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Preface

Coordinates? Press a few buttons on a computer and they are automatically 
imported, exported, rotated, translated, collated, annotated, and served up 
in any format you choose with no trouble at all. There really is nothing to it. 
Why have a book about coordinates?

It’s a good question, really. Computers are astounding in their ability 
to make the mathematics behind coordinate manipulation transparent to 
the user. This book is not much about that sort of mathematics. But it is 
about coordinates and coordinate systems. It is about understanding how 
these systems work, and how they sometimes don’t work. It is about how 
points that should be in New Jersey end up in the middle of the Atlantic 
Ocean even if the computer has done nothing wrong. And that is, I sup-
pose, the answer to the question from my point of view. Computers are 
currently very good at repetition and very bad at interpretation. People 
are usually not so good at repetition. We tend to get bored. But we can 
be very good indeed at interpretation—if we have the information in our 
heads to understand what we are interpreting. This book is about provid-
ing some of that sort of information on the subject of coordinates and 
coordinate systems.

Coordinates are critical to GIS (geographic information systems), cartog-
raphy, and surveying. They are their foundation. Points, lines, and polygons 
form the geometry. Lines define the polygons, points define the lines, and 
coordinates define the points. So at bottom it is the coordinates that tie the 
real world to its electronic image in the computer.

There are more than 1,000 horizontal geodetic datums and over 3,000 
Cartesian coordinate systems, sanctioned by governments around the world 
and currently in use, to describe our planet electronically and on paper.
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1
Foundation of a Coordinate System

Uncertainty

Coordinates are slippery devils. A stake driven into the ground holds a clear 
position, but it is awfully hard for its coordinates to be so certain, even if 
the figures are precise. For example, a latitude of 40° 25′ 33.504″ N with a 
longitude of 108° 45′ 55.378″ W appears to be an accurate, unique coordinate. 
Actually, it could correctly apply to more than one place. An elevation, or 
height, of 2658.2 m seems unambiguous too, but it isn’t.

In fact, this latitude, longitude, and height once pinpointed a control point 
known as Youghall, but not anymore. Oh, Youghall still exists. It is a bronze 
disk cemented into a drill hole in an outcropping of bedrock on Tanks Peak 
in the Colorado Rocky Mountains. It’s not going anywhere, but its coordi-
nates have not been nearly as stable as the monument. In 1937, the U.S. Coast 
and Geodetic Survey set Youghall at latitude 40° 25′ 33.504″ N and longitude 
108° 45′ 55.378″ W. You might think that was that, but in November 1997, 
Youghall suddenly got a new coordinate, 40° 25′ 33.39258″ N and 108° 45′ 
57.78374″ W. That’s more than 56 m (185 ft) west and 3 m (11 ft) south of where 
it started. But Youghall hadn’t actually moved at all. Its elevation changed 
too. It was 2658.2 m in 1937. It is 2659.6 m today. It rose 4½ ft.

Of course, it did no such thing; the station is right where it has always been. 
The Earth shifted underneath it, well, nearly. It was the datum that changed. 
The 1937 latitude and longitude for Youghall was based on the North 
American Datum 1927 (NAD27). Seventy years later, in 1997, the basis of the 
coordinate of Youghall became the North American Datum 1983 (NAD83).

Datums to the Rescue

Coordinates without a specified datum are vague. It means that questions 
like “Height above what?”, “Where is the origin?” and “On what surface do 
they lie?” go unanswered. When that happens, coordinates are of no use 
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really. An origin, a starting place, is a necessity for them to be meaningful. 
Not only must they have an origin, they must also be on a clearly defined 
surface. These foundations constitute the datum.

Without a datum, coordinates are like checkers without a checkerboard: 
You can arrange them, analyze them, move them around, but absent the 
framework, you never really know what you’ve got. In fact, datums—very 
much like checkerboards—have been in use for a long time. They are gener-
ally called Cartesian systems.

René Descartes

Cartesian systems get their name from René Descartes, a mathematician and 
philosopher. In the world of the seventeenth century, he was also known 
by the Latin name Renatus Cartesius, which might explain why we have a 
whole category of coordinates known as Cartesian coordinates. Descartes 
did not really invent the things, despite a story that he watched a fly walk on 
his ceiling and then tracked the meandering path with this system of coor-
dinates. Long before, around 250 BC or so, the Greek scholar Eratosthenes 
used a checkerboard-like grid to locate positions on the Earth, and even he 
was not the first: Dicaearchus had come up with the same basic idea before 
him. Nevertheless, Descartes was probably the first to use graphs to plot 
and analyze mathematical functions. He set up the rules we use now for his 
particular version of a coordinate system in two dimensions defined on a flat 
plane by two axes.

Cartesian Coordinates

Cartesian coordinates are expressed in ordered pairs. Each element of the 
coordinate pair is the distance measured across a flat plane from the point. 
The distance is measured along the line parallel with one axis that extends 
to the other axis. If the measurement is parallel with the x-axis, it is called the 
x-coordinate, and if the measurement is parallel with the y-axis, it is called 
the y-coordinate.

Figure 1.1 shows two axes perpendicular to each other labeled x and y. This 
labeling is a custom established by Descartes. His idea was to symbolize 
unknown quantities with letters from the end of the alphabet—x, y, z. This 
leaves letters from the beginning available for known values. Coordinates 
became so often used to solve for unknowns, the principle was established 
that Cartesian axes have the labels x and y. The fancy names for the axes are 
abscissa, for x, and ordinate, for y. Surveyors, cartographers, and mappers call 
them north and east, but back to the story.

These axes need not be perpendicular to each other. They could intersect 
at any angle, though they would obviously be of no use if they were paral-
lel. Because so much convenience would be lost using anything other than 
a right angle, it has become the convention. Another convention is the idea 
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that the units along the x-axis are identical with the units along the y-axis, 
even though there is no theoretical requirement that this be so. Finally, on 
the x-axis, any point to the west, i.e., to the left, of the origin is negative, and 
any point to the east, i.e., to the right, is positive. Similarly, on the y-axis, any 
point north of the origin is positive, and any point south is negative. If these 
principles are held, then the rules of Euclidean geometry are true, and the 
off-the-shelf CAD (computer-aided design) and GIS (geographic information 
system) software on your PC have no trouble at all working with these coor-
dinates; a most practical benefit.

For example, the distance between these points can be calculated using the 
coordinate geometry you learned in high school. The x- and y-coordinates 
for the points in the illustration are: the origin point P1 (220, 295), and point 
P2 (311, 405), where:

	X1 = 220
	Y1 = 295

and

	X2 = 311
	Y2 = 405

Distance = [( ) ( ) ]X X Y Y1 2
2

1 2
2− + −

Distance = [(220  311)  + (295 405) ]2 2− −

North (Y)

East (X)Origin

+400

+300

+200

+100

‒100

‒200

‒200 ‒100 +100 +200 +300 +400 +500

311

220

295
405

14
2.7
6

X,Y
(220,295)

N,E
(295,220)

X,Y
(311,405)
N,E
(405,311)

P1

P2

Figure 1.1
The Cartesian coordinate system.
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Distance = [( 91)  + ( 110) ]2 2− −

Distance =    ( , , )8 281 12 100+

Distance = 20,381

Distance = 142.76

The system works, and it is convenient. But unless it has an attachment to 
something a bit more real than these unitless numbers, it is not very helpful, 
which brings up an important point about datums.

Attachment to the Real World

The beauty of datums is that they are errorless, at least in the abstract. On a 
datum, every point has a unique and accurate coordinate. There is no distor-
tion. There is no ambiguity. For example, the position of any point on the datum 
can be stated exactly, and it can be accurately transformed into coordinates 
on another datum with no discrepancy whatsoever. All of these wonderful 
things are possible only as long as a datum has no connection to anything in 
the physical world. In that case, it is perfectly accurate, and perfectly useless.

But suppose you wished to assign coordinates to objects on the floor of a 
very real rectangular room. A Cartesian coordinate system could work, if it 
is fixed to the room with a well-defined orientation. For example, you could 
put the origin at the southwest corner, stipulate that the walls of the room are 
oriented in cardinal directions, and use the floor as the reference plane.

With this datum you not only have the advantage that all of the coor-
dinates are positive, but you can define the location of any object on the 
floor of the room. The coordinate pairs would consist of two distances, 
the distance east and the distance north from the origin in the corner. 
As long as everything stays on the floor, you are in business. In this case, 
there is no error in the datum, of course, but there are inevitably errors in 
the coordinates. These errors are due to the less-than-perfect flatness of 
the floor, the impossibility of perfect measurement from the origin to any 
object, the ambiguity of finding the precise center of any of the objects 
assigned coordinates, etc. In short, as soon as you bring in the real world, 
things get messy.

Cartesian Coordinates and the Earth

Cartesian coordinates then are rectangular, or orthogonal, defined by perpen-
dicular axes from an origin along a specifically oriented reference surface. These 
elements can define a datum, or framework, for meaningful coordinates.



Foundation of a Coordinate System	 5

As a matter of fact, two-dimensional Cartesian coordinates are an impor-
tant element in the vast majority of coordinate systems; the State Plane 
Coordinate System (SPCS) in the United States, the Universal Transverse 
Mercator (UTM) coordinate system, and most others. The datums for these 
coordinate systems are well established. But there are also local Cartesian 
coordinate systems whose origins are often entirely arbitrary. For example, 
if surveying, mapping, or other work is done for the construction of a new 
building, there may be no reason for the coordinates used to have any fixed 
relation to any other coordinate systems. In that case, a local datum may be 
chosen for the specific project, with north and east fairly well defined and 
with the origin moved far to the west and south of the project to ensure that 
there will be no negative coordinates. Such an arrangement is good for local 
work, but it does preclude any easy combination of such small independent 
systems. Large-scale Cartesian datums, on the other hand, are designed to 
include positions across significant portions of the Earth’s surface into one 
system. Of course, these are also designed to represent our decidedly round 
planet on the flat Cartesian plane, no easy task.

But how would a flat Cartesian datum with two axes represent the Earth? 
There is obviously distortion inherent in the idea. If the planet were flat, 
it would do nicely, and across small areas, that very approximation—a flat 
Earth—works reasonably well. That means that even though the inevitable 
warping involved in representing the Earth on a flat plane cannot be elimi-
nated, it can be kept within well-defined limits as long as the region covered 
is small and precisely defined. If the area covered becomes too large, distor-
tion does defeat it (Figure 1.2). So the question is, “Why go to all the trouble 
to work with plane coordinates?” Well, here is a short example to illustrate 
the utility of this approach.

It is certainly possible to calculate the distance from station Youghall to 
station Karns using latitude and longitude, also known as geographic coordi-
nates, but it is easier for your computer, and for you, to use Cartesian coordi-
nates. Here are the geographic coordinates for these two stations: Youghall 
at latitude 40° 25′ 33.39258″ N and longitude 108° 45′ 57.78374″ W and Karns 
at latitude 40° 26′ 06.36758″ N and longitude 108° 45′ 57.56925″ W in the North 
American Datum 1983 (NAD83). Here are the same two stations’ positions 
expressed in Cartesian coordinates.

Youghall

Northing = Y1 = 1,414,754.47

Easting = X1 = 2,090,924.62

Karns

Northing = Y2 = 1,418,088.47

Easting = X2 = 2,091,064.07
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Camp

Elk

5

8927

8972

Fork
South

8400

8800

8400

Figure 1.2
Distortion of flat systems increases over long lines and large areas.
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The Cartesian system used here makes use of state plane coordinates (SPCs) 
in Colorado’s North Zone, and the units are survey feet (more about those in 
Chapter 4). The important point is this: These coordinates are based on a 
simple two-axis Cartesian system operating across a flat reference plane.

As shown previously, the distance between these points using the plane 
coordinates is easy to calculate.

Distance = 
[( ) ( ) ]X X Y Y1 2

2
1 2

2− + −  

Distance = [(2,090,924.62 2,091,064.07)  + (1,414,754.2− 447 1,418,088.47)2]−

Distance = [( . ) ( , . ) ]− + −139 45 3 334 002 2  

Distance = (19,445.3025 + 11,115,556.0000)

Distance = 11,135,001.30

Distance = 3,336.91 ft

The distance calculated using the plane coordinates is 3336.91 ft. The dis-
tance between these points calculated from their latitudes and longitudes is 
slightly different: 3337.05 ft. Both of these distances are the result of inverses, 
which means that they were calculated between two positions from their 
coordinates. Comparing the results between the methods shows a difference 
of about 0.14 ft, a bit more than 0.1 ft. In other words, the spacing between sta-
tions would need to grow more than seven times, to about 4½ miles, before 
the difference would reach 1 ft. So part of the answer to the question, “Why 
go to all the trouble to work with plane coordinates?” is this: They are easy 
to use, and the distortion across small areas is not severe.

This rather straightforward idea is behind a good deal of the conversion 
work done with coordinates. Geodetic coordinates are useful but somewhat 
cumbersome, at least for conventional trigonometry. Cartesian coordinates 
on a flat plane are simple to manipulate but inevitably include distortion. 
Moving from one to the other, it is possible to gain the best of both. The ques-
tion is, “How do you project coordinates from the nearly spherical surface of 
the Earth to a flat plane?” Well, first you need a good model of the Earth.

The Shape of the Earth

People have been proposing theories about the shape and size of the planet 
for a couple of thousand years. Despite the fact that local topography is obvi-
ous to an observer standing on the Earth, efforts to grasp the more general 
nature of the planet’s shape and size have been occupying scientists for at 
least 2,300 years. There have, of course, been long intervening periods of 
unmitigated nonsense on the subject. Ever since 200 BC, when Eratosthenes 
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almost calculated the planet’s circumference correctly (Figure 1.3), geodesy 
has been getting ever closer to expressing the actual shape of the Earth in 
numerical terms.

At noon, the reflection of the midsummer sun was there in the water of 
a deep well at Syene. The sun was directly overhead. On the same day, the 
noon shadow cast by a pillar at Alexandria was measured. It showed that the 
sunbeam strikes the earth at an angle of 7.2° off the vertical. Therefore, the 
angle between Alexandria and Syene must be 7.2°—1/50th of a 360° circle. 
Syene is 480 miles south of Alexandria, and a great circle must therefore be 
50 times 480 miles in length, or 24,000 miles. In fact, the circumference of the 
earth is around 24,900 miles.

A real breakthrough came in 1687 when Newton suggested that the Earth 
shape was ellipsoidal in the first edition of his Principia. The idea was not 
entirely without precedent. Years earlier, astronomer J. Richter found that 
the closer he got to the equator, the more he had to shorten the pendulum on 
his 1-sec clock. It swung more slowly in French Guiana than it did in Paris. 
When Newton heard about it, he speculated that the force of gravity was 
less in South America than in France. He explained the weaker gravity by 
the proposition that, when it comes to the Earth, there is simply more of it 
around the equator. He wrote, “The Earth is higher under the equator than 
at the poles, and that by an excess of about 17 miles” (Philosophiae naturalis 
principia mathematica, Book III, Proposition XX). He was pretty close to right; 
the actual distance is only about 4 miles less than he thought.

Some supported Newton’s idea that the planet bulged around the equator 
and flattened at the poles, but others disagreed, including the director of the 
Paris Observatory, Jean Dominique Cassini. Even though he had seen the 
flattening of the poles of Jupiter in 1666, neither he nor his son Jacques were 
prepared to accept the same idea when it came to the Earth. And it appeared 
they had some evidence on their side.

For geometric verification of the Earth model, scientists had employed arc 
measurements since the early 1500s. First, they would establish the latitude of 
their beginning and ending points astronomically. Next, they would measure 
north along a meridian and find the length of one degree of latitude along that 
longitudinal line. Early attempts assumed a spherical Earth, and the results 

Syene Alexandria
100 200

480 Miles
300

400

7.2°

Figure 1.3
Eratosthenes’ data.



Foundation of a Coordinate System	 9

were used to estimate its radius by simple multiplication. In fact, one of the most 
accurate of the measurements of this type, begun in 1669 by the French abbé 
J. Picard, was actually used by Newton in formulating his own law of gravita-
tion. However, Cassini noted that close analysis of Picard’s arc measurement, 
and measurements of others, seemed to show that the length along a meridian 
through one degree of latitude actually decreased as it proceeded northward. If 
that was true, then the Earth was elongated at the poles, not flattened.

The argument was not resolved until the famous Swedish physicist Anders 
Celsius, on a visit to Paris, suggested two expeditions. One group, led by 
Moreau de Maupertuis, went to measure a meridian arc along the Tornio 
River near the Arctic Circle, at 66° 20′ north latitude, in Lapland. Another 
expedition went to what is now Ecuador to measure a similar arc near 
the equator, 01° 31′ south latitude. The Tornio expedition reported that 1° 
along the meridian in Lapland was 57,437.9 toises, about 69.6 miles. A toise 
is approximately 6.4 ft. A degree along a meridian near Paris had been mea-
sured as 57,060 toises, about 69.1 miles. This shortening of the length of the 
arc was taken as proof that the Earth is flattened near the poles. Even though 
the measurements were wrong, the conclusion was correct. Maupertuis pub-
lished a book on the work in 1738, the king of France gave Celsius a yearly 
pension of 1,000 livres, and Newton’s conjecture was proved right. I wonder 
which of them was the most pleased.

Since then, there have been numerous meridian measurements all over 
the world, not to mention satellite observations, and it is now settled that 
the Earth most nearly resembles an oblate spheroid. An oblate spheroid is 
an ellipsoid of revolution. In other words, it is the solid generated when an 
ellipse is rotated around its shorter axis and then flattened at its poles. The 
flattening is only about 1 part in 300. Still, the ellipsoidal model, bulging 
at the equator and flattened at the poles, is the best representation of the 
general shape of the Earth. If such a model of the Earth were built with an 
equatorial diameter of 25 ft, the polar diameter would be about 24 ft 11 in., 
almost indistinguishable from a sphere.

It is on this somewhat ellipsoidal Earth model that latitude and longitude 
have been used for centuries. The idea of a nearly spherical grid of imag-
inary intersecting lines has helped people navigate around the planet for 
more than 1,000 years and is showing no signs of wearing down. It is still a 
convenient and accurate way of defining positions.

Latitude and Longitude

Latitude and longitude are coordinates that represent a position on the surface 
of the Earth with angles instead of distances. Usually the angles are measured 
in degrees, but grads and radians are also used. Depending on the precision 
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required, the degrees (360° comprising a full circle) can be subdivided into 60 
min of arc, and each minute of arc can be further subdivided into 60 sec of arc. 
In other words, there are 3600 sec in a degree. Seconds can be subsequently 
divided into decimals of seconds. Typically, the arc is dropped from their 
names, since it is usually obvious that the minutes and seconds are in space 
rather than time. In any case, these subdivisions are symbolized by

° for degrees

′ for minutes

″ for seconds

The system is called sexagesimal. A radian is the angle subtended by an arc 
equal to the radius of a circle. A full circle is 2π radians, and a single radian 
is 57° 17′ 44.8″.

In the European centesimal system, a full circle is divided into 400 grads. 
These units are also known as grades and gons. As in the sexagesimal system, 
a radian is the angle subtended by an arc equal to the radius of a circle. A full 
circle is 2π radians, and a single radian is 57° 17′ 44.8″.

Lines of latitude and longitude always cross each other at right angles, as 
do the lines of a Cartesian grid, but latitude and longitude exist on a curved 
rather than a flat surface. There is imagined to be an infinite number of these 
lines on the ellipsoidal model of the Earth. In other words, each and every 
place has a line of latitude and a line of longitude passing through it, and it 
takes both of them to fully define a place. If the distance from the surface of 
the ellipsoid is then added to the latitude and longitude, you have one type 
of three-dimensional coordinate. This distance component is sometimes 
measured as the elevation above the ellipsoid, also known as the ellipsoi-
dal height, and sometimes it is measured all the way from the center of the 
ellipsoid (see Chapter 3). For the moment, the discussion will be confined to 
positions on an ellipsoidal model of the Earth with a smooth surface. In this 
case, the height component can be set aside with the assertion that all posi-
tions are on the surface of the model.

In mapping, latitude is usually represented by the lowercase Greek let-
ter phi (φ). Longitude is usually represented by the lowercase Greek letter 
lambda (λ). In both cases, the angles originate at a plane that is imagined to 
intersect the ellipsoid. In both latitude and longitude, the planes of origina-
tion are intended to include the center of the Earth. Angles of latitude most 
often originate at the plane of the equator, and angles of longitude origi-
nate at the plane through an arbitrarily chosen place, currently Greenwich, 
England. Latitude is an angular measurement of the extent to which a par-
ticular point lies north or south of the equatorial plane measured in degrees, 
minutes, and seconds (and, usually, decimals of a second). Longitude is also 
an angle measured in degrees, minutes, seconds, and decimals of a second 
east and west of the plane through the chosen prime, or zero, position.
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Between the Lines

On the Earth, any two lines of longitude—for example, west longitude 89° 00′ 
00″ and west longitude 90° 00′ 00″—are farthest from each other at the equa-
tor, but as they proceed north and south to the poles, they become closer. In 
other words, they converge. It is interesting to note that the length of a degree 
of longitude and the length of a degree of latitude are just about the same in 
the vicinity of the equator. They are both about 60 nautical miles: approxi-
mately 111 km (69 miles). But if you imagine going north or south along a line 
of longitude toward either the North or the South Pole, a degree of longitude 
becomes progressively shorter. At 2/3 of the distance from the equator to the 
pole, i.e., at 60° north and south latitudes, a degree of longitude shrinks to 
about 55.5 km (34.5 miles)—half the length it had at the equator. And as one 
proceeds northward or southward, a degree of longitude continues to shrink 
until it fades away to nothing, as shown in Figure 1.4.

Detail C

Detail C

Detail B

Detail B

Detail A

Detail A

34.5 Miles

68.7 Miles

69.4 Miles

69 Miles

North Pole

North Pole

Quadrangles are
1° of Longitude
by 1° of Latitude

60° N. Latitude

90° W. Longitude

89° W. Longitude

1° N. Latitude

0° Latitude
Equator

90
° W

.

89
° W

.

90
° W

.

89
° W

.

90
° W

.
89

° W
.

Figure 1.4
Distances across 1°.



12	 Basic GIS Coordinates

On the other hand, lines of latitude do not converge on the Earth; they are 
always parallel to one another and the equator. In fact, as one approaches the 
poles, where a degree of longitude becomes small, a degree of latitude actu-
ally grows slightly. This small increase is due to the flattening near the poles 
mentioned in the previous discussion of the oblate shape of the planet. The 
increase in the size of a degree of latitude would not happen if the Earth were 
a sphere; in that case the length of a degree of latitude would consistently be 
approximately 110.6 km (68.7 miles), as it is near the equator. However, since 
the Earth is an oblate spheroid, as Newton predicted, a degree of latitude 
actually gets a bit longer at the poles. It grows to about 111.7 km (69.4 miles) 
in that region, which is what all those scientists were trying to measure back 
in the eighteenth century.

Longitude

Longitude is an angle between two planes. It is a dihedral angle. In other words, 
it is an angle measured at the intersection of two planes that are themselves 
perpendicular to the equator. In the case of longitude, the first plane passes 
through the point of interest, the place whose longitude you wish to know, 
and the second plane passes through an arbitrarily chosen point represent-
ing zero longitude. Today, that place is Greenwich, England. The measure-
ment of angles of longitude is imagined to take place where the two planes 
meet, and that place is the line known as the polar axis. As it happens, that 
line is also the axis of rotation of the aforementioned ellipsoidal model of the 
Earth. And where they intersect that ellipsoidal model, they create an ellipti-
cal line on its surface. This elliptical line is then divided into two meridians 
at the polar axis. One half becomes a meridian of east longitude, which is 
labeled E or given a positive (+) value, and the other half becomes a meridian 
of west longitude, which is labeled W or given a negative (−) value, as shown 
in Figure 1.5.

The zero meridian through Greenwich is called the prime meridian. From 
there, meridians range from +0° to +180° E longitude and from −0° to −180° 
W longitude. Taken together, these meridians cover the entire 360° around 
the Earth. This arrangement was one of the decisions made by consensus of 
25 nations in 1884.

The location of the prime meridian is arbitrary. The idea that it passes 
through the principal transit instrument, the main telescope, at the Royal 
Observatory at Greenwich, England, was formally established at the 
International Meridian Conference in Washington, D.C., where it was 
decided that there would be a single zero meridian rather than the many 
used before. There were several other decisions made at the meeting, and 
among them was the agreement that all longitude would be calculated both 
east and west from the prime meridian up to 180°, with east longitude being 
positive and west longitude being negative.
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The 180° meridian is a unique longitude; like the prime meridian, it divides 
the Eastern Hemisphere from the Western Hemisphere, but it also represents 
the International Date Line. The calendars west of the line are one day ahead 
of those east of the line. This division could theoretically occur anywhere on 
the globe, but it is convenient for it to be 180° from Greenwich in a part of the 
world mostly covered by ocean. Even though the line does not actually fol-
low the meridian exactly, it avoids dividing populated areas; it illustrates the 
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relationship between longitude and time. Since there are 360° of longitude 
and 24 hours in a day, it follows that the Earth must rotate at a rate of 15° per 
hour. This is an idea that is inseparable from the determination of longitude.

Latitude

Two angles are sufficient to specify any location on the reference ellipsoid 
representing the Earth. Latitude is an angle between a plane and a line 
through a point.

Imagine a flat plane intersecting an ellipsoidal model of the Earth. 
Depending on exactly how it is done, the resulting intersection would be 
either a circle or an ellipse, but if the plane is coincident with or parallel to 
the equator, the result is always a parallel of latitude. The equator is a unique 
parallel of latitude that also contains the center of the ellipsoid, as shown in 
Figure 1.6.

The equator is 0° latitude, and the North and South Poles +90° north and 
−90° south latitude, respectively. In other words, values for latitude range 
from a minimum of 0° to a maximum of 90°. The latitudes north of the equa-
tor are positive and those to the south are negative.

Lines of latitude are called parallels because they are always parallel to each 
other as they proceed around the globe. They do not converge as meridians 
do or cross each other.

Categories of Latitude and Longitude

When positions given in latitude and longitude are called geographic coor-
dinates, this general term really includes several types. For example, there 
are geocentric and geodetic versions of latitude and longitude.

North Pole

Equator

45° N. Latitude

Figure 1.6
Parallels of latitude.
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The geodetic longitude of a point is the angle between the plane of the 
Greenwich meridian and the plane of the meridian that passes through the 
point of interest, both planes being perpendicular to the equatorial plane. 
Since they have the same zero meridian and the same axis, geodetic longi-
tude and geocentric longitude are equivalent, but when it comes to latitude 
that is not the case.

It is the ellipsoidal nature of the model of the Earth that contributes to 
the difference. For example, there are just a few special circumstances on an 
ellipsoid where a line from a particular position can be both perpendicular 
to the ellipsoid’s surface and also pass through the center. Lines from the 
poles and lines from the equatorial plane can do that, but in every other case, 
a line can either be perpendicular to the surface of the ellipsoid, or it can pass 
through the center, but it cannot do both. And there you have the basis for 
the difference between geocentric and geodetic latitude.

Imagine a line from the point of interest on the ellipsoid to the center 
of the Earth. The angle that line makes with the equatorial plane is the 
point’s geocentric latitude. On the other hand, geodetic latitude is derived 
from a line that is perpendicular to the ellipsoidal model of the Earth 
at the point of interest. The angle this line makes with the equatorial 
plane of that ellipsoid is called geodetic latitude. As you can see, geodetic 
latitude is always just a bit larger than geocentric latitude except at the 
poles and the equator, where they are the same. The maximum difference 
between geodetic and geocentric latitude is about 11′44″ and occurs at 
about 45°.

When latitude and longitude are mentioned without a particular qualifier, 
in most cases it is best to presume that the reference is to geodetic latitude 
and longitude (Figure 1.7).
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The Deflection of the Vertical

Down seems like a pretty straightforward idea. A hanging plumb bob cer-
tainly points down. Its string follows the direction of gravity. That is one 
version of the idea. There are others.

Imagine an optical surveying instrument set up over a point. If it is centered 
precisely with a plumb bob and leveled carefully, the plumb line and the line 
of the level telescope of the instrument are perpendicular to each other. In 
other words, the level line, the horizon of the instrument, is perpendicular to 
gravity. Using an instrument so oriented, it is possible to determine the lati-
tude and longitude of the point. Measuring the altitude of a circumpolar star 
is one good method of finding the latitude. The measured altitude would 
be relative to the horizontal level line of the instrument. Latitude found this 
way is called astronomic latitude.

One might expect that this astronomic latitude would be the same as the 
geocentric latitude of the point, but they are different. The difference is due 
to the fact that a plumb line coincides with the direction of gravity; it does 
not point to the center of the Earth, where the line used to derive geocentric 
latitude originates.

Astronomic latitude also differs from the most widely used version of 
latitude: the geodetic latitude. The line from which geodetic latitude is deter-
mined is perpendicular to the surface of the ellipsoidal model of the Earth. 
That does not match a plumb line either. In other words, there are three dif-
ferent versions of “down,” each with its own latitude. For geocentric latitude, 
down is along a line to the center of the Earth. For geodetic latitude, down 
is along a line perpendicular to the ellipsoidal model of the Earth. For astro-
nomic latitude, down is along a line in the direction of gravity. More often 
than not, these are three completely different lines, as seen in Figure 1.8.

Each can be extended upward too, toward the zenith, and there are small 
angles between them. The angle between the vertical extension of a plumb 
line and the vertical extension of a line perpendicular to the ellipsoid is 
called the deflection of the vertical. It sounds better than the “difference in 
down.” This deflection of the vertical defines the actual angular differ-
ence between the astronomic latitude and longitude of a point and its geo-
detic latitude and longitude. This applies to both latitude and longitude 
because, even though the discussion has so far been limited to latitude, the 
deflection of the vertical usually has both a north-south and an east-west 
component.

It is interesting to note that that optical instrument, set up so carefully over 
a point on the Earth, cannot be used to measure geodetic latitude and lon-
gitude directly because they are not relative to the actual Earth, but rather a 
model of it. Gravity does not even come into the ellipsoidal version of down. 
On the model of the Earth, down is a line perpendicular to the ellipsoidal 
surface at a particular point. On the real Earth, down is the direction of grav-
ity at the point. They are most often not the same. And since the model is 
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imaginary, it is quite impossible to actually set up an instrument on the ellip-
soid. On the other hand, astronomic observations for the measurement of 
latitude and longitude by observing stars and planets with instruments on 
the real Earth have a very long history indeed. And yet the most commonly 
used coordinates are not astronomic latitudes and longitudes, but geodetic 
latitudes and longitudes. So conversion from astronomic latitude and longi-
tude to geodetic latitude and longitude has a long history as well. Therefore, 
until the advent of GPS, geodetic latitudes and longitudes were often values 
ultimately derived from astronomic observations by postobservation calcu-
lation. And in a sense that is still true; the change is that a modern GPS 
receiver can display the geodetic latitude and longitude of a point to the 
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user immediately because the calculations can be completed with incred-
ible speed. But a fundamental fact remains unchanged: The instruments by 
which latitudes and longitudes are measured are oriented to gravity, while 
the ellipsoidal model on which geodetic latitudes and longitudes are deter-
mined is not. And that is just as true for the antenna of a GPS receiver, an 
optical surveying instrument, a camera in an airplane taking aerial photog-
raphy, or even the GPS satellites themselves.

To illustrate the effect of the deflection of the vertical on latitude and 
longitude, here are station Youghall’s astronomical latitude and longitude 
labeled with capital phi (Φ) and capital lambda (Λ), respectively, the stan-
dard Greek letters commonly used to differentiate them from geodetic lati-
tude and longitude:

Φ = 40° 25′ 36.28″ N

Λ = 108° 46′ 00.08″ W

Now, the deflection of the vertical can be used to convert these coordi-
nates to a geodetic latitude and longitude. Unfortunately, the small angle is 
not usually conveniently arranged. It would be helpful if the angle between 
the direction of gravity and the perpendicular to the ellipsoid would fol-
low only one cardinal direction, north-south or east-west. For example, if 
the angle observed from above Youghall was oriented north or south along 
the meridian, then it would affect only the latitude (not the longitude) and 
would be very easy to apply. But that is not the case. The two normals, i.e., the 
perpendicular lines that constitute the deflection of the vertical at a point, are 
usually neither north-south nor east-west of each other. Looking down on 
a point, one could imagine that the angle they create between them stands 
in one of the four quadrants: northeast, southeast, southwest, or northwest. 
Therefore, to express its true nature, deflection is broken down into two com-
ponents, one north-south and the other east-west. There are almost always 
some of both. The north-south component is known by the Greek letter xi 
(ξ). It is positive (+) to the north and negative (−) to the south. The east-west 
component is known by the Greek letter eta (η). It is positive (+) to the east 
and negative (−) to the west.

For example, as seen in Figure 1.9, the components of the deflection of the 
vertical at Youghall are:

North-south = xi = ξ = +2.89″
East-west = eta = η = +1.75″

In other words, if an observer held a plumb bob directly over the monument 
at Youghall, the upper end of the string would be 2.89 arc-sec north and  
1.75 arc-sec east of the line that is perpendicular to the ellipsoid.
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The geodetic latitude and longitude (φ and λ) can be computed from the 
astronomic latitude and longitude (Φ and Λ) using the following formulas:

	 φ =	 Φ – ξ
	 φ =	 40° 25′ 36.28″ – (+2.89″)
	 φ =	 40° 25′ 33.39″

	 λ =	 Λ − η/cos φ
	 λ =	 108° 46′ 00.08″ − (+1.75″)/cos 40° 25′ 33.39″
	 λ =	 108° 46′ 00.08″ − (+1.75″)/0.7612447
	 λ =	 108° 46′ 00.08″ − (+2.30″)
	 λ =	 108° 45′ 57.78″
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where
	 φ =	 geodetic latitude
	 λ =	 geodetic longitude
	Φ =	 astronomical latitude
	Λ =	 astronomical longitude

and the components of the deflection of the vertical are

	North-south = ξ
	East-west = η

Directions

Azimuths

An azimuth is one way to define the direction from point to point on the 
ellipsoidal model of the Earth, on Cartesian datums, and on other sys-
tems. On some Cartesian datums, an azimuth is called a grid azimuth, 
referring to the rectangular grid on which a Cartesian system is built. 
Grid azimuths are defined by a horizontal angle measured clockwise 
from north.

Azimuths can be measured clockwise from north either through a full 
360° or measured +180° in a clockwise direction from north and −180° in a 
counterclockwise direction from north. Bearings are different.

Bearings

Bearings, another method of describing directions, are always acute angles 
measured from 0° at either north or south to 90° to either the west or the 
east. They are measured both clockwise and counterclockwise. They are 
expressed from 0° to 90° from north in two of the four quadrants, the north-
east, 1, and northwest, 4. Bearings are also expressed from 0° to 90° from 
south in the two remaining quadrants, the southeast, 2, and southwest, 3 as 
shown in Figure 1.10.

In other words, bearings use four quadrants of 90° each. A bearing of N 45° 
15′ 35″ E is an angle measured in a clockwise direction 45° 15′ 35″ from north 
toward the east. A bearing of N 21° 44′ 52″ W is an angle measured in a coun-
terclockwise direction 21° 44′ 52″ toward west from north. The same ideas 
work for southwest bearings measured clockwise from south and southeast 
bearings measured counterclockwise from south.

Directions—azimuths and bearings—are indispensable. They can be 
derived from coordinates with an inverse calculation. If the coordinates of 
two points inversed are geodetic, then the azimuth or bearing derived from 
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them is also geodetic; if the coordinates are astronomic, then the direction 
will be astronomic, and so on. If the coordinates from which a direction is 
calculated are grid coordinates, the resulting azimuth will be a grid azimuth, 
and the resulting bearing will be a grid bearing.

Both bearings and azimuths in a Cartesian system assume the direction 
to north is always parallel to the y-axis, the north-south axis. On a Cartesian 
datum, there is no consideration for convergence of meridional, north-south, 
lines. One result of the lack of convergence is that the bearing or azimuth at 
one end of a line is always exactly 180° different from the bearing or azimuth 
at the other end of the same line. But if the datum is on the ellipsoidal model 
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of the Earth, directions do not quite work that way. For example, consider the 
difference between an astronomic azimuth and a geodetic azimuth.

Astronomic and Geodetic Directions

If it were possible to point an instrument to the exact position of the north 
celestial pole, a horizontal angle turned from there to an observed object on 
the Earth would be the astronomic azimuth to that object from the instrument. 
But it is rather difficult to measure an astronomic azimuth that way because 
there is nothing to point to at the celestial North Pole but a lot of sky. Polaris, 
the North Star, appears to follow an elliptical path around the celestial North 
Pole, which is the northward prolongation of the Earth’s axis. Even so, Polaris 
and several other celestial bodies, for that matter, serve as good references for 
the measurement of astronomic azimuths, albeit with a bit of calculation. Still, 
optical instruments used to measure astronomic azimuths must be oriented 
to gravity, and it is usual for the azimuths derived from celestial observations 
to be converted to geodetic azimuths. Geodetic azimuths are the native forms 
on an ellipsoid. So, as it was with the conversion of astronomic latitudes and 
longitudes to geodetic coordinates, the deflection of the vertical is applied to 
convert astronomic azimuths to geodetic azimuths.

For example, the astronomic azimuth between two stations, from Youghall 
to Karns, is 00° 17′ 06.67″. Given this information, the geodetic latitude of 
Youghall, 40° 25′ 33.39″ N, and the east-west component of the deflection of 
the vertical, η = +1.75, it is possible to calculate the geodetic azimuth from 
Youghall and Karns using the following formula:

α = Α − η tan φ
α = 00° 17′ 06.67″ − (+1.75″) tan 40° 25′ 33.39″
α = 00° 17′ 06.67″ − (+1.75″) 0.851847724

α = 00° 17′ 06.67″ − 1.49

α = 00° 17′ 05.18″

where:
	 α =	 geodetic azimuth
	Α =	 astronomical azimuth
	 η =	 the east-west component of the deflection of the vertical
	 φ =	 geodetic latitude

But, as always, there is another way to calculate the difference between 
an astronomic azimuth and a geodetic azimuth. Here is the formula and a 
calculation using the data at Youghall:

	Φ =	 40° 25′ 36.28″ N
	Λ =	 108° 46′ 00.08″ W
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	 φ =	 40° 25′ 33.39″ N
	 λ =	 108° 45′ 57.78″ W

αA − αG = +(Λ − λ)sin φ
αA − αG = +(108° 46′ 00.08″ − 108° 45′ 57.78″)sin 40° 25′ 33.39″
αA − αG = +(2.30″)sin 40° 25′ 33.39″
αA − αG = +(2.30″)0.64846
αA − αG = +1.49″

where:
	αA =	 astronomic azimuth
	αG =	 geodetic azimuth
	Λ =	 astronomic longitude
	 λ =	 geodetic longitude
	 φ =	 geodetic latitude

Even without specific knowledge of the components of the deflection of the 
vertical, it is possible to calculate the difference between an astronomic azi-
muth and a geodetic azimuth. The required information is in the coordinates 
of the point of interest. Knowing the astronomic longitude and the geodetic 
latitude and longitude of the position is all that is needed. This method of 
deriving a geodetic azimuth from an astronomic observation makes it easy  
for surveyors to derive the LaPlace correction, which is the name given to the 
right-hand side of the previous equation.

North

The reference for directions is north, and each category refers to a different 
north. Geodetic north differs from astronomic north, which differs from grid 
north, which differs from magnetic north. The differences between the geo-
detic azimuths and astronomic azimuths are a few seconds of arc at a given 
point. Variations between these two are small indeed compared with those 
found between grid azimuths and magnetic azimuths. For example, while 
there might be a few seconds between astronomic north and geodetic north, 
there is usually a difference of several degrees between geodetic north and 
magnetic north.

Magnetic North

Magnetic north is used throughout the world as the basis for magnetic direc-
tions in both the Northern and the Southern Hemispheres, but it will not 
hold still. The position of the magnetic North Pole is somewhere around 79° 
N latitude, and 106° W longitude, a long way from the geographic North Pole. 
To make matters even more interesting, the magnetic North Pole is moving 
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at a rate of about 15 miles per year, just a bit faster than it used to. In fact, it 
has moved more than 600 miles since the early nineteenth century.

The Earth’s magnetic field is variable. For example, if the needle of a com-
pass at a particular place points 15° west of geodetic north. There is said to be 
a west declination of 15°. At the same place 20 years later, that declination may 
have grown to 16° west of geodetic north. This kind of movement is called 
secular variation. It is a change that occurs over long periods and is probably 
caused by convection in the material at the Earth’s core. Declination is one of 
the two major categories of magnetic variation. The other magnetic variation 
is called daily or diurnal variation.

Daily variation is probably due to the effect of the solar wind on the Earth’s 
magnetic field. As the Earth rotates, a particular place alternately moves 
toward and away from the constant stream of ionized particles from the Sun. 
Therefore, it is understandable that the daily variation swings from one side 
of the mean declination to the other over the course of a day. For example, 
if the mean declination at a place were 15° west of geodetic north, it might 
be 14.9° at 8 a.m., 15.0° at 10 a.m., 15.6° at 1 p.m., and again 15.0° at sundown. 
Such a diurnal variation would be somewhat typical, but in high latitudes it 
can grow as large as 9°.

Grid North

The position of magnetic north is governed by natural forces, but grid 
north is entirely artificial. In Cartesian coordinate systems, whether 
known as State Plane, Universal Transverse Mercator, a local assumed 
system, or any other, the direction to north is established by choosing 
one meridian of longitude. The meridian that is chosen is usually in the 
middle of the area, the zone, that is covered by the coordinate system. 
That is why it is frequently known as the central meridian. Thereafter, 
throughout the system, at all points, grid north is along a line parallel 
to that central meridian. This arrangement purposely ignores the fact 
that a different meridian passes through each of the points and that 
all the meridians inevitably converge with one another. Actually, grid 
north and geodetic north only agree at points along the central merid-
ian; everywhere else in the coordinate system there is an angular differ-
ence between the two directions. That angular difference is known as 
the convergence. East of the central meridian grid north is east of geodetic 
north, and the convergence is positive. West of the central meridian grid 
north is west of geodetic north, and the convergence is negative. The 
approximate grid azimuth of a line is its geodetic azimuth minus the 
convergence. Therefore, it follows that, east of the central meridian, the 
grid azimuth of a line is smaller than its geodetic azimuth. West of the 
central meridian, the grid azimuth of a line is larger than the geodetic 
azimuth, as shown in Figure 1.11.



Foundation of a Coordinate System	 25

Polar Coordinates

There is another way of looking at a direction: It can be one component of 
a coordinate.

A procedure familiar to surveyors using optical instruments involves the 
occupation of a station with an established coordinate. A back sighting is 
taken either on another station with a coordinate on the same datum or on 
some other reference such as Polaris. With two known positions, the occu-
pied and the sighted, a beginning azimuth or bearing is calculated. Next, a 
new station is sighted ahead, fore-sighted, on which a new coordinate will 
be established. The angle is measured from the back sight to the fore sight, 
fixing the azimuth or bearing from the occupied station to the new station. 
A distance is measured to the new station, and this direction and distance 
together can actually be considered the coordinate of the new station. They 
constitute what is known as a polar coordinate. In surveying, polar coordinates 
are very often a first step toward calculating coordinates in other systems.

There are coordinates that are all distances: Cartesian coordinates, for 
example. There are coordinates that are all angles: latitude and longitude, for 
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Approximate grid azimuth = geodetic azimuth − convergence.
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example. Then there are coordinates that represent an angle and a distance: 
polar coordinates, as shown in Figure 1.12.

A polar coordinate defines a position with an angle and distance. As in 
a Cartesian coordinate system, they are reckoned from an origin, which in 
this case is also known as the center or the pole. The angle used to define the 
direction is measured from the polar axis, which is a fixed line pointing to the 
east, in the configuration used by mathematicians. It is notable that many 
disciplines, like computer-aided drafting utilities, presume east to be the ref-
erence line for directions. Mappers, cartographers, and surveyors tend to use 
north as the reference for directions in polar coordinates.

In the typical format for recording polar coordinates, the Greek letter rho 
(ρ) indicates the length of the radius vector, i.e., the line from the origin to the 
point of interest. The angle from the polar axis to the radius vector is repre-
sented by the Greek letter theta (θ) and is called the vectorial angle, the central 
angle, or the polar angle. These values ρ and θ are given in ordered pairs, like 
Cartesian coordinates. The length of the radius vector is first and the vecto-
rial angle second: for example (100,220°).

There is a significant difference between Cartesian coordinates and 
polar coordinates. In an established datum using Cartesian coordinates, 
one and only one ordered pair can represent a particular position. Any 
change in either the northing or the easting and the coordinate represents 
a completely different point. However, in the mathematician’s polar coor-
dinates, the same position might be represented in many different ways, 
with many different ordered pairs of ρ and θ standing for the very same 
point. For example, (87,45°) can just as correctly be written (87,405°), as illus-
trated in (i) in Figure 1.13. Here the vectorial angle swings through 360° and 
continues past the pole another 45°. It could also be written as (87,−315), as 
illustrated in (ii) in Figure 1.13. When θ has a clockwise rotation from the 

θ
ρ

North

EastPolar Axis

Center or Pole

ρ = Radius Vector = 100
θ = Vectorial Angle = 120°

Figure 1.12
A polar coordinate (mathematical convention).
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polar axis in this arrangement, it is negative. Another possibility is a posi-
tive or counterclockwise rotation from the polar axis to a point 180° from 
the origin and the radius vector is negative (−87,225°). The negative radius 
vector indicates that it proceeds out from the origin in the opposite direc-
tion from the end of the vectorial angle, as shown in (iii) in Figure 1.13.

In other words, there are several ways to represent the same point in polar 
coordinates. This is not the case for rectangular coordinates, nor is it the case 
for the polar coordinate system as used in surveying, mapping, and cartog-
raphy. In mapping and cartography, directions are consistently measured 
from north and the polar axis points north, as shown in Figure 1.14.

In the mathematical arrangement of polar coordinates, a counterclockwise 
vectorial angle θ is positive and a clockwise rotation is negative. In the sur-
veying, mapping, and cartography arrangement of polar coordinates, the 
opposite is true. A counterclockwise rotation is negative and a clockwise 
rotation is positive. The angle may be measured in degrees, radians, or grads, 
but if it is clockwise, it is positive.

In the mathematical arrangement, the radius vector can be positive or neg-
ative. If the point P lies in the same direction as the vectorial angle, it is con-
sidered positive. If the point P lies in the opposite direction back through the 
origin, the radius vector is considered negative. In the surveying, mapping, 
and cartography arrangement of polar coordinates, the radius vector always 
points out from the origin and is always positive.

M a y   a l s o   b e   e x p r e s s e d   a s :

(87,405°)

i ii iii

(87,–315°)

(87,45°)

(–87,225°)

Figure 1.13
Four ways of noting one position.
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Summary

Positions in three-dimensional space can be expressed in both Cartesian 
coordinates and polar coordinates by the addition of a third axis, the z-axis. 
The z-axis is perpendicular to the plane described by the x-axis and the 
y-axis. The addition of a third distance in the Cartesian system, or the addi-
tion of a second angle in the polar coordinate system, completes the three-
dimensional coordinates of a point.

The letters φ′ and λ′ represent the two angles in Figure 1.15. If the origin of the 
axes is placed at the center of an oblate ellipsoid of revolution, the result is a sub-
stantially correct model of the Earth from which three-dimensional polar coor-
dinates can be derived. Of course, there is a third element to the polar coordinate 
here represented by rho, ρ. However, if every position coordinated in the system 
is always understood to be on the surface of the Earth, or a model of the Earth, 
this radius vector can be dropped from the coordinate without creating ambigu-
ity. And that is conventionally done, so one is left with the idea that each latitude 
and longitude comprises a three-dimensional polar coordinate with only two 
angular parts. In Figure 1.15, they are geocentric latitude and longitude.

If the three-dimensional polar coordinates represent points on the actual 
surface of the Earth, the irregularity of the planet’s surface presents prob-
lems. If they represent points on an ellipsoidal model of the Earth, they are 
on a regular surface, but that surface does not stand at a constant radial dis-
tance from the center of the ellipsoid. There is also a difficulty regarding the 
origin. If the intersection of the axes is at the geocenter, one can derive geo-
centric latitude and longitude directly. However, the vector perpendicular to 

θ ρ

North

EastOrigin

ρ = Radius Vector = 87
θ = Vectorial Angle = 45°

Clockwise rotation is positive
Counterclockwise rotation is negative

(45°,87)

Figure 1.14
A polar coordinate (mapping and surveying convention).
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the surface of the ellipsoid that represents the element of a geodetic latitude 
and longitude of a point does not pass through the geocenter, unless the 
point is at a pole or on the equator. For these reasons and others, it is often 
convenient to bring in the coordinate system that was presented at the begin-
ning of this chapter, the Cartesian coordinate system. However, this time it is 
used in its three-dimensional form, as shown in Figure 1.15.

A three-dimensional Cartesian coordinate system can be built with its ori-
gin at the center of mass of the Earth. The third coordinate, the z-coordinate, 
is added to the x- and y-coordinates, which are both in the plane of the equa-
tor. This system can be and is used to describe points on the surface of an 
ellipsoidal model of the Earth, on the actual surface of the Earth, or satellites 
orbiting the Earth. This system is sometimes known as the Earth-Centered 
Earth-Fixed (ECEF) coordinate system (more about that in Chapter 2).

In Figure 1.16, the relationship between the three-dimensional Cartesian 
coordinates of two points, ρ1 and ρ2, and their three-dimensional polar 

λ' φl

Point (φl,λ',ρ)

Point (x,y,z)

ρ

Z Axis

X Axis

Y Axis

Z Axis

Cartesian Coordinate

Polar Coordinate

X Axis

Y Axisy

x

z

Figure 1.15
Three-dimensional polar and Cartesian coordinates.
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coordinates are illustrated on a reference ellipsoid. Under the circumstances, 
the polar coordinates are geocentric latitudes and longitudes. The basic 
relationship between the geodetic and grid azimuths is also shown in the 
figure. These elements outline a few of the fundamental ideas involved in 
commonly used coordinate systems on the Earth. Subsequent chapters will 
expand on these basics.

Z Axis (+)

X Axis (+) Y Axis (+)

Grid North

Grid  Azimuth
Grid  Azimuth

Zero Meridian Grid North Geodetic Azimuth

International Reference Pole

Geodetic
North

Geodetic
North

Geodetic Azimuth

φ
2

φ
1

Z1

λ1

λ2

Y1
X1 Y2

X2

Z2

ρ
2

ρ
1

Figure 1.16
A few fundamentals regarding the relationship between three-dimensional Cartesian coordi-
nates and their corresponding polar coordinates.
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Exercises

	 1.	Which of the expressions below is the equal to 243.1252326°?

	 a.	 270.1391473 grads

	 b.	 218.8127093 grads

	 c.	 4.24115 radians

	 d.	 243° 08′ 30″

	 2.	Which of the following statements about two-dimensional Cartesian 
coordinates is incorrect?

	 a.	 Universal Transverse Mercator coordinates are Cartesian 
coordinates.

	 b.	 Most Cartesian coordinate systems are designed to place all 
coordinates in the first quadrant.

	 c.	 Cartesian coordinates derived from positions on the Earth always 
include distortion.

	 d.	 Directions in Cartesian coordinate systems are always reckoned 
from north.

	 3.	What is the clockwise angle between the bearings N 27° 32′ 01.34″ W 
and S 15° 51′ 06.12″ E?

	 a.	 191° 40′ 55.22″

	 b.	 168° 19′ 04.78″

	 c.	 43° 23′ 07.46″

	 d.	 181° 04′ 22.41″

	 4.	 It is frequently necessary to convert a latitude or longitude given in 
degrees and decimals of degrees to degrees, minutes, and seconds 
and vice versa. Which of the values below correctly reflects the lati-
tude and longitude of Youghall in degrees and decimals of degrees? 
Its coordinates in degrees, minutes, and seconds are 40º 25′ 33.3926″ 
N and 108º 45′ 57.783″ W.

	 a.	 +40.1512021, −108.2720802

	 b.	 +40.4259424, −108.7660508

	 c.	 +40.42583926, −108.7658783

	 d.	 +40.15123926, −108.2720783
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	 5.	Which of the following correctly describes a characteristic both 
Cartesian coordinates and polar coordinates share?

	 a.	 Each point has only one unique coordinate pair.

	 b.	 Coordinates are expressed in ordered pairs.

	 c.	 Angles are measured clockwise from north in degrees, minutes, 
and seconds.

	 d.	 Coordinates are always positive.

	 6.	As one proceeds northward from the equator, which of the follow-
ing does not happen?

	 a.	 Meridians converge.

	 b.	 Latitudinal lines are parallel.

	 c.	 The force of gravity increases.

	 d.	 The distance represented by a degree of latitude gets shorter.

	 7.	Presuming that all numbers to the right of the decimal are signifi-
cant, which value below is nearest to the precision of the following 
coordinates?

		  φ = 60° 14′ 15.3278″ N

		  λ = 149° 54′ 11.1457″ W

	 a.	 ±10.0 ft

	 b.	 ±1.0 ft

	 c.	 ±0.10 ft

	 d.	 ±0.01 ft

	 8.	Which of the following statements about latitude is not true?

	 a.	 The geocentric latitude of a point is usually smaller than the geo-
detic latitude of the same point.

	 b.	 Geodetic latitude is not derived from direct measurement with 
optical instruments.

	 c.	 The astronomic latitude is usually quite close to the geodetic lati-
tude of the same point.

	 d.	 The geodetic latitude of a point remains constant despite datum 
shifts.
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	 9.	Which of the following statements concerning the deflection of the 
vertical is correct?

	 a.	 The deflection of the vertical is comprised of the north-south and 
east-west components of the difference between the geodetic and 
geocentric latitude and longitude of a point.

	 b.	 The deflection of the vertical at a point can be derived from astro-
nomic observations alone.

	 c.	 The deflection of the vertical at a point can be derived from geo-
detic coordinates alone.

	 d.	 The deflection of the vertical is used in the conversion of astro-
nomic coordinates and astronomic directions to their geodetic 
counterparts and vice versa.

	 10.	Given the astronomical coordinates,

Φ = 39° 59′ 38.66″ N
Λ = 104° 59′ 51.66″ W

the geodetic coordinates of the same point,

φ = 39° 59′ 36.54″ N
λ = 104° 59′ 38.24″ W

and an astronomic azimuth of 352° 21′ 14.8″. What is the corresponding 
geodetic azimuth?

	 a.	 352° 21′ 06.2″
	 b.	 352° 21′ 12.7″
	 c.	 352° 21′ 01.4″
	 d.	 352° 21′ 23.4″
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Explanations and Answers

1. Explanation:

	 Since there are 400 grads in a full circle of 360°, each grad is equal to 
9/10ths of a degree.

360°

400 grads
= 0 90.  grads in a degree

		  Therefore, it follows that 243.1252326° divided by 0.90 will yield the 
measurement in grads.

243.125326°

0 90.  grads in a degree
270.13914= 773 grads

		  The decimal degrees converted to degrees, minutes, and seconds 
equal 243° 07′ 30.838″, and the same value can be expressed as 4.24336 
radians.

Answer: (a)

2. Explanation:

	 Universal Transverse Mercator coordinates, state plane coordi-
nates, and many other commonly used systems are indeed two-
dimensional and Cartesian. It is desirable and typical to design a 
flat Cartesian-coordinate system to ensure that all coordinates are 
positive, in other words, that all are in the first quadrant. It is not 
possible to represent the curved Earth on a two-dimensional flat 
surface without some distortion. Many disciplines use Cartesian 
coordinates, and many do not measure directions from the north, or 
y, axis.

Answer: (d)

3. Explanation:

	 A 180° angle extends clockwise from N 27° 32′ 01.34″ W to S 27° 32′ 
01.34″ E. The remaining clockwise angle between the bearings can 
be found by subtracting 15° 51′ 06.12″ from 27° 32′ 01.34″:

	

  27

   11°40 55.22

° ′
− ° ′

′ ′′

32 01 34
15 51 06 12

.

.
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		  The result, added to 180°, is the clockwise angle between N 27° 32′ 
01.34″ W and S 15° 51′ 06.12″ E.

	

  
 11°40 55.22

  191

180 00 00 00

40 55

° ′ ′′
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° ′

.

.222′′  

Answer: (a)

4. Explanation:

	 40º 25′ 33.3926″ North latitude is converted to degrees and decimal 
degrees by

	 +{40 degrees + [25 min × (1 degree/60 min)] + [33.3926 sec ×  
	 (1 min/60 sec) × (1 degree/60 min)]} = +40.4259424

		  108º 45′ 57.783″ West longitude is converted to degrees and deci-
mal degrees by

	 −{108 degrees + [45 min × (1 degree/60 min)] + [57.783 sec ×  
	 (1 min/60 sec) × (1 degree/60 min)]} = −108.7660508

Answer: (b)

5. Explanation:

	 In the system of Cartesian coordinates, each point has a single 
unique coordinate; any change in the northing, y, or easting, x, and 
the coordinate refers to another point entirely. In the system of polar 
coordinates, the vectorial angle, ρ, and the radius vector, θ, can be 
expressed in a number of ways and still describe the same point. A 
direction, expressed in an angle, may comprise half of a polar coor-
dinate, whether it is measured in grads, radians, decimal degrees, 
or degrees, minutes, and seconds. While it is desirable to place the 
origin of a Cartesian coordinate system far to the southwest of the 
area of interest and thereby keep all of the coordinates positive, it is 
not always the arrangement. Negative coordinates are valid in both 
polar and Cartesian systems. However, in both systems, coordinates 
are given in ordered pairs.

Answer: (b)
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6. Explanation:

	 As Richter discovered, the force of gravity is actually greater in the 
higher latitudes and decreases as one travels southward. As Newton 
predicted, the Earth is thicker at the equator. If the Earth were a 
sphere, meridians would still converge, latitudinal lines would still 
be parallel, and the distance represented by degree of latitude would 
be constant. However, the Earth is an oblate spheroid, and the length 
of a degree of latitude actually increases slightly as one proceeds 
northward due to the flattening. It is this fact that originally con-
vinced scientists that Newton’s model for the Earth was correct.

Answer: (d)

7. Explanation:

	 At approximately 60° N latitude, the length of a degree of longitude 
is approximately 34.5 miles. Since there are 3600 sec of latitude and 
longitude in 1 degree, an estimation of the length on a second of 
longitude at that latitude can be obtained by dividing 34.5 miles by 
3600. It might be best to first convert 34.5 miles to feet.

	 34.5 miles × 5280 ft/mile = 182,160 ft

	

182,160 ft
3600

50.6 ft=

		  The longitude is shown to one ten-thousandth of a degree, so an 
estimation of the accuracy of the expression can be made by divid-
ing the approximate length of 1 sec by 10,000.

	

50.6 ft
10,000

0.005 ft=

		  The same sort of approximation can be done using the latitude. 
The length of a degree of latitude is approximately 69 miles. To esti-
mate the length of a second of latitude, divide 69 miles, in feet, by 
3600.

	 69 miles × 5280 ft = 316,800 ft

	

316,800 ft
3600

101.2 ft=

Then, to estimate the length of 1/10,000 of a second, divide by 10,000.
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101.2 ft
10,000

0.01 ft=

Answer: (d)

8. Explanation:

	 It is true that the geocentric latitude of a point is usually smaller than 
the geodetic latitude of the same point. Instruments set on the Earth 
are not oriented to the ellipsoid; they are oriented to gravity, and 
since geodetic latitude is on the ellipsoid, it is not feasible to measure 
it directly. Astronomic latitude departs from geodetic latitude per 
the deflection of the vertical, usually a very small amount. Further, 
since the datum for geodetic latitude is an ellipsoidal model of the 
Earth, shifts in that datum change the latitude, as was illustrated at 
the beginning of the chapter.

Answer: (d)

9. Explanation:

	 The deflection of the vertical is pertinent to the differences between 
astronomic and geodetic coordinates and directions. It has no part to 
play regarding geocentric information. Calculation of the deflection 
of the vertical requires both astronomic and geodetic information. It 
cannot be revealed without some aspect of both.

Answer: (d)

10. Explanation:

	 αA − αG = +(Λ − λ)sin φ
	 αA − αG = +(104° 59′ 51.66″ − 104° 59′ 38.24″)sin 39° 59′ 36.54″
	 αA − αG = +(13.42″)sin 39° 59′ 36.54″
	 αA − αG = +(13.42″)0.6427
	 αA − αG = +8.6″

where:
	 αA = astronomic azimuth
	 αG = geodetic azimuth
	 Λ = astronomic longitude
	 λ = geodetic longitude
	 φ = geodetic latitude



38	 Basic GIS Coordinates

Therefore, given the astronomic azimuth αA = 352° 21′ 14.8″:

	 αA − αG = +8.6″
	 352° 21′ 14.8″ − αG = +8.6″
	 352° 21′ 14.8″ − 8.6″ = αG

	 352° 21′ 06.2″ = αG

Answer: (a)
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2
Building a Coordinate System

The actual surface of the Earth is not very cooperative. It’s bumpy. There 
is not one nice, smooth figure that will fit it perfectly. It does resemble an 
ellipsoid somewhat, but an ellipsoid that fits Europe may not work for 
North America. And one applied to North America may not be suitable 
for other parts of the planet. That’s why, in the past, several ellipsoids were 
invented to model the Earth. There are about 50 or so still in regular use 
for various regions of the Earth. They have been, and to a large degree still 
are, the foundation of coordinate systems around the world. But things are 
changing. And many of the changes have been perpetrated by advance-
ments in measurement. In other words, we have a much better idea of what 
the Earth actually looks like today than ever before, and that has made 
quite a difference.

Legacy Geodetic Surveying

In measuring the Earth, accuracy unimagined until recent decades has 
become available from the Global Positioning System (GPS) and other satel-
lite technologies. These advancements have, among other things, reduced 
the application of some geodetic measurement methods of previous genera-
tions. For example, land measurement by triangulation, once the preferred 
approach in geodetic surveying of nations across the globe, has lessened dra-
matically, even though coordinates derived from it are still relevant.

Triangulation was the primary surveying technique used to extend net-
works of established points across vast areas. It also provided information for 
the subsequent fixing of coordinates for new stations. The method relied heav-
ily on the accurate measurement of the angles between the sides of large trian-
gles. It was the dominant method because angular measurement has always 
been relatively simple compared to the measurement of the distances.

In the eighteenth and nineteenth centuries, before GPS, before the electronic 
distance measurement (EDM) device, and even before invar tapes, the mea-
surement of long distances, now virtually instantaneous, could take years. It 
was convenient then that triangulation kept the direct measurement of the 
sides of the triangles to a minimum. From just a few measured baselines, a 
whole chain of braced quadrilaterals could be constructed (see Figure 2.1). 
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Detail
Idaho, Utah, Colorado, Wyoming,

Nevada and Arizona

Known Data:
Length of base line AB.
Latitude and longitude of points A and B.
Azimuth of line AB.

Measured Data:
Angles to the new control points.

Computed Data:
Latitude and longitude of point C, and other
new points.
Length and azimuth of line AC.
Length and azimuth of all other lines.

See Detail

B

A

C

Figure 2.1
U.S. triangulation control network map.
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These quadrilaterals were made of four triangles each and could cover great 
areas efficiently, with the vast majority of measurements being angular.

With the quadrilaterals arranged such that all vertices were intervisible, 
the length of each leg could be verified from independently measured angles 
instead of laborious distance measurement along the ground. And when the 
measurements were completed, the quadrilaterals could be adjusted by least 
squares. This approach was used to measure thousands and thousands of 
chains of quadrilaterals, and these data sets are the foundations on which 
geodesists calculated the parameters of ellipsoids now used as the reference 
frames for mapping around the world.

Ellipsoids

Each ellipsoid has a name, often the name of the geodesist who originally 
calculated and published the figure, accompanied by the year in which it 
was established or revised. For example, Alexander R. Clarke used the shape 
of the Earth he calculated from surveying measurements in France, England, 
South Africa, Peru, and Lapland, including M. Struve’s work in Russia and 
Colonel Everest’s in India, to establish his Clarke 1866 ellipsoid. And even 
though Clarke never actually visited the United States, that ellipsoid became 
the standard reference model for North American Datum 1927 (NAD27) dur-
ing most of the twentieth century. Despite the familiarity of Clarke’s 1866 
ellipsoid, it is important to specify the year when discussing it, which is true 
of many ellipsoids. The same British geodesist is also known for his ellip-
soids of 1858 and 1880. And these are only a few of the reference ellipsoids 
out there.

Supplementing this variety of regional reference ellipsoids are the new 
ellipsoids with wider scope, such as the Geodetic Reference System 1980 
(GRS80). It was adopted by the International Association of Geodesy (IAG) 
during the General Assembly 1979 as a reference ellipsoid appropriate for 
worldwide coverage. But as a practical matter, such steps do not render 
regional ellipsoids irrelevant any more than GPS measurements make it pos-
sible to ignore the coordinates derived from classical triangulation surveys. 
Any successful GIS (geographic information system) requires a merging of 
old and new data, and an understanding of legacy coordinate systems is, 
therefore, essential.

It is also important to remember that, while ellipsoidal models provide 
the reference for geodetic datums, they are not the datums themselves. They 
contribute to the datum’s definition. For example, the figure for the OSGB36 
datum in Great Britain is the Airy 1830 reference ellipsoid, just as the fig-
ure for the NAD83 datum in the United States is the GRS80 ellipsoid. The 
reference ellipsoid for the European Datum 1950 is International 1924. The 
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reference ellipsoid for the German DHDN datum is Bessel 1841. And just to 
make it more interesting, there are several cases where an ellipsoid was used 
for more than one regional datum; for example, the GRS67 ellipsoid was the 
foundation for both the Australian Geodetic Datum 1966 (now superseded 
by GDA94) and the South American Datum 1969.

Ellipsoid Definition

To elaborate on the distinction between ellipsoids and datums, it might help 
to take a look at the way geodesists have defined ellipsoids. It has always 
been quite easy to define the size and shape of a biaxial ellipsoid, i.e., an 
ellipsoid with two axes. At least, it is easy after the hard work is done, that 
is, once there are enough actual surveying measurements available to define 
the shape of the Earth across a substantial part of its surface. Two geometric 
specifications will do it.

The size is usually defined by stating the distance from the center to the 
ellipsoid’s equator. This number is known as the semi-major axis, and is usu-
ally symbolized by a (see Figure 2.2).

North

South

Semi-Major Axis (a)

a -   half of the major axis
        the semi-major axis

N - S  The axis of revolution for
            generating the ellipsoid

b -   half of the minor axis
        the semi-minor axis

Se
m

i-M
in

or
 A

xi
s (

b)

flattening

eccentricity

f =1 – b

e2 =2f – f 2
a

Figure 2.2
Parameters of a biaxial ellipsoid.
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The shape can be described by one of several values. One is the distance 
from the center of the ellipsoid to one of its poles. That is known as the semi-
minor axis, symbolized by b. Another parameter that can be used to describe 
the shape of an ellipsoid is the first eccentricity, or e. And finally a ratio called 
flattening, f, will also do the job of codifying the shape of a specific ellipsoid. 
Sometimes its reciprocal is used instead.

The definition of an ellipsoid then is accomplished with two numbers. It 
usually includes the semi-major axis and one of the other mentioned values. 
For example, here are some pairs of constants that are usual; first, the semi-
major and semi-minor axes in meters; second, the semi-major axis in meters 
with the flattening, or its reciprocal; and third, the semi-major axis and the 
eccentricity.

Using the first method of specification, the semi-major and semi-minor axes 
in meters for the Airy 1830 ellipsoid are 6,377,563.396 m and 6,356,256.910 m, 
respectively. The first and larger number is the equatorial radius. The second 
is the polar radius. The difference between them, 21,307.05 m, is equivalent 
to about 13 miles, not much across an entire planet.

Ellipsoids can also be precisely defined by their semi-major axis and flat-
tening. One way to express the relationship is the formula

	
f b

a
= −1

where
	 f =	 flattening
	 a =	 semi-major axis
	 b =	 semi-minor axis

The flattening for Airy 1830 is calculated as follows:

	

f b
a

f m
m

f

= −

= −

= −

1

1 6 356 256 910
6 377 563 396

1 0

, , .
, , .

..

.

996659150

1
299 3249646

f =

In many applications, some form of eccentricity is used rather than flat-
tening. In a biaxial ellipsoid (an ellipsoid with two axes), the eccentricity 
expresses the extent to which a section containing the semi-major and semi-
minor axes deviates from a circle. It can be calculated as follows:
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where
	 f =	 flattening
	 e =	 eccentricity

The eccentricity, also known as the first eccentricity, for Airy 1830 is 
calculated:
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Figure 2.2 illustrates the plane figure of an ellipse with two axes that is not 
yet imagined as a solid ellipsoid. To generate the solid ellipsoid that is actu-
ally used to model the Earth, the plane figure is rotated around the shorter 
axis of the two, the polar axis. The result is illustrated in Figure 2.3, where 
the length of the semi-major axis is the same all along the figure’s equator. 
This sort of ellipsoid is known as an ellipsoid of revolution.

The length of the semi-major axis is not constant in triaxial ellipsoids, which 
are also used as models for the Earth. This idea has been around a long time. 
Captain A. R. Clarke wrote the following to the Royal Astronomical Society 
in 1860: “The earth is not exactly an ellipsoid of revolution. The equator itself 
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Figure 2.3
Biaxial ellipsoid model of the Earth.
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is slightly elliptic.” Therefore, a triaxial ellipsoid has three axes with flatten-
ing at both the poles and the equator, so that the length of the semi-major axis 
varies along the equator, as seen in Figure 2.4. For example, the Krassovsky 
(1940), aka Krasovski (1940), ellipsoid is used in most of the nations formerly 
within the USSR.

Its semi-major axis, a, is 6,378,245 m, with a flattening at the poles of 1/298.3. 
Its semi-minor axis, b, is 6,356,863.019 m, with a flattening along the equator 
of 1/30,086. On a triaxial ellipsoid, there are two eccentricities, the meridional 
and the equatorial. The eccentricity, the deviation from a circle, of the ellipse 
formed by a section containing both the semi-major and the semi-minor axes 
is the meridional eccentricity. The eccentricity of the ellipse perpendicular to 
the semi-minor axis and containing the center of the ellipsoid is the equatorial 
eccentricity.

Ellipsoid Orientation

Assigning two parameters to define a reference ellipsoid is not difficult, but 
defining the orientation of the model in relation to the actual Earth is not so 
straightforward. And this is an important detail. After all, the attachment 
of an ellipsoidal model to the Earth makes it possible for an ellipsoid to be 
a geodetic datum. And the geodetic datum can, in turn, become a terrestrial 
reference system once it has actual physical stations of known coordinates eas-
ily available to users of the system.

Connection to the real Earth destroys the abstract, perfect, and errorless 
conventions of the original datum. They get suddenly messy because not 
only is the Earth’s actual shape too irregular to be exactly represented by 
such a simple mathematical figure like an ellipsoid, but the Earth’s poles 

a = 6,378,245m
b = 6,356,863.019m

a

b

c

flattening
at poles        1/298.3
at equator   1/30,086

Figure 2.4
Krassovsky triaxial ellipsoid.
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wander, its surface shifts, and even the most advanced measurement meth-
ods are not perfect.

The Initial Point

When it comes to fixing an ellipsoid to the Earth, there are two methods: 
the old way and the new way. In the past, the creation of a geodetic datum 
included fixing the regional reference ellipsoid to a single point on the Earth’s 
surface. It is good to note that the point is on the surface. The approach was 
to attach the ellipsoid best suited to a region at this initial point.

Initial points were often chosen at the site of an astronomical observatory, 
since observatory coordinates were usually well known and long established. 
The initial point required a known latitude and longitude. Observatories 
were also convenient places from which to determine an azimuth from the 
initial point to another reference point, a further prerequisite for the ellip-
soid’s orientation. These parameters, along with the already-mentioned two 
dimensions of the ellipsoid itself, made five in all. Five parameters were ade-
quate to define a geodetic datum in this approach. The evolution of NAD27 
followed this line.

The New England Datum 1879 was the first geodetic datum of this type in 
the United States. The reference ellipsoid was Clarke 1866, mentioned earlier, 
with a semi-major axis, a, of 6378.2064 km and a flattening, f, of 1/294.9786982. 
The initial point chosen for the New England Datum was a station known 
as Principio in Maryland, near the center of the region of primary concern at 
the time. The dimensions of the ellipsoid were defined, Principio’s latitude 
and longitude along with the azimuth from Principio to station Turkey Point 
were both derived from astronomic observations, and the datum was ori-
ented to the Earth by five parameters.

Then successful surveying of the first transcontinental arc of triangulation 
in 1899 connected it to the surveys on the Pacific coast. Other work tied in 
surveying near the Gulf of Mexico, and the system was much extended to 
the south and the west. It was officially renamed the United States Standard 
Datum in 1901.

A new initial point at Meade’s Ranch in Kansas eventually replaced 
Principio. An azimuth was measured from this new initial point to station 
Waldo, because even though the Clarke 1866 ellipsoid fits North America 
very well, it does not conform perfectly. As the scope of triangulation across 
the country grew, the new initial point was chosen near the center of the 
continental United States to best distribute the inevitable distortion.

Five Parameters

When Canada and Mexico agreed to incorporate their control networks into 
the United States Standard Datum, the name was changed again to North 
American Datum 1913. Further adjustments were required because of the 
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constantly increasing number of surveying measurements. This growth and 
readjustment eventually led to the establishment of the North American 
Datum 1927 (NAD27).

Before, during, and for some time after this period, the five constants men-
tioned were considered sufficient to define the datum. The latitude and lon-
gitude of the initial point were two. For NAD27, the latitude of 39° 13′ 26.686″ 
Nφ and longitude of 98° 32′ 30.506″ Wλ were specified as the coordinates 
of the Meade’s Ranch initial point. The next two parameters described the 
ellipsoid itself. For the Clarke 1866 ellipsoid, these are a semi-major axis of 
6,378,206.4 m and a semi-minor axis of 6,356,583.6 m. That makes four param-
eters. And finally, an azimuth from the initial point to a reference point for 
orientation was needed. The azimuth from Meade’s Ranch to station Waldo 
was fixed at 75° 28′ 09.64″. Together, these five values were enough to orient 
the Clarke 1866 ellipsoid to the Earth and fully define the NAD27 datum.

Still other values were sometimes added to the five minimum parameters 
during the same era, for example, the geoidal height of the initial point. The 
assumption was sometimes made that the minor axis of the ellipsoid was par-
allel to the rotational axis of the Earth. The deflection of the vertical at the ini-
tial point was also sometimes considered. For the definition of NAD27, both the 
geoidal height and the deflection of the vertical were assumed to be zero. That 
meant it was often assumed that, for all practical purposes, the ellipsoid and 
what was known as mean sea level were substantially the same. As measure-
ment has become more sophisticated, that assumption has been abandoned.

In any case, once the initial point and directions were fixed, the whole orien-
tation of NAD27 was established. And following a major readjustment, com-
pleted in the early 1930s, it was named the North American Datum 1927.

This old approach made sense before satellite data was available. The cen-
ter of the Clarke 1866 ellipsoid as utilized in NAD27 was thought to reside 
somewhere around the center of mass of the Earth, but the real concern had 
been the initial point on the surface of the Earth, not its center. As it worked 
out, the center of the NAD27 reference ellipsoid and the center of the Earth 
are more than 100 m apart. In other words NAD27, like most old regional 
datums, is not geocentric. This was hardly a drawback in the early twentieth 
century, but today truly geocentric datums are the goal. The new approach is 
to make modern datums as nearly geocentric as possible.

Geocentric refers to the center of the Earth, of course, but more particu-
larly, it means that the center of an ellipsoid and the center of mass of the 
planet are as nearly coincident as possible. It is fairly well agreed that the 
best datums for modern applications should be geocentric and that they 
should have worldwide rather than regional coverage. These two ideas are 
due, in large measure, to the fact that satellites orbit with the center of mass 
of the Earth at one focus of the elliptical paths they follow. And as mentioned 
earlier, it is also pertinent that coordinates are now routinely derived from 
measurements made by the same satellite-based systems, like GPS. These 
developments are the impetus for many of the changes in geodesy and have 



48	 Basic GIS Coordinates

made a geocentric datum an eminently practical idea. And so it has hap-
pened that satellites and the coordinates derived from them provide the raw 
material for the realization of modern datums.

Realization of a Geodetic Datum

The concrete manifestation of a datum is known as its realization. The real-
ization of a datum involves the actual marking and collection of coordinates 
on stations throughout the region covered by the datum. In other words, the 
creation of the physical network of reference points on the actual Earth is 
part of the process of datum realization. A realized datum is ready to go to 
work.

For example, the users of NAD27 could hardly have begun all their sur-
veys from the datum’s initial point in central Kansas. So the Coast and 
Geodetic Survey (the forerunner of the National Geodetic Survey of today), 
as did mapping organizations around the world, produced high-quality sur-
veys that established a network of points originally monumented by small 
marks in bronze disks set in concrete or rock throughout the country. These 
disks, their coordinates, and other attendant data became the realization of 
the datum, its transformation from an abstract idea into something real and 
usable. This same process continues today, and it contributes to a datum’s 
maturation and evolution. Just as the surveying of chains of quadrilaterals 
measured by classic triangulation represented the realization of the New 
England Datum 1879, as the measurements grew in number and quality, 
they drove the evolution of that datum to become NAD27. Surveying and 
the subsequent setting and coordination of stations on the Earth continue to 
contribute to the maturation of geodetic datums today.

Terrestrial Reference Frame

The stations on the Earth’s surface with known coordinates are sometimes 
known collectively as a terrestrial reference frame (TRF). They allow users to 
do real work in the real world, so it is important that they be easily accessible 
and their coordinate values published or otherwise easily known.

It is also important to note that there is a difference between a datum and 
a TRF. As stated earlier, a datum is errorless. A terrestrial reference frame is 
certainly not. A TRF is built from coordinates derived from actual survey-
ing measurements. Actual measurements contain errors, always. Therefore, 
the coordinates that make up a TRF contain errors, however small. Datums 
do not. A datum is a set of constants with which a coordinate system can be 
abstractly defined, not the coordinated network of monumented reference 
stations themselves that embody the realization of the datum.
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However, instead of speaking of TRFs as separate and distinct from the 
datums on which they rely, the word datum is often used to describe both 
the framework, which is the datum, and the coordinated points themselves, 
the TRF. Avoiding this could prevent a good deal of misunderstanding. For 
example, the relationship between two datums can be defined without ambi-
guity by comparing the exact parameters of each, much like comparing two 
ellipsoids. If one were to look at the respective semi-major axes and flatten-
ing of two biaxial ellipsoids, the difference between them would be as clear 
and concise as the numbers themselves. It is easy to express such differ-
ences in absolute terms. Unfortunately, such straightforward comparison is 
seldom the important question in day-to-day work.

On the other hand, transforming coordinates from two separate and dis-
tinctly different TRFs that both purport to represent exactly the same sta-
tion on the Earth into one or the other system is an almost daily concern. In 
other words, it is very likely one could have an immediate need for coordi-
nates of stations published per NAD27 expressed in coordinates in terms 
of NAD83. But it is unlikely one would need to know the difference in the 
sizes of the Clarke 1866 ellipsoid and the GRS80 ellipsoid or their orienta-
tion to the Earth. The latter is really the difference between the datums, but 
the coordinates speak to the relationship between the TRFs, the realization 
of the datums. The relationship between the datums is easily defined; the 
relationship between the TRFs is much more problematic. A TRF cannot be a 
perfect manifestation of the datum on which it lies.

The quality of the measurement technology has changed and improved 
with the advent of satellite geodesy. And since measurement technology, 
surveying techniques, and geodetic datums evolve together, so datums have 
grown in scope to worldwide coverage, improved in accuracy, and become 
as geocentric as possible.

In the past, the vast majority of coordinates involved would be deter-
mined by classical surveying, as described previously. Originally, tri-
angulation work was done with theodolites, towers, and tapes. The 
measurements were Earth-bound, and the resulting stations were solidly 
anchored to the ground too, like the thousands of Ordnance Survey trian-
gulation pillars on British hilltops and the million or more bronze disks 
set across the United States. These terrestrial reference frames provide 
users with accessible, stable references so that positioning work can com-
mence from them.

New Geocentric Datum

The relationship between the centers of reference ellipsoids and the Earth’s 
center was not an important consideration before space-based geodesy. 
Regional reference ellipsoids were the rule.

Even after the advent of the first electronic distance-measurement devices, 
the general approach to surveying still involved the determination of 
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horizontal coordinates by measuring from point to point on the Earth’s sur-
face and adding heights, otherwise known as elevations, separately. So while 
the horizontal coordinates of a particular station would end up on the ellip-
soid, the elevation, or height, would not. In the past, the precise definition of 
the details of this situation was not really an overriding concern. Because the 
horizontal and vertical coordinates of a station were derived from different 
operations, they lay on different surfaces; whether the datum was truly geo-
centric was not really pertinent. One consequence of this approach is that the 
polar and equatorial axes of older, nongeocentric ellipsoids do not coincide 
with the polar axis and equatorial plane of the actual Earth. The axis of the 
ellipsoid and the axis of the Earth were often assumed to be parallel and 
within a few hundred meters of each other, but not coincident, as shown in 
Figure 2.5.

Over the last decades, two objectives have emerged: (a) ellipsoidal models 
that represent the entire Earth, not just regions of it, and (b) fixing such an 
ellipsoid very closely to the center of mass of the planet rather than an arbi-
trary initial point on the surface. A large part of the impetus was eminently 
practical. The change was necessary because the NAD27 terrestrial reference 
frame simply could not support the dramatically improved measurement 
technology. The accuracy of its coordinates was just not as good as the sur-
veying work the users of the datum were doing.

In the old datum, surveyors would begin their measurements and calcula-
tions from an established station with published NAD27 coordinates. They 
would then move on to set a completely new project point that they required. 
Once that was done, they would check their work. This was done by pushing 
on to yet another, different, known station that also had a NAD27 published 
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Regional ellipsoids.
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coordinate. Unfortunately, this checking frequently revealed that their new 
work had created coordinates that simply did not fit in with the published 
coordinates at the known stations. They were often different by a consider-
able amount. Under such circumstances, the surveyors had no choice but 
to adjust the surveyed measurements to match the published coordinates. 
New work had to fit into the existing framework of the national network of 
coordinates.

Satellite positioning, and more specifically GPS, made it clear that the 
accuracy of surveying had made a qualitative leap. It was also apparent that 
adjusting satellite-derived measurements to fit the less accurate coordinates 
available from NAD27 was untenable. A new datum was needed: a datum 
that oriented to the geocenter like the orbits of the satellites themselves; a 
datum that could support a three-dimensional Cartesian coordinate system 
and thereby contribute to clearly defining both the horizontal and vertical 
aspects of the new coordinates.

So the North American Datum of 1983 replaced the North American 
Datum of 1927. The new datum was fundamentally different. With the 
advent of space geodesy—such as Satellite Laser Ranging (SLR), Lunar Laser 
Ranging (LLR), Very Long Baseline Interferometry (VLBI), Doppler Orbitography 
by Radiopositioning Integrated on Satellite (DORIS), and the Global Positioning 
System (GPS)—tools became available to connect points and accurately deter-
mine coordinates on one global reference surface. Of the many space-based 
techniques that emerged in the 1980s and matured in the 1990s, GPS is of 
particular importance. The receivers are relatively small, cheap, and easy to 
operate. And the millimeter-to-centimeter level of positioning accuracy has 
been widely demonstrated over long baselines. Nevertheless, very few GPS 
observations were used in the establishment of NAD83.

It took more than 10 years to readjust and redefine the horizontal coordi-
nate system of North America into NAD83. More than 1.7 million weighted 
classical surveying observations were involved, along with some 30,000 
EDM-measured baselines, 5,000 astronomic azimuths, 655 Doppler stations 
positioned using the TRANSIT satellite system, and 112 very-long-baseline 
interferometry (VLBI) vectors. In short, the North American Datum of 1983 
(NAD83) can be said to be the first civilian coordinate system established 
using satellite positioning. And it was much more accurate than NAD27.

So when NAD83 coordinates were implemented across the United States, 
coordinates shifted. Across a small area, the coordinate shift between the 
two datums is almost constant, and in some areas the shift is slight. In fact, 
the smallest differences occur in the middle of the United States. However, as 
the area considered grows, one can see that there is a significant, systematic 
variation between NAD27 coordinates and NAD83 coordinates. The differ-
ences can grow from about −0.7″ to +1.5″ in latitude, which is up to almost 
50 m north-south. The change between NAD27 and NAD83 coordinates 
is generally larger east-west, from −2.0″ to about +5.0″ in longitude, which 
means the maximum differences can be over 100 m in that direction. The 
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longitudinal shifts are actually a bit larger than that in Alaska, ranging up 
to 12.0″ in longitude.

It is important to note that if the switch from NAD27 to NAD83 had only 
involved a change in surveying measurements made on the same ellipsoid, 
the changes in the coordinates would not have been that large. For example, 
had NAD83 coordinates been derived from satellite observations and then 
been projected onto the same Clarke 1866 ellipsoid used for NAD27, the 
change in coordinates would have been smaller. But, in fact, the center of the 
ellipsoid shifted approximately 236 m from the nongeocentric Clarke 1866 
ellipsoid to the geocentric GRS80 ellipsoid.

The evolution of the new datum has continued. NAD83 was actually in 
place before GPS was operational. As GPS measurements became more com-
mon, they turned out to be more accurate than the coordinates assigned to 
the network of control points on the ground. NAD83 needed to be refined. 
Frequently, states took the lead, and the U.S. National Geodetic Survey (NGS) 
participated in cooperative work that resulted in readjustments. The new 
refinements were referred to with a suffix, such as NAD83/91, and the term 
High Precision GPS Network (HPGN) was used. Today, High Accuracy Reference 
Network (HARN) is the name most often associated with these improvements 
of NAD83.

The World Geodetic System 1984 (WGS84) is the geodetic reference used 
by GPS. WGS84 was developed for the United States Defense Mapping 
Agency (DMA). The agency’s name was changed to National Imagery and 
Mapping Agency (NIMA), and today it is known as the National Geospatial-
Intelligence Agency (NGA). GPS receivers compute and store coordinates in 
terms of WGS84. They transform them to other datums when information is 
displayed. WGS84 is the default for many GIS platforms as well.

The original realization of the WGS84 was based on observations of the 
TRANSIT satellite system. These positions had 1- to 2-m accuracy, but over 
the years, the realizations have improved. It should be noted that WGS84’s 
ellipsoid and the GRS80 ellipsoid are very similar; they both use biaxial ref-
erence ellipsoids with only slight differences in the flattening. WGS84 has 
been enhanced on several occasions to a point where it is now very closely 
aligned to ITRF, the International Terrestrial Reference Frame.

WGS84 has been periodically improved to account for plate tectonics. The 
first such enhancement was in 1994 on GPS week 730; for this purpose, GPS 
weeks are counted from midnight January 5, 1980. This caused the name of 
WGS84 to acquire a suffix. It was then known as WGS84 (G730). The next 
update was a couple of years later, when it became known as WGS84 (G873). 
The latest improvement along this line resulted in WGS84 (G1150).

It is important to note that these changes have caused WGS84 to drift far-
ther and farther from NAD83. While it is often presumed that the WGS84 
as originally rolled out was nearly the same as NAD83 (86), things have 
changed. In fact, the difference between a position in NAD83 (CORS96) and 
a position in WGS84 (G1150) can approach 1 or 2 m today. At the same time, 
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WGS84 has become virtually coincident with the International Terrestrial 
Reference Frame. WGS84 (G730) was very close to ITRF92; WGS84 (G873) 
was close to ITRF96; and WGS84 (G1150) is close to ITRF00. WGS84 (G1150) is 
also currently the reference for the GPS broadcast ephemeris.

GPS information has also contributed to bringing the center of ellipsoids 
very close indeed to the actual center of mass of the Earth. The geocenter is 
a focus of the satellites’ orbits and the origin of the measurements derived 
from them. Coordinates derived directly from GPS observations are often 
expressed in three-dimensional Cartesian coordinates, X, Y, and Z, with the 
center of mass of the Earth as the origin.

Geocentric Three-Dimensional Cartesian Coordinates

A three-dimensional Cartesian system requires three axes and a clear defi-
nition of both their origin and their direction. If these parameters can be 
attached to the Earth, then every position on the planet, and in its vicin-
ity, can have a unique three-dimensional Cartesian coordinate. However, as 
noted in Chapter 1, when you bring in the real world, things get messy. For 
example, the relationship of the surface of the Earth, its center, and even its 
axis of rotation is not constant and unchanging.

The Earth wobbles in motions known as precession and nutation. Precession 
is the long-term movement of the polar axis. It moves in a circle with a period 
of something approximating 25,800 years. At the moment, the planet’s spin 
axis almost points to Polaris, but in 14,000 years or so it might point to Vega. 
Nutation is the movement of the Earth with a cycle of about 18.6 years, mostly 
attributable to the moon. The Earth’s rotation rate also varies. It is a bit faster 
in January and slower in July. And then there is the wandering of the Earth’s 
axis of rotation relative to the Earth’s surface, called polar motion.

Polar motion is a consequence of the actual movement of the Earth’s spin 
axis as it describes an irregular circle with respect to the Earth’s surface. 
The circle described by this free Eulerian motion of the pole has a period of 
about 435 days or so. It takes approximately that long for the pole to com-
plete a circle that has a diameter of about 12 to 15 m. This part of the polar 
motion is known as the Chandler period, named after American Astronomer 
Seth C. Chandler, who described it in papers in the Astronomical Journal in 
1891. Another aspect of polar motion is sometimes called polar wander. It is 
about 0.004 sec of arc per year as the pole moves toward Ellesmere Island. 
Both aspects are shown generally in Figure 2.6.

Therefore, one can say that the Earth has a particular axis of rotation, 
equator, and zero meridian for an instant before they all change slightly in 
the next instant. Within all this motion, how do you define the origin and 
direction of the three needed axes for the long term? One way is to choose 
a moment in time and consider them fixed as they are at that instant. That 
was how it was done. A moment was chosen by the Bureau International de 
l’Heure (BIH). It was midnight on New Year’s Eve 1983, or January 1, 1984 
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(UTC). It is also known as an epoch and can be written 1984.0. So we now use 
the axes illustrated in Figure 2.7 as they were at that moment.

This resulting system is known as the Conventional Terrestrial Reference 
System (CTRS), or simply the Conventional Terrestrial System (CTS). The origin 
is the center of mass of the whole Earth, including oceans and atmosphere, 
called the geocenter. The x-axis is a line from that geocenter through its 
intersection at the zero meridian, also known as the International Reference 
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Meridian (IRM), with the internationally defined conventional equator. The 
y-axis is extended from the geocenter along a line perpendicular from the 
x-axis in the same mean equatorial plane. That means that the positive end 
of the y-axis intersects the actual Earth in the Indian Ocean. In any case, 
they both rotate with the Earth around the z-axis, a line from the geocenter 
through the internationally defined pole known as the International Reference 
Pole (IRP). The three-dimensional Cartesian coordinates (x, y, z) derived from 
this system are sometimes known as Earth-Centered Earth-Fixed (ECEF) coor-
dinates, and this system has been utilized in NAD83, WGS 84, and ITRF (see 
next section). It is a right-handed, orthogonal system and can be described by 
the following model. The horizontally extended forefinger of the right hand 
symbolizes the positive direction of the x-axis. The middle finger of the same 
hand extended at right angles to the forefinger symbolizes the positive direc-
tion of the y-axis. The extended thumb of the right hand, perpendicular to 
them both, symbolizes the positive direction of the z-axis.

In this three-dimensional, right-handed coordinate system, the x-coordinate 
is a distance from the y–z plane measured parallel to the x-axis. It is always 
positive from the zero meridian to 90º W longitude and from the zero merid-
ian to 90º E longitude. In the remaining 180º, the x-coordinate is negative.

The y-coordinate is a perpendicular distance  from the plane of the zero 
meridian. It is always positive in the Eastern Hemisphere and negative in the 
Western Hemisphere.

The z-coordinate is a perpendicular distance from the plane of the equa-
tor. It is always positive in the Northern Hemisphere and negative in the 
Southern Hemisphere.

Here is an example, with the position of the station Youghall expressed in 
three-dimensional Cartesian coordinates of this type as expressed in meters, 
the native unit of the system:

X = −1564831.1855 m

Y = −4605604.7477 m

Z = 4115817.6900 m

The X-coordinate for Youghall is negative because its longitude is west of 
90° W longitude. The Y-coordinate is negative because the point is west of 
the zero meridian. The Z-coordinate is positive because the point is in the 
Northern Hemisphere.

The system works well, but what about earthquakes, volcanic activity, 
tides, subsurface fluid withdrawal, crustal loading/unloading, and the 
many other forces that contribute to the continuous drift in tectonic plates? 
Certainly these cause the plates and the surface points on them to move 
relative to the geocenter and relative to each other. Hence changes in the 
three-dimensional Cartesian coordinates are inevitable. Not only is the 
entirety of the Earth’s surface always in motion with respect to its center of 
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mass, but there is also relative motion between the approximately 20 large 
tectonic plates that make up that surface. For example, stations on separate 
plates can move as much as 150 mm per year simply because the ground 
on which one station stands is slowly shifting in relation to the ground at 
the other. It was this fact, among other things, that led to the establishment 
of the International Earth Rotation Service (IERS); the previously mentioned 
Bureau International de l’Heure (BIH) was its predecessor. And the IERS 
introduced a heretofore unheard of and remarkable aspect to coordinates, 
velocity.

The IERS

The International Earth Rotation Service (IERS) is an organization that 
began operations in Paris at the beginning of 1988 under the auspices of the 
International Astronomical Union and the International Union of Geodesy 
and Geophysics. The IERS has formally defined the International Reference 
Pole, the International Reference Meridian, the plane of the conventional 
equator, and the other components of the three-dimensional Cartesian system 
just described. These are part of a broader system known as the International 
Terrestrial Reference System (ITRS).

Because work in crustal deformation and the movement of the planet’s axis 
required an extremely accurate foundation, the IERS originally introduced 
the International Terrestrial Reference System (ITRS) and its first realization, 
the International Terrestrial Reference Frame of 1988 (ITRF88). As mentioned 
earlier, a realization is the concrete manifestation of a datum by measure-
ments made at points on the Earth. In the case of the ITRF, the region covered 
includes the whole world. Please note that the digits appended to ITRF repre-
sent the year up to which the data sets have been used in the realization. In 
fact, from its beginning in 1988, and nearly every year since, IERS has pub-
lished a list of new and revised positions with their velocities for more than 
500 stations around the world. In other words, ITRF89, ITRF90, etc., followed 
ITRF88. So the IERS released ITRF89, ITRF90, ITRF91, ITRF92, ITRF93, and 
ITRF94. There was not a release in 1995. The next were ITRF96 and ITRF97, 
followed by ITRF00 and ITRF05 for 2000 and 2005, respectively.

This international organization does the hard work of compiling the 
measurements and calculating the movement of our planet. The data 
needed for this work come from measurements made by the Global 
Positioning System (GPS), very-long-baseline interferometry (VLBI), satel-
lite laser ranging (SLR), and satellite radio positioning (DORIS) at a set of 
stations around the planet that realize the ITRF. These values are utilized 
more and more in part because of the high quality of the data, and in 
part because ITRS provides an international reference system that directly 
addresses crustal motion at particular monumented control stations. The 
ITRF stations are moving and recognized to be doing so. Therefore, each 
is described by a position and a velocity, and every position—every set of 
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coordinates in these realizations—refers to a station’s position at a par-
ticular moment. This moment is known as the Reference Epoch (RE). For 
example, the RE for ITRF94 is 1993.0, or more specifically January 1, 1993, 
at exactly 0:00 UTC. The RE for ITRF00 is 1997.0, and the RE for ITRF05 is 
2000.0. Even stations on the most stable part of the North American plate 
are in horizontal motion continuously at rates that range from 9 to 21 mm 
every year. While it must be said that these changes in coordinates are 
very slight indeed, they are changes nonetheless, and ITRS accounts for 
them.

A good deal of practical application of this system has developed. The 
U.S. National Geodetic Service (NGS), an office of NOAA’s National Ocean 
Service, the arm of the U.S. federal government that defines and manages 
the National Spatial Reference System (NSRS), is now utilizing ITRF data. In 
March 2002 the NGS started to upgrade its published NAD83 positions and 
velocities for a portion of the national network (known as the CORS sites) to 
be equal to the ITRF2000 positions and velocities.

The acronym CORS stands for the network of continuously operating ref-
erence stations. GPS signals collected and archived at these sites of known 
position provide base data that serve as the foundation for positioning in 
the United States and its territories. For example, when GPS data is collected 
at an unknown station, it can be processed with data from a CORS station 
to produce positions that have centimeter-level accuracy in relation to the 
NSRS, and now ITRF2000 as well.

Here is an illustration of the application of ITRF data. The coordinate 
values for the position of station AMC2 in Colorado Springs, Colorado, are 
shown here as retrieved from the NGS database. First is the NAD83 (epoch 
2002) position of the station in three-dimensional Cartesian coordinates as it 
was transformed from the ITRF00 position (epoch 1997.0) in March 2002:

X = −1248595.534 m
Y = −4819429.552 m
Z = 3976506.046 m

Now here is the position of the same station based upon the ITRF00 position 
(epoch 1997.0) as it was computed in August 2006 using 1,673 days of data.

X = −1248596.072 m
Y = −4819428.218 m
Z = 3976506.023 m

The question, “Where is station AMC2?” might be more correctly 
asked, “Where is station AMC2 now?” And, in fact, the latter question 
can be answered by calculating new positions for the station based on its 
velocities.
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The location of the AMC2 station can also be stated in both three-dimen-
sional Cartesian coordinates and in latitude, longitude, and height above the 
ellipsoid. Here is the AMC2 ITRF00 (1997.0) position calculated in August 
2006 expressed in geographic coordinates and ellipsoidal height:

Latitude = 38° 48′ 11.24915″ N
Longitude = 104° 31′ 28.53276″ W
Ellipsoid height = 1911.393 m

Three-dimensional Cartesian coordinates and geographical coordinates 
with ellipsoidal heights can be converted from one to the other. Here are the 
expressions for deriving the three-dimensional Cartesian coordinates from 
latitude, longitude, and height above the ellipsoid:

X = (N + h) cos φ cos λ
Y = (N + h) cos φ sin λ
Z = (Nb2/a2 + h) sin φ

where
	latitude =	 φ
	longitude =	 λ
	height above the ellipsoid =	 h
	 a =	 semi-major axis
	 b =	 semi-minor axis
	N =	 the east-west local radius of the reference ellipsoid in meters

	 N = a2 (a2 cos2 φ + b2 sin2φ)−½

Notice in Figure 2.8 that this computation requires the introduction of an 
ellipsoid to represent the Earth itself. This is interesting because it means 
that, just by looking at an x-, y-, and z-coordinate in this system, one cannot 
be certain whether the point is on the Earth’s surface, deep inside it, or in 
outer space.

Transforming Coordinates

Transformations are mathematical mechanisms used to move coordinates 
from one datum to another, and there are several methods. And while it is 
true that most such work is left to computer applications today, it is, at best, 
unwise to accept the results uncritically. Therefore, here is an outline of some 
of the qualities of some typical datum transformation methods.
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First, datum transformations ought to be distinguished from coordinate 
conversions. Coordinate conversion is usually understood to mean the reex-
pression of coordinates from one form to another, but both resting on the 
same datum. For example, the calculation of a plane coordinate such as UTM 
(NAD83) from a point’s expression as a geographic coordinate (NAD83) 
would be a coordinate conversion.

Datum transformation, on the other hand, usually means that the coor-
dinates do in fact change from an original datum to a target datum. For 
example, the alteration of a geographic coordinate on one datum, e.g., 
latitude and longitude in NAD83 into a geographic coordinate on another 
datum, e.g., latitude and longitude in NAD27, would amount to a datum 
transformation. In this case, there is actually a change from one ellipsoid 
to another. A further complication is presented by the fact that the center of 
the ellipsoid of reference for NAD83, GRS80, and the center of the ellipsoid 
of reference for NAD27, Clarke 1866, do not coincide. Other typical difficul-
ties include the orientation of the axes of the original and target datums. 
They may require rotation to coincide, or the scale of the distances between 
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A position derived from space-based geodetic measurement.
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points on one datum may not be at the same scale as the distances on the 
target datum, etc.

Each of these changes can be addressed mathematically to bring integrity 
to the transformation of coordinates when they are moved from one sys-
tem into another. In other words, the goal is to not degrade the accuracy of 
the coordinates in the terrestrial reference frame as they are transformed. 
However, datum transformation cannot improve the accuracy of those coor-
dinates, either. For example, if the distance between point A and point B 
is incorrect in the original datum, it will be just as wrong when it is trans-
formed into a target datum. The initial consistency of the coordinate network 
to be transformed, i.e., the accuracy with which the coordinates represent the 
relative positions of the actual points on the Earth, is important.

Common Points

In datum transformations, it is best if some of the points involved have been 
surveyed in both the original datum and the target datum. These are usually 
called common points. A common point has, of course, one coordinate in the 
original datum and an entirely different coordinate in the target datum; still, 
both represent the same position on the Earth.

The accuracy and the distribution of these coordinates in both the origi-
nal and the target datum is an important factor in the veracity of a datum 
transformation. When it comes to datum transformation, the more common 
points there are, the better is the result. And they are best if evenly distrib-
uted through the network. These factors affect the results no less than the 
actual method used to perform a datum transformation.

Clearly, some of the surveyed common points in the target datum can be 
used after the transformation is completed to check the work. The surveyed 
coordinates can then be compared to the transformed coordinates to evalu-
ate the consistency of the operation.

Molodenski Transformation

This method is named for the mid-twentieth-century Russian physicist,  
M. S. Molodenski. The Molodenski transformation (Figure 2.9) is sometimes 
known as the three-parameter or five-parameter transformation. It is used 
on-board some GPS receivers. In fact, the growth in the utilization of GPS 
has probably increased the number of computer applications relying on this 
method. In this context, the Molodenski transformation is often implemented 
to transform coordinates from WGS84 into a local projection.

The Molodenski transformation is simple in conception and available 
in many standard GIS software platforms as well. It rests on shifts to the 
three geocentric coordinates that are applied directly to geographical coor-
dinates. It usually requires ellipsoidal parameters from the original and the 
target system as well as the size of the shift in the x-, y-, and z-geocentric 



Building a Coordinate System	 61

coordinates. In other words, it uses simple straightforward formulas to shift 
the origin from the original datum to the target datum along the x-, y-, and 
z-axes (∆X, ∆Y, ∆Z) based on the averaged differences between the x-, y-, and 
z-coordinates of the previously mentioned common points. There is no scal-
ing or rotation in this method.

Like all such mathematical operations, the worth of this sort of transforma-
tion is dependent on the consistency of the coordinate values available, but at 
best it can only produce a transformation with moderate accuracy. The size 
of the area being transformed bears on the accuracy of the transformation.

The Molodenski transformation is based on the assumption that the axes 
of the original ellipsoid and the target ellipsoid are parallel to each other. 
That is seldom true, but if the work involves only a small area, the effect 
of the assumption may be insignificant. However, as the size of the area 
grows, so does the inaccuracy of this method of transformation. In short, 
the Molodenski method is satisfactory if some of the work requires mod-
est accuracy, but rotation and scale parameters are needed for more precise 
work (Figure 2.10).

Seven-Parameter Transformation

This method is also known as a Helmert or Bursa-Wolf transformation. It 
bears remembering that datum transformations do not improve the accuracy 
of the coordinates they transform. They cannot do that. However, when the 
number of parameters considered is increased, the result is an improvement 
in the fit of the coordinates in the target datum.

To transform from one geocentric datum to another, one could use the 
seven parameters of the Bursa-Wolf approach; three translations, three rota-
tions, and one scale factor. The sum of the x, y, and z translations accomplishes 
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Figure 2.9
Molodenski transformation.
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the shifting of the origin so that the origins of the original datum and the tar-
get datum match. The shifts are usually expressed as ∆X, ∆Y, ∆Z or DX, DY, 
and DZ, but they are sometimes shown as u, v, and w. In any case, the three 
shift distances are specified in meters. Their objective is to shift the ellipsoid 
along each of its three axes.

Then, through the rotation of each of the axes, the original datum and 
the target datum axes are made parallel to one another. The three rotation 
parameters of the x-, y-, and z-axes are symbolized by EX, EY, and EZ or rX, 
rY, rZ, though they are sometimes shown as εx, εy, εz or ε, ψ, and ω. The three 
rotation parameters specify the angles. The angles are usually less than 5 
arc-sec and are calculated by producing a combined rotation matrix. Finally, 
the transformation is scaled. The scale factor is usually calculated in parts 
per million.

This method is also known as the three-dimensional Helmert, three-
dimensional conformal, or three-dimensional similarity. The seven-
parameter transformation should start with at least three coordinates of 
points that are common to the original and the target system; more are 
better.

Again, the quality of the results depends on the consistency of the set 
of common coordinated points utilized by the original and target side of 
the work. This transformation is available in many GIS software packages, 
and its accuracy is better than that available with the Molodenski trans-
formation. The seven-parameter transformation does require heights for 
the common coordinated points in both the original and the target sys-
tems, and the results depend on the consistency of the coordinates in both 
systems.

Target Datum

ΔY

ΔZ

ΔZ

Scale (ppm)

Original Datum

ΔX

Rx

Rz

Ry

Z

Z

X
Y

λ
φ

Figure 2.10
Translation and rotation.
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Surface Fitting

Surface fitting, illustrated in Figure 2.11, is also known as the transformation 
grid, bilinear gridded interpolation, or the grid-based interpolation method. 
This is the best approach to datum transformation.

The United States, Canada, and Australia use the method. In 1986, when 
the datum changed in the United States, it was clear that there were no con-
stant values that could easily move the geographical coordinates from the 
original datum, NAD27 on the Clarke 1866 ellipsoid, to the target datum, 
NAD83 on the GRS80 ellipsoid. Among the reasons were the centuries of 
conventional surveying that introduced unavoidable inconsistencies into the 
original coordinates. Under the circumstances, it would have been unwork-
able to transform the NAD27 coordinates into NAD83 with the Molodenski 
method or the seven-parameter method. What was needed was an approach 
that was more finely tuned and specific.

The North American Datum Conversion Utility (NADCON) was developed. 
The program uses grids and an error-averaging strategy based on real data. 
When a coordinate is input for transformation, the necessary shift calcula-
tions are based on a grid expressed in a database that contains the shifts at 
tens of thousands of points in an extensive grid network. This grid of control 
points has shifts that are known, and that information is used to estimate the 
shifts at other locations.

This approach is based on the idea that it is possible to find the necessary 
shift in a coordinate to transform it from its original datum to a target datum 
by interpolation from known shifts for a number of control points in the same 
area. For example, a particular geographic coordinate to be transformed will 
fall within a grid cell that has points of known shifts at each of its four cor-
ners. The application of a bilinear interpolation algorithm can thereby derive 
the necessary shift at the given point. The interpolation uses two grid files: 
one for the shifts in latitude and one for the shifts in longitude. This rubber-
sheeting method is good, but it requires an extensive grid database to be suc-
cessful. Building such a database needs the devotion of significant resources 
and almost certainly the auspices of governmental agencies. It is a minimum-

Figure 2.11
Surface fitting.
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curvature method, and it is probably the most popular transformation routine 
in the United States. It is a surface-fitting type of transformation.

The software behind the surface-fitting transformation is not based on 
simple formulas, but it can be operated from a simple user interface that 
emphasizes simple shifts in latitude and longitude. Several points common 
to the original and the target coordinate systems are used in the surface-
fitting method.

On the positive side, the surface-fitting transformation is quite accurate 
and often driven by a simple user interface. It is integral to many standard 
GIS software packages. On the other hand, it is mathematically complex and 
requires that the original and the target coordinate systems have many com-
mon points.

The number of common points available and the accuracy required are 
important considerations in choosing the appropriate transformation 
method. The surface-fitting or grid-shift techniques like those used in 
NADCON provide the best results. The Molodenski transformation provides 
the least accuracy.
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Exercises

	 1.	Which of the following pairs of parameters is not usually used to 
define a reference ellipsoid?

	 a.	 Semi-major and semi-minor axes

	 b.	 Semi-major axis and the reciprocal of the flattening

	 c.	 Semi-major axis and the eccentricity

	 d.	 Semi-major axis and the reciprocal of the eccentricity

	 2.	Which of the following is the reference ellipsoid for NAD27?

	 a.	 Clarke 1858

	 b.	 Bessel 1841

	 c.	 Clarke 1866

	 d.	 Clarke 1880

	 3.	Which of the following is the reference ellipsoid for North American 
Datum 1983?

	 a.	 OSGB36

	 b.	 GRS80

	 c.	 WGS66

	 d.	 ITRF88

	 4.	Which of the following is not a characteristic of a conventional ter-
restrial reference system (CTRS)?

	 a.	 The X-, Y-, and Z-axes are all perpendicular to one another.

	 b.	 The Z-axis moves due to polar motion.

	 c.	 The X- and Y-axes rotate with the Earth around the Z-axis.

	 d.	 The origin is the center of mass of the Earth.

	 5.	Which of the following statements about GRS80 is not correct?

	 a.	 The GRS80 ellipsoid is slightly different from the WGS84 
ellipsoid.

	 b.	 NAD83 uses GRS80 as its reference ellipsoid.

	 c.	 GRS80 is geocentric.

	 d.	 The GRS80 ellipsoid is the reference ellipsoid for GPS.
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	 6.	Which statement about biaxial and triaxial ellipsoids is correct?
	 a.	 The lengths of the semi-major and semi-minor axes are consis-

tent in both a biaxial ellipsoid and a triaxial ellipsoid.
	 b.	 The reference ellipsoid for NAD83 is triaxial and the reference 

ellipsoid for NAD27 is biaxial.
	 c.	 The equator of a triaxial ellipsoid is elliptical; the equator of a 

biaxial ellipsoid is a circle.
	 d.	 Both triaxial and biaxial ellipsoids have flattening at the 

equator.

	 7.	 In the Conventional Terrestrial Reference System (CTRS), with 
its origin at the geocenter of the Earth and a right-handed orien-
tation of the X-, Y-, and Z-axes, the Z-coordinate is positive in the 
Northern Hemisphere and negative in the Southern Hemisphere. 
Which answer correctly states the regions of the Earth where the 
X-coordinate is positive and where it is negative?

	 a.	 The X-coordinate is negative from the zero meridian to 90° W 
longitude and from the zero meridian to 90° E longitude. In the 
remaining 180° of longitude, the X-coordinate is positive.

	 b.	 The X-coordinate is positive in the Eastern Hemisphere and neg-
ative in the Western.

	 c.	 The X-coordinate is positive from the zero meridian to 90° W 
longitude and from the zero meridian to 90° E longitude. In the 
remaining 180°, the X-coordinate is negative.

	 d.	 The X-coordinate is positive in the Western Hemisphere and 
negative in the Eastern.

	 8.	What constitutes the realization of a geodetic datum?
	 a.	 The assignment of a semi-major axis and another parameter, 

such as the first eccentricity, flattening, and/or the semi-minor 
axis

	 b.	 The monumentation of the physical network of reference points 
on the actual Earth that is provided with known coordinates in 
the subject datum

	 c.	 The definition of an initial point at a known latitude and longi-
tude and a geodetic azimuth from there to another known posi-
tion along with the two parameters of the associated ellipsoid, 
such as its semi-major and semi-minor axes

	 d.	 The transformation of its coordinates into another datum using 
the seven parameters of the Bursa-Wolf process
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	 9.	Which of the following acronyms identifies a realization of the 
International Terrestrial Reference System?

	 a.	 VLBI
	 b.	 SLR
	 c.	 ITRF88
	 d.	 IERS

	 10.	Which of these transformation methods is likely to produce the most 
accurate results?

	 a.	 Molodenski
	 b.	 Seven-parameter
	 c.	 Surface fitting
	 d.	 Krassovsky



68	 Basic GIS Coordinates

Explanations and Answers

1. Explanation:

	 Compared with a sphere, an oblate ellipsoid is flattened at the poles. 
It is often expressed as a ratio. This ratio, and sometimes its recipro-
cal, is used as one specification for reference ellipsoids used to model 
the Earth. It cannot fulfill the definition alone, however, and another 
parameter is always needed. That is frequently the semi-major axis, 
i.e., the long equatorial axis. An ellipsoid can also be fully deter-
mined with the statement of the semi-major axis and the semi-minor 
axis, i.e., the short or polar axis. Eccentricity, or first eccentricity, is 
often used in conjunction with the semi-major axis as the definition 
of a reference ellipsoid, but the reciprocal of the eccentricity is not.

Answer: (d)

2. Explanation:

	 In the 1860s, while working as head of the Trigonometrical and 
Leveling Departments of the Ordnance Survey in Southampton in 
Britain, Captain Alexander Clarke worked as a geodesist. He made 
and published calculations of the size and shape of the Earth, first 
in 1858. Then, in 1866, Captain Clarke made his second determina-
tion of a reference ellipsoid for the Earth, and the figure became a 
standard reference for U.S. geodesy and the North American Datum 
1927. He published another reference ellipsoid in 1880.

Answer: (c)

3. Explanation:

	 Ordnance Survey Great Britain 1936 (OSGB36) is a traditional geo-
detic datum or terrestrial reference frame. Its reference ellipsoid 
is Airy 1830. The ITRF88 was the first International Terrestrial 
Reference Frame, and its reference ellipsoid is Geodetic Reference 
System 1980 (GRS80), the same ellipsoid used for NAD83.

Answer: (b)

4. Explanation:

	 All of the answers mention aspects of a conventional terrestrial ref-
erence system (CTRS), except b. While it is true that the actual polar 
axis wanders, the International Reference Pole (IRP) does not move 
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with polar motion because, by international agreement, it stands 
where it was on 1 January 1903.

Answer: (b)

5. Explanation:

	 The parameters of the Geodetic Reference System 1980 (GRS80), 
adopted by the International Association of Geodesy (IAG) during 
the General Assembly 1979, are:

Semi-minor axis (polar radius) b 6356752.3141 m
First eccentricity squared e2 0.00669438002290
Flattening f 1 : 298.257222101

	 The parameters of the World Geodetic System1984 (WGS84) ellip-
soid are:

Semi-minor axis (polar radius) b 6356752.3142 m
First eccentricity squared e2 0.00669437999013
Flattening f 1 : 298.2572223563

		  These ellipsoids are very similar. The semi-major axis of GRS80 
is 6,378,137 m, and its inverse of flattening is 298.257222101. The 
semi-major axis of WGS84 is the same within the accuracy shown 
at 6,378,137 m, but its inverse of flattening is slightly different at 
298.257223563.

		  However, GRS80 is not the geodetic reference system used by 
GPS. The relevant reference system is the WGS84 ellipsoid, which 
was developed for the U.S. Defense Mapping Agency (DMA), now 
known as NIMA (National Imagery and Mapping Agency). GPS 
receivers compute and store coordinates in terms of WGS84, and 
most can then transform them to other datums when information is 
displayed.

Answer: (d)

6. Explanation:

	 A triaxial ellipsoid such as the Krassovsky ellipsoid has flattening 
at the equator, but biaxial ellipsoids do not. The equator of a triaxial 
ellipsoid is elliptical, but the equator of a biaxial ellipsoid is a circle, 
since its semi-major axis has a constant length. GRS80, the reference 
ellipsoid for NAD83, and the Clarke 1866 ellipsoid, the reference 
ellipsoid of NAD27, are both biaxial.
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Answer: (c)

7. Explanation:

	 In the right-handed, three-dimensional coordinate system known 
as CTRS, the X-coordinate is positive from the zero meridian to 90° 
W longitude and from the zero meridian to 90° E longitude. In the 
remaining 180°, the X-coordinate is negative. The Y-coordinate is 
positive in the Eastern Hemisphere and negative in the Western. The 
Z-coordinate is positive in the Northern Hemisphere and negative in 
the Southern.

Answer: (c)

8. Explanation:

	 The realization of a datum is the assignment of coordinates in that 
datum to actual physical monumentation on the ground. Following 
the realization of a datum, subsequent work can be tied to physically 
marked points on the Earth rather than an abstract concept of the 
datum (its theoretical origin and axes). This concrete manifestation 
of a datum is ready to go to work in the real world.

Answer: (b)

9. Explanation:

	 The international organization that compiles the measurements and 
calculates the movement of our planet is the International Earth 
Rotation Service (IERS). The first realization of the International 
Terrestrial Reference System produced by the IERS was the 
International Terrestrial Reference Frame of 1988 (ITRF88). The IERS 
also defines the International Reference Pole (IRP), and the data 
needed for this work comes from GPS, very-long-baseline interfer-
ometry (VLBI), and satellite laser ranging (SLR).

Answer: (c)

10. Explanation:

	 Surface fitting is the best approach to datum transformation. The 
United States, Canada, and Australia use this method. Although the 
number of common points available is an important element in evalu-
ating the accuracy that can be expected from a datum transformation 
method, generally the Molodenski transformation provides the least 
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accurate results. The surface-fitting or grid-shift technique, like that 
used in NADCON, will provide the most accurate transformation.

Answer: (c)
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3
Heights

Latitude and longitude, northing and easting, radius vector and polar angle, 
and coordinates often come in pairs—but that is not the whole story. For a 
coordinate pair to be entirely accurate, the point it represents must lie on a 
well-defined surface. It might be a flat plane, or it might be the surface of a 
particular ellipsoid; in either case, the surface will be smooth and have a 
definite and complete mathematical definition.

As mentioned before, modern geodetic datums rely on the surfaces of 
geocentric ellipsoids to approximate the surface of the Earth. But the actual 
Earth does not coincide with these nice smooth surfaces, even though that 
is where the points represented by the coordinate pairs lie. In other words, 
the abstract points are on the ellipsoid, but the physical features those coor-
dinates intend to represent are, of course, on the actual Earth. Though the 
intention is for the Earth and the ellipsoid to have the same center, the sur-
faces of the two figures are certainly not in the same place. There is a dis-
tance between them.

Ellipsoidal Height

The distance represented by a coordinate pair on the reference ellipsoid to 
the point on the surface of the Earth is measured along a line perpendicular 
to the ellipsoid. This distance is known by more than one name. It is called 
the ellipsoidal height and is also called the geodetic height, and it is usually 
symbolized by h.

In Figure 3.1, the ellipsoidal height of station Youghall is illustrated. The 
reference ellipsoid is GRS80, since the latitude and longitude are given in 
NAD83. The concept of an ellipsoidal height is straightforward. A reference 
ellipsoid may be above or below the surface of the Earth at a particular place. 
If the ellipsoid’s surface is below the surface of the Earth at the point, the 
ellipsoidal height has a positive sign; if the ellipsoid’s surface is above the 
surface of the Earth at the point, the ellipsoidal height has a negative sign. 
It is important to remember that the measurement of an ellipsoidal height 
is along a line perpendicular to the ellipsoid, not along a plumb line. Said 
another way, an ellipsoidal height is not measured in the direction of gravity. 
It is not measured in the conventional sense of down or up.
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As mentioned in Chapter 1, “down” is a line perpendicular to the ellipsoi-
dal surface at a particular point on the ellipsoidal model of the Earth. On the 
real Earth, down is the direction of gravity at the point. Most often they are 
not the same. And since a reference ellipsoid is a geometric imagining, it is 
quite impossible to actually set up an instrument on it. That makes it tough 
to measure ellipsoidal height using surveying instruments. In other words, 
ellipsoidal height is not what most people think of as an elevation.

Nevertheless, the ellipsoidal height of a point is readily determined using 
a GPS (Global Positioning System) receiver. GPS can be used to discover the 
distance from the geocenter of the Earth to any point on the Earth, or above 
it for that matter. In other words, it has the capability of determining three-
dimensional coordinates of a point in a short time. It can provide latitude 
and longitude, and—if the system has the parameters of the reference ellip-
soid in its software—it can calculate the ellipsoidal height. The relationship 
between points can be further expressed in the ECEF coordinates, x, y, and z, 
or in a Local Geodetic Horizon System (LHGS) of north, east, and up. Actually, 
in a manner of speaking, ellipsoidal heights are new, at least in common 
usage, since they could not be easily determined until GPS became a practical 
tool in the 1980s. However, ellipsoidal heights are not all the same, because 
reference ellipsoids and sometimes their origins can differ. For example, an 
ellipsoidal height expressed in ITRF00 would be based on an ellipsoid with 
exactly the same shape as the NAD83 ellipsoid, GRS80; nevertheless, the 
heights would be different because the origin has a different relationship 
with the Earth’s surface (see Figure 3.2).

Ellipsoidal Height = h

Youghall
Ellipsoid is GRS80
Latitude   40°25'33.39258''
Longitude 108°45'57.78374''
Ellipsoidal Height: 2644.0 Meters

Youghall
Ellipsoid is GRS80
Latitude   40°25'33.39258''
Longitude 108°45'57.78374''
Ellipsoidal Height: 0.0 Meters

Ellipsoidal Height = h = +2644.0 Meters
a.k.a. Geodetic Height 

Perpendicular to the Ellipsoidal

Ellipsoid

Earth’s Surface

Figure 3.1
Ellipsoidal height.
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There is nothing new about heights themselves, or elevations as they are 
often called. Long before ellipsoidal heights were so conveniently available, 
knowing the elevation of a point was critical to the complete definition of a 
position. In fact, there are more than 200 different vertical datums in use in 
the world today. They were, and still are, determined by a method of mea-
surement known as leveling. But it is important to note that this process mea-
sures a very different sort of height.

Both trigonometric leveling and spirit leveling depend on optical instruments. 
Their lines of sight are oriented to gravity, not a reference ellipsoid. Therefore, 
the heights established by leveling are not ellipsoidal. In fact, a reference 
ellipsoid actually cuts across the level surfaces to which these instruments 
are fixed.

Trigonometric Leveling

Finding differences in heights with trigonometric leveling requires a level 
optical instrument that is used to measure angles in the vertical plane, a 
graduated rod, and either a known horizontal distance or a known slope 
distance between them. As shown in Figure 3.3, the instrument is centered 
over a point of known elevation, and the rod is held vertically on the point of 

Note:
h1 is NAD83
ellipsoidal height
h2 is ITRF00
ellipsoidal height

Both use the GRS80
ellipsoid

h1

h2

2.24 Meters

NAD83 Origin

ITRF00 Origin

Earth’s Surface

Figure 3.2
All ellipsoidal heights are not the same.



76	 Basic GIS Coordinates

unknown elevation. At the instrument, one of two angles is measured: either 
the vertical angle, from the horizontal plane of the instrument, or the zenith 
angle, from the instrument’s vertical axis. Either angle will do. This mea-
sured angle, together with the distance between the instrument and the rod, 
provides two known components of a right triangle in the vertical plane. It is 
then possible to solve that triangle to reveal the vertical distance between the 
point at the instrument and the point on which the rod is held.

For example, suppose that the height or elevation of the point over which 
the instrument is centered is 100.00 ft. Further, suppose that the height of the 
instrument’s level line of sight, its horizontal plane, is 5.53 ft above that point. 
The height of the instrument (H.I.) would then be 105.53 ft. For convenience, the 
vertical angle at the instrument could be measured to 5.53 ft on the rod. If 
the measured angle is 1° 00′ 00″ and the horizontal distance from the instru-
ment to the rod is known to be 400.00 ft, all the elements are in place to 
calculate a new height. In this case, the tangent of 1° 00′ 00″ multiplied by 
400.00 ft yields 6.98 ft, which is the difference in height from the point at the 

Known:
Elevation of starting point, A.
Horizontal distances, d1, d2
between points
Measured:
All vertical angles.
Computed:
Elevation of B, C.d1 d2 CA

B

Measured Height = 5.53'

Horizontal

7
6
5

4

5

5

89°

Elev.=100.00'

Elev.=106.98'

6.
98

'H
.I.

 =
 5

.5
3'

400'

1°

Figure 3.3
Trigonometric leveling.



Heights	 77

instrument and the point at the rod. Therefore, 100.00 ft plus 6.98 ft indicates 
a height of 106.98 at the new station where the rod was placed.

There are many more aspects to this process—the curvature of the Earth, 
refraction of light, etc.—that make it much more complex in practice than 
shown in this illustration. However, the fundamental of the procedure is the 
solution of a right triangle in a vertical plane using trigonometry, hence the 
name trigonometric leveling. It is faster and more efficient than spirit level-
ing, but not as precise.

Horizontal surveying usually precedes leveling in control networks. This 
was true in the early days of what has become our national network, the 
National Spatial Reference System (NSRS) of the United States. Geodetic lev-
eling was begun only after triangulation networks were under way. This 
was also the case in many other countries. In some places around the world, 
the horizontal work was even completed before leveling was commenced. In 
the United States, trigonometric leveling was applied to geodetic surveying 
before spirit leveling. Trigonometric leveling was used extensively to pro-
vide elevations to reduce the angle observations and base lines necessary to 
complete triangulation networks to sea level. Moreover, the angular measure-
ments for the trigonometric leveling were frequently done in an independent 
operation with instruments having only a vertical circle.

Then, in 1871, Congress authorized a change for what was then called the 
Coast Survey under Benjamin Peirce that brought spirit leveling to the fore-
front. The Coast Survey was to begin a transcontinental arc of triangulation 
to connect the surveys on the Atlantic coast with those on the Pacific coast. 
Until that time, their work had been restricted to the coasts. But with the 
undertaking of triangulation that would cross the continent along the 39th 
parallel, it was clear that trigonometric leveling was not sufficient to support 
the project. The survey needed more vertical accuracy than it could provide. 
So in 1878, at about the time the work began, the name of the agency was 
changed from Coast Survey to U.S. Coast and Geodetic Survey, and a line of 
spirit leveling of high precision was begun at Benchmark A in the foundation 
wall of the Washington County Court House in Hagerstown, Maryland. It 
headed west, and it finally reached the west coast at Seattle in 1907. Along the 
way, it provided benchmarks for the use of engineers and others who needed 
accurate elevations or heights for subsequent work, and established the verti-
cal datum for the United States.

Spirit Leveling

The spirit-leveling method (see Figure 3.4) is simple in principle, but not in 
practice. An instrument called a level is used to establish a line of sight that is 
perpendicular to gravity, in other words, a level line. Then two rods marked 
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with exactly the same graduations, like rulers, are held vertically, resting 
on two solid points, one ahead and one behind the level along the route of 
the survey. The system works best when the level is midway between these 
rods. Looking at the rod to the rear through the telescope of the level, the 
point at which the horizontal level line of sight of the level intersects the 
vertical rod, there is a graduation. That reading is taken and noted. This is 
known as the backsight (B.S.). This reading tells the height, or elevation, that 
the line of sight of the level is above the mark on which the rod is resting. 
For example, if the point on which the rod is resting is at an elevation of 100 
ft and the reading on the rod is 6.78 ft, the height of the level’s line of sight 
is 106.78 ft. That value is known as the H.I. Then the still-level instrument 
is rotated to observe the vertical rod ahead and a value is read there. This is 
known as the foresight (F.S.). The difference between the two readings reveals 
the change in elevation from the first point at the backsight to the second at 
the foresight. For example, if the first reading established the height of the 
level’s line of sight, the H.I., at 106.78 ft, and the reading on the rod ahead, 
the F.S., was 5.67 ft it becomes clear that the second mark is 1.11 ft higher 
than the first. It has an elevation of 101.11 ft. By beginning this process from 
a monumented point of known height, a benchmark, and repeating it with 

Known:
Elevation of starting point, A.
Measured:
Elevation differences, a, b, c, d, etc.

Computed:
Elevation of B, C, and all other points.

CA
a

b
c

d
B

Elev.=101.11'

Starting Point
Elev.=100.00'

FS = 5.67'H.I. = 106.78'BS = 6.78'

Figure 3.4
Spirit leveling.
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good procedures, the heights of marks can be determined all along the route 
of the survey.

The accuracy of level work depends on the techniques and the care used. 
Methods such as balancing the forward and back sights, calculating refraction 
errors, running new circuits twice, using one-piece rods, etc., can improve 
results markedly. In fact, entire books have been written on the details of 
proper leveling techniques. Here the goal will be to mention only a few ele-
ments pertinent to coordinates generally.

It is difficult to overstate the amount of effort devoted to differential spirit-
level work that has carried vertical control across the United States. The 
transcontinental precision leveling surveys done by the Coast and Geodetic 
Survey from coast to coast were followed by thousands of miles of spirit-
leveling work of varying precision. When the 39th parallel survey reached 
the West Coast in 1907, there were approximately 19,700 miles (31,789 km) of 
geodetic leveling in the national network. That was more than doubled 22 
years later, in 1929, to approximately 46,700 miles (75,159 km). As the quan-
tity of leveling information grew, so did the errors and inconsistencies. The 
foundation of the work was ultimately intended to be mean sea level (MSL) 
as measured by tide station gauges. Inevitably, this growth in leveling infor-
mation and benchmarks made a new general adjustment of the network nec-
essary to bring the resulting elevations closer to their true values relative to 
mean sea level.

There had already been four previous general adjustments to the vertical 
network across the United States by 1929. They were completed in 1900, 1903, 
1907, and 1912. The adjustment in 1900 was based upon elevations held to 
mean sea level as determined at five tide stations. The adjustments in 1907 
and 1912 left the eastern half of the United States fixed as adjusted in 1903. In 
1927 there was a special adjustment of the leveling network. This adjustment 
was not fixed to mean sea level at all tide stations, and after it was completed, 
it became apparent that the mean sea level surface as defined by tidal obser-
vations had a tendency to slope upward to the north along both the Pacific 
and Atlantic Coasts, with the Pacific higher than the Atlantic.

In the adjustment that established the Sea Level Datum of 1929, the deter-
minations of mean sea level at 26 tide stations—21 in the United States and 5 
in Canada—were held fixed. Sea level was the intended foundation of these 
adjustments, and it might make sense to say a few words about the forces 
that shape it.

Sea Level

Both the Sun and the Moon exert tidal forces on the Earth, but the Moon’s 
force is greater. The Sun’s tidal force is about half of that exerted on the Earth 
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by the Moon. The Moon makes a complete elliptical orbit around the Earth 
every 27.3 days. There is a gravitational force between the Moon and the 
Earth. Each pulls on the other, and at any particular moment, the gravita-
tional pull is greatest on the portion of the Earth that happens to be closest 
to the Moon. That produces a bulge in the waters on the Earth in response 
to the tidal force. On the side of the Earth opposite the bulge, centrifugal 
force exceeds the gravitational force of the Earth and water in this area is 
forced out, away from the surface of the Earth, creating another bulge. But 
the two bulges are not stationary; they move across the surface of the Earth. 
They move because not only is the Moon moving slowly relative to the Earth 
as it proceeds along its orbit, but more importantly, the Earth is rotating in 
relation to the Moon. And the Earth’s rotation is relatively rapid in compari-
son with the Moon’s movement. Therefore, a coastal area in the high middle 
latitudes may find itself with a high tide early in the day when it is close to 
the Moon and then a low tide in the middle of the day when it has rotated 
away from it. This cycle will begin again with another high tide a bit more 
than 24 hours after the first high tide. The interval is a bit more than 24 hours 
because the time from the moment the Moon reaches a particular meridian 
to the next time it is there is actually about 24 hours and 50 min, a period 
called a lunar day.

This sort of tide, with one high water and one low water in a lunar day, is 
known as a diurnal tide. This characteristic tide would be most likely to occur 
in the middle latitudes to the high latitudes when the Moon is near its maxi-
mum declination, as you can see from Figure 3.5.

High Middle Latitude

Low Tide
High Tide

+ Declination

– Declination

Moon
(at Maximum North

Declination)

Tidal
Bulge

Centrifugal force
exceeds gravitational
pull

Declination angle varies from 0°
to a maximum over 27.2 day period.
The maximum declination itself varies
+/– 18.5° up to +/– 28.5° over the
course of an 18.6–year cycle.

TidalForce

Equator

E  a  r  t  h

Figure 3.5
Diurnal tide.
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The declination of a celestial body is similar to the latitude of a point on the 
Earth. It is an angle measured at the center of the Earth from the plane of the 
equator, positive to the north and negative to the south, to the subject, which 
is in this case the Moon. The Moon’s declination varies from its minimum of 
0º at the equator to its maximum over a 27.2-day period, and that maximum 
declination oscillates too. It goes from ±18.5º up to ±28.5º over the course of 
an 18.6-year cycle.

Another factor that contributes to the behavior of tides is the elliptical 
nature of the Moon’s orbit around the Earth. When the Moon is closest to 
the Earth, i.e., at perigee, the gravitational force between the Earth and the 
Moon is 20% greater than usual. At apogee, when the Moon is farthest from 
the Earth, the force is 20% less than usual. The variations in the force have 
exactly the effect you would expect on the tides, making them higher and 
lower than usual. It is about 27.5 days from perigee to perigee.

To summarize, the Moon’s orbital period is 27.3 days. It also takes 27.2 days 
for the Moon to move from its maximum declinations back to 0º directly over 
the equator. And there are 27.5 days from one perigee to the next. You can see 
that these cycles are almost the same—almost, but not quite. They are just 
different enough that it takes 18 to 19 years for the Moon to go through all 
the possible combinations of its cycles with respect to the Sun and the Earth. 
Therefore, if you want to be certain that you have recorded the full range of 
tidal variation at a place you must observe and record the tides at that loca-
tion for 19 years.

This 19-year period, sometimes called the Metonic cycle, is the foundation 
of the definition of mean sea level (MSL). Mean sea level can be defined as the 
arithmetic mean of hourly heights of the sea at a primary-control tide station 
observed over a period of 19 years. The mean in mean sea level refers to the 
average of these observations over time at one place. It is important to note 
that it does not refer to an average calculation made from measurements at 
several different places. Therefore, when the Sea Level Datum of 1929 was 
fixed to MSL at 26 tide stations, that meant it was made to fit 26 different and 
distinct local MSLs. In other words, it was warped to coincide with 26 differ-
ent elevations.

The topography of the sea changes from place to place, and that means, 
for example, that MSL in Florida is not the same as MSL in California. The 
fact is, mean sea level varies. And the water’s temperature, salinity, currents, 
density, wind, and other physical forces all cause changes in the sea sur-
face’s topography. For example, the Atlantic Ocean north of the Gulf Stream’s 
strong current is around 1 m lower than it is farther south. And the denser 
water of the Atlantic is generally about 40 cm lower than the Pacific. At the 
Panama Canal, the actual difference is about 20 cm from the east end to the 
west end.
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Evolution of the Vertical Datum

After it was formally established, thousands of miles of leveling were added 
to the Sea Level Datum of 1929 (SLD29). The Canadian network also con-
tributed data to the Sea Level Datum of 1929, but Canada did not ultimately 
use what eventually came to be known as the National Geodetic Vertical 
Datum of 1929 (NGVD29). The name was changed in 1973 because the final 
result did not really coincide with mean sea level. It became apparent that 
the precise leveling done to produce the fundamental data had great internal 
consistency, but that consistency suffered when the network was warped to 
fit so many tide station determinations of mean sea level.

By the time the name was changed to NGVD29, there were more than 
400,000 miles of new leveling work included. There were distortions in the 
network. Original benchmarks had been disturbed, destroyed, or lost. The 
National Geodetic Survey (NGS) thought it time to consider a new adjust-
ment. This time, there was a different approach. Instead of fixing the adjust-
ment to tidal stations, the new adjustment would be minimally constrained. 
That meant that it would be fixed to only 1 station, not 26. That station was 
Father Point/Rimouski, an International Great Lakes Datum of 1985 (IGLD85) 
station near the mouth of the St. Lawrence River and on its southern bank. 
In other words, for all practical purposes, the new adjustment of the huge 
network was not intended to be a sea level datum at all. It was a change in 
thinking that was eminently practical.

While is it relatively straightforward to determine mean sea level in coastal 
areas, carrying that reference reliably to the middle of a continent is quite 
another matter. Therefore, the new datum would not be subject to the varia-
tions in sea surface topography. It was unimportant whether the new adjust-
ment’s zero elevation and mean sea level were the same.

Zero Point

At this stage, it is important to mention that, throughout the years, there 
were, and continue to be, benchmarks set and vertical control work done 
by official entities in federal, state, and local governments other than NGS. 
State departments of transportation, city and county engineering and pub-
lic works departments, the U.S. Army Corps of Engineers, and many other 
governmental and quasi-governmental organizations have established their 
own vertical control networks. Included on this list is the U.S. Geological 
Survey (USGS). In fact, minimizing the effect on the widely used USGS map-
ping products was an important consideration in designing the new datum 
adjustment. Several of these agencies, including the National Oceanic and 
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Atmospheric Administration (NOAA), the U.S. Army Corps of Engineers, the 
Canadian Hydrographic Service, and the Geodetic Survey of Canada worked 
together for the development of the International Great Lakes Datum 1985 
(IGLD85). This datum was originally established in 1955 to monitor the level 
of the water in the Great Lakes.

Precise leveling proceeded from the zero reference established at Pointe-
au-Père, Quebec, in 1953. The resulting benchmark elevations were originally 
published in September 1961. The result of this effort was the International 
Great Lakes Datum 1955. After nearly 30 years, the work was revised. The 
revision effort began in 1976, and the result was IGLD85. It was motivated 
by several developments, including deterioration of the zero-reference-point 
gauge location and improved surveying methods. But one of the major rea-
sons for the revision was the movement of previously established bench-
marks due to isostatic rebound. This effect is, literally, the Earth’s crust rising 
slowly, rebounding, from the removal of the weight and subsurface fluids 
caused by the retreat of the glaciers from the last ice age.

The choice of the tide gauge at Pointe-au-Père, Quebec, as the zero refer-
ence for IGLD was logical in 1955. It was reliable, it had already been con-
nected to the network with precise leveling, and it was at the outlet of the 
Great Lakes. But by 1984, the wharf at Pointe-au-Père had deteriorated, and 
the gauge was eventually moved about 3 miles to Rimouski, Quebec, and 
precise levels were run between the two. It was there that the zero refer-
ence for IGLD85—and what then became a new adjustment called North 
American Vertical Datum 1988 (NAVD88)—was established.

The readjustment, known as NAVD88, was begun in the 1970s. It addressed 
the elevations of benchmarks all across the nation. The effort also included 
field work. Destroyed and disturbed benchmarks were replaced. The miles 
of leveling data increased from 46,701 (75,159 km) used in the establishment 
of NGVD29 to 622,303 miles (1,001,500 km) used in the establishment of 
NAVD88, which was ready in June of 1991. The differences between eleva-
tions of benchmarks determined in NGVD29 compared with the elevations 
of the same benchmarks in NAVD88 vary from approximately –1.3 ft in 
the east to approximately +4.9 ft in the west in the 48 conterminous United 
States. The larger differences tend to be on the coasts, as one would expect, 
since NGVD29 was forced to fit mean sea level at many tidal stations, while 
NAVD88 was held only to one.

When comparing heights in IGLD85 and NAVD88, it is important to con-
sider that they are both based on the zero point at Father Point/Rimouski. 
There is really only one difference between the nature of the heights in the 
two systems. NAVD88 values are expressed in Helmert orthometric height 
units, and IGLD85 elevations are given in dynamic height units. The explana-
tion of this difference requires introduction of some important principles of 
the current understanding of heights.

So far, there has been mention of heights based on the ellipsoidal model 
of the Earth and heights that use mean sea level as their foundation. While 
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ellipsoidal heights are not affected by any physical forces at all, heights based 
on mean sea level are affected by a broad range of them. There is also another 
surface to which heights are referenced that is defined by only one force, 
gravity. It is known as the geoid.

Geoid

Any object in the Earth’s gravitational field has potential energy derived from 
being pulled toward the Earth. Quantifying this potential energy is one way 
to talk about height, because the amount of potential energy an object derives 
from the force of gravity is related to its height.

Here is another way of saying the same thing. The potential energy an 
object derives from gravity equals the work required to lift it to its current 
height. Imagine several objects, each with the same weight, resting on a truly 
level floor. In that instance, they would all be possessed of the same potential 
energy from gravity. Their potential energies would be equal. The floor on 
which they were resting could be said to be a surface of equal potential, an 
equipotential surface.

Now suppose that each of the objects was lifted up onto a level table. It is 
worth mentioning that they would be lifted through a large number of equi-
potential surfaces between the floor and the table top, and those surfaces are 
not parallel with each other. In any case, their potential energies would obvi-
ously be increased in the process. Once they were all resting on the table, 
their potential energies would again be equal, now on a higher equipotential 
surface—but how much higher?

There is more than one way to answer that question. One way is to find the 
difference in their geopotential, which is their potential energy on the floor, 
thanks to gravity, compared with their geopotential on the table. This is the 
same idea behind answering the question with a dynamic height. Another 
way to answer the question is to simply measure the distance along a plumb 
line from the floor to the tabletop. This latter method is the basic idea behind 
an orthometric height. An orthometric height can be illustrated by imagin-
ing that the floor in the example is a portion of one particular equipotential 
surface called the geoid.

The geoid is a unique equipotential surface that best fits mean sea level. 
As discussed previously, mean sea level is not a surface on which the geo-
potential is always the same; so it is not an equipotential surface at all. 
Forces other than gravity affect it, forces such as temperature, salinity, cur-
rents, wind, etc. On the other hand, the geoid by definition is an equipo-
tential surface. It is defined by gravity alone. Further, it is the particular 
equipotential surface arranged to fit mean sea level as well as possible, in 
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a least squares sense. Across the geoid, the potential of gravity is always 
the same.

So while there is a relationship between mean sea level and the geoid, 
they are not the same (see Figure  3.6). They could be the same if the 
oceans of the world could be utterly still, completely free of currents, 
tides, friction, variations in temperature, and all other physical forces, 
except gravity. Reacting to gravity alone, these unattainable calm waters 
would coincide with the geoid. If the water was then directed by small 
frictionless channels or tubes and allowed to migrate across the land, the 
water would then, theoretically, define the same geoidal surface across 
the continents, too. Of course, the 70% of the Earth covered by oceans is 
not so cooperative, and the physical forces cannot really be eliminated. 
These unavoidable forces actually cause mean sea level to deviate up to 1 
and 2 m from the geoid.

Because the geoid is completely defined by gravity, it is not smooth. As 
shown in the exaggerated illustration in Figure 3.7, it is lumpy because grav-
ity is not consistent across the surface of the Earth. It undulates with the 
uneven distribution of the mass of the Earth. It has all the irregularity that 
the attendant variation in gravity implies. In fact, the separation between 
the lumpy surface of the geoid and the smooth GRS80 ellipsoid worldwide 
varies from about +85 m west of Ireland to about −106 m in the area south of 
India near Sri Lanka.

At every point, gravity has a magnitude and a direction. Anywhere on 
the Earth, a vector can describe gravity, but these vectors do not all have the 
same direction or magnitude. Some parts of the Earth are denser than others. 
Where the Earth is denser, there is more gravity, and the fact that the Earth 
is not a sphere also affects gravity. It follows then that defining the geoid pre-
cisely involves actually measuring the direction and magnitude of gravity at 
many places—but how?

North

Geoid (Equipotential Surface)

Mean Sea Level

Ellipsoid

Earth’s Surface

Figure 3.6
Mean sea level.
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Measuring Gravity

Some gravity measurements are executed with a class of instruments called 
gravimeters, which were introduced in the middle of the last century. One 
sort of gravimeter can be used to measure the relative difference in the force 
of gravity from place to place. The basic idea of this kind of gravimeter is 
illustrated by considering the case of one of those weights, described in the 
earlier analogy, suspended at the end of a spring. Suppose the extension of 
the spring was carefully measured with the gravimeter on the table and mea-
sured again when it was on the floor. If the measurement of such a tiny dif-
ference were possible, the spring would be found to be infinitesimally longer 
on the floor because the magnitude of gravity increases as you move lower. 
In practice, such a measurement is quite difficult, and thus the increases in 
the tension on the spring necessary to bring the weight back to a predefined 
zero point are actually measured.

Conversely, suppose the tension of the spring was carefully measured 
with the gravimeter on the floor and measured again on the table. The spring 
would be shortened and the tension on the spring would need to decrease to 
bring the weight back to the zero point. This is because the spinning of the 
Earth on its axis creates a centrifugal, center-fleeing, force.

Centrifugal force opposes the downward gravitational attraction. And these 
two forces are indistinguishably bound together. Therefore, measurements 

Figure 3.7
Exaggerated representation of the geoid.
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made by gravimeters on the Earth inevitably contain both centrifugal and 
gravitational forces. It is impossible to pry them apart. An idea called the 
equivalence principle states that the effects of being accelerated to a velocity are 
indistinguishable from the effects of being in a gravitational field. In other 
words, there is no physical difference between an accelerating frame of ref-
erence and the same frame of reference in a gravitational field. So they are 
taken together. In any case, as you go higher, the centrifugal force increases 
and counteracts the gravitational attraction to a greater degree than it does 
at lower heights and so, generally speaking, gravity decreases the higher you 
go.

Now please recall that the Earth closely resembles an oblate spheroid. That 
means that the distance from the center of the planet to a point on the equa-
tor is longer than the distance from the center to the poles. Said another way, 
the Earth is generally higher at the equator than it is at the poles. As a con-
sequence, the acceleration of a falling object is less at the equator than at the 
poles. Less acceleration of gravity means that if you drop a ball at the equator, 
the rate at which its fall would accelerate would be less than if you dropped 
it at one of the poles. As a matter of fact, that describes the basic idea behind 
another kind of gravimeter. In this second kind of gravimeter, the fall of an 
object inside a vacuum chamber is very carefully measured.

The acceleration of gravity, i.e., the rate at which a falling object changes 
its velocity, is usually quantified in gals, a unit of measurement named for 
Galileo, who pioneered the modern understanding of gravity. What is a gal? 
Well, imagine an object is dropped. At the end of the first second, it is falling 
at 1 cm/sec. Then at the end of the next second it is falling at 2 cm/sec. In this 
thought experiment, the imagined object would have accelerated 1 gal. Said 
another way, 1 gal is an acceleration of 1 cm/sec/sec.

At the equator, the average acceleration of a falling object is approximately 
978 gals, which is 978 cm/sec2 or 32.09 ft/sec2. At the poles, the acceleration 
of a falling object increases to approximately 984 gals, which is 984 cm/sec2 
or 32.28 ft/sec2. The acceleration of a falling object at 45º latitude is between 
these two values, as you would expect. It is 980.6199 gals. This value is some-
times called normal gravity.

Orthometric Correction

This increase in the rate of acceleration due to gravity between the equator 
and the poles is a consequence of the increase in the force of gravity as the 
Earth’s surface gets closer to the center of mass of the Earth. Imagine the 
equipotential surfaces that surround the center of mass of the Earth as the 
layers of an onion. These layers are farther apart at the equator than they are 
at the poles. This is because there is a larger centrifugal force at 0º latitude 
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compared with the centrifugal force at 90º latitude. In other words, equipo-
tential surfaces get closer together as you approach the poles, i.e., they con-
verge, as seen in Figure 3.8. And the effect of this convergence becomes more 
pronounced as the direction of your route gets closer to north and south.

This effect was mentioned as far back as 1899. It was discovered that the 
precise leveling run in an east-west direction required less correction than 
leveling done in a north or south direction. Eventually, a value known as 
an orthometric correction was applied to accommodate the convergence of the 
equipotential surfaces. As Howard Rappleye wrote,

The instruments and methods used in 1878 were continued in use until 
1899, when, as the result of an elaborate theoretical investigation, it was 
found that apparently the leveling was subject to a systematic error 
depending on the azimuth of the line of levels.… The leveling of the 
Coast and Geodetic Survey was then corrected for the systematic error. 
(Rappleye 1948, 1)

In the years that led to the establishment of NGVD29, gravity data was 
mostly unavailable, and the actual correction applied was based on an ellip-
soidal model. The result is known as normal orthometric heights, which do not 
take account of local variations in gravity.

The application of the orthometric correction means that the height differ-
ence derived from leveling between two points will not exactly match the 
difference between orthometric heights. This is a consequence of the fact 
that the line of sight of a properly balanced level will follow an equipotential 
surface, i.e., a level surface, but orthometric heights after their correction are 
not exactly on a level surface. Consider two points, two benchmarks, with 
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Figure 3.8
Equipotential surfaces converging.
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the same published orthometric height, one north and one south. The ortho-
metric height of the south benchmark as measured along a plumb line from 
the geoid will pass through fewer level surfaces than the same measurement 
to the benchmark at the north end. For example, the orthometric height of 
the water surface at the south end of Lake Huron seems to indicate that it is 
approximately 5 cm higher than the same equipotential surface at the north 
end. The orthometric heights make it look this way because the equipotential 
surfaces are closer together at the north end than they are at the south end. 
But precise levels run from the south end of the lake to the north would not 
reflect the 5-cm difference because the line of sight of the level would actu-
ally follow the equipotential surface all the way.

In other words, the convergence of equipotential surfaces prevents leveling 
from providing the differences between points as it is defined in orthometric 
heights. And the amount of the effect depends on the direction of the level 
circuit. The problem can be alleviated somewhat by applying an orthometric 
correction based on the measurement of gravity. An orthometric correction 
can amount to 0.04 ft/mile in mountainous areas. It is systematic and is not 
eliminated by careful leveling procedures.

It is worthwhile to note that NGS publishes height data as Helmert ortho-
metric heights. This is a particular type of orthometric height that does not 
take account of the gravitational effect of topographic relief. As a conse-
quence, these heights can lead to a certain level of misclosure between GPS-
determined benchmarks and the geoid model in mountainous areas.

Ellipsoidal, Geoidal, and Orthometric Heights

The distance measured along a line perpendicular to the ellipsoid from the 
ellipsoid of reference to the geoid is known as a geoid height. It is usually 
symbolized as N. In the conterminous United States, sometimes abbreviated 
CONUS, geoid heights vary from about −8 m to about −53 m in NAD83. 
These are larger than those in the old NAD27 system. Please recall that its 
orientation at Meades Ranch, Kansas, was arranged so that the distance 
between the Clarke 1866 ellipsoid and the geoid was zero. And across the 
United States, the difference between them in NAD27 never grew to more 
than 12 m. In fact, for all practical purposes, the ellipsoid and the geoid were 
often assumed to coincide in that system. However, in NAD83, based on the 
GRS80 ellipsoid, the geoid heights are larger and negative. If the geoid is 
above the ellipsoid, N is positive; if the geoid is below the ellipsoid, N is 
negative. Throughout the conterminous United States, the geoid is under-
neath the ellipsoid. In Alaska, it is the other way around, and the ellipsoid is 
underneath the geoid, and N is positive.
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As shown in Figure 3.9, ellipsoidal height is symbolized as h. The ellip-
soidal height is also measured along a line perpendicular to the ellipsoid of 
reference, but to a point on the surface of the Earth. An orthometric height, 
symbolized, H, is measured along a plumb line from the geoid to a point on 
the surface of the Earth.

In either case, by using the formula,

	 H = h – N

one can convert an ellipsoidal height, h, derived, say, from a GPS observa-
tion, into an orthometric height, H, by knowing the extent of geoid–ellipsoid 
separation, i.e., the geoid height, N, at that point.
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Figure 3.9
Orthometric height (H), ellipsoidal height (h), geoidal height (N).
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As you can see from Figure 3.9, the ellipsoidal height of a particular point 
is actually smaller than the orthometric height throughout the conterminous 
United States.

The formula H = h − N does not account for the fact that the plumb line along 
which an orthometric height is measured is curved, as seen in Figure 3.9. It 
is curved because it is perpendicular to every equipotential surface through 
which it passes. And since equipotential surfaces are not parallel with each 
other, the plumb line must be a curve to maintain perpendicularity with 
them. This deviation of a plumb line from the perpendicular to the ellipsoid 
reaches about 1 min of arc in only the most extreme cases. Therefore, any 
height difference that is caused by the curvature is negligible. It would take 
a height of over 6 miles for the curvature to amount to even 1 mm of differ-
ence in height.

It might be pertinent to ask, “Why use orthometric heights at all?” One 
answer is the accommodation of GPS measurements. Orthometric elevations 
are not directly available from the geocentric position vectors derived from 
GPS measurements. However, they can be rather quickly calculated using H 
= h – N. That is, they can be calculated once a geoidal model is well defined.

NGS GEOID Models

The geoid defies the certain, clear definition of, say, the GRS80 ellipsoid. It 
does not precisely follow mean sea level, and neither does it exactly corre-
spond with the topography of the dry land. It is irregular like the terrestrial 
surface, and has similar peaks and valleys, but they are due to the uneven 
distribution of the mass of the planet. The undulations of the geoid are 
defined by gravity and reflect changes in density known as gravity anomalies. 
Gravity anomalies represent the difference between the equipotential sur-
face of so-called normal gravity, which theoretically varies with latitude, and 
actual measured gravity at a place. The calculation of geoid heights using 
gravity anomalies, Δg, is usually done with the formula derived in 1849 by 
George Stokes, but its effectiveness depends on the accuracy of the modeling 
of the geoid around the world.

With the major improvements in the mapping of the geoid on both national 
and global scales over the past quarter century, geoid modeling has become 
more and more refined. To some degree, this is due to improvements in data 
gathering. For example, gravimeter surveys on land routinely detect grav-
ity anomalies to a precision of 1 part in 1 million. Surveys with a precision 
of 0.01 milligal, that is one hundredth of one thousandth of a gal, are com-
mon. Moreover, GPS allows the accurate positioning of gravimetric stations. 
Further, there is the advantage that there is good deal of gravimetric infor-
mation available through governmental agencies and universities around the 
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world, though the distribution of the data may not be optimal. And new satel-
lite altimetry missions also contribute to the refinement of geoid modeling.

New and improved data sources have led to applications built on better 
computerized modeling at NGS. For many years, these applications have been 
allowing users to easily calculate values for N, the geoid height, which is the 
distance between the geoid and the ellipsoid, at any place as long as its latitude 
and longitude are available. The computer model of the geoid has been steadily 
improving. The latest of these to become available is known as GEOID03.

The GEOID90 model was rolled out at the end of 1990. It was built using 
over a million gravity observations. The GEOID93 model, released at the 
beginning of 1993, utilized many more gravity values. Both provided geoid 
heights in a grid of 3 min of latitude by 3 min of longitude, and their accuracy 
was about 10 cm. Next, the GEOID96 model, with a grid of 2 min of latitude 
by 2 min of longitude, was released. More recently GEOID99 was available to 
cover the conterminous United States, and includes the U.S. Virgin Islands, 
Puerto Rico, Hawaii, and Alaska. It was computed using 2.6 million gravity 
measurements. The grid was 1 min of latitude by 1 min of longitude. In prac-
tical terms, GEOID96 was matched to NAVD88 heights on about 3,000 bench-
marks with an accuracy of about ±5.5 cm (1 sigma), whereas GEOID99 was 
matched to NAVD88 heights on about 6,000 benchmarks with an accuracy 
of about ±4.6 cm (1 sigma). GEOID99 was the first of the models to combine 
gravity values with GPS ellipsoidal heights on previously leveled bench-
marks. Therefore, users relying on GEOID99 could trust its representation of 
the relationship between GPS ellipsoid heights in NAD83 with orthometric 
heights in the NAVD88 datum.

GEOID03 is also a model of the conterminous United States (CONUS). It 
supersedes the previously mentioned models. It was built with a combina-
tion of gravity data and ellipsoid heights derived from GPS at 14,185 lev-
eled benchmarks, including 579 in Canada. In Alaska, there was a shortage 
of such information. Generally, GEOID03 can provide data valid to about 
±2.4 cm (1 sigma) for the conversion between NAD83 GPS ellipsoidal heights 
and NAVD88 orthometric heights. The state with the smallest standard 
deviation in this regard is Connecticut (1.3 cm), and that with the largest is 
Texas (5.8 cm). Nationwide, GEOID03 is a 50% improvement over GEOID99. 
This improvement is due, in part, to the use of a more complicated analytic 
function in the development of GEOID03 than was available for GEOID99. 
Differences of 10–15 cm are possible in some coastal and mountainous areas 
between the two models. It is always good practice to include existing bench-
marks in GPS surveys so that the difference between their published eleva-
tions and the heights derived through the use of the GEOID03 model can be 
compared. This is especially true in areas such as the western states, where 
the sparseness of data restricted the ability to refine the model, and in areas 
where subsidence is significant.
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Dynamic Heights

Now, please recall that an orthometric height is a measurement along a 
plumb line from a particular equipotential surface to a point on the Earth’s 
surface. In other words, the orthometric height of that point is its distance 
from the reference surface, a distance measured along the line perpendicular 
to every equipotential surface in between. And recall that these equipoten-
tial surfaces are not parallel to each other, chiefly because of gravity anoma-
lies and the rotation and shape of the Earth. Therefore, it follows that two 
points could actually have the same orthometric height and not be on the 
same equipotential surface. This is a rather odd fact, and it has an unusual 
implication. It means that water might actually flow between two points that 
have exactly the same orthometric height.

This is one reason that the International Great Lakes Datum of 1985 
is based on dynamic heights. Unlike orthometric heights, two points with 
identical dynamic heights are definitely on the same equipotential surface. 
Two points would have to have different dynamic heights for water to flow 
between them, and the flow of water is a critical concern for those using 
that system.

Because one can rely on the fact that points with the same dynamic heights 
are always on the same equipotential surface, they are better indicators of the 
behavior of water than orthometric heights.

An advantage of using dynamic heights is the sure indication of whether 
a water surface, or any other surface for that matter, is truly level or not. For 
example, the Great Lakes are monitored by tide gauges to track historical 
and predict future water levels in the lakes, and it is no surprise then that 
the subsequent International Great Lakes Datum of 1985 (IGLD85) heights 
are expressed as dynamic heights. Where the lake surfaces are level, the 
dynamic heights are the same, and where they are not, it is immediately 
apparent because the dynamic heights differ.

Points on the same equipotential surface also have the same geopotential 
numbers along with the same dynamic heights. The idea of measuring geo-
potential by using geopotential numbers was adopted by the International 
Association of Geodesy in 1955. The geopotential number of a point is the 
difference between the geopotential below the point, down on the geoid, and 
the geopotential right at the point itself. Said another way, the geopotential 
number expresses the work that would be done if a weight were lifted from 
the geoid up to the point, like the weights that were lifted onto a table in the 
earlier analogy. A geopotential number is expressed in geopotential units, or 
gpu. A gpu is 1 kilogal/m.

Geopotential numbers, along with a constant, contribute to the calculation 
of dynamic heights. The calculation itself is simple:
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H dyn

p
Cp=
γ 0

where Hp
dyn is the dynamic height of a point in meters, Cp is the geopo-

tential number at that point in gpu (i.e., kilogals per meter), and γ0 is the 
constant 0.9806199 kgals. The constant is normal gravity at 45º latitude on 
GRS80.

The dynamic height of a point is found by dividing its NAVD88 geopoten-
tial number by the normal gravity value. In other words, dynamic heights 
are geopotential numbers scaled by a particular constant value chosen in 
1984 to be normal gravity at 45º latitude on the GRS80 reference ellipsoid. 
The whole point of the calculation is to transform the geopotential number 
that is in kilogals per meter into a dynamic height in meters by dividing by 
the constant in kilogals. Here is a sample calculation of the dynamic height 
of station M 393, an NGS benchmark.
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H
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d

=

=
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1660 419936
0 9806199

.
.

yyn = 1693.235 m

The NAVD88 orthometric height of this benchmark determined by spirit 
leveling is 1694.931 m and differs from its calculated dynamic height by  
1.696 m. However, using the same formula and the same geopotential 
number, but divided by a gravity value derived from the Helmert height 
reduction formula, the result would be a Helmert orthometric height for 
M 393, instead of its dynamic height. Note that the geopotential number 
stays the same in both systems. And there is a third result: If the divisor 
were a gravity value calculated with the international formula for nor-
mal gravity, the answer would be the normal orthometric height for the 
point.

Reference

Rappleye, H. S. 1948. Manual of geodetic leveling. Special Publication 239. Washington, 
DC: U.S. Department of Commerce, Coast and Geodetic Survey.
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Exercises

	 1.	Which of the following can be depended upon to define the flow of 
water?

	 a.	 From a higher ellipsoidal height to a lower ellipsoidal height

	 b.	 From a higher geodetic height to a lower geodetic height

	 c.	 From a higher orthometric height to a lower orthometric height

	 d.	 From a higher dynamic height to a lower dynamic height

	 2.	Which of the following formulae correctly represents the basic rela-
tionship between geodetic, geoidal, and orthometric heights?

	 a.	 H = h + N

	 b.	 h = H + N

	 c.	 N = H + h

	 d.	 None of the above

	 3.	Until the 1940s, the Coast and Geodetic Survey stamped the eleva-
tion of a point on its monuments. In what sense would those eleva-
tions be obsolete now?

	 a.	 They would be expressed in feet, not in meters.

	 b.	 The elevations would be based on the Clarke reference ellipsoid.

	 c.	 The elevations would not be in the North American Datum of 
1988.

	 d.	 The elevations would be dynamic rather than orthometric.

	 4.	Which of the following heights is not measured along a line that is 
perpendicular to the ellipsoid?

	 a.	 An ellipsoidal height

	 b.	 A geoid height

	 c.	 A geodetic height

	 d.	 An orthometric height

	 5.	Which of these values would not have been affected by gravity?

	 a.	 An ellipsoidal height of 2729.463 m

	 b.	 983.124 gal from a gravimeter measurement

	 c.	 The measurement of hourly heights of the sea at a primary-control 
tide station
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	 d.	 An orthometric elevation of 5176.00 ft derived from spirit 
leveling

	 6.	Which of the following events contributed to a substantial increase 
in the utilization of spirit leveling over trigonometric leveling in pre-
cise geodetic surveying in the United States?

	 a.	 The beginning of triangulation to cross the continent along the 
39th parallel

	 b.	 The deterioration of the dock at Pointe-au-Père and the subse-
quent moving of the IGLD zero point to Rimouski, Quebec

	 c.	 The adjustment that established the Sea Level Datum of 1929

	 d.	 The establishment of GPS as a fully operational system

	 7.	Which of the following does not correctly describe an improvement 
of GEOID03 over its predecessors?

	 a.	 It provides the basis for a more accurate conversion between 
NAD83 GPS ellipsoidal heights and NAVD88 heights than its 
predecessors.

	 b.	 It is the result of the same analytical function used to produce 
GEOID99.

	 c.	 It was matched with NAVD88 heights on 14,185 benchmarks.

	 d.	 It was built using gravity values along with GPS ellipsoidal 
heights on previously leveled benchmarks.

	 8.	When the heights of benchmarks from a spirit-level circuit are com-
pared with the orthometric heights of the same benchmarks calcu-
lated from GPS observations, they may differ even though both are 
based on NAVD88. Which of the following could not contribute to 
the difference?

	 a.	 The undulation of the GRS80 ellipsoid

	 b.	 Lack of balance between the foresights and the backsights when 
the spirit level circuit was run

	 c.	 Error in the geoid height calculated from GEOID99

	 d.	 The lack of parallelism in equipotential surfaces

	 9.	Which of the following statements is correct?

	 a.	 In the conterminous United States, the GRS80 ellipsoid is always 
below the geoid that best fits mean sea level per least squares.

	 b.	 The heights of the Atlantic Ocean and the Pacific Ocean are the 
same.



Heights	 97

	 c.	 Mean sea level and the geoid that best fits mean sea level from a 
least-squares point of view nevertheless deviate from mean sea 
level up to 2 m at some places.

	 d.	 The geoid that best fits mean sea level from a least-squares point 
of view is always below the GRS80 ellipsoid all around the 
world.

	 10.	What is a gal?
	 a.	 A center fleeing force
	 b.	 An equipotential surface of the Earth’s gravity field
	 c.	 A unit used to measure speed
	 d.	 A unit of acceleration equal to 1 cm/sec/sec
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Explanations and Answers 

1. Explanation:

	 An interesting point: Water would not necessarily flow from a higher 
ellipsoidal height to a lower ellipsoidal height. You need to use an 
equipotential surface for that. Water would definitely flow downhill 
from a higher dynamic height to a lower dynamic height.

Answer: (d)

2. Explanation:

	 Where N represents the geoidal height between the geoid and the 
ellipsoid, it is a distance that is measured to the geoid along a line 
perpendicular to the ellipsoid. If the geoid is above the ellipsoid, N is 
positive, and if the geoid is below the ellipsoid, N is negative. H rep-
resents the orthometric height, which is the positive, upward distance 
from the geoid to the point on the Earth’s surface measured along a 
plumb line. The sum of these two yields the ellipsoidal height, also 
known as the geodetic height, h, that is the distance from the refer-
ence ellipsoid to the point on the surface of the Earth. If the ellipsoid’s 
surface is below the surface of the Earth at the point, the ellipsoidal 
height has a positive sign; if the ellipsoid’s surface is above the surface 
of the Earth at the point, the ellipsoidal height has a negative sign.

Answer: (b)

3. Explanation:

	 The disks monumenting stations that had elevations stamped on 
them before the establishment of NAVD88 have been superseded, 
and those marked elevations are no longer valid. The monument itself 
has not moved, but its official elevation has changed nonetheless.

Answer: (c)

4. Explanation:

	 A geodetic height is another name for an ellipsoidal height. Both the 
ellipsoidal, or geodetic, height and the geoid height are measured 
along lines perpendicular to the reference ellipsoid. The orthometric 
height, on the other hand, is not. It is measured along a plumb line, 
which is perpendicular to all of the equipotential surfaces through 
which it passes from the geoid to the point on the Earth’s surface.

Answer: (d)
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5. Explanation:

	 An ellipsoidal height does not have a relationship with gravity, 
as does an orthometric elevation derived from spirit leveling. The 
orthometric elevation is measured from the geoid, which is an equi-
potential surface defined by gravity, and the leveling instrument 
itself is oriented to gravity when it is properly set up. The variation 
in tides is certainly affected by the gravity of the Earth, the Moon, 
and the Sun, as are the measurements of a gravimeter, which are of 
the acceleration of gravity itself.

Answer: (a)

6. Explanation:

	 Congress mandated that the Coast Survey was to begin a transcon-
tinental arc of triangulation to connect the surveys on the Atlantic 
coast with those on the Pacific coast in 1871. Trigonometric leveling 
was not sufficient to support the project, and more vertical accuracy 
was needed. So the Coast Survey under Benjamin Peirce depended 
on spirit leveling. Until that time the work had been restricted to the 
coasts. The work began at the Chesapeake Bay in 1878.

Answer: (a)

7. Explanation:

	 GEOID03 is a model of the conterminous United States (CONUS). 
It supersedes its predecessors. It was built with a combination of 
gravity data and ellipsoid heights derived from GPS at 14,185 leveled 
benchmarks, including 579 in Canada. Generally, GEOID03 can pro-
vide data valid to about ±2.4 cm (1 sigma) for the conversion between 
NAD83 GPS ellipsoidal heights and NAVD88 heights. Nationwide, 
GEOID03 is a 50% improvement over GEOID99. This improvement 
is due, in part, to the use of a more complicated analytic function in 
the development of GEOID03 than was available for GEOID99.

Answer: (b)

8. Explanation:

	 The accuracy of level work depends on the techniques and the care 
used. Methods such as balancing the foresights and backsights, using 
one-piece rods, etc., can improve results markedly, and not using these 
methods can lead to systematic error creeping into the work.

		  Also, equipotential surfaces are not parallel due to variation in the 
density of the Earth’s crust, the Earth’s rotation, and other effects. 
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The convergence of equipotential surfaces prevents leveling from 
providing the differences between points as defined in orthometric 
heights. The amount of this effect depends somewhat on the direc-
tion of the level circuit. For example, it is generally more pronounced 
in a north–south direction.

		  GEOID99 is a great improvement in geoidal modeling, but it is not 
perfect. It was matched to NAVD88 heights on about 6,000 bench-
marks with an accuracy of about ±4.6 cm. In other words, there are 
inaccuracies in geoid heights calculated using GEOID99. However, 
the GRS80, unlike the geoid, does not undulate. It is a smooth math-
ematical surface.

Answer: (a)

9. Explanation:

	 The separation between the lumpy surface of the geoid and the 
smooth GRS80 ellipsoid worldwide varies from about +85 m west 
of Ireland to about −106 m in the area south of India near Sri Lanka. 
The geoid is sometimes above and sometimes below the GRS80 
ellipsoid.

		  In the conterminous United States, sometimes abbreviated as 
CONUS, the distances between the geoid and the ellipsoid are 
less. They vary from about −8 m to about −53 m. The geoid heights 
are negative and are usually symbolized, N. If the geoid is above 
the ellipsoid, N is positive; if the geoid is below the ellipsoid, N is 
negative. It is negative because the geoid is actually underneath 
the ellipsoid throughout the conterminous United States.

		  Around the world, mean sea level deviates as much as 1–2 m from 
the geoid.

Answer: (c)

10. Explanation:

	 The acceleration of gravity—the rate at which a falling object changes 
its velocity—is usually quantified in gals, a unit of measurement 
named for Galileo, who pioneered the modern understanding of 
gravity. What is a gal? Well, imagine an object traveling at 1 cm/sec 
at the end of 1 sec. If that object’s speed increased to 2 cm/sec by the 
end of the next second, it would have accelerated 1 gal. Said another 
way, 1 gal is an acceleration of 1 cm/sec/sec.

Answer: (d)
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4
Two Coordinate Systems

State Plane Coordinates

State plane coordinates rely on an imaginary flat reference surface with 
Cartesian axes. They describe measured positions by ordered pairs, 
expressed in northings and eastings, or x- and y-coordinates. Despite the 
fact that the assumption of a flat Earth is fundamentally wrong, calculation 
of areas, angles, and lengths using latitude and longitude can be compli-
cated, so plane coordinates persist. Therefore, the projection of points from 
the Earth’s surface onto a reference ellipsoid—and finally onto flat maps—is 
still viable.

In fact, many agencies of government, particularly those that administer 
state, county, and municipal databases, prefer coordinates in their particular 
State Plane Coordinate Systems (SPCS). The systems are, as the name implies, 
state-specific. In many states, the system is officially sanctioned by legisla-
tion. Generally speaking, such legislation allows surveyors to use state plane 
coordinates to legally describe property corners. It is convenient. A Cartesian 
coordinate and the name of the officially sanctioned system are sufficient to 
uniquely describe a position. The same fundamental benefit makes the SPCS 
attractive to government; it allows agencies to assign unique coordinates 
based on a common, consistent system throughout their jurisdiction.

Map Projection

State plane coordinate systems are built on map projections, a term that refers 
to representing a portion of the actual Earth on a plane. Used for hundreds 
of years to create paper maps, use of this system continues, but map projec-
tion today is most often a mathematical procedure performed by a computer. 
However, even in an electronic world, projection cannot be done without 
distortion.

The problem is often illustrated by trying to flatten part of an orange peel 
that represents the surface of the Earth. A small part, say, a square a quarter 
of an inch on the side, can be pushed flat without much noticeable defor-
mation. But when the portion gets larger, problems appear. Suppose that a 
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third of the orange peel is involved: As as the center is pushed down, the 
edges tear and stretch, or both. And as the peel gets even bigger the tear-
ing becomes more severe. So if a map is drawn on the orange before it is 
peeled, the map is distorted in unpredictable ways when it is flattened, and 
it becomes difficult to relate a point on one torn piece with a point on another 
in any meaningful way.

These are the problems that a map projection needs to solve to be useful. 
The first problem is that the surface of an ellipsoid, like the orange peel, is 
nondevelopable. In other words, flattening it inevitably leads to distortion that 
is very difficult to model consistently. So, a useful map projection should start 
with a surface that is developable, a surface that can be flattened without all 
that unpredictable deformation. It happens that both a paper cone and a cyl-
inder illustrate this idea nicely. However, they are illustrations only—models 
for thinking about the issues involved. Figure 4.1 shows that if a right circular 
cone is cut from the bottom to the top through an element that is perpendicu-
lar to the base, the cone can then be made completely flat without trouble. The 
same can be said of a cylinder cut perpendicularly from base to base.

Or one could use the simplest case, a surface that is already developed: a flat 
piece of paper. If the center of a flat plane is brought tangent to the Earth, a por-
tion of the planet can be mapped on it. In other words, a portion of the Earth 
can be projected directly onto the flat plane. In fact, this is the typical method 
for establishing an independent local coordinate system. These simple Cartesian 
systems are convenient and satisfy the needs of small projects. The method 
of projection, onto a simple flat plane, is based on the idea that a small section 
of the Earth, as with a small section of the orange mentioned previously, con-
forms so nearly to a plane that distortion on such a system is negligible.

Subsequently, local tangent planes have long been used by land surveyors. 
Such systems demand little if any manipulation of the field observations, 
and the approach has merit as long as the extent of the work is small. But 
the larger the plane grows, the more untenable it becomes. As the area being 
mapped grows, the reduction of survey observations becomes more compli-
cated, since it must take account of the actual shape of the Earth. This usu-
ally involves the ellipsoid, the geoid, and geographical coordinates such as 
latitude and longitude. At that point, surveyors and engineers rely on map 
projections to mitigate the situation and limit the now-troublesome distor-
tion. However, a well-designed map projection can offer the convenience of 
working in plane Cartesian coordinates and still keep distortion at manage-
able levels.

The design of such a projection must accommodate some awkward facts. 
For example, while it would be possible to imagine mapping a considerable 
portion of the Earth using a large number of small individual planes, like 
facets of a gem, it is seldom done because, when these planes are brought 
together, they cannot be edge-matched accurately (see Figure  4.2). They 
cannot be joined properly along their borders. This problem is unavoid-
able because the planes, tangent at their centers, inevitably depart more and 
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more from the reference ellipsoid at their edges. The greater the distance 
between the ellipsoidal surface and the surface of the map on which it is rep-
resented, the greater is the distortion on the resulting flat map. This is true 
of all methods of map projection. Therefore, one is faced with the daunting 
task of joining together a mosaic of individual maps along their edges, where 
the accuracy of the representation is at its worst. And even if one could over-
come the problem by making the distortion the same on two adjoining maps, 
another difficulty would remain. Typically, each of these planes has a unique 
coordinate system. The orientation of the axes—the scale and the rotation of 
each one of these individual local systems—will not be the same as those 
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Cylindrical surface cut from base to base
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Cylinder Developed

Cone Developed

Figure 4.1
The development of a cylinder and a cone.
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elements of its neighbor’s coordinate system. Subsequently, there are both 
gaps and overlaps between adjacent maps and their attendant coordinate 
systems. Without a common reference system, the difficulties of moving 
from map to map are compounded.

So the idea of a self-consistent local map projection based on small flat 
planes tangent to the Earth, or the reference ellipsoid, is convenient, but only 
for small projects that have no need to be related to adjoining work. And 
as long as there is no need to venture outside the bounds of a particular 
local system, this method can be entirely adequate. But, generally speaking, 
if a significant area is involved in the work, then another strategy is needed. 
That is not to say that tangent-plane map projections have no larger use. For 
example, consider the tangent-plane map projections that are used to map 
the polar areas of the Earth.

Polar Map Projections

These maps are generated on a large tangent plane touching the globe at a 
single point, the pole. Parallels of latitude are shown as concentric circles. 
Meridians of longitude are straight lines from the pole to the edge of the 
map. The scale is correct at the center, but just as in the smaller local systems 
mentioned earlier, the farther you get from the center of the map, the more 
distorted it becomes. These maps and this whole category of map projections 

Figure 4.2
Local coordinate systems do not edge-match.
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are called azimuthal. The polar aspect of two of them will be briefly men-
tioned: the stereographic and the gnomonic. One clear difference in their 
application is the position of the imaginary light source.

A point light source is a useful device in imagining the projection of fea-
tures from the Earth onto a developable surface. The rays from this light 
source can be imagined to move through a translucent ellipsoid and thereby 
project the image of the area to be mapped onto the mapping surface, like 
the projection of the image from film onto a screen. This is, of course, another 
model for thinking about map projection, an illustration.

North Pole

South Pole

Equator

P l a n e    o f     P r o j e c t i o n

Hypothetical Light

Figure 4.3
A stereographic projection, polar aspect.
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In the case of the stereographic map projection, this point light source is 
exactly opposite the point of tangency of the mapping surface. In Figure 4.3, 
the North Pole is the point of tangency. The light source is at the South Pole. 
On this projection, shapes are correctly shown. In other words, a rectangular 
shape on the ellipsoid can be expected to appear as a rectangular shape on 
the map with its right angles preserved. Map projections that have this prop-
erty are said to be conformal.

In another azimuthal projection, the gnomonic, the point light source moves 
from opposite the tangent point to the center of the globe. The term gnomonic 
is derived from the similarity between the arrangement of meridians on its 
polar projection and the hour marks on a sundial. The gnomon of a sundial 
is the structure that marks the hours by casting its shadow on those marks.

In Figure 4.3 and Figure 4.4, the point at the center of the map, the tan-
gent point, is sometimes known as the standard point. In map projection, 
places where the map and the ellipsoid touch are known as standard lines 
or points. These are the only places on the map where the scale is exact. 
Therefore, standard points and standard lines are the only places on a map, and 
the resulting coordinates systems derived from them are really completely 
free of distortion.

As mentioned earlier, a map projection’s purpose informs its design. For 
example, the small individual plane projections first mentioned conveniently 
serve work of limited scope. Such a small-scale projection is easy to construct 
and can support Cartesian coordinates tailored to a single independent proj-
ect with minimal calculations.

Plane polar map projections are known as azimuthal projections because 
the direction of any line drawn from the central tangent point on the map 
to any other point correctly represents the actual direction of that line. And 
the gnomonic projection can provide the additional benefit that the shortest 
distance between any two points on the ellipsoid, a great circle, can be repre-
sented on a gnomonic map as a straight line. It is also true that all straight 
lines drawn from one point to another on a gnomonic map represent the 
shortest distances between those points. These are significant advantages to 
navigation on air, land, and sea. The polar aspect of a tangent plane projec-
tion is also used to augment the Universal Transverse Mercator projection. So 
there are applications for which tangent-plane projections are particularly 
well suited, but the distortion at their edges makes them unsuitable for many 
other purposes.

Decreasing that distortion is a constant and elusive goal in map projection. 
It can be done in several ways. Most involve reducing the distance between 
the map-projection surface and the ellipsoidal surface. One way this is done 
is to move the mapping surface from tangency with the ellipsoid and make 
it actually cut through it. This strategy produces a secant projection. A secant 
projection is one way to shrink the distance between the map-projection sur-
face and the ellipsoid. Thereby the area where distortion is in an acceptable 
range on the map can be effectively increased, as shown in Figure 4.5.
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Another strategy can be added to this idea of a secant map-projection plane. 
To reduce the distortion even more, one can use one of those developable sur-
faces mentioned earlier, a cone or a cylinder. Both cones and cylinders have 
an advantage over a flat map-projection plane. They are curved in one direc-
tion and can be designed to follow the curvature of the area to be mapped 
in that direction. Also, if a large portion of the ellipsoid is to be mapped, 
several cones or several cylinders may be used together in the same system to 
further limit distortion. In that case, each cone or cylinder defines a zone in a 
larger coverage. This is the approach used in state plane coordinate systems.

As previously mentioned, when a conic or a cylindrical map-projection 
surface is made secant, it intersects the ellipsoid, and the map is brought 

North Pole

Equator
Hypothetical Light

P l a n e    o f     P r o j e c t i o n

Figure 4.4
A gnomonic projection, polar aspect.
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close to its surface. For example, the conic and cylindrical projections shown 
in Figure 4.6 cut through the ellipsoid. The map is projected both inward and 
outward onto it, and two lines of exact scale, standard lines, are created along 
the small circles where the cone and the cylinder intersect the ellipsoid. They 
are called small circles because they do not describe a plane that goes through 
the center of the Earth, as do the previously mentioned great circles.

Where the ellipsoid and the map-projection surface touch, in this case 
intersect, there is no distortion. However, between the standard lines, the 
map is under the ellipsoid, and outside of them, the map is above it. That 
means that, between the standard lines, a distance from one point to another 
is actually longer on the ellipsoid than it is shown on the map, and outside 
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(High distortion over large area)
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P r o j e c t i o n   P l a n e
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(Low distortion over large area)

P r o j e c t i o n   P l a n e
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Low
Distortion

High
Distortion

High Distortion
Low Distortion
High Distortion

Low Distortion

High Distortion

Figure 4.5
Minimizing distortion with a secant projection.
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the standard lines, a distance on the ellipsoid is shorter than it is on the map. 
Any length that is measured along a standard line is the same on the ellip-
soid and on the map, which is why another name for standard parallels is 
lines of exact scale.

Choices

Here, and in most mapping literature, the cone and cylinder, the hypothetical 
light source, and other abstractions are mentioned because they are conve-
nient models for thinking about the steps involved in building a map projec-
tion. Ultimately, the goal is very straightforward, relating each position on 
one surface, the reference ellipsoid, to a corresponding position on another 
surface as faithfully as possible and then flattening that second surface to 
accommodate Cartesian coordinates. In fact, the whole procedure is in the 

   Standard Parallel

   Standard Parallel

Figure 4.6
Secant conic and cylindrical projections.
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service of moving from geographic to Cartesian coordinates and back again. 
These days, the complexities of the mathematics are handled with comput-
ers. Of course, that was not always the case.

In 1932, two engineers in North Carolina’s highway department, O. B. 
Bester and George F. Syme, appealed to the then Coast and Geodetic Survey 
(C&GS, now NGS, National Geodetic Survey) for help. They had found that 
the stretching and compression inevitable in the representation of the curved 
Earth on a plane was so severe over long route surveys that they could not 
check into the C&GS geodetic control stations across a state within reason-
able limits. The engineers suggested that a plane coordinate grid system be 
developed that was mathematically related to the reference ellipsoid, but 
could be utilized using plane trigonometry.

Dr. Oscar Adams of the Division of Geodesy, assisted by Charles Claire, 
designed the first state plane coordinate system to mediate the problem. It was 
based on a map projection called the Lambert conformal conic projection. Dr. 
Adams realized that it was possible to use this map projection and allow 
one of the four elements of area, shape, scale, or direction to remain virtually 
unchanged from its actual value on the Earth, but not all four. On a perfect 
map projection, all distances, directions, and areas could be conserved. They 
would be the same on the ellipsoid and on the map. Unfortunately, it is not 
possible to satisfy all of these specifications simultaneously, at least not com-
pletely. There are inevitable choices. It must be decided which characteristic 
will be shown the most correctly, but it will be done at the expense of the oth-
ers. And there is no universal best decision. Still, a solution that gives the most 
satisfactory results for a particular mapping problem is always available.

Dr. Adams chose the Lambert conformal conic projection for the North 
Carolina system. On the Lambert conformal conic projection, parallels of 
latitude are arcs of concentric circles, and meridians of longitude are equally 
spaced straight radial lines, and the meridians and parallels intersect at right 
angles. The axis of the cone is imagined to be a prolongation of the polar axis. 
The parallels are not equally spaced because the scale varies as you move 
north and south along a meridian of longitude. Dr. Adams decided to use this 
map projection in which shape is preserved based on a developable cone.

Map projections in which shape is preserved are known as conformal or 
orthomorphic. Orthomorphic means “right shape.” In a conformal projec-
tion, the angles between intersecting lines and curves retain their original 
form on the map. In other words, between short lines, meaning lines under 
about 10 miles, a 45º angle on the ellipsoid is a 45º angle on the map. It also 
means that the scale is the same in all directions from a point; in fact, it is 
this characteristic that preserves the angles. These aspects were certainly a 
boon for the North Carolina highway engineers and provide benefits that all 
state plane coordinate users have enjoyed since. On long lines, angles on the 
ellipsoid are not exactly the same on the map projection. Nevertheless, the 
change is small and systematic. It can be calculated.
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Actually, all three of the projections that were used in the designs of the 
original state plane coordinate systems were conformal. Each system was 
originally based on the North American Datum 1927 (NAD27). Along with 
the oblique Mercator projection, which was used on the panhandle of Alaska, 
the two primary projections were the Lambert conic conformal projection 
and the Transverse Mercator projection. For North Carolina, and other states 
that are longest east-west, the Lambert conic projection works best. State 
plane coordinate systems in states that are longest north-south were built on 
the Transverse Mercator projection. There are exceptions to this general rule. 
For example, California uses the Lambert conic projection even though the 
state could be covered with fewer Transverse Mercator zones. The Lambert 
conic projection is a bit simpler to use, which may account for the choice.

The Transverse Mercator projection is based on a cylindrical mapping sur-
face much like that illustrated in Figure 4.6. However, the axis of the cylin-
der is rotated so that it is perpendicular to the polar axis of the ellipsoid, 
as shown in Figure 4.7. Unlike the Lambert conic projection, the Transverse 
Mercator represents meridians of longitude as curves rather than straight 
lines on the developed grid. The Transverse Mercator projection is not the 
same thing as the Universal Transverse Mercator system (UTM). UTM was 
originally a military system that covers the entire Earth and differs signifi-
cantly from the Transverse Mercator system used in state plane coordinates.

The architect of both the Transverse Mercator projection, built on work by 
Gerardus Mercator, and the conformal conic projection that bears his name 
was Johann Heinrich Lambert, an eighteenth-century Alsatian mathemati-
cian. His works in geometry, optics, perspective, and comets are less known 
than his investigation of the irrationality of π. Surveyors, mappers, and car-
tographers know Lambert’s mapping projections above all. It is especially 
remarkable that the projections he originated are used in every state of the 
United States, and both were first presented in his contribution, Beiträge zum 
Gebrauche der Mathematik und deren Anwendung, in 1772. Still, the Lambert 
conic projection was little used until 1918, when the U.S. Coast and Geodetic 
Survey, encouraged by Dr. Adams and Charles Deetz, began publishing his 
theory and tables from which it could be applied.

In using these projections as the foundation of the state plane coordinate 
systems (SPCS), Dr. Adams wanted to have the advantage of conformality 
and also cover each state with as few zones as possible. A zone in this context 
is a belt across the state that has one Cartesian coordinate grid, with one 
origin, and is projected onto one mapping surface. One strategy that played 
a significant role in achieving that end was Dr. Adams’s use of secant projec-
tions in both the Lambert conic and Transverse Mercator systems.

For example, using a single secant cone in the Lambert projection and lim-
iting the extent of a zone, or belt, across a state to about 158 miles (ca. 254 
km), Dr. Adams limited the distortion of the length of lines. Not only were 
angles preserved on the final product, but there were also only minimal dif-
ferences (for the measurement technology of the day) between the length of 
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a measured line on the Earth’s surface and the length of the same line on the 
map projection. In other words, the scale of the distortion was pretty small.

As illustrated in Figure  4.7, he placed 4/6 of the map-projection plane 
between the standard lines and 1/6 outside at each extremity. The distortion 
was held to 1 part in 10,000. A maximum distortion in the lengths of lines of 
1 part in 10,000 means that the difference between the length of a 2-mile line 
on the ellipsoid and its representation on the map would only be about 1 ft 
at the most.

State plane coordinates were created to serve as the basis of a method that 
approximates geodetic accuracy more closely than the then commonly used 
methods of small-scale plane surveying. Today, surveying methods can easily 
achieve accuracies 1 part in 100,000 and better, but the state plane coordinate 
systems were designed in a time of generally lower accuracy and efficiency 
in surveying measurement. Today, computers easily handle the lengthy and 
complicated mathematics of geodesy. However, the first state plane coor-
dinate system was created when such computation required sharp pencils 
and logarithmic tables. In fact, the original SPCS was so successful in North 
Carolina that similar systems were devised for all the states within a year 
or so. The system was successful because, among other things, it overcame 
some of the limitations of mapping on a horizontal plane while avoiding the 
imposition of strict geodetic methods and calculations. It managed to keep 
the distortion of the scale ratio under 1 part in 10,000 and preserved confor-
mality. It did not disturb the familiar system of ordered pairs of Cartesian 
coordinates, and it covered each state with as few zones as possible, the 
boundaries of which were constructed to follow portions of county lines as 
much as possible, with some exceptions. The idea was that those relying on 
state plane coordinates could work in one zone throughout a jurisdiction.

SPCS27 to SPCS83

In Figure 4.8, the current boundaries of the SPCS zones are shown. In sev-
eral instances, they differ from the original zone boundaries. The boundar-
ies shown in the figure are for SPCS83, the state plane coordinate system 
based on NAD83 and its reference ellipsoid GRS80. The foundation of the 
original state plane coordinate system, SPCS27, was NAD27 and its refer-
ence ellipsoid, Clarke 1866. As mentioned in earlier chapters, NAD27 geo-
graphical coordinates, latitudes, and longitudes differ significantly from 
those in NAD83. In fact, conversion from geographic coordinates (latitude 
and longitude) to grid coordinates (x and y) and back is one of the three 
fundamental conversions in the state plane coordinate system. It is impor-
tant because the whole objective of the SPCS is to allow the user to work in 
plane coordinates, but still have the option of expressing any of the points 
under consideration in either latitude and longitude or state plane coordi-
nates without significant loss of accuracy. Therefore, when geodetic control 
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was migrated from NAD27 to NAD83, the state plane coordinate system 
had to go along.

When the migration was undertaken in the 1970s, it presented an oppor-
tunity for an overhaul of the system. Many options were considered, but in 
the end only a few changes were made. One of the reasons for the conserva-
tive approach was the fact that 37 states had passed legislation supporting 
the use of state plane coordinates. Nevertheless, some zones got new num-
bers and some of the zones changed. The zones in Figure 4.8 are numbered 
in the SPCS83 system known as FIPS. FIPS stands for Federal Information 
Processing Standard, and each SPCS83 zone has been given a FIPS number. 
These days, the zones are often known as FIPS zones. SPCS27 zones did not 
have these FIPS numbers. As mentioned earlier, the original goal was to keep 
each zone small enough to ensure that the scale distortion was 1 part in 
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10,000 or less. However, when the SPCS83 was designed, that scale was not 
maintained in some states.

In five states, some SPCS27 zones were eliminated altogether, and the areas 
they had covered were consolidated into one zone or added to adjoining 
zones. In three of those states—South Carolina, Montana, and Nebraska—
the result was one single large zone. In SPCS27, South Carolina and Nebraska 
had two zones; in SPCS83, they have only one zone: FIPS zone 3900 and FIPS 
zone 2600, respectively. Montana previously had three zones. It now has one: 
FIPS zone 2500. Therefore, because the area covered by these single zones 
has become so large, they are not limited by the 1 part in 10,000 standard. 
California eliminated zone 7 and added that area to FIPS zone 0405, formerly 
zone 5. Two zones previously covered Puerto Rico and the Virgin Islands. 
They now have one: FIPS zone 5200. In Michigan, three Transverse Mercator 
zones were entirely eliminated.

In both the Transverse Mercator and the Lambert projection, the posi-
tions of the axes are similar in all SPCS zones. As you can see in Figure 4.7, 
each zone has a central meridian. These central meridians are true merid-
ians of longitude near the geometric center of the zone. Note that the central 
meridian is not the y-axis. If it were the y-axis, negative coordinates would 
result. To avoid them, the actual y-axis is moved far to the west of the zone 
itself. In the old SPCS27 arrangement, the y-axis was 2,000,000 ft west from 
the central meridian in the Lambert conic projection and 500,000 ft in the 
Transverse Mercator projection. In the SPCS83 design, those constants have 
been changed. The most common values are 600,000 m for the Lambert conic 
and 200,000 m for the Transverse Mercator. However, there is a good deal of 
variation in these numbers from state to state and zone to zone. In all cases, 
however, the y-axis is still far to the west of the zone, and there are no nega-
tive state plane coordinates because the x-axis, also known as the baseline, 
is far to the south of the zone. Where the x-axis and y-axis intersect is the 
origin of the zone, and that is always south and west of the zone itself. This 
configuration of the axes ensures that all state plane coordinates occur in the 
first quadrant and are, therefore, always positive.

There is sometimes even further detail in the name of particular state plane 
coordinates. As refinements are made to NAD83, the new adjustments are 
added as a suffix to the SPCS83 label. For example, SPCS83/99 would refer to 
state plane coordinates that were based on a revision to NAD83 from 1999.

It is important to note that the fundamental unit for SPCS27 is the U.S. 
Survey foot and for SPCS83 it is the meter. The conversion from meters to 
U.S. Survey feet is correctly accomplished by multiplying the measurement 
in meters by the fraction 3937/1200.

In the following sections, the most typical conversions used in state plane 
coordinates will be addressed:
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	 1.	Conversion from geodetic lengths to grid lengths
	 2.	Conversion from geographic coordinates (latitude and longitude) to 

grid coordinates
	 3.	Conversion from geodetic azimuths to grid azimuths
	 4.	Conversion from SPCS to ground coordinates

Geodetic Lengths to Grid Lengths

This brings us to the scale factor, also known as the K factor and the projection 
factor that the original design of the State Plane Coordinate System (SPCS) 
sought to limit to 1 part in 10,000. As implied by that effort, scale factors 
are ratios that can be used as multipliers to convert ellipsoidal lengths, also 
known as geodetic distances, to lengths on the map-projection surface; also 
known as grid distances and vice versa. In other words, the geodetic length of 
a line, on the ellipsoid, multiplied by the appropriate scale factor will yield 
the grid length of that line on the map. And the grid length multiplied by the 
inverse of that same scale factor would yield the geodetic length again.

While referring to Figure 4.7, it is interesting to note that on the projection 
used most frequently on states that are longest from east to west, i.e., the 
Lambert conic, the scale factor for east-west lines is constant. In other words, 
the scale factor is the same all along the line. One way to think about this is 
to recall that the distance between the ellipsoid and the map-projection sur-
face never changes east to west in that projection. On the other hand, along 
a north-south line, the scale factor is constantly changing on the Lambert 
conic. Thus it is no surprise to see that the distance between the ellipsoid and 
the map-projection surface is always changing along a north-south line in 
that projection. But looking at the Transverse Mercator projection, the projec-
tion used most frequently on states that are longest north to south, the situ-
ation is exactly reversed. In that case, the scale factor is the same all along a 
north-south line, and changes constantly along an east-west line.

Both the Transverse Mercator and the Lambert conic used a secant projec-
tion surface and originally restricted the width to 158 miles. These were two 
strategies used to limit scale factors when the state plane coordinate systems 
(SPCS) were designed. Where that was not optimum, the width was some-
times made smaller, which means the distortion was lessened. As the belt 
of the ellipsoid projected onto the map narrows, the distortion gets smaller. 
For example, Connecticut is less than 80 miles wide north to south. It has 
only one zone. Along its northern and southern boundaries, outside of the 
standard parallels, the scale factor is 1 part in 40,000, a fourfold improvement 
over 1 part in 10,000. And in the middle of the state, the scale factor is 1 part in 
79,000, nearly an eightfold improvement. On the other hand, the scale factor 
was allowed to get a little bit smaller than 1 part in 10,000 in Texas. By doing 
that, the state was covered completely with five zones. Among the guiding 
principles in 1933 was covering the states with as few zones as possible and 
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having zone boundaries follow county lines. The system required ten zones 
and all three types of projections to cover Alaska.

In Figure 4.9, a typical 158-mile state plane coordinate zone is represented 
by a grid plane of projection cutting through the ellipsoid of reference. As 
mentioned earlier, between the intersections of the standard lines, the grid is 
under the ellipsoid. There, a distance from one point to another is longer on 
the ellipsoid than on the grid. This means that right in the middle of an SPCS 
zone, the scale factor is at its minimum. In the middle, a typical minimum 
SPCS scale factor is not less than 0.9999, though there are exceptions. Outside 
of the intersections, the grid is above the ellipsoid, where a distance from one 
point to another is shorter on the ellipsoid than it is on the grid. There, at the 
edge of the zone, a maximum typical SPCS scale factor is generally not more 
than 1.0001.

When SPCS27 was current, scale factors were interpolated from tables 
published for each state. In the tables for states in which the Lambert conic 
projection was used, scale factors change north-south with the changes in 
latitude. In the tables for states in which the Transverse Mercator projection 
was used, scale factors change east-west with the changes in x-coordinate. 
Today, scale factors are not interpolated from tables for SPCS83. For both the 
Transverse Mercator and the Lambert conic projections, they are calculated 
directly from equations.

There are several software applications that can be used to automatically 
calculate scale factors for particular stations. Perhaps the most convenient is 
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that available free online at http://www.ngs.noaa.gov/PC_PROD/pc_prod.
shtml. This is a link to the U.S. National Geodetic Survey (NGS) page where 
one can locate several programs that provide geodetic computational help. 
The program SPCS83 is available for download there. It can be used to con-
vert latitudes and longitudes to state plane coordinates. Given the latitude 
and longitude of the stations under consideration, part of the available output 
from the program includes the scale factors for those stations. Scale factors 
for control stations are also available from NGS geodetic control datasheets.

To illustrate the use of these factors, consider line b in Figure 4.9 to have a 
length on the ellipsoid of 130,210.44 ft, a bit over 24 miles. That would be its 
geodetic distance. Suppose that a scale factor for that line was 0.9999536; then 
the grid distance along line b would be:

	 geodetic distance × scale factor = grid distance
	 130,210.44 ft × 0.999953617 = 130,204.40 ft

The difference between the longer geodetic distance and the shorter grid dis-
tance here is a little more than 6 ft. That is actually better than 1 part in 20,000; 
recall that the 1 part in 10,000 ratio was considered the maximum. Distortion 
lessens and the scale factor approaches 1 as a line nears a standard parallel.

Recall that on the Lambert projection, an east-west line, which is a line 
that follows a parallel of latitude, has the same scale factor at both ends and 
throughout. However, a line that bears in any other direction will have a 
different scale factor at each end. A north-south line will have a great dif-
ference in the scale factor at its north end compared with the scale factor of 
its south end. In this vein, note the approximate formula near the bottom of 
Figure 4.9:

	
K K K= +1 2

2

where K is the scale factor for a line, K1 is the scale factor at one end of the 
line, and K2 is the scale factor at the other end of the line. Scale factors vary 
with the latitude in the Lambert projection. For example, suppose the point 
at the north end of the 24-mile line is called Stormy and has a geographic 
coordinate of

	 37º46′00.7225″ N latitude
	 103º46′35.3195″ W longitude

and at the south end, the point is known as Seven with a geographic coordi-
nate of
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	 37º30′43.5867″ N latitude
	 104º05′26.5420″ W longitude

The scale factor for point Seven is 0.99996113, and the scale factor for point 
Stormy is 0.99994609. It happens that point Seven is farther south and closer 
to the standard parallel than point Stormy, and it therefore follows that the 
scale factor at Seven is closer to 1. It would be exactly 1 if it were on the stan-
dard parallel, which is why the standard parallels are called lines of exact 
scale. The typical scale factor for the line is the average of the scale factors at 
the two end points:

	

K K K= +

= +

1 2

2

0 99995361 0 99996113 0 99994609
2

. . .

Deriving the scale factor at each end and averaging them is the usual 
method for calculating the scale factor of a line. The average of the two is 
sometimes called Km. In Figure 4.9, there is another formula for calculating a 
more precise scale factor by using a weighted average. In this method, K1 is 
given a weight of 1, Km a weight of 4, and K2 a weight of 1. No matter which 
method is used, the result is still called the scale factor. But that is not the 
whole story when it comes to reducing distance to the state plane coordinate 
grid. Measurement of lines must always be done on the topographic surface 
of the Earth, and not on the ellipsoid. Therefore, the first step in deriving a 
grid distance must be moving a measured line from the Earth to the ellip-
soid, i.e., converting a distance measured on the topographic surface to a 
geodetic distance on the reference ellipsoid.

This is done with another ratio that is also used as a multiplier. Originally, 
this factor had a rather unfortunate name. It used to be known as the sea 
level factor in SPCS27. It was given that name because, as you may recall from 
Chapters 2 and 3, when NAD27 was established using the Clarke 1866 refer-
ence ellipsoid, the distance between the ellipsoid and the geoid was declared 
to be zero at Meades Ranch in Kansas. That meant that, in the middle of the 
country, the “sea level” surface, the geoid, and the ellipsoid were coincident 
by definition. And since the Clarke 1866 ellipsoid fit the United States quite 
well, the separation between the two surfaces—the ellipsoid and geoid—
only grew to about 12 m anywhere in the country. With such a small distance 
between them, many practitioners at the time took the point of view that, for 
all practical purposes, the ellipsoid and the geoid were in the same place, and 
that place was called “sea level.” Hence reducing a distance measure on the 
surface of the Earth to the ellipsoid was said to be reducing it to “sea level.”

Today, that idea and that name for the factor is misleading because, of 
course, the GRS80 ellipsoid on which NAD83 is based is certainly not the 
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same as mean sea level. Now the separation between the geoid and ellip-
soid can grow as large as −53 m, and the technology by which lines are 
measured has improved dramatically. Therefore, in SPCS83, the factor for 
reducing a measured distance to the ellipsoid is known as the ellipsoid fac-
tor. In any case, both the old and the new names can be covered by the term 
elevation factor.

Regardless of the name applied to the factor, it is a ratio of the relationship 
between an approximation of the Earth’s radius and that same approximation 
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with the mean ellipsoidal height of the measured line added to it. For exam-
ple, consider station Boulder and station Peak illustrated in Figure 4.10.

Boulder

39º 59′ 29.1299″ N latitude

105º 15′ 39.6758″ W longitude

Peak

40º 01′ 19.1582″ N latitude

105° 30′ 55.1283″ W longitude

The distance between these two stations is 72,126.21 ft. This distance is 
sometimes called the ground distance, or the horizontal distance at mean ele-
vation. In other words, it is not the slope distance but, rather, the distance 
between the stations corrected to an averaged horizontal plane, as is com-
mon practice. For practical purposes, then, this is the distance between the 
two stations on the topographic surface of the Earth. On the way to finding 
the grid distance from Boulder to Peak, an interim step involves calculating 
the geodetic distance between them, i.e., the distance on the ellipsoid. We 
need the elevation factor, and here is how it is determined.

The ellipsoidal height of Boulder, h1, is 5,437 ft. The ellipsoidal height of 
Peak, h2, is 9,099 ft. The approximate radius of the Earth, traditionally used in 
this work, is 20,906,000 ft. The elevation factor is calculated as follows:

	

Elevation Factor R
R h

Elevation Factor

avg
=

+

= 20,, 906, 000ft.
20, 906, 000ft. + 7268ft.

Elevation FFactor

Elevation

=
20, 906, 000ft.
20, 913, 268ft.

FFactor = 0.99965247

This factor, then, is the ratio used to move the ground distance down to the 
ellipsoid, i.e., down to the geodetic distance.

Ground distance Boulder to Peak = 72,126.21 ft

Geodetic distance = ground distance × elevation factor

Geodetic distance = 72,126.21 × 0.99965247

Geodetic distance = 72,101.14 ft
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It is possible to refine the calculation of the elevation factor by using an 
average of the actual radial distances from the center of the ellipsoid to the 
end points of the line, rather than the approximate 20,906,000 ft. In the area of 
stations Boulder and Peak, the average ellipsoidal radius is actually a bit lon-
ger, but within the continental United States, such variation will not cause a 
calculated geodetic distance to differ significantly. However, it is worthwhile 
to take care to use the ellipsoidal heights of the stations when calculating the 
elevation factor, rather than the orthometric heights.

In calculating the elevation factor in SPCS27, no real distinction is made 
between ellipsoidal height and orthometric height. However, in SPCS83, the 
averages of the ellipsoidal heights at each end of the line can be used for havg. 
If an ellipsoidal height is not directly available, it can be calculated from the 
formula

	 h = H + N

where
	 h =	 ellipsoidal height
	H =	 orthometric height
	N =	 geoidal height

As mentioned previously, converting a geodetic distance to a grid distance 
is done with an averaged scale factor:

	
K K K= +1 2

2

In this instance, the scale factor at Boulder is 0.99996703, and at Peak it is 
0.99996477.

	
0 99996590 0 99996703 0 99996477

2
. . .= +

Using the scale factor, it is possible to reduce the geodetic distance 72,101.14 ft 
to a grid distance:

	 geodetic distance × scale factor = grid distance
	 72,101.14 ft × 0.99996590 = 72,098.68 ft

There are two steps: first from ground distance to geodetic distance using 
the elevation factor and second from geodetic distance to grid distance using 
the scale factor. These two steps can be combined into one. Multiplying the 
elevation factor and the scale factor produces a single ratio that is usually 
known as the combined factor or the grid factor. Using this grid factor, the mea-
sured line is converted from a ground distance to a grid distance in one jump. 
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Here is how it works. In the example considered here, the elevation factor for 
the line from Boulder to Peak is 0.99965247 and the scale factor is 0.99996590:

	 grid factor = scale factor × elevation factor
	 0.99961838 = 0.99996590 × 0.99965247

Then, using the grid factor, the ground distance is converted to a grid distance

	 grid distance = grid factor × ground distance
	 72,098.68 ft = 0.99961838 × 72,126.21 ft

The grid factor can also be used to go the other way. If the grid distance is 
divided by the grid factor, it is converted to a ground distance.

	

Ground Distance =
Grid Distance
Grid Factor

722, 126.21 ft =
72, 098.68 ft
0.99961838

Geographic Coordinates to Grid Coordinates

Consider again two previously mentioned stations, Stormy and Seven. 
Stormy has an NAD83 geographic coordinate of

	 37º 46′ 00.7225″ N latitude
	 103º 46′ 35.3195″ W longitude

and Seven has an NAD83 geographic coordinate of

	 37º 30′ 43.5867″ N latitude
	 104º 05′ 26.5420″ W longitude

Finding the state plane coordinates of these stations can be accomplished 
online. The NGS Web site (http://www.ngs.noaa.gov/TOOLS) provides sev-
eral programs, and among them is one named state plane coordinates. It has 
two convenient routines that allow the user to convert a station from SPCS 
to latitude and longitude, and vice versa, in both NAD27 and NAD83 and to 
discover its scale factor and convergence angle. It is interesting to note that 
the site also includes free routines for conversion from SPCS27 to SPCS83. 
The conversion is a three-step process. The SPCS27 coordinate is converted to 
an NAD27 geographic coordinate, a latitude and longitude. Next the NAD27 
geographic coordinate is transformed into an NAD83 geographic coordinate, 
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and finally the NAD83 geographic coordinate becomes an SPCS83 coordi-
nate. This procedure is common to nearly all GIS (geographic information 
system) software. In any case, using the state plane coordinates software, it 
is possible to find the SPCS83 coordinates for these two stations:

Stormy:	 N 428,305.869

				   E 1,066,244.212

Seven:	 N 399,570.490

				   E 1,038,989.570

Both of these are in meters, the native units of SPCS83. The original SPCS27 
design was based on the use of the U.S. Survey foot as its unit of measure-
ment. That remains the appropriate unit for that system today. However, 
SPCS83 is a bit more complicated in that regard. While the fundamental unit 
for SPCS83 is the meter, when it comes to converting coordinates from meters 
to feet, one of two conversions is called for. One is the conversion from meters 
to U.S. survey feet. The other conversion is from meters to international feet. 
The international foot—so named because an international agreement was 
established to define 1 in. equal to 2.54 cm exactly—is equal to 0.3048 m. 
That version of the foot was adopted across the United States, except at the 
U.S. Coast and Geodetic Survey (C&GS). In 1959, instead of forcing C&GS to 
refigure and republish all the control station coordinates across the country, 
it was given a reprieve under a notice in the Federal Register (24 FR 5348). The 
agency was allowed to retain the old definition of the foot, which is the U.S. 
Survey foot, in which 1 m is 39.37 in., exactly. Another way of saying it is a 
U.S. Survey foot is 1200/3937 m.

It was decided that C&GS could continue to use the U.S. Survey foot until 
the national control network was readjusted, but following the adjustment, 
the agency was to switch over to the international foot. That did not quite 
work out. When NAD83 was fully established, the agency that had replaced 
C&GS (the NGS) mandated that the official unit of all the published coordi-
nate values would be the meter. Then in 1986, NGS declared it would aug-
ment its publication of state plane coordinates in meters with coordinates 
for the same stations in feet. The question is: which foot? The answer is: the 
version legislated by the state in which the station was found.

In practical terms, this means that in states such as the 11 that chose the 
U.S. Survey foot and the 6 that chose the international foot, it is clear which 
should be used. However, 14 states do not specify the version of the foot that 
is official for their SPCS. The remaining 19 states have no legislation on the 
state plane coordinates at all.

The difference between the two units for the foot may seem an academic 
distinction, but consider the conversion of station Stormy. It happens that the 
station is in the Colorado 0503 or South Zone, and that state has chosen U.S. 
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Survey feet. It follows that the correct coordinate values for the station in U.S. 
Survey feet are:

Stormy:	 N 1,405,200.17

				   E 3,498,169.55

However, if the metric coordinates for Stormy were mistakenly converted 
to international feet, they would be N 1,405,202.98 and E 3,498,176.55. The 
distance between the correct coordinate and the incorrect coordinate is more 
than 7½ ft, with the largest difference occurring in the easting.

Conversion from Geodetic Azimuths to Grid Azimuths

As was mentioned in Chapter 1, meridians of longitude converge, and that 
fact has an effect on the directions of lines in SPCS. To illustrate the rate of 
that convergence, consider the east and west sides of a 1 square mile figure 
somewhere in the middle of the conterminous United States. Suppose that 
the two sides were both meridians of longitude on the surface of the Earth 
and the directions of both lines were the same, geodetic north. However, if 
that square-mile figure were projected onto a Lambert conic or Transverse 
Mercator SPCS, the directions would no longer be equal. Their azimuths 
would suddenly differ by about 1 min of arc. And unless one of the sides 
happens to follow the central meridian of the zone, neither of their azimuths 
would be grid north.

In SPCS, the direction known as grid north is always parallel to the central 
meridian for the zone. The east and west lines of the square mile in the exam-
ple follow meridians on the surface of the Earth. Meridians converge at the 
pole; they are not parallel to one another. In SPCS, north is grid north, and 
the lines of the grid are parallel to each other. They must also be parallel to 
one another and the central meridian of the zone, so geodetic north and grid 
north are clearly not the same. In fact, only on that central meridian do grid 
north and geodetic north coincide. Everywhere else in the zone they diverge 
from one another, and there is an angular distance between them. In SPCS27, 
that angular distance was symbolized with the Greek letter theta (θ) in the 
Lambert conic projection and by delta alpha (Δα) in the Transverse Mercator 
projection. However, in SPCS83, convergence is symbolized by gamma (γ) 
in both the Lambert conic and the Transverse Mercator projections. In both 
map projections, east of the central meridian grid north is east of geodetic 
north, and the convergence angle is positive. West of the central meridian 
grid, north is west of geodetic north, and the convergence angle is negative.

The angle between geodetic and grid north, the convergence angle, grows 
as the point gets further from the central meridian. It also gets larger as the 
latitude of the point increases. The formula for calculating the convergence 
in the Transverse Mercator projection is
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	 γ = (λcm − λ) sin φ

where
	λcm =	the longitude of the central meridian
	 λ =	 the longitude through the point
	 φ =	 the latitude of the point

The formula for calculating the convergence angle in the Lambert conic 
projection is very similar; it is

	 γ = (λcm − λ) sin φ0

where
	λcm =	the longitude of the central meridian
	 λ =	 the longitude through the point
	φ0 =	 the latitude of the center of the zone

As an example, here is the calculation of the convergence angle for sta-
tion Stormy. It is in the Colorado South Zone on a Lambert conic projection, 
where the longitude of the central meridian is longitude 105° 30′ 00″ W and 
φ0 is latitude 37° 50′ 02.34″ N

γ = (λcm − λ) sin φ0

γ = (105° 30′ 00″ − 103° 46′ 35.3195″) sin 37° 50′ 02.34″
γ = (01° 43′ 24.68″) sin 37° 50′ 02.34″
γ = (1° 43′ 24.68″) 0.6133756

γ = +1° 03′ 25.8″

The angle is positive, as expected, east of the central meridian.
The formula used to convert a geodetic azimuth to a grid azimuth includes 

the convergence angle and another element:

	 grid azimuth = geodetic azimuth − convergence angle + second term

Another way of stating the same formula is

	 t = α − γ + δ

in which
	 t =	 grid azimuth
	 α =	 geodetic azimuth
	 γ =	 the convergence angle
	 δ =	 the second term
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The second term (see Figure 4.11) is included because lines between stations 
on the ellipsoid are curved, and that curvature is not completely eliminated 
when the geodetic azimuth line is projected onto the SPCS grid.

Several factors affect the extent of the curve of the projected geodetic 
azimuth line on the grid. The direction of the line and the particular map 
projection from which the grid was created are two of those elements. For 
instance, a north-south line does not curve at all when projected onto the 
Lambert conic grid, and neither does an east-west line when projected onto 
the Transverse Mercator grid. However, in both cases, the more a line departs 
from these cardinal courses, the more it will curve on the grid. In fact, the 
maximum curvature in each projection occurs on lines that are parallel to 
their standard lines. That means that an east-west line would have the larg-
est curve in a Lambert conic projection, and a north-south line would have 
the largest in a Transverse Mercator projection.

Another factor that affects the size of the curve is the distance of the line 
from the center of the zone. In a Transverse Mercator projection, the farther a 
line is from the central meridian, the more it will curve. In the Lambert conic 
projection, the farther a line is from the central parallel of latitude through 
the center of the zone, φ0, the more it will curve. Finally, in both map projec-
tions, the longer the line, the more it will curve. It follows, therefore, that long 
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N. (Y) 1,405,200.17
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Figure 4.11
Second term.
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lines at the boundaries between zones depart the most from straight lines on 
the grid. A 2-mile north-south line in a Transverse Mercator SPCS will devi-
ate about 1 arc-sec from a straight line. In the Lambert conic SPCS, an east-
west line of that length will deviate about 1 arc-sec from a straight line.

Even though the distance between station Seven and station Stormy is 
approximately 24 miles, the departure from a chord between the two is only 
about 1″ at Stormy and 2″ at Seven (see Figure 4.12). Note, however, that the 
grid bearing of the line between the two is approximately N 43½° E rather 
than east-west.

This correction for curvature is sometimes known as t-T, the arc-to-chord 
correction, and the second term. The correction is small and pertinent to the 
most precise work. However, it is important to note that, like the convergence 
itself, the second term comes into play only when there is a need to convert a 
conventionally observed azimuth into a grid azimuth in SPCS. Where optical 
surveying data is used, that will almost certainly be required. On the other 
hand, if the work is done with GPS observations, or where field observations 
are not involved at all, convergence and the second term are not likely to 
affect the calculation of the work.
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Stations Stormy and Seven.
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SPCS to Ground Coordinates

When a state plane coordinate is assigned to a station on the Earth, the coor-
dinate is not really on the station itself. As described previously, the coordi-
nate is on a grid. The grid is most often below—but sometimes above—the 
actual location of the point it intends to represent. Simply put, the point is 
on the Earth, but the coordinate is not. This rather inconvenient fact can be, 
and sometimes is, ignored. However, it is valuable to remember that while 
SPCS is generally designed to provide scale distortion no worse than 1 part 
in 10,000 or so, modern measurement is routinely better than that. It is there-
fore common for users of the system to find that their measurement from one 
place to another turns out to be longer or shorter than an inverse between 
the SPCS coordinates indicates. Such results sometimes lead to an assump-
tion that the whole system is shot through with unacceptable inaccuracies. 
That is certainly not the case. It is also usual that, once the actual cause of the 
difference between ground and grid dimensions is fully understood, a con-
venient resolution is sought. Frequently, the resolution is bringing the state 
plane coordinates from the grid to the ground.

This is done by extending the idea mentioned at the end of the section on 
conversion from geodetic lengths to grid lengths. The idea is to divide the 
grid distance by the grid (or combined) factor to find the ground distance. 
This concept is sometimes applied to more than the single line where the 
particular grid factor is actually correct. It is used to convert many lines and 
many points over an entire project. In those instances, a single grid factor 
calculated near the center of a project is used. This one grid factor is intended 
to convert grid distances between points to the ground distances, ignoring 
the changes in the scale factor and the elevation factor from point to point.

The coordinates that result from this approach are not state plane coor-
dinates, and they are often truncated to avoid being confused with actual 
SPCS. The typical truncation is dropping the first two digits from the north-
ings and eastings of these project coordinates. This strategy in some ways 
defeats the purpose of the SPCS, which—when used correctly—offers a rea-
sonably accurate approximation of geodetic positions that is consistent over 
a large area. However, fixing one grid factor for a project returns a user to 
the sort of tangent-plane system mentioned earlier. Such a project coordinate 
system cannot be joined along its edges with a neighboring system without 
difficulty. This difficulty cannot be avoided because the plane created near 
the elevation of the center of the project inevitably departs more and more 
from the reference ellipsoid at the edges. The advantages of a large secant 
map-projection plane are removed. Therefore, as long as one stays within the 
now-local system, the work can progress smoothly, but outside of the area it 
will not match other systems.

It is interesting to note that some governmental organizations have estab-
lished localized projections, often at the county level, to bring grid coordinates 
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closer to the ground. The objective has been to provide a coordinate basis 
that is more convenient for building a local GIS.

Common Problems with State Plane Coordinates

As mentioned earlier, the official native unit of SPCS83 coordinates is the 
meter. However, reporting in feet is often required. Many states prefer U.S. 
Survey feet: Nebraska, Wyoming, Colorado, California, Connecticut, Indiana, 
Maryland, North Carolina, and Texas. Other states specify international feet: 
Arizona, Michigan, Montana, Oregon, South Carolina, and Utah. Still others 
have taken no official action on the issue. Nevertheless, clients in any state 
may request coordinates in either format.

If an error is suspected in converting SPCS83 coordinates from meters to 
feet, look to the easting of the coordinate. Since the false easting in SPCS is 
quite large, it is there that the discrepancy will be most obvious, as illus-
trated in the example conversion of station Stormy.

Another common problem stems from the periodic readjustments per-
formed by NGS. As mentioned in Chapter 2, NAD83 has been subject to 
refinements since it replaced NAD27. These improvements are largely due to 
the increasing amount of GPS information available and are denoted with a 
suffix, such as NAD83/91, the latter number referring to the year of the read-
justment. Since SPCS83 is based on NAD83, these adjustments result in new 
state plane coordinates as well. It is therefore feasible that one county may 
use say NAD83/86 coordinates and an adjoining county may use NAD83/94 
coordinates. The result may be a different coordinate assigned to the same 
station, both in NAD83, but differing as the result different adjustments. The 
solution is to take care with the year of adjustment when using published 
coordinates.

When there is a discrepancy of millions of meters or feet between the east-
ings of coordinates of points that are certainly not hundreds of miles apart, 
the error may be attributable to SPCS27 coordinates among SPCS83 coordi-
nates, or vice versa. There were substantial changes made to the false easting 
when the datums were changed. Another possible culprit for the condition 
could be the combination of coordinates of one SPCS83 zone with coordi-
nates from the adjoining zone.

UTM Coordinates

A plane coordinate system that is convenient for GIS work over large areas is 
the Universal Transverse Mercator (UTM) system. UTM combined with the 
Universal Polar Stereographic (UPS) system covers the world in one consistent 
system. In terms of scale, it is four times less accurate than typical state-plane 
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coordinate systems. Yet the ease of using UTM and its worldwide coverage 
make it very attractive for work that would otherwise have to cross many dif-
ferent SPCS zones. For example, nearly all National Geospatial-Intelligence 
Agency (NGA)—formerly National Imagery and Mapping Agency (NIMA) 
and formerly the Defense Mapping Agency—topographic maps, USGS quad 
sheets, and many aeronautical charts show the UTM grid lines.

It is often said that UTM is a military system created by the U.S. Army. 
In fact, several nations and the North Atlantic Treaty Organization (NATO) 
played roles in its creation after World War II. At that time, the goal was 
to design a consistent coordinate system that could promote cooperation 
among the military organizations of several nations. Before the introduction 
of UTM, the Allies found that their differing systems hindered the synchro-
nization of military operations.

Conferences were held on the subject from 1945 to 1951 with representa-
tives from Belgium, Portugal, France, and Britain, and the outlines of the 
present UTM system were developed. By 1951, the U.S. Army had introduced 
a system that was very similar to that currently used.

The UTM projection divides the world into 60 zones. Actually, one could say 
that there are 120 zones, since each of the 60 zones is divided into a Northern 
Hemisphere portion and Southern Hemisphere portion at the equator. The 
numbering of the zones begins at longitude 180° E, the International Date 
Line, and increases sequentially toward the east. Zone 1 is from 180° W lon-
gitude to 174° W longitude, zone 2 is from 174° W longitude to 168° W longi-
tude, and so on. The conterminous United States are within UTM zones 10 to 
19 (see Figure 4.13). Each zone has a central meridian exactly in the middle. 
For example, in Zone 1 from 180° W longitude to 174° W longitude, the cen-
tral meridian is 177° W longitude, so each zone extends 3° east and west from 
its central meridian. The central meridian for zone 2 is 171° W longitude.

Here is a convenient way to find the zone number for a particular longi-
tude. Consider west longitude negative and east longitude positive, add 180°, 
and divide by 6. Any answer greater than an integer is rounded to the next 
highest integer, and you have the zone. For example, Denver, Colorado, is 
near 105° W Longitude, −105°.

−105° + 180° = 75°

75°/6 = 12.50

Round up to 13

Therefore, Denver is in UTM zone 13.
All UTM zones have a width of 6° of longitude (see Figure  4.14). From 

north to south, the zones extend from from 84° N latitude to 80° S latitude. 
Originally, the northern limit was at 80° N latitude, and the southern limit 
was at 80° S latitude. On the south, the latitude is a small circle that con-
veniently traverses the ocean well south of Africa, Australia, and South 
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America. However, 80° N latitude was found to exclude parts of Russia and 
Greenland and was extended to 84° N latitude.

These zones nearly cover the Earth, except the polar regions, which are 
covered by two azimuthal zones called the Universal Polar Stereographic 
(UPS) projection. The foundation of the UTM zones is a secant Transverse 
Mercator projection very similar to those used in some state plane coor-
dinate systems. The UTM secant projection covers approximately 180 km 
between the lines of exact scale, where the cylinder intersects the ellipsoid. 
The scale factor grows from 0.9996 along the central meridian of a UTM 
zone to 1.00000 at 180 km to the east and west. Recall that SPCS zones are 
usually limited to about 158 miles and, therefore, have a smaller range of 
scale factors than the UTM zones. In state plane coordinates, the scale factor 
is usually no more than 1 part in 10,000. In UTM coordinates, it can be as 
large as 1 part in 2,500.

The reference ellipsoids for UTM coordinates vary among five different 
figures, but in the United States the reference is the Clarke 1866 ellipsoid. 
However, one can obtain 1983 UTM coordinates by referencing the UTM 
zone constants to the GRS80 ellipsoid of NAD83.

As mentioned earlier, unlike any of the systems previously discussed, 
every coordinate in a UTM zone occurs twice, once in the Northern 
Hemisphere and once in the Southern Hemisphere. This is a consequence 
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Figure 4.13
UTM zones in the conterminous United States.
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of the two origins in each UTM zone. The origin for the portion of the zone 
north of the equator is moved 500 km west of the intersection of the zone’s 
central meridian and the equator. This arrangement ensures that all of the 
coordinates for that zone in the Northern Hemisphere will be positive. The 
origin for the coordinates in the Southern Hemisphere for the same zone 
is also 500 km west of the central meridian, but it is not at its intersection 
with the equator; it is 10,000 km south of it, close to the South Pole. This ori-
entation of the origin guarantees that all of the coordinates in the Southern 
Hemisphere are in the first quadrant and are positive. In both hemi-
spheres and for all zones, the easting (the x-value) of the central meridian is 
500,000 m at the central meridian, as shown in Figure 4.15. The developed 
UTM grid is defined in meters.

In fact, in the official version of the UTM system, there are actually more 
divisions in each UTM zone than the north-south demarcation at the equa-
tor. As shown in Figure 4.14, each zone is divided into 20 subzones. Each of 
the subzones covers 8° of latitude and is lettered from C on the south to X on 
the north. Actually, subzone X is a bit longer than 8°. Remember the exten-
sion of the system from 80° N latitude to 84° N latitude: That all went into 
subzone X. It is also interesting that I and O are not included. They resemble 
1 and 0 too closely.
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UTM zones around the world.
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There are free utilities online to convert UTM coordinates to latitude and 
longitude at http://www.ngs.noaa.gov/cgi-bin/utm_getgp.prl and another 
to convert latitude and longitude to UTM coordinates at http://www.ngs.
noaa.gov/cgi-bin/utm_getut.prl, both courtesy of NGS.

A word or two about the polar zones that round out the UTM system. The 
Universal Polar Stereographic (UPS) projections are conformal azimuthal 
stereographic projections like those mentioned earlier. The projections 
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have two zones. The north zone covers the North Pole and the south zone 
the South Pole. The projections are on a plane tangent at a pole and per-
pendicular to the minor axis of the reference ellipsoid. The projection lines 
originate from the opposite pole. As shown in Figure 4.16, the minimum 
scale factor is 0.994 at the pole. It increases to 1.0016076 at 80° latitude from 
each pole. The scale factor is constant along any parallel of latitude. The 
line of exact scale is at 81° 06′ 52.3″ N latitude at the North Pole and 81° 06′ 
52.3″ S latitude at the South Pole. In both cases, the pole is given a false 
easting and northing: The x-coordinate (easting) of the pole is 2,000,000 m, 
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and the y-coordinate (northing) of the pole is 2,000,000 m. The reference 
ellipsoid at both the North and South Poles is the International Ellipsoid.

At the North Pole and at the South Pole, the x-axis lies along the merid-
ians 90° W and 90° E . The easting values start at 2,000,000 m at the pole and 
increase along the 90° E meridian. At the North Pole, the y-axis lies along the 
meridians 0° and 180°, and the northings start from 2,000,000 m at the pole 
and increase along the 180° meridian. At the South Pole, the y-axis also lies 
along the meridians 0° and 180°, and the northings start from 2,000,000 m at 
the pole but increase along the 0° meridian.
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Exercises

	 1.	Which of the following general statements about the state plane 
coordinate systems in the United States is incorrect?

	 a.	 There are three map projections used in SPCS in the United 
States.

	 b.	 The map projections used in the SPCS cause meridians of longi-
tude to appear as straight lines on the SPCS grid.

	 c.	 Some states utilize more than one map projection in their SPCS.

	 d.	 The axis of the Lambert cone is coincident with the Earth’s polar 
axis; the axis of the Transverse Mercator cylinder is perpendicu-
lar to it.

	 2.	Which of the following statements does not properly describe 
a change in the state plane coordinate systems from SPCS27 to 
SPCS83?

	 a.	 There have been changes in the distances between the SPCS 
zones and their origins.

	 b.	 SPCS83 coordinates are expressed in more units than were SPCS27 
coordinates.

	 c.	 There are fewer SPCS83 zones than there were SPCS27 zones in 
some states.

	 d.	 In SPCS83, the scale factor limit of 1 part in 10,000 has been 
exceeded for the first time.

	 3.	Which of the following statements correctly describes an aspect of 
conformal map projection in SPCS?

	 a.	 It ensures that the angle between two lines on the map-projection 
surface is the same as it is on the reference ellipsoid, regardless of 
the length of the lines.

	 b.	 In a conformal map projection, the scale is the same in all direc-
tions from a point.

	 c.	 Convergence in a conformal map projection is always much less 
than 1°.

	 d.	 The Lambert conic projection is a conformal projection, but the 
Transverse Mercator projection is not.
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	 4.	Which of the following statements about the scale factor in SPCS is 
true?

	 a.	 The scale factor changes constantly along the central meridian of 
a Transverse Mercator SPCS zone.

	 b.	 Scale factor ratios are 1 part in 10,000 in SPCS zones.

	 c.	 A scale factor is used in SPCS to convert a length on the reference 
ellipsoid to a length on the map-projection plane grid.

	 d.	 The scale factor does not change along the central meridian of a 
Lambert conic SPCS zone.

	 5.	 If a line on a secant map-projection plane crossed one of the stan-
dard lines, what would be the difference between the scale factor at 
the end between the standard lines and the scale factor at the end 
outside the standard lines?

	 a.	 The scale factor at the station outside the standard lines would 
be greater than 1, and the scale factor for the station between the 
standard lines would be less than 1.

	 b.	 For an east-west line that crossed a standard parallel in a Lambert 
conic projection, the scale would be the same at both ends of the 
line.

	 c.	 For a north-south line that crossed a standard line of exact scale 
in a Transverse Mercator projection, the scale would be the same 
at both ends of the line.

	 d.	 The scale factor at the station outside the standard lines would 
be less than 1, and the scale factor for the station between the 
standard lines would be greater than 1.

	 6.	Which of the following statements about convergence angles in SPCS 
is not correct?

	 a.	 As the distance from the central meridian increases, the absolute 
values of the convergence angles increase.

	 b.	 As the length of a line connecting two stations increases, the 
absolute values of the convergence angles at each end station 
increase.

	 c.	 As the direction of a line connecting two stations approaches the 
cardinal course, north-south or east-west, the absolute values of 
the convergence angles at each end station are not affected.

	 d.	 As the latitude decreases, the absolute values of the convergence 
angles decrease.
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	 7.	Which of the following statements about the second-term, also 
known as t-T and arc-to-chord, correction in SPCS is not correct?

	 a.	 As the distance from the central meridian in a Transverse 
Mercator projection and the distance from the central latitude, 
φ0, in the Lambert conic projection increases, the absolute values 
of the second-term angles increase.

	 b.	 As the length of a line connecting two stations increases, the 
absolute values of the second-term angles at each end station 
increase.

	 c.	 As the direction of a line connecting two stations becomes more 
nearly parallel with a zone’s standard lines, the absolute values 
of the second-term angles at each end station increase.

	 d.	 As the latitude decreases, the absolute values of the second-term 
angles decrease.

	 8.	The combined factor is used in SPCS conversion. How is the com-
bined factor calculated?

	 a.	 The scale factor is multiplied by the elevation factor.
	 b.	 The scale factor is divided by the grid factor.
	 c.	 The grid factor is added to the elevation factor and the sum is 

divided by 2.
	 d.	 The scale factor is multiplied by the grid factor.

	 9.	Which value is closest to the typical change in the false easting 
between SPCS27 and SPCS83?

	 a.	 The typical difference between the false easting in the Lambert 
conic is about 6 miles, and the typical difference in the Transverse 
Mercator is about 30 miles.

	 b.	 The typical difference between the false easting in the Lambert 
conic is about 1,400,000 m, and the typical difference in the 
Transverse Mercator is about 3,000,000 m.

	 c.	 The typical difference between the false easting in the Lambert 
conic is about 9600 ft, and the typical difference in the Transverse 
Mercator is about 4800 ft.

	 d.	 The typical difference between the false easting in the Lambert 
conic is about 47,600 ft, and the typical difference in the Transverse 
Mercator is about 31,500 ft.
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	 10.	Which of the following does not correctly state a difference between 
the Transverse Mercator coordinate system used in SPCS and the 
Universal Transverse Mercator (UTM) coordinate system?

	 a.	 The UTM system of coordinates was designed and established 
by the U.S. Army in cooperation with NATO member nations. 
The Transverse Mercator SPCS was established by the U.S. Coast 
and Geodetic Survey.

	 b.	 The official unit of measurement in the UTM system of coor-
dinates is the meter. The official unit in Transverse Mercator 
SPCS83 is the international foot.

	 c.	 The UTM system of coordinates is augmented by the Universal 
Polar Stereographic (UPS) system to complete its worldwide 
coverage. The Transverse Mercator SPCS does not have such a 
broad scope.

	 d.	 The scale factor in the UTM system of coordinates can reach 1 
part in 2,500. In the Transverse Mercator SPCS, the scale factor is 
usually no more than 1 part in 10,000.
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Explanations and Answers

1. Explanation:

	 Every state, Puerto Rico, and the U.S. Virgin Islands has its own 
plane rectangular coordinate system. The state plane coordinate 
systems are based on the Transverse Mercator projection, an oblique 
Mercator projection, and the Lambert conic map-projection grid.

		  Generally speaking, states with large east-west extent use the 
Lambert conic projection. This system uses a projection cone that 
intersects the ellipsoid at standard parallels. The axis of the cone is 
imagined to be a prolongation of the polar axis of the Earth. When 
the cone is developed, that is, opened to make a plane, the ellipsoidal 
meridians become straight lines that converge at the cone’s apex. The 
apex is also the center of the circular lines that represent the projec-
tions of the parallels of latitude.

		  Some states use both the Lambert conic and the Transverse 
Mercator projections for individual zones within the state sys-
tem. Some rely on the Transverse Mercator projection alone. The 
Transverse Mercator projection uses a projection cylinder whose 
axis is imagined to be parallel to the Earth’s equator and perpendic-
ular to its axis of rotation. It intersects the ellipsoid along standard 
lines parallel to a central meridian. However, after the cylinder is 
developed, all the projected meridians and parallels become curved 
lines.

Answer: (b)

2. Explanation:

	 In both SPCS27 and SPCS83, eastings are reckoned from an axis 
placed far west of the coordinate zone so that they all remain posi-
tive. Northings are reckoned from a line far to the south for the same 
reason, from a baseline south of the zone. Placing the y-axis 2,000,000 
ft west from the central meridian in the Lambert conic projection 
and 500,000 ft west in the Transverse Mercator projection was usual 
in SPCS27. Those distances are now often 600,000 m for the Lambert 
conic and 200,000 m for the Transverse Mercator in SPCS83. There 
is some variation in these SPCS83 distances, but there are no nega-
tive state plane coordinates in either SPCS27 or SPCS83 because the 
design of both ensures that all coordinates fall in the first quadrant.

		  The native unit for SPCS27 coordinates is U.S. Survey feet. The 
native unit for SPCS83 coordinates is meters. SPCS83 coordinates 
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are also expressed in either U.S. Survey feet or international feet, 
depending on the state.

		  In five states, some SPCS27 zones were eliminated altogether, and 
the areas they had covered were consolidated into one zone or added 
to adjoining zones. In three of those states, the result was one single 
large zone. Those states are South Carolina, Montana, and Nebraska. 
The large single zones caused the 1 part in 10,000 scale factor standard 
to be exceeded in these states. However, it was not the first time. The 
standard had previously been exceeded by SPCS27 in several zones.

Answer: (d)

3. Explanation:

	 Both the Lambert conic and the Transverse Mercator projections used 
in SPCS are conformal. Conformality means that an angle between 
short lines on the ellipsoid is preserved after it is mapped onto the 
map-projection plane. This feature allows the shapes of small fea-
tures to look the same on the map as they do on the Earth. Map 
projections can be equal area, azimuthal, equidistant, or conformal. 
It would be great if one map projection could simultaneously pos-
sess all of these desirable characteristics at once, but that, unfortu-
nately, is not possible. Conformality was built into the design of the 
SPCS from the beginning. It allows the transformation of points in 
such a way that, for all practical purposes, the angles between short 
lines on the projection surface are the same as they are on the refer-
ence ellipsoid because the scale is the same in all directions from a 
point. However, as the lengths of the lines grow, a difference in the 
angles between them does become significant. This difference is an 
artifact of the curvature of lines on the ellipsoid, and a correction 
known variously as the t-T, the arc-to-chord correction, or the second 
term comes into play. Conformality does not limit the convergence 
of meridians, which is a function of the size of the SPCS zone.

Answer: (b)

4. Explanation:

	 The ratio of the length between two stations on the map-projec-
tion plane and that same length on the reference ellipsoid is the 
scale factor. When the gap between the map-projection plane and 
the reference ellipsoid does not change along the length of a line, 
the scale factor does not change. When the gap between the two 
surfaces varies along the length of a line, the scale factor var-
ies. Therefore, on the conic Lambert projection, the scale factor 
is constant along east-west lines and changes continuously along 
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north-south lines. Since the central meridian in a conic projection 
is north-south, and the gap between the map-projection plane and 
the reference ellipsoid varies along such a line, the scale factor 
varies. On the cylindrical Transverse Mercator projection, the scale 
factor is constant along north-south lines and changes continu-
ously along east-west lines. The central meridian in a cylindrical 
projection is north-south, and the gap between the map-projection 
plane and the reference ellipsoid does not vary along such a line; 
the scale factor is constant.

		  It is not correct to say that the scale factor for SPCS zones has strictly 
adhered to the design criterion of 1 part in 10,000. For example, of 
those states that utilized the Lambert conic projection in SPCS27, 
there were 8 of the more than 70 zones across the United States in 
which the scale factor ratio was smaller than 1 part in 10,000 along 
their central meridians. The situation has changed somewhat in 
SPCS83; for example, Montana, Nebraska, and South Carolina now 
have one zone each, instead of several, with the attendant change in 
the scale factor. Although the objective limit was originally 1 part 
in 10,000, in fact, it has not been maintained universally as the SPCS 
system has evolved.

Answer: (c)

5. Explanation:

	 In a perfect map projection, the scale factor would be 1 every-
where. Since that is not possible, in a secant projection the scale 
factor is less than 1 between standard lines and greater than 1 
outside the standard lines. The only place where the scale factor is 
1 in such a projection is along the standard lines themselves. The 
larger the variation in scale factors that is allowed in the original 
design of the system, the larger their range above and below 1.

		  Neither an east-west line in the Lambert conic projection nor a 
north-south line in the Transverse Mercator projection would cross 
a standard line.

Answer: (a)

6. Explanation:

	 In both the Transverse Mercator and Lambert conic projections, the 
absolute value of the convergence angle increases with the distance 
from the central meridian. It also increases with the latitude. In 
Lambert conic zones, the effect of latitude is constant for the zone, 
but it is greater in more northerly zones. In Transverse Mercator 
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zones, the effect of the latitude grows constantly from south to north. 
Since convergence angles are tied to the position of the stations on 
the grid, they are not affected by the length or the direction of the 
lines connecting those stations.

Answer: (b)

7. Explanation:

	 In both projections, Transverse Mercator and Lambert conic, the 
absolute values of the second-term corrections at each end of a line 
are at their maximum when the line is at the edge of a zone and par-
allel to the standard lines. A north-south line does not exhibit any 
curve at all when projected onto the Lambert conic grid and neither 
does an east-west line when projected onto the Transverse Mercator 
grid. However, in both cases, the more a line departs from these car-
dinal courses, the more it will curve on the grid. That means that an 
east-west line would have the largest curve in a Lambert conic pro-
jection, and a north-south line would have the largest in a Transverse 
Mercator projection. Again, in a Transverse Mercator projection, the 
farther a line is from the central meridian, the more it will curve. In 
the Lambert conic projection, the farther a line is from the central 
parallel of latitude through the center of the zone, φ0, the more it will 
curve. A longer line will have a larger second-term correction at its 
ends than will a shorter line.

		  The second-term correction is usually small and ignored for much 
of the work. Its characteristics are essentially the same in SPCS27 and 
SPCS83. While there is a relationship between the position of a line 
on a particular SPCS zone and the second-term correction, there is 
none between the latitude of the line and the size of the second-term 
correction.

Answer: (d)

8. Explanation:

	 The grid factor changes with the ellipsoidal height of the line. It also 
changes with its location in relation to the standard lines of its SPCS 
zone. The grid factor is derived by multiplying the scale factor by 
the elevation factor. The product is nearly 1 and is known as either 
the grid factor or the combined factor. There is a different combined 
factor for every line in the correct application of SPCS.

Answer: (a)
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9. Explanation:

	 To avoid negative coordinates in SPCS, the y-axis was moved west 
of the zone itself. In the SPCS27, the typical false easting from the 
y-axis to the central meridian was 2,000,000 ft (378.7879 miles) in 
the Lambert conic projection and 500,000 ft (94.6970 miles) in the 
Transverse Mercator projection. There were substantial changes 
made to the false easting when the datums were changed. The most 
common values in SPCS83 are 600,000 m (327.822 miles) for the 
Lambert conic projection, a shift of about 6 miles. The typical SPCS83 
Transverse Mercator false easting is 200,000 m (124.274 miles), a shift 
of about 30 miles. However, there is a good deal of variation in these 
numbers from state to state and zone to zone.

Answer: (a)

10. Explanation:

	 Both the UTM system and the Transverse Mercator system in SPCS 
use the meter as their official unit of measurement.

Answer: (b)
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5
Rectangular System

Some assert that the Public Land Survey System (PLSS) is a coordinate sys-
tem. Others strongly maintain that it is certainly not. Suffice it to say that 
for more than 200 years it has been, and continues to be, a system to divide 
land and describe property across most of the United States. It was origi-
nally established by the Land Ordinance Act of May 20, 1785. The system 
has been incrementally improved through practical innovation and govern-
ment regulation since then. The Department of the Treasury had jurisdiction 
over the Public Land Survey System from its beginnings until 1812. It was 
a sensible arrangement, since the government was poor in cash and rich in 
land. The land came to be known as the public domain, meaning land that was 
once, or is even now, owned by the federal government of the United States. 
What was required was a practical, reliable, and unambiguous method of 
disposal. The fledgling federal government needed to do several things. It 
needed to pay soldiers, often with land instead of cash. It needed to disperse 
the population on the land to realize its potential. Put simply, it needed to 
raise money.

From the very beginning of the system, it has always been the policy of 
the federal government that land in the public domain must be surveyed 
before it is sold to others, i.e., before it is patented. Therefore, the United States 
embarked on the most extensive surveying project ever undertaken. The work 
began in Ohio in the autumn of 1785. On April 25, 1812, the Congress created 
the General Land Office (GLO) to survey and administer the PLSS. Under the 
GLO, the work was done through a contract system. The contractors were 
deputy surveyors who worked for surveyors general across the country. 
The surveying was not actually done by government employees until 1910. 
Later, the Bureau of Land Management was created in the Department of the 
Interior in 1946. It has been in charge of the system since then.

The PLSS was and is an eminently practical attempt to cover a large por-
tion of the curved surface of the Earth with a Cartesian grid with 1-mile 
squares, sections. The degree to which it has succeeded can be most clearly 
seen when flying over the central and western United States. The orderly 
patchwork quality of the landscape is a testament to those who created and 
those who maintain the rectangular system.

Leaving aside the question of whether it is a coordinate system or not, the 
PLSS belongs in this book because of its prominent place in the definition of 
the lands and the geographic information systems (GIS) in the 30 states cre-
ated from the public domain. These lands were acquired by purchase, treaty, 
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or cession, and they once amounted to over 1.8 billion acres. The majority of 
that land has now been mapped into sections and passed from the federal 
government into other hands, but its measurement is still, in most cases, gov-
erned by the rules of the PLSS.

The Public Land Surveying System is a huge subject. The small portion of 
it that will be presented here is intended to offer a basic understanding of 
a few elements of the topic that are pertinent to practitioners of GIS. Even 
though the application of the system can be complex, the design has always 
been straightforward and practical. It is that design, as currently practiced, 
that will be emphasized here.

From the beginning, the PLSS has been adaptable. It had to be. It needed to 
apply to a variety of conditions on the land and be capable of changing with 
the times. It also needed to be as unambiguous as possible to prevent misun-
derstandings and boundary disputes. It has achieved these goals remarkably 
well.

Initial Points

In a sense, initial points are the origins of the PLSS. They represent the intersec-
tion of two axes, as seen in Figure 5.1. There are 32 initial points in the conter-
minous United States and 5 in Alaska. Initial points were first mentioned in 
the Manuals of Instructions in 1881. There were several of these manuals. The 
first official version was issued by the GLO in 1851. They were the vehicles by 
which the commissioner of the GLO communicated the methods of survey 
to the surveyors general. They reflect the evolution of the system’s survey-
ing procedures. However, by the time the establishment of initial points was 
mentioned in a manual, many of the 37 in place today had already been set. 
Nevertheless, the 1881 manual stated:

Initial points from which the lines of the public surveys are to be extended 
must be established whenever necessary under such special instructions 
as may be prescribed by the Commissioner of the General Land Office. 
The locus of such initial points must be selected with great care and due 
consideration for their prominence and easy identification, and must be 
established astronomically. (GLO 1881, 35)

In other words, the points were set somewhat arbitrarily, as needed, and 
were assigned latitudes and longitudes derived astronomically.

East and west from the initial point, a baseline was laid out. This baseline 
was intended to follow an astronomically determined parallel of latitude. 
And it did so as nearly as possible, with corner monuments established every 
half mile or every 40 chains. The chain was, and is, the native unit of the PLSS 
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system. A Gunter’s chain is 66 ft long, and therefore, 40 chains equal 2640 ft 
or half a mile. It is also important to note that 10 square chains equal 1 acre, 
a convenient relationship.

A principal meridian was extended north and south from the initial point 
following a meridian of longitude, again astronomically determined, on 
which corner monuments were set every half mile, every 40 chains. While 
the initial point and the baseline are not usually named, it is common for 
the principal meridian to have a name, such as the Wind River Principal 
Meridian, the Ute Principal Meridian, or the 6th Principal Meridian.

These two lines—the baseline and the principal meridian—are the funda-
mental axes and the foundation from which the PLSS was extended across 
the country. They are by no means abstract historical curiosities. By their 
monumentation, these lines serve as a real physical presence today. And the 
baselines and principal meridians are geographical lines, each as nearly a 
parallel of latitude and a meridian of longitude as the practical measurement 
technology of their day could achieve.

Detail – Ohio
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See Detail
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Figure 5.1
Initial points of the federal system of rectangular surveys.
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However, it should be borne in mind that much of the early surveying in 
the PLSS was done with a solar compass and a linked chain. The discrepan-
cies between the design and the reality of the monumented corners may be 
larger than would be expected if the work were done today with modern 
equipment. Despite that caveat, the original work was remarkably good. 
Whether good or bad, however, there is no question it takes precedence over 
subsequent retracements or resurveys. The monuments set during the execu-
tion of the original survey, and the boundary lines they describe, are correct 
and inviolable by law. It is an important principle of the Public Land Survey 
System and is mentioned, among other places, in a section of a federal statute 
originally enacted in 1925, 43 Stat. 1144, which says:

All the corners marked in the surveys returned by the Secretary of the 
Interior or such agency as he may designate, shall be established as 
the proper corners of the sections or subdivision of sections they were 
intended to designate.… The boundary lines, actually run and marked in 
the surveys returned by the Secretary of the Interior or such agency as he 
may designate, shall be established as the proper boundary lines of the 
sections, or subdivisions, for which they were intended. (BLM 1973, 6)

It is possible to think that, since most of the public domain is no longer 
under the jurisdiction of the federal government, the quoted statute does not 
necessarily apply to lands in private hands. However, the laws and courts 
in most states that were created from public domain follow the line that the 
rules established by federal statutes and elaborated in the various manuals 
of instructions will hold sway over the lands in state and private ownership 
under their jurisdiction.

At the intersection of the principal meridian and the baseline, there is 
an initial point that is also represented by an actual monument. In fact, the 
Manual of Instructions of 1902 not only stipulated that initial points should 
be set in conspicuous locations that are visible from a distance, but that they 
should be perpetuated by indestructible monuments like a copper bolt set 
in a rock ledge. Monuments perpetuate the initial points; most have been 
remonumented, but the original monuments of 8 of the 37 initial points are 
still standing. The baselines and principal meridians that extend in cardi-
nal directions from them often, though not always, terminate at a state line. 
Once these axes were in place, the next step was the creation of quadrangles.

Quadrangles

Quadrangles in the PLSS are large rectangular areas bounded by meridians 
of longitude and parallels of latitude. They are 24 miles on a side by current 
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design, though that has not always been the dimension used. At each initial 
point, a principal meridian on one side and a baseline on another bound four 
such quadrangles, and on the other two sides there is a guide meridian and a 
standard parallel, as illustrated in Figure 5.2. The lines around a quadrangle 
are known as standard lines.

A guide meridian was intended to follow a meridian of longitude. A stan-
dard parallel was intended to follow a parallel of latitude. And they both 
were established astronomically with corner monuments set every 40 chains, 
each half mile, just as was done to create the principal meridian and the 
baseline. Over a broad area of the PLSS, only one baseline and one principal 
meridian originate from one initial point, but there are many quadrangles 
built from them. These standard lines are numbered as you see in Figure 5.2. 
At a distance of 24 miles north from the baseline is the first standard paral-
lel north, and 24 miles south from the baseline is the first standard parallel 
south. Twenty-four miles east from the principal meridian is the first guide 
meridian east, and 24 miles west from the principal meridian is the first guide 
meridian west. This logical system of numbering was and is carried through 
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the whole region governed by a particular principal meridian and baseline 
forming 24-mile quadrangles bounded by geographic, standard lines.

The reason for this approach was explained in the Manual of Instructions 
of 1890:

Standard parallels shall be established at intervals every 24 miles, north 
and south of the base line, and guide meridians at intervals of every 24 
miles east and west of the Principal Meridian; the object being to confine 
the errors resulting from the convergence of meridians, and inaccura-
cies in measurements, within the tracts of lands bounded by the lines so 
established. (GLO 1890, 18)

Since the guide meridians followed astronomically derived meridians of 
longitude, they converged. Even though the first guide meridian east may 
have been 24 miles east of the principal meridian at the baseline, by the time 
it has run north for 24 miles and intersected the first standard parallel north, 
that guide meridian was considerably closer to the principal meridian than 
when it started the trip. And convergence was unavoidable because the prin-
cipal meridian and the first guide meridian, the second guide meridian, the 
third, and so on, were all meridians of longitude. Therefore, as described in 
the 1890 manual, and illustrated in Figure 5.2, the guide meridians were not 
then and are not today continuous. They were designed to stop at each stan-
dard parallel and the baseline so that they could be corrected back to their 
original 24-mile spacing.

At the south end of each of its segments, a guide meridian was intended to 
be 24 miles from the principal meridian, or neighboring guide meridian. But 
at its north end, where it terminated at the standard parallel or baseline, the 
spacing between meridians was inevitably less than 24 miles due to conver-
gence of the meridians. As a consequence, that segment of the guide merid-
ian stopped there. A new segment was begun, but before that next segment 
of the guide meridian proceeded north for the next 24 miles, it was shifted 
back to the correct spacing at the standard parallel to again be 24 miles from 
the principal meridian or its neighboring guide meridian. In this way, it was 
ensured that the south end of each segment of a guide meridian was then 
and is today 24 miles east or west from its neighboring guide meridian at its 
south end. But the north end of each segment of a guide meridian was and is 
less than 24 miles from the next guide meridian because of convergence. And 
this is the reason that standard parallels are also known as correction lines. 
They are the lines at which guide meridians are corrected for convergence.

It is sensible, then, that the process of actually laying out guide meridians 
proceeded from the south to north. Corner monuments were set every 40 
chains along the way, as done with the principal meridian and the baseline. 
When the guide meridian finally intersected the standard parallel, a clos-
ing corner monument was set where a surveyed boundary, here the guide 
meridian, intersected a previously established boundary, here the standard 
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parallel or baseline. Any excess or deficiency in the measurement that had 
accumulated in the work along the guide meridian was placed in the last half 
mile preceding its intersection with the east-west standard line. So the last 
half mile at the north end of a segment of a guide meridian may be more or 
less than 40 chains. But more importantly, the cardinal direction of the guide 
meridian was maintained all the way to its intersection with the standard 
parallel or baseline. And therefore that intersection could not possibly fall 
on the already established corner monument on the parallel it was intersect-
ing, because the guide meridian was no longer at the 24-mile spacing it had 
when it started.

Before the guide meridian was run, a standard corner had been set on the 
standard parallel or baseline 24 miles from the principal meridian or guide 
meridian to serve as a corner of that quadrangle. However, that standard cor-
ner could only be the correct corner of the quadrangle to the north, because 
when the guide meridian was closed on the standard parallel or baseline, the 
intersection of the two lines certainly fell somewhat west or east of the stan-
dard corner because of convergence. As a result, there was a standard corner 
and a closing corner at every corner of a quadrangle, and they were some 
distance from each other, with the exception of quadrangle corners set on the 
principal meridian including the initial point. In every other case, there was 
a closing corner monument set. It was and is the corner for the quadrangles 
to the south. The corner monument for the quadrangle to the north will usu-
ally be a standard corner.

Townships

The quadrangle then became the framework enclosing the land from which 
16 townships could be created (see Figure  5.3). Townships are the units of 
survey of the PLSS. A township is approximately 6 miles on a side and is 
designed to include 36 sections. The boundaries of a township are intended 
to follow meridians of longitude and latitudinal lines.

Please recall that, as the standard lines around the quadrangle were run, cor-
ner monuments were set at increments of half a mile, 40 chains. Some of those 
corner monuments were destined to become township corners. These were set 
every 6 miles, 480 chains, along the standard lines, which are the boundaries of 
the quadrangle. From these corners, the townships were established.

In the actual surveying of township, the meridional, north-south, boundar-
ies had precedence. They were surveyed from south to north through the 
24-mile block of land, the quadrangle. These north-south township bound-
ary lines were laid out along meridians of longitude as nearly as possible. As 
the meridional lines were laid out, the corner monuments were set every 40 
chains, every half mile. On the other hand, the latitudinal boundaries of the 
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township, the east-west lines, were first run on a trial or random line from 
east to west on most township lines. Random lines were also known as blank 
lines. Corner monuments were only set every 40 chains as the latitudinal line 
was corrected to a true line, usually west to east in these cases.

This random and true line method was used when corner monuments 
were in place at both ends of a boundary, but the boundary had not yet been 
actually connected by a surveyed line. It worked this way: A trial line, i.e., 
the random line, was created when the surveyors pushed their survey west 
from the township corner monument they had just established while sur-
veying north up the meridian, say, at the northeast corner of a township. 
The next objective was to survey to the corner monument they knew had 
already been set 6 miles away on the western boundary of the township, its 
northwest corner. As the surveyors proceeded toward it on the random line, 
they set temporary points every 40 chains. When finally they intersected the 
western boundary of the township, most likely they missed their objective 
corner. When that happened, the distance north or south that this random 
line missed the northwest corner was known as the falling. The falling was 
very instructive; it told the surveyors the distance they needed to correct 
the random line so that it would actually connect the northwest and north-
east corner monuments with a true latitudinal boundary. So, the surveyors 
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would return east on the corrected line, this time from the northwest town-
ship corner to the northeast township corner. And along the way they would 
correct the temporary points they had set on the random line and set the 
actual corner monuments on the true line every 40 chains, except for those 
on the westernmost half mile.

All excess or deficiency of the 6-mile measurement was placed in the 
westernmost half mile. For example, suppose that the surveyors found that, 
instead of 480 chains from the northeast to the northwest corners of the 
township, they measured 479.80. The design of the PLSS dictated that the 
deficiency of 0.20 chains is not to be distributed evenly through the 6-mile 
line. It was and is all absorbed in the final half mile. The result is that 11 of 
the distances between the corner monuments on the true line were 40 chains, 
as expected, and the 12th, the westernmost, was 39.80 chains. In this way, 
there were always as many regular sections in a township as possible.

Here is how the procedure was described in the Manual of Instructions 1902:

	 130.	 Whenever practicable, the township exteriors in a block of land 24 
miles square, bounded by standard lines, will be surveyed succes-
sively through the block, beginning with those of the southwest-
ern township.

	 131.	 The meridional boundaries of the township will have precedence 
in the order of survey and will be run from south to north on true 
meridians, with permanent corners at lawful distances; the latitu-
dinal boundaries will be run from east to west on random or trial 
lines, and corrected back on true lines. The falling of a random, north 
or south of the township corner to be closed upon, will be carefully 
measured.

	 132.	 When running random lines from east to west, temporary corners 
will be set at intervals of 40.00 chains, and proper permanent cor-
ners will be established upon the true line, corrected back in accor-
dance with these instructions, thereby throwing the excess and 
deficiency against the west boundary of the township as required 
by law. (GLO 1902, 57)

The order of the running of the lines to create the townships out of the 
quadrangle is illustrated in Figure 5.3. It began at the southeast corner of the 
southwestern township. The first line run was the eastern boundary of that 
township, which was terminated with the setting of the northeast township 
corner. It is a meridional boundary. These north-south township lines are 
also known as range lines. The next line was a random line along the northern 
latitudinal boundary of the first tier of townships. After the random line was 
corrected for the falling, it was returned on a true line back to the northeast 
township corner. Then the range line was continued northward, the next 
township corner was set, and random and true lines were run to the township 
corner on the standard line. The procedure was repeated on the next town-
ship boundaries north, and finally the range line was closed on the northern 
parallel of the quadrangle. That closing corner, labeled CC in Figure 5.3, was 
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established in much the same way as the northeast and northwest corners of 
the quadrangle described earlier. And once again, the excess and deficiency 
in the measurement of the range line were placed in the northernmost half 
mile, that may have contained more or less than 40 chains.

The surveying of the township boundaries continued, and the pattern 
was repeated for the next range line. It was also begun at its south end. 
Corner monuments were set every 40 chains for 6 miles as the meridional 
line was surveyed northward. Once again, the surveyor ran a random line 
west, but this time the objective corner was not on a standard line, but on 
the recently set northeast township corner. The falling was noted, and the 
line was returned on the true line, as corner monuments were set every 40 
chains. These procedures were continued until the range line was closed 
on the northern quadrangle boundary. The last range line in the quadran-
gle required a variation. It was begun on its south end, like the others. 
After being run north for 6 miles, a random line and a true line were run 
west, like the others. But after the true line was returned, another random 
line was run from the township corner east to the eastern boundary of 
the quadrangle and returned on the true line. Here, too, the excess and 
deficiency of the 6-mile measurement were absorbed in the westernmost 
40 chains.

When the subdivision of a quadrangle into four tiers and four ranges 
of townships was done according to the design of the PLSS, 16 townships 
whose boundaries were very nearly meridians of longitude and parallels 
of latitude were created. The inevitable errors in the east-west distance 
measurements were taken up in the last half mile on the west side of each 
township. The errors in the north-south measurements were thrown into 
the last half mile on the north side of the northern tier of townships, just 
south of the north boundary of the quadrangle. And all four boundar-
ies of all 16 townships had corner monuments in place about every 40 
chains.

In fact, such clarity was seldom achieved. There were almost always some 
extenuating circumstances that interrupted the orderly execution of the stan-
dard PLSS plan. Quadrangles that contained large or navigable rivers or other 
large bodies of water could not be surveyed so neatly. Quadrangles that con-
tained previous bona fide rights in land outside the purview of PLSS, such 
as patented mineral claims or Spanish land grants, required that the orderly 
pattern of running lines be interrupted. In these cases, the normal lines were 
closed upon the boundaries of the senior property rights or the limits of the 
water as defined by a meander line. (The meander line is discussed in the 
Fractional Lots section of this chapter.) In fact, there were myriad difficulties 
that frequently prevented straightforward subdivision of a quadrangle into 
townships. Nevertheless, the fundamental plan was most often carried out 
much as described. When difficulties did arise, the surveyors involved did 
their utmost to use procedures, however unorthodox, that created a subdivi-
sion that fit the design.
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Sections

The township then became the framework around the land from which 36 sec-
tions could be created. Since 1796, the numbering of the sections has begun in 
the northeast corner of the township. It has been sequential from east to west 
in the first tier of sections, 1 through 6. Section 7 has been south from section 6, 
and the second tier has been sequential from west to east, 7 through 12. Section 
13 has been south from section 12, with the third tier sequential from east to 
west again. This zigzag continues until section 36 in the southeast corner of 
the township. This pattern is boustrophedonic, that is, it alternates from right to 
left and then left to right. It is said that the system harks back to an ancient 
mode of writing and the path an ox takes plowing a field. Whatever the origin 
of the scheme, the same basic plan is also used on the numbering of fractional 
lots within the sections. (Fractional lots are discussed in greater detail in the 
Fractional Lots section.)

Sections are the units of subdivision of the PLSS. They are approximately 
1 mile on a side and contain approximately 640 acres (see Figure 5.4). Since 
1890, the boundaries of a section have not been intended to follow meridians 
of longitude and parallels of latitude. Section lines are intended to be paral-
lel to the governing boundaries of the township. The governing boundaries are 
the east and the south township boundaries, unless those township bound-
aries are defective.

Even though the procedure for the present method of subdividing a town-
ship into sections was fairly well established by 1855, here is a description of 
the procedure from the Manual of Instructions of 1930.

The subdivisional survey will be commenced at the corner of sections 
35 and 36, on the south boundary of the township, and the line between 
sections 35 and 36 will be run parallel to the east boundary of the town-
ship … establishing the corner of sections 25, 26, 35 and 36. From the 
last named corner, a random line will be run eastward … parallel to 
the south boundary of section 36 to its intersection with the east bound-
ary of the township, placing 40 chains from the beginning a post for 
temporary quarter-section corner.… If the random line intersects said 
township boundary to the north or south of said corner, the falling will 
be calculated and the true line … established.… The meridional section 
line will be continued on the same plan, likewise the latitudinal section 
lines. After having established the west and north boundaries of section 
12, the line between sections 1 and 2 will be projected northward on a 
random line parallel to the east boundary of the township … to its inter-
section with the north boundary of the township.… If … said random 
line intersects the north boundary of the township to the east or west 
of the corner of sections 1 and 2 the falling will be carefully measured 
and from the data thus obtained the true course returned course will be 
calculated. (GLO 1930, 181)
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In other words, when a township was subdivided, the eastern range of 
sections was first in line. The work began at the southwest corner of sec-
tion 36 and the line was run parallel with the eastern boundary of the 
township. A corner monument halfway, at 40 chains, was called a quar-
ter corner, and a corner monument set at 80 chains from the beginning 
was the section corner. Quarter corners are so named because connecting 
these monuments with straight cardinal lines across a section divides it 
into quarters,

Next, the boundary between sections 36 and 25, a latitudinal line, was run 
on a random line, headed for the objective corner at the northeast corner of 
section 36. Once the falling was discovered, the line was corrected and run 
back, with the final quarter corner monument set halfway. This procedure 
was repeated all the way up to the meridional line between sections 1 and 2. 
At this point, there were two possibilities.
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If the northern line of the township was not a standard parallel, the north-
south line was run on a random line toward the objective corner that had 
been set when the north line of the township had been laid out. A temporary 
quarter corner was set at 40 chains from the south, with the excess and defi-
ciency of the measurements thrown into the last half mile. Once the falling 
was found to the objective corner, the true line returned southward, and the 
temporary quarter corner was replaced with a permanent monument, still 40 
chains north of the section corner to the south.

On the other hand, if the northern line of the township was a standard par-
allel, the north-south line was still parallel with the east township boundary. 
However, in this case, there was not an objective corner. Please recall that in 
this circumstance, the monuments that had been set when the north line of 
the township, the standard parallel, was laid out were only applicable to the 
townships north of the standard parallel, because of convergence of merid-
ians. Nevertheless, during the subdivision of the township into sections, a 
quarter corner was set at 40 chains from the south, with the excess and defi-
ciency of the measurements thrown into the last half mile. A closing corner 
was set at the intersection of the meridional section line with the standard 
parallel, and the distance between the closing corner and the previously set 
corners on each side of it was recorded.

Using this plan, a township could be fully subdivided. A deviation from 
the procedure occurred when the last meridional line was run starting 
between sections 31 and 32. The random and true line method was used to 
establish the latitudinal lines to both the east and west.

The final result of the work was a township that contained 36 sections. Working 
with sections today, it is clear that most are nearly a mile square. But those along 
the northern and western boundaries of the township are not so regular, nor 
were they intended to be. The design of the system itself pushes the distortion 
from convergence and the accumulated measuring errors into the last half mile 
of the tier of sections along the north and the range of sections along the west. It 
is there that the excesses and deficiencies are absorbed, but only after as many 
regular sections as possible have been carved out of the township.

Creating as many regular sections as possible has been an objective of 
the PLSS from the beginning, but the rectangular system has had to be flex-
ible. The surface of the Earth does not easily accommodate such a regular 
geometry. Applying the plan to lands adjoining rivers and lakes—areas 
where there may be an incomplete south or east township boundary—has 
called for ingenuity. These fractional townships often made it impossible to 
follow the general rules laid down in the manuals of instructions. Joining 
the townships and sections from one initial-point region with those from 
another and the irregularity of defective township exteriors also tend to 
disrupt the design.
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Subdivision of Sections

As mentioned earlier, straight lines—run from the quarter-section corner 
monuments that stand in the middle of the four section lines—divide the 
section into quarters. This method was stipulated in the Act of February 
11, 1805. The intersection of these lines is considered the center of the sec-
tion, or center quarter corner, and is a corner common to the four quarter 
sections. Government surveyors set the quarter-section corner monuments 
when they created the sections inside the township, but generally they did 
not subdivide the sections. Running the lines not set by the government sur-
veyors, including the subdivision of sections, has always been left to the local 
surveyors. Other acts of Congress in the early nineteenth century provided 
definitions of the half-quarter and quarter-quarter portions of a section, the 
Acts of 1820 and 1832, respectively. However, actually creating those parts on 
the ground was again left to local surveyors.

These quarter and half divisions are known as aliquot parts of a section. 
A division of something is an aliquot when the divisor is an integer and 
there is no remainder. But in practical terms, this has meant that an aliquot 
part of a section in the PLSS is a half or a quarter of the previously larger 
subdivision. These are its legal subdivisions. The PLSS does not recognize 
other divisions such as thirds or fifths. For example, quarter sections can be 
further divided into halves and quarters, and they are legal subdivisions 
as well. The quarter-quarter section, i.e., a quarter of a quarter section, is 
the smallest legal subdivision per the Manual of Instruction of 1973. The 1973 
manual is the most current version of that long series. In other words, a 
normal section contains approximately 640 acres. The typical aliquot parts 
of such a section are four. Half sections contain approximately 320 acres. 
Quarter sections contain approximately 160 acres. Half-quarter sections 
contain approximately 80 acres. Quarter-quarter sections contain approxi-
mately 40 acres.

Township Plats

When the notes of the original surveys of the townships in the public lands 
were returned to the GLO, and later the Bureau of Land Management 
(BLM), plats were developed from the work. These plats represent the 
township included in the survey. They show the direction and length of 
each line and their relation to the adjoining surveys. They also include 
some indication of the relief, the boundaries, and the descriptions and area 
of each subdivision of the sections. As mentioned previously, the govern-
ment will not convey lands in the public domain to others until the survey 
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has been done and the official plat has been filed and approved. This is 
true, in part, because the deed (the patent) that eventually grants the own-
ership of the land does so with direct reference to the township plat. It 
is an integral part of the transaction and binds the parties to the specific 
dimensions of the land as shown on the township plat. Therefore, the ori-
entation and size of the parts of the sections on the township plat are sig-
nificant. Also significant, then, is the creation of the lines on the township 
plat by protraction.

Protraction, in this context, refers to drawing lines on the township plat 
that were not actually run or monumented on the ground during the offi-
cial subdivision of the land. For example, the lines that divide the sections 
into quarters—the quarter lines—are shown on the township plat as dashed 
lines. They are protracted because, even though the quarter-corner monu-
ments were set, the official government surveyors never ran the quarter lines 
themselves. Rules were drafted to guide the local surveyors who would 
eventually run those lines. Rules stipulated that the lines must be straight 
from quarter corner to quarter corner, and their intersection must be the cen-
ter of the section, but the government was not responsible for running the 
lines and simply drew them on the plat. The same may be said of the lines 
that divided the quarter sections into quarters, the quarter-quarter sections. 
They are also protracted lines and were not run on the ground by the GLO 
or BLM, except under special instructions.

Therefore, it follows that, for all practical purposes, the aliquot parts of a 
section—virtually all of the lines and the areas shown inside a section on 
an official township plat—were created by protraction. They were drawn 
on the plat, not run on the ground. This partition includes the boundaries of 
another legal subdivision of a section that is not an aliquot at all. It is known 
as a fractional lot.

Fractional Lots

Lotting occurs in fractional sections (see Figure 5.5), and the definition of a frac-
tional section has grown a bit over the years. GLO Commissioner George Graham 
wrote one of the earliest definitions of the term to George Davis in 1826:

It is here proper to premise that the technical meaning of “fractional 
section” is a tract of land not bounded by sectional lines on all sides 
in consequence of the intervention of a navigable stream or some other 
boundary recognized by law and containing a less quantity than six 
hundred & forty acre. (White 1983, 83)
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This definition has expanded somewhat over the years. It still applies to the 
sections the commissioner mentioned, but it also includes the sections on the 
north and west of a normal township. Please recall that the excess and defi-
ciency of the measurements made during the subdivision of a quadrangle 
into townships and the subdivision of a township into sections is absorbed 
in the last half mile along the northern and western boundaries. By design, 
that means that the last half of those sections is something more or less than 
40 chains (2640 ft).

One of the principles of the PLSS is always to create as many regular ali-
quot parts as possible. In practice, this means that half of that last half mile of 
a section on the northern and western boundaries of a township can be held 
to 20 chains. Doing that creates the last regular aliquot part before hitting 
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the north or west boundary of the township. However, the remainder of that 
distance is then to become a side of a parcel that cannot be described as an 
aliquot part because it is not, nor can it be, a half or a quarter of the previ-
ously larger subdivision. Therefore, it is known as a fractional lot.

All along the north and the west boundary of a normal township, one will 
find one row or more of these fractional lots. The sections bordering the north 
and west boundaries of the township, except section 6, are normally subdi-
vided into two regular quarter sections, two regular half-quarter sections, 
and four fractional lots. In section 6, the subdivision will show one regular 
quarter-section, two regular half-quarter sections, one regular quarter-quarter 
section, and seven fractional lots. This is the result of the plan of subdivision.

However, that is by no means the only place that fractional lots are found. 
Fractional lots are found anywhere a section has an irregular boundary, or as 
Commissioner Graham wrote, they comprise any section that does not have 
complete boundaries on all sides—for example, a section invaded by a body 
of water. In such a case, a meander line segregates the water, and the section 
or sections around it are fractional.

A meander line is a line run along the mean high-water mark of a perma-
nent natural body of water. The meander line generally follows the curves, 
twists and turns of the shore. It is run to determine the area of the land in 
a fractional section, after the area covered by the water is excluded. Since 
its inception, the PLSS has been concerned with transferring land from the 
public domain to others, and therefore the area of usable property con-
tained in the aliquot parts of sections has been a matter of keen interest. 
However, a navigable river is not a part of the public domain. It must for-
ever remain a common public highway and is excluded from the system. 
Under current instructions, a body of water is meandered if it is a navigable 
river, a stream more than 3 chains wide, or a lake larger than 50 acres. It is 
important to note that the meander line around the water is not actually a 
property boundary; nevertheless, closing corners are set on meander lines. 
When a standard line, township line, section line, or aliquot line inter-
sects a meander line, a meander corner is set to perpetuate the intersections. 
Where that happens, fractional lots spring up. They are protracted against 
meander lines.

The same thing happens when a more recent PLSS survey collides with a 
former official government survey. For example, it is inevitable that PLSS sur-
veys originating at one initial point will grow outward and eventually meet 
the PLSS surveys that originate from another initial point. When that occurs, 
the lines and areas of the two systems will certainly not match. Fractional lots 
are protracted where they join. When the PLSS survey encounters boundaries 
around property that existed before the rectangular system was used, fractional 
lots are protracted again. This is the case when lines are closed on a reservation, 
national park, mining claim, previous land grant, agreement, or other bona fide 
private claim. In each of these instances, the guiding principle is that fractional 
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sections should be subdivided in a way that produces as many aliquot parts as 
possible.

Fractional lots are numbered. The system of their numbering follows the 
same model used to number sections. It is a zigzag pattern that begins 
at the most northeasterly lot, which is Lot 1. Then, continuing within the 
same section, the next lot to the west is Lot 2. It is important to note that 
the next lot is not necessarily immediately adjacent to Lot 1. The general 
plan is that Lot 1 through Lot 4 are numbered east to west sequentially, as 
shown in Figure 5.5. The numbering scheme then drops down to the next 
tier of lots south from Lot 4 to Lot 5. Then the plan would be to sequentially 
number lots from west to east, Lot 5 through Lot 8, drop south to the next 
tier and number the lots east to west, Lot 9 through Lot 12. Finally, the 
southernmost tier would be numbered west to east Lot 13 through Lot 16. 
However, there are not necessarily fractional lots in each tier, and aliquot 
parts are not numbered. Therefore, in a typical section 6, the lots on the 
northern tier are numbered east to west 1 through 4, and Lot 5 is south 
of Lot 4 according to plan. But from Lot 5 east there are usually aliquot 
parts, no lots. Lot 6 then is numbered south of Lot 5 because it is simply the 
next fractional lot encountered by the zigzag numbering system. In other 
words, the scheme can be imagined to proceed east from Lot 5 seeking 
lots to number, but none are there. It then drops south to the next tier, still 
none. It then proceeds east to west, and finally along the western boundary 
encounters a fractional lot that then becomes Lot 6. The same thing hap-
pens between Lot 6 and Lot 7.

The particular Lot 6 that is shown in Figure 5.5 is crossed by a navigable 
river. The northernmost tier of lots is numbered 1 through 4 from east to 
west. Then the second tier of lots is numbered west to east starting with 
Lot 5, which is directly south of Lot 4. East of Lot 5 is an aliquot part, a 
quarter-quarter. East of that part is the fractional Lot 6. It cannot be an ali-
quot part because a corner of it is inside the meander line that follows the 
northern bank of the river. East of Lot 6 is Lot 7 and it is also partially in 
the river. The east boundary of Lot 7 is the section line, so the numbering 
of the fractional lots drops south the next tier and proceeds east to west 
again. South of Lot 7 the area is in the river, but directly west of the river 
is Lot 8. West of Lot 8 is an aliquot part followed by Lot 9 on the western 
boundary of the section. The numbering scheme drops south to the next 
tier and Lot 10. It then proceeds from west to east, jumps across the aliquot 
part, and then Lot 11 is numbered. The last lot numbered is Lot 12 in the 
southeast corner of the section. It is interesting to note that Lot 12 includes 
a small area that could be in the tier of lots to its north. However, one of the 
rules of the creation of fractional lots specifies that very small lots will not 
be protracted, but such an area will instead be included into adjoining lots, 
as is illustrated here.
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Naming Aliquot Parts and Corners

As mentioned, aliquot parts of a section are not numbered. They are named. 
Some aspects of their names are intuitive. For example, a 160-acre portion of 
a section north and east of its center can simply be called the northeast quar-
ter. It can also be abbreviated as NE¼. Describing any of the other quarters 
of a section can be done similarly, such as NW¼, SW¼, and SE¼. Describing 
quarter-quarters of a section is done with a combination of abbreviations. 
For example, the 40-acre portion of the NW¼ that is in the most northwest-
erly corner of the section is known as NW¼ NW¼, as seen in Figure 5.6. This 
description can be read as the northwest quarter of the northwest quarter. 
The other quarter-quarters in the NW¼ could be described with the same 
system as NE¼ NW¼, SE¼ NW¼, and SW¼ NW¼. There are a couple of 
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important keys to such an abbreviation system. First, the smaller tract is 
always first, meaning it is on the left. The larger tract is on the right. Second, 
there is no comma between the two elements. A comma would mean “and” 
in this context. In other words, NE¼, NW¼ would mean the northeast quar-
ter and the northwest quarter, whereas the intention of NE¼ NW¼ is to indi-
cate the northeast quarter of the northwest quarter. The general structure of 
the system is that the term on the left is a portion of the term on the right. 
The same ideas can be used to describe the east half of the southeast quarter. 
It could be described as E½ SE¼. Fractional lots can be described using their 
numbers: Lot 1, Lot 2.

The abbreviated descriptions of lots and aliquot parts do not fully define 
them, however. Writing a complete and correct description requires the addi-
tion of the number of the section, the township, the range, and the principal 
meridian. For example, the S½ SE¼ Section 36, Township 3 South, Range 68 
West of the 6th Principal Meridian is complete, concise, and unambiguous. It 
can only refer to one parcel of land.

The naming of section corners in PLSS is also straightforward. The north-
east, northwest, southeast, and southwest corners of a section are simply 
abbreviated as NE, NW, SE, and SW, respectively. The quarter corners too 
are simply stated. The corners at the midpoints on the section lines are the 
north quarter corner, east quarter corner, south quarter corner, and west 
quarter corner, which are abbreviated as N¼, E¼, S¼, and W¼, respectively. 
The center quarter, which is at the intersection of the quarter-section lines, is 
abbreviated as C¼.

It is important to mention that another common name for a quarter-quar-
ter of a section is a sixteenth. Therefore, corners of quarter-quarters are often 
called sixteenth corners, such as the corners in the middle of quarter sec-
tions, where the quarter-quarter lines intersect.

For example, as shown in Figure 5.6, the corner in the centers of the NE¼ 
of the section common to the four quarter-quarters is called the NE¹/16. The 
other ¹/16 corners in the centers of the quarter sections are also named for the 
quarter in which they are set. They are called NW¹/16, SE¹/16, and SW¹/16. The 
abbreviations for the ¹/16 corners on the quarter lines of the section refer first 
to the fact that the lines on which they fall are the centerlines of the section. 
For example, the corner on the N–S centerline between the NE¼ and the 
NW¼ is called C-N¹/16. The other center quarters are abbreviated in the same 
pattern: C-E¹/16, C-S¹/16, and C-W¹/16. Finally, the ¹/16 corners on the section 
lines themselves follow a similar scheme. Their abbreviations refer to the 
section line on which they stand first, and then whether they are east or west 
from the quarter corner on the same section line. Therefore, on the north line 
of the section, there are the N-E¹/16 and N-W¹/16 corners. On the east section 
line, there are two ¹/16 corners: E-N¹/16 and E-S¹/16. The abbreviations applied 
to the ¹/16 corners on the south section line and the west section line are cre-
ated with similar logic.
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The upper portion of Figure 5.7 shows the normal subdivision of sections 
5, 6, 7, and 8 per the design of PLSS, and the lower portion shows a por-
tion of a township in Wyoming, T18N R89W of the Sixth Principal Meridian, 
as it actually stands. Portions of the west boundary, north boundary, south 
boundary, and the subdivisional lines were the subject of a dependent resur-
vey by a supervisory cadastral surveyor in 1963 under special instructions 
that restored some lost corners to their true original locations. The work 
was concerned with protecting the property rights that had arisen from the 
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original survey as well. For example, the fractional lots are shown as given 
on the original plat of the township, which was approved in 1884. In other 
words, the surveyor in 1963 did everything he could to reconstruct the posi-
tions of the lines and corners as they had existed after the original survey of 
1884. And this is consistent with the mandate for local surveyors throughout 
the states that were carved from the public domain. When working in the 
PLSS, the objective is always to preserve or reestablish the original locations 
of the lines and corners if at all possible.

However, by comparing the two parts of Figure 5.7, one can see that there 
is often a difference between the pure design of the PLSS and the actual sec-
tion lines and corners as the original surveyor laid them out on the ground. 
Nevertheless it is certain that the monuments set and lines run on the ground 
by that original surveyor are conclusive. The corner monuments originally 
set and the section lines originally run are inviolable. Here are some of the 
fundamental rules that control in the PLSS system and underline the point:

First: That the boundaries of the public lands, when approved and 
accepted, are unchangeable.

Second: That the original township, section and quarter-section corners 
must stand as the true corners which they were intended to represent.

Third: That the quarter-quarter-section corners not established in the 
original survey shall be placed on the line connecting the section and 
quarter-section corners, and midway between them, except on the last 
half mile of section lines closing on the north and west boundaries of the 
township, or on the lines between fractional or irregular sections.

Fourth: That the center lines of a section are to be straight, running from 
the quarter-section corner on one boundary to the corresponding corner 
on the opposite boundary.

Fifth: That in a fractional section where no opposite corresponding quar-
ter-section corner has been or can be established, the center of such sec-
tion must be run from the proper quarter-section corner as nearly in a 
cardinal direction to the meander line, reservation or other boundary of 
such fractional section, as due parallelism will permit.

Sixth: That lost or obliterated corners of the approved surveys must be 
restored to their original locations whenever this is possible. (BLM 1979, 6)

It is interesting to note the practical effect of these rules. Section lines and 
quarter-section lines are correct as they were originally run, even though 
typical regular section lines are not 1-mile long, and quarter-section lines 
are not usually a half-mile long. It is usual that the quarter corners of a sec-
tion are not actually midway between section corners, nor are they in line 
with section corners. Nevertheless, these monuments are the corners they 
are intended to represent, exactly. Despite the fact that section lines most 
often do not have a cardinal bearing and the legal center of the section is 
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not the geometric center of the section, the lines as originally surveyed are 
right. Even though none of the angles at the section corners is 90° and the 
opposite sides of the section are not parallel to each other, the lines as origi-
nally surveyed are conclusive. Few sections actually contain 640 acres; in 
fact, other legal subdivisions rarely contain their theoretical acreages. And 
the actual dimensions of a section measured today seldom match the origi-
nal record dimensions. But despite all these deviations from the plan, the 
section is absolutely correct as it was originally laid out on the ground. This 
overarching principle was codified long ago, by the Act of February 11, 1805. 
Corners and lines established during the original government survey are 
unchangeable.

That is not to say that there are no limits to how far a section, township, or 
quadrangle may depart from the ideal in the PLSS. The general rectangular 
limits are:

	 1.	 For alinement, the section’s boundaries must not exceed 21′ from 
cardinal in any part, nor many opposite (regular) boundaries of a 
section vary more than 21′.

	 2.	 For measurement, the distance between regular corners is to be 
normal according to the plan of survey, with certain allowable 
adjustments not to exceed 25 links in 40 chains. Township exteri-
ors, or portions of exteriors, are considered defective when they do 
not qualify within the above limits. It is also necessary, in order to 
subdivide a township regularly, to set a third limit, as follows:

	 3.	 For position, the corresponding section corners upon the opposite 
boundaries of the township are to be so located that they may be 
connected by true lines which will not deviate more than 21′ from 
cardinal. (BLM 1973, 70)

However, it should be noted that these rules apply to work done under 
the current Manual of Surveying Instructions 1973. If the surveying were done 
under other older instructions—and most of the public domain was sub-
divided long ago—then the work is not necessarily bound by these limits. 
Along that line, it is important to remember that the rules that governed the 
original establishment of the corners and lines in the PLSS have not always 
been exactly as they are today. For example, there was no accommodation 
of the convergence of meridians, and sections were numbered sequentially 
from south to north in the original seven ranges of sections laid out in 1785 
in Ohio. Nevertheless, no attempt would be made to alter those sections to 
harmonize with rules in place today. For example, prior to 1855, the distance 
between standard parallels was often 30 miles or more. In some cases, the 
parallels were as much as 60 miles apart. When working with townships 
and sections established in that era, it is important to recognize that they 
are correct, even though the current instructions place the distance between 
standard parallels at 24 miles. There are many differences between current 
guidelines and those of the past.
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Here is an example of the evolution of section and quarter-section cor-
ners. It is only one instance of official PLSS surveying that was done con-
trary to the current plan, but was nevertheless absolutely correct at the 
time. In the Act of May 18, 1796, there was an economy measure. Only 
every other township was actually subdivided into sections. And in those 
townships that were subdivided, only every other section line was run on 
the ground. In other words, in half of the townships, the section lines were 
run every 2 miles, and corners were marked on those lines every mile.

The Act of May 10, 1800, was passed to amend the Act of May 18, 1796. It 
had proven impractical to expect the purchasers of sections to set the many 
corner monuments that the government surveyors had not established. They 
were stubbing them in by the easiest methods, and that was producing large 
errors. Therefore, in 1800, Congress mandated that section lines would hence-
forth be run every mile, not every 2 miles. Corner monuments would be set 
each mile on the north-south lines and every half mile on the east-west lines. 
Thereby, the system evolved from setting no quarter corners to setting only 
those on latitudinal lines. Also, the excesses and deficiencies of the measure-
ments would be placed in the last half mile on the north and west boundary 
of the township. It took another 5 years, and the Act of February 11, 1805, for 
the quarter corners on the meridional section lines to be called for.

It follows that, when working with sections that were established before 
1805, it might be valuable to recall that all the quarter corners were not set in 
the original survey. This is only one of many discrepancies from the current 
instructions that guide the PLSS today.

Another example: the Act of June 1, 1796 mandated the establishment of 
townships that were, and still are, 5 miles on a side instead of 6 miles. Congress 
had segregated a portion of land known as the U.S. Military Reserve to sat-
isfy the military warrants it had issued to pay Revolutionary War soldiers. 
These warrants were in multiples of 100 acres, and 6-mile townships contain 
23,040 acres, not evenly divisible by 100. The 5-mile townships contained 
16,000 acres and were much more convenient to the purpose. And that is not 
the only region in which special instructions stipulated deviations from the 
normal plan.

There are two eminent books that are reliable guides in this regard. The 
Manual of Surveying Instructions 1973 and A History of the Rectangular Survey 
System are both published by the U.S. Government Printing Office. The former 
book was compiled under the auspices of the Bureau of Land Management, 
Department of the Interior, and is a clear, concise manual that sets out the 
guidelines for the current Public Land Survey System plan. The latter book 
was written by C. A. White and is also published by the U.S. Government 
Printing Office. It is a valuable resource that explains the rules and regula-
tions that governed the PLSS from the beginning to today. It also includes 
reproductions of many of the former manuals and instructions issued by 
surveyors general in the past. Together, these books provide practical and 
valuable insights to both the past and the present PLSS.
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Finally, the Public Land Surveying System was the most extensive sur-
veying project ever undertaken. It has been extraordinarily successful. It 
has evolved. The rules governing its execution have been practical. Still, 
there are large portions of mountains, wilderness areas, and deserts that 
have not been surveyed in the PLSS. Unfortunately, unofficial township and 
section lines are sometimes drawn over and across these areas to provide 
the continuation of the system where it has never actually been applied by 
government survey. As has been described here, the general PLSS plan does 
not necessarily correspond exactly to the actual corners and lines on the 
ground, but it is best to recall that it is always those actual corners and 
lines, as originally surveyed on the ground, that are correct and conclusive. 
Where no such corners and lines were ever run, the PLSS system is not in 
place at all.
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Exercises

	 1.	Which of the following general statements about initial points in the 
PLSS is incorrect?

	 a.	 Most of the initial points were already in place when they were 
first mentioned in a manual of instruction.

	 b.	 A latitude and longitude were chosen and an initial point set 
at that coordinate before the PLSS survey was commenced in a 
region.

	 c.	 The geographic coordinates of the initial points were determined 
astronomically.

	 d.	 Several of the initial points still retain their original monumentation.

	 2.	Which of the following states has no initial point within its 
borders?

	 a.	 Wyoming

	 b.	 Oregon

	 c.	 Iowa

	 d.	 Montana

	 3.	Which of the following categories of corner monuments was not 
and is not set during an official government survey, unless it is done 
under special instructions?

	 a.	 Section corners

	 b.	 Quarter-section corners

	 c.	 Township corners

	 d.	 Quarter-quarter corners

	 4.	Under normal conditions and by current instructions, which of the 
following statements is true concerning both the subdivision of a 
quadrangle into townships and the subdivision of a township into 
sections?

	 a.	 The survey begins on the south line, and corner monuments 
are set every 40 chains on parallels of latitude and meridians of 
longitude.

	 b.	 The official units of the survey are chains and corner monuments 
as set by the original surveyor are inviolable.
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	 c.	 The random and true line procedure is used on the latitu-
dinal lines, and the east and south lines are the governing 
boundaries.

	 d.	 The survey begins on the south line; corner monuments are set 
every 40 chains; and the lines are intended to be parallel.

	 5.	Which of the following have remained unchanged since the begin-
ning of the PLSS?

	 a.	 The pattern of numbering sections in a township

	 b.	 The method of subdividing a township into sections

	 c.	 The size of a township

	 d.	 The principle that land in the public domain must be surveyed 
before it is sold

	 6.	Under normal conditions and by current instructions, which sec-
tion’s boundaries are completed last in the subdivision of a regular 
township?

	 a.	 Section 1

	 b.	 Section 6

	 c.	 Section 31

	 d.	 Section 36

	 7.	An original corner monument that was approximately 72 miles west 
and 95 miles north from an initial point is most probably which of 
the following?

	 a.	 It is a closing corner at the intersection of the Third Guide 
Meridian West and the Fourth Standard Parallel North.

	 b.	 It is a standard corner on the Third Guide Meridian West at the 
southwest corner of Section 6, Township 16 North, Range 12 
West.

	 c.	 It is a standard corner on the Fourth Guide Meridian West at 
the southwest corner of Section 6, Township 12 North, Range 15 
West.

	 d.	 It is a closing corner at the intersection of the Third Standard 
Parallel North and the Fourth Guide Meridian West.

	 8.	What aliquot part of a section has the following corners; C¼, NW¹/16, 
C-N¹/16, and C-W¹/16?

	 a.	 E½ SE¼

	 b.	 NW¼
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	 c.	 NW¼ NW¼
	 d.	 SE¼ NW¼

	 9.	Which of the following statements about the difference between a 
quarter-quarter of a section and a fractional lot is correct?

	 a.	 A quarter-quarter of a section contains 40 acres; a fractional lot 
does not.

	 b.	 A quarter-quarter of a section is an aliquot part; a fractional lot is 
not.

	 c.	 A quarter-quarter of a section is numbered; a fractional lot is 
not.

	 d.	 The corners of a quarter-quarter section are set during the origi-
nal government survey; the corners of a fractional lot are not.

	 10.	When a standard, township, or section line intersects a meander line 
along the high-water mark of a navigable body of water, what sort of 
a corner is established?

	 a.	 A section corner
	 b.	 A closing corner
	 c.	 A meander corner
	 d.	 A standard corner
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Explanations and Answers

1. Explanation:

	 Initial points are the origins of the PLSS. There are 32 in the con-
terminous United States, 5 in Alaska, and several others still have 
their original monuments. When they were first mentioned in the 
Manuals of Instructions in 1881, most of the 37 points were already in 
place. However, the criteria for setting initial points never included 
the idea that they needed to be set at a particular latitude and longi-
tude. Their latitudes and longitudes were determined astronomically 
and recorded, but they were not placed at previously determined 
coordinates.

Answer: (b)

2. Explanation:

	 PLSS surveys in Iowa are referred to the Fifth Principal Meridian, 
which is in Arkansas. However, there is no initial point in Iowa. 
There are several other states in which there is no initial point.

Answer: (c)

3. Explanation:

	 Quarter-quarter corners are not set under current instructions, and 
they have not been previously mandated. However, special instruc-
tions can be issued that would stipulate that such corners be monu-
mented during the official survey.

Answer: (d)

4. Explanation:

	 While it is true that the subdivision of a quadrangle into townships 
and the subdivision of a township into sections both begin on the 
south line, only the boundaries of townships are intended to be geo-
graphical lines. The section lines in a township are intended to be 
parallel to the south and east boundaries of the township. Corner 
monuments are typically set every 40 chains, and chains are the offi-
cial units of the PLSS. Original monuments and lines established 
during the original survey are inviolable.

Answer: (b)
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5. Explanation:

	 Until 1796, the numbering of sections in a township was done in a 
north-south scheme; since then, the east-west zigzag pattern used 
today has been unchanged. Also, in 1796, only every other township 
was actually subdivided into sections. Moreover, in the half of the 
townships that were subdivided, section lines were run only every 
2 miles, and corners were marked on those lines every mile. Under 
the Act of June 1, 1796, 5-mile townships were surveyed in the land 
set aside as the U.S. Military Reserve to satisfy the military warrants 
Congress had issued to pay Revolutionary War soldiers. However, 
the principle that land must be surveyed before it is sold has been 
fairly consistent in the history of the PLSS.

Answer: (d)

6. Explanation:

	 Under normal circumstances, the subdivision of a township into sec-
tions begins at the southwestern corner of Section 36 and continues 
through the eastern range of sections. That work is followed west 
consecutively by each of the six ranges of sections in the township. 
Therefore, the last section completed is Section 6 in the northwestern 
corner of the township.

Answer: (b)

7. Explanation:

	 There are 24 miles between guide meridians. Therefore, the distance 
from the principal meridian to the Third Guide Meridian West is 72 
miles. The corner in the question is on the Third Guide Meridian 
West. There are also 24 miles between standard parallels. Therefore, 
the distance from the baseline to the Fourth Standard Parallel North 
is 96 miles. The corner in the question cannot be on the Fourth 
Standard Parallel North. However, it is in the township whose north-
west corner is at the intersection of the Third Guide Meridian West 
and the Fourth Standard Parallel North. That is Township 16 North 
and Range 12 West. It is the corner in that township 1 mile south 
of the Fourth Standard Parallel North. It is the southwest corner of 
Section 6.

Answer: (b) 
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8. Explanation:

	 The 40-acre aliquot part known as the SE¼ of the NW¼ has the cor-
ners described.

Answer: (d)

9. Explanation:

	 A quarter-quarter of a section does not necessarily contain 40 acres, 
and it is possible for a fractional lot to contain 40 acres and still not 
be an aliquot part. A fractional lot is a subdivision of a section that 
is not a half or a quarter of the previously larger part of a section. 
On the other hand, a quarter-quarter of a section is an aliquot part. 
A fractional lot is numbered; a quarter-quarter of a section is not. 
Finally, neither the corners of the quarter-quarter of a section nor 
the corners of a fractional lot are monumented during the original 
survey unless such work is specified by special instructions.

Answer: (b)

10. Explanation:

	 Meander lines do not describe legal boundaries. They are used to 
set off certain bodies of water from the PLSS. Meander corners are 
established where the meander line along the mean high water is 
intersected by a standard, township, or section line.

Answer: (c)
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