G(s)

H(s) = P1(s) + (55)

However, since all transfer functions are scalar, after simple manipulations

the linear part H reduces to

_ Py(s) + Pa(s)G(s)
Hs) = 1+Pﬂ$G@)

(56)

where P, replaces P1P3 + P,P4. Here the nonlinear part is supposed to be
contained in a sector, N € sector|a, b, while the linear systems P;,4 = 1,2,3,
are in general uncertain and represented as sets of transfer functions P;(s),
respectively. As a result, H will be also uncertain in general. Thus (54) and
(55) must be read as the definition of a set of transfer functions, for all the
possible combinations of elements FP; € P;, i =1,2,3.

Without further restrictions, the derivation of conditions on G for feed-
back system stability is still a difficult problem. Note that in general H does
not need to be stable for the nonlinear feedback system to be stable. For ob-
taining a robust Circle Criterion in this case, a natural restriction would be
that the number of unstable poles of H be an invariant for all the values of the
uncertain linear components P;, ¢ = 1,2,3. Now, since G may appears as a
feedback loop around the linear components of the plant, this number can be
theoretically fixed by the designer. In other situations, if G does not appear
in the feedback loop, that is P3 = 0, the number of unstable poles of H is
more influenced by the linear dynamic of the plant. This is a more tractable
case, and can be treated separately [2]. However, in the more general case,
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it is not clear what conditions must satisfy G in order that H = LFT(G)
have a predetermined and fixed number of unstable poles for any value of the
uncertain systems P;, ¢ = 1,2,3. Even more, it is not clear which number of
unstable poles would give the less conservative condition for the compensator
G. The solution adopted here has been to consider H stable, which gives a
first set of conditions for G, and then use the Circle Criterion adapted to this
case, for coping with the uncertainty.

Robust Circle Criterion: Consider the feedback system of Fig. 37, where
N € sector[a,b], and P; are uncertain linear systems with single-connected
templates, for ¢ = 1,2,3. Let G be such that H is stable for any P; € Py, i
=1,2,3. Then the feedback system is stable (L. stable with finite gain), if some
of the following conditions, as appropriate, are satisfied (the jw argument is
dropped by symplicity):

(1) ab > 0: The Nichols diagram of G does not intersect, for any w > 0,
the NC region defined by

P + BG

1+ PG °©

{(arg(G), |G]) € NC‘

>r,VP e Py i= 1—3} (57)

where ¢ is the center and r is the radii of the disk D[a, b]. In addition, there
is no net crossings of the nominal Hy(jw) with the ray —180 x [(1/a) s, 0)
in the case 0 < a < b, or with 0 x [(1/b)ap,00) in the case a < b < 0.
(2) 0 = a < b: for any frequency w > 0 the Nichols diagram of G(s) is out
of the NC region defined by
{(arg(G), G]) € NC ‘Re {—-—Pl * PzG}

1
>—=,VPePyi=1- 8
1+PG |~ b €Pii=1 3}(5)

b

(3) @ < 0 < b: for any frequency w > 0 the Nichols diagram of G(s) is out
of the NC region defined by

P+ RG

{(arg(G),IGD € NCH 1+ PG

—ClST,VPiGPi,iZI—:‘}} (59)
where c is the center and r is the radii of the disk Dla, b].

In the three above Cases, application of Circle Criterion results in two sets
of conditions: 1) a stability linear condition, H(s) must be stable, that may
be solved by using linear QFT, given as result a set of boundaries on G(s),
and ii) a restriction over G(s) given by Eq. (2.3), (2.4) or (2.5) depending
on the case. This last condition is a rather straigthforward adaptation of
Circle Criterion to cope with uncertainty. The good news is that it can be
treated as a new boundary, using standard algorithms previously used in
QFT, the procedure given in [12] is just one possibility. Next Section gives
an Mllustrative example.

Ezample: The nonlinear system in this example (Fig. 38) is borrowed from
Example 1 in [27] and has been also developed in [2].
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Fig. 38. Electric motor

It represents an electric motor driving a load through a gear, that is
embedded in a two-degrees of fredom structure.

km Jms + B,
H == 60
() = % ¥ 7+ Bi + B (60)
(Jl + Jm)s + B; + B,,,
H =k 61
2(8) = ke T By s + BY) (61)
and the parameters are known to be in intervals:
km € 0.041[1,1.2], k; € 4.8[0.85, 1] (62)
B, € 0.0032[1,20], B, € 0.00275[0.4, 1] (63)
Jm = 6.39 x 10787, = 0.0015 (64)

The goal is to analyze the stability of the two-degrees of feedback systems
represented in Fig. 38, representing the control system in which the motor
is embedded. F' is supposed to be stable. The nontrivial part of the problem
is related with finding what conditions on the compensator G guaranties
the stability of the feedback system. Eliminating F' from the block diagram,
we again obtain a Lure’s system (Fig. 37) after some simple manipulations,
where

B Hy(s)
H(s) = 14+ G(s)Hy(s)H2(s)

(65)

and N is given by the deadzone nonlinearity.

This stability problem corresponds with Case 2 of the Robust Circle Cri-
terion given above, since the nonlinearity clearly belongs to the sector {0,1].
The first condition, that is the stability of H, can be treated in a linear
QFT framework. The stability requirement gives a set of boundaries for the
function Lo{jw) = km oG (jw)P10(jw) (nominal values are the left extremal
interval values). In this example, the frequencies w = 1, 10, 100, 1,000 y
10,000 rad/s are chosen for shown these boundaries (Fig. 39-a, where in ad-
dition, a typical 3 db stability contour has been used to provide an extra
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degree of robustness in the design. If Lo(jw) satisfies these restrictions (the-
oretically for every frequency), then H(s) is stable for any combination of
plant parameters.

The second stability condition imposed by the Robust Circle Criterion,
given by (57), is a bit more involved. However, the computation of these
boundaries can be done by using quadratic inequalities similar to those used
in [12]. Results are shown in 39-b. Finally, the two sets of boundaries need to
be regrouped to obtain a final worst case boundary. Regrouping boundaries
of 39-a and 39-b, the final result is given in 39-c. With these boundaries, the
designer can now shape properly the nominal open loop gain Lg to obtain a
stable design: Lg(jw) must be above its boundary for every frequency w.

50F T T
40r ’ / RC)
30 I 00
20} :
of \
10k i ; . 00072
. ‘ ‘ ; ; ; ; . . . ‘ R
-350 -300 -250 -200 -150 -100 -50 350 -300 250  -200 150 -100  -50
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a) b)
100
80}
60
401
Mag. (dB)
20}
0
-20{
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<)

Fig. 39. Stability Boundaries given by application of the robust Circle criterion, at
frequencies w = 1, 10, 100, 1, 000, 10000
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Use of equivalent disturbance method Our objective here is to add a
stability guarantee to the QFT nonlinear Pe technique, by means of an equiv-
alent disturbance method. We concentrate on the effect of bounded changes
in the command inputs. In order to accommodate an almost universal class
of deviations, they are formulated as signals with assigned bounds on deriva-
tives from zero order to order n— 1 , where n is the order (highest derivative)
of the nonlinear differential equations in W (it is assumed the order is the
same for all its members, although some deviation in order may be possible
([16], Sec. 7.8). Bounds of the same form, are assigned on the derivatives of
the deviations in the command inputs. Denote this as Quantitative Stability
Bounds.

Using the ”Nonlinear Equivalent Disturbance Technique” (Sec. 3.3), we
shall show how the Nonlinear Pequiv. Method of Sec. 2, needs only slight
modification, in order to achieve Quantitative Stability Bounds, at the same
time that it does its primary task of acceptable signal tracking.

In Fig. 40-a, let y = yo be the output due to command input 7o, and in
Fig. 40-b, y = yo + A the output due to ro+3(r), c = 6(r) 1 uo+d = G[F(ro+
¢) — (yo + A)]. Also, ug = G[F'rg — yo]. Subtracting gives § = G[Fc¢ ~ A].
Also, yo = W(ug), yo + A& = W(uo + §). Combining all of these, gives Fig.
40-c, with nonlinear plant W, : A = W(ug + §) — W(uy). For example, if

dy 3 _
W o + Ay® = ku (66)
then
dA 2 2 3
W, : T Ay A + 3y A* + A°) = kb (67)
o G Ug

Fig. 40. Derivation of equivalent system for perturbed command input

Next step is to use the QFT Equivalent disturbance technique of Sec. 3.3,
to let § = &1+ d2, with kéy = d(A)/dt, and so replace the W, nonlinear Plant
relating (4, A), by its equivalent LTI plant of Fig. 40-d, with P = {k/s}, plus
plant disturbance d, = —d2/k. Fig. 40-d is an LTI Structure. Is it stable?
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The original LTI equiv. technique of Sec. 2 was used only to obtain OK
Performance for the R, W, T sets. For the example of (F2) its Pe = k/[s+X],
with X = A + Lapl.(y3)/Lapl.(y), which is larger and more complex than
the P of 40-d (for nonlinear plant set W of order n, P would consist of k/s™.
The two sets P, P, are very closely the same in the high frequency range,
where both plant templates approach vertical lines (if no bending modes are
present), and wherein shaping for stability is the major design effort. If we
add P to Pe to give Pex and do the Sec. 2 design for Pek, then Fig. 40-
d is definitely stable, because Py,is a subset of Pox. The templates of Pk
will at most be larger in the low and possibly mid-frequency range, where
"free uncertainty” ([16], Sec. 12.3.4) is such that the bounds on the nominal
loop transmission will hardly be affected. Note that it is very easy, by simply
looking at the templates of Pe to see if there is need for the augmentation by
P. But even if it should be necessary to do this, we can differentiate between
performance type bounds for the R, W T triple, to satisfy §(w) performance
bounds of Fig. 18, and the Gamma Constraint of Sec. 4. Pek need be used
only for the latter bounds, and P, for the Performance bounds.

But we can do more than just assure Stability for Fig. 40-d. Consider
the added effort needed to add Quantitative Stability to the design effort
of this Section. Fig. 40-d is LTI, so linear superposition may be used. The
output A has two components: A, due to command ¢, Ay due to d,. The A,
component will be closely Lapl.(c)F(s), because of the large bandwidth of
the L = G P loop of Fig. 40-d. This is expected, because in such large loop
bandwidth systems, L/(1 + L) is closely unity over the smaller bandwidth
of F. Quantitative Stability requires that we assign bounds on A(i.e. on its
derivatives from zero to n — 1 order, for plant order n (here n = 1), just as
we assigned similar order bounds on the command input deviation c. The
bounds B(A) on A are preferably of the form AB(c), A > 1. We deduce d,
from the bounds on 4, and make sure that the PG loop is ”strong” enough,
so that the sum A = A, + A4 and their derivatives to n— 1 have their bounds
satisfied.

It is essential to prove that the above can be done, so that Schauder’s the-
orem is applicable. One’s first inclination might be to choose A <« 1, because
of Feedback’s ability to attenuate disturbances. However the A. component,
due to command input ¢ is a tracking component, and the larger G is the
closer it is to F'(s)Lapl.(c). But the A, component due to d,, is a disturbance
component which can be attenuated. Therefore choose A > 1, and choose the
G P loop strong enough to achieve it.

Hence, the addition of Quantitative BIBO Stability for R, W, T problem
of Sec. 2, needs at most the addition of set Px = k/s” to the P, set. There
is no difference in the high frequency where the major stability shaping is
concentrated. The bounds on the output due to the addition of ¢, with its
bounded derivatives from zero to n — 1, can be made very close to those on
¢. The above treatment explains why all our past QFT designs, which totally
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neglected even Classical Stabitity considerations, emerged highly “robust” to
deviations of the command input signals, even to highly different types of
signals, and to Plant disturbances.

7 Feedback Techniques for Disturbance Attenuation

A major reason for using Feedback is for attenuation of plant disturbances,
generally assumed inaccessible, as otherwise they might be blocked form en-
tering the plant. They are also assumed uncertain, otherwise the plant input
may be programmed to cancel them, without having to measure the plant
output. The disturbances may act at any or all D; in Fig. 41, and are coun-
tered by measuring the output y (which is not the plant output z if Dy # 0),
and fed back via G and v in Fig. 41.

D3 D2 D1
} P y

G P2

v
K3 P=P1P2

Fig. 41. Different
types of disturbances

The system output due to D; is

D, +D2P1 + D3P
1+GP

YD = (68)
Arbitrarily large disturbance attenuation can be achieved by having |GP| >
1 over the desired w range. So, again it is a matter of having the loop
transmission large enough over a large enough w range, with the attendant
"cost of feedback.” Two kinds of problems are considered. In the first a
very broad class of disturbances is formulated with specifications directly
on the tolerable output. In the second, bounds are specified on the trans-
fer function relating system output to disturbances, Tp, = Yp,/D;. Spec-
ifications on output due to bounded disturbances. There is a comparatively
simple design technique for this problem class which comprises all practical
d(t) - |d(t)] < Do,|d(t)] < D,. The tolerances can be on the maximum out-
put magnitude y, or perhaps on its maximum area f0°° ly(¢)!d¢t. The design
technique is presented by means of examples. Ezample I: In Fig. 41, the dis-
turbance set D3 = {ds(t) : |d3] < 30, |d3 < 50}, Dy = D2 — 0. The plant
is uncertain:P:{P_-Ple.- s+as+b,k€[ 5],a € [2,5],b € [1,2]}.
The specifications are: |y] < .5, for all P € P and all d3 € Dg. Design:
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Y (s) = BEE) = Dy(s)Ty(s). In the time domain y(t) = da(t) * h(t), with
Ty(s) = Lapl.(h(t)) (* indicates convolution). Use graphical convolution to
study the problem: Suppose d3 is a truncated ramp, d3(—t) as shown in Fig.
42-a, and an assumed h(7). To find y(¢;), pull d3(—7) to the right by ¢4, to
give d3(t; — ) in Fig. 42-b; multiply it by A(#), which is zero for t < 0, and
negligible for ¢ > £g. The area of this product is fo T)ds(ty — 7)dT = y(t1).
Clearly, for h(t) of Fig. 42 with area A, the "maximum y( )" = yg, is obtained
soonest if d3 has its maximum value of 50 for 0.6 seconds, until ds reaches its

maximum of 30. Then y, = 30A, which is reached at t = .6 + ¢ in Fig. 42-c.

(b)
d 3 (‘1 - t, “’
o
dy (1. .6-¢) (©)
A
t‘ Fig. 42. Use of convolution

However, for h(t) of Fig. 43-a, the extreme” d3(—7) is as shown (infinite
ds is assumed to simplify the calculation, at the price of some overdesign},
and y, = D,{A + B) in ¥Fig. 43-b, D, = 30.

Let B = a4, soy, = 30A(1+a). However, H(0) = [ h(7)dr = A—B =
A(1 - a). Since y, < 0.5 is required, this means

(1 —a)

Y
H(0) < D.(0ta) (69)
is needed, where H = P/(1 + PG) ~ 1/G(0) at s = 0, so
a() » ) (70)

(1-a)
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-t
dy(-t) h(:) ta b
*@AT_
‘v
30 (@)
t
hz) a 1
30
dy fp|- *)
)
an
Fig. 43. Use of convolution
is required. If Py (s) = (—5;1)1(7;2—) is the nominal plant, Ln(0) > 30 if

o = 0. We shall allow 1.33 for (1+a)/(1—«), corresponding to 14% overshoot
in the step response of T'p, (s), giving Ly (0) = 32 db needed, for this primary
performance specification. Of course, stability is necessary (y = 3 is used)
plus stability at the nominal plant. This guarantees stability for all P. In a
more careful design, one relates the 14% allowed overshoot to constraints on
|Tpg(jw)|- Stability bounds B{(w) are needed. This can be done entirely on
the computer. Let L = Ly(P/Pn) = m(cosé + jsin8)P/Py. Set |1+ L|? =2
for v = 3 db, solve the quadratic equation for m at given 6,w over set P,
giving maz(m) and min(m) which are the bounds on Ly for that e value.
Repeat over e, etc. The results are shown in Fig. 44 for nominal £ = 1, a = 2,
b=1.

Fig. 44. Use of convolution
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There is not much difference in the B(w) from small to large w values.
The chosen Ly is (Fig. 44)

80 x 350% (s +15)
15 (s+1)(s +2)(s2 + 1.2 x 3505 + 3502)2

Ln(s) = (71)

Simulation: results are shown in Figs. 45 for step inputs of 30, d = 30cos(wt),
w = 2,5, 18, 30, which all satisfy the specifications.

Fig. 45. Simulations

Disturbances at input to P, (Fig. {1). Suppose the same disturbances occur
at the input to P1 in Fig. 41 instead of to P. The bound on Ly(0) is the
same because P2(0) = 1, so presumably the same Ly(s) of (74) can be
used. However, the results in Fig. 46 for a step of 30 exhibit considerable
overshoot, with max. of 4, even though the final y(co) < 0.5 as predicted.
Furthermore, the” extreme” input has the form of ds in Fig. 43, giving y, > 4.
In the notation of Fig. 43 and the data of Fig. 46 for 30-step dsy, 304 = 4,
30(A-B) = 0.4, giving B/A = 0.9 in Fig. 43-a. The design must be modlﬁed
to secure y, = 0.5, which we do for infinite dg,dQ = 30.

The idea is to use the previous philosophy of relatively fast decrease of
Ly (jw) of Fig. 44 with the resulting large overshoot of Fig. 46. From (72)
for D, = 30, y, = .5, @ = .9 (estimated from Fig. 46), H(0) =~ 1/1140 is
needed. Smce H(s) = P/(1+L) with L = GP, Py, the result is G(0) = 1140,
giving Ly (0) ~ 570 (55 db instead of the 32 db of Ex. 1). However, if such a
design were implemented with poles of Ly at —1, —2 as in Fig. 44, the peak
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" Seconls
o 0.2 s (Y] [Y) 3

Fig. 46. Disturbances at P, input

values would be significantly > .5, even for 30-step inputs. The step-response
overshoot of Tp, can be decreased if the first negative real axis Tp, pole
precedes its first zero. This is achieved by

562(1 + 55)(1 + 355)

Ln(s) = (72)
(1+ 52+ 55) (1 + 355 + m00)
with the resulting outputs of Fig. 47.
Ry T Yy Ry ey Y R v R T Fig.47. Disturbances

at P; input

For Fig. 43 inputs, the peak output is —.32. It is possible to go to the
extreme of an effectively first order loop with only —6 db/octave decrease.
In that case there is little or no overshoot and Lx(0) = 32 db suffices. The
design

40

Ln(s) = p - (73)
(1+ 4 )(1 1%’0300 + Tfﬁgﬁf)

gives the results shown in Fig. 48. But note the large w cutoff of 12000,
because of the slow (6 db/octave) decrease of Ly from 30 db to 30 db.

Disturbances at Plant output. In Fig. 41, Yp(s) = 1/(s(1 + L(s)) for
Dy =1/s. As s = o0, Yp = 1, 30 y4(0) = 1. This is reasonable because D,
acts instantaneously on the output, but the correcting feedback to v, from y4
via G,does not. It is convenient to write

D,

L
1+L:Dl(l“*:Dl(l“T’):Dl*DlT’ (74)

Yo = 1+1
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ols

Fig. 48. Disturbances
~ : at P, input

Here D T" is the step response y of T = L/(1+ L), shown in Fig. 49 for a
typical §. The faster ¢, the faster the attenuation, with the price paid in the
bandwidth of L. Large overshoot of ¢ is undesirable if D; can change quickly
as in previous examples, with the price paid in larger stability margins and
consequent slower decrease of L(jw)). For this disturbance class, it is easier
to convert the problem into specifications on T"(s).

Fig. 49. Disturbances at plant out-
put

7.1 Specifications on Disturbance Transmission Functions

In this second disturbance class, specifications are assigned on the transfer
functions Tp, = Y/D; , assumed in the w-domain, in the form of upper
bounds only, B;(w). The reason is that Tp, design is one-degree-of-freedom
(ODF, Sec. 1) because G is the only free function. It is always possible to
relate any Tp, to T’ = L(1+ L), as in (73) for D;. An excellent perspective of
the problem is easily obtained. Suppose P = P = 5/(s +2) with disturbance
D at plant input, so Tp = Yp/D = P»/(1 + L). If there is no feedback,
Tp = P, in Fig. 50, so this Tp(open loop) must be the high-w asymptote
of the closed loop Tp, because as w — 00, L = 0 so Tp — P, = Tp,{open
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loop). Hence, the desired closed-loop T)p must end up on P, in Fig. 50. The
question is ”where on P?”.

Fig. 50. Realistic w-
tolerances

Two Tp alternatives (4, B) are shown. The difference between 7§ (Open
loop) and Tp must be made up by (1 + L). The demands on (1 + L) are
very easily seen: at lower w where |T§*| — |Tp| is large, 1 + L ~ L so the
required L is simply the difference between them, e.g. at w = 0.1, [L 4| = 54
db = |P| - |TA|, |[Ls] = 50 db = |P,| — |T#| Feedback benefits are no
longer needed when |Tp| = |{P,|, so crossover w, is near w = 6 for B, near
20 for A. The careful observer will note that near w,., there is an w range
where |Tp| > |TY%|, i.e., in this range feedback is making things worse. This
must be so in every practical system, as previously explained. It happens
automatically if excess of L, e > 2. One decides on the desired benefits
(disturbance attenuation) and pays the price. Fig. 50 is easily drawn and
presents a clear perspective of the benefits of feedback vs. its ”costs”. The
design procedure is obviously quite simple if there is small ptant uncertainty.

7.2 The Inverse Nichols Chart (INC)

Consider the case of Tp, = 1/(1 4+ L) in Fig. 41, for disturbances at plant
output, and a significant plant uncertainty set P. Suppose it is required that
|Tp, (jw) < b(w) for all P with b(w) given. It is important that as w — oo
b(w) = 0 db because Tp, = (1 + L)~ — 1 as w — oco. In practice, there is
no need to specify b(w) for w > w.. Thus, in Case A of Fig. 50, b(w) is not
needed for w > 15, or for w > 7 for Case B. The stability bound suffices. No
special effort is needed to ensure Ty = P, as w — oo. It will automatically be
so. This greatly simplifies design for disturbance attenuation. The first design
step is to obtain plant templates P(w) for a sufficient number of w values,
exactly as in the command response problem. Next, one finds the bounds
B(w) on a nominal loop Ly (jw) = PnyG(jw), such that

‘ 1
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One could prepare a chart with loci of constant |1 + L(jw)| values, just as
the Nichols chart contains loci of constant |L/{1 + L)|. Instead, note that the
Nichols chart can be used by rotating it 180 and some relabeling. Thus, let
I=1/L,so

1 1
Ee il e eml o
The Nichols chart may be used for bounds on I(jw)if its axes are Arg(I)

and |I|. We would then have to shape I(jw). We are experienced in shaping

L(jw), not I(jw), so prefer to have |L| and Arg(L) as axes. Since I = 1/L,

Arg(I) = —Arg(L), and the range —360 to 0 of Arg(L) becomes +360 to

0 for Arg(L) (Fig. 51). Also, [I|gy = —|L]|4s, so the vertical range —20 db

to 20 db for |I]| becomes 20 db to —20 db for |L|. The scales I and L are

shown in Fig. 51-a. Note that the loci are of constant m* = |1 + L|~!| not
of M = |L(1 + L)~ !|. We prefer the L scales, but are accustomed to values
increasing vertically upward and horizontally to the right. This is achieved
by rotating Fig. 51-a by 180(or —180), giving Fig. 51-b, called the ”Inverse

Nichols chart” (INC). Then horizontal axis is from 0 to 360 for Arg(L), as

shown in brackets, but one can add any multiple of 360, so —360 is added,

giving the usual angle scale from -360 to 0 in Fig. 51-b. Fig. 51-b makes sense,
because if one wants small m* = |1 + L|™!, then large |L| is needed.
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Fig. 51. Inverse Nichols Chart

Design Procedure. The INC is convenient for obtaining the bounds B(w)
on the nominal Ly(jw) to satisfy (74). One maneuvers the template P(w)
in precisely the same manner as on the ordinary Nichols Chart (for T'(jw)
bounds) until (74) is satisfied, etc. Then Ly {jw) is shaped to satisfy the
B(w).

Disturbances at plant input For D = Dj3 in Fig. 41, the equivalent of
(74) is |P/(1+ L)| < b(w). Of course, b(w) must — |P(jw)| as w — 0o. Again
there is no need to specify b{w) beyond the crossover w, of L{jw). For w < w,
simplification is possible. At low-w, where 1 + L = L, the above constraint
become closely |G(jw)] &~ 1/b(w) or |Ly(jw)| = Pn(jw)/b{w). It is a good
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idea to take the nominal plant at the lowest point on the template, for then if
|14+ Ln| = |Ln| is satisfied at Py, it is certainly satisfied for the balance of P.
This approximation is usually satisfactory up to B(w) = 6 db. And for larger
w > we, let the stability bounds determine B(w). These, in most cases (in the
form |L/(1+ L)} <«vor|1/(1+ L)| <~ all P) are more stringent than the
performance bounds in this higher w range, especially if there is significant
uncertainty in the high-w gain of P. This simple approach is adequate for
most problems. or precise design, write |P/(1 + L)| < b(w)in the form

Pr(jw)
b(w)

where p = Py /P. The NC or INC are no longer appropriate design tools.
The arithmetic complex plane is more convenient. At any fixed w, find P(p)
in arithmetic units. If Py is in P, P(p) includes the point 1. At any w = wy,
draw the boundary of -P(p(jwi)). It is convenient to choose as Py a low-
gain P , for then |p| tends to be < 1, or not much > 1. In Fig. 52, A is a
tentative value of Ly (jwi), so (p+ Ly) = BA, with B any point in -P(p).
Obviously AC tangent to -P(p) is the smallest value of |p + Ly|, which from
(76) must be > |(Pn(jw)/b(w;)), determining a point on B{w;). In this way
the bounds B(w) on |Ln(jw)| are obtained. The shaping of Ly (jw) can be
done in the arithmetic complex plane, or the B(w) can be copied into the
Nichols chart. The latter is also more convenient for the stability bounds,
which usually dominate in the higher w range. The above is conceptually
useful for understanding the nature of the bounds B(w). But they are usually
easier to obtain via the computer. The above approaches (approximate and
exact) can also be used for Tp, = P1/(1 + L) for disturbance D.

lp(jw) + Ly (jw)| > (77)

\ A Fig.52. Use of arithmetic complex

plane
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Simultaneous command and disturbance inputs: Overdesign The
command response and disturbance attenuation problems have been consid-
ered separately, which is acceptable because linear systems are being con-
sidered, so the individual effects add. Each results in bounds By, Bp on
the nominal L. Obviously the final bound B chosen must satisfy both. At
any w value, part of the final B may be due to By and part due to Bp. If
By dominates over Bp, better disturbance attenuation than specified will
be achieved. And if the plant capacity has been determined by the specified
disturbance attenuation, there is then the possibility of plant saturation.

In Fig. 41, all three disturbances can be present and may or may not be
correlated. If they are, assign tolerances on their combined effect and do a
single design for all three. If they are independent, one might have tolerances
on each separately. Of course, the final B(w) must satisfy all the separate
bounds and so achieve better attenuation for one or more of the D; and/or
smaller T(jw) variation than required. But this is unavoidable in a linear
design in which only one L{jw) is available to satisfy multiple specifications.

8 Design of Multiloop Nonlinear Control Systems

As well as in the linear case, a fundamental limitation of feedback for highly
nonlinear and uncertain plants subject to demanding specifications is due
to sensor noise effect and the bandwidth of the controller. These effects are
significant in many cases and, if ignored, it can invalidate many designs in
practice. In general, as presented in the above Sections, QFT offers the de-
signer a very convenient and transparent technique for accommodating the
noise and bandwidth problems, both in the linear and the nonlinear single-
loop cases.

There are practical situations in which a single-loop design is not af-
fordable because the controller is very demanding, or the sensor noise effect
affects considerably the design. In these cases, an alternative is to use internal
feedback loops, by means of internal variable sensors. The uncertainty of the
plant at high frequencies, where noise effect is important, is somehow trans-
ferred from the outer loop to the internal loops, allowing a balance between
all the controllers bandwidths.

With some sligth modifications the technique is also applicable to nonlin-
ear systems. It is important to mention that in the single loop nonlinear case,
it is not surprising to obtain controllers with very high bandwith, since non-
linear dynamic is transformed in uncertainty over a equivalent linear family.
This is a basic limitation of the feedback structure. The multi-loop technique
can alleviate this problem, and it can be expected to be a more appropiate
feedback structure in many nonlinear problems. Alternatively, use of nonlin-
ear compensation can often alleviate the problem [16].

In the following we develop a multiloop design procedure for nonlinear
plants with high frequency linear behavior. The method can be extended to
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more general types of nonlinear plants by means of nonlinear compensation

([5]

8.1 Nonlinear Plants with High Frequency Linear Behavior and
Single Loop Design

We will consider a nonlinear system W given by the differential equation
(36)-(38). Also serial connections of systems of this type will be allowed.
More general nonlinear systems will be considered in the next subsection.
This type of nonlinear systems has the property of having leading linear
derivatives, which result in a high frequency linear behavior. For the above
nonlinear system, its high frequency linear dynamics P* is defined by

y™(t) = K(0)u™(t) (78)

having the transfer function P*°(s) = K/s"~™. In the following, a specific
nonlinear control problem is defined to help in the presentation of the pro-
posed nonlinear multiloop technique. Consider a nonlinear plant given by the
following differential equation:

dualt) | Aud(t) = Kuy(t)

- 79
L3O 4 Bly(1)|™ sgn(y(t)) = Cus(t) (79)

W :u —)y,{

where the parameters have interval uncertainty given by A € [-5,5], B €
[(—3,3], K €[1,10}, m € [1.5,3.5], and C € [2,40].

Note that for w — oc or ¢ — 0%, W can be approximated by the linear
system P>®(s) = CK/s%, with a poles-zeros excess of 3, and a vertical line
template of approximately 46 db. The tracking specification is to track steps
with amplitudes @ € [0.5,1.5]. In the frequency domain, this specification is
given using the upper and lower bounds in Fig. 53.

Acceptable outputs sets A, are defined for each value of the reference
r(s) = Q/s, for Q € [0.5,1.5]. A, must be a convex and compact subset of
a Banach space. Since in response to the step, the output must contain a
pole at the origin, it is not possible to directly define appropriate acceptable
outputs sets. But we can easily can avoid the problem by using the idea of
blocks transformation developed previously. Tracking steps with the plant W
is equivalent to unit impulses with the plant R~!W R, where R is a mapping
with transfer function @)/s. For the impulse reference, we define the set of ac-
ceptable outputs Ag as the set of signals y given by strictly proper, minimum
phase and stable rational functions bounded in magnitude by the bounds
of Fig. 53, and in addition with magnitude derivatives bounded by a given
funcion K (w), defined over the w axis.
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Fig. 53. Upper and lower magnitude bounds for closed loo acceptable outputs

Single—loop Design No details design are given here for a possible TDF
single-loop desing, but a solution is given in Fig. 54-a, where the Bode di-
agram of the compensator G is given in Fig. 54-b. The Bode plot of the
transfer function function from the sensor noise to the control input is given
in Fig. 54-c. It can been seen that the effect of sensor noise is very significant
for frequencies until 10'* rad/s.

8.2 Multiloop Design

For a given specification, single loop designs can exhibit a large demand in
terms of control bandwidth as it is shown in the previous single-loop design.
It should be noticed that this is a basic limitation of the single loop feedback
structure. Thus, the effect of realistic sensor noise can invalidate the design in
many nonlinear cases. This problem can be encountered in highly uncertain
linear designs with demanding specifications, but is still more important in
highly nonlinear designs, even with slightly uncertainty, where nonlinearity
is transformed to uncertainty of an equivalent linear problem.

For the linear case, [16] gives a technique for reduction of the effect of the
sensor noise based in a multi-loop technique. In this Section, this multi-loop
is adapted to the nonlinear case. In particular, a two-loop design technique
is used for the example, but the results can be generalized to more general
situations. A two-loop feedback structure is given in Fig. 55, where, assuming
that the designer has access to the internal variable u2 (), the nonlinear plant
is divided into two blocks, W, and W3, given by the differential equations
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Fig. 54. Single-loop design: a)tracking and stability boundaries, and loop shaping,
b)Bode plot of G(s), c)Bode plot of the nominal transfer function from the noise
input to the control signal.

Wa i up — ug , duth(t) + Aud(t) = Kuy (t) (80)
2
Wit oy, T By 01 soni(0) = Cu(t) 1

Here P, and P; stand for the equivalent linear families of W; and W, re-
spectively.

Outer-loop design For designing the compensator Gy, only the high fre-
quency template of the nonlinear plant W5 is used, since it is only in the
high frequency region where benefits can be expected, in terms of reducing
the sensor noise effect [16]. In general, high frequencies may be considered to
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Fig. 55. Two-loops feedback structure

start at w,, the frequency where the loop gain function contacts the high fre-
quency boundary. For the example (see Fig. 54-a), we obtain w, = 300 rad/s.
Over this frequency range both W; and W, behave in a linear way. In partic-
ular, W behaves like a linear system with transfer function P (s) = C/s?,
corresponding to a vertical line template of 26 db. Using this approxima-
tion for templates of P;, for frequencies higher than w, = 300 rad/s, a high
frequency boundary is computed using the same stability specification than
in the single-loop case, since in this frequency region stability specifications
dominates tracking specifications. In the example, the specification is given
as a y-constraining

’ Ly (jeo ] < (82)
1+ Li1(jw| ™

where v = 1.2 is used. The resulting boundary is shown in Fig. 56(thick
line) jointly with the boundaries of the single loop design. For the shaping of
the nominal L, that is Lo, the same boundaries are considered, except for
the high frequency boundary, where the new boundary is used instead. As it
can be seen, the result is a reduction of 20 db with respect to the old one. A
shaping of Ly is also shown in Fig. 56.

Note that in general the transfer function L;(s) is given by

Ga(s)Pao(s)

Lo = Gl Pols) - 5 B (5)

(83)

where Pig(s) and Py(s) are the nominal values of the equivalent lin-
ear family of the nonlinear systems W; and W5, respectively. Thus, for the
computation of the compensator (71, first the inner loop design must be com-
pleted. On the other hand, a single analysis of the above equation shows that
if a realistic design is wanted, in terms of having controllers G (s) and G (s)
with strictly proper transfer functions, L;o(s) should have minimum poles-
zeros excess. In the example, since the poles-zeros excess of Pig(s) and Pao(s)
is 2 and 1, respectively, the pole-zeros excess of L1g(s) should be at least of
5. This is a major criterion for the shaping of Lio(s).
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Inner loop design Since the main interest is in the reduction of the outer
loop gain at high frequencies, for reducing the effect of the sensor noise, only
the contribution of the compensator G over the range w > w, is considered.
For w > w;, the stability specification dominates. Thus G5 must verify the
y-constraint

Po+ LioP + (Po + LioPPso) P2Go | = |

(84)

where P and P, are any member of the equivalents linear families of the non-
linear systems W (as a whole) and W,, respectively, Py and Py are nominal
values of those families, and Lo is the outer loop gain. For the example,
Ly is already computed when closing the outer loop, the templates of P
were obtained in the single loop design, as well as those of P;. Templates
of P, reduce to the high frequency template which can be computed ana-
lytically. Finally, the computation of Pyp is only a bit more involved. First,
for a nominal acceptable output y, and a nominal parameters combination
of the nounlinear plants W) and W5, the signal uy is computed. Since P, is
already computed in the single-loop design, it is only necessary to compute
Pro(s) = y(s)/ua(s).

Using all this information, the y-constraint can be transformed to bound-
aries for the frequency response Gz(jw) of the inner compensator, for fre-
quencies w > wy. The result is given in Fig. 57, where feasible shaping is
given simply by

3d

G28) = 75100

(85)

Once the inner feedback compensator in designed, G can be easily com-
puted by direct substitution in (82). It will be not explicitly shown here.
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Robust Stability Bounds
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Fig. 57. Stability boundaries for G,

To analyze the sensor noise effect, see Fig. 38, where the single loop design
is compared with the two-loop design. It can be seen how the bandwidth of the
closed loop transfer function, from the sensor noise signal to the control signal,
is reduced from 10' to 10® rad/s, a reduction of six orders of magnitude.
This is the main justification for introducing the multi-looping technique.
Note, in addition, how this can be achieved by the very single inner feedback
controller given by (85).

................ Single loop design
Outer loop (two-loops design)
———— Inner loop (two-loops design)

Mag. (dB)

Frequency {radfsec)

Fig. 58. Bode plots of nominal closed loop transfer functions, from the sensor noise
to the control signal, in the single loop and the two-loops cases



Fundamentals of Nonlinear QFT 131

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Banos, A., and Bailey, F. N., 1998, “Design and validation of linear robust
controllers for nonlinear plants”, Int. Journal Robust and Nonlinear Control,
8, 803-816.

Banios, A., and Barreiro, A., 2000, “Stability of nonlinear QFT designs based
on robust absolute stability criteria”, Int. J. Control, 73, 1,74-88.

Baifios, A., Bailey, F. N., and Montoya, F. J., “Some results in nonlinear QFT”,
to appear in Int. Journal Robust and Nonlinear Control.

Banos, A., Barreiro, A., Gordillo, F., and Aracil, J., “Nonlinear QFT synthesis
based on harmonic balance and multiplier theory”, in A. Isidori, F. Lamnabhi-
Lagarrigue, and V. Respondek (eds.), Nonlinear Control in the year 200, Lec-
tures Notes in Control and Information Sciences, Springer Verlag, 2000.
Banos, A., and Horowitz, I., “QFT design of multiloop nonlinear control sys-
tems”, to appear in Int. Journal Robust and Nonlinear Control.

Banos, A., and Horowitz, I., “A method for stability of nonlinear control sys-
tems”, in preparation.

. Barreiro, A., and Banos, A., 2000, “Nonlinear robust stabilization by conicity

and QFT techniques”, Automatica, 36,9.
Battachariya, S. P., Chapellat, H., and Keel, L. H., 1995, Robust control: the
parametric approach, Prentice Hall, Upper Saddle River, NJ.

. Bentley, A. E., 1994, “QFT with Applications in Welding”, Int.J. Robust and

Nonlinear Control, 4, 2.

Blondel, V., 1994, Simultaneous stabilization of linear systems, LNCIS no. 191,
Springer—Verlag, London.

Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand,
1946.

Chait, Y., and Yaniv, O., 1993, “MISO computer—aided control design using the
Quantitative Feedback Theory”, International Journal of Robust and Nonlinear
Control, 3, 47-54.

Eitelberg, E., and Boje, E., 1989, “Some practical low frequency bounds in
Quantitative Feedback Design”, Proc. ICCON’89, WP-2-1, 1-5.

Eitelberg, E., 2000, Control Engineering, NOYB Press, 58 Baines Road, Durban
4001, South Africa.

Golubev, B., and Horowitz, 1., 1982, “Plant Rational Trasnfer Function Ap-
proximation from Input-Output Data”, Int. J. Control, 36, 711-23.

Horowitz, 1., 1993, Quantitative Feedback Design Theory (QFT, Vol. 1), QFT
Publishers, 1470 Grinnel Ave., Boulder, CO 80305, USA.

Horowitz, 1., 1975, “A Synthesis theory for linear time-varying feedback sys-
tems with plant uncertainty”, IEEE Trans. Automat. Control, AC-20, 4, 454~
64.

Horowitz, 1., 1976, “Synthesis of feedback systems with Nonlinear Time—
varying uncertain plants to satisfy quantitative performance specifications”,
Proc. IEEE, 64, 123-130.

Horowitz, 1., 1982, “Feedback Systems with nonlinear uncertain plants”, Int.
J. Control, 36, 1, 155-171.

Horowitz, I., 1991, “Survey of QFT”, Int. J. Control 53, 255-91, 1991.
Horowitz, I.,1952, “Plant adaptive systems vs ordinary feedback systems”, IRE
AC-i7i, 48-56.



132

22.

23.

24,

25.

26.

27.

28.

29.

30.

1. Horowitz and A. Banos

Horowitz,I., and U. Shaked, 1975, “Superiority of transfer function over state
variable methods in linear time invariant feedback system design”, IEEE Trans
Auto Control, AC-20, 84-97.

Horowitz, 1., 1959, “Fundamental Theory of Linear Feedback Control Systems”,
Trans. IRE on Auto. Control, AC—4.

Kobylarz, T., and Barfield, F., 1990, “Flight controller design with nonlinear
aerodynamics, large uncertainty and pilot compensation”, Proc. A[AA, Port-
land Oregon, 1-15.

Miller, R., et al, 1994, “MIMO Flight Control Design for YF-16 using nonlinear
QFT and Pilot compensation, Int. J. Robust and Nonlinear Control, 4, 211-30.
Nataraj, P. S. V., 1992, “QFT and Robust Process Control”, Proc. First QFT
Symposium, WPAFB, 275-841.

Oldak, S., Baril, C., and Gutman, P. O., “Quantitative design of a class of non-
linear systems with parametric uncertainty”, QFT Symposium, Wright Labo-
ratory, 1992.

Yaniv, O., 1987, and Horowitz, 1., “QFT-reply to criticisms”, Int. J. Control,
945-62.

Yaniv, O., 1999, Quantitative Feedback Design of linear and nonlinear control
systems, Kluwer Academic Publishers.

Vidyasagar, M., 1993, Nonlinear systems analysis, Prentice-Hall International,
London.



Introduction

The concept of “hybrid system” (HS for short) is used to refer to often com-
plex dynamic systems. Typically-a HS model consists of several components
interacting via common dynamics (either continuous or discrete time) or via
common event driven dynamics. During the last decade this concept has at-
tracted the attention of many researchers who have seen this approach as a
suitable way to model and analyze complex systems that would be rather dif-
ficult to describe otherwise. Although, in general, the modeling and analysis
of HS is a quite difficult topic of study due to the potential complexity of such
systems, for some particular though important classes of HS’ (like piecewise-
linear or switched linear systems), some promising results have been obtained
recently.

This part begins with a brief introduction to the fundamentals of discrete
event systems (DES’). Then, new features are introduced to these systems to
include some temporal (though simple) aspects, like continuous time progress.
Finally several formalisms for modeling some specific classes of HS’ are in-
troduced.
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1 Introduction

As mentioned in the introduction of this Part, a Discrete Events System
(DES for short) working together and sharing dynamics with a Continuous
System (CS) results in a Hybrid System (HS). Since the reader is supposed
to be more familiar with concepts from CS than with concepts from DES,
this chapter briefly introduces the fundamentals of DES. The main goal of
this chapter is to clarify the need for particular formalisms and tools in order
to properly model and analyse DES.

This chapter is organized as follows: in Section 2 the most important
issues that distinguish a DES dynamic systems from a CS are introduced.
In Section 3 we describe how DES may interact with CS and what should
be considered as a HS. Section 4 describes the levels of abstraction that one
can consider when modeling DES, while Section 5 describes the important
concepts of languages and automata. Finally, Section 6 presents a brief review
of supervisory control of DES.

2 Motivation of DES study

First of all, we will discuss the main differences between DES and more
traditional dynamic systems. This will motivate the need for specific tools
to model and analyze DES. The mentioned differences are related to two
important issues in the modelling of any dynamic system:

e State space
e State evolution

2.1 State space

The state of a dynamic system at time 7¢ is defined as the minimum set of
variables, usually denoted as x{7p), that defines the future evolution of the
system, provided that the system inputs (if any) u(r) are also known for
7 > 19. The state space is the set of all possible values that x(7) may take at
different time instants.

In CS the state space is a subset of R”, where the dimension n is either
finite or infinite.
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X(T) = [II(T)7I2(T), v xn(T)]T €SS g R™ (1)

Ezample 1. In the example shown in Fig. 1 a wagon with mass M moves
along a track. Its motion is due to the force F(r) applied to the wagon, and
is also influenced by the friction between the wagon and the track rail. The
system output is the position, denoted by z(7), of the wagon with respect to
some reference point. This is a MISO system (multiple-input, single-output)
which could be seen as a black boz with two inputs and one output, as shown
in Fig. 2.

F —

Fig.1. Example of con-
€ f > tinuous state System
wagon » X
f — Fig. 2. System of Fig. 1
seen as a black box

The state of the system of Fig. 1 could be defined as Eq. 2 shows.

x(r) = [28} € SSC R )

S5 may be bounded, or not, depending on physical cosntraints of the
system, and depending on whether system inputs are bounded or not. In

either case, one can easily see that both state variables, z(7) and z(7) take
values from a continuous subset of R.

In contrast, in a DES the state variables take values in a countable (pos-
sibly finite) set of values. In general, the state of a DES can be defined as

q:[qlaqza"'aqn]TeQ:QlXQZX"'XQR (3)
g € Qi = {vi,vh,vi, ...}



Introduction to DES 139

Note that, although in Eq. 3 sets @); are written so that an implicit or-
der relation exists among its elements, in general however there is no such
ordering relation, as will be seen in the following examples.

Ezample 2 (A simple DES). Cousider a part of a manufacturing system as
shown in Fig. 3. In this subsystem there exist two conveyors that transport
pieces towards machines M; and M,. The input queue for machine M; is
denoted as “queue#1”, and the queue for machine M, as “queue#2”. Pieces
are supposed to enter the system at random time instants through queue#1.

queuc#] M] queue#2 ‘M’2 —_—
an m 0 O
a D @& D @ 19}
discarded discarded

Fig. 3. Example of a simple DES

After processing a piece, machine M can either pass the piece to queue#2
or discard it to a waste basket. Machine M, works similarly, except that pieces
that are not discarded are assumed to leave the system through the third
conveyor, whose state is not relevant for further evolution of the subsystem
under consideration in this example.

Assume that the number of pieces that queue#1 and queue#2 can hold
is bounded by some integer N, and waste baskets are emptied often (so that
their states are not actually relevant). Then the state space of this system
could be defined as

q=[q1,92,93,q4]" €SS =0Q1 x Q2 x Qs x Qu (4a)
QI,(BEQIZQS:{O;L--"N} (4b)
42,94 € Q2 = Q4 = {busy,idle} (4c)

The state variables g1 and ¢3 represent the number of pieces in queue#1
and queue# 2, respectively. Variables ¢; and ¢4 represent the state of machines
M, and M, respectively.

The following examples illustrate the important point that the state de-
fined for the system of Example 2 could be either more complex, or simpler,
depending on how many details are relevant for purposes of the model. This
is similar to the simplification of CS models depending on whether some dy-
namics may be considered as negligible for the modeling/control purposes of
the specific problem.
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Ezample 8 (A simpler state space). Consider again the system shown in Fig.
3, with some further assumptions which lead to a simpler model:

e A machine is never idle if its queue is not empty (the state where a
machine has finished working on a piece and has not begun to work with
the next one, is considered as an irrelevant vanishing state).

e Tt is highly unlike that the maximum lengths of queues can be reached
in practice, so we can model queues with an unbounded length.

Under these conditions, we can forget about the state of machines, and
make this component of the state implicit in the state of the respective queues:
for instance, a value of ¢ = 1 in Eqgs. 4a—4c represents the state where
machine M, is working on a piece and no other piece is waiting to be processed
in queue#1; q, = 2 represents the state where machine M; is working on a
piece and there exist one piece waiting to be processed in queue#1; g; =0
may represent the state where no piece is waiting, and machine M, is idle.
Since machine M, (resp. M) is never idle if there is a piece in queue#1 (resp.
queue#2), the state g2 of machine M, is implicit in ¢, (resp. g4 is implicit in
q3)-

_ Jbusy:if ¢ >1
@—{Meﬁfmzo (5)

_ [busy:if ¢3>1
%‘{Menf%:o (©)

These considerations lead to the following state space for the model of
Fig. 3:

a=ln,0)" €SS=N (7)

Ezample 4 (A more complex state space). Suppose now that we take again
the system of Fig. 3, but now we the performance analysis for which this
model is to be used requires the modeller to take into consideration the
following additional aspects:

The states where a machine is moving pieces need to be considered.
The state of the conveyors are relevant too (running or stopped).
Discarded pieces are buffered into the baskets. The storage space of these
baskets is limited to N' pieces.

A machine cannot continue working if it has to put a piece in the next
queue and this one is full, or it has to discard one piece and its basket is
full.
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Under these assumptions, we could obtain the model shown in Eqs. 8a—8e.

q= [fh,CI2,Q3,(I4,(I5,(16,(I7,618]T (8a)
0,93 € Q1 =03 =1{0,1,...,N} (8b)
72,91 € Q2 = @4 = {busy, dle, moving-out, discarding} (8¢)
g5, 06 € Qs = Qs = {0,1,...,N'} (8d)
q7,qs € Q7 = Qg = {running, stopped} (8e)

Note that state variables ¢z and g4 have now a larger domain. The new
state variables ¢s, g5 represent the state of the waste baskets of machine M,
and M- respectively, while ¢, gs represent the state of the two conveyors in
the subsystem under consideration.

Looking at examples 2-4, it is easy to realize that there does not exist a
unique model for the same DES plant.

As we noted at the beginning of this subsection, in any case we can identify
important differences between the state space of a DES, and the state space
of a CS:

e The state variables of a DES do not take values from continuous sets,
but from countable (and often finite) sets.

e Moreover, these discrete sets are often defined by enumeration, because
no arithmetical or order relation exists among their elements; often the
state sets of components are totally unstructured (for instance, Eqgs. 8c
and 8e).

2.2 State evolution

The behaviour of a dynamical system — whether CS or DES - is determined
by the (set of) possible trajectories of the state as time evolves. We need a
suitable mathematical formalism for representing this evolution. In any CS
the state x(t) evolves continuously along time. Ordinary differential equations
(ODE’s) and all the mathematical tools related to them provide suitable
methods to model, analyze and design controllers for these systems.

The CS of example 1 could be modeled by means of an ODE, whose most
general expression is shown in Eq. 9a. If a linear approximation of the system
dynamic may be sufficient for the specific problem purposes, we would take
a model like Eq. 9b. If in addition to the linear property we can consider the
system to be time invariant, we could take the well known expression of the
Linear Time Invariant systems dynamic equation shown in Eq. 9c.

x(r) = f(x(r),u(r),7) (9a)
x(7) = A(7) - x(7) + B(7) - u(r) (9b)
x(r) = A -x(r) + B -u{r) (9¢)
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If we compare the state evolution of a CS described by any of the above
models to the evolution of the state of a DES, we find important differences:

e In a DES, the state does not evolve continuously along time; it remains
constant except for abrupt jumps at the occurrence of events. Some of
the events that cause the state to jump, in the example 2 with state
representation 4a, are as follows:

— A new piece arrives to queue#1

Machine M; finishes working on a piece and discards it

Machine M, finishes working on a piece and lets it go ahead

Machine M; begins to work on a piece

— ... etc.
At any given time point 7, the current system state q(7) uniquely de-
termines the set of events that possibly may happen. Hence this also
uniquely determines the set of all possible future trajectories of the sys-
tem state.

e The state of a DES is a piecewise constant function of time, since events
do not happen continuously along time, but just in a countable set of
time instants. Between two consecutive occurrences of events, the state
remains unchanged.

e There exist no synchronization method for the state evolution, that is,
there does not exist some device like a clock that provides ticks or specific
time instants where state changes are allowed to happen (events happen
in an asynchronous way). The model only must describe the order in
which the events occur.

|

One always could try to model and analyze a DES in a by using an
ODE. Consider the queue length g(t) in example Fig. 3, and define impulse—
like inputs signals u; () and wus(t) whose occurrence denote respectively the
arrival and departure of a piece to/from the queue. Then

T T
0= [ ww-di- [ - (10)
bl ¢l — 00

Fig. 4 shows an example of inputs u;(7), u2(7) and the corresponding
sample path for state variable ¢(7). In this formalism there is unfortunately
no obvious way to explicitly express the requirement that the n-th departure
must occur after the n-th arrival (implicitly expressed by the condition that
g(7) > 0). This limitation of the formalism of Eq. 10 becomes even more cum-
bersome for large systems with many different events and with complicated
precedence relations between them.

e Modelling and analysis of systems that involve asynchronous impulse-like
(and often non-deterministic) signals is rather difficult within the ODE
framework. These signals often do not come from outside the system, but
are generated by internal dynamics.
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N W

B S S B
Fig. 4. Example of inputs sig-

U
2 nals and sample path for the
model of Eq. 10

e In the above queue model example (Fig. 4, Eq. 10) it is clear that input
signals may not take any arbitrary value at any arbitrary time instant:
it is not possible that us(7) = 1 if ¢(7) = 0 (that is, no piece can leave
an empty storage space).

e Some state spaces like the ones of examples 2-4 show no arithmetical
or order relation among their values. How could we model this into the
ODE’s framework? One could think of assigning an integer value to each
of these elements, and modeling the changing inputs also as impulse-like
signals (either unitary or not).

In that case we would be introducing in the model some semantics and
relationships that are not contained in the system by itself.

e We actually do not need a continuous time model, because we only have
state changes in a countable number of time instants.

e Another possibility could be the construction of a discrete time model,
sampling the state at instants kT, and defining difference equations for
relating the state qr = q(kT') to the state qz_1 = q((k—1)T) at previous
sampling instant(s). The problem in this case is that events may happen
too close together, so that between two consecutive sampling instants
more than one event may happen. Since the state evolution depends not
only on what events happened, but also on the order in which they hap-
pened in, such a model is unable to represent the actual state evolution of
the system. To fix this problem, one could try to take as sampling inter-
val (if possible) a pessimistic estimate (lower bound) of the minimal time
between two consecutive occurrences of events. In both cases, continuous
or discrete time, one would get models where nothing would happen most
of time.

The conclusion of this section is that ordinary differential equations or
difference equations are not suitable to model these discrete event dynamic
systems.
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3 Interactions between DES and CS

In the control of complex automated systems, one can often identify dynamic
subsystems of different kinds (continuous, discrete time, and discrete event
systems). How these systems interact will greatly determine the control ar-
chitecture, and whether or not we can talk about hybrid systems in the strict
sense.

One possible control architecture is shown in Fig. 5. In this schema there
exists (at least) one low level control layer, where continuous-time loops are
controlled by either continuous or discrete time controllers.

Continuous/Discrete

I
| I
I
! Time controllers  [€ M o events
| O >
| < Discrete Event
| | é controller
| =g
[ ; commands
! Continuous [ —
| Systems |
I
I

Continuous loops

Fig. 5. Hierarchical architecture of monitoring and control

This control layer accepts commands from a higher level controller. These
commands may be; for example, changing the reference for some loop(s),
modifying some controller(s) parameter(s), etc. On the other hand, the high-
est level controller observes some events from the lowest levels. Examples of
these events may be, for example, that some process has reached its maximum
allowed time to remain in a given state.

The highest level controller may be seen as a discrete event system, be-
cause it works with the discrete event nature of input/output signals that are
received/issued in an asynchronous way. This controller is usually responsi-
ble for supervising the lower levels layers, monitoring the system startup and
shutdown, changing operation modes, detecting system failures, etc. This is
why this controller is usually known as supervisory controller, or just super-
visor. The supervisor requires a global model of the whole plant for taking its
decisions. This global model is usually obtained on a modular compositional
approach basis, that allows the systematic construction of large complex mod-
els starting from very simple submodels, as we will see in this chapter.

Between the DES controller and the continuous plant, there must exist an
interface, responsible for translating commands coming from the supervisor
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into the adequate actions over the lower level controllers, and similarly, ob-
serving the continuous states, detecting the occurrence of events, and issuing
the adequate event to the supervisor.

Somehow, the control schema of Fig. 5 could be seen as a hybrid system,
in the sense that it involves both continuous/discrete time dynamics, and
event driven dynamics. Whether this should be considered as a hybrid sys-
tem (HS) depends on how closely the DES dynamics and the CS dynamics
are coupled. If CS problems can be solved just by using continuous time tech-
niques without caring about the higher control level, then the system should
not be treated as a HS. Similarly, the DE controller does not need to keep
the track of the behaviour in the continuous loops, and can perform its task
with just event-like information, then again the plant should not be treated
as a HS. If the dynamics cannot be decoupled and events affect directly the

evolution of the CS, and vice versa, then we need to model the system as a
true HS (Fig. 6).

be—>» X, =XxQ0 [ > ¥
X, =(x,9)e X,

Fig. 6. Hybrid system

In a HS, the state space X} is composed of a continuous subspace which
contains all continuous dynamics state variables (X) and a discrete subspace
(Q). The state at a given time instant xx(r) = (x{7),q(7)) represents the
continuous state variables x(7) and the discrete state variables q(7).

In general, we have both continuous time inputs and event driven inputs
u{7) = (u.(7),uq(r)), The output y(r) = (y.{7),ya(7)) can be separated
into 2 classes in the same way. The dynamics of the continuous state variables
x(7) are expressed by an ODE with right hand side depending on the hybrid
state xp,(7), on the inputs ug(7), at time 7.

x(1) = f(xn(7),u(r),7) (11a)
a(r*) = g(xn(r),u(r),7) (11b)
y(T) = h(xh(T),u(T),'r) (llc)

Similar considerations apply for the discrete state variables q. We use the
notation 7t in Eq. 11b to emphasize the fact that changes in q happen in an
asynchronous event driven way. Note that q{t™) = q{r) whenever no event
takes place. Which events are allowed at time 7, and what 1s the next state
q(7) is a function of q(7), the value of the state just prior to the time when
the event changing the state takes place. It should be clear that q{r) is an



146 F.J. Montoya and R.K. Boel

element from the set of states that may be reached after the occurrence of any
event that is enabled at state x,(7), since not all events may possibly happen
at any state. Upon the occurrence of an event, some continuous state variables
T, € x may also reset their values, or more generally, may discontinuously
change their values at the time instants where events happen.

These systems will be studied in further chapters of this part of the book.
This chapter focuses attention to the modeling and analysis of DES only, so
that from now on, events become the basic observables.

4 Modeling of DES

In modeling DES, we distinguish different levels of abstraction, depending on
the temporal aspects that we consider in the model. These levels are often
known as the logic, or untimed level, and the timed level.

4.1 Logic level

In the first level of abstraction we are concerned only about the sequences
of events that can be generated by the system. If £ is the set of all possible
events that the system may generate, issue, etc., defined as

EZ{ea,eﬁ',...} (12)

then at this level, a string s (or trace, or sequence of events) of the system
represents the ordered (and finite) set of events that have happened in the
system so far.

$=ejeze3...en16n G EE VYi=1,...,n (13)

As we will see in the next Section, the even set E is often referred to as the
system alphabet, and the set of all possible strings s that may be generated
by a given system G is called the system language L(G).

At this level we have no information about time. For example, from a
given system trace s like the one in Eq. 13 we cannot conclude how long the
system took between the occurrence of the second and the third event.

Consider again the queueing example, with E = {arrival, departure} as
set of events. A specification stating that a piece should not wait in the queue
for more than ¢ time units cannot be modelled or controlled at this level. If
time information is relevant for the control problem specifications, then it is
necessary to introduce more information in the model.
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4.2 Timed level

At the next abstraction level, beside the event sequence, we also specify the
time instant at which events take place. Given an event set as in Eq. 12, and
time ¢ € R*, the alphabet will now be a subset of E x RY, and we will talk
about the timed language of the system.

s = (e, 1) (e2,72) ... (en,n) (14a)
e; €E, €RY, Viel,...,n (14b)
Ti < Tiy1, Vi€l ...,n-—1 (140)

A string s is now composed of pairs event—time, with the only condition
that 7; < 7341 in order to guarantee the monotonic progress of time. If we
allow more than one event to happen simultaneously, we could either allow
T; = Ti+1, or redefine Eqgs. 14a-14c as

§ = (EI:TI) (EZ,TQ) (En’Tn) (153.)
EDE;e2f r,eR" Viel,...,n (15b)
Ti < Tit1, Viel,...,n~1 (150)

In this framework at a given time instant 7;, instead of considering the
occurrence of a single event e; we allow the simultaneous occurrence of (in
principle) any subset of E.

In this new framework we still do not allow the occurrence of two or more
instances of the same event at the same time instant. It is possible to extend
the framework to deal with this new situation.

s = (B;1,n)(B2,72) ... (Bn:Tn) (16a)
B : E—=N (16b)
eRY Viel,...,n (16¢)
7 <Tip1, Viel,...,n—1 (16d)

That is, instead of allowing the occurrence of events e; € E or subsets of
events F; C E, we allow now the occurrence of multisets, or bags of events,
where the same event may appear more than once. A bag B may be defined
as a function from FE to the set of natural numbers N, where B(e;) denotes
the number of times that e; appears in B (known as the cardinality of e; in
B).

Of course, assumptions of Egs. 16a-16d, where we allow the occurrence
of multisets of events at a given time instant, is the most general framework
we can think of. How general we make our model will greatly determine the
complexity of the problems that can be posed in the study of the system.
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5 Languages and automata

In this Section some formalisms to model and analyze DES at the logic (un-
timed) level are introduced. Languages and automata, and their relationship
will be treated. Establishing an analogy with CS it could be said that lan-
guages are to DES what signals are to CS. Similarly, automata are to DES
what state space models are to CS.

5.1 Languages

We use notation similar to that in Section 4.1:

E: event set (alphabet)

string: s = ejeqzez...e, €, € E, Vi

€ : empty string

E7*: set of all non—empty finite strings
E* = E* U {e}

A language L is defined as an arbitrary subset of £*. A string ¢t € E* is
said to be a prefix of a string s € E* iff there exists a string © € E* such that
s = tu. Denote by pref(s) the set of all strings that are prefix of s. A string
u € E* is said to be a suffiz of a string s € E* iff there exists a string ¢ € E*
such that s = tu. Denote by suff(s) the set of all strings that are suffix of s.
Note that for any s € E*

s=s == s € pref(s), € suff(s)
s=¢es = ¢ € pref(s), s € suff(s)

5.2 Some operations on languages

Concatenation: The concatenation of two languages Ly, Ly C E* is defined
as

LiLy={seE*|ds,€L1,89 € Ly : s=35159} (17

The interpretation of this operation is the successive execution of two
different kind of tasks. For example, if all the strings in L, represent the
behavior of a subsystem S;, and similarly Lo the behavior of subsystem Sj,
the language L, L, represents the complete execution of one task of system
S; immediately followed by an execution of Ss.

Kleene closure: The Kleene closure of a language L is defined as
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L*={e}ULULLULLLU--- (18)

The interpretation of this operation is the successive execution of tasks
of the same kind. For example, if language L models the execution of some
batch production system, language L* represents the same batch production
restarted over and over again, as many times as desired (including zero times,
since € € L*).

Prefix closure: The prefiz closure of a language L is defined as

L={s€E*|3teE* :stecl} (19)

A_language L is said to be prefiz closed iff L = L. Note that the inclusion
L C L always holds, because for any s € L, we have that s € pref(s), thus

s € L. It is easy to prove that for any language L C E*, L = L.

Ezample 5. Given E = {a, b}, let us consider the languages L; and L, defined
as

L, = {a,b, bbb} Ly = {¢,a,aa,aab,b}

If we obtain the prefix closure of L; and Lo we will easily realize that L,
is indeed prefix closed, but L; is not.

L, = {e,a,b,bb,bbb} D L, Ly = {¢,a,aa,aab,b} = L,
String projection: Given E, C E the projection of a string s € E” over
E? as
PEO (E) =€
Pg,(se) =

o

Pg, : E* - E; {PEo(s)e if e € E, (20)

Pg,(s) else

The projection Pg_(s) removes from s all the events that do not belong
to E,.

String inverse projection: Given E, C F the inverse projection Pgol of
astring s € E; over E*, as a function P! : B} — 2F¢ defined as
Ppl(s) = {te B" : Py (t) = s} (21)

The inverse projection of a string s is the set of all strings ¢ whose pro-
jection results in s.
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Language projection, and inverse projection: In a similar fashion, it
is possible to generalize the projection and inverse projection operation on
strings to deal with languages. Defining L C E*, K C E}, E, C E, the
projection and inverse projection of languages are defined as

Pg (L) ={s€ E, |3teL : Pg,(t) =s} (22a)
Pgl(K)={s€ E* |3t€ K : Pg,(s) =t} (22b)
In general

Pg, (P1(K)) =K, Pg!(Pg(L)2L

Synchronous product: Given £ = Ey U E;, L C Ef, L, C E3, and the
projection operations Pg, : E* — EY, and Pg, : £* — EJ, the synchronous
product between L; and Ls is defined as

L ” Ly = {S € E* ]DE1 (S) € L, /\PEQ(S) € LQ} (23)

The interpretation of Ly || Lo is the following: assume that L, represents
the behavior of subsystem S; whereas L, represents the behavior of subsys-
tem S,. Then, L, || L, contains the strings that represents the simultaneous
execution of subsystems S; and S;. If these two subsystems share common
events (i.e., By N Ey # @), they both are supposed to synchronize on these
events, that is, these events have to be performed simultaneously by both
subsystems.

5.3 Automata

An automaton is a representation of a DES. By representing a DES as an au-
tomaton, we are implicitly defining also the system language, as mentioned in
4.1. We will only deal with finite automata, i.e. automata whose state space is
a finite set. An automaton may be defined as a tuple G = (Q, E, 3, D, go, Q)
whose meaning is the following:

() : state set
E . event set
5:Q xE — @Q: transition function
D:Q — 2% :  active event function
Q 5 qo: initial state
Q DO Qm: set of marked states
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Q is the set of all possible states of the DES, i.e., the state space. If @ is
a finite set, we will talk about finite automaton.

5 is the transition function, or nezt state function: if the current sys-
tem state is ¢ € @ and the event e € E happens, 5(q,e) will be the new
system state after the occurrence of e. In general 5 is a partially defined
function, in the sense that (g,e) does not need to be defined for every
q € @, and every e € E. For example, considering again the model of a
queue with & = {arrival, departure}, and assuming that the state gempty rep-
resents the state where there exists no pieces waiting in the queue, it is clear
that 8 (gempty, departure) has to be necessarily undefined. This is related to
the D function.

D is the active event function, that is, the set of events that are allowed
to happen for a given state. Hence, D(q) represents the set of events e¢ €
D(q) C E that make function & (g, e) to be defined.

go is the initial state, i.e. the state at which the system is supposed to be
in at the beginning of its operation.

The marked state set @, is a particular subset of ). The elements in
Q. are typically states that represent the completion of a specific task, or a
state that is considered acceptable from some point of view. For example, in
a batch production plant model, a marked state may represent a state where
the last batch was successfully completed, and machines are in a safe state to
turn them off. This is why this set is often known as the final state set (this
does not mean, of course, that the system stops when it reaches one of these
states).

A finite automaton is often graphically represented as a directed graph.
This is illustrated in the following example.

Ezample 6. Let us consider the graph shown in Fig. 7

DOWN- IDLE DOWN- WORKING
start
93 9,
repair
breakdown repair
breakdown
start
— @L 191 Fig. 7. Directed graph rep-
" resentation for automaton of
IDLE Stop WORKING

Example 6

The directed graph representation of an automata, like in Fig. 7, is also
known as a state transition diagram (bold capital labels are not actually part
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of the representation; they have been added to states just for the sake of
clarity).

Fig. 7 represents the finite automaton whose state set is @ = {qo0, 41,492,493},
initial state qo, event set E = {start, stop, breakdown, repair}, and marked
state set @ = {¢o}. Nodes in this graph represent states, and labeled and
directed arcs (arrows) represent transitions between pairs of states.

Final states are represented by double circle nodes. The initial state is
pointed by an arrow that is not labeled and is not connected to any other
state.

The complete transition function for this example is

b (go, start) = q1 5(q,stop) = g0 &(q1, breakdown) = ¢
5(g2, repair) = @1 6(qo, breakdown) = ¢3 5 (g3, start) = qa
b (g3, repair) = qo

This function is sometimes represented by means of a table. In this ex-
ample:

8 |l9o|n|gz]gs]
start i |—|—|%
stop || —Iqo|—|—

breakdown||qs |qs |—|—
repair  |\—\—!q1|%

The symbol — means that the function is not defined for that pair
(state,event).

The active event set function D is also represented in the graph. For a
given state g the set D(q) can be seen as the labels of the arrows that point
outwards from ¢. For instance, in Fig. 7 D(q1) = {stop, breakdown}.

It is possible to extend the transition function & to deal not only with
events, but also with event strings. We will denote as 8%(q, s) the state that
is reached from g by applying successively transition function § to sequence
of states successively reached from ¢ and the events contained in s (in fixed
order).

Assuming e € E, s € E*, the extended transition function 8" : Qx E* — Q
is defined as

5*(g,€) = ¢
8" (8(g,e),s) ifee€ D(q)

87(g,e5) = {undeﬁned else (24)

We will write *(g, 5)! to denote that the state 5% (g, s) is defined, i.e., that
all successive applications from the state g of transition function & to events
in string s are well defined.
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5.4 Some operations on automata

This subsection introduces some operations (among the many unary and
binary operations that can be defined) on automata, that will be useful to
understand the concepts introduced in the last Section of this chapter.

Accessible part: Ac(G). The accessible part of an automaton G is an
automaton obtained by removing from G those states that cannot be reached
from its initial state qp after a finite number of state transitions. Formally,
given an automaton G = (Q, E, 8, D, qo, @m), the Ac(G) operation is defined
as

Ac(G) = (Qac, E, 84c, Dac, 40, Qac,m)
Qac ={q€Q:3s€ E" : 8"(q0, ) = q}
ac = 0|QucxE~Qa.
Dae = Do, o5

Qac,m = @m N Qac

Ezample 7. Let us consider the automaton of Fig. 8. By simple visual in-
spection it is easy to realize that state gs is not accessible from initial state
go (there exists no arrow pointing to g3). Similarly, it is easy to see that any
other state is accessible, since there exists a string s € E* that makes it
reachable from qq.

The accessible part of this automaton would be obtained by removing
state g3, and its associated transitions.

Fig. 8. Example of automaton
to illustrate Ac, CoAc, and Trim
operations

Coaccessible part: CoAc(G). The coaccessible part of an automaton G is
an automaton obtained from G by removing those states from which final
states cannot be reached, after a finite number of state enabled transitions.
Formally, given an automaton G = (@, F,8,D, ¢o,@m), the CoAc(G) opera-
tion is defined as
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COAC(G) = (Qcoac, E, Scoacs Deoacs q0,coac Qm)
Qeoac = {g € Q35 € E™ 1 87(q,5) € Qm}

dcoae = D Qeoac X E=Qcoac

D.poc =D ‘Qcoac—ﬂE
q _ qo if go € Qcoac
O.coac undefined else

Ezample 8. Let us consider again the automaton of Fig. 8. Just like in Exam-
ple 7, we can easily realize that states gs and g¢ are not coaccessible. The only
final state (gq4) cannot be reached from {¢s,gs}. If the system falls into any
of these two states, it will be unable to leave it and reach a final state. This
situation is known as livelock, in contrast to a deadlock state: if the system
gets into a deadlock state, it will not be able to progress any more (in the
case of DES this means that no more events will ever happen). On the other
hand, in a livelock situation the system may still continue changing state by
generating events, but it will never reach a final state.

Trim operation: Trim(G). The trim operation transforms automaton G
into another automaton (a part of G) that is both accessible and coacces-
sible. The automaton Trim(G) can be expressed in terms of accessible and
coaccessible operations, which may permute. Formally, given an autornaton
G=(Q,E, 5, D,qy,Qm), the Trim(G) operation is defined as

Trim(G) = CoAc(Ac(G)) = Ac(CoAc(G))

FEzample 9. The trim part of automaton of Fig. 8 can be obtained by applying
the Ac and CoAc operators (or vice versa) to this automaton. In either case,
this operation results in the automaton shown in Fig. 9.

Fig. 9. Trim part of automaton of Fig. 8

Parallel composition: G; || Gs. Given two different automata

G1 = (Q1,E1,51,D1,q0,1, Qm 1), G2 = (Q2, Eo, 82, Dy, o2, @m 2), the paral-
lel composition of G; and G, denoted as G l] G4, is the automaton defined
as follows:
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Gy || G2 = (Q1 x Q2, E1 UE3,8,D,(q0,1,90,2), @m,1 X Qm,2)

where
(01(q1,€),02(q2,€)) if e € Di(q1) N Da(g2)
_ ) (®1(qr,€), q2) if e € Di(q1)\E2
5(lgr1,42),€) = (q1,02(q2,€)) if e € Dy(g2)\Ey
undefined otherwise
and

D(q1,q2) = (D1(q1) N D2(g2)) U (D1(q1)\E2) U (Da(g2)\ E1)

In words, the parallel composition of automata G; and Gs results in an
automaton that simultaneously models the behavior of both systems. Private
events, that is, events in E;\Ey and Es\E; for G, and G respectively, may
be executed by their corresponding system at any moment they are enabled
by the current state value at their corresponding component {subautomaton)
(see lines 2 and 3 of the definition of function §). On the other hand, events
in E1 N E, are shared by both systems, and are allowed to happen only when
they are enabled in both systems (see first line of the definition of &).

The parallel composition operation is one of the most powerful tools for
the systematic obtaining of large models for complex systems, starting from
small subsystems models whose correctness is easy to verify just at a glance.

It is possible to prove that

‘C(Gl ” GZ) = ‘C(Gl) “ E(G2)

5.5 Languages vs. automata

Both languages and automata can be seen as a formal definition of a DES. In
both cases all the possible sequence of events that can be generated by the
system are well defined.

Any automaton G implicitly defines two languages, the language generated
by the automaton, denoted as £{G), and the language marked by the automa-
ton, denoted as £, (G). Formally, given an automaton G = (Q, E, 8, D, go, Q:n)
these languages are defined as

LG) = {s € E* : 6 (go,)!} (25)
Ln(G)={s€E" :05%(q,s) € Qm} (26)

From these definitions it is clear that £,,(G) C L(G).
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Finite automata are a particularly interesting formalism for representing
DES. This interest stems from the fact that most problems that can be posed
for a DES can be solved by means of a computer algorithm in a polynomial
time if the DES is represented by means of a finite automaton. Thus, an
immediate question is how large the set of languages that can be represented
by finite automata is.

Unfortunately, a finite automata cannot represent every language. The
set of languages that can be represented by an automaton is known as the
set of reqular languages. This set is quite restrictive compared to the set of
all possible languages, but is general enough to be important in practice to
represent the behavior of many DES.

6 Introduction to supervisory control

This section gives a brief and necessarily incomplete introduction to super-
visory control. Supervisory control must guarantee that the behavior of the
overall plant is always acceptable. Here acceptable may mean that no dead-
locks (or livelocks) occur, and/or that certain variables always remain within
a specified safe set, and/or that eventually all the tasks are completed.

The plant manager describes certain specifications of the closed loop
plant. The open loop behavior £(G) may contain strings that are not accept-
able in the sense that they violate some of the specifications. The supervisor
will then influence the plant behavior by sometimes blocking certain events,
which would be allowed according to the plant model G. By blocking some
controllable transitions the supervisor eliminates all those trajectories that
lead to a violation of a specification. Supervisory control is usually imple-
mented by blocking as few controllable events as possible. This allows the
maximal freedom for the lower level controllers to optimize their actions.

Since the supervisory controller must act autonomously on the overall
plant, it is important to observe that the specifications are hard constraints
on the plant behavior. The supervisor must ensure that all future trajectories
satisfy the specifications. This is different from a stochastic approach, where
one would only require that the plant satisfies the specifications most of the
time or that it minimizes some average cost. Moreover, as it has been already
noted, the supervisor must have a global model of the plant when predicting
future trajectories. This explains why the supervisor usually works with a
composition of many interacting models. Computational tractability usually
dictates the use of abstract discrete event models for most of the components.

6.1 General framework

We will consider a DES G = (@, E,%,D,q0,@m) as defined in Section 5,
where the event set ¥ may be partitioned into two disjoint subsets

E=E UE,
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E. is the set of controllable events. Any event that may be disabled by the
controller belongs to this set. On the other hand, E,. is the set of uncon-
trollable events. Events in E,. cannot be prevented from happening by the
controller by means of any control action over the system.
Similarly, event set E accepts also another partition into two different
disjoint subsets
E=FE,UE,

E, represents the set of observable events. Any event in E, can be seen, or
observed, by the controller upon its occurrence. On the other hand, E,, is
the set of unobservable events, that is, those events whose occurrence cannot
be noticed by the controller. As it can be intuitively guessed, the existence
of uncontrollable and /or unobservable events in the system introduces extra
complexity to the supervisory control problem.

Fig. 10 shows the general feedback loop structure for supervisory control.

S(Pg,(5)) Supervisor P (s)
8
System A
- (&) s . )
Fig. 10. General supervisory control loop

Since, in general, unobservable events may exist, it is clear that the system
output that is fed back to the supervisor will not be the whole event string s
generated by the system G. If we define the projection operation Pg, : E* —
E%, the information available for the supervisor will be Pg_(s). The control
action of the supervisor will be denoted as S (Pg,(s)), where S may be seen
as a function S : E¥ — 2. As mentioned at the beginning of this section,
the goal of this control action is to disable some events. We will assume that
Eue € S(Pg,(s)) C E is the set of events allowed by the supervisor after
the observed system behavior Pg_(s). In this framework it is assumed that
the control action is immediately updated (but not necessarily changed) just
after the occurrence of any observable event.

Thus, when an event string s has been generated by the system G, then
the set of allowed events is

S (Pg,(s)) N D (87 (go, 5))

that is, events that are allowed by the supervisor and that are also active in
the system.

Oune of the most important issues related to partial observability are sys-
tem failures, which are rarely observable by the controller. One important
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research area nowadays in supervisory control is the problem of diagnosis,
that is, how to infer that some unobservable event has (possibly or certainly)
happened just by looking at the observable behavior of the system. Issues
related to partial observability will not be treated in this introduction. Thus,
from this point on it is assumed that all events are observable.

We will denote as £(S/G) the language generated by the closed loop
system. Assuming s € E*, e € E, the language £(5/G) may be defined as

e € L(5/G)
s € L(S/G),se € L(G),e € S(s) <= se € L(S/Q)

The marked language of the closed loop system consists of the strings that
are allowed by the supervisor and that are marked in the open loop system:

Ln(S/G) = L(S/G) N L (G)

In general, the following inclusion relations may be stated among these
languages

0 C Lm(S/G) € Lm(S/G) € L(S/G) C L(G)

6.2 Controllability

One of the first questions that can be stated in supervisory control is, given a
DES G = (Q,E,5,D,q0,Qm), and a desired closed loop language K, is how
to decide whether there exists a supervisor S such that £(S/G) = K.

The following theorem provides necessary and sufficient conditions for the
existence of such a supervisor.

Theorem 1 (Controllability Theorem).
Given a DES G = (Q,E,8,D,q0,Qm), Euwc CE and 0 C K C L(G) there

exist supervisor S such that £L(S/G) = K if and only if

KE,.NLG)CK

This Condition on K is known as the controllability condition, and it
can be read in the following terms: if a string s € K admits a prefix t €
pref(s) that can be extended with an uncontrollable event e € E,., and
the resulting string te belongs to the system language £(G), then string te
should also belong to K. In other words: if the supervisor cannot prevent a
string from happening, that string should be legal (that is, the string satisfies
the specification K). If this condition holds, the supervisor S that makes
L(5/G) = K is defined as
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S(s) = [Eue N D (8*(go,5))]U{e € E. : se€ K}

After observing any event string s, the supervisor enables all uncontrol-
lable events that are also active in the system (left hand side of union opera-
tor) and those controllable ever.s whose occurrence keeps the system inside
the desired behavior (right hand side of union operator).

In general, one may find that the desired language K is not controllable.
A natural choice then is to take a subset or superset of K, depending on
the problem specification. If K represents the largest allowed language, then
one could try to take the largest controllable sublanguage of K. On the other
hand, if K represents the smallest! required language that should be included
in the closed loop system language, and the latter should be the smallest
possible, one could then try to take the smallest controllable superlanguage
of K.

The supremal controllable sublanguage of K is denoted as K¢, The infi-
mal prefiz—closed controllable superlanguage of K is denoted as K+©.

The prefix—closure condition on K+ is a technical condition allowing a
constructive definition of K*+C: it is the intersection of all the prefix—closed
controllable superlanguages of K. The set of controllable languages is not
closed under intersection, but the set of prefix—closed controllable languages
1S.

For any § C K C £(G), the following inclusion relations hold

P C K'C C K CK CKY C LG

Depending on whether K is or not prefix—closed and/or regular, there
exist different methods to compute K+¢ and K¢,

6.3 Blocking

Another important issue related to supervisory control is blocking. A DES is
said to be in a blocking state if, from that state, it cannot reach a marked
state. Formally, given a DES G = (Q, E, 5, D, gy, @), it is said to be non-
blocking iff

The inclusion £,,(G) C £(G) always holds, because any prefix of a string
s € L,,(G) has to belong necessarily to the language generated by the system
L(G). Thus, the actual nonblocking condition is £,,(G) D £L(G), whose in-
terpretation is the following: any string s generated by the system, s € L{G),

! When we say largest and smallest we are referring to set inclusion among lan-
guages
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can be extended by another string ¢ € E*, such that the string st leads the
system to a marked state.

The nonblocking condition can also be checked on the automaton mod-
elling the system. System G is nonblocking iff

Ac(G) C CoAc(@)

All accessible states of G should also be coaccessible, i.e., the system may
eventually reach a marked state from any accessible state.

The following theorem provides necessary and sufficient conditions for the
existence of a nonblocking supervisor.

Theorem 2 (Nonblocking Controllability Theorem). Given a DES
G = (Q,E 5 D,q,Qm), Eve CE, and  C K C L,,(GQ), there exists a
supervisor S such that

Ln(S/G) =K, and L(S/G) =K

iff
1) KE,.NL(G) CK (controllability condition)

2) K=KnL,(G) (L (G)~closure)

(note that, in this case, language K does not represent the desired generated
language, but the desired marked language).

Condition 1 corresponds to the controllability condition of Theorem 1 for
language K (recall that K = K). Condition 2 is known as the L, (G)-closure
condition. Since K C K and K C L,,(G) (by the assumptions of Theorem
2), inclusion K C K N L,,(G) always holds. Inclusion K D K N Ly (G) is
what does not hold in general, and it can be read in the following terms: if
a string s € K (which is a marked string by assumption, since K C L,,,(G))
admits a prefix ¢ € pref(s) which is also a marked string (i.e., t € L, (G)),
then string ¢ should also belong to K.

6.4 Supervisory control specifications

In the typical specification of most supervisory control problems, one defines
one or more required and/or allowed languages, either marked or not, for
instance Lycq, Lait, L req, and Ly, 411, and specifies as requirements one or
more of the following four inclusion relations

Lreq g ‘C(S/G) g Lalla Lm,req g Em(S/G) g Lm,all

Of course, controllability and nonblockingness are usually part of the
problem specification as well.
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When we set as specification the largest allowed language, we usually
require the supervisor to be mazimally permissive, in the sense that is should
allow the system to behave as free as possible, while keeping it inside the
allowed behavior. Formally, if L, is the largest allowed language, a supervisor
S such that £(S/G) C Ly is said to be maximally permissive if for any other
supervisor Sysper

£(Sother/G) g. Lall = £(Sother/G) g £(S/G)

Summary

In this Chapter we have introduced the fundamentals of DES. We have seen
why DES are indeed a particular kind of dynamic systems, and why ordinary
differential equations and difference equations are not suitable tools to model
these systems. How DES interact with continuous systems, greatly determines
what we can call a hybrid system in the strict sense. A couple of formalisms
to describe DES at the logic (untimed) level of abstraction have been in-
troduced. These are languages and automata. Some of the most important
operations between languages and automata have been introduced, and the
existing relationship between these two formalisms has also been presented.
Finally, the last Section presented a brief introduction to supervisory control
where two of the most important problems, controllability and blocking, were
considered. Two of the most relevant theorems that provide necessary and
sufficient conditions for these problems have also been quoted.

Recommended references

For a much more complete introduction to DES, the reader is strongly en-
couraged to see [1]. This book presents a very comprehensive, self contained,
and excellent introduction to the fundamentals of DES. It deals not only with
the concepts quoted in this Chapter, but also with some other modeling for-
malisms like Petri nets and other abstraction levels in the modeling of DES
like stochastic models.

For an introduction to hybrid systems, the reader is suggested to see the
following Chapters of this Part, and references therein, in this book. Also,
in the Lecture Notes in Computer Science and Lecture Notes in Control and
Information Sciences series books edited by Springer, some nice books on
this topic can be found. For example, see [6] and [7]. Some journals edit
also special issues on this topic. For example, for a nice discussion on hybrid
systems, the reader is suggested to see the guest editors’ presentation of [5].
In [5] can also be found good papers that represent different approaches in
the study of hybrid systems.

The study of languages and automata theory is also perfectly covered by
[1], specially from the control systems point of view. For a good introduction
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of this topic from the computer science point of view and the study of formal
languages, see [3].

The initial work on supervisory control is [2], although in [1] the reader
can also find an excellent introduction to this topic. For an introduction to
the problem of supervisory control under partial observability and failure
diagnosis, see [4,8] and references therein.

References

1. Cassandras, C.G., Lafortune, S., Introduction to Discrete Event Systems,
Kluwer Academic Publishers, Boston 1999.

2. Ramadge, P.J., Wonham, W.M., “The Control of Discrete Event Systems”,
Proceedings of the IEEE, 77-1, 81-98, 1989.

3. Hopcroft, J.E., Ullman, J.D. Introduction to Autemata Theory, Languages, and
Computation, Addison-Wesley, Reading, MA 1998.

4. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.
“Failure Diagnosis Using Discrete Event Models”, IEEE Transactions on Con-
trol Systems Technology, 4, 105-124, 1996.

5. Antsaklis, P.J., Nerode, A., (eds.) IEEE Transactions on Automatic Control:
Special Issue on Hybrid Control Systems, 43—4, April 1998.

6. van der Schaft, A., Schumacher, H., An Introduction to Hybrid Dynamical Sys-
tems, Lecture Notes in Control and Information Sciences, 251, Springer, 2000.

7. Vaandrager, F.W., van Schuppen, J.H., (eds.) Hybrid Systems: Computation
and Control, Second International Workshop HSCC’99, Lecture Notes in Com-
puter Science, 1569, Springer, 1999.

8. Cassandras, C.G., Lafortune, S., “Discrete event systems: The state of the art
and some recent trends”, in E. Datta (ed.), Applied and computational control,
signals and circuits, 83—147, Birkhauser, 1998.



Petri Nets Models of Timed Discrete Event
Plants

René K. Boel

SYSTeMS Group, Electrical Engineering Department, Universiteit Gent, Belgium

1 Introduction

The goal of this chapter is to introduce Petri nets as a state-based modelling
formalism for discrete event systems. As explained in the preceding chapter,
the state of a discrete event system belongs to a countable set of possible
values. The state remains constant, except at the asynchronously occurring
instants along the time axis, when an event takes place. A mathematical
model of such a plant must specify the order in which events can occur, and
in the case of timed models, it must also specify the time instants when the
events can occur. Translating this statement in the language of state-based
models, this means the following: for each current value of the state the model
must specify which events are allowed to occur (and, in the timed models,
when they can occur); given that an event occurs, the model must also specify
what the next state is going to be.

The preceding chapter has introduced automata as state-based modelling
formalism for describing the set of sequences of events that can be generated
by a DES plant. In each state the model specifies a set of transitions which are
enabled, and with each transition which is enabled in the current state, there
corresponds a mapping of the current state into the next state, given that the
transition occurs. Events are associated to the occurrence of transitions. The
problem with automata is that the state space is a completely unstructured
set, without any ordering relation between its elements. The set of enabled
transitions, and the "next state” function, are necessarily defined by enumer-
ation, for each value of the current state. It is in general impossible to express
the set of enabled transitions via algebraically expressed constraints. Neither
is there in general an algebraic expression for calculating the next state.

Enumerating sets becomes computationally infeasible for realistic plant
models consisting of many components. Each component expresses certain
constraints on the ordering of the events, via the set of enabled transitions
and via the “next state” function associated to these enabled transitions.
Feasible trajectories of the overall plant must satisfy the constraints imposed
by each component separately.

In this chapter Petri nets are used as model of automata which can be
represented in a compact graphical form, and where the state space is nicely
structured as a vector with integer components. Sets of enabled transitions
and "next state” functions are represented using linear functions of the state,
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with integer valued coefficients. Section 2 presents some examples illustrating
how Petri nets can be used to model typical discrete event systems, such as
flexible manufacturing systems and communication protocols, and how the
structure of the state vectors can be used for analysis of plant properties
and for control design. These examples also illustrate the limitations to the
modelling power of Petri nets, due to the fact that the model only specifies
sets of enabled transitions, but never expresses that a transition is forced to
occur.

Some elements of the set of feasible trajectories, satisfying all the model
constraints, may have properties that are not acceptable for the proper op-
eration of the plant. Specifications expressing safety conditions, avoiding un-
economical operating conditions, etc. can often be expressed via linear in-
equalities that must be satisfied by all reachable states. In order to allow
autonomous plant operation these specifications must be enforced strictly by
a high level, supervisory controller (as introduced in control theory by Ra-
madge and Wonham in [2]). In section 3 the combination of graphical and
linear algebraic analysis tools for Petri nets will be used for the synthesis of
maximally permissive supervisory controllers.

As explained in the preceding chapter discrete event models, such as au-
tomata and Petri nets, only enforce the order of occurrence of events. Prac-
tical applications often require the specification not only of the ordering of
events, but also of the real time when events can take place. This is the
case for example when a manufacturing system is handling perishable items,
which have to leave the plant before a certain due date. For this purpose
section 4 adds constraints to the Petri net model which specify that an en-
abled transition must be executed in a certain time interval, measured from
the time when the transition became enabled. Timed Petri net models repre-
sent much more general discrete event systems, since it is possible to express
events that are forced to occur. Section 4 presents the modelling formalism
for timed Petri nets, and discusses some examples of the use of timed Petri
nets for the modelling of communication and transportation networks. Sec-
tion 4 also illustrates how the use of timed models influences the problem of
control synthesis. Deadlock prevention and task scheduling are used as case
studies.

2 Petri net models

2.1 Petri net semantics
A marked Petrinet (P, T, Fy, F_,mg) is a graph, with the following elements:

e P places p € P (denoted by circles in the graphical representation)

o {T transitions t € T (denoted by bars in the graphical representation)

e a set I of directed arcs pointing from some transitions to some of the
places (F; can be interpreted as a relation, or as a subset of 7' x P). In
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the graphical representation these arcs are lines starting at ¢ and ending
with an arrow at p.

e a set F_ of directed arcs pointing from some places to some of the tran-
sitions (F_ can be interpreted as a relation, or a subset of P x T). In
the graphical representation these arcs are lines starting at p and ending
with an arrow at t.

e the initial marking mo € N*¥' | a column vector of § P nonnegative integers,
each element counting the number of fokens that initially are present in
the places p € P. The mo(p) tokens in p are represented graphically by
mo(p) dots in the circle p.

In order to simplify the notation we introduce the following sets: *t =
{pe P|(pt)e F_} and t* = {p € P| (t,p) € Fy} is the set of input (resp.
output) places of transition ¢. Input and output transitions of a place p are
defined as *p={t €T | (t,p) € F1} and p* = {t € T | (p,t) € F_}.

Example 1: production unit in FMS: Figure 1 is an example of a
Petri net with 4 places and 2 transitions. It represents a production unit
consisting of 3 machines, an input buffer and an output buffer. It is one
component of a larger plant. The input (left) and output (right) places are
the buffers, where workpieces are stored before and after the operation carried
out by this production unit. In the example there is initially one workpiece
walting in the input buffer, and there are 2 finished products waiting in the
output buffer. The two other places represent the status of the 3 equivalent
machines in this production unit; the tokens in p¢,.. count the number of
idle machines (initially 2), while the token in ppys, correspond to 1 busy
machine. The transitions represent resp. the start of an operation (machine
starts working on a workpiece in the input buffer) and the completion of an
operation (machine completes work on a workpiece, puts it in the output
buffer and returns to the idle condition).

Pin o Ptree m

start t finish

duction unit with input and out-

o Fig. 1. Petri net model of a pro-
pbusy put buffers
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A Petri net models the occurrence of an event in a discrete event plant by
the execution of a corresponding transition ¢ € T'. In example 1 the execution
of transition tg.,+ corresponds to the start event, while the execution of
transition ¢;nisp corresponds to the completion event. The marking m of
the places determines the state of the plant. It will become clear that the
marking does indeed determine the set of all possible future state trajectories
that can be reached. This justifies the use of the term ”state”. In example 1
the marking m = [Min, M free, Mbusy, Mout] = [1,2,1,2] indicates that there
is one workpiece waiting in the input buffer, while two items are in the output
buffer; 2 machines are idle while 1 machine is busy.

The dynamics of the sequence of events generated by a marked Petri net
is determined as follows. Given a current value m of the state, a transition is
enabled if each of its input places contains at least one token:

t isenabled <= Vp € *t:m(p) > 1

The event corresponding to t can occur provided that the constraints m(p) >
1 are simultaneously satisfied for all input places of ¢. Let Tepapiea(m) be the
set of enabled transitions given the current value (m(p),p € P) of the state.
The next event that will occur corresponds to a transition tyezt € Tenabied(m),
selected arbitrarily among the transitions in Tepnapteq(m). The next marking,
following the execution of ¢,.,¢, is obtained by removing one token from all
the input places of t,.;¢+ and by adding one token to each of the output
place of tez;. The affine function f : NVF — N#F generating the next state
Mpezt = (M, there) 18 defined as follows:
First update the marking m according to

Vp € *trext mz’nter(p) = m(p) -1
Vp ¢ *tnest Minter (p) = m(p)

Then update the marking m;p.-(p) according to:

Vp € t;bezt t Mnext (p) - minter(p) +1
Vp ¢ t;bezt P Mapext (p) = minter(p)

Example 1 continued: For the marking indicated in Figure 1 both
transitions are enabled. If ¢, iS selected as next event to occur, then the
next state is mpeze = [0,1,2,2]; if tfinisn is selected as the next event then
Mpest = [1,3,0,3]. In the first case, the only transition that is enabled under
the state Mpeqt 1S tyinish; in the second case the only enabled transition is
tstart. It i1s easy to verify that this expresses a condition on the language
generated by the automaton, represented by the Petri net in example 1: the
number of times that event ts,r is executed is equal to m(Digre) — Mo (Pidie)
+ the number of times that 7,5 is executed.

It is easy to enumerate the set of all states that can be reached in example
1, since transition ¢sqr+ can be executed at most once. Indeed pinpyr contains
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only one token, and there is no input transition to pippy: that could add more
tokens. The reader should verify that the set of allowed traces of this discrete
event model is the prefix-closure of (see section 5.1 of the preceding chapter):

{(tstart, trinish, trinish, tfinish), (Efinish, tstart, t finish, tfinish)}

The set of reachable states is
{[1’ 27 17 2]a [Oa 1) 27 2]7 [la 3a 07 3]a [Oa 27 1’ 3]7 [Oa 37 07 4]}

It is easy to observe some general rules that hold along any state trajectory
generated by the model of example 1 : m(p;,,) is monotonely decreasing, while
m(Powut) is monotonely increasing. Moreover it can be verified for all reachable
states that m(pidle) +m(pbusy) = Mo (pidle) +mo (pbusy) = 3 = the number of
machines in the production unit. The proof of this invariance property is very
easy: the dynamics of the Petri net allows only two transitions; if ¢4,,+ occurs
then m(p;ai. ) is reduced by 1 while m(ppys, ) is increased by 1 keeping the sum
constant; if ¢ £;n455 OCcurs the opposite state change takes place, again keeping
the sum constant. Note that not every state that satisfies this equality can be
reached. Another invariant property that can be demonstrated in the same
way 18 that m(Doutput) — Mo Poutput) = Mo (Pbusy) — M(Pbusy)+ the number
of times that t4,.+ occurred. This is also equal to the number of times that
tfinish OCcurred.

Transition ¢5,4,; expresses a synchronization requirement. The correspond-
ing "start” event can only occur when two conditions are satisfied simulta-
neously: there must be a workpiece waiting in the input buffer, and there
must be an idle machine. Such synchronization requirements can be used to
build large models using models of smaller components. A transition ¢y,
that appears in more than one component model can only be executed (the
corresponding event can only occur) when the transition ¢y, is enabled in
all the components where it appears. Suppose that starting work on a work-
piece that is waiting in the input buffer requires the availability of a crane,
used also for other operations, in order to move the workpiece from the input
buffer to the machine. Then one has to add to the model of the overall plant
a second Petri net component describing the location and the availability of
the crane. In this second Petri net the transition ¢,-¢ will also appear, and
it will have an input place that is marked by a token only when the crane is
not carrying a load and is in the right position for picking up the workpiece
from the input buffer.

A place p with several output transitions represents choice in the Petri
net. If m(p) > 1 then one of the transitions ¢ € *p can be selected as next
event to occur (provided all the other synchronizing enabling conditions of
this ¢ are also satisfied). In the transport model choice represents the fact
that the plant supervisor can decide to send the crane to different locations,
depending on the need of the production schedule. In a very simple model
the token (= crane) could move either to the place on the left or to the
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place on the right from its present place. Choice can also be used to mode}
plant breakdowns and repairs, as illustrated in Figure 2, which provides a
more detailed model of the production unit of Figure 1. Tokens in the place
pre model a machine that is broken down. When the machine is repaired
this can happen either by transition ¢,., with loss of the workpiece that was
in the machine at the time of the breakdown, or by transition t,,2 which
corresponds to a repair where the work on the workpiece can be continued
M Phusy-

tfinish

Fig.2. Petri net model
of a production unit, with
machine breakdown and
repair

pbusy

Comparing Figure 1 and Figure 2, one sees that, depending on the purpose
of the model, it may be possible to use different Petri net models with different
levels of detail. Some of the invariant properties which have been proven for
the simpler model may remain true, while others require refinement. The
invariant property expressing that the total number of machines remains
constant now becomes: m(Pigre )+ M (Pousy) +m(Poa) = mo(Pidte ) +mo(Pousy) +
mo(pea)- The fact that peq is a choice place implies that sometimes workpieces
may get lost, and therefore the relationship between the number of times that
tsiare OCcurs and the number of times that ¢f;nisn occurs no longer holds; it
is replaced by an upper bound: the number of times that event tg o 18
executed is at least m(Poutput) — Mo(Poutput) + the number of times that
trinsh 1S executed.

In any practical application the input buffer in Figure 1 is the output
buffer of some other production unit (or receives external arrivals). A Petri
net model of a plant consists of several production units, as represented in
Figure 1 or 2, connected via common places, as illustrated on top of Figure 3.
This Figure illustrates how a large plant can be represented via the interaction
of several smaller Petri net components. Often when the user is analyzing
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the behaviour of the overall plant, global properties such as the arrival and
departure times of workpieces in a production unit, can be studied using
a more abstract model of each production unit. Each production unit can
be represented by one single transition, with intermediate buffers, as shown
on the bottom of Figure 3. This abstraction represents the progress of the
workpieces in a plant without failures of production units. Since this model is
untimed it is clear that to an outside observer it will not matter whether there
are 3 slow machines in the production unit, or whether there is one single
machine that is 3 times as fast. However the abstraction would not hold
in case that the machines can break down, and workpieces may sometimes
be lost. Then the abstracted models at the bottom should also include this
choice.

Models of large plants are obtained via the composition of several Petri
net components. Using common places as illustrated above is one way of de-
scribing the interaction between components. Common, synchronizing tran-
sitions form another method for describing the interaction between different
components. In that case there are transitions ¢ that appear in different com-
ponents. The common transition ¢ can be executed only when it is enabled
in each component. Basically each component in the model adds further con-
straints to the allowed sequences of events that can occur. Some components
represent one ”geographically” coherent part of the plant (and modelling is
often quite simple because the Petri net looks very similar to the physical
plant lay-out of that part). Other components are purely logical, expressing
certain constraints on the order of the events, imposed for example by the
supervisor. Components of this type can represent scheduling decisions, rules
for allocating scarce resources to competing tasks, etc.

- — Pfree2
Pin,1 (0 Pfree 1 Pin2(09 g 0
o ) 2(g¥) () Pout2 (¥
(%) o ukk ﬁi)
Lstart, 1 ~ R tfinish,2
B Uinish, 1 7
4(‘. ) A v.)
— Pbusy,1 Pbusy,2
b Pin,2 b

Pinl "y, +7 RO 4+___ ~Pouwg, 7

Fig. 3. Petri net model (detailed and abstracted) of a plant with two production
units
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Consider a flexible manufacturing plant, as an example of compositional
modelling. For each type of machines there is one Petri net component mod-
elling the availability of the machines (there are as many tokens as there are
machines of that type); another Petri net models the evolution of the work-
pieces of a given type, starting with the arrival of raw materials up to the
finished product (each place in this Petri net corresponds to a certain inter-
mediate condition of the workpiece); this component represents the recipe
used for the production of that particular type of part. Yet another Petri net
component models the transportation system moving the workpieces from
one location to another. Consider as a typical event the start ty ..+ of a cer-
tain operation on a machine of a given type. This transition ts.,.+ appears
in 3 Petri nets. It can be executed only when it is enabled in each of these
components. This requires that there is at least one machine of that type
available, that a workpiece of that type is waiting in some buffer, and that
the transportation system is ready to move a workpiece of the appropriate
type from its buffering position to the input position of that machine. Another
Petri net component could model the decision to start the first operation for
production of a given finished product, as a response to external requests (or
orders) for different finished products. This is a component representing the
logic of a supervisory controller.

It should be remarked that Petri nets were introduced in computer science
in order to model the evolution of programs being executed on a processor.
Most of the literature on Petri nets deals with closed models, where all places
(resp. all transitions) have at least one input transition (resp. place) and at
least one output transition (resp. place). Petri nets are also often used for
logical models in fault detection in large plants (e.g. nuclear power stations).
There too models are usually closed. In control engineering applications the
Petri nets that one encounters as components of models of manufacturing sys-
tems, transportation systems, communication systems, etc. are usually open
in the sense that there are transitions without input place {such transitions
are always enabled - they represent an action that the outside world can al-
ways force to occur in the model), places without output transitions (counting
how many times some event happened), etc. In this paper we mainly consider
such open Petri nets.

2.2  Algebraic analysis of general Petri nets

It is easy to generalize the Petri net model by assigning weights to the arcs.
If an arc from place p to transition t has weight wp ¢ then t is only enabled if
p contains at least wp; tokens. In other words the enabling condition is now:

t isenabled <= Vp € *t : m(p) > wp

On executing transition t the model dynamics now remove w, tokens from
each of its input places p € °t. If an arc from transition ¢ to place p has
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weight w; , then executing transition ¢ adds w; , tokens to p. This extension
of the simple Petri net model allows more compact models of discrete event
plants in some cases.

Assume from now on that the Petri net under consideration does not
have any self-loops; that is: there are no places that are at the same input
and output place to the same transition: V¢t € T : *¢ N t* = @. Under this
assumption it is possible to find an algebraic description of a Petri net which
is equivalent to the graphical description. The evolution of the Petri net is
governed by the enabling conditions as defined above, and the "next state”
function f(m,t) = Mmpesr can be expressed, without use of Mipiermediate, 88
follows:

Vp e* tnest @ Mpext (P) = m(p) — Wpt
Vpe t:zemt P Mnext (p) = m(p) + Wep
Vp ¢. tneat U t:w;,;t Mpext (P) m(p)

Because there are no self-loops the Petri net is uniquely specified by an
incidence matriz E € NI with elements w;, — w,; on the t-th column
and the p-th row. The p-th row expresses the arcs interconnecting place p
to transitions, while the ¢-th column expresses all the arcs connecting t to
places. Because there are no self-loops either wp; or w; , or both are 0. This
is the property that implies that E uniquely specifies all the arcs of the Petri
net graph, and their weight. In particular it is possible to uniquely decompose
E into £ = E, — E_ where E; contains all the elements of the form w, ,
while E_ contains all the elements of the form wp;. A Petri net will from
now on be denoted by (P, T, (wy,p,wp 1), M) with the obvious replacement of
Fo,F_ by wp,Wp;.
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Fig. 4. Incidence matrix of a simple Petri net
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Let us further extend the model of Petri nets by allowing several tran-
sitions to be executed simultaneously. A firing vector o is a positive integer
valued vector of dimension 4T Its {-th component counts how many times the
transition ¢ is fired when o is executed. The firing vector o can be executed
simultaneously if all the enabling conditions of all its transitions are satisfied
simultaneously, i.e. if Vp € P : m(p) > ), wp:.0(t). This constraint imposes
the requirement that all the places p contain enough tokens to allow each
transition ¢ to remove o(t).wp ¢ tokens from p. This extension allows for more
compact models, since it is not necessary to define a new transition corre-
sponding to the case where several events are executed simultaneously. Note
that this generalization does not change the set of reachable states. If a state
is reachable by execution of a family of simultaneously enabled transitions,
then these transitions are also individually enabled and can be executed one
by one in any order. This leads to the same marking.

The enabling condition for the firing vector o can also be expressed in
vector form (where > denoting componentwise inequality):

m>FE_.o (1)

When all the transitions in ¢ are executed simultaneously then the state
jumps from m to mye, given by

Mpest =M + E.0 (2)

or elaborated per row: Mpeq:(p) = m(p) + 3, (we,p — wpi).0(2).

These equation allow the use of linear algebraic tools for analyzing Petri
nets. One should however be very careful not to interpret equation (2) as a
difference equation. The “next state” equation in (2) is only defined when the
enabling conditions (1) are satisfied, and these constraints are not included
if (2) is treated as a difference equation.

2.3 Reachable markings

Verifying properties of a plant modelled as a Petri net requires the eval-
uation of the set of all markings (states) that are reachable by the Petri
net (P, T, (w¢,p, Wp,), mo) from the given initial condition mg. Equivalently,
proving properties of the plant requires evaluation of the set of all allowed
sequences of events of the Petri net (P, T, (w¢,p, Wp,t), Mo)-

Given marking mg there is a set X(mg) of families of simultaneously
enabled firing vectors (consisting of one or more transitions); select one el-
ement g, € X(mp) as next firing vector to be executed. The fact that all
the transitions ¢ in o; can be executed simultaneously ¢(t) times, given that
the state of the model is my, is denoted by mg[e; — . When o1 occurs the
value of the state jumps from mg to m; = mg + E.o;. This state change is
denoted as mof[o; — m;. Once the marking m; is reached, a new set X'(m;)
of simultaneously enabled firing vectors is obtained; select a5 € X'(m,) : then



Petri Nets 173

my[o2 = mo where my = my + E.02 = mg+ E.(01 +02). One can summarize
this in the notation mglo; = mi[o2 = ma.

The set of all states that can be reached in one step from an initial con-
dition mgy € My for some subset My of markings, is denoted by

Ri(P,T,wt p,wpt, My) = {m | 3mg € My, Jo € X(myg) s.t.molc — m}
The set of markings reachable in n steps is defined inductively:
Rk+1 (Pv T, (wt,pa wp,t)v MO) = R(P7 T, (wi,lh wp,t)v R (Pv T, (wtylﬂ wp,t)a MO))

If mis in Rp(P, T, (ws,p, wp,t), M) then there exists a sequence of firing
vectors o,k = 1,2,...,n such that

molor = mifor = mafos = .. .m0, 9 m

Using the convention that §§ € X'(m) for any state m guarantees that the sets
of reachable markings R, (P, T, w¢,p, Wpt, Mo) are monotonely increasing in
n. Hence the set of markings that can eventually be reached by a given marked
Petri net, after an arbitrary number of steps, is well defined as

ROO(P> T, (wt,pv wp,t)v MO) = U;L.O:IRVL(P7 T, (wt,p7 wp,t); MO)

When no confusion is possible we will write Roo (P, T, (wt,p, Wp,t), M) = Reo.
It is easy to see from the above expressions that, if a marking m is reach-
able via the consecutive execution of an arbitrary number of simultaneously
enabled firing vectors, then there must exist a vector z = ) ,0; € N T
such that m = mg + E.z. The set R, of reachable states for the Petri net
(P, T, (we,p, Wp,t), mo) is a subset of the set

R={m|3zeNT :m=mg+E.z}DRe

In general R, is a strict subset of R = {mqo+ E.z, = > 0} since there may
be values z > 0 for which there does not exist a sequence {01,09,... ,0n}
of successively enabled transitions generating z = > | 0;. Consider e.g.
m; = mo + E.x form =(0,0,1,1,0,0,0), and 27 = (1,1,0,2,2,0,2) in the
example of Figure 4. Then the marking m; = (0,1,0,0,1,0,0) € R is not
reachable because the structure of the Petri net clearly shows that either p;
and p; are marked together, or p; and ps are marked together, after ¢; has
been executed for the first time. Hence m; is not reachable.

Define the support sp(z) of a firing vector z as the set of transitions ¢
such that z(t) > 0. When the firing vector corresponding to z 1s executed,
then all the transitions ¢ in sp(z) and only those transitions are executed.

The set R is very easy to work with when verifying properties of a plant.
Clearly it would be very useful if one could reduce the set R so that it contains
fewer unreachable markings. Some unreachable markings can be eliminated
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from R by imposing constraints, such as invariants properties, proven via
whatever technique is available.

A place invariant is a function V{m) that remains constant under any
enabled firing vector:

{meRe=V(m)=V(me)} <
{meRx, o€ X(im)= V(m+ E.o)=V(m)}

Proving that a function V' (m) is a place invariant is easy; if Vm € R,Vos.t.m >
E.o:V(m+ E.g) = V(m) then V(m) is certainly a place invariant. However
this requirement may be too strict, since it does not have to be satisfied for an
unreachable marking m. Moreover the hard part is in guessing what functions
are possible place invariants (compare this situation to proving properties of
a classical differential equation via invariants).

Linear place invariants are functions of the form V(m) = m”.g for some
§P-vector g. It is possible to generate all linear place invariants by considering
all vectors g in the null space of ET. Indeed Vz > 0: mT.g = mf.g+27.ET ¢
if ET.g = 0. Unfortunately linear place invariants defined in this way do not
exclude any unreachable markings from R since the derivation above does
not take into account that the equality z.E”.g = 0 only must hold for those
vectors z such that mo > E_.z. And this is exactly the constraint that is not
expressed by R either.

It is possible to get other interesting place invariants by looking for traps
and siphons in the Petri net. A trap  C P is a subset of places such that
every transition that has an input place in () also has a output place in @ :

tE€Upeep” = 1"NQ #0

The firing of any transition that can remove a token from a place in @ must
add a token to some place in @. Hence a trap that contains at least one token
under the initial marking mo will always contain one token (3 .o mo(p) >
0=Vm € Reo t I peq Mo(p) > 0).

Similarly one can define a siphon S as a subset of places such that ¢t €
Upeg *p = dp € Q 5t € p*. A siphon that initially contains no token will
remain empty forever. In order to find all traps one has to find all the solutions
of the inequality z.E > 0,z > 0,z € N*_ If z is one of these solutions, then
the support of z (that is the set of places corresponding to a strictly positive
value of z(p)) forms a trap. A siphon is obtained by reversing the inequality
to z.FE < 0. The support of a solution = of z.F = 0 is simultaneously a trap
and a siphon, and is at the same time a (linear) place invariant.

In order to define these concepts in a more graphical way, we intro-
duce paths and cycles. A path is an ordered sequences {po,t1,p1,..-,tn}
or {to,p1,t1,- ..} such that for any pair (t,,pn+1) (resp. (pn,tn)) there is an
arc in the graph defined by Fl. (resp. F..) connecting these two consecutive
elements of the path. A cycle is a path where no place or transition occurs
twice in the sequence, and where the last element is connected to the first
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element (i.e. (t,,p0) € F4 or {(pn,to) € F_). Traps and siphons can also be
recognized by considering the graph of the Petri net. A trap only contains
cycles or incoming paths. A siphon only has cycles or outgoing paths.

The following theorem states conditions under which existence of a non-
negative integer solution to the equation m — mgy = E.x implies that m is
indeed reachable:

Theorem 1: Let (P, T, F,mg) be a marked Petri net, such that every cycle
is a trap, and let 0 < z € N*T be a solution to the equation m — mg = E.z
Define the subnet that contains all transitions in the support sp(z) of z, and
all their input and output places. Restrict mg to this subnet, and assume
that all siphons in the subnet have at least one token under mg. Then m is
reachable from mg, i.e. m € Reo.

This result can be further improved if the Petri net is completely acyclic,
i.e. if the graph of (P, T, F') contains no cycle at all. In that case the network
can be partitioned in layers, with tokens always moving from the top layer
down to a lower layer. Assume that the acyclic Petri net does not have any
entrance or exit transitions (i.e. no tokens ever enter or leave the net) then
the union of the last &k layers always is a trap; the union of the first n layers is
a siphon. Theorem 1 could be applied. However the following stronger result
of Ichikawa and Hiraishi (see (11]) holds:

Theorem 2: If the Petri net (P,T,F) is acyclic, then for any initial
marking mg

R(P,T,F,mg) = Roo(P, T, F,mg)

Further results on how to describe the difference between R and Reo can
be found in the work of Silva et al. [15] and of Desel and Esparza [7]. If one
can prove that a certain marking m is not in R, then m is definitely not
reachable. If the solutions to the equations m — mg = E.x were taken in the
space of rational (or real) variables, then the following theorem of Farkas (or
equivalently the Fredholm alternative as stated in linear functional analysis)
could be used to prove that there is no solution to the equation m—mg = E.x :

Farkas’ lemma: Let A be a matrix and b a vector of appropriate di-
mensions, with rational elements; then either A.z = b, z > 0, z € N*F has
a solution or y.A = 0, y.b < 0,y € Ni7 has a solution but it is not possible
that both of these equations have a solution simultaneously.

The following theorem proves that some markings are not reachable:

Theorem 3: For a marked Petri net (P,T,F,mg), assume that y.E =
0,y.(m — mg) < 0 has a solution. The m is not reachable.

Vectors y which solve the equation y.E = 0 are called transition invari-
ants, because they corresponds to sequences of transitions which, when ex-
ecuted one after the other or simultaneously, keep the linear invariant y.m
constant.
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2.4 Limitations of Petri net modelling

Petri nets can model in a compact, and often easily understandable, way
many of the constraints which determine the allowed sequences of events in a
discrete event system. However Petri nets cannot model those cases where the
marking of a place disables certain transitions. Of course one could extend
the Petri net formalism by defining disabling arcs between some places p
and some transitions ¢. Such a disabling arc would add the constraint to
the model that the transition ¢t cannot be executed whenever the place p is
marked, irrespective of the enabling conditions. It can be shown that such a
Petr1 net formalism with disabling arcs can describe the same sets of allowed
sequences as can be described by Turing machines. Petri nets with disabling
arcs have the same modelling power as Turing machines.

Since it is known that many interesting questions about reachability are
undecidable for Turing machines, it is for most purposes not appropriate to
introduce these disabling arcs into the model. Of course if one can prove
that the set Roo (P, T, (wy,p,wpt),mo) of reachable states is finite, then any
property of reachable states can be proven by enumeration. In this case one
can model disabling connections by adding to the model many enabling arcs
from any state that is not disabling. But such a Petri net will generally not
be easy to interpret, since many extra places have to be introduced, and one
loses all the advantages of a compact state representation.

In order to appreciate the limitations on the modelling that this imposes,
consider the following simple example of a production unit with two machines
and two types of tasks to be executed. The simplest mode of operating the
plant is that machine i carries out tasks of type i, for ¢ = 1,2 as indicated in
Figure 5a, consisting of 2 independent Petri net components; each component
has one place where jobs are waiting for an idle machine and one place where
a token indicates that the machine carrying out tasks of that type is idle.
If there are many tasks of type 1 arriving, and few tasks of type 2, then
the machine working on jobs of type 1 will be overloaded while the machine
operating on type 2 tasks may be idle most of the time.

More flexible plant operation can be achieved if both machines can carry
out tasks of both types. This is shown in Figure 5b. There is now a common
place holding the tokens which correspond to idle machines. An idle machine
can carry out tasks of either of the 2 types, whenever a job arrives. The model
does not specify any rule for allocating machines to type 1 or to type 2 tasks
in those cases where there is competition for idle machines. This allocation
decision is left to the scheduler, which is not modelled in this case.

One possible rule for allocating machines is the alternating priority rule.
Each machine will alternately work on a job of type 1 and then on a job of
type 2, then again on type 1, etc. This is modelled as a Petri net in Figure
5c¢. This mode of operation is very inefficient in case the arrival streams of
jobs are very irregular, if one stream of jobs has a much higher intensity than
the other.
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Fig. 5. Different operation modes of two machines, representable via Petri nets

There are many much more efficient rules for allocating machines to jobs,
such as fixed priority for one stream of tasks, or priority for the longest
waiting line, or priority to type 1 unless the waiting line of type 2 exceeds
a given threshold, etc. In each of these cases the supervisory rule cannot be
modelled as a Petri net since it requires that a transition (the start of a low
priority job) is disabled in certain states. This cannot be implemented using
a Petri net.

The set of reachable states is known to be bounded if there is an upper
bound to the length of each waiting line (the buffers are finite, and arrivals
to a full buffer are not allowed to enter). In that case it is of course possible
to construct a Petri net, with a rather complicated structure, that will enable
transitions only when the corresponding task has priority (the reader is urged
to try this as an exercise). This requires very many places to be added to the
Petri net model. The Petri net model then looses its advantage of compact
modelling. The relation between the Petri net graph and the physical plant
layout is completely lost. Moreover analysis tools based on linear algebraic
equations will have too many variables to be useful. This discussion shows
that it is dangerous to try to represent all components of a large plant by
the same Petri net modelling formalism. It is useful to use automata, or
other modelling formalisms, for those components where the set of places
and transitions would become too large for easy interpretation and analysis.
Good modelling tools allow different modelling formalisms to be used for
different components.

3 Supervisory control synthesis

3.1 Maximally permissive control laws

This section discusses the implementation of supervisory controllers, as de-
fined in the preceding chapter, for plants modelled as Petri nets. The con-
straints on the plant behaviour are modelled via the specification of sets of
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forbidden states. These forbidden state specifications are expressed via linear
inequalities that must not be satisfied by the marking vector. This chapter
derives algorithms for automatic synthesis of maximally permissive control
laws guaranteeing that the state of the Petri net never can reach a forbidden
value. The control laws disable certain transitions, whenever their execution
could lead to a marking that violates the specifications.

Supervisory control only sets out the constraints for the lower level con-
trollers that may actually select which enabled transition should be executed.
Therefore it is important that the smallest possible set of forbidden transi-
tions is selected by the control synthesis algorithm. This means that the
algorithm must generate a maximally permissive control law.

Formally we define the control problem as follows. For any discrete event
plant modelled as a Petri net, the set Roo (P, T, (w¢ p, wp,¢), Mo) of reachable
markings, and the set of all feasible sequences of events, are well defined, as
shown in the previous section. All these feasible trajectories must satisfy cer-
tain requirements, such as safety conditions, or conditions that are imposed
by economic considerations of the plant operation. Assume that these speci-
fications are expressed by a set M of forbidden states. The plant will behave
properly if no state in M can ever be reached:

ROO(P’ T1 (wt,pva,t)’ MO) NM = @

If this intersection is not empty, then further constraints must be imposed
on the behaviour of the plant. These further constraints are generated by a
supervisor. A supervisor is a component of the plant model that will disable
certain transitions, based on observations of the current state. Observations
of the state are often implemented by observation of the sequence of events
that has taken place up to the current point in time. In a Petri net model this
supervisor can be realized by adding extra input places for some transitions
in the Petri net. These supervisory places, with output towards transition ¢,
must not contain a token whenever the supervisor must disable transition ¢.
The transitions that have been executed in the past must put the tokens into
these supervisory places.

This section develops algorithms designing such supervisory controllers
given a Petri net plant model (P,T,w;p,wp:,Mo), and given a set M of
" forbidden states”. Based on these observations, and on the internal state of
the supervisor, the largest set of enabled transitions must be synthesized by
the supervisor. In that case the supervisor realizes a maximally permissive
feedback control law.

Remark: Compare this formulation of the Petri net control problem to a
classical control problem. A supervisory controller influences all the compo-
nents of the plant. In each component a local controller can apply control
values, provided these are allowed by the supervisor. The supervisory con-
troller selects control values u such that a forbidden set of states B¢ = X — B
outside some set B is never reached; in other words the controlled system
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must have B as an invariant set. Assume the system is represented by I in-
teracting components &;; = fi(z:,,u),zo, where £z = (T1,4,T2,t,... ,Z1,¢)-
The control values must lie in some prespecified set U: u € U. The solutions
corresponding to an input function u(t) are denoted by z(t,u(.), zo). A good
control law restricts the control variables u(t) € g(z:) C U to the subset
g(x¢) chosen so that the boundedness property is true: Vt : u(t) € g(z:),zo €
B =Vt : z(t,u(.),zo) € B. Usually a control law g(z:) selects just one value,
but one can equally well design stabilizing controllers by specifying a set of
allowed control values. If some other decision maker (e.g. a local controller
acting under the supervision of the stabilizing controller) selects at any time
t an arbitrary control value in the set g(z:), then the system will remain
stable (think of a scalar linear plant that will be stabilized for any controller
guaranteeing that V¢ : u(t).z; < 0. The local decision maker can use the
remaining freedom to select a value among the allowed control values g(z:)
in order to minimize some local cost criterion. The supervisor basically only
sets out the margins within which each of the local controllers has to operate,
in order to achieve acceptable plant behaviour.

In this chapter we consider controlled Petri nets. The set T of transitions
is partitioned in a controllable set T, and an uncontrollable set T,, = T —
T.. Uncontrollable transitions in Ty, can always be executed when they are
enabled by the current marking of the Petri net. In practical applications
there are always transitions that cannot be influenced by the supervisor,
such as component failures, or external arrivals of requests for service like
connection requests in a communication system. Controllable transitions in
T. on the other hand can only be executed when they are simultaneously
enabled by the marking of the Petri net and when the external supervisor
also allows the execution of the transition. In a graphical representation of a
Petri net the controlled transitions are recognized by the fact that they have
a rectangular control input box (see fig. 6).

The set of forbidden states is specified by a disjunction of linear predicates:

M = U{:1Mi where M; = {m € Nﬁp | mT.fi > bi}

for some vectors f; and scalars b; To simplify the analysis we assume that all
the elements of f; and b; are positive. For more general forbidden sets the
reader is referred to [12] The state is acceptable only if none of the inequalities
are satisfied, i.e. if all the specifications are satisfied simultaneously.

The problem of synthesizing a maximally permissive control law is easiest
in the special case where all transitions can be disabled by the external su-
pervisor: T' = T,. This is treated in the next subsection. Control can then be
achieved by adding control places to the net, which are connected to existing
transitions in such a way that the specifications become place invariants for
the extended net. This has the advantage that the controlled net is again a
Petri net, and similar analysis and control synthesis techniques can be applied
to the controlled net in order to enforce further specifications.
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Control laws for partially controllable models are basically "model pre-
dictive” in the sense that the Petri net model is used to calculate at each
state what is the set of all markings that can be reached through the consec-
utive execution of uncontrollable transitions. This uncontrollably reachable
set depends on the current state. The set of initial states such that the uncon-
trollably reachable set originating in that state has a non-empty intersection
with the forbidden set M is treated as the new forbidden set.

Consider the forbidden set specification M = {m € N/F | mT.f > b}. In
order to determine whether this specification is satisfied one only needs to
consider the marking of the places in the set support(f) = {p € P | f(p) > 0}.
Let up(p) be the set of all paths ending in the place p such that all the
transitions in the path up(p) are uncontrollable:

up(p) = {(o,p1,t1,. - -tn-1,p) | V€1 (te—1,pe) € FL,
(pe,te—1) € F_ and ty € T}

Assume that a firing vector ¢ including at least one controllable transition
has been executed, leading to a state m. Prior to the next execution of a
controllable transition the forbidden set M can only be reached by the exe-
cution of some uncontrollable transitions in an uncontrollable path in up(p).
The influencing net is defined as the subnet PN;n¢ = (Ping, Ting, Fiing,
F_ iny) of the Petri net (P,7, Fy, F_) containing all the places in up(p) for
some p € support(f). These are all the places that have an uncontrollable
path towards a place in support(f), including the places in support(f) them-
selves. The influencing net also includes all the uncontrollable transitions
connected to at least one of these places, and all the arcs connecting the
places and transitions selected for inclusion in the influencing net. The ini-
tial marking of PN;,y is obtained by restricting mg to Pjns. In Figure 6 the
dashed line surrounds the influencing subnet corresponding to the forbidden
set specification which depends only on the state of the place p.

All the transition in PN, s are uncontrollable. In between consecutive ex-
ecutions of controllable transitions tokens can only reach a place in support(f)
via the execution of a sequence of uncontrollable transitions, enabled by to-
kens which are present in places in PN;,;. Tokens in places outside PN;,;
can always be prevented from reaching support(f) by disabling a controllable
transition.

The evolution of a partially controlled Petri net can be interpreted as a
dynamic game, with “nature” selecting firing sequences of transitions that are
either uncontrollable or that are allowed by the current control value (= set
of allowed controllable transitions). Of course these transitions can only fire if
they enabled by the marking of the Petri net. Each time a controllable tran-
sition (or a set of simultaneously enabled transitions including a controllable
transition) is executed a sensor observes the new state mgps,n. The second
player, opposing nature and corresponding to the supervisor, then selects a
new subset Uaiow(Meps n) C T¢, of controllable transitions. Nature can then
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M = {m(p) > k}

Fig. 6. Controlled Petri
net with forbidden set,
and its influencing net

again select any sequence of state enabled transitions in T, U g0 until the
next execution of a controllable transition. Nature can select from this set a
sequence of transitions, trying to reach a forbidden state in M. As soon as
this sequence has been executed by the opponent, including at least one final
controllable transition, a new state mops n+1 18 is observed by the sensors. The
supervisor will again select a set Uaiiow (Mobs,n+1), and the opponent will again
try to reach a forbidden marking mgps nt2 € M. The set of markings reach-
able by the opponent, up to to the next execution of a controlled transition in
Ugllow (mobs,'an-l)a is given by Reo (Pa Ty Ulatiow (mobs,n+1 ), F+7 F_, mobs,n+1)-
From the definition of M it follows immediately that it suffices to consider
the reachable set of the influencing net

Rinf (mobs,nJrl) = Roo (Pinfa Tinf) F+, F_ s Mobs,n+1 ] Pinf)-
The goal of the supervisor is indeed to ensure that
Rinf(mobs,n+l) N {M ] Pi"f} = @

The supervisor must block all controllable transitions that might lead from
a marking in Rinf(Mobs,nt1) to M. At the same time the supervisor must
limit the evolution of the Petri net as little as possible. Hence a maximally
permissive control law blocks only a subset of the controllable transitions
that have output places in Pj,¢. This subset should moreover be as small as
possible, in order to allow lower level controllers as much freedom as possible
in selecting transitions for execution.
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3.2 Completely controllable models

When all the transitions in a Petri net are controllable, then the influenc-
ing net reduces trivially to support(f) without any transitions. The game
is played without opponent. In other words the maximally permissive con-
trol law must only prevent that a forbidden marking is reached from the
observed current state by the execution of one single simultaneously enabled
set of (controllable) transitions. Since the specifications are expressed via
linear inequalities it is natural to verify whether the set

RiNM={zeNT? |z2>0m =mg + E.z,
mo > E_.x, (mo + E.2)”.fi > b;}

is empty. This will certainly be satisfied if the superset defined by the same
conditions, but omitting the enabling condition mg > E_ .z, is empty.

If the set Ry N M is not empty, then the supervisory controller must
add extra constraints to the firing rules of the system. This can be achieved
by adding extra input places, and hence extra enabling conditions, to some
transitions. These extra constraints must prevent a transition from firing
whenever this firing would increase m?”.f; above b;. Transitions t that are
input transitions to a place p € support(f;) must be disabled as soon as b; —
(m+E.o(t)T.f; < 0.Here z = o(t) is the §T vector with all elements 0 except
for a 1 in the place corresponding to t. Whenever b; — (m + E.o(t))?.f; > 0
a maximally permissive control law must allow execution of t.

In order to obtain this property one must enlarge the Petri net model with
an extra place p, ; which initially contains b; — mg. fi tokens. In the extended
net, with the extra place p.;, the place invariant mT.fi + m(pe,; = b; must
hold. Since m(p, ;) > 0 this is equivalent to the specification.

The firing of a transition ¢ belonging to *p for p € support(f;) must
remove f;(p) tokens from p, ; while the firing of a transition ¢ that belongs to
p* for p € support(f;) must add f;(p) tokens to p. ;. Adding the place p.; to
the Petri net means that one row is added to the incidence matrix E. This
extra row must be of the form Eypy1 = —fF.E. This insures that the last row
Eip4, of the extended incidence matrix “adds fiT .E_; tokens” to the control
place p.; whenever the execution of a transition ¢; removes f!.E ; tokens
from support(f;) (where E_; denotes the j-th column of the incidence matrix
E). Similarly the structure of the last row Eyp4, of the extended incidence
matrix “removes fI.E ; tokens” from the control place p.; whenever the
execution of a transition t; adds f!.E ; tokens to support(f;). Hence the
added control place p. ; ensures that the place invariant mT fi+m(pes) = b;
is enforced.

In order to enforce I linear inequality constraints ff.m < b;,Vi=1,...,I
it suffices to add I rows to the incidence matrix F, one row per inequality.
Each of these rows is constructed as described in the preceding paragraph.
Since the original Petri net has no self-loops, and since the construction of the
control law has not introduced any self-loops, it is easy to draw the controlled
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Petri net that enforces the I specifications simultaneously. Figure 7 shows a
very simple example of a control law enforcing the specification that two
places together never contain more than one token. The original Petri net is
drawn in full lines, the additional control places and control arcs are drawn
in dashed lines.

M={mj+my>1}

I \

Pc

Fig. 7. Control place enforcing speci-
fication m; +mz <1

The control law obtained by adding these control places is maximally
permissive since it will never disable a transition unless the firing of that
transition would lead to a forbidden marking. Of course some of these added
rows of the incidence matrix may be unnecessary since they correspond to
place invariants that are already enforced by the original Petri net (or by
other control places). It is computationally hard to check for redundant rows
in an incidence matrix. However since the extra control place corresponding
to these redundant rows will always contain at least one token, they will
never disable a transition, and these redundant rows only make the controller
more complicated than necessary, but they do not reduce the set of reachable
markings.

3.3 Partially controlled Petri nets

It has been shown in section 3.1 that for a partially controlled Petri net the
supervisory control decision must ensure that a larger set M™ of forbidden
states is avoided. Every marking mg in M™* must be such that the execution
of any state-enabled sequence of uncontrollable transitions cannot lead to a
marking M. The evolution of a partially controlled Petri net can be inter-
preted as the alternating execution of a collection of enabled transitions -
including at least one state-enabled and control-enabled controllable transi-
tion - followed by the execution of a sequence of sequentially state-enabled
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uncontrollable transitions. The marking my reached by the execution of an
enabled collection of transitions including at least one controllable transition
is forbidden if there exists an allowable (sequentially state-enabled) sequence
of uncontrollable transitions whose execution leads from mg to a forbidden
marking in M. The set M* contains all the markings for which the model
based prediction of the reachable markings includes a forbidden marking.

Moreover the game-theoretic interpretation has shown that only the exe-
cution of uncontrollable transitions within the influencing net - the sub-Petri
net PN,y containing all uncontrollable paths leading to a place in support(f)
- must be considered. Designing a supervisory controller for a partially con-
trollable Petri net with forbidden set M is equivalent to designing a super-
visory controller for a fully controllable Petri net, where the forbidden set is
the extended set M™* of all markings from which M can be reached via the
execution of a sequence of uncontrollable transitions inside the influencing
net.

In the literature very general unions and/or intersections of linear in-
equalities have been used as specification of forbidden sets. Here we consider
only the simplest case of one forbidden set specified via the linear inequality
M = {fT.m > b}. Let mins = m | Piys be the restriction of the marking
to the influencing net PN;n¢, and let finy be the restriction of the vector f
to places in PN;,;. This restricted vector finy is obtained by removing all
zeros from f. The extended set M™* contains all markings mg whose restric-
tion mg iny is such that there exists a sequence of uncontrollable transitions
in PNiny leading to a marking such that f*.m = f ;.mins > b. The results
of section 3.2 will be applicable if M* can be represented via unions of sets
specified by linear inequalities. In this subsection we consider a few special
cases where this is possible.

If the influencing net PN,y is acyclic, then theorem 2 can be applied.
Let Ej,s be the incidence matrix of the influencing net PNj,y. Then there
exists a marking m € M that is reachable from my if and only if there exists
a vector ¢ € N*Tins such that Minf = Mo,inf + Fing.c. A marking miny
corresponding to M* will be such that there exists a vector z € NFTins such
that

fing M0 ing + fing-Bing.x > b

In order to determine whether a marking belongs to M™* or not one has to
solve a linear integer programming problem, with {75,y variables.

One special case that has been solved in the literature is the case where
the influencing net is a state machine. Then the influencing net PNj,; has
no synchronizing transitions: each transition ¢ € T,y has at most one input
place and at most one output place. Tokens move independently of each other
inside the influencing net when this is a state machine. The number of tokens
inside PN;,y remains constant. This allows for a graphical analysis of the
allowed markings (see [3] and [9]) Consider all the tokens inside PN, under
Mo inf- Solving the linear integer programme then corresponds to finding the
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worst possible distribution of these tokens among the places in support(f).
This solution can be obtained explicitly: it is possible to determine a vector
f* € NtFins and a nonnegative number b* such that

M* = {mq | fil;mo,ing > b*}

For details on these calculations see [11]. This paper also treats more general
influencing nets, where one only requires that each transition in the influenc-
ing net has at most one input place.

Another special case of interest is the class of marked graphs. Assume
that the influencing net PN;.s does not contain any choice places - each
place has at most one input transitions and one output transition - then each
token in P;,s can follow only one (uncontrollable) path towards support(f).
Using this property it is possible to express the forbidden set M ™ by express-
ing the maximum number of tokens along any uncontrollable path leading
to support(f). this case has been treated initially by Holloway and Krogh
[8]. The extended forbidden set M* is then, under additional conditions on
paths connecting places in support(f), the union of sets determined by linear
inequalities. A marking is acceptable only if it does not violate any of the
linear inequalities.

If the forbidden set can be described by the union of forbidden sets then
it is easy to determine the maximally permissive control law. It suffices to
determine the maximally permissive control law u; corresponding to each of
the inequalities f;T.m;, ¢ > bf. The maximally permissive control law then
disables any controllable transition that is disabled by at least one of the
supervisors that have been designed. In other words ugy; = Ou;.

For general influencing nets PN;,; the extended forbidden set M ™ can
be described as the intersection of unions of sets determined by linear in-
equalities. In general it is not possible then to decompose the control design
problem. Conditions under which supervisory control design problems can be
decomposed into solving simpler problems (relating to simpler specifications,
and smaller influencing nets) are treated in [13]

4 Timed Petrl net models

4.1 Timed specification of plant models

The untimed Petri net models introduced in the preceding sections allow the
representation of the allowed sequences of events in a plant. The components
of the model express precedence constraints on the ordering of the events
that can take place. The models specify in each state - that is after a given
sequence of events has been observed - which events can be executed, and
which state is reached next after the execution of a particular event. In many
practical applications the model should also describe constraints on the time
when a certain enabled transition is allowed to occur. In order to achieve
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this goal the present section extends the Petri net model of section 2 by
defining how the enabling conditions of certain transitions depend on the
state of several stopwatches. These stopwatches all run in synchronization
with a global, real-time clock, but they can be started and stopped when
certain events happen.

A timed Petri net model includes for each enabling of transition ¢ a clock
with state ¢, ¢, which is started whenever the transition ¢ becomes enabled.
This means that the state of the clock is initialized to ¢, ¢ = 0 as soon as
all the input places in *¢ simultaneously contain a token for the n-th. From
that point in time on the clock is incremented synchronously with a real time
clock. The clock is stopped when the transition ¢ is executed, or when the
execution of some other transition removes tokens from a place in *t thereby
disabling the transition ¢ before it is executed.

Consider as an example the problem of finding an optimal schedule for
the operation of flexible plants such as a steel plant [4], or an electroplating
plant [16]. Each batch that must be produced requires the execution of a
sequence of different operations, requiring a certain amount of time, specified
by a recipe. Each work position in the plant can execute a certain subset of
all the operations that are included in the many different recipes that can be
executed by the plant. Scarce resources are needed in the work positions for
carrying out a particular operation, and transportation resources are needed
in order to transport workpieces from one work position to the next work
position The precedence constraints among these different operations, the
resource availability constraints, and the upper and lower bounds on the
duration of each operation, together constitute the recipe for a particular
type of product. Availability of resources in a work position, availability of
a transportation resource, and the precedence constraints encoded by the
recipes can be represented by an untimed Petri net.

However constraints on the time duration of each operation require time
dependent enabling rules. Moreover the recipe often includes other strong
timing constraints. In the steel factory the operations on a batch of steel -
from the start of conversion up to the continuous casting - must be com-
pleted within a certain time, in order to avoid that the batch cools down too
much. Moreover the continuous casting machine at the output must operate
uninterruptedly, imposing as a further specification a maximal time distance
between the arrival of successive batches at the continuous casting machine.

The untimed Petri net models, which have been defined so far in this
chapter, can be used to obtain supervisory controllers, which limit the al-
lowed sequences of events. These supervisory controllers impose constraints
on the plant operation, ensuring that certain specifications related to safety
of the plant or avoidance of deadlock, are always met. If the Petri net model
is extended with timing information, then it is also possible to consider opti-
mization problems such as finding an optimal schedule. The optimal schedule
minimizes the time span required for the execution of a collection of batches,
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in such a way that all plant specifications are met. An optimal schedule must
nmiaximize the throughput of a plant by selecting which event to execute and
when to execute it, taking into account the constraints imposed by the su-
pervisory controller.

It is important to realize that the inclusion of time information in the
model may in fact allow for more liberal supervisory controllers. This is illus-
trated clearly in the deadlock avoidance problem. A good candidate schedule
must be such that it can never lead to a deadlock. In a deadlock situation the
plant has reached a state where no transition at all is enabled. This problem
can be treated by the methods of the preceding section if one defines the set
of all states where no transition is enabled as the forbidden set M.

In an untimed model scheduling decisions can only determine the order
in which events (like “start task” or “move work piece from a to b”) are
executed. Any enabled transition however can be delayed for an arbitrarily
long time. The scheduler cannot assume that an enabled event will take place
before an arbitrarily large number of other enabled transitions is executed.
Deadlock avoidance algorithms [6] divide the Petri net in “conflict resolution”
sections. Deadlock can be avoided by imposing the constraint that tokens are
only allowed to enter the next “conflict resolution” section after the critical
resources, necessary to execute tasks in that section, have become available.

If a timed Petri net model is used, then it is possible that the model
guarantees that a resource will become available before some fixed time in
the future. Consider the state at time 7 where work pieces are ready to enter
a “conflict resolution” section Using the untimed model the operations in this
“conflict resolution” section can start only after a critical resource is released
by some other operation. The timed model on the other hand can specify
that resource R will be needed by the operations after at least A time units,
and the state of the timed model can also guarantee that resource R will
be released before time 7 + A. Then the deadlock avoidance algorithm for
the timed model may allow the start event of the operations of one single
“conflict resolution” section to be executed. In an untimed model this start
event of the operations would have to be blocked because the model would
not give any information on lower or upper bounds on the time when the
resource B would become free or would be needed, but in the timed model
this information is available, and can be used to increase the throughput.

Clearly the set of allowed trajectories (sequences of events or sequences of
markings) is smaller for the timed discrete event model, compared to the un-
timed discrete event model. A solution to the supervisory control problem for
an untimed Petri net will enforce all the specifications for the corresponding
timed Petri net model. However the untimed solution may not be maximally
permissive. Indeed the set of reachable states in the untimed model may be
smaller than for the untimed model because certain events that are feasible
in the untimed model may not be feasible in the timed. Certain executable
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paths in the untimed model may not be executable because they include an
event that is pre-empted by some other simultaneously enabled events.

In the next subsection the model of a timed Petri net will be introduced
more formally. This model will be illustrated for the case of a steel plant.
The model will be constructed via interacting components, illustrating how
modelling of large plants becomes tractable. Finally we will briefly discuss
the difficulties in designing supervisory control laws for timed Petri nets.

4.2 Timed Petri net model

A timed Petri net (TPN) is a six-tuple (P, T, F, L,U, My) in which (P, T, F)
is a Petri net. The functions L and U : T — R U {oc} (Vt € T: 0 <
L(t) < U(t)) associate to each transition ¢t € T' a time interval [L(t), U(¢)].
If ¢ becomes state-enabled at time 8, € R — being state-enabled is defined
as in the untimed case by the condition that all places in * contain a token
given the state My — then the transition must fire at some time 6 € [6, +
L(t),0. + U(t)] C RU {00}, provided ¢ did not become disabled because the
firing of another transition removed a token from a place in *. Notice that
t is forced to fire if it is still state-enabled at 8. + U(¢). Untimed Petri nets
are a special case of TPNs with Vt € 7 : U(t) = oo.

The state of a timed Petri net at time 6 € R is a map My : P — L(_ 9]
where £(_q 9) denotes the set of all bags with elements in (~c0,6]. A bag
[14] is a generalization of a set, allowing the same element to occur more
than once. If p € P contains mg(p) € Z, tokens at time 6, the bag My(p) :=
{61,...,0m(p)} enumerates the arrival times of these my(p) tokens. All these
arrival times are necessarily smaller than €. The set of all possible states,
denoted by M, satisfies some other constraints imposed by the dynamics of
the model, to be specified below.

The state information at time @ indicates that transition ¢ became state-
enabled at time 6, (t) = maxpecs; min Mg(p). By convention the minimum of
an empty bag is oo. Transition ¢ must fire at some time 6 (¢) in the interval
[maxpee; min My, (1) (p) + L(t), maxpe+; min My, () (p) + U(t)]. Execution of ¢
at 65 (t) changes the distribution of tokens as in the untimed case. The state
changes as follows: from each place p; € * a token with value min My, (4 (p1),
is removed from the bag Mgf(t)(pl), and to each place py € t* a token with
value 0¢(t) is added to the bag My, (;)(p2). The state of a Timed Petri net
(TPN) changes only when a transition is executed. Any state My € M must
be such that Vt € T : maxpee¢ min Mg(p) + U(¢) > 0 since otherwise the firing
interval of some transition ¢ would have been pre-empted by the firing of an-
other transition, using up some token necessary for the firing of ¢. When a bag
B =4, ..., t; of transitions is simultaneously enabled then all transitions in
the bag can be executed simultaneously. Notice that this can happen at time
6 € N, enlfe(t) + L), 6.(t) + U(t)] provided Vp € P :m(p) > S5, Lces,.
When interpreting a TPN as a timed discrete event system, the firing of
a transition at time ff in the TPN corresponds to the occurrence of the
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corresponding event at time 8y in the plant. A sequence of consecutive events
ti,, tis, ... with their firing times 8; < 8§, < ... — an element of the language
of the timed automaton — is allowable if for each k the transition ¢;, can be
executed at 8, leading to a state My, such that tivy, 15 executable at 6x 4.
In particular, it is necessary that execution of ¢;, ,, is not pre-empted by the
forced execution of another transition prior to 6;, .

The language of a TPN model does not automatically impose a lower
bound on the interval between two consecutive firings of the same transition.
If the physical model has constraints requiring such a minimum delay L(#)
between two consecutive executions of ¢ then one has to add to the model an
extra loop around ¢, i.e. add a place pg to the net such that *po = p§ = {¢}. In
general the model of a TPN does not exclude Zeno behaviour, where infinitely
many events happen in a finite interval of time. In order to make sure that
the set of allowed trajectories does not include such Zeno behaviour, it is
sufficient that in every cycle of the Petri net (P, T, F) there is at least one
transition ¢ with a non-zero lower bound L(¢) > 0.

A controlled timed Petri net (CtITPN) is a six-tuple (P, T, F,L,U,T¢) in
which (P,T,F,L,U) is a timed Petri net. The control can add further con-
straints to the plant model by shrinking the interval where some controllable
transitions must fire. Let Iz denote the set of closed intervals on (0, 0c0]. A
control value C is a function C' : T — Iz such that C(t) C [L(t),U(t)],
reduces the interval of possible firing times for transition t from {L(t),U(t)]
to [Cy(t), Cu(t)]- This means that the firing of a state-enabled transition can-
not be delayed forever, unless the transition is remote. A transition t with
Cyu(t) = U(t) = oo is called a remote transition.

The physical limitations of the controlier and the plant specify the set of
allowed values Cy(t) and C,(¢). Obviously the constraints L(t) < Ci(t) <
Cy(t) < U(t) must always be satisfied. For an uncontrollable transition ¢ the
upper and lower bounds cannot be changed: Cy(t) = L(t) and Cy(¢t) = U(¢).
For other transitions, called delayable transitions, only the lower bound can
be changed: C,(t) = U(t),Ci(t) < U(t). A delayable, remote transition is
called a fully controllable transition. The set of all allowable control values is
denoted by C.

4.3 Timed Petri net model of a steel plant

In order to illustrate the modelling power of timed Petri nets we consider
as a case study the problem of developing a model of a steel plant. The
model is intended for automatic generation of optimal schedules of tasks in
the steel plant, where all the schedules satisfy a number of specifications.
The operations of the steel plant must be scheduled so that it produces a
prespecified sequence of batches of steel of different qualities (each batch
characterised by a recipe that determines the sequence of operations to be
carried out on the batch, and by a lower and an upper bound on the casting
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time). The optimal schedule must minimize the completion time of the last
batch in the sequence, while satisfying all model constraints specified below.

The plant layout is shown on top of Figure 8. The plant is so large that the
complete model must be split in different components. The main components
correspond to the different stages of the operation on each batch. Each of
these stages of operation is carried out in a different geographical location,
and hence these 3 components also correspond to geographically separated
parts of the plant.

The treatment of batches can be subdivided in 3 consecutive phases (cor-
responding to 3 different areas in the physical plant, and also corresponding
to the 3 different components of the model):

- conversion and initial stage of metallurgical treatment (the model as-
sumes there are two convertors, and there is one common resource that can
be used for one of the convertors at a time only; there is also a cleaning
operation of the convertors that must be executed from time to time; the
model also includes the first metallurgical treatments, that are common to
all qualities of steel that are being produced)

- metallurgical treatments specific to the quality of steel (recipe) to be
produced (recipes differ by the path followed in this part of the plant, and by
the time requirements of the operations; some qualities of steel only require
operations in one or two positions, while other qualities require use of the
special position on the right of the top track);

- continuous casting of the batches (modelling a buffer, the loading of the
turret, and the casting itself).

Each of these phases naturally corresponds to one component in the mod-
ular (or compositional) mathematical model. On the bottom of Figure 8 these
components are represented as timed Petri nets. The exact formal semantics
of a timed Petri net are set out in the preceding subsection. However it wiil
be shown below that the constraints that are quality dependent require that
the model be extended further to include “coloured” tokens, where the tokens
have a certain value (more general than the binary value present/absent in
the usual Petri net formalism). These furtehr constraints allow for a com-
pact model. Of course one could also use a different timed Petri net for each
quality.

It should be observed that each component represents local constraints on
the evolution of the overall plant. Of course there are also global cosntraints,
which depend on varaibles in several components. The life time of a batch,
specified to be below a certain maximum to avoid excessive cooling, depends
on the start time of the “start conversion” transition in component 1 and the
completion of the “casting” operation th6 in component 3. When designing
a feasible schedule the requests for an overhead crane come from component
1,2 and 3. Whether these requests are feasible depends therefore on what
happens in all 3 components.
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The three components are interconnected in an acyclic way, making schedul-
ing easy as illustrated in {4]. The output of component 1 is the input of com-
ponent 2, and the output of component 2 is the input of component 3. These
three components represent the foreground events of the plant model. Con-
vertor and casting machine are the most expensive components, which are
likely to be the bottlenecks. The performance measure - the execution time of
the start of the casting of the last batch - can be expressed in terms of event
times in module 3 only. The life time of a batch, and the uninterrupted oper-
ation of the casting machine depend mainly on events in these 3 components.
All the major scheduling decisions relate to the events in these 3 modules.
Supervisory control must impose certain constraints enforcing global spec-
ifications, such as the maximal life time of each batch, or the availability
of resources used in different components such as overhead cranes, on the
operation of the individual components.

Besides this acyclic graph of foreground components, the plant model also
consists of several other components representing the transport of empty steel
ladles, the movement of the two cranes (running on the same rail and hence
subject to “no collision” constraints) which transport the steel ladles from
one position to the next position, and the availability of a car on each of the
4 rails connecting neighbouring positions for metallurgical treatment. These
background components have inputs from the continuous casting component
and the metallurgical treatment component, and send output to the convertor
and metallurgical treatment components. Hence they create cycles in the
model which will complicate the synthesis procedure of the schedule.

Each component of the model is a timed Petri net. The lower and upper
bounds corresponding to a transition are determined by the physical limita-
tions on the time needed to execute a certain event, and by the constraints
imposed by the recipes. In the representation of component 3, th5 corre-
sponds to the time needed to turn the turret of the casting machine. This is
the delay between the completion of the casting of the n — 1-th batch, and
the start of the casting of the n-th batch. This is always fixed, and lower
and upper bound are therefore the same. The lower and upper bounds for
transition th6 on the other hand correspond to the casting time of a batch.
This is a variable that depends on the quality of steel being produced in the
n~-th batch, and is moreover a controllable variable. This shows that a further
extension of the timed Petri net model is needed. Tokens can have an extra
property, their “colour” which corresponds in this example to the quality of
steel being produced by the batch represented by the token. This extension
is needed in components 2 and 3 where the recipe determines the sequence
of operations and the duration of the metallurgical operations, and of the
casting.

Whether the extensions, of including time and colour, on top of the basic
Petri net model are useful depends on whether one can develop analysis and
control synthesis tools for these extended models. Some results on verification
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Fig. 8. Plant Layout, and timed Petri net models of main components

of properties for such coloured timed Petri nets are available in the literature
[17]. The work on defining good algorithms, combining the graphical repre-
setnation fo a Petri net, with algebraic analysis tools, is the topic for some
ongoing research. The main contribution of this subsection is to illustrate
how such models can be used for representing large plants in a compact, easy
to understand, model.
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4.4 Control of timed Petri nets

For untimed Petri nets control actions can only block a controllable transition.
For timed Petri nets the control actions can be much more detailed. The
transitions can be delayed for a certain time, or may be forced to happen at
some point in time.

Again one can define forbidden states or forbidden markings inorder to
achieve safe of proper behaviour of the plant. However control cannot arbi-
trarily delay execution of events, and hence the forbidden set must again be
transformed on a forbidden set of states. Even if the specification is in terms
of a set of forbidden markings M, the forbidden set M* of states that must
be avoided, in order to guarantee that uncontrollable execution of events can
never lead to a forbidden marking, will depend on the full state description
(including timing information). It is therefore clear that control synthesis for
timed Petri nets is quite complicated. Some open problems on constructing
an “influencing net” have been posed in [5]. Some simple case where the
forbidden set M™ can be constructed have been obtained in [10]
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Abstract. In this paper we discuss features of hybrid dynamical systems based on
the hybrid automaton model. Next we describe an alternative way of representing
hybrid systems by event-flow formulas. Finally, a special class of hybrid dynamical
systems, called complementarity systems, is discussed, and conditions for existence
and uniqueness of sclutions are reviewed.

1 Introduction

Generally speaking, hybrid systems are mixtures of real-time (continuous)
dynamics and discrete events. These continuous and discrete dynamics not
only coexist, but interact and changes occur both in response to discrete, in-
stantaneous, events and in response to dynamics as described by differential
or difference equations of time. A main difficulty in the discussion of hy-
brid systems is that they encompass in some sense every possible dynamical
system we can think of.

Various scientific communities with their own approaches and motivations
are involved in the research on hybrid systems. At least the following three
communities can be distinguished.

First there is the computer science community that looks at a hybrid sys-
tem primarily as a discrete (computer) program interacting with an analog
environment. In this context also the terminology embedded systems is being
used. A main aim is to extend standard program analysis techniques to sys-
tems which entail some kind of continuous dynamics. The emphasis is often
on the discrete event dynamics, with the continuous dynamics of a relatively
simple form. A key issue is that of verification.

A second community involved in the study of hybrid systems is the mod-
eling and simulation community. Physical systems can often operate in dif-
ferent modes, and the transition from one mode to another sometimes can be
idealized as an instantaneous, discrete, transition. Examples include electri-
cal circuits with switching devices such as (ideal) diodes and transistors, and
mechanical systems subject to inequality constraints as encountered e.g. in

* This paper is based on material contained in [30,31].
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robotics. Since the time scale of the transition from one mode to another is of-
ten much faster than the time scale of the dynamics of the individual modes,
it may be advantageous to model the transitions as being instantaneous.
This time instant is called an event time. Basic issues then concern the well-
posedness of the resulting hybrid system, e.g. the existence and uniqueness
of solutions, and the ability to efficiently simulate the multi-modal physical
system.

A third community contributing to the area of hybrid systems is the sys-
tems and control community. In general, most cost in current control system
development is spent on ad-hoc systems integration, and validation tech-
niques that rely on exhaustively testing of complex control systems. One can
think of hierarchical systems with a discrete decision layer and a continuous
implementation layer (e.g. supervisory control or multi-agent control). Thus
there is a clear need for systematic hierarchical design methodologies based
on hybrid systems. Additional motivation for the study of hybrid systems is
provided from different angles. Classical switching control schemes and relay
control immediately lead to hybrid systems. For nonlinear control systems
it is known that in some important cases there does not exist a continuous
stabilizing state feedback, but that nevertheless the system can be stabilized
by a switching control. Finally, discrete event systems theory can be seen as a
special case of hybrid systems theory. In many areas of control, e.g. in power
converters and in motion control, control strategies are inherently hybrid in
nature.

In view of the wide range of hybrid system associations it is clear that any
presentation of the subject is bound to be biased. The present survey paper,
based on [30], emphasizes the dynamical systems aspects of hybrid systems.

From a general system-theoretic point of view one can look at hybrid sys-
tems as systems having two different types of ports along which they interact
with their environment. First type of ports are the communication ports.
The discrete variables associated with these ports are symbolic in nature,
and represent “data-flow”. The strings of symbols at these communication
ports in general are not directly related with real (physical) time; there is
only a sequential ordering.

Second type of ports are the physical ports (with “physical” interpreted in
the broad sense; perhaps “analog” would be a more appropiate terminology).
The variables at these ports are usually continuous variables, and related
to physical measurement. Also the flow of these variables is directly related
to physical time. In principle the signals at the physical ports may be dis-
crete time signals (or sampled-data signals), but in most cases they will be
ultimately continuous time signals.

Thus a hybrid system can be regarded as a combination of discrete (or
symbolic) dynamics and continuous dynamics. The main problem in the
definition and representation of a hybrid system is precisely to specify the
interaction between this symbolic and continuous dynamics.
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A key issue in the formulation of hybrid systems is the often required
modularity of the hybrid system description. Indeed, because we are inher-
ently dealing with the modeling of compler systems, it is very important to
model a complex hybrid system as the interconnection of simpler (hybrid)
subsystems. This implies that the hybrid models that we are going to discuss
are preferably of a form that admits easy interconnection and composition.
Besides this notion of compositionality other important (related) notions are
those of “reusability” and “hierarchy”. Another terminology that is used in
this context is that of “object-oriented modeling”.

2 Definitions of hybrid systems

We start with a reasonably generally accepted “working definition” of hybrid
systems, which already has proved its usefulness. This definition, called the
hybrid automaton model, provides the framework and terminology to discuss
a range of typical features of hybrid systems. At the end of this section we
discuss alternative ways of modeling hybrid systems.

2.1 Continuous and symbolic dynamics

In order to motivate the hybrid automaton definition, we recall the “paradigms”
of continuous and symbolic dynamics; namely, state space models described
by differential equations for continuous dynamics, and finite automata for
symbolic dynamics. Indeed, the definition of a hybrid automaton combines
these two paradigms.

Definition 1 (Continuous-time state-space models).

A continuous-time state-space system is described by a set of state variables
z taking values in R™ (or, more generally, in an n-dimensional state space
manifold X), and a set of external variables w taking values in R?, related
by a mixed set of differential and algebraic equations of the form

F(z,2,w)=0 (1)

Here z denotes the time-derivative of z. Solutions of (1) are all (sufficiently
smooth) time functions z(t) and w(t) satisfying

F(x(t), 2(t), w(t)) =0
for (almost) all times ¢ € R (the continuous-time axis).

Of course, the above definition encompasses the more common definition of
a continuous-time input-state-output system

T = f(CL',U)

y = hiz,u) )
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where we have split the vector of external variables w into a sub-vector u
taking values in R™ and a sub-vector y taking values in R? (with m +p =
g), called respectively the vector of input and output variables. The only
algebraic equations in (2) are those relating the output variables y to z and
u, while generally in (1) there are additional algebraic constraints on the state
space variables z.

A main advantage of general continuous-time state space systems (1) over
continuous-time input-state-output systems (2) is the fact that the first class
is closed under interconnection, while the second class in general is not. In
fact, modeling approaches that are based on modularity ( viewing the system
as the interconnection of smaller sub-systems) almost invariably lead to a
mixed set of differential and algebraic equations. Of course, in a number of
cases it may be relatively easy to eliminate the algebraic equations in the
state space variables, in which case (if we can also easily split w into u and
y) we can convert (1) into (2).

We note that Definition 1 does not yet completely specify the continuous-
time system, since (on purpose) we have been rather vague about the precise
solution concept of the differential-algebraic equations (1). For example, a
reasonable (but not the only possible!) choice is to require w(t) to be piece-
wise continuous (allowing for discontinuities in the “inputs”) and z(¢) to be
continuous and piecewise differentiable, with (1) being satisfied for almost all
t (except for the points of discontinuity of w(t) and non-differentiability of

Next we give the standard definition of a finite automaton (or finite state
machine, or labeled transition system).

Definition 2 (Finite automaton). A finite automaton is described by a
triple (L, A, E). Here L is a finite set called the state space, A is a finite set
called the alphabet whose elements are called symbols. E is the transition rule:
it is a subset of L x A x L and its elements are called edges (or transitions,
or events).

A sequence (I, a9,l1,a1,...,lh—1,an-1,ln) with (I;,a;,0i+1) € E for i =
1,2,...,n —1is called a trajectory or path.

The usual way of depicting an automaton is by a graph with vertices
given by the elements of L, and edges given by the elements of E. Then A
can be seen as a set of labels labeling the edges. Sometimes they are called
synchronization labels, since interconnection with other automata takes place
via these (shared) symbols. One can also specialize Definition 2 to input-
output automata by associating with every edge two symbols, namely an
input symbol ¢ and an output symbol o, and by requiring that for every
input symbol there is only one edge originating from the given state with
this input symbol. (Sometimes, such automata are called deterministic input-
output automata.) Deterministic input-output automata can be represented
by equations of the following form:
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M= v(l,9)
o =n(l,7) (3)

where I! denotes the new value of the discrete state after the event takes
place, resulting from the old discrete state value [ and the input 1.

Often the definition of a finite automaton also entails the explicit specifi-
cation of a subset I C L of initial states and a subset F' C L of final states.
A path (lo,a0,l1,a1,...,ln1,an_1,1,) is then called a successful path if in
addition lp € [ and I, € F.

In contrast with the continuous-time systems defined in Definition 1 the
solution concept (or semantics) of a finite automaton (with or without initial
and final states) is completely specified; the behavior of the finite automa-
ton are all (successful) paths. In theoretical computer science parlance the
definition of a finite automaton is said to entail an “operational semantics”,
completely specifying the formal language generated by the finite automaton.

Note that the definition of a finite automaton is conceptually not very
different from the definition of a continuous-time state space system. Indeed
we may relate the state space L with the state space X, the symbol alphabet
A with the space W (where the external variables take their values), and
the transition rule E with the set of differential-algebraic equations given
by (1). Furthermore the paths of the finite automaton correspond to the
solutions of the set of differential-algebraic equations. The analogy between
continuous-time input-state-output systems (2) and input-output automata
(3) is obvious, with the differentiation operator dit replaced by the “next
state” operator .

A (minor) difference is that in finite automata one usually considers (as
in Definition 2) paths of finite length, while for continuous-time state space
systems the emphasis is on solutions over the whole time-axis R. This could
be remedied by adding to the finite automaton a source state and a sink state
and a blank label, and by considering solutions defined over the whole time-
axis Z which “start” at minus infinity in the source state and “end” at plus
infinity in the sink state, while producing the blank symbol when remaining
in the source or sink state. Also the set I of initial states and the set F' of
final states in some definitions of a finite automaton do not have a direct
analogon in the definition of a continuous-time state space system.

2.2 Hybrid automaton

Combining Definitions 1 and 2 leads to the following type of definition of a
hybrid system.

Definition 3 (Hybrid automaton, [1]). A hybrid automaton is described
by a septuple (L, X, E, A, W, Inv, Act) where
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- L is a finite set, called the set of discrete states or locations. They are
the vertices of a graph.

- X is the continuous state space of the hybrid automaton in which the
continuous state space variables x take their values. For our purposes
X C R” or X is an n-dimensional manifold.

- E is a set of edges called transitions (or events). Every edge is defined
by a four-tuple (I, Guardy , Jumpy ,1'), where [,I' € L, Guardy is a
subset of X and Jumpy; is a relation defined by a subset of X x X. The
transition from the discrete state [ to I’ is enabled when the continuous
state z is in Guardyy , while during the transition the continuous state z
jumps to a value z' given by the relation (z,z’) € Jumpy.

- A is a finite set of symbols labeling the edges. Each edge is associated
with a symbol by a labeling function A from E to A.

- W = R? is the continuous communication space in which the continuous
external variables w take their values.

- Inv is a mapping from the locations L to the set of subsets of X, that is
Inu(l) C X for all I € L. Whenever the system is at location [, then the
continuous state = must satisfy & € Inv(l). The subset Inv(l) for l € L
is called the location invariant of location [.

- Act is a mapping that assigns to each location I € L a set of differential-
algebraic equations F}, relating the continuous state variables z with their
time-derivatives & and the continuous external variables w:

Fi(z,2,w) =0 (4)

The solutions of these differential-algebraic equations are called the ac-
tivities of the location.

Clearly, the above definition is very much based on Definition 2, with the
discrete state space L now being called the space of locations. (Note that the
set of edges E in Definition 3 also defines a subset of L x A x L.) In fact,
Definition 3 extends Definition 2 by associating with every vertex (location) a
continuous dynamics (whose solutions are the activities), and by associating
with every transition [ — I’ also a possible jump in the continuous state.

Note that the state of a hybrid automaton consists of a discrete part [ € L
and a continuous part in X. Furthermore, the external variables consist of a
discrete part taking their values ¢ in A and a continuous part w taking their
values in R?. Also, the dynamics consists of discrete transitions (from one
location to another), together with a continuous part evolving in the location
invariant.

It should be remarked that the above definition of a hybrid automaton has
the same ambiguity as the definition of a continuous-time state-space system,
since it still has to be complemented by a precise specification of the solutions
(activities) of the differential-algebraic equations associated with every loca-
tion. In fact, in the original definitions of a hybrid automaton (see e.g. [1])
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the activities of every location are explicitly given, instead of implicitly gen-
erating them as the solutions to the differential-algebraic equations. On the
other hand, for somebody acquainted with differential equations it is rather
restricted to immediately specify continuous dynamics by time functions from
Rt to X. Indeed, continuous time dynamics is almost always described by
sets of differential-algebraic equations, and only in exceptional cases (such as
linear dynamical systems) one can obtain explicit solutions.
The description of a hybrid automaton is summarized in Figure 1.

z(t) € Inv(fs3) ts

£y

12 (zyi:)w) =0
z(t) € Inv(£s)

Fy,(z,z,w) =0
z(t) € Inv(f2)

£y

(Fe, (a:,a':,w) =0
z(t) € Inv(y)

&

Fig. 1. Hybrid automaton.

A reasonable definition of the trajectories (or solutions, or in computer
science terminology, the runs or executions) of a hybrid automaton is as fol-
lows. A continuous trajectory (I, 4, z,w) associated with a location [ consists
of a non-negative time § (the duration of the continuous trajectory), a piece-
wise continuous function w : [0,8] — W, and a continuous and piecewise
differentiable function z : [0,6] — X such that
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- z(t) € Inv(l) for all ¢ € (0, 4d),
- Fi(z(t), (), w(t)) = 0 for all ¢ € (0,8) except for points of discontinuity
of w.

A trajectory of the hybrid automaton is an (infinite) sequence of continuous
trajectories

(lo, 80, o, wo) =3 (l,61,21,w1) 3 (l2, 82, 2, w2) S O
such that at the event times

to=20, t1i=6d+d, ta=08 +0 +d,...
the following inclusions hold for the discrete transitions

z;(t;) € Guard,,,,

forall j =0,1,2,...
(z;(t5), zj41(t5)) € Jumpyp,, it

Furthermore, to the j-th arrow — in the above sequence (with j starting at
0) one associates a symbol (label) a;, representing the value of the discrete
“signal” at the j-th discrete transition.

2.3 Features of hybrid dynamics

Note that the trajectories of a hybrid automaton exhibit the following fea-
tures. Starting at a given location the continuous part of the state evolves
according to the continuous dynamics associated with this location, provided
it remains in the location invariant. Then, at some time instant in R, called
an event time, an event occurs and the discrete part of the state (the loca-
tion) switches to another location. This is an instantaneous transition which
is guarded, that is, a necessary condition for this transition to take place is
that the guard of this transition is satisfied. Moreover in general this transi-
tion will also involve a jump in the continuous part of the state. Then, after
the instantaneous transition has taken place, the continuous part of the state,
starting from this new continuous state, will in principle evolve according to
the continuous dynamics of the new location. Thus there are two phenomena
associated with every event, a switch and a jump, describing the instanta-
neous transition of, respectively, the discrete and the continuous part of the
state at such an event time.

A basic issue in the specification of a hybrid system is the specification of
the events and event times. First, the events may be externally induced via
the labels (symbols) a € A, this leads to controlled switchings and jumps.
Secondly, the events may be internally induced, this leads to what is called au-
tonomous switchings and jumps. The occurrence of internally induced events
is determined by the guards and the location invariants. Whenever the loca-
tion invariants are going to be violated then the hybrid automation kas to
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switch to a new location, with possible resetting of the continuous state. At
such an event time the guards will determine to which locations the transition
is possible. (There may be more than one; furthermore, it may be possible to
switch to the same location.)

If the location invariants are not going to be violated then still discrete
transitions may take place if the corresponding guards are being satisfied.
That is, if at a certain time instant the guard of a discrete transition is
satisfied then this may cause a possible event time. This may lead to a large
class of trajectories of the hybrid automaton, and a tighter specification of the
behavior of the hybrid automaton will critically depend on a more restrictive
definition of the guards.

Many questions naturally come up in connection with the analysis of the
trajectories of a hybrid automaton:

- It could happen that, after some time ¢, the system ends up in a state
(I,z(¢)) from which there is no continuation, that is, there is no possi-
ble continuous trajectory from z(¢) and no possible transition to another
location. In the computer science literature this is usually called “dead-
lock”. Clearly, this is an undesirable phenomenon, because it means that
the system is “stuck”.

- The set of durations 6; may get smaller and smaller for increasing i even
to such an extent that Y :—c°d; is finite, say 7. This means that 7 is
an accumulation point of event times. In the computer science literature
this is called Zeno behavior (referring to Zeno’s paradox of Achilles and
the turtle). This may not be a totally undesirable behavior of the hybrid
system. In fact, as long as the continuous and discrete parts of the state
will converge to a unique value at the accumulation point 7, then we can
re-initialize the hybrid system at 7 at these limits, and let the system run
as before starting from the initial time 7. The bouncing ball is a situation
like this.

- In principle the durations of the continuous trajectories are allowed to
be zero, thereby covering the occurrence of multiple events. In this case
the underlying time-axis of the hybrid trajectory has a structure which
is more complicated than R containing a set of event times: a certain
time instant ¢ € R may correspond to a seguence of sequentially ordered
transitions, all happening at this same time instant ¢ (called a multiple
event time).

- It may happen that the hybrid system gets stuck at such a multiple event
time by switching indefinitely between different locations (and not pro-
ceeding in time). This is sometimes called livelock. Such a situation occurs
if a location invariant is (going to be) violated and a guarded transition
takes place to a new location in such a way that the new continuous state
does not satisfy (or is imminent to violate) the location invariants of the
new location, while the guard for the transition to the old location is
satisfied. In some cases this problem can be resolved by creating a new
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location, with a continuous dynamics that “averages” the continuous dy-
namics of the locations between which the infinite switching occurs. The
classical Filippov’s notions of solutions of discontinuous vector fields can
be interpreted in this way.

- In general the set of trajectories (runs) of the hybrid automaton may be
very large, especially if the guards are not very strict. For certain purposes
(e.g. verification) this may not be a problem, but in other cases one may
wish the hybrid system to be deterministic or well-posed, in the sense
of having unique solutions for given discrete and continuous “inputs”
(assuming that we have split the vector w of continuous external variables
into a vector of continuous inputs and outputs, and that every label a
actually consists of an input label and an output label). Especially for
stmulation purposes this may be very desirable, and in fact one would
in certain cases dismiss a hybrid model as inappropriate if it does not
have this well-posedness property. On the other hand, non-deterministic
discrete-event systems are very common in computer science. A simple
example of a hybrid system not having unique solutions will be given
in Section 3. (A “physical” example of the same type exhibiting non-
uniqueness of solutions is the classical Painlevé example of a stick sliding
(subject to Coulomb friction) with one end on a table, see e.g. [8]).

- The solution concept of the continuous-time dynamics associated to a lo-
cation may itself be problematic, especially because of the possible pres-
ence of algebraic constraints. In particular, in some situations one may
want to associate jump behavior with these continuous-time dynamics.
Within the hybrid framework this can be incorporated as internally in-
duced events, where the system switches to the same location but with a
reset of the continuous state.

Remark 1. Of course, the definition of a hybrid automaton can still be gener-
alized in a number of directions. A particularly interesting extension is to con-
sider stochastic hybrid systems, such as described by piecewise-deterministic
Markov processes, see e.g. [10]. In this notion the event times are determined
by the system reaching certain boundaries in the continuous state space (sim-
ilar to the notion of location invariants), and/or by an underlying probability
distribution. Furthermore, also the resulting discrete transitions together with
their jump relations are assumed to be governed by a probability distribution.

2.4 Generalized hybrid automaton

In Definition 3 of a hybrid automaton there is still an apparent asymme-
try between the continuous and the symbolic (discrete) part of the dynamics.
Furthermore, the location invariants and the guards play a very much related
role in the specification of the discrete transitions. The following generaliza-
tion of Definition 3 takes the location invariants, the set of edges E and
the labeling function A together, and symmetrizes the definition of a hybrid
automaton. (The input-output version of this definition is due to [23].)
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Definition 4 (Generalized hybrid automaton). A generalized hybrid
automaton is described by a sixtuple (L, X, A, W, R, Act) where L, X, A, W
and Act are as in Definition 3, and R is a subset of (Lx X)X (AxW)x{Lx X).
A continuous trajectory (I, a,d,z,w) associated with a location [ and a dis-
crete external symbol a consists of a non-negative time é (the duration of the
continuous trajectory), a piecewise continuous function w : [0,4] — W, and
a continuous and piecewise differentiable function z : [0,4] — X such that

- (Lz(),a,w(t),l,z(t)) € R for all t € (0,6),

- Fi(z(t),2(t),w(t)) = 0 for almost all t € (0,6) (except for points of

discontinuity of w).

A trajectory of the generalized hybrid automaton is an (infinite) sequence
(lo, a0, 00, o, wo) = (l1,01,d1,21,w1) = (lg,a2,02, 3, w2) — ...

such that at the event times
to = 8o, t1 =g +b1,85 =8 + 1 + 0o, ...

the following inclusions hold:
(L, 25 (t), a5, w;(t5), L1, T4 (t5)) € R, for all j = 0,1,2,...

The subset R encompasses the notions of the location invariants, guards,
and jumps of Definition 3 in the following way. To each location [/ we associate
the location invariant

Inv(l) = {(z,a,w) € X x Ax W | (l,z,a,w,l,z) € R}.

{Abusing notation, z and w denote here elements of X, respectively W,
instead of wvariables taking their values in these spaces.) Furthermore, given

two locations I,1’ we obtain the following guard for the transition from [ to
I

Guardy = {(z,a,w) e X x Ax W |3z’ € X, (l,z,0,w,l',z") € R}

with the interpretation that the transition from ! to I’ can take place if and
only if (z,a,w) € Guardyy . Finally, the associated jump relation is given as

Jumpy (z,a,w) = {z' € X | (l,z,a,w,l',2") € R}.

Note that the resulting location invariants, guards as well as jump relations
are in principle of a more general type than in Definition 3, since they all
may depend on the continuous and discrete external variables. On the other
hand, it can be readily seen that any set F of edges and location invariants as
in Definition 3 can be recovered from a suitably chosen set R as in Definition
4. Therefore, Definition 4 indeed does generalize Definition 3.

A further generalization of the definition of a hybrid automaton would
be to allow the continuous state spaces associated with every location to be
different. (This is now to some extent captured in the location invariants or
the subset R.)
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2.5 Hybrid time axes

A conceptual problem in Definitions 3 and 4 is the formalization of the notion
of the time evolution corresponding to a hybrid trajectory, and in particular
the inbedding of the event times in the continuous time axis R. Indeed, liter-
ally it is stated that at the same “physical” time ¢; the system is at different
locations and that the continuous variables z take different values at this time
instant t; (namely, their values “just before” and “just after” the event has
taken place). Obviously this is a mathematical inadequacy which needs to be
repaired. This problem is further aggrevated by the fact that the durations 4;
of the continuous trajectories are allowed to be equal to zero, causing multiple
events, in which case the system is at more than two different locations and
z takes more than two values at the same time instant.

Furthermore, the notion of hybrid trajectory as employed in Definition
4, as well as in Definition 3, does not cover hybrid trajectories which have
the property that their event times have an accumulation point but still the
trajectory does progress in time after this accumulation point. The following
formalization of the intuitive notion of a hybrid time evolution takes into
account these considerations. Let R be the continuous-time axis. The hybrid
time axis corresponding to a hybrid trajectory will be specified by a set £
of time events. A time event in £ consists of an event time t € R together
with a multiplicity m(t), which is an element of NU oo, where N is the set of
natural numbers 1,2,3,.... The time event will be denoted by the sequence

(08 g18 420 gy,

specifying the sequentially ordered “discrete transition times” at the same
continuous time instant ¢ € R (the event time). For simplicity of notation we
will sometimes write th, ¢t 888 for 18 20 34

A time event with multiplicity equal to 1 is just given by a pair

(194, 1)

with the interpretation of denoting the time instants “just before” and “just
after” the event has taken place. If the multiplicity of the time event is
larger than 1 (a multiple time event) then there are some “intermediate time-
instants” (“all at the same event time ¢”) ordering the sequence of discrete
transitions taking place at ¢.

2.6 Event-flow formulas

In some sense the definition of a generalized hybrid automaton as given in
Definition 4 drifts away from the explicit specification of location invariants,
guards and discrete transitions, in the original definition of a hybrid automa-
ton (Definition 3), by summarizing them into one abstract set E. A next step
is to generate this set R by means of equations, and also to include in this



Hybrid Dynamical Systems 207

description of R the differential(-algebraic) equations representing the activ-
ities. This leads to a methodology of what we shall call event-flow formulas
(EFFs), and which seems to be an attractive way of modeling hybrid systems
with a substantial continuous time dynamics.

In general, one should distinguish between the syntaz of a description
format (the rules that determine what is to be considered as a well-formed
description) and its semantics, which in the case of dynamical systems can
be interpreted as the notion of solution. In principle different semantics can
be attached to the same syntax.

We now first describe the syntax of EFFs. We start with a finite index
set V whose elements are called variables. The set V' is the disjoint union
of four subsets denoted by X, P, W, and S. The variables in X are called
continuous state vartables, those in P are called discrete state variables, those
in W are continuous communication variables, and those in S are discrete
communication variables. To each of the variables there is an associated range
space. For the continuous variables we let this space be the real line; it would
not be difficult to generalize to the case of differentiable manifolds. The range
spaces of the discrete variables are finite sets which are denoted by L; (i =
1,...,k) in the case of state variables and by A; (¢ = 1,...,r) in the case of
communication variables. The sets L; are the locations, whereas the sets A;
are usually called alphabets.

For each continuous state variable z € X we introduce a new variable
denoted by & which also has the real line as its range space; as the notation
suggests, the symbol will be used in the semantics to express differentiation
with respect to time. The set of new variables that is obtained in this way
will be denoted by X. Likewise, for each continuous state variable z € X
and each discrete state variable p € P we introduce new variables z# and p!
which will be used to express update operations. Both new variables have the
same range space as the variables from which they are derived. The new sets
of variables that are thus obtained will be denoted by X* and P*. We write
Vii=VuXuXtuPL

Let V, be a subset of V'. A valuation of V; is a mapping that assigns to
each element of Vp an element of its associated range space. If the elements
of Vj are given a fixed order, then valuations of V; can be written as vectors
whose length is the number of elements of V4.

A clause over Vj is a mapping that assigns to each valuation of Vj the value
TRUE or FALSE. In applications, a clause is typically given by an arithmetic or
logical expression. As a trivial example, if Vo = {z,z"} (taken in this order),
then a clause over Vj is for instance given by the expression z! = z + 1,
which returns TRUE for the valuation (0, 1) and FALSE for the valuation (0, 0).
The semantics to be developed below is based in particular on clauses over
variables in X U P U W UX (flow clauses) and clauses over variables in
XUPUSUXYUP! (event clauses). If ¢ is a clause over V; then we also say
that V, is the span of ¢, and we write span(¢)= Vj.
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Finally we can express the notion of an event-flow formula.

Definition 5. An event-flow formulae, or EFF, is a Boolean formula whose
terms are clauses.

Next we come to the semantics of event-flow formulas. EFF's are intended
to represent the set of possible evolutions of systems that are partly described
by differential equations and partly by update operations. Now, updates take
place at event times that may be different for different evolutions. Moreover,
not all variables in a hybrid system need to be updated at the same time; it
may happen that an event is local to some subsystem. As a consequence, we
need a concept of time that is considerably more complicated than the usual
model based on the real line. In [31] we have taken a fairly radical point of
view to equip each variable with its own (hybrid) time axis. Then the joint
evolutions of all variables that occur in a given EFF are considered,and we
define in what sense an EFF can be satisfied by such a joint evolution. In the
process we obtain an overall time axis which however is not in general a totally
ordered set; this reflects the idea of partial synchronization. We refer to [31]
for a detailed treatment. The resulting semantics is more complicated than
the one given before in [30], because we have chosen to work with different
time axes for each variable rather than with a uniform time axis. The benefit
is that we can now define composition in a simpler way than in {30].

Definition 6. The parallel composition of two EFFs ¢; and ¢ is defined by
¢1 || 2 := ¢1 A .

In this way one may in fact unambiguously define the parallel composition
of an arbitrary number of EFFs.

Finally we note that the framework presented in [31] might easily be
extended to allow the variables to be defined only on part of the physical
time axis, in the spirit of Benveniste’s “presences” [6].

2.7 Discussion of representations

Many formalisms for the description of hybrid systems have been proposed
in the literature; see for instance [2,7,1,23,24,6,19]. Here we only discuss the
hybrid automaton model and EFFs as treated before.

Definitions 3 and 4 of a (generalized) hybrid automaton do provide work-
able representations of hybrid systems for various aims. First of all, they offer
a clear picture of hybrid dynamics, which is very useful for exposition and
theoretical analysis. A favorable feature of the hybrid automaton model is
that the semantics of the model is quite explicit, as we have seen above. Fur-
thermore, for a certain type of hybrid systems and for certain applications,
the hybrid automaton representation can be quite effective.

Nevertheless, a drawback of the hybrid automaton representation is its
tendency to become rather complicated. This is foremost due to the fact that
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in the hybrid automaton model it is necessary to specify all the locations and
all the transitions from one location to another, together with all their guards
and jumps (or to completely specify the subset R of Definition 4). If the
number of locations grows, this usually becomes an enormous and error-prone
task. Other related types of (graphical) representations of hybrid systems
that have been proposed in the literature, such as differential (or dynamically
colored) Petri nets, may be more efficient than the hybrid automaton model
in certain cases but have similar features.

For hybrid systems arising in a “physical domain” it seems natural to
use representation formalisms such as event-flow formulas, which are closer
to first principles physical modeling. First principles modeling of dynamical
systems almost invariably leads to sets of equations, differential or algebraic.
Furthermore, the hybrid nature of such systems is usually in first instance
described by “if-then” or “either-or”statements, in the sense that in one lo-
cation of the hybrid system a particular subset of the total set of differential
and algebraic equations has to be satisfied, while in another location a differ-
ent subset of equations should hold. Thus, while in the (generalized) hybrid
automaton model the dynamics associated with every location are in princi-
ple completely independent, in most “physical” examples the set of equations
describing the various activities or modes (continuous dynamics associated to
the locations) will remain almost the same, replacing one or more equations
by some others.

Seen from this perspective, the (generalized) hybrid automaton model
(and other similar descriptions of hybrid systems) may be quite far from the
kind of model one obtains from physical first principles modeling, and the
translation of the modeling information provided by equations, inequalities
and logical statements into a complete specification of all the locations of the
hybrid automaton together with all the possible discrete transitions and the
complete continuous-time dynamics of every location may be a very tedious
operation for the user. This becomes especially clear in an object-oriented
modeling approach, where the interconnection (or composition) of hybrid
automata may easily lead to a rapid growth in number of locations, and a
rather elaborate (re-)specification of the resulting hybrid automaton model
obtained by interconnection. Thus from the user’s point of view an interesting
alternative for efficiently specifying “physical” hybrid systems is to look for
possibilities of specifying such systems primarily by means of equations, as in
the framework of event-flow formulas. The setting of event-flow formulas is
close to that of simulation languages such as Modelica™ [11], Some of the
modeling constructs in Modelica relating to hybrid systems do in fact have
the form of event-flow formulas. Synchronous languages like LUSTRE [13]
and SIGNAL [5] are also related, be it more distantly since these languages
operate in discrete-time; see [6] for an approach to general hybrid systems
inspired by the SIGNAL language.



210 A.J. van der Schaft and J.M. Schumacher

The formalism of event-flow formulas results in rather implicit represen-
tations of a hybrid system, as opposed to the almost completely explicit
representations provided by the (generalized) hybrid automaton model. An
EFF does not directly provide a recipe for generating solutions; it is rather
a testing device that determines whether a proposed solution is valid or not.
In fact an EFF is just a list of all the laws satisfied by a given system. In
the terminology of {36], EFFs are kernel representations rather than image
representations. Descriptions of this form are user-friendly in the sense that
they facilitate specification, but they do pose a challenge to the developers
of simulation software.

Within the framework of event-flow formulas one still strives for com-
plete specifications of the hybrid system under consideration. In some exam-
ples of multi-modal physical systems, as e.g. arising in robotics and power-
converters, the initial description of the hybrid system obtained from first
principles modeling is incomplete, especially with regard to the specification
of the discrete dynamics. In fact, one would like to automatically generate
a complete event-flow formula description based on this initial, incomplete,
description, together with some additional information. In Section 3 we will
briefly describe such a framework for a special class of hybrid systems, called
complementarity hybrid systems.

2.8 Existence and uniqueness of solutions

Hybrid systems provide a rather wide modeling context, so that there are
no easily verifiable necessary and sufficient conditions for well-posedness of
general hybrid dynamical systems. It is already of interest to give sufficient
conditions for well-posedness of particular classes of hybrid systems (such as
complementarity systems as described in Section 3). The advantage of con-
sidering special classes is that one can hope for conditions that are relatively
easy to verify. In a number of special cases, such as mechanical systems or
electrical network models, there are moreover natural candidates for such
sufficient conditions.

Uniqueness of solutions will always be understood in the sense of what is
sometimes called right unigueness, that is, uniqueness of solutions defined on
an interval {fp,t1) given an initial state at ¢y. It can easily happen in general
hybrid systems, and even in complementarity systems, that uniqueness holds
in one direction of time but not in the other; this is one of the points in which
discontinuous dynamical systems differ from smooth systems. To allow for the
possibility of an initial jump, one may let the initial condition be given at ;.

We have to distinguish between local and global existence and uniqueness.
Local existence and uniqueness, for solutions starting at ¢g, holds if there ex-
ists an € > 0 such that on [tg, ¢y + €) there is a unique solution starting at
the given initial condition. For global existence and uniqueness, we require
that for given initial condition there is a unique solution on [tg,cc). If lo-
cal uniqueness holds for all initial conditions and existence holds globally,
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then uniqueness must also hold globally since there is no point at which so-
lutions can split. However local existence does not imply global existence.
This phenomenon is already well-known in the theory of smooth dynamical
systems; for instance the differential equation #(t) = z%(t) with z(0) = =z
has the unique solution z(t) = z¢(1 — z¢t)~! which for positive z¢ is defined
only on the interval [0,z;"'). Some growth conditions have to be imposed
to prevent this “escape to infinity”. In hybrid systems, there are additional
reasons why global existence may fail; in particular we may have an accu-
mulation of mode switches (Zeno behavior). Although the occurrence of an
accumulation of mode switches would seem to be exceptional, no general
conditions are known at present which exclude this phenomenon. We use the
term well-posedness to refer to local existence and uniqueness of solutions
for all feasible initial conditions (i. e. initial conditions for which none of the
inequality constraints are violated).

As already noted in [28] it is not difficult to find examples of hybrid
systems that exhibit nonuniqueness of smooth continuations. For a simple
example of this phenomenon within a switching control framework, consider
the plant

1 = To, Yy =12

.’i)g = -1 — U (5)
in closed-loop with a switching control scheme of relay type
u(t) = -1, if y(t)>0
—U<u() <1, i y(t) =0 (6)
u(t) =1, if y(t) <0.
(this could be interpreted as a mass-spring system subject to a “reversed”

— and therefore non-physical — Coulomb friction.) It will shown in the next
section that such a variable-structure system can be modelled as a com-
plementarity system. Note that from any initial (continuous) state z(0) =
(z1(0),22(0)) = (¢,0), with |c| < 1, there are three possible smooth continu-
ations for ¢ > 0 that are allowed by the equations and inequalities above:

(D) 21(8) = 21(0), 22(t) =0, wu(t) =-2:(0),
S1<u(t) <1, yt) = 2s(t) = 0.
(ii) z1(t) = =14 (21(0) + 1) cost, z2(t) = —(z1(0) + 1) sint,
u(t) =1, y(t) ==z2(t) <O0.
(iii) z1(t) =14 (21(0) — 1) cost, z2(¢) = —(z1(0) — 1)sint,
u(t) = -1, yt)=z() >0.

So the above closed-loop system is not well-posed as a dynamical system.
If the sign of the feedback coupling is reversed, however, there is only one
smooth continuation from each initial state. This shows that well-posedness
is a non-trivial issue to decide upon in a hybrid system, and in particular
is a meaningful performance characteristic for hybrid systems arising from
switching control schemes.
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3 Complementarity systems

In several examples of hybrid physical systems the modes are determined by
pairs of so-called “complementary variables”. Two scalar variables are said
to be complementary if they are both subject to an inequality constraint,
and if at all times at most one of the inequalities can be strict. The most
obvious example is that of the ideal diode. In this case the complementary
variables are the voltage across the diode and the current through it. When
the voltage drop across the diode is negative the current must be zero, and the
diode is said to be in nonconducting mode; when the current is positive the
voltage must be zero, and the diode is in conducting mode. There are many
more examples of hybrid systems in which mode switching is determined by
complementarity conditions. We call such systems complementarity systems.
As we shall see, complementarity conditions arise naturally in a number of
applications; moreover, in several applications one may rewrite a given system
of equations and inequalities in complementarity form by a judicious choice
of variables.

As a matter of convention, we shall always normalize complementary vari-
ables in such a way that both variables in the pair are constrained to be non-
negative; note that this deviates from standard sign conventions for diodes. So
a pair of variables (u,y) is said to be subject to a complementarity condition
if the following holds:

y=0

uz0, y>0, Y7,

(7)
where | denotes disjunction. Often we will be working with several pairs
of complementary variables. For such situations it is useful to have a vector
notation available. We shall say that two vectors of variables (of equal length)
are complementary if for all ¢ the pair of variables (u;,y;) is subject to a

complementarity condition. In the mathematical programming literature, the
notation

0<ylu>0 (8)

is often used to indicate that two vectors are complementary. Note that the
inequalities are taken in a componentwise sense, and that the usual interpre-
tation of the “perp” symbol (namely >, y;u; = 0) does indeed, in conjunction
with the inequality constraints, lead to the condition {y; = 0} V {u; = 0} for
all 7. Alternatively, one might say that the ‘perp’ is also taken componentwise.

Therefore, complementarity systems are systems whose flow conditions
can be written in the form

I
©
&

flz,z,y,u)
0 <ylu>0. (9b)
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In this formulation, the variables y; and wu; play completely symmetric roles.
Often it is possible to choose the denotations y; and wu; in such a way that
the conditions actually appear in the convenient “semi-explicit” form

¢ = f(z,u) (10a)
y = h(z,u) (10b)
0 <ylwu>0. (10c)

The flow conditions (9a) or (10a) still have to be supplemented by appropriate
event conditions which describe what happens when there is a switch between
modes. In some applications it will be enough to work with the default event
conditions that require continuity across events; in other applications one
needs more elaborate conditions.

In the mathematical programming literature, the so-called linear comple-
mentarity problem (LCP) has received much attention; see the book [9] for
an extensive survey. The LCP takes as data a real k-vector ¢ and a real £ x k
matrix M, and asks whether it is possible to find k-vectors u and y such that

y=q+Mu, 0<ylu>0 (11)

The main result on the linear complementarity problem that will be used
below is the following: the LCP above has a unique solution u for all ¢ if and
only if M is a P-matrix, cf.[27], [9, Thm. 3.3.7]. (A matrix M is a P-matrix if
all its principal minors are positive. Given a matrix M of size k x k and two
nonempty subsets I and J of {1,... , k} of equal cardinality, the (I, J)-minor
of M is the determinant of the square submatrix M;; := (m,-j),-el,jg. The
principal minors are those with I = J.)

3.1 Examples

Ezample 1 (Circuits with ideal diodes).

A large amount of electrical network modeling is carried out on the basis
of ideal lumped elements: resistors, inductors, capacitors, diodes, and so on.
There is not necessarily a one-to-one relation between the elements in a model
and the parts of the actual circuit; for instance, a resistor may under some
circumstances be better modeled by a parallel connection of an ideal resistor
and an ideal capacitor than by an ideal resistor alone. The standard ideal
elements should rather be looked at as a construction kit from which one can
quickly build a variety of models.

To write the equations of a network with (say) k ideal diodes in com-
plementarity form, first extract the diodes so that the network appears as a
k-port. For each port, we have a choice between denoting voltage by u; and
current by y; or vice versa (with the appropriate sign conventions). Usually
it is possible to make these choices in such a way that the dynamics of the
k-port can be written as

& = f(z,u), y = h(z,u).
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For linear networks, one can actually show that it is always possible to write
the dynamics in this form. To achieve this, it may be necessary to let u;
denote voltage at some ports and current at some other ports; in that case
one sometimes speaks of a “hybrid” representation, where of course the term
is used in a different sense than in “hybrid systems”. Replacing the ports by
diodes, we obtain a representation in the semi-explicit complementarity form
(10a).

Ezample 2 (Mechanical systems with unilateral constraints).

Mechanical systems with geometric inequality contraints, as often occur-
ring in robotics, are given by equations of the following form (see {28]), in
which %Ipi and %1;— denote column vectors of partial derivatives, and the time
arguments of g, p, y, and u have been omitted for brevity:

i = 5%(q,p) geER", peR”

. T

p=~%gp) + %5 (Qu, vek (12)
y = C(q), y € RF

y>0, u>0, yTu=0,

Here, C'(g) > 0 is the column vector of geometric inequality constraints, and
u > 0 is the vector of Lagrange multipliers producing the constraint force
vector (8C/8q)T(q)u. (The expression (8CT/dq) denotes an n x k matrix
whose i-th column is given by 8C;/8q.) The complementarity conditions in
this case express that the i-th component of u; can be only non-zero if the i-
th constraint is active, that is, y; = Ci(q) = 0. Furthermore, u; > 0 since the
constraint forces will be always pushing in the direction of rendering y; non-
negative. This basic principle of handling geometric inequality constraints
can be found e. g. in [26,18], and dates back to Fourier and Farkas.

The Hamiltonian H(q, p) denotes the total energy, generally given as the
sum of a kinetic energy $pT M ~!(q)p (where M(g) denotes the mass matrix,
depending on the configuration vector g) and a potential energy V(q). The
semi-explicit complementarity system (12) is called a Hamiltonian comple-
mentarity system, since the dynamics of every mode is Hamiltonian [28]. In
particular, every mode is energy-conserving (since the constraint forces are
workless); it should be noted though that the model is easily extended to
mechanical systems with dissipation by replacing the second set of equations
of (12) by

T
b= @p) - 5o @)+ @ (13)

where R(g) denotes a Rayleigh dissipation function.

Ezample 3 (Variable-structure systems).
Consider a nonlinear input-output system of the form
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in which the input and output variables are adorned with a bar for reasons
that will become clear in a moment. Suppose that the system is in feedback
coupling with a relay element given by

N
v
o

Yy
<

=l
-

=0 (15)

’

L,
<

NI
1
- 8
<
IA
o @

3

with | again denoting disjunction. Many of the systems considered by Filippov
[12] can be rewritten in this form. At first sight, relay systems do not seem to
fit in the complementarity framework. However, let us introduce new variables
Y1, Y2, U1, and us, together with the following new equations:

1
Uy = 5(1——17,)

1
up = 5(1+1) (16)
Y=y —Y2

Instead of considering (14) together with (15), we can also consider (14)
together with the standard complementarity conditions for the vectors y =
col{yy,y2) and v = collug, uz):

y1 =0, u

1 y2=0, u2>0
ZJIZO; uy

0
0’ Jy220, wuy=0.

v

(17)

It can be easily verified that the trajectories of (14-16-17) are the same as
those of (14-15). Note in particular that, although (17) in principle allows
four modes, the conditions (16) imply that u; + us = 1 so that the mode in
which both w; and w, vanish is excluded, and the actual number of modes is
three.

3.2 Linear complementarity systems

Linear complementarity systems are given by

£(t) = Az{t) + Bult) (18a)
y(t) = Cx(t) + Du(t) (18b)
y(t) >0, ut)>0, vy (Hult)=0. (18¢)

The set of indices for which y;{#) = 0 (we shall call this the active index
set) need not be constant in time, so that the system may switch from one
“operating mode” to another. To define the dynamics of (18) completely, we
will have to specify when these mode switches occur, what their effect will
be on the state variables, and how a new mode will be selected. A proposal
for answering these questions (cf. [15]) will be explained below.
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Let n denote the length of the vector z(t) in the equations (18a-18b) and
let k denote the number of inputs and outputs. There are then 2* possible
choices for the active index set. The equations of motion when the active
index set is I are given by

z(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)
yi(t) =0, iel (19)

ui(t) =0, te€l°
where I° denotes the index set that is complementary to I, that is, I¢ =
{ie{l,... k} |7 ¢I}. We shall say that the above equations represent the
system in mode I. An equivalent and somewhat more explicit form is given
by the (generalized) state equations

z(t) = Az(t) + Berus(t)

0= C].:I:(t) + D[]U](t) (20)
together with the output equations
yIc(t) = CIc.fI:(t)+D1c1uI(t) (21)

UJe (t) =0.

Here and below, the notation M,y where M is a matrix of size m x k and
I is a subset of {1,...,k} denotes the submatrix of M formed by taking
the columns of M whose indices are in I. The notation Mj, denotes the
submatrix obtained by taking the rows with indices in the index set 1.

In order to formulate an event rule, we first need to introduce some con-
cepts taken from the geometric theory of linear systems (see [37,3,20] for the
general background). Denote by V; the consistent subspace of mode I, i.e.
the set of initial conditions z¢ for which there exist smooth functions z(-)
and uy(+), with z(0) = zg, such that (20) is satisfied. The space V; can be
computed as the limit of the sequence defined by

VO = R”
Vitl = {zeVi|Jue R s.t. Az + Beyu € Vi, Crox + Dypu = 0}.
(22)

There exists a linear mapping Fr such that (20) will be satisfied for o € V;
by taking u;(t) = Frz(t). The mapping Fy is uniquely determined, and more
generally the function u;(-) that satisfies (20) for given zo € V; is uniquely
determined, if the full-column-rank condition

B.I

ker
{ Dir

|- o (23)
holds and moreover we have

vinT; = {O}, (24)
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where 77 is the subspace that can be computed as the limit of the following
sequence:

T° = {0}
TH! = {z e R* |3z € T, i € Rl s.t. (25)
r = AZE + BoI'a, Cjoj + D[]ﬂ. = 0}

The subspace T is best thought of as the jump space associated to mode
I, that is, as the space along which fast motions will occur that take an
inconsistent initial state instantaneously to a point in the consistent space
V7; note that under the condition (24) this projection is uniquely determined.
{The interpretation of Ty as a jump space can be made precise by introducing
the class of impulsive-smooth distributions that was studied by Hautus [14]).
The projection can be used to define a jump rule. However, there are 2F
possible projections, corresponding to all possible subsets of {1, ... , k}; which
one of these to choose should be determined by a mode selection rule.

For the formulation of a mode selection rule we have to relate in some
way index sets to continuous states. Such a relation can be established on the
basis of the so-called rational complementarity problem (RCP). The RCP is
defined as follows. Let a rational vector ¢(s) of length k and a rational matrix
M (s) of size k x k be given. The rational complementarity problem is to find
a pair of rational vectors y(s) and u(s) (both of length k) such that

y(s) = q(s) + M(s)u(s) (26)

and moreover for all indices 1 < ¢ < k we have either y;(s) = 0 and u;(s) > 0
for all sufficiently large s, or u;(s) = 0 and y;(s) > 0 for all sufficiently large s.
The vector ¢(s) and the matrix M (s) are called the data of the RCP, and we
write RCP(g(s),M (s)). We shall also consider an RCP with data consisting
of a quadruple of constant matrices (A, B, C, D) (such as could be used to
define (18a-18b)) and a constant vector g, namely by setting

q(s) =C(sI — A)"'zy and M(s)=C(sI - A)"'B+D.

We say that an index set I C {1,...,k} solves the RCP (26) if there exists
a solution (y(s),u(s)) with y,;(s) = 0 for 1 € I and u;(s) = 0 for : ¢ I. The
collection of index sets I that solve RCP(A, B, C, D; zy) will be denoted by
S(A,B,C, D;zy) or simply by S(z) if the quadruple (A, B,C, D) is given
by the context.

The semantics of a linear complementarity system is now defined as fol-
lows. We assume that a quadruple (A, B, C, D} is given whose transfer matrix
G(s) = C(sI — A)"'B + D is totally invertible, i.e. for each index set I the
k x k matrix G;(s) is nonsingular. Under this condition, the two subspaces
Vi and T as defined above form for all I a direct sum decomposition of the
state space R", so that the projection along 77 onto V; is well-defined. We
denote this projection by Pr. The linear complementarity system associated
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to the quadruple (A4, B, C, D) is given by the event-flow formula

T =Ar+ Bu, y=Cz+ Du
ur >0, yr=0, wupe=0, yr>0 (27)
IY € 8(z), z'= Ppz.

The expression in the second line should be read as a shorthand; for instance
in case k = 2 the long form would be

I:@, ule, U2:O, yIZO, ygzo
I:{l}> yl:o) U'Z:Oa yZZOa U’IZO
I={2}, =0, vu=0, yp >0, uz>0
I= {172}7 = O) Y2 = Oa Ui 2 Oa 41 2 0.

In a similar way the third line of (27) should be read as a disjunction with
2% terms.

3.3 Existence and uniqueness of solutions of linear
complementarity systems

Conditions for well-posedness of hybrid systems that are both necessary and
sufficient have been given only for limited classes. One example appears in
[28]. The statement in this paper concerns bimodal linear complementarity
systems, so systems with only two modes (k£ = 1). Such a system of the form
(18) has a transfer function g(s) == C(sI — A)™'B + D which is a rational
function. The system is said to have no feedthrough term if the matrix D
vanishes. The system is called degenerate if the transfer matrix g(s) is of the
form g(s) = 1/q(s) where ¢(s) is a polynomial; in this case the consistent
subspace in the constrained mode is just the origin. The Markov parameters
of the system are the coefficients of the expansion of g{s) around infinity,

9(8) =go+ g8+ gasT -

The leading Markov parameter is defined as the first parameter in the se-
quence (go, g1, - - - ) that is nonzero. Having introduced this terminology, we
can now formulate the following result [28, Thm.4.8].

Theorem 1. A nondegenerate bimodal linear complementarily system with-
out feedthrough term and with nonzero transfer function is well-posed if and
only if its leading Markov parameter is positive.

It is typical to find that well-posedness of complementarity systermns is
linked to a positivity condition. If the number of pairs of complementary
variables is larger than 1 an appropriate matrix version of the positivity
condition has to be used. A relation of the rational complementarity problem
with the linear complementarity problem of mathematical programming can
be established in the following way [29,16].
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Theorem 2. For given q(s) € RF(s) and M(s) € R¥*¥(s), the problem
RCP(q(s), M(s)) is solvable if and only if there exists p € R such that for all
A > u the problem LCP(q()\), M (}))) is solvable. The same statement holds
with “solvable” replaced by “uniquely solvable”.

The above theorem provides a convenient way of proving well-posedness for
several classes of linear complementarity systems. The following example is
taken from [16].

Ezample 4. A linear mechanical system may be described by equations of
the form

Mi+Dg+Kq=0 (28)

where ¢ is the vector of generalized coordinates, M is the generalized mass
matrix, D contains damping and gyroscopic terms, and K is the elasticity
matrix. The mass matrix M is positive definite. Suppose now that we subject
the above system to unilateral constraints of the form

Fqg>0 (29)

where F' is a given matrix. Under the assumption of inelastic collisions, the
dynamics of the resulting system may be described by

Mi+Di+Kq=FTu, y=Fq (30)

together with complementarity conditions between y and u. The associated
RCP is the following:

y(s) = F(s*M + sD + K)™'[(sM + D)go + Mdo] + (31)
+ F(s2M + sD + K) ' FTu(s).

If F has full row rank, then the matrix F(s*M +sD+ K)~'FT is positive
definite (although not necessarily symmetric) for all sufficiently large s be-
cause the term with s? becomes dominant. By combining the standard result
on solvability of LCPs with Thm. 2, it follows that RCP is solvable and we
can use this to prove the well-posedness of the constrained mechanical sys-
tem; this provides some confirmation for the validity of the model that has
been used, since physical intuition certainly suggests that a unique solution
should exist.

One can easily imagine cases in which the matrix F' does not have full
row rank so that the fulfillment of some constraints already implies that
some other constraints will also be satisfied; think for instance of a chair
having four legs on the ground. In such cases the basic result on solvability
of LCPs does not provide enough information, but there are alternatives
available that make use of the special structure that is present in equations
like (31). On the basis of this, one can still prove well-posedness; in particular
the trajectories of the coordinate vector ¢(t) are uniquely determined, even
though the trajectories of the constraint force u(t) are not.
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A similar result can be obtained for linear RLC-circuits containing ideal
diodes. Indeed, by extracting the diodes, and representing the remaining sys-
tem with ports as a port-controlled Hamiltonian system with dissipation (cf.
[32]) it follows by the positivity of the stored (quadratic) energy that the
corresponding RCP is uniquely solvable. Furthermore, in this case (contrary
to the mechanical case considered above) the system does not exhibit jumps
in the continuous state variables.

3.4 Mechanical complementarity systems

As discussed in Example 2 mechanical systems with unilateral constraints
can be represented as semi-explicit complementarity systems (12)—(13).
Assume that the unilateral constraints are independent, that is

acT .
rank a—(q) =k, for all ¢ with C(q) > 0. (32)
q
Since the Hamiltonian is of the form (kinetic energy plus potential energy)
1 _
H(q,p) = 5p" M Ha)p + V(g), M(g)=M"(q)>0 (33)

where M(q) is the generalized mass matrix, it follows that the system (12)-
(13) has uniform relative degree 2 with decoupling matrix

T T T
o = | %0 M 0% (59

Hence, from M(q) > 0 and (32) it follows that D(q) is positive definite for
all ¢ with C(q) > 0. It can be shown that this implies that the system has
unique smooth solutions, [29,22].

A switch and jump rule for mechanical complementarity systems can be
formulated as follows. Let us consider a mechanical system with n degrees of
freedom ¢ = (q1,--- ,¢n) having kinetic energy $¢” M(q)¢, where M(q) > 0
is the generalized mass matrix. Suppose the system is subject to k geometric
inequality constraints

If the ¢-th inequality constraint is active, that is C;(¢) = 0, then the system
will experience a constraint force of the form aacq,- (q)u;, where %—qu(q) is the

column vector of partial derivatives of C; and wu; a Lagrange multiplier.
Let us now consider an arbitrary initial continuous state (¢~,¢ ™). Define
the vector of generalized velocities

=94
= 5

v

(¢7)d~ (36)
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where I denotes the set of active indices at ¢~. In order to describe the
inelastic collision we consider the system of equalities and inequalities (in the
unknowns v+, A)
T

vt =7+ G ) M a) (a7 (37)
vt >0, A>0, wH)Ta=0.
Here A can be interpreted as a vector of impulsive forces. The system (37) is
in the form of the linear complementarity problem (LCP). The general form
of an LCP can be written as

y=z+Mu, 0<ylu>0 (38)

where the vector z and the square matrix M are given, and the vectors y and
u are the unknowns. Recall that the LCP (38) has a unique solution (y, u) for
each z if and only if the matrix M is a P-matrix, that is to say, if and only if
all principal minors of the matrix M are positive. This is the case in particular

if M is a positive definite matrix. Since %il—(q_)M_l(q_)agI’T (g7) > 0, the
LCP (37) indeed has a unique solution. The jump rule is now given by
- - + ot s S ERDRN o/
(¢,47) = (g".4d7), a"=q", ¢"=¢ +M (g )a—q(q )A. (39)

The new velocity vector ¢+ may be equivalently characterized as the solution
of the quadratic programming problem

min 3¢ — )T M(g)(¢t — ¢~ 40
riemin 3 =) (@@ —q7) (40)

where ¢ := ¢~ = g¢%. This formulation is sometimes taken as the starting
point for describing multiple inelastic collisions, see [8,25]. An appealing fea-
ture of the transition rule above is that the energy of the mechanical system
will always decrease at the switching instant. One may take this as a starting
point for stability analysis.

3.5 Relay systems

For piecewise linear relay systems of the form
z=Azx+ Bu, y=Czx+Du, wu;=—-sgn(y;) (i=1,...,k) (41)

Thm. 2 can also be applied, but the application is somewhat less straight-
forward for the following reason. As noted above, it is possible to rewrite a
relay system as a complementarity system (in several ways actually). Using
the method (16), one arrives at a relation between the new inputs col(uy,us)
and the new outputs col(y1,y2) that may be written in the frequency domain
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as follows {¢ denotes the vector all of whose entries are 1, and G(s) denotes
the transfer matrix C(sI — A)™'B + D):

[t I et R

G G ]

The matrix that appears on the right hand side is singular for all s and so
the corresponding LCP does not always have a unique solution. However the
vector that we find at the right hand side is of a special form and we only
need to ensure existence of a unique solution for vectors of this particular
form. On the basis of this observation, the following result is obtained.

Theorem 3. [21,16] The piecewise relay system (41) is well-posed if the
transfer matriz G(s) is a P-matriz for all sufficiently large s.

This result gives a criterion that is straightforward to verify (compute the de-
terminants of all principal minors of G(s), and check the signs of the leading
Markov parameters), but that is restricted to piecewise linear systems. Fil-
ippov [12, §2.10] gives a criterion for well-posedness which works for general
nonlinear systems, but needs to be verified on a point-by-point basis.

3.6 Discrete time complementarity systems and mixed logical
dynamical systems

Linear complementarity systems may also be considered in discrete time
by replacing the differential equations in (19) by difference equations. For
discrete time hybrid dynamical systems with linear dynamics various other
formalisms have been proposed in the literature; we mention mized logical
dynamical systems [4], piecewise affine systems [35], extended linear comple-
mentarity systems [33], and maz-min-plus-scaling systems [34].

Recently in [17] it has been shown that all these formalisms are basically
equivalent, and have more or less the same expressive power. This result of
course enables the transfer of knowledge from one class of systems to another,
and implies that for the study of a particular discrete time hybrid system one
can choose the framework that is most suitable (for the goal one has in mind}).

4 Conclusions

Clearly, only a few aspects of hybrid systems have been considered in this
paper. Much more can be found in our book [30]. We hope we have convinced
the reader that the area of hybrid systems constitutes a challenging research
area, which is very well-motivated from applications. From a scientific point
of view it seems clear that real progress can only be made by merging concepts
and tools both from computer science and systems and control theory.
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Introduction

Nonlinear systems and control theory has witnessed tremendous develop-
ments over the last three decades. In particular, the introduction of geomet-
ric tools like Lie brackets of vector fields on manifolds has greatly advanced
the theory, and has enabled the proper generalization of many fundamental
concepts known for linear control systems to the nonlinear world. While the
emphasis in the eighties was primarily on the structural analysis of smooth
nonlinear dynamical control systems, in the nineties this has been combined
with analytic techniques for stability, stabilization and robust control, leading
e.g. to backstepping techniques and nonlinear H, control. Moreover, in the
last decade the theory of passive systems, and its implications for regulation
and tracking, has undergone a remarkable revival. This last development was
also spurred by work in robotics on the possibilities of shaping, by feedback,
the physical energy in such a way that it can be used as a suitable Lyapunov
function for the control purpose at hand. This has led to ‘what is some-
times called passivity—-based control. Many other important developments
have taken place, and much attention has been paid to special subclasses of
systems like mechanical systems with nonholonomic constraints.

All this has resulted in very lively research in nonlinear control, with many
actual and potential applications. The aim of the part “Physics in Control”
is to stress the importance of physical modeling for nonlinear control. In one
sense, this is common knowledge for everyday control engineering, but a gen-
eral theoretical framework for modeling is also of utmost importance for the
development of nonlinear control theory. Indeed, although in principle the
same applies to linear control systems, in the latter case the relative ease of
general linear control techniques may obviate the need for a representation
of the system which makes explicit the physical characteristics of the system.
On the other hand, the class of general nonlinear control systems is so over-
whelmingly rich, that it cannot be expected that a single theory will cover
the whole area, thus necessitating the exploitation of the inherent physical
structure of many nonlinear control systems. In this Part some of the recent
developments in systems and control theory of physical systems will be high-
lighted. This will include the Hamiltonian geometrization of network models
of physical systems, and its implications for balance which is so prominent
in Hamiltonian models and the theory of passive nonlinear systems, other
physical balance relations such as mass balance can play a crucial role. Also
the study of symmetries and its consequences for control substantially adds
to this framework. Application areas of these approaches range from mechan-
ical systems, robot manipulators, induction motors, power systems to (bio-)
chemical processes.



On Modelling and Control of Mass Balance
Systems

Georges Bastin

Centre for Systems Engineering and Applied Mechanics (CESAME), Université
Catholique de Louvain, Louvain la Neuve, Belgium

1 Introduction

The aim of this chapter is to give a self content presentation of the modelling
of engineering systems that are governed by a law of mass conservation and
to briefly discuss some control problems regarding these systems.

A general state-space model of mass balance systems is presented. The
equations of the model are shown to satisfy physical constraints of positivity
and mass conservation. These conditions have strong structural implications
that lead to particular Hamiltonian, Compartmental and Stoichiometric rep-
resentations. The modelling of mass balance systems is illustrated with two
simple industrial examples : a biochemical process and a grinding process.

In general, mass balance systems have multiple equilibria, one of them
being the operating point of interest which is locally asymptotically stable.
However if big enough disturbances occur, the process may be lead by ac-
cident to a behaviour which may be undesirable or even catastrophic. The
control challenge is then to design a feedback controller which is able to
prevent the process from such undesirable behaviours. Two solutions of this
problem are briefly described for inflow controlled systems : (i) robust state
feedback stabilisation of the total mass, (ii) output regulation for a class of
minimum phase systems.

Some interesting stability properties of open loop mass balance systems
are reviewed in Appendix.

2 Mass balance systems

In mass balance systems, each state variable z; (¢ = 1,...,n) represents an
amount of some material (or some matter) inside the system, while each state
equation describes a balance of flows as illustrated in Fig. 1 :

Ti=7i — i +Pi (1)

where p; represents the inflow rate, ¢; the outflow rate and r; an internal
transformation rate. The flows p;, ¢; and r; can be function of the state vari-
ables x1,...x, and possibly of control inputs wy,...,u%,. The state space
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model which is the natural behavioural representation of the system is there-
fore written in vector form :
& =r(z,u) - q(z,u) + p(z,u) (2)

As a matter of illustration, some concrete examples of the phenomena that
can be represented by the {p,q,r) flow rates in engineering applications are
given in Table 1.

Transformations
Physical : grinding, evaporation, condensation
Chemical : reaction, catalysis, inhibition
Biological : infection, predation, parasitism

Outflows
Withdrawals, extraction
Excretion, decanting, adsorption
Emigration, mortality

Inflows

Supply of raw material

Feeding of nutrients

Birth, immigration
etc...etc...

Table 1.

Dy

inflow outflow

1
1
i
i
i
. 1
T internal !
transformation i

i

i

i

Fig. 1. Balance of flows

In this paper, we shall assume that the functions p(z,u), q(z,u),7{z,u)
are differentiable with respect to their arguments. The physical meaning of
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the model (2) implies that these functions must satisfy two kinds of conditions
: positivity conditions and mass conservation conditions which are explicited
hereafter.

3 Positivity

Since there cannot be negative masses, the model (2) makes sense only if the
state variables z;(¢) remain non-negative for all ¢ :

zi(t) € Ry
where R denotes the set of real non-negative numbers. It follows that :
;=0 = ;>0 (3)

whatever the values of z; € Ry, j # ¢ and ug. This requirement is satisfied
if the functions p(z,w), ¢(z,u),r(z,u) have the following properties :

1. The inflow and outflow functions are defined to be non-negative :

p(z,u) | . o m n
q(z,u)}.R+xR ->R+

2. There cannot be an outflow if there is no material inside the system :
z; = 0= qi(z,u) =0 (4)

3. The transformation rate r;(z,u) : R} x R™ — R fnay be positive or
negative but it must be defined to be positive when z; is zero :

z; = 0= r;(z,u) >0 (5)
4 Conservation of mass

Provided the quantities z; are expressed in appropriate normalized units, the
total mass contained in the system may be expressed as! :

M= Z &I
i
When the system is closed (neither inflows nor outflows), the dynamics of M
are written : _
M = Z ri(z,u)
i

! To simplify the notations, it will be assumed throughout the paper that the
summation >, is taken over all possible values of ¢ (herei =1,...,n) and Zi;éj
over all possible values of i except j.
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It is obvious that the total mass inside a closed system must be conserved

(M = 0), which implies that the transformation functions r;(x, u) satisfy the
condition :

Zn(z,u) =0 (6)

K

The positivity conditions (4)- (5) and the mass conservation condition (6)
have strong structural implications that are now presented.

5 Hamiltonian representation

A necessary consequence of the mass conservation condition (6) is that n(n—

1) functions ri5(z,u) (i=1,...,n;j =1,...,n ;% # j) may be selected such
that :
ri(z,u) = Z rii(z,u) — Z rij(z,u) (7
i#i i

(note the indices !). Indeed, the summation over ¢ of the right hand sides of
(7) equals zero. It follows that any mass balance system (2) can be written

under the form of a so-called port-controlled Hamiltonian representation (see
(10], [11]) :

oM

& = [F(z,u) - D(a,w) (—a;)T + o) ®)

where the storage function is the total mass M(r) = 3, z;. The matrix
F(z,u) is skew-symmetric :

F(z,u) = —FT(z,u)
with off-diagonal entries fi;(x,u) = rji(x,u) — rij(z,u). The matrix D(z,u)
represents the natural damping or dissipation provided by the outflows. It is
diagonal and positive :
D(z,u) = diag (gi(z,u)) >0
The last term p(z,u) in (8) obviously represents a supply of mass to the

system from the outside.

6 Compartmental representation

There is obviously an infinity of ways of defining the r;; functions in (7). We
assume that they are selected to be non-negative :

rij(z,u) : R x R™ = Ry
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and differentiable since r;(z,u) is required to be differentiable.
Then condition (5) is satisfied if :

z;=0=r(z,u)=0 9)

Now, it is a well known fact (see e.g. [7], page 67) that if r;j(z,u) is differen-
tiable and if condition (9) holds, then r;;(z,u) may be written as :

Tij = ZiTij (.’I:, U)

for some appropriate function 7;;(x,u) which is defined on R} x R™, non-
negative and at least continuous. Obviously, the same is true for q;(z,u) due
to condition (4) :

qi(za U) = .'Ifi(ji(.'lf, U)

The functions 7;; and §; are called fractional rates. It follows that the mass
balance system (2) is then written under the following alternative represen-
tation :

i = G(z,u)T + p(z,u) (10)

where G(z, u) is a so-called compartmental matriz with the following proper-
ties :

1. G(z,u) is a Metzler matrix with non-negative off-diagonal entries :
gij(z,u) = Fji(z,u) >0 i#j

(note the inversion of indices !)
2. The diagonal entries of G(z,u) are non-positive :

gii(zau) = —(ji(z,u) - Zfij(zau) S 0
J#i

3. The matrix G(z,u) is diagonally dominant :

lgii(z,u)| > gjilz, u)
J#i

The term compartmental is motivated by the fact that a mass balance
system may be represented by a network of conceptual reservoirs called com-
partments. Each quantity (state variable) z; is supposed to be contained in
a compartment which is represented by a box in the network (see Fig. 2).
The internal transformation rates are represented by directed arcs : there
is an arc from compartment ¢ to compartment j when there is a non-zero
entry g;; = ;; in the compartmental matrix G. These arcs are labeled with
the fractional rates 7;;. Additional arcs, labeled respectively with fractional
outflow rates ¢; and inflow rates p; are used to represent inflows and out-

flows. Concrete examples of compartmental networks will be given in Fig.4
and Fig.6.
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A

Fig. 2. Network of compartments

A compartment is said to be outflow connected if there is a path from
that compartment to a compartment from which there is an outflow arc. The
system is said to be fully outflow connected if all compartments are outflow
connected. As stated in the following property, the non singularity of a com-
partmental matrix can be checked directly on the network.

Property 1. For a given value of (z,u) € R} X R™, the compartmental
matrix G(z,u) of a mass balance system (10) is non singular if and only if
the system is fully outflow connected. ]

A proof of this property can be found e.g. in [7].

7 Stoichiometric representation

In many cases the transformation rates r;(z,u),i = 1,n can be expressed as
linear combinations of a smaller set of non-negative and differentiable basis
functions pi{z,u), pa(z, u), ..., pr{z,u) (k <n):

ri(z,u) = Z cijpi(z,u)

This situation typically arises in chemical systems where the non-zero co-
efficients ¢;; are the stoichiometric coeflicients of the underlying reaction
network and the functions p;(z,u) are the reaction rates. The matrix C' =
[ci;] is therefore called stoichiometric and by defining the vector p(z,u) =

(p1(z, ), p2(z, ), ..., pr(z,u))T we have :
r(z,u) = Cp(z,u)

As we will see in the examples, this stoichiometric representation is also rele-
vant in many other physical and biological systems, As stated in the following
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property, the mass conservation condition (6) can easily be checked from the
stoichiometric matrix C independently of the rate functions p;(z,u).

Property 2. The mass conservation condition ), r;(z,u) = 0 is satisfied if
the sum of the entries of each column of C is zero :

Zcij =0 V]

or equivalently if the vector € = (1,1,...,1)7 belongs to the kernel of the
transpose of the stoichiometric matrix : e7C = 0. n

8 Examples of mass-balance systems

8.1 A biochemical process

A continuous stirred tank reactor is represented in Fig.3. The following bio-
chemical reactions take place in the reactor :

A — B
X
B . X
X
where X represents a microbial population and A, B organic matters. The
first reaction represents the hydrolysis of species A into species B, catalysed

by cellular enzymes. The second reaction represents the growth of microor-
ganisms on substrate B. It is obviously an auto-catalytic reaction. Assuming

e e
outflow
inflow —
O . B{s
5@
B——@
\___/

Fig. 3. Stirred tank reactor

mass action kinetics, the dynamics of the reactor may be described by the
model :

I1 = +k121T2 — ury

To = —k1ZT1Z2 + ko123 — uxs

T3 = —koz1T3 — ut3 + urs’
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with the following notations and definitions :

1 = concentration of species X in the reactor
T9 = concentration of species B in the reactor
3 = concentration of species A in the reactor
zi® = concentration of species A in the influent
u = dilution rate (control input)

k1, ks = rate constants.

This could be for instance the model of a biological depollution process
where uz® is the pollutant inflow while u(xy + z3) is the residual pollution
outflow. It is readily seen to be a mass-balance model with the following
definitions :

+ki1z129 ULy 0
r(z,u) = | —kiz122 + kaz123 g(z,u) = | uz, plz,u) = 0
—kox123 urs ’u,.’IIé"

The Hamiltonian representation is :

0 kl.’ljl.’llz 0 ury 0 0
F(z,u) = | ~kiz122 0 koz173 D(z,u) = uzry 0
0 —kox123 0 0 0 uzs

The compartmental matrix is :

—Uu kl.’lll 0
G(z,u) = 0 —u—kiz1 koxy
0 0 —u — kox

The compartmental network of the process is shown in Fig.4 where it can be
seen that the system is fully outflow connected. The stoichiometric represen-

in
UTg

Fig. 4. Compartmental network of the biochemical process model
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tation is :

10 kiziz
B _ 121 2)
9 - p(z) (kgxm

8.2 A grinding process

An industrial grinding circuit, as represented in Fig.5 is made up of the
interconnection of a mill and a separator. The mill is fed with raw material.
After grinding, the material is introduced in a separator where it is separated
in two classes : fine particles which are given off and oversize particles which
are recycled to the mill. A simple dynamical model has been proposed for
this system in [6]:

&1 = -z + (1 - a)¢(zs)
Ty = —Yoxo + ap(xs)

I3 = vexa — d(z3) +u
¢(z3) = k1zge 2o

with the following notations and definitions :

21 = hold-up of fine particles in the separator

Zo = hold-up of oversize particles in the separator

3 = hold-up of material in the mill

u = inflow rate

v121 = outflow rate of fine particles

vox2 = flowrate of recycled particles

¢(z3) = outflowrate from the mill = grinding function

« = separation constant (0 < a < 1)

1,72, k1, k2 = characteristic positive constant parameters

This model is readily seen to be a mass-balance system with the following
definitions :

(1 - a)p(xs) —MN1 0
r(z,u) = | —7z2 + ad(zs) q(z,u) = 0 plz,u) =10
Y2x2 — ¢(x3) 0 u
The Hamiltonian representation is :
0 0 (1 - a)¢(zs)
Flz,u) = 0 0 —Y2Z2 + ad(x3)
—(1 - a)g(z3) voz2 — ad(zs) 0
1171 00
Dz,w)=| 0 00

0 00
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separator

Y22

Fig. 5. Grinding circuit

The compartmental matrix is :

1 0 (1- ket
Gl,u)=| 0 —vy ake Fs
0 +y2  —kie k2%

The compartmental network of the process is shown in Fig.6 where it can be
seen that the system is fully outflow connected.

Ty

4

Fig. 6. Compartmental network of the grinding process model
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The stoichiometric representation is :

-(573) et

9 A fundamental control problem

Let us consider a mass-balance system with constant inputs denoted @ :
¢ =r(z, i) —q(z,a) + p(z, @) (11)

An equilibrium of this system is a state vector Z which satisfies the equilib-
rium equation :
r(Z,a) — q(z,a) + p(Z,u) =0

In general, mass balance systems (11) have multiple equilibria. One of these
equilibria is the operating point of interest. It is generally locally asymptot-
ically stable. This means that an open loop operation may be acceptable in
practice. But if big enough disturbances occur, it may arise that the system
is driven too far from the operating point towards a region of the state space
which is outside of its basin of attraction. From time to time, the process
may therefore be lead by accident to a behaviour which may be undesirable
or even catastrophic. We illustrate the point with our two examples.

Example 1 : The biochemical process

For a constant inflow rate 4 < kjzi*, the biochemical process has three
equilibria (see Fig.7). Two of these equilibria (E;, E») are solutions of the
following equations :

_ _ ; u JEP _ g
T1+ T3 =28 — — T3(T+ koZy) = Gz}’

ki

Ty =

| e

The third equilibrium (E3) is
£1=0 Zg=0 Z3=2z"

As we shall see later on, this system is globally stable in the sense that all
trajectories are bounded independently of @. Furthermore, by computing the
Jacobian matrix, it can be easily checked that F1 and E3 are asymptotically
stable while E2 is unstable.

E1 is the normal operating point corresponding to a high conversion of
substrate z3 into product z;. It is stable and the process can be normally
operated at this point. But there is another stable equilibrium E3 called
“wash-out steady state” which is highly undesirable because it corresponds
to a complete loss of productivity : Z; = 0. The pollutant just goes through
the tank without any degradation.



Ey
n % I o
Ty P

Fig. 7. Equilibria of the biochemical process

The problem is that an intermittent disturbance (like for instance a pulse
of toxic matter) may irreversibly drive the process to this wash-out steady-
state, making the process totally unproductive.

Example 2 : The grinding process
The equilibria of the grinding process (%1, T2, Z3) are parametrized by a

constant input flowrate @ as follows :

Y1 au U

— Ty = ¢(i‘3) = (1 — a)

T e 72(1 - a)

In view of the shape of ¢(x3) as illustrated in Fig.8, there are two distinct
equilibria if :

< (1 - a)d)maz

The equilibrium E1 on the left of the maximum is stable and the other
one E2 is unstable. Furthermore, for any value of 4, the trajectories become
unstable as soon as the state enters the set D defined by :

1- a)(“b(l‘g) <mzr <u
D ag(z3) < Y22
645/61‘3 <0

Indeed, it can be shown that this set D is forward invariant and if z(0) € D
then 21 =+ 0 z2 - 0 z3 — oo. In some sense, the system is Bounded Input
- Unbounded State (BIUS). This means that there can be an irreversible
accumulation of material in the mill with a decrease of the production to
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Fig. 8. Equilibria of the grinding process

zero. In the industrial jargon, this is called mill plugging. In practice, the
state may be lead to the set D by intermittent disturbances like variations
of hardness of the raw material. [ ]

In both examples we thus have a stable open loop operating point with a
potential process destabilisation which can take two forms :

e drift of the state  towards another (unproductive) equilibrium
* unbounded increase of the total mass M (z)

The control challenge is then to design a feedback controller
which is able to prevent the process from such undesirable be-
haviours.

Ideally a good control law should meet the following specifications :

S1. The feedback control action is bounded;

S2. The closed loop system has a single equilibrium in the positive orthant
which is globally asymptotically stable;

S3. The single closed-loop equilibrium may be assigned by an appropriate set
point.

Moreover, it could be desirable that the feedback stabilisation be robust
against modelling uncertainties regarding r(z) which is the most uncertain
term of the model in many applications.

This is indeed a vast problem which is far to be completely explored.
Hereafter, we limit ourselves to the presentation of two specific solutions of
this problem namely (i) the state feedback stabilisation of the total mass in
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inflow controlled systems; (ii) the output regulation with state boundedness
in stirred tank systems.

10 Inflow controlled systems

In this section, we will focus on the special case of inflow-controlled mass-
balance systems where the inflow rates p;(z,u) do not depend on the state
and are linear with respect to the control inputs uy :

pi(z,u) = Zbikuk bir >0 wurp >0
k

while the transformation rates r;(z,u) and the outflow rates ¢;(x,u) are in-
dependent of u. The model (2) is thus written as :

& =r(z) — q(z) + Bu (12)

with B the n x m matrix with entries b;.
The Hamiltonian representation specializes as :

am\"

& = [F(z) - D(z)] (—-—-) + Bu (13)
Oz

and the compartmental representation as :

& = G(z)z + Bu (14)

with appropriate definitions of the matrices F\(z), D(z) and G(z).
The grinding process model presented in the previous section is an exam-
ple of an inflow-controlled mass balance system.

10.1 Bounded input - (un)bounded state

Obviously, the state z of any mass-balance system is bounded if and only
if the total mass M(z) = Y, x; is itself bounded. In an inflow-controlled
system, the dynamics of the total mass are written as :

M==3 g+ bixw (15)
i ik

From this expression, a natural condition for state boundedness is clearly that
the total outflow 3~ ¢;(z) should exceed the total inflow 3, , biruy when the
total mass M(z) is big enough (in order to make the right hand side of (15)
negative). This intuitive condition is made technically precise as follows.

Property 3. Assume that :
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(A1) the input u(t) is bounded :
0<up(t) <up®™ VtVk=1,....m

(A2) There exists a constant My such that
Z qi(z) > Z bikuy®*
i ik

when M (z) > My

Then, the state of the system (12) is bounded and the simplex
A={z € R} :M(z) <M}

is forward invariant.
The system is BIBS if condition (A2) holds for any u™*, for example if
each q;(z) = o0 as ©; = oo. n

As a matter of illustration, it is readily checked that inflow-controlled
systems with linear outflows in all compartments i.e. q;(z) = a;z;,a; > 0,V
are necessarily BIBS. Indeed in this case we have

Zqz'(w) = Z a;x; > min;(a;) M (x)

and therefore My = —E—r;{:—"%n;—z

In contrast, as we have seen in the previous section, the grinding process of
Example 2 is not BIBS. Even worse, the state variable 3 may be unbounded
for any value of ¥™®* > (. This means that the process is globally unstable
for any bounded input.

10.2 Systems without inflows

Consider the case of systems without inflows u = 0 which are written in
compartmental form

z = G(2)z (16)

Obviously, the origin z = 0 is an equilibrium of the system.

Property 4. If the compartmental matrix G(x) is full rank for all z € R}
(equivalently if the system is fully outflow connected), then the origin z = 0
is a globally asymptotically stable (GAS) equilibrium of the unforced system
& = G(z)z in the non negative orthant, with the total mass M(z) = 3, z;
as Lyapunov function. ]
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Indeed, for such systems, the total mass can only decrease along the sys-
tem trajectories since there are outflows but no inflows :

M= ‘“Zqz'(m)

Property 4 says that the total mass M (z) and the state z will decrease
until the system is empty if there are no inflows and the compartmental
matrix is nonsingular for all z. A proof of this property and other related
results can be found in [2].

10.3 Robust state feedback stabilisation of the total mass

‘We now consider a single-input inflow-controlled mass-balance system of the
form :

T =ri(e) —qi(x) +bhu i=1,...,n (17)

with b, >0 Vi,5 ,b; >0

This system may be globally unstable (bounded input/unbounded state).
The symptom of this instability is an unbounded accumulation of mass inside
the system like for instance in the case of the grinding process of Example 2.

One way of approaching the problem is to consider that the control objec-
tive is to globally stabilise the total mass M (z) at a given set point M* > 0
in order to prevent the unbounded mass accumulation.

In order to achieve this control objective, the following positive control
law is proposed in [1] :

u(z) = max(0, a(z)) (18)

a(z) = <Z bi) [Z gi(z) + M(M™ — M(z)) (19)

where A > 0 is an arbitrary design parameter. The stabilising properties of
this control law are as follows.

Property 5. If the system (17) is fully outflow connected, then the closed
loop system (17)-(18)-(19) has the following properties for any initial condi-
tion z(0) € R} :

1. the set 2 = {z € R} : M(z) = M*} is forward invariant
2. the state z(t) is bounded for all ¢ > 0 and lim;_,o, M (z) = M*.

The proof of this property can be found in [1]. It is worth noting that
the control law (18)-(19) is independent from the internal transformation
term r(z). This means that the feedback stabilisation is robust against a full
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modelling uncertainty regarding r(z) provided it satisfies the conditions of
positivity and mass conservativity.

The application of this control law to the example of the grinding process
is studied in [1] where it is shown that the closed loop system has indeed a
single globally stable equilibrium (although the open loop may have 0, 1, or
2 equlibria).

10.4 Output regulation for a class of BIBS systems

In order to avoid undesirable equilibria, a possible solution is to regulate some
output variable at a set point y* which uniquely assigns the equilibrium of
interest. Here is an example of such a solution. We consider the class of
single-input BIBS mass-balance systems of the form :

j:i:r,-(a:)—aimi i:l,...,n—l

Zn = Tn(T) — anZp +u
with a; > 0 Vi. We assume that the measured output y = z,, is the state of an
initial compartment. The species z,, can only be consumed inside the system
but not produced. In other terms, in the compartmental graph of the system,
there are several arcs going from compartment n to other compartments

but absolutely no arcs coming from other compartments. Then, with the
notations :

E= (1, Zn)T y=zn
and appropriate definitions of ¢ and 1, the system is rewritten as :

£= oty (20)
v=-W&y)+an)y+u (21)

and the function (&, y) is non-negative.
The goal is to regulate the measured output y at a given set point y* > 0.
In order to achieve this objective, the following control law is considered :

w=((§y) + an)[(1 = Ny + Ay"] (22)
where A is a design parameter such that :
0<Aaxl

With this control law, the closed loop system is written as :
€= (&) (23)
y=—(&y) +a)Ay" —v) (24)

The stabilisation properties of this control law are analysed under the follow-
ing assumptions :
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A1l. The state is initialised in the non negative orthant with 0 < y(0) < y™%*

for some arbitrary y™* > y*.
A2. The function ¢(£,y) is bounded :

0<9(y) <P™ V(§y) € RY

A3. The zero dynamics £ = (&, y*) have a single equilibrium & € Rfr’l which
is GAS in the non negative orthant.

Assumption A3 is a standard global minimum phase assumption.

Property 6 Under Assumptions Al, A2 and A3, the closed loop system
(23)-(24) has the following properties :

1. The control input is positive and bounded :
0<u(t) < (@™ +aa)[(1 = A)y™* + Ay']

2. The state is bounded

3. The regulation error converges to zero : (y* —y) = 0 as t — 0.

4. The closed loop system has a single equilibrium (£,y*) which is GAS in
the non negative orthant.

Again the important point is that the closed loop system is guaranteed
to have a single GAS equilibrium although the open loop system may have
several equilibria as we have seen above.

11 Mass balance systems in stirred tanks

In many engineering applications, the system under consideration takes place
in liquid phase in a stirred tank with a constant volume as represented in
Fig.3. The state variables z; represent the concentrations of various species
in the tank. We consider the very common case of stirred tank mass balance
systems with the volumetric flow rate as single contro! input. In such systems,
both the mass inflow rates p;(x, u) and the mass outflow rates ¢;(x, u) linearly
depend on the input u :

pi(z,u) = uz®  gi(z,u) = uz; (25)

while the transformation rates r;(z,u) are independent of u. i > 0 denotes
the constant concentration of the i-th species in the influent stream. Obvi-
ously, zi" = 0 for those species which are not fed to the tank but are only
produced inside the system. The consistency of the model also requires that
the control input be non negative : u(t) > 0 V¢. The general mass-balance
(2) is thus written as :

i =r(x) +u(z™ ~z)
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with z*" the n x 1 vector with entries z:". The stoichiometric representation
specializes as :

i = Cp(z) + u(z™ — 1) (26)

The biochemical process model presented above is an example of a stirred
tank mass balance system.

State boudedness
For a stirred tank system, the dynamics of the total mass M(z) = ), z;
are written as :

M=u (Z Tt — M) (27)

which implies that M (z) and therefore z are bounded independently of the
control input u. Furthermore, the simplex

A:{xiZO:Z(x;I“—xi)zo}

18 forward invariant. A weaker but more explicit consequence is that if z is
initialised in A, then each state variable is bounded as :

0<zi(t) <) zi™ Ve

Stoichiometric invariants

From equation (27) we see also that the set 2 = {z € R} : ), (z;—2!") =
0} is forward invariant. This is a typical special case of stoichiometric invari-
ants which are classically considered in the Chemical Engineering literature
(see e.g. [3]). For any non-zero vector AT = (A1,..., A,) such that ATC =0
(the vector A is in the kernel of the transpose of the stoichiometric matrix

(), a stoichiometric invariant is defined as the set
={z e R} :\(z-2") =0}

It is indeed easy to check that this set is forward invariant along the trajec-
tories of the stirred tank system (26).

The nonlinear control of mass balance systems in stirred tank reactors is
discussed e.g. in [8] (see also [9] for related results).

Summary

In this chapter a general state-space model of mass balance systems has been
presented and illustrated with two simple industrial examples : a biochem-
ical process and a grinding process. In general, mass balance systems have
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multiple equilibria, one of them being the operating point of interest which is
locally asymptotically stable. However if big enough disturbances occur, the
process may be lead by accident to a behaviour which may be undesirable
or even catastrophic. The control challenge is then to design a feedback con-
troller which is able to prevent the process from such undesirable behaviours.
We have presented two very specific solutions for single input systems. But it
is obvious that the fundamental control problem formulated in this chapter
is far from being solved and deserves deeper investigations. In particular a
special interest should be devoted to control design methodologies which ex-
plicitely account for the structural specificities (Hamiltonian, Compartmen-
tal, Stoichiometric) of mass balance systems and rely on the construction of
physically based control laws.
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Appendix : stability conditions

In this appendix some interesting stability results for mass balance systems
with constant inputs are collected. These results can be useful for Lyapunov
control design or for the stability analysis of zero-dynamics.

Compartmental Jacobian matrix
We consider the general case of inflow controlled mass balance systems
with constant inflows :

¢ =r(z) - q(z) + p(@)
The Jacobian matrix of the system is defined as :
J@) = 2-r() - q(a)
T Oz q

When this matrix has a compartmental structure, we have the following sta-
bility result.

Property Al

a) If J(z) is a compartmental matrix V £ € R", then all bounded orbits
tend to an equilibrium in R%.
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b) If there is a bounded closed convex set D C R} which is forward invariant
and if J(x) is a non singular compartmental matrix Vr € D, then there is
a unique equilibrium Z € D which is GAS in D with Lyapunov function
Viz) =2 Iri(z) = qi(z) + pul@)].

A proof of part a) can be found in [7] Appendix 4 while part b) is a concise
reformulation of a theorem by Rosenbrock [12].

The assumption that J(z) is compartmental Yz € R is fairly restrictive.
For instance, this assumption is not satisfied neither for the grinding process
nor for the biochemical processes that we have used as examples in this pa-
per. A simple sufficient condition to have J(z) compartmental for all  is as
follows.

Property A2 The Jacobian matrix J(z) = a%[r(z) —g(z)] is compartmental
Vz € R} if the functions r(x) and ¢(z) satisfy the following monotonicity
conditions :

9y Ou; :
1) — > = :
) Bz, = 0 Bz, 0 k#i
aT‘ij aT‘i]’ aT‘iJ’ . R
> — < =
2) G, 20 azj_o 3o, =0 k#i#j

In the next two sections, we describe two examples of systems that have
a single GAS equilibrium in the nonnegative orthant although their Jacobian
matrix is not compartmental.

The Gouzé’s condition
We consider a class of stirred tank mass-balance systems of the form :

di = ) [rjle;) —rig(@:)] + a(zi" - ;) (28)
J#i
where the transformation rates r;;(z;) depend on z; only.

For example this can be the model of a stirred tank chemical reactor with
monomolecular reactions as explained in [5] (see also {13]).

The set 2 = {z € R} : M(z) = 3,2} is bounded, convex, compact
and invariant. By the Brouwer fixed point theorem, it contains at least an
equilibrium point £ = (Z;,Za,...,Zn) which satisfies the set of algebraic
equations :

> [ri(@;) — rij ()] + Gl — ) = 0

J#i
The following property then gives a condition for this equilibrium to be unique
and GAS in the non negative orthant.
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Property A3 If (ri;(z:) —ri(Z:))(x: —Z:) > Vz; > 0, then the equilibrium
(Z1,...,%n) of the system (28) is GAS in the non negative orthant with
Lyapunov function.

V(z) = Z |z; — Zi
=

The proof of this property is given in [5]. The interesting feature is that
the rate functions r;;(x;) can be non-monotonic (which makes the Jacobian
matrix non-compartmental) in contrast with the assumptions of Property A2.

Conservative Lotka-Volterra systems
We consider now a class of Lotka-Volterra ecologies of the form :

I; = X; Zaijxj—aio +u; t=1,...,n (29)
Jj#i
with a;p > 0 the natural mortality rates;
a;; = —a;; Vi # j the predation coeflicients (i.e. A = [a;;] is skew symmet-
ric);
i; > 0 the feeding rate of species z; with ). a; > 0.

This is a mass balance system with a bilinear Hamiltonian representation :
F(.’II) = [aijzizj] D(.’II) = (dlag U,io.’lii)

Assume that the system has an equilibrium in the positive orthant int{ R} }
i.e. there is a strictly positive solution (Z,Z2,...,Z,) to the set of algebraic
equations :

I TP
Q50 :Zaijxj +%§ 1=1,...,n
j#i

Assume that this equilibrium (%,,%s,...,Z,) is the only trajectory in the
set :

D ={z € int{RY}: a;(z; — &) = OVi}

Then we have the following stability property.
Property A4 The equilibrium (Z1,%s,. .., %,) of the Lotka-Volterra system
(29) is unique and GAS in the positive orthant with Lyapunov function

V(z) = (z; — Zilnz;)



On Modelling and Control of Mass Balance Systems 251

The proof is established, as usual, by using the time derivative of V:

vo=-[2(-3)]

and the La Salle’s invariance principle (see also [4] for related results).
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Abstract. It is discussed how network modeling of lumped-parameter physical
systems naturally leads to a geometrically defined class of systems, called port-
controlled Hamiltonian systems (with dissipation). The structural properties of these
systems are investigated, in particular the existence of Casimir functions and their
implications for stability. It is shown how the power-conserving interconnection
with a controller system which is also a port-controlled Hamiltonian system de-
fines a closed-loop port-controlled Hamiltonian system; and how this may be used
for control by shaping the internal energy. Finally, extensions to implicit system
descriptions (constraints, no a priori input-output structure) are discussed.

1 Introduction

Nonlinear systems and control theory has witnessed tremendous develop-
ments over the last three decades, see for example the textbooks [12,25]. Es-
pecially the introduction of geometric tools like Lie brackets of vector fields
on manifolds has greatly advanced the theory, and has enabled the proper
generalization of many fundamental concepts known for linear control sys-
tems to the nonlinear world. While the emphasis in the eighties has been
primarily on the structural analysis of smooth nonlinear dynamical control
systems, in the nineties this has been combined with analytic techniques for
stability, stabilization and robust control, leading e.g. to backstepping tech-
niques and nonlinear H -~ control. Moreover, in the last decade the theory of
passive systems, and its implications for regulation and tracking, has under-
gone a remarkable revival. This last development was also spurred by work
in robotics on the possibilities of shaping by feedback the physical energy in
such a way that it can be used as a suitable Lyapunov function for the control
purpose at hand, see e.g. the influential paper [42]. This has led to what is
called passivity-based control, see e.g. [26,32,13].

In this lecture we want to stress the importance of modelling for nonlinear
control. Of course, this is well-known for (nonlinear) control applications, but

* This paper is an adapted and expanded version of [33]. Part of this material can
be also found in [32].
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in our opinion also the development of nonlinear control theory for physical
systems should be integrated with a theoretical framework for modelling. We
discuss how network modelling of (lumped-parameter) physical systems nat-
urally leads to a geometrically defined class of systems, called port-controlled
Hamiltonian systems with dissipation (PCHD systems). This provides a uni-
fied mathematical framework for the description of physical systems stem-
ming from different physical domains, such as mechanical, electrical, thermal,
as well as mixtures of them.

Historically, the Hamiltonian approach has its roots in analytical me-
chanics and starts from the principle of least action, via the Euler-Lagrange
equations and the Legendre transform, towards the Hamiltonian equations of
motion. On the other hand, the network approach stems from electrical engi-
neering, and constitutes a cornerstone of systems theory. While most of the
analysis of physical systems has been performed within the Lagrangian and
Hamiltonian framework, the network modelling point of view is prevailing
in modelling and simulation of (complex) physical systems. The framework
of PCHD systems combines both points of view, by associating with the
interconnection structure (“generalized junction structure” in bond graph
terminology) of the network model a geometric structure given by a Poisson
structure, or more generally a Dirac structure. The Hamiltonian dynamics is
then defined with respect to this Poisson (or Dirac) structure and the Hamil-
tonian given by the total stored energy, as well as the energy-dissipating
elements and the ports of the system.

Dirac structures encompass the “canonical” structures which are classi-
cally being used in the geometrization of mechanics, since they also allow to
describe the geometric structure of systems with constraints as arising from
the interconnection of sub-systems. Furthermore, Dirac structures allow to
extend the Hamiltonian description of distributed parameter systems to in-
clude variable boundary conditions, leading to port-controlled distributed
parameter Hamiltonian systems with boundary ports, see [17].

The structural properties of PCHD systems can be investigated through
geometric tools stemming from the theory of Hamiltonian systems.We shall
indicate how the interconnection of PCHD systems leads to another PCHD
system, and how this may be exploited for control and design. In particular,
we investigate the existence of Casimir functions for the feedback intercon-
nection of a plant PCHD system and a controller PCHD system, leading to
a reduced PCHD system on invariant manifolds with shaped energy. We thus
provide an interpretation of passivity-based control from an interconnection
point of view. This point of view can be further extended to what has been re-
cently called Interconnection-Damping Assignment Passivity-Based Control
(IDA-PBC).
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2 Port-controlled Hamiltonian systems

2.1 From the Euler-Lagrange and Hamiltonian equations to
port-controlled Hamiltonian systems

Let us briefly recall the standard Euler-Lagrange and Hamiltonian equations
of motion. The standard Euler-Lagrange equations are given as

¢ (Srwa) - Sraa=n 0

where ¢ = (q1,.-.,qx)T are generalized configuration coordinates for the
system with k degrees of freedom, the Lagrangian L equals the difference K —
P between kinetic energy K and potential energy P, and 7 = (1y,...,7)7
is the vector of generalized forces acting on the system. Furthermore, %—s
denotes the column-vector of partial derivatives of L(q, ¢) with respect to the
generalized velocities ¢, . .. , gk, and similarly for %g—. In standard mechanical

systems the kinetic energy K is of the form

K(q,4) = 54" M(a)d 2

where the k x k inertia (generalized mass) matrix M (q) is symmetric and
positive definite for all ¢g. In this case the vector of generalized momenta

p=(p1,...,px)7, defined for any Lagrangian L as p = %%, is simply given
by

p= M(q)q, ()
and by defining the state vector (qi,... ,qk,p1,-..,Pk)> the k second-order
equations (1) transform into 2k first-order equations

g=%(q,p) (=M (gp)

o (4)

p=-%(@p)+7

where
L 7,1 L.p .
H(g,p) = 50" M7 (¢)p+ Plq) (=54 M(9)i+P(q) ) (5)

is the total energy of the system. The equations (4) are called the Hamiltonian
equations of motion, and H is called the Hamiltonian. The following energy
balance immediately follows from (4):

d oTH . 8TH . OTH T
—H = (g,p)q + —6—p—(q,p)p— —517((1,19)7 = ¢,

dt Toq (6)
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expressing that the increase in energy of the system is equal to the supplied
work (conservation of energy).

If the potential energy is bounded from below, that is 3C' > —o0 such that
P(q) > C, then it follows that (4) with inputs ¥ = 7 and outputs y = ¢
is a passive (in fact, a lossless) state space system with storage function
H(g,p) — C > 0 (see e.g. [43,11,32] for the general theory of passive and
dissipative systems). Since the energy is only defined up to a constant, we
may as well take as potential energy the function P(g)—C > 0, in which case
the total energy H(q,p) becomes nonnegative and thus itself is the storage
function.

System (4) is an example of a Hamiltonian system with collocated inputs
and outputs, which more generally is given in the following form

. OH
g = B—(q,p), (¢,p) =(q1,-+- ,Qks P15 - -, Pk)
p

p=-gn)+B@u,  wer”, )
q
oH _ -
y = BT(q)*ap (¢,p) (=BT(g9)¢), yeR™,

Here B(q) is the input force matrix, with B(g)u denoting the generalized
forces resulting from the control inputs w € R™. The state space of (7) with
local coordinates (g, p) is usually called the phase space. Normally m < k, in
which case we speak of an underactuated system.

Because of the form of the output equations y = B (¢)¢ we again obtain
the energy balance

2 0).p(0) = T )y (t) (8)

dt
and if H is bounded from below, any Hamiltonian system (7) is a lossless
state space system. For a system-theoretic treatment of Hamiltonian systems
(7), we refer to e.g. [4,29,30,6,25].
A major generalization of the class of Hamiltonian systems (7) is to con-
sider systems which are described in local coordinates as

¢ =J(x)%(z) +g(z)u, zeX ueR™
(9)
v =9 (@) 5 (x), y € R™

Here J(z) is an n X n matrix with entries depending smoothly on z, which
is assumed to be skew-symmetric

J(z) = —J" (), (10)

and z = (z1,...,z,) are local coordinates for an n-dimensional state space
manifold X. Because of (10) we easily recover the energy-balance 42 (z(t)) =
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uT (t)y(t), showing that (9) is lossless if H > 0. We call (9) with J satisfying
(10) a port-controlled Hamiltonian (PCH) system with structure matriz J(x)
and Hamiltonian H ([21,16,15]).

As an important mathematical note, we remark that in many examples
the structure matrix J will satisfy the “integrability” conditions

n . 0Jik ) 8ka ani _
S 500 Gt )+ e G ) Tale) e )] =0
i k=1,....n (11)

In this case we may find, by Darboux’s theorem (see e.g. [14]) around any
point o where the rank of the matrix J(z) is constant, local coordinates
= (¢,p,s) = (@1, qks D1y, Dk,S1,-..51), with 2k the rank of J and
n = 2k + [, such that J in these coordinates takes the form

0 I 0
J=|-I00 (12)
0 00

The coordinates (g,p,s) are called canonical coordinates, and J satisfying
(10) and (11) is called a Poisson structure matriz. In such canonical coor-
dinates the equations (9) are very close to the standard Hamiltonian form
(7).

PCH systems arise systematically from network-type models of physical
systems as formalized within the (generalized) bond graph language ([28,3]).
Indeed, the structure matrix J(z) and the input matrix g(z) may be directly
associated with the network interconnection structure given by the bond
graph, while the Hamiltonian H is just the sum of the energies of all the
energy-storing elements; see our papers [16,21,18,22,35,36,23,31]. This is most
easily exemplified by electrical circuits.

Example 1 (LCTG circuits) Consider a controlled LC-circuit consisting
of two parallel inductors with magnetic energies Hy{p1), Ha(s) (p1 and @9
being the magnetic flur linkages), in parallel with a capacitor with electric
energy H3(Q) (Q being the charge). If the elements are linear then Hy (@) =
ﬁ—lcpf, Hy(ps) = 2}1—2<p§ and H3(Q) = 5=Q*. Furthermore let V = u denote
a voltage source in series with the first inductor. Using Kirchhoff’s laws one
immediately arrives at the dynamical equations

. oH
Q 01-1] |2Q 0
ol =[-100 | | 2L |+ |1]u (13)
2 100] }on 0

~——ea—— | T2

J
_BH

= — (= current through first inductor)
dp1

Y
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with H(Q,¢1,p2) := Hy(p1) + Ha(p2) + H3(Q) the total energy. Clearly the
matriz J is skew-symmetric, and since J is constant it trivially satisfies (11).
In [22] it has been shown that in this way every LC-circuit with independent
elements can be modelled as a port-controlled Hamiltonian system, with the
constant skew-symmetric matriz J being solely determined by the network
topology (i.e., Kirchhoff’s laws). Furthermore, also any LCTG-circuit with
independent elements can be modelled as a PCH system, with J determined
by Kirchhoff’s laws and the constitutive relations of the transformers T and
gyrators G. O

Another important class of PCH systems are mechanical systems as arising

from reduction by a symmetry group, such as Euler’s equations for a rigid
body.

2.2 Basic properties of port-controlled Hamiltonian systems

Recall that a port-controlled Hamiltonian system is defined by a state space
manifold X endowed with a triple (J,g, H). The pair (J(z),g(z)),z € X,
captures the interconnection structure of the system, with g(z) modeling in
particular the ports of the system. Independently from the interconnection
structure, the function H : X — R defines the total stored energy of the
system.

PCH systems are intrinsically modular in the sense that any power-
conserving interconnection of a number of PCH systems again defines a PCH
system, with its overall interconnection structure determined by the intercon-
nection structures of the composing individual PCH systems together with
their power-conserving interconnection, and the Hamiltonian just the sum of
the individual Hamiltonians (see [36,31,7]). The only thing which needs to be
taken into account is the fact that a general power-conserving interconnection
of PCH systems not always leads to a PCH system with respect to a Poisson
structure J(z) and input matrix g(z) as above, since the interconnection may
introduce algebraic constraints between the state variables of the individual
sub-systems. Nevertheless, also in this case the resulting system still can be
seen as a PCH system, which now, however, is defined with respect to a Dirac
structure, generalizing the notion of a Poisson structure. The resulting class
of implicit PCH systems, see e.g. [36,31,7], will be discussed in Section 4.

From the structure matrix J(z) of a port-controlled Hamiltonian system
one can directly extract useful information about the dynamical properties
of the system. Since the structure matrix is directly related to the modeling
of the system (capturing the interconnection structure) this information usu-
ally has a direct physical interpretation. A very important property is the
possible existence of dynamical invariants independent of the Hamiltonian
H. Consider the set of p.d.e.’s

aTc
oz

(x)J(z) =0, z €&, (14)
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in the unknown (smooth) function C : X — R. If (14) has a solution C then
it follows that the time-derivative of C along the port-controlled Hamiltonian
system (9) satisfies

'dE% - 6TC(z)J( )6_H( )+ ;xc (z)g{z)u
z)u

= 2%%(x)9(z

Hence, for the input u = 0, or for arbitrary input functions if additionally
6;0 (z)g(xz) = 0, the function C(z) remains constant along the trajectories
of the port-controlled Hamiltonian system, irrespective of the precise form of
the Hamiltonian H. A function C : X — R satisfying (14) is called a Casimir
Junction (of the structure matrix J(z)).

It follows that the level sets L := {z € X|C(z) = ¢}, ¢ € R, of a Casimir
function C are invariant sets for the autonomous Hamiltonian system & =
J(z)%%(z), while the dynamics restricted to any level set L¢ is given as the
reduced Hamiltonian dynamics

(15)

e = Je(ze) 3;{: (zc) (16)

with He and Jo the restriction of H, respectively J, to L. The existence
of Casimir functions has immediate consequences for stability analysis of (9)
for u = 0. Indeed, if Cy,- - -, C, are Casimirs, then by (14) not only % dH =0
for u = 0, but

d

5 (H A+ Ha(Cr, -, G)) (2(1)) = 0 (17)
for any function H, : R — R. Hence, if H is not positive definite at an equi-
librium z* € X, then H + H,(Cy,--- ,C,) may be rendered positive definite

at =* by a proper choice of H,, and thus may serve as a Lyapunov function.
This method for stability analysis is called the Energy-Casimir method, see
e.g. [14].

Example 2 (Example 1 continued) The quantity ¢1 + ¢2 is a Casimir
function.

2.3 Port-controlled Hamiltonian systems with dissipation

Energy-dissipation is included in the framework of port-controlled Hamil-
tonian systems (9) by terminating some of the ports by resistive elements.
In the sequel we concentrate on PCH systems with linear resistive elements
up = —Syg for some positive semi-definite symmetric matric § = ST > 0,
where ug and yg are the power variables at the resistive ports. This leads to
models of the form

& = [J(z) — R(z)] & (z) + g(z)u

y=g"(2) 5 (2)

(18)
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where R(x) is a positive semi-definite symmetric matrix, depending smoothly
on z. In this case the energy-balancing property (7) takes the form

T
W (1)) = u" O(t) ~ 22 @O R0 S (1)

< ul(t)y(t). (19)

showing passivity if the Hamiltonian H is bounded from below. We call (18)
a port-controlled Hamiltonian system with dissipation (PCHD system). Note
that in this case two geometric structures play a role: the internal power-
conserving interconnection structure given by J(z), and an additional resis-
tive structure given by R(z).

% L

R

Fig. 1. Capacitor microphone

Example 3 ([24]) Consider the capacitor microphone depicted in Figure 1.
Here the capacitance C(q) of the capacitor is varying as a function of the
displacement q of the right plate (with mass m ), which is attached to a spring
(with spring constant k > 0 ) and a damper (with constant ¢ > 0 ), and
affected by a mechanical force F (air pressure arising from sound). Further-
more, ¥ 15 a voltage source. The dynamical equations of motion can be written
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as the PCHD system

g 010 000 o 0 0
p|=1{]-100{-{0cO G\ 41| F+|0|E
Q 000 00 % o4 0 %
0H
y1=8—p:q (20)
_16H _
yz—RaQ—

with p the momentum, R the resistance of the resistor, I the current through
the voltage source, and the Hamiltonian H being the total energy

1

2
2C(Q)Q ’ )

1 1
H = —p* + =k(q — 9)*
(0,p,Q) = 5-p" + 5k(a— 9" +
with § denoting the equilibrium position of the spring. Note that Fq is the
mechanical power, and EI the electrical power applied to the system. In the
application as a microphone the voltage over the resistor will be used (after
amplification) as o measure for the mechanical force F.

A rich class of examples of PCHD systems is provided by electro-mechanical
systems such as induction motors, see e.g. [27]. In some examples the in-
terconnection structure J(z) is actually varying, depending on the mode of
operation of the system, as is the case for power converters (see e.g. [9]) or
for mechanical systems with variable constraints.

3 Control of port-controlled Hamiltonian systems with
dissipation

The aim of this section is to discuss a general methodology for controlling
PCH or PCHD systems which exploits their Hamiltonian properties in an
intrinsic way. Since this exposition is based on ongoing recent research (see
e.g. [19,39,20,27,32]) we only try to indicate its potential. An expected benefit
of such a methodology is that it leads to physically interpretable controllers,
which possess inherent robustness properties. Future research is aimed at
corroborating these claims.

We have already seen that PCH or PCHD systems are passive if the
Hamiltonian H is bounded from below. Hence in this case we can use all the
results from the theory of passive systems, such as asymptotic stabilization
by the insertion of damping by negative output feedback, see e.g. [32]. The
emphasis in this section is however on the somewhat complementary aspect
of shaping the energy of the system, which directly involves the Hamiltonian
structure of the system, as opposed to the more general passivity structure.
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3.1 Control by interconnection

Consider a port-controlled Hamiltonian system with dissipation (18) regarded
as a plant system to be controlled. Recall the well-known result that the
standard feedback interconnection of two passive systems again is a passive
system; a basic fact which can be used for various stability and control pur-
poses ([11,26,32]). In the same vein we consider the interconnection of the
plant (18) with another port-controlled Hamiltonian system with dissipation

€= [Jc () — Re(OI1%5E () + ge(©uc
C: £ e X (22)
yo = g&(€) %E(€)
regarded as the controller system, via the standard feedback interconnection
u=-—yc-+e
Yo (23)
uc =y +ec

with e, ec external signals inserted in the feedback loop. The closed-loop

system takes the form
ﬁ" J(@)  —g(@)gt()] [R) 0 }){%’%( )}
L0 RC(OJ 25

& Yoot@o™@ el
@ $@@ Retl2.6)
g9(z e (24)
*[ 0 90(6)] [EC]

m _ o) 0 ) [5@

ye 0 go(6)] |2

which again is a port-controlled Hamiltonian system with dissipation, with
state space given by the product space & x X, total Hamiltonian H(z) +
He(€), inputs (e, ec) and outputs (y, yc). Hence the feedback interconnection
of any two PCHD systems results in another PCHD system; just as in the
case of passivity. This is a special case of a theorem ([32]), which says that any
regular power-conserving interconnection of PCHD systems defines another
PCHD system.

It is of interest to investigate the Casimir functions of the closed-loop
system, especially those relating the state variables £ of the controller system
to the state variables z of the plant system. Indeed, from a control point
of view the Hamiltonian H is given while Ho can be assigned. Thus if we
can find Casimir functions C;(&,z),i = 1,---,r, relating £ to = then by the
Energy-Casimir method the Hamiltonian H + H¢ of the closed-loop system
may be replaced by the Hamiltonian H + Ho+ H,(Cy,- -, C,), thus creating
the possibility of obtaining a suitable Lyapunov function for the closed-loop
system.
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Example 4 [38] Consider the “plant” system

r 9H
gl [0 1] 9 0
HE R PRHE
OH - o (25)
9q
y=1[01]
8H
op 4
with q the position and p being the momentum of the mass m, in feedback
interconnection (u = —yc + e,uc = y) with the controller system (see Figure
2)

k

me —NVW— m —s

Fig. 2. Controlled mass

OH¢
Age 0 10
I?c =1-1-b1
Agq 0 -10 1

o @
5E Ok
+
o
2
Q

=
[T~}

_ 8H

yc = 8Aq
where Agq, is the displacement of the spring k., Aq is the displacement of the
spring k, and p. is the momentum of the mass m.. The plant Hamiltonian is
H(p) = 5-p*, and the controller Hamiltonian is given as He (Aqe,p., Aq) =

2
%(T—Zfz +k(Aq)? + ke(Aq.)?). The variable b > 0 is the damping constant, and
e is an external force. The closed-loop system possesses the Casimir function

Clg, Age, Aq) = Ag — (g — Age), (26)
implying that along the solutions of the closed-loop system
Agq=q—A¢g.+¢ (27)

with ¢ a constant depending on the initial conditions. With the help of LaSalle’s
Invariance prineciple it can be shown that restricted to the invariant manifolds
(27) the system is asymptotically stable for the equilibria ¢ = Aq. = p =p, =
0. O
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As a special case (see [32] for a more general discussion) let us consider
Casimir functions for (24) of the form

fi—Gi(Z‘) s izl,...,dimXC:nc (28)

That means that we are looking for solutions of the p.d.e.’s (with e; denoting
the i-th basis vector)

J(z) — R(z) —g(2)g&(6)

T,
{_aaG,(gC) e?] o
v 9c(€)g" (z) Je(€) — Ro(§)
fori=1,...,nc, relating all the controller state variables £,,... , &, to the
plant state variables . Denoting G = (G,,. .. ,Gno)T this means ([32]) that

G should satisfy

97G (2)J(2) 9% (z) = Jo (£)

G (2)J(z) = g (£) g7 (2)

In this case the reduced dynamics on any multi-level set

Lo ={(z,9))& = Gi(z) + ¢i,i=1,...nc} (30)
can be immediately recognized ({32]) as the PCHD system
& = [J(z) — R(z)] 858 (z), (31)

with the same interconnection and dissipation structure as before, but with
shaped Hamiltonian H, given by

Hy(z) = H(z) + Ho(G(z) + ¢). (32)

In the context of actuated mechanical systems this amounts to the shaping
of the potential energy as in the classical paper [42], see [32].

A direct interpretation of the shaped Hamiltonian Hy in terms of energy-
balancing is obtained as follows. Since Rc(€) = 0 by (29) the controller
Hamiltonian H¢ satisfies d—gQ = ugyc. Hence along any multi-level set L¢

given by (30) %i = %— + %Q = %Iti ~ 4Ty, since v = —yc and ue = y.

Therefore, up to a constant,

H,(2(t)) = H(z(t)) - /0 W7 ()y(r)dr, (33)

and the shaped Hamiltonian H, is the original Hamiltonian H minus the
energy supplied to the plant system (18) by the controller system (22). From
a stability analysis point of view (33) can be regarded as an effective way of
generating candidate Lyapunov functions H, from the Hamiltonian H.
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3.2 Passivity-based control of port-controlled Hamiltonian
systems with dissipation

In the previous section we have seen how under certain conditions the feed-
back interconnection of a PCHD system having Hamiltonian H (the “plant”)
with another PCHD system with Hamiltonian He (the “controller”) leads to
a reduced dynamics given by (31) for the shaped Hamiltonian H,. From a
state feedback point of view the dynamics (31) could have been directly ob-
tained by a state feedback u = a(z) such that

OHo(G(z) +c)

o(@)alz) = (@) - R(@) TTEE (34)
Indeed, such an «(z) is given in explicit form as
a(z) = —gL(G(z) + 0 22 (G() + ) (35)

K3

The state feedback u = «a(z) is customarily called a passivity-based control
law, since it is based on the passivity properties of the original plant system
(18) and transforms (18) into another passive system with shaped storage
function (in this case H,).

Seen from this perspective we have shown in the previous section that the
passivity-based state feedback v = a(z) satisfying (34) can be derived from
the interconnection of the PCHD plant system (18) with a PCHD controller
system (22). This fact has some favorable consequences. Indeed, it implies
that the passivity-based control law defined by (34) can be equivalently gen-
erated as the feedback interconnection of the passive system (18) with another
passive system (22). In particular, this implies an inherent invaeriance prop-
erty of the controlled system: the plant system (18), the controller system
(32), as well as any other passive system interconnected to (18) in a power-
conserving fashion, may change in any way as long as they remain passive,
and for any perturbation of this kind the controlled system will remain stable.
For a further discussion of passivity-based control from this point of view we
refer to [27].

3.3 Interconnection and damping assignment passivity-based
control

A further generalization of the previous subsection is to use state feedback in
order to change the interconnection structure and the resistive structure of
the plant system, and thereby to create more flexibility to shape the storage
function for the (modified) port-controlled Hamiltonian system to a desired
form. This methodology has been called Interconnection-Damping Assign-
ment Passivity-Based Control (IDA-PBC) in {27], and has been succesfully
applied to a number of applications. The method is especially attractive if
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the newly assigned interconnection and resistive structures are judiciously
chosen on the basis of physical considerations, and represent some “ideal” in-
terconnection and resistive structures for the physical plant. For an extensive
treatment of IDA-PBC we refer to [27].

4 Physical systems with algebraic constraints

From a general modeling point of view physical systems are, at least in first
instance, often described by DAFE’s, that is, a mixed set of differential and
algebraic equations. This stems from the fact that in many modelling ap-
proaches the system under consideration is naturally regarded as obtained
from interconnecting simpler sub-systems. These interconnections in general,
give rise to algebraic constraints between the state space variables of the
sub-systems; thus leading to implicit systems. While in the linear case one
may argue that it is often relatively straightforward to eliminate the alge-
braic constraints, and thus to reduce the system to an ezplicit form without
constraints, in the nonlinear case such a conversion from implicit to explicit
form is usually fraught with difficulties. Indeed, if the algebraic constraints
are nonlinear then they need not be analytically solvable (locally or glob-
ally). More importantly perhaps, even if they are analytically solvable, then
often one would prefer not to eliminate the algebraic constraints, because of
the complicated and physically not easily interpretable expressions for the
reduced system which may arise.

4.1 Power-conserving interconnections

In order to geometrically describe network models of physical systems we
first consider the notion of a Dirac structure, formalizing the concept of a
power-conserving interconnection. Let F be an /-dimensional linear space,
and denote its dual (the space of linear functions on F) by F*. The product
space F x F* is considered to be the space of power variables, with power
intrinsically defined by

P=<ff> (1) eFxF, (36)

where < f*|f > denotes the duality product, that is, the linear function
f* € F* acting on f € F. Often we call F the space of flows f, and F* the
space of efforts e, with the power of an element (f,e) € F x F* denoted as
<elf >.

Remark 1 If F is endowed with an inner product structure <,>, then F*
can be naturally identified with F in such a way that < e|f >=<e,f>, f €
F,e€e F*~F.
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Example 5 Let F be the space of generalized velocities, and F* be the space
of generalized forces, then < e|f > is mechanical power. Similarly, let F
be the space of currents, and F* be the space of voltages, then < e|f > is
electrical power.

There exists on F x F* a canonically defined symmetric bilinear form
< (fr,e1),(f2,e2) >rxri=<er|fa >+ <ealfr > (37)

for f; € F, e; € F*,i = 1,2. Now consider a linear subspace S C F x F*,
and its orthogonal complement with respect to the bilinear form <, >ry 7+
on F x F*, denoted as S+ C F x F*. Clearly, if S has dimension d, then the
subspace S+ has dimension 2¢ — d. (Since dim (F x F*) = 2¢, and <, > 5 7~
is a non-degenerate form.)

Definition 1 [5,8,7] A constant Dirac structure on F is a linear subspace
D C F x F* such that

D=7+ (38)

It immediately follows that the dimension of any Dirac structure D on an
¢-dimensional linear space is equal to £. Furthermore, let (f,e) € D = D+.
Then by (37)

0=<(f,e),(f,e) >rxr-=2<elf >. (39)

Thus for all (f,e) € D we obtain < e|f >= 0; and hence any Dirac structure
D on F defines a power-conserving relation between the power variables

(f,e) € F x F~.

Remark 2 The property dim D = dim F is intimately related to the usually
expressed statement that a physical interconnection can not determine at the
same time both the flow and effort (e.g. current and voltage, or velocity and

force).

Constant Dirac structures admit different matriz representations. Here we
just list three of them, without giving proofs and algorithms to convert one
representation into another, see e.g. [7].

Let D C F x F*, with dim F = £, be a constant Dirac structure. Then D
can be represented as

1. (Kernel and Image representation, [7,35]).
D={(fe) e Fx F*|Ff -+ Ee=0} (40)
for £ x £ matrices F' and E satisfying
(i) EFT +FET =0

(i4) rank [FiE]=1¢ (41)
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Equivalently,
D={(f,e) e FxF*|f=ETX\ e=FT) XeR} (42)
2. (Constrained input-output representation, [7]).
D={(fe) e Fx F*|f = —Je+ G\ GTe =0} (43)

for an ¢ x ¢ skew-symmetric matrix J, and a matrix G such that ImG =
{f1(f,0) € D}. Furthermore, KerJ = {¢|(0,¢) € D}.
3. (Canonical coordinate representation, [5]).
There exist linear coordinates (g, p,r,s) for F such that in these coordi-
nates and dual coordinates for 7*, (f,e) = (fq, fp, fr, fs:€q,€p, €r,€5) €
D if and only if
fo=¢ep fp=—eq
(44)
fr=0 e= 0
Example 6 Kirchhoff’s laws are a special case of (40). By taking F the space
of currents and F* the space of voltages, Kirchhoff’s current laws determine
a subspace V of F, while Kirchhoff’s voltage laws determine the orthogonal
subspace VTt of F*. Hence, the Dirac structure determined by Kirchhoff’s
laws is given as V x V™" C F x F*, with kernel representation of the form

D= {(f,e) e F x F*|Ff =0,Ee =0}, (45)

for suitable matrices F' and E (consisting only of elements +1, —1 and 0),
such that Ker F =V and Ker E = V°"*"_ In this case the defining property
D = D+ of the Dirac structure amounts to Tellegen’s theorem.

Example 7 Any skew-symmetric map J : F* — F defines the Dirac struc-
ture

D={(f.e) e F x F*|f = —Je}, (46)

as a special case of (43). Furthermore, any interconnection structure (J,g)
with J skew-symmetric defines a Dirac structure given in hybrid input-output
representation as

=115 i

Given a Dirac structure D on F, the following subspaces of F, respectively
F*, will shown to be of importance in the next section
Gi:={feF|3ee F* st (f,e) € D}
(48)
P :={ee F*|3f € Fst. (f,e) € D}
The subspace G expresses the set of admissible flows, and P; the set of
admissible efforts. In the image representation (42) they are given as

Gi = Im ET, P, = Im FT. (49)
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4.2 Implicit port-controlled Hamiltonian systems

From a network modeling perspective, see e.g. [28,3], a (lumped-parameter)
physical system is directly described by a set of (possibly multi-dimensional)
energy-storing elements, a set of energy-dissipating or resistive elements,
and a set of ports (by which interaction with the environment can take
place), interconnected to each other by a power-conserving interconnection,
see Figure 3. Associated with the energy-storing elements are energy-variables

resistive

elements

energy- power-

storing conserving

elements interconnection

Fig. 3. Network model of physical systems

Z1, T, being coordinates for some n-dimensional state space manifold A,
and a total energy H : X —+ R. The power-conserving interconnection also
includes power-conserving elements like (in the electrical domain) transform-
ers, gyrators, or (in the mechanical domain) transformers, kinematic pairs
and kinematic constraints. In first instance (see later on for the non-constant
case) the power-conserving interconnection will be formalized by a constant
Dirac structure on a finite-dimensional linear space F := Fg X Fg X Fp, with
Fs denoting the space of flows fg connected to the energy-storing elements,
Fr denoting the space of flows fg connected to the dissipative (resistive)
elements, and Fp the space of external flows fp which can be connected to
the environment. Dually, we write F* = F& x Fp x Fp, with eg € F§ the
efforts connected to the energy-storing elements, eg € F}, the efforts con-
nected to the resistive elements, and ep € Fp the efforts to be connected to
the environment of the system.

In kernel representation, the Dirac structure on F = Fg X Fg X Fp is
given as

D= {(fSafRafP)eSaeR’eP)l
(50)
Fsfs+ Eses + Frfr + Erer + Fpfp + Epep = 0}
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for certain matrices Fs, Es, Fr, Er, Fp, Ep satisfying
(i) EsF¥ + FsEL + ErFL + FREL + EpFL + FPEL =0

e (51)
(#) rank |Fs:Fr:Fp:Es:Eg:Ep| = dimF

The flow variables of the energy-storing elements are given as £(t) = ‘fi—”t’ (t),te

R, and the effort variables of the energy-storing elements as %—g(z(t)) (im-
plying that < 22 (z(2))|z(t) >= ZfL(z(t)) is the increase in energy). In order

to have a consistent sign convention for energy flow we put

fs=-z%
(52)
8H
es = 5, (2)
Restricting to linear resistive elements, the flow and effort variables connected
to the resistive elements are related as

fr=—Seg (53)
for some matrix S = ST > 0. Substitution of (52) and (53) into (50) yields

. OH

*Fsil,‘(t) + ESEE(Z‘(I‘.)) — FrSeg + Eger + Fpfp+ Epep =0 (54)
with Fs,Eg, Fr, Eg, Fp, Ep satisfying (51). We call (54) an implicit port-
controlled Hamiltonian system with dissipation, defined with respect to the
constant Dirac structure D, the Hamiltonian H, and the resistive structure
S.

Actually, for many purposes this definition of an implicit PCHD system is
not general enough, since often the Dirac structure is not constant, but modu-
lated by the state variables z. In this case the matrices Fg, Es, Fr, Eg, Fp, Ep
depend (smoothly) on z, leading to the implicit PCHD system

~Fs(z(t))#(t) + Es(z(t)) 52 (z(t) — Fr(z(t))Ser(t)

(55)
+FEgr(z(t))er(t) + Fp(z(t)) fp(t) + Ep(z(t))ep(t) =0, te R
with
Es(z)F§ (z) + Fs(2)E§ (z) + Er(z) Ff (z) + Fr(z) R (2)
+ Ep(z)FE(z) + Fp(z)EL(z) =0, Vze X (56)

rank Fs(:v)fFR(z)pr(z)EES(z)EER(x)EEp(9:)} =dim F
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Remark 3 Strictly speaking the flow and effort variables z(t) = —fs(t),
respectively %(z’(t)) = eg(t), are not living in the constant linear space
Fs, respectively F§g, but instead in the tangent spaces Tyy) X, respectively co-
tangent spaces T;(t)/\’, to the state space manifold X. This is formalized in
the definition of a non-constant Dirac structure on a manifold; see [5,8,7,82].

By the power-conservation property of a Dirac structure (cf. (39)) it follows
directly that any implicit PCHD system satisfies the energy-inequality

4 (2(1)) = < 2 (2(t))J (1) >=
(57)
= —ch(t)Ser(t) + eB () fp(t) < EB(1)fp (1),

showing passivity if H > 0. The algebraic constraints that are present in the
implicit system (55) are expressed by the subspace Py, and the Hamiltonian
H. In fact, since the Dirac structure D is modulated by the z-variables,
also the subspace P; is modulated by the z-variables, and thus the effort
variables eg, er and ep necessarily satisfy (es,er,ep) € Pi(z), z € X, and
thus, because of (49),

es € Im F1(z),er € Im FL(z),ep € Im F3(z). (58)
The second and third inclusions entail the expression of e and ep in terms
of the other variables, while the first inclusion determines, since es = %—g(x),
the following algebraic constraints on the state variables

OH

5o (2) € Tm FX(z). (59)

The Casimir functions C : X — R of the implicit system (55) are deter-
mined by the subspace G1(z). Indeed, necessarily (fs, fr, fp) € Gi(z), and
thus by (49)

fs € Im E§(z), fr € Im E}(z), fp € Im Ef(). (60)

Since fs = —#(t), the first inclusion yields the flow constraints z(t) €
Im EL(z(t)), te R Thus C:X — R is a Casimir function if %(m(t)) =
%T—zg(x(t))a'c(t) =0forall #(t) € Im EZ(z(t)). Hence C : X — R is a Casimir
of the implicit PCHD system (54) if it satisfies the set of p.d.e.’s

ocC

5;(1') € Ker Eg(z) (61)
Remark 4 Note that C : X — R satisfying (61) is a Casimir function of
(54) in a strong sense: it s a dynamical invariant (%(m(t)) = 0) for every
port behavior and every resistive relation (53).
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Example 8 [7,36,35] Consider a mechanical system with k degrees of free-
dom, locally described by k configuration variables ¢ = (q1,...,qz). Sup-
pose that there are constraints on the generalized velocities ¢, described as
AT (q)¢ = 0, with A(q) ar x k matriz of rank r everywhere (that is, there are
r independent kinematic constraints). This leads to the following constrained
Hamiltonian equations

. OH
qg= —6};(“’)

5= =5 (@p) + Al + Bla)u
y = BT(q)aa—IZ(q,p) (62)
0= AT(Q)%—IZ(q,p)

where B(q)u are the external forces (controls) applied to the system, for some
k xm matriz B(q), while A(q)\ are the constraint forces. The Lagrange mul-
tipliers A(t) are uniquely determined by the requirement that the constraints
AT (q(t))g(t) = O have to be satisfied for all t. One way of proceeding with
these equations is to eliminate the constraint forces, and to reduce the equa-
tions of motion to the constrained state space X, = {{q,p) | AT(q)%—‘Z(q,p) =
0}, thereby obtaining an (explicit) port-controlled Hamiltonian system; see
[34]. An alternative, and more direct, approach is to view the constrained
Hamiltonian equations (62) as an implicit port-controlled Hamiltonian sys-
tem with respect to the Dirac structure D, given in constrained input-output
representation (43) by

D = {(fs, fr,es,ep)|0 = AT (q)es, ep = BT (g)es,

ge= | 5 S et L) 2+ Lot o2 e ™)

In this case, the algebraic constraints on the state variables (q,p) are given
as AT(q)%—f;(q,p) = 0, while the Casimir functions C are determined by the
equations

ore, | . . L T, N
T(q)q =0, for all ¢ satisfying A* (q)q = 0. (64)
q

(63)

Hence, finding Casimir functions amounts to integrating the kinematic con-
straints AT (q)¢ = 0.

Remark 5 For a proper notion of integrability of non-constant Dirac struc-
tures, generalizing the Jacobi identity for the structure matriz J(x), we refer
e.g. to [7]. For example, the Dirac siructure {63) is integrable if and only if
the kinematic constraints are holonomic.
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In principle, the theory presented in Section 3 for stabilization of ezplicit port-
controlied Hamiltonian systems can be directly extended, mutatis mutandis,
to implicit port-controlled Hamiltonian system. In particular, the standard
feedback interconnection of an implicit port-controlled Hamiltonian system P
with port variables fp,ep (the “plant”) with another implicit port-controlled
Hamiltonian system with port variables fS,e% (the “controller”), via the
interconnection relations

fp = —ef + [
(65)
fS =ep + Xt

is readily seen to result in a closed-loop implicit port-controlled Hamiltonian
system with port variables f¢*t ¢€Xt Furthermore, as in the explicit case, the
Hamiltonian of this closed-loop system is just the sum of the Hamiltonian of
the plant PCHD system and the Hamiltonian of the controller PCHD system.
Finally, the Casimir analysis for the closed-loop system can be performed
along the same lines as before.

5 Conclusions and future research

We have shown how network modelling of (lumped-parameter) physical sys-
tems, e.g. using bond graphs, leads to a mathematically well-defined class
of open dynamical systems, which are called port-controlled Hamiltonian
systems (with dissipation). Furthermore, we have tried to emphasize that
this definition is completely modular, in the sense that any power-conserving
interconnection of these systems defines a system in the same class, with
overall interconnection structure defined by the individual interconnection
structures, together with the power-conserving interconnection.

Clearly, the theory presented in this paper opens up the way for many
other control and design problems than the stabilization problem as briefly
discussed in the present paper. Its potential for set-point regulation has al-
ready received some attention (see [19,20,27,32]), while the extension to track-
ing problems is wide open. In this context we also like to refer to some recent
work concerned with the shaping of the Lagrangian, see e.g. [2]. Also, the
control of mechanical systems with nonhclonomic kinematic constraints can
be fruitfully approached from this point of view, see e.g. [10], as well as
the modelling and control of multi-body systems, see [18,23,40]. The frame-
work of PCHD systems seems perfectly suited to theoretical investigations
on the topic of impedance control; see already [38] for some initial results
in this direction. Also the connection with multi-modal (hybrid) systems,
correspouding to PCHD systems with varying interconnection structure [9],
needs further investigations. Finally, our current research is concerned with
the formulation of distributed parameter systems as port-controlled Hamilto-
nian systems, see [17], and applications in tele-manipulation [41] and smart
structures [37].



274

Arjan van der Schaft et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A.M. Bloch & P.E. Crouch, “Representations of Dirac structures on vector
spaces and nonlinear LC circuits”, Proc. Symposia in Pure Mathematics, Dif-
ferential Geometry and Control Theory, G. Ferreyra, R. Gardner, H. Hermes,
H. Sussmann, eds., Vol. 64, pp. 103-117, AMS, 1999.

. A. Bloch, N. Leonard & J.E. Marsden, “Matching and stabilization by the

method of controlled Lagrangians”, in Proc. 37th IEEE Conf. on Decision and
Control, Tampa, FL, pp. 1446-1451, 1998.

P.C. Breedveld, Physical systems theory in terms of bond graphs, PhD thesis,
University of Twente, Faculty of Electrical Engineering, 1984

R.W. Brockett, “Control theory and analytical mechanics”, in Geometric Con-
trol Theory, (eds. C. Martin, R. Hermann), Vol. VII of Lie Groups: History,
Frontiers and Applications, Math. Sci. Press, Brookline, pp. 1-46, 1977.

T.J. Courant, “Dirac manifolds”, Trans. American Math. Soc., 319, pp. 631-
661, 1990.

P.E. Crouch & A.J. van der Schaft, Variational and Hamiltonian Control Sys-
tems, Lect. Notes in Control and Inf. Sciences 101, Springer-Verlag, Berlin,
1987.

M. Dalsmo & A.J. van der Schaft, “On representations and integrability of
mathematical structures in energy-conserving physical systems”, SIAM J. Con-
trol and Optimization, 37, pp. 54-91, 1999.

I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equa-
tions, John Wiley, Chichester, 1993.

G. Escobar, A.J. van der Schaft & R. Ortega, “A Hamiltonian viewpoint in the
modelling of switching power converters”, Automatica, Special Issue on Hybrid
Systems, 35, pp. 445-452, 1999.

K. Fujimoto, T. Sugie, “Stabilization of a class of Hamiltonian systems with
nonholonomic constraints via canonical transformations”, Proc. European Con-
trol Conference ’99, Karlsruhe, 31 August - 3 September 1999.

D.J. Hill & P.J. Moylan, “Stability of nonlinear dissipative systems,” IEEE
Trans. Aut. Contr., AC-21, pp. 708-711, 1976.

A. Isidori, Nonlinear Control Systems (2nd Edition), Communications and Con-
trol Engineering Series, Springer-Verlag, London, 1989, 3rd Edition, 1995.

R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative systems,
Communication and Control Engineering series, Springer, London, March 2000.
J.E. Marsden & T.S. Ratiu, Introduction to Mechanics and Symmetry, Texts
in Applied Mathematics 17, Springer-Verlag, New York, 1994.

B.M. Maschke, Interconnection and structure of controlled Hamiltonian sys-
tems: a network approach, (in French), Habilitation Thesis, No.345, Dec. 10,
1998, University of Paris-Sud , Orsay, France.

B.M. Maschke, A.J. van der Schaft, “An intrinsic Hamiltonian formulation of
network dynamics: non-standard Poisson structures and gyrators”, J. Franklin
Institute, vol. 329, no.5, pp. 923-966, 1992.

B.M. Maschke, A.J. van der Schaft, “Port controlled Hamiltonian representa-
tion of distributed parameter systems”, Proc. IFAC Workshop on Lagrangian
and Hamiltonian methods for nonlinear control, Princeton University, March
16-18, pp. 28-38, 2000.



18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Network Modelling of Physical Systems 275

B.M. Maschke, C. Bidard & A.J. van der Schaft, “Screw-vector bond graphs for
the kinestatic and dynamic modeling of multibody systems”, in Proc. ASME
Int. Mech. Engg. Congress, 55-2, Chicago, U.S.A., pp. 637-644, 1994.

B.M. Maschke, R. Ortega & A.J. van der Schaft, “Energy-based Lyapunov
functions for forced Hamiltonian systems with dissipation”, in Proc. 37th IEEE
Conference on Decision and Control, Tampa, FL, pp. 3599-3604, 1998.

B.M. Maschke, R. Ortega, A.J. van der Schaft & G. Escobar, “An energy-
based derivation of Lyapunov functions for forced systems with application to
stabilizing control”, in Proc. 14th IFAC World Congress, Beijing, Vol. E, pp.
409-414, 1999.

B.M. Maschke & A.J. van der Schaft, “Port-controlled Hamiltonian systems:
Modelling origins and system-theoretic properties”, in Proc. 2nd IFAC NOL-
COS, Bordeaux, pp. 282-288, 1992.

B.M. Maschke, A.J. van der Schaft & P.C. Breedveld, “An intrinsic Hamiltonian
formulation of the dynamics of LC-circuits, IEEE Trans. Circ. and Syst., CAS-
42, pp. 73-82, 1995.

B.M. Maschke & A.J. van der Schaft, “Interconnected Mechanical Systems,
Part II: The Dynamics of Spatial Mechanical Networks”, in Modelling and
Control of Mechanical Systems, (eds. A. Astolfi, D.J.N. Limebeer, C. Melchiorri,
A. Tornambe, R.B. Vinter), pp. 17-30, Imperial College Press, London, 1997.
J.1. Neimark & N.A. Fufaev, Dynamics of Nonholonomic Systems, Vol. 33 of
Translations of Mathematical Monographs, American Mathematical Society,
Providence, Rhode Island, 1972.

. H. Nijmeijer & A.J. van der Schaft, Nonlinear Dynamical Control Systems,

Springer-Verlag, New York, 1990.

R. Ortega, A. Loria, P.J. Nicklasson & H. Sira-Ramirez, Passivity-based Control
of Buler-Lagrange Systems, Springer-Verlag, London, 1998.

R. Ortega, A.J. van der Schaft, B.M. Maschke & G. Escobar, “Interconnection
and damping assignment passivity-based control of port-controlled Hamiltonian
systems”, 1999, submitted for publication.

H. M. Paynter, Analysis and design of engineering systems, M.I.'T. Press, MA,
1960.

A.J. van der Schaft, System theoretic properties of physical systems, CWI Tract
3, CWI, Amsterdam, 1984.

A.J. van der Schaft, “Stabilization of Hamiltonian systems”, Nonl. An. Th.
Math. Appl., 10, pp. 1021-1035, 1986.

AJ. van der Schaft, “Interconnection and geometry”, in The Mathematics of
Systems and Control, From Intelligent Control to Behavioral Systems (eds. J. W.
Polderman, H.L. Trentelman), Groningen, 1999.

A.J. van der Schaft, Lo-Gain and Passivity Techniques in Nonlinear Control,
2nd revised and enlarged edition, Springer-Verlag, Springer Comrmmunications
and Control Engineering series, p. xvi+249, London, 2000 (first edition Lect.
Notes in Control and Inf. Sciences, vol. 218, Springer- Verlag, Berlin, 1996).
A.J. van der Schaft, “Port-controlled Hamiltonian systems: Towards a theory
for control and design of nonlinear physical systems”, J. of the Society of In-
strument and Control Engineers of Japan (SICE), vol. 39, no.2, pp. 91-98, 2000.
A.J. van der Schaft & B.M. Maschke, “On the Hamiltonian formulation of
nonholonomic mechanical systems”, Rep. Math. Phys., 34, pp. 225-233, 1994.



276

35.

36.

37.

38.

39.

40.

41.

42.

43.

Arjan van der Schaft et al.

A.J. van der Schaft & B.M. Maschke, “The Hamiltonian formulation of energy
conserving physical systems with external ports”, Archiv fiir Elektronik und
Ubertragungstechnik, 49, pp. 362-371, 1995.

A.J. van der Schaft & B.M. Maschke, “Interconnected Mechanical Systems,
Part I: Geometry of Interconnection and implicit Hamiltonian Systems”, in
Modelling and Control of Mechanical Systems, (eds. A. Astolfi, D.J.N. Lime-
beer, C. Melchiorri, A. Tornambe, R.B. Vinter), pp. 1-15, Imperial College
Press, London, 1997.

K. Schlacher, A. Kugi, “Control of mechanical structures by piezoelectric actu-
ators and sensors”. In Stability and Stabilization of Nonlinear Systems, eds. D.
Aeyels, F. Lamnabhi-Lagarrigue, A.J. van der Schaft, Lecture Notes in Control
and Information Sciences, vol. 246, pp. 275-292, Springer-Verlag, London, 1999.
S. Stramigioli, From Differentiable Manifolds to Interactive Robot Control, PhD
Dissertation, University of Delft, Dec. 1998.

S. Stramigioli, B.M. Maschke & A.J. van der Schaft, “Passive output feedback
and port interconnection”, in Proc. 4th IFAC NOLCOQS, Enschede, pp. 613-618,
1998.

S. Stramigioli, B.M. Maschke, C. Bidard, “A Hamiltonian formulation of the
dynamics of spatial mechanism using Lie groups and screw theory”, to appear in
Proc. Symposium Commemorating the Legacy, Work and Life of Sir R.S. Ball,
J. Duffy and H. Lipkin organizers, July 9-11, 2000, University of Cambridge,
Trinity College, Cambridge, U.X..

S. Stramigioli, A.J. van der Schaft, B. Maschke, S. Andreotti, C. Melchiorri,
“Geometric scattering in tele-manipulation of port controlled Hamiltonian sys-
tems”, 39th IEEE Conf. Decision & Control, Sydney, 2000.

M. Takegaki & S. Arimoto, “A new feedback method for dynamic control of
manipulators”, Trans. ASME, J. Dyn. Systems, Meas. Control, 103, pp. 119-
125, 1981.

J.C. Willems, “Dissipative dynamical systems - Part I: General Theory”,
Archive for Rational Mechanics and Analysis, 45, pp. 321-351, 1972.



Energy Shaping Control Revisited

Romeo Ortegal, Arjan J. van der Schaft?, Iven Mareels®, and Bernhard
Maschke?

! Lab. des Signaux et Systémes, CNRS-SUPELEC, Gif-sur-Yvette, France
2 Fac. of Mathematical Sciences, University of Twente, Enschede,
The Netherlands
% Dept. Electrical and Computer Engineering, University of Melbourne, Australia
4 Automatisme Industriel, Paris, France

1 Introduction

Energy is one of the fundamental concepts in science and engineering prac-
tice, where it is common to view dynamical systems as energy—transformation
devices. This perspective is particularly useful in studying complex nonlinear
systems by decomposing them into simpler subsystems which, upon intercon-
nection, add up their energies to determine the full system’s behavior. The
action of a controller may be also understood in energy terms as another dy-
namical system—typically implemented in a computer—interconnected with
the process to modify its behavior. The control problem can then be recast
as finding a dynamical system and an interconnection pattern such that the
overall energy function takes the desired form. This “energy shaping” ap-
proach is the essence of passivity based control {(PBC), a controller design
technique that is very well-known in mechanical systems.

Our objectives in this article are threefold: First, to call attention to
the fact that PBC does not rely on some particular structural properties
of mechanical systems, but hinges on the more fundamental (and universal)
property of energy balancing. Second, to identify the physical obstacles that
hamper the use of “standard” PBC in applications other than mechanical
systems. In particular, we will show that “standard” PBC is stymied by
the presence of unbounded energy dissipation, hence it is applicable only
to systems that are stabilizable with passive controllers. Third, to revisit a
PBC theory that has been recently developed to overcome the dissipation
obstacle as well as to make the incorporation of process prior knowledge
more systematic. These two important features allow us to design energy
based controllers for a wide range of physical systems.

Intelligent Control Paradigm

Control design problems have traditionally been approached from a
signal-processing viewpoint; that is, the plant to be controlled and the con-
troller are viewed as signal-processing devices that transform certain input
signals into outputs. The control objectives are expressed in terms of keeping
some error signals small and reducing the effect of certain disturbance in-
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puts on the given regulated outputs, despite the presence of some unmodeled
dynamics. To make the problem mathematically tractable, the admissible
disturbances and unmodeled dynamics are assumed to be norm-bounded,
and consequently, the indicators of performance are the size of the gains
of the operators that map these various signals. In the case of linear time-
invariant systems, this “intelligent control paradigm” (paraphrasing Willems
[1]) has been very successful, essentially because disturbances and unmodeled
dynamics can be discriminated, via filtering, using frequency—-domain consid-
erations. The problem of reducing the gains of nonlinear operators can also be
expressed in a clear, analytic way [2]. There are, however, two fundamental
differences with respect to the linear time-invariant case: first, the solution
involves some far from obvious computations. Second, and perhaps more im-
portant, since nonlinear systems “mix” the frequencies, it is not clear how
to select the most likely disturbances, and we have to “crank up” the gain
to quench the (large set of) undesirable signals and meet the specifications.
Injecting high gains in the loop, besides being intrinsically conservative—
hence yielding below—par performance—brings along a series of well-known
undesirable features (e.g., noise amplification, actuator wear, and high energy
consumption).

There are many practical control problems where we have available struc-
tural information about the plant. In these cases, it is reasonable to expect
that the conservatism mentioned above could be reduced if we could incorpo-
rate this prior information in the controller design. Unfortunately, a proce-
dure to systematically carry out this objective does not seem to be available.
[The typical approach is to classify the nonlinearities according to the role
they play in the derivative of a Lyapunov function candidate. This test has
very little to do with the physics of the system. It is obviously tied up with
the particular choice of the Lyapunov function, which stemming from our
linear inheritance, is systematically taken to be a quadratic function in the
“errors.”] It is our contention that the inability to incorporate prior knowl-
edge is inherent to the signal-processing viewpoint of the intelligent control
paradigm and is therefore independent of the particular design technique.
In the authors’ opinion, this situation has stymied communication between
practitioners and control theorists, seriously jeopardizing the future of mod-
ern model-based nonlinear control systems design.

The purpose of this article is to contribute, if modestly, to the rever-
sal of this trend calling attention to the importance of incorporating energy
principles in control. To achieve our objective, we propose to abandon the
intelligent control paradigm and instead adopt the behavioral framework pro-
posed by Willems [1]. In Willems’s far—reaching interpretation of control, we
start from a mathematical model obtained from first principles, say, a set of
higher order differential equations and some algebraic equations. Among the
vector of time trajectories satisfying these equations are components that are
available for interconnection. The controller design then reduces to defining
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an additional set of equations for these interconnection variables to impose a
desired behavior on the controlled system. We are interested here in the in-
corporation into this paradigm of the essential energy component. Therefore,
we view dynamical systems (plants and controllers) as energy—transformation
devices, which we interconnect (in a power—preserving manner) to achieve the
desired behavior. More precisely, we are interested in lumped-parameter sys-
tems that satisfy an energy balancing principle, where the interconnection
with the environment is established through power port variables. The power
port variables are conjugated, and their product has units of power, for in-
stance, currents and voltages in electrical circuits or forces and velocities in
mechanical systems. This is the scenario that arises from any form of physical
network modeling.

Our first control objective is to regulate the static behavior (i.e., the equi-
libria}, which is determined by the shape of the energy function. It is therefore
natural to recast our control problem in terms of finding a dynamical system
and an interconnection pattern such that the overall energy function takes
the desired form. There are at least two important advantages of adopting
such an “energy shaping” perspective of control:

1. The energy function determines not just the static behavior, but also,
via the energy transfer between subsystems, its transient behavior. Fo-
cusing our attention on the systems energy, we can then aim, not just at
stabilization, but also at performance objectives that can, in principle,
be expressed in terms of “optimal” energy transfer. Performance and not
stability is, of course, the main concern in applications.

2. Practitioners are familiar with energy concepts, which can serve as a
lingua franca to facilitate communication with control theorists, incor-
porating prior knowledge and providing physical interpretations of the
control action.

Background

The idea of energy shaping has its roots in the work of Takegaki and Ari-
moto [3] in robot manipuiator control, a field where it is very well known and
highly successful. Simultaneously and independently of [3] the utilization of
these ideas for a large class of Euler-Lagrange systems was suggested in [4].
[See also Slotine’s innovative paper [5] and the related view on the control of
physical systems by Hogan [6].] Using the fundamental notion of passivity, the
principle was later formalized in [7], where the term passivity-based control
(PBC) was coined to define a controller design methodology whose aim is to
render the closed-loop system passive with a given storage function. The im-
portance of linking passivity to energy shaping can hardly be overestimated.
On the one hand, viewing the control action in terms of interconnections of
passive systems provides an energy balancing interpretation of the stabiliza-
tion mechanism. More precisely, we have defined in [8] a class of systems
{(which includes mechanical systems) such that the application of PBC yields
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a closed—loop energy that is equal to the difference between the stored and
the supplied energies. For obvious reasons, we call this special class of PBC
energy balancing PBC. On the other hand, showing that the approach does
not rely on some particular structural properties of mechanical systems, but
hinges instead on the more fundamental (and universal) property of passivity,
it can be extended to cover a wide range of applications.

In carrying out this extension, two approaches have been pursued:

o The first approach is similar to classical Lyapunov—based design, where we
first select the storage function to be assigned and then design the controller
that ensures this objective. Extensive applications of this line of research may
be found in [9] (see also [10]-[15]) and are not reviewed in the present work. [It
should be noted that in this approach, the desired storage function—typically
quadratic in the increments—does not qualify as an energy function in any
meaningful physical sense. Actually, it has been shown that the stabilization
mechanism is akin to systems inversion instead of energy shaping [9], hence
a stable invertibility assumption is usually required.]

e The second, newer approach stems from the energy balancing view of me-
chanical systems discussed above. The closed-loop storage function—which
is now a bona fide energy function—is not postulated a priori, but is instead
obtained as a result of our choice of desired subsystems interconnections and
damping. This idea was first advanced for stability analysis in [16]; the exten-~
sion for controller design was then reported in [17] and [8]; since then many
successful applications, including mass-balance systems [18], electrical ma-
chines [19], power systems {20], magnetic levitation systems |21}, and power
converters [22], have been reported.

The aim of the present work is to provide a new energy balancing perspec-
tive of PBC that embraces and unifies its classical and modern versions. To
enhance readability and widen our target audience, we strip away as much as
possible the mathematical details and concentrate instead on the basic un-
derlying principles and limitations. To underscore the fact that the principles
are universal, we present them in a very general circuit—theoretic framework,
without any additional mathematical structure attached to the system mod-
els. Particular emphasis is given to exhibiting the physical interpretation of
the concepts, for instance, the central role played by dissipation. Toward this
end, we illustrate our main points with simple physical examples.

The remainder of the article is organized as follows. First, we review
the basic notions of passivity and stabilization via energy shaping. Next, we
define the concept of energy balancing PBC and prove that this principle
is applicable to all mechanical systems. Later we show that systems which
extract an infinite amount of energy from the controller (i.e., systems with
unbounded dissipation) cannot be stabilized with energy balancing PBCs. To
characterize the class of systems that are stabilizable with energy balancing
PBCs and eventually extend PBC to systems with unbounded dissipation,
we propose to adopt Willems’s “control-as—interconnection” viewpoint, a per-
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spective that naturally provides a geometric interpretation to the notion of
energy shaping. Then, after identifying a class of “admissible dissipations,”
we view the control action as the interconnection of the system with a pas-
sive controller. To stabilize systems with unbounded dissipations, we propose
to model the action of the control as a state—modulated power—preserving
interconnection of the plant with an infinite energy source system. These
developments, which lead to the definition of a new class of PBCs called in-
terconnection and damping assignment PBC, are presented for the so-called
port—controlled Hamiltonian systems. Finally, we detail the application of in-
terconnection and damping assignment PBC to a physical example, and then
we present some concluding remarks.

Notation All vectors in the article, including the gradient, are defined as
column vectors. Also, we use throughout x to denote a generic positive con-
stant.

2 Passivity and Energy Shaping

We are interested here in lumped—parameter systems interconnected to the
external environment through some port power wvariables v € R™ and
y € R™, which are conjugated in the sense that their product has units of
power {e.g., currents and voltages in electrical circuits, or forces and velocities
in mechanical systems). We assume the system satisfies the energy—balance
equation

t
Hls(0)] - Ho©)] = [ o (siu(s)ds—  dit) ®
N ~— - 0 g
stored energy N——— " dissipated
supplied

where z € R™ is the state vector, H(z) is the total energy function, and d(t)
is a nonnegative function that captures the dissipation effects (e.g., due to
resistances and frictions). Energy balancing is, of course, a universal property
of physical systems; therefore, our class, which is nothing other than the
well-known passive systems, captures a very broad range of applications that
include nonlinear and time-varying dynamics.

Two important corollaries follow from (1)

¢ The energy of the uncontrolled system (i.e., with u = 0) is nonincreasing
(that is, Hx(t)] < H[z(0)]), and it will actually decrease in the presence
of dissipation. If the energy function is bounded from below, the system
will eventually stop at a point of minimum energy. Also, as expected, the
rate of convergence of the energy function is increased if we extract energy
from the system, for instance, setting u = —Kg;y, with Ky = KdTi >0a
so—called damping injection gain.
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¢ Given that

- /O "W (s)y(s)ds < H[z(0)] < oo )

the total amount of energy that can be extracted from a passive system
is bounded. [This property, which (somehow misleadingly) is often stated
with the inequality inversed, will be instrumental in identifying the class
of systems that are stabilizable with energy balancing PBC.]

2.1 Standard Formulation of PBC

The point where the open—loop energy is minimal (which typically coincides
with the zero state) is usually not the one of practical interest, and control
is introduced to operate the system around some nonzero equilibrium point,
say .. In the standard formulation of PBC, we label the port variables as
inputs and outputs (say u and y, respectively) and pose the stabilization
problem in a classical way. [We consider first static state feedback control
laws and postpone the case of dynamic controllers to the section on admissible
dissipations. Also, we refer the reader to [8] and references therein for further
details on the dynamic and output feedback cases.]

e Select a control action u = fB(z) + v so that the closed-loop dynamics
satisfies the new energy balancing equation

Hylz(t)] — Hylz(0)] = /O v (8)z(s)ds — dg(t)

where Hy(z), the desired total energy function, has a strict minimum
at Z., z (which may be equal to y) is the new passive output, and we
have replaced the natural dissipation term by some function dy(t) > 0
to increase the convergence rate. Assigning an energy function with a
minimum at the desired value is usually referred to as energy shaping
while the modification of the dissipation is called damping injection.

Later, we will show that this classical distinction between inputs and
outputs is restrictive, and the “control-as-interconnection” perspective of
Willems is needed to cover a wider range of applications.

2.2 Discussion

Remark 1. For simplicity, we have treated all the components of the vector u
as manipulated variables. In many practical cases, this vector contains some
external (non-manipulated) variables such as disturbances or sources (see [8],
[19] for some examples). Furthermore, there are some applications where the
control action does not enter at all in u, for instance, in switched devices {22].
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The analysis we will present in the sequel applies as well—mutatis mutandi—
to those cases.

Remark 2. The choice of the desired dissipation in the damping injection
stage is far from obvious. For instance, contrary to conventional wisdom, and
except for the highly unusual case where we can achieve exponential stability,
performance is not necessarily improved by adding positive damping, but it
can actually be degraded as illustrated in [22], [23]. Furthermore, as shown in
[18], [21] there are cases in which shuffling the damping between the channels
can be beneficial for our control objective; this will be illustrated in the last
section of this paper.

Remark 3. It is well known that solving the stabilization problem via pas-
sivation automatically ensures some robustness properties. Namely, stability
will be preserved for all passive unmodeled dynamics between the port vari-
ables u, z. When z = y, these correspond to phenomena such as frictions and
parasitic resistances.

Remark 4. It is clear also that if the dissipation is such that the passivity
property is strengthened to output strict passivity, that is,

/0 T (s)e(s)ds > 8 / Ja(e)\2ds —

for some 4,k > 0, then we can show (with a simple completion of the squares
argument) that the map v — z has gain smaller than %. Consequently, we can
reduce the amplification factor of the energy of the input noise by increasing
the damping. See, however, Remark 2 above.

Remark 5. Passivity can be used for stabilization independently of the no-
tion of energy shaping. In fact, it suffices to find an output z = h(z) such
that z square integrable implies z(t) — z« as t — co. Stabilization via pas-
sivation for general nonlinear systems, which has its roots in [24], [25], is
one of the most active current research areas in nonlinear control, and some
constructive results are available for systems in special forms [26], [27]. The
energy shaping approach is a reasonable way to incorporate the information
about the energy functions that is available in physical systems to simplify
the passivation problem. Besides making the procedure more systematic, it
usually yields physically interpretable controllers, considerably simplifying
their commissioning stage. See [9] for an extensive discussion on these issues,
including a detailed historical review, and the application of PBC to many
practical examples.

3 Stabilization via Energy Balancing

There is a class of systems, which interestingly enough includes mechanical
systems, for which the solution to the problem posed above is very simple,
and it reduces to being able to find a function B(z) such that the energy
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supplied by the controller can be expressed as a function of the state. Indeed,
from (1) we see that if we can find a function 8(z) such that

- / BT a(s)]y(s)ds = Hale(t)] + r 3)

for some function Hgy(z), then the control u = S(z) + v will ensure that the
map v — y is passive with new energy function

Hy(z) & H(z) + Hy (). (4)

If, furthermore, H;(z) has a minimum at the desired equilibrium z,, then it
will be stable. Notice that the closed~loop energy is equal to the difference
between the stored and the supplied energies. Therefore, we refer to this
particular class of PBCs as energy balancing PBCs.

3.1 Mechanical Systems

Let us look at the classical example of position regulation of fully actuated
mechanical systems with generalized coordinates ¢ € R™/? and total energy

H(g,) = 50" D(g)i + V(q)

where D(q) = D7(g) > 0 is the generalized mass matrix and V(q) is the
systems potential energy, which is also bounded from below. It has been
shown in [7] that for these systems, the passive outputs are the generalized
velocities (that is, y = ¢). The simplest way to satisfy condition (3) and shape
the energy is by choosing

Blg) = %‘qu CKy(a—a)

where g, is the desired constant position and K, = K; > 0 is a proportional
gain. Indeed, replacing the expression above and y = ¢ in (3) we get

¢
. 1
- [ A laGo)iCe)ds = ~Via(o)] + a0 - 0.l Kla(t) - 0] +
0
and the new total energy for the passive closed—loop map v + ¢ is

Ha(a,d) = 50" D@+ 5(a - 4) Kpla ~ a2),
which has a minimum in (g«, 0), as desired. To ensure that the trajectories ac-
tually converge to this minimum (i.e., that the equilibrium is asymptotically
stable), we add some damping v = — K44, as discussed above.

Of course, the controller presented above is the very well-known
PD+gravity compensation of [3]. The purpose of the exercise is to provide a
new interpretation for the action of this controller, underscoring the fact that



Energy Shaping Control Revisited 285

the storage function that is assigned to the closed loop is (up to an integra-
tion constant) precisely the difference between the stored and the supplied
energies (i.e., H(z) — fot u' (s)y(s)ds). Hence application of PBC for position
regulation of mechanical systems yields energy balancing PBCs.

Remark 6. With the elementary procedure described above, it is possible
to re—derive most of the energy balancing PBCs (e.g., with saturated inputs,
output feedback) reported for position regulation of robot manipulators. This
usually requires some ingenuity to find out the “right” energy function to be
assigned. It is clear, however, that the technique is restricted to potential
energy shaping. Later we present a new methodology that allows us also to
shape the kinetic energy, which is required for some underactuated mechan-
ical devices (see [28], [29], [30]).

Remark 7. In the underactuated case, when the number of control actions
is smaller than the number of degrees of freedom, we find that y = M ¢,
with M the input matrix for the force (or torque) vector u. As shown in
[9], the energy shaping procedure still applies in these cases, provided some
dissipation propagation condition is satisfied.

3.2 General (f,g,h) Systems

Energy-balancing stabilization can, in principle, be applied to general (f, g, h)
nonlinear passive systems of the form

[ &= 1) + gla)u
s {22 (5)

From the celebrated nonlinear version of the Kalman-Yakubovich~Popov
lemma [31], we know that for this class of systems, passivity is equivalent
to the existence of a nonnegative scalar function H(z) such that

() <0

0H
h(z) = g (z) = ().
(@) = 9" ()5 (2)
We have the following simple proposition.

Proposition 1. Consider the passive system (5) with storage function H(z)
and an admissible equilibrium z,. If we can find a vector function §(z)
such that the partial differential equation

:
(52@) U@ +98E) = -h @8 ©)

can be solved for H,(z), and the function Hy(z) defined as (4) has a
minimum at z,, then v = B(z) + v is an energy balancing PBC. Con-
sequently, setting v = 0, we have that z, is a stable equilibrium with
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the difference between the stored and the supplied energies constituting
a Lyapunov function.

The proof follows immediately, noting that the left-hand side of (6) equals
H, while the right-hand side is —y ", and then integrating from 0 to ¢.

Caveat emptor. This result, although quite general, is of limited inter-
est. First of all, (f, g, h) models do not reveal the role played by the energy
function in the system dynamics. Hence it is difficult to incorporate prior
information to select a S(z) to solve the PDE (6). A more practical and
systematic result will be presented later for a more suitable class of models,
namely, the so—called port—controlled Hamiltonian systems. Second, we will
show below that, beyond the realm of mechanical systems, the applicabil-
ity of energy balancing PBC is severely restricted by the system’s natural
dissipation.

4 Dissipation Obstacle

To investigate the conditions under which the PDE (6) is solvable we make
the following observation

Fact A necessary condition for the global solvability of the PDE (6) is that
hT(z)B(z) vanishes at all the zeros of f(z) + g(z)B(z), that is,

f(@) +9(2)8(z) = 0= h' (2)B(z) = 0.

Now f(z) + g(z)B8(z) is obviously zero at the equilibrium z., hence the
right-hand side —y"u, which is the power extracted from the controller,
should also be zero at the equilibrium. This means that energy balancing
PBC is applicable only if the energy dissipated by the system is bounded, and
consequently if it can be stabilized extracting a finite amount of energy from
the controller. This is indeed the case in regulation of mechanical systems
where the extracted power is the product of force and velocity and we want
to drive the velocity to zero. Unfortunately, it is no longer the case for most
electrical or electromechanical systems where power involves the product of
voltages and currents and the latter may be nonzero for nonzero equilibria.

Let us illustrate this point with simple linear time—invariant RLC circuits.
First, we prove that the series RLC circuit is stabilizable with an energy
balancing PBC. Then we move the resistance to a parallel connection and
show that, since for this circuit the power at any nonzero equilibrium is
nonzero, energy balancing stabilization is no longer possible.

4.1 Finite Dissipation Example

Consider the series RLC circuit of Fig. 1, where the port power variables
are the input voltage and the current. The “natural” state variables for this
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. . . . A
circuit are the charge in the capacitor and the flux in the inductance z =

[gc, #1]", and the total energy function is
L o 1,
= — 2. 7
H(z) 5001 T 5722 (7)
1
Lo
Y
L
u(®) C, 7/~ Ldc
1
R,

Fig. 1. Series RLC circuit

The dynamic equations are given by

. 1
Ty — T2
X ig:—%ml—%mg+u. (8)
1
Yy =52

The circuit clearly satisfies (1) with d(¢) = ng[—i—mg(s)]zds (i.e., the energy
dissipated in the resistor).

We are given an equilibrium z, that we want to stabilize. It is clear
from (8) that the admissible equilibria are of the form z, = [z1.,0]". It is
important to note that the extracted power at any admissible equilibrium is
Z€ro.

To design our energy balancing PBC, we look for a solution of the PDE
(6), which in this case takes the form

(F7) oo = | g + Foo = 60 T22(0) =~ 2aba).

Notice that the energy function H(z) already “has a minimum” at z, = 0;
thus we only have to “shape” the z; component, so we look for a function of
the form H, = H,(z;). In this case, the PDE reduces to

OH,
B(l’l) = axl (m1)7
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which, for any given H,(z1), defines the control law as v = 3(z1). To shape
the energy H;{(z), we add a quadratic term and complete the squares (in the
increments z — z.) by proposing

1 1 1
H,(z,) = Ezf <C + c ) ZT1.21 + K.
[The particular notation for the gain z- w1Il be clarified in the next section.]
Replacing in (4), yields

1/1 1 1
Hy(z) = 3 (6 + 6—;) (1 —z16)* + 2Lz2 + &, (9)

which has a minimum at z, for all gains C, > —C. Summarizing, the control
law

_ I 1 1
u = C. +<C C)zl* (10)

with C, > —C is an energy balancing PBC that stabilizes z, with a Lyapunov
function equal to the difference between the stored and the supplied energy.
Finally, it is easy to verify that the energy supplied by the controller is finite.

4.2 Infinite Dissipation Example

Even though in the previous example we could find a very simple energy
balancing solution to our stabilization problemn, it is easy to find systems
that are not stabilizable with energy balancing PBCs. For instance, consider
a parallel RLC circuit. With the same definitions as before, the dynamic
equations are now

T = ——1-0‘131 + +x,
X i‘g = C.’El +u (11)
y = 122

Notice that only the dissipation structure has changed, but the admissible
equilibria are now of the form z, = [Cu,, —f?u*]T for any w.. The problem
is that the power at any equilibrium except the trivial one is nonzero, and
consequently any stabilizing controller will yield lim;_,«, | fot u(s)y(s)ds| =
(we will eventually run down the battery!).

We will not elaborate further here on the infinite dissipation problem. A
precise characterization, within the context of port—controlled Hamiltonian
systems, will be given in the next section.

Remark 8. The well-known analogies between electrical and mechanical
systems might lead us to conclude that, with another choice of states, we could
overcome the infinite dissipation obstacle for energy balancing PBC. The
obstacle is, however, “coordinate—free.” The point is that in the mechanical
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case the dissipation only comes in at the momentum level, where also the
input is appearing. This eliminates the possibility of infinite dissipation.
Remark 9. In the linear time~invariant case, we can design an energy balanc-
ing PBC working on incremental states. However, this procedure is usually
not feasible, and despite its popularity is actually unnatural, for the general
nonlinear case. The PBC design procedure we will present later to handle
the infinite dissipation case does not rely on the generation of incremental
dynamics. Furthermore, except for the linear case, the resulting energy func-
tions will be nonquadratic.

5 Admissible Dissipations for Energy Balancing PBC

In the previous section we showed that energy balancing PBC is applicable
only to systems with finite dissipation—obviously including conservative sys-
tems that have no dissipation at all. We have also shown that this class of
systems contains all mechanical systems, as well as some electrical circuits
with dissipation. A natural question then is how to characterize the “admis-
sible dissipations” for energy balancing PBC. To provide an answer to this
question, we find it convenient to adopt a variation of Willems’s “control as
interconnection” viewpoint. This perspective is also used in the next section,
where viewing the action of the controller as an infinite energy source with
a state modulated interconnection to the plant, we extend PBC to systems
with infinite dissipation.

5.1 Passive Controllers

As shown in Fig. 2, we view the controller, 2., as a one-port system that will
be coupled with the plant to be controlled, X, via a two—port interconnection
subsystem, X;. We need the following definition.

Fig. 2. Control as interconnection.

Definition 1. The interconnection of Fig. 2 is said to be power preserving
if the two—port subsystem X is lossless; that is, if it satisfies

[ e[ )] as=o



290 Romeo Ortega et al.

We now make the following important observation.

Proposition 2. Consider the interconnection of Fig. 2 with some external
inputs (v, v.) as

HERIHEIME

Assume X' is power preserving and ¥, X, are passive systems with states
z € R™, ( € R™, and energy functions H(z), H.({), respectively. Then

[v7, CT]T ~ [y",y/]" is also a passive system with new energy function
H(z) + H.(C).

This fundamental property is proven with the following simple calculations:

t t t
[ @l | X |as= [aTeueas+ [ ulouds
> His(0)] + Hl<(0) ~ Hlz(0)] - H<(0) (12

where the first equation follows from the lossless property of X7 and the last
inequality is obtained from the passivity of each subsystem.

5.2 Invariant Functions Method

From Proposition 2, we conclude that passive controllers and power-
preserving interconnections can, in principle, be used to “shape” the closed—
loop total energy. However, although H.({) can be freely assigned, the sys-
tems energy function H(z) is given, and it is not clear how we can effectively
shape the overall energy. The central idea of the invariant functions method
32], [33] is to restrict the motion of the closed-loop system to a certain
subspace of the extended state space (z, (), say

22 {(z,0)I¢ = F(z) + x} (13)

In this way, we have a functional relationship between z and (, and we can
express the closed-loop total energy as a function of z only, namely

Hy(z) & H(z) + H.[F() + K], (14)

[Notice that H.[F(z) + ] plays the same role as H,(z) in (4).] This function
can now be shaped with a suitable selection of the controller energy H.(¢).
The problem then translates into finding a function F(-) that renders 2
invariant. [Recall that a set £2 C R™ is invariant if the following implication
holds: z(0) € 2 = z(t) € 2, Vi > 0]

Let us illustrate this idea of generation of invariant subspaces to design
stabilizing PBCs with the simple series RLC circuit example described by
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(8). Following Proposition 2 we consider passive controllers with state { and
energy function H.({) to be defined. Since, as discussed above, we only need
to modify the first coordinate, we propose to take { a scalar. Furthermore, for
simplicity, we choose the dynamics of the controller to be a simple integrator;
that is

. ézuc
Ze: { v = 2e(() (15)

Notice that if H.(¢) is bounded from below, then u, ~ y. is indeed passive.

We already know that this system is stabilizable with an energy balanc-
ing PBC; therefore, we interconnect the circuit and the controller with the
standard negative feedback interconnection

{“J B [(1) _01] m (16)

To establish a relationship between z, and ¢, of the form { = F(z;) + &
we define an invariant function candidate

)

C(z1,¢) & F(z1) - ¢ (17)

and look for an F(-) such that ad?C = 0. Some simple calculations with (8),
(15), (16), and {17) yield

d 1 OF
EEC - Z.TQ (;9_10-1-(%) - 1) s

from which we conclude that we should take F(z1) = z;, and the invariant
subspaces are the linear spaces {2 = {(z1,22,()|{ = z; + &}.

We now have to select the energy function of the controller such that
in these invariant subspaces, the total energy function H(z) + H.(() has a
minimum at z,. Following the same rationale as in the previous section we
aim at a quadratic function (in the increments z — z,); hence we fix

_ Ll (L1
0 =556 - (5 + 5 ) ot

where (|, is a design parameter. As expected, the closed—loop energy, which
results from (14) with F(z,) = z;, coincides with (9). [Notice that we have
taken x = 0. This is without loss of generality, because x is determined by
the controller’s initial conditions].

Remark 10. One important feature of PBC is that we can usually give a
physical interpretation to the action of the controller. Indeed, a physical real-
ization of the energy balancing PBC (15) consists of a constant voltage source
in series with a capacitor C,. Notice, however, that the control action can
be implemented without the addition of dynamics. Indeed, the input—output
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relationship of the controller dynamics (15) together with the interconnection
(16), reduces to the static state feedback (10).

Remark 11. For simplicity, we have assumed above that n, = n. In [17] we
consider the more general case when n. # n, and not all the controller states
are related with the plant state variables.

Remark 12. Even though stabilization is ensured for all values of the added
capacitance such that C, > —C| it is clear that the system X is passive only
for positive values of C,.

Remark 13. The problem of finding a function F'(-) that renders {2 invari-
ant involves, of course, the solution of a PDE which is, in general, difficult
to find. (In the simple case above, this is the trivial equation —3‘97%(:51) =1.)
One of the main messages we want to convey in this article is that the search
for a solution of the PDE can be made systematic by incorporation of addi-
tional structure to the problem—starting with the choice of a suitable system

representation. We will further elaborate this point in the next subsection.

5.3 Energy Balancing PBC of Port—Controlled Hamiltonian
Systems

To characterize a class of (finite dissipation) systems stabilizable with en-
ergy balancing PBC and simplify the solution of the PDE discussed above,
we need to incorporate more structure into the system dynamics, in partic-
ular, making explicit the damping terms and the dependence on the energy
function. Toward this end, we consider port-controlled Hamiltonian models
that encompass a very large class of physical nonlinear systems. They result
from the network modeling of energy—conserving lumped-parameter physi-
cal systems with independent storage elements, and have been advocated as
an alternative to more classical Euler-Lagrange (or standard Hamiltonian)
models in a series of recent papers (see [2] for a list of references). These
models are of the form

i = [J(z) - R(@)]5E () + g(z)u
.7 [ oz 18
S 1e)
where H(z) is the energy function, J(x) = —J'(z) captures the intercon-

nection structure, and R(z) = R (z) > 0 is the dissipation matrix. Clearly
these systems satisfy the energy balancing equation (1).

Motivated by Proposition 2, we consider port—controlled Hamiltonian con-
trollers of the form

5 . ] (=0 = RAOIFE(O) + gel(Que
T e = gZ(C)%ZQ(C)

for any skew-symmetric matrix J.({), any positive-semidefinite matrix R.(¢),
and any function g.({). The interconnection constraints are given by (16). The
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overall interconnected system is defined in the extended state space (z, () and
can be written as

21 (5
4] [f) =R a0 | o (4) 19)
¢ gc(()gT(z) Je(¢) —Rc(€) QB%Q(O .

Notice that it still belongs to the class of port—controlled Hamiltonian models
with total energy H(z) + H.(().

We introduce at this point the concept of Casimir functions {33,2], which
are conserved quantities of the system for any choice of the Hamiltonian,
and so are completely determined by the geometry (i.e., the interconnection
structure) of the system. For ease of presentation, we keep the same notation
we used in the previous subsection and look for Casimir functions of the form

C(z,() = F(z) - (. (20)
Since the time derivative of these functions should be zero along the closed-

loop dynamics for all Hamiltonians H(z), this means that we are looking for
solutions of the PDEs

. J@) - R(@) —g(@)e () ] _
[(%(z))T:—’mch(OgT(z) 10 ~Re(0)] = (21)

The following proposition was established in [17].

Proposition 3. The vector function (20) satisfies (21) (and thus is a Casimir
function for the interconnected system (19)) if and only if F(z) satisfies

.
(5@) J&FEw =0 22)
R(@) I (@) =0 (23)
Re(Q) = 0 (24)

;
(@) 0 =008’ @ (25)

In this case, the dynamics reduced to the set {2 (13) is a port—controlled
Hamiltonian system of the form

b = (@)~ R ) (26)

with the shaped energy function Hq(z) = H(z) + H.[F(z) + &].
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5.4 Admissible Dissipation

Condition (23) of Proposition 3 characterizes the admissible dissipations for
energy balancing PBC in terms of the coordinates where energy can be
shaped. Indeed, if (23) holds, then

OH.(F), .
T(m) =0

for any controller energy function H,.. Roughly speaking, this means that H,
should not depend on the coordinates where there is natural damping. The
latter restriction can then be interpreted as: Dissipation in energy balancing
PBC is admissible only on the coordinates that do not require “shaping of
the energy.”

Recall that in mechanical systems, where the state consists of position and
velocities, damping is associated with the latter; hence it appears in the lower
right corner of the matrix R(z). On the other hand, in position regulation,
we are only concerned with potential energy shaping; thus the condition (23)
will be satisfied. In the case of the series RLC circuit of the previous section,
the resistance appears in a coordinate that did not need to be modified (i.e.,
the current x2); whereas in the parallel RLC circuit, both coordinates have
to be shaped.

R(z)

6 Overcoming the Dissipation Obstacle

In Proposition 3 we have shown that under certain conditions, the inter-
connection of a port—controlled Hamiltonian plant with a port—controlled
Hamiltonian controller leads to a reduced dynamics given by another port—
controlled Hamiltonian system (26) with a shaped Hamiltonian. The reduc-
tion of the dynamics stems from the existence of Casimir functions that relate
the states of the controller with those of the plant. In this section, we will
show that, explicitly incorporating information on the systems state, we can
shape the energy function without the need for Casimir functions. This will
lead to the definition of a new class of PBCs that we call interconnection and
damping assignment PBCs.

6.1 Control as a State—Modulated Source

To extend PBC to systems with infinite dissipation, we introduce two key
modifications. First, since these systems cannot be stabilized by extracting a
finite amount of energy from the controller, we consider the latter to be an
(infinite energy) source; that is, a scalar system

) (=t
e { Ye = %%L(C) (27)
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with energy function

HC(C) = —C~ (28)

Second, the classical unitary feedback interconnection (through the power
port variables) imposes some very strict constraints on the plant and con-
troller structures as reflected by the conditions (22)-(25). To provide more
design flexibility, we propose to incorporate state information, which is done
by coupling the source system with the plant via a state—modulated intercon-
nection of the form

uc(s) B(z) 0 Ye(s)
This interconnection is clearly power preserving. The overall interconnected
system (18), (27), (28), (29) can be written as

(30)

[ﬂ _ [J(w) - R(=) —g(x)b’(m)] o

1@ @ 0 e

which is still a port—controlled Hamiltonian system with total energy H(z) +
H (). It is important to note that the z dynamics above describes the be-
havior of the system (18) with a static state feedback u = B(z); hence our
choice of the symbol g for the state-modulation function.

We have shown in [8] that the damping restriction (23) is a necessary
condition for the existence of Casimir functions in this case as well. The key
point here is that the energy of the z subsystem can be shaped and the port—
controlled Hamiltonian structure preserved without generation of Casimir
functions. Indeed, if (for the given J(z), R(z) and g(z)) we can solve the
PDE

e (2) = g()8(2) (31)

[J(z) - R(z)]

for some S(z), then the plant dynamics will be given by (26) with energy
function Hy(z) = H(z) + Hu(z). If we can furthermore ensure that Hy(x)
has a minimum at the desired equilibrium, then the static state feedback
control v = f(x) will stabilize this point. Notice that there is no “finite
dissipation” constraint for the solvability of (31); hence the new PBC design
is, in principle, applicable to systems with infinite dissipation.

6.2 Parallel RLC circuit example

Before presenting the main result of this section, which is a systematic pro-
cedure for PBC of port—controlled Hamiltonian systems, let us illustrate the
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new energy shaping method with the parallel RLC circuit example. The dy-
namics of this circuit (11) can be written in port—controlled Hamiltonian
form (18) with energy function (7) and the matrices

= [83) 5= [13) o= [)

The PDE (31) becomes

2y 4 ey = 0
ROz, " Bzp T
_0H,

5ot () = Ale).
The first equation can be trivially solved as
H,(z) = #(Rzx1 + z3)

where &(-) : R — R is an arbitrary differentiable function, whereas the second
equation defines the control law. We now need to choose the function @ so
that Hg(z) has a minimum at the desired equilibrium point z, = (Cu., —I%u*).
For simplicity, we choose it to be a quadratic function

K
®(Rz; + ) = =L[(Rzy + z2) — (Ro1v + 224)]? — Ru.(Rz; + 22)

2
which, as can be easily verified, ensures the desired energy shaping for all
-1
K,> —Fr—. 2
P77 (L+CR?) (32)

The assigned energy function, as expected, is quadratic in the increments

L+ R’K, RK,

H(z) = (@ —2)" | @ pe ™7 1

(x —z.) + K.

Clearly, (32) is the necessary and sufficient condition for z, to be a unique
global minimum of this function. The resulting control law is a simple linear
state feedback

U= _Kp[R(fL'l — Z14) + Ty — Tou) + Us.

6.3 Discussion

Remark 14. We should underscore that in the example above we did not
need to “guess” candidate functions for H,(x) or 3(z). Instead, the solution
of the PDE (31) provided a family of “candidates” parametrized in terms of
the free function ¢(-). The PDE, in turn, is uniquely determined by the sys-
tems interconnection, damping, and input matrices; we will show below that
to provide more degrees of freedom to the design, we can also change the first



Energy Shaping Control Revisited 297

two matrices. From this family of solutions, we then have to select one that
achieves the energy shaping. Also, once a solution H,(z) is obtained, we know
that the new energy function Hy(z) will be nonincreasing, because H, is non-
positive by construction. This situation should be contrasted with classical
Lyapunov-based designs (or “standard” PBC, e.g., [9]), where we fix a priori
the Lyapunov (energy) function—typically a quadratic in the increments—
and then calculate the control law that makes its derivative negative definite.
We claim that the proposed approach is more natural because, on the one
hand, it is easier to incorporate prior knowledge in the choice of the desired
interconnection and damping matrices; on the other hand, the resulting en-
ergy (Lyapunov) function will be specifically tailored to the problem.

Remark 15. Of course, stabilization of linear systems is possible using other,
much simpler, methods. Our point is that, as we will show in the next sub-
section, the present procedure applies verbatim to the nonlinear case. Fur-
thermore, even in the linear case, the technique allows us to design nonlinear
controllers, which might be of interest to improve performance (e.g., assign-
ing steeper Lyapunov functions for faster convergence or imposing certain
shapes of the level sets to handle state or input constraints); see [22] for an
example of the latter.

Remark 16. As discussed in [8] (see also Proposition 4 below), we do not
even need to solve the PDE (31) for H,(z). Indeed, we can look for a solution
of the problem directly in terms of 8(x), as follows. If J(2)—R(x) is invertible
[see [8] and Proposition 4 below for the noninvertible case] it is well known
that (31) has a solution if and only if the integrability conditions

.
e = | (33)
hold, where
K(2) 2 [J(z) - R(z)] ' g(2)B(x). (34)

Given J(z), R(z), and g(z), (33) defines a set of PDEs for 4(z). For instance,
for the parallel RLC circuit example, we have that (33) is equivalent to

9

912

@)+ @) =0

whose solution yields directly the control law §(z) = #(Rxz; + z2). Although
in this simple linear example both procedures lead to the same PDE, this
will not be the case for the general nonlinear case. Furthermore, the impor-
tance of determining necessary and sufficient conditions for solvability can
hardly be overestimated. We will elaborate further on these issues in the

next subsection.
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6.4 Assigning Interconnection and Damping Structures

In the previous subsections, we have shown that the success of our PBC
design essentially hinges on our ability to solve the PDE (31). It is well known
that solving PDEs is not easy. It is our contention that, for the particular
PDE that we have to solve here, it is possible to incorporate prior knowledge
about the system to simplify the task. More specifically, for port—controlled
Hamiltonian models, besides the control law, we have the additional degrees
of freedom of selecting the interconnection and damping structures of the
closed-loop. Indeed, our energy shaping objective is not modified if, instead
of (26), we aim at the closed-loop dynamics

. 0Hy
= [Ja(2) ~ Ra(2)] 5. (@) (35)
for some new interconnection Jy¢(z) = ~J](z) and damping R4(z) =

’Rl;r () > 0 matrices. For this so-called interconnection and damping as-
signment PBC the PDE (31) becomes

(@) + Ju(®) — Rl2) ~ Ra()) o (z) = (36)
= —ale) - Ra(@)) S (@) + 9()B1)

where
Ja(@) B Ja(@) — J(z), Ra(z) 2 Ra(z) — R(x)

are new design parameters that add more degrees of freedom to the solution
of the PDE.

The proposition below (established in [8]) follows immediately from the
derivations above. It is presented in a form that is particularly suitable for
symbolic computations. We refer the interested reader to [8] for additional
comments and discussions.

Proposition 4. Given J(z),R(z), H(z),g(zx), and the desired equilibrium
to be stabilized z,, assume we can find functions 8(z), R, (), J.(x) such
that

J(z) + Ja(z) = ~ [J(2) + Ja(2)]"
R(z) + Ra(z) = [R(z) + Ra(z)]" >0

and a vector function K (z) satisfying

(@) + Jul@) = (R(@) + Ra(e))}K (2) = (37)
=~ [ala) — Ra(#)) S (@) + g(2)5(2)

and such that the following conditions occur
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(i) (Integrability) K (z) is the gradient of a scalar function; that is, (33) holds.
(ii) (Fquilibrium assignment) K (z), at x., verifies
OH

K(z.) = —-5;(.7:*),

(iii) (Lyapunov stability) The Jacobian of K(x), at ., satisfies the bound

oK 0%H
By B > g @),

Under these conditions, the closed-loop system u = g(z) will be a port—
controlled Hamiltonian system with dissipation of the form (35), where
Hy(z) = H(z) + H,(z) and

0H,
Ox
Furthermore, z, will be a (locally) stable equilibrium of the closed loop.

It will be asymptotically stable if, in addition, the largest invariant set
under the closed-loop dynamics contained in

{xER"ﬂBI [ai“ x):‘ Rd(:v)%%(x):O}

z) = K(z). (38)

equals {x.}.

Remark 17. From the following simple calculations

H
o=y [%gm]%( )o@ ) ot - (39)
= [a)] a2t
and the fact that Ry(z) = Ra(z) + R(z), we have that
o=y P9 + o) i) - (10)
B e )

Consequently, if R,(z) = 0 and the natural damping R(z) satisfies the con-
dition
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then the new PBC is an energy balancing PBC. This is exactly the same
condition that we obtained in the previous section.

Remark 18. In a series of papers, we have shown that, in many practi-
cal applications, the desired interconnection and damping matrices can be
judiciously chosen by invoking physical considerations. The existing applica-
tions of interconnection and damping assignment PBC include mass—balance
systems [18], electrical motors [19], power systems [20], magnetic levitation
systems [21], underactuated mechanical systems [28], and power converters
[22]. In the next section we present in detail a magnetic levitation system
and refer the reader to the references cited above for additional examples
that illustrate the generality of the new approach.

Remark 19. An interesting alternative to the Hamiltonian description of
actuated mechanical systems is the Lagrangian description, with the La-
grangian being given by the difference of the kinetic and the potential energy.
In this framework it is natural to pose the problem of when and how a state
feedback for the actuation inputs can be designed such that the closed-loop
system is again a Lagrangian system with a ”desired” Lagrangian (as well
as a desired damping). This line of research, called the technique of ”con-
trolled Lagrangians” was developed in a series of papers by Bloch et al. (e.g.,
[29,36], and followed up in [37] and [38]). The relation of these approaches to
the approach of interconnection and damping assignment for port—controlled
Hamiltonian systems taken in the present paper is rather straightforward. In
particular, it is possible to show that modifying the kinetic energy of a me-
chanical system without affecting the potential energy nor the damping (as
done in [29]) is tantamount—in our formulation—to selecting the closed-loop
interconnection matrix as

- 0 Mz (q)M(q)
Jalg,p) = —~M(q)M*(q) "Z(a,p)

where My(q), M(q) are the closed-loop ("modified”) and open-loop inertia
matrices, respectively, and the elements of Z{(g,p) are computed as

Z(g,p)i,; = —p" M~ (@) Ma(g) (Mg M). 3, (M7 M). 5] (g) (41)

with (M7 M). ; the i—th column of M ;' M and [+, -] the standard Lie bracket,
see [2]. Furthermore, the addition of damping in the Lagrangian framework
corresponds to damping assignment in the Hamiltonian case, while shaping
the potential energy clearly fits within the shaping of the Hamiltonian. Hence
we may conclude that the method of the ”controlled Lagrangians” for actu-
ated mechanical is a special case of our approach for the port—controlled
Hamiltonian description of these systems. For example, in our approach the
closed-loop interconnection matrix Jq can be chosen much more general than
n (41). On the other hand, the freedom in choosing J; may be so over-
whelmingly rich that it is useful to have more specific subclasses of possible
interconnection structure matrices like the one in (41) at hand. In general it
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seems of interest to investigate more deeply the embedding of the technique
of controlled Lagrangians within our approach, also in relation to issues of
"integrability”, in particular the satisfaction of Jacobi-identity for Jj.

7 Magnetic Levitation System

7.1 Model

Consider the system of Fig. 3 consisting of an iron ball in a vertical mag-
netic field created by a single electromagnet. Here we adopt the standard
assumption of unsaturated flux; that is, A = L(#)7, where A is the flux, 6 is
the difference between the position of the center of the ball and its nominal
position, with the #-axis oriented downward, ¢ is the current, and L(#) de-
notes the value of the inductance. The dynamics of the system is obtained
by invoking Kirchofl’s voltage law and Newton’s second law as

A+ Ri=u
mé:F—mg

where m is the mass of the ball, R is the coil resistance, and F is the force
created by the electromagnet, which is given by

_10L, .,
_—2-%( )i“.

A suitable approximation for the inductance (in the domain —oo < 8 < 1) is
L8 = 1—’“_—9’ where k is some positive constant that depends on the number
of coil turns, and we have normalized the nominal gap to one.

To obtain a port-controlled Hamiltonian model, we define the state vari-
ables as z = [\,8,mf]". The Hamiltonian function is given as

1 1
H(zx) = 5]5(1 — T9)T3 + -2——753032 + mgzs

and the port—controlled Hamiltonian model becomes

000 ROO 1

i= ({00 1{-|000 %—H—(w)+ 0| u.
0-10 000 d 0

N’
J R g

Given a constant desired position for the ball z4,, the equilibrium we want
to stabilize is . = [v/2kmg, Ta.,0]
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Fig. 3. Levitated ball (y = 8).

7.2 Changing the Interconnection

Next we show that, with the natural interconnection matrix of the system .J,
it is not possible to stabilize the desired equilibrium point with the proposed
methodology; hence it is necessary to modify J. Toward this end, we observe
that the key PDE to be solved (31) yields

—RK;(z)
(J -R)K(z) = gB(z) & K (z)
Kj(z)

(z)

s
0
0

with K(z) defined as (38). This means that the function H,(z) can only
depend on z;. Thus the resulting Lyapunov function would be of the form
1 1
z—k*(l — 12)1'? + %1'32 + mgzo + Ha(;vl)

Even though, with a suitable selection of H,(z,), we can satisfy the equi-
librium assignment condition of Proposition 4, the Hessian will be defined
as

Hy(z) =

92 Hy el +w(w1) —50
e ) = a 0 g
0 0 L

m

which is sign indefinite for all H,(x;). It can actually be shown that the
equilibrium is not stable.
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The source of the problem is the lack of an effective coupling between the
electrical and mechanical subsystems. Indeed, the interconnection matrix J
only couples position with velocity. To overcome this problem, we propose to
enforce a coupling between the flux x; and the velocity z3; thus we propose
the desired interconnection matrix

0 0 —«
Jg=100 1
a—-10

where « is a constant to be defined. Now, the key equation (37) becomes
(with R, = 0)

~RK,(z) = %m + B(z)
Kg(.’lf) =0
aKi(z) — Ka(z) = —%(1 - I3)ZT1.

The first equation defines the control signal, whereas the last one can be
readily solved (e.g., using symbolic programming languages) as

H,(z) = —l-x13 + i31:12(31:2 — 1) + P(z2 + l31:1)

2k a
where &(-) is an arbitrary continuous differentiable function. This function
must be chosen to satisfy the equilibrium assignment and Lyapunov stability
conditions of Proposition 4; that is, to assign a strict minimum at x, to the
new Lyapunov function

1 1 1
Hd(.’lf) = 6_](;—(_)(:1:13 =+ '2—m.’1332 + mgxg + @(.’132 -+ a.’lfl)

It is easy to verify [21] that a suitable choice is given by
1 . 1. b,. 1.
D(xy + —07.731) = mg[—(Z2 + Exl) + 5(.7:2 + 5331)2]

. A .
where Z; = x; — x4, 1 =1,2, and a, b > 0.
In conclusion, we have shown that the control law

R 1. . a R 1
u= E(l-—xg)xl —Kp(axl + Zq) — Exg—a(%x%—mg) (42)
stabilizes the equilibrium point z, for all K, a > 0, where we have defined a
new constant K. It can be further established that stability is asymptotic,
and an estimate of the domain of attraction can be readily determined.
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7.3 Changing the Damping

A closer inspection of the control law (42) provides further insight that helps
in its commissioning and leads to its simplification. The first right-hand term
equals Ri; thus it cancels the voltage drop along the resistance. The second
and third right-hand terms are linear proportional and derivative actions,
respectively. Finally, the last term, which is proportional to acceleration, con-
tains an undesirable nonlinearity that might saturate the control action. [We
should note that the effect of the quadratic nonlinearity cannot be reduced
without sacrificing the convergence rate, as can be seen from the dependence
of the PD terms on «.] With the intent of removing this term, we propose to
shuffle the damping, namely, to remove it from the electrical subsystem and
add it up in the position coordinate; that is, we propose the added damping

matrix

—R 0
0 R,
0 0

Re =

o oo

where R, is some positive number. Applying again the technique of Proposi-
tion 4, we can show that stabilization is possible with the simplified control
law

R 1. N o
Uu = Z:_(l - Ig)Il — Kp(aml + EZ) - (E + KPR‘1> Z3-

where we have now defined K, 2 %z—. Compare with (42).

8 Concluding Remarks

We have given a tutorial presentation of a control design approach for phys-
ical systems based on energy considerations that has been developed by the
authors of the present article, as well as by some other researchers cited in the
references, in the last few years. The main premise of this approach is that the
fundamental concept of energy is lost in the signal processing perspective of
most modern control techniques, hence we present an alternative viewpoint
which focuses on interconnection. The choice of a suitable description of the
system is essential for this research; thus we have adopted port—controlled
Hamiltonian models which provide a classification of the variables and the
equations into those associated with phenomenological properties and those
defining the interconnection structure related to the exchanges of energy.
There are many possible extensions and refinements to the theory we have
presented in this article. Some of these topics, and the lines of research we are
pursuing to address them, may be found in [8]. Central among the various
open issues that need to be clarified one finds, of course, the solvability of
the PDE (37). Although we have shown that the added degrees of freedom
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(Ja(z),Ra(x)) can help us in its solution, it would be desirable to have a
better understanding of their effect, that would lead to a more systematic
procedure in their design. For general port—controlled Hamiltonian systems
this is, we believe, a far-reaching problem. Hence, we might want to study it
first for specific classes of physically-motivated systems.

Solving new problems is, of course, the final test for the usefulness of
a new theory. Our list of references witnesses to the breadth of application
of our approach, hence we tend to believe that this aspect has been amply
covered by our work.
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Geometric Modeling of mechanical Systems
for Interactive Control

Stefano Stramigioli

Delft University of Technology, Delft, The Netherlands

1 Modeling of Mechanical Systems

Mechanical systems are in general much more complex than other physical
systems because they bring with them the geometry of space. By modeling
this geometry with proper tools like Lie groups [1] and screw theory[2], nice
structures and properties can be specified for spatial mechanical systems. In
this section we will review basic tools of Lie groups and screw theory for
the modeling of rigid mechanical systems. In this work we explain mechanics
using matrix Lie groups for didactical reasons. All the presented concept
could be also introduced with more abstract Lie groups.

1.1 Introduction to Lie-groups

A manifold is intuitively a smooth space which is locally homeomorphic to
R" and brings with itself nice differentiability properties. Proper definitions
of manifolds can be found on [3,4]. A group is an algebraical structure defined
on a set. Definitions of groups can be found on any basic book of algebra.

A Lie group is a group, whose set on which the operation are defined is
a manifold G. This manifold G has therefore a special point ‘e’ which is the
identity of the group.

Using the structure of the group, and by denoting the group operation as:

0:GxG—=G;; (h,g)—hog,

we can define two mappings within the group which are called respectively
left and right mapping:

Ly:G—=G;h~goh (1)
and
R,:G—3G;h—hog (2)

As we will see later the differential of these mappings at the identity, plays
an important role in the study of mechanics.
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The tangent space T.G to G at e, which is indicated with g, has further-
more the structure of a Lie algebra which is nothing else than a vector space g
together with an internal, skew-symmetric operation called the commutator:

[1:axg—8; (91,92) = [91,92] (3)

For g to be a Lie algebra, the commutator should furthermore satisfy what
is called the Jacoby identity:

l91, 192, 93]) + [92, g3, 1) + [g3,[91,92]] =0 Vg1,92,93€ 9 (4)

Lie groups are important because we can use them as acting on a manifold
M, which in our case will be the Euclidean space. An action of G on M, is
a smooth application of the following form:

a:GxM->M
such that

ale,z) =z Vi € M,
and

a(g1,a(gs, ) = a(g192,7) Vz e M,g1,92 €G.

This means that an action is somehow compatible with the group on which
it is defined.

1.2 Matrix Lie groups

For a lot of fundamental reasons like Ado’s theorem [5], matrix algebras are
excellent representatives for any finite dimensional group like the ones we
need for rigid body mechanisms.

A matrix Lie group is a group whose elements are square matrices and
in which the composition operation of the group corresponds to the matrix
product. The most general real matrix group is GL{n) which represents the
group of non singular n x n real matrices. This is clearly a group since the
identity matrix represents the identity element of the group, for each matrix,
there is an inverse, and matrix multiplication is associative. We will now
analyse more in detail features and operations of matrix Lie groups.

Left and Right maps If we consider a matrix Lie group G, the operations
of left and right translation clearly become:
Lg(H)=GH and Rg(H) = HG.

We can now consider how velocities are mapped using the previous maps.
Suppose that we want to map a velocity vector H € TG to a velocity
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vector in TgyG using the left translation and to a vector in TyggG using
right translation. We obtain:

(Le)«(H,H) = (GH,GH) and (Rg).(H,H)= (HG,HG)

In particular, if we take a reference velocity at the identity, we obtain:
(Lg).(I, T)=(G,GT) and (Rg).(I,T)=(G,TG)

where T € g. With an abuse of notation, we will often indicate:
(Lg)« T =GT and (Rg). T =TG

when it is clear that we consider mappings from the identity of the group.
On a Lie group, we can define left invariant or right invariant vector fields.
These vector fields are such that the differential of the left invariant and right
invariant map leaves them invariant. If we indicate with

V:G->TG; x> (z,v)

a smooth vector field on the Lie group G, we say that this vector field is left
invariant if:

V(Lg(h)) = (Lg)xV(h) Vg,he€g,
and similarly it is right invariant if:
V(Ry(h)) = (R,).V(h) Vgeg.

For a matrix group, if we take in the previous definitions A = I we obtain
respectively:

V(G)=GT, and V(G)=TrG

where we indicated the representative of the left and right invariant vector
fields at the identity with 77 and Tx. We can conclude from this that any
left or right invariant vector field is characterized completely by its value at
the identity of the group. We could now ask ourself: what are the integrals
of a left or invariant vector field? From what just said, the integral of a left
invariant vector field, can be calculated as the integral of the following matrix
differential equation:

G = GTy, = G(t) = G(0)er (5)

where 77, is the value of the vector field at the identity. In a similar way, the
integral of a right invariant vector field is:

G =TrG = G(t) = ¢T*'G(0). (6)
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From this it is possible to conclude that if we take an element T € g, its
left and right integral curves passing through the identity coincide and they
represent the exponential map from the Lie algebra to the Lie group:

e:g—=GTrel.

It is easy to show, and important to notice, that integral curves passing
through points H = €™t of right and left invariant vector fields which have
as representative in the identity Ty, are coincident iff e71eT2 = e2¢T* which
is true iff [T},T>] = 0, where the last operation is the commutator of the
Lie algebra. But how does the commutator look like for a matrix Lie algebra
? Being a Lie group a manifold, we can compute the Lie brackets of vector
fields on the manifold. Furthermore, we know that elements of the Lie algebra
g have a left and right vector field associated to them. We can than calculate
the Lie bracket of two left or right invariant vector fields, and if the solution
is still left or right invariant, consider the value of the resulting vector field
at the identity as the solution of the commutator. We will start with the left
invariant case first. Consider we are in a point G(t) € G at time t. If we have
two left invariant vector fields characterized by T7,T> € g, the Lie bracket
of these two vector fields, can be calculated by moving from G(t) along the
vector field correspondent to T; for /s time, than along the one correspondent
to T3, than along —T7 and eventually along —T%. In mathematical terms we
have:

G(t +/3) = G(t)eTV® = G(t + 24/3) = G(t + V3)eT?V* -
G(t+3v5) = Gt +2V5)e V" = G(t +4V5) = G(t + 3Vs)e »V*
G(t +4V/5) = G(t)eTVeeTVoe TiVee T2V (1)

If we look at disG(t + 4\/§)|s:0, we can approximate the exponentials with
the first low order terms and we obtain:

G(t +4vs5) ~ G(t) <<I+ Tivs + %123> (I + Tov/s + T—223>

2
T2 T2
(I— TiVs + —21—s> (I— To /5 + 713>>

~ G + (T2 — ToTh)s + o(s))  (8)

which implies

= G(t)(Tl T2 — TQTl).
s=0

d
Zi—sG(t +4+/s)

From the previous equation, we can conclude that the resulting vector field
is still left invariant and it is characterized by the Lie algebra element 11T, —
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T5T,. We can therefore define the commutator based on left invariant vector
fields as:

11, T3] = Th Ty — 1Ty,
With similar reasoning, it is possible to show for right invariant vector fields
that:

d .

E;G(t +4v/s) = (T,Ty - TiTy)G(t).

=0

and therefore, in this case:

(T, T)r = ToTy — T\ T5.
We have therefore that:

[Tl ) TZ]L = _[Tl 3 ,1‘2]1{-

In the literature, [, ]z, is used as the standard commutator and we will adapt
this convention.

Matrix Group Actions A group action we can consider for an n dimen-
sional matrix Lie group is the linear operation on R*. We can therefore define
as an action:

a(G,P)=GP GeG,PeR"

It is casy to sce that this group action trivially satisfies all the properties
required.

Adjoint representation Using the left and right maps, we can define what
is called the conjugation map as K, := R,-:1L, which for matrix groups
results:

Ke:G—>G: H—»GHG™!.

But what is the importance of this conjugation map ? To answer this question,
we need the matrix group action. Suppose we have a certain element H € G
such that ) = HP where Q, P € R*. What happens if we move all the
points of R® and therefore also @ and P using an clement of G 7 What
will the corresponding mapping of H look like ? If we have Q' = GQ and
P’ =GP, it is straight forward to sec that:

Q' = Ka(H)P'.

The conjugation map is therefore related to global motions or equivalently
changes of coordinates. We clearly have that Kg (/) = I and therefore the
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p m
p—q)~(m-1)

q {
Fig. 1. The definition of a free vector

differential of K() at the identity is a Lie algebra endomorphism. This linear
map is called the Adjoint group representation:

Ade:g—g; T GTG™.

The Adjoint representation of the group shows how an infinitesimal motion
changes moving the references of a finite amount G. Eventually, it is possible
to consider the derivative of the previous map at the identity

d
= —Ad,Ts
adq dsAe L

This map is called the adjoint representation of the Lie algebra and it is a
map of the form:

adp g — g Teg

If we use the definitions we can see that:

d d
T Adr Ty = d—eTlsTQe—Tls =TT, - TyT) = [T1,T2)L
s s=0 s s=0

which shows that:

adr, To = [T, Ty, (9)

1.3 Euclidean space and motions

It is now possible to use the matrix Lie group concepts developed in the
previous section for the study of rigid body motions. We will start by talking
about Euclidean spaces.

An n dimensional Euclidean space £(n) is characterized by a scalar prod-
uct which allows to define orthogonality of vectors and their lengths. We can
consider the relative position of two points p,q € £(n) as a vector (p — q)
directed from g to p in the usual way as reported in Fig. 1. In projective
terms, such a vector can be interpreted as a vector belonging to the improper
hyperplane [6]. The set of these free vectors will be indicated with £.(n).
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These vectors are called “free” because they are free to be moved around
parallelly without being bound to a point (see Fig. 1).

If we constrain these vectors only to move along the line they span, we
get the concept of line vectors which are characterized by a straight line in £
plus a direction and a module. These kind of vectors are also called rotors for
reasons which will become clear later on. A line vector is completely defined
by a pair (p,v) € £ x &, giving a point on the line and a vector specifying the
direction and module. Clearly we have the following equivalence relation:

(p1,01) ~ (p2,v2) iff v; = vo,3A s.t. (p1 — p2) = Av;.

The scalar product which characterizes the Euclidean space is a function of
the following form:

(Y €(n) xEc(n) = R; (v,w) = (v,w),

and satisfies the usual properties of an internal product. We can furthermore
define the distance d(p,q) of p from ¢ in the usual way as as the length of
(p—q) €&

(-1l & = Ry v o/ (,0),

and the orthogonality of vectors v,w # 0 in the following way:
vlw & (v,w) =0.

The cosine can be than defined as

cosvw = (v, w)

ol el

Coordinate systems For the Euclidean space £(n), a coordinate system is
an (n + 1)-tuple:

P, := (0,€1,€2,...,€s) € E(n) X E,(n) X &, (n)
[ S ————
n times
such that ej, ..., e, are linear independent vectors and form therefore a base

for £,. Furthermore, the coordinates systems is orthonormal if
lleil]] =1 Vi (unit vectors)
and
(ei,e;) =0 Vi#j (orthogonality).
The coordinates of a point p € £ are real numbers and calculated as:

T; = ((p— Oi),ei> eR Vi
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In a similar way, the coordinates of a vector v € £, are
T; = <’U,€,‘> eER Vi

If we consider the three dimensional Euclidean space £(3) we usually indicate

for an orthonormal coordinate system & := ej, § := ey and 2 := e3. In all
what follows we will implicitly assume to be using orthonormal coordinate
systems.

For any Cartesian coordinate system ¥; = (0;, Z;, i, £;), we can define a
coordinate mapping as:

((p—0:),2:)
$i:EB) = R 5 per | (0= 0i),§3)
((p—0i), 2:)

It is then possible to define a change of coordinates from a reference system
¥, to a reference system ¥y :

= (2 09, ) (p")

which is a mapping like
3 V1. Y2, m3 . 1 2
S EB) SR ;p mpp

Rotations We can now consider the changes of coordinates between two
reference frames ¥; and ¥; which have the origin in common. We have that:

T ((p—01),21)
pl=|un]=vilp)=[(lp—a)h)
21 ((p~o01),21)

or equivalently
(p—o1) =181 + g1 + 2151
with z1,y1,21 € R and &1, 41,2 € &,. Similarly, for p> € R?, we have:

T2 <(p - 02)7"%2>
p2 =1y =] {p~02),02)
22 ((p — 02), 22)

and since for hypothesis 0; = 05, using the expression of (p — 0,) in ¥, we
have that

z (121 + w191 + 2121, L2)
yo | = | (&1 +yii +218,92) | =
29 (T121 + y1th + 2121, 22)

21 (&1, &) + y1{fr, T2) + 21{%1, T2)
z1(21,92) + ¥1(01, G2) + z1(21,02)
z1 (&1, Z2) + y1(G1, 22) + 2121, 22)
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which in matrix form gives:

Ty (Z1,22) (§1,%2) (£1,%2) 1
y2 | = | (21,92) (G1,92) (%1, 17 Y] {w
2y (£1,22) (Ih, 22) (%1,22) 21

We indicate the previous matrix with R? which represents a change of coor-
dinates from ¥, to ¥,. It is important to note that the columns of the matrix
arc the vector bases of ¥; expressed in ¥, and the rows are the vector bases of
¥, expressed in ¥;. Due to the hypothesis on the ortho-normality of ¥; and
¥,, we can conclude therefore that the matrix R% is an orthonormal matrix.
For example, a change of coordinates due to a rotation of 8 around g, is such
that:

cos(d) 0 sin(6)
R? = 0 1 0
- sin(#) 0 cos(8)

It is possible to see that the set of matrices satisfying R~! = R” is a three di-
mensional matrix Lie group which is called orthonormal group and indicated
with O(3). Since RTR = I VR € O(3), for the rule on the determinant of the
product, it is clear that the determinant of any matrix in O(3) can be +1.
This shows that O(3) is composed of two disjointed components, one whose
matrices have determinant equal to —1 which is not a group by itself, and
one called special orthonormal group indicated with SO(3) of the matrices
with determinant equal to 1 which is clearly a matrix Lie group:

SO(3)={Re®** st. R7! = RT det R=1}.

It is now possible to investigate how the elements of the Lie algebra of SO(3),
which is denoted with so(3), look like. From the theory on left and right
invariant vector fields, Eq. (5) and Eq. (6), we can sce that elernents of the
algebra should look like T;, = R~'R or like Tr = RR™! for any curve R(t) €
SO(3). But since R™! = RT, if we differentiate the equation RTR = I we
obtain:

R"R+R™R=0= R"R=-(R"R)"

and therefore the matrix Ty, is skew-symmetric. Similarly it can be shown
that T'r is also skew-symmetric. This shows that so(3) is the vector space
of skew-symmetric matrices. Note that due to the structure of the matrix
commutator of the algebra, the conunutation of skew-symmetric matrices is
still skew-symmetric.

There is a bijective relation between 3 x 3 skew-symmetric matrices and
3 vectors. We will use the following notation:

I 0 —x3 =
T=1zo | =2 = x3 0 -
T3 -z ; O
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This reflects the usual notation for the vector product in R3:
TAYy =2y Vz,y € R®.

It is straight forward to see that the algebra matrix commutator of so(3)
corresponds to the vector product of the corresponding three vectors:

(Dg,@y] = (we /~\wy) Ywz,wy € R,

The elements of s0(3) correspond to the angular velocity of the frames whose
relative change of coordinates is represented by the matrix R? € SO(3). We
will analyse in more detail the general case with also translations. Before
proceeding with general motions, it is important to state that a lot of other
representations of rotations exists beside SO(3). Some examples are the group
of unit quaternions which is isomorphic to another Lie group SU(2) which
is called special unitary group. They both double cover SO(3) and they are
topologically speaking simply connected. SO(3) is instead not contractible
and it is a typical example of a non simply connected manifold ‘without
holes’.

Vector product It is often a misconception that the vector product in three
space is an extra structure which is defined on €. beside the scalar product.
This is NOT the case. The vector product is instead a consequence of the
fact that for £ the Lie group of rotations SO(3) can be intrinsically defined.
As we have just seen, the Lie algebra s0(3) has a commutator defined on it
and therefore, if we find an intrinsic bijection between s0(3) and £, we can
transport the commutation operation defined in so(3) to £, and obtain the
vector product.

It is possible to find two bijections in the following way. A vector of £, is
characterized by a direction d, an orientation v and a module m. An element
of 50(3) represents an angular velocity. It is possible to see that any angular
motion leaves a line d' invariant. This is the first step in this bijection: the
vector of £, which we associate to a vector in so(3) will have as direction
the line left invariant by this rotation (d = d'). We still need a module and
an orientation. It is possible to show, that there exists a positive definite
metric on s0(3) which is defined using what is called the killing form [7].
We can therefore choose as m the module of the angular velocity vector
calculated using the metric on so(3). The only choice we are left with is for
the orientation. We clearly have two possible choices to orient the line. If we
look at the rotation motion around its axis as a clockwise motion, we can
orient the line as going away from us or as coming toward us. In the first case
we say that we choose a right handed orientation and in the second case a
left handed orientation.

Notice that if we look at this motion through a mirror, the orientation
is changed because for the same rotational motion a line oriented toward
the mirror will be seen through the mirror as a line oriented in the opposite
direction. This is called a reflection.
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4

Y

Y2 z2

02

Fig. 2. A general change of coordinates

General motions Consider the coordinate systems reported in Fig. 2. What
is an expression representing the change of coordinates p! — p? where we
denoted with p* € R® the numerical expression of p in ¥;? First notice that
p? € R? is the numerical vector of the coordinates of (p — 03) € £, expressed
in the frame ¥,. From Fig. 2 we can see that:

(p—02) = (p—o01) + (01 — 02).
Furthermore, it is possible to see that:
P =Rip' +pi

where p? is the vector (o) —02) expressed in ¥, and R? € SO(3) is the change
of coordinate matrix if 01 and o3 would be coincident. We can also write the
change of coordinates in matrix form:

P\ (1] P} (P

1/j\oT 1/)\1/"
The previous matrix which will be denoted with H? € R*** is called a
homogeneous matrizc:

R2p2)
H2:=( FELY
! 07 1

and represents the change of coordinates from ¥, to ¥,. Notice that we now
have a four dimensional vector of coordinates for each point whose last com-
ponent is equal to 1. This is interpretable in projective geometric terms as
a projective point. Notice that sequential changes of coordinates can be now
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easily expressed using matrix multiplications using what is sometimes called
the chain rule:

H} = HIH3H}.

It is important to note that the product of homogeneous matrices is still a
homogeneous matrix and furthermore:

NT 2T, 2
iy =y = (W -,

which shows that the inverse is again a homogeneous matrix. This shows that
the set of homogeneous matrices is a matrix Lie group which is called the
special Fuclidean group:

SE(3) = {(15 1{) st.ReSO@),pe R3} .

Since SE(3) is a matrix Lie group, we can map velocities Hf € T, SE(3) to
se(3) either with left or right translations. But how do the elements of se(3)
look like ? It is possible to see that:

se(3) = {(g 8) st 2 € 50(3),0 € R3} .

Furthermore, the algebra commutator of se(3) is such that since T} := (“6' %’)
se(3) then:

= - W1, Wa| Wvg — Wov
[Tl,T2]=<[ o ’ S 1).

Twists We have seen that elements of s¢(3) are 4 x 4 matrices of a specific
formi. We can uniquely associate to each of these matrices a six dimensional
equivalent vector representation such that

T:= (i) =T= (c(t); g) € se(3).

We have therefore both a matrix and a vector representation for se(3). Ele-
ments of se(3) are called twists in mechanics and they represent the velocity
of a rigid body motion geometrically. To understand this, we must look at the
action of elements of SE(3) on points of R*. Consider ANY point p not mov-
ing with respect to the reference frame ¥;. If we indicate with p* its numerical
representation in ¥;, this means that p* = 0. Take now a second reference ¥;
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Transport T Hi pi Notation

13

Left |T:= HiH]|H! = HIT|P = HI(TP")| T}

Right |T:= HIH}|H! = TH}|\P' = T(H{P*)| T

1

Table 1. The used notation for twists.

possibly moving with respect to ¥;. By looking at the change of coordinates
and differentiating, we obtain:

S k
Pi = H}P' where we denoted P* := (pl) k=1,

and H} € SE(3). We can now transport H} to the identity either by left
or right translation. If we do so, we obtain the two possibilities reported in
Tab. 1. In the case we consider the left translation, working out the terms,
we obtain:

P = HI(T P)
N —
i,

(’67) _ (fé? q’) (g g) (Pl) > p = RiwAp’) + Riv

and using the right translation instead we obtain:

Pi =T(H] P

o
(£)-) () () =-onm oo

H}

From the previous two expressions and Tab. 1, it is possible to see that
T? represents the motion of ¥, with respect to ¥, expressed in frame W®.
Note that v is NOT the relative velocity of the origins of the coordinate
systems! This would not give rise to a geometrical entity! To understand this
better, it is worth considering Chasles theorem. This theorem says that any
rigid motion can be described as a pure rotation around an axis plus a pure
translation along the same axis. Using the expression for twists in vector
form, this can be mathematically expressed as:

“) =a|w||&+a @

rotation translation
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where w = ||w||&. Analyzing the previous formula, it is possible to see that v is
the velocity of an imaginary point passing through the origin of the coordinate
system in which the twist is expressed and moving together with the object.
The six vector representing the rotation is what we called previously a rotor
and can be associated to a geometrical line, namely the line passing through
r and spanned by w which is left invariant by the rotation.

The theorem of Chasles is one of the two theorems on which screw theory
is based because it gives to elements of se(3) a real tensorial geometrical
interpretation. This interpretation is the one of a motor or screw which are
entities characterized by a geometrical line and a scalar called the pitch. This
pitch relates the ratio of translation and rotation along and around the line.

Changes of coordinates for twists Using the left and right map, we have
seen that:

T}7 = H!H] and T{” = H] H}.
It can be easily seen that

A 3 S L N2 )

177 = H{T;” H;,
and this gives an expression for changes of coordinates of twists. This clearly
corresponds to the adjoint group representation introduced at pag.313. It is

easier to work with the six dimensional vector form of twists and it is possible
to see that we can find a matrix expression of the adjoint representation:

3 — it
T/ = Adyys T3

It is possible to proof that this matrix representation is:

Rl 0
H? =
= \sR R
Notice that the change of coordinates can be seen as the change of coordinates
of the geometrical line associated to the twist using Chasles’ theorem. By
differentiation of the previous matrix as a function of H} we can also find

an expression for its time derivative and the adjoint representation of the
algebra ad. It can be shown that:

(Adm’) = Ady; adpes  with  T97 .= HIH],

where
~ k.7
ad @ 0
k,j = ki ~k.j
T, vf’f @] WJ

is the adjoint representation we where looking for. This can be easily checked
by testing the relation proved in Eq. (9) for a general matrix Lie group.
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Wrenches Twists are the generalization of velocities and are elements of
se(3). The dual vector space of se(3) is called the dual Lie algebra and de-
noted with se*(3). It is the vector space of linear operators from se(3) to R.
This space represents the space of ‘forces’ for rigid bodies which are called
wrenches. The application of a wrench on a twists gives a scalar represent-
ing the power supplied by the wrench. A wrench in vector form will be a
6 dimensional row vector since it is a co-vector (linear operator on vectors)
instead than a vector.

W = (m f)
where m represents a torque and f a linear force. For what just said we have:
Power = WT

where T is a twist of the object on which the wrench is applied. Clearly, to
calculate the power, the wrench and the twist have to be numerical vectors
expressed in the same coordinates and result

Power = WT = mw + fv

Another representation of a wrench in matrix form is:

W:G@.

How do wrenches transform changing coordinate systems ? We have seen that
for twists:

T)* = Ad; T?*

where

Rl 0
Ade = (~,3, )
¢ \piRl R
Suppose to supply power to one body attached to ¥; by means of a wrench
which represented in ¥; is W9,
Changing coordinates from ¥; to ¥; the expression of the supplied power
should stay constant and this implies that:

WIT] = W Ady, T} = (Adg, (W9)T)TT) = wiTy

which implies that the transformation of wrenches expressed in vector form
is:

(WHT = AdL, (WHT.

Note that if the mapping Ad,,; was mapping twists from ¥; to ¥;, the trans-

posed maps wrenches in the opposite direction: from ¥; to &; ! This is a direct
consequence of the fact that wrenches are duals to twists.
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(T, W) € se(3) x s¢™(3)

Fig. 3. The interaction between two mechanical systems

1.4 Power Ports

A basic concept which is needed to talk about interconnection of physical
systems is the one of a power port [8],[9]. With reference to Fig. 3, a power
port is the entity which describes the media by means of which subsystems
can mutually exchange physical energy. Analytically, a power port can be
defined by the Cartesian product of a vector space V and its dual space V*:

P:=V xV*

Therefore, power ports are pairs (e, f) € P. The values of both e and f (effort
and flow variables) change in time and these values are shared by the two
subsystems which are exchanging power through the considered port. The
power exchanged at a certain time is equal to the intrinsic dual product:

Power = (e, f).

This dual product is intrinsic in the sense that elements of V* are linear
operators from V' to R, and therefore, to express the operation, we do not
need any additional structure than the vector space structure of V.

To talk about the interconnection of mechanical systems, a proper choice
is V = se(3), the space of twists and V* = se*(3) the space of wrenches.

1.5 Generalized Port Controlled Hamiltonian Systems

In the standard symplectic Hamiltonian theory, the starting point is the ex-
istence of a generalized configuration manifold Q. Based on Q, its co-tangent
bundle 7*Q is introduced which represents the state space to which the
configuration-momenta pair (g, p) belongs. It is possible to show that T*Q
can be naturally given a symplectic structure on the base of which the Hamil-
tonian dynamics can be expressed [10].

A limitation of this approach is that, by construction, the dimension of
the state space 7*Q is always even. Moreover, it can be shown that in general
the interconnection of Hamiltonian systems in this form does not originate a
system of the same form.

These problems can be easily solved with the more general approach in
the Poisson framework, [5] or more generally using Dirac structures [11]. In
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this chapter we will use the Poisson framework for the sake of simplicity. In
general a GPCHS in the Poisson formulation is characterized by 4 elements:
(a) a state manifold X which can be of any dimension, even or odd; (b) an
interaction vector space V on which a power port is described as presented in
Sec. 1.4; (c) a Poisson structure on &’; (4) a local vector bundle isomorphism
[12] between X x V and T X. For the purposes of this work, it is sufficient to
consider that a Poisson structure is characterized by a contravariant skew-
symmetric tensor-field J(z) defined on X'.

If we consider a chart ¥ and the corresponding set of coordinates z for
X, and a base B := {by,...,b,} for V, we can express a GPCHS with a set
of equations of the following form:

H
= J@)2 aff) + g(z)u (10)
OH (x)
T
where u is a representation of an element of V' in the base B, J(z) = —J7 (z)

is the skew-symmetric Poisson tensor describing the network structure and
interconnection of the composing elements, g(z) is the representation of the
fiber bundle isomorphism describing how the system interacts with the ex-
ternal world and y is the representation of an element belonging to the dual
vector space V* in the dual base of B.

Any explicit physical conservative element can be given the previous rep-
resentation. To account for dissipating elements, we can generalize the previ-
ous form considering a symmetric, semi-positive definite, two covariant tensor
R(z) which can be subtracted from J(z):

i = (@) - k@) 22 4 ey
y = gT(z)agiz)- (12)

With this new term, it can be seen that the change in internal energy is:

. oH\T O0H
T _
H= g /u (8z ) B(z) oz
supplied power = v

dissipated power

Since R(z) is positive semi-definite, this implies that the internal energy can
only increase if power is supplied through the ports.

As an example, consider the interconnection shown in Fig. 4 of a mass
representing a robot with the physical equivalent of a controller implementing
damping injection as introduced in [13].



326 Stefapno Stramigioli
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Fig. 4. A simple example of interconnection

The Generalized Hamiltonian model of the “robot” is:

T - 01 0 + 00 Fext

D/ \—-10/ \p/m 11 F,

&) _(01\( 0

) \01) \p/m
where the port (ui,y1) = (Fext,#) represents the interaction port of the
robot with the environment and (us,y2) = (Fe, %) the interaction port with
the controller. The energy function is H(p) = 5.-p® where p is the momenta!.
The physical system representing the “controller” of Fig. 4 can be instead

represented using the following Generalized Hamiltonian equations with dis-
sipation:

Az, 0 1 0\ [kcAz,
pc =|-1-b1 Pc/mc
Az 0 —-10 kAz
0-1) /.
+{00 (z )
10 v
(—Fc) 3 (0 0 1) f}”ﬁff
—F, -100 oAz

where the port (u1,y1) = (£,—F,.) is used to express the interconnection
with the “robot” and the port (us,y2) = (Z,,—Fy) is used to express the
interconnection with another system which turns out to be the supervisory
module. the stored energy is:

1 1 1
H(Az.,p., Az) = EkcAzf + EkAaﬂ + %pi.

! It is important to notice that %mv2 is properly speaking called co-energy instead

of energy because is a function of v which is not a physical state extensive variable
(14]
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It is shown in [13] that by choosing m, <« m and k > k. for the controller,
damping injection can be implemented with pure position measurements. Fur-
thermore, actuator’s saturation can be handled in a physical way by choosing
a non linear spring k.

Any physical system can be modeled in the same way and this is the power
of GPCHS and their importance to describe the proposed architecture.

1.6 Interconnection of GPCHSs

A very important feature of GPCHSs is that their interconnection is still a
GPCHS. To show this, consider two GPCHSs:

=i~ R) 52+ (ol o?) (1) (13
(- 5 o

The two systems can be interconnected through the interconnection ports
(u!,y!) by setting:

I I I I
Uy = Y2 and Uy = ~Y1 (15)
Note that the minus sign in the previous equation is necessary to be consistent
with power: P; = (uf,y/) is the input power of system i and, interconnecting

the system throw the “I” ports, we clearly need P, = —P,. It is possible to
see that the interconnected systern results:
. 0H uf
2 =)~ RGN G + o) (1) (16)
o ; OH
Y1 T
— 17
(%) =" @5 an)

where z = (z1,22)7, H(z) = H\(z)) + Ha(z2) the sum of the two energies
and

_ Ao gl(ed)T
7@ = (Lo %)

R(z) = (’f) ,22) ,

and

o)

where all dependencies of the matrices have been omitted for clarity.

It is possible to conclude that the interconnected system is therefore again
a GPCHS with, as ports the remaining ports. Furthermore the total energy
is the sum of the energies of the two systems.
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Fig. 5. A biological analogy of the control strategy

Supervisor (10 == Robot ) @

Fig. 6. The System Interconnection

2 The proposed control architecture

The main idea of the proposed scheme is to divide the control in two parts, one
which controls the real time interaction passively and is called Intrinsically
Passive Control (IPC) and one which takes care of the task decomposition
and other planning issues. As shown in Fig. 5, the IPC has the role of the
muscle spindles in biological systems, and the supervisor the neurological role
of the brain.

2.1 The IPC

The IPC is interconnected with the supervisor and the robot through power
ports as shown in Fig. 6 where bond-graph notation is used. Each bond
is representing two elements belonging to a vector space and to its dual as
explained in Sec. 1.4. With reference to Sec. 1.4, the power port corresponding
to the interconnection with the robot is characterized by the vector space V
being T,Q where Q is the robot configuration manifold and ¢ is the current
configuration and therefore the elements of the ports will be pairs of the form
(¢,7) where T are the joint torques.

The other port of the IPC will be connected to the supervisor and in
general will have a geometric structure such that:

V =se(3) x ... x s¢(3)

corresponding to a set of twists. This is the case in both [15] and [16].
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Fig. 7. Basic idea of an IPC for grasping tasks.

The IPC will therefore be characterized by the following differential equa-
tions:

q
OH T
&= (J(@) - R@) 55 +9() | . (18)
T :
T,
T q
Wi OH T,
T c
= 9
| =@ B | (19
W, T,
where J(z) is skew symmetric, R(z) positive semi-definite, T}, ..., T, are a set
of interaction twists and Wy,..., W, a set of the dual interaction wrenches.

It has been shown in [15] that the feed-through term B(z) is needed in tele-
manipulation to adapt the impedance of the line.

An example of an IPC for the control of a robotic hand is reported in
Fig. 7. The shown springs and the spherical object shown in the middle and
called the virtual object are virtual and implemented by means of control in
the IPC. The supervisor, by means of twists inputs Ty, ..., Ty, T, can change
the rest length of the springs and the virtual position z,. This schema has
been also test experimentally and it has given very satisfactory results [16].

Intrinsic Passivity The most important feature of such a controller is that,
in the case in which the supervisor would not supply power to the IPC by
setting for example Ty = Ty = ... = 0, the physical robot together with
the IPC have a certain amount of energy, namely H, + H where H is the
mechanical energy of the physical robot and H, the one of the IPC as it has
been shown in Sec. 1.6. This energy cannot increase if no power is supplied
by the environment. This is true in ANY situation like bouncing of the robot
with an object or any kind of changes of contact situations! It is not necessary
to discriminate between contact and no-contact situations!
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Fig. 8. A tele-manipulation Setting

2.2 The Supervisor

The Supervisor has the role of scheduling and planning and can be considered
as having the role of the brain in the human analogy.

Following the grasping example of the previous section, to grasp and move
an object, we have to

Open the hand

Move around the object
Close the hand (grasp)
Move the object

Open the hand

G W

. All this subtasks can be implemented by means of control signals to the IPC
by the Supervisor which can supply a controlled amount of energy to the
system in order to perform useful tasks.

A Tele-manipulation setting In a tele-manipulation setting, the presented
architecture is still valid, but the role of the supervisor is taken over by a
human on the other side of a transmission line.

A perfectly bilateral tele-manipulation system using the presented archi-
tecture is reported in Fig. 8. This system has been studied and implemented
experimentally in [15].

The environment on one side is the environment to be manipulated and
the one on the other side is the human which manipulates the system re-
motely.

The port variables are transformed to scattering variables (block Z) to
preserve passivity even with time varying time delays due to the transmis-
sion line [15]. The supervisor on one side is in this case composed of the
transmission line, the IPC, the Robot and the “Environment” of the other
side.

Once again due to the consistent framework using power ports, passivity
is preserved in any situation.
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3 Summary

In the first part of the paper, we have introduced the theory of matrix Lie
group to study motions of rigid body mechanisms. This allows to define a
vector space se(3) and its dual se*(3) which can be used together to talk
geometrically about the port interconnection of mechanical parts.

In the second part a novel architecture has been presented which slightly
resembles the human physiology. Real time behavior is controlled by the In-
trinsically Passive Controller which corresponds to a virtual physical system.
The IPC more or less resembles the role of muscle and spindles in biological
systems. The IPC together with the robot can be seen as a pre-compensated
robot. Due to the implementation of the IPC control as a power consistent
interconnection with the robot to be controlled, passivity is ensured in ANY
situations if no power is injected by the Supervisor. The structure of the IPC
is corresponding to a Port Controlled Hamiltonian System with dissipation.
An example of such an IPC has been given. An important point is that the
IPC can be really designed using mechanical analogies like springs, dampers
and masses and then implemented using the theory of interconnection of
Port Controlled Hamiltonian Systems. Furthermore, it has been shown in
[13] using the theory of Casimir functions that it is possible to implement
the IPC with only measurements of positions ¢ and not of velocities. With
the presented strategy, it is not proper to talk about position or force control
anymore, because what it is controlled is actually the behavior of the system
and not the position or force at its interconnection port. This has the ad-
vantages of being very robust with respect to different materials and object
with which the robot interact; just think about shaking hand to somebody,
we never have a perfect model of the person we shake hand with, but the
interaction is always well behaved.
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