

Designing Management Information Systems

This page intentionally left blank

Designing
Management
Information
Systems

Hans van der Heijden

1

3
Great Clarendon Street, Oxford ox2 6

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Hans van der Heijden 2009

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2009

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk

ISBN 978–0–19–954632–9 (Hbk.)
ISBN 978–0–19–954633–6 (Pbk.)

1 3 5 7 9 10 8 6 4 2

� PREFACE

Management information systems produce the information that managers
use to make important strategic decisions. They form the basis for manage-
ment reports, both financial and non-financial, and as such they are a vital
component of modern business management. Few managerial decisions
are taken without consulting the data captured by management informa-
tion systems.

This book covers the essential managerial skills that are necessary to
design these systems. It is written for managers, those studying business
management, and those developing management information systems on
behalf of management.

I was motivated to write this book because many managers are, in my
experience, rather poor designers of their own management reports. They
often struggle to make full use of the data that is available to them. It
is true that many use management information systems in one form or
another, usually implemented through a series of spreadsheets. Indeed
some have access to very sophisticated ‘business intelligence’ systems. Yet
these spreadsheets (and their sophisticated counterparts) are often ill-
organized, and tend to obfuscate rather than enlighten. In addition, there is
not a great deal of material available for those managers wishing to improve
their skills in designing management information systems. The existing
books on information systems often emphasize the technological rather
than the managerial aspects.

This book aims to address these issues. In writing it I have firmly adopted
the managerial perspective, and I have not aimed to compromise for the
benefit of the more technically minded. You will find few references to
specific information technologies in this book, because this book is not
about technology. You will not have to be, indeed ought not to be, a
computer programmer to be able to benefit from this book.

Three core assumptions form the basis of this book and I should like to
summarize them here.

vi PREFACE

Information systems and information technology: It is important to rem-
ember that information systems and information technology are
distinct concepts. Information technology is the carrier of data and
information systems are applications designed to make sense of that
data. I realize this is a rather trivial statement for many, but it is often
forgotten and I do not mind repeating it here. Too often managers
equate information systems with information technology and with-
draw from the subject as a consequence.

Preventing information overload: Much discussion on the design of man-
agement information systems should revolve around the prevention
of information overload. Information processing skills are essential
to deal with information overload, and they should be used to inform
and shape the design of the management information system. I believe
it is important that we elevate the status of these information process-
ing skills, and that we place them firmly in the required toolkit of any
manager.

Supporting management decisions: My third assumption is that it is im-
portant not to lose sight of the managerial decisions for which we are
collecting data and designing systems. Any management information
system needs to make clear what purpose it serves, and what types of
decisions it will support. If we cannot make this clear, the information
system will be useless.

The first part of this book is orientated towards developing key transfer-
able skills to deal with managerial information. I will be focusing on four
competences: structuring data, querying data, aggregating data, and visual-
izing data. Together I believe these competences form the core information
processing toolkit that I would encourage any manager to study.

In the second part of the book, I will cover two major types of managerial
decisions: the monitoring of key performance indicators and the selection
of alternatives from a list of available options. These are the decisions for
which management information systems can play a particularly helpful
role, and I am covering them in some detail to emphasize that we need to
design management information systems for specific types of managerial
decisions.

In writing this book, I was fortunate enough to enjoy the construc-
tive feedback from three colleagues and friends, and I should like to

PREFACE vii

acknowledge them here: Thomas Acton, Thomas Chesney, and Daniel
Goersch. They have spotted many errors in earlier drafts of this book. Any
remaining errors are, of course, my own. Finally, my thanks go to Maddy
and to my family for their love and support throughout.

United Kindgom Guildford
May 2008

This page intentionally left blank

� CONTENTS SUMMARY

LIST OF FIGURES xv

LIST OF TABLES xvii

1 Management information systems 1

PART I DESIGNING INFORMATION SYSTEMS

2 Structuring data, part 1 19

3 Structuring data, part 2 37

4 Querying data 46

5 Aggregating data 63

6 Visualizing data 81

PART II SUPPORTING MANAGEMENT DECISIONS

7 Monitoring key performance indicators 103

8 Selecting alternatives 117

9 Epilogue 133

APPENDIX 1 Transaction data for sales department case 136

REFERENCES 139

INDEX 143

This page intentionally left blank

� CONTENTS

LIST OF FIGURES xv

LIST OF TABLES xvii

1 Management information systems 1

Key concepts and themes 1

Introduction 1

Management information systems defined 2

Types of systems 3

Design 8

Information overload 10

Structure of the book 12

Case description 15

Further reading 16

PART I DESIGNING INFORMATION SYSTEMS

2 Structuring data, part 1 19

Key concepts and themes 19

Introduction 19

Entities 20

Attributes 22

Attribute types 25

Relationships 27

Many-to-many relationships 33

Further reading 35

3 Structuring data, part 2 37

Key concepts and themes 37

Introduction 37

UML 38

Objects and associations 39

Generalizations 41

State transitions 43

Further reading 45

xii CONTENTS

4 Querying data 46

Key concepts and themes 46

Introduction 46

Selecting attributes 47

Selecting specific instances 52

Joining R-tables 55

Multiple joins and de-normalization 58

Further reading 62

5 Aggregating data 63

Key concepts and themes 63

Introduction 63

Manipulating aggregated tables 64

Data aggregation scales 67

Aggregation options 71

Summary tables and frequency tables 73

Cross-tabulations and pivot tables 77

Further reading 80

6 Visualizing data 81

Key concepts and themes 81

Introduction 81

Visualizing one variable 82

Visualizing two variables 84

Visualizing three or more variables 90

Dynamic charts 96

Colour and other visual effects 98

Further reading 100

PART II SUPPORTING MANAGEMENT DECISIONS

7 Monitoring key performance indicators 103

Key concepts and themes 103

Introduction 103

Identifying key performance indicators 104

Adding bandwidth 108

Adding comparative indicators 110

Exceptions 111

Sensitivity analysis 113

Further reading 115

8 Selecting alternatives 117

Key concepts and themes 117

Introduction 117

CONTENTS xiii

The decision matrix 118

Decision strategies 119

Shortlisting 126

Utility mapping 128

Further reading 131

9 Epilogue 133

APPENDIX 1 Transaction data for sales department case 136

REFERENCES 139

INDEX 143

This page intentionally left blank

� LIST OF FIGURES

Chapter 1

1 TPS/MIS configuration 1. Arrows indicate flow of data 4

2 TPS/MIS configuration 2. MIS separated from TPS 5

3 TPS/MIS configuration 3. Introduction of data warehouse 6

4 Designing management information systems 13

Chapter 2

1 Entities 21

2 Attributes 23

3 Relationships 27

4 One-to-many relationships 28

5 Extra endings for ER relationships 29

6 ER diagram with one-to-many relationships 31

7 ER diagram with categorical entities 32

8 An extra relationship? 33

9 An entity to replace a many-to-many relationship 34

10 A complete ER diagram 34

Chapter 3

1 Classes with attributes and attribute types 40

2 Extra endings for associations 40

3 Classes with methods 41

4 Generalization 42

5 Attribute inheritance 42

6 A state transition diagram for the class Customer 44

7 Objectifying states 44

xvi LIST OF FIGURES

Chapter 4

1 De-normalization 60

Chapter 5

1 Slicing and dicing 65

Chapter 6

1 Dot scale, box plot, and line plot 83

2 Histogram 84

3 Bar chart 85

4 Pie chart and stacked bar chart 85

5 Visualization of summary tables 86

6 Visualizations of sample cross-tab from Table 5.12 on page 78 87

7 Scatter plot 89

8 Line chart 90

9 3D scatter plot 91

10 Bubble chart 92

11 Scatter plot matrix 93

12 Parallel coordination plot 94

13 Radar chart 94

14 Chart pointer 96

15 2D and 3D pie charts 99

Chapter 7

1 The balanced scorecard 107

2 Lower control limit (LCL) and upper control limit (UCL) 109

3 Competitive comparison between Alpha, Beta, and Gamma 111

4 Tornado chart 114

� LIST OF TABLES

4.1 Source data for a management information system 61

5.1 Sample table with transaction data 66

5.2 Sample table rolled up by order 66

5.3 Sample table rolled up by product 66

5.4 Derived and aggregated values 73

5.5 Derived attribute week number 74

5.6 Sum of sales revenue broken down by sales order 75

5.7 Sum of sales revenue broken down by sales agent 75

5.8 Sum of sales revenue broken down by sales team 76

5.9 Sum of sales revenue broken down by week number 76

5.10 Count of products sold by product sold 77

5.11 Count of revenue by revenue bin 77

5.12 Cross-tabulation of sales revenue broken down by sales agent and
by week 78

5.13 Cross-tabulation of products sold broken down by revenue and by
product sold 78

5.14 Cross-tabulation of products sold broken down by revenue and by
product sold 79

6.1 Sample multivariate data 88

7.1 A table with a fictitious data set 112

7.2 Table 7.1 with extreme values only 112

8.1 Search and select the best supplier 118

8.2 Eight decision strategies 124

8.3 Examples of conditional selection 127

8.4 Utility mappings 129

8.5 Calculating the utility (U) 130

8.6 Suppliers ranked by utility 131

This page intentionally left blank

1 Management

information systems

KEY CONCEPTS

Data Management information system
Information Transaction processing system
Information system Information overload

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Explain the differences between transaction systems and management information
systems.

2. Outline a range of forms in which management information systems are commercially
available.

3. Discuss the role of information overload in the design of management information
systems.

1.1. Introduction

To start off this book I shall first provide a broad introduction to
a number of important terms and concepts. I will cover some basic
definitions of data, information, and information systems, and then discuss
the differences between transaction processing systems and management
information systems. This will enable us to discuss the configurations
of transaction and management systems that are commonly in use in
organizations.

The design process also needs a few introductory words, as it often
means different things to different people. I shall discuss the different views
of design and point out the one that is adopted in this book.

An important and recurring concept in this book is the concept of
information overload. It is important because our designs will always have

2 MANAGEMENT INFORMATION SYSTEMS

to guard against the threat of information overload. Also, all information
processing skills deal with the reduction of information overload in some
form or another. We shall be referring to the concepts of information
overload frequently in the remainder of this book, and I will introduce it
in this chapter too.

The last part of this chapter contains an overview of the chapters of this
book. As I intend to use a single case to illustrate the issues and concepts, I
shall also introduce that case at the end of this chapter.

1.2. Management information systems defined

Before we can discuss the design of management information systems, we
need to go through a number of terms and definitions. These are essential
to understand the rest of the material.

First of all, the definitions of data and information. Data refers to raw
facts that describe a particular phenomenon. For example, the amount
of sales generated by a particular sales agent on a particular day is data.
The number of television programmes that you watch on any particular
evening is data. Your favourite colour is data. The word ‘data’ is often
treated as singular but it is actually plural. The correct singular form for
data is datum (Latin for a given, a fact). Datum is rarely used, which is a
bit unfortunate because linguistically it would be more precise to refer to a
single fact as a datum, and to a set of facts as data.

Information, then, is data that has a particular meaning in a particular
context (Laudon and Laudon 2004; Haag, Cummings, and Phillips 2007).
For example, if I want to know the sales performance of a particular sales
agent, the volume of sales generated by that agent would be information
for me. Your favourite colour would not. On the other hand, if I wanted to
give you a birthday gift, your favourite colour would be information for me
and the sales data would not (presumably). You see that the context gives
the data its meaning, and that data can turn into information depending
on the context.

Let us move on to the definition of an information system as used in
this book. An information system is a set of interrelated components that
collect (or retrieve), process, store, and distribute information to support

MANAGEMENT INFORMATION SYSTEMS 3

decision-making in an organization (Laudon and Laudon 2004). So, an
information system takes data as input, and processes it into output infor-
mation for the benefit of decision-making.

There is another set of information system definitions which uses the
term ‘system’ a bit more liberally (e.g. Haag et al. 2007). Those definitions
count not only hardware and software components as part of the system
but also the people that collect the data and the processes that they carry
out. In this sense, an entire organization can be viewed as one big informa-
tion system, processing data from the environment into information for
the benefit of, say, the management. To avoid any confusion between the
two types of definitions, we shall avoid these more inclusive definitions of
information systems in this book.

The systems that we shall talk about in this book are classified as formal
information systems, that is, they rest on accepted and fixed definitions of
data and procedures for collecting, sorting, processing, disseminating, and
using these data (Laudon and Laudon 2004). The data that I will describe
is structured, and the processes that shape the data into information
are also structured. Contrast this to informal information systems, which
rely on unstructured definitions of data: anecdotal customer feedback and
office gossip would be good examples. Most managers would argue that
the informal system is as important as the formal one, indeed many would
argue it is the most important. In any case it is useful to understand the
distinction between these two types, and to appreciate the use of both in
management decision-making.

Finally, a management information system is an information system that
provides output to a manager. The term ‘manager’ refers to decision-
makers in organizations only, which is admittedly a somewhat narrow view
of the concept, but it is the one we shall be using in this book. This is
of course not to suggest that management information systems cannot be
developed to manage other things, say, your personal wealth.

1.3. Types of systems

A distinction is often made between management information systems and
transaction processing systems.

4 MANAGEMENT INFORMATION SYSTEMS

Transaction
Processing

System

Employees
Manager

Figure 1 TPS/MIS configuration 1. Arrows indicate flow of data

Transaction processing systems are those systems that provide support to
the operations of the organization. Data such as sales orders, production
orders, and accounting data is input into these systems on a daily basis.
The data is then used to provide information to other employees working
in the organization. For example, the sales department enters sales orders
into the transaction processing system. The finance department uses this
data to generate an invoice. The accounting department uses this data to
update the organization’s general ledger. The focus in these systems is thus
often on capturing data, and on using that data to run the operations of
the organization.

In contrast to these transaction processing systems, management infor-
mation systems provide support for tactical and strategic decisions. The
information that these systems provide will not affect operations in the
short term, but will form the basis for longer-term decisions, with broader
and wider implications for operations. The focus in these systems is thus
on summarizing and analysing transaction data, for the benefit of effective
managerial decision-making.

In many small organizations, the transaction processing system doubles
as the management information system. Although not exclusively designed
for management purposes, most transaction processing systems do pro-
vide a wide range of management reports. Managers then use the same
system as the employees, often at the same time. Figure 1 visualizes this
configuration.

This works well for organizations and departments of small size, but it
quickly gets out of control when the organization grows and the volume
of transaction data increases as a consequence. This is for two reasons.
The first reason is that the data in the transaction processing system can
become very volatile. The system is often used by many employees, who
continuously update the system with the latest information. It is thus

MANAGEMENT INFORMATION SYSTEMS 5

Transaction
Processing

System

Management
Information

System

Employees Manager

Figure 2 TPS/MIS configuration 2. MIS separated from TPS

entirely possible that a manager sets aside time to analyse the data from
the system, and finds that by the end of the analysis the underlying data is
already different from the one at the start.

The second reason is more of a technical nature. A manager will often
want to look at transaction data in different ways. Say, for example, we want
to look at sales revenue by country, by sales team, and by customer. All
these reports require computing processing power, which can sometimes
(in the case of thousands of sales orders) be very significant. So much
so that the manager starts to severely slow down the performance of the
information system while it is in use by other employees.

It is for both reasons that the data set for transaction processing systems
and the data set for management information systems are often separated.
We make a snapshot of the data that is in the transaction processing system,
and use that snapshot as the basis for our management information system.
Management information systems are thus often read-only systems, using
a copy of the transaction data to analyse and study. Figure 2 visualizes this
configuration.

A benefit of the introduction of an intermediate step between transac-
tion data and management data is that we can use the ‘in-between’ stage
to merge data from several transaction processing systems. For example, if
we had a separate sales system and a separate inventory system, we could
combine data about sales orders and data about inventory levels to identify
gaps between what sells well and what the organization still has in stock.

In organizations with very large transactional data sets, an entirely new
data set is often created in preparation for the management information
system. It is common to refer to that intermediary data set as a data ware-
house. We shall refer to the ‘incoming’ transaction processing systems as
source systems, in that they provide the source data for the data warehouse.
Figure 3 visualizes this configuration.

6 MANAGEMENT INFORMATION SYSTEMS

Transaction
Processing

System

Management
Information

System

Data
Warehouse

Transaction
Processing

System

Transaction
Processing

System

Manager

Employees

Figure 3 TPS/MIS configuration 3. Introduction of data warehouse

I do certainly not want to give the impression that this process of trans-
ferring data from one system to another is easy and straightforward. In
fact, I hope that by the end of this book you will appreciate how complex
and difficult this transformation can actually be. Problems can arise, for
example, when there is a time lag between the transfer of data, in which case
the management information is not entirely up to date. It is also possible
that the data structures from the source systems are not quite equal to the
data structures from the management information system, in which case a
mapping needs to be made. Such a mapping may not always be satisfactory.
Commercial system vendors pay substantial attention to the interfaces
between transaction and management systems, and many management
information system providers have standard interfaces to gain access to
widely used transaction processing systems.

Two related terms that you sometimes encounter, and that warrant
mention here, are OLTP and OLAP. OLTP stands for Online Transaction
Processing and OLAP stands for Online Analytical Processing. These terms
were introduced several years ago to differentiate between transaction
processing systems and management systems.

I have already mentioned commercial vendors of management informa-
tion systems. It is important to realize that transaction processing systems
and management information systems come in many different shapes and
sizes. Below I want to set out a number of common forms in which these
are commercially available.

MANAGEMENT INFORMATION SYSTEMS 7

Spreadsheet: Spreadsheets are software applications that organize data
into worksheets: free-format, table-like structures with rows and
columns. The data is captured into intersections of rows and columns,
known as cells. Not only can data be captured, but it can also be
processed for further analysis. This is facilitated in that cells can be
derivates of other cells. For example, one cell can provide the total
of a set of numbers in other cells. In such further processing of data,
spreadsheets are incredibly versatile. They are omnipresent in indus-
try and I assume they need very little introduction.

In small organizations or departments, we often see both transac-
tion processing systems and management information systems imple-
mented using spreadsheets.

Database: The database provides a far more structured representa-
tion of data, and is usually to be preferred over the spreadsheet
when data structures become increasingly large and more complex.
Small databases are often part of office application suites, so they
are inexpensive to start off with. As the transaction data grows in
size, more professional database systems would be used to struc-
ture and store them. Advanced features of more professional data-
base systems include multi-user access, authorization, backup, and
so on.

Reporting package: Management information can be provided through
reporting packages, which specialize in the provision of management
information from databases. You can use either the built-in func-
tionality that some databases provide or a third-party (commercial)
report generator.

Integrated systems: An integrated system, often called enterprise resource
planning system, or simply enterprise system, integrates the function-
ality of several individual software packages into one. This leads to
efficiency and it avoids complex and error-prone data sharing between
the individual packages. It is not without complexity though, because
often these systems need substantial configuration to make them
work. Integrated enterprise systems are common in larger organiza-
tions with multiple branches.

The integrated system provides of course a substantial amount of
information for managerial decision-making. There are usually links

8 MANAGEMENT INFORMATION SYSTEMS

with spreadsheets too, so that the data can be subject to further
processing and analysis.

Business intelligence system: Business intelligence systems represent the
top end of management information systems. They often work on
the basis of a data set from an integrated system. These systems
provide integrated analysis capabilities and extended visualization of
the transaction data. We also see many spreadsheet applications in
this situation. Some business intelligence systems provide additional
processing and preparation of data which is then exported to the
spreadsheet. Other systems are more tightly integrated with spread-
sheets, and use the same user interface to provide extended analysis
capabilities.

1.4. Design

Design is one of the most overused terms in the field of information
systems. So let us first have a look at what the word really means. Designing
is first and foremost an exercise in shaping: we have a set of loose elements
that we organize and arrange into a structure that is more than the sum
of its parts. We call the result of this shaping exercise the ‘design’, and
we can attribute certain characteristics to it, such as its desirability, its
attractiveness, or its fitness for a particular purpose. This is true for every-
thing that we design, whether it is a house, a sculpture, or an information
system.

So what is it that we shape when we design a management information
system? I would argue that we shape data from transaction systems into
management information, for the purpose of managerial decision-making.
It is this perspective on design that we will adopt in this book. We shape
data through structuring, querying, aggregation, and visualization. When
we look at the results of our design, we judge its suitability by the degree to
which it can support managerial decision-making.

The term design is often encountered in other areas of information
systems development as well. I should like to mention a few, and point out
the similarities and differences between the use of the term in these areas
and the view adopted in this book.

MANAGEMENT INFORMATION SYSTEMS 9

Designing solutions to problems: We can conceptualize design as part
of a problem-solving cycle. This conceptualization was put forward
by Herbert Simon, the 1978 Nobel Prize winner in economics. He
argued that problem-solving can be broken down into three phases:
intelligence, design, and choice. In the intelligence phase, you explore
and analyse the problem. In the design phase, you develop a range
of possible solutions to the problem. In the choice phase, you decide
which of these possible solutions is the most appropriate one.

This is a very high-level conceptualization of design. Using this
approach, we can view the whole development of the manage-
ment information system as a possible solution for a management
problem.

Designing data structures: A more narrow view of design is the analysis
of data structures and the design of the data model. This is a very
important exercise that takes place as part of the development of a
management information system. We shall pay significant attention
to the structuring of data sets for management decision-making.

Designing database queries: This perspective of design focuses on the
creation of queries, instructions to the database as to what subset of
data to retrieve from the data that is available to us. The structuring
of the query is often called query design. Again this is an important
part of designing information systems and we shall cover it in this
book.

Designing management reports: This view of design looks very specif-
ically at the end-product of the management information system,
the management report. It involves looking at options that involve
visual layouts, and whether data should be represented using tables or
using charts. We shall pay significant attention to the visual design of
management information as well in this book.

Designing system functionality: This is again a broader view of design,
in which the designer specifies the functionality of the information
system. It often encompasses data design mentioned previously. It is
also known as functional design.

Designing system configurations: We have seen that management infor-
mation systems can be part of different configurations. The identi-
fication of the most appropriate configuration is also called design.

10 MANAGEMENT INFORMATION SYSTEMS

It often involves more technical discussions on what system exports
what data. This is usually further specified as technical design, archi-
tecture design, or infrastructure design.

You can see that there are many interpretations of the term design. In
practice, it is important to be sensitive to the confusion that often arises
when information systems professionals talk of designing systems. One
professional may have an altogether different interpretation than the other.

1.5. Information overload

An important theme in the design of management information systems is
that managers (and indeed most people) struggle with the processing of
large sets of data. Given too much information they will quickly succumb
to a state that is known as information overload. This is a mental state where
being served with additional data becomes detrimental, not beneficial to
judgement.

Herbert Simon was among the first to realize that a surplus of informa-
tion should be connected to a shortage of something else. He is famous
for saying: ‘What information consumes is rather obvious: it consumes
the attention of its recipients. Hence a wealth of information creates a
poverty of attention, and a need to allocate that attention efficiently among
the overabundance of information sources that might consume it’ (Simon
1971). In other words: attention deficit and information overload are two
sides of the same coin.

Psychologists have been making good progress in finding out the lim-
its of our information processing capabilities. This is perhaps partly so
because such a question lends itself well to laboratory experiments. In
an experimental setting, researchers can present you with data, following
which they can measure your response to that data (e.g. your success at
recalling the data). If they present you with an increasing amount of data,
they can measure the extent to which you can keep responding successfully.
The idea is that after a certain amount of data, the quality of your responses
will start to suffer, up to the point where more data produces no more
successful responses.

MANAGEMENT INFORMATION SYSTEMS 11

The result of these and other experiments is that there seems to be
an upper limit of six or seven to our information processing capabilities,
irrespective of the form in which that information comes to us (Miller
1956; Pollack 1952). This limit of seven refers to the number of absolute
values on one attribute that we can identify and recall in our short-term
memory (Shiffrin and Nosofsky 1994).

Our limited capacity to deal with information should be an important
consideration in the design of information systems. Russel Ackoff famously
argued that the last thing a manager needs was more information: ‘I do
not deny that most managers lack a good deal of information that they
should have. But I do deny that this is the most important informational
deficiency from which they suffer. It seems to me that they suffer more
from an overabundance of irrelevant information’ (Ackoff 1967, p. 147).
We thus need to judge the appropriateness of a management information
system by the extent to which it can suppress irrelevant data.

The role of information systems in combatting information overload
has been put to the test in an important set of experiments conducted by
the University of Minnesota’s management information systems research
centre (MISRC). The Minnesota experiments, as they have come to be
known (Dickson, Senn, and Chervany 1977), represent one of the first
major advancements in research on information systems.

The experiments that this centre conducted were all based on manage-
ment games: games that simulate the operations of a fictional company,
and where players assume the roles of managers. At each turn of the
game, the players are presented with information about the current state
of affairs in the company. This could, for example, be inventory levels or
sales figures for certain brands. Given this information, the players take a
number of decisions, for example, which goods to purchase to replenish
inventory levels, or which marketing budgets to adjust for which brand.
These decisions were then incorporated in the game, and the situation for
the next turn is calculated.

The researchers varied the types of reports that these groups received
after each turn. At the end of the game a researcher can look at the perfor-
mance of each of the groups and see which group made the most profit.
You can then conclude which type of report was the most appropriate.

What did we learn from this and other research? First of all, when a
manager is provided with data, one cannot automatically assume that the

12 MANAGEMENT INFORMATION SYSTEMS

data will receive attention in the first place. A manager’s span of attention
is limited, and the level of interest in specific data can be highly personal.
Consequently, the attention devoted to data is entirely at the manager’s
discretion.

Second, the more data is provided, the more likely it is that each piece
of data will get less attention. This is simply because there will be more
demand for attention, and it is therefore more likely that the ‘available’
attention will be spread thinly over the data. Similarly, the less data you
provide, the more attention each datum is likely to get.

Finally, the more data you provide, the more unequal the division of atten-
tion can be for each datum. One should not automatically assume that a
manager will try to distribute the attention equally over all the data that is
available. This, again, is a highly personal process. Just like other people,
managers exhibit a number of cognitive biases. For example, they may
spend a disproportional amount of attention on the first or last piece of
data supplied.

The main lesson therefore is that an information system designer should,
wherever possible, ruthlessly economize on providing information. By
doing so the designer ensures that (1) the likelihood increases that the
manager will develop an interest and attend to the data, (2) avoid spreading
the manager’s attention too thinly, and (3) make it clear for the manager
where to spend attention, to avoid situations where the manager randomly
distributes attention all over the place.

There are two important ways to economize on the volume of transac-
tion processing data: data aggregation and data visualization. Data aggre-
gation provides summary statistics of underlying data. Data visualization
transforms tabular data into charts. We will look at each technique in
significant detail in the next chapters of this book.

1.6. Structure of the book

Previously I said that the design of management information systems is
the shaping of data from transaction processing systems into manage-
ment information for the purpose of management decision-making. There
are thus two important elements to discuss: the shaping of data into

MANAGEMENT INFORMATION SYSTEMS 13

1. Structure
 data using
 data model

Capture or
import

transaction data

3. Query data

4. Aggregate
 data

5. Visualize
 data

First part of design: Structuring the
data (Chapters 2 and 3). This
results in a data model.

The data model is converted into
a relational database structure.

The relational database is filled
with transaction data, either
through direct data capture or
through importing from other
source systems.

Second part of design: Querying
the data (Chapter 4). This results
in so-called de-normalized,
multidimensional tables, often
transferred to spreadsheets.

Monitoring key
performance

indicators

Selecting
alternatives

Third part of design: Aggregating
the data (Chapter 5). This results in
aggregated data (summary tables,
cross tabulations, etc.)

Fourth part of design: Visualizing
the data (Chapter 6). Charts can be
designed using query data or using
aggregated data.

The resulting tables and charts can
be used to support management
decisions such as monitoring
performance indicators (Chapter 7)
and selecting alternatives (Chapter 8).

2.

Figure 4 Designing management information systems

management information and their role in management decision-making.
The book is organized accordingly into two parts.

Figure 4 presents a graphical overview of the structure of the book.
The figure also represents a typical process flow of the design of a
management information system. You would start with data structuring
(step 1), and develop what is called a data model. The data model will
form the foundation for the database of the management information
system.

When the data model is finished and the database has been created, the
database would need to be filled (‘populated’ is the technical term) with

14 MANAGEMENT INFORMATION SYSTEMS

transactional data (step 2). Depending on the scope and size of the data,
this can be done either through direct data capture or through interfaces
from source systems. As we have seen previously, this is not necessarily a
straightforward process.

When the transaction data is in the system, we can start querying
that data in a variety of ways (step 3). Querying results in so-called de-
normalized, multi-dimensional tables. The meaning of these terms will
become clear later in the book, but for now it is sufficient to know that
these tables are essentially ‘projections’ of the underlying data. Such tables
are frequently imported into spreadsheets where they can be made subject
to further analysis.

The tables that are the result of the querying process are often very large,
and studying them will raise the possibility of information overload. We
thus need to proceed to the next steps of designing management informa-
tion systems, which involve aggregating (step 4) and visualizing the data
(step 5). These two skills, as we have seen earlier, are aimed at overcoming
information overload associated with large volumes of data. Aggregating
the data results in the tables and visualizing the data results in the charts
that are so common in management information reporting.

The book closely follows these five steps. Here is a brief overview of the
chapters of Part I:

Structuring data, part 1: This chapter discusses the basics of structuring
data sets. This allows us to understand the structure of data sets
from transaction processing systems, and to develop the structure for
management information systems.

Structuring data, part 2: This chapter discusses some more advanced
concepts of structuring data sets, including inheritance and entity life
cycles.

Querying data: This chapter discusses the retrieval of data from data
sets. It focuses on the design of queries to retrieve data from the data
structures.

Aggregating data: This chapter as well as the next one focus on the two
ways of reducing information overload in management information
systems. The first technique is aggregation.

Visualizing data: This chapter discusses the ways that management data
sets can be visualized.

MANAGEMENT INFORMATION SYSTEMS 15

The second part of the book deals with two specific management decisions,
and how the design of information systems can be judged by the extent to
which they support these decisions. Here is a brief overview of them:

Monitoring key figures: An important task of a manager is to examine key
figures and to monitor whether anything unusual is happening and
whether everything is going according to plan. This chapter looks at
this particular type of decision and covers the support of management
information systems in more detail.

Selecting alternatives: Another important task of a manager is to select
one alternative out of many. For example, the manager may need
to select a suitable candidate for a job vacancy out of a range of
applicants. Or the manager may need to select a suitable vendor to
procure a specific commodity product. This chapter looks at this task
in more detail and suggests ways in which management information
systems may help.

1.7. Case description

This book uses a simple case situation for which we will build, step-
by-step, a management information system. I have opted for a fictitious
sales department, assumed to be located in a medium-sized company. We
shall assume further that we will be managing that department, and we
will design a management information system to manage this department
effectively.

We can keep most of the additional description of this case fairly
abstract. We need to assume that the sales department is organized into
three sales teams, called Alpha, Beta, and Gamma. A customer can buy
certain products from your company, which include (in no particular
order): wine, oranges, soap, apples, and candles. Orders are usually fairly
large and so your sales agents usually have appointments with customers
first. During these appointments, the sales agents discuss possible orders
with the customers.

Obviously, in terms of sales management, you are interested in the
volume of sales, as well as the revenue it generates. The management

16 MANAGEMENT INFORMATION SYSTEMS

information system should provide these figures and break them down
according to customer, according to product, and according to sales team.
We shall use these requirements in the next parts of this book to design a
suitable management information system.

� FURTHER READING

A number of introductory texts on management information systems are avail-
able. Popular ones include texts by Laudon and Laudon (2004), O’Brien and
Marakas (2006), and Haag et al. (2007).

This book assumes that you will have a basic working knowledge on the oper-
ations of spreadsheets and small databases. If you want to brush up on these
skills, it is useful simply to gain access to an office spreadsheet or a small database
and start experimenting with the available options. There are, of course, many
books available that can help you, most of which are tied to specific commercial
products.

If you want to read more about information overload, I recommend articles by
Kahneman (1973), Simon (1974), and Norman and Bobrow (1975). These articles
discuss a set of mental processes that are collectively called attention management.
Further in-depth discussion on the management of attention can be found in
Allport (1980) and Styles (2006).

Part I

Designing Information
Systems

This page intentionally left blank

2 Structuring data,

part 1

KEY CONCEPTS

Entity Relationship
Attribute One-to-many relationship
Attribute value Many-to-many relationship
Missing value R-table
Attribute type Primary key

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Model the entities of the managerial domain.
2. Model the relationships that exist between these entities and identify the types of

relationships.
3. Factor out categorical attribute types and many-to-many relationships.
4. Transfer the entities and relationships into R-table structures.

2.1. Introduction

In any managerial situation we can assume that there is some understand-
ing of what it is that needs to be managed: employees, budgets, customers,
production processes, and so on. We would say that these are the entities of
our particular management domain. When we design information systems
to support the management of these entities, we must first seek to obtain a
more precise understanding of them. The techniques that allow us to do so
are the focus of this chapter and the next.

We model the structures of data using conceptual diagrams. The com-
plete set of diagrams describing the entities from our managerial domain
represents our data model. The data model can be drawn using a variety of
diagramming techniques.

20 STRUCTURING DATA, PART 1

In industry there are a number of techniques around. I will introduce
you to a popular one in this chapter: the Entity–Relationship diagramming
technique. The Entity–Relationship diagram (or ER diagram), introduced
by Chen in 1976, was one of the first techniques to graphically represent
entities. In its original form it continues to be widely used, even though a
number of techniques have been developed that extend or replace it.

My strategy for exposing you to ER diagrams is to first explain how
entities are modelled and how you convert those into so-called R-tables.
Following on from that I will discuss entity relationships, and point at
several complications that often occur when you model those.

This chapter is the first part of the data structuring material in this book.
The next chapter will cover the UML class diagrams, which extend ER
diagrams, and it will cover the structuring of some special cases of which
you should be aware.

2.2. Entities

A data model contains two important ingredients: entities and relation-
ships. The entity is the first ingredient. It is defined as a ‘thing’ which can
be distinctly identified (Chen 1976, p. 10). Examples from our case include
Sales Team, Sales Agent, Customer, Sales Order, and so on.

It is important to make a distinction between abstract concepts and
concrete examples of abstract concepts. For example, two fictional people
called Joe and Mary can be concrete examples of the abstract concept Sales
Agent. You will remember we had three sales teams called Alpha, Beta,
and Gamma. These three sales teams are concrete examples of the abstract
concept Sales Team. When we structure data, we should be looking for
the abstract concepts only. They provide the containers for the concrete
examples, and they will provide the structures that will allow us to store
the examples.

The label for an abstract concept was originally the entity set (Chen
1976), but it has become common to talk of the abstract concept as the
entity, and of the concrete examples as the instances of the entity. That is
the convention that we will use in this book. So, we would talk about the
entity Sales Agent, of which Joe and Mary are instances.

STRUCTURING DATA, PART 1 21

Sales Agent

CustomerSales Order

Product

Sales Team

Figure 1 Entities

Identifying entities is not, on the whole, a clear-cut exercise. In your
managerial domain, you will encounter many concrete instances. When
you attempt to model those, you need to shift from the concrete instances
to the more abstract concepts. In that process you often have a number
of choices. Take Joe for example. He could be representing the entity Sales
Agent, but also the entity Person, Customer, and so on. These examples
are not even mutually exclusive: Joe could happily represent all these and
more. You should look very carefully at your managerial domain to guide
you in the selection of the appropriate entities.

In your Entity–Relationship diagram you would draw the entity as a
rectangular box with the name of the entity in the box. Figure 1 gives an
example of five entities that we might encounter in our case study.

I need to draw your attention to a number of features of the ER diagram
in Figure 1. First, the position of the entities on the diagram is arbitrary.
The fact that the entity Sales Team is at the top left, and the entity Customer
at the very right does not carry any meaning. Also, it is a convention to put
the name of the entity in singular form. So, even though we are modelling
multiple sales teams, we would still call the entity Sales Team. In terms of
format, entity names are written with a capital letter, and in bold typeface.
This is the standard format in which computer packages draw them. These
conventions are useful to distinguish them from attributes, discussed in the
next section.

22 STRUCTURING DATA, PART 1

Databases store instances of entities in special kinds of tables called
R-tables. The relational table or R-table was first introduced by Codd in
1974. It is also known as the relation, but since I will also use the term
relation in the context of ER diagrams, I shall use the older term R-table
to avoid confusion. Many popular database systems today are relational
databases, that is, built around R-table structures.

We shall look at R-tables in more detail shortly but for now it is impor-
tant to remember that every entity in our model is going to correspond to
exactly one R-table. The R-table has the same name as the entity with which
it corresponds, but there are two naming conventions that you need to
watch out for. First, by convention, the name of the R-table is always in
lowercase letters. Second, spaces in names are not normally allowed and
you are encouraged to replace those with the underscore character (_).
For example, the names of the corresponding R-tables of the enti-
ties from Figure 1 are sales_team, sales_agent, sales_order,
customer, and product. These conventions may sound somewhat arbi-
trary at the moment but the reason for them will become clear in
Chapter 4.

2.3. Attributes

Having identified the entities we can now proceed to identify the char-
acteristics of the entities. These characteristics are commonly known as
attributes. An attribute is a property of an entity, a distinctly identifiable
characteristic that all instances can have. For example, we can identify an
attribute Name for the entity Sales Agent. All sales agents have a name,
or in other words, all sales agents have the property Name. For the entity
Product, we can identify the attribute Price.

Attributes have values. The value is a specification of the attribute
for a particular entity. When an instance has no value for a particular
attribute, we would call this a missing value, or, more technically, a NULL
value.

Attributes in an ER diagram can be represented using the so-called circle
notation. Each circle corresponds to exactly one attribute. Figure 2 displays
two examples.

STRUCTURING DATA, PART 1 23

Sales Agent Product

on
probation?

price

first name name

Figure 2 Attributes

As a convention the name of the attribute does not start with a capital
letter. This serves as an extra visual cue to set attributes apart from entities.
You can see that the circle representation has the drawback that it takes
up a lot of space. It can only really be used with a very small number of
attributes. In the next chapter, we will discuss a better notation.

Having discussed attributes, we are now in a position to examine the
structure of an R-table somewhat further. An example of an R-table for the
entity Product is provided below.

product_id name price
========== ====== =====
1 Orange 1
2 Soap 5
3 Wine 10
4 Apple 1
5 Candle 7

An example of an R-table for the entity Sales Agent is provided below.

agent_id name on_probation
======== ==== ============
1 Jim true
2 Tom true
3 Mary false
4 Jim false
5 Jack false

24 STRUCTURING DATA, PART 1

You can see that an R-table looks a bit like any old table but there are a few
rules that an R-table must adhere to that a normal table does not. These
rules are:

Columns: The columns should represent the attributes of the entity.
They have a column name which identifies that column in the R-table.
The name of the column must be unique. There is no order preference
in the columns. In the product table for example, I could have put
the column price in front of name and it would have represented the
same R-table.

Rows: The rows should represent an instance of the entity, with one
row corresponding to exactly one entity. Rows do not have a name
in the same way that columns do. There is no order preference in
the rows either. For example, if I had placed Wine (row 3) on the
first row (where Orange is), it would have been the same R-table. I
have sorted the rows according to the column product_id, but that
is an arbitrary choice; I could also have sorted them according to their
name, for example.

Row duplication: There can be no duplication of rows. Each row repre-
sents exactly one instance. For example, if I had left out the column
product_id, and added another row with name Orange and price
1, that would be a duplicate of the first row. An R-table would not
allow this because it would not be able to tell whether these two
rows represent one single instance, or whether there are actually two
products that happen to have the same attribute values.

Primary keys: To avoid row duplication to occur accidently, it is common
to introduce an extra column, the so-called ID column, which gives
each row a unique identity. It is normally a number that increases
whenever a new row is introduced. Such a column that gives a row a
unique identity is called a primary key. Primary keys are never NULL.
We do not display them in ER diagrams, they are a feature of R-tables
only.

The naming of the columns in the R-tables follows the same convention
as the naming for the R-tables that we discussed earlier. Each column
represents exactly one attribute name. They are by convention always lower
case and do not contain spaces. The reasons for this will become clear in
Chapter 4.

STRUCTURING DATA, PART 1 25

2.4. Attribute types

Thus far we have not really said anything in detail about the attributes
themselves. Yet it is clear that an attribute Price is different from an
attribute Name. How is it different? The main difference is in the range of
allowable values. For Price, we would say only numbers are allowed, and
for Name this would be strings of letters. It is good practice to specify
precisely what the allowable range of data values is going to be. We do
so by specifying the attribute type. Synonyms sometimes encountered for
attribute type are the value range or data type.

A list of attribute types is provided below.

Number: Any numeric value. If necessary, the values can be further
specified into integer and real numbers. An example would be the
quantity of a product sold, or the price of a product.

Text: Free text, not predefined. In a more technical environment, this
is usually called a string, or varchar (for ‘variable characters’). An
example would be the name of a sales agent or the name of a
product.

Category: Predefined, non-numeric values. Ranking of the values is
sometimes possible, sometimes not. Examples include attributes such
as Product Type, with the predefined values Food and Non-Food, or
Sales Team, with the predefined values Alpha, Beta, and Gamma.

I need to issue an immediate warning here. Take a note if you
encounter an attribute that you believe is of type Category. At a later
stage in the structuring process, you will get rid of the Category
attribute by converting the category into an entity and introducing
a so-called one-to-many relationship. The procedure for this will be
described in more detail later in this chapter.

True/False: An attribute that is modelled as a True/False question. The
response is either True or False or Yes or No. To identify an attribute
of this type, the name of the attribute is usually worded as a question
too, for example: Is Cancelled?

A special attribute type is the time stamp, which is a date or time that a
specific event occurs. The event is the attribute and the time stamp is the
value. For example, a sales order is created on a specific date, a production

26 STRUCTURING DATA, PART 1

order is started on a specific date, goods are despatched on a specific date,
and so on. Many management information systems need those time stamps
for analysis. For example, using these time stamps we can see how the
total volume of sales generated this year compares to the volume of sales
generated last year. It is therefore very important to be precise about the
specific time stamp that we are recording. Here are the most common ones.

Day of Week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
and Sunday. Represented with these categorical values, or occasionally
as number. I recommend formatting as a categorical variable exclu-
sively so as not to confuse this type with Day of Month.

Day of Month: Ranging from 1 to 28, 29, 30, or 31 depending on the
month. Represented as number.

Week: Ranging from 1 to 52 or occasionally 53 depending on the year.
Represented as a number, week 1 being the first week of the year.

Month: Ranging from 1 to 12. Represented both as number and as
Category (January, February).

Year: The year according to the Gregorian calendar.
Time: Representing a specific time during the day. For example, 06:00.

Sometimes seconds and milliseconds are added if more precision is
needed, for example, 06:00.01.

Date: Combination of Day of month, Month, and Year
Time stamp: A combination of Date and Time.

For time stamps it is important to realize that there is a distinction between
the attribute type and the attribute format. The attribute format is the way
an attribute value is represented to a user. It does not say anything about
how that attribute value is stored in our system. An example is the format of
a date. In the United States, a date is normally formatted as MM/DD/YYYY.
In Europe, a date is normally formatted as DD/MM/YYYY. The format
is flexible in that a user can change it in a whim, without changing the
underlying value in the database.

The distinction between attribute type and attribute format begins to
blur when the attribute format performs numeric or categorical conver-
sions. For example, we can record the date as a ‘Date’, but the format can
represent just the week number for that date, and so when we see the
attribute, it is as if that date has the type Week. Similarly, a format can
start to convert two categorical values such as ‘Strongly Agree’ and ‘Slightly

STRUCTURING DATA, PART 1 27

Agree’ into one value ‘Agree’. In these situations, it is recommendable to
specify the most precise attribute type that is available, so that we can
transform it into more imprecise formats as we retrieve the data.

2.5. Relationships

Entities are an important ingredient of any model but they do not exist in
isolation. Often we are not so much interested in the entities themselves,
but rather in the relationships between them. For example, I may be keen
to manage sales agents and to manage sales teams, but to manage both
effectively, I will need to know which sales agents are connected to which
sales teams. This relationship, the one that links sales agents and sales teams
together, will therefore need to be modelled as well.

The ER diagram models such a relationship with a straight line connect-
ing two entities. We often, but not always, give the relationship a name too,
for better understanding. This name is either put into a diamond shape in
the middle or put close to the line. Figure 3 associates the Sales Agent with
the Sales Team in this way.

Relationship lines can have more features to give some more detail of the
type of relationship. Without any feature, that is, a straight line as depicted
in Figure 3, it means that the relationship always associates one instance of
one entity with one instance of another entity. Thus, Figure 3 expresses the
relationship between a sales team and a sales agent, and specifically this:
that one sales team is always associated with one sales agent, and the other
way around. We would say that this is a one-to-one relationship.

Sales Team Sales Agent
Has

Sales AgentSales Team Has

Figure 3 Relationships

28 STRUCTURING DATA, PART 1

Sales Team Sales Agent
Has

Sales AgentSales Team Has

Sales Team Sales Agent
Has

∗

N

Figure 4 One to many relationships

Obviously this type of relationship is not the one that is correct in our
case study. One sales team can have many sales agents, even though one
sales agent is only part of one sales team. We would thus say the relationship
between sales team and sales agent is one-to-many.

We model a one-to-many relationship by giving the ends of the connect-
ing line an adornment. This can be done in three ways. The ER diagram
would place an N at the ‘many’ end of the relationship line. This is the
original notation. A new notation is to put an asterisk (∗) at the ‘many’
end, as is the convention for the UML class diagrams discussed in the next
chapter. Besides the N and the asterisk you will also often encounter a so-
called crow’s-foot at the end of the connecting line. This notation was
introduced by Barker (1989). I personally prefer this notation over the
others because it depicts the multiplicity of the relationship so elegantly.
You can judge for yourself in Figure 4.

We have seen how the crow-foot notation was used to depict the ‘many’-
end of a relationship. The absence of a crow-foot in turn was to indicate the
‘one’-end of the relationship. We now shall discuss two additional endings
for these types of relationships.

These two endings are the circle (or ring) and the dash. The circle is rep-
resenting ‘zero’ and the dash is representing ‘exactly one’. We use the circle
and the dash to say something about the optionality of the relationship.

STRUCTURING DATA, PART 1 29

Entity A Entity B

An instance of A is always related to one or many instances of B

Entity A Entity B

Entity A Entity B

Entity A Entity B

An instance of A can be related to many instances of B

An instance of A can be related to one instance of B

An instance of A is always related to one instance of B

Figure 5 Extra endings for ER relationships

The circle is meant to indicate that a zero relationship is allowed. Let us take
for example the sales team and sales agent relationship. If it is possible for a
sales team to not have sales agents, we would add a circle to the sales agent
end of the relationship. If it is possible for a sales agent to not be part of a
sales team, we would add a circle to the sales team end of the relationship.

The dash would be used to indicate that the relationship is not optional
but mandatory. We would specify the dash if a sales agent always had to be
part of a sales team, or if a sales team would always have to contain at least
one sales agent.

Instead of circles and dashes, the relationship is sometimes drawn as a
dotted line to indicate optionality (e.g. Barker 1989). Figure 5 depicts the
four possible types of endings, as well as corresponding examples of how
to ‘read out loud’ the relationship as it is described.

The optionality of the relationship has implications for the foreign keys.
If a relationship is optional, it is permissible for a foreign key to have a
NULL value. For example, the sales agent table has a foreign key to denote
the sales team, but if the sales agent in question does not belong to a sales

30 STRUCTURING DATA, PART 1

agent, then that foreign key value can be NULL. Likewise, if a relationship is
not optional, a foreign key cannot have a NULL value.

How do we convert a relationship to an R-table? We cannot just use two
R-tables, one for sales teams and one for sales agents, because that does not
give us information about the relationship between sales teams and sales
agents. The solution is to add a pointer to the R-table which represents
the entity at the ‘many’ end of the relationship. Such a pointer is called
the Foreign Key (or FK). The foreign key should refer back to the entity
at the ‘one’ end. It thus represents the primary key of the other entity.
You can see below how the two R-tables are constructed. Each table has a
primary key, and the entity at the many end (the sales agent) has a foreign
key that points to the entity at the one end (the sales team).

team_id name
======= ======
1 Alpha
2 Beta
3 Gamma

agent_id name on_probation team_id
======== ==== ============ =======
1 Jim true 1
2 Tom true 2
3 Mary false 1
4 Jim false 2
5 Jack false NULL

This table links Jim No. 1 and Mary to sales team Alpha, and Tom and Jim
No. 2 to sales team Beta. Note that Gamma does not have any sales agents
linked to it, and that Jack is not part of a sales team (its foreign key is NULL).
A foreign key can be NULL but you can also expressly prohibit this in most
available database systems.

Figure 6 shows a more elaborate Entity–Relationship model for our case
study. You will see that there are two so-called many-to-many relationships
in Figure 6. I shall discuss these somewhat more in the next chapter. You
will also note that one of the relationship descriptions has an arrow point-
ing to the left (<), which indicates that the description should be read ‘from
right to left’. In this example, you need to read ‘one sales order consists of
many products’.

STRUCTURING DATA, PART 1 31

Sales Agent

CustomerSales Order

Product

Sales Team
has appointment with

< consists of

Figure 6 ER diagram with one-to-many relationships

I spoke earlier about attributes with a type Category. If an attribute type
is categorical, then the most appropriate way to model the attribute is to
create an entity (representing the category), and to create a one-to-many
relationship from the categorical entity to the entity.

For the entity Product example, we may have an attribute called Product
Type, with the predefined values Food and Non-Food. The most appropri-
ate way to model this is to define a special entity called Product Type, with
an attribute called Name (attribute type Text). Each product type entity
would have a primary key that can function as a foreign key to be used in
product.

A similar example is the one with customers and their customer sta-
tus. Let us assume that a customer proceeds along the following statuses:
they start out as leads, they can then become prospects, and they finally
become ‘paying’ customers proper. There are thus three status values: lead,
prospect, and customer: a classic example of a categorical value, and one
that should be ironed out with a special Status entity.

There are two advantages of getting rid of categorical values this way.
The first is that it allows us to examine the categories on their own, and
modify them as we see fit. For example, if we want to introduce another
customer status, we only have to add one additional instance. Second, it
allows us to introduce extra attributes for the category, which can often be
useful.

32 STRUCTURING DATA, PART 1

Sales Agent

CustomerSales Order

Product

Sales Team
has appointment with

< consists of

Product Type

Customer Status

Figure 7 ER diagram with categorical entities

Figure 7 shows our Entity–Relationship diagram with the two categori-
cal entities previously discussed.

A frequent error that students make when they start drawing relation-
ships is to include redundant one-to-many relationships. Figure 8 shows an
example. You will see that in this example, one sales team can have more
than one sales agent, and one sales agent can have more than one sales
order. Now many students think they have to include an additional one-
to-many relationship between sales team and sales order, thereby bypassing
the sales agent. After all, a sales team can have more than one sales order
too. Can you identify whether this relationship needs to be there?

The relationship should not be there because it introduces redundancy.
Redundancy implies that we will allow the same data to be entered multiple
times (in this case twice). Redundancy is bad because along with it, through
the back door, comes the possibility of data corruption. Corruption occurs
when we change the data in one part of the system, but forget to change it
in another part of the system. To prevent this from happening in the first
place, data redundancy should be avoided whenever you can.

In the example of Figure 8, the two original one-to-many relationships
already ‘connect’ a sales team with a sales order: through the sales agent. If
we want to know which sales team is associated with which sales order, we
would proceed as follows: First, in the R-table sales_order, look up the
foreign key for sales agent. Using the foreign key for sales agent, locate that

STRUCTURING DATA, PART 1 33

Sales Team Sales Agent
Has

Sales Order
Has

?

Figure 8 An extra relationship?

sales agent in the R-table sales_agent. Look there for the foreign key for
sales team. Using that foreign key, find the sales team.

Had we introduced a foreign key for sales team in the R-table
sales_order (by introducing the redundant relationship) we are
introducing the possibility of data corruption. On the one hand, we can
link a sales order to sales team using the direct link. On the other hand,
we can link a sales order to sales team using the indirect link (via the sales
agent). If both links represent the same relationship, then it is possible that
we corrupt the data by entering one correct link indirectly and another
incorrect one directly. Such possibilities for data corruption are the causes
of many frustrations in organizations.

2.6. Many-to-many relationships

A many-to-many relationship occurs when we have two one-to-many rela-
tionship for two entities in either direction. We have already seen two
many-to-many relationships in Figure 6.

It is important to understand that a many-to-many relationship is sim-
ply a case of two overlapping one-to-many relationships. So, rather than
interpreting a many-to-many relationship as: ‘many sales agents can have
appointments with many customers’, it is better to interpret it as follows:
‘one sales agent can have an appointment with many customers’, and ‘one
customer can have an appointment with many sales agents’. Similarly,
the many-to-many relationship between product and sales order should
be read as follows: ‘one sales order consists of many products’, and ‘one
product can be a part of many sales orders’.

Just like you should remove categorical attribute types by creating new
categorical entities, you should remove many-to-many relationships by

34 STRUCTURING DATA, PART 1

Employee Customer
Has appointment with

Employee Appointment
Has

Customer
Has

Figure 9 An entity to replace a many-to-many relationship

creating new auxiliary entities. The auxiliary entity should connect the two
original entities using two one-to-many relationships.

Take our example of sales agents and customers. The top row of Figure 9
gives the example. The bottom row provides the intermediary entity, which
we will call Appointment. The additional benefit is that we can now store
some additional attributes together with the appointment, such as the time
stamp, and whether it was cancelled or not.

The other many-to-many relationship in the example was between sales
order and product. We can remove this relationship by introducing an
intermediary entity that we could call Line Item. One sales order can have
many line items. One product can be part of many line items. A line item
is always connected to one order and one product.

Sales Agent Appointment

Product Category Customer

Line Item

Sales Order

Product

Sales Team

Customer Status

Figure 10 A complete ER diagram

STRUCTURING DATA, PART 1 35

The reason why you need to transform many-to-many relationships into
auxiliary entities is because this will facilitate the transfer of the diagrams
into R-tables. We will have to introduce an auxiliary R-table to link entities
that have many-to-many relationships. Of course the auxiliary R-table
would have its own primary key, but it would have foreign keys to the
entities that it connects.

Here is an example of what the line_item R-table would look like:

item_id order_id product_id quantity
======= ======== ========== ========
1 1 1 6
2 1 5 34
3 2 3 24
...

Can you trace back what data is stored here? We have two sales orders. The
first sales order consists of 6 oranges and 34 candles. The second sales order
consists of 24 bottles of wine.

I should note that disposing many-to-many relationships at the diagram
level is not conventional practice. Indeed no database textbook that I am
aware of argues that diagrams should rule out many-to-many relation-
ships. Instead they would advise the creation of an auxiliary R-table as soon
as the diagram is converted into R-tables. I have found it easier to upgrade
that auxiliary table to an ‘auxiliary entity’ straightaway, so that the one-to-
one mapping from entity to R-table is preserved, and one does not end up
with more R-tables than entities.

Figure 10 provides the complete Entity–Relationship diagram that we
have developed so far, with the categorical and the auxiliary entities.

Appendix 1 provides the structure of the corresponding R-tables, and
also provides examples of data that can be captured using the structure.

� FURTHER READING

In this chapter I have covered the basics of Entity–Relationship diagrams, as well
as the R-table structure that underlies the diagrams. You should now be able to
‘read’ existing ER diagrams, for example, those that describe data from transaction
processing systems. You should now also be able to create your own diagrams, for

36 STRUCTURING DATA, PART 1

example, to identify the most important concepts in the managerial domain and
their relationships.

A range of text books on database design is available that cover the concepts
from this chapter in more detail. Popular ones include Date (2000) and Kendall
and Kendall (1999).

The R-tables and the associated relational structure of databases were first intro-
duced by Codd (1970). The ER diagrams were first introduced by Chen (1976). An
ER textbook that introduces the crow-feet notation is Barker (1989).

3 Structuring data,

part 2

KEY CONCEPTS

UML Inheritance
Object State
Association Transition
Generalization

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Identify the differences between Entity–Relationship diagrams and UML diagrams.
2. Model a hierarchy of entities through generalization.
3. Model the lifecycle of an entity using states and transitions.
4. Transfer hierarchies and entity lifecycle stages to R-table structures.

3.1. Introduction

In the previous chapter we discussed the fundamentals of structuring data.
In this chapter we will be building on this material and discuss an impor-
tant alternative to ER diagrams, UML class diagrams.

The Unified Modeling Language or UML is a diagramming language
that, among other things, recasts entities into classes. The fundamental
notions of entities and classes are very similar, but the terminology is
slightly different. I will discuss the UML concepts in a bit more detail in
this chapter, because you will frequently encounter class diagrams instead
of ER diagrams.

A class diagram is in many ways an ‘upgrade’ of the ER diagram. For
example, it provides an elegant conceptual drawing technique which is
known as generalization. This is a way to capture hierarchical data into an

38 STRUCTURING DATA, PART 2

ER diagram. We will look at this concept some more in this chapter and
provide a few examples.

In addition we shall look at a new type of diagram called State Transi-
tion Diagrams. These diagrams represent the lifecycle of an entity. They
are important for management information systems because we are often
interested in the different stages that the entities of our managerial domain
pass through. State Transition Diagrams allow us to model these stages.

The reason why we are looking at these modelling techniques is because
we need to be aware of all the key tools with which we can structure data.
When our database structure is ready and implemented, we can fill the
database with data from the transaction systems. When the data is there,
we can start querying the database. The techniques for querying data will
be discussed in the next chapter.

3.2. UML

The origins of UML can be traced back to the rise of a movement in soft-
ware engineering called object orientation. At the risk of oversimplifying,
object orientation is an approach in software development that advocates
the integration of data and functionality into small software compartments
called objects. This is in contrast to the more traditional approach in which
data is separated from functionality. Object orientation has benefits, one of
which is the benefit of damage containment: when a software error occurs,
it is easer to isolate the error and contain the damage.

The object orientation movement spawned a great deal of new diagram-
ming techniques, which unfortunately were not altogether compatible with
each other. For example, one technique would model the object with a
rectangle (as the ER diagrams did), and another would model it with a
circle. This led to a rather confusing situation. As some languages became
increasingly popular, advocates became increasingly outspoken about the
superiority of their techniques. Those years are now often described as the
‘modelling wars’ (Fowler 2004).

To resolve this situation, a number of harmonization and standardiza-
tion efforts took place. These were by and large unsuccessful until three
proponents of popular object-oriented diagramming techniques began to

STRUCTURING DATA, PART 2 39

merge theirs. They were Grady Booch (of the Booch method, 1993), James
Rumbaugh (of the OMT method, 1991), and Ivar Jacobsen (of the OOSE
method, 1992). They called their new, unified, modelling language: the
Unified Modeling Language or UML.

The UML was put in the custody of a not-for-profit organization called
the Object Management Group (OMG). It continues to be revised and
extended there. In this chapter I will discuss two diagrams that are part
of UML, the class diagram and the state transition diagram.

3.3. Objects and associations

The class diagram is an alternative version of the ER diagram, and the Uni-
fied Modeling Language uses somewhat different terminology for entities
and relationships. The object-oriented version of the entity is the class. A
class can contain several objects, and so an object can be compared to an
instance of an entity. An object is defined as a ‘discrete entity with identity,
state, and behaviour’ (Rumbaugh, Booch, and Jacobson 1999, p. 43). The
term relationship has been replaced by the term association.

Despite these differences in terminology, the class diagram has a number
of similarities with the ER diagram. The representation of a class is exactly
the same as in an ER diagram, that is, a rectangle. The representation of an
association is also exactly the same as in an ER diagram, that is, a straight
line connecting the rectangles.

Attributes in a class diagram are represented by splitting the class rec-
tangle into two, and adding the attributes as a list under the original class
name. Attribute types can be included in class diagrams as well. To do so
you need to put a colon behind the attribute name and then specify the
attribute type as per the list of the previous chapter on page 25. Figure 1
gives an example of classes with attributes and attribute types.

You can see that, for representing attributes, the class diagram is much
more efficient than the ER diagram: it would be straightforward to add
another 10 attributes to a class diagram, but it would be cumbersome to
add another 10 attributes to an ER diagram.

The class diagram uses a minimum and a maximum number to denote
whether an association is one-to-one or one-to-many. At the end of the

40 STRUCTURING DATA, PART 2

Sales Agent Product

first name: Text
on probation? Yes/No

name: Text
price: Number

Figure 1 Classes with attributes and attribute types

relationship you would put down minimum number..maximum number.
A star (∗) indicates ‘Many’ or ‘Unlimited’. Figure 2 gives an example of
association endings that are analogous with Figure 5 of Chapter 2.

There are some shortcuts as well: if an association uses just a star, that
is equivalent to 0..∗, and if an ending uses just 1, that is equivalent to 1..1.
The absence of numbers is equivalent to 1..1 or 0..1.

One element that a class diagram has over and above an ER diagram is
the method. A method is a description of certain behaviour that the entity
can perform. For example, a Sales Agent object can create a sales order.
The behaviour ‘create sales order’ would be a method. In object-oriented
systems, different objects interact with each other by calling each other’s
methods. Objects are thus active agents, whereas entities are passive.

Class A Class B

An object of A is always related to one or many objects of B

Class A Class B

Class A Class B

Class A Class B

An object of A can be related to many objects of B

An object of A can be related to one object of B

An object of A is always related to one object of B

1..∗

0..∗

0..1

1..1

Figure 2 Extra endings for associations

STRUCTURING DATA, PART 2 41

Sales Agent Product

first name: Text
on probation? Yes/No

name: Text
price: Number

create sales order
get name

set price

Figure 3 Classes with methods

Methods are displayed by adding another box to the class. Figure 3 gives
an example.

We have already seen that management information systems are data-
intensive systems, and for this reason I will not discuss the use of methods
further. For data-intensive systems, you will often see methods excluded
from class diagrams in practice. In that case the third box of the classes will
either be empty or removed altogether.

The mapping of the class diagrams to R-tables follows the same proce-
dures as described in the previous chapter.

3.4. Generalizations

Often we come across entities that we would like to model quite distinctly,
but they do share common attributes with each other. For example, it is
conceivable that we would like to model two types of employees: those
working in the sales departments (sales agents), and those working in other
departments such as accounting. Both types of employees have names and
probationary arrangements and so on. But we may want to have distinctive
attributes for each of the types, attributes that are not shared by the other
type. For example, sales agents may have sales targets and office workers
may not.

The class diagram allows us to model exactly this using a diagramming
technique called generalization. The idea is to arrange classes into a tree,
putting the more general class at the top, and the more specific classes
at the bottom. You would put a triangle in the middle to make it even
more explicit that you are modelling a generalization relationship. Figure 4
provides an example.

42 STRUCTURING DATA, PART 2

Employee

Sales Agent Office Worker

Figure 4 Generalization

The more specific class is often called the subclass or child class, and
the more generic class is often called the superclass or parent class. The
generalization relationship is also called an is a relationship. You know you
have modelled generalization correctly if it makes sense to say that every
subclass is a special kind of its superclass. For example, a sales agent is
a special kind of employee, and an office worker also is a special kind of
employee.

Modelling a generalization allows us to specify which attributes belong
to the more general class, and which attributes are solely reserved for the
special class. Figure 5 gives an example. We would say the subclass inherits
the attributes of the superclass, and so they do not need to be modelled
twice.

There are some interesting complications surrounding the generaliza-
tion relationship. One is the issue of multiple inheritance. There is in
principle no objection for a subclass to have more than one superclass.

Employee

Sales Agent Office Worker

name: Text
salary: Number
hired: Date
on probation: Yes/No

sales target: Number office location: Text

Figure 5 Attribute inheritance

STRUCTURING DATA, PART 2 43

It would simply inherit the attributes from both parents, a phenomenon
called multiple inheritance. Problems, however, start to occur when the
attributes are contradicting each other: for example, one parent may define
attribute X as a number, and the other parent may define another attribute
called X as text. There is no way of knowing which one should take priority.
Such problems are difficult to circumvent except to simply disallow the
possibility of multiple inheritance and try to model the classes in such a
way that there is only one parent for each child.

3.5. State transitions

Often we are not so much interested in the entities themselves, or in
the relationships between the entities, but in the life cycle of the entity.
For example, in many companies a customer proceeds through different
stages: they start out as leads, they can then become prospects, and they
finally become customers. A sales manager would obviously be interested
in the state transitions, that is, how many leads the company can convert
into prospects, and how many prospects the company can convert into
customers.

An ER or class diagram does not explicitly take into account that the
attribute values of entities may change over time. Indeed, entities may
change into other entities over time. We would say that the entity has
several states, and that the states have transitions. Such states and transi-
tions can be represented by State Transition Diagrams. Like class diagrams
they are a part of the Unified Modeling Language, but they have been
in existence long before they were adopted by UML. Figure 6 gives an
example.

Figure 6 models how a contact can turn into a customer. The arrows
describe the only state transitions that are allowed. In this example, it is not
allowed for a lead to turn into a prospect without becoming a promising
lead first. That is because there is no transition between promising lead and
customer. Also note the circles representing start and finish: these represent
where a customer starts out as (i.e. the contact), and where a customer
finally ends up.

State transition diagrams are complementary to ER and class diagrams,
in that they give information about the dynamic behaviour of the class.

44 STRUCTURING DATA, PART 2

Contact Lead

start Expresses
interest

Promising
Lead

Wants
proposal

Receives
proposal

Prospect

Accepts
proposal

Customer end

Rejects
Proposal

Does?not?want
proposal?

Figure 6 A state transition diagram for the class Customer

They can be used to express in greater detail the different states that a class
can pass through. It is of course possible that an entity does not go through
any stages at all, in which case the creation of a state transition diagram is
not necessary.

Just like the ER and class diagrams, state transition diagrams exist out-
side the database structures. We would need to convert them into R-tables

Customer

Contact Lead
Promising

Lead
...

Figure 7 Objectifying states

STRUCTURING DATA, PART 2 45

if we want to preserve the entity lifecycle into our database. We can do
this in two ways. The first way is to do it via a Status entity connected to
the main entity. We have seen this at work in the previous chapter, where
we factored out an R-table customer_status that had an attribute name
with values such ‘Contact’, ‘Lead’, and so on.

The other way to do it is through generalization. In that case we would
‘objectify’ the state and create a separate class for the object when it is in
that state. Each of these classes would be a subclass of the general class.
So, you would have classes called Contact, Lead, and Promising Lead for
example, which could all be subclasses of the more general class ‘Customer’.
Figure 7 provides an example. You need to objectify the states if the life
cycle of the entity is of great importance in your managerial domain, or if
each of the states is distinctively different from each other.

There is also a special vehicle in UML called the ‘class-in-state’ that
would allow you to do something similar: for example you would model
the promising lead as a class called Customer: Promising Lead. The class-
in-state is not very widely used but it does allow you to create separate
classes for each of the states.

� FURTHER READING

In this chapter I have covered the UML version of ER diagrams, and I have also
discussed a few special cases, generalization, and entity lifecycle diagrams. By
applying these more advanced techniques, we are able to provide a rich structure
of relational tables, that will in turn form the basis for our management informa-
tion system.

A range of books are available to study UML in more detail. I will only mention
three here. A short manual is written by Fowler (2004). The user guide is written
by Booch et al. (1999), and the reference manual is written by Rumbaugh et al.
(1999). Be aware that these books assume that you have a computing background
and they will adopt a rather technical perspective.

We have finished the material that will allow us to structure data, and by now
you should be able to design a data model that will be used for your management
information system. The next step, as identified in the introduction chapter, is to
ensure that the data is captured into the data structures. We can then move on to
instruct the database to retrieve the data. The techniques for doing so are covered
in the next chapter.

4 Querying data

KEY CONCEPTS

Query Condition
SQL Join
SQL statement Multiple joins
SQL clause De-normalization
Result set Data warehouse

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Discuss the structure of an SQL query.
2. Be able to select data from a database using SQL.
3. Be able to join and de-normalize R-tables to create a result set that will form the basis

for a management report.

4.1. Introduction

In the two previous chapters we were concerned with the modelling of our
management data and with the subsequent storage of these models into
R-tables, the underlying foundation of management information systems.
We were, however, not particularly concerned with the retrieval of the
data once it was stored into the database. To this we shall now turn our
attention.

The process of retrieving data from an R-table is called querying, and the
aim of the current chapter is to explain the basics of querying. Querying
of data is done through the provision of instructions to the information
system. The instructions are formed using an easy to learn language that
specifically deals with the querying of R-tables: it is the so-called Struc-
tured Query Language (SQL), pronounced ‘sequel’ by some as Sequel was
the original name for SQL. It was first developed in 1974 by Donald
Chamberlin and Raymond Boyce, working for IBM. SQL was subsequently

QUERYING DATA 47

standardized by the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO). The latest version is
SQL: 2006.

The component of a management information system that handles the
processing of SQL queries is called the SQL parser. The SQL parser takes in
the SQL instructions, and returns the information in the form of a result
set. It also warns the user of incomplete or incorrect SQL instructions.

We often speak of building queries, because developing a query can be
seen as a construction process in which we build up the desired outcome
step by step. There are a number of visual query builders available, which
use graphical user interfaces to allow you to construct the query. These
builders then transform your query into a SQL statement and pass it
on to the SQL parser. The benefits of such query builders are somewhat
debatable: although you can avoid the use of SQL, and your queries will
normally be technically correct, you lose out on flexibility. For any rea-
sonable complex query, it is often recommendable to use the SQL parser
directly.

Although SQL is a standardized language, there are a number of vari-
ations on the market, with each MIS or database vendor providing a
different variant, a so-called SQL dialect. Fortunately, the fundamental
components of SQL are largely the same in each of these variants, and so
we are able to avoid discussion on the specifics of each dialect.

4.2. Selecting attributes

SQL consists of a small number of predefined statements. The one that we
will discuss in this chapter is the SELECT statement. This statement allows
us to retrieve data from one or several R-tables.

A SQL statement is composed of different parts called clauses. The
SELECT statement has a number of clauses and we will discuss each of
them in more detail as we proceed through the chapter.

Let us first consider the simple case where we want to retrieve data from
one attribute of an R-table, say the R-table product. We can display all
names from the products that we are selling by issuing a SELECT statement
like the following:

48 QUERYING DATA

SELECT name
FROM product

You see how straightforward it is to select the attributes: we simply specify
the name of the attribute that we want to display in the SELECT clause, and
we then add a FROM clause with the name of the R-table from which the
attribute originates. The SELECT and the FROM keyword are compulsory
for every SELECT statement, and an SQL parser will return an error if they
are missing.

The SQL parser returns a list of rows which is known as the result set.
Let us assume that we will have captured the R-tables from Appendix 1
into our management information system. Issuing the previous query to
the SQL parser will then give the following result set:

name
======
Orange
Soap
Wine
Apple
Candle

The column name in the result set is by default the name of the attribute. If
we are unhappy with this, we can change it to another column name using
AS, like this:

SELECT name AS Product
FROM product

This will result in:

Product
=======
Orange
Soap
Wine
Apple
Candle

QUERYING DATA 49

An SQL parser will not be able to interpret an SQL command if the R-table
names or the attribute names contain blank spaces. Take this command for
example:

SELECT first name
FROM sales agent

This would not work because the SQL parser would think that the space
separates the attributes from the FROM keyword. After the second space,
the SQL parser would expect the FROM keyword, and it will find name.
Because name does not equal to FROM, the parser would provide an error
saying this statement is incorrectly specified.

So what if you really insist on having blank spaces in your attribute
names, because, for instance, you find that the transaction processing sys-
tem used them? Most commercially available databases allow you to do so,
but they would then require you to encapsulate your attribute names with
special characters. This is, for example, possible in one SQL dialect:

SELECT [first name]
FROM [sales agent]

Or, in another dialect:

SELECT ‘first name’
FROM ‘sales agent’

A better way, however, is to use the underscore to represent spaces in
attributes and R-table names (as in first_name and sales_agent). This
will avoid any use of specific dialects, which is good if you would want to
change from one commercial database to another.

For purposes of clarity, each clause is usually listed on a different line.
This is however not required. An SQL parser would also accept the entire
statement on a single line, for example, SELECT name FROM product.
For some SQL parsers, you need to end an SQL statement with a semicolon
(;) to let the parser know that you have finished constructing the query.

By convention, the SQL statements are uppercase. This is not strictly
required either. Typing select or SeLeCt would also be fine. But by
putting the statements in uppercase, it is easier to tell apart the SQL key-
words from the attributes and R-tables.

50 QUERYING DATA

Now moving on to the second case, where we want to select more than
one attribute. We would specify that as follows:

SELECT name, price
FROM product

This would give the following query result:

name price
====== =====
Orange 1
Soap 5
Wine 10
Apple 1
Candle 7

Note that the order of the attribute now matters. The query result will
have the attributes in the order that you have specified in your SELECT
statement.

If we had wanted all attributes that are available in a given R-table, we
would use an asterisk (∗), and the query would look as follows:

SELECT ∗

FROM sales_team

This would select all attributes of the entities that are stored in this R-table:

team_id name
======= ======
1 Alpha
2 Beta
3 Gamma

At this point we should pay close attention to the order in which the
instances are ranked in the list. In R-tables, the order of attributes and
entities is undefined, and the SQL parser can return the entities in any
conceivable order. At the moment, the rows are ordered by the primary
key, team_id, but this is an arbitrary choice. We will always need to be
explicit about ordering entities if we feel that they should be ordered. We
do so using the ORDER BY clause.

For example, if I wanted to have a list of products and prices ordered by
price, this is what I would specify:

QUERYING DATA 51

SELECT name, price
FROM product
ORDER BY price

This gives the following query result:

name price
====== =====
Orange 1
Apple 1
Soap 5
Candle 7
Wine 10

We can sort the entities using more than one attribute in the ORDER
BY clause. For example, ORDER BY price, name would sort the entities
first by price, and then by name. The default way of ordering is using
ascending scale (from lowest to highest). If you want descending scale
(from highest to lowest), you can specify this using the extra keyword
DESC.

It is possible to not display the attributes on which the entities are to be
sorted. So, for example, this is how we would specify a product list without
price, but in descending price order, starting from the most expensive to
the cheapest price.

SELECT name
FROM product
ORDER BY price DESC, name

This gives the following query result:

name
======
Wine
Candle
Soap
Apple
Orange

Note that the instance Apple now comes before the instance Orange
because our query specifies that the order should be alphabetical using the
product name if the instances have the same price.

52 QUERYING DATA

4.3. Selecting specific instances

The SELECT statement will normally provide us with all the instances that
are in the R-table. We are, however, frequently interested in a subset of these
instances. We specify the subset by introducing a so-called condition. If an
instance meets the condition, the instance is included in the subset. If it
does not, it is excluded.

Here are four examples of conditions:

1. price > 5
2. order_id = 1
3. name = ‘Apple’
4. date > ‘1 Jan 2000’

Such conditions are otherwise known as Boolean expressions, named after
the British mathematician George Boole. A Boolean expression is always
TRUE or FALSE.

You need to add the Boolean expression to the SELECT statement using
a new clause, WHERE. The WHERE clause always comes after the FROM
clause, but before the ORDER BY clause. Here is an example:

SELECT name, price
FROM product
WHERE price > 5
ORDER BY price

This gives the following query result:

name price
====== =====
Candle 7
Wine 10

I need to point out a few special cases in formulating these expressions.
The expressions for attributes with type Number are straightforward. You
specify simply whether the attribute should be equal to, smaller than, or
greater than that particular value (e.g. price > 5). For text, the options
are typically limited to equals (=), does not equal (!=), and special cases
such as starts with, the format of which unfortunately varies per SQL
dialect. Note that you need to specify the value of the text attribute in single
or double quotes.

QUERYING DATA 53

An attribute of type Date or Time is also frequently used in Boolean
expressions. Here, the operators ‘equal to’, ‘larger than’, and ‘smaller than’
have the special meaning of ‘at the time when’, ‘after’, and ‘before’, respec-
tively. So, the expression date > ‘1 Jan 2000’ indicates all sales that
were created after 1 Jan 2000.

The True/False attribute type is a special type because it can serve as a
Boolean expression without needing to mention anything else. For exam-
ple, the following query:

SELECT name, on_probation
FROM sales_agent
WHERE on_probation

This will select all sales agents currently on probation.
We can string together Boolean expressions using AND and OR.

AND implies that all conditions need to be true for the instance to be
included in the subset. OR implies that any of the conditions need to
be true for the entity to be included in the subset. Whenever we use
AND and OR, we need to encapsulate our expressions with brackets
‘(“ and ”)’.

This is best explained by an example. Let us assume that I have
the following R-table of line_item, generated with SELECT ∗ FROM
line_item.

item_id order_id product_id quantity
======= ======== ========== ========
1 1 1 50
2 1 3 50
3 2 1 10
4 3 4 10
5 3 1 75

Using the AND clause, I can select those line items involving apples
(product_id = 1) with a quantity of more than 25.

SELECT ∗

FROM line_item
WHERE (product_id = 1) AND (quantity > 25)

54 QUERYING DATA

This will result in:

item_id order_id product_id quantity
======= ======== ========== ========
1 1 1 50
5 3 1 75

Had I used the OR keyword, I would have selected all line items involving
either apples or those involving a quantity of more than 25:

SELECT ∗

FROM line_item
WHERE (product_id = 1) OR (quantity > 25)

This will result in:

item_id order_id product_id quantity
======= ======== ========== ========
1 1 1 50
2 1 3 50
3 2 1 10
5 3 1 75

Sometimes it is useful to express a condition in a negative form, that is, we
specify the condition and we want to see the entities that do not satisfy that
particular condition. In that case we would simply put NOT in front of the
expression. For example,

SELECT ∗

FROM line_item
WHERE NOT (product_id = 1)

This would result in a list of line items that involved anything but
apples:

item_id order_id product_id quantity
======= ======== ========== ========
2 1 3 50
4 3 4 10

QUERYING DATA 55

4.4. Joining R-tables

I will now move on to a somewhat more complicated case, which is a
query in which I will incorporate information from another R-table. The
conventional name for this type of query is a joined query, or simply a
join. We will first be joining R-tables from entities that have a one-to-many
relationship with each other.

For example, let us assume that I want to display the list of sales
agents and the names of the teams to which they belong. Let me first
list the R-tables separately. SELECT agent_id, name, team_id FROM
sales_agent ORDER BY agent_id results in:

agent_id name team_id
======== ==== =======
1 Jim 1
2 Tom 2
3 Mary 1
4 Jim 2
5 Jack NULL

And SELECT team_id, name FROM sales_team ORDER BY team_id
results in:

team_id name
======= =====
1 Alpha
2 Beta
3 Gamma

I would now like to combine these two tables, so that I can start combining
the names of the sales teams with the names of the sales agents. We would
have to start with something like this.

SELECT name, name
FROM sales_agent, sales_team

This will obviously confuse the SQL parser, as it would not be able to
tell which name attribute belongs to which table. Whenever there is such
confusion, the SQL parser will return an error saying that the attribute
names are ambiguous. The solution is to prefix the attribute with the name
of the respective R-table, like this:

56 QUERYING DATA

SELECT sales_agent.name, sales_team.name
FROM sales_agent, sales_team

This will result in:

sales_agent.name sales_team.name
================ ===============
Jim Alpha
Jim Beta
Jim Gamma
Tom Alpha
Tom Beta
Tom Gamma
Mary Alpha
Mary Beta
Mary Gamma
Jim Alpha
Jim Beta
Jim Gamma
Jack Alpha
Jack Beta
Jack Gamma

What the SQL parser tries to do is list all the possible combinations of the
two entities. It is associating every entity in one R-table with an entity in the
other R-table. So, every sales agent is connected to every team. Because we
had 5 entities in our sales_agent table, and 3 entities in our sales_team
table, the query returns 5 times 3 = 15 possible combinations. We would
thus say the SQL parser provides the product of the two tables.

I will extend the above query slightly so that you can see how the one-
to-many query is beginning to be shaped.

SELECT sales_agent.name, sales_agent.team_id,
sales_team.team_id, sales_team.name
FROM sales_agent, sales_team

This will result in:

agent.name agent.team_id team.team_id team.name
========== ============= ============ =========
Jim 1 1 Alpha
Jim 1 2 Beta

QUERYING DATA 57

Jim 1 3 Gamma
Tom 2 1 Alpha
Tom 2 2 Beta
Tom 2 3 Gamma
Mary 1 1 Alpha
Mary 1 2 Beta
Mary 1 3 Gamma
Jim 2 1 Alpha
Jim 2 2 Beta
Jim 2 3 Gamma
Jack NULL 1 Alpha
Jack NULL 2 Beta
Jack NULL 3 Gamma

You can see that nothing special really happened. We simply added more
attributes from the R-tables that we have multiplied. So there are still 15
rows of data, each connecting one entity (an agent) to another (a team).
But you can also see that the foreign key and the primary key sometimes
match. This happens in 4 of the 15 rows. We can use this information to
create the following SELECT command:

SELECT sales_agent.name, sales_team.name
FROM sales_agent, sales_team
WHERE sales_agent.team_id = sales_team.team_id

This will result in the following subset:

agent.name team.name
========== =========
Jim Alpha
Tom Beta
Mary Alpha
Jim Beta

We can change both the order of the attributes and the order of the entities
to provide a nicer report:

SELECT sales_team.name, sales_agent.name
FROM sales_agent, sales_team
WHERE sales_agent.team_id = sales_team.team_id
ORDER BY sales_team.name, sales_agent.name

58 QUERYING DATA

This will result in the following result set:

team.name agent.name
========= ==========
Alpha Jim
Alpha Mary
Beta Jim
Beta Tom

Let me briefly summarize what I have done. I have used the primary key
and the foreign key from a one-to-many relationship to join the attribute
information of two R-tables. First, you select the product of the two
R-tables. You then use a WHERE clause to equate the foreign key of the
first R-table with the primary key of the second R-table. You then order the
attributes and entities as you see fit.

This is a commonly used method, but it is not without problems. For
example, what happened to Jack? He did not belong to a team and so
he disappeared. What happened to the Gamma team? It did not have any
agents in the data set and so it disappeared. You see that this method does
not really work in case the one-to-many relationship is optional. In that
case it is possible that an instance (such as Jack) will have a foreign key of
value NULL. Consequently, the expression that compares the foreign key to
an existing primary key will always be FALSE.

To resolve these problems, there is a special JOIN clause available in
the SQL language. This JOIN clause can be used to make sure that data
from optional relationships is also included. There are different types
of JOINs such as INNER JOIN, LEFT JOIN, and RIGHT JOIN. The
detailed treatment of the JOIN clause is outside the scope of this book,
and I will have to refer to more dedicated SQL books for more detail on
them.

4.5. Multiple joins and de-normalization

So far I have been discussing two tables only, to deal with one one-to-many
relationship. I will now move on to the case where I have more than one
foreign key in an R-table. This will involve the joining of multiple tables.

QUERYING DATA 59

You will encounter this case with an entity that was previously identified
in the context of a many-to-many relationship. For example, the line item
entity was used to remove a many-to-many relationship between sales
orders and products. The line item connects sales orders and products, and
so any query that displays some information about the line items will need
to display data from the sales order and from the product.

You will also encounter this case in situations where you have strings
of primary and foreign keys, such as the one I have been discussing in
Chapter 2 on page 32. For example, if you are joining the sales orders and
the sales agents, displaying the sales agent’s name with every sales order,
you will see that it is possible to display the foreign key of the sales team as
well. So, another join is needed with the sales team table to make sure that
you do not display an identity attribute, but the name of the sales team.

When we start joining the attributes of multiple tables in this way, we
will eventually end up with a result set that has all non-identity attributes
involved in the initial R-table. This process is called data de-normalization.
During de-normalization, all the foreign keys are removed step by step. The
following list demonstrates how de-normalization works and what it looks
like when the line item table is de-normalized.

Start with initial R-table: We start with the R-table line_item. There are
obviously foreign keys to the sales order and to the product.

First-order joins: Let us first remove the foreign key order_id by joining
the sales order attributes. There is now significant data redundancy
in the data set. Also, the table contains two new foreign keys, for
customer and for sales agent.
We need to remove a second foreign key that we started out with, the
product_id. By joining the product R-table, we receive in return
the attributes for the products, such as product name and product
price. We also receive a new foreign key, one that refers to the product
type.

Second-order joins: These joins involve the removal of the foreign keys
that entered the result set when we joined the neighbouring R-tables.
In our example, they involve the joining of the tables customer,
sales_agent, and product_type. Are we done? Not quite, because
by joining these tables we have introduced once again new foreign
keys. They are team_id and status_id.

60 QUERYING DATA

Sales Order

Line item Appoint-
ment

Product

Sales Agent

Sales Team

Customer

Customer Status

Product Type

Customer

Customer Status

Sales Agent

Sales Team

(a) (b)

Figure 1 De-normalization

Third-order joins: Now we also join the sales team and the customer
status with the original line item table. We are done. There are no
more foreign keys in our result set.

De-normalization, that is, ironing out all foreign keys, is a process that
can be visualized using concentric circles, as in Figure 1a, where I have
de-normalized the line item table.

De-normalization will give us a so-called de-normalized result set with
all non-identity attributes associated with the initial R-table. An example
of what such a result set could look like, given the data from Appendix 1, is
displayed in Table 4.1.

In this example I have not included all attributes that we would be able
to access, but only some of them that could be relevant for us later on.
Note that the appointment R-table does not feature in this final result set.
That is because there is no appointment data connected to the line item
data using a foreign key. Had we wanted to de-normalize the appointment
table, we would do so using the process visualized in Figure 1b. I leave this
as an exercise for you.

Table 4.1 Source data for a management information system

Item Order Customer Product Category Price Quantity Agent Sales Team Date

1 1 Cyndi Orange Food 1 6 Jim Alpha 3 Jan
2 1 Cyndi Candle Non-Food 7 34 Jim Alpha 3 Jan
3 2 Kasey Wine Food 10 24 Mary Alpha 7 Jan
4 2 Kasey Orange Food 1 4 Mary Alpha 7 Jan
5 2 Kasey Apple Food 1 35 Mary Alpha 7 Jan
6 3 Evelyne Orange Food 1 13 Tom Beta 8 Jan
7 3 Evelyne Soap Non-Food 5 19 Tom Beta 8 Jan
8 4 Ocean Apple Food 1 30 Jim Alpha 9 Jan
9 4 Ocean Soap Non-Food 5 9 Jim Alpha 9 Jan

10 5 Joan Soap Non-Food 5 14 Jim Beta 11 Jan
11 5 Joan Wine Food 10 16 Jim Beta 11 Jan
12 6 Myra Apple Food 1 21 Mary Alpha 15 Jan
13 6 Myra Orange Food 1 8 Mary Alpha 15 Jan
14 7 Godfrey Candle Non-Food 7 33 Tom Beta 17 Jan
15 8 Celeste Wine Food 10 20 Mary Alpha 21 Jan
16 8 Celeste Candle Non-Food 7 32 Mary Alpha 21 Jan
17 9 Lennard Apple Food 1 26 Jim Beta 29 Jan
18 10 Justin Soap Non-Food 5 15 Tom Beta 30 Jan
19 10 Justin Wine Food 10 17 Tom Beta 30 Jan
20 10 Justin Candle Non-Food 7 7 Tom Beta 30 Jan

62 QUERYING DATA

To generate these tables, the SQL parser has had to generate a product of
the original tables. In the previous example, there are 20 line items, 10 sales
orders, 10 customers, 5 products, 2 product categories, 4 sales agents, and
2 sales teams. This implies that the resulting product is 20 × 10 × 10 × 5 ×
2 × 4 × 2 = 160, 000 possible combinations. That is very many considering
that we only had very few instances to start out with. You will appreciate
that in a real-life management scenario, the number of combinations ends
up in millions. Computing performance of the SQL parser is therefore
often a big problem in management information systems.

The problem of SQL JOIN performance often takes the form of query
plan optimization. It is possible for the SQL Parser, by looking at the SQL
query carefully, to find ways to speed up query processing. For example,
by analysing which foreign keys need to be matched, it would not have
to produce a full product of all the R-tables, but would rather generate a
subset of that full product in which the foreign keys are matched already.
Commercial vendors of database software often compete with each other
on query plan performance.

The data warehouse concept that we have discussed in Chapter 1 can
now be further specified. A data warehouse is a select set of de-normalized
R-tables, taken from the R-tables in the transaction processing systems.
These data warehouse tables can be seen as the result of pre-processing
data, to be used by a management information system. The pre-processing
is necessary because of the severe performance problems that we often
encounter. The tables can be used by management information systems,
and we will often find that they refer to these tables as the ‘raw data’ for any
managerial report.

� FURTHER READING

In this chapter I have demonstrated the use of SQL, an easy to use language to
query data from a transaction processing system. SQL produces result sets: lists of
rows that are taken from the R-tables. These result sets eventually form the basis
for our management reports.

There is more to SQL than the SELECT statement. Explaining the full range of
SQL statements is outside the scope of this book, but more information can be
found in Van der Lans (1989), and of course on the Internet where many other
tutorials are available.

5 Aggregating data

KEY CONCEPTS

Variable Drilling down
Dimension Nominal, ordinal, interval, and ratio scale
Multi-dimensional table Aggregation operations
Slicing Summary table
Dicing Cross-tabulation
Rolling up Pivot table

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Understand the basic manipulations on a de-normalized result set.
2. Outline and discuss the different ways to aggregate data.
3. Connect the different options to aggregate data with the different types of measure-

ment scales.
4. Construct summary tables, cross-tabulations, and pivot tables using the result set

manipulations and the aggregation options.

5.1. Introduction

In the previous chapter we have seen how you can query databases to
get result sets of individual instances. We shall now concern ourselves
with generating data about groups of instances. We shall refer to this as
aggregated data. Examples of such information include the total revenue
on our sales orders, the average volume of sales, the maximum quantity in
a particular month, and so on.

It goes without saying that aggregating data effectively is an essential
skill for a manager. A management information system should be able
to support aggregation rapidly and accurately, and ideally in a somewhat
flexible way, as there are many different ways to aggregate data.

How do we generate aggregated data? First of all, SQL can be of assis-
tance. It is possible to use the SQL language to select information about

64 AGGREGATING DATA

groups of entities. For example, SQL features a GROUP BY clause, as well as
aggregated functions such as SUM, AVG, MAX, and so on. Normally, however,
we would leave the SQL parser behind at this point, and focus on the
spreadsheet environment, or use a dedicated business intelligence or data
warehouse package.

The reasons why we are turning to spreadsheets and dedicated busi-
ness intelligence software at this stage are twofold. First, these tools have
more advanced aggregation functions. For example, they have interactive
functionalities such as pivot tables, to be discussed in this chapter. Second,
these tools are equipped with more powerful visualization techniques. I
shall talk more about visualization in the next chapter. While databases are
splendid tools to capture and organize transaction data, we would move
to spreadsheets and business intelligence tools to deal with aggregated
data.

In this chapter I shall first review the fundamentals of data aggregation,
and then move on to the basic structures to aggregate. These include the
construction of the summary table, the cross-tab, and finally the pivot
table.

5.2. Manipulating aggregated tables

Let us return to where we ended in the last chapter, which was with
the creation of a de-normalized table that contained a set of transaction
data. Such tables represent collections of attributes from different R-tables,
joined together in large tables, ready for further analysis.

These intermediate tables are so vital to the generation of adequate man-
agement information that they have some specific terminology associated
with them. I need to introduce you to this terminology first before I can
move on with the rest of the material.

First, it is common to refer to the columns of these tables as variables. A
variable has a range of values, and each variable represents one dimension.
This is the reason why these tables are also called multidimensional tables.
The dimensions in question refer to the columns of the table. The fact that
these columns were originally represented as attributes in different R-tables
need no longer concern us here.

AGGREGATING DATA 65

The de-normalized tables are typically very large, and they contain a
large number of columns and a large number of rows. In order to make
sense of the data, we would typically reduce the table to something that is
more meaningful to grasp. This is called table manipulation, and the ways
that we manipulate these tables also have some terminology associated with
them.

The first manipulation on these tables is to select only a subset of rows.
This would be a similar exercise to the one in the previous chapter where
we used the WHERE clause in the SQL statement. The term used for selecting
a subset of rows in a multidimensional table is called slicing. We ‘slice’ the
table by removing a number of rows that, for one reason or another, do not
interest us. In our sales management example, we could, for example, just
select the transaction data that pertains to sales team Alpha.

The second manipulation on these tables is to select only a subset of
columns (dimensions). This is called dicing. We ‘dice’ the table by remov-
ing the columns that, for one reason or another, do not interest us. For
example, we might not be interested in the names of the sales agents, and
in that case we would remove those columns.

Together, these two operations on the table allows us to ‘slice and dice’
the multidimensional table to a table that is smaller and that would better
serve our purposes. Figure 1 displays graphically the two operations at
work. The slicing operation shows how we remove the rows that do not

Column 1 Column 2 Column 3 Column 4

A CRow 1

A DRow 2

B CRow 3

B DRow 4

Column 1 Column 2 Column 3 Column 4

A CRow 1

A DRow 2

Dicing

Column 1 Column 2

A CRow 1

A DRow 2

B CRow 3

B DRow 4

Slicing

Column 1 Column 2

A CRow 1

A DRow 2

Slicing and dicing

Figure 1 Slicing and dicing

66 AGGREGATING DATA

have value A in the first column. The dicing operation shows how we
remove the columns that do not interest us.

The third and fourth type of manipulation on these tables deal with the
aggregation itself. We can ‘collapse’ a number of rows by replacing them
with one row, and have appropriate aggregate values to ‘represent’ the
underlying individual values. For example, let us suppose we have sliced
and diced Table 4.1 into the following table:

Table 5.1 Sample table with transaction data

Order Customer Product Price Quantity

1 Cyndi Orange 1 6
1 Cyndi Candle 7 34
2 Kasey Wine 10 24
2 Kasey Orange 1 4
2 Kasey Apple 1 35

I could then ‘collapse’ these five rows into two rows by grouping them
according to order (order 1 and order 2). This would result in

Table 5.2 Sample table rolled up by order

Order Customer Product Average price Total quantity

1 Cyndi – 4 40
2 Kasey – 4 63

Alternatively, I could collapse these five rows into four rows by grouping
them according to product. This would result in

Table 5.3 Sample table rolled up by product

Order Customer Product Price Total quantity

– – Orange 1 10
– – Candle 7 34
– – Wine 10 24
– – Apple 1 35

AGGREGATING DATA 67

This process of collapsing data into aggregate values is known as rolling
up data. The opposite of rolling up is drilling down. Here, you ‘expand’ an
aggregated value into its underlying transactional values.

In studying these examples please pay attention to the following two
aspects. First, you will see that there is no need to supply aggregate values
for those variables (attributes) that belong to the original variable that you
are grouping the data by. These variables often were originally attributes of
the same entity.

Second, you will see that there are different ways to calculate aggregate
values: I have used the average and the total here, and you will note that
I have not aggregated the product names because averaging and totaling
product names would not really make sense. This is not to say there are
no other ways of aggregating product names. This is indeed possible, and I
will discuss them later in this chapter. It depends on the type of data which
aggregate operation you can use.

In sum, the four basic manipulations on a de-normalized table are slic-
ing and dicing, rolling up, and drilling down. Business intelligence pack-
ages allow you to perform all these operations in any conceivable order.
For example, one could first roll up the line item data by order, then select
(dice) the customers, then drill down by customer, and then select (slice)
only the most profitable ones.

5.3. Data aggregation scales

Before we can start covering the different data aggregation operations,
we must first return to the allowable values for our data again. You may
remember that we discussed different attribute types in Chapter 2 on
page 25. I emphasized there that it is important to specify the range of
allowable values for each attribute.

In a similar vein, variables have allowable values. The allowable values
of a variable are reflected in the choice of measurement scale. The choice
of measurement scale is a bit different from the attribute types that we
discussed earlier. Because the aggregation operations available to us depend
on the measurement scale, it is useful to categorize our data sets adequately

68 AGGREGATING DATA

so that it is straightforward to see which operation can be used for which
type of measurement scale.

A list of the available measurement scales follows. It is a set of scale types
first outlined by Stevens (1946).

Nominal scale: Data is measured on a nominal scale if the data can be
counted but not ranked. For example, in Table 4.1 on page 61, the
product, the product category, the sales agent, and the sales team area
are all measured on nominal scales.

In terms of mapping this scale to attribute types, any attribute type
of type Text corresponds to the nominal scale, except when the values
can be ranked. Attributes from entities that were originally of type
Category often fall into this scale.

Ordinal scale: Data is measured on an ordinal scale if the data can be
counted and the values can be ranked in a meaningful order. When
an attribute has adopted an ordinal scale, it means that we know that
the values can be ranked, but the difference between the values is
unknown.

Examples include the possible responses to a multiple-choice ques-
tion such as ‘Strongly Disagree’, ‘Slightly Disagree’, ‘Neutral’, ‘Slightly
agree’, or ‘Strongly Agree’. There is a rank order here in the extent to
which the respondent agrees with the question. We could say that,
on the ‘agreeableness’ dimension, ‘Strongly Agree’ is higher ranked
then ‘Slightly Agree’. Colloquially, we could say that Strongly Agree is
‘greater than’, or ‘better than’ Slightly Agree.

With ordinal scales, we know that one value is higher than another,
but we do not know how much higher. The difference between
the values is unknown and cannot be measured. For example, we
would not be able to say precisely how much Strongly Agree is
better than Slightly Agree. And we would not be able to measure
whether the difference between Strongly Agree and Slightly Agree
is greater or smaller than the difference between Slightly Agree and
Neutral.

Very often, an ordinal scale can be used for those categorical enti-
ties for which we can provide an entity lifecycle, as discussed in
Chapter 3. We could rank customer status into Contact, Lead, Promis-
ing Lead, Prospect, and Customer. The rank order here is the progress

AGGREGATING DATA 69

a customer has made in the lifecycle. Cast in this way, we could say
that a Prospect is ‘greater than’ or ‘better than’ than a Promising
Lead.

Interval scale: This is a measurement scale where data can be counted, the
values can be ranked, and it is clear how much one data value differs
from another.

The most common examples in an MIS setting are the attributes
of type Time Stamp. For example, we know that in any specific week,
a day on Thursday is ‘higher’ than a day on Tuesday, and that the
difference is exactly two days. A four-month period is exactly twice as
long as a two-month period.

The defining characteristic of interval scales is that we can count
the values, we can rank them, and we can add and subtract them.

Ratio scale: This is a measurement scale that resembles the interval scale
in all aspects, and in addition a value of 0 can be distinctly identified.
Such a zero point would denote that no quantity of the attribute was
present.

In an MIS setting, examples of measurement on ratio scales are sales
volume and price. A sales volume of 0 would mean that no products
were sold, a clear zero point. Price is another example. A price of 0
would mean that no money was being asked for the product. That,
too, is a clear zero point. Indeed all attributes of type Number would
normally qualify.

The presence of a zero point is important because this is the one
thing that distinguishes the ratio scale from the interval scale. It
enables us to multiply and divide data values, something we could not
do with interval scales. Ratio values allow you to express one value as
a fraction (a ratio) of another value on that same dimension.

Please note that time stamps are interval-scaled and not ratio-
scaled because they do not have a zero point. We obviously have the
year 0 but that does not mean that there was no time then. Con-
sequently we cannot divide Wednesday by Tuesday, for example, or
express Saturday as a fraction of Sunday.

In summary, the defining characteristic of ratio scales is that we can
count the values, we can rank them, we can add and subtract them,
and we can divide and multiply them.

70 AGGREGATING DATA

An elegant and useful aspect of this classification is that every category
also carries the characteristics of its previous category. Every ratio-scaled
variable is also an interval-scaled variable. Each interval-scaled variable is
also an ordinal-scaled variable. And each ordinal-scaled variable is also a
nominal-scaled variable.

At this point I want to clarify some potential areas of confusion that
often arise when people are exposed to these different measurement scales
for the first time.

First of all, some get a bit confused with the nominal scale because
they believe that, for example, sales agents can be ordered alphabetically
and so must be ordinal. After all, if you ask the SQL parser to order
sales agents by name, that is what it would do, and so it must be ordi-
nal because it can be sorted. You need to keep in mind, however, that
such a ranking is really nothing but an arbitrary ordering of the sales
agents by name. We are not actually ranking sales agents on their ‘sales
agent-ness’.

Second, students often think that nominal values can be sorted too
by taking into account other measures. For example, we can order sales
agents on their sales performance, and so sales agents must be ordinal
and not nominal? Not really is the answer, because in that case we are
actually ranking the sales performance, and implicitly we are combining
two attributes, sales agent, and sales performance.

Third, there is often confusion between interval-scales and ratio-scales
in that differences between the interval values can be multiplied and
divided. For example, twice a two-month period (a difference of two
months) is a four-month period (a difference of four months). Thus, the
differences can be expressed in ratio-scaled terms.

Finally, there is a subtle difference here between the way we rank data
on the ordinal scale and the way we would order data when we retrieve
it as a query from an R-table. For example, if we have the following SQL
query:

SELECT name
FROM customer_status
ORDER BY name

The order of the responses would be alphabetical and would, in this case,
result in:

AGGREGATING DATA 71

name
==============
Contact
Customer
Lead
Promising lead
Prospect

This ordered result set is hardly what we had in mind for our ordinal
scale. The SQL parser does not know how to rank these entities on ‘life-
cycle stage’. The solution is to create an additional attribute called ‘rank’,
which allows us to sort the instances in the way that we would like. For
example, this query

SELECT rank, name
FROM customer_status
ORDER BY rank

would result in:

rank name
==== ==============
1 Contact
2 Lead
3 Promising Lead
4 Prospect
5 Customer

5.4. Aggregation options

Having equipped ourselves with the correct terminology, we are now able
to concern ourselves with the construction of aggregated values.

An aggregated value is a value that represents a group of values of the
same attribute but from different entities. For example, if we had the indi-
vidual values 2, 4, and 6 (denoting, say, the price of three products), then
the aggregated value could be 12. In this case, that value would represent
the sum of the values. Another aggregated value could be 4, which would
represent the mean of the three values.

72 AGGREGATING DATA

What follows is a list of options to aggregate data for a variable. As we
discussed previously, the measurement scale of a variable is an important
determinant in the aggregation options that we have at our disposal.

Count: Also known as frequency. This category refers to the number that
specific data values occur in the data set. For example, we could count
the number of times that specific sales agents appear in Table 4.1.

Frequency can be used with all types of variables. It is one of the
few aggregate options available to nominal-scaled variables.

Minimum, Maximum: Provides the lowest or highest value in the rank.
As you can see, the variable needs to be scaled on a rank for this to
be meaningful, and thus nominal-scaled variables drop out here. This
option is only available for ordinal-scaled variables and up.

Total: This is the overall value when all data values are summed up.
Of course this only has meaning when the data values are actually
amenable to numerical calculation, including at least the option to
add and subtract the values. Thus, the totaling option is only available
for interval- and ratio-scaled variables.

Average: Also known as central tendency. The measures of central ten-
dency provide aggregate information about the centre of the distribu-
tion of the values.

We have different measures of average depending on the measure-
ment scale. For a nominal-scaled variable, the appropriate aggregate
measure in this category is the mode. The mode is the value that occurs
the most. For ordinal-scaled variables, it is the median. The median is
the value that represents the exact middle. For interval- and ratio-
scaled variables, this value is the mean (abbreviated M). The mean
represents the arithmetic average of the values present.

Variation: The measures of variation provide information about the
spread of data around the centre. This does not apply to nominal-
scaled variables, because there is no centre. For ordinal-scaled vari-
ables, we can identify the so-called interquartile range, or IQR. This
is the range of values that represent the middle half of the values
available. For interval- and ratio-scaled variables, the archetypical
measure of variation is the standard deviation (abbreviated SD). The
standard deviation measures how close or how far data is to the mean.

AGGREGATING DATA 73

Shape: The aggregate measures of shape describe in more detail the
way in which the data is spread around the centre. Kurtosis and
skewness are the best known measures here for interval- and ratio-
scaled variables. Kurtosis refers to ‘peakedness’ or ‘flatness’ of the data
distribution: the higher the kurtosis, the closer data is to the mean
and the less data is further away from the mean. Skewness refers to
the symmetry of the shape. Skewness measures identify whether there
is more data on one side of the mean than on the other. The aggregate
measures of shape are little used in comparison to the other aggregate
measures.

5.5. Summary tables and frequency tables

An important concept in data aggregation is the derived attribute. The
derived attribute is an attribute the values of which combine or manipulate
other values from the same instance in a predefined way. For example, we
could create an attribute called ‘Revenue’, the values of which we could
define as the value of the attribute ‘Price’ times the value of the attribute
‘Quantity’. The derived value is, if you like, a ‘ghost’ value: it is never
actually stored in a data set, but because we know the definition of how
it is calculated, we would always be able to generate it should we want to.

Note that a derived value always refers to one instance, and is not to be
mistaken for an aggregation value. Remember that an aggregation value
always combines the values of more than one instance. Table 5.4 illus-
trates the difference. You see in this table the line items for sales order 1.
The derived attribute Revenue is displayed as the last column, in italics
to indicate its ‘ghost’ status. The derived values are 6 (6 oranges sold at

Table 5.4 Derived and aggregated values

Order Product Price Quantity Revenue

1 Orange 1 6 6
1 Candle 7 34 238

244

74 AGGREGATING DATA

price 1) and 238 (34 candles sold at price 7). The aggregation value is 244
(using the option total), representing the combined values of 6 and 238.

We can also manipulate time stamp attributes in this way. We can, for
example, create a derived attribute called ‘Week.’ Table 5.5 provides the
week number for each sales order. It is through the use of derived attributes
that we can implement changes in the format of the attribute, as discussed
previously in Chapter 2 on page 26.

Spreadsheets are powerful tools to create derived values using definitions
called formulas. Formulas can make reference to cells (intersections of rows
and columns), and can be copied and pasted in flexible ways.

We can now proceed with constructing summary tables. A summary
table provides aggregate data of one attribute grouped by the values of
another attribute. The summary table provides a subset of the columns
(usually just the attribute value with the nominal scale) as well as the rows.
In that sense, it is a condensed view of the de-normalized result set that we
developed in the previous chapter.

Let me give a few illustrations of summary tables that take Table 4.1 as
its origin. We can, for example, look at the sales revenue by sales order.
Table 5.6 illustrates what such a summary looks like. I have selected for
my subset the columns Sales Order, Sales Agent, Sales Team, and Revenue.
Note that the derived values for revenue provide the subtotal of the line
items that contributed to this order.

I could summarize this table even further by grouping the line item data
not just by order, but also by sales agent. Table 5.7 illustrates this. And it is

Table 5.5 Derived attribute week number

Order Date Week

1 3 Jan 1
2 7 Jan 2
3 8 Jan 2
4 9 Jan 2
5 11 Jan 2
6 15 Jan 3
7 17 Jan 3
8 21 Jan 4
9 29 Jan 5

10 30 Jan 5

AGGREGATING DATA 75

Table 5.6 Sum of sales revenue broken
down by sales order

Order Agent Team Revenue

1 Jim Alpha 244
2 Mary Alpha 279
3 Tom Beta 108
4 Jim Alpha 75
5 Jim Beta 230
6 Mary Alpha 29
7 Tom Beta 231
8 Mary Alpha 424
9 Jim Beta 26

10 Tom Beta 294

1,940

straightforward to summarize this even further, and group by sales team,
as Table 5.8 illustrates.

You will perhaps have recognized that the breakdown pattern follows
the string of one-to-many relationships that you can identify in the ER
diagram in Figure 10 of Chapter 2 on page 34. We grouped the revenue for
an individual line item into an order, we grouped that by agent, and we
grouped that by team. You should always be able to group your data in this
way.

Business intelligence systems allow you to summarize and ‘de-
summarize’ the data interactively. You can, for example, go from Table 5.7
to Table 5.8 (rolling up, or aggregating the data). You can also go back from
Table 5.8 to Table 5.7 (de-aggregating, or drilling down).

Table 5.7 Sum of sales revenue
broken down by sales agent

Agent Team Revenue

Jim Alpha 319
Mary Alpha 732
Tom Beta 633
Jim Beta 256

1,940

76 AGGREGATING DATA

Table 5.8 Sum of sales revenue
broken down by sales team

Team Revenue

Alpha 1,051
Beta 889

1,940

So far we have looked at summary tables that used nominal-scaled vari-
ables to drill-down and roll-up the data. We can of course also use other
variables. Let us first examine an interval-scaled variable, such as time
stamp. The week number can provide us a vehicle to split and aggregate
the data, as Table 5.9 shows.

A special version of a summary table is the frequency table. In a frequency
table, the values of an attribute are grouped in one column, and the second
column indicates the number of occurrences of each of those values in
the original result set. Table 5.10 provides an example for a variable on
a nominal scale, the product.

We could also construct frequency tables for interval and ratio-scale
variables. In that case we would identify so-called bins. Bins are chopped
up parts of the scale, carefully constructed so that they represent the entire
range along which variables are measured. Each bin represents an equal
portion of the scale. When the bins are constructed, you can subsequently
count the number of data values that fall within each bin.

Take for example the derived attribute Revenue. If you calculate rev-
enue for every line item, you would have 20 derived values, ranging from

Table 5.9 Sum of sales revenue
broken down by week number

Week Revenue

1 244
2 692
3 260
4 424
5 320

1,940

AGGREGATING DATA 77

Table 5.10 Count of products
sold by product sold

Product Count

Orange 4
Apple 4
Wine 4
Soap 4
Candle 4

20

4 (line item 4) to 240 (line item 3). We could identify 5 bins, each bin
representing 50. Table 5.11 presents the corresponding frequency table.

5.6. Cross-tabulations and pivot tables

A cross-tabulation, or more colloquially, cross-tab, is a summary table for
two dimensions. You would have the same aggregated value, but it is
mapped out in rows and mapped out in columns. Table 5.12 for example,
provides us an overview of sales revenue per team and per month. Before
you proceed please study carefully how this cross-tab is a combination of
two summary tables, Tables 5.7 and 5.9, respectively.

In another example, we can examine the count of products and the count
of the revenue bins and map them together in a cross-tabulation like the
one in Table 5.13. Again, before moving on, please study carefully how this
cross-tab is a combination of Tables 5.10 and 5.11.

Table 5.11 Count of revenue
by revenue bin

Revenue Count

0–50 10
51–100 3

101–150 0
151–200 3
201–250 4

20

78 AGGREGATING DATA

Table 5.12 Cross-tabulation of sales revenue broken down by sales agent and
by week

Agent Team Week 1 Week 2 Week 3 Week 4 Week 5 Total

Jim Alpha 244 75 0 0 0 319
Mary Alpha 0 279 29 424 0 732
Tom Beta 0 108 231 0 294 633
Jim Beta 0 230 0 0 26 256

244 692 260 424 320 1,940

The value of the cross-tabulation is that it provides insight into the
relationship between the two variables in which the cross-tab breaks down
the total number. For example, Table 5.12 gives us some insight in the
activities of the sales agents over the weeks. We can see that Jim from
Team Alpha was really successful in Weeks 1 and 2 and then did not
secure any sales orders. Such information was not readily visible from
the data set in Table 4.1. Likewise, we can study Table 5.13 and iden-
tify that the bigger sales orders are wines and candles only. We could
have suspected that relationship given their more expensive prices, but
it is confirmed by the data, and that was not immediately identifiable in
Table 4.1.

Please be aware that the rows and columns of the cross-tab have decid-
edly different meanings than the rows and columns from an R-table or an
SQL result set. In an R-table, the columns referred to attributes of entities
and the rows referred to instances of those entities. In a cross-tab, both

Table 5.13 Cross-tabulation of products sold broken down by revenue and by
product sold

Revenue Orange Apple Wine Soap Candle Count

0–50 4 4 0 1 1 10
51–100 0 0 0 3 0 3

101–150 0 0 0 0 0 0
151–200 0 0 3 0 0 3
201–250 0 0 1 0 3 4

4 4 4 4 4 20

AGGREGATING DATA 79

Table 5.14 Cross-tabulation of products sold broken down by revenue and by
product sold

Revenue 0–50 51–100 101–150 151–200 201–250 Count

Orange 4 0 0 0 0 4
Apple 4 0 0 0 0 4
Wine 0 0 0 3 1 4
Soap 1 3 0 0 0 4
Candle 1 0 0 0 3 4

10 3 0 3 4 20

the rows and the columns now refer to aggregate attribute values. There is
nothing that would prevent us from turning the cross-tab around, that is,
specify the attribute week as the row and the attributes teams and agents as
columns. Table 5.14 demonstrates what this looks like.

The choice of rows and columns is not a completely arbitrary affair
though. There is an important relationship between the choice of rows
and columns in data aggregation, and the choice of X-axis and Y-axis in
data visualization. I will discuss this some more in the next chapter on data
visualization.

A pivot table is the interactive cousin of the cross-tabulation. It is one
of the most powerful tools available in spreadsheets. The pivot table allows
us to create cross-tabs interactively. We spoke earlier about ‘turning’ the
data, that is, swapping rows and columns as we saw fit. It is the idea
of turning the data around a pivot from where the pivot table draws its
name.

To create a pivot table, we would normally start out with a table like
the one in Table 4.1. The spreadsheet would then allow us to provide
the variable that we want to aggregate (in our case, the derived variable
Revenue). It would then give us the aggregation options, from Section 5.4
such as Count and Sum.

Given the aggregated variable and the aggregation option, a pivot table
can be dynamically created by choosing different variables as rows and as
columns. For example, it would be easy to switch from Table 5.13 to Table
5.14. We would simply drag and drop the Revenue bin from the column to
the row, and vice-versa.

80 AGGREGATING DATA

� FURTHER READING

Standard textbooks on business statistics and business research methods provide
ample description of aggregated functions (see e.g. Saunders, Lewis, and Thornhill
2006; Berenson, Levine, and Krehbiel 2005).

An interesting study on the effects of data aggregation is the one by Chervany
et al. (1974). In this experiment two groups of students played a management
simulated game at the University of Minnesota. The first group had access to all
the unaggregated data that came from the fictional company. The second group
only had access to the aggregated data: means, standard deviations, minimum, and
maximum. Eventually, the second group performed better in terms of objective
company performance, that is, revenue and profit. However, the subjective deci-
sion performance decreased: the participants were less confident about whether
they had made the right decisions.

It is thus important to provide extensive drill-down options, so that managers
can always go back to the unaggregated data should they wish to do so.

6 Visualizing data

KEY CONCEPTS

Univariate charts Pie chart
Bivariate charts Covariation
Multivariate charts Line chart
Dot scale Scatter plot
Box plot Scatter plot matrix
Line plot Bubble chart
Histogram Parallel coordination plot
Bar chart Dynamic charts

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Choose the right chart for the right type of variable or set of variables.
2. Understand the danger of suggesting dependency when in fact there is none.
3. Discuss the advantages and disadvantages of adding colour.
4. Resist the urge to dress up your charts with pretty effects.

6.1. Introduction

In the previous chapter, we have been concerned with the construction of
aggregate tables: frequency tables, summary tables, cross-tabulations, and
pivot tables. We shall now move on to the visualization of these tables.
Although charts often use aggregated data as the basis, it is also possible
to visualize transaction data without any aggregation.

The visualization of data has been described as the ‘front line of attack’
to explore patterns in data (Cleveland 1993). It helps us understand trends
that are not easily spotted in aggregated tables. Also, it helps to com-
press large amounts of data, and, in doing so, helps to avoid information
overload.

The value of charts over tables has been demonstrated in an experi-
ment where students played a simulation game to manage inventory levels
(Benbasat and Schroeder 1977). Half of the students had to base their

82 VISUALIZING DATA

decisions on output in table format. The other half had to base their deci-
sions on charts. The students with the charts significantly outperformed
the students with the tables.

There is an interesting asymmetry between data presented in tabular
format and data presented in graphical format. Although one can always
transform the tabular format into the graphical format, the reverse is not
always true without losing some precision. This, then, is the trade-off

when you balance the graphical or tabular formats: you win on under-
standing, but you lose on precision. When both are important, most
users tend to prefer receiving both formats rather than one or the other
(Benbasat and Dexter 1986).

Charts can be categorized according to the number of attributes that
are represented at the same time. In this chapter I will first discuss the
charts that visualize the values of one variable. I will then move on to
two variables, particularly summary tables and cross tabs. After that I will
discuss the visualization of three or more variables and take you through
several techniques to do so. I will end with discussing dynamic charts, and
the use of colour and other visual effects.

6.2. Visualizing one variable

The simplest charts are the univariate charts, those that visualize a set of
values of one particular variable. Let us first consider the case where the
variable is measured on an ordinal, interval, or ratio-scale. These mea-
surement scales are sufficiently informative for us to plot the data values
on an axis. Both the individual data and the aggregation data can be used
to plot the variable on an axis. We would say that the axis represents one
dimension, and that the chart is therefore unidimensional.

Figure 1 shows examples of three common charts for plotting ordinal,
interval, and ratio variables on an axis. To generate these univariate charts
I have used the data from the variable Quantity from Table 4.1.

Figure 1a represents a dot scale, which plots each value as a dot on the
scale of the variable. This gives us an insight in the distribution of the
individual data values on the entire range of values.

The dot scale starts to loose its value when you have a large number of
data points and the distribution of values along the axis becomes blurry. In

VISUALIZING DATA 83

0 8 16 24 32 40

(b) Box plot

(c) Line plot

(a) Dot scale

Figure 1 Dot scale, box plot, and line plot

that case you can resort to plotting the statistical aggregation measures. As
discussed in the previous chapter, for ordinal, interval, and ratio variables
we can use the minimum, the maximum, the first quartile, the median,
and the third quartile. The box plot, invented by John Tukey (1977), plots
these aggregated measures. The box starts at the first quartile and ends at
the third quartile. This range in the box is the interquartile range (half of
the values). The line inside the box represents the median value. The lines
outside the box, called the whiskers, branch out to the lowest value (the
minimum) and the highest value (the maximum). A box plot for our data
is represented in Figure 1b.

Tufte (1983) suggests another version of Tukey’s box plot which is depi-
cted in Figure 1c. If you look carefully you can see that this plot, called a line
plot, represents the same statistical measures as the box plot but the box is
missing. The median is represented by a dot. The whitespace between the
lines and the dot represents the interquartile range. Obviously you need
to be keenly aware of what these aggregate measures mean before you can
start interpreting Tukey’s and Tufte’s plots.

Let us now move on to the visualization of frequency tables. You will
recall from the previous chapter that frequency tables are special kinds of
summary tables, in that they provide aggregate measures for one variable.
Table 5.11 on page 77 gave an example for the derived attribute Revenue.

The type of chart you choose for the visualization of these frequency
tables depends on the measurement scale of your variable. If you have a
frequency table for an ordinal, interval, or ratio-scaled variable, you would
use a histogram. Figure 2 displays a histogram for Table 5.11.

84 VISUALIZING DATA

0

2

4

6

8

10

0-50 51-100 101-150 151-200 201-250

Figure 2 Histogram

A histogram has two axes, a horizontal axis representing the bins, and a
vertical axis representing the frequency.

If you are visualizing a nominal-scaled variable, you would use a bar
chart to represent your frequency table. A bar chart is like a histogram but
the nominal values do not represent any order. To avoid confusion with
the histogram, the bar chart is often depicted horizontally. Figure 3 gives
an example of a bar chart, depicting the number of times each sales agent
has secured a sales order.

If we are more interested in the relative frequency, rather than absolute
frequency, we can visualize a variable with a pie chart or a stacked bar chart.
You would use these charts to emphasize the percentages, not the absolute
data values. Figure 4 gives an example of both types of charts. You can see
that the stacked bar chart is simply a ‘stretched out’ version of the pie chart.

6.3. Visualizing two variables

The previous section discussed frequency tables and the different types of
charts to visualize these. We can extend that discussion to the entire range
of summary tables.

VISUALIZING DATA 85

Jim

Mary

Tom

Jim

0 1 2 3 4 5

Figure 3 Bar chart

Summary tables, as we have seen in the previous chapter, provide aggre-
gate data of one variable grouped by the values of another variable. The
aggregated data is typically, although not necessarily all the time, on an
interval or ratio-scale. The grouping variable is typically, although not
necessarily all the time, on a nominal scale.

The summary table, just like the frequency table, is thus best visualized
using bar charts and pie charts. The bar chart emphasizes absolute fre-
quencies. The pie chart and stacked bar chart emphasizes relative frequen-
cies. Figure 5 gives an example for the summary table from Table 5.9 on
page 76. Note that I drew the bar chart upright here because the grouping

Tom
30%

MaryMary
30%30%

Jim
20%

Sales Agent

0% 20% 40% 60% 80% 100%

Jim
20%

Jim
20%
Jim
20%

Figure 4 Pie chart and stacked bar chart

86 VISUALIZING DATA

0

175

350

525

700

1 2 3 4 5

5
16%

4
22%

3
13%

2
36%

1
13%

1
13%

2
36%

3
13%

4
22%

Figure 5 Visualization of summary tables

variable, week number, is an interval variable, and so a chart that resembles
a histogram is more suitable.

Having visualized summary tables, we can now move on to cross-
tabulations and pivot tables. Cross-tabulations, as you will recall from the
previous chapter, are two summary tables split into a two-by-two matrix.
Thus, they represent the same aggregated values, broken down in two
separate dimensions.

The typical way to visualize cross-tabulations is to use the side-by-side
variants of the univariate charts that we have discussed. Figure 6 illus-
trates four ways of doing this. The original data for these four charts is
in Table 5.12 on p. 78.

The top left chart collates the sales agents together and orders them
by week. The top right chart collates the weeks together and orders them
by sales agent. Both charts are side-by-side bar charts. They focus on the
absolute values. Which variable you collate is largely arbitrary, and depends
on your preferences to examine the data.

The bottom two charts are side-by-side versions of the stacked bar chart.
Here, the focus is on the relative frequencies. Please study all four visual-
izations of the base data from Table 5.12 carefully.

When using a side-by-side variant of a chart, you will need to use dif-
ferent colours or patterns to identify the different categories. You there-
fore need to include a legend, to show which colour or pattern you have
assigned to which value.

Side-by-side variants of univariate charts should be contrasted to bivari-
ate charts, which aim to visualize a relationship between one variable and

VISUALIZING DATA 87

0

125

250

375

500

1 2 3 4 5
0

125

250

375

500

Jim Mary Tom Jim

0%

25%

50%

75%

100%

1 2 3 4 5
0%

25%

50%

75%

100%

Jim Mary Tom Jim

Figure 6 Visualizations of sample cross tab from Table 5.12 on p. 78

another. The technical name for what we are visualizing is co-variation
because we are attempting to detect whether the variables change ‘together’,
or in other words: whether a change in one variable is accompanied by
a change in another. If that is the case, we would say that the variables
‘co-vary’. Bivariate charts are nearly always about two interval- or ratio-
scaled variables. To see whether nominal or ordinal variables co-vary, you
would typically resort to the side-by-side variants.

Bivariate charts map the scales of the first variable and the second
variable onto two axes, one horizontal (the X-axis) and one vertical (the
Y-axis). By common convention the scaling is not distorted, that is, a
range on the axis represents an equal range on the scale. There are some
important deviations from this convention (notably logarithmic scaling)
but for management purposes these are seldom used, and I shall ignore
them here.

When constructing bivariate charts it is often possible to declare one
variable as the independent variable, and the other attribute as the depen-
dent variable. The independent variable is the variable that represents the

88 VISUALIZING DATA

Table 6.1 Sample multivariate data

Entity Var1 Var2 Var3 Var4

1 60 21 40 8
2 35 8 33 5
3 78 30 60 14
4 71 15 51 10
5 53 17 43 10
6 57 9 35 6
7 25 3 25 7
8 45 13 38 11
9 49 18 43 13

10 43 13 29 8
11 39 7 32 7
12 51 7 35 5
13 44 8 35 5
14 75 17 54 18
15 38 8 46 9
16 83 29 49 13
17 60 16 52 12
18 41 4 27 5
19 40 13 35 7
20 58 11 47 8

cause. The dependent variable is the variable that represents the effect.
Doing so defines the direction of co-variation. If you assign variable A as
independent and variable B as dependent, you are assuming that a change
in A will lead to a change in B, but not the other way around. Declaring a
dependency has important implications for the chart because the indepen-
dent variable should go on the horizontal axis, and the dependent variable
should go on the vertical axis.

You should be aware that proclaiming a dependency between variables
(i.e. setting one as the independent and the other as the dependent) does
not mean that this is actually the case. Sometimes the data may falsely
suggest a dependency relationship, leading you to believe that there is a
dependency but in fact there is none. Under such false belief you may well
create misleading charts.

The opportunities to draw bivariate charts from the tables that we have
seen in the previous chapter are rather limited because there are not too
many interval and ratio variables to examine. Let us therefore examine
a second result set, Table 6.1. This is a fictitious result set displaying 4

VISUALIZING DATA 89

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

2

Var1

Figure 7 Scatter plot

variables about 20 entities. Because we are dealing with two variables at
present, let us focus on Var1 and Var2 only.

The scatter plot is the bivariate extension of the dot scale, with each dot
representing two values, one on the X-axis, and the other on the Y-axis.
Note that charting a scatter plot does not imply that the variables co-vary,
or that they share a dependency relationship. It is rather the purpose of
drawing a scatter plot to explore the two variables, to see whether a co-
variation can be suspected. Figure 7 draws the scatter plot for Var1 and
Var2. You can see that the scatterplot suggests a linear covariation between
the two variables: higher values of Var1 are associated with higher values of
Var2.

When two variables co-vary, the dependency relationship can be there,
but there are three other possibilities. First of all, that dependency may be
suggested but non-existent, in that a change in one variable does not actu-
ally lead to a change in another, but is rather the result of pure coincidence.
Second, the direction of the dependency may be the other way around.
The third possibility, often overlooked, is that the variables may change
together as a result of a change in a third variable, the spurious variable.
The spurious variable is perhaps not even modelled, and it may be difficult
to locate it.

90 VISUALIZING DATA

0

100

200

300

400

500

3 7 8 9 11 15 17 21 29 30

R
ev

en
ue

Day of month

Figure 8 Line chart

In sum, if you are studying the relationships between two variables, do
not assign a dependency relationship lightly. Think carefully about the
other three options, and if you are unsure, be careful not to assign one. If
you are in doubt, the measurement scale of the variables might be of help.
Nominal data is often (but not always) independent. Time series variables
are also often (but not always) independent.

The final chart to be discussed in this section is the line chart. The line
chart is a special kind of scatter plot, where a line is then drawn between
the points. The line suggests a trend, and it suggests that the values on the
line can be inferred.

A special kind of line chart is the time series chart, which uses a time
series variable to display on its X-axis and some other variable (often one
that is ordinal and up) to display on its Y-axis. Figure 8 represents such a
line chart. It plots the revenue from our previous chapter on a time line.

6.4. Visualizing three or more variables

When we need to visualize three variables at the same time, we have a
number of options. First, we can use a three-dimensional (3D) scatter plot

VISUALIZING DATA 91

X

z-axis

x-axisy-axis

z-axis

x-axisy-axis

z-axis

x-axisy-axis

Figure 9 3D scatter plot

or 3D line chart, using an X-axis, a Y-axis, and a Z-axis. We can then
plot our values in a three-dimensional space. This is not without problems
though, because the exact data values on the X, Y, and Z axes are often
ambiguous. See, for example, Figure 9 and you will note that the location
of point X is ambiguous without the auxiliary dotted lines.

Imagine I had to visualize Var1, Var2, and Var3 from Table 6.1. I could
map them on three axes and create a 3D line plot. This would create much
confusion because each point would be subject to the same ambiguity that
affected Figure 9. A better alternative, that only works with three variables,
is to create a bubble chart. A bubble chart is like a bivariate scatter plot,
but the values on the third dimension are represented by the width of the
dot (effectively turning the dot into a bubble). I have demonstrated this in
Figure 10.

Looking at patterns in bubble charts, we need to look for co-varation
again. Larger-sized bubbles (higher values of Var3) would seem to be asso-
ciated with higher values of Var1 and higher values of Var2. It would thus
seem that there is a positive co-variation between all three variables.

One other option for three-dimensional data, frequently used, is to
simplify the visualization by plotting out all possible two-dimensional rela-
tionships in a scatter plot matrix. If we want to visualize three dimensions,
we would need 3 × 2 × 1 = 6 two-dimensional plots. Figure 11 shows how
this would work. We could this do for tables with ever higher dimensions,
but the number of two-dimensional scatterplots will rise exponentially.

To visualize four dimensions, we could resort to the bubble chart again.
That is because we could map the fourth dimension onto a colour gradient
(e.g. shades of blue) and colour the bubbles in the bubble chart with their
respective value to represent the fourth variable. The problem with these

92 VISUALIZING DATA

0

20

40

0 20 40 60 80 100

V
ar

2

Var1

Figure 10 Bubble chart

coloured bubble-charts is that it is becoming increasingly difficult to see
the relationships between the relevant dimensions. Are higher values of
Var1 associated with higher values of Var2 and with larger bubbles and
with darker bubbles? Do all four variables co-vary with each other?

Multi-dimensional data with five or more dimensions are even harder
to visualize, and few techniques are available to do so effectively. The most
common way is to use a parallel coordination plot. With such a plot, you
put the axes parallel to each other (one for each variable), and for each
instance you draw a line to connect the individual values on each of the
axes. For example, let us look at the first four instances of Table 6.1. I have
drawn these values into the parallel coordination plot from Figure 12.

Sometimes the axes are not put in parallel but rather in circular format,
resulting in something that is called a radar chart or star plot. Figure 13
gives an example of the same data, this time in a radar chart.

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

2

Var1

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

3

Var1

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

4

Var1

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

3
Var2

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

4

Var2

0

20

40

60

80

100

0 20 40 60 80 100

V
ar

4

Var3

Figure 11 Scatter plot matrix

0

20

40

60

80

100

Var1 Var2 Var3 Var4

Figure 12 Parallel coordination plot

60

80
Var1

Var2

Var3

Var4

40

20

0

Figure 13 Radar chart

VISUALIZING DATA 95

These plots are also not without serious problems. For a start, parallel
coordination plots are often confused with line charts. Second, the plot
becomes very cluttered quickly with more than four or five instances. If I
had mapped out all 20 instances from Table 6.1 in Figure 12, it would be
impossible to identify any pattern at all.

A further limitation of these plots is that they only really work well
with variables that are measured on exactly the same scale. It is perhaps
tempting to put axes next to each other that are from different scales (e.g.
ordinal or even nominal), but in that case the choice of axes and the
choice of the position of the values can seriously distort the overall picture.
Standardization of interval and ratio scales works, but it would require
conversion and transformation of data, which is not generally helpful to
understand the data better.

A number of other multidimensional visualization techniques do exist
but they are not very widely used. Chernoff faces deserve special mention
(Chernoff 1973), because they can represent entities on no less than 18
dimensions, using facial features such as ear size, distance between eyes,
and so on.

It can be argued that in our three-dimensional world we simply find
it very difficult to understand data with more than three dimensions.
If we have to face up to that reality, we must also realize that we will
probably never find a good way of visualizing data with more than three
dimensions.

I should complete this section with mentioning two statistical
techniques that compress multidimensional data into data with fewer
dimensions. Factor analysis can reduce dimensions by creating a so-called
factor score: one value that represents the values on all four or more
dimensions. Cluster analysis reduces the instances by creating clusters of
instances: one instance that represents instances with similar values on
their dimensions.

The aggregate values that cluster and factor analyses produce can help
us to visualize the data more effectively, particularly when we enter four
or more dimensions. For example, a cluster analysis can cluster the 20
instances from Table 6.1 into, say, 4 clusters, which could then be effectively
represented on a parallel coordination plot. A discussion of factor and
cluster analysis is beyond the scope of this book but I encourage you to
study them in greater detail.

96 VISUALIZING DATA

Nr. of
variables?

More than
one

Scale?

All ordinal and
up

At least one
nominal
(create

summary
table)

One
(univariate

charts)

Interested
in?

Comparison

Dot scale

Aggregate
values

Box plot,
line plot

Scale?

Nominal
Ordinal
and up

Bar chart

Interested
in?

Frequency
distribution

Histogram

Use side-by-
side univariate

charts

Percentage

Pie chart or
stacked bar

chart

Interested
in?

Nr. of
variables?

Two
(bivariate
 charts)

Frequency
distribution

Yes No

Line chart Scatter plot

Four or more
(multivariate

charts)

Bubble chart
(or scatter plot

matrix)

Parallel co-
ordinate plot

(or radar chart)

Percentage

Relationship

Individual
values

Function
or time?

Three
(trivariate
charts)

Figure 14 Chart pointer

I have summarized the visualization possibilities in a decision tree
(Figure 14). You can use this tree to check which chart is best suited for
which purpose.

6.5. Dynamic charts

Dynamic charts are charts that change in appearance after a user interac-
tion. They are a powerful way of visualizing trends, and they can also save
screen space in that they can replace a series of static charts. By definition,

VISUALIZING DATA 97

dynamic charts can only be implemented in computerized information
systems, and they cannot be used in traditional management reports.

In this section I will discuss several examples. The first technique is called
brushing, first described by Becker and Cleveland (1987). The technique
makes use of the mouse. You use the mouse to point at a certain dot, or
area, in the chart and the chart changes shape as a result of you pointing at
that dot. For example, in Figure 9, you can point at a particular dot in one
scatter plot, and the system can highlight dots from the same instance in
all other scatter plots. Another example is to move the ‘brush’ over a time
series, and the chart will display some detailed information about the time
that is at the location of the mouse pointer.

The second example is to use what might be called an interactive legend.
If there are too many entities or category values to display, you can use a
legend that is interactive. Each of the category values can be turned on or
turned off. In a parallel coordination plot, for example, you would be able
to turn on or off the lines of specific instances to focus on just the ones you
want to highlight.

An interactive legend is actually a specific example of a more general
technique called overlays. The overlay technique first organizes the tables
and charts into layers, and then allows you to turn on or off the display
of each layer. One layer can be superimposed over another layer to add
information. Layers can also be taken away so that less information is
presented.

Think of overlays as using transparencies on a traditional data pro-
jector, for example, to display information about a country. Your first
transparency would be the outline of a country. Your next transparency
could be the same outline of the country, but this time with coloured areas,
with each colour depicting a language that is spoken in that area. The next
transparency could show where the mountainous areas are. You can flip
between the language and mountain transparencies if you want, so that the
language data will not distract from the mountain data.

Although you can imagine applying overlays using a traditional data
projector, the technique comes to full bloom using an interactive user
interface. So, in a computerized version of the above example, you could
have two buttons next to the country chart, called ‘Display languages’ and
‘Display mountains’, which would allow you to toggle the language and the
mountain layers.

98 VISUALIZING DATA

Overlays can be used in geographical maps but also in charts such as
the one we saw in Figure 8. An information system applying this technique
would allow you to select just the sales agent (or team) that you want to see
in the chart. If you combine it with aggregation measures, it can show you,
for example, the average sales revenue as well. This then would allow you
to see how an individual sales agent, say Jim, is doing in comparison to the
average.

6.6. Colour and other visual effects

Applying colour to your management information can have three powerful
effects. First of all, there is the informational effect. Colour can be used to
add information to a chart. For example, it can be used to indicate ‘good’
and ‘bad’ values on a chart by colouring the values green and red, respec-
tively. A colour gradient (e.g. light blue to dark blue) might be mapped to
the values of a variable, and you can then use colour to represent the values
of the variable. We have discussed how such an effect might be useful to
represent four dimensions in a bubble chart.

The second effect is the isolation effect. A colour can be used to isolate
a certain data value from the others, thereby drawing attention to that
particular data value. Of course this effect only works if you use colours
very sparsely. If too many colours compete for attention, then eventually
the isolation effect is destroyed.

The third effect pursued by adding colour is to produce aesthetic effects.
The aesthetic effect that colours produce is often called colour harmony.
The harmony is the result of a combination of colours that gives a sense of
visual order and balance.

Choosing a colour can produce all three effects at the same time, so this
exercise should be taken very seriously. One way to select a colour is to
use a ‘colour wheel’. Such a wheel displays a number of colours adjacent to
each other, forming a circle. To achieve a harmonious effect, you can then
choose colours that are analogous to each other, that is, right next to each
other on the colour wheel. To achieve a contrasting effect, you can choose
colours that are complementary to each other, that is, that are on opposite
ends of each other on the colour wheel. Yet there are no hard and fast rules

VISUALIZING DATA 99

and choosing colours remains somewhat of an art. I have found the book
of Albers (2006) worth reading for inspiration.

Which ever colours you choose in the end, do not use too many and use
them conservatively. I would recommend not more than three or four. The
reason is that the three effects described above start to compete with each
other quickly when you add more colours, and you will quickly confuse the
reader as to which effect you actually wanted to achieve. Also, any aesthetic
effect is easily destroyed by too many colours: they will quickly turn into
disharmony.

The topic of colours brings me to the final point I would like to make in
this chapter. Most commercial management information systems allow you
to ‘dress up’ your charts: not just with colours but also with shadow effects,
beautiful backgrounds, and so on. Particularly notorious is the 3D effect,
which adds a (fake) dimension of depth to otherwise two-dimensional
bars and pie charts. For some reason information system designers (and
managers) find such effects irresistibly attractive.

Avoid using them, for two important reasons. The first reason is
that these effects often distort the correct presentation of data, particu-
larly when it comes to representing proportions. Consider for example
Figure 15. The figure displays two pie charts, both representing the same
data.

The 3D version admittedly looks much better. But you will note that
the values for B and E are particularly distorted in the 3D version. The 2D

D
E

F

G

A

C

B

Figure 15 2D and 3D pie charts

100 VISUALIZING DATA

version visualizes (correctly) that the value for E is larger than the value for
B. The 3D version appears to suggest (incorrectly) that the value for B is
larger than the value for E.

The second reason not to dress up your chart is that the chart itself will
start to attract more attention than the data that provided the basis for the
chart. In more dramatic terms: the more visual effects you add, the more
you suffocate the original data. This is sending out the wrong signal to the
recipient of the information. Why is the chart itself so important? Are you
not convinced yourself that the data is worthy of study?

� FURTHER READING

There is a sizable body of literature dealing with visualization of data. I would
recommend starting with Tukey’s classic Exploratory Data Analysis (1977). Tukey
introduces the box plot here, as well as a range of other techniques. After reading
Tukey I would suggest studying Cleveland’s books (1985 1993).

More recent books on information visualization include Ware (2004) and
Spence (2007). Also popular are Tufte’s books, and I would particularly recom-
mend his first one on the visual display of quantitative information (1983). Few’s
book on designing information dashboards is also well worth reading (Few 2006).
All these books offer, as you would expect, beautiful (and somewhat esoteric)
visualizations of data.

I talked in this chapter about the danger of misrepresenting data, for example,
by suggesting a dependency relationship when in fact there is none. Huff (1991)
gives a number of very good examples in his well-known book on How to lie with
statistics.

Good examples of charts can be found in books by Wildbur and Burke (1998)
and Harris (1999). A fine example can also be found in an article by Powsner and
Tufte (1994), which contains a graphical summary of medical information of a
patient.

Part II

Supporting
Management
Decisions

This page intentionally left blank

7 Monitoring key

performance
indicators

KEY CONCEPTS

Variability Bandwidth
Scorecard Variance analysis
Balanced scorecard Exception analysis
Dashboard Sensitivity analysis
Lagging indicators Tornado chart
Leading indicators

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Identify key performance indicators for a set of managerial entities.
2. Organize and group these performance indicators in a variety of frameworks.
3. Outline a range of techniques to understand the variability of these performance

indicators.

7.1. Introduction

As a manager you will spend a substantial portion of your time studying
the performance of entities and relationships, and invoke some corrective
action in case that performance falls below certain thresholds. Under these
circumstances it is often helpful if a management information system not
only displays the performance itself but also the changes in performance
over time. In addition, a management information system can alert a man-
ager as soon as performance changes unexpectedly. On the basis of such an
alert, one could then decide whether such corrective action is required.

104 MONITORING KEY PERFORMANCE INDICATORS

Monitoring a select set of vital indicators of performance is the type
of management decision that we are concerned with in this chapter. It is
common to refer to these indicators as key performance indicators, or KPIs.
I will start this chapter with an overview of various frameworks to organize
and arrange key performance indicators.

The rest of the chapter then discusses four particular techniques that
management information systems can employ to support the monitoring
of key performance indicators. These techniques either involve ‘upgraded’
visualization techniques, especially relevant to monitor KPIs, or they
involve interactive functionality that can help in identifying unexpected
variability in performance.

A common theme with these techniques is the variability of the indi-
cator. Variability of an indicator is a measure of the extent to which an
indicator is subject to changes. Variability can be more or less predictable.
If we cannot entirely predict the variability of the indicator, we would
call the KPI a stochastic variable. Managerial KPIs are often stochastic
because they depend on customer demand, which is difficult to predict.
The opposite of a stochastic variable is a deterministic variable. The tech-
niques that we discuss in this chapter are to help the manager find out
the nature of the stochastic process, and whether there is a need to take
action.

7.2. Identifying key performance indicators

The first thing that we would like a management information system to
do is to display key performance indicators in a single, concise, high-
level, summary report. We often refer to such a management report as a
scorecard. Just like we would write the scores of a football match onto a
scorecard, so would we enter the ‘scores’ of a company on a scorecard.

A related term that has recently become popular is the information dash-
board (Few 2006), or simply dashboard. The term is often used to mean an
‘interactive scorecard’, that is, a scorecard that is equipped with interactive
functionality to modify the display of the KPIs on the scorecard.

The question now becomes: what key performance indicators should go
on the scorecard? Identifying and selecting good indicators is an important

MONITORING KEY PERFORMANCE INDICATORS 105

part of the design of the management information system. It requires you
to think hard about the way the entities are being managed.

One way to start this exercise is to look at the measures that say some-
thing about the ‘health’ of the entities and the relationships that we are
managing. For example, if we are managing a sales organization, an indi-
cator that reflects the health of the sales organization could be the total
sales revenue in a particular month.

A second way to start the exercise is to look at the entity life cycle, and
look at the various stages that an entity can be in. We could then study
the ‘rites of passage’ for each stage, and identify indicators that tell us
how many instances went from one stage to the next. Conversion rates
(e.g. converting promising leads into prospects, and converting prospects
into customers) are examples of indicators that can come up using this
approach.

The identification of key performance indicators can draw inspiration
from the long-term strategy that the manager or management team has
identified. It is not uncommon in organizations to link key performance
indicators directly to strategic directions. For example, if our strategic
direction is to grow market share for certain products, then a key per-
formance indicator will be share of total sales revenue compared to total
market sales. If our long-term strategy is to grow revenue in non-food
products at the expense of food-related products, then a key performance
indicator will be the proportion of non-food products that forms part of
our total sales revenue.

Identifying a connection with long-term strategy is often much more
difficult than it sounds. For a start, the strategy may not be very explicit.
It may also not have been very recently updated. Finally, the long-term
strategy may not be sufficiently expressive, in that it is at too high a level to
derive meaningful KPIs from. In those cases, MIS designers will often find
themselves second-guessing strategic directions.

In identifying key performance indicators for scorecards, you do not
need to start from scratch. There are a wide range of existing templates
at our disposal. The grandfather of them all is the template introduced by
Kaplan and Norton in 1996: the Balanced Scorecard, or BSC (Kaplan and
Norton 1996).

I should point out immediately that this is a scorecard for a standard,
profit-maximizing, company. If we want to monitor something else, for

106 MONITORING KEY PERFORMANCE INDICATORS

example an organization that does not necessarily aim to maximize profits
such as a charity, we need to modify the scorecard or perhaps invent a
totally new one.

What is balanced about the balanced scorecard is that it does not solely
focus on financial performance indicators, such as sales revenue and prof-
its. Kaplan and Norton argue that these financial figures are just one side
of the company, or in their own words, one ‘perspective’. The balanced
scorecard identifies three other perspectives, each of which has its own set
of key performance indicators. Here are all four of them:

Financial perspective: This is the ‘traditional’ perspective from the
accounting point of view. It includes financial aggregated data that
we can normally find on the balance sheet (assets and liabilities) and
the profit and loss statement (income and expenses).

Ratios that can be grouped under this perspective include return on
investment (income derived from investments divided by total cost of
the investment).

Customer perspective: This is the perspective that one would take from
a marketing point of view. It looks at performance indicators that
a customer would find important. An example would be average
delivery time of a product. This perspective also looks at performance
indicators that refer to customers, such as customer satisfaction.

Ratios that can be grouped under this perspective include the so-
called ‘conversion’ ratios (e.g. percentage of prospects that actually
end up being customers).

Internal business process perspective: This is the perspective dealing with
the management of operations. Key performance indicators may
include inventory stock levels, or the time that it takes to finish assem-
bling products.

Learning and growth perspective: This is the perspective dealing with
human resource management. It can include ratios such as employee
turnover and so on, as well as specific indicators related to staff

development.

The BSC is normally presented as a one-page summary report with the
perspectives symmetrically arranged for aesthetic effect. Figure 1 provides
an example.

MONITORING KEY PERFORMANCE INDICATORS 107

Balanced Scorecard

Financial Perspective Customer Perspective

Internal Business
Process Perspective

Growth and Learning
Perspective

Figure 1 The balanced scorecard

This framework is certainly not the only framework to cluster key perfor-
mance indicators. The influential management thinker Peter Drucker has
offered another one. In his paper on ‘the information that managers truly
need’ (Drucker 1995), he identifies the following types of key performance
indicators:

Foundation information: This, according to Drucker, is straightforward
diagnostic information of the entities and relationships that we are
managing. An example is the revenue that sales teams are generating.

Productivity information: This is diagnostic information that tells us
something about the productivity of the entities and relationships that
we are managing. An example, is the average sales revenue for a sales
agent.

Competence information: This is diagnostic information about the per-
formance of the competencies that the organization is particularly
good at. In a way this is the more strategic side of foundation
information, focusing on the long-term strategic directions of the
company.

Resource allocation information: This is diagnostic information about the
way resources are allocated and the efficiency with which this takes
place.

The categorizations of Kaplan, Norton, and Drucker can provide suitable
starting points to identify the key performance indicators for your man-
agement information system.

108 MONITORING KEY PERFORMANCE INDICATORS

Once you have identified your key performance indicators, it is useful
to distinguish between lagging and leading indicators. Lagging indicators
are indicators of events that have happened in the past. For example, sales
volume is a lagging indicator because it tells us something about the success
of sales transactions that have occurred in the past. Leading indicators are
indicators of events that will happen in the future. For example, the num-
ber of current prospects is a leading indicator because it tells us something
about the success of sales transactions that will occur in the future. Indica-
tors can both be leading and lagging. The number of current prospects, for
example, is also a lagging indicator of how successful we were in converting
promising leads into prospects.

Finally, the key performance indicators can be organized into hierar-
chies. Indicators at a lower level (e.g. sales volume from sales team Alpha)
can then feed into indicators at a higher level (e.g. sales volume from all
teams). Advanced business intelligence systems allow you to define high-
level strategic objectives (such as ‘increase conversion ratios’) and then
group the relevant indicators that you would need to see if your objective
is being met into a lower level of the hierarchy. It is then possible to drill
down from strategic objectives to lower-level indicators.

7.3. Adding bandwidth

A key performance indicator is typically conceptualized as an aggregated
data value, and often a derived one. We can visualize KPIs according to the
principles discussed in Chapter 6. I have little to contribute to that chapter
with respect to key performance indicators, and so we will not revisit that
material here.

Performance indicators are often tracked over time because it is often
not so much the value of a KPI itself, but rather its variability that is of
importance. Such a study of a KPI over time is called a trend analysis.
To study trends we need to look at the changes of the KPI over time.
For this reason, the visualization often takes the form of a time series
chart.

To aid the interpretation of such a chart, it can be helpful to include a
bandwidth. Figure 2 gives an example of adding such a bandwidth.

MONITORING KEY PERFORMANCE INDICATORS 109

0

100

200

300

400

500

3 7 8 9 11 15 17 21 29 30

R
ev

en
u

e

Day of month

UCL

LCL

Figure 2 Lower control limit (LCL) and upper control limit (UCL)

Figure 2 shows a normal time series chart, similar to the one in Chapter
6 from page 90 but with three extra lines representing a band. The middle
line is the average for the 12 months. It is sometimes called the centre line,
or the process average. The lower and upper lines refer to the lower control
limit (LCL) and upper control limit (UCL), respectively. A time series chart
that has such a band is also often called a process chart.

How do we set the bandwidth? We need to define or calculate the LCL
and UCL. A common way to do it is to look at the mean and the standard
deviation of the KPI over a certain time period. A limit is then usually set
at the mean plus or minus three times the standard deviation. Anything
that is above or below three times the standard deviation is statistically an
outlier. This is the method that we have used in Figure 2.

Figure 2 displays a stable bandwidth. We call it a stable bandwidth
because it does not co-vary with the value of the KPI. It is also possible
to define a band that changes as the KPI itself changes. These are called
dynamic bandwidths. For example, rather than defining limits using a
stable average over a fixed period of time, we can recalculate the limits
based on ‘moving averages’, that is, averages that are updated with the latest
KPI values. Such moving averages are often used in stock exchange data to
track the variability of stock prices.

110 MONITORING KEY PERFORMANCE INDICATORS

The idea behind adding a bandwidth is that there will always be some
stochastic variability in the key performance indicator, but it need not
be substantial until it moves out of the margins that the LCL and UCL
provide. The manager can then decide to take action only when the KPI is
approaching or crossing the LCL and UCL.

An important advantage of adding a bandwidth is the ease with which
we can spot extreme performance. For example, in Figure 2 we can see
fairly quickly which days were very poor and which day was very good for
this key performance indicator.

7.4. Adding comparative indicators

To appreciate the magnitude of a certain value of a performance indicator,
that value is often compared to a related value. A management information
system can perform those comparisons with a range of related values. Such
a comparative analysis is often also called a variance analysis or difference
analysis.

There are at least three types of comparative analysis that we can identify
for any one KPI. I have listed them below.

Historical comparison: Here we compare the value of a KPI with a the
value of that KPI in the past. For example, a value could be compared
to the same value last week, last month, or last year.

Target comparison: Here we compare the value of a KPI with a value that
we would like it to have, the so-called target level. The definition of the
target can be set in advance, or it can be dynamic in that it changes as
the KPI itself changes.

Competitive comparison: Here we compare the value of a KPI with a value
that one or more competing organizations have managed to achieve.

With comparison analysis, the descriptive values are not so much of inter-
est, but rather the degree to which the value has changed from a value
in the past. For example, reporting that the stock levels of a company are
20 per cent up from last year is perhaps better than reporting last year you
had 64 days and this year you had 76.8. If that difference is the subject of

MONITORING KEY PERFORMANCE INDICATORS 111

0

30

60

90

120

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3 Competitive comparison between Alpha, Beta, and Gamma

interest, you can avoid information overload by reporting just the differ-
ence and not the two values that were used to calculate the difference.

The visualization of comparison, as we have seen in Chapter 6, is effec-
tively performed with side-by-side versions of bar charts. For example,
Figure 3 gives an example of competitive comparison between the three
sales teams Alpha, Beta, and Gamma.

A second visualization that is often used is to display the comparative
values together with the KPI in the process chart. We can then see how
variability has developed in the comparative values, and how this would be
different from the variability in the KPIs.

7.5. Exceptions

An important technique for reporting key performance indicators is called
exception. In Figure 3, you saw how we could identify extreme values, those
that were above the upper control limit or below the lower control limit.
The idea behind the exception technique is to display the extreme data only.
In using this technique, you would suppress the other data so that only
the exceptions remain. Note how close this technique comes to Ackoff ’s
principle of suppressing irrelevant information mentioned in Chapter 1.

To illustrate the dramatic effect of the technique, consider Tables 7.1 and
7.2. Table 7.1 displays a total of 84 values. Table 7.2 shows just the seven
statistical outliers.

112 MONITORING KEY PERFORMANCE INDICATORS

Table 7.1 A table with a fictitious data set

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A 40 53 45 77 55 84 51 56 109 68 52 82
B 57 100 76 48 52 66 44 77 70 76 57 61
C 83 49 61 67 65 55 63 57 32 46 63 50
D 72 43 59 38 61 57 50 28 77 51 19 56
E 63 65 35 16 57 100 94 46 103 63 47 68
F 36 61 55 16 60 82 62 61 38 57 64 84
G 15 77 81 80 52 66 65 30 45 41 53 61

If you are using the exception technique, you need to design criteria for
values that are to be classified as extreme. In my example with the two
tables, the statistical outliers of the data set are classified as exceptions.
But aside from the statistical outliers, you could also have chosen extreme
values based on other criteria. These include, for example, the best ranking
unit in every month (resulting in 12 exceptions), or the month in which
every unit performed the worst (resulting in 7 exceptions). If the data is
part of a time series, as is the case here, the system could treat data that
suddenly becomes highly volatile as exceptions.

Choosing the criteria that ‘upgrades’ a value to an extreme value is
a balancing act where the information system designer faces a trade-off

between the limited amount of user attention and the innate ‘desire’ for
every value to be an exception. In case of doubt, you might consider leaving
the definition of an exception to the user. For example, you can have the
user set a threshold value, and if the value exceeds that threshold, the
system should treat it as an extreme value and alert the user.

Table 7.2 Table 7.1 with extreme values only

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A 109
B 100
C
D
E 16 100 103
F 16
G 15

MONITORING KEY PERFORMANCE INDICATORS 113

In most spreadsheet software you can draw attention to extreme val-
ues by using a function called conditional formatting. You can specify a
condition (e.g. the cell value is greater than 100), and have the cell for-
matted in a specific way if that condition is true (e.g. showing the extreme
values in red). To hide all the values that do not represent exceptions, you
can use conditional formatting too: choose as your condition all values that
do not represent exceptions (e.g. all cell values less than 100), and format
them such that their font colour is the same as their background colour
(e.g. white on white). Only the extreme will remain visible.

7.6. Sensitivity analysis

A final technique to discuss in the context of monitoring key performance
indicators is sensitivity analysis. A sensitivity analysis simulates the changes
that can occur in a KPI if certain base data changes.

We have seen earlier that a KPI is often derived from base data. To
calculate a KPI thus requires a number of input values. If these input
values change, then so does the value of the KPI. For example, aggregated
sales revenue is dependent on the number of sales orders that the sales
organization manages to secure. A sensitivity analysis would display the
effect of these changes on the value of the KPI. This type of sensitivity
analysis is also commonly known as ‘what-if ’ analysis.

It is common to think of the technique as ‘tinkering’ with input to
examine the effect on output. But the analysis can also work the other way
around: you can fix the value of the output and see what kind of input
values you would need to arrive at that particular output. This type of
analysis, where you manipulate the goal output to see how the input should
change, is often called ‘goal-seeking’ analysis.

Sensitivity analysis is well developed in the field of mathematical pro-
gramming, which studies problems where an optimal decision is calculated
given certain input parameters. It is beyond the scope of this book to study
these sensitivity analyses in more detail, and I will have to refer to more
specialized material on the subject.

Although researchers have put substantial effort into the mathematics
of sensitivity analyses, research into the visualization of these analyses has

114 MONITORING KEY PERFORMANCE INDICATORS

-1000 -800 -600 -400 -200 0 200 400 600

Price per widget (worst 2, best 7)

Cost per widget (worst 5, best 2)

Number widgets sold (worst 50, best 150)

Capital investment (worst 600, best 300)

Discount rate (worst 4%, best 10%)

Figure 4 Tornado chart

not been as forthcoming. It appears to be difficult to convey a picture
of a sensitivity analysis. The only chart that I am aware of that captures
sensitivity analysis graphically is the so-called tornado chart.

An example of a tornado chart is provided in Figure 4. I have used a sim-
ple example where I calculate the cost of a project in which I will produce
and sell ‘widgets’. The five input parameters that I use in my net present
value calculation are price per widget, cost per widget, capital investment,
and the discount rate. The tornado chart represents the sensitivity in net
present value for five input parameters. The horizontal axis represents the
change in KPI if I vary the value of each of these input parameters.

The sensitivity analysis for this tornado chart uses three values for every
input parameter: a worst-case value, a best-case value, and a base-case
value. The bar for each input parameter represents the difference in the
KPI ranging from worst-case to best-case (with the base case 0). Sensitivity
is measured as the length of the interval between the KPI between worst
and best case. A tornado chart sorts the bars according to their sensitivity,
that is, the ones that are the most sensitive come on top.

MONITORING KEY PERFORMANCE INDICATORS 115

How should you interpret a tornado chart? The tornado chart provides
you an overview of the impact of your confidence on the eventual outcome
of the result. So, in this case, it tells you that the price per widget is going to
have the biggest impact on the KPI. The discount rate is going to have the
lowest impact on my KPI. Price per widget is thus the most sensitive input
parameter: I need to look very carefully at this parameter, that is, see if I can
improve confidence in my base case value by decreasing the range within
which it can vary. Discount rate is the least sensitive input parameter: it
does not really matter what value it has (within the range I have specified),
because it is not going to have such a big impact.

Tornado charts are not yet supported in the mainstream spreadsheet
packages, which is unfortunate because there are very few techniques that
visualize sensitivity in performance indicators. The other alternative is
dynamic charts, in which one can vary an input parameter with (say) a
slider bar, and one can immediately witness the effect on the performance
indicator in (say) a bar chart. Professional business intelligence packages
use dynamic charts to very good effect, and it is worth the effort to spend
time studying the options that are available if you have access to such
tools.

� FURTHER READING

In this chapter I have focused on management decisions that arise from monitor-
ing key performance indicators. I have discussed several frameworks to organize
KPIs, and I have outlined four techniques that an MIS designer can use to assist a
manager in these decisions. Let me summarize these techniques here.

The first technique involves the introduction of the ‘bandwidth’. This technique
allows the manager to examine whether the variability of a KPI is within certain
safety margins.

The second technique is the addition of comparative indicators. The perfor-
mance of a particular KPI is often judged in comparison with the performance
of that KPI in a previous period. This technique allows the manager to examine
whether the variability of a KPI is in line with one that could be expected from
previous periods.

The third technique is the introduction of exception management. With this
technique, the information system keeps track of certain threshold values for
performance indicators, and will alert the manager if the performance is either
above or below those thresholds.

116 MONITORING KEY PERFORMANCE INDICATORS

The final technique discussed in this chapter is sensitivity analysis. This tech-
nique simulates the effects of certain changes on the performance of the key
indicator. It gives the manager an insight in the patterns that can occur as the
KPI varies.

For further reading, I would recommend studying a range of balanced score-
cards and information dashboards, such as the ones provided in Kaplan, Norton,
and Few (2006).

8 Selecting alternatives

KEY CONCEPTS

Decision matrix Consideration set
Decision strategy Effort–accuracy trade-off
Alternative or attribute-based decisions Shortlist
Compensatory or non-compensatory

decisions
Utility mapping

KEY THEMES

When you have read this chapter, you should be able to define those key concepts in your
own words, and you should also be able to:

1. Apply the different decision strategies.

2. Understand the importance of the consideration set.

3. Outline a range of techniques to assist in choosing an alternative from a list of many
available options.

8.1. Introduction

This chapter covers a second class of decisions that managers frequently
have to make: selecting the most appropriate alternative out of a list of
alternatives. We will discuss this particular type of decision in more detail
and then focus on the ways that management information systems can help
to support these types of decisions.

There are many examples of these types of decisions. Typical ones
include the selection of an appropriate supplier of a certain material or
service, or the selection of an appropriate candidate out of a list of suitable
candidates for a particular vacancy.

The available alternatives in these examples have a common set of
attributes. Suppliers list materials by type, price, delivery date, discount
opportunities, and so on. Candidates can be listed by name, experience,
employment history, references, and so on. These types of decisions are
often called preferential choice tasks, because the decision-maker is faced

118 SELECTING ALTERNATIVES

with the task of choosing the best alternative that matches his or her
preferences.

This type of decision is fortunate enough to have enjoyed a good deal
of academic research. Psychologists have made much progress in under-
standing this type of decision-making, and I will make frequent use of their
findings in this chapter.

This chapter is organized as follows: I will first discuss the general struc-
ture of these decisions and outline the strategies that we have available to
tackle them. I will then move on to discuss the implications for information
system designers. The next sections will again discuss a number of tech-
niques that information systems designers can use. I will end the chapter
with a summary.

8.2. The decision matrix

To start off this chapter, it is useful to have a look at a more detailed example
of the type of decisions that we are dealing with here. Suppose you need
to select a vendor for a particular material, say wood, to be used in your
production process. For your convenience I have compiled 12 possible
alternatives and presented them in Table 8.1. How would you approach
such a decision, and which supplier would you eventually select?

Table 8.1 Search and select the best supplier

Region Quality Distance Distance to Price
to plant warehouse

1 A 2 star 60 100 120
2 B 3 star 40 130 100
3 B 4 star 100 150 200
4 A 2 star 400 110 70
5 B 3 star 50 100 150
6 A 4 star 50 140 100
7 B 2 star 200 50 40
8 A 4 star 100 110 40
9 A 2 star 300 100 30

10 B 3 star 400 110 70
11 A 2 star 200 75 80
12 A 2 star 300 110 50

SELECTING ALTERNATIVES 119

One thing that will immediately be clear from Table 8.1 is how similar
the representation of the alternatives is to the de-normalized tables that we
have been constructing at the end of Chapter 4. This is no coincidence.
The construction of the decision matrix follows the same fundamental
principles of structuring data as we have been discussing in Chapters 2 and
3. ‘Hidden’ in Table 8.1, for example, are the entities Supplier, Material,
Region, and Quality Rating. I leave it as an exercise for you to construct the
entity relationship diagram for this table.

A management information system should be able to display a decision
matrix like Table 8.1 in an easy-to-read format, and allow users to manip-
ulate rows (alternatives) and columns (attributes). Spreadsheets provide a
range of functionalities to allow you to do this.

A second thing to notice from Table 8.1 is that we should again be
focusing on opportunities to sort alternatives by attribute, and that the
possibilities for ranking are again limited by the scale of the attribute. For
example, region is a nominal scale and cannot as such be ranked. We
cannot say that region A is ‘higher’ or ‘lower’ than region B. Note that
you may have subjective preferences for particular regions and that your
preference for region A may be ‘higher’, or ‘lower’ than your preference
for region B. I shall return to this point later in this chapter. For now I
leave it as another exercise for you to determine the scales of the other
variables.

In case we are dealing with alternatives that have prices associated with
them, it is common to display the price as the last attribute at the very
end. I suspect this is because it makes it easier for the decision-maker to
separate costs and benefits. All attributes except the last one make up the
total package of ‘benefits’ which can then be offset against the last attribute
which represents the ‘cost’.

8.3. Decision strategies

Deciding on the best alternative in a decision matrix like Table 8.1 involves
making many comparisons. Let us start by looking at the decision matrix
and focusing in on a particular attribute value. For example, the price
of wood from supplier #2: 100. To understand if that value is ‘good’ or

120 SELECTING ALTERNATIVES

‘bad’ you will be making two types of comparisons. The first comparison
centres on the attribute: you will look at the prices of other suppliers and
see if they are cheaper or more expensive. It is a vertical, or column-based
comparison. The other comparison centres on the alternative: you will look
at the other values of this particular supplier and offset it against the price.
It is a horizontal, or row-based comparison.

People apply a number of different approaches to solve a multi-attribute,
multi-alternative decision problem. These approaches are often referred to
as decision strategies. An extensive overview of possible decision strategies
can be found in Svenson (1979).

Strategies can involve so-called pairwise comparisons. That means that
you look at alternatives in pairs, compare them, and then discard the one
that you do not like. For example, you can start off by comparing supplier
#1 to supplier #2. You decide which one is the best, say supplier #1. You
then move on supplier #3, and compare it with supplier #1. Now, let us say
supplier #3 is the best. Supplier #3 then replaces supplier #1 as the best
supplier so far. You then move on to supplier #4, and compare it with
supplier #3. The process continues until you have reached the end of the
list.

Let us look at eight common decision strategies (taken from a book
by J. Payne, Bettman, and Johnson 1993).

Weighted additive decision strategy: The first strategy in this category is
called weighted additive decision strategy, or WADD. The idea here is to
assign weights to each attribute, and using those weights to compute
an overall score for each alternative. You select the one with the best
score of the pair.

For example, let us assume that you want to consider just two
attributes: distance to the warehouse and the distance to the plant. You
assign distance to the plant a weight of 70 per cent and distance to the
warehouse a weight of 30 per cent. Your score for supplier #1 would
be 0.70 × 60 + 0.30 × 100 = 42 + 30 = 72. Your score for supplier #2
would be 0.70 × 40 + 0.30 × 130 = 28 + 39 = 67. Supplier #2 would
be better than supplier #1 because in this case the best score is the
lowest score (the lesser the distance to the warehouse and the plant
the better). Note that supplier #2 is futher away from the warehouse
than supplier #1, but it is closer to the plant and this compensates

SELECTING ALTERNATIVES 121

sufficiently. Had you selected different weights, for example, 30 per
cent for the plant and 70 per cent for the warehouse, supplier #1 would
have come on top.

You cannot apply the WADD strategy to interval, ordinal, or nomi-
nal scales. This is because you need to be able to add and multiply the
attribute values and therefore these values need to be of ratio scale. To
take attributes with other scales into account you would first need to
map each of the attribute values to a utility using a utility function.
After this you would be able to carry out the WADD strategy on the
utilities. Information systems can be of great assistance here, and I
shall be discussing the calculations of utilities at length a bit later on
in this chapter, in Section 8.5.

Equal weights decision strategy or EQW : This is a simplified version of
the WADD strategy in that each attribute is assumed to carry an equal
weight. In this case, you would not need to assign weights for each
attribute. For each alternative, you would sum up the utility of each
value and the alternative with the best score wins.

Take, for example, distance to the plant and the warehouse again.
Supplier #1 has a score of 60 + 100 = 160 m. supplier #2 has a score
of 40 + 130 = 170 m. Thus, you would prefer supplier #1 in the
EQW scenario. Note that you would have preferred supplier #2 in the
WADD scenario!

Additive difference strategy: The third one is called additive difference, or
ADIFF. The idea here is to add up differences and produce difference
scores. For example, the difference in distance to the plant between
supplier #1 and supplier #2 is −20 m. The difference in distance to
warehouse between supplier #1 and supplier #2 is +30 m. The differ-
ence score is 0.70 · −20 + 0.30 · 30 = −14 + 9 = −5 m. Or in other
words, supplier #2 is −5 m better than supplier #1. It is a negative
difference which is good in this case because the lesser the distance the
better it is. Note that even though you compute the scores differently,
it is very similar to WADD, and produces similar outcomes.

Majority of confirming dimensions: The fourth one, majority of confirm-
ing dimensions, or MCD, is a variant of the ADIFF strategy, simpli-
fied to make it applicable to ordinal and non-commensurable scales.
Starting off with the first pairwise comparison, you would count the

122 SELECTING ALTERNATIVES

number of attributes that an alternative is better than the next one.
You would also count the number of attributes that an alternative is
worse than the next one. If the number of better alternatives is in the
majority then you would proceed with the next one.

Satisficing: The fifth strategy is called the satisficing decision strategy, or
SAT. The term satisficing was coined by Herbert Simon to describe
the type of decisions in which we do not aim to select an alternative
that is the ‘best’, but rather one that is ‘good enough’ (Simon 1955).
When an alternative is ‘good enough’ for us, we tend to stop looking
for better options. This strategy is called satisficing because it reflects
exactly this. You would first define threshold levels (or cut-off levels)
for each attribute.

Let us define, for example, cut-off levels for our supplier table.
Let us assume any distance to plant or centre of 120 would be good
enough, as would any price below 150. We would be satisfied with
three-star material. The region would not matter. In that case the first
supplier that meets all our threshold values in supplier #5.

Note that using a satisficing strategy, you run the risk of missing out
on a better alternative. In the example above, supplier #6 also meets
the threshold values, and it is arguable better than supplier #5. It is
indeed unfortunate for supplier #6, because he or she was not first in
the list of ‘good enough’ suppliers. You will note how important the
order of the alternatives is if you adopt the satisficing approach.

You will also note that the SAT strategy is not based on pairwise
comparisons, but rather on a comparison against a certain threshold
or cut-off level. Another difference with the previous three strategies
is that you do not need to evaluate all 12 alternatives before you make
up your mind.

Frequency of good and bad features: The sixth strategy, frequency of good
and bad features is an extension of the SAT decision strategy. Like
this strategy, you would first define cut-off values for each attribute.
But rather than deciding if attributes meet those values, you would
count the number of positive attributes, and pass through each of the
alternatives to see if that number increased.

Lexicographic: So far, all decision strategies were alternative-based. This
means that you tend to look at each alternative, examine the attributes

SELECTING ALTERNATIVES 123

of interest and then decide on the value of the alternative. In terms
of the decision matrix, you tend to have a ‘row’ view. The remaining
two strategies are attribute-based. This means that you first examine
the attributes, or, in other words, you tend to assume a ‘column’
view.

The first attribute-based strategy is called the lexicographic strategy,
or LEX. This strategy follows the following procedure. First you decide
on your most important attribute. You then select the top alternative
on this attribute. If there are two or more competing alternatives, you
proceed with the next most important attribute. From the subset of
available ‘top’ attributes you would then select the top alternative on
the next best attribute. And then so on until you have found your best
alternative.

For example, suppose your top attribute would be quality. In that
case you select all suppliers with the best quality, which are supplier
#3, #6, and #8. You next select your second-most important attribute.
This could be distance to the warehouse. This leaves you with supplier
#8.

Elimination by aspect: The eighth and last decision strategy is called
elimination by aspect, or EBA. The term ‘aspect’ is synonymous with
attribute. This strategy, introduced by Tversky (1972), combines ele-
ments of the satisficing strategy and the lexicographic strategy. Like
the lexicographic strategy, it looks at the attributes first and ranks
these in order of importance. Like the satisficing strategy, it then
eliminates alternatives using threshold values. With the EBA strategy,
you would look at each attribute and eliminate all unattractive alter-
natives at once. With the satisficing strategy, you would look at each
alternative one at a time and move on to the next if the alternative
contained an unattractive attribute value.

In the supplier example, imagine that the most important attribute
for you is price. You would then define your threshold level: this could
be 60. This leaves you with supplier #7, #8, #9, and #12. You then select
your next important attribute: this could be quality. You would want
at least a three-star. This cut-off value is applied to the remaining two
and you are left with supplier #8.

124 SELECTING ALTERNATIVES

Table 8.2 Eight decision strategies (Payne et al. 1993)

Decision Alternative or Scales Compensatory Threshold
strategy attribute based

1 WADD Alternative Ratio Yes No
3 EQW Alternative Ratio Yes No
2 ADDIF Alternative Ratio Yes No
4 MCD Alternative Ordinal Yes No
6 SAT Alternative Ordinal No Yes
5 FRQ Alternative Ordinal Yes Yes
7 LEX Attribute Ordinal No No
8 EBA Attribute Ordinal No Yes

Table 8.2 presents an overview of the eight decision strategies.
As we have seen, some decision strategies do not take into account all

attribute values of a single alternative. That is, the strategy never really con-
siders any potential trade-offs, whether one value (quality) could compen-
sate for another value (price). These strategies are called non-compensatory.
EBA, LEX, and SAT are non-compensatory strategies.

You apply a compensatory strategy if you look at one attribute of an
alternative under the assumption that it can offset another. In other words,
if you look at two attributes of one alternative, an attractive value on one
attribute can compensate for an unattractive value on another attribute.
WADD, EQW, ADIFF, MCD, and FRQ are compensatory strategies.

When faced with large numbers of alternatives, people tend to start
off with non-compensatory strategies. They do so to simplify, to bring
the number of alternatives down to a manageable set. When the set of
alternatives is sufficiently small, people begin to study that smaller set in
more detail, and start to apply compensatory strategies. The name for this
subset of alternatives is consideration set (Shocker et al. 1991).

The consideration set is not usually large, and is typically limited to five
or six. Furthermore, it has been posited that the reason why people form
consideration sets is that they are refusing to evaluate more alternatives
than they can mentally cope with (Hauser and Wernerfelt 1990). This is
reminiscent of the information overload discussion from Chapter 1.

The decision strategies that I have described can be decomposed into
sequences of smaller steps: looking at an attribute value, comparing this
value with another attribute value, storing the value, and so on. We
can conceptualize these steps as building blocks, from which higher-level

SELECTING ALTERNATIVES 125

decision strategies can be constructed. Such building blocks are called
Elementary Information Processing units, or EIPs (Newell and Simon 1972).

If you add up the number of EIPs for each decision strategy, you will see
that some decision strategies require much less EIPs than others (Johnson
and Payne 1985; Payne, Bettman, and Johnson 1988). The EBA strategy,
for example, is able to discard an alternative by looking at one attribute
only. The WADD strategy cannot do that: it needs to evaluate all the other
attributes to see if any one of them might offset that value.

The number of EIPs are a measure of cognitive effort and therefore
we can say that some decision strategies require less effort than others.
As a general heuristic, we could say that the non-compensatory strategies
require less effort than the compensatory strategies.

Decision strategies also vary in their level of accuracy. Accuracy is usually
measured as the amount of information that is processed in a decision.
For example, EBA is less accurate than WADD because, for each alterna-
tive, EBA only processes one attribute value whereas WADD processes all
the attribute values. The SAT strategy, another non-compensatory strat-
egy, is not the most accurate because it discards any alternative that can
be better than the chosen one. As a general heuristic, we could say the
compensatory strategies are more accurate than the non-compensatory
strategies.

The implication is that strategies with the highest accuracy incur the
most effort! Choosing a decision strategy is therefore the result of a trade-
off: balancing accuracy with the effort required to achieve that accuracy.
The choice of decision strategy is a function of the user’s expectation of
the effort spent as well as the user’s expectation of the accuracy gained.
Expected effort and accuracy are in turn determined by a number of other
factors, which are discussed more fully by Payne (1982).

Please be aware that the format of the decision matrix is a key design
problem for this type of decision. It is clear that the type of display
can facilitate or complicate the application of certain decision strategies
(Kleinmuntz and Schkade 1993). Tversky (1972) noted that attribute-
based strategies can only be effective if the attributes are organized in
columns for ease of comparison. The order of the attributes and the order
of the alternatives can have a dramatic impact on the alternative that is
eventually selected by the user, and this means that the design of the
decision matrix requires your careful attention.

126 SELECTING ALTERNATIVES

8.4. Shortlisting

A technique to support managers in this type of decisions is shortlisting.
Systems that implement this technique will allow the user to create a short-
list from the larger set of alternatives that are available. The system would
allow the user to swap back and forth between the alternative set and the
consideration set, and to add and subtract alternatives from the alternative
set to the consideration set.

The shortlisting technique can be implemented in a variety of ways,
the most obvious of which is to allow the user to maintain two different
decision matrices: one with the alternative set and one with the consid-
eration set. The well-known online bookstore Amazon, along with many
other online retailers, implemented this through the introduction of the
wish list.

Another way of implementing the shortlisting technique is to allow the
user to flag an alternative for further consideration. In this case no separate
list is maintained, but an alternative is clearly labelled as being part of a
separate list. Isolation techniques can be used to make those alternatives
stand out from the other ones: for example, shortlisted alternatives could
have a different foreground or background colour, they could be blinking,
and so on.

When alternatives are flagged for consideration it can be helpful to
order the alternative set according to ‘flagged status’ so that the flagged
alternatives come out on top. This would be helpful because alternatives
need to be grouped together to facilitate the application of attribute-based
decision strategies. Combining this technique with the manipulation tech-
nique would allow the user to order the flagged alternatives in the main
decision matrix.

An information system that applied the shortlisting techniques would
display the decision matrix to the user, offer an opportunity to rank the
alternatives, and form a consideration set out of them. This assumes that
the user is able and willing to look at each alternative individually. On many
occasions this is not the case. Sometimes the user may not be willing to
look at each alternative individually. This occurs, for example, when the
user is under time pressure. Other times the alternative set may simply be
too large to evaluate. There may not be 12 suppliers to choose from, but
12,000 if your search is not particularly restrictive.

SELECTING ALTERNATIVES 127

Table 8.3 Examples of conditional selection

Attribute Scale Example

Region Nominal Select if region A
Quality Ordinal Select if 3 star or higher
Distance Ratio Select if less than 40m from plant or city
Price Ratio Select if less than 200 euros

To help create an automatic shortlist, conditional selection can be used.
The idea is to offer the user a number of cut-off levels to eliminate a number
of alternatives from the decision matrix. The information system cuts out
alternatives that the user thinks are below or above certain thresholds. In
spreadsheet software this function is available under the name filter or
autofilter.

Take for example Table 8.1. Rather than presenting the matrix directly,
an information system could ask the user to select an alternative by region,
by quality rating, or by distance to plant and warehouse. Table 8.3 provides
examples of such conditional selection.

Table 8.3 illustrates how conditional selection is different for nominal,
ordinal, interval, and ratio-scales. If you have a nominal scale, the user
would have to mention one or more nominal values to ascertain which
alternative is going to be selected or not. For ordinal scales and above, you
can specify cut-off levels (at least three star for example).

It is often useful to depict the number of alternatives for each available
shortlist in brackets. For example, ‘Select at least three-star suppliers (6)’
would indicate that if the user selects this option, he or she would be
left with six suppliers. The option ‘Select at least four-star alternatives (3)’
would indicate that the user would be left with three suppliers. Providing
the number of alternatives remaining after the conditional select will allow
the user to help him or her to narrow down the matrix to a comfortable
consideration set of alternatives.

Note how the conditional select is particularly useful in supporting elim-
ination strategies. It supports the SAT and EBA strategies because it looks
at the user thresholds and reduces the matrix to only those alternatives
that satisfy the cut-off values. Elsewhere this technique has also been called
conditional elimination, or conditional drop (Todd and Benbasat 1992), to
illustrate how effective it is in supporting elimination strategies.

128 SELECTING ALTERNATIVES

Conditional selection works on the assumption that the user will be able
to specify cut-off values: thresholds that define whether an alternative is
ready for shortlisting. In a similar vein, the information system itself may
notify the user which alternative may be worth considering. I call this
feature cueing, because the system is aiming to give the user a cue as to
which alternative they might like.

An example of cueing could be cueing by ‘dominance’. An alternative
dominates another alternative if it performs equally well or better on all
attributes that are at least ordinal scaled. For example, in Table 8.1 supplier
#9 ‘dominates’ supplier #12. The system could provide a cue that would
point out if an alternative was dominant or not. Or it could point out for
certain alternatives another dominant alternative is available.

8.5. Utility mapping

Apart from shortlisting there is second technique that can help managers in
selecting alternatives. This technique is called utility mapping (Keeney and
Raiffa 1976). The idea here is to create a new list of alternatives, in order of
user preference. You derive this ordered list by modelling the preferences
of the user, matching those preferences with the attribute values of the
alternative, and calculating an overall utility. This is a score that indicates to
the user the extent to which the alternative would be interesting. A system
can use the overall utility to rank order the alternatives.

Note how very close this technique is to the WADD strategy. Essentially,
the system attempts to carry out the WADD strategy on behalf of the
user. Note also that utility mapping is a bit like cueing, in that it also
recommends alternatives to the user. The difference is that the cue is nom-
inal and the utility is ratio. The cue tells the user that the alternative is
either interesting or uninteresting, to be included in the shortlist or not.
With utility mapping, the system can tell the user the extent to which the
alternative might be interesting.

The creation of the overall utility is not a trivial process, and I will now
discuss its derivation in more detail. The process involves two steps. First,
you need to define utility functions for each of the attributes, mapping
each value to a utility. Note how you need to perform this step because

SELECTING ALTERNATIVES 129

Table 8.4 Utility mappings

Attribute Utility function U

1 Region U 1 = 0 if region A
U 1 = 100 if region B

2 Quality U 2 = 0 if 2 star
U 2 = 50 if 3 star
U 3 = 100 if 4 star

3 Distance U 3, U 4 = (highest distance − distance) / highest distance × 100
4 Price U 5 = (highest price − price) / price × 100

the attributes are not directly comparable to each other. The second step
is to add a weight to each of the attributes. You can then create a weighted
average score that takes into account all the attributes.

Let us put this to the test with an example, and let us again take the
supplier list from Table 8.1. First, I am going to define a utility function for
each attribute. I will then examine the preferences for each of the attributes.
Table 8.4 displays a set of utility functions.

Let us have a look at each of the utility functions. Notice first how each
function maps the attribute values to a utility between 0 and 100. This
lower bound of 0 and upper bound of 100 is completely arbitrary, and I
might have picked any other set of numbers, −3 to +3 for example. But if
you have decided on the upper and lower bound of these utilities, you need
to stick to them throughout your attribute mapping. Do not be tempted to
prevent an attribute to score the full 100 points. If you do so, you are not
giving that attribute a fair chance in the second step, where the weighting
takes place. If you want to discount that attribute, you can do so when you
consider the weighting in the second step.

Notice also the different types of each of the functions. To map the
nominal values to utilities, you would use what is known in mathematics
as a step function, that is, one value for each step (attribute value). To map
the ordinal values, you could either use a step function, with each value a
higher utility, or use a discrete function, one that takes the rank number as
the independent value. Finally, metric values can take step, discrete, and
continuous functions. Note also how I have turned the utility mapping
around for distance and price: the lower the distance and the lower the
price, the higher the utility.

130 SELECTING ALTERNATIVES

Table 8.5 Calculating the utility (U)

Region Rating Distance to Distance to Price U
plant warehouse

1 0 0 85 33 40 29.8
2 100 50 90 13 50 60.5
3 100 100 75 0 0 51.3
4 0 0 0 27 65 23.5
5 0 50 88 33 25 35.6
6 100 100 88 7 50 69.1
7 100 0 50 67 80 61.5
8 0 100 75 27 80 59.3
9 0 0 25 33 85 34.3

10 100 50 0 27 65 53.5
11 0 0 50 50 60 33.0
12 0 0 25 27 75 30.3

Now for the second step. Suppose that distance and price are the most
important criteria for the user, and the other criteria are somewhat less
important. This would be reflected by a weighting of 20 per cent for inte-
rior, 20 per cent for quality, 15 per cent for plant and city distance each,
and 30 per cent of the price. Thus the score for each alternative is going
to be

U = 0.20 × U 1 + 0.20 × U 2 + 0.15 × U 3 + 0.15 × U 4 + 0.30 × U 5

The result would be a scoring table as in Table 8.5.
And using the total utility, the system can produce an ordered list of the

suppliers as in Table 8.6. I have here used a display where I have ordered the
alternatives such that the number one came first, followed by the second
one, and so on. The disadvantage of this is that the distances between the
alternatives are lost. Fortunately, there are other ways of displaying the data.

In terms of display, I could also leave the list unordered, and single out
shortlisted alternatives in other ways. Examples include a shaded back-
ground, for example, a green background if the alternative was interesting,
and a red one if it was not. For ordinal scales, I could introduce colour
shades. If the scale was metric (ordinal or ratio), I could use the data in the
index to match the colour shade. Finally, I have also seen displays where
the alternatives are displayed in a ‘cloud’, and the size of the font in which
the supplier was displayed would correspond with the score that it was
associated with.

SELECTING ALTERNATIVES 131

Table 8.6 Suppliers ranked by utility

Region Rating Distance to Distance to Price
plant warehouse

6 Region B 4 star 50 140 100
7 Region B 2 star 200 50 40
2 Region A 3 star 40 130 100
8 Region A 4 star 100 110 40

10 Region B 3 star 400 110 70
3 Region B 4 star 100 150 200
5 Region A 3 star 50 100 150
9 Region A 2 star 300 100 30

11 Region A 2 star 200 75 80
12 Region A 2 star 300 110 50

1 Region A 2 star 60 100 120
4 Region A 2 star 400 110 70

Shortlisting and utility mapping can of course be combined. In that
case, the system could create a consideration set for the user by setting a
threshold utility (e.g. 75) and putting all the alternatives which exceed this
threshold in the consideration set. Häubl and Trifts (2000) report a study
where they implemented such a decision aid. They found that users that
had access to this tool had obtained lower search effort and better decision
accuracy than those that did not have access.

� FURTHER READING

This chapter has focused on the design of information systems for a specific deci-
sion: to select an alternative out of a set of available candidates. We have seen how
a number of decision strategies are available. Eight strategies were discussed, com-
pensatory and non-compensatory. The strategies differ in the amount of effort lost
and the amount of decision accuracy gained, and choosing a strategy is a function
of the anticipated effort and accuracy. People tend to form a consideration set
midway during the decision process, with non-compensatory strategies leading
up to set formation, and compensatory strategies used to make the final decision.

Researchers have been studying different information displays, and the effects
that these different displays have on the nature of decision-making. Payne (1982)
cites a number of such studies. Studies by Todd and Benbasat (1991, 1992, 1999)
provide further insight in the role that information systems play in improving

132 SELECTING ALTERNATIVES

management decision-making. I have also published some research in this area
myself (van der Heijden 2006).

A final word of caution: when you design an information system to help you
select an alternative, you must be acutely aware of a concept called decisional
guidance. If the system preselects the information based on certain conditions, or
if it ranks the alternatives based on a utility function that may not accurately reflect
your own, the system will guide you towards certain alternatives even though there
may have been other ones in the alternative set that you would find superior. For
a thorough discussion on this, see Silver (1991).

9 Epilogue

In this book, I have set out to address key managerial skills that are needed
to design management information systems. We have looked at the struc-
turing of data first, followed by the querying of data, and finally data
aggregation and visualization. We then discussed two types of management
decisions, and I demonstrated how the design skills could be put to use in
order to support those decisions.

Having read this book, you may find it a useful exercise to re-read
the book ‘in reverse’. That would imply starting with the management
decisions, and then moving backwards to see how the management infor-
mation that is needed to support those decisions is actually shaped. For
a manager, this will often be the way to approach the design of the man-
agement information system, that is, starting at the tail end of the process
with a sketch of the management report. For a management information
system designer, the approach will more likely be from the other direction,
for example, starting with a sketch of the data model. In any case, managers
and designers alike are advised to study both directions, as they will have
to find ways to ‘meet in the middle.’

In writing this book, I realize that I have only touched the surface
of the vast material that is available on MIS design. There is a great
deal more to read and study about the structuring of data, the query-
ing of data, the aggregation of data, and the visualization of data. Sim-
ilarly, there is more to say about the two management decisions that I
have covered at the end of the book, monitoring key performance indi-
cators and selecting alternatives. I have aimed to provide an overview
of the design of management information systems, with references to
more detailed literature should you want to study aspects of it in more
depth.

In this epilogue, I should like to touch on three aspects of designing
management information systems that I have not discussed so far. These
aspects are important enough to be mentioned here, even though the book
itself did not cover them in great detail.

134 EPILOGUE

Data quality: A recurring issue in the extraction of data from source
systems is data quality. You will appreciate that the quality of data
from the management information system is entirely dependent on
the quality of data from the source systems. If that data is inaccurate,
not sufficiently precise, incomplete, or outdated, so will be the data
from the management information systems. This is encapsulated in
the well-known mantra Garbage In, Garbage Out. If managers do not
trust the data put in front of them, the system that provides the data
will effectively be useless, no matter how long it took to develop and
no matter how expensive it was. Data quality is the Achilles heel of
any management information system, and the preservation of data
quality from the source systems should be an elementary designer’s
concern.

Management consensus: I have more or less assumed in the writing of
this book that designing a management information system is an
individual exercise. Many information systems, however, are designed
by teams, and often large teams at that. In addition, the systems are
used by more than one manager, and not every manager has the same
requirements for specific management information. This means that
often we cannot ignore the teamwork aspects of designing informa-
tion systems, and that consensus building (and indeed negotiating) is
often part of the design process. Designing in teams is often rewarding
and exciting, with many stakeholders bringing their specific inter-
ests to the table. I should note that it can occasionally be chal-
lenging as well, as stakeholder interests cannot always be completely
reconciled.

Politics: Finally, I have excluded at least one dimension in the course
of this book: the political. I mention it here because it would be
naive to assume that designing management information systems can
somehow be disconnected from politics. Most managers will quickly
concede that politics play an important part in their organizations,
and that management information is often used as part of the polit-
ical game—to be emphasized when favourable, to be glossed over
when unfavourable. Management information systems often monitor
human behaviour, with employees capturing transactions that reveal
their performance at least to some extent. Disclosing behaviour to

EPILOGUE 135

others is traditionally sensitive and provides many fruitful avenues for
political manoeuvering.

It is important to recognize that all three aspects are of vital importance for
the successful completion of a management information system. No system
can be useful without it addressing the issues of data quality, management
consensus, and politics. Covering these topics in this book, however, would
not have done them justice. They require a great deal more coverage than
this book would have been able to provide. Indeed, one could say there is a
separate book to be written on all three topics.

Many academic scholars in management information systems are con-
cerned precisely with these matters, as they so often provide stumbling
blocks for successful management information systems to materialize.
For the latest research on these and other topics in management infor-
mation systems, it is worthwhile to read academic journals in this area.
The following three are well known: MIS Quarterly, Information Systems
Research, and the European Journal of Information Systems. The articles
in these journals are not always squarely targeted at the average manager
(they usually have an academic audience in mind), but studying them can
nonetheless be a rewarding and intellectually stimulating exercise. I would
encourage you to take a look at these journals for more in-depth study.

Regardless of whether you want to delve into MIS areas in more depth,
if you have studied this book to the end, I am confident that you will have
become a better MIS designer. If you then proceed by using your own
management information systems, it is my modest hope that you will also
be a better manager.

� APPENDIX 1 TRANSACTION DATA FOR SALES
DEPARTMENT CASE

The following R-tables represent fictional data for the sales department case.
They form the basis for the de-normalized data set that was created in Chapter 4
(Table 4.1 on page 61).

Product Category

category_id name
=========== ========
1 Food
2 Non-Food

Product

product_id name price category_id
========== ====== ===== ===========
1 Orange 1 1
2 Soap 5 2
3 Wine 10 1
4 Apple 1 1
5 Candle 7 2

Customer Status

status_id name rank
========= ============== ====
1 Contact 1
2 Lead 2
3 Promising Lead 3
4 Prospect 4
5 Customer 5

TRANSACTION DATA FOR SALES DEPARTMENT CASE 137

Customer

customer_id name status_id
=========== ======= =========
1 Cyndi 5
2 Kasey 5
3 Evelyne 5
4 Ocean 5
5 Joan 5
6 Myra 5
7 Godfrey 5
8 Celeste 5
9 Lennard 5

10 Justin 5

Sales Team

team_id name
======= =====
1 Alpha
2 Beta
3 Gamma

Sales Agent

agent_id name on_probation team_id
======== ==== ============ =======
1 Jim true 1
2 Tom true 2
3 Mary false 1
4 Jim false 2
5 Jack false NULL

138 TRANSACTION DATA FOR SALES DEPARTMENT CASE

Order

order_id customer_id agent_id date
======== =========== ======== ======
1 1 1 3 Jan
2 2 3 7 Jan
3 3 2 8 Jan
4 4 1 9 Jan
5 5 4 11 Jan
6 6 3 15 Jan
7 7 2 17 Jan
8 8 3 21 Jan
9 9 4 29 Jan

10 10 2 30 Jan

Line Item

item_id order_id product_id quantity
======= ======== ========== ========
1 1 1 6
2 1 5 34
3 2 3 24
4 2 1 4
5 2 4 35
6 3 1 13
7 3 2 19
8 4 4 30
9 4 2 9

10 5 2 14
11 5 3 16
12 6 4 21
13 6 1 8
14 7 5 33
15 8 3 20
16 8 5 32
17 9 4 26
18 10 2 15
19 10 3 17
20 10 5 7

� REFERENCES

Ackoff, R. L. (1967). Management misinformation systems. Management Science, 14(4),

147–56.

Albers, J. (2006). Interaction of Color (Rev Exp edn.). New Haven, CT: Yale University Press.

Allport, D. A. (1980). Attention and performance. In G. Claxton (ed.), Cognitive Psychology.

London: Routledge and Kegan Paul.

Barker, R. (1989). Case∗Method—Entity Relationship Modelling. Wokingham, England:

Addison-Wesley.

Becker, Richard A. and Cleveland, William S. (1987, May). Brushing scatterplots. Techno-

metrics, 29(2), 127–42.

Benbasat, I. and Dexter, A. S. (1986). An investigation of the effectiveness of colour

and graphical information presentation under varying time constraints. MIS Quar-

terly(March), 59–83.

Benbasat, I. and Schroeder, R. G. (1977). An experimental investigation of some MIS design

variables. MIS Quarterly(March), 37–49.

Berenson, M. L., Levine, D., and Krehbiel, T. C. (2005). Basic Business Statistics: Concepts

and Applications (10th edn.). Upper Saddle River, NJ: Prentice-Hall.

Booch, G. (1993). Obect-Oriented Analysis and Design with Applications. Redwood City:

Benjamin-Cunnings.

Rumbaugh, J., and Jacobsen, I. (1999). The Unified Modeling Language User Guide.

Upper Saddle River, NJ: Addison-Wesley.

Chen, P. P.∗-S. (1976). The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9–36.

Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphi-

cally. Journal of the American Statistical Association, 68(342), 361–8.

Chervany, N. and Dickson, G. (1974). An experimental evaluation of information overload

in a production environment. Management Science (10), 1335–44.

Cleveland, W. S. (1985). The Elements of Graphic Data. Murray Hill, NJ: Bell Telephone

Laboratories.

(1993). Visualizing Data. Murray Hill, NJ: AT&T Bell Laboratories.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications

of the ACM, 13(6), 377–87.

Date, C. (2000). An Introduction to Database Systems (7th edn.). Reading, MA: Addison-

Wesley.

140 REFERENCES

Dickson, G. W., Senn, J. A., and Chervany, N. L. (1977). Research in management informa-

tion systems: the Minnesota experiments. Management Science, 23(9), 913–23.

Drucker, P. (1995). The information executives truly need. Harvard Business Review

(January–February), 55–62.

Few, S. (2006). Information Dashboard Design: The Effective Visual Communication of Data.

Sebastopol, CA: O’Reilly.

Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language

(3rd edn.). Boston, MA: Addison-Wesley.

Haag, S., Cummings, M., and Phillips, A. (2007). Management Information Systems for the

Information Age (6th edn.). New York: McGraw-Hill/Irwin.

Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Reference. Oxford:

Oxford University Press.

Häubl, G. and Trifts, V. (2000). Consumer decision making in online shopping environ-

ments: the effects of interactive decision aids. Marketing Science, 19(1), 4–21.

Hauser, J. R. and Wernerfelt, B. (1990). An evaluation cost model of consideration sets.

Journal of Consumer Research, 16(March), 393–408.

Huff, D. (1991). How to Lie with Statistics (New edn.). London: Penguin Books.

Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case Driven Approach.

Upper Saddle River, NJ: Addison-Wesley.

Johnson, E. J. and Payne, J. W. (1985). Effort and accuracy in choice. Management Science,

31(4), 395–414.

Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.

Kaplan, R. S. and Norton, D. P. (1996). The Balanced Scorecard: Translating Strategy into

Action. Boston, MA: Harvard Business School Press.

Keeney, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. New York: John Wiley and Sons.

Kendall, K. E. and Kendall, J. E. (1999). Systems Analysis and Design (4th edn.). Upper

Saddle River, NJ: Prentice Hall.

Kleinmuntz, D. N. and Schkade, D. A. (1993). Information displays and decision processes.

Psychological Science, 4(4), 221–7.

Laudon, K. C. and Laudon, J. P. (2004). Management Information Systems: Managing the

Digital Firm (8th edn.). Upper Saddle River, NJ: Prentice Hall.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychological Review, 63, 81–97.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:

Prentice-Hall.

Norman, D. A. and Bobrow, D. G. (1975). On data-limited and resource-limited processes.

Cognitive Psychology, 7, 44–64.

REFERENCES 141

O’Brien, J. A. and Marakas, G. M. (2006). Management Information Systems (7th edn.).

New York: McGraw-Hill/Irwin.

Payne, J., Bettman, J., and Johnson, E. (1993). The Adaptive Decision Maker. New York:

Cambridge University Press.

Payne, J. W. (1982). Contingent decision behavior. Psychological Bulletin, 92(2), 382–402.

Bettman, J. R., and Johnson, E. J. (1988). Adaptive strategy selection in decision

making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3),

534–52.

Pollack, I. (1952). The information of elementary auditory displays. Journal of the Acoustical

Society of America, 24(6), 745–9.

Powsner, S. M. and Tufte, E. R. (1994, August). Graphical summary of patient status. The

Lancet, 344, 386–9.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-

Oriented Modeling and Design. Upper Saddle River, NJ, USA: Prentice-Hall.

Booch, G., and Jacobson, I. (1999). The Unified Modeling Language Reference Manual.

Upper Saddle River, NJ: Addison-Wesley.

Saunders, M., Lewis, P., and Thornhill, A. (2006). Research Methods for Business Students

(4th edn.). Harlow: Prentice Hall, Financial Times.

Shiffrin, R. M. and Nosofsky, R. M. (1994). Seven plus or minus two: a commentary on

capacity limitations. Psychological Review, 101(2), 357–61.

Shocker, A. D., Ben-Akiva, M., Boccara, B., and Nedungadi, P. (1991). Consideration set

influences on consumer decision making and choice: issues, models, and suggestions.

Marketing Letters, 2(3), 181–97.

Silver, M. S. (1991). Decisional guidance for computer-based decision support. MIS Quar-

terly (March), 105–22.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics,

69, 99–118.

(1971). Designing organizations for an information-rich world. In M. Greenberger

(ed.), Computers, Communications and the Public Interest. Baltimore, MD: John Hopkins

Press.

(1974). How big is a chunk? Science, 183(4124), 482–8.

Spence, R. (2007). Information Visualization: Design for Interaction (2nd edn.). Essex: Pear-

son Education.

Stevens, S. (1946). On the theory of scales of measurement. Science, 103, 677–80.

Styles, E. A. (2006). The Psychology of Attention (2nd edn.). Hove: Psychology

Press.

Svenson, O. (1979). Process descriptions of decision making. Organizational Behavior and

Human Performance, 23, 86–112.

142 REFERENCES

Todd, P. and Benbasat, I. (1991). An experimental investigation of the impact of computer

based decision aids on decision making strategies. Information Systems Research, 2(2),

87–115.

(1992). The use of information in decison making: an experimental investiga-

tion of the impact of computer-based decision aids. MIS Quarterly (September), 373–93.

(1999). Evaluating the impact of DSS, cognitive effort, and incentives on strategy

selection. Information Systems Research, 10(4), 356–74.

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire: Graphics

Press.

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

Tversky, A. (1972). Elimination by aspects: a theory of choice. Psychological Review, 79(4),

281–99.

van der Heijden, H. (2006). Mobile decision support for in-store purchase decisions.

Decision Support Systems, 42(2), 656–63.

van der Lans, R. F. (1989). The SQL Standard: A Complete Reference. Hemel Hempstead:

Prentice Hall International.

Ware, C. (2004). Information Visualization: Perception for Design. San Francisco: Morgan

Kaufmann, Elsevier.

Wildbur, P. and Burke, M. (1998). Information Graphics. London: Thames and Hudson.

� INDEX

‘is a’ relationship 42
NULL value 22

accuracy in decision-making 125
additive difference 121
aggregated data 63
assocation 39
attention management 16
attribute 22
attribute format 26
attribute type 25

Balanced Scorecard 105
bin 76
Boolean expression 52
box plot 83
brushing 97
business intelligence 8

centre line 109
Chernoff faces 95
class 39
Class method 40
cluster analysis 95
colour harmony 98
compensatory decision strategies 124
Condition 52
conditional formatting 113
conditional selection 127
consideration set 124
cross-tabulation 77

dashboard 104
data 2
data aggregation 12
data model 13, 19
data quality 134
data type 25
data visualization 12
data warehouse 5, 62
decision strategy 120
decisional guidance 132
denormalization 59

derived attribute 73
deterministic variable 104
dicing 65
dimension 64, 82
dot scale 82
drilling down 67
dynamic charts 96

effort in decision-making 125
Elementary Information Processing unit 125
elimination by aspect 123
entity 20
entity set 20
Entity–Relationship Diagram 20
equal weights 121
exception reporting 111

factor analysis 95
foreign key 30
formal information systems 3
formula 74
frequency of good and bad features 122
frequency table 76

Garbage In, Garbage Out 134
generalization 41

histogram 83

informal information systems 3
information 2
information overload 10
information system 2
interactive legend 97
interquartile range 72
interval scale 69

Join query 55

key performance indicator 104

lagging indicator 108
leading indicator 108

144 INDEX

lexicographic 123
line chart 90
line plot 83
lower control limit 109

majority of confirming dimensions 121
management information system 3
many-to-many relationship 33
mean 72
measurement scale 67
median 72
Minnesota experiments 11
missing value 22
mode 72
multidimensional table 64
multiple inheritance 42

nominal scale 68
non-compensatory decision strategies 124

object 39
Object Management Group 39
object orientation 38
OLAP 6
OLTP 6
one-to-many relationship 28
one-to-one relationship 27
ordinal scale 68
overlay 97

parallel coordination plot 92
pie chart 84
pivot table 79
preferential choice tasks 117
primary key 24
process chart 109

query 9
query plan optimization 62
querying 46

R-table 22
radar chart 92
ratio scale 69

redundancy 32
relation 22
relational database 22
relational table 22
relationship 27
Result set 48
rolling up 67

satisficing 122
scatter plot 89
scatter plot matrix 91
scorecard 104
sensitivity analysis 113
shortlisting technique 126
side-by-side charts 86
slicing 65
source systems 5
spreadsheet 7
SQL, see Structured Query Language
SQL clause 47
SQL dialects 47
SQL parser 47
SQL statement 47
stacked bar chart 84
standard deviation 72
star plot 92
stochastic variable 104
Structured Query Language 46
summary table 74

tornado chart 114
transaction processing systems 3
trend analysis 108

Unified Modeling Language 39
upper control limit 109
utility mapping technique 128

value range 25
values 22
variability 104
variable 64
variance analysis 110

weighted additive 120

